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Preface 

This book covers a broad range of limit theorems useful in mathematical 
statistics, along with methods of proof and techniques of application. The 
manipulation of “probability” theorems to obtain “statistical” theorems 
is emphasized. It is hoped that, besides a knowledge of these basic statistical 
theorems, an appreciation on the instrumental role of probability theory and 
a perspective on practical needs for its further development may be gained. 

A one-semester course each on probability theory and mathematical 
statistics at the beginning graduate level is presupposed. However, highly 
polished expertise is not necessary, the treatment here being self-contained 
at an elementary level. The content is readily accessible to students in 
statistics, general mathematics, operations research, and selected engineering 
fields. 

Chapter 1 lays out a variety of tools and foundations basic to asymptotic 
theory in statistics as treated in this book. Foremost are: modes of conver- 
gence of a sequence of random variables (convergence in distribution, con- 
vergence in probability, convergence almost surely, and convergence in the 
rth mean); probability limit laws (the law of large numbers, the central 
limit theorem, and related results). 

Chapter 2 deals systematically with the usual statistics computed from a 
sample: the sample distribution function, the sample moments, the sample 
quantiles, the order statistics, and cell frequency vectors. Properties such as 
asymptotic normality and almost sure convergence are derived. Also, deeper 
insights are pursued, including R. R. Bahadur’s fruitful almost sure repre- 
sentations for sample quantiles and order statistics. Building on the results 
of Chapter 2, Chapter 3 treats the asymptotics of statistics concocted as 
transformations of vectors of more basic statistics. Typical examples are 
the sample coefficient of variation and the chi-squared statistic. Taylor 
series approximations play a key role in the methodology. 

The next six chapters deal with important special classes of statistics. 
Chapter 4 concerns statistics arising in classical parametric inference and 
contingency table analysis. These include maximum likelihood estimates, 
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likelihood ratio tests, minimum chi-square methods, and other asymptoti- 
cally efficient procedures. 

Chapter 5 is devoted to the sweeping class of W. Hoeffding’s U-statistics, 
which elegantly and usefully generalize the notion of a sample mean. Basic 
convergence theorems, probability inequalities, and structural properties 
are derived. Introduced and applied here is the important “projection” 
method, for approximation of a statistic of arbitrary form by a simple sum 
of independent random variables. 

Chapter 6 treats the class of R. von Mises’ “differentiable statistical 
functions,” statistics that are formulated as functionals of the sample dis- 
tribution function. By differentiation of such a functional in the sense of the 
Gateaux derivative, a reduction to an approximating statistic of simpler 
structure (essentially a &statistic) may be developed, leading in a quite 
mechanical way to the relevant convergence properties of the statistical 
function. This powerful approach is broadly applicable, as most statistics of 
interest may be expressed either exactly or approximately as a “statistical 
function.” 

Chapters 7, 8, and 9 treat statistics obtained as solutions of equations 
(“M-estimates ”), linear functions of order statistics (“L-estimates ”), 
and rank statistics (“R-estimates ”), respectively, three classes important 
in robust parametric inference and in nonparametric inference. Various 
methods, including the projection method introduced in Chapter 5 and the 
differential approach of Chapter 6, are utilized in developing the asymptotic 
properties of members of these classes. 

Chapter 10 presents a survey of approaches toward asymptotic relative 
efficiency of statistical test procedures, with special emphasis on the contri- 
butions of E. J. G. Pitman, H. Chernoff, R. R. Bahadur, and W. Hoeffding. 
To get to the end of the book in a one-semester course, some timecon- 

suming material may be skipped without loss of continuity. For example, 
Sections 1.4, 1.1 1, 2.8, 3.6, and 4.3, and the proofs of Theorems 2.3.3C 
and 9.2.6A, B, C, may be so omitted. 

This book evolved in conjunction with teaching such a course at The 
Florida State University in the Department of Statistics, chaired by R. A. 
Bradley. I am thankful for the stimulating professional environment con- 
ducive to this activity. Very special thanks are due D. D. Boos for collabora- 
tion on portions of Chapters 6, 7, and 8 and for many useful suggestions 
overall. I also thank J. Lynch, W. Pirie, R. Randles, I. R. Savage, and J. 
Sethuraman for many helpful comments. To the students who have taken this 
course with me, I acknowledge warmly that each has contributed a con- 
structive impact on the development of this book. The support of the Office 
of Naval Research, which has sponsored part of the research in Chapters 
5,6,7,8, and 9 is acknowledged with appreciation. Also, I thank Mrs. Kathy 
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Strickland for excellent typing of the manuscript. Finally, most important 
of all, I express deep gratitude to my wife, Jackie, for encouragement 
without which this book would not have been completed. 

ROBERT J. SERFLING 

Baltimore, Maryland 
September 1980 
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C H A P T E R  1 

Preliminary Tools and Foundations 

This chapter lays out tools and foundations basic to asymptotic theory in 
statistics as treated in this book. It is intended to reinforce previous knowledge 
as well as perhaps to fill gaps. As for actual proficiency, that may be gained in 
later chapters through the process of implementation of the material. 

Of particular importance, Sections 1.2-1.7 treat notions of convergence of 
a sequence of random variables, Sections 1.8-1.1 1 present key probability 
limit theorems underlying the statistical limit theorems to be derived, Section 
1.12 concerns differentials and Taylor series, and Section 1.15 introduces 
concepts of asymptotics of interest in the context of statistical inference 
procedures. 

1.1 PRELIMINARY NOTATION AND DEFINITIONS 

1.1.1 Greatest Integer Part 

For x real, [x] denotes the greatest integer less than or equal to x. 

1.1.2 O(*), o(*), and - 
These symbols are called “big oh,” “little oh,” and “twiddle,” respectively. 
They denote ways ofcomparing the magnitudes of two functions u(x) and u(x) 
as the argument x tends to a limit L (not necessarily finite). The notation 
u(x)  = O(o(x)), x -+ L, denotes that Iu(x)/o(x)l remains bounded as x + L. 
The notation u(x) = o(u(x)), x + L, stands for 

u(x )  lim - = 0, 
x + L  dx) 

1 



2 PRELIMINARY TOOLS AND FOUNDATIONS 

and the notation u(x) - dx), x + L, stands for 

Probabilistic versions of these “order of magnitude’, relations are given in 
1.2.6, after introduction of some convergence notions. 

Example. Consider the function 

f ( n ) =  1 - (1 -;)(I -$. 
Obviously, f(n) + 0 as n + 00. But we can say more. Check that 

3 
f(n) = n + O(n-Z), n -b 00, 

3 
n 

= - + o(n-’)* n -b 00, 

, n - + a o .  
3 
n 

r y -  

1.13  Probability Space, Random Variables, Random Vectors 

In our discussions there will usually be (sometimes only implicitly) an 
underlying probability space (Q, d, P), where Q is a set of points, d is a 
a-field of subsets of Q and P is a probability distribution or measure defined 
on the elements of d. A random variable X(w) is a transformation off2 into the 
real line R such that images X - ’ ( E )  of Bore1 sets B are elements of d. A 
collection of random variables X,(o) ,  X,(w), . . , on a given pair (n, d)  will 
typically be denoted simply by XI, X2,. . . . A random uector is a k-tuple 
x = (XI, . . . , xk) of random variables defined on a given pair (Q d). 

1.1.4 Distributions, Laws, Expectations, Quantiles 

Associated with a random vector X = (XI,. . ., xk) on (n. d, P) is a 
right-continuous distribution junction defined on Rk by 

F X l , . , . , X k ( t l ,  * * * I t k )  = P({O:  l l ,  - - * 3 xk(0) tk)) 

for all t = ( t l , .  . . , t k )  E Rk. This is also known as the probability law of X. 
(There is also a left-continuous version.) Two random vectors X and Y, 
defined on possibly different probability spaces, “have the same law *I if their 
distribution functions are the same, and this is denoted by U ( X )  = U(Y), or 
Fx = Fy. 
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By expectation of a random variable X is meant the Lebesgue-Stieltjes 

integral of X(o) with respect to the measure P. Commonly used notations for 
this expectation are E{X}, EX, jn X(w)dP(o), jn X(o)P(do) ,  X dP, 1 X ,  
jfm t dF,(t), and t d F x .  All denote the same quantity. Expectation may also 
be represented as a Riemann-Stieltjes integral (see Cramkr (1946), Sections 
7.5 and 9.4). The expectation E{X} is also called the mean of the random 
variable X. For a random vector X = (XI, .  . . , XJ, the mean is defined as 
E{X} = ( E { X , ) ,  a .  9 E{Xk}). 

Some important characteristics of random variables may be represented 
conveniently in terms of expectations, provided that the relevant integrals 
exist. For example, the variance of X is given by E{(X - E{X})z}, denoted 
Var{X}. More generally, the covariance of two random variables X and Y is 
given by E{(X  - E { X } ) (  Y - E {  V})}, denoted Cov{X, Y}. (Note that 
Cov{X, X) = Var{X}.) Of course, such an expectation may also be repre- 
sented as a Riemann-Stieltjes integral, 

For a random vector x = (XI, ,  . . , xk), the covariance matrix is given by 
C = (61,)kxk, where ut, = Cov{Xf, X,}. 

For any univariate distribution function F, and for 0 < p < 1, the quantity 

F - ' ( p )  = inf{x: F(x)  2 p} 

is called the pth quantile orfractile of F .  It is also denoted C,. In particular, 

The function F-'( t ) ,  0 < c -= 1, is called the inoerse function of F.  The 
following proposition, giving useful properties of F and F - I ,  is easily 
checked (Problem l.P. 1). 

= F-'(+) is called the median of F. 

Lemma. Let F be a distribution function. The function F-'(t), 0 < t < 1, 
is nondecreasing and left-continuous, and sat is-es 

(i) F-'(F(x)) s x, --a0 < x < 00, 
and 

(ii) F(F-'(t)) 2 t, 0 < t < 1. 

Hence 

(iii) F(x) 2 t ifand only ifx 2 F-'(t). 

A further useful lemma, concerning the inverse functions of a weakly 
convergent sequence of distributions, is given in 1.5.6. 



4 PRELIMINARY TOOLS AND FOUNDATIONS 

1.1.5 4, a2), Mlr, 
The normal distribution with mean p and variance o2 > Ocorresponds to the 
distribution function 

F(x)  = - 1 ex,[ - 1 ( - a ) D ] d r ,  r - p  -GO < x < GO. 
(27t)"20 - m  

The notation N ( p ,  d) will be used to denote either this distribution or a 
random variable having this distribution-whichever is indicated by the 
context. The special distribution function N(0, 1) is known as the standard 
normal and is often denoted by 0. In the case o2 = 0, N @ ,  0') will denote the 
distribution degenerate at p, that is, the distribution 

A random vector X = (XI, . . . , xk) has the k-oariate normal distribution 
with mean vector p = (pl, . . . , pk) and covariance matrix I: = (0tj)kxk if, 
for every nonnull vector a = ( a l , .  . . , ak), the random variable a x  is N(ap', 
nu'), that is, a x  = c:-, a l X ,  has the normal distribution with mean 
ap' = c: alpl and variance aCa' = xt- B,= alalorj. The notation N(p,  C) 
will denoteeither this multivariatedistribution or a random vector having this 
distribution. 

The components XI of a multivariate normal vector are seen to have 
(univariate) normal distributions. However, the converse does not hold. 
Random variables X I , .  , . , xk may each be normal, yet possess a joint 
distribution which is not multivariate normal. Examples are discussed in 
Ferguson (1967), Section 3.2. 

1.1.6 Chi-squared Distributions 

Let Z be k-variate N(p,  I), where I denotes the identity matrix of order k. For 
the case p = 0, the distribution of Z Z  = 2: is called the chi-squared with 
k degrees offleedom. For the case p # 0, the distribution is called noncentral 
chi-squared with k degrees offreedom and noncentrality parameter A = pp'. 
The notation &A) encompasses both cases and may denote either the random 
variable or the distribution. We also denote x,'(O) simply by xf .  

1.1.7 Characteristic Functions 

The characteristicfunction of a random k-vector X is defined as 

4x(t) = E{eftX'} = /. - - /eltx' dFxcx),  t E Rk. 
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In particular, the characteristic function of N(0, 1) is exp( -it2). See Lukacs 
(1970) for a full treatment of characteristic functions. 

1.1.8 Absolutely Continuous Distribution Functions 

An a6solutely continuous distribution function F is one which satisfies 

F(x)  = J:J‘(t)dr, -a c x < co. 

That is, F may be represented as the indefinite integral of its derivative. In this 
case, any function f such that F(x)  = I”- f ( t )d t ,  all x ,  is called a density for F.  
Any such density must agree with F‘ except possibly on a Lebesgue-null set. 
Further, iff is continuous at x o ,  then f ( x o )  = F’(xo) must hold. This latter 
may be seen by elementary arguments. For detailed discussion, see Natanson 
(1961), Chapter IX. 

1.1.9 I.I.D. 
With reference to a sequence {Xi} of random vectors, the abbreviation I.I.D. 
will stand for “independent and identically distributed.” 

1.1.10 lndicator Functions 
For any set S, the associated indicatorfunction is 

1, XES,  
= (00, x # S .  

For convenience, the alternate notation I ( S )  will sometimes be used for Is, 
when the argument x is suppressed. 

1.1.11 Binomial (n,p) 

The binomialdistribution with parameters nand p ,  where n is a positive integer 
and 0 5 p 5 1, corresponds to the probability mass function 

k = 0, 1, ..., n. 

The notation B(n, p )  will denote either this distribution or a random variable 
having this distribution. As is well known, B(n, p) is the distribution of the 
number of successes in a series of n independent trials each having success 
probability p. 

1.1.12 Uniform (a, 6 )  

The unrorm distribution on the interval [a, 61, denoted U(a, 6), corresponds 
to the density function f ( x )  = l/(b-u), a s x 5 6, and =0, otherwise. 
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1.2 MODES OF CONVERGENCE OF A SEQUENCE OF 
RANDOM VARIABLES 

Two forms of approximation are of central importance in statistical ap- 
plications. In one form, a given random variable is approximated by another 
random variable. In the other, a given distribution function is approximated 
by another distribution function. Concerning the first case, three modes of 
convergence for a sequence of random variables are introduced in 1.2.1, 
1.2.2, and 1.2.3. These modes apply also to the second type of approximation, 
along with a fourth distinctive mode introduced in 1.2.4. Using certain of 
these convergence notions, stochastic versions of the O(.$, o(0) relations in 
1.1.2 are introduced in 1.2.5. A brief illustration of ideas is provided in 1.2.6. 

1.2.1 Convergence In Probability 

Let X,, X,, . . . and X be random variables on a probability space (9 d, P). 
We say that X, converges in probability to X if 

lim P(IX,  - XI < E )  = 1, every e > 0. 
n- a0 

This is written X, 3 X ,  n -+ 00, or p-lim,,+m X, = X. Examples are in 1.2.6, 
Section 1.8, and later chapters. Extension to the case of X,, X,, . . . and X 
random elements of a metric space is straightforward, by replacing (X, - XI 
by the relevant metric (see Billingsley (1968)). In particular, for random k- 
vectors X,, X,, . . . and X, we shall say that X, 3 X if IlX,, - Xll 4 0 in the 
above sense, where llzll = (zi- , for z E Rk. It then follows (Problem 
1.P.2) that X, 3 X if and only if the corresponding component-wise con- 
vergences hold. 

1.2.2 Convergence with Probability 1 

Consider random variables X,, X,, . . . and X on (Q d, P). We say that X ,  
converges with probability 1 (or strongly, almost surely, almost euerywhere, etc.) 
to X if 

P limX,= - 1. 

This is written X ,  * X ,  n + 00, or pl-lim,+m X, = X .  Examples are in 
1.2.6, Section 1.9, and later chapters. Extension to more general random 
elements is straightforward. 

(n-m X) 

An equivalent condition for convergence wpl is 

lim P(lX,,, - XI < e, all rn 2 n) = 1, each e > 0. 
n-m 
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This facilitates comparison with convergence in probability. The equivalence 
is proved by simple set-theoretic arguments (Halmos (1950), Section 22), as 
follows. First check that 

(*I {a: lim x,(a) = x(a)) = n u {a: IX,,,(~) - x(w)l< s, all m 2 n), 

whence 

(**I 

m 

R+ 09 r > O  n - 1  

. . k: lim x,,(a) = x(o)j = lim lim {a: IX,,,(~) - x ( a ) l <  e, all m 2 n}. 

By the continuity theorem for probability functions (Appendix), (**) implies 

P(X,  + X) = lim lim P(JX,,, - XI < e,allm 2 n), 

which immediately yields one part of the equivalence. Likewise, (*) implies, 
for any E > 0, 

P(X,+X)S l imP((X,-X(<e,al lmrn) ,  

w m  8-0  n-m 

8 - 0  n-m 

14 m 

yielding the other part. 
The relation (*) serves also to establish that the set {m: X,(w) + X ( a ) }  

truly belongs to d, as is necessary for "convergence wpl to be well defined. 
A somewhat stronger version of this mode of convergence will be noted in 

1.3.4. 

1.2.3 Convergence in rth Mean 
Consider random variables XI, Xz , . . . and X on (Q d, P). For r > 0, we say 
that X, converges in rth mean to X if 

lim EIX, - X r  = 0. 

This is written X,- X or L,-lim,,+m X, = X. The higher the value of r, the 
more stringent the condition, for an application of Jensen's inequality (Ap- 
pendix) immediately yields 

I- m 
rtb 

Given (Q d, P) and r > 0, denote by L,(Q d, P) the space of random 
variables Y such that El Y I' < 00. The usual metric in L, is given by d( Y, 2) = 
IIY - Zll,, where 

O < r < l ,  
[El Yl'l''', r 2 1. 
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Thus convergence in the rth mean may be interpreted as convergence in the 
L, metric, in the case of random variables XI, X2, . . . and X belonging to L,. 

1.2.4 Convergence in Distribution 

Consider distribution functions F,(.), F2(.), . . , and F(.), Let XI, X2,. . . 
and X denote random variables (not necessarily on a common probability 
space) having these distributions, respectively. We say that X ,  converges in 
distribution (or in law) to X if 

lim F,(t) = F(t), each continuity point t of F. 

This is written X, 4 X ,  or d-iim,-= X ,  = X .  A detailed examination of this 
mode of convergence is provided in Section 1.5. Examples are in 1.2.6, 
Section 1.9, and later chapters. 

The reader should figure out why this definition would not afford a 
satisfactory notion of approximation of a given distribution function by other 
ones if the convergence were required to hold for all t. 

In as much as the definition of X ,  A X is formulated wholly in terms of the 
corresponding distribution functions F, and F, it is sometimes convenient to 
use the more direct notation “F, * F” and the alternate terminology “F, 
conuerges weakly to F.” However, as in this book the discussions will tend to 
refer directly to various random variables under consideration, the notation 
X ,  % X will be quite useful also. 

Remark. The convergences 3, %, and 3 each represent a sense in 
which, for n sufficiently large, X,(w) and X(w) approximate each other as 
functions ofw, o E R. This means that the distributions of X ,  and X cannot be 
too dissimilar, whereby approximation in distribution should follow. On the 
other hand, the convergence 5 depends only on the distribution functions 
involved and does not necessitate that the relevant X ,  and X approximate 
each other as functions of o. In fact, X, and X need not be defined on the same 
probability space. Section 1.3 deals formally with these interrelationships. W 

1.2.5 Stochastic O(.) and 4) 
A sequence of random variables {X,,}, with respective distribution functions 
{F,}, is said to be bounded in probability if for every e > 0 there exist M ,  and 
N, such that 

n- a~ 

F,(M,) - F,( - M,) > 1 - e all n > N,. 

The notation X ,  = 0,,(1) will be used. It is readily seen that X ,  5 X 3 
X, = 0,,(1) (Problem 1.P.3). 
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More generally, for two sequences of random variables { U,} and { K}, the 
notation U, = O p ( K )  denotes that the sequence {UJV,}  is Op(l). Further, 
the notation U, = op(K)  denotes that UJV,, 4 0. Verify (Problem 1.P.4) that 
u, = op(v,) * u, = OP(v,). 

1.2.6 Example: Proportion of Successes in a Series of Trials 

Consider an infinite series of independent trials each having the outcome 
“success” with probability p .  (The underlying probability space would be 
based on the set f2 of all infinite sequences o of outcomes of such a series of 
trials.) Let X, denote the proportion of successes in the first n trials. Then 

P (i) X, + P; 

Is it true that 

Justification and answers regarding (i)-(v) await material to be covered in 
Sections 1.8-1.10. Items(vi)and(vii)may be resolved at once, however,simply 
by computing variances (Problem 1.P.5). 

1.3 RELATIONSHIPS AMONG THE MODES OF CONVERGENCE 

For the four modes ofconvergence introduced in Section 1.2, we examine here 
the key relationships as given by direct implications (1.3.1-1.3.3), partial 
converses (1.3.4-1.3.9, and various counter-examples (1.3.8). The question 
of convergence of moments, which is related to the topic of convergence in 
rth mean, is treated in Section 1.4. 
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1.3.1 Convergence wpl Implies Convergence in Probability 

Theorem. If X,, wp? X ,  then X ,  4 X .  

This is an obvious consequence of the equivalence noted in 1.2.2. Incidentally, 
the proposition is not true in gerreral for all measures(e.g., see Halmos (1950)). 

1.3.2 Convergence in rth Mean Implies Convergence in Probability 

Theorem. If X ,  2% then X ,  X. 

PROOF. Using the indicator function notation of 1.1.10 we have, for any 
E > 0, 

E I X ,  - Xl'r E { I X ,  - X r q l X ,  - XI > E ) }  2 E'P(IX, - XI > E )  

and thus 

P( IX,, - x I > E )  s E-'E I x, - x I' -+ 0, n -+ ao. H 

13.3 Convergence in Probability Implies Convergence in Distribution 

(This will be proved in Section 1.5, but is stated here for completeness.) 

1.3.4 Convergence in Probability Sufficiently Fast Implies Convergence wpl 

Theorem. If 
m 2 P ( I X ,  - X I  > E) < 00 for every E > 0, 

n =  1 

then X ,  =% X .  

PROOF. Let E > 0 be given. We have 

m 

(**) p(lx,,, - XI > e for some m 2 n) = P u { IX, - X I  > 8 1 )  
d . n  

m 

5 C p(IXm - XI > E). 
m = n  

Since the sum in (**)is the tail of aconvergent series and hence -+0 as n -+ 00, 

the alternate condition for convergence wpl follows. H 

Note that the condition of the theorem defines a mode of convergence 
stronger than convergence wpl.  Following Hsu and Robbins (1947), we say 
that X ,  converges completely to X if (*) holds. 
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1.3.5 Convergence in rth Mean Sufficiently Fast Implies Convergence wpl 

The preceding result, in conjunction with the proof of Theorem 1.3.2, yields 

Theorem. lf c."- EIX, - XI' < 00, then X, % X. 

The hypothesis ofthe theorem in fact yields the much stronger conclusion that 
the random series EX1 !X, - XI' converges wpl (see Lukacs (1975), 
Section 4.2, for details). 

1.3.6 Dominated Convergence in Probability Implies Convergence in Mean 

Theorem. Suppose that X, 3 X, I X, I < I Y I wpl (all n), and E I Y l r  < 00. 

Then X, * X. 
PROOF. First let us check that 1x1 5 I Y Iwpl. Given 6 > 0, we have 

P(IX( > lYl+ 6) s P ( I X (  > IX,,l+ 6) < P((X, - XI > 6)+0, n + m. 
HencelXl S ( Y I + S w p l f o r a n y S > O a n d s o f o r S = O .  

Consequently, IX, - XI s 1x1 + IX,I s 21 Y IwpI. 
Now choose and fix E > 0. Since El Y I' < 00, there exists a finite constant 

A, > E such that E {  I Y rl(21 Y I > A,)} s E. We thus have 

E(X, - XI'= E{JX, - X('l((X, - XI > At)}  
+ E{IX, - XI'l(lXn - XI 5 E ) }  

+ E{lX, - xl'l(~ < IX, - XI 5 A,)} 
S E{(12Y)'1(2(YI > A,)} + E' + A:P(IX, - XI > E )  

5 2'E + E' + A:P()X, - XI > E). 

Since P ( ) X ,  - XI > E )  + 0, n + 00, the right-hand side becomes less than 
2'6 + 26' for all n sufficiently large. 

More general theorems of this type are discussed in Section 1.4. 

1.3.7 Dominated Convergence wpl Implies Convergence in Mean 

By 1.3.1 we may replace 4 by * in Theorem 1.3.6, obtaining 

Theorem. Suppose that X, * X, 1 X, I s; I Y I wpl (all n), and E I Y 1' < 00. 

Then X, 5 X .  

1.3.8 Some Counterexamples 

Sequences {X,} convergent in probability but not wpl are provided in 
Examples A, B and C. The sequence in Example B is also convergent in 
mean square. A sequence convergent in probability but not in rth mean for 
any r > 0 is provided in Example D. Finally, to obtain a sequence convergent 
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wpl but not in rth mean for any r > 0, take an appropriate subsequence of the 
sequence in Example D (Problem 1.P.6). For more counterexamples, see 
Chung (1974), Section 4.1, and Lukacs (1975), Section 2.2, and see Section 2.1. 

Example A. The usual textbook examples are versions of the following 
(Royden (1968), p. 92). Let (n, d, P) be the probability space corresponding 
to R the interval [0,1], d the Bore1 sets in [0, 13, and P the Lebesgue measure 
on d. For each n = 1,2, . . . , let k, and v, satisfy n = k, + 2"", 0 5 k, < 2'", 
and define 

1, if O E  [k,2-'", (k, + 1)2-'"] 
X n ( 0 )  = { 0, otherwise. 

It is easily seen that X, 4 0 yet X,(o) --* 0 holds nowhere, o E [0,1]. H 

Example B. Let Yl, Yz, . . . be I.I.D. random variables with mean 0 and 
variance 1. Define 

c1 yr 
(n log log n)l'Si 

x, = 

By the central limit theorem (Section 1.9) and theorems presented in Section 
1.5, it is clear that X, 4 0. Also, by direct computation, it is immediate that 
X, 5 0 ,  However, by the law of the iterated logarithm (Section LlO), it is 
evident that X,(o)  -P 0, n --* 00, only for o in a set of probability 0. 

Example C (contributed by J. Sethuraman). Let Yl, Y,, . . , be I.I.D. random 
variables. Define X, = YJn.'+hen clearly X, 1: 0. However, X, "p'. 0 if and 
only if El Y, I < m. To verify this claim, we apply 

Lemma (Chung (1974), Theorem 3.2.1) For any positive random variable 
z, 

m f' P(Z 2 n) s E{Z) 5 1 + c P(Z 2 n). 
n i l  n= 1 

Thus, utilizing the identical distributions assumption, we have 

1 m f P(lxnl* = c ~ ( 1  y1 I 2 n&) 5 ; EJ yi I, 
m m 

n- 1 n= 1 

n= 1 n= 1 

1 
1 + C P(IXnI 2 8) = 1 + C p(I Y. I 2 na) 2 e EI Yi I. 

The result now follows, with the use of the independence assumption, by an 
application of the Borel-Cantelli lemma (Appendix). H 
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Example D. Consider 

n, with probability l/log n 
xn= { 0, with probability l-l/log n. 

Clearly X, 1: 0. However, for any r > 0, 

1 A CONVERGENCE OF MOMENTS; UNIFORM INTEGRABILITY 

Suppose that X, converges to X in one of the senses $,A, ws? or 5. What 
isimpliedregardingconvergenceofE{X:} toE{X'},or E IX,p toEIXI',n + co? 
The basic answer is provided by Theorem A, in the general context of 5, 
which includes the other modes of convergence. Also, however, specialized 
resultsareprovided for thecases 3, 3,and *.These aregiven by Theorems 
B, C, and D, respectively. 

Before proceeding to these results, we introduce three special notions and 
examine their interrelationships. A sequence of random variables { Y,} is 
uniformly integrable if 

limsupE{JY,II(IY,I > c ) }  = O .  

A sequence of set functions {Q.} defined on d is uniformly absolutely con- 
tinuous with respect to a measure P on d if, given E > 0, there exists S > 0 
such that 

P(A)  < 6 =$ sup( Q,(A)I < E. 

The sequence { Q n }  is equicontinuous at 4 if, given E > 0 and a sequence {A,} 
in d decreasing to 4, there exists M such that 

c+oo n 

n 

m > M supIQ,(A,)J c E. 
n 

Lemma A. (i) 
the pair of conditions 

and 

(b) the set Junctions {Q,} defined by Q,(A) = I,, IY,(dP are uniformly 
absolutely continuous with respect to P. 

Uniform integrability of {Y,} on (a, d, P) is equivalent to 

(a) SUPn EIYnI < 00 



14 PRELIMINARY TOOLS AND FOUNDATIONS 

(ii) Susfcientfor uniform integrability of {Y,} is that 

sup EIYnI1+' < 00 
n 

for some E > 0. 

variable Y such that E I Y I < 00 and 
(iii) Susfcient for uniform integrability of {Y,} is that there be a random 

P(IY,( 2 Y) 5 P(IYI 2 y),alln 2 1,ally > 0. 

(iv) For set functions Q,  each absolutely continuous with respect to a 
meusure P ,  equicontinuity at 4 implies uniform absolute continuity with respect 
to P. 

PROOF. (i) Chung (1974), p. 96; (ii) note that 

H I  y,lI(l Kl > c ) )  5 c - T I  XI'+'; 
(iii) Billingsley (1968), p. 32; (iv) Kingman and Taylor (1966), p. 178. 

Theorem A. Suppose that X, % X and the sequence {X:} is uniformly 
integrable, where r > 0. Then ElXl' < 00, limn E{X:} = E{X'}, and 
lim, EIXn(' = EJXI'. 

PROOF. Denote the distribution function of X by F. Let 8 > 0 be given. 
Choose c such that fc are continuity points of F and, by the uniform 
integrability, such that 

SUP E { l ~ I r ~ ( l ~ I l  2 c)} < e. 
I 

For any d > c such that f d  are also continuity points of F, we obtain from 
the second theorem of Helly (Appendix) that 

lim E{IX,I'I(c s IX,l s, 4) = E{IXI'I(c s 1x1 s 4). 

It follows that E{ IXrf(c 5 IX I s d)} < e for all such choices of d. Letting 
d-,oo,weobtainE{lXI'I(IXI Zc)} <6,whenceEJXr< 00. 

n+m 

Now, for the same c as above, write 

IE{X:} - E{X'}I s IE{X~(lxnl 5 c)} - E{X'I(IXl 5 c))l 
+ E{lXnI'I(lXnl > c)} + E{IXI'I(IXI > c)}* 

By the Helly theorem again, the first term on the right-hand side tends to 0 as 
n + 00. The other two terms on the right are each less than 8. Thus lim;E{X:} 
= E{X'}. A similar argument yields limn ElX,,r = EIXI'. 
By arguments similar to the preceding, the following partial converse to 

Theorem A may be obtained (Problem 1.P.7). 
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Lemma B. Suppose that X ,  5 X and limn EIXnr = EJXI '  < 00. Then the 
sequence {X:} is uniformly integrable. 

We now can easily establish a simple theorem apropos to the case 3. 

Theorem B. Suppose that Xn*X and EIX( '  < 00. Then limn E{X:} = 
E{X'}  and limn EIX,(' = EIXI'. 

PROOF. For 0 < r S 1, apply the inequality Ix + y r  S I x r  + Iyr to 
write Ilxr - I y r l  s Ix - y J '  and thus 

IEIX,r - E l X r l  S EJX, - XI'. 
For r > 1, apply Minkowski's inequality (Appendix) to obtain 

l(ElX,r)l/r - (EIxr)lq s (EJX, - XI')'". 
In either case, limn E(X, ( '  = EIX < 00 follows. Therefore, by Lemma B, 
{X:} is uniformly integrable. Hence, by Theorem A, limn E{X:} = E{Xr} 
follows. 

Next we present results oriented to the case 3. 

Lemma C. Suppose that X ,  3 X and E I X ,  I' < 00, all n. Then the following 
statements hold. 

(i) X ,  
(ii) Ifthe set functions {Q,} defined by Q,(A) = JA l X n r  dP are equicon- 

PROOF. (i) see Chung (1974), pp. 96-97; (ii) see Kingman and Taylor 

It is easily checked (Problem 1.P.8) that each of parts (i) and (ii)generalizes 

Combining Lemma C with Theorem B and Lemma A, we have 

X i f  and only i f  the sequence {X:}  is uniformly integrable. 

tinuous at 4, then X , s  X and EJXI'  < 00. 

(1966), pp. 178-180. 

Theorem 1.3.6. 

Theorem C. Suppose that X ,  -% X and that either 
(i) E I X 1' < 00 and {X:} is uniformly integrable, 

or 
(ii) sup, EIX,I' < 00 and the set functions {Q,} defined by Q,(A) = 
I X ,  (' dP are equicontinuous at 4. 

Then limn E{X:} = E{X'}  and limn EJX,/ '  = EIXJ'. 
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Finally, for the case 5, the preceding result may be used; but also, by a 
simple application (Problem l.P.9) of Fatou’s lemma (Appendix), the follow- 
ing is easily obtained. 

Theorem D. Suppose that Xn * X. If G n  EIXnr S ElXl’ < 00, then 
limn E{X:} = E{X’} and limn EIX,)’ = ElX)’. 

As noted at the outset of this section, the fundamental result on convergence 
of moments is provided by Theorem A, which imposes a uniform integrability 
condition. For practical implementation of the theorem, Lemma A(i), (ii), (iii) 
provides various sufficient conditions for uniform integrability. Justification 
for the trouble of verifying uniform integrability is provided by Lemma B, 
which shows that the uniform integrability condition is essentially necessary. 

1.5 FURTHER DISCUSSION OF CONVERGENCE 1N DISTRlBUTION 

This mode of convergence has been treated briefly in Sections 1.2-1.4. Here 
we provide a collection of basic facts about it. Recall that the definition of 
X ,  A X is expressed in.terms of the corresponding distribution functions F, 
and F, and that the alternate notation Fn F is often convenient. The reader 
should formulate “convergence in distribution” for random vectors. 

1.5.1 Criteria for Convergence in Distributibn 

The following three theorems provide methodology for establishing conver- 
gence in distribution. 

Theorem A. Let the distribution functions F, F1, F2, . . . possess respective 
characteristic functions 4, 41, 42, . . . . The following statements are equivalent: 

(i) F, =* F; 
(ii) limn +,(t) = Nt), each real t; 
(iii) limn g dF, = g dF, each bounded continuousfitnction g. 

PROOF. That (i) implies (iii) is given by the generalized Helly theorem 
(Appendix). We now show the converse. Let t be a continuity point of F and 
let E > 0 be given. Take any continuous function g satisfying g ( x )  = 1 for 
x 1s t ,  0 5 g(x) S 1 for t < x < t + e, and g(x) = 0 for x 2 t + e. Then, 
assuming (iii), we obtain (Problem 1.P.10) 

Tim F,(t) 5 F(t + 6). 
n-+ m 
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Similarly, (iii) also gives 

- lim F,(t) 2 F(t - 8). 
n+ m 

Thus (i) follows. 
For proof that (i) and (ii) are equivalent, see Gnedenko (1962), p. 285. 

Example. If the characteristic function of a random variable X, tends to the 
function exp(-+t2) as n --* 00, then X, % N(0, 1). H 

The multivariate version of Theorem A is easily formulated. 

Theorem B (Frkchet and Shohat). Let the distribution functions F, 
possess Jinite moments arb = j tk  dF,(t) for k = 1, 2,. . . and n = 1,2,. . . . 
Assume that the limits ak = limn ap) exist (finite), each k. Then 

(i) the limits {ak} are the moments o f a  distributionfunction F; 
(ii) Vthe F gioen by (i) is unique, then F, =+ F. 

For proof, see Frtchet and Shohat (1931), or Loeve (1977), Section 11.4. 
This result provides a convergence of moments criterion for convergence in 
distribution. In implementing the criterion, one would also utilize Theorem 
1.13, which provides conditions under which the moments {ak}  determine a 
unique F. 

The following result, due to Scheff6 (1947) provides a convergence of 
densities criterion. (See Problem 1.P.11.) 

Theorem C (Scheffk). Let {f.) be a sequence of densities of absolutely 
continuous distribution functions, with limn f,(x) = f(x), each real x. IJ f is a 
densityfunction, then limn (f,(x) - f(x)ldx = 0. 

PROOF. Put gn(x) = [ f ( x )  - f , (x ) ] ! ( f (x )  2 h ( x ) ) ,  each x .  Using the 
fact that f is a density, check that 

11 fn(x) - f ( x )  I dx = 2 Jen(x)dx* 

Now Ig,(x)l $ f ( x ) ,  all x,each n. Hence, by dominated convergence(Theorem 
1.3.7), limn g,(x)dx = 0. H 

1.5.2 Reduction of Multivariate Case to Univariate Case 
The following result, due to Cramer and Wold (1936), allows the question of 
convergence of multivariate distribution functions to be reduced to that of 
convergence of univariate distribution functions. 
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Theorem. In  R', the random vectors X, converge in distribution to the random 
vector X tfand only tfeach linear combination of the components of X, converges 
In distribution to the same linear combination of the components ofX. 

PROOF. Put X, = (X,,,, . . . , X,,,Jand X = (Xl,. . . , Xk)and denote the 
corresponding characteristic functions by 4, and 4. Assume now that for any 
real A,, . . . , 

AlXn1 + ' * '  + AkXx,, 1, Alxl + * "  + A k x k .  

Then, by Theorem 1.5.1A, 

lim #&Al,. . . , t&) = 4(rA,,  . . . , th), all r. 

With t = 1, and since A t , .  . . , Ak are arbitrary, it follows by the multivariate 
version of Theorem 1.5.1A that X,, % X. 

n+ w 

The converse is proved by a similar argument. H 

Some extensions due to Wald and Wolfowitz (1944) and to Varadarajan 
(1958) are given in Rao (1973), p. 128. Also, see Billingsley (1968), p. 49, for 
discussion of this "Cramer-Wold device." 

1.5.3 Uniformity of Convergence in Distribution 

An important question regarding the weak convergence of F,, to F is whether 
the pointwise convergences hold uniformly. The following result is quite 
useful. 

Theorem (Pblya), f'f F, * F and F is continuous, then 

lim supIF,(t) - F(t)I = 0. 
,-+a I 

The proof is left as an exercise (Problem 1.P.12). For generalities, see 
Ranga Rao (1962). 

1.5.4 Convergence in Distribution for Perturbed Random Variables 

A common situation in mathematical statistics is that the statistic of interest 
is a slight modification of a random variable having a known limit distribution. 
A fundamental role is played by the following theorem, which was developed 
by Slutsky (1925) and popularized by CramCr (1946). Note that no restric- 
tions are imposed on the possible dependence among the random variables 
involved. 
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Theorem (Slutsky). Let X ,  4 X and Y, J$ C, where c is a finite constant. 
Then 

(i) X, + Y, x + c; 
(ii) X,Y, 5 CX; 

(iii) XJY, 5 X/C ifc z 0. 

Coroffury A. Convergence in probability, X ,  .% X ,  implies convergence In 
distribution, X ,  5 x. 

Coroffury B. Convergence in probability to a constant is equivalent to con- 
vergence in distribution to the given constant. 

Note that Corollary A was given previously in 1.3.3. The method of proof of 
the theorem is demonstrated sufficiently by proving (i). The proofs of (ii) and 
(iii) and of the corollaries are left as exercises (see Problems 1.P.13-14). 

PROOF OF (i). Choose and fix t such that t - c is a continuity point of 
F x .  Let e > 0 be such that t - c + E and t - c - E are also continuity points 
of F x .  Then 

Fx. + ~ , ( t )  = p(xn + Yn S t )  
5 p(x, + Yn S t,  lYn - CI  < 6) + P ( (  Y, - CI 2 E) 

s p ( X ,  S t - c + 6) + P(lY, - CI 2 6). 

Hence, by the hypotheses of the theorem, and by the choice oft - c + e, 

(*) EG Fxn+yn(t) S G P ( X n  S t - c + 8) + TimP(JY, - CI 2 E )  
n n n 

= Fx(t - c + E) .  

Similarly, 

P(Xn 5 t - c - e) 5 P(Xn + Yn S t )  + P(lYn - cl 2 e )  

and thus 

Since t - c is a continuity point of F x ,  and since e may be taken arbitrarily 
small, (*) and (**) yield 

lim Fxn+yn(t) = F,(t - c) = FX+&). I 
n 
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1.5.5 Asymptotic Normality 
The most important special case of convergence in distribution consists of 
convergence to a normal distribution. A sequence of random variables {X,} 
converges in distribution to N ( p ,  u2), u > 0, if equivalently, the sequence 
{(X, - p)/u} converges in distribution to N(0, 1). (Verify by Slutsky’s 
Theorem.) 

More generally, a sequence of random variables { X , }  is asymptotically 
normal with “mean” p, and “variance” a,” if a, > 0 for all n sufficiently large 
and 

x, - A 5 N(0,l). 
all 

We write “ X ,  is AN(!,, a:).” Here {p,} and {a,} are sequences of constants. 
It is not necessary that A,, and u,” be the mean and variance of X,, nor even that 
A’, possess such moments. Note that if X, is AN@,, u:), it does not necessarily 
follow that {X,} converges in distribution to anything. Nevertheless in any 
case we have (show why) 

sup I p(X ,  s t )  - P(N(p,, of) s t )  I + 0, n + 00, 
I 

so that for a range of probability calculations we may treat X, as a Nb,, a,’) 
random variable. 
As exercises (Problems 1.P.15-16), prove the following useful lemmas. 

Lemma A. If Xn is AN(&,, a:), then also Xn is AN(&, a,”) if and only i f  

Lemma B. I .  X n  is AN(Pn, o:), then also anX, + bn is AN&, af) if and 
only if 

Example. If X ,  is AN(n, 2n), then so is 

n - 1  
n X, 

but not - 
Jn - 1 x,. 
Jr; 
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We say that a sequence of random uectors {X,} is asymptotically (multf- 
uariate) normal with "mean vector" pn and "covariance matrix" C,, if C, 
has nonzero diagonal elements for all n sufficiently large, and for every vector 
1 such that 1Z,X > 0 for all n sufficiently large, the sequence AX; is AN(&&, 
AE,X), We write "X, is AN(pn, I;,)." Here {p,} is a sequence of vector con- 
stants and {&} a sequence of covariance matrix constants. As an exercise 
(Problem l.P.17), show that X, is AN(p, ,  C ~ C )  if and only if 

xn - 5 N(0, Z). 
Cn 

Here {c,} is a sequence of real constants and I; a covariance matrix. 

1.5.6 Inverse Functions of Weakly Convergent Distributions 

The following result will be utilized in Section 1.6 in proving Theorem 1.6.3. 

Lemma. IfFn =s F, then the set 

{ t :O<t  < l,F,'(t)f*F-'(t),n-,co} 

contains at most countably many elements. 

PROOF. Let 0 < to < 1 be such that F;'( to)  f i  F-'( t0) ,  n -+ 00. Then 
there exists an E > 0 such that F - ' ( t o )  f E are continuity points of F and 
IF; ' ( to)  - F-'(to)l > E for infinitely many n = 1.2,. . , , Suppose that 
F;l( to)  < F - ' ( t 0 )  - E for infinitely many n. Then, by Lemma 1.1.4(ii), 
to 5 F,(F; ' ( t o ) )  s F,(F-'(to) - E). Thus the convergence F, =s F yields 
to 4 F(F-' ( to)  - E), which in turn yields, by Lemma 1.1.4(i), F-' ( to)  5 
F-'(F(F-'( to)  - E ) )  I; F-' ( t0)  - E, a contradiction. Therefore, we must 
have 

~ ; ' ( t ~ )  > F-' ( to)  + e for infinitely many n = 1,2, . . . . 
By Lemma 1.1.4(iii), this is equivalent to 

F,(F-'(C,) + E )  < to for infinitely many n = 1,2,. . . , 
F yields F(F-'( to)  + E )  5 to.  But also which by the convergence F ,  

to s F(F-'(to)), by Lemma 1.1.4(i). It follows that 

to  = F(F-'(to)) 

and that 

F(x) = to for x E [F-'( t , ) ,  F - ' ( t o )  + E ] ,  
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that is, that F is flat in a right neighborhood of F-'(t,,). We have thus shown a 
one-to-one correspondence between the elements of the set { t :  0 < t < 1, 
F; ' ( t )  P F-'( t ) ,  n -+ do} and a subset of the flat portions of F. Since (justify) 
there are at most countably many flat portions, the proof is complete. 

1.6 OPERATIONS ON SEQUENCES TO PRODUCE SPECIFIED 
CONVERGENCE PROPERTIES 

Here we consider the following question: given a sequence {X,} which is 
convergent in some sense other than wpl, is there a closely related sequence 
{X:}  which retains the convergence properties of the original sequence but 
also converges wpl? The question is answered in three parts, corresponding 
respectively to postulated convergence in probability, in rth mean, and in 
distribution. 

1.6.1 Conversion of Convergence in Probability to Convergence wpl 
A standard result of measure theory is the following (see Royden (1968), p. 230). 

Theorem. IfX, 3 X, then there exists a subsequence XnI; such that X, X, 
k -+ a. 

Note that this is merely an existence result. For implications of the theorem 
for statistical purposes, see Simons (1971). 

1.6.2 Conversion of Convergence in rth Mean to Convergence wpl 

Consider the following question: given that X, 3 0, under what circum- 
stances does the "smoothed" sequence 

converge wpl? (Note that simple averaging is included as the special case 
w, = 1.) Several results, along with statistical interpretations, are given by 
Hall, Kielson and Simons (1971). One of their theorems is the following. 

Theorem. A s a c i e n t  conditionfor {X:} to converge to 0 with probability 1 
is that 

Since convergence in rth mean implies convergence,in probability, a com- 
peting result in the present context is provided, by Theorem 1.6.1, which 
however gives only an existence result whereas the above theorem-is con- 
structiue. 
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1.6.3 Conversion of Convergence in Distribution to Convergence wpl 

Let ale, denote the Bore1 sets in [0, 13 and mlo, 11 the Lebesgue measure 
restricted to [0, 13. 

Theorem. In R‘, suppose that Xn 3 X. Then there exist random k-vectors 
Y, Y1, Y2, . . . defined on the probability space ([0, 13, Wlo, mIO, 1,) such that 

9 ( Y )  = 9 ( X )  and 9(Y, )  = 9(Xn), n = 1,2,. , . , 
and 

y n  Y, i e . ,  mlo, ll(yn -, Y) = 1. 

We shall prove this result only for the case k = 1. The theorem may, in fact, 
be established in much greater generality. Namely, the mappings X, XI, X2, . , , 
may be random elements of any separable complete metric space, a generality 
which is of interest in considerations involving stochastic processes. See 
Skorokhod (1956) for the general treatment, or Breiman (1968), Section 13.9, 
for a thorough treatment of the case R“. 

The device given by the theorem is sometimes called the “Skorokhod 
construction ” and the theorem the “Skorokhod representation theorem.” 

PROOF (for the case k = 1). For 0 < t < 1, define 

Y(t )  = F;’(t) and Ym(t) = F;:(t), n = 1,2,. . . . 
Then, using Lemma 1.1.4, we have 

F Y W  = “10. I]({t: Y(t) 5 Y ) )  = mro, I l ( k  t s FXCV)}) 

= FAY), all Y ,  

that is, 9 ( Y )  = 9 ( X ) .  Similarly, U(YJ = 9 ( X n ) ,  n = 1,2,. . . . It remains 
to establish that 

M [ O .  1l({t: yn(t) f ,  Y ( t ) ) )  = 0. 

This follows immediately from Lemma 1.5.6. 

Remarks. (i) The exceptional set on which Y. fails to converge to Y is 
at most countably infinite. 

(ii) Similar theorems may be proved in terms of constructions on prob- 
ability spaces other than ([0, 11, mIo, However, a desirable feature 
of the present theorem is that it does permit the use of this convenient prob- 
ability space. 

(iii) The theorem is “constructive,” not existential, as is demonstrated by 
the proof. W 
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1.7 CONVERGENCE PROPERTIES OF TRANSFORMED SEQUENCES 

Given that X, + X in some sense of convergence, and given a function g, a 
basic question is whether g(X,) -+ g(X)  in the same sense of convergence. We 
deal with this question here. In Chapter 3 we deal with the related but different 
question of whether, given that X ,  is AN(a,, b,,), and given a function g, there 
exist constants c,, d, such that g(X,) is AN(c,, d,,). 

Returning to the first question, the following theorem states that the 
answer is "yes" if the function g is continuous with P,-probability 1. A 
detailed treatment covering a host of similar results may be found in Mann 
and Wald (1943). However, the methods of proof there are more cumbersome 
than the modern approaches we take here, utilizing for example the Skorokhod 
construction. 

Theorem. Let XI, X,, . . . and X be random k-vectors defined on a probability 
space and let g be a uector-valued Borel function defined on Rk. Suppose that g 
is continuous with Px-probability 1. Then 

(i) X, vp? x.* g(X.1 wp? g(X); 
(ii) X, 4 x =- g(X,) 3 g(X); 

(iii) X, S x =s g(x,) S g(x). 

PROOF. We restrict to the case that g is real-valued, the extension for 
vector-valued g being routine. Let (Q d, P) denote the probability space on 
which the X's are defined. 

(i) Suppose that X, * X. For o E R such that X,(o) + X(o) and such 
that g is continuous at X(o), we have g(X,(o)) + g(X(o)), n + 00. By our 
assumptions, the set of such w has P-probability 1. Thus g(X,) wp! g(X). 

Q(X). Then, for some e > 0 and 
some A > 0, there exists a subsequence {nk}  for which 

(*I P( lg(X,,) - g(X)I > E )  > A, 
But X, 5 X implies that X,, 3 X and thus, by Theorem 1.6.1, there exists a 
subsequence {nk,} of {nk} for which 

(ii) Let X, 3 X. Suppose that g(X,) 

all k = 1,2, . . . . 

But then, by (i) just proved, and since 3 =$ 3, 

contradicting (*). Therefore, g(X,) 3 g(X). 
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(iii) Let X ,  A X .  By the Skorokhod construction of 1.6.3, we may con- 
struct on some probability space (CY, d, P') some random vectors Y I ,  
Y,, . . . and Y such that U ( Y l )  = U(Xl ) ,  S'(Y,) = U(X,), . . . , and U ( Y )  = 
9 ( X ) ,  and, moreover, Y ,  -t Y with P'-probability 1. Let D denote the 
discontinuity set of the function g. Then 

P ' ( { o ' : g  is discontinuous at Y(o')}) = P'(Y-'(D)) 
= P;(D) = P,(D) = P(X-'(D)) 
= 0. 

Hence, again invoking (i), g(Y,) -t g(Y) with P'-probability 1 and thus 

g(Y,) g(Y). But the latter is the same as g(X,) & g(X).  

Examples. (i) If X ,  4 N(0, l), then X ;  A x i .  
(ii) If (X,, Y,) 4 N(0, I), then XJY,  A Cauchy. 
(iii) Illustration of g for which X ,  1: X but g(X,,) #+ g(X).  Let 

t - 1 ,  t < o ,  
g(t )  = { t + 1, t 2 0, 

1 
n X, = - -with probability 1, 

and 

X = 0 with probability 1. 

The function g has a single discontinuity, located at t = 0, so that g is dis- 
continuous with Px-probability 1. And indeed X ,  3 X = 0, whereas 

(iv) In Section 2.2 it will be seen that under typical conditions the sample 
variance s2 = (n - l)-I  cy ( X ,  - x), converges wpl to the population 
variance c2. It then follows that the analogue holds for the standard deviation: 

W P  1 s + 6. 

(v) Linear and quadratic functions of vectors. The most commonly 
considered functions of vectors conwerging in some stochastic sense are linear 
transformations and quadratic forms. 

g(X,) 3 - 1 but g ( X )  = g(0) = 1 # - 1. 

Corollary. Suppose that the k-vectors X, converge to the k-vector X wpl, or in 
probability, or in distribution. Let A, k and k be matrices. Then AX'-+ AX' 
and X,BX:, + XBX' in the given mode of convergence. 
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vector-valued function 

f = I  1=1 

and the real-valued function 
k k  

XBX’ = bl,xfx, 
1 - 1  1 - 1  

are continuous functions of x = ( x i ,  . . . , x k ) .  

Some key applications of the corollary are as follows. 

d 
Applicution A. I n  Rk, let X, 3 N(p, C). Let C, ,, k be a matrix. Then CX, + 
N(Cp’, CCC). 

(This follows simply by noting that if X is N(p, C), then C X  is N(Cp’, CZC).) 

Application B. Let X, be AN@, b$). Then 

‘lXn - ”’ a limit random variable. 
‘bn 

(Proof left as exercise-Problem 1.P.22) If b, + 0 (typically, b, - n-  ll2), then 
follows X, 3 p. More generally, however, we can establish (Problem 1.P.23) 

Application C. Let X, be AN@, En), with C, --* 0. Then X, 3 p. 

Application D .  (Sums and products ofrandom variables conoerging wpl or in 
probability.) lf X ,  X + Y and 
X,Y, a XY. If X ,  3 X and Y ,  1: Y, then X ,  + Y ,  3 X + Y and X,Y, 
1: XY. 

X and Y ,  2 Y, then X ,  + Y, 

(Proof left as cxercise-Problem 1.P.24) 

18 BASIC PROBABILITY LIMIT THEOREMS: THE WLLN AND SLLN 

“Weak laws of large numbers”(WLLN) refer to convergence in probability of 
averages of random variables, whereas “strong laws of large numbers 
(SLLN) refer to convergence wpl. The first two theorems below give the 
WLLN and SLLN for sequences of I.I.D. random variables, the case of central 
importance in this book. 
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Theorem A. Let {XI} be I.I.D. with distribution function F. The existence of 
constants {a,}for which 

1 i x l  - a n s o  
n I = 1  

holds ifand only i f  

(*I t[1 - F(t) + F( - t)] + 0, t -+ 00, 

in which case we may choose a, = I"-,, x dF(x). 

A sufficient condition for (*) is finiteness of JTrn IxldF(x), but in this case the 
following result asserts a stronger convergence. 

Theorem B (Kolmogorov). Let {XI} be I.I.D. The existence of a finite 
constant c jor which 

'1 1 = 1  

holds if and only if E{X is finite and equals c. 

The following theorems provide WLLN or SLLN under relaxation of the 
I.I.D. assumptions, but at the expense of assuming existence of variances and 
restricting their growth with increasing n. 

Theorem C (Chebyshev). Lef Xl, X, , . . . be uncorrelated wizh means 
pl, pz, . . . and variances a:, a:, . . . . l f c y  a: = o(n2), n -+ 00, then 

Theorem D (Kolmogorov). Let X l ,  X2, . . . be independent with means 
pl, p2 , .  . . and variances a:, a;,. . . . If the series c p  a:/i2 conuerges, then 

Theorem E. Let X l ,  X,, . . . have means pl,  p2, . . . , variances a:, a:, . . . , and 
cooariances Cov{ XI, X,} satisfying 

Cov{X,, XJ s ~ ~ . - ~ a , q ( i  s j), 
where O s Pk s lfor all k = 4 1 ,  . . . . Ifthe series zr pi and zr a:(log i)l/i2 
are both conuergent, then (**) holds. 
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Further reading on Theorem A is found in Feller (1966), p. 232, on Theorems 
B, C and D in Rao (1973, pp. 112-1 14, and on Theorem E in Serfling (1970). 
Other useful material is provided by Gnedenko and Kolmogorov (1954) and 
Chung (1974). 

1.9 BASIC PROBABILITY LIMIT THEOREMS: THE CLT 

The central limit theorem (CLT) pertains to the convergence in distribution 
of (normalized) sums of random variables. The case of chief importance, I.I.D. 
summands, is treated in 1.9.1. Generalizations allowing non-identical 
distri bu tions,dou blearra ys, and a random number ofsummands are presented 
in 1.9.2,1.9.3, and 1.9.4, respectively. Finally, error estimates and asymptotic 
expansions related to the CLTarediscussed in 1.9.5. AIso,some further aspects 
of the CLT are treated in Section 1.11. 

1.9.1 The I.I.D. Case 

Perhaps the most widely known version of the CLT is 

Theorem A (Lindeberg-Uvy). Let {Xi} be I.I.D. with mean p andfinire 
variance crZ. Then 

that is, 

The multivariate extension of Theorem A may be derived from Theorem A 
itself with the use of the Cramtr-Wold device (Theorem 1.5.2). We obtain 

Theorem B. Let {Xi} be I.I.D. random vectors with mean p and covariance 
matrix C. Then 

that is (by Problem l.P./7), 

- 1 ”  c xi is  AN(^ t z). 
n 1-1 

Remark. It is not necessary, however, to assume finite variances. Feller 
(1966), p. 303, gives 



BASIC PROBABlLlTY LIMIT THEOREMS : THE CLT 29 

Theorem C. Let {Xi} be 1.I.D. with distributionfunction F. Then the existence 
ofconstants {a,,}, {b,} such that 

i n  

XI is AN(a,, b,) 
n 1=1 

holds ifand only if 

t2[1 - F(t) + F(-I)] 
U(t) 

’0, t’oo, 

where U(t) = f-, x2 dF(x). 

(Condition (*) is equivalent to the condition that U(t)  uary slowly at 00, 
that is, for every a > 0, U(at) /V(t)  4 1, t + 00.) 

1.9.2 Generalization : Independent Random Variables Not Necessarily 
Identically Distributed 

The Lindeberg-Lkvy Theorem of 1.9.1 is a special case of 

Theorem A (Lindeberg-Feller). Let {X,} be independent with means {p,}, 
finite variances {o:}, and distribution functions {Fi}. Suppose that B: = 
C; 0: satisfies 

a,’ - -+ 0, 
BD2 

as n -+ 00. 

Then 

ifand only if the Lindeberg condition 

is satisfied. 

(See Feller (1966), pp. 256 and 492.) The following corollary provides a 
practical criterion for establishing conditions (L) and (V). Indeed, as seen in 
the proof, (V) actually follows from (L), so that the key issue is verification of 
(L). 
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Corollary. Let {XI} be independent with means {pl} and finite variances 
{cr?}. Suppose that,for some v > 2, 

~ E I X ,  - pllv = O(B;), n -, a. 
I= 1 

Then 

PROOF. First we establish that condition (L) follows from the given 
hypothesis. For E > 0, write 

J (t - pi)' ~ F X O  s (8Bn)z-v  J - f i r  I' d ~ i ( t )  
If- Ptl> #En l f -Pd>8Bn 

5: (ED,)' - "E I Xi  - pi 1'. 
By summing these relations, we readily obtain (L). 

Next we show that (L) implies 

For we have, for 1 s i s n, 

6: S 1 
max c; 5: J; 

(t - pI)' dF,(t) + s'E:. 
If - ~t I > *En 

Hence 

(t - pi)' dF,(t) + s2~:. , 
Jsn 1-1 f-Pil>dJn 

Thus (L) implies (V*). 
Finally, check that (V*) implies Bn -, 00, n + 00. 

A useful special case consists of independent {Xi} with common mean p, 
common variance Q', and uniformly bounded vth absolute central moments, 
EIXi - pi's M < 00 (all i), where v > 2. 

A convenient multivariate extension of Theorem A is given by Rao (1973), 
p. 147: 

Theorem B. Let {XI} be independent random uectors with means {k), 
covariance matrices {XI} and distribution functions {Fl}. Suppose that 
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and that 

Then 

1.9.3 Generalization: Double Arrays of Random Variables 
In the theorems previously considered, asymptotic normality was asserted for 
a sequence of sums XI generated by a single sequence X1, X2,.  . . of 
random variables. More generally, we may consider a double array of random 
variables : 

x l l , x l 2 , - * * , x l k ~ ;  
x21, x22, * * 9 X2k2i 

For each n 2 1, there are k, random variables {X,,,, 1 s j  s k,,}. It is 

Denote by FnJ the distribution function of XnJ. Also, put 
assumed that k, + 00. The case k,, = n is called a “triangular” array. 

PnJ = E{XnJ}, 

The Lindeberg-Feller Theorem of 1.9.2 is a special case of 

Theurem. Let {XnJ: 1 5 j S k,; n = 1,2, . . .} be a double array with inde- 
pendent random variables within rows. Then the “uniform asymptotic neglibility ” 
condition 

max P(IX,J - p,,l > IB,) + 0, n + 00, each s > 0, 
I < J $ k n  

and the asymptotic normality condition 
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together hold ifand only i f  the tindeberg condition 

is satisfied. 

(See Chung (1974), Section 7.2.) The independence is assumed only within 
rows, which themselves may be arbitrarily dependent. 

The analogue of Corollary 1.9.2 is (Problem l.P.26) 

Corollary. Let {X,,: 1 s j 5 k,; n = 1,2,. . .} be a double array with 
independent random variables within rows. Suppose that, for some v > 2, 

kn 

1-1 
C El&, - c ~ n ~ ( v  = o(B3 n + 00. 

Then 

5 X,, is AN(A,, Bi), 
J-1 

1.9.4 Generalization: A Random Number of Summands 

The following is a generalization of the classical Theorem 1.9.1A. See Billings- 
ley (1968), Chung (1974), and Feller (1966) for further details and generaliza- 
tions. 

Theorem. Let {XI} be 1.1.D. with mean p andfinite variance us. Let {v,} be a 
sequence of integer-valued random variables and {a,} a sequence of positive 
constants tending to 00, such that 

Vn P 

an 
- + C  

for some positive constant c. Then 

1.9.5 Error Bounds and Asymptotic Expansions 

It is of both theoretical and practical interest to characterize the error of 
approximation in the CLT. Denote by 

G&) = P(S: St)  
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the distribution function of the normalized sum 

For the I.I.D. case, an exact bound on the error of approximation is provided 
by the following theorem due to Berry (1941) and EssCen (1945). (However, 
the earliest result of this kind was established by Liapounoff (1900, 1901).) 

Theorem (Berry-Essten). Let {X,} be I.I.D. with mean p and variance 
u2 > 0. Then 

The fact that sup,)G,(t) - @(t)I + 0, n -+ 00, is, of course, provided under 
second-order moment assumptions by the Lindeberg-Uvy Theorem 1.9.1 A, 
in conjunction with Pblya’s Theorem 1.5.3. Introducing higher-order moment 
assumptions, the Berry-Essten Theorem asserts for this convergence the 
rate O(n-l/z). It is the best possible rate in the sense of not being subject to 
improvement without narrowing theclass ofdistribution functionsconsidered. 

However, various authors have sought to improve the constant 33/4. 
Introducing new methods, Zolotarev (1967) reduced to 0.91 ; subsequently, 
van Beeck (1972) sharpened to 0.7975. On the other hand, Esden (1956) has 
determined the following “asymptotically best ’* constant: 

More generally, independent summands not necessarily identically dis- 
tributed are also treated in Berry and Essten’s work. For this case the right- 
hand side of (*) takes the form 

where C is a universal constant. Extension in another direction, to the case of 
a random number of (I.I.D.) summands, has recently been carried out by 
Landers and Rogge (1976). 

For t sufficiently large, while n remains fixed, the quantities G,(t) and @(t) 
each become so close to 1 that the bound given by (*) is too crude. The 
problem in this case may be characterized as one of approximation of “large 
deviation” probabilities, with the object of attention becoming the relative 
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error in approximation of 1 - G,(t) by 1 - Wt). Cramtr (1938) developed a 
general theorem characterizing the ratio 

1 - Gn(ti) 
1 - @(Q 

under the restriction tn = ~ ( n ’ / ~ ) ,  n + 00, for the case of LLD. X i s  having a 
moment generating function. In particular, for t, = ~ ( n ” ~ ) ,  the ratio tends to 
1, whereas for t, + 00 at a faster rate the ratio can behave differently. An 
important special case oft, = ~ ( n ” ~ ) ,  namely t,, - c(log n)Iiz, has arisen in 
connection with the asymptotic relative efficiency of certain statistical pro- 
cedures. For this case, 1 - G,,(t,,) has been dubbed a “moderate deviation’’ 
probability, and the Cramtr result [l - G&JJ/ [ l  - @(t,)] + 1 has been 
obtained by Rubin and Sethuraman (1965a) under less restrictive moment 
assumptions. Another “large deviation” case important in statistical applica- 
tions is t, - cn1/2, a case not covered by Crambr’s theorem. For this case 
Chemoff (1952) has characterized the exponential rate of convergence of 
[l - Gn(tn)] to 0. We shall examine this in Chapter 10. 

Still another approach to the problem is to refine the Berry-EssCen bound 
on I G,(t) - @(t)l, to reflect dependence on t as well as n. In this direction, (*) 
has been replaced by 

where Cis a universal constant. For details, see Ibragimov and Linnik (1971). 
In the same vein, under more restrictive assumptions on the distribution 
functions involved, an asymptotic expansion of G,(t) - q t )  in powers of 
n-’I2 may be given, the last term in the expansion playing the role of error 
bound. For example, a simple result of this form is 

uniformly in t (see Ibragimov and Linnik (1971), p. 97). For further reading, 
see Cram& (1970), Theorems 25 and 26 and related discussion, Abramowitz 
and Stegun (1965), pp. 935 and 955, Wilks (1962), Section 9.4, the book by 
Bhattacharya and Ranga Rao (1976), and the expository survey paper by 
Bhattacharya (1977). 

Alternatively to the measure of discrepancy sup, I G,(t) - @(t) I used in the 
Berry-Eden Theorem, one may also consider L, metrics (see Ibragimov 
and Linnik (1971)) or weak convergence metrics (see Bhattacharya and 
Ranga Rao (1976)), and likewise obtain 0(n“l2) as a rate of convergence. 

The rate of convergence in the CLT is not only an interesting theoretical 
issue, but also has various applications. For example, Bahadur and Ranga 
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Rao (1960) make use of such a result in establishing a large deviation theorem 
for the sample mean, which theorem then plays a role in asymptotic relative 
efficiency considerations. Rubin and Sethuraman (1965a, b) develop “moder- 
ate deviation ” results, as discussed above, and make similar applications. 
Another type of application concerns the law of the iterated logarithm, to be 
discussed in the next section. 

1.10 BASIC PROBABILITY LIMIT THEOREMS: THE LIL 

Complementing the SLLN and the CLT, the “law of the iterated logarithm” 
(LIL) characterises the extreme fluctuations occurring in a sequence of 
averages, or partial sums. The classical I.I.D. case is covered by 

Theorem A (Hartman and Wintner). Let { X , }  be I.I.D. with mean p and 
finite oariunce 6’. Then 

In words: with probability 1, for any e > 0, only finitely many of the events 

n =  1,2 ,...., c”1 (XI - cc) 
(2dn log log n)1’2 

> 1 + E, 

are realized, whereas infinitely many of the events 

mxf-cc) > 1 - e ,  n = l , 2  ,..., 
(2a’n log log n)l” 

occur. 

fluctuations of the sequence of random variables 
The LIL complements the CLT by describing the precise extremes of the 

, n = l , 2  ,.... c“1 (XI - cc) 
UtPZ 

The CLT states that this sequence converges in distribution to N(0, I), but 
does not otherwise provide information about the fluctuations of these 
random variables about the expected value 0. The LILassertsthat the extreme 
fluctuations of this sequence are essentially of the exact ,order of magnitude 
(2 log log n)lI2. That is, with probability 1, for any e > 0, all but finitely many 
of these fluctuations fall within the boundaries f ( 1  + e)(2 log log ri)’/*and, 
moreover, the boundaries f ( 1  - e)(2 log log n)1/2 are reached infinitely 
often. 
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The LIL also complements-indeed, refines-the SLLN (but assumes 
existence of 2nd moments). In terms of the averages dealt with by the SLLN, 

the LIL asserts that the extreme fluctuations are essentially of the exact order 
of magnitude 

a(2 log log n)’l2 
n1/2  

Thus, with probability 1, for any e > 0, the infinite sequence of “confidence 
intervals” 

contains p with only finitely many exceptions. In this fashion the LIL provides 
the basis for concepts of 100 % confidence intervals and tests of power 1. For 
further details on such statistical applications of the LIL, consult Robbins 
(1970), Robbins and Siegmund (1973,1974) and Lai (1977). 

A version of the LIL for independent X,’s not necessarily identically 
distributed was given by Kolmogorov (1929): 

Theorem B (Kolmogorov). Let {Xi} be independent with means {pi} and 
finite uariances {of}.  Suppose that B: = c; of --* m and that, for some 
sequence of constants {mn}, with probability 1, 

Then 

(To facilitate comparison of Theorems A and B, note that log log(a2) - 
Extension of Theorems A and B to the case of {X,} a sequence of martingale 

Another version of the LIL for independent X i s  not necessarily identically 

log log x, x + 00.) 

diferences has been carried out by Stout (1970a, b). 

distributed has been given by Chung (1974), Theorem 7.5.1 : 

Theorem C (Chung). Let { X i }  be independent with means {pi} andfinite 
uariunces {of},  Suppose that BX = cy af + 00 and that,for some E > 0, 
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Then 

= 1 wpl. c1 (XI - Pi) lim 
n-,m (2B: log log B,)l/* 

Note that (*) and (**) are overlapping conditions, but very different in 
nature. 

As discussed above, the LIL augments the information provided by the CLT. 
On the other hand, the CLT in conjunction with a suitable rate ofconvergence 
implies the LIL and thus implicitly contains all the “extra” information stated 
by the LIL. This was discovered independently by Chung (1950) and Petrov 
(1966). The following result is given by Petrov (1971). Note the absence of 
moment assumptions, and the mildness of the rate ofconvergence assumption. 

Theorem D (Petrov). Let {Xi} be independent random variables and {B,} 
a sequence of numbers satisfying 

1, n + m .  B n +  1 B,+ a,- 
Bn 

Suppose that, for some E > 0, 

Then 

= 1 wpl. lim c1 xi 
n-.m (2Bt log log B,)’12 

For further discussion and background on the LIL, see Stout (1974), 
Chapter 5, Chung (1974), Section 7.5, Freedman (1971), Section 1.5, Breiman 
(1968), pp. 291-292, Lamperti (1966), pp. 41-49, and Feller (1957), pp. 191- 
198. The latter source provides a simple treatment of the case that {X,} is a 
sequence of I.I.D. Bernoulli trials and provides discussion of general forms of 
the LIL. 

More broadly, for general reading on the “almost sure behavior” of 
sequences of random variables, with thorough attention to extensions to 
dependent sequences, see the books by RCvisz (1968) and Stout (1974). 

1.11 STOCHASTIC PROCESS FORMULATION OF THE CLT 

Here the CLT is formulated in a stochastic process setting, generalizing the 
formulation considered in 1.9 and 1.10. A motivating example, which 
illustrates the need for such greater generality, is considered in 1.11.1. An 
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appropriate stochastic process defined in terms of the sequence of partial 
sums,isintroduced in 1.11.2. As a final preparation, thenotion of"convergence 
in distribution" in the general setting of stochastic processes is discussed in 
1.11.3. On this basis, the stochastic process formulation of the CLT is 
presented in 1.11.4, with implications regarding the motivating example and 
the usual CLT. Some complementary remarks are given in 1.11.5. 

1.11.1 A Motivating Example 
Let {XI} be I.I.D. with mean p and finite variance u2 > 0. The Lindeberg- 
Uvy CLT (1.9.1A) concerns the sequence of random variables 

and asserts that S,+ 4 N(0, 1). This useful result has broad application con- 
cerning approximation of the distribution of the random variable S, = 

( X ,  - p) for large n. However, suppose that our goal is to approximate the 
distribution of the random variable 

k 

max C ( X l  - p)  = max(0, sI,. . . , S,} 
for large n. In terms of a suitably normalized random variable, the problem 
may be stated as that of approximating the distribution of 

O d h d n  I -  1 

Here a difficulty emerges. It is seen that M, is not subject to representation as 
a direct transformation, g(S3, of Sz only. Thus it is not feasible to solve the 
problem simply by applying Theorem 1.7 (iii) on transformations in con- 
junction with the convergence s,+ 4 N(0,l) .  However, such a scenario can 
be implemented if S,+ becomes replaced by an appropriate stochastlc process 
or randomfunction, say { Y,(t), 0 s t s l}, and the concept of 3 is suitably 
extended. 

1.11.2 A Relevant Stochastic Process 

Let (XI} and {S,} be as in 1.11.1. We define an associated random function 
&(t), 0 s t s 1, by setting 

and 

K(0) = 0 
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and defining x( t )  elsewhere on 0 s t S 1 by linear interpolation. Explicitly, 
in terms of XI, . . . , X,,, the stochastic process & ( a )  is given by 

As n + a, we have a sequence of such random functions generated by the 
sequence {X,}. The original associated sequence {S:} is recovered by taking 
the sequence of values { Y,( 1)). 

It is convenient to think of the stochastic process { x(t),  0 5 t s 1) as a 
random element of a suitable function space. Here the space may be taken to 
be C[O, 11, the collection of all continuous functions on the unit interval 

We now observe that the random variable M,, considered in 1.11.1 may be 
co, 13. 

expressed as a direct function of the process &( -), that is, 

Mn = SUP YAt) = g(Yn(*)), 
O S t S I  

where g is the function defined on C[O, 13 by 

g(x(* ) )  = sup X W ,  X(’) E cco, 13. 
osrs1 

Consequently, a scenario for dealing with the convergence in distribution of 
M,, consists of 

(a) establishing a “convergence in distribution” result for the random 
function Y,(.), and 

(b) establishing that the transformation g satisfies the hypothesis of an 
appropriate generalization of Theorem 1.7 (iii). 

After laying a general foundation in 1.11.3, we return to this example in 
1.1 1.4. 

1.11.3 Notions of Convergence in Distribution 

Consider a collection of random variables XI, X2, . . . and X having respec- 
tive distribution functions F1, F2, . . . and F defined on the real line and having 
respective probability measures PI, P2, . . . and P defined on the Bore1 sets of 
the real line. Three equivalent versions of “convergence of X, to X in dis- 
tribution” will now be examined. Recall that in 1.2.4 we defined this to mean 
that 

lim F,,(t) = F(t), each continuity point t of F, 

and we introduced the notation X, 5 X and alternate terminology “weak 
convergence of distributions” and notation F,, =i- F. 

n+ OD 

(*I 
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We next consider a condition equivalent to (*) but expressed in terms of 
PI, Pz, . . . and P. First we need further terminology. For any set A, the 
boundary is defined to be the closure minus the interior and is denoted by 8A. 
For any measure P, a set A for which P(8A) = 0 is called a P-continuity set. 
In these terms, a condition equivalent to (*) is 

lim P,,(A) = P(A), each P-continuity set A. (**I 

The equivalence is proved in Billingsley (1968), Chapter 1, and is discussed 
also in Cramkr (1946), Sections 6.7 and 8.5. In connection with (**), the 
terminology “weak convergence of probability measures” and the notation 
P,, * P is used. 

There is a significant advantage of (**) over (*): it may be formulated in a 
considerably more general context. Namely, the variables XI, X z ,  . . . and X 
may take values in an arbitrary metric space S. In this case PI, Pz, . , . and P 
are defined on the Bore1 sets in S (i.e., on’the a-field generated by the open sets 
with respect to the metric associated with S). In particular, if S is a metrizable 
function space, then P,, * P denotes “convergence in distribution“ of a 
sequence of stochastic processes to a limit stochastic process. Thus, for 
example, for the process Y,(.) discussed in 1.11.2, Y,,(.) 4 Y(-) becomes 
defined for an appropriate limit process Y(-). 

For completeness, we mention a further equivalent version of weak con- 
vergence, also meaningful in the more general setting, and indeed often 
adopted as the primary definition. This is the condition 

(***) lini g dP,, = g dP, each bounded continuous function on S. 

The equivalence is proved in Billingsley (1968), Chapter 1. See also the proof 
of Theorem 1.5.1A. 

n-m 

II- aD s, s, 
1.1 1.4 Donsker’s Theorem and Some Implications 
Here we treat formally the “partial sum” stochastic process introduced in 
1.11.2. Specifically, for an I.I.D. sequence of random variables {X,} defined on 
a probability space (Q d, P) and having mean p and finite variance u2, we 
consider for each n(n = 1,2, . . .) the stochastic process 

which is a random element of the space C[O, 1). When convenient, we suppress 
the o notation. 
The space C[O, 13 may be metrized by 

P ( X ,  Y) = SUP Ix(0 - Y(t)l 
O 5 f 5 l  
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for x = x(.) and y = y ( . )  in C[O, 13. Denote by A? the class of Bore1 sets in 
C[O, 11 relative to p. Denote by Q,, the probability distribution of Y , ( . )  in 
C[O, I], that is, the probability measure on (C, A?) induced by the measure P 
through the relation 

We have this designated a new probability space, (C, A?, QJ, to serve as a 
probability model for the partial sum process Y,(.). In order to be able to 
associate with the sequence of-processes { Y,,(.)} a limit process Y(.), in the 
sense of convergence in distribution, we seek a measure Q on (C, A?) such that 
Q, es Q. This will be given by Donsker’s Theorem below. 

An important probability measure on (C, A?) is the Wiener measure, that is, 
the probability distribution of one coordinate of the random path traced by a 
particlein “Brownian motion,”or formally the probability measuredefined by 
the properties: 

Q,,(B) = P({o: & ( a ,  o)EB}), BEA?. 

(a) W ( { x ( . ) :  x(0) = 0)) = 1; 
(b) for all 0 < I I; 1 and - a0 < a < m, 

(c) for 0 5 to I; tl I, t k  I; 1 and - m < al, . . . , ak < 03, 

k 

= n W ( { x ( * ) :  X( t , )  - dt i -  1) s ad). 
1 1 1  

The existence and uniqueness of such a measure is established, for example, in 
Billingsley (1968), Section 9. 

A random element of C[O, 13 having the distribution W is called a Wiener 
process and is denoted for convenience by { W(t) ,  0 I; t s l}, or simply by W. 
Thus, for a Wiener process W(.), properties (a), (b) and (c) tell us that 

(a) W(0) = 0 with probability 1 ; 
(b) W(t)  is N(0,  t ) ,  each t E (0, 13; 
(c) for 0 s to I; t l  5 * * I; t, s 1, the increments W(r , )  - W(to), , . . , 

w(tk) - w(tk- 1) are mutually independent. 

We are now ready to state the generalization of the Lindeberg-Evy CLT. 

Theorem (Donsker). Let {Xi} be I.I.D. with mean p andfinite variance 02, 

Define Yn(.) and Q, as above. Then 

Qn =S W. 
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(Alternatively, we may state this convergence as x ( * )  3 W(.) in C[O, 13.) 
The theorem as stated above is proved in Billingsley (19681 Section 10. 
However, the theorem was first established, in a different form, by Donsker 

To see that the Donsker theorem contains the Lindeberg-Ltvy CLT, 
(195 1). 

consider the set 

B, = {x(-): x(1) s a}  

in C[O, 13. It may be verified that B. E 1. Since 

we have 

It may be verified that B, is a W-continuity set, that is, W(dB,) = 0. Hence, by 
(**) of 1.11.3, Donslcer’s Theorem yields 

lim Q,(B,) = W(B,). 
n+ m 

Next one verifies (see 1.11.5(i) for discussion) that 

W(Ba) = @(a). 

Since a is chosen arbitrarily, the Lindeberg-Livy CLT follows. 

variable 
Now let us apply the Donsker theorem in connection with the random 

considered in 1.11.2. Consider the set 

B,’ = x(*): sup ~ ( t )  s a . I OStSl  I 
It may be verified that B,’ belongs to 1 and is a W-continuity set, so that 

lim P ( M ,  S a) = lim Q,(BZ) = W(B,‘). 
II’ OD ,-.OD 

By determining (again, see 1.11.5(i) for discussion) that 

one obtains the limit distribution of M,. 
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The fact that the sets {BZ, a > 0} are W-continuity sets is equivalent to the 
functional g: g(x(-)) = S U ~ ~ ~ ~ ~  I x( t )  being continuous (relative to the metric 
p )  with W-probability 1. Thus, by an appropriate extension of Theorem 
1.7(iii), the preceding argument could be structured as follows: 

Mn = g(Yn(*)) 4 B(w(.)) = SUP ~ ( t ) .  
O S f S 1  

Elaboration of this approach is found in Billingsley (1968). 

1.1 1.5 Complementary Remarks 

(i) The application of Donsker’s Theorem to obtain the limit distribution 
of some functional of the partial sum process Y,( .) requires the evaluation of 
quantities such as W(B,) and W(B,+). This step may be carried out by a 
separate application of Donsker’s Theorem. For example, to evaluate W(B,+), 
the quantity limn P(M,  I; a) is evaluated for a particular I.I.D. sequence {XI}, 
one selected to make the computations easy. Then Donsker’s Theorem tells us 
that the limit so obtained is in fact W(B,+). Thus W(B,*) has been evaluated, so 
that-again by Donsker’s Theorem-the quantity limn P(Mn I; a) is known 
for the general case of I.I.D. X i s  with finite variance. Such a technique 
for finding limn P(M,  5 a) in the general case represents an application of 
what is known as the “inuariance principle.’’ It is based on the fact that the 
limit in question is invariant over the choice of sequence {X,} ,  within a wide 
class of sequences. 

(ii) Other limit theorems besides the CLT can likewise be reformulated 
and generalized via the theory of convergence of probability measures on 
metric spaces. In connection with a given sequence of random variables {X,}, 
we may consider other random functions than K(.), and other function 
spaces than C[O, 13. 

(iii) In later chapters, a number of relevant stochastic processes will be 
pointed out in connection with various statistics arising for consideration. 
However, stochastic process aspects will not be stressed in this book. The 
intention is merely to orient the reader for investigation of these matters 
elsewhere. 

(iv) For detailed treatment of the topic of convergence of probability 
measures on metric spaces, the reader is referred to Billingsley (1968) and 
Parthasarathy (1967). 

1.12 TAYLOR’S THEOREM; DIFFERENTIALS 

1.12.1 Taylor’s Theorem 
The following theorem is proved in Apostol(1957), p. 96. 

Theorem A (Taylor). Let the function g h u e  a jni te  nth deriuatiue g‘”) 
euerywhere in the open interual (a, b) and (n - 1)th deriuatiue 8‘”- I )  continuous 
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in the closed interval [a, b]. Let x E [a, b). For each point y E [a, b], y # x, 
there exists a point z interior to the interval joining x and y such that 

Remarks. (i) For the case x = a, we may replace g")(x) in the above 
formula by g$)(a), the kth order right-hand derivative of g at the point a;  in 
place ofcontinuity ofg("- ')(x) at x = a, it is assumed that g$)(x) is continuous 
at x = a, for each k = 1, ..., n - 1. Likewise, for x = 6, g(k)(x) may be 
replaced by the left-hand derivative &6). These extensions are obtained by 
minor modification of Apostol's proof of Theorem A. 

(ii) For a generalized Taylor formula replacing derivatives by finite 
differences, see Feller (1966), p. 227. 

We can readily establish a multivariate version of Theorem A by reduction 
to the univariate case. (We follow Apostol(1957), p. 124.) 

Theorem B (Multivariate Version). Let thefunction gdefned on Rm possess 
continuous partial derivatives of order n at each point of an open set S c Rm. 
Let x E S. For each point y, y # x, such that the line segment L(x, y) joining x 
and y lies in S, there exists a point z in the interior of L(x, y) such that 

PROOF. Define H(a) = g(x + a(y - x)) for real a. By the assumed 
continuity of the partial derivatives of g, we may apply an extended chain rule 
for differentiation of H and obtain 

and likewise, for 2 s k 5; n, 

Since L(x, y) c S, S open, it follows that the function H satisfies the con- 
ditions of Theorem A with respect to the interval [a, 61 = [0,1]. Conse- 
quently, we have 

where 0 < z < 1. Now note that H(1) = g(y), H(0)  = g(x), etc. H 
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A useful alternate form of Taylor’s Theorem is the following, which re- 
quires the nth order differentiability to hold only at the point x and which 
characterizes the asymptotic behavior of the remainder term. 

Theorem C (Young’s form of Taylor’s Theorem). Let g have afinite nth 
deriuatiue at the point x. Then 

PROOF. Follows readily by induction. Or see Hardy (1952), p. 278. 

1.12.2 Differentials 

The appropriate multi-dimensional generalization of derivative of a function 
of one argument is given in terms of the diflerential. A function g defined on R” 
is said to have a diflerential, or to be totally diferentiable, at the point xo if the 
partial derivatives 

all exist at x = xo and the function 

(called the “differential”) satisfies the property that, for every E > 0, there 
exists a neighborhood N8(xo) such that 

Idx) - B(XO) - d x o ;  x - X O ) ~  I; ellx - x0IL all x E N,(xo). 

Some interrelationships among differentials, partial derivatives, and con- 
tinuity are expressed in the following result. 

Lemma (Apostol(1957), pp. 110 and 118). (i) Ifg has a diflerential at xo, 
then g is continuous at xo. 

(ii) Zfthe partial deriuatiues ag/axl, 1 I; i I; m, exist in a neighborhood of 
xo and are continuous at xo, then g has a duerential at xo. 

1.13 CONDITIONS FOR DETERMINATION OF A DISTRIBUTION 
BY IT!3 MOMENTS 

Let F be a distribution on the real line with moment sequence 
Q 

ak = /-m2 dF(x), k = 1,2, , . .  I 
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The question of when an F having a given moment sequence {ak} is the unique 
such distribution arises, for example, in connection with the Frdchet and 
Shohat Theorem (1.5.1B). Some sufficient conditions are as follows. 

Theorem. The moment sequence {ar} determines the distribution F uniquely 
i f  the Carleman condition 

n- 1 

holds. Each of the following conditions is sficient for (*): 

(i) lim 1 (I_”.lxlr dF(x))’lk 3: I < 00; 

(ii) 

t -rm 

m 

C !!! Ik conuerges absolutely in an interval lkl < ko. 
k - 1  k! 

For proofs, discussion and references to further literature, see Feller (1966), 

An example of nonuniqueness consists of the class of density functions 
pp. 224,230 and 487. 

4dt) = f fe - f ’ ’4( i  - a sin t”’), 

for 0 < a < 1, all ofwhich possess the same moment sequence. For discussion 
of this and. other oddities, see Feller (1966), p. 224. 

o < t < 00, 

1.14 CONDITIONS FOR EXISTENCE OF MOMENTS OF A 
DISTRIBUTION 

Lemma. For any random variable X, 

(i) ElXl= j? P ( l X l 2  t)dt, (Sm) 
and 

(ii) if ElXl < 00, then P(lXl 2 t) = o(t-’), t + 00. 

PROOF. Denote by G the distribution function of ( X  I and let c denote a 
(finite) continuity point of G. By integration by parts, we have 

(A) 

and hence also 

/:x dG(x) = l [ l  - G(x)]dx - cC1 - G(c)], 

x dG(x) 5 [ l  - G ( x ) ] ~ x .  Jo Jo 



ASYMPTOTIC MPECTS OF STATISTICAL INFERENCE PROCEDURES 47 

Further, it is easily seen that 

c [ l  - G(c)] S r x  dG(x). 

Now suppose that E l X l  = 00. Then (B) yields (i) for this case. On the 
other hand, suppose that E l X l  < 00. Then (C) yields (ii). Also, making use 
of (ii) in conjunction with (A), we obtain (i) for this case. 

The lemma immediately yields (Problem 1.P.29) its own generalization: 

Corollary. For any random variable X and real number r > 0, 

(i) ElXl’ = r @ t’-’P(IXI 2 t)dt 
and 

(ii) ifElXr < 00, then P(lX1 2 t) = o(t-‘), t 

Remark. It follows that a necessary and sufficient condition for E l X r  < 00 
is that t‘-’P(IXI 2 t )  be integrable. Also, if P ( ( X (  2 t )  = O(t-7, then 
EIXY < 00 for all r < s. W 

co. 

1.15 ASYMPTOTIC ASPEClS OF STATISTICAL INFERENCE 
PROCEDURES 

By “inference procedure” is usually meant a statistical procedure for esti- 
mating a parameter or testing a hypothesis about a parameter. More generally, 
it may be cast in decision-theoretic terms as a procedure for selecting an action 
in the face of risks that depend upon an unknown parameter. In the present 
discussion, the more general context will not be stressed but should be kept 
in mind nevertheless. 

Let the family of possible models for the data be represented as a collection 
of probability spaces {(Q 91, Pel, 8 E O}, indexed by the “parameter” 8. In 
discussing “estimation,” we shall consider estimation of some parametric 
function g(8). In discussing “hypothesis testing,” we have in mind some “null 
hypothesis”: 8 E Q,( c0). In either case, the relevant statistic (“estimator” 
or “test statistic”) will be represented as a sequence of statistics T,, T’, . . . . 
Typically, by “statistic” we mean a specified function of the sample, and T,, 
denotes the evaluation of the function at the first n sample observations 
XI, . . . , X,. This book deals with the asymptotic properties of a great variety 
of sequences { T,,} of proven or potential interest in statistical inference. 

For such sequences { G}, we treat several important asymptotic features: 
“asymptotic unbiasedness”(in the context of estimation only); “consistency” 
(in estimation) and “almost sure behavior ”; “ asymptoticdistribution theory”; 
“asymptotic relative efficiency.”These notions are discussed in 1.15.1-1.15.4, 
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respectively. The concept of “asymptotic efficiency,” which is related to 
“asymptotic relative efficiency,” will be introduced in Chapter 4, in connection 
with the theory of maximum likelihood estimation. Some further important 
concepts-“deficiency,” “asymptotic sufficiency,” “local asymptotic nor- 
mality,”“local asymptotic admissibility,” and ” local asymptotic minimaxity” 
-are not treated in this book. 

1.15.1 Asymptotic Unbiasedneas (in Estimation) 
Recall that in estimation we say that an estimator T of a parametric function 
g(8) is unbiased if fie{ T }  = g(O), all 8 E 8. Accordingly, we say that a sequence 
of estimators {T,} is asymptotically unbiased for estimation of g(8) if 

lim E,{ T,} = g(8), each 8 E 0. 

(In hypothesis testing, a test is unbiased if at each 8 9 Oo, the “power” of the 
test is at least as high as the “size” of the test. An asymptotic version of this 
concept may be defined also, but we shall not pursue it.) 

1.15.2 Consistency (in Estimation) and Almost Sure Behavior 
A sequence of estimators {T,} for a parametric function g(8) is “consistent” 
if T, converges to g(8)in some appropriate sense. We speakof weak consistency, 

strong consistency, 

and consistency in rth mean, 

When the term “consistent” is used without qualification, usually the weak 
mode is meant. 

(In hypothesis testing, consistency means that at each 8 9 Qo, the power of 
the test tends to 1 as n -+ 00. We shall not pursue this notion.) 

Consistency is usually considered a minimal requirement for an inference 
procedure, Those procedures not having such a property are usually dropped 
from consideration. 

A useful technique for establishing mean square consistency of an estimator 
T, is to show that it is asymptotically unbiased and has variance tending to 0. 

Recalling the relationships considered in Section 1.3, we see that strong 
consistency may be established by proving weak or rth mean consistency with 
a sufficiently fast rate of convergence. 

There arises the question of which of these forms of consistency is of the 
greatest practical interest. To a large extent, this is a philosophical issue, the 
answer depending upon one’s point of view. Concerning rth mean consistency 

n-r Q 

T, 4 

T, g(e), 

T, 3 de). 
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versus the weak or strong versions, the issue is between “moments” and 
“probability concentrations” (see 1.15.4 for some further discussion). 
Regarding weak versus strong consistency, some remarks in support of 
insisting on the strong version follow. 

(i) Many statisticians would find it distasteful to use an estimator which, 
if sampling were to continue indefinitely, could possibly fail to converge to 
the correct value. After all, there should be some pay-off for increased samp- 
ling, which advantage should be exploited by any “good” estimator. 

(ii) An example presented by Stout (1974),Chapter 1,concerns aphysician 
treating patients with a drug having unknown cure probability 8 (the same 
for each patient). The physician intends to continue use of the drug until a 
superior alternative is known. Occasionally he assesses his experience by 
estimating 8 by the proportion 8, ofcures for the n patients treated up to that 
point in time. He wants to be able to estimate 8 within a prescribed tolerance 
e > 0. Moreover, he desires the reassuring feature that, with a specified high 
probability, he can reach a point in time such that his current estimate has 
become within E of 8 and no subsequent value of the estimator would mislead- 
ingly wander more than E from 8. That is, the physician desires, for prescribed 
6 > 0, that there exist an integer N such that 

p rnaxld, - el s 8 )  2 1 - 6. 
( n a N  

Weak consistency (which follows in this case by the WLLN) asserts only that 

and hence fails to supply the reassurance desired. Only by strong consistency 
(which follows in this case by the SLLN) is the existence of such an N guar- 
anteed. 

(iii) When confronted with two competing sequences {T,} and {T:} of 
estimators or test statistics, one wishes to select the best. This decision calls 
upon knowledge of the optimum properties, whatever they may be, possessed 
by the two sequences. In particular, strong consistency thus becomes a useful 
distinguishing property. 

So far we have discussed “consistency” and have focused upon the strong 
version. More broadly, we can retain the focus on strong consistency but 
widen the scope to include the precise asymptotic order of‘mangitude of the 
fluctuations T,, - g(0), just as in 1.10 we considered the LIL as a refinement of 
the SLLN. In this sense, as a refinement of strong convergence, we will seek to 
characterize the “almost sure behavior” of sequences { T,}. Such characteriza- 
tions are of interest not only for sequences of estimators but also for sequences 
of test statistics. (In the latter case g(8) represents a parameter to which the 
test statistic T,, converges under the model indexed by 0.) 

p(l6, - el s E )  -, 1, n -, OC), 
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1.15.3 The Role of Asymptotic Distribution Theory for Estimators and 
Test Statistics 
We note that consistency of a sequence T, for g(8) implies convergence in 
distribution: 

However, for purposes of practical application to approximate the probability 
distribution of T,, we need a result of the t y p  which asserts that a suitably 
normalized version, 

converges in distribution to a nondegenerate random variable p, that is, 

where Fp is a nondegenerate distribution. Note that (*) is of no use in 
attempting to approximate the probability P(T, s t,,), unless one is satisfied 
with an approximation constrained to take only the values 0 or 1. On the 
other hand, writing (assuming b,, > 0) 

(**I Ff, * FT Y 

we obtain from (**)the more realistic approximation Fr((t, - a,)/b3 for the 
probability P(T, s re). 

Such considerations are relevant in calculating the approximate confidence 
coefficients of confidence intervals T, f d,, in connection with estimators T,, 
and in finding critical points c, for forming critical regions {T, > c,} of 
approximate specified size in connection with test statistics T,. 

Thus, in developing the minimal amount of asymptotic theory regarding a 
sequence of statistics { q}, it does not suffice merely to establish a consistency 
property. In addition to such a property, one must also seek normalizing 
constants a, and b,, such that (T, - converges in distribution to a 
random variable having a nondegenerate distribution (which then must be 
determined). 

1.15.4 Asymptotic Relative Efficiency 
For two competing statistical procedures A and E ,  suppose that a desired 
performance criterion is specified and let nl and n2 be the respective sample 
sizes at which the two procedures “perform equivalently” with respect to the 
adopted criterion. Then the ratio 

n1 

n2 

- 
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is usually regarded as the relative eflciency (in the given sense) of procedure B 
relative to procedure A. Suppose that the specified performance criterion is 
tightened in a way that causes the required sample sizes n ,  and n,  to tend to 
00. If in this case the ratio n, /n ,  approaches to limit L, then the value L 
represents the asymptotic relatioe eflaiency of procedure B relative to 
procedure A. It is stressed that the value L obtained depends upon the par- 
ticular performance criterion adopted. 

As an example, consider estimation. Let { TAn} and { TBn} denote competing 
estimation sequences for a parametric function g(0). Suppose that 

If our criterion is based upon the variance parameters ofi(0) and a%@ of the 
asymptotic distributions, then the two procedures “perform equivalently” 
at respective sample sizes n ,  and n2 satisfying 

a m  4(@ 
-N- 

n1 n2 

in which case 

Thus afi(O)/a;((e) emerges as a measure of asymptotic relative efficiency of 
procedure B relative to procedure A. If, however, we adopt as performance 
criterion the probability concentration of the estimate in an &-neighborhood 
of g(8), for E specified and fixed, then a different quantity emerges as the 
measure of asymptotic relative efficiency. For a comparison of { TAn} and 
{ TBn} by this criterion, we may consider the quantities 

PAn(&, 8)  = P#(l TAn - dell > PBn(&, 0) = P@(l TBn - g(@I > 

and compare the rates at which these quantities tend to 0 as n + 00. In typical 
cases, the convergence is “exponentially fast **; 

In such a case, the two procedures may be said to “perform equivalently” 
at respective sample sizes n, and n2 satisfying 
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In this case 

yielding y&, O)/yA(e, 0) as a measure of asymptotic relative efficiency of 
procedure E relative to procedure A, in the sense of the probability con- 
cen tra t ion criterion. 

It is thus seen that the “asymptotic variance” and “probability concentra- 
tion” criteria yield differing measures of asymptotic relative efficiency. It can 
happen in a given problem that these two approaches lead to discordant 
measures (one having value > 1, the other < 1). For an example, see Basu 
(1956). 

The preceding discussion has been confined to asymptotic relative efficiency 
in estimation. Various examples will appear in Chapters 2-9. For the asymp- 
totic variance criterion, the multidimensional version and the related concept 
of asymptotic eflciency (in an “absolute” sense) will be treated in Chapter 4. 
The notion of asymptotic relative efficiency in testing is deferred to Chapter 
10, which is devoted wholly to the topic. (The apparent dichotomy between 
estimation and testing should not, however, be taken too seriously, for 
“testing” problems can usually be recast in the context of estimation, and 
vice versa.) 

Further introductory discussion of asymptotic relative efficiency is found 
in Cramtr (1946), Sections 37.3-37.5, Fraser (19571 Section 7.3, Rao (1973), 
Sections 5c.2 and 7a.7, and Bahadur (1967). 

l.P PROBLEMS 

Section 1.1 
1. Prove Lemma 1.1.4. 

Section 1.2 

2. (a) Show that (Xnl, . . . , X,) 1: (Xl, . , . , Xk)if and only if X,, 5 X, 
for each j = 1, . . . , k. 

(b) Same problem for wp!. 
(c) Show that X, = (Xnl, , . . , Xnk) % X, = (Xm1, .  . . , X m k )  if 

and only if, for every e > 0. 
lim P{llX,,, - X,ll < e, all m 2 n} = 1. 
n-rm 

3. Show that X,$ X implies X, = Op(l). 
4. Show that U, = op(K) implies U, = O,(V,,). 
5. Resolve the question posed in 1.2.6. 
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Section 1.3 

6. Construct a sequence {X,} convergent wpl but not in rth mean, for 
any r > 0, by taking an appropriate subsequence of the sequence in Example 
1.3.8D. 

Section 1.4 

7. Prove Lemma 1.4B. 
8. Verify that Lemma 1.4C contains two generalizations of Theorem 

1.3.6. 
9. Prove Theorem 1.4D. 

Section 1.5 

10. Do the task assigned in the proof of Theorem 1.5.1A. 
11. (a) Show that Scheffk's Theorem (1S.lC) is indeed a criterion for 

(b) Exemplify a sequence of densities f, pointwise convergent to a 
convergence in distribution. 

function f not a density. 
12. (a) Prove P6lya's Theorem (1 5 3 ) .  

(b) Give a counterexample for the case of F having discontinuities. 
13. Prove part (ii) of Slutsky's Theorem (1.5.4). 
14. (a) Prove Corollary 1.5.4A by direct application ofTheorem 1.5.4(i). 

(b) Prove Corollary 1.5.48. 
15. Prove Lemma 1.5.5A. (Hint: apply Polya's Theorem.) 
16. Prove Lemma 1.5.5B. 
17. Show that X, is AN((r,, c,'C) if and only if 

xn - 5 N(0, C). 
Cn 

Here {c,} is a sequence of real constants and C a covariance matrix. 
18. Prove or give counter-example: If X, 1: X and Y. 3 Y, then X, + 

19. Let X, be AN(p ,  a2/n), let Y. be AN@, u/n), c # 0, and put 2, = 
&(X, - p)/Y,. Show that Z, is AN(0, a2/c2). (Hint: apply Problem 1.P.20.) 

20. Let X, be AN(p,  at). Show that X, 3 p if and only if a, + 0, n + 00. 

(See Problem 1.P.23 for a multivariate extension.) 
21. Let X, be A N @ ,  ox) and let Y, = 0 with probability 1 - n-' and 

= n with probability n - ' .  Show that X, + Y. is A N @ ,  0,'). 

y , $ X + Y  
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Section 1.7 
22. Verify Application B of Corollary 1.7. (Hint: Apply Problem 1.P.17, 

Corollary 1.7 and then Theorem 1.7 with g(x) - fi) 
23. Verify Application C of Corollary 1.7. (Hint: Apply the Cram&- 

Wold device, Problem 1.P.20, and the argument used in the previous problem. 
Alternatively, instead of the latter, Problems 1.P.2 and l.P.l4(b) may be used.) 

(b) Do analogues hold for convergence in distribution? 

Section 1.9 

24. (a) Verify Application D of Corollary 1.7. 

25. Derive Theorem 1.9.1B from Theorem 1;9.1A. 
26. Obtain Corollary 1.9.3. 
27. Let X, be a 1,' random variable. 

(a) Show that X, is AN(n, 2n). 
(b) Evaluate the bound on the error of approximation provided 

by the Berry-Esseen Theorem (with van Beeck's improved constant). 

Section 1.13 

moments. 

Section 1.14 

28. Justify that the distribution N(p,  u2) is uniquely determined by its 

29. Obtain Corollary 1.14 from Lemma 1.14. 

Section 1.15 

parameter 8 by X,. Answer (with justifications): 
30. Let X, have k i t e  mean p,, n = 1,2, . . . . Consider estimation of a 

(a) If X ,  is consistent for 8, must X, be asymptotically unbiased? 
(b) If X, is asymptotically unbiased, must X, be consistent? 
(c) If X, is asymptotically unbiased and Var{X,} -+ 0, must X, be 

consistent 7 
(Hint: See Problem 1.P.21.) 



C H A P T E R  2 

The Basic Sample Statistics 

This chapter considers a sample XI, . . . , X ,  of independent observations on a 
distribution function F and examines the most basic types of statistic usually 
ofinterest. Thesampledistributionfunction and the closely related Kolmogorov- 
Smirnov and Cramtr-von Mises statistics, along with sample density functions, 
are treated in Section 2.1. The sample moments, the sample quantiles, and the 
order statistics are treated in Sections 2.2,2.3 and 2.4, respectively. 

There exist useful asymptotic representations, first introduced by R. R. 
Bahadur, by which the sample quantiles and the order statistics may be 
expressed in terms of the sample distribution function as simple sums of 
random variables. These relationships and their applications are examined 
in Section 2.5. 

By way of illustration of some of the results on sample moments, sample 
quantiles, and order statistics, a study of confidence intervals for (population) 
quantiles is provided in Section 2.6. 

A common form of statistical reduction of a sample consists of grouping 
the observations into cells. The asymptotic multivariate normality of the 
corresponding cell frequency vectors is derived in Section 2.7. 

Deeper investigation of the basic sample statistics may be carried out 
within the framework of stochastic process theory. Some relevant stochastic 
processes associated with a sample are pointed out in Section 2.8. 

Many statistics of interest may be represented as transjiormations of one 
or more of the “basic” sample statistics. The case of functions of several 
sample moments or sample quantiles, or of cell frequency vectors, and the like, 
is treated in Chapter 3. The case of statistics defined as functionals of the 
sample distribution function is dealt with in Chapter 6. 

Further, many statistics of interest may be conceptualized as some sorts of 
generalization of a “basic” type. A generalization of the idea of forming a 

55 
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sample average consists of the U-statistics, introduced by W. Hoeffding. 
These are studied in Chapter 5. As a generalization of single order statistics, 
the so-called linear functions of order statistics are investigated in Chapter 8. 

2.1 THE SAMPLE DISTRIBUTION FUNCTION 

Consider an LLD. sequence {X , )  with distribution function F. For each 
sample of size n, { X . . . , X,,}, a corresponding sample distributionfunction F,, 
is constructed by placing at each observation Xi a mass l/n. Thus F,, may be 
represented as 

1 ’  
n I - 1  

F,,(x) = - C I ( X 1  s x), -00 < x < 00. 

(The definition for F defined on Rk is completely analogous.) 
For each fixed sample {XI, . . . , X,,}, F,,(-) is a distribution function, con- 

sidered as a function of x. On the other hand, for each fixed value of x, F,,(x) is 
a random uuriable, considered as a function of the sample. In a view encom- 
passing both features, F,,(.) is a randum distribution function and thus may be 
treated as a particular stochastic process (a random element of a suitable 
function space). 

The simplest aspect of F,, is that, for each fixed x, F,,(x) serves as an estimator 
of F(x). For example, note that F,,(x) is unbiased: E{F,,(x)} - F(x). Other 
properties, such as consistency and asymptotic normality, are treated in 
2.1.1. 

Considered as a whole, however, the function F,, is a very basic sample 
statistic, for from it the entire set of sample values can be recovered (although 
their order of occurrence is lost). Therefore, it can and does play a fundamental 
role in statistical inference. Various aspects are discussed in 2.1.2, and some 
important random variables closely related to F,, are introduced. One of these, 
the Kolmogorou-Smirnou statistic, may be formulated in two ways: as a 
measure of distance between F,, and F, and as a test statistic for a hypothesis 
H: F = F,,. For the Kolmogorov-Smirnov distance, some probability in- 
equalities are presented in 2.1.3, the almost sure behavior is characterized in 
2.1.4, and the asymptotic distribution theory is given in 2.1.5. Asymptotic 
distribution theory for the Kolmogorov-Smirnov test statistic is discussed in 
2.1.6. For another such random variable, the Cram&-uon Mises statistic, 
almost sure behavior and asymptotic distribution theory is discussed in 2.1.7. 

For the case of a distribution function F having a densityf, “sample density 
function” estimators (off)  are of interest and play similar roles to F,,. 
However, their theoretical treatment is more difficult. A brief introduction is 
given in 2.1.8. 
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Finally, in 2.1.9, some complementary remarks are made. For a stochastic 
process formulation of the sample distribution function, and for related con- 
siderations, see Section 2.8. 

2.1.1 FJx) as Pointwise Estimator of F(x) 

We have noted above that F,(x) is unbiased for estimation of F(x). Moreover, 

so that F,(x) 2 F(x). That is, F,(x) is consisrent in mean square (and hence 
weakly consistent) for estimation of F(x). Furthermore, by a direct a plica- 
tion of the SLLN (Theorem 1.8B), F,(x) is strongly consistenr: F,(x) % F(x). 
Indeed, the latter convergence holds unijbrnly in x (see 2.1.4). 

Regarding the distribution theory of F,(x), note that the exact distribution 
of nF,(x) is simply binomial (n, F(x)). And, immediately from the Lindeberg- 
Uvy CLT (1.9.1A), the asymptotic distribution is given by 

P 

Theorem. For eachfixed x, - 00 < x < 00, 

2.1.2 The Role of the Sample Distribution Function in Statistical Inference 
We shall consider several ways in which the sample distribution function is 
utilized in statistical inference. Firstly, its most direct application is for 
estimation of the population distribution function F.  Besides pointwise 
estimation of F(x), each x, as considered in 2.1.1, it is also of interest to char- 
acterize globally the estimation of F by F,. To this effect, a very useful 
measure of closeness of F, to F is the Kolmogoroo-Smirnoo distance 

D, = SUP I F,(x) - F(x) I .  

A related problem is to express co@dence bands for F(x), -00 < x < 00. 

Thus, for selected functions a(x) and b(x), it is of interest to compute prob- 
abilities of the form 

--oD<x<aD 

P(F,(X) - U ( X )  5 F(x) S F,(x) + b(x), - 00 < x < 00). 

The general problem is quite difficult; for discussion and references, see 
Durbin (1973a), Section 2.5. However, in the simplest case, namely a(x) I 
b(x) = d, the problem reduces to computation of 

P(Dn < 4 .  
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In this form, and for F continuous, the problem of confidence bands is treated 
in Wilks (1962), Section 11.7, as well as in Durbin (1973a). 

Secondly, we consider “goodness of fit ** test statistics based on the sample 
distribution function. The null hypothesis in the simple case is H: F = Fo, 
where Fo is specified. A useful procedure is the Kolmogorou-Smirnov test 
stutisttc 

4 S U P  I FJx) - Fob) I, 
- Q < X < m  

which reduces to D, under the null hypothesis. More broadly, a class of such 
statistics is obtained by introducing weight functions: 

SUP Iw(x) [FAX) - F~(xll I * 
- m < r < m  

(Similarly, more general versions of D, may be formulated.) There are also 
one-sided versions of A, : 

A: = SUP [FAX) .- FO(x)I, 
- m < x < m  

A, = SUP [F~(x) - F,(x)]. 
- Q < X < Q  

Another important class of statistics is based on the Crumb-oon Mises test 
statistic 

cn n s_Om;Fn(x) - ~0(x)12 d ~ o ( x )  

and takes thegeneral form n w(Fo(x)) [F,(x) - Fo(x)I2 dFo(x). For example, 
for w(t) = [t(l - t ) ] - ’ ,  each discrepancy F,(x) - Fo(x) becomes weighted 
by the reciprocal of its standard deviation (under Ho), yielding the Anderson- 
Darling statistic. 

Thirdly, some so-called “tests on the circle” are based on F,. The context 
concerns data in the form of directions, and the null hypothesis of randomness 
of directions is formulated as randomness of n points distributed on the 
circumference of the unit circle. With appropriately defined Xis, a suitable 
test statistic is the Kuiper statistic 

K = A : - A , .  

This statistic also happens to have useful properties when used as an alter- 
native to A,, in the goodness-of-fit problem. 

Finally, we mention that the theoretical investigation of many statistics of 
interest can advantageously be carried out by representing the statistics, 
either exactly or approximately, as functionals of the sample distribution 
function, or as functionals of a stochastic process based on the sample 
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distribution function. (See Section 2.8 and Chapter 6). In this respect, metrics 
such as 0, play a useful role. 

In light of the foregoing remarks, it is seen that the random variable D, and 
related random variables merit extensive investigation. Thus we devote 
2.1.3-2.1.6 to this purpose. 

An excellent introduction to the theory underlying statistical tests based on 
F, is the monograph by Durbin (1973a). An excellent overview of the prob- 
abilistic theory for F, considered as a stochastic process, and with attention to 
multidimensional F, is the survey paper of Gaenssler and Stute (1979). Useful 
further reading is provided by the references in these manuscripts. Also, 
further elementary reading of general scope consists of Bickel and Doksum 
(1977), Section 9.6, Cramtr (1946), Section 25.3, Lindgren (1968), Section 6.4, 
Noether (1967), Chapter 4, Rao (1973), Section 6f.1, and Wilks (1962), 
Chapters 11 and 14. 

2.1.3 Probability Inequalities for the KolmogorovSmimov Distance 
Consider an I.I.D. sequence {XI} of elements of R', let F and F, denote the 
corresponding population and sample distribution functions, and put 

D, = sup IF,(x) - F(x)l .  
X € R *  

For the case k = 1, an exponential-type probability inequality for D, was 
established by Dvoretzky, Kiefer, and Wolfowitz (1956). 

Theorem A (Dvoretzky, Kiefer, and Wolfowitz). Let F be defined on R. 
There exists afinite positive constant C (not depending on F )  such that 

P(D, > d) < Ce-'nd2, 
for all n = 1,2,. . . . 
Remarks. (i) DKW actually prove this result only for F uniform on 
[O, 13, extension to the general case being left implicit. The extension may be 
seen as follows. Given independent observations X, having distribution F and 
defined on a common probability space, one can construct independent 
uniform LO, 13 variates 8 such that PIXl = F-'(&)] = 1, 1 5 i 5 n. Let G 
denote the uniform [0, 13 distribution and G, the sample distribution function 
of the Y,'s. Then F(x)  = G(F(x)) and, by Lemma 1.1.4(iii), (wpl)  F,(x) = 
G,(F(x)). Thus 

d > 0, 

OX = SUP IFn(x) - F(x)l = SUP IGn(F(x)) - G(F(x))I 
--ao<x<m - m < x < m  

I; SUP I G,(t) - G(t)( = D,G, 
0<1<1 

so that P(D: > d )  s P(Df > d). 
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Alternatively, reduction to the uniform case may be carried out as follows. 
Let Yl, , , , , Y. be independent uniform [O, 11 random variables. Then 
Y { ( X , ,  . . . , X, ) }  = Y { ( F - ' ( Y l ) ,  , . , , F - ' ( x ) ) } .  Thus 

Y{Dn(XI ,  * * * 9 Xn)} = Y{Dn(F- ' (Yl ) ,  * - - 9 f+-'(K))I* 
But 

D,(F-l(Yl), . . . , F - i ( G ) )  = sup I n-1 i I ( F - l ( K )  5 x) - F(x) I 
-olcx<ol 1-1 

= sup ln-1 i I ( K  s F(x)) - ~ ( x ) l  

s sup n - l z I ( K S t ) - t  

- w e x e m  111 

octc I I ,:I 

= D,( Y1, . . . , K). 
(ii) The foregoing construction does not retain the distribution-free 

property in generalizing to multidimensional F. For F in Rk, let F, denote the 
j th  marginal of F, 1 s j 5; k, and put F(x) = (Fl(xl), . . . , F&)) for x = 
xI, . . . , xk). Putting Y, = F(X,), 1 S i S n, and letting GF denote the distribu- 
tion of each Y,, and G, the sample distribution function of the Y(s, we have 
F(x) = Gp(@(x)) and F,,(x) = G,,($(x)), so that 

Again, we have achieved a reduction to the case of distributions on the k- 
dimensional unit cube, but in some cases the distribution GP depends on F. 
(Also, see Kiefer and Wolfowitz (1958).) 

(iii) The inequality in Theorem A may be expressed in the form: 
P(n1I2D, > d )  s C exp( - 2d2). 

In 2.1.5 a limit distribution for n'/2Dn will be given. Thus the present result 
augments the limit distribution result by providing a useful bound for 
probabilities of large deviations. 

(iv) Theorem A also yields important results on the almost sure behavior 
of D,. See 2.1.4. 

The exponential bound of Theorem A is quite powerful, as the following 
corollary shows. 

Fn(x) .- ~ ( x )  = Gn(@(x)) - G ~ c ~ ( x o ) *  

Corollary. Let F and C be as in Theorem A. Then, for every E > 0, 

where p. = exp(-2EZ). 
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PROOF. Let E > 0. 

The extension of Theorem A to multidimensional F was established by 
Kiefer (1961): 

Theorem B (Kiefer). Let F be defined on R’, k 2 2. For each E > 0, 
there exists afinite positive constant C = C(E, k) (not depending on F )  such that 

P(D, > d) 5 Ce-(2-L)”d’ , d > O ,  

for all n = 1,2, . . . . 
As a counter-example to the possibility of extending the result to the case 

E = 0, as was possible for the 1-dimensional case, Kiefer cites a 2-dimensional 
F satisfying P ( ~ I ” ~ D ,  2 d) 

(An analogue of the corollary to Theorem A follows from Theorem B.) 
8d2 exp( -2d2), n + co. 

2.1.4 Almost Sure Behavior of the KolmogorovSmirnov Distance 

(We continue the notation of 2.1.3.) The simplest almost sure property of D, 
is that it converges to 0 with probability 1 : 

Theorem A (Glivenko-Cantelli). D, 2 0. 

PROOF. For the 1-dimensional case, this result was proved by Glivenko 
(1933)forcontinuousFand by Cantelli (1933)forgeneral F. See Lotve(1977), 
p. 21, or Gnedenko (1962), Section 67, for a proof based on application of the 
SLLN. Alternatively, simply apply the Dvoretzky-Kiefer-Wolfowitz prob- 
ability inequality (Theorem 2.1.3A) in conjunction with Theorem 1.3.4 to 
obtain 

m 

n= 1 
C P(D, > E )  < 00 for every E > 0, 

showing thus that D, converges completely to 0. Even more strongly, we can 
utilize Corollary 2.1.3 in similar fashion to establish that supmzn D, converges 
completely to 0. 

Likewise, the multidimensional case of the above theorem may be deduced 
from Theorem 2.1.3B. 

The extreme fluctuations in the convergence of D, to 0 are characterized by 
the following LIL. 
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Theorem B. With probability 1, 

- n‘12D, 
lim = c(F). 

(2 log log n)lI2 

where 

c(F) = SUP {F(x)[l - F(x)]}”~. 
XCRL 

(Note that c(F) = 4 if F is continuous.) 
For F 1-dimensional and continuous, proofs are contained in the papers of 

Smirnov (1944), Chung (1949), and Cshki (1968). Kiefer (1961) extended to 
multidimensional continuous F and Richter (1974) to general multidimen- 
sional F. 

2.1.5 Asymptotic Distribution Theory for the Kolmogorov-Smirnov 
Distance 

We confine attention to the case of F 1-dimensional 
The exact distribution of D, is complicated to express. See Durbin (1973a), 

Section 2.4, for discussion of various computational approaches. On the 
other.hand, the asymptotic distribution theory, for continuous F, is easy to 
state: 

Theorem A (Kolmogorov). Let F be 1-dimensional and continuous. Then 
OD 

lim P(n1IZDn 5 d) = 1 - 2 (- 1)J+1e-2J’d’, d > 0. 
n-m J- 1 

The proposition was originally established by Kolmogorov (1933), using a 
representation ofF, as a conditioned Poisson process (see 2.1.9). Later writers 
have found other approaches. For proof via convergence in distribution in 
C[O, 11, see Hhjek and Sidak (1967), Section V.3, or Billingsley (1968), 
Section 13. Alternatively, see Breiman (1968) or Brillinger (1969) for proof via 
Skorokhod constructions. 

A convenient feature of the preceding approximation is that it does not 
depend upon F. In fact, this is true also of the exact distribution of D, for the 
class of continuous F‘s (see, e.g., Lindgren (1968). Section 8.1.) 

In the case of F having discontinuities, n1/2D, still has a limit distribution, 
but it depends on F (through the values of F at the points of discontinuity). 
Extension to the case of F having finitely many discontinuities and not being 
purely atomic was obtained by Schmid (19519, who gives the limit distribution 
explicitly. The general case is treated in Billingsley (1968), Section 16. Here 
there is only implicit characterization of the limit distribution, namely, as 
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that of a specified functional of a specified Gaussian stochastic process (see 
Section 2.8 for details). 

For multidimensional F, also, n112D,, has a limit distribution. This has been 
established by Kiefer and Wolfowitz (1958) primarily as an existence result, 
the limit distribution not being characterized in general. For dimension 2 2, 
the limit distribution depends on F even in the continuous case. 

Let us also consider one-sided Kolmogorov-Smirnov distances, typified by 

0: = SUP [F,,(x) - F(x)]. 
- m < z < m  

For continuous F, the distribution of 0: does not depend on F. The exact 
distribution is somewhat more tractable than that of D,, (see Durbin (1973a) 
for details). The asymptotic distribution, due to Smirnov (1944) (or see 
Billingsley (1968), p. 85), is quite simple: 

Theorem B (Smirnov). Let F be 1-dimensional and continuous. Then 

lim P(n1l2D; I; d) = lim P(n1l2D; 5 -d) = 1 - e-2d*, d > 0. 
n + m  n-m 

An associated Berry-Essden bound of order O(n-’/’ log n) has been est- 
ablished by Komlbs, Major and Tusnhdy (1975). Asymptotic expansions in 
powers of n-’/’ are discussed’in Durbin (1973a) and Gaenssler and Stute 
( 1979). 

2.1.6 Asymptotic Distribution Theory for the KolmogorovSmirnov Test 
Statistic 
Let X1, X 2 ,  . . . be1.I.D. with (1-diinensiona1)continuousdistribution function 
F, and let Fo be a specified hypothetical continuous distribution. For the null 
hypothesisH: F = Fo,the Kolmogorov-Smirnovtest statisticwasintroduced 
in 2.1.2: 

A n  = SUP IFJx) - Fo(x)l* 
- m < x < m  

The asymptotic distribution of A,, under the null hypothesis is given by 
Theorem 2.1.5A,for in thiscase A,, = D,. Under thealternatiue hypothesis H*: 
F # Fo,  the parameter 

A = SUP I F(x)  - F ~ ( x )  I 
- m < x < m  

is relevant. Raghavachari (1973) obtains the limit distribution ofn1’2(A,, - A), 
expressed as the distribution of a specified functional of a specified Gaussian 
stochastic process, both specifications depending on F and Fo (see Section 2.8 
for details). He also obtains analogous results for other Kolmogorov- 
Smirnov type statistics considered in 2.1.2. 
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2.1.7 Almost Sure Behavior and Asymptotic Distribution Theory of the 
CramCr-von Mises Test Statistic 
Let {X,}, F and Fo be as in 2.1.6. We confine attention to the null hypothesis 
situation, in which case F = Fo and the test statistic introduced in 2.1.2 may 
be viewed and written as a measure of disparity between F,  and F :  

m 

cn = n J’- JFn(x) - ~ ( x ) ] ’  d ~ ( x ) .  

In this respect, we present analogues of results for D, established in 2.1.4 and 
2.1.5. We also remark that in the present context C,, like D,, has a distribution 
not depending on F. 

Theorem A (Finkelstein). With probability I, 

Finkelstein (1971) obtains this as a corollary of her general theorem on the 
LIL for the sample distribution function. 

Theorem B. Let 5 be a random variable representable as 

where xil, xt2 ,  . . . are independent x i  variates. Then 

lim P(Cn c) = P(6 s c), c > 0. 
n-m 

For details of proof, and of computation of P(4 < c), see Durbin (1973a), 
Section 4.4. 

2.1.8 Sample Density Functions 
Let XI, X 2 ,  . , . be I.1.D. with (l-dimensiona1)absolutelycontinuous F having 
density f = F’. A natural way to estimate f ( x )  is by a difference quotient 

Here {b,} is a sequence of constants selected to +Oat a suitable rate. Noting 
that Znb,fn(x) has the binomial (n, F(x + b,) - F(x - 6,)) distribution, one 
finds (Problem 2.P.3) that 

E { f , ( x ) )  + / W  if b n + 4  n +  00, 
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and 

Var{f,(x)} + 0 if b, 4 0 and nb, + 00, n + co, 

Thus one wants b, to converge to 0 slower than n-'. (Further options on the 
choice of (6,) are based on a priori knowledge off and on the actual sample 
size n.) In this caseS,(x) is consistent in mean square for estimation off. Further, 
under suitable smoothness restrictions on f a t  x and additional convergence 
restrictions on {bJ, it is found (Problems 2.P.4-5) that fn(x) is AN( f(x), 
f (x)/nb,). See Bickel and Doksum (1977) for practical discussion regarding 
the estimator f,(x). 

A popular alternative estimator of similar type is the histogram 

F,(a + (j + l)b,) - F,(a + jb,) 
2bn 

, X E [ ~  + jb, ,a + G +  1)bn). f 3 x 1  = 

Its asymptotic properties are similar to those of h(x). 
A useful class of estimators generalizing f,,(x) is defined by the form 

where W( .) is an integrable nonnegative weight function. (The case W ( z )  = i, 
I z I s 1, and = 0 otherwise, gives essentially the simple estimator considered 
above.) Under restrictions on W( .), f (.) and {b,}, the almost sure behavior of 
the distance 

SUP If,(x) - f(x)l 
-ao<.z<m 

is characterized by Silverman (1978). For two other such global measures, 

asymptotic distributions are determined by Bickel and Rosenblatt (1973). 
Regarding pointwise estimation off(x) by fn(x), asymptotic normality results 
are given by Rosenblatt (1971). 

2.1.9 Complements 

(i) The problem of estimation of F is treated from a decision-theoretic 
standpoint by Ferguson (1967), Section 4.8. For best "invariant" estimation, 
and in connection with various loss functions, some forms of sample distribu- 
tion function other than F, arise for consideration. They weight the XI)s 
differently than simply n- ' uniformly. 

(ii) The speed of the Glivenko-Cantelli convergence is characterized 
stochastically by an LIL, as seen in 2.1.4. In terms of nonstochastic quantities, 



66 THE BASIC SAMPLE STATISTICS 

such as E(D,,} and E{J IF,,(%) - F(x)Jdx},  Dudley (1969) establishes rates 
O(n- 1/2). 

(iii) The Kolmogorov-Smirnov test statistic A,, considered in 2.1.2 and 
2.1.6 is also of interest when the hypothesized Fo involves unknown nuisance 
parameters which have to be estimated from the data in order to formulate A,. 
See Durbin (1973a, b) for development of the relevant theory. For further 
development, see Neuhaus (1976). 

(iv) For theory of Kolmogorov-Smirnov type test statistics generalized 
to include regression constants, for power against regression alternatives, see 
Hhjek and Sidhk (1967). 

(v) Consider continuous F and thus reduce without loss of generality to F 
uniform on [0, 13. Then (see Durbin (1973a)) 

(a) {F,,(t)} is a Markou process: for any 0 < t l  < - < t k  < t k  < 1, the 
conditional distribution of F,,(tk) given F,(rI), . . . , F,,(tk) depends only on 

(b) {F,,(t)} is a conditioned Poisson process: it has the same distribution as 
the stochastic process {P,,(t)} given P,,(1) = 1, where {P,,(t)} is the Poisson 
process with occurrence rate n and jumps of n- ’ .  

(vi) In 2.1.3 we stated large deviation probability inequalities for 0,. 
*Large deuiation” probabilities for F,, may also be characterized. For suitable 
types of set So of distribution functions, and for F not in So, there exist 
numbers c(F, So) such that 

Fn(tk - 1). 

See Hoadley (1967), Bahadur (1971), Bahadur and Zabell (1979), and 
Chapter 10. 

2.2 THE SAMPLE MOMENTS 

Let XI, X2, . . . be I.I.D. with distribution function F. For a positive integer k, 
the kth moment of F is defined as 

OD 

ak = dF(x) = E { X : } .  

The first moment a, is also called the mean and denoted by! when convenient. 
likewise, the kth central moment of F is defined as 

(x - /Ok dF(x) E{(Xi - PY}. 
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Note that g1 = 0. The { a f }  and {p f }  represent important parameters in terms 
of which the description of F, or manipulations with F, can sometimes be 
greatly simplified. Natural estimators of these parameters are given by the 
corresponding moments of the sample distribution function F,. Thus ak may 
be estimated by 

(and let a, also be denoted by x), and & may be estimated by 

Since F ,  possesses desirable properties as an estimator of F, as seen in Section 
2.1, it might be expected that the sample moments ak and the sample central 
moments mk possess desirable features as estimators of and gk. Indeed, we 
shall establish that these estimators are consistent in the usual senses and 
jointly are asymptotically multivariate normal in distribution. Further, we 
shall examine bias and oariance quantities. The estimates ak are treated in 
2.2.1. Following some preliminaries in 2.2.2, the estimates mk are treated 
in 2.2.3. The results include treatment of the joint asymptotic distribution of 
the ak's and m;s taken together. In 2.2.4 some complements are presented. 

2.2.1 The Estimates uk 

Note that ak is a mean of I.I.D. random variables having mean ak and variance 
aZk - a;. Thus by trivial computations and the SLLN (Theorem 1.8B), we 
have 

Theorem A.  
W P l  (i) ai  -a,; 

(ii) E{ak} = a k :  

a 2 k  - 4 (iii) Var{ak} = 
n 

(It is implicitly assumed that all stated moments are finite.) Note that (i) 
implies strong consistency and (ii) and (iii) together yield mean square 
consistency. 

More comprehensively, the vector (al, a2, . . . , ak) is the mean of the I.I.D. 
vectors (X,, X:, . . . , XI), 1 s i s n. Thus a direct application of the multi- 
variate Lindeberg-Ltvy CLT (Theorem 1.9.1B) yields. that (a,, . . . , f f k )  is 
asymptotically normal with mean vector (a1,. .: , ak) and covariances 
( a f + ,  - a,a,)/n. Formally: 
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Theorem B. 1’ aZk < 00, the random uector n1I2(al - ul, . . . , ak - ark) 

conuerges in distribution to k-oariate normal with mean oector (0, . . . , 0) and 
covariance matrix [ q J ] k  ,, k ,  where biJ = al + J - alaJ. 

2.2.2 Some Preliminary and Auxiliary Results 

Preliminary to deriving properties of the estimates mk, it is advantageous to 
consider the closely related random variables 

Properties of the m;s will be deduced from those of the 6;s. 
The same arguments employed in dealing with the ais immediately yield 

Lemma A. 

(iii) 

(iv) For p2k < a, the random oector (bl, . . . , bk) is asymptoticaIly normal 
with mean uector (pl,.  . . , pk) and cooariances (pl+J - plpJ)/n. 

Note that bk and mk represent alternate ways of estimating pk by moment 
statistics. The use of bk presupposes knowledge of p, whereas mk employs the 
sample meanx in place of p. This makes mk of greater practical utility than bk, 
but more cumbersome to analyze theoretically. 

As another preliminary, we state 

Lemma B. Let {Zi} be Z.Z.D. with E{Zl} = 0 and with E(ZI I’ < m, where 
v 2 2. Then 

E Zi = O(n1’2’), n a. 

For proof and more general results, see LoCve (1977), p. 276, or Marcinkiewicz 
and Zygmund (1937). See also Lemma 9.2.6A. 

II 
We shall utilize Lemma B through the implication 

~ { b ’ , }  = E{(X - p)’} = O(n-(1’2)’), n + a, 

for f 2 2. 
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2.2.3 The Estimates mk 

Although analogous in form to bk, the random variable mk differs crucially in 
not being expressible as an average of I.I.D. random variables. Therefore, 
instead of dealing with mk directly, we exploit the connection between mk and 
the b,’s. Writing 

we obtain 

(*) 

where we define bo = 1 .  

error, and strong consistency of mk . 
The following result treats the bias, mean square consistency, mean square 

Theorem A. 

(i) mk 3 pk; 

(ii) The bias ofmr satisfies 

(iii) The uariance ofmk satisfies 

(iv) Hence E(mk - C(k)’ - Var{mk} = o(n-’), 

PROOF. (i) In relation (*), apply Lemma 2.2.2A(i) in conjunction with 

(ii) Again utilize (*) to write 

n + 03. 

Application D of Corollary 1.7, and note that pl = 0. 

Now, making use of the independence of the X;s,  
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Similarly, 

since the expectation of a term in the triple summation is 0 if i3 # i2 .  Hence 

Similarly (exercise), 

E{bk-36:) = O(n-’), n + 00. 

For j  > 3, use H6lder.s inequality (Appendix) 

I E{bk - j b ’ ,  I 5 [ E  I b k  - J lk’a-h]‘k -’lk[E 16 1 Ik]’lk. 

By application of Minkowski’s inequality (Appendix) in connection with the 
first factor on the right, and Lemma 2.2.2B in connection with the second 
factor, we obtain 

E { I 4 - , M }  = O(l)[O(n-~l~’)k)]J’k = O(n-“’’”) 
= O(n-’), n 3 00 (j > 3). 

Collecting these results, we have 

(iii) Writing Var{mk} = E(mi} - [E(mk}]2, we seek to compute E{mlf} 
and combine with the result in (ii). For E ( m i } ,  we need to compute quantities 
of the form 

E { h -  ~,H’bk - j 2 # }  = E{bk-j,bk - j a  n’l( +’I}, 

for 0 5 jl,jz 5 k. For/, = j 2  = 0, we have 
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For j ,  = j 2  = 1, we have (exercise) 

and 

Finally, for j ,  + j 2  > 2, we have (exercise) 

E{bk- , lbk - ,2w+'2}  = O(n-'), n -+ 00. 

Consequently, by (*), 

E{mi}  = E{bi}  - 2kE{bkbk- ,bl} + k2E{bi-:_,b:} 

+ k(k - 1)E(bkbk-,b:} + O(n-'), n -+ 00, 

h k  - c ( I  - 2k@l + pk-lpk-1) 
+ k2/4-lc(2 + k(k - 1)c(kc(k-2p2 = p; + 

n 

+ O(n-'), n + 00. 

(iv) trivial. 

Next we establish asymptotic normality of the vector ( m 2 , .  . . , mk). The 
following lemma is useful. 



The second term on the right is a product of two factors, the first converging in 
distribution and the second converging to 0 wpl, these properties following 
from Lemma 2.2.2A. Therefore, by Slutsky’s Theorem (1.5.4), the product 
converges to 0 in probability. 

Theorem B. If pzk < 00, the random oector n1I2(m2 - p2, .  . . , mk - k) 
conoerges in distribution to (k - lkoariate normal with mean vector (0, . . . , 0) 
and cooariunce matrix [a&- l ) x ( k -  1), where 

ufi = pI+J+Z - pItlpJ+I - (i + 1 h p J + Z  - (i + l)C(I+ZpJ 
+ (i + l)(i + 1)CIIc(#2. 

PROOF. By the preceding lemma, in conjunction with the Cramdr-Wold 
device (Theorem 1.5.2) and Slutsky’s Theorem, the :andom vector 

n1’’b2 - c(2 - - * 9 mk - c ( k )  

has the same limit distribution (if any) as ihe vector n112(bz - pz - 2p1bl, 
. . . , bk - p k  - kpk-  lbl). But the latter is simply nl/’ times the average of the 
I.I.D. vectors 

[(XI - - pZ - 2pl(x,  - * * * Y (XI - py - p k  - kpk - l(xI - 
1 S i s n .  

Application of the CLT (Theorem 1.9.1B) gives the desired result. 

By similar techniques, we can obtain asymptotic normality of any vector 
(al , .  , . , ah,, m z , .  . . , mkZ), In particular, let us consider (al ,  m2) = (sample 
mean, sample variance) = (X, s’). It is readily seen (Problem 2.P.8) that 

Here we have denoted p2 by a’, as usual. 

2.2.4 Complements 

(i) Examples: the sample mean and the sample variance. The joint asymp- 
totic distribution ofX and s2 was expressed at the conclusion of 2.2.3. From 
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this, or directly from Theorems 2.2.1B and 2.2.3B, it is seen that each of these 
statistics is asymptotically normal: 

and 

(ii) Rates of convergence in connection with the asymptotic normality of 
the sample mean and sample oariance. Regardingx, the rate of convergence to 
0 of the normal approximation error follows from the Berry-Essten Theorem 
(1.9.5). For s2, the rate of this convergence is found via consideration of s2 as a 
U-statistic (Section 5.5). 

(iii) E’ciency of”rnoment” estimators. Despite the good properties of the 
moment estimators, there typically are more efficient estimators available 
when the distribution F is known to belong to a parametric family. Further, 
the “method of moments” is inapplicable if F fails to possess the relevant 
moments, as in the case of the Cauchy distribution. (See additional discussion 
in 2.3.5 and 4.3.) 

hold (k  = 2, 3, . . .) 
and so the two sets of estimates {a2, a 3 ,  . . .} and {mz ,  m,, . . .} offer alternative 
ways to estimate the parameters (a2 = p2 ,  a3 = p 3 , .  . .}. In this situation, 
Lemma 2.2.3 shows that 

(iv) The case p = 0. In this case the relations = 

mk - pk = ak - pk - kpk-  1x + op(n-l’z)a 

That is, the errors of estimation using ak and mk differ by a nonnegligible 
component, except in the case k = 2. 

(v) Correction factors to achieve unbiased estimators. If desired, correction 
factors may be introduced to convert the mk’s into unbiased consistent 
estimators 

n(n2 - 2n + 3) 
M4 = m4 - (n - l)(n - 2)(n - 3)  

3n(2n - 3)  
( n  - I ) ( n  - 2)(n -- 3) 

etc., for p 2 ,  p 3 ,  p4, . . . . However, as seen from Theorem 2.2.3A, the bias of the 
unadjusted mL)s is asymptotically negligible. Its contribution to the mean 
square error is O(n-’), while that of the variance is of order n - l .  
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(vi) Rates of conuergence in connection with the strong convergence of Uk 

(vii) Further reading. Cramtr (1946), Sections 27.1-6 and 28.1 -3, and Rao 
and mk. This topic is treated in 5.1.5. 

\(1973), Section 6h. 4 

2.3 THE SAMPLE QUANTILES 

Let F be a distribution function (continuous from the right, as usual). For 
0 < p < 1, the pth quantile orfractile of F is defined (recall 1.1.4) as 

4, = inf {x: F(x)  2 p )  

and is alternately denoted by F-'(p). Note that C, satisfies 

Other useful properties have been presented in Lemmas 1.1.4 and 1.5.6. 
Corresponding to a sample {X,, . , . , X,} of observations on F, the sample 

pth quantile is defined as the pth quantile of the sample distribution function 
F,, that is, as F; l(p). Regarding the sample pth quantile as an estimator of C,, 
we denote it by e,,, or simply by e,, when convenient. 

It will be seen (2.3.1) that e, is strongly consistent for estimation of C,, under 
mild restrictions on Fin the neighborhood oft,. We exhibit (2.3.2) bounds on 
the related probability 

F(Cp-1 2s P 2s FceJ 

p SUPIt, - t,l > e), d, n 

showing that it converges to 0 at an exponential rate. 
is treated in 2.3.3. In particular, 

under mild smoothness requirements on F i n  the neighborhoods of the points 
t,,,.. ., Cm, the vector of sample quantiles (e,,, . . . , e,) is asymptotically 
normal. Also, several complementary results will be given, including a rate of 
convergence for the asymptotic normality. 

If F has a density, then so does the distribution oft,. This result and its 
application are discussed in 2.3.4. 

Comparison of quantiles uersus moments as estimators is made in 2.3.5, and 
the mean and median are compared for illustration. In 2.3.6 a meusure of 
dispersion based on quantiles is examined. Finally, in 2.3.7, brief discussion of 
nonparametric tests based on quantiles is provided. 

Further background reading may be found in Cramtr (1946), Section 28.5, 
and Rao (1973), Section 6f.2. 

23.1 Strong Consistency of &, 
The following result asserts that t p  is strongly consistent for estimation of C,, 
unless both F(Cp) = p and F is flat in a right-neighborhood of C,. 

The asymptotic distribution theory of 
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Theorem. Let 0 < p < 1. If 5, is the unique solution x ofF(x-) s p s F(x), 
then t,, 2 6,. 

PROOF. Let  E > 0. By the uniqueness condition and the definition of Cp, 
we have 

F(tp - 4 < P < F(Cp + el. 
It was seen in 2.1.1 that Fn(CP - e) - F(CP - E) and Fn(tp + e) % 
F([, + e). Hence (review 1.2.2) 

WP 1 

P(F,(Cp - e) < p < F,,,(tp + E), all m 2 n) + 1, 

~(t ,  - e < t,,,,, s tp + e, all m 2 n) + I ,  

n + 00. 

Thus, by Lemma 1.1.4(iii), 

n -+ 00. 

That is, 

P (m sup l t , -~p ,>e ) -o ,  n - m .  

As an exercise, show that the uniqueness requirement on Cp cannot be 

In the following subsection, we obtain results which contain the preceding 
dropped (Problem 2.P.11). 

theorem, but which require more powerful techniques of proof. 

23.2 A Probability Inequality for 14, - &,I 
We shall use the following result of Hoeffding (1963). 

Lemma (Hoeffding). Let Y,, . . . , Y, be independent random variables 
satisfying P(a 5 Yl 5 b) = 1, each i, where a < b. Then, for t > 0, 

Theorem. Let 0 < p < 1. Suppose that 6, is the unique solution x of F(x -) S 
p s F(x). Then,for every E > 0, 

P(I$, - 6,1 > E) s 2e-Zn*!, 

where 6, = min{F(ep + E) - p, p - F([, - E)}. 

of proof of Smirnov (1952).) Let e > 0. Write 

all n, 

PROOF. (We apply Hoeffding's lemma in conjunction with a technique 

p<Itpn - CpI > = P < t p n  > t p  + E) + p < t p n  < Cp - 8). 
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By Lemma 1.1.4, 

p ( t p n  > € p  + 6 )  = P(P > FJtp + E) )  

4 = P X I ( &  > c, + E )  > n(l - 

= P( i v, - iE{v ,}  > d, ) ,  
I - 1  I = ,  

where V, = I ( X I  > 4, + E )  and d1 = F ( t ,  + E )  - p .  Likewise, 

PtCpn < t p  - 6 )  s P(P s F,(€, - E ) )  

where W, = I ( X I  s tP - E )  and b2 = p - F ( t p  - E). Therefore, utilizing 
Hoeffding's lemma, we have 

P<C,  > t, + E )  s e- lnsf  

P ( ( ,  < tP - e)  s e-2nd! 

and 

Putting 6, = min{6,, a2}, the proof is complete. 

1.3.4) that epn conuerges completely to t,. Even more strongly, we have 

Corollary. Under the assumptions ofthe theorem, for every E > 0, 

Thus P( I &,, - €,I > 8)  + 0 exponentfallyjast, which implies (via Theorem 

where pe = exp( -26;) and 6, = min(F(6, + E )  - p, p - F(5, - E ) } .  

(derived the same way as the corollary to Theorem 2.1.3A) 

Remarks. (i) The value of E (> 0) in the preceding results may depend 
upon n if desired. 

(ii) The bounds established in these results are exact. They hold for each 
n 3: 1,2,. . . and so may be applied for any fixed n as well as for asymptstic 
analyses. 

(iii) A slightly modified version of the preceding theorem, asserting the 
same exponential rate, may be obtained by using the Dvoretzky-Kiefer- 
Wolfowitz probability inequality for D,, instead of the Hoeffding lemma, in 
the proof. (Problem 2.P.12). 
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2.3.3 Asymptotic Normality of g p  
The exact distribution of p ,  will be examined in 2.3.4. Here we prove asymp- 
totic normality of [, in the case that F possesses left- or right-hand derivatives 
at the point cp. If F lacks this degree of smoothness at cP, the limit distribution 
of (,(suitably normalized) need not be normal (no pun intended). The various 
possibilities are all covered in Theorem 4 of Smirnov (1952). In the present 
treatment we confine attention to the case of chief importance, that in which a 
normal law arises as limit. 

The following theorem slightly extends Smirnov’s result for the case of a 
normal law as limit. However, the corollaries we state are included in 
Smirnov’s result also. 

When assumed to exist, the left- and right-hand derivatives of F at 6, will 
be denoted by F’({,-) and F‘(<, +), respectively. 

Theorem A. Let 0 < p < 1. Suppose that F is continuous at 6,. 
(i) Ifthere exists F’(S,-) > 0, thenfor t < 0, 

(ii) If there exists F(S,+) > 0, thenfor t > 0, 
C 

Corollary A .  Let 0 c p < 1. If F is diflerentiable at 6, and F(6,) > 0, then 

Corollary B. Let 0 < p < 1. If F possesses a density f i n  a neighborhood of 
6, and f is positive and continuous at 6,’ then 

These corollaries follow immediately from Theorem A. Firstly, if F is 
differentiable at Cp, then F’((,-) = F‘(C,+) = F’((,,). Thus Corollary A 
follows. Secondly,iffis adensity of F,it is not necessary thatf = F‘. However, 
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i f f  is continuous at xo, thenf(xo) = F’(xo). (See 1.1.8.) Thus Corollary B 
follows from Corollary A. Among these three results, it is Corollary B that is 
typically used in practice. 

PROOF O F  THEOREM A. Fix t. Let A > 0 be a normalizing constant 
to be specified later, and put 

Applying Lemma 1.1.4 (iii), we have 

GXt) = P(2, s tP + tAn”’’) = P(p s Fn(tp  + tAn-l/’))  
= PCnp s Z,(F(CP + tAn- 1/2))], 

where Z,(A) enotes a binomial (n,A) random variable. In terms of the 
standardized P orm of .Z,(A), 

we have 

(*) GAt) = P W A n r )  2 -cnr),  

where 

and 
A,, = F(C, + tAn- ’/’) 

112 A n ( nr - P) 
= [Anr(l - AM)]1/‘* 

At this point we may easily obtain (iii). Putting t = 0 in (*), we have G,(O) = 
P(Z,+@) 2 0) + @(O) = 4, n + 00, by the Lindeberg-LCvy CLT. 

Now utilize the Berry-Eden Theorem (1.9.5) to write 

where C is a universal constant, uf = Var{Zl(A)} = A(1 - A), pa = 
EIZl(A) - A13 = A(1 - A)[(1 - A)2 + A2], and thus 
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we have by (**) that 

Y(A 1 

Since F is continuous at ep,  we have AJ1 - A,J + p(1 - p) > 0, and thus 
y(A,,)n- ' I 2  + 0, n + 00. It remains to investigate whether c,, + t. Writing 

I Gn(t) - Wt) I s C + IWt)  - CD(c,JI. 

A F((, + tAn-'l2) - F(Cp) 
c,, = t * 

[A",(1 - An,)I1I2 * tAn- ' I 2  
Y 

we see that, if t > 0, then 

and, if t < 0, then 

Thus cnr + t if either 

t > 0 and A = Cp(1 - P)]"~/F'(<~+) 

t < 0 and A = Cp(1 - P)]"' /F'((~-) .  
or 

This establishes (i) and (ii). H 
Remark. The specific rate O(n- 1/2) provided by the Berry-Essten Theorem 
was not actually utilized in the preceding proof. However, in proving Theorem 
C we do make application of thi! specific order of magnitude. 

Corollaries A and B cover typical cases in which e p  is asymptotically nor- 
mal, that is, a suitably normalized version of &, converges in distribution to 
N(0,l). However, more generally, Theorem A may provide a normal ap- 
proximation even when no limit distribution exists. That is, nllz(lpn - t,) 
may fail to have a limit distribution, but its distribution may nevertheless be 
approximated, as a function of t ,  by normal distribution probabilities: for 
t < 0, based on the distribution N(0, p(1 - p)/[F'((,-)12); for t > 0, based 
on the distribution N(0, p(1 - p)/[F'((,+)I2). The various possibilities are 
illustrated in the following example. 

Example. Estimation ojthe median. Consider estimation of the median tlI2 
of F by the sample median ell,. 

(i) If F has a positive derivative F(t1,,) at x = then 
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(ii) If, further, F has a density f continuous at then equivalently we 
may write 

(iii) b However, suppose that F has a densityf which is discontinuousat €1 /2 .  

For example, consider the distribution 

O < X S f ,  

A density for F is 

which is discontinuous at is not asymp- 
totically normal in the strict sense, but nevertheless we can approximate the 
probability 

= f .  Thus the sample median 

P(n1~2(el/2 - 41/21 t). 

We use the distribution N(0, )) if t < 0 and the distribution N(0,  &) if t > 0. 
For t = 0, we use the value f as an approximation. 

The multivariate generalization of Corollary B is 

Theorem B. Let 0 < p1 < - < Pk < 1. Suppose that F has a density f in 
neighborhoods of tPr, . . . , em and that f is positive and continuous at ep,, . . . ,5,. 
Then (sPl, . . . , epk) is asymptotically normal with mean vector (Cpl, . . . , Spk) 
and covariances al,/n, where 

and alj = allfor i > j. 

One method of proof will be seen in 2.3.4, another in 2.5.1. Or see Cramtr 
(1946), p. 369. 

We now consider the rate of convergence in connection with the asymptotic 
normality of tP. Theorem C below provides the rate O(n-'l2). Although left 
implicit here, an explicit constant of proportionality could be determined by 
careful scrutiny of the details of proof (Problem 2.P.13). In proving the 
theorem, we shall utilize the probability inequality for It,,,, - {,I given by 
Theorem 2.3.2, as well as the following lemma. 
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Lemma. For lax I I; 4. 
IWx + ax2) - Wx)( I; 51alsup[x2+(x)]. 

a 

PROOF. By the mean value theorem, 

Wx + ax2) - @(x) = ux2&(x*), 

where x* lies between x and x + ax2, both of which have the same sign. Since 
+(x) is increasing on (- o0,O) and decreasing on (0, a), we have 

and hence 
9(x*) I; 4(x + M + +(x - 3x) 

x2&x*) s X2&X + 4x) + x2f$(x - 4x) 
= 4(3X>”(3X> + 4(4x)2&4x) 
5 5 SUPCX2&X)3. H 

x 

Theorem C. Let 0 < p < 1. Suppose that in a neighborhood of 5, , F possesses 
a positive continuous density f and a bounded second derivative F .  Then 

PROOF. Put A = Cp(1 - p)] ’ / ’ /  f(Cp) and 

Gdt)  = p(n’”( tpn - CJA I; t)* 

Let Ln = B(log n)’12. We shall introduce restrictions on the constant B as 
needed in the course of the proof. Now note that 
(1) 

SUP IGn(t) - Wt)I = max SUP IGn(t) - @(t)I, suplGn(t) - Wl)l} 
Itl>Ln I< -L. t >L, 

S max{Gn( - L,) + @(- L,), 1 - G,(Ln) + 1 - @(L,)} 

I; Gn(-L,) + 1 - Gn(Ln) + 1 - WLn) 

s p < I t p n  - (PI 2 ALnn-1/2)  + 1 - WLJ. 
As is well-known and easily checked (or see Gnedenko (1962), p. 134), 

so that 

(2) 
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provided that 

(3) 8’ 2 1. 

To obtain a similar result for the other term in (1). we use the probability 
inequality given by Theorem 2.3.2, with e given by 

E, = ( A  - EO)Lnn-1’2, 

where eo is arbitrarily chosen subject to 0 < e0 < A. In order to deal with 
6,” = min(F(6, + en) - p ,  p - F(Cp - en)}, we utilize Taylor’s Theorem 
(1.12.1A) to write 

where z* lies between t p  and t p  + en, and 

where z** lies between t p  and t p  - en. Then 

Stn = min{f2(tp)ef + f(tp)~‘’(z*)e: + S[F“(Z*)]~S.*,  

F(tp + En) - P = f ( t p ) E n  + W’(Z*)E,I, 

P - F(tp - En) = f(tp)En - iF”(z**)Ef, 

f’(Cp>Ef - f(t,)F“(Z**)e: + S[F”(z**l124 
2 & , l f ( C p ) C f ( C p )  - ~ e n I ,  

where M satisfies 

(4) sup IFff((, + z)l S M < 00 
I ~ s  en 

for all n under consideration. Hence 

- 2n6tn 5 - 2&f(tp) [ f ( t p )  - Men] 
= -2L,l(A - e o ) 2 f ( t p ) C f ( t p )  - MGJ. 

For convenience let us now put 

EO = )A. 

Recalling the definition of A, we thus have 

= O(n- I/’), 
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provided that 
83 

and 

and thus 

CAJl - AJ] - 1'2 = Cp( 1 - p)]- + g'(z,,)Atn- l", 

where z , ~  lies between tp and r, + A C ~ - ' / ~ .  Inspection of ~ ' ( z )  shows that the 
quantity 

w, = sup Ig'(z)l 
I* - Cpl S ALnn - '1' 

is finite; in fact 

W. -+ W ,  = m , ) 1 4  - P I M ~  - P ) I - ~ / ~  

as n + 00. Hence also the quantity 

Yn = SUP ~(Anr) 
I f lSLn 

is finite; in fact 

(8) Y. -+ yra = c(1 - + p2icp(1 - p11-3'2. 
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Finally, by Taylor's Theorem again, 

= At[ f (e,) + F"(t,,)Atn- 1/21, 

where t,, lies between C, and e ,  + Atn-'12. Thus 

= t ( l  + h,,tn- 112), say, 

where we have 

SUP Ih:l = Ha = 0(1), 
III5Ln 

(9) 

(10) H"L"n-1'2 I; 4, 

(1 1) 

since F" is bounded in a neighborhood of C,. Thus, for n large enough that 

application of the lemma preceding the theorem, with a = h,,n-1'2, yields 

IWt) - WcdI 5 5H,n-'" supCx2$(~)I, ItI s L n .  
X 

Since supx[x2$(x)] < m, it follows by (7), (8) and (1 1) that 

(12) SUP I G,(t) - Wt) I = O(n- ' I 2 ) .  
It1 s Ln 

Combining (l), (2), (5) and (12), the proof is complete. 

independently, by Reiss (1974). 

2.3.4 The Density of &,, 
If F has a density f, then the distribution G, of &,,, also has a density, g,(t) = 
G#), for which we now derive an expression. 

By Lemma 1.1.4 and the fact that nF,(A) is binomial (n, F(A)), we have 

A theorem similar to the preceding result has also been established, 

G,(O = p<e, t )  = W , ( t )  2 P )  = P(nF,(t) 2 np) 

where 

m - I n p  [np] + 1 

if np is an integer 
if np  is not an integer. 
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Taking derivatives, i t  is found (Problem 2.P.14) that 

85 

gn(t) = .( - ;) [F(t)I"-- 1[1 - F(t)]"-y(t). 
m -  

Incidentally, this result provides another way to prove the asymptotic 
normality of gpn, as stated in Corollary 2.3.3B. The density of the random 
variable ni/z(&, - tp) is 

h,(t) = n- 1'2gn(tp + tn-  1@). 

Using the expression just derived, it may be shown that 

lim h,(t) = 4(tf(tp)b(1 - p ) ] -  l/'), each t ,  
n* Q, 

("1 

that is, h,(t) converges pointwise to the density of N(0, p(1 - p ) / f 2 ( t , ) ) .  Then 
Scheffd's Theorem (1.5.1C) yields the desired conclusion. For details of proof 
of (*), see Cram& (1946) or Rao (1973). Moreover, this technique of proof 
generalizes easily for the multivariate extension, Theorem 2.3.38. 

Finally, we comment that from the above expression for G,(t) one can 
establish that if F has a finite mean, then for each k, ppn has finite kth moment 
for all sufficiently large n (Problem 2.P.15). 

2.3.5 Quantiles Versus Moments 

In some instances the quantile approach is feasible and useful when other 
approaches are out of the question. For example, to estimate the parameter of 
a Cauchy distribution, with density f ( x )  = 1/n[1 + (x - p)'], -m c 
x < 00, the sample meanx is not a consistent estimate of the location param- 
eter p. However, the sample median is A N @ ,  n2/4n) and thus quite well- 
behaved. 

When both the quantile and moment approaches are feasible, it is of 
interest to examine their relative efficiency. For example, consider a sym- 
metric distribution F having finite variance u2 and mean (= median) 
p (= t1/2). In this case both X and are competitors for estimation of p, 
Assume that F has a density f positive and continuous at p. Then, according 
to the theorems we have established, 

x is AN p, - ( 
and 
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If we consider asymptotic relative efficiency in the sense of the criterion of 
small asymptotic variance in the normal approximation, then the asymptotic 
relative efficiency of el/, relative to X is (recall 1.15.4) 

that is, the limiting ratio of sample sizes (ofx and el,,, respectively) at which 
performanceis"equivalent." For a normaldistribution F,thisrelativeefficiency 
is 2/x, indicating the degree of superiority of x over el,,. As an exercise 
(Problem l.P.16), evaluate e(e,,, , x) for some other distributions F. Discover 
some cases when el,, is superior to x. 
2.3.6 A Measure of Dispersion Based on Quantiles 
An alternative to the standard deviation CJ of F, as a measure of dispersion, is 
the semi-interquartile range 

A natural estimator of R is the sample analogue 

By Theorem 2.3.38 and the CramCr-Wold device (Theorem 1.5.2), it follows 
that (Problem 2.P. 17) 

e<e,/, 9 X) = 4@Y2(P), 

= %(e3/4 - (el/,>* 

a = f c e 3 / 4  - e,/4,. 

For F = N(p,  c2), we have 

n 

See Cram& (1946), pp. 181 and 370.) 

23.7 Nonparametric Tests Based on Quantiles 
A number of hypothesis-testing problems in nonparametric inference may be 
formulated suitably in terms ofquantiles(see Fraser (1957), Chapter 3). Among 
these are: 

(i) single sample location problem 
Hypothesis: (e, = uo 
Alternative: to > uo 
(Here p and uo are to be specified, Of course, other types of 
alternative may be considered. 

(ii) single sample location and symmetry problem . 
Hypothesis: (el/, = uo and F symmetric 
Alternative: (ell, # uo or F not symmetric 
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(iii) two-sample scale problem 
(Given XI,. . . , X,, I.I.D. F and Yl,. . . , Y,, I.I.D. G) 
Hypothesis: F(x) = G(x + c), all x 
Alternative: t,,(F) - t,,(F) < t,,,(G> - <,,(GI, all p1 < p z .  

The most widely known “quantile” test arising for these problems is the 
sign test for problem (i). Most texts provide some discussion of it, often in the 
context of order statistics, which we shall examine in the forthcoming section. 

2.4 THE ORDER STATISTICS 

For a sample of independent observations XI, . . . , X ,  on a distribution F, the 
ordered sample values 

X(1) I; X(Z) 5 X(n), 

or, in more explicit notation, 

X,I S Xnz I; I; X,n, 
are called the order statistics and the vector 

X(n) = ( X ~ I ,  - * * 9 Xnn) 

is called the order statistic of the sample. If F is continuous, then with prob- 
ability 1 the order statistics of the sample take distinct values (and conversely). 

The exact distribution of the kth order statistic Xnk is easily found, but 
cumbersome to use: 

P ( X ,  s x )  = f: c ) [ F ( x ) ] ‘ [ l  - F(x)Y-‘, -m < x < 00. 
I - k  

The asymptotic theory of sequences {x&} of order statistics is discussed in 
2.4.3, with some particular results exhibited in 2.4.4. We further discuss 
asymptotic theory of order statistics in 2.5, 3.6 and Chapter 8. 

Comments on the fundamental role of order statistics and their connection 
with sample quantiles are provided in 2.4.1, and on their scope of application 
in 2.4.2. 

Useful general reading on order statistics consists of David (1970), 
Galambos (1978), Renyi (1953), Sarhan and Greenberg (1962), and Wilks 
(1948,1962). 

2.4.1 Fnndamental Role 01 the Order Statistics; Connection with the 
Sample Quaatiles 

Since the order statistic X(,,) is equivalent to the sample distribution function 
F,, its role is fundamental even if not always explicit. Thus, for example, the 
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sample mean X may be regarded as the mean of the order statistics, and the 
sample pth quantile may be expressed as 

f p n  = p * n p  
if np is an integer, 
if np is not an integer. xn, [ n p ~  + 1 

(*I 

The representations o fx  and tpn in terms of order statistics are a bit artificial. 
On the other hand, for many useful statistics, the most natural and effective 
representations are in terms of order statistics. Examples are the extreme 
ualues Xm1 and X,,, and the sample range X,, - X",. (In 2.4.4 it is seen that 
these latter examples have asymptotic behavior quite different from asymp- 
totic normality.) 

(**I x n k  = t k / n , n ,  1 s k s n. 

In view of (*) and (**),the entire discussion of order statistics could be carried 
out formally in terms of sample quantiles, and vice versa. The choice of 
formulation depends upon the point of view which is most relevant and 
convenient to the particular purpose or application at hand. Together, there- 
fore, the previous section (2.3) and the present section (2.4) comprise the two 
basic elements of a single general theory. The cohesion of these basic elements 
will be viewed more fully in a complementary analysis developed in 2.5. 

The relation (*) may be inverted: 

2.4.2 Remarks on Applications of Order Statistics 

The extreme values, X,, and X,,, arise quite naturally in the study of floods 
or droughts, and in problems of breaking strength or fatigue failure. 

A quick measure of dispersion is provided by the sample range, suitably 
normalized. More generally, a variety of short-cut procedures for quick 
estimates of location or dispersion, or for quick tests of hypotheses about 
location or dispersion, are provided in the form of linearfunctions oforder 
statistics, that is, statistics of the form c;- c,,Xnl. The class of such statistics 
is important also in the context of robust inference. We shall study these 
statistics technically in Chapter 8. 

Order statistics are clearly relevant in problems with censored data. A 
typical situation arises in connection with life-testing experiments, in which a 
fixed number n of items are placed on test and the experiment is terminated as 
soon as a prescribed number r have failed. The observed lifetimes are thus 
X,, S ... I; X,, whereas the lifetimes Xn,r+l < s X,, remain un- 
observed. For a survey of some important results on order statistics and their 
role in estimation and hypothesis testingin life testing and reliabilfty problems, 
see Gupta and Panchapakesan (1974). A useful methodological text consists 
of Mann, Schafer and Singpurwalla (1974). 
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Pairs of order statistics, such as (X,,, X,,), serve to provide distribution-free 
tolerance h i t s  (see Wilks (1 962), p. 334) and distribution-free confidence 
interuals for quantiles (see 2.6). 

Some further discussion of applications of order statistics is provided in 3.6. 

2.4.3 Asymptotic Behavior of Sequences { Xakm). 

The discussion here is general. Particular results are given in 2.2.4 and 2.5 
(and in principle in 2.3). 

For an order statistic Xnk,  the ratio k/n is called its rank. Consider a 
sequence of order statistics, {Xnkm}?' 1, for which k Jn  has a limit L (called the 
limiting rank). Three cases are distinguished : sequences of central terms 
(0 < L < 1). sequences of intermediate terms (L = 0 and k ,  + m, or  L = 1 
n - k,  + m), and sequences of extreme terms (t = 0 and k ,  bounded, or  
L = 1 and n - k,  bounded). 

A typical example of a sequence of central terms having limited rankp, where 0 
C p < 1, is the sequenceof samplepth quantiles { tp,,}?= On the basis of our study 
of sample quantiles in 2.3, we might speculate that sequences of central terms in 
general have asymptotically normal behavior and converge strongly to appropriate 
limits. This will be corroborated in 2.5. 

An example of a sequence of extreme terms having limiting rank 1 is 

Generalizing work of Gnedenko (1943), Smirnov (1952) provided the 
asymptotic distribution theory for both central and extreme sequences. For 
each case, he established the class of possible limit distributions and for each 
limit distribution the corresponding domain of attraction. For extension to 
the case of independent but nonidentically distributed random variables, see 
Mejzler and Weissman (1969). For investigation of intermediate sequences, 
see Kawata (1951), Cheng (1965) and Watts (1977). 

2.4.4 Asymptotic Behavior of X,,, 

If the random variable (X,, - a,)/b, has a limit distribution for some choice 
of constants {a,,}, {b"},  then the limit distribution must be of the form GI, G l ,  
or G 3 ,  where 

{Xnn}:= 1. 

and 

G,(t) = e-' -', -00 < t < 00. 
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(In GI and GI, a is a positive constant.) This result was established by 
Gnedenko (1943), following less rigorous treatments by earlier authors. Each 
of the three types GI, G2, and G3 arises in practice, but G3 occupies the pre- 
eminent position, Typical cases are illustrated by the following examples. 

Example A. F is exponential : F(x)  = 1 - exp(-x), x > 0. Putting a, = 
log n and 6, = 1, we have 

Example B. F is logistic: F(x)  = [l + exp(-x)]-', - 00 < x < ao. Again 
taking a, = log n and 6, = 1, we may obtain (Problem 2.P.18) 

P(X,, - log n 5 t )  -+ e-'-', n 00. 

Example C. F is normal: F = @. With 

a, = (2 log n)'l2 - BlOg log n + log 4n)(2 log n)-"' 

and 

b, = (2 log n)-'/* 

it is found (Cram& (1946), p. 374) that 

n -* 00. 

In Examples A and B, the rate of the convergence in distribution is quite 
fast. In Example C, however, the error of approximation tends to 0 at the 
rate O((1og n)-b), for some 0, but not faster. For discussion and pictorial 
illustration, see CramCr (1946), Section 28.6. The lack of agreement between 
the exact and limit distributions is seen to be in the tails of the distributions. 
Further literature on the issue is cited in David (1970), p. 209. See also 
Galambos (1978), Section 2.10. 

Statistics closely related to X,, include the range X,, - XnI and the 
studentized extreme deuiate, whose asymptotic distributions are discussed in 
Section 3.6. 

The almost sure asymptotic properties of X, can also be characterized. For 
example, in connection with F normal, we anticipate by Example C above that 
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X,, is close to (2 log n)l l2  in appropriate stochastic senses. This is in fact true: 
both 

[x,, - (2 log n)’’’] = 

and 

X n n  

Thus X,, satisfies both additive and multiplicative forms of strong con- 
vergence. For a treatment of the almost sure behavior of X,, for arbitrary F, 
see Galambos (1978), Chapter 4. 

2.5 ASYMFTOTIC REPRESENTATION THEORY FOR SAMPLE 
QUANTILES, ORDER STATISTICS, AND SAMPLE DISTRIBUTION 

FUNCTIONS 

Throughout we deal as usual with a sequence of I.I.D. observations XI, Xz , . . . 
having distribution function F. 

We shall see that it is possible to express sample quantiles and “central” 
order statistics asymptotically as sums, via representation as a linear trans- 
form of the sample distribution function evaluated at the relevant quantile. 
From these representations, a number of important insights and properties 
follow. 

The representations were pre-figured in Wilks (1962), Section 9.6. However, 
they were first presented in their own right, and with a full view of their 
significance, by Bahadur (1966). His work gave impetus to a number of 
important additional studies, as will be noted. 

Bahadur’s representations for sample quantiles and order statistics are 
presented in 25.1 and 2.5.2, respectively, with discussion of their implications. 
A sketch of the proof is presented in general terms in 2.5.3, and the full details 
of proof are given in 2.5.4, Further properties of the errors of approximation 
in the representations are examined in 2.5.5. An application of the representa- 
tion theory will be made in Section 2.6, in connection with the problem of 
confidence intervals for quantiles. 

Besides references cited herein, further discussion and bibliography may be 
found in Kiefer (1970b). 

2.5.1 Sample Quantiles as Sums Via the Sample Distribution Function 
Theorem (Bahadur (1966)). Let 0 < p < 1. Suppose that F is twice 
dgerentiable at sp, with F‘(6,) = f(5,) > 0. Then 
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where with probability 1 

R, = O(n-3/4(log n)314), n --* ao. 

Details of proof are given in 2.5.3 and 2.5.4, and the random variable R,  is 
examined somewhat further in 2.5.5. 

Remarks. (i) By the statement "with probability 1 ,  Y,, = O(g(n)) as 
n + 00 " is meant that there exists a set Ro such that P(R,) = 1 and for each 
w E Qo there exists a constant B(w) such that 

I Yn(w)) S B(w)g(n), all n sufficiently large. 

(For Y, given by the R,  of the theorem, it can be seen from the proof that the 
constants B(w) may be chosen not to depend upon w.) 

(ii) Bahadur (1966) actually assumes in addition that F exists and is 
bounded in a neighborhood of 4,. However, by substituting in his argument 
the use of Young's form of Taylor's Theorem instead of the standard version, 
the extra requirements on F may be dropped. 

(iii) Actually, Bahadur established that 

R, = O(n-3/4(log n)*I2(log log t ~ ) ' / ~ ) ,  n --* 00, 

with probability 1. (See Remark 2.5.4D.) Further, Kiefer (1967) obtained the 
exact order for R,, namely O(n- jI4(l0g log n)jI4). See 2.5.5 for precise details. 

(iv) (continuation) However, for many statistical applications, it suffices 
merely to have R, = op(n- Ghosh (1971) has obtained this weaker con- 
clusion by a simpler proof requiring only that F be once differentiable at e, 
with F'(e,) > 0. 

(v) The conclusion stated in the theorem may alternatively be expressed 
as follows: with probability 1 

(vi) (continuation) The theorem thus provides a link between two 
asymptotic normality results, that of tp, and that of F,(e,). We have seen 
previously as separate results (Corollary 2.3.3B and Theorem 2.1.1, respec- 
tively) that the random variables 

each converge in distribution to N(0, p(l - p)/f2({,)). The theorem of 
Bahadur goes much further, by revealing that the actual difference between 
these random variables tends to 0 wpl,  and this at a rate O(n-3/4(log n)'"). 
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(vii) Representation of a sample quantile as a sample mean. Let 

93 

Then the conclusion of the theorem may be expressed as follows: wpl 

That is, wpl epn is asymptotically (bur not exactly) the mean of the first n 
members of the I.I.D. sequence { yl}. 

(viii) Law of the iterated logarithm for sample quantiles (under the con- 
ditions of the theorem). As a consequence of the preceding remark, in con- 
junction with the classical LIL (Theorem l.lOA), we have: wpl 

for either choice of sign (Problem 2.P.20). This result has been extended to a 
larger class of distributions F by de Haan (1974). 

(ix) Asymptotic multiuariate normality of sample quantiles (under the 
conditions of the theorem). As another consequence of remark (vii), the 
conclusion of Theorem 2.3.3B is obtained (Problem 2.P.21). 

2.5.2 Central Order Statistics as Sums Via the Sample Distribution 
Function 

The following theorem applies to a sequence of “central” order statistics 
{Xnkm} as considered in 2.4.3. It is required, in addition, that the convergence 
of kn/n to p be at a sufficiently fast rate. 

Theorem (Bahadur (1966)). Let 0 < p < 1. Suppose that F is twice 
diferentiable at tp, with F(5,) = f(5,) > 0. Let {k,} be a sequence ofpositiue 
integers (1 I; k, I; n) such that 

for some A 2 4. Then 

where with probability 1 
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Remarks. (i) Bahadur (1966) actually assumes in addition that F” exists 
and is bounded in a neighborhood of tp.  Refer to discussion in Remark 
2.5.l(ii). 

(ii) Extension to certain cases of “intermediate” order statistics has been 
carried out by Watts (1977). 4 

This theorem, taken in conjunction with Theorem 2.5.1, shows that the 
order statistic Xnkn and the sample pth quantile p,,, are roughly equivalent as 
estimates of tp, provided that the rank k,Jn tends to p sufficiently fast. More 
precisely, we have (Problem 2.P.22) the following useful and interesting 
result. 

Corollary. Assume the conditions of the preceding theorem and suppose that 

Then 

(*I 

and 

By (*) it is seen that x,k, trails along with e,,, as a strongly consistent 
estimator of tp. We also see from (*) that the closeness of x,k, to eP,, is 
regulated rigidly by the exact rate of the convergence of k,Jn to p .  Further, 
despite theconsistencyofXnkmforestimationof{,,it isseen by(**)that,on the 
other hand, the normalized estimator has a limit normal distribution not 
centered at 0 (unless k = 0), but rather at a constant determined by the exact 
rate of convergence of kJn to p. These aspects will be of particular interest in 
our treatment of confidence intervals for quantiles (Section 2.6). 

2.5.3 Sketch of Bahadur’s Method of Proof 

Here we sketch, in general form, the line of argument used to establish 
Theorems 2.5.1 and 2.5.2. Complete details of proof are provided in 2.5.4. 

Objectiue. Suppose that we have an estimator T, satisfying T, wp‘. 8 and 
that we seek to represent T, asymptotically as simply a linear transformation 
of G,(8), where G,( .) is a random function which pointwise has the structure 
of a sample mean. (For example, G, might be the sample distribution function.) 
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Approach. (i) Let G( .) be the function that G, estimates. Assume that G 
is sufficiently regular at t, to apply Taylor's Theorem (in Young's form) and 
obtain a linearization of G(T,): 

(1) G(T,) - G(e) = G(e)(T, - e) + A,,, 
where wpl A,, = O((T, - 0)2), n + 00. 

another component A; to the remainder. This yields 
(ii) In the left-hand side of (l), switch from G to G,, subject to adding 

(2) G,(T,) - c,(e) = c ( e ) ( K  - e) + A,, + A;, 
(iii) Express G,(T,) in the form 

G,(T,) = c, + A:, 
where c, is a constant and A: is suitably negligible. Introduce into (2) and 
solve for T,, obtaining: 

(3) 

Clearly, the usefulness of (3) depends upon the O( .) terms. This requires 'udi- 
cious choices of T, and G,. In 2.5.4 we take G, to be F, and T, to be either t!,,,, or 
Xakn. In this case A; = O(n-'). Regarding A,,, it will be shown that for these 
T,wehavethatwpl(T, - 01 = O(r~-"~(log n)''2),yieldingA, = O(n-'logn). 
Finally, regarding A;, Bahadur proves a unique and interesting lemma show- 
ing that wpl A; = O(n-'/'(log n)(112)(qt I)), under the condition that I T, - el= 
O(n- '/'(log n)l), where q 2 ). 

2.5.4 Basic Lemmas and Proofs for Theorems 2.5.1 and 2.5.2 

As a preliminary, we consider the following probability inequality, one of 
many attributed to S. N. Bernstein. For proof, see Uspensky (1937). 

Lemma A (Bernstein). Let Y . . . , Y, be independent random variables 
satisfving P( I YI - E{Y,} I 5 m) = 1, each i, where m < 00. Then,@ t > 0, 

for all n = 1,2, . . . . 
Remarks A .  (i) For the case Var{ &} E 02, the bound reduces to 
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(ii) For binomial ( 1 ,  p), the bound may be replaced by 

This version will serve our purposes in the proof of Lemma E below. 

The next two lemmas give conditions under which tp,  and Xnkn are 
contained in a suitably small neighborhood of t, for all sufficiently large n, 

Lemma B. Let 0 < p < 1. Suppose that F is differentiable at 4,, with 
F'(Q = f({,) > 0. Then with probability 1 

wpl.  

PROOF. Since F is continuous at t, with F ' ( Q  > 0, t, is the unique 
solution of F ( x - )  5 p s F(x)  and F(t , )  = p .  Thus we may apply Theorem 
2.3.2. Put 

2(Iog n)l l2  
En = 

f (€,In ' I 2  ' 

We then have 

for all n sufficiently large. 
(log n)ll2 

2 n112 ' 

Likewise, p - F(Cy, - en) satisfies a similar relation. Thus, for 6,. = 
min{F(t, + en) - p, p - F(t, - E,,)}, we have 

Hence, by Theorem 2.3.2, 

2n6: 2 2 log n, for all a sufficiently large. 

2 ~(lt,,, - {,I > en) s ?, for a11 n sufficiently large. 

By the Borel-Cantelli Lemma (Appendix), it follows that wpl the relations 

Remark B. Note from Remark 2.5.1 (viii) that if in addition F"(Cy$ exists, 
then we may assert: with probability 1 ,  

- t,l > E, hold for only finitely many n. 

(log log n)'I2 
l t p n  - [PI f ( e p ) n 1 i 2  3 for all sufficiently large n. 
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Lemma C. Let 0 < p < 1. Suppose that in a neighborhood of gp, F'(x) = f(x) 
exists, is positive, and is continuous at 5,. Let {k,} be a sequence of positive 
integers (1 I; k, < n) such that 

for some A 2 4. Then with probability 1 

2(log n)A 
1X.h - {PI f(g,)nl/21 for all n sufficiently large. 

PROOF. Define 

2(Iog n)' 
en = 

f (t& ' I 2  * 

Following the proof of Theorem 2.3.2, we can establish 

P(IXnk,, - tpI > En) I; ~e-~"':n, all n, 
where den = min{F(t, + E,,) - k,,/n, kJn - F(C, - E,,)} .  Then, following the 
proof of Lemma B above, we can establish 

2n8tn 2 2 log n, for all n sufficiently large, 

and obtain the desired conclusion. (Complete all details as an exercise, 
Problem 2.P.24.) 

As an exercise (Problem 2.P.25), verify 

Lemma D. 
T, 2 5,. Theri with probability 1 

Let 0 < p < 1. Suppose that F is twice dryerentiable at 5,. Let 

F(Tn)  - F($) = F'(kp)(Tn - 5,) + O((Tn - Sp)2), n + 00. 

As our final preparation, we establish the following ingenious result of 
Bahadur (1966). 

Lemma E (Bahadur). Let 0 < p < 1. Suppose that F is twicediflerentiable 
at sp, with F(5,) = f(5,) > 0. Let {a,} be a sequence of positive constants such 
that 

a, - con - 1'2(log n)q, n -P 00, 

for some constants co > 0 and q 2 ). Put 

H p n  = SUP ICFASp + X) - Fn(&)l - C V 5 p  + X) - F(6p)lI- 
I X l S h  
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Then with probability 1 

H,, = O(r~-~/~( log  n)(1’2)(q+1’), n 4 GO. 

PROOF. Let {b,} be a sequence of positive integers such that b, - 
conl/*(log n)q, n + 00. For integers r = -b,, . . . , b,, put 

and 
rtr, n = t p  + anbi ‘r, ar, n = JTv, + 1, n )  - JTv,. n), 

G,n = I CFAvr, n)  - Fn(tpI1 - CF(r t r ,n)  - H t p l l  I. 
Using the monotonicity of F, and F, it is easily seen (exercise) that 

where 

and 

Hpn 5 Kn + P n  

K, = max{G,,: -b, s r S b,} 

fl, = max{a,,,: -b, 5 r s b, - 1). 

Since v r + l , n  - rtr,, - - a n b-I n = n-314, -b, 5 r s b, - 1, we have by the 
Mean Value Theorem that 

ar,n s [ SUP ~ ” t p  + x )  (vr+  1,” - v r , n )  = sup ~ ( t p  + x )  n-3’49 
Ixlso. 1 [ Ixlrcr. 1 

- b,, S r 5 b, - 1, and thus 

(1) P, = 0(~-3/4), -+ 

We now establish that with probability 1 

(2) K, = O(n-3/4(l~g t~ ) (~ /~ ) (q+~) ) ,  n + GO. 

For this it suffices by the Borel-Cantclli Lemma to show that 
m 

C P(Kn 2 7,) < GO, 
n= I 

(3) 

where y, = ~ ~ n ’ ~ / * ( l o g  n)(1’2)(q+1), for a constant cI > 0 to be specified later. 
Now, crudely but nevertheless effectively, we use 

(4) 

Note that nGr,, is distributed as Iz & - E{Yf}l, where the rs are 
independent binomial (1, z,,,), with z,,, = IF(vr,,) - F(tp)l. Therefore, by 
Bernstein’s Inequality (Lemma A, Remark A@)), we have 

bn 

C P(G,,n 2 Vn)* P(Kn 2 Y,) 5 
? = - b n  

P(Gp,, 2 Yn) 5 2e-er~”, 
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where 

Let cz be a constant > f(tp). Then (justijy) there exists N such that 

F ( t p  + an) - F ( t p )  < czan 

and 

F ( t p )  - F ( t p  - an) < cz an 

for all n > N. Then z,,, 5 cza, for Irl 5 6, and n > N. Hence O,,, 2 6,  for 
1 1 - 1  5 6, and n > N, where 

nv,2 
2(cza, + Y")' 

6, = 

Note that 

for all n sufficiently large. Given co and cz , we may choose cI  large enough 
that c~/4cocz > 2. It then follows that there exists N* such that 

P(Gr,, 2 Yn) 2n-' 

for 1 1 - 1  5 6, and n > N*. Consequently, for n 2 N*, 

That is, 

Hence (3) holds and (2) is valid. Combining with (l), the proofis complete. 

Remark C. For an extension of the preceding result to the random variable 
H, = s u p o < p < l  Hp,, see Sen and Ghosh (1971), pp. 192-194. H 

PROOF OF THEOREM 2.5.1. Under the conditions of the theorem, we 
may apply Lemma B. Therefore, Lemma D is applicable with T. = fpn, and 
we have: wpl 

Utilizing Lemma E with q = 4, and again appealing to Lemma B, we may 
pass from (*) to: wpl 

(*I ~ ( t p n )  - ~ ( t p )  = f ( t p > < f p n  - t p )  + ~ ( n -  log n), n + a* 

(**) Fn(Ppm) - F A t p )  f< tp>( tp ,  - t p )  + 0(n-~'~(10g n)"*), n 4 00. 
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Finally, since wpl F,(ep,,) = p + O(n-’),  n 4 00, we have: wpl 

p - Fn(tp) f ( tp><epn - tp> + ~ ( n - ~ / ~ ( i o g  n 4 00. 

This completes the proof. 

A similar argument (Problem 2.P.27) yields Theorem 2.5.2. 

Remark D. As a corollaryof Theorem 2.5.1, we have the option of replacing 
Lemma B by Remark B, in the proof of Theorem 2.5.1. Therefore, instead of 
requiring 

a, = O(n- ”’(log n)Q) 

in Lemma E, we could for this purpose assume merely 

a,, = O(n- ‘/’(log log n)’”). 

In this case a revised form of Lemma E would assert the rate 

o(n - jl4(i0g n)1/2(iog log II)’/~). 

Consequently, this same rate could be asserted in Theorem 2.5.1. 

2.5.5 The Precise Behavior of the Remainder Term R, 

Bahadur (1966) showed (see Theorem 2.5.1 and Remark 2.5.4D) that 
wpl R,  = O(n-3/4(log n)’/’(log log t ~ ) ’ / ~ ) ,  n + 00. Further analysis by 
Eicker (1966) revealed that R,  = ~ , ( n - ~ ’ ~ g ( n ) )  if and only if g(n) 4 00. 

Kiefer (1967) obtained very precise details, given by the following two 
theorems. 

Concerning the precise order of magnitude of the deviations R,, we have 

Theorem A (Kiefer). With probability 1 

for either choice of sign. 

Concerning the asymptotic distribution theory of R,, we have that n3/*R, 
has a nondegenerate limit distribution: 

Theorem B (Kiefer). 

(Here and 4 denote, as usual, the N(0, 1 )  distribution function and density.) 
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The limit distribution in the preceding theorem has mean 0 and variance 
[2p(l - p)/n]1/2. A complementary result has been given by Duttweiler 
(1973), as follows. 

Theorem C (Duttweiler). For any E > 0, 

E{(n3/4f(5,)Rn)2} = [2p(l - p)/n]lI2 + o(n-'14+*), n + 00. 

It is also of interest and of value to describe the behavior of the worst 
deoiation of the form R,, for p taking values 0 < p c 1. For such a discussion, 
the quantity R, defined in Theorem 2.5.1, is denoted more explicitly as a 
function of p, by R,@). We thus are concerned now with 

R: = SUP .f(tp)lRn(P)l* 
o < p <  1 

This and some related random variables are investigated very thoroughly by 
Kiefer (1970a). 

Concerning the precise order of magnitude of R:, we have 

Theorem D (Kiefer). With probability 1 

Concerning the asymptotic distribution theory of R:, we have that 
n314(log n)-'I2R,* has a nondegenerate limit distribution: 

Theorem E (Kiefer). 

It is interesting that the limit distribution appearing in the preceding result 
happens to be the same as that of the random variable n1/4D,'12 considered in 
Section 2.1 (see Theorem 2.1.5A). That is, the random variables 

have the same limit distribution. This is, in fact, more than a mere coincidence, 
For the following result shows that these random variables are closely related 
to each other, in the sense of a multiplicative form of the WLLN. 
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Theorem F (Kiefer). 

Note that Theorem E then follows from Theorem F in conjunction with 
Theorem 2.1.5A (Kolmogorov) and Theorem 1.5.4 (Slutsky). 

2.6 CONFIDENCE INTERVALS FOR QUANTlLES 

Here we consider various methods of determining a confidence interval for a 
givenquantile t.,ofadistribution function F. It isassumed that 0 < p < 1 and 
that F is continuous and strictly increasing in a neighborhood oft.,. Additional 
regularity properties for F, such as introduced in Sections 2.3-2.5, will be 
postulated as needed, either explicitly or implicitly. Throughout, we deal with 
I.I.D. observations X I ,  Xz, . . . on F. As usual, (0 denotes N(0,  1). Also, 
K, will denote (0- l(  1 - a), the (1 - a)-quantile of (0. 

An exact (that is, fixed sample size) distribution-free confidence interval 
approach is described in 2.6.1. Then we examine four asymptotic approaches: 
one based on sample quantiles in 2.6.2, one based on order statistics in 2.6.3(an 
equivalence between these two procedures is shown in 2.6.4) one based on 
order statistics in terms of the Wilcoxon one-sample statistic in 2.6.5, and one 
based on the sample mean in 2.6.6 (in each of the latter two approaches, 
attention is confined to the case of the median, i.e., the case p = 4). Finally, in 
2.6.7 the asymptotic relative eflciencies of the four asymptotic procedures are 
derived according to one criterion of comparison, and also an alternate 
criterion is discussed. 

2.6.1 An Exact Distribution-Free Approach Based on Order Statistics 
Form a confidence interval for t., by using as endpoints two order statistics, 
X&*, and x,ka, where k l  and kz  are integers, 1 s k ,  c k z  i; n. The interval thus 
defined, 

has confidence coefficient not depending on F.  For it is easily justified 
(exercise) that 

(XnkI, X n d  

P(XnkI < t p  < X n k a )  = P(F(Xnk8) < p < F(Xmk2)) 
= p(Unk, < P < unkz), 

where Un1 s - a s Unn denote the order statistics for a sample of size n from 
the uniform (0, 1) distribution. The computation of theconfidence coefficient 
may thus be carried out via 

P ( ~ M I  < P < Unka) = lp(k~, n - kl + 1) - I p ( k 2 ,  n - kz  + I), 
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where Ip(ul, u2)  is the incomplete beta function, 
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Tables of Ip(ul, u2) may be used to select values of k l  and k2  to achieve a 
specified confidence coefficient. Ordinarily, one chooses k l  and k z  as close 
together as possible. See Wilks (1962), Section 11.2, for further details. 

Alternatively, the computations can be carried out via tables of binomial 
probabilities, since P(u,k, < p < u n k 2 )  may be represented as the probability 
that a binomial (n, p )  variable takes a value at least k ,  but less than k 2 .  

The asymptotic approaches in the following subsections provide for 
avoiding these cumbersome computations. 

2.6.2 An Asymptotic Approach Based on the Sample pth Quantile 

We utilize the asymptotic distribution theory for tpn, which was seen in 2.3.3 
to be AN(( , ,  p(l - p)/f’({,)n). Therefore, the confidence interval 

satisfies 

(*) 

and 

confidence coefficient of I,,, 1 - 2a, n + 00, 

2K,M1 - p]”’ 

f(C,)n”’ ’ 
length of interval I,, = all n. (**I 

A drawback of this procedure is that st(,) must be known in order to 
express the interval IQ4.  Of course, a modified procedure replacingf({,) by a 
consistent estimator would eliminate this difficulty. In effect, this is accom- 
plished by the procedure we consider next. 

2.6.3 An Asymptotic Approach Based on Order Statistics 

An asymptotic version of the distribution-free approach of 2.6.1 is obtained 
by choosing k l  and k2  to be appropriate functions of n. Let {kin} and { k Z n }  be 
sequences of integers satisfying 1 5 kl,  < kzn 5 n and 
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n + 00. Then the intervals 

Is,, = (XnkI,,, Xnkl,), fl = 1, 2, * * * 9 

are distribution-free and, we shall show, satisfy 

(*I 
and 

(**) with probability 1, 

confidence coefficient of Is,, + 1 - Za, n + 00, 

It follows from (*) and (**) that the interval I;, is asymptotically equivalent to 
the interval I,,, in a sense discussed precisely in 2.6.4. Yet f(&,) need not be 
known for use of the interval Is,. 
To establish (*) and (**), we first show that I,,, and Is,, in fact coincide 

asymptotically, in the sense that wpl the nonoverlapping portions have length 
negligible relative to that of the overlap, as n + 00. Write 

Applying Corollary 2.5.2 to the right-hand side, we obtain that wpl 

That is, the lower endpoints of I,, and Is,, are separated by an amount which 
wpl is o(n-'12), n + 00. The same is true for the upper endpoints. Since the 
length of IQ,, is of exact order n- (**) follows. Further, utilizing (1) to write 

we have from Theorem 1.5.4 (Slutsky) that P(X,,, > {,) -P a. Similarly, 
P(Xnk,, < &,) + a. Hence (*) is valid. 

2.6.4 Asymptotic Equivalence of and /& . 
Let us formalize the notion of relative efficiency suggested by the preceding 
discussion. Take as an efficiency criterion the (almost sure) rate at which the 
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length of the confidence interval tends to 0 while the confidence coefficient 
tends to a limit y, 0 < y < 1. In this sense, for sample sizes nl and nz re- 
spectively, procedures I,,, and ISul perform “equivalently” if n1/n2 + 1 as nl 
and n, + m. Thus, in this sense, the asymptotic relative efficiency of the 
sequence {I,,} to the sequence {Isu} is 1. (A different approach toward 
asymptotic relative efficiency is mentioned in 2.6.7.) 

2.6.5 An Asymptotic Approach Based on the Wilcoxon One-Sarnple 
Statistic 
Here we restrict to the important case p = 4 and develop a procedure based 
on a sequential procedure introduced by Geertsema (1970). 

Assume that F is symmetric about el,, and has a density f satisfying 
(ID 

S _ , / Z ( X ) d X  < ** 

Denote by G the distribution function of g X l  + Xz), where X1 and Xz are 
independent observations on F. Assume that in a neighborhood oft.,,,, G has 
a positive derivative G‘ = g and a bounded second derivative G”. (It is found 

s X, in the approach 
given in 2.6.3 will be handed over, in the present development, to the ordered 
values 

of the N. = 4n(n - 1) averages 

that B(t1,Z) = 2 f2(X)dX.) 
The role played by the order statistics Xul 5 

w,, 5 wu, s * * *  4 WuNn 

fix, + X,), 1 s i cj s n, 
that may be formed from X1,. . . , X,. Geertsema proves for the Wul)s an 
analogue of the Bahadur representation (Theorem 2.5.2) for the X,l)s. The 
relevant theorems fall properly within the context of the theory of LI-statistics 
and will thus be provided in Chapter 5. On the basis of these results, an 
interval of the form (WUam, WUbJ may be utilized as a confidence interval for 
t.,,,. In particular, if {a,} and {b,} are sequences of integers satisfying 1 5 
a, < b, 5 N, = .)n(n - 1) and 

as n -P 00, then the intervals 
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satisfy 

(*I 
and 

(**) with probability 1, 

confidence coefficient of Iwn -+ 1 - 2a, n + 00, 

n - +  00. K ,  
length of interval Iwn - llz DD 3 fz(x)dx)nl/z’ 

These assertions will be justified in Chapter 5. 

2.6.6 An Asymptotic Approach B a d  on the Sample Mean 

Still another confidence interval for is given by 

-) Kasn 
1Mn = @n - F s x n  + nl i2  9 

where xn = n-’ 2 X I ,  sf = n- ’  E(X, - Xn)2, and it is assumed that F is 
symmetric about Ctl2  and has finite variance oz. Verify (Problem 2.P.28) 
that the intervals ( IMMn}  satisfy 

(*I 
and 

(**I with probability 1, 

confidence coefficient of IMn + 1 - 2% n + 00, 

n 4  00. 2K,a 
length of interval IMn - 7, 

2.6.7 Relative EfRdency ComparisonS 

Let us make comparisons in the same sense as formulated in 2.6.4. Denote by 
e(A, B) the asymptotic relative efficiency of procedure A relative to pro- 
cedure B. We have seen already that 

e(Q, S) = 1. 

Further, it is readily seen from 2.6.3, 2.6.5 and 2.6.6 that, for confidence 
intervals for the median 
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As an exercise, examine these asymptotic relative efficiencies for various 
choices of distribution F meeting the relevant assumptions. 

The asymptotic relative.efficiencies just listed are identical with the Pitman 
asymptotic relative efficiencies of the corresponding test procedures, as will 
be seen from developments in Chapter 10. This relationship is due to a direct 
correspondence between consideration of a confidence interval as the length 
tends to 0 while the confidence coefficient tends to a constant y, 0 < y < 1, 
and consideration of a test procedure as the “distance” between the alter- 
native and the null hypothesis tends to 0 while the power tends to a limit A, 
O < A < l .  

Other notions of asymptotic comparison of confidence intervals are 
possible. For example, we may formulate the sequences of intervals in such 
a way that the lengths tend to a specified limit L while the confidence coef- 
ficients tend to 1. In this case, efficiency is measured by the rate at which the 
confidence coefficients tend to 1, or, more precisely, by the rate at which the 
noncoverage probability tends to 0. (The asymptotic relative efficiences 
obtained in this way correspond to the notion of Hodges-Lehmann asymptotic 
relative efficiency of test procedures, as will be seen in Chapter 10.) 

The two notions of asymptotic comparison lead to differing measures of 
relative efficiency. In the context of sequential confidence interval procedures, 
the notion in which length -+ 0 while confidence coefficient + 1 - 2a (< 1) 
has been used by Geertsema (1970) in comparing confidence interval pro- 
cedures based on the sign test, the Wilcoxon test, and the mean test (i.e., 
basically the intervals {Is,}, { I w , } ,  and { I M m }  which we have considered). The 
other notion, in which length + L ( > O )  while confidence coefficient +1, has 
been employed by Serfling and Wackerly (1976) for an alternate comparison 
of sequential confidence intervals related to the sign test and mean test. 
(Extension to the Wilcoxon test remains open.) 

In these two approaches toward asymptotic relative efficiency of con- 
fidence interval procedures, differing probabilistic tools are utilized. In the 
case of length + 0 while confidence coefficient + 1 - 2a (< l), the main tool 
is central limit theory. In the other case, large deviation theory is the key. 

2.7 ASYMPTOTIC MULTIVARIATE NORMALITY OF CELL 
FREQUENCY WCl’ORS 

Consider a sequence of n independent trials, with k possible outcomes for each 
trial. Let pj denote the probability of occurrence of the jth outcome in any 
given trial (rl pj = 1). To avoid trivialities, we assume that pj > 0, each j. 
Let nJ denote the number of occurrences of thejth outcome in the series of n 
trials (z nj = n). We call (n l , .  . . , nt) the “cell frequency vector” associated 
with the n trials. 
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Example. Such “cell frequency vectors’’ may arise in connection with 
general data consisting of I.I.D. random vectors XI,. . . , X, defined on 
(Q, d, P), as follows. Suppose that the X,‘s take values in R” and let 
{Bl , .  . . , Bk} be a partition of R“ into “cells” of particular interest. The 
probability that a given observation X, falls in the cell B, is pJ = P(Xil(Bj)), 
1 5 j 5 k. With nJ denoting the total number of observations falling in cell 
B,, 1 5 j 5 k,  the associated “cell frequency vector” is (nl, . . . , nk). 

In particular, let X1, .’. . , X, be independent N(0,  1) random variables. For 
a specified constant c > 0, let B; = (- to, c), E2 = [ -c, c ] ,  and B3 = (c, GO). 
Then {Bl, B2, B,) partitions R into 3 cells with associated probabilities 

p1 = p(xI  5 -c) = P(X, - e 5 - c  - e) = q - c  - el, 
p3 = q - c  + el, 

p2 = 1 - uq-c - e) - q - c  + e) = q e  + c)  - we - c). 

and 

Note thus that the probabilities (PI, . . . , pk) which are associated with the 
vector (nl,. . . , nk) as parameters may arise as functions of parameters of the 
distribution of the Xis. W 

The exact distribution of (n l , .  . . , nk) is multinomial (n;  p I , .  . . , pk): 

for all choices of integers rl 2 0,. . . , rk 2 0, rl + .- .  + rk = n. 

with the ith trial a random k-vector 
We now show that (n l , .  . . , nk) is asymptotically k-oariate normal. Associate 

Y , = ( O  ,..., 0,1,0 ,..., O), 

where the single nonzero component 1 is located in thejth position if the ith 
trial yields thejth outcome. Then 

Further, the Y,’s are I.I.D. with mean vector (pl,. . . , pk) and (check) covari- 
ance matrix Z = [61,]kxk, where 

pr(l - pi) 
-PI PJ 

if i = j 
if i # j .  CIJ = 

From this formulation it follows, by the multivariate Lindeberg-Uvy CLT 
(Theorem 1.9.1B), that the vector of relative frequencies (nl/n, . . . , nJn) is 
AN((p1, * * * ?  pk), n-’E): 
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Theorem. ‘Ihe random vector 

n ’ / Z e  - pl, . . , , - nk - p,) 
n 

converges in distribution to  k-variate normal with mean 0 and covariance 
matrix C = [a,J given by  (*). 

2.8 STOCHASTIC PROCESSES ASSOCIATED WITH A SAMPLE 

In 1.11.4 we considered a stochastic process on the unit interval [0, 13 
associated in a natural way with the first n partial sums generated by a se- 
quence of LLD. random variables XI, X2,. . . . That is, for each n, a process 
was defined in terms of XI,. . . , X,. For the sequence of such processes 
obtained as n + 00, we saw in Donsker’s Theorem a useful generalization of 
the CLT. Thus the convergence in distribution of normalized sums to 
N(0,l) was seen to be a corollary of the convergence in distribution of partial 
sum processes to the Wiener process. Other corollaries of the generalization 
were indicated also. 

We now consider various other stochastic processes which may be 
associated with a sample XI,. . . , X,, in connection with the various types 
of statistic we have been considering. We introduce in 2.8.1 processes of 
“partial sum” type associated with the sample moments, in 2.8.2 a “sample 
distribution function process,” or “empirical process,” and in 2.8.3 a “sample 
quantile process.” Miscellaneous other processes are mentioned in 2.8.4. In 
subsequent chapters, further stochastic processes of interest will beintroduced 
as their relevance becomes apparent. 

2.8.1 Partial Sum Processes Associated with Sample Moments 
In connection with the sample kth moment, 

we associate a partial sum process based on the random variables 

ti = x! - ak, l s i s n .  

The relevant theory is obtained as a special case of Donsker’s Theorem. 

2.8.2 The Sample Distribution Function (or “Empirical”) Process 
The asymptotic normality of the sample distribution function F, is viewed 
more deeply by considering the stochastic process 

n1’2[F,(x) - F(x)],  -co < x < 00. 
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Let us assume that F is continuous, so that we may equivalently consider the 
process 

obtained by transforming the domain from (- 00,m) to [0, 13, by putting 
x = F-'( t ) ,  0 < c < 1, and defining G(0) = K(1) = 0. 

The random function {I#), 0 s t s 1) is not an element of the function 
space CEO, 13 considered in Section 1.1 1. Rather, the natural setting here is the 
space D[O, 13 of functions on [O, 13 which are rightcontinuous and have left- 
hand limits. Suitably metrizing D[O, 11 and utilizing the concept of weak 
convergence of probability measures on D[O, 13, we have 

Y, A Wo (in D[O, 11 suitably metrized), 
where W o  denotes a random element of D[O, 13 having the unique Gaussian 
measure determined by the mean function 

and the covariance function 

0 s s s I s 1. 
We shall use the notation Wo also for the measure just defined. 

The stochastic process Wo is essentially a random element of C[O, 13, in 
fact. That is, Wo(CIO, 11) = 1. Thus, with probability 1, the sample path of 
the process Wo is a continuous function on [0, 13. Further, with probability 1, 
Wo(0) = 0 and Wo(l) = 0, that is, the random function takes the value 0 at 
each endpoint of the interval [O, 13. Thus W o  is picturesquely termed the 
"Brownian bridge," or the "tied-down Wiener" process. 

The convergence Y, 4 Wo is proved in Billingsley (1968). An immediate 
corollary is that for each fixed x, F,(x) is asymptotically normal as given by 
Theorem 2.1.1. Another corollary is the asymptotic distribution of the 
(normalized) Kolmogorov-Smirnov distonce n'/'D,, which may be written 
in terms of the process Y,( a )  as 

n'12Dn = sup I x(t)l .  

%(I )  = n"2[F,(F-'(t))  - t], 0 S t S 1, 

E{WO(r)} = 0 

COV{WO(S), WO(t)} = s(l - t),  

O < I < l  

It follows from Y, 4 Wo that 

lim P(n''2D, s d) = W o  x(m): sup Ix(t)l s d , 
Il'Q ({ O i 1 5 l  1) (1) 

since {x(s):  up^,,,^ Ix(t)l s d} can be shown to be a Wo-continuity set. 
Also, 
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(See Billingsley (1968) for proofs of these details.) Thus follows Theorem 
2.1.5A (Kolmogorov). 

As discussed in 2.1.6, the result just stated may be recast as the null- 
hypothesis asymptotic distribution of the Kolmogorov-Smirnov test statistic 

A, = SUP IFAX) - F~(x)l .  
- - C X < Q  

That is, for the process 

l ( t )  = n1/2[F,,(F;1(t)) - t], O I; t s 1, 

we have 

n'/'A,, = sup I t ( t ) I  

and thus, under H,: F = F, ,  we have n1l2An 3 supc I Wo(t)l. Thus, under 
H,, n112A,, has the limit distribution (1) above. 

It is also of interest to have asymptotic distribution theory for A, under a 
fixed alternatioe hypothesis, that is, in the case F # F,. This has been obtained 
by Raghavachari (1973). To state the result we introduce some further 
notation. Put 

O C I C l  

A = SUP (F(x) - F&)( 
- m < x c m  

and 

C1 = {XI F(x) - F&) = A}, Cz = {x: F(x) - F,(x) = -A}. 

It is convenient to switch from --a0 < x < co to 0 < t < 1. Noting that 

A = SUP IF(F;'(t)) - t i ,  
O C I C l  

we accordingly put 

K f  = Fo(Cf) = { t :  F; ' ( t )  E C,}, i = 1, 2. 

Finally, on the measurable space (C[O, 13, @) considered in 1.11, denote by 
Wo a random element having the unique Gaussian measure determined by 
the mean function 

E { W J ( t ) }  = 0 

and the covariance function 

COV{~~'(S), fio(t)) = F(Fc'(s))[l - F(FC1(t))], 0 I; s I; t i; 1. 

We shall use the notation also for the measure just defined. 
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Theorem (Raghavachari). Let F be continuous. Then 

lim P(n'/'(A, - A) s d) = mo x(.): sup x(t) s d; sup x(t) 2 -d 
n - r a  ({ t 8 K 1  I r K i  

for -GO < d < 00. 

The preceding result contains (1) above as the special case corresponding to 
A = 0, A, = D, and K1 = Kz = [0,1], in which case the measure wo 
reduces to Wo. 

It is also of interest to investigate n'/'A, under a sequence of local alter- 
natives converging weakly to Fo at a suitable rate. In this context, Chibisov 
(1965) has derived the limit behavior of the process p,(.). 

2.8.3 The Sample Quantile Process 
The asymptotic normality of sample quantiles, established in 2.3 and 2.5, may 
be viewed from more general perspective by considering the stochastic process 

For further discussion of empirical processes, see 2.8.3 below. 

zn(P) = n'"<tpn - CJ, 0 < P < 1, 

with Z,(O) = Z,(l) = 0. We may equivalently write 

Z,(p) = n"'[Fi'(p) - F-'(P)] ,  0 < p < 1. 

There is a close relationship between the empirical process Y,(.) considered 
in 2.8.2 above and the quantile process Z,(.). This is seen heuristically as 
follows (we assume that F is absolutely continuous): 

G(t) = n1/2[F,(F-1(t)) - t ]  

= - j ( F -  '(t))Z,(r). 
That is, there holds the approximate relationship 

For the case of F uniform [0, I], this becomes &(P) = -Zm(p), 0 5 p I; 1, 
which suggests Z, 4 - Wo, which is the same as Z, % Wo. 

A precise and illuminating technical discussion of the empirical and 
quantile processes taken together has been given in the appendix of a paper by 
Shorack (1972). Another way to see the relationship between the Y,(.) and 

UP) -L - f ( t p ) z n ( p ) ,  0 P 1. 
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Z,(.) processes is through the Bahadur representation (recall 2.5), which 
gives exactly 

where for each fixed p, wpl n1’2R,,(p) = O(n-’I4 log n), n 

2.8.4 Miscellaneous Other Processes 

(i) The remainder process in the Bahadur representation. This process, 
{R,(p), 0 5 p 5 I}, has just been discussed in 2.8.3 above and has also been 
considered in 2.5.5. Its fundamental role is evident. 

(ii) Empirical processes with random perturbations. A modified empirical 
process based on a sample distribution function subject to random perturba- 
tions and scale factors is treated by Rao and Sethuraman (1975). 

(iii) Empirical processes with estimated parameters. It is of interest to 
consider modifications of the process Y,(.) in connection with composite 
goodness-of-fit hypotheses, where the stated null hypothesis distributions may 
depend on parameters which are unknown and thus must be estimated from 
thedata. In thisregard,seeDurbin(1973b), Wood(1975),and Neuhaus(l976). 

(iv) “Extremal processes.” A stochastic process associated with the 
extreme order statistics {x,k}, k fixed, is defined by 

00. 

where a, and b, are suitable normalizing constants. See Dwass (1964), 
Lamperti (1964), and Galambos (1978). 

(v) “Spacings” processes. Another type of process based on order 
statistics is noted in Section 3.6. 

2.P PROBLEMS 

Miscellaneous 

random variables { X n }  satisfying 
1. Let {a,,} be a sequence of constants. Does there exist a sequence of 

(a) X ,  X for some random variable X 

and 

(b) E { X , }  = a,, all n? 

Justify your answer. 
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2. Let {a,} be a sequence of constants and Y a random variable. Does 

(a) 

(b) x, - Y, 

(c) E { X , }  = 0, all n? 

If "yes," prove. Otherwise give counter-example. 

Seetion 2.1 

there exist a sequence of random variables {X,} satisfying 

X ,  1, X for some random variable X ,  

and 

3. For the density estimator 

Fn(x + bn) - FXx - bn) 
26, 

L ( x )  = 9 

(a) show that 2nb,L(x) is distributed binomial (n, F(x + b,) - 
F(.u - h,)). 

(b) show that E(fn(x)} + j ( x )  if b, + 0, 
(c) show that Var{/,(x)} + 0 if b, + 0 and nb, + 00. 

4. (continuation) Apply the Berry-EssCen Theorem (1.9.5) to show that 
iff is continuous and positive at x, then there exists a constant K depending 
onf(x) but not on n, such that 

5. (continuation) (a) Deduce from the preceding results that 
(WJ"'CL(X) - ~{L(x)~I//'/'(x) 5 NO, 1): 

(b) Apply Taylor's Theorem to obtain (nb,)'/'[E{L(x)} - 
f ( x ) ]  + 0, n + 00, under suitable smoothness restrictions on Sand rate of 
convergence restrictions on {b,} ; 

(c) From (a) and (b), establish (2nb,)''2[f,(x) - S(x)]/j"'(x) 5 
N(0, 1) under suitable (stated explicitly) conditions onfand {b,} .  

6. Justify that n'/'DJ(log log n)'12 converges to 0 in probability but not 
with probability 1. 

Section 2.2 

7. Do some of the exercises assigned in the proof of Theorem 2.2.3A. 
8. Show that 
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(Hint: Use Lemma 2.2.3 to determine that the offdiagonal element of the 
covariance matrix is given by Cov{X,, (XI - P ) ~ } . )  

9. Show that (x, m 2 ,  m 3 , .  . . , mk) is asymptotically k-variate normal 
with mean (p, c2, p 3 , .  . . , pk), and find the asymptotic covariance matrix 
n-’ Z. 

10. Let {XI,. . . , X,} be I.I.D. with mean p and variance a? < 00, The 
“Student’s t-statistic” for the sample is 

n1/2(Xn - p)  
T,= 9 

Sn 

whereX, = n - l  c! Xi and s.’ = (n - 1)- c’i ( X i  - X,)’. Derive the limit 
distribution of T,. 

Section 2.3 

be dropped. 

see Remark 2.3.2 (iii).) 

of Theorem 2.3.3C. 

11. Show that the uniqueness assumption on C, in Theorem 2.3.1 cannot 

12. Prove Theorem 2.3.2 as an application of Theorem 2.1.3A. (Hint: 

13. Obtain an explicit constant of proportionality in the term O(n-1/2) 

14. Complete the details of derivation of the density of f,,,, in 2.3.4. 
15. Let F beadistributionfunction posessingafinitemean. Let 0 < p < 1. 

Show that for any k the sample pth quantile I&,,, possesses a finite kth moment 
for all n sufficiently large. (Hint: apply 1.14.) 

relative toX by the 
criterion ofasymptotic variance, for various choices of underlying distribution 
F. Follow the guidelines of 2.3.5. 

17. Check the asymptotic normality parameters for the sample semi- 
interquartile range, considered in 2.3.6. 

Section 2.4 

16. Evaluate the asymptotic relative efficiency of 

18. Check the details of Example 2.4.48. 

Section 2.5 

19. Show that X,Z’O(g(n))  implies X, = O,,(g(n)). 
20. Verify Remark 2.5.1 (viii). 
21. Verify Remark 2.5.1 (ix). 
22. Prove Corollary 2.5.2. 
23. Derive from Theorem 2.5.2 an LIL for sequences of central order 

statistics {x&} for which kJn + p sufficiently fast. 



116 THE BASIC SAMPLE STATISTICS 

24. Complete the details of proof of Lemma 2.5.4C. 
25. Prove Lemma 2.5.4D. 
26. Provide missing details for the proof of Lemma 2.5.48. 

Section 2.6 
27. Verify the distribution-free property of the confidence interval 

procedure of 2.6.1. 
28. Verify the properties claimed for the confidence interval procedure of 

2.6.6. 
29. Evaluate the asymptotic relative efficiencies of the confidence interval 

procedures {Isn}, {Iw,} and {IMm}, for various choices of F. Use the formulas 
of 2.6.7. Be sure that your choices of F meet the relevant assumptions that 
underlie the derivation of these formulas. 

30. Investigate the confidence interval approach 

for the pth quantile. Develop the asymptotic properties of this interval. 

Section 2.7 

random k-vector. 

Section 2.8 

state the relevant weak convergence result. 

31. CheckthecovariancematrixCgivenforthemultinomial(1; pl, . . . , pk) 

32. Formulate explicitly the stochastic process referred to in 2.8.1 and 
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Transformations of Given Statistics 

In Chapter 2 we examined a variety of statistics which arise fundamentally, 
in connection with a sample XI, . . . , X,. Several instances of asymptotically 
normal vectors of statistics were seen. A broad class of statistics of interest, 
such as the sample coeficient of variation s/’, may be expressed as a smooth 
function of a vector of the basic sample statistics. This chapter provides 
methodology for deriving the asymptotic behavior of such statistics and 
considers various examples. 

More precisely, suppose that a statistic of interest T,, is given by g(X,), 
where X, is a vector of “basic” statistics about which the asymptotic be- 
havior is already known, and g is a function satisfying some mild regularity 
conditions. The aim is to deduce the asymptotic behavior of T,,. 

It suffices for many applications to consider the situations 

(a) X, * c, or X, 3 c ;  

(b) X,,s X; 

(c) X,AN(p, X,), where Z,, -, 0. 

For situations (a) and (b), under mild continuity requirements on g(*), we 
may apply Theorem 1.7 to obtain conclusions such as T,, * g(c), xs g(c), 
or T,, 5 g(X). However, for situation (c), a different type of theorem is needed. 
In Section 3.1 we treat the (univariate) case Xn(p ,  of), cm -, 0, and present 
theorems which, under additional regularity conditions on g, yield conclusions 
such as “T,, is AN(g(p) ,  [g’(p)]20:).” In Section 3.2 the application of these 
results, and of Theorem 1.7 as well, is illustrated in connection with the 
situations (a), (b), and (c). In particular, variance-stabilizing transformations 
and a device called “Tukey’s hanging rootogram” are discussed. Extension 
of the theorems of Section 3.1 to vector-valued g and vector X, is carried out 

117 
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in Section 3.3, followed in Section 3.4 by exemplification for functions of 
several sample moments and for “best ” linear combinations of several 
estimates. 

Section 3.5 treats the application of Theorem 1.7 to the important special 
case of quadraticforms in asymptotically normal random vectors. The asymp- 
totic behavior of the chi-squared statistic, both under the null hypothesis and 
under local alternatives, is derived. 

Finally, in Section 3.6 some statistics which arise naturally as functions of 
order statistics are discussed. 

Although much of the development of this chapter is oriented to the case of 
functions of asymptotically normal vectors, the methods are applicable more 
wide I y . 

3.1 FUNCTIONS OF ASYMPTOTICALLY NORMAL STATISTICS: 
UNIVARIATE CASE 

Here we present some results apropos to functions g applied to random 
variables X, which are asymptotically normal. For convenience and sim- 
plicity, we deal with the univariate case separately, Thus here we treat the 
simple case that g is real-valued and X, isAN@, 0:)’ with a, --* 0. Multivariate 
extensions are developed in Section 3.3. 

Theorem A. Suppose that X, is AN(p, at), with a, + 0. Let g be a real- 
uuluedjiunction dtgerentiable at x = p, with g‘(p) # 0. Then 

dxn) is AN(g(p), Cg’(~)Yat)* 
PROOF. We shall show that 

Then, by Theorem 1.5.4 (Slutsky), the random variable b(X,,) - g@)]/g‘@)a,, 
has the same limit distribution as (X, - p)/an, namely N(0, 1) by assumption. 

Define h(p) = 0 and 

Then, by the differentiability ofg at cc, h(x) is continuous at p. Therefore, since 
Xn 3 ~byProbleml.P.20,itfollowsbyTheorem 1.7(ii)thath(Xn) 1: h(p) = 0 
and thus, by Slutsky’s Theorem again, that 

that is, (1) holds. This completes the proof. 
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Remarks. (i) If, further, g is differentiable in a neighborhood of p and 
g’(x) is continuous at p, then we may replace g‘(p) by the estimate g’(xn) and 
have the modified conclusion 

(ii) If, further, u,’ is given by u2(p)/n, where u(p) is a continuous function 
of p, then we may replace un by the estimate a(Xn)/n’’’ and obtain 

Example A. It was seen in 2.2.4 that 

It follows that the sample standard deviation s is also asymptotically normal, 
namely 

s is AN ( a,- p:;C)* . 
We now consider the case that g is differentiable at p but g’(p) = 0. The 

following result generalizes Theorem A to include this case. 

Theorem B. Suppose that X, is AN(p, of), with on 4 0. Let g be u real- 
uulued function diferentiuble m ( r  1) rimes at x = p., with g(”’)(p) # 0 but 
g(j)(p) = ofor j < m. Then 

PROOF. The argument is similar to that for Theorem A, this time using 
the function h defined by h(p)  = 0 and 

and applying Young’s form of Taylor’s Theorem (1.12.1C). 
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Example B. Let X, be AN(0, a,'), a,, + 0. Then 

b 2 ( 1  + Xn) 5 x:. 
0,' 

(Apply the theorem with g(x) = log2(1 + x), p = 0, rn = 2.) 

3.2 EXAMPLES AND APPLICATIONS 

Some miscellaneous illustrations ofTheorems 1.7,3.1A and 3.1B are provided 
in 3.2.1. Further applications of Theorem 3.1 A, in connection with variance- 
stabilizing transformations and Tukey's hanging rootogram, are provided in 
3.2.2 and 3.2.3. 

3.2.1 Miscellaneous Illustrations 
In the following, assume that X,, is AN(p, a,'), a, + 0. What can be said about 
the asymptotic behavior of the random variables 

Regarding convergence in probability, we have X ,  3 p since a, 
by Theorem 1.7, 

0 and thus, 

Moreover, regarding asymptotic distribution theory, we have the following 
results. 

(i) For p # 0, X,' is ANb2, 4p2u,'), by Theorem 3.1A. For p = 0, 
X,'/a,' 3 x t ,  by Theorem 3.1B or Theorem 1.7. 

(ii) For p # O,l/X,, is A N ( l / p ,  u,'/p4), by Theorem 3.1A. The case p = 0 
is not covered by Theorem 3.1B, but Theorem 1.7 yields oJX, 5 l/N(O, 1). 

(iii) For any p, 8- is AN(ep, e2%;). 
(iv) For p # 0, log I X, I is AN(log I p I, a;/p2). For p = 0, log I XJu, I 5 

log I N O ,  1) I * 
3.2.2 VarIance-Stabilizlng Transformations 
Sometimes the statistic of interest for inference about a parameter 8 is 
conveniently asymptotically normal, but with an asymptotic variance 
parameter functionally dependent on 8. That is, we have X, AN(8, u,"(8)). This 
aspect can pose a difficulty. For example, in testing a hypothesis about 8 by 
using X,, the rejection region would thus depend upon 8. However, by a 
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suitable transformation g(*), we may equivalently use r, = g(X,) for inference 
about g(O) and achieve the feature that Y ,  is AN(g(O), y,), where yn does not 
depend upon 8. 

In the case that a@) is the form a;(O) = hz(0)u,, where u, + 0, the 
appropriate choice of g may be found via Theorem 3.1A. For, if Y, = g ( X n )  
and g’(O) # 0, we have 

Thus, in order to obtain that Y. is AN(g(O), c’u,), where c is a constant inde- 
pendent of 0, we choose g to be the solution of the differential equation 

Y. is AN(g(O), Ce‘(~)12h2(~)o,). 

d g = -  C 

dO h(8)’ 

Example. Let X, be Poisson with mean On, where 8 > 0. Then (Problem 
3.P.1) X ,  is A N @ ,  On), or equivalently, 

Let g be the solution of 

Thus g(x) = 2cx112. Choose c = 4 for convenience. It follows that (X,/n)’lz is 
AN(OIIz, 1/4n), or equivalently Xi12 is AN((On)’/2, a). This result is the basis 
for the following commonly used approximation: i f X  is Poisson with mean p 
and p is large, then X112 is approximately N(p’12, 4). 

A further illustration of the variance-stabilizing technique arises in the 
following subsection. Other examples may be found in Rao (1973), Section 64. 

3.2.3 Tukey’s “Hanging Rootogram” 
Histograms and other forms of density estimator (recall 2.1.8) provide popular 
ways to test a hypothesized distribution. A plot is made depicting both the 
observed density estimator, say f.(x), and the hypothesized density, say 
fo(x), for - 00 < x < 00 (or a < x < 6). This enables one to visually assess 
the disparity between (the population density generating) the observed h( -) 
and the hypothetical so( .). Several features are noteworthy, as follows. 

(i) Typically, f , (x )  is asymptotically normal. For example, in the case of 
the simple h(-) considered in 2.1.8 and in Problems 2.P.3-5, we have that 

where nb, + 00. Thus the observed discrepancies h(x) - /b(x) are 

I 

h(x) is A N ( f ( x ) ,  f(x)/2nbn), 

AN(f(x) - fo(x), f(x)/2nb,). 
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(ii) The observed discrepancies fluctuate about the curve traced by fo(x). 
(iii) Under the null hypothesis, all discrepancies are asymptotically 

normal with mean 0, but nevertheless two observed discrepancies of equal size 
may have quite different levels of significance since the asymptotic variance in 
the normal approximation depends on x. 

Regarding property (i), we comment that it is quite satisfactory to have a 
normal approximation available. However, properties (ii) and (iii) make 
rather difficult a simultaneous visual assessment of the levels of significance 
of these discrepancies. A solution proposed by Tukey to alleviate this 
difficulty involves two elements. First, make a variance-stabilizing trans- 
formation. From 3.2.2 it is immediately clear that g(x) = x112 is appro- 
priate, giving 

f;12(x) is AN(f112(x),  1/8nb,) 

Thus we now compare the curves ff12(x) and fb12(x), and under the null 
hypothesis the observed discrepancies f;12(x) - f#’ (x)  are AN(0, in&), 
each x. Secondly, instead of standing the curve f;12(x) on the base line, it is 
suspended from the hypothetical curve fV2(x ) .  This causes the discrepancies 
f ;12(x)  - f i12 (x )  all to fluctuate about a fixed base line, all with a common 
standard deviation (8nb,)- ‘ I2.  The device is picturesquely called a hanging 
rootogram. For an illustrated practical application, see Healy (1968). 

3 3  FUNCTIONS OF ASYMPTOTICALLY NORMAL VECTORS 

The following theorem extends Theorem 3.1A to the case of a vector-valued 
function g applied to a vector X, which is AN(p, btZ), where b, + 0. 

Theorem A. Suppose that X, = (Xnl,. . ., xnk) is AN@, bfC), with C a 
couariancematrix and b, + 0. Let g(x) = (gl(x), . . . , g,,,(x)), x = (xl, . . . , xk), 
be a vector-valued function for which each component function g,(x) is real- 
valued and has a nonzero diferential gi(p; t), t - (tl, :. . , r,), at x = p. Put 

PROOF. Put Z,, = bfZ. By the definition of asymptotic multivariate 
normality (l.S.S), we need to show that for every vector 5 = (Al, . . . , A,,,) such 
that ADZ,Dk‘ > 0 for all sufficiently large n, we have 
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Let 5 satisfy the required condition and suppose that n is already sufficiently 
large, and put b,, = (bDCnD’I.’)l’z. Define functions h f ,  1 I; i 5 m, by hl(p) 
= 0 and 

By the definition of gf having a differential at p (1.12.2), h,(x) is continuous 
at p. 

Now 

m 

I =  I 

(2) 

XCQ(Xn) - d~)I’b<n’ = C &bL’CBLXn) - BXP)I 
m m 

i= 1 f = 1  
= C 4bL’MXn)IlXn - PII + C AibC;Bi(P; Xn - PI- 

By the linear form of the differential, we have 

By the assumption on b, and by the definition of asymptotic multivariate 
normality, the right-hand side of(3) converges in distribution to N(0, 1). Thus 

m 

(4) 

Now write 
m m 

By Application C of Corollary 1.7, since Cn + 0 we have X, 4 p. Therefore, 
since each hf is continuous at p, Theorem 1.7 yields 

11 ht(Xn) 1: 2 1 1  ht(p) = 0. 
f = l  f=1  

Also, now utilizing the fact that Cn is of the form b i z ,  and applying Application 
B of Corollary 1.7, we have 

b ~ ~ l l X ,  - = (5DCD’I.’)-1’2b~’(~X, - 5 (-). 
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It follows by Slutsky's Theorem that the right-hand side of (5 )  converges in 
probability to 0. Combining this result with (4) and (2), we have (1). W 

Remark A .  In the above proof, the limit law of b(x,) - g(p)], suitably 
normalized, was found by reducing to the differential, g(p; X, - p), likewise 
normalized, and finding its limit law. The latter determination did not involve 
the specific form 632 which was assumed for C,. Rather, this assumption 
played a role in the reduction step, which had two parts. In one part, only the 
property C, 4 0 was needed, to establish X, 3 p. However, for the other part, 
to obtain (LDC,D'A')-1~2~~X, - pll = Op(l), a further restriction is evidently 
needed. 

An important special case of the theorem is given by the following result for 
g real-valued and 6, = n-'I2. 

Coroffary. Suppose that X, = (Xnl , .  . . , Xnk) is AN@, n-'Z), with C a 
covariance matrix. Let g(x) be a real-valued function having a nonzero differ- 
ential at x = p. Then 

Remarks B. (i) A sufficient condition for g to have a nonzero differential at 
pis that the first partial derivatives dg/dx,, 1 5 i 5 k, be continuous at p and 
not all zero at p (see Lemma 1.12.2). 

(ii) Note that in order to obtain the asymptotic normality of g(X, , ,  
. . . , x, , ) ,  the asymptotic joint normality of X , , ,  . . . , Xnk is needed. 

Analogues of Theorem A for the case of a function g having a differential 
vanishing at x = p may be developed as generalizations of Theorem 3.1B. For 
simplicity we confine attention to real-valued functions g and state the 
following. 

Theorem B. Suppose that X, = (X,,, . . . , Xnk) is AN@, n- 'Z). Let g(x) be a 
real-valued finction possessing continuous partials of order m (> 1) in a 
neighborhood of x = p, with all the partials of order j, 1 4 j s m - 1, vanishing 
at x = p, but with the mth order partials not all vanishing at x = p. Then 

where Z = (Zl , .  . . , 2,) = N(0, Z). 

PROOF. In conjunction with the multivariate Taylor expansion 
(Theorem 1.12.1B), employ arguments similar to those in the proof of 
Theorem A. 
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Remark C. For the simplest case, m = 2, the limit random variable appear- 
ing in the preceding result is a quadraticform ZAZ, where 

We shall further discuss such random variables in Section 3.5. a 

3.4 FURTHER EXAMPLES AND APPLICATIONS 

The behavior offuncrions ofseoeral sample moments is discussed in general in 
3.4.1 and illustrated for the sample correlation coeficient in 3.4.2. It should be 
noted that statistics which are functions of several sample quantiles, or of both 
moments and quantiles, could be treated similarly. In 3.4.3 we consider the 
problem of forming an “optimal” linear combination of several asymp- 
totically jointly normal statistics. 

3.4.1 Functions of Several Sample Moments 
Various statistics of interest may be expressed as functions of sample moments. 
One group of examples consists of the sample “coefficients” of various kinds, 
such as the sample coefficients of variation, of skewness, of kurtosis, of 
regression, and of correlation. By Theorem 2.2.1B, the vector of sample 
moments (al,.  . , , ak) is A N ( ( a l , .  . . , ak), n-’C), for some C. It follows by 
Corollary 3.3 that statistics which are functions of (a , ,  . . . , ak) are typically 
asymptotically normal with means given by the corresponding functions of 
(al, . . . , ak) and with variances of the form c/n, c constant. As an example, the 
correlation coefficient is treated in 3.4.2. Another example, the sample 
coefficient of variation s/X, is assigned as an exercise. Useful further discussion 
is found in Cramtr (1946), Section 28.4. For a treatment of c-sample applica- 
tions, see Hsu (1945). For Berry-Essten rates of order O(n-’) for the error of 
approximation in asymptotic normality of functions of sample moments, see 
Bhattacharya (1977). 

3.4.2 Illustration: the Sample Correlation Coefflcient 

Let (Xl, Yl), . . . , (X”, Y.) be independent observations on a bivariate 
distribution. The correlation of X1 and Yl is p = uxy/uxuy, where ux = 

Var{ Yl}. The sample analogue, 

I N X l  - P W - 1  - P y ) L  P x  = W l l ,  f l y  = H Y l ) ,  0: = Var{X1), Qy = 
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may be expressed as = g(V), where 

and 

The vector V is AN(B{V}, n-'I:), where C, ,, is the covariance matrix of 
(x1, y1, x:, Y:, x1 Y,). (Compute I: as an exercise.) It ~OIIOWS from Corollary 
3.3 that 

1 is AN@, n-IdXd), 

where 

The elements of d are readily found. Since 

we obtain 

Likewise 

Verify that 

3.43 Optimal Linear Combinations 

Suppose that we have several estimators 8,,, , . . , 8* each having merit as an 
estimator of the same parameter 8, and suppose that the vector of estimators 
is asymptotically jointly normal: X, = @,,, . . . , 8,) is AN((&. . . , e), n-'~). 
Consider estimation of 0 by a linear combination of the given estimates, say 
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where fl = (I1,. . . , f l k )  satisfies /I1 + - - .  + f lk  = 1. Such an estimator On 
is AN(0, n- 'PZg'). The "best"such linear combination may be defined as that 
which minimizes the asymptotic variance. Thus we seek the choice of fl which 
minimizes the quadratic form flCg' subject to the restriction Ci f l ,  = 1. 

The solution may be obtained as a special case of useful results given by 
Rao (1973), Section l.f, on the extreme values attained by quadradic forms 
under linear and quadratic restrictions on the variables. (Assume, without 
loss of generality, that C is nonsingular.) In particular, we have that 

1 
CI1' inf PCF = 

Zfel=i 

where C* = C-' = (at), and that this infimum is attained at the point 

For the case k = 2, we have 

6 2  2 - 6 1 2  

0 1 1 6 2 2  - 4 2  611622 - 4 2  

=11=22 - 4 2  Q l l Q 2 2  - 4 2  

Z * = [  - u 1 2  Ql l  ] 
and thus the optimal fl is 

6 2 2  - Q12 6 1 1  - 6 1 2  
Bo = 0301, P o 2 1  = 

11 + 6 2 2  - 2 ~ 1 2 ' ~ I l  + 6 2 2  - 2 6 1 2  

in which case 

=11=22'-  .:2 

6 1 1  + 622 - 2 6 1 2 '  
flocro = 

Putting 6: = 011, uf = n22, p = and A = &a:, we thus have 

1 - pz floCgo = u:A 
1 + A - 2pA"'' 

Assume, without loss of generality, that 6: s t~;, that is, A 2 1. Then the 
preceding formula exhibits, in terms of p and A, the gain due to using the 
optimal linear combination instead of simply the better of the two given 
estimators. We have 

flozro A(1 - P2) (1 -  PA^")^ 
7 = 1 + A - 2pA112  = - 1 + A - 2pA"" 
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showing that there is strict reduction of the asymptotic variance if and only if 
pA’lz # 1. Note also that the “best” linear combination is represented in 
terms of p and A as 

As an exercise, apply these results in connection with estimation of the mean 
of a symmetric distribution by a linear combination of the sample mean and 
sample median (Problem 3.P.9). 

3.5 QUADRATIC FORMS IN ASYMPTOTICALLY MULTIVARIATE 
NORMAL VECTORS 

In some applications the statistic of interest is a quadratic form, say T, = 
X,CXL, in a random vector X ,  converging in distribution to N(p,  C). In this 
case, we obtain from Corollary 1.7 that T, X C X ,  where X is N(p, C). In 
certain other situations, the statistic of interest T, is such that Theorem 3.3B 
yields the asymptotic behavior, say n(T, - A) 4 Z A Z ,  for some A and A, 
where Z is N(0, C). (There is a slight overlap of these two situations.) 

In both situations just discussed, a (limit) quadratic form in a multivariate 
normal vector arises for consideration. It is of particular interest to know 
when the quadratic form has a (possibly noncentral) chi-squared distribution. 
We give below a basic theorem of use in identifying such distributions, and 
then we apply the result to examine the behavior of the “chi-squared statistic,” 
a particular quadratic form in a multinomial uector. We also investigate 
other quadratic forms in multinomial vectors. 

The theorem we prove will be an extension of the following lemma proved 
in Rao (1973), Section 3.b.4. 

Lemma. Let X = (XI,. . . , X,) be N(p, Ik), the identity matrix, and let 
ck ,, k be a symmetric matrix. Then the quadratic form xcx’ has a (possibly 
noncentraI) chi-squared distribution if and only if C is idempotent, that is, 
C2 = C, in which case the degrees offieedom is rank (C)  = trace (C)  and the 
noncentrality parameter is ~ c p ’ .  

This is a very useful result but yet is seriously limited by the restriction to 
independent XI,. . . , X I .  For the case p = 0, an extension to the case of 
arbitrary covariance matrix was given by Ogasawara and Takahashi (1951). A 
broader generalization is provided by the following result. 

Theorem. Let X = (XI, . . . , x k )  be N(p, C), and let c k x k  be a symmetric 
matrix. Assume that, for q = (ql , .  . . , q k ) ,  

(1) qc = 0 r+ qp‘ = 0. 
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Then XCX has a (possibly noncentral) chi-squared distribution rand only if 
(2) zcccc = CCZ, 

in which case the degrees offreedom is trace (CC) and the noncentrality param- 
eter is pCp’. 

2 Ak 2 0 denote the eigenvalues of C. Since C is 
symmetric, there exists (see Rao (1973), Section l.C.3(i) and related dis- 
cussion)an orthogonal matrix B havingrows b,, , . . , bk which areeigenvectors 
corresponding to A,, . . . , A,, that is, 

PROOF. Let A, 2 

btC = Aib,, 1 s i 5 k. 

Thus 

where 6, = I ( i  = ~9, or 

(**I B’AB = C. 

Put 

v = XB’. 

Since X is N(p, Z), it follows by (*) that V is N(pB’, A). Also, since B .is 
orthogonal, X = VB and thus 

XCX = VBCBV‘. 

We now seek to represent V as V = WA“’, where W = N(a,  Ik) for some a 
and All2 = (#’2d,,)kxf# Since pB’ = (pb;, . . . , pbi), we have by (1) that the 
jth component of pB’ is 0 whenever A, = 0. Define 

Q, = {;bW’, i f 4  z 0, 
if A, = 0. 

ThusaA1I2 = (alA:l2,. . . , akAi3.2) = pBand V has thedesiredrepresentation 
for this choice of a. Hence we may write 

XCX’ = WA”2BCB’A’/’W = WDW, 

where D = A”2BCB’A’/2. It follows from the lemma that XCX‘ has a chi- 
squared distribution if and only if D2 = D. Now 

DZ = (A1/ZBCB’A1/2)(A1/2BCB~i~z) 
= A ~ / ~ B C B ’ A B C B ’ A ~ / ~  = A~/~BcccB’A~/~,  
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making use of (**). Thus DZ = D if and only if 

(3) A ~ I ~ B C X C B ' A ~ I ~  = A ~ I Z B C B ' A ~ ~ Z .  

Now check that 

AA1 = A A a o A 1 1 2 A I  = A"'A1 

and 

AIA = A z A o A I A 1 l Z  = AZA1". 

Thus (3) is equivalent to 

(4) ABCCCB'A = ABCB'A. 

Now premultiplying by B' and postmultiplying by B on each side of (4), 
we have (2). Thus we have shown that Dz = D if and only if (2) holds. In this 
case the degrees of freedom is given by rank (D). Since trace (A1/zAA1/2) = 
trace (AA) and since AB = BC, we have 

rank(D) = trace(ABCB') = trace(BCCB) = trace(CC). 

It remains to determine the noncentrality parameter, which is given by 

aDa' = aA1/ZBCBA1lZa' = pB'BCB'Bp' = pCp'. 

Example A. The case C nonsingular and C = Z-I. In this case conditions (1) 
and (2) of the theorem are trivially satisfied, and thus XI;-'x' is distributed as 
x w -  'r'). 

Example B. Multinomial vectors and the "chi-squared statistic." Let 
(nl,. . ., nk) be multinomial (n;pl , .  . ., pk), with each p ,  > 0. As seen in 
Section 2.7, the vector 

converges in distribution to N(0, C), where 

A popular statistic for testing hypotheses in various situations is the chi- 
squared statistic 

& (n, - np,y 1 n 2 

TI- 1-1 c np, =nC 1-1 Pi -(;-PI). 
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This may be represented as a quadratic form in X,: 

where 

C =  = (k4,). 

We now apply the theorem to determine that the “chi-squared statistic” is, 
indeed, asymptotically chi-squared in distribution, with k - 1 degrees of 
freedom. That is, 

T, 5 xf -  1. 

We apply the theorem with p = 0, in which case condition (1) is trivially 
satisfied. Writing ulJ = pl(Gl, - p,), we have 

= (A P1 ul,) = (61, - p,) 

and thus 

and hence (2) holds. We also see from the last step that 
k 

1- 1 

trace(CL;) = (1 - p,) = k - 1 (= rank(CC)). 

Thus we have that, for the given matrices L; and C, 

x, 5 N(0, C) * T, = x,cx; 5 xf -  1’ rn 
Example C (continuation). It is also of interest to consider the behavior of 
the statistic T. when the actual distribution of (nl, . . . , n k )  is not the hypothe- 
sized multinomial (n; pl, . . . , p k )  distribution in terms of which T, is defined, 
but rather some other multinomial distribution, say multinomial (n; pnl, 
. . . , p&), where the parameter (Pnl,. . . , p n k )  converges to (pi,. . . , pk)  at a 
suitable rate. Whereas the foregoing asymptotic result for T, corresponds to its 
behavior under the null hypothesis, the present consideration concerns the 
behavior of T, under a sequence of “local” alternatioes to the null hypothesis. 
In particular, take 

Pml = pi  + AIn-”’, 1 5 i 5 k, n = 132, .i. . 
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Then we may express X, in the form 

Pnk) + (Al, * * * > Ak)s 
X, = n1/2(% - pnl, .  . . , - nk - 

n n 
that is, 

X, = X: + A, 

where A = ( A l , .  . . , Ak) satisfies c{ A1 = 0 and n-'lZX: is a mean of I.I.D. 
random vectors, each multinomial (1 ; pnl, . . . , Pnk). By an appropriate 
multivariate CLT for triangular arrays (Problem 3.P.10), we have X i  
N(0, C) and thus X, 5 N(A, C). We now apply our theorem to find that in 
this case T, converges in distribution to a noncentrd chi-squared variate. We 
have already established in Example B that (2) holds and that rank (CC) = 
k - 1. This implies that rank (C) = k - 1 since rank (C) = k. Thus the value 
0 occurs with multiplicity 1 as an eigenvahe of C. Further, note that l k  = 
(1, . . , , 1) is an eigenvector for the eigenvalue 0, that is, Cl; = 0. Finally, 
Al; = c: Al = 0. It is seen thus that (1) holds. Noting that 

we obtain from the theorem that, for C and C as given, 

Note that this noncentrality parameter may be written as 

n A (.k} - PI)'. 
1-1 PI 

An application of the foregoing convergence is to calculate the approximate 
power of T, as a test statistic relative to the null hypothesis 

against an alternative 

Suppose that the critical region is { T, > t o } ,  where the choice of to for a level a 
test would be based upon the null hypothesis asymptotic 1:- distribution of 
T,,. Then the approximate power of T, at the alternative HI is given by inter- 
preting (pf, . . , , pz) as (pnl, . .  , , p&) and calculating the probability that a 
random variable having the distribution 

H o :  (nl, . . . , nk) 

HI  : (nl, . , . , nk) 

is multinomial (n; p l ,  . , . , Pk) 

is multinomial (n; pt,  . . . , p:). 

exceeds the value to .  
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Example D (.continuation). Further quadratic forms in multinomiul uectors. 
Quadratic forms in 

xn = n1/2(2  - P I , .  . . , - nk - p k )  
n n 

other than the chi-squared sthtistic may be of interest. As a general treatment, 
Rao (1973), Section 6.a.1, considers equivalently the vector 

which is related to X,, by V,, = X,D, where 

p ;  112 

D = [ ' * .  ] = (p,-11z6,j). 
p; 112 

+ = (py, . . . , p y )  
Rao puts 

and establishes the proposition : a su@cient condition for the quadratic form 
V,,CVb, C symmetric, to conuerge in distribution to a chi-squared distribution is 

(*I C'= C and +C=a+, 

that is, C is idempotent and + is an eigenuector of C, in which case the degrees of 
freedom is rank (C) ifa = 0 and rank (C) - 1 i f a  # 0. 
We now show that this result follows from our theorem. By Application A 

of Corollary 1.7, V,, 5 N(0, X*), where 

= - @@a 

Applying (*), we have 

CE* = C - C+'+ = C - a+'+ 

and hence (check) 

CC*CC* = C - 2a@+ + a'+'+. 

But (*) implies a = 0 or 1, so that 

CC*CZ* = C - a@+ = CZ*, 
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that is, CC* is idempotent. Further, it is seen that 

trace(<=) -- rank(C) if a = 0 
trace(C) - 1 3: rank(C) - 1 

Thus the proposition is established. 
In particular, with C = Ik, the quadratic form V,CVk is simply the chi- 

squared statistic and converges in distribution to x i -  as seen in Example B. 
rn 

if a # 0. 
trace(CC*) = { 

3.6 FUNCTIONS OF ORDER STATISTICS 

Order statistics have previously been discussed in some detail in Section 2.4. 
Here we augment that discussion, giving further attention to statistics which 
may be expressed asfunctions of order statistics, and giving brief indication of 
some relevant asymptotic distribution theory. As before, the order statistics 
of a sample X1, . . . , X, are denoted by X, I 5 . 

A variety of short-cut procedures for quick estimates of location or scale 
parameters, or for quick tests of related hypotheses, are provided in the form 
of linear functions of order statistics, that is statistics of the form 

s X,,. 

For example, the sample range X,, - X,, belongs to this class. Another 
example is given by the a-trimmed mean. 

which is a popular competitor of X for robust estimation of location. A broad 
treatment of linear functions of order statistics is provided in Chapter 8. 

or *“wild” 
observations) are of concern, a useful statistic for their detection is the 
studentized range. 

In robustness problems where outliers (“contaminated 

where 8, is an appropriate estimator of 6. A one-sided version, for detection of 
excessively large observations, may be based on the so-called extreme deviate 
X,  - X. Likewise, a studentized extreme deviate is given by (X, - x)/s.  

The differences between successive order statistics of the sample are called 
the spacings. These are 

Dn1 = X,I - Xn,l-l, 2 S i S n* 
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The primary roles of DC) = (Dnl ,  . . . , D,,,,) arise in nonparametric tests of 
goodness of fit and in tests that F possesses a specified property of interest, As 
an example of the latter, the hypothesis that F possesses a "monotone 
failure rate" arises in reliability theory. A general treatment of spacings is 
given by Pyke (1965), covering the exact distribution theory of spacings, with 
emphasis on F uniform or exponential, and providing a variety of limit 
theorems for distributions of spacings and of functions of spacings. Some 
recent developments on spacings and some open problems in the asymptotic 
theory are discussed in Pyke (1972). 

We conclude with two examples of distribution theory. 

Example A. The sample range. Suppose that F is symmetric about 0 and 
that (Xnn - an)/b,, has the limit distribution 

G,(t) = e-'-', -co < t < co. 

Then, by symmetry, the random variable -(Xn1 - a,,)/b,, also has limit 
distribution G5.  Further, these two random variables are asymptotically 
independent, so that their joint asymptotic distribution has density 

e , --oo < S , t <  co. 

It f6llows that the normalized range 

- I - e - a - , - e - t  

( x n n  - xn1) - 20" 
b m  

has limit distribution with density 
m 

e - * -e  - ' -"- e" du = 2e-*K,(2e- (1 /29, s_, 
where K,(z) is a modified Bessel function of the 2nd kind. See David (1970), 
p. 211. rn 
Example B. The Studentized Extreme Deviate. Suppose that F has mean 0 
and variance 1, that (X,,,, - a,,)/b,, has limit distribution G, and that 

Then it turns out (Berman (1963)) that G is also the limit distribution of the 
random variable 
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where x = n-’  cy X I  and sz = ( n  - l)-’  r, ( X ,  - X ) z .  In particular, for 
F “0, 1)- 

3.P PROBLEMS 

Sections 3.1,3.2 

Show that X ,  is AN(A,,, A,), n + co. (Hint: use characteristic functions.) 

show that 4n(D:)’ s x i .  

1. Let X ,  be Poisson with mean A,, and suppose that A,, -+ 00 as n -P 00. 

2. For the one-sided Kolmogorov-Smirnov distance 0: treated in 2.1.5, 

3. Let X ,  4 N(p,  uz) and let Y, be AN@, uz/n). Let 

Investigate the limiting behavior of g(X,) and g(Y,). (By “limiting behavior” 
is meant both consistency and asymptotic distribution theory.) 

4. Let X,, . . . , X, be independent N(8,l) variables, 8 unknown. Con- 
sider estimation of the parametric function 

v(e) = P,,(x, 5 c) = w - e), 
where c is a specified number. It is well known that the minimum variance 
unbiased estimator of y(8) is 

c - x, 
1 ) ” Z )  

Determine the limiting behavior of this estimator. 

sections 343 .4  

5. Provide details of proof for Theorem 3.3B. 
6. Complete the details of the sample correlation coefficient illustration 

in 3.4.2. 
7. Show that the sample correlation coefficient (defined in 3.4.2) con- 

verges with probability 1 to the population correlation coefficient. Show also 
that it converges in rth mean, each r > 0. 

8. Let XI, Xz ,... be I.I.D. with mean p and variance crz, and with 
p4 < 00. The sample coefficient of variation is sn/Xn,  where x, = n-  ’ c; X I  
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and s,' = (n - l ) - l  c1 (X, - X,J2. Derive the asymptotic behavior of 
SJX,. That is, show: 

(i) If p # 0, then 

(ii) If p = 0, then 

9. Consider independent observations XI, Xz, . . . on a distribution F 
having density F' = f symmetric about p. Assume that F has finite variance 
and that F" exists at p. Consider estimation of p by a linear combination of the 
sample mean X and the sample median el,Z. 

(a) Derive the asymptotic bivariate normal distribution of (X, el,,). 
(Hint: use the Bahadur representation.) 

(b) Determine the "best" linear combination. 

Section 3.5 
10. Multivariate CLTfor triangular array. Let X, = (Xnl, . . . , Xnk)  be a 

mean of n I.I.D. random k-vectors ((,,,, . . . , t,p), 1 S j I; n, each having mean 
(0, . . . , 0) and covariance matrix C,. Suppose that C, -+ Z, n -+ 00, where C is 
a covariance matrix. Suppose that all Cnlr satisfy E((n,!12+e < K for some 
fixed e > Oand K < 00. Show that X, is AN(0, n-92). (Hint: apply Corollary 
1.9.3 in conjunction with the Cramtr-Wold device.) 

11. Discuss the asymptotic distribution theory of T. = X,CX; when 
X, 5 X and C, 3 C, where C is a constant matrix. In particular, deal with the 
modified chi-square statistic 
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Asymptotic Theory in 

Parametric Inference 

This chapter treats statistics which arise in connection with estimation or 
hypothesis testing relative to a parametric family of possible distributions for 
the data, 

Section 4.1 presents a concept of asymptotic optimality in the context of 
estimation on the basis of a random sample from a distribution belonging to 
the specified family. In particular, Section 4.2 treats estimation by the method 
of maximum likelihood, and Section 4.3 considers some other methods of 
estimation. Some closely related results concerning hypothesis testing are 
given in Section 4.4. 

We have seen in Section 2.7 how data in the form of a random sample may 
be reduced to multinomial form by grouping the observations into cells. 
Thus,asanadjunctto thetreatment ofSections4.1-4.4, wedeal with"product- 
multinomial" data in Sections 4.5 (estimation results) and 4.6 (hypothesis 
testing results). Of course, this methodology is applicable also without refer- 
ence to a parametric family of distributions. 

The concept of asymptotic optimality introduced in Section 4.1 is based on 
a notion of asymptotic relative efficiency formulated in terms of the gener- 
alized variance of multidimensional distributions. This generalizes the one- 
dimensional version given in 1.15.4. For the hypothesis testing context, 
the treatment of asymptotic relative efficiency is deferred to Chapter 10, which 
provides several distinctive notions. (These notions may also be recast in the 
estimation context.) 

4.1 ASYMPTOTIC OPTIMALITY IN ESTIMATION 

Two notions of asymptotic relative efficiency of estimation procedures were 
discussed in 1.15.4, based on the criteria of variance and probability concentra- 
tion. The version based on variance has been exemplified in 2.3.5 and 2.6.7. 

138 
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Here, in 4.1.1 and 4.1.2, we further develop the notion based on variance and, 
in particular, introduce the multidimensional version. On this basis, the 
classical notion of asymptotic “efficiency” is presented in 4.1.3. Brief comple- 
ments are provided in 4.1.4.. 

4.1.1 Concentration Ellipsoids and Generalized Variance 

The concept of variance as a measure of concentration for a 1-dimensional 
distribution may be extended to the case of a kdimensional distribution in 
two ways-in terms ofageometricalentity called the “concentration ellipsoid,” 
and in terms of a numerical measure called the “generalized variance.” We 
shall follow CramCr (1946), Section 22.7. 

For a distribution in Rk having mean p and nonsingular covariance matrix 
C, the associated concentration ellipsoid is defined to be that ellipsoid such 
that a random vector distributed uniformly throughout the ellipsoid has the 
same mean p and covariance matrix C. This provides a geometrical entity 
representing the concentration of the distribution about its mean p. It is found 
that the concentration ellipsoid is given by the set of points 

E = {x: (x - p)C-’(x - py 5 k + 2}, 

or 

E = {x: Q(x) S k + 2}, 

where 

Q(x) = (X - ~) )C- ’ (X  - p)’. 
In the 1-dimensional case, for a distribution having mean p and variance 02, 
this ellipsoid is simply the interval 

The volume of any ellipsoid 
- 3’%7, p + 3’%]. 

{x: Q(x) s 4, 
where c > 0, is found (see Cramtr (1946), Section 11.2) to be 

atkc+& I C 1112 

rok + 1) - 
Thus the determinant 1x1 plays in k-dimensions the role played by o2 in one 
dimension and so is called the generalized uariance. 

We may compare two &-dimensional distributions having the same mean 
p by comparing their concentration ellipsoids. If, however, we compare only 
the wlumesof these ellipsoids, then it is equivalent to compare the generalized 
variances. 
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4.1.2 Application to Estimation: Confidence Ellipsoids and Asymptotic 
Relative EfRciency 

Consider now the context of estimation of a k-dimensional parameter 8 = 
(el,.  . . , 0,) by 8, = (On,, . . . , n - l ~ ) ,  with C, non- 
singular. An ellipsoidal confidence region for 8 is given by 

where 8, is 

E, = {e: ,(8, - e)co;1(8, - ey 5 c }  
112 8 = {a: Q(n ( n - 01, %"') 5 c), 

where 

and it is assumed that Z&' is defined. Assuming further that 

Q(A,C) = ACA' 

ce;' 2 
it follows (why?) that 

~ ( n 1 / 2 ( 8 ~  - el, ce;') - Q(n1/2((1, - el, c; 1) 3 0. 

Q(P(~, - el, g;) 3 1:. 

pe(e E E,) = P ~ ( Q ( ~ I ~ / ~ ( ~ ,  - e), qml) s c,) + ~(1, '  s c,) = I - a, 

Consequently, by Example 3SA, we have 

Therefore, if c = c, is chosen so that P(x: > c,) = a, we have 

as n + 00, so that En represents an ellipsoidal confidence region (confidence 
ellipsoid) for 8 having limiting confidence coefficient 1 - a as n + 00. 

One approach toward comparison of two such estimation pmedures is to 
compare the volumes of the corresponding confidence ellipsoids, for a specified 
value of the limiting confidence coefficient. Such a comparison reduces to 
comparison of the generalized variances of the asymptotic multivariate 
normal distributions involved and is independent of the choice of confidence 
coefficient. This is seen as follows. Let us compare the sequences {8f)} and 
{8i2)}, where 

8t) is AN@, n-l~#)), 

and 

for i = 1,2. Then the corresponding confidence ellipsoids 

E:) = {e: ~(~1'2(4:) - e), ( ~ % ) ) - 1 )  ca}, i = 1 , ~  
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each have asymptotic confidence coefficient 1 - ct and, by 4.1.1, have volumes 

n( 1 / 2 1 k ( c ~ n ) (  1 /2 )k  I z(& I 112 
, i = 1, 2. rok + 1) 

It follows that the ratio of sample sizes nz/nl at which 6::) and 6:;) perform 
“equivalently” (i.e., have confidence ellipsoids whose volumes are asymp- 
totically equivalent “in probability”) satisfies 

Hence a numerical measure of the asymptotic relative efficiency of {6i2)} with 
respect to {&,‘I} is given by 

Note that the dimension k is involved in this measure. Note also that we 
arrive at the same measure if we compare {Oil)} and {6i2]} on the basis of the 
concentration eillipsoids of the respective asymptotic multivariate normal 
distributions. 

By the preceding approach, we have that {ei’)} is better than {&’)}, in the 
sense of asymptotically smaller confidence ellipsoids (or concentration 
ellipsoids), if and only if 

(1) tzpt 5 Ic&z’I. 
A closely related, but stronger, form of comparison is based on the condition 

(2) Z&’) - Z&’) nonnegative definite, 

or equivalently (see Rao (1973), p. 70, Problem 9), 

(2’) 

or equivalently 

(2”) xZbl)x’ s xZ&’]x‘, all x. 

Condition (2) is thus a condition for the asymptotic distribution of 6:’) to 
possess a concentration ellipsoid contained entirely within that of the asymp- 
totic distribution of 6f). Note that (2) implies (1). 

Under certain regularity conditions, there exists a “best” matrix in the 
sense of condition (2). This is the topic of 4.1.3. 

(C&’))- ’ - (C&2))- ’ nonnegative definite, 
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4.13 The Classical Notion of Asymptotic Efflciency; the Information 
Inequality 

We now introduce a definition of asymptotic eficiency which corresponds to 
the notion of optimal concentration ellipsoid, as discussed in 4.1.2. Let 
XI, . , . , X ,  denote a sample of independent observations from a distribution 
F, belonging to a family 9 = {F,, 8 E Q}, where 8 = (el,. . . , O& and 
8 c R‘. Suppose that the distributions F, possess densities or mass functions 
f ( x ;  8). Under regularity conditions on 9, the matrix 

is defined and is positive definite. Let 6, = (d,,,, . . . , 8 , k )  denote an estimator 
of 8 based on XI, . . . , X,.  Under regularity conditions on the class of esti- 
mators 6, under consideration, it may be asserted that if 6, is AN(& n-’&), 
then the condition 

(*I C, - 1;’ is nonnegative definite 

must hold. This condition means that the asymptotic distribution of 6, 
(suitably normalized) has concentration ellipsoid wholly containing that of 
the distribution N(8,I; I). In this respect, an estimator 6, which is AN(@, I i  I )  

is “optimal.” (Such an estimator need not exist.) These considerations are 
developed in detail in Cramtr (1946) and Rao (1973). 

The following definition is thus motivated. An estimator 6, which is 
AN(8, n-II; I) is called asymptotically eficient, or best asymptotically normal 
(BAN). Under suitable regularity conditions, an asymptotically efficient 
estimate exists. One approach toward finding such estimates is the method of 
maximum likelihood, treated in Section 4.2. Other approaches toward 
asymptotically efficient estimation are included in the methods considered in 
Section 4.3. 

In the case k = 1, the condition (*) asserts that if 6, is AN(& n-’o’), then 

1 

This lower bound to the parameter d in the asymptotic normality of 8, is 
known as the “Cramer-Rao lower bound.” The quantity Zb is known as the 
“Fisher information,” so that (**) represents a so-called “information in- 
equality.” Likewise, for the general kdimensional case, I, is known as the 
information matrix and (*) is referred to as the informution inequality. 
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Example. Consider the family F = (N(8 ,  cf), 8 E R}. Writing 

143 

f ( x ;  e) = ( 2 ~ ) -  1 / 2 ~ ;  exp[ - ($)2], -m < x c m, 

we have 

so that 

Therefore, for estimation of the mean of a normal distribution with variance 
ez, any “regular” estimator 8, which is AN(& n-lu) must satisfy u 2 c2. It is 
thus seen that, in particular, the sample mean X is asymptotically efficient 
whereas the sample median is not. However, X is not the only asymptotically 
efficient estimator in this problem. See Chapters 6, 7, 8 and 9. 

4.1.4 Complements 

. (i) Further discussion of the Crarnkr-Rao bound. See Cramtr (1946), 
Sections 32.3,32.6,32.7. Also, see Rao (1973), Sections 5a.2-5a.4, for informa- 
tion-theoretic interpretations and, references to other results giving different 
bounds under different assumptions on F and 6,, . 

(ii) Other notions ofeflciency. See Rao (19731, Section 5c.2. 
(iii) Asymptotic eflectiue uariance. To avoid pathologies of “super- 

efficient” estimates, Bahadur (1967) introduces a quantity, “asymptotic 
effective variance,” to replace asymptotic variance as a criterion. 

4.2 ESTIMATION BY THE METHOD OF MAXIMUM LIKELIHOOD 

We treat here an approach first suggested by C. F. Gauss, but first developed 
into a full-fledged methodology by Fisher (1912). Our treatment will be based 
on Cramtr (1946). In 4.2.1 we define the method, and in 4.2.2 we characterize 
the asymptotic properties of estimates produced by the method. 

4.2.1 The Method 

Let XI, . . . , X ,  be I.I.D. with distribution Fa belonging to a family F = 
{ F e ,  8 E a}, and suppose that the distributions Fe possess densities or mass 
functions f ( x ;  0). Assume 0 c Rk. 

The likelihood function of the sample XI, . . . , X,, is defined as 
n 

I =  1 
W ;  XI, . * * 9 X n )  = fl f(x,; 8). 
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That is, the joint density (or mass function) of the observations is treated as a 
function of 8. 

The method of maximum likelihood provides as estimate of 8 any value 8 
which maximizes L in 8. (Equivalently, log t may be maximized if convenient 
for computations.) 

Often the estimate 8 may be obtained by solving the system of likelihood 
equations, 

and confirming that the solution 6 indeed maximizes L. 

Remark. Obviously, the method may be formulated analogously without 
the I.I.D. assumption on XI, X 2 , .  . . . However, in our development of the 
asymptotic behavior of the maximum likelihood estimates, the I.I.D. 
assumption will be utilized crucially. fl 

4.2.2 Consistency, Asymptotic Normality, and Asymptotic EfRciency of 
Maximum Likelihood Estimates 

We shall show that, under regularity conditions on %, the maximum likeli- 
hood estimates are strongly consistent, asymptotically normal, and asymp- 
totically eficient. For simplicity, our treatment will be confined to the case of 
a ldimensional parameter. The multivariate extension will be indicated 
without proof. We also confine attention to the case that f ( x ;  0) is a density. 
The treatment for a mass function is similar. 

Regularity Conditions on 9. Consider 8 to be an open interval (not 
necessarily finite) in R. We assume: 

(R 1) For each 0 E 8, the derivatives 

a log f(x; e) a* log f(x ; e) i33 log j ( x  ; e) 
ae * a2 * ae3 

exist, all x; 
(R2) For each 8, E 0, there exist functions &), h(x) and H(x)  (possibly 

depending on 0,) such that for 8 in a neighborhood N(B,) the relations 
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(R3)  For each 8 e 0, 

Some interpretations of these conditions are as follows. Condition ( R  1) 
insures that the function a log f ( x ;  8)@l has, for each x, a Taylor expansion 
as a function of 8. Condition (R2)  insures (justijy) that J f ( x ; 8 ) d x  and 
S [a log f ( x ;  8)/a8]dx may be differentiated with respect to 8 under the 
integralsign. Condition (R3)  states that the random variable a log f(X; 6)/a8 
has finite positive variance (we shall see that the mean is 0). 

Theorem. Assume regularity conditions ( R  l), (R2)  and (R3)  on thefamily 9. 
Consider 1J.D. observations on Fg, for 8 an element of 0. Then, with Pg- 
probability 1, the likelihood equations admit a sequence of solutions {bn} 
satisfying 

(i) strong consistency: 6" + 8, n + m; 
(ii) asymptotic normality and eficiency : 

PROOF. (modeled after CramCr (1946)) By (Rl) and (R2) we have for A 
in the neighborhood N(8)  a Taylor expansion of a log f ( x ;  A)/aA about the 
point A = 8, as follows; 

a2 log f ( x ;  4 1-( 
a12 

= ( A  - e) 
A-0 

+ $32 - Wm), 
I a log f ( x ;  A) - a log f ( x  ; A)  

an 

where Ill < 1. Therefore, putting 

A,, =E - 9 

n l = l  dri A = 0  

and 

we have 

( * c )  
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where I {* I < 1. (Note that the left-hand side of the likelihood equation, which 
is an average of 1.1.D.’~ depending on A, thus becomes represented by an 
expression involving A and averages of 1.1.D.’~ not depending on A.) 

By (R 1) and (R2) 

and thus also 

It follows that 

and 

By (R3), the quantity 

satisfies 0 < ve < 00. 
It follows that 

(a) A,, is a mean of I.I.D.3 with mean 0 and variance 00; 

(b) B,, is a mean of 1.1.D.’~ with mean -ve; 
(c) C,, is a mean of 1.1.D.’~ with mean E e { H ( X ) } .  

Therefore, by the SLLN (Theorem 1.8B), 

WP 1 A,, * 0, B,, - - ve, c,, 2 E e { H ( x ) } ,  

and, by the CLT (Theorem 1.9.1A), 

A, is AN(O, n-’ve). 
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Now let e > 0 begiven,such that e < Ve/&{H(X)} and such that the points 
A, = 8 - e and A, = 8 + E lie in N(8), the neighborhood specified in 
condition (R2). Then, by (*), 

and 

By the strong convergences of A,, B, and C, noted above, we have that with 
Pe-probability 1 the right-hand side of each of the above inequalities becomes 
<($)Ve& for all n sufficiently large. For such n, the interval 

thus contains the point 0 and hence, by the continuity of a log L(A)/aA, the 
interval 

re - 6, e + E]  = [A,, AJ 

contains a solution of the likelihood equation. In particular, it contains the 
solution 

an A: 8 - E s 1 5 8 + E and 

Before going further, 4et us verify that em, is a proper random variable, that 
is, is measurable. Note that, for all t 2 8 - E, 

Also, by continuity of a log L(A)/aA in [8 - E, 8 + E ] ,  

e-asA5r an e - 8 5 A s t an 
a log L(A) 

= inf 
a log L(A) 

inf 
A ratlond 

and 

Thus {one > t }  is a measurable set. 
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Next let us obtain a sequence of solutions {On} not depending upon the 
choice of e. For this, let us denote by (n, d, Po) the underlying probability 
space and let us express one explicitly as fine(o). Our definition of 8,,*(w) 
required that n be suficiently large, n 2 N,(w), say, and that w belong to a 
set n, having Pe-probability 1. Let us now define 

aD 

= n n l / k *  
k =  I 

Then Pe(n0) = 1 also. For the moment, confine attention to w ~ n , .  Here, 
without loss of generality, we may require that 

N l ( 4  I; N,/Z(N s Nl/d@ s# ..’ * 
Hence, for NlIk(co) I; n < Nl,(k+ 

for k = 1,2,. . . . And for n < Nl(w), we set 8, w) = 0. Finally, for o$R,, 

variables which with Pe-probability 1 satisfies: 

we may define 

B,(w) = On. 

we set 8,(w) = 0, all n. It is readily seen that { ‘e ,} is a sequence of random 

(1) 8, is a solution of the likelihood equation for all n sufficiently large, 
and 

(2) 8, + 8, + CO. 

We have thus established strong consistency, statement (i) of the theorem. 
To obtain statement (ii), write 

which with Pe-probability 1 is valid for all n sufficiently large. Therefore, 

Also, since 8, ”p? 8, we have B, + i(*C,,(8, - 0)  % - v e .  Further, 
n112A, N(0, oo). Consequently, by Slutsky’s Theorem, 

~ I ~ ’ ~ ( O ,  - e) 5 N(O, U; 11, 
establishing statement (ii) of the theorem. 

Multidimensional Generalization. For the case of several unknown para- 
meters 8 = (el, . . . , &), and under appropriate generalizations of the 
regularity conditions (R1)-(R3), there exists a se uence @,,} of solutions to 
the likelihood equations such that 8 and\, is AN(8,n-11g1), where 
I, is the information matrix defined in 4.1.3. 
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Remarks. (i) Other sequences of solutions. The argument leading to state- 
ment (ii) of the theorem may be modified to handle an sequence {&} of 
solutions which are weakly consistent for 8. Therefore, if 4 is any solution of 
the likelihood equations satisfying& 3 8, then 8; is AN(8, n -  ‘LIB ‘)(Problem 
4.P.3). 

(ii) Transformation ofparameters, It is readily seen that if we transform to 
newparametersp = (PI, .  . . , @,),where& = g,(8,, . . . , OJ,thenthemaximum 
likelihood estimate of p is given by the corresponding transformation of the 
maximum likelihood estimate (I, of 8. Thus, under mild regularity conditions 
on the transformation, the consistency and asymptotic normality properties 
survive under the transformation. 

(iii) “Likelihood processes” associated with a sample. See Rubin (1961). 
(iv) Reguhity  assumptions not inuoluing diferentiability. See Wald (1949) 

for other assumptions yielding consistency of 8,. 
(v) Zteratiue Solution of the Likelihood Equations. The Taylor expansion 

appearing in the proof of the theorem is the basis for the following iterative 
approach. For an initial guess one, we have 

This yields the next iterate 

The process is continued until the sequence one, 
a solution 8,. A modification of this procedure is to replace 

on’, . . . has converged to 

by its expected value, in order to simplify computations. This version is called 
scoring, and the quantity 

a log an L(A) I A-&,  

is called the “eficient score.” 

Sections Sf, 5g and 8a. 
(vi) Further reading. For techniques of application, see Rao (1973), 
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4 3  OTHER APPROACHES TOWARD ESTIMATION 

Here we discuss the method of moments (4.3.1), minimization methods 
(4.3.2), and statistics of special form (4.3.3). 

43.1 The Method of Moments 
Consider a sample XI, . . . , X, from a distribution Fa of known form but with 
unknown parameter 8 = (81, . . . , 8,) to be estimated. The method ofmoments 
consists of producing estimates of 81, . . . , 8, by first estimating the distribu- 
tion Fe by estimating its moments. This is carried out by equating an ap- 
propriate number of sample moments to the corresponding population 
moments, the latter being expressed as functionsofO.Theestimatesof8,, . . . ,e, 
are then obtained by inverting the relationships with the moments. 

For example, a N(p,  a’) distribution may be estimated by writing u2 = 
a2 - p2 and estimating p by X and a2 by a2 = X:. This leads to 
estimation of the N(p,  a’) distribution by N(X, s2), where s’ = as - x’. 

Of course, in general, the parameters el, . . . , 8, need not be such simple 
functions of the moments of Fe as in the preceding example. 

The method of moments, introduced by Pearson (1894), has enjoyed wide 
appeal because of its naturalness and expediency. Further, typically the 
parameters el, . . . , 8, are well-behaved functions of the population moments, 
so that the estimates given by the corresponding functions of the sample 
moments are consistent and asymptotically normal. Indeed, as discussed in 
3.4.1, the asymptotic variances are of the form c/n. 

On the other hand, typically the method-of-moments estimators are not 
asymptotically efficient (an exception being the example considered above). 
Thus various authors have introduced schemes for modified method-of- 
moments estimators possessing enhanced efficiency. For example, a relatively 
simple approach is advanced by Soong (1969), whose “combined moment 
estimators” for parameters 8,, . . . , 8, are optimal linear combinations 
(recall 3.4.3) of simple moment estimators. Soong also discusses related 
earlier work of other investigators and provides for various examples the 
asymptotic efficiency curves of several estimators. 

Further reading on the method of moments is available in Cramtr (1946), 
Section 33.1. 

4.3.2 Minimization Methods; M-Estimation 
A variety of estimation methods are based on minimization of some function 
of the observations {X,} and the unknown parameter 8. For example, if 8 is a 
location parameter for the observations XI, . . . , X,, the “least-squares 
estimator” of 8 is found by minimizing 

n 

I =  1 
d(e; xi,. . . , x,) = ~ ( x ,  - 812, 
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considered as a function of 8. Similarly, the “ least-absolute-ualues estimator ** 
of 8 is given by minimizing c: I X i  - 8 I. (These solutions are found to be the 
sample mean and sample median, respectively.) Likewise, the maximum 
likelihood method of Section 4.2 may be regarded as an approach of this type. 

In Section 4.5 we shall consider approaches of this type in connection with 
product-multinomial data. There the function to be minimized will be a 
distancefunctiond(g(0), J) between a parametricfunctiong(8)and an estimator 
4 of g(0) based on the data. Several distance functions will be considered. 

Typically, the problem of minimizing a function of data and parameter 
reduces to a problem involving solution of a system of equations for an 
estimator 6. In Chapter 7 we treat in general the properties of statistics given 
as solutions of equations. Such statistics are termed “M-statistics.” 

A related approach toward estimation is to consider a particular class of 
estimators, for example those obtained as solutions of equations, and, within 
this class, to select the estimator for which a nonrandom function of 0 and 8 is 
minimized. For example, the mean square error E(b - 8)2 might be mini- 
mized. The method of maximum likelihood may also be derived by this 
approach. See also 4.33 below. 

4.33 Statistics of Special Form; L-Estimation and R-Estimation 

As mentioned above, the principle of minimization typically leads to the class 
of M-estimates (having the special form of being given as solutions of equa- 
tions). On the other hand, it is sometimes of interest to restrict attention to 
some class of statistics quite different (perhaps more appealing, or simpler) in 
form, and within the given class to select an estimator which optimizes some 
specfied criterion. The criterion might be to minimize E(8 - 8)*, or E 18 - 8 I, 
for example. 

A case of special interest consists of linear functions of order statistics, which 
we have considered already in Sections 2.4 and 3.6. A general treatment of 
these “L-statistics” is provided in Chapter 8, including discussion of eficient 
estimation via Lestimates. 

Another case of special interest concerns estimators which are expressed as 
functions of the ranks of the observations. These “R-statistics” are treated in 
Chapter 9, and again the question of eficient estimation is considered. 

4.4 HYPOTHESIS TESTING BY LIKELIHOOD METHODS 

Here we shall consider hypothesis testing and shall treat three special test 
statistics, each based on the maximum likelihood method. A reason for 
involving the maximum likelihood method is to exploit the asymptotic 
efficiency. Thus other asymptotically efficient estimates, where applicable, 
could be used in the role of the maximum likelihood estimates. 
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We formulate the hypothesis testing problem in 4.4.1 and develop certain 
preliminaries in 4.4.2. For the case of a simple null hypothesis, the relevant 
test statistics are formulated in 4.4.3 and their null-hypothesis asymptotic 
distributions are derived. Also, extension to “local” alternatives is considered. 
The case of a composite null hypothesis is treated in 4.4.4. 

4.4.1 Formulation of the Problem 
Let XI,, , . , X, be I.I.D. with distribution Fe belonging to a family 9 = 
{Fe ,  0 E 0}, where 8 c Rk. Let the distributions Fe possess densities or mass 
functions f ( x ;  0). Assume that the information matrix 

exists and is positive definite. 

where 8, is determined by a set of r( s k) restrictions given by equations 
A null hypothesis H, (to be tested) will be specified as a subset e0 of S, 

R,(0) = 0, 

In the case of a simple hypothesis Ho: 0 = 0,, we have 8, = {Oo}, and the 
functions R,(O) may be taken to be 

1 5 i S r. 

Ri(e) = 8, - e,,, 1 s i s k. 
In the case of a composite hypothesis, the set e0 contains more than one 
element and we necessarily have r < k. For example, fork = 3, we might have 
H,: 0 E 8 ,  = {fJ = (el, 02, &): 8, = Bol}. In this case r = 1 and the func- 
tion Rl(8) may be taken to be 

R,(e) = el - eol. 
4.4.2 Preliminaries 
Throughout we assume the regularity conditions and results given in 4.2.2, 
explicitly in connection with Theorem 4.2.2 and implicitly in connection with 
its multidimensional extension. Define for 8 = (el, . . . , &), the vectors 

and 

dne = 8, - 8 = (dnl - el, . . . , Bnr - ek), 
where 8, = (Oni, . . . ,e,) denotes a consistent, asymptotically normal, and 
asymptotically efficient sequence of solutions of the likelihood equations, as 
given by Theorem 4.2.2 (multidimensional extension). 
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Lemma A. Let XI, X2,. . . be I.I.D. with distribution Fe. Then (under ap- 
propriate regularity conditions) 

(i) n1/2ane N(O, I@); 
(ii) n112dne N(0, Ib I);  

(iii) nan& lake XI,; 

(iv) nd,,I,d,e 5 X i .  
PROOF. (i) follows directly from the multivariate Lindeberg-Levy 

CLT; (ii) is simply the multidimensional version ofTheorem 4.2.2; (iii) and (iv) 
follow from (i) and (ii), respectively, by means of Example 3.5A. 

d 2  

It is seen from (i) and (ii) that the vectors 

n1l2ane, n112dd I@ 

have the same limit distribution namely N(0, I@). In fact, there holds the 
following stronger relationship. 

Lemma B. Let XI, X2,  ... be I.I.D. with distribution Fe. Then (under 
appropriate regularity conditions) 

n1/2(ane - dneIe) 3 0. 

PROOF. Noting that 

we obtain by Theorem 1.12B the Taylor expansion 

where lies on the line joining 8 and 0,. From the regularity conditions 
(extended to the multidimensional parameter case), and from the con- 
vergence in distribution of the normalized maximum likelihood estimates, we 
see that the second term on the right-hand side may be characterized as 
o,(n-1/2). Thus we have, for each i = 1,. . . , k, 
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That is, 
,'I2( - ane - dne Jne) 4 0, 

where 

Thus 

nl/'(ane - ddIe) = nl/'dne( -Ie - Js) + op(l). 

As an exercise, show that the convergence and equality 

hold. We thus have 

n112(ane - dneIe) = n1'2dneop(l) + op(l) = o,,(l), 

since n1I2dd converges in distribution. W 
We further define 

Lemma C. Let XI, X,, . . . be Z.Z.D. with distribution Fa. Then (under ap- 
propriate regularity conditions) 

(i) 
(ii) 

CM4J - W)I - 3ndneIedne J; 0; 

W n @ n )  - w)] 5 xi .  
PROOF. (ii) is a direct consequence of (i) and Lemma A(iv). It remains to 

prove (i). By an argument similar to that of Lemma B, we have 
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4.4.3 Test Statistics for a Simple Null Hypothesis 

Consider testing Ho : 6 =’ 6,. 
A “likelihood ratio” statistic, 

was introduced by Neyman and Pearson (1928). Clearly, A,, takes values in 
the interval [0, 11 and Ho is to be rejected for sufficiently small values of A,,. 
Equivalently, the test may be carried out in terms of the statistic 

A,, = - 2  log A,,, 

which turns out to be more convenient for asymptotic considerations. 
A second statistic, 

was introduced by Wald (1943). 
A third statistic, 

K = nan~oIi~aneo, 

was introduced by Rao (1947). 
The three statistics differ somewhat in computational features. Note that 

Rao’s statistic does not require explicit computation of the maximum like- 
lihood estimates. Nevertheless all three statistics have the same limit chi- 
squared distribution under the null hypothesis: 

Theorem. 
tribution to x i .  

PROOF. The result for A,, follows by observing that 

Under H,, the statistics A,, W,, and V, each converge in dis- 

and applying Lemma 4.4.2C (ii). (It is assumed that the solution &,, of the 
likelihood equations indeed maximizes the likelihood function.) The result 
for W, follows from Lemma 4.4.2A (iv) and the fact that 16 I@. The result 
for V ,  is given by Lemma 4.4.2A (iii). 

Let us now consider the behavior of A,,, W,, and V ,  under “local”alternatives, 
that is, for a sequence (0,) of the form 

en = 6, + n-’12A, 
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where A = ( A l , .  . . , Ak). Let us suppose that the convergences expressed in 
Lemmas 4.4.2A (ii), B, and C (i) may be established uniformly in 8 for 8 in a 
neighborhood of 8,. It then would follow that 

and 

(3) A, - w . 3 0 ,  

where by (3) is meant that Pen( I A, - W, I > E )  + 0, n -* co, for each E > 0. 
By (l), (2), (3) and Lemma 3SB, since Ie is nonsingular, it then would follow 
that the statistics A,,, W,, and V, each converge in distribution to xf(A1eA'). 

Therefore, under appropriate regularity conditions, the statistics A,, W,, and 
V ,  are asymptotically equiuulent in distribution, both under the null hypo- 
thesis and under local alternatives converging sufficiently fast. However, at 
fixed alternatives these equivalences are not anticipated to hold. 

The technique of application of the limit distribution xi(A1,A) to calculate 
the power of the test statistics A,, W, or V, is as for the chi-squared statistic 
discussed in Example 3 . X  

Regarding the uniformity assumed above, see the references cited at the end 
of 4.4.4. 

4.4.4 Test Statistics for a Composite Null Hypothesis 
We adopt the formulation given in 4.4.1, and we assume also that the 
specification of 0, may equivalently be given as a transformation 

81 = g l ( V 1 ,  * * ' 9 vk-r), 

..., 
e k  = gk(v1, * * * I  V k - r ) ,  

where v = ( v l , .  . . , vk-,) ranges through an open subset N c Rk-'. For 
example, if k = 3 and Qo = (8: 8, = BOl}, then we may take N = { (v , ,  vz ) :  

v l ,  ~~)~0~}andthefunctionsg~,g,,g, tobeg,(vl, v2)  = OO1,g2(V1,v2) 
= v I ,  and g,(v,, v 2 )  = v 2 .  

that 
Assume that Ri and gi possess continuous first order partial derivatives and 
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is of rank rand 

is of rank k - r. 
In the present context the three test statistics considered in 4.4.3 have the 

following more general formulations. The likelihood ratio statistic is given by 

Equivalently, we use 

A, = - 2  log A,,, 

The Wald statistic will be based on the vector 

be = ( R  I (81, * * - 9 Me)) .  
Concerning this vector, we have by Theorem 3.3A the following result. (Here 
6, is as in 4.4.2 and 4.4.3.) 

Lemma A .  Let XI, X2,. . . be I.I.D. with distribution Fe. Then 

ba, is AN(b0, n-'C,I; 'Ce), 

The Wald statistic is defined as 

W, = nbbn( Cb, I&1 C&J - ' be,. 

The Rao statistic is based on the estimate 0: which maximizes L(8) subject 
to the restrictions R,(8) = 0, 1 5 i 5 r. Equivalently, 0: may be represented 
as 

e,+ = d o n )  = (gl(tJ, * * 9 gdtn)), 

where 0, is the maximum likelihood estimate of v in the reparametrization 
specified by the null hypothesis. Denoting by J, the information matrix for 
the v-formulation of the model, we have by Theorems 4.2.2 and 3.3A the 
following result. 

Lemma B. 
and thus 8 = g(v) for some v E N ,  we have 

Under Ho, that is, VX,, X2, . . . have a distribution F, for 8 E Oo, 

(i) 0, is AN(v, n- 'J; I )  

and 
(ii) 8: is AN@, n- 'D, J; ID;). 
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Noting that for 8 E Qo, that is, for 8 = g(v), 

we have 

where 

which is the analogue in the v-formulation of ad in the unrestricted model. 
An immediate application of Lemma 4.4.2A(i), but in the v-formulation, 

yields 

Lemma C. Under Ho, 

t,, is  AN(0, n''J,). 

On the other hand,application of Lemma4.4.2A (i) tor,, with the use of the 
relation t,, = aneDV, yields that 

t,,, is AN(0, n-'D:IeD,). 

Hence 

Lemma D.  For 8 = g(v), J, = D/IeD,. 

Thus the analogue of the Rao statistic given in 4.4.3 is 

V ,  = nt,o,Jc;,'t:o,. 

which may be expressed in terms of the statistic 8: as 

V, = nr,,Do,(D~,Ie:,Don)- lD;na;a,. 

The asymptotic distribution theory of A,,, W, and V ,  under the null hypo- 
thesis is given by 

Theorem. Under Ho, each of the statistics X,, W, and V, converges in 
distribution to x t .  

PROOF. We first deal with W,, which presents the least difficulty. Under 
Ho, we have be = 0 and thus, by Lemma A, 

n1/2bdn 5 N(0, C& 'C;). 
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Hence Theorem 3.5 immediately yields 

nbbm( Ce I i  'Ci)- be,, -$ x,'. 
Since 

(Cbm Iin' Cb,)- 4 (Ce IB 'C&)- I ,  

we thus have 

w, s x,'. 
Next we deal with A,,. By an argument similar to the proof of Lemma 4.4.2C, 
it is established that 

(1) A,, = -2[4(4) - I,@:)] = n(c)" - e,*)I,,(c), - e:y + op(l) 
and that 

bb, = bbn - be:, = (6, - O:)G,  + op(len - @ , + I )  
and 

112 c) n ( n - 03 = O p ( 1 h  

whence 

and hence 

rank %K& = trace BeKeBe 
= trace B; Ce(Ce && Ce)-  'Ce Be 
= trace (Ce Be B& C&)(Ca & B; C 0 ) -  I 

= trace I k x k  

= k. 

Since &K&, is idempotent, symmetric, of order k and rank k, 

&b& = I k X k .  
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Hence 
Ke = (Bh)- ‘B; I = (I; I)-  I = 1,. 

Therefore, combining (1) and (2), we see that 

A,, - W” 4 0. 

A,, : x,’. 
Hence 

For 6, see Rao (1973), Section 6e. 

The null hypothesis asymptotic distribution of A,, was originally obtained 
by Wilks (1938). The limit theory of A,, under local alternatives and of W,, 
under both null hypothesis and local alternatives was initially explored by 
Wald (1943). For further development, see Chernoff (1954, 1956), Feder 
(1968), and Davidson and Lever (1970). 

4.5 ESTIMATION VIA PRODUCT-MULTINOMIAL DATA 

In this section, and in Section 4.6, we consider data corresponding to a 
product-multinomiul model. In 4.5.1 the model is formulated and the business 
ofestimatingparameters is characterized. Methods ofobtainingasymptotical- 
ly eficient estimates are presented in 4.5.2. A simplifying computational device 
is given in 4.5.3, and brief complements in 4.5.4. In Section 4.6 we consider the 
closely related matter of testing hypotheses. 

4.5.1 The Model, the Parameters, and the Maximum Likelihood Estimate8 
Multinomial models and “cell frequency vectors” have been discussed in 
Section 2.7. The “product-mukinomiul” model is simply an extension of the 
scheme to the case of c populations. 

Let the ith population have rf “categories” or “cells,” 1 5 i s c. Let pu 
denote the probability that tin observation taken on the Ith population falls 
in the jth cell. Let nf denote the (nonrandom) sample size taken in the ith 
population and nU the (random) observed frequency in thejth cell of the ith 
population. Let N = nl + * + n, denote the total sample size. We have the 
following constraints on the pf,’s: 

(1) 

Likewise 

t p t j  - 1 = 0, 1 s i < c. 
1-1  

rt 

E n f 1  = nf, 
1-1 

1 < i 5 c. 
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Finally, the probability of the observed frequency matrix 

is 
{nt j :  1 s j s r l ,  1 s i s c }  

Regarding estimation, let us first note (Problem 4.P.6) that the maximum 
likelihood estimates of the pl;s are given by their sample analogues, 

BfJ = - %’, 1 Sj 5s t i ,  1 5 i S c. 
ni 

(This is found by maximizing the likelihood function subject to the constraints 
(l).) We shall employ the notation 

P = ( P I  19 * * * 9 P l r l ;  * * * ; pel, * * * 9 ~ e , )  

for the vector of parameters, and 

B = 0 1  1, * * B I  r ,  ; * * ; B c l ,  * - * Bere)* 

for the vector of maximum likelihood estimates. 
More generally, we shall suppose that the p,;s are given as specified func- 

tions of a set of parameters 81, . . . , ek, and that the problem is to estimate 
8 = (el,. . . , &)a An example of such a problem was seen in Section 2.7. 
Another example follows. 

Example A. Suppose that the c populations of the product-multinomial 
model represent diflerent levels ofa treatment, and that the rl cells of the ith 
population represent response categories. Let us take rl = ... = r, = t. 
Further, suppose that the response and factor are each “structured.” That is, 
attached to the response categories are certain known weights al, , . , , a,, and 
attached to the treatment levels are known weights bl, . . . , be. Finally, sup- 
pose that the expected response weights at the various treatment levels have a 
linear regression on the treatment level weights. This latter supposition is 
expressed as a set of relations 

r 

I= 1 
~ a j p u  = 1 + &, 1 s i s c, (*) 

where 1 and ~1 are unknown parameters. We now identify the relevant 
parameter vector 8. First, suppose (without loss of generality) that al # a,. 
Now note that, by the constraints (l), we may write 
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Also, after eliminating each plr by (i), we have by (*) that 

Finally, we also write 

(iii) 2 5; j I; r - 1, 

It thus follows from (i), (ii) and (iii) that the components of pmay be expressed 
entirely in terms of the parameters 

Of, = pl,, 1 5; i 5; C. 

el = 1; O2 = p ;  8 ,  = pi,, 2 s j  I; r - 1, 1 I; i I; C, 

that is, in terms of 8 containing k = (r - 2)c + 2 components. We shall 
consider this example further below, as well as in 4.6.3. 

The condition that the pI;s are specified functions of 8, 

p I j  = PI,@), 1 I; i s r l ,  1 5; i I; c, 

is equivalent to a set of m = CI rl - c - k constraints, say 

(2) H,(p) = 0, 1 s 1 s m, 

obtained by eliminating the parameters el, . . . , 0,. These equations are 
independent of the c constraints given by (1). 

Example B (continuation). For the preceding example, we have m = 
cr - c - [(r - 2)c + 23 = c - 2. These c - 2 constraints are obtained from 
(*) by eliminating 1 and p. (Problem 4.P.7). 

Example C. The problem of estimation of p may be represented as estima- 
tion of 8, where the 8,'s consist of the k = zII rl - cpI;s remaining after 
elimination of pl,,, . . . , per= by the use of (1). In this case m = 0, that is, there 
are no additional constraint equations (2). 

The problem of estimation of 8 thus becomes equivalent to that of estima- 
tion of the original vector p subject to the combined set of m + c constraint 
equations (1) and (2). If the representation of 8 in terms of p,;s is given by 

= 8(P) = b I (PI, * * 9 gk(P)), 

then an estimator of 8 is given by 

= 8(B) = <s,<b), * * * Y 8k(b)h 
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where = @ll ,  ... ; ... ; ..., be,,)denotes a vector estimate of p under the 
constraints (1) and (2). In particular, if denotes the maximum likelihood 
estimate of p subject to these constraints, then (under appropriate regularity 
conditions on g) the maximum likelihood estimate of 8 is given by 6 = g@). 
Therefore, asymptotically efficient estimates of 8 are provided by g(B*) for 
any BAN estimate B* of p subject to (1) and (2). 

There are two principal advantages to the formulation entirely in terms of 
constraints on the pi,%: 

(a) in testing, it is sometimes convenient to express the null hypothesis in 
the form of a set of constraint equations on the p i i s ,  rather than by a statement 
naming further parameters el, . . . , Ok (see 4.6.2 and 4.6.3); 

(b) this formulation is suitable for making a computational simplification 
of the problem by a linearization technique (4.5.3). 

4.5.2 Methods of Asymptotically EfRcient Estimation 

Regarding estimation of the B,‘s, several approaches will be considered, 
following Neyman (1949). Neyman’s objective was to provide estimators 
possessing the same large sample eficiency as the maximum likelihood 
estimates but possibly superior computational ease or small sample e@ciency. 
Although the issue of computational ease is now of less concern after great 
advances in computer technology, the small sample efficiency remains an 
important consideration. 

The “maximum likelihood” approach consists of maximizing 

with respect to 81, . . . , ($9 subject to the constraints (1) (of 4.5.1). 
The “minimum 1’” approach consists of minimizing 

with respect to 81,. . . , e k ,  subject to the constraints (1). 
Finally, the “modified minimum x’ *’ approach consists of minimizing 

with respect to 81, . . . , ek, subject to the constraints (1). 
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Noting that dl and d2 are measures of discrepancy between p and B, we 
may characterize the maximum likelihood approach in this fashion in terms 
of 

do(Pm B) = -2 108 IYP(f0, B), 
where 

Each approach leads to a system of equations. However, the relative 
convenience of the three systems of equations depends on the nature of the 
functions pf 0). In the case that these are linear in O,, . . . , &, the modified 

In any case, the three systems of equations are asymptotically equioalent in 
probability, in the sense that the estimates produced differ only by o,,(N' 'I2), 
as N + 00 in such fashion that each nl/N has a limit l , ,  0 < 1, < 1,l 5 i s c. 
For these details, see Cramdr (1946), Sections 30.3 and 33.4, and Neyman 
( 1949). 

For appropriate regularity conditions on the parameter space 0 and the 
functions pi,@), in order for the maximum likelihood estimates to be asymp- 
totically efficient, see Rao (1973), Section 5e.2. 

4.53 Wnearization Technique 
Corresponding to the set of (possibly nonlinear) constraint equations (2) 
(of 4.54, we associate the set of linear constraint equations 

(2*) Hj"(p) = 0, 1 s I s m, 

where 

minimum 1' approach yields a linear system of equations for O,, . . . , 6,. 

which is the linear part of the Taylor expansion of H,(p) about the point 
p = B, the maximum likelihood estimate in the model unrestricted by the 
constraints (2). 

Neyman (1949) proves that minimization of do(p, fi), dl(p, fi), or d2(p, B) 
with respect to the pl,'s, subject to the constraints (1) and (2), and minimization 
alternatively subject to the constraints (1) andl2*), yields estimates band p, 
respectively, which satisfy 

b - 8+ = o,(" 1'2). 

Further, regarding estimation f the parameters O r ,  Neyman establishes 
analogous results for estimates i e  and * based on (2) and (2*), respectively. 
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As shown in the following example, the application of the linearization 
technique in conjunction with the modified minimum xz approach produces 
a linear system of equations for asymptotically efficient estimates. 

Example. Linearized constraints with modijied minimum x z  approach. In 
order to minimize d2(p, 8)  with respect to the p,;s subject to the constraints 
(1) and (2*), we introduce Lagrangian multipliers 1,(1 I; i 15 c )  and pl ( l  I; 
l I; m) and minimize the function 

m 

D2(P, B, 5, P) = d2(P, B) + c 1, c P i j  - 1 + c P I W P )  
f = 1  c1 1 1 1 1  

with respect to the p i i s ,  A i s  and pis. The system of equations obtained by 
equating to 0 the partials of D 2  with respect to the piis,  A,‘s and pis is a linear 
system. Thus one may obtain asymptotically efficient estimates of the p,;s 
under the constraints (1) and (2), and thus of the 0,‘s likewise, by solving a 
certain linear system of equations, that is, by inverting a matrix. 

4.5.4 Complements 

(i) Further “minimum x2  type”approaches. For a review of such approaches 
and of work subsequent to Neyman (1949), see Ferguson (1958). 

(ii) Distance measures. The three approaches in 4.5.2 may be regarded as 
methods of estimation of 8 by minimization of a distance measure between the 
obseroed p vector (i.e., 8) and the hypothetical p vector (i.e., p(0)). (Recall 4.3.2.) 
For further distance measures, see Rao (1973), Section 5d.2. 

4.6 HYPOTHESIS TESTING VIA PRODUCT-MULTINOMIAL DATA 

Continuing the set-up introduced in 4.5.1, we consider in 4.6.1 three test 
statistics, each having asymptotic chi-squared distribution under the null 
hypothesis. Simplified schemes for computing the test statistics are described 
in 4.6.2. Application to the analysis of variance of product-multinomial data 
is described in 4.6.3. 

4.6.1 Three Test Statistics 
For the product-multinomial of 4.5.1, the constraints (1) are an inherent part 
of the “unrestricted” model. In this setting, a null hypothesis Ho may be 
formulated as 

HO: PI, = Pij(01, . * * O k ) ,  

where the pi’s are given as specified functions of unknown parameters 
8 = (el, . . . , &), or equivalently as 

Ho: Hl(p) = 0, 1 s 1 s m. 
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As in 4.5.2, denote by fi the maximum likelihood estimate of p in the unre- 
stricted model, and let b* denote an asymptotically eficient estimate of p 
under Ho or under the corresponding linearized hypothesis (4.5.3). Each of 
the three distance measures considered in 4.5.2 serves as a test statistic when 
evaluated at @* and 8. That is, each of 

di(B*, a,, i = 4 1 9 %  

is considered as a test statistic for H o ,  with Ho to be rejected for large values of 
the statistic. Thus the null hypothesis becomes rejected if fl and B* are 
sufficiently “far apart.” 

Theorem (Neyman (1949)). Under Ho, each of dl(@*, B), i = 4 1,2, 
converges in distribution to 2’. 

4.6.2 Simplified Computational Schemes 

Consider the statistic ti2(#*, B) in the case that B* denotes the estimate 
obtained by minimizing dz(p, fl) with respect to p under (1) and the con- 
straints specified by H o e  For some types of hypothesis Ho, the statistic 
dz(@*, B)can actually be computed without first computing 8’. Thesecomputa- 
tional schemes are due to Bhapkar (1961, 1966). 

Bhapkar confines attention to linear hypotheses, on the grounds that non- 
linear hypotheses may be reduced to linear ones if desired, by Neyman’s 
linearization technique (4.5.3). Also, we shall now confine attention to the 
case of an equal number of cells in each population: rl = - -. = re = r. 

Two forms of linear hypothesis Ho will be considered. Firstly, let Ho be 
defined by m linearly independent constraints (also independent of (1) of 
4.5.1), 

H o :  W P )  = i i hIl,P, + hl = 4 1 5 1 5; m, 
1-1 1-1 

where h,,, and h, are known constants such that the hypothesis equations 
together with (1) have at least one solution for which the pl,’s are positive. For 
this hypothesis, Bhapkar shows that 

M B * ,  P) z= CHI@, * * * 9 Hm(B)ICilCH1(BX * > Hm(B)I’, 

where CN denotes the sample estimate of the covariance matrix of the vector 
[HI(#), . . . , H,(B)]. Check that this vector has covariance matrix [c, JmX,, 

where 
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Thus the matrix C, is [ C N & ] m x m ,  where CNIk is obtained by putting f i f J  for 

Note that the use of d2(#*, B) for testing H o  is thus exactly equioalent to 
the “natural” test based on the asymptotic normality of the unbiased estimate 
[HI(#), . . . , H,(#)] of [Hl(p), . . . , H,(p)], with the covariance matrix of this 
estimate estimated by its sample analogue. Note also that, in this situation, 
d2(#*, fi) represents the Wald-type statistic of 4.4.4. 

PfJ  in c f k  * 

Secondly, consider a hypothesis of the form 
r k 

Ho: xa,p l ,  = x b f , 8 , ,  1 s i s  c, 
J =  1 I= I 

where the a;s and bl,’s are known constants and the 8,’s are unknown param- 
eters, and rank [br,], k =i u S c - 1. This is a linear hypothesis, defined by 
linear functions of unknown parameters, and so it may be reduced to the 
form of H o  considered previously. (In this case we would have m = c - u.) 
For example, recall Example 4.5.1 A, B. However, in many cases the reduction 
would be tedious to carry out and not of intrinsic interest. Instead, the problem 
may be viewed as a standard problem in “least squares analysis,” Bhapkar 
shows. That is, 

d,(#*, B) = “Residual Sum of Squares,” 

corresponding to application of the general least squares technique on the 
variables ajpij with the variances estimated by sample variances. Thus 
dz(@*, @) may be obtained as the residual sum of squares corresponding to 
minimization of 

where . 

4.6.3 Applications: Analysis of Variance of Product-Multlnomlal Data 
For a product-multinomial model as in 4.5.1, let “ i” correspond tofactor and 
“ j”  to response. Thus factor cattgories are indexed by i = 1,. . . , c and 
response categories by j = 1, . . . , r. (For simplicity, assume rl = a . = 
rc = r.) A response or factor is said to be structured if weights are attached to 
its categories, as illustrated earlier in Example 4.5.1A. We now examine some 
typical hypotheses and apply the results of 4.6.1 and 4.6.2. 

Hypothesis ofhomogeneity (Neither response nor factor is structured.) The 
null hypothesis is 

Ho: p f ,  does not depend on i. 
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In terms of constraint functions, this is written 

Ho: Hi,(p) = p f I  - pcI = 0, ( i  = 1,. . . , c - 1; j = 1,. , . , r - 1). 

The hypothesis thus specifies m = (r - l)(c - 1) constraints in addition to 
the constraints (1). 

Under I f o ,  the product-multinomial model reduces to a single multinomial 
model, and corresponding BAN estimates of the pi,'s are 

nlj + * . *  

N 
+'cJ, i =  I, ..., c ; j =  1, ..., r. at = 

Therefore, by Theorem 4.6.1, each of the statistics dl(B*, B), i = 0, 1, 2, is 
asymptotically x& I)(c- 

Hypothesis o j  mean homogeneity. (The response is structured, and the 
hypothesis is "no treatment effects,") 

r 

I= I 
Ho: 

In terms of constraint functions, this is written 

alpij does not depend on j .  

Ho: Hi(p) = c alpiI - c a ip l j  = 0, ( i  = 1, . . . , c - 1). 
I- 1 I= 1 

In terms of further parameters d,,  this is written 

H ~ :  C a p i ,  = e, ( i  = I, ..., c). 
I- 1 

Instead ofestimating the pi;s under Ho (as we did in the previous illustration), 
we may apply either of Bhapkar's devices to evaluate d2(#*, fi). The least- 
squares representation enables us to write immediately 

where 

(As an exercise, check that this is the proper identification with standard 
least-squares formulas.) By Theorem 4.6.1, d,(B*, 6) is asymptotically x,'- 
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Hypothesis of linearity of regression. (Both response and factor are 
structured. The hypothesis of linearity of the regression of response on 
“treatment level” is to be tested.) 

r 

Ho: C ~ j p i j  
1 1 1  

1 + pbl, (i = 1,. . . , c). 
By the least-squares analogy, 

where a, and yi are as in the preceding illustration, and 
C C C 

c c 

s = C~iY,, d = Ca,b,y , .  

15: ? P = -  

I =  1 I =  1 

Estimates of A and p are 
ES - 6d vd - 6s 
y& - .I ye - a2 ’ 

The statistic d,()*, )) is asymptotically xz- 2 .  

test for quadratic regression, etc. 

13.7-13.9and 13.11-13.12. 

If linearity is not sustained by the test, then the method may be extended to 

Further examples and discussion. See, for example, Wilks (1962), Problems 

4.P PROBLEMS 

Miscellaneous 

1. Suppose that 

(a) x n  = (Xnl, * - 9 x # k )  -% XO = (XOli * * 9 X O k )  

and 
(b) Y,, = (GI, .. . , Yd) 3 c = ( ~ 1 , .  . ., ck). 

(i) Show that (XRl Y,,) -% (x0, c). 

(ii) Apply (i) to obtain that X, + Y,, 
(iii) What are your conclusions in (i) if (b) is replaced by (b’) Y,, 5 c? 

(iv) What are your conclusions in (i) if (b) is replaced by ( 6 )  Y,, 3 Yo = 

Xo + c and X,Y; 4 Xoc‘. 

(Yo19 * * ’, YOJ? 

(Justify all answers.) 
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Section 4.2 
2. Justify the interpretations of regularity conditions (R1)-(R3) in 4.2.2. 
3. Prove Remark 4.2.2 (i). 

Section 4.4 

4. Do the exercise assigned in the proof of Lemma 4.4.2B. 
5. Check that B e K e b  is idempotent (in the proof of Theorem 4.4.4). 

Section 4.5 

likelihood estimates of the pf,’s are pf, = nfi/nf, respectively. 

Section 4.6 

6. Verify for the product-multinomial model of 4.5.1 that the maximum 

7. Provide the details for Example 4.5.1B. 

8. Verify the covariance matrix [c,J asserted in 4.6.2. 
9. Do the exercises assigned in 4.6.3. 



C H A P T E R  5 

U-S tatis tics 

From a purely mathematical standpoint, it is desirable and appropriate to 
view any given statistic as but a single member of some general class of 
statistics having certain important features in common. In such fashion, 
several interesting and useful collections of statistics have been formulated as 
generalizations of particular statistics that have arisen for consideration as 
special cases. 

In this and the following four chapters, five such classes will be introduced. 
For each class, key features and propositions will be examined, with emphasis 
on results pertaining to consistency and asymptotic distribution theory. As a 
by-product, new ways of looking at some familiar statistics will be discovered. 

The class ofstatistics to be considered in the present chapter was introduced 
in a fundamental paper by Hoeffding (1948). In part, the development rested 
upon a paper of Halmos (1946). The class arises as a generalization of the 
sample mean, that is, as a generalization of the notion of forming an uueruge. 
Typically, although not without important exceptions, the members of the 
class are asymptotically normal statistics. They also have good consistency 
properties. . 

The so-called “ U-statistics” are closely connected with a class of statistics 
introduced by von Mises (1947), which we shall examine in Chapter 6. Many 
statistics of interest fall within these two classes, and,many other statistics 
may be approximated by a member of one of these classes. 

The basic description of U-statistics is provided in Section 5.1. This includes 
relevant definitions, examples, connections with certain other statistics, 
martingale structure and other representations, and an optimality property of 
Uatatistics among unbiased estimators. Section 5.2 deals with the moments, 
especially the variance, of U-statistics. An important tool in deriving the 
asymptotic theory of U-statistics, the “projection” of a U-statistic on the basic 
observations of the sample, is introduced in Section 5.3. Sections 5.4 and 5.5 
treat, respectively, thealmost sure behavior and asymptoticdistribution theory 
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of U-statistics. Section 5.6 provides some further probability bounds and 
limit theorems. Several complements are provided in Section 5.7, including a 
look at stochastic processes associated with a sequence of U-statistics, and 
an examination of the Wilcoxon one-sample statistic as a U-statistic in 
connection with the problem of confidence intervals for quantiles (recall 
2.6.5). 

The method of “projection” introduced in Section 5.3 is of quite general 
scope and will be utilized again with other types of statistic in Chapters 8 
and 9. 

5.1 BASIC DESCRIPTION OF USTATISTICS 

Basic definitions and examples are given in 5.1.1, and a class of closely related 
statistics is noted in 5.1.2. These considerations apply to one-sample U- 
statistics. Generalization to several samples is given in 5.1.3, and to weighted 
versions in 5.1.7. An important optimulity property of U-statistics in unbiased 
estimation is shown in 5.1.4. The representation of a U-statistic as a martingale 
is provided in 5.1.5, and as an average of I.I.D. averages in 5.1.6. 

Additionalgeneral discussion of U-statistics may be found in Fraser (1957). 
Section 4.2, and in Puri and Sen (1971), Section 3.3. 

5.1.1 First Definitions and Examples 

LetXI, X2,. . . beindependentobservationsonadistributionF.(Theymaybe 
vector-valued, but usually for simplicity we shall confine attention to the real- 
valued case.) Consider a “parametric function” 8 = 8(F) for which there is an 
unbiased estimator. That is, 8(F) may be represented as 

e (F)  = E , , { ~ ( X ~ ,  . . . , x,)) = S. - .  Jh(xl, . . . , x,)d~(x,) - - - m x , , ~ ,  

for some function h = h(xl,. . . , x,,,), called a “kernel.” Without loss of 
generality, we may assume that h is symmetric. For, if not, it may be replaced by 
the symmetric kernel 

where c,, denotes summation over the m! permutations ( i l l . .  . , i,) of 
(1,. . , , m). 

For any kernel h, the corresponding U-statistic for estimation of 8 on the 
basis of a sample XI, . , . , Xn of size n 2 m is obtained by averaging the kernel 
h symmetrically over the observations: 
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where 
{il ,  . . . , i,} from (1,. . . , n}. Clearly, U, is an unbiased estimate of 8. 

denotes summation over the C) combinations of m distinct elements 

Examples. (i) K F )  = mean of F = p(F)  = x dF(x). For the kernel 
h(x) = x ,  the corresponding U-statistic is 

1 “  
n 1 9 1  

U(X1 , .  . . , X,) = - p,  = x, 
the sample mean. 

corresponding U-statistic is 
(ii) 8(F) = f12(F) = [J x dF(x)l2. For the kernel h(xl, x2) = x l x z ,  the 

(iii) B(F) = variance of F = aZ(F) =m (x - p)2  dF(x). For the kernel 

the corresponding U-statistic is 

= s2, 

the sample variance. 

I(x I; to), the corresponding Lr-statistic is 
(iv) 8(F) = F(to)  = r!m dF(x) = P F ( X 1  s to). For the kernel h(x) = 

where F, denotes the sample distribution function. 

xk, the corresponding LI-statistic is 
(v) 8(F) = ak(F) = xk dF(x) = kth moment of F. For the kernel h(x) = 

the sample kth moment. 
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(vi) O(F) = E,(XI - X21, a measure of concentration. For the kernel 
h(xl, x2) = Ixl - x2 I, the corresponding U-statistic is 

the statistic known as “Gini’s mean difference.” 

Wilks (1962), p. 200). 
(vii) Fisher’s katatistics for estimation of cumulants are U-statistics (see 

(viii) 8(F) = Epy(x1) = y(x)dF(x); CJ, = n-l y(X,). 
(ix) The Wflcoxon one-sample statistic. For estimation of e(F) = 

PF(XI  + X2 5 O), a kernel is given by h(x,, x2) = I(xl + x2 SO) and the 
corresponding U-statistic is 

(x) O(F) = IJ [F(x, y) - F(x, oo)F(m, y)I2 dF(x, y), a measure of de- 
pendence for a bivariate distribution F. Putting 

11(z1, z2,z3) = m z  s Zl) - I(Z3 s z1) 
and 

MXl, Vl), * - * * (x5, v 5 ) )  = SJ/(X*,  x2, XdJ/(Xl, x49 x5) 
)kQl, Y2, Y3))k(Yl, Y4, Y5)9 

we have EF{h}  = O(F), and the corresponding U-statistic is 

5.1.2 Some Closely Related Statistics: V-Stntistks 

Corresponding to a U-statistic 

for estimation of O(F) = E p ( h } ,  the associated oon Mises statistic is 
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where F, denotes the sample distribution function. Let us term this statistic, 
in connection with a kernel h, the associated V-statistic. The connection 
between U, and V ,  will be examined closely in 5.7.3 and pursued further in 
Chapter 6. 

Certain other statistics, too, may be treated as approximately a U-statistic, 
the gap being bridged via Slutsky's Theorem and the like. Thus the domain of 
application of the asymptotic theory of U-statistics is considerably wider than 
the context of unbiased estimation. 

5.1.3 Generalized U-Statistics 

The extension to the case of several samples is straightforward. Consider k 
independent collections, of independent observations {Xi1), Xi1), . . .}, . , . , 
{Xik), Xf), . . .} taken from distributions . . . , Fk), respectively. Let 
8 = 8(Ff1),  . . . , Fk)) denote a parametric function for which there is an 
unbiased estimator. That is, 

where h is assumed, without loss of generality, to be symmetric within each of 
its k blocks of arguments. Corresponding to the "kernel" h and assuming 
nl 2 ml, . . . , ?tk 2 mk, the U-statistic for estimation of 8 is defined as 

Here {ill, . . . , i," } denotes a set of mJdistinct elements of the set { 1,2,. . . , n,}, 
1 s j 5 k, and ic denotes summation over all such combinations. 

The extension of Hoeffding's treatment of one-sample U-statistics to the k- 
sample case is due to Lehmann (1951) and Dwass (1956). Many statistics of 
interest are of the k-sample U-statistic type. 

Example. The Wilcoxon 2-sample statistic. Let {Xl, . . . , X, , } and { Yl, . . . , 
x2}  be independent observations from continuous distributions F and G, 
respectively. Then, for 

8(F, G) = JF dG = P(X S Y), 

an unbiased estimator is 
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5.1.4 An Optimality Property of U-Statistics 

A U-statistic may be represented as the result of conditioning the kernel on 
the order statistic. That is, for a kernel h(xl, . . . , x,) and a sample XI, . . . , X,, 
n 2 m, the corresponding U-statistic may be expressed as 

un = E(h(X1, * * * 9 XnJlX(nJ, 

where X(,) denotes the order statistic (X,,, . . . , X,,). 
Oneimplication of this representation is that any statistics = S(X, ,  . . . , XJ 

for unbiased estimation of 0 = 0(F) may be “improved” by the correspond- 
ing U-statistic. That is, we have 

Theorem. Let S = S ( X , ,  . . . , X,) be an unbiased estimator ojCJ(F) based on a 
samplex,, . . . , XJrom thedistribution F. Then thecorresponding U-statistic is 
also unbiased and 

VarF{U} s VardS}, 

with equality g a d  only gPF(U = S )  = 1. 

PROOF. The “kernel” associated with S is 

which in this case (m = n) is the U-statistic associated with itself. That is, the 
tl-statistic associated with S may be expressed as 

u E{SlX(n,)- 

Therefore, 

E F { u 2 )  = EdE’{sIX(n,)I 5 EdE{S21X(n))) = EF{Sz), 

with equality if and only if B(S1X,,,} is degenerate and equals S with Pp- 
probability 1. Since EF{U} = EF{S}, the proof is complete. 

Since the order statistic X, is sufficient (in the usual technical sense) for any 
family 9 of distributions containing F, the U-statistic is the result of con- 
ditioning on a sufficient statistic. Thus the preceding res’ult is simply a special 
case of the Rao-Blackwell theorem (see Rao (1973), g5a.2). In the case that 9 
is rich enough that X,, is complete sufficient (e.g., if 9r contains all absolutely 
continuous F), then Un is the minimum variance unbiased estimator of 8. 
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5.15 Martingale Structure of U-Statistics 

Some important properties of U-statistics (see 5.2.1,5.3.3,53.4, Section 5.4) 
flow from their martingale structure and a related representation. 

Demtions. Consider a probability space (Q d, P), a sequence of random 
variables { Y,,}, and a sequence of a-fields (9,) contained in d, such that Y, 
is 9,-measurable and El Y,l c a. Then the sequence { Y,, 9,) is called a 
forward martingale if 

(a) 9tl c P2 c . . . , 
(b) E { Y , + ,  19,) = Y. wpl, all n, 

and a reverse martingale if 

(a') PI 3 .F2 3.. . , 
(b') E{Y~19,+1} = Y.+l wp1,alln. 

Thefollowinglemmas,due to Hoeffding(l96l)and Berk(1966),respectively, 
provide both forward and reverse martingale characterizations for U- 
statistics. For the first lemma, some preliminary notation is needed. Consider 
a symmetric kernel h(x , ,  . . . , x,) satisfying E F ( h ( X l , .  . . , X,)( c o. We 
define the associated functions 

h,(x1, * * * 9 x,) = W h ( X I ,  8 ' ' 9 xc, x,+ 1, * * 9 X,)) 
for each c = 1, . . . , m - 1 and put h, = h. Since 

for every Bore1 set A in RC, h, is (a version of) the cohditional expectation of 
h(X1, . . . , X,) given XI, . . . , X,: 

hc(x1,. . . 9 xc) = EF(h(X1, s * X , ) I x ,  = X I , .  . - 9  x c  = Xc}. 

Further, note that for 1 s c 5 m - 1 

hc(x1, * * 9 xc) = EF{hc+ l(X1, * * * 9 xc, x c +  1)). 

It is convenient to center at expectations, by defining 

NF) = EAh(X1,  . . . , Xm)}, 
ii = h - e(F), 

and 

hc = h, - e(F) ,  1 4 c 5 m. 
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..., 

where 

s n  = C Nxt1, * 9 xirn)* 
l s I ~ < - . < l , s n  

(1) 

Finally, for 1 s c s m, put 

sen  = C ~ r ( X i 1 .  * * 9 XIc). 
1 < I 1  <.-<l ,sn 

Hoeffding's lemma, which we now state, asserts a martingale property for the 
sequence {Srn}nrc for each c = 1, . . . , m, and gives a representation for U, in 
terms of Sin,. . . , Sm,. 

Lemma A (Hoeffding). Let h = h(x,, . . , , x,) be a symmetric kernel for 
8 = 8(F), with EFlhl < QO. Then 

u, - 8 = f (;)(p"* 
E l l  
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FurtherJor each c = 1, . . . , m, 

(3) EF(ScnIX1s.. . , Xk} = Sck, C 5 k I; n. 

Thus, with 9Ft = a{X,, . . . , xk}, the sequence {S,,, 9n}n2c is a forward 
martingale. 

PROOF. The definition of gm in (*) expresses h in terms of gl,. . . , gm. 
Substitution in (1) then yields 

m -  1 

S" = s,, + --E- c c 8c(x1,1~ . * - 9 XI, ) .  
c =  1 1 S ~ I  < a * .  < 1msn 1 SII < ... < Jc 5 m  

On the right-hand side, the term for c = 1 may be written 

c f d X i , ) .  
Isi l<-*<Imsn J = 1  

In this sum, each g(X,), 1 s i s n, is represented the same number of times. 
Since the sum contains (4) * m terms, each g(X , )  appears n-'(:)m times. That 
is, the sum S1, = c; g(X , )  appears (1)- l(:)(T) times. In this fashion we obtain 

Thus 

Example A. For the case m = 1 and h(x) = x, Lemma A states simply that 

and that {c! (X1 - O), a(X, ,  . . . , X,)} is a forward martingale. 
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The other martingale representation for U, is much simpler: 

Lemma B (Berk). Let h = h(x,, . . . , x,) be a symmetric kernel for 0 = 
0(F), with E,lhJ < a. Then, with 9, = U{X(, , ) ,X~+~, Xn+z ,... 1, the 
sequence { U, , 9,,}, , is a reverse martingale. 

PROOF. (exercise) Apply the representation 

un = E{h(XI, * * * 9 Xm)lX(n)} 
considered in 5.1.4. 

Example B (conrinuation). For the case m = 1 and h(x) = x, Lemma B 
asserts that X is a reverse martingale. H 

5.1.6 Representation of a U-Statistic as an Average of (Dependent) 
Averages of I.I.D. Random Variables 
Consider a symmetric kernel h(xl,. . . , x,) and a sample XI,. . . , X ,  of size 
n 2 m. Define k = [n/m], the greatest integer <n/m, and define 

W(x8, - * * Xn) 

= ~(xI,.**,x,) + h(xm+1,***,Xzm) + a * .  + h ( x ~ m - m + l , * . * , X ~ m )  

k 
Letting cp denote summation over all n! permutations (i,, . . ., in) of 
(1, . . . , n) and denote summation over all (:) combinations {i,, . . . , i,} 
from (1,. . . , n}, we have 

k W(x,,, . . . , xi") = km!(n - m ) !  h(xi l , .  . . , xlm), 
P C 

and thus 

or 

This expresses U, as an average of n ! terms, each of which is itself an average 
of k I.I.D. random variables. This type of representation was introduced and 
utilized by Hoeffding (1963). We shall apply it in Section 5.6. 

5.1.7 Weighted U-Statistics 
Consider now an arbitrary kernel h(x l ,  . . . , x,),not necessarily symmetric, to 
be applied as usual to observations XI, . . . , X, taken m at a time. Suppose 
alsothateachtermh(X,,, ...., XI,)becomesweightedbyafactorw(i,, ..., i,) 
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depending only on the indices i l ,  . . . , i,. In this case the U-statistic sum takes 
the more general form 

T,, = c w(il , .  . . , i,)h(X,,, . . . , X , J .  
C 

In the case that h is symmetric and the weights w(il ,  , . . , i,,,) take only 0 or 1 
as values, a statistic of this form represents an “incomplete” or “reduced” 
U-statistic sum, designed to be computationally simpler than the usual sum. 
This is based on the notion that, on account of the dependence among the 
(3 terms of the complete sum, it should be possible to use less terms without 
losing much information. Such statistics have been investigated by Blom 
(1976) and Brown and Kildea (1978). 

Certain “permutation statistics” arising in nonparametric inference are 
asymptotically equivalent to statistics of the above form, with weights not 
necessarily 0- and 1-valued. For these and other applications, the statistics of 
form T. with h symmetric and m = 2 have been studied by Shapiro and 
Hubert (1979). 

Finally, certain “weighted rank statistics ” for simple linear regression take 
the form T,,. Following Sievers (1978), consider the simple linear regression 
model 

where a and f l  are unknown parameters, xl, . . . , x, are known regression 
scores, and el, , . . , en are I.I.D. with distribution F. Sievers considers infer- 
ences for f l  based on the random variables 

yl = a + f ix ,  + e l ,  1 5 i 5 n, 

5 = “i at j4 (8  - a - fix,, yj - a - p X J ) ,  
1=1 J = t + l  

where d(u, u)  = I(u 5 o), the weights aiJ 2 0 are arbitrary, and it is assumed 
that x1 5 . a - 5 xn with at least one strict inequality. For example, a test of 
H,: B = Po against HI:  B > Po may be based on the statistic Go. Under the 
null hypothesis, the distribution of Go is the same as that of To when f l  = 0. 
That is, it is the same as 

n n  c c a,,$& el), 
1=1 J=i+l  

which is of the form T,, above. The ai,’s here are selected to achieve high 
asymptotic efficiency. Recommended weights are ail = xi - x,. 

5.2 THE VARIANCE AND OTHER MOMENTS OF A LISTATISTIC 

Exact formulas for the variance of a U-statistic are derived in 5.2.1. The 
higher moments are difficult to deal with exactly, but useful bounds are 
obtained in 5.2.2. 
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53.1 The Variance of a UStatistic 
Consider a symmetric kernel h(x,, . . . , x,) satisfying 

We shall again make use of the functions hc and hc introduced in 5.1.5. Recall 
that h, = h and, for 1 I; c I; m - 1, 

that h = h - 8, hc = h, - 8(1 s c I; m), where 

and that, for 1 I; c I; m - 1, 

Note that 

EF{h2(X1,. . . , X,)} < 00. 

hc(xl, . . . , x,) = E F { h ( X l ,  * ' 9 xc, xc+ 1, * ' 9 XIn)}, 

8 = W) = EF{h(X1,. . . , Xm)}, 

h,(x,, * * * 9 xc) = E F { h C + l ( X l ,  * ' , x c ,  xc+ 111. 

E ~ ~ ~ ( X ~ ,  . . . , X,) = 0, 1 I; c s m. 

Define Co = 0 and, for 1 S c I; m, 

C, = VarF{hc(X,,. . . , x,)} = EF{&xl,. . . , xCN. 
We have (Problem S.P.3(i)) 

0 = lo 5 C1 s 0 . -  s C, = Var,{h} < 00. 
Before proceeding further, let us exemplify these definitions. Note from the 
following example that the functions h, and hc depend on F for c s m - 1. 
The role of these functions is technical. 

Example A. B(F) = a2(F). Writing p = p(F), us = a2(F) and p4 = p4(F), 
we have 

h(x1, x2)  = I(x: + x: - 2 X I X 2 )  = fix, - X 2 l 2 ,  

R X l ,  x 2 )  = h ( x 1 ,  x 2 )  - g2, 

h,(x)  = N x 2  + g2 + p 2  - 2xp), 

h,(x) = g x 2  - at + /42 - 2x/4) = +[(x - /4)2 - 621, 

m21 = SN(X1 - /4) - (X2  - P)14} 
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Next let us consider two sets { a l , .  . . , a , }  and {bl , .  . . , b,} of m distinct 
integers from { 1, . . . , n }  and let c be the number of integers common to the 
two sets. It follows (Problem 5.P.4) by symmetry of h and by independence 
of {Xl, .  . . , X,] that 

EF{~(XII, - * - 9 Xam$(Xbl, * * 9 Xb,,,)} = cc.  

Note also that the number of distinct choices for two such sets having 

With these preliminaries completed, we may now obtain the variance of a 
exactly c elements in common is (:)(:)G::). 

U-statistic. Writing 

- 2  n 

= (:) Zo (:)C)t::)tc. 

This result and other useful relations from Hoeffding (1948) may be stated as 
follows. 

Lemma A .  The variance of U, is given by 

and satisfies 

Note that (*) is a fixed sample size formula. Derive (i), (ii), and (iii) from (*) 
as an exercise. 
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Exnmplc S (Continuation). 

Yl 2cz - - 3-+ 4C1 

n n(n - 1) n(n - 1) 

p4 - 6 + 2a4 =- 
n(n - 1) n 

The extension of (*) to the case of ageneralized Uatatistic is straightforward 
(Problem 5.P.6). 

An alternative formula for Var,{ U,} is obtained by using, instead ofh, and 
fie, the functions g, introduced in 5.1.5 and the representation given by 
Lemma 5.1.5A. 

Consider a set {Il, . . . , i,} of c distinct integers from { 1, . . . , n} and a set 
{ I l , .  . . , j d }  of d distinct integers from {l, . . . , n}, where 1 s c, d 5; m. It is 
evident from the proof of Lemma 5.1.5A that if one of {il , .  . . , i,} is not 
contained in {jl,. . . , j,,}, then 

From this it follows that Ep(gc(XII, . . . , X&AXjI,. . . , X J }  = 0 unless 
c = d and { i l l . .  . , i,} = {jl,. . . , I d } .  Therefore, for the functions 

we have 

19 c # d. 

Hence 

Lemma B. The variance of U, is gioen by 

The result (iii) of Lemma A follows slightly more readily from (**) than 
from (*). 
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Example C (Continuation). We have 

gl(x) = hw = f [ ( x  - PI2 - O2J, 

82(X1 '  X I )  = k l ,  X I )  - k)  - &I) = P 2  + X l P  + X t P  - X I X I ,  

E { g ! }  = Cl = 4(p4 - a4), as before, 
E { d )  = 04, 

and thus 

4 2 
n n(n - 1) 

as before. =-+- 

VarF{s2} = - ~ { g : }  + E { Q 3  

P4 - 0 4  204 

n n(n - 1)' 

The rate of convergence of Var{ V,} to 0 depends upon the least c for which 
C, is nonvanishing. From either Lemma A or Lemma By we obtain 

Corollary. Let c 2 1 and suppose that Co = - - = C,- = 0 < 4,. Then 

n + 00. E(U, - €))I  = O(n-'), 

Note that the condition C,, = 0, d < c, is equivalent to the condition E { @ }  
= 0, d < c, and also to the condition E { g i }  = 0, d < c. 

5.2.2 Other Moments of U-Statlstks 

Exact generalizations of Lemmas 5.2.1 A, B for moments of order other than 2 
are difficult to work out and complicated even to state. However, for most 
purposes,suitable bounds suffice. Fortunately, these are rather easily obtained. 

Lemma A. Let r be a real number 2 2. Suppose that EFI hi' < 00. Then 

(*I EIU, - 81' = O(n-(1'2)'), n -+ 00. 

PROOF. We utilize the representation of U, as an average of averages of 
1.1.D.'~ (5.1.6), 

v, - 8 = (n!) - '  C P(x,,,  . .., X , J ,  

where w ( X , , ,  . . . , XI") = W(XI, ,  . . . , XI") - 0 is an average of k = [n/m] 
1.I.D. terms of the form h(XI , ,  . . . , Xi,,,). By Minkowski's inequality, 

By Lemma 2.2.2B, El m(X,, . . . , X , ) r  = O(k-(1/2)'), k + 00. 

P 

E I U ,  - 81' s E ~ ~ ( X ~ , . . . ~ X ~ ) ~ .  
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Lemma B. Let c 2 1 and suppose that C0 = - . - = {,- = 0 < {,. Let r be 
an integer 2 2  and suppose that E F J  h I' < m. Then 

(**I E(U, - e)r 3 O(n-[(1/2)(rc+1)l), n 3 00, 

where [.I denotes integer part. 

PROOF. Write 

where "1" identifies the factor within the product, and denotes summation 
over all (;)' of the indicated terms. Consider a typical term. For thejth factor, 
let p1 denote the number of indices repeated in other factors. If p1 ZS c - 1, 
then (justify) 

E{h(X,,,, . . . , X,,,)(the p j  repeated X,,is} = 0. 

Thus a term in (1) can have nonzero expectation only if each factor in the 
product contains at least c indices which appear in other factors in the pro- 
duct. Denote by q the number of distinct elements among the repeated indices 
in the r factors of a given product. Then (justify) 

For fixed values of q, pI, . . . , p r ,  the number of ways to select the indices in the 
r factors of a product is of order 

(3) 9, qn' + (m - rd + ... + C - 
where the implicit constants depend upon rand m, but not upon n. Now, by 
(2). 4 s ci c;= 1 Pjl. Thus 

since (verify), for any integer x, x - [ix] = [fix + I)]. Confiningattention to 
the case that p1 2 c, . . . , pr 2 c, we have & p1 L rc, so that 

1-1 
(4) 

The number of ways to select the values q, pl, . . . , pr depends on r and m, but 
not upon n. Thus, by (3) and (4), it follows that the number of terms in the sum 
in (1) for which the expectation is possibly nonzero is of order 

Since (:)-I = O(n-'"), the relation (*) is proved. 

O(nm-IWWc+ I)]), + 
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Remarks. (i) Lemma A generalizes to rth order the relation E(U, - 0)’ = 
O(n-’ )  expressed in Lemma 5.2.1A. 

(ii) Lemma B generalizes to rth order the relation E(U, - 0)’ = O(n-‘), 
given C,- I = 0, expressed in Corollary 5.2.1. 

(iii) In the proof of Theorem 2.3.3, it was seen that 

E(X - p)3 = pjn-2 = O(n-’). 

This corresponds to (**) in the case m = 1, c = 1, r = 3 of Lemma B. 
(iv) For a generalized U-statistic based on k samples, (**) holds with n 

given byn = min{nl, . . . ,.n,}.Theextension oftheprecedingproofisstraight- 
forward (Problem 5.P.8). 

(v) An application of Lemma B in the case c r: 2 arises in connection with 
the approximation of a U-statistic by its projection, as discussed in 5.3.2 
below. (Indeed, the proof of Lemma B is based on the method used by Grams 
and Serfling (1973) to prove Theorem 5.3.2.) 

5.3 THE PROJECTION OF A U-STATISTIC ON THE BASIC 
OBSERVATIONS 

An appealing feature of a U-statistic is its simple structure as a sum of 
identically distributed random variables. However, except in the case of a 
kernel of dimension m = 1, the summands are not all independent, so that a 
direct application of the abundant theory for sums of independent random 
variables is not possible. On the other hand, by the special device of “pro- 
jection,” a U-statistic may be approximated within a sufficient degree of 
accuracy by a sum of I.I.D. random variables. In this way, classical limit theory 
for sums does carry over to U-statistics and yields the relevant asymptotic 
distribution theory and almost sure behavior. 

Throughout we consider as usual a U-statistic U, based on a symmetric 
kernel h = h(xl,. . . , x,) and a sample X I , .  . . , X, (n 2 m) from a distribu- 
tion F, with 0 = E,{h(X,, . . . , Xm)). 

In 5.3.1 we define and evaluate the projection 0‘“ of a U-statistic U,. In 
5.3.2 the moments of U, - 0, are characterized, thus providing the basis for 
negligibility of U, - 0, in appropriate senses. As an application, a representa- 
tion for U, as a mean of I.I.D.’s plus a negligible random variable is obtained 
in 5.3.3. Further applications are made in Sections 5.4 and 5.5. 

In the case C1 = 0, the projection 0, serves no purpose. Thus, in 5.3.4, we 
consider an extended notion of projection for the general case Co = = 

In Chapter 9 we shall further treat the concept of projection, considering it 
L - I  = 0 < L. 

in general for an arbitrary statistic S, in place of the 21-statistic U,. 
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5.3.1 The Projection of U,, 

Assume &lhl < co. The projection of the U-statistic U, is defined as 

0, = C E F { U n l X , }  - (n - l)8. 
t =  1 

(1) 

Note that it is exactly a sum of I.I.D. random variables. In terms of the func- 
tion h', considered in Section 5.2. we have 

Verify (Problem 5.P;9) this in the wider context of a generalized U-statistic. 
From ( 2 )  it is evident that 0, is of no interest in the case C1 = 0. However, in 
this case we pass to a certain analogue (5.3.4). 

5.3.2 The Moments of U,, - 0, 
Here we treat the difference U, - 0,. It is useful that U, - 0, may itself be 
expressed as a U-statistic, namely (Problem 5.P.10). 

based on the symmetric kernel 

H(x1, . . . , x,) = h(x1,.  . . , x,) - h'l(x1) - - *  - ~I(X,,,) - 8. 
Notethat E , { H }  = E , { H I X , }  = O.That is,inanobviousnotation,C") = 0. 
An application of Lemma 5.2.28 with c = 2 thus yields 

Theorem. Let v be an even integer. If EFH' < oo (implied by EFh' < oo), 
then 

(*I E&Jn - 0,)" = O(n-"), n + 00. 

For v = 2, relation (*) was established by Hoeffding (1948) and applied to 
obtain the CLT for U-statistics, as will be seen in Section 5.5. It also yields the 
LIL for U-statistics (Section 5.4). Indeed, as seen below in 5.33, it leads to an 
almost sure representation of U, as a mean of 1.1.D.'~. However, for informa- 
tion on the rates of convergence in such results as the CLT and SLLN for 
U-statistics, the case v > 2 in (*) is apropos. This extension was obtained by 
Grams and Serfling (1973). Sections 5.4 and 5.5 exhibit some relevant rates of 
convergence. 
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53.3 Almost Sure Representation of a [/-Statistic as a Mean of 1.1.D.'~ 

Theorem. Let v be an euen integer. Suppose that EFh' < 00. Put 

U, = On + R,. 
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Then, for any 8 > l/v, with probability 1 

R, = o(n-'(log n)"), n + co, 

PROOF. Let 6 > l/v. Put 1, = n(log n)-&. It suffices to show that, for 
any E > 0, wpl 1,lR,I < e for all n sufficiently large, that is, 

( 1 )  P(An I R, I > e for infinitely many n)  = 0. 

Let E > 0 begiven. By the Borel-Cantelli lemma, and since1, is nondecreasing 
for large n, it suffices for (1) to show that 

(2) 

Since R, = U, - on is itself a U-statistic as noted in 5.3.2 and hence a 
reverse martingale as noted in Lemma 5.1.5B, we may apply a standard result 
(Loeve (1978), Section 32) to write 

( & k + t  max IR.1 > e < 00. 
k = O  2 k s ; n s  2k+ 1 1 

( j z n  1 P suplU, - 0,l > t 5 t -vEIUn - OJ. 

Thus, by Theorem 5.3.2, the kth term in (2) is bounded by (check) 

& - " ~ ~ I c + ~ E F I U ~ L  - 0 2 k l v  = O((k + I)-"). 

Since 6v > 1, the series in (2) is convergent. 

The foregoing result is given and utilized by Geertsema (1970). 

5.3.4 The "Projection" of U,, for the General Case 

(It is assumed that EFh2 < co.) Since Cs = 0 ford < c, the variance formula 
for LI-statistics (Lemma 5.2.1A) yields 

r, = * * '  3: I&-, = 0 < 6, 

Var,{U,} = + O(n-C-'), n --* co, 
nc 

and thus 

(1) 



190 (I-STATISTICS 

This suggests that in this case the random variable n(’/zk(U, - 0) converges 
in distribution to a nondegenerate law. 
Now, generalizing 5.3.1, let us define the “projection”of U, to be 0, given 

by 

On - Le c EF{UnIXIl, * * 9 XIc) 
I SIi <*Q.< L s n  

Verify (Problem 5.P.11) that 

Again (as in 5.3.2), U, - 0, is itself a U-statistic, based on the kernel 

W X l ,  * * 9 x,) = &l, .  . * > x,) - c j;XX,,r - * * 9 XIc) - 0, 
1 Sit  < - a  < I, sa 

With&{H) = E F ( H ( X 1 )  = = E p { H ) X l , .  . . , X,) 0,andthusC:”) = 0. 
Hence the variance formula for U-statistics yields 

so that E{n(”zk(U, - 0,)’) = O(n-’) and thus 

(3) E(U, - 0,)’ = O(n-“+”), 

n(’/’)C(U, - 0,) 4 0. 

Hence the limit law of n(1’2k(’(U, - 0) may be found by obtaining that of 
n(l/z)c(on 0). For the cases c = 1 and c = 2, this approach is carried out in 
Section 5.5. 

Note that, more generally, for any even integer v, if E F H v  < a (implied by 
EFh’ < a), then 

(4) E (  U, - on/’ = O(”(’/’’v(C+ ‘I), n 4 a, 

The foregoing results may be extended easily to generalized U-statistics 
(Problem 5.P.12). 

In the case under consideration, that is, Cc- = 0 < C,, the “projection” 
0, - 0 corresponds to a term in the martingale representation of U, given by 
Lemma 5.1.5A. Check (Problem 5.P.13) that Son = 0 - - = S,- l , n  = 0 and 

5.4 ALMOST SURE BEHAVIOR OF USTATISTICS 

The classical SLLN (Theorem 1.8B) generalizes to U-statistics: 

Theorem A. I’EFlh( < a, then U, !% 0. 
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This result was first established by Hoeffding (1961), using the forward 
martingale structure of U-statistics given by Lemma 5.1.5A. A more direct 
proof, noted by Berk (1966), utilizes the reuerse martingale representation of 
Lemma 5.1.5B. Since the classical SLLN has been generalized to reverse 
martingale sequences (see Doob (1953) or Lotve (1978)), Theorem A is 
immediate. 

For generalized k-sample U-statistics, Sen (1977) obtains strong con- 
vergence of U under the condition EF{ Ihl(log+ I h l k - ' }  < a. 

Under a slightly stronger moment assumption, namely E,h2 < a, 
Theorem A can be proved very simply. For, in this case, we have 

EAU, - On)2 = O(n-2)  

as established in 5.3.2. Thus c."- EF(U, - 
1.3.5 U, - f?" 2 0. Now, as an application of the classical SLLN, 

< a, so that by Theorem 

Thus U, 3 8. This argument extends to generalized U-statistics (Problem 
5.P.14). 

As an alternate proof, also restricted to the second order moment assump- 
tion, Theorem 5.3.3 may be applied for the part U, - 0"- 0. 

In connection with the strong convergence of U-statistics, the following 
rate of convergence is established by Grams and Serfling (1973). The argu- 
ment uses Theorem 5.3.2 and the reverse martingale property to reduce to 0,. 

Theorem B. Let v be an euen integer. If EFh' < a, then for any E > 0, 

- 01 > c) = O(nl-V), n + a. 

The classical LIL may also be extended to U-statistics. As an exercise 
(Problem 5.P.15), prove 

Theorem C. Let h = h(x,, . . . , x,) be a kernel for 0 = B(F), with EFh2 < 00 

andcl > 0. Then 

n1'2(U, - e) lim = 1 wpl. 
,,+= (2m2c1 log log n)1'2 
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5.5 ASYMPTOTIC DISTRIBUTION THEORY OF U-STATISTICS 

Consider a kernel h = h(x,, . . . , x,) for unbiased estimation of 0 = O(F) = 

in 5.2.1. As discussed in 5.3.4, in the case C,- = 0 < C,, the random variable 
&{h}, with &h2 < a. k t  0 = S S * 9 * 5 C, = VarF{h} be as defined 

n - 0)  n' 1 / 2k( u 

has variance tending to a positive constant and its asymptotic distribution 
may be obtained by replacing U, by its projection on. In the present section 
we examine the limit distributions for the cases c = 1 and c = 2, which cover 
the great majority of applications. For c = 1, treated in 5.5.1, the random 
variable n1'2(Un - 0) converges in distribution to a normal law. Correspond- 
ing rates of convergence are presented. For c = 2, treated in 5.5.2, the random 
variable n(Vn - 0) converges in distribution to a weighted sum of (possibly 
infinitely many) independent x i  random variables. 

5.5.1 The Case 1; > 0 
The following result was established by Hoeffding (1948). The proof is left as 
an exercise (Problem 5.P.16). 

Theorem A. If EFh2 < 00 and 
that is, 

> 0, then n1/2(U, - 0) % N(0, m2<,), 

U, is AN ( 0,- m;Cl). 

Example A. The sample uariance. O(F) = a2(F). As seen in 5.1.1 and 5.2.1, 
h(xl, x 2 )  = &xi + x i  - 2x1x2), C, = (p4 - a4)/4, and 

Assuming that F is such that a* < p4 < 00, so that EFh2 < 00 and C1 > 0, we 
obtain from Theorem A that 

Compare Section 2.2, where the same conclusion was established for m2 = 

In particular, suppose that F is binomial (1, p) .  Then X' = #l, say, and 
(check) s2 = nB(1 - fl)/(n - 1). Check that p4 - a4 > 0 if and only if p # f. 
Thus Theorem A is applicable for p # f. (The case p = f will be covered by 
Theorem 5.5.2.) I 

(n - l)sZ/n. 
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By routine arguments (Problem 5.P.18) it may be shown that a uector of 
several U-statistics based on the same sample is asymptotically multivariate 
normal. The appropriate limit covariance matrix may be found by the same 
method used in 5.2.1 for the computation of variances to terms of order 
O(n - I). 

It is also straightforward (Problem S.P.19) to extend Theorem A to 
generalized U-statistics. In an obvious notation, for a k-sample U-statistic, we 
have 

provided that n mjCl,/n, 2 B > 0 as n = min{nl,. . . , nk} 00. 

Example B. The Wilcoxon 2-sample statistic (continuation of Example 
5.1.3). Here 8 = P(X s Y )  and h(x, y )  = I(x s y). Check that CI1 = 
P(X s Yl, X s Y2) - 02, C12 = P(X s Y, X 2  s Y) - 8'. Under the null 
hypothesis that 9 ( X )  = U( Y), we have0 = )and C1 = P( Y3 I; Yl, Y3 I; Y2) 
- t = $ - ~ = & = ~ 1 2 . 1 n t h i s c a s e  

u is  AN(;,^($+$)). 
The rate of convergence in the asymptotic normality of U-statistics has 

been investigated by Grams and Serfling (1973), Bickel (1974), Chan and 
Wierman (1977) and Callaert and Janssen (1978), the latter obtaining the 
sharpest result, as follows. 

Theorem E.  I fv  = El hi3 < 00 and Cl  > 0, then 

where C is an absolute constant. 

5.5.2 The Case c, = 0 < c2 
For the function h2(xl, x 2 )  associated with the kernel h = h(xl,  . . . , x,) 
(m 2 2), we define an operator A on the function space L2(R, F) by 

J - a ,  

That is, A takes a function g into a new function Ag. In connection with any 
such operator A, we define the associated eigenvalues rtl, A 2 ,  . . . to be the real 
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numbers 1 (not necessarily distinct) corresponding to the distinct solutions 
g,, g,, . . . of the equation 

We shall establish 

A g  - & = 0. 

Theorem. IfEFh' < 00 and C1 = 0 < (2, then 

where Y is a random variable of theform 
aD 

y = c k]<x:] - 11, 
I -  1 

where x:,, x:,, . . . are independent x: variates, that is, Y has characteristic 
function 

m 

EF{ei'Y} I fi (1 - 2it~l)-1/ze-'1AJ, 
I =  1 

Before developing the proof, let us illustrate the application of the theorem. 

Eximple A. The sample variance (continuation of Examples 5.2.1A and 
5.5.1A). We have hz(x, y )  = Hx - y)' - u2, C, = (fi4 - u4)/4, and Cz = 
&p4 + u4). Take now the case C, = 0, that is, p4 = c4. Then C2 = u4 > 0 
and the preceding theorem may be applied. We seek values 1 such that the 
equation 

/CHX - Y)' - ~21g(yMFOr) = &(x) 

has solutions g in L,(R, F). It is readily seen (justify) that any such g must be 
quadratic in form: g(x) = axz + bx + c. Substituting this form of g in the 
equation and equating coefficients of xo, x1 and x4, we obtain the system of 
equations 

Solutions (a, b, c, A) depend upon F. In particular, suppose that F is binomial 
(1, p), with p = 4. Then (check) uz = $, p4 = u4, f dF@) = 4 for all k. 
Then (check) the system of equations becomes equivalently 

a + b + 2c = 4a5 a + b + c = -261, a + b + c = (4c + 2a)l. 
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It is then easily found (check) that a = 0, b = - 2c, and A = -$, in which case 
g(x) = c(2x - l), c arbitrary. The theorem thus yields, for this F, 

n(s2 - $) 5 -sx; - 1). H 

Remark. Do s2 and m2 (=(n - l)s2/n) always have the same asymptotic 
distribution? Intuitively this would seem plausible, and indeed typically 
it is true. However, for F binomial (1, i), we have (Problem 5.P.22) 

which differs from the above result for s2. 

Example B. O(F) = p2(F). We have h(xl ,  x2) = xlx2 and 

m 2  - $1 - ix:, 

1 u, = - (;) & x i x j *  

Check that C1 = p2a2 and C2 = a4 - 2p2a2. Assume that 0 < a2 < 00. Then 
we have the case C I  > 0 if p # 0 and the case C1 = 0 < C2 if p = 0. Thus 

(i) If p # 0, Theorem 5.5.1A yields 

V, is AN p2,- ( 4p:a2); 
(ii) If p = 0, the above theorem yields (check) 

Example C. (conrinuarion of Example 5.1.1(ix)). Here find that C, > 0 for 
any value of 0,0 < 0 < 1. Thus Theorem 5.5.1A covers all situations, and the 
present theorem has no role. U 

PROOF OF THE THEOREM. On the basis of the discussion in 5.3.4, 
our objective is to show that the random variable 

converges in distribution to 

where 

m(m - 1) y, 
2 

m 
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with W:, W:, . . . being independent x: random variables. Putting 

1 
T, = - c m, X,), 

I t ,  

we have 

m(m - 1) n 
n(0, - e) = Tn- 2 n - 1  

Thus our objective is to show that 

(*I T,3 Y. 
We shall carry this out by the method of characteristic functions, that is, by 
showing that 

(**I EF{e'XTn} + E{elxY}, n + 00, each x. 

A special representation for h,(x, y )  will be used. Let {#,(a)} denote ortho- 
normal eigenfunctions corresponding to the eigenvalues {A,} defined in 
connection with h,. (See Dunford and Schwartz (1963), pp. 905,1009,1083, 
1087). Thus 

and h2(x, y )  may be expressed as the mean square limit of g- Ak #k(x )#k(Y)  

as K + 00. That is, 

and we write 
a0 

Fi2(x, Y )  = c #k(x)#k(Y).  
k =  1 

(2) 

Then (Problem 5.P.24(a)), in the same sense, 

(3) 

Therefore, since ti = 0, 

& { + k ( x ) }  = 0, all k. 

Furthermore (Problem 5.Pq24(b)), 
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whence (by (1)) 
m c AZ = EF{Rt(Xl, X2)I < 00. 

k =  1 

In terms of the representation (2), T, may be expressed as 

Now put 

Using the inequality I elr - 1 I 5 I z I, we have 

IE{e'"'m} - E { e ' " T n K ) (  < E J e ' * T n  - e i " T n K J  

s IxIElT, - K K l  

s Ixl[E(q - KK)2]1'2. 

Next it is shown that 

( 5 )  

Observe that T, - xK is basically of the form of a U-statistic, that is, 

m 

c E(& - GK)' 5 2 
k = K + l  

where 

with 

Justify (Problem 5.P.24(c)) that 
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Hence B { U , k }  = 0 and, by Lemma 5.2.1A, 

Thus 

yielding (5). 
Now fix x and let E > 0 be given. Choose and fix K large enough that 

Then we have established that 

(7) IE{efXTn} - E { e r X T n K } )  c e, all n. 

Next let us show that 
K 

k =  1 

d 
T , K  * YK = c &(w: - 1). (8) 

We may write 
K 

k =  1 
K K  = c ak(w;n - Zkn), 

where 
n 

111 
w,, = n-  1'2 c 4rXXf) 

and 
n 

I =  1 
Zh = n-  c &(X,). 

From the foregoing considerations, it is seen that 

E{ Wk,} = 0, all k and n, 

and 
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Therefore, by the Lindeberg-Ltvy CLT, 

(win,*-*, w K n ) ' ~ ( o , I K x ~ ) *  

Also, since EF(q$(X)} = 1, the classical SLLN gives 

(Zln,. . . , Z,,)* (1,. . . , 1). 

Consequently (8) holds and thus 

(9) IE{eixTnR} - E(elxYX} I < E, all n sufficiently large. 

Finally, we show that 

(10) lE{eixYR} - E { e i X Y } )  < E[E(W: - 1)2]1/2, all n. 

To accomplish this, let the random variables W:, W!, . . . be defined on a 
common probability space and represent Y as the limit in mean square of YK 
as K -P ao.Then 

IE{e'"""} - E{efXY}I 5 Ix( [E(Y - YK)2]112 

yielding (10). Combining (7), (9) and (lo), we have, for any x and any E > 0, 
and for all n sufficiently large, 

IE{eixTn} - E{efXY}I I; E{Z + [E(W: - 1)2]1'2}, 

This theorem has also been proved, independently, by Gregory (1977). 
proving (**). 

5.6 PROBABILITY INEQUALITIES AND DEVIATION PROBABLLITIES 
FOR U-STATISTICS 

Here we augment the convergence results of Sections 5.4 and 5.5 with exact 
exponential-rate bounds for P(U, - 8 2 I )  and with asymptotic estimates of 
moderate deviation probabilities 

5.6.1 Probability Inequalities for LI-Statistics 

For any random variable Y possessing a moment generating function E{e"} 
for 0 < s < so, one may obtain a probability inequality by writing 

P(Y - E{ Y} 2 t )  = P(s[Y - E {  Y }  - t ]  2 0) s e-"E{&Y-B(rIJ} 
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and minimizing with respect to s E (0, so]. In applying this technique, we make 
use of the following lemmas. The first lemma will involve the function 

X e-’ + - ex, f ( x ,  Y) = - 
X + Y  

x > 0, y > 0. 
X + Y  

Lemma A, Let E{Y} = p and Var{Y} = v. 

(i) IfP(Y 5 b) = 1, then 

1 5 Rs(b - lo, sv/(b - PI), > 0. E{e“Y - C) 

(ii) YP(a I; Y s b) = 1, then 
E{ee(Y-l”} e(W)Sa(b-aIa, s > 0. 

PROOF. (i) is proved in Bennett (1962), p. 42. Now, in the proof of 
Theorem 2 of Hoeffding (1963), it is shown that 

qe-sP + peW 5 e(1 /W,  

for 0 < p < 1, q - 1 - p. Putting p = y/(x + y )  and z = (x + y), we have 

so that (i) yields 

Now, as pointed out by Hoeffding (1963), v = E(Y - p)z = E(Y - p) 
(Y - a) S (b - p)E( Y - a) = (b - p)(p - a). Thus (ii) follows. 

f ( x ,  y )  5 e(UW(x+r)’ 

~ { ~ “ Y - f l ) ’ )  5 e(l/e)ral(b-r)+*/(b-fl)ll~ 

The next lemma may be proved as an exercise (Problem 5.P.25). 

Lemma B. rfE{eSY} < aofor 0 < s < so, and E{Y} = p, then 

E{e’(Y-p)} = 1 + O(sz), s + 0. 

In passing to U-statistics, we shall utilize the following relation between the 
moment generating function of a U-statistic and that of its kernel. 

Lemma C. Let h = h(xl, . . . , x,) satisfv 

+h(S) = Ep{eah(X1~*ii~XnJ} < 00, 0 < S s SO. 

Then 

where k = [n/m]. 
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PROOF. By 5.1.6, Un = (n!)- '  cp W(X,, ,  . . . , XJ, where each W(.) 
is an average of k = [n/m] I.I.D. random variables. Since the exponential 
function is convex, it follows by Jensen's inequality that 

&urn = es(nl)-l&W(.) 5 ( n ! ) - l  2 esW(X~,~... .X~m) 

P 

Complete the proof as an exercise (Problem 5.P.26). 

We now give three probability inequalities for U-statistics. The first two, 
due to HoetTding (1963), require h to be bounded and give very useful explicit 
exponential-type bounds. The third, due to Berk (1970), requires less on h but 
asserts only an implicit exponential-type bound. 

Theorem A .  Let h = h(xl,. . ., x,) be a kernel for 8 = B(F), with a 5 
h(xl, . . . , x,) 5 b. Put 8 = E{h(X,, . . . , X,)} ando* = Var{h(X,, . . . , X,,,)}, 
Then, for t > 0 and n 2 m, 

p(u, - 8 2 t) 5 e-2tn/mlt2/(b-a)2 (1) 
and 

(2) p(u, - 8 2 t) 5 e-ln/mlt'/2[0'+(1/3)(b-~)~l 

PROOF. Write, by Lemmas A and C, with k = [n/m] and s > 0, 

5 e-Jt+(l/8)S2(b-o)*/k.  

Now minimize with respect to s and obtain (1). A similar argument leads to 

It is shown in Bennett (1962) that the right-hand side of (2') is less than or 
equal to that of (2). 

(Compare Lemmas 2.3.2 and 2.5.4A.) 

Theorem B. Let h = h(x,, . . . , x,,,) be a kernel for 8 = qF), with 
EF{eSh(XI* . v t *  X"} c 43, 0 < s 5 so. 

all n 2 m. 

Then,for ewry E > 0, there exist C, > 0 and pa < 1 such that 

P(Un - 8 2 E )  s C,p:, 
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PROOF. For 0 < t $ s0k, where k = [n/m], we have by Lemma C that 

= [e  - re @h(s)]k, 

where s = t /k .  By Lemma B, e-"$,,(s) = 1 + O(s2), s 3 0, so that 
e-ace-a'JIh(s) = 1 - es + O(s2), s + 0, 

< 1 for s = s, sufficiently small. 
Complete the proof as an exercise. 

Note that Theorems A and B are applicable for n small as well as for n large. 

5.6.2 "Moderate Deviation" Probability Estimates for U-Statistics 
A "moderate deviation" probability for a U-statistic is given by 

where c > 0 and it is assumed that the relevant kernel h has finite second 
moment and > 0. Such probabilities are of interest in connection with 
certain asymptotic relative efficiency computations, as will be seen in Chapter 
10. Now the CLT for U-statistics tells us that qn(c) 3 0. Indeed, Chebyshev's 
inequality yields a bound, 

1 
= O((1og n)- I). qn(c) ' c2 log n 

However, this result and its analogues, O((1og n)-(1'2)v), under v-th order 
moment assumptions on h are quite weak. For, in fact, if h is bounded, then 
(Problem 5.P.29) Theorem 5.6.1A implies that for any S > 0 

where u S h 1s b. Note also that if merely E ,  I h I3 < 00 is assumed, then for c 
sufficiently small (namely, c < l), the Berry-EssCen theorem for U-statistics 
(Theorem 5.5.1B) yields an estimate: 

(1) q,(C) = O(n-l(I  -4W:/~b-oPlcZ),  

4 

However, under the stronger assumption E , J h r  < 00 for some v > 3, this 
approach does not yield greater latitude on the range of c. A more intricate 
analysis is needed. To this effect, the following result has been established by 
Funk (1970), generalizing a pioneering theorem of Rubin and Sethuraman 
(1965a) for the case U, a sample mean. 

Theorem. lfEFl h r  < 00, where v > 2, then (*) holdsfor ca < v - 2. 
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5.7 COMPLEMENTS 

In 5.7.1 we discuss stochastic processes associated with a sequence of U- 
statistics and generalize the CLT for U-statistics. In 5.7.2 we examine the 
Wilcoxon one-sample statistic and prove assertions made in 2.6.5 for a 
particular confidence interval procedure. Extension of LI-statistic results to 
the related V-statistics is treated in 5.7.3. Finally, miscellaneous further 
complements and extensions are noted in 5.7.4. 

5.7.1 Stochastic Processes Associated with a Sequence of U-Statistics 
Let h = h(xl, . . . , x,) be a kernel for 8 = 8(F), with EF(h2) < co and C1 > 0. 
For the corresponding sequence of U-statistics, { U,JnL,,,, we consider two 
associated sequences of stochastic processes on the unit interval [O, 13. 

In one of these sequences of stochastic processes, the nth random function is 
based on U,, ..., U, and summarizes the past history of {U,},%,,. In the 
other sequence of processes, the nth random function is based on LI,, U , ,  l,. . . 
and summarizes the future history of { U,},>,,. Each sequence of processes 
converges in distribution to the Wiener process on [O, 13, which we denote by 
W ( . )  (recall 1.11.4). 

The process pertaining to thefuture was introduced and studied by Loynes 
(1970). The nth random function, {Z,(t), 0 5 t 5 l}, i s  defined by 

Z,(O) = 0; 

zn(t) = zn(tnk), cn, k +  1 < t < c n k *  

For each n, the “times” t,,, c,, ,, + 1, . . . form a sequence tending to 0 and Z,( .) is 
a step function continuous from the left. We have 

Theorem A (Loynes). Zn(*) 5 W(.) in DCO, 13. 

This result generalizes Theorem 5.5.1A (asymptotic normality of U,) and 
provides additional information such as 

Corollary. For x > 0, 

(1) sup(& - e) 2 x(var{U,})1~2 

sup W(t) 2 x) = 2[1 - qx)] 
O S l S l  
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and 

(2) ~ i m  P inf(Uk - e)  5 -x(var{un})'/2 
n - w  ( kPn 

= P inf W(t) 5 -x = 2[1 - Cp(x)]. 

As an exercise, show that the strong conoergence of Un to 8 follows from this 

The process pertaining to the past has been dealt with by Miller and Sen 

( 05151 1 
corollary, under the assumption E F { h 2 )  < 00. 

(1972). Here the nth random function, { %(t), 0 5 t 5 l}, is defined by 

m -  1 ,  
0 4 t s -, n % ( t )  = 0, 

x(t) defined elsewhere, 0 s t 5; 1, by linear interpolation. 

Theorem B (Miller and Sen). Yn(.) 4 W(.) in CCO, 11. 

This result likewise generalizes Theorem 5.5.1A and provides additional 
information such as 

(3) Iim P sup k(Uk - e) 2 x(m2C1)1'2n1/2 = 2[1 - @@)I, x > 0. 
n-rw ( mSh5n 1 

Comparison of (1) and (3) illustrates how Theorems A and B complement 
each other in the type of additional information provided beyond Theorem 
5.5.1A. 

See the Loynes paper for treatment of other random variables besides 
U-statistics. See the Miller and Sen paper for discussion of the use of Theorem 
B in the sequential analysis of U-statistics. 

5.7.2 The Wilcoxon One-Sample Statistic as a UStatistic 
For testing the hypothesis that the median of a continuous symmetric 
distribution F is 0, that is, el,, = 0, the Wilcoxon one-sample test may be 
based on the statistic 

1 I ( X ,  + x, > 0). 
I s l < l s n  

Equivalently, one may perform the test by estimating G(O), where G is the 
distribution function G(r) = P(f(X, + X,) s t), with the null hypothesis to 
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be rejected if the estimate differs sufficiently from the value 3. In this way one 
may treat the related statistic 

1 u, = - (;) c 4x1 + X , S O )  
ISl<lSn 

as an estimate of G(0). This, of course, is a U-statistic (recall Example 5.1.l(ix)), 
so that we have the convenience of asymptotic normality (recall Example 
5.5.2C-check as exercise). 

In particular, we considered a procedure of Geertsema (1970), giving an 
interval 

In 2.6.5 we considered a related confidence interval procedure for 

I w n  = (Ka,,, WntJ 
formed by a pair of the ordered values W,, 5 s .  5 WnN, of the N, = (i) 
averages &Xi + X,), 1 s i < j 5 n. We now show how the properties stated 
for Iwn in 2.6.5 follow from a treatment of the U-statistic character of the 
random variable 

Note that G,, considered as a function of x, represents a “sample distribution 
function” for the averages HX, + X,), 1 5 i < j s n. From our theory of U- 
statistics, we see that G,(x) is asymptotically normal. In particular, Gn({,/2) is 
asymptotically normal. The connection with the Wn;s is as follows. Recall the 
Bahadur representation (2.5.2) relating order statistics Xnkm to the sample 
distribution function F,. Geertsema proves the analogue of this result for 
Wnkn and G,. The argument is similar to that of Theorem 2.5.2, with the use of 
Theorem 5.6.1A in place of Lemma 2.5.4A. 

Theorem. Let F satisfy the conditions stated in 2.6.5. Let 

Then 



206 LI-STATISTICS 

where with probability 1 

R, = O(n-j'* log n), n + 00. 

It is thus seen, via this theorem, that properties of the interval Iwn may be 
derived from the theory of U-statistics. 

5.7.3 Implications for Y-Statlstics 
In connection with a kernel h = h(xl, . . . , x,), let us consider again the 
V-statistic introduced in 5.1.2, Under appropriate moment conditions, the 
Uatatistic and V-statistic associated with h are closely related in behavior, as 
the following result shows. 

Lemma. Let r be a positiue integer. Suppose that 

EF(h(XI,, ..., X,Jr < 00, all i S il , .  .., i, 5 m. 

Then 
EIU, - V,Ir = O(n-7. 

PROOF. Check that 

n'"(Un - CJ = (n'" - n,mJ (Urn - K), 
where n,, = n(n - l)...(n - m + 1) and W, is the average of all terms 
h(X1,, . . . , Xi,,,) with at least one equality i, = ib, a # b. Next check that 

nm - n(,,,) = O(nm-'). 

Finally, apply Minkowski's inequality. H 

Application of the lemma in the case r = 2 yields 

n"'(U, - v,) 4 0, 

in which case nl''(U, - 0) and n1I2( V ,  - 0) have the same limit distribution, 
a useful relationship in the case C1 > 0. In fact, this latter result can actually be 
obtained under slightly weaker moment conditions on the kernel (see 
B6nner and Kirschner (1977).) 

5.7.4 Further Complements and Extensions 

by Sen (1960). 

an not necessarily identical may be found in Sen (1967). 

Sproule (1969a, b). 

(i) Distribution-free estimation of the uariance of a U-statistic is considered 

(ii) Consideration of U-statistics when the distribution of X1, X', . . . 
(iii) Sequential corlfidence interuuls based on U-statistics are treated by 
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(iv) Jackknifing of estimates which are functions of U-statistics, in order 
to reduce bias and to achieve other properties, is treated by Arvesen (1969). 

(v) Further results on probabilities of deviations (recall 5.6.2) of U- 
statistics are obtained, via some further results on stochastic processes 
associated with U-statistics (recall 5.7.1), by Sen (1974). 

(vi) Consideration of U-statistics for dependent observations XI, X 2 ,  , , . 
arises in various contexts. For the case of m-dependence, see Sen (1963), (1965). 
For the case of sampling without replacement from a finite population, see 
Nandi and Sen (1963). For a treatment of the Wilcoxon 2-sample statistic in 
the case of samples from a weakly dependent stationary process, see Serfling 
(1968). 

(vii) A somewhat diflerent treatment of the case f l  = 0 < C2 has been 
given by Rosin (1969). He obtains asymptotic normality for U ,  when the 
observations XI,. . . , X ,  are assumed to have a common distribution F("' 
which behaves in a specified fashion as n + 00. In this treatment F(") is 
constrained not to remain fixed as n -+ 00. 

(viii) A general treatment of symmetric statistics exploiting an orthogonal 
expansion technique has been carried out by Rubin and Vitale (1980). For 
example, U-statistics and Ccstatistics are types of symmetric statistics. Rubin 
and Vitale provide a unified approach to the asymptotic distribution theory 
of such statistics, obtaining as limit random variable a weighted sum of 
products of Hermite polynomials evaluated at N(0, 1) variates. 

5.P PROBLEMS 

section 5.1 

5.1.5. 
1. Check the relations EF{gI(XI)} = 0, EF{g2(xI, X,)}  = 0,. . . in 

2. Prove Lemma 5.1.5B. 

Section 5.2 

3. (i) Show that Co s C1 5 ... s C,. 
(ii) Show that C1 s 4c2. (Hint: Consider the function g2 of 5.1.5.) 
4. Let { a l , .  . . , a,} and {b l , .  .. , b,} be two sets of m distinct integers 

from { 1, . . . , n }  with exactly c integers in common. Show that 

EF{I;(X,', * ' - 9 X,,)fi(X*,, * * * 9 X*J = Cc. 
5. In Lemma 5.2.1A, derive (iii) from (*). 
6. Extend Lemma 5.2.1A(*) to the case of a generalized U-statistic. 
7. Complete the details of proof for Lemma 52.28. 
8. Extend Lemma 5.2.2B to generalized U-statistics. 
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Section 5 3  

9. The projection of a generalized U-statistic is defined as 

0 = i: f E F { U I X I “ }  - (N - l)e, 
J = l  1-1 

where N 8: nl + ... + nk. Define 

h&) = E,{h(X\”, . . . , Xg!; .  . . ; Xik), . . . , X g i ) l X p  = x} - 8. 

Show that 

10. (continuation) Show that U, - 0, is a Ustatistic based on a kernel 

11. Verify relation (2) in 5.3.4.. 
12. Extend (2), (3) and (4) of 5.3.4 to generalized U-statistics. 
13. Let gc and S,, be as defined in 5.1.5. Define a kernel G, of order m by 

H satisfying E p { H }  = E , { H I X y }  = 0. 

G b i ,  - - 9 x 3  = C &iI, 9 x 3  
1 S I 1 < - - < l c $ m  

and let U,, be the U-statistic corresponding to G,. Show that 

and thus 
m 

c- 1 
U , - O =  CU,. 

Now suppose that c,- = 0 < c,. Show that 0, defined in 53.4 satisfies 

on - 8 = we,. 
Section 5.4 

14. For EP h2 < 00, show strong convergence of generalized U-statistics. 
15. Prove Theorem 5.4C, the LIL for U-statistics. (Hint: apply Theorem 

5.3.3.) 

Section 5.5 
16. Prove Theorem 5.5.1A, the CLT for U-statistics. 
17. Complete the details for Example 5.5.1A. 
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18. Extend Theorem 5.5.1A to a vector of several U-statistics defined on 

19. Extend Theorem 5.5.1A to generalized U-statistics (continuation of 

20. Check the details of Example 5.5.1B. 
21, Check the details of Example 5.5.2A. 
22. (continuation) Show, for F binomial (1, i), that 

the same sample. 

Problems 5.P.9, 10, 12). 

n(m2 - 4) - 4x;. 
(Hint: One approach is simply to apply the result obtained in Example 
5.5.2A. Another approach is to write m, = fl  - f lz  and apply the methods of 
Chapter 3.) 

23. Check the details of Example 5528. 
24. Complete the details of proof of Theorem 5.5.2. 
(a) Prove (3). (Hint: write h,(x) = EF{h2(x, X,)} and use Jensen's 

inequality to show that 

(b) Prove (4). 
(c) Prove(6). 

Section 5.6 
25. Prove Lemma 5.6.1B. (Hint: Without loss assume E{ Y} = 0. Show 

that e'' = 1 + SY + L'Z, where 0 < 2 < Y2e'Or.) 
26. Complete the proof of Lemma 5.6.1C. 
27. Complete the proof of Theorem 5.6.1A. 
28. Coriiplete the proof of Theorem 5.6.1B. 
29. In 5.6.2, show that (1) follows from Theorem 5.6.1A and that (*) for 

c 5; 1 follows from Theorem 5.5.1B. 

Section 5.7 

EF{h2}  < 00, from Corollary 5.7.1. 
30. Derive the strong convergence of U-statistics, under the assumption 

31. Check the claim of Example 5.5.2C. 
32. Apply Theorem 5.7.2 to obtain properties of the confidence interval 

I W W  

33. Complete the details of proof of Lemma 5.7.3. 
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Von Mises Differentiable 

Statistical Functions 

Statistics which are representable as functionals T(F,) of the sample distribu- 
tion F, are called “statistical functions.” For example, for the variance 
parameter u2 the relevant functional is T(F) 5 [x - x dF(x)]’ dF(x) and 
T(F,) is the statistic mz considered in Section 2.2. The theoretical investiga- 
tion of statistical functions as a class was initiated by von Mises (1947), who 
developed an approach for deriving the asymptotic distribution theory of 
such statistics. Further development is provided in von Mises (1964) and, 
using stochastic process concepts, by Filippova (1962). 
Notions of dCgerentiability of T play a key role in the von Mises approach, 

analogous to the treatment in Chapter 3 of transformations of asymptotically 
normal random vectors. We thus speak of “differentiable statistical functions.” 
In typical cases, T(F,,) - T(F) is asymptotically normal. Otherwise a higher 
“type” of distribution applies, in close parallel with the hierarchy of cases 
seen for U-statistics in Chapter 5. 

This chapter develops the “differential approach ” for deriving the asymp- 
totic distribution theory of statistical functions. In the case of asymptotically 
normal T(F,,), the related Berry-Essken rates and laws of iterated logarithm 
are obtained also. Section 6.1 formulates the representation of statistics as 
functions of F, and sketches the basic scheme for analysis of T(F,,) - T(F) by 
reduction by thedifferential method to an appropriate approximating random 
variable V,. Methodology for carrying out the reduction to V, is provided in 
Section 6.2, and useful characterizations of the structuie of V, are provided in 
Section 6.3. These results are applied in Section 6.4 to obtain general results 
on the asymptotic distribution theory and almost sure behavior of statistical 
functions. A variety of examples are treated in Section 6.5. Certain comple- 
ments are provided in Section 6.6, including discussion of some statistical 
interpretations of the derivative of a statistical function. Further applications 
of the development of this chapter will arise in Chapters 7,8 and 9. 

210 
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6.1 STATISTICS CONSIDERED As FUNCTIONS OF THE SAMPLE 
DISTRIBUTION FUNCTION 

We consider as usual the context of I.I.D. observations X1, X 1 , .  , . on a 
distribution function F and denote by F, the sample distribution function 
based on X1,. . . , X,. Many important statistics may be represented as a 
function of F,, say T(F,). Since F, is a reasonable estimate of F, indeed 
converging to F in a variety of senses as seen in Section 2.1, we may expect 
T(F,) to relate to T(F) in similar fashion, provided that the functional T ( . )  is 
sufficiently “well-behaved” in a neighborhood of F. This leads to considera- 
tion of F as a “point” in a collection 9 of distribution functions, and to 
consideration of notions of continuity, differentiability, and other regularity 
properties for functionals T( a )  defined on 9. In this context von Mises 
(1947) introduced a Taylor expansion for T(.) ,  whereby the difference 
T(G) - T(F) may be represented in terms of the “derivatives” of T( . )  and 
the “difference” G - F. 

In 6.1.1 we look at examples of T(F,) and give an informal statement of 
von Mises’ general proposition. In 6.1.2 the role of von Mises’ Taylor 
expansion is examined. 

6.1.1 First Examples and a General Proposition 

Here we consider several examples of the broad variety of statistics which are 
amenable to analysis by the von Mises approach. Then we state a general 
proposition unifying the asymptotic distribution theory of the examples 
considered. 

Examples. (i) For any function h(x), the statistic 

T, = lh(x)dF,(x) (= n-’ I - 1  f: h(X,)) 

is a linear statistical function-that is, linear in the increments dF,(x). In 
particular, thesample moments ak = j XL dF,(x) are linear statistical functions. 

(ii) The sample kth central moment, T, = mk = T(F,), where 

T(F) = ,[. - l x  dF(x)]L dF(x). 

(iii) Maximum likelihood, minimum chi-square estimates T, arc given by 

(iv) The chi-squared statistic is T(F,), where 
solving equations of the form H(T, F,) = 0. 
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where {A,} is a partition of R into k cells and { p i }  is a set of specified (null- 
hypothesis) probabilities attached to the cells. 

(v) The generalized Cramdr-oon Mises test statistic, considered in 2.1.2, 
is given by T(F,), where T(F) = w(Fo)(F - Fo)’ dFo, for w and Fo 
specified. 

It turns out that examples (i), (ii) and (iii) are asymptotically normal (under 
appropriate conditions), example (iv) is asymptotically chi-squared, and 
example(v)issomethingstihdifferent (a weighted sumofchi-squared variates). 
Nevertheless, within von Mises’ framework, these examples all may be viewed 
as special cases of a single unifying theorem, which is stated informally as 
follows. 

Proposition (von Mises). The type of asymptotic distribution of a diyer- 
entiable statistical function T, = T(F,) depends upon which is the first 
nonvanishing term in the Taylor development of the functional T(.) at the 
distribution F of the observations. If it is the linear term, the limit distribution 
is normal (under the usual restrictions corresponding to the central limit 
theorem). In other cases, “higher” types of limit distribution result. 

More precisely, when the first nonvanishing term of the Taylor develop- 
ment of T ( . )  is the one of order m, the random variable nm/2[T(F,) - T(F)] 
converges in distribution to arandom variable with finite variance. Form = 1, 
the limit law is normal. (Actually, the normalization for the order m case can 
in some cases differ from nm”. See 6.6.4.) 

6.1.2 The Basic Scheme for Analysis of T(FJ 

In 6.2.1 a Taylor expansion of T(F,) - T(F) will be given: 

Analysis of T(F,) - T(F) is to be carried out by reduction to 

” 1  
V,, =: 1 7-d T(F; F, - F) 

, = i J !  ’ 
for an *appropriate choice of m. The reduction step is performed by dealing 
with the remainder term R,, = T(F,) - T(F) - V,,, and the properties 
of T(F,) - T(F) then are obtained from an m-linear structure typically 
possessed by V,,,. 
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In the case that T(F,) is asymptotically normal, we prove it by first showing 
that 
(*I n1/2R1 ,  3 0. 

Then it is checked that Vl, has the form of a sample mem of I.I.D. mean 0 
random variables, so that n112Vl, N(0, 02(T, F)) for a certain constant 
a2( T, F), whereby 

(1) 
In this case the law of the  iterated logarithm for T(F,) - T(F) follows by a 
similar argument replacing (*) by 

(") n1l2R1, = o.((log log n)'l2)wpl, 

yielding 

n"Z[T(F,) - T(F)I 5 N(0,  a2(T, F)). 

In addition, a Berry-Essten rate for the convergence in ( 1 )  may be obtained 
through a closer study of R1,. Invariably, standard methods applied to R , ,  
fail to lead to the best rate, O(n-'12). However, it turns out that if T(FJ - 
T(F) is approximated by V2, instead of V,,, the resulting ("smaller") re- 
mainder term R2, behaves as needed for the standard devices to lead to the 
Berry-Esskn rate O(n- Namely, one establishes 

(***) P(IR2,( > Bn-') = O(n-1 /2 )  

for some constant B > 0, and obtains 

InthecasethatP(V,, = c)  = l,thatis, V,, = dIT(F; F, - F)isadegenerate 
random variable, the asymptotic distribution of T(F,) is found by finding the 
lowest m such that V,, is not degenerate. Then a limit law for n"'2[T(Fn) - 
T(F)] is found by establishing nm/2Rmn + 0 and dealing with nm/2V,,. For 
m > 1, the case of widest practical importance is m = 2. Thus the random 
variable V2,, has two important roles-one for the case that n[T(F,)  - T(F)J 
has a limit law, and one for the Berry-Eden rate in the case that T(FJ is 
asymptotically normal. 

Finally, we note that in general the strong consistency of T(F,) for estima- 
tion of T(F) typically may be established by proving R , ,  - 0. 

Methodology for handling the remainder terms R,, is provided in 6.2.2. 
The structure of the V,, terms is studied in Section 6.3. These results are 
applied in Section 6.4 to obtain conclusions such as (l), (2), (3), etc. 

WP 1 



214 VON MIS= DrPFERBNTUBLE STATISTICAL FUNCnONS 

6.2 REDUCTION TO A DIFFERENTUL APPROXIMATION 

The basic method of differentiating a functional T(F) is described in 6.2.1 
and applied to formulate a Taylor expansion of T(FJ about T(F). In 6.2.2 
various techniques of treating the remainder term in the Taylor expansion are 
considered. 

6.2.1 Differentiation of Functionab T( ) 

Given two points F and G in the space 9 of all distribution functions, the 
“line segment” in 9 joining F and G consists of the set of distribution 
functions ((1 - A)F + AG, 0 S A s l}, also written as { F  + A(G - F), 
0 s 1 $ 1). Consider a functional T. defined on F + A(G - F )  for all 
sufficiently small A. If the limit 

T(F + rl(G - F))  - T(F) 
d,T(F; G - F) = lim . 

1 - O t  A 

exists, it is called the Gllteuux dverential of T at F in the direction of G. Note 
that dIT(F;  G - F) is simply the ordinary right-hand derivative, at 1 = 0, 
of the function Q(A) = T(F + A(G - F)) of the real variable A. In general, we 
d e h e  the kth order Gateaux differential of T at F in the direction of G to be 

provided the limit exists. 

Example. Consider the functional 

where h is symmetric. Writing 

T(F + A(G - F)) 

and carrying out succcssive differentiations, we obtain 
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and thus 

d k  T(F; G - F) = C(C - l )***(c  - k + 1) 
c-& & 

I -  1 I =  1 
X f . . s h ( x l  , . . . , x t . Y l , . . . . y , _ , ) n  dFCydndCG(xJ - F(xl)J 

fork = 1, ..., c,and dkT(F;  G - F) = 0, k > c. 
In particular, for the mean functional T(F) = x dF(x), we have 

dlT(F; G - F) = fi(x)d[G(x) - F(x)J = T(G) - T(F) 
andd&T(F;G-F)=Ofork> 1. 

For the variance functional, corresponding to 

h(x1, XJ = fcx: + x i  - 2x,x2), 

we have (check) 

dIT(F;  G - F) 
= sxz  dG(x) - s x 2  dF(x) - 2 

and 

Suppose that the function Q(A) satisfies the usual assumptions for a Taylor 
expansion to be valid (the assumptions of Theorem 1.12.1A as extended in 
Remark 1.12.1(i)) with respect to the interval 0 S 1 s 1. (See Problem 6.P.2) 
Since Q(0) = T(F), Q(l) = T(G), Q':)(O) = I ,T(F; G - F), Q$?(O) = 
dz T(F; G - F), etc., the Taylor expansion for Q( .) may be expressed as a 
Taylor expansion jor the junctional T( .): 

1 d"" 
(m + l)!dAmtl 

+ 
where 0 I; A+ 5 1. Note that even though we are dealing here with a func- 
tional on 9, sophisticated functional analysis is not needed at this stage, since 
the terms of the expansion may be obtained by routine calculus methods. 
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We are not bothering to state explicitly the conditions needed for (*) to 
hold formally, because in practice (*) is utilized rather informally, merely as a 
guiding concept. As discussed in 6.1.2, our chief concern is 

which may be investi8ated without requiring that R ,  have the form dictated 
by (*), and without requiring that (+) hold for G other than F,. 

6.2.2 Methods for HandUng the Remainder Term R,,,,, 
As discussed in 6.1.2, the basic property that one would seek to establish for 
R,, is 

(1) nm12Rm, 4 0, 

In the case that the Taylor expansion of 6.2.1 is rigorous, it sulfices for (1) to 
show that 

This is the line of attack of von Mises (1947). Check (Problem 6.P.3), using 
Lemma 6.3.28, that (M) holds for the functionals 

T(F) = f - Ih(xl, . . . , xe)dF(xl) * dF(xe) 

considered in Example 6.2.1. 

An inconvenience of this approach is that (M) involves an order of differ- 
entiability higher than that of interest in (1). In order to avoid dealing with the 
unnecessarily complicated random variable appearing in (M), we may 
attempt a direct analysis of R,,,". Usually this works out to be very effective in 
practice. 

Example A. (Continuation of Example 6.2.1). For the variance functional 
T(F) = jj N x t ,  x2)dF(xl)dF(r2), where h(xl, x2) - f<x: + x i  - 2x1x2), we 
have (check) 

T(G) - T(F) - dIT(F; G - F) = -@a - ~ ( p ) ' ,  

where pF and pa denote the means of F and G. Thus 

R , ,  = -(X - /+)'. 
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It follows (check) by the Hartman and Wintner LIL (Theorem l.lOA) that 

IR1,I = O(n-’ log log n) wpl 

and hence in particular 

and 

n1’2RI, = o((1og log n)’”)wpl, 

in conformity with (*) and (I*) of 6.1.2. 

As a variant of the Taylor expansion idea, an alternative “guiding concept” 
consists of a differential for Tat F in a sense stronger than the GBteaux version. 
Let us formulate such a notion in close analogy with the differential of 1.12.2 
for functions g defined on Rk. Let 9 be the linear space generated by differ- 
ences G - H of members of F, the space ofdistribution functions. (9 may be 
represented as {A: A = c(G - H), G, H E F, c real}.) Let 9 be equipped with 
a norm \)- ) I .  The functional T defined on 9 is said to have a diflerential at the 
point F c 9F with respect to the norm 11.11 if there exists a functional T(F; A), 
defined on A E 9 and linear in the argument A, such that 

(D) T(G) - T(F) - T(F; G - F )  = o(IIG - FII) 
as llG - Fll + 0 (T(F; A) is called the “differential”). 

Remarks A. (i) To establish (D), it suffices (see Apostol(1957), p. 65) to 
verify it for all sequences {G,} satisfying IlG, - Fll + 0, n + 00. 

(ii) By linearity of T(F; A) is meant that 

for Al, . . . , Ak E 9 and real al, . . . , a k a  

(iii) In the general context of differentiation in Banach spaces, the differ- 
ential T(F; A) would be called the Frbchet deriuatioe of T(see Frtkhet (1925), 
Dieudonnt (1960), Luenberger (1969), and Nashed (1971)). In such treat- 
ments, the space on which T is defined is assumed to be a normed linear space. 
We intentionally avoid this assumption here, in order that T need only be 
defined at points F which are distribution functions. a 

It is evident from (D) that the differential approach approximates T(F,) - T(F) by the random variable T(F; F, - F), whereas the Taylor expansion 
approximates by dl T(F; F, - F). These approaches are in agreement, by the 
following result. 
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Lemma A. I fT  has a diferential at F with respect to 11.11, then,jor any G,  
dlT(F; G - F) exists and 

dlT(F; G - F) = T(F; G - F). 

PROOF. Given G, put FA = F + 1(G - F). Then FA - F = A(G - F) 
and thus llFr - Fll = 1llG - Fll + Oasl+ O(Gfixed).Therefore,by(D)and 
the linearity of T(F; A), we have 

T(F1) - T(F) = T(F; FA - F) + o(llF1- Fll), 1 + 0, 
= IT(F; G - F) + 1 ~ ( l ) ,  1 + 0. 

Hence 

A A*O* 

The role played by the differential in handling the remainder term R1, is 
seen from the following result. 

Lemma B. Let T have (I diferential at F with respect to 11.11. Let {Xi} be 
observations on F (not necessarily independent) such that n’/’llF,, - Fll = 
O,,(l), Then n’/’RI,, 3 0. 

PROOF. For any E > 0, we have by (D) and Lemma A that there exists 
6, > 0 such that 

IRlnl < ~ l l F n  - Fll 
whenever llF,, - Fll c 6,. Let e, > 0 be given. Then 

P(n’”IR1,I > go) S P n’“JIF, - FlJ > + P(IIF, - Fll > 6,). ( 
Complete the argument as an exercise (Problem 6.P.5). w 
Remarks 3. (i) The use of (D) instead of (M) bypasses the highersrder 
remainder term but introduces the difficulty of handling a norm. 

(ii) However, for the sup-norm, llgll = sup,lg(x)l, this enables us to take 
advantage of known stochastic properties of the Kolmogorov-Smlmou 
distance [IF, - Fll,. Under the usual assumption of 1.I.D. observations {X,}, 
the property n”ZllFn - Fll, = 0,(1) required in Lemma B follows im- 
mediately from the Dvoretzky-Kiefer-Wolfowitz inequality (Theorem 
2.1.3A). 

(iii) The choice of norm in seeking to apply Lemma B must serve two 
somewhat conflicting purposes. The differentiability of T is more easily 
established if 11.11 is “large,” whereas the property nl”llFn - Fll = 0,,(1) is 
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more easily established if 11.11 is “small.” Also, the two requirements differ in 
type, one being related to differential analysis, the other to stochastic analysis. 

(iv) In view of Lemma A, the “candidate”differentia1 T(F; G - F) to be 
employed in establishing (D) is given by d l T ( F ;  G - F), which is found by 
routine calculus methods as noted in 6.2.1. 

(v) Thus the choice of norm 11.11 in Lemma B plays no essential role in the 
actual application of the result, for the approximating random variable 
dl T(F; F,  - F) is defined and found without specification of any norm. 

(vi) Nevertheless, the differential approach actually asserts more, for it 
characterizes d ,T(F;  F,  - F )  as linear and hence as an aoerage of random 
variables. That is, letting 6, denote the distribution function degenerate 
at x, - 00 < x < 00, and expressing F, in the form 

F,, = n-’ Z ~ X , ,  
I =  I 

we have 

= n-I 1 T(F; s,, - F). 
I =  1 

(vii) Prove (Problem 6.P.6) an analogue of Lemma B replacing the 
convergence 0 (1) required for n’/’JIF, - Fll by “O((10g log n)1/2)wpl*’ and 
concluding 44n&2RI,  = o((10g log n)’’’)wpl.” Justify that the requirement is 
met in the case of IJ.)lm and I.I.D. observations. H 

Remarks C.. (i) In general the role of d , T ( F ;  F ,  - F )  is to approximate 
n”’[T(F,) - T(F) - p(T, F ) ]  by n”’[dlT(F; F, - F) - p(T, F)], where 
p(T, F) = E,{dlT(F; F,  - F)}. Thus p(T,  F) may be interpreted as an 
asymptotic bias quantity. In typical applications, p(.T, F )  = 0. Note that 
when d l  T(F; F,  - F) is linear, as in Remark B (vi) above, we have p( T, F )  = 

(ii) The formulation of the differential of T w.r.t. a norm 11-11 has been 
geared to the objective of handling R In. Analogous higher-order derivatives 
may be formulated in straightforward fashion for use in connection with 

(in) We have not concerned ourselves with the case that the functional T 
is defined only on a subclass of 9. The reason is that operationally we will 
utilize the differential only conceptually rather than strictly, as will be ex- 
plained below. 

E A W ;  a x ,  - F)}. 

Rm?’*m ’ 1. 
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Lemmas A and B and Remarks A, B, and C detail the use of a differential for 
T as a tool in establishing stochastic properties of Rl,. However, although 
appealing and useful as a concept, this form of differential is somewhat too 
narrow for the purposes of statistical applications. The following example 
illustrates the need for a less rigid formulation. 

Example B (continuation of Example A).  For the uariance functional, in 
order to establish differentiability with respect to a norm 11.11, we must show 
that L(G, F) + 0 as llG - Fll + 0, where 

Unfortunately, in the case of 11-11 it is found (check) by considering specific 
examples that L(G, F) need not +O as llG - Fll, + 0. Thus (D) can fail to 
hold, so that T does not possess a differential at F with respect to 11-11 Hence 
Lemma B in its present form cannot be applied. However, we are able never- 
theless to establish a stochastic version of (D). Write 

By the CLT and the SLLN, the first factor is 0,,(1) and the second factor is 
op(l). By Theorem 2.1.5A and subsequent discussion, n'/21(F, - Fll, 4 ZF, 
where Zp is positive wpl (we exclude the case that F is degenerate). Since the 
function g(x) = l/x is continuous wpl with respect to the distribution of ZF, 
the third factor in L(F,, F) is O,,(l). It follows that L(F,, F) 1: 0. The proof of 
Lemma B carries through unchanged, yielding n1/2Rln 4 0 as desired. 

It is thus useful to extend the concept of differential to stochastic versions. 
We call T(F; A) a stochastic diflerential for T with respect to 11.11 and {X,} if 
)IF, - Fll 3 0 and relation (D) holds in the 0, sense for G = F,. This suffices 
for proving 4 resultsabout R1,. For 2 results, we utilizea 2 version of 
the stochastic differential. 

Although these stochastic versions broaden the scope of statistical ap- 
plication of the concept of differential, in practice it is more effective to analyze 
R1, directly. A comparison of Examples A and B illustrates this point. 

This is not to say, however, that manipulations with /IF, - Fll become 
entirely eliminated by a direct approach. Rather, by means of inequalities, 
useful upper bounds for IR,I in terms of [IF, - Fll can lead to properties of 
I R ,  I from those of IlF, - Fll. Such an approach, which we term the method of 
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direrentid inequalities, will be exploited in connection with M-estimates 
(Chapter 7) and L-estimates (Chapter 8). 

0, for the purpose of 
approximating n’12[T(F,) - T(F)] in limit distribution by n1/2dl T(F;  
F, - F). Note that this purpose is equally well served by reduction to 
T,(F,)d,T(F; F ,  - F), where TF(.) is any auxiliary functional defined on 
f such that T,(F,) 4 1. That is, it suffices to prove 

We have discussed in detail how to prove n112R1, 

(*I n”*[T(F,) - T(F) - T,(F,). d1 T(F; F,  - F ) ]  3 0 

in place of n1’*R1, 3 0. We apply this scheme as follows. First compute 
dl T(F; F, - F). Then select TF(.) for convenience to make the left-hand side 
of (*) manageable and to satisfy T,(F,) 4 1. Then proceed to establish (*) by, 
for example, the method of differential inequalities noted above. We will apply 
this device profitably in connection with M-estimates (Chapter 7). 

The foregoing considerations suggest an extension of the concept of 
differential.-We call T(F; A) a quasi-dqerential with respect to 11-11 and TF(-) if 
the definition of differential is satisfied with (D) replaced by 

6.3 METHODOLOGY FOR ANALYSIS OF THE DIFFERENTIAL 
APPROXlMATlON 

Here we examine the structure of the random variable V,, to which considera- 
tion is reduced by the methods of Section 6.2. Under a multilinearity condition 
which typically is satisfied in applications, we may represent V,, as a V- 
statistic and as a stochastic integral. In Section 6.4 we make use of these 
representations to characterize the asymptotic properties of T(F,) - T(F). 

6.3.1 Multi-Linearity Property 

In typical cases the kth order Gateaux differential dk T(F; G - F) is k-linear: 
there exists a function T , [ F ;  xl, . . . , xk], (xI, . . . , xk) E Rk, such that 

1 1  k 
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Remarks. (i) A review of 1.12.1 is helpful in interpreting the quantity 
T , [ F ;  xl, . . . , xk], which is the analogue of the kth order partial derivative, 

as a function g defined on R‘. Thus T , [ F ;  xI, , . . , xk]  may be interpreted as 
the kth order partial derivative of the functional T(F), considered as a 
function of the arguments {dF(x), -00 < x < oo}, the partial being taken 
with all arguments except dF(x,), . . . , dF(xk) held fixed. 

(ii) The function Tl[F; x] may be found, within an additive constant, 
simply by evaluating dIT(F; 6, - F). If (L) holds, then d,T(F;  6, - F) = 

(iii) If&[F;xI, .. ., xk]isconstunt,consideredasafunctionofxl,. .., XI ,  

then dkT(F; G - F) = 0 (all G). Note that a constant may be added to 
&[F; xi,. . . , xk] without altering its role in Condition (L). 

(iv) If dl T(F; G - F) is a diflerential for T at F with respect to a norm, 
then by definition dlT(F; G - F) is linear and, as noted in Remark 6.2.2B 
(vi), we have 

.Tl[F; x] - JT,[F;  x]dF(x) = T(F; 6, - F) = dIT(F; 6, - F). 

T , [ F ;  X] - Tl [F;  x]dF(x). 

6.3.2 Represcntatlon as a VStatistic 
Under (L), the random variabledk T(F; F. - F) may be expressed in the form 
of a V-statistic. This is seen from the following result. 

Lemma A. Let F befixed and h(xl, . . . , xk) be given. A functional of the form 

may be written as a functional of the form 

where the definition of h depends upon F. 

PROOF. For k 3: 1, take h(x)  = h(x)  - J h(x)dF(x). For k = 2, take 



Remark. Check that & x l , .  . . , xk)dF(xf) = 0, 1 5 i 5 k. D 
It follows that under (L) there holds the representation 

R R 

dk T ( F ;  FR - F) = n-' c * * .  1 G [ F ;  Xir, . . . , Xir], 
I 1  = 1 i k =  1 

where $IF; x l ,  . . . , xk] is determined from T, [F;  x I ,  . . . , xk] as indicated in 
the above proof. Therefore, for the random variable 

m i  

we have the representation (check) 
R R 

V,, = n-'" C - * * 2 h(F; Xi1,. . . , Xim), 
l 1 = 1  f m = l  

where h(F; x l , .  . . , x,) is determined from r ,  F2,. . . , Tm. 
Next we establish a further property of random variables having the 

structure given by Condition (L). The property is applied in Problem 6.P.3. 

Lcmmu B. Suppose that EF{h2(X,,, . . . , Xi,)} < co, all 1 5 i l ,  . . . , i, 5 m. 
Then 

PROOF. By Lemma A, 

II R 

= n-" c * ' .  c li(Xir, . . * ,  X , J .  
1 1 - 1  i m = l  
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Thus the left-hand side of (1) is given by 

By the remark following Lemma A, the typical term in (2) may be possibly 
nonzero only if the sequence of indices i l  , . . . , i,,,, ill . . . , j ,  contains each 
member at least twice. The number of such cases is clearly O(n "). Thus (1) 
follows. a 

We have seen in 5.7.3 the close connection between U- and V-statistics. In 
particular, we showed that El LI, - V,r = O(n-') under rth moment as- 
sumptions on the kernel h(xl, . . . , x,,,). We now prove, for the case m = 2, 
an important further relation between U, and V,. The result will be of use in 
connection with V,, . 

Lemma C. Suppose that h(xl, x,) is symmetric in its arguments and satisfies 
EFh2(Xl, X2) < 00 and EFJh(Xl, Xl)l3l2 < 00. Then the corresponding U- 
and V-statistics U, and V ,  satis/y,for B > 2(EF{h(X,, X,) - h(X1, X,)} 1, 

P(IU, - V,l > Bn-') = o(n-'I2). 

PROOF. From the proof of Lemma 5.7.3, we have 

u, - v, = n-yu, - Ww), 

where 

The first term on the right is O(n- l )  by Chebyshev's inequality and Lemma 
5.2.1A. For the second term, we use Theorem 4 of Baum and Katz (1965), 
which imp1ies:for { K} I.I.D. with E{ Yl} = 0 and El Yl I' < 00, where r 2 1, 
P(lyl > e) = o(n'-')for all e > 0. Applying the result with r = 4, we have 
~ ( P I - " ~ )  for the second term on the right. 
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6.3.3 Representation as a Stochastic Integral 
Under Condition (L), the random variable d ,  T(F; F, - F) may be expressed 
as a stochastic integral, that is, in the form 

for a suitable kernel h. As in 2.1.3, let us represent Y ( X 1 ,  ..., X”} as 
9 { F -  l( Yl), . . . , F- l( K)}, where { &} are independent uniform (0, 1) variates. 
Let Gn(.) denote the sample distribution function of Yl, . . . , Y,, and consider 
the corresponding “empirical ” stochastic process m(t) = r~l/~[G,(t) - t ] ,  
0 s t 5 1.Thus 

.V{nm’2d, T(F; F,, - F)} 

so that the limit law of nm12d, T(F; F, - F) may be found through an 
application of the convergence Y,( .) 5 Wo considered in 2.8.2. 

6.4 ASYMPTOTIC PROPERTIES OF DIFFERENTIABLE STATISTICAL 
FUNCTIONS 

Application of the methodology of Sections 6.2 and 6.3 typically leads to 
approximation of T(F) by a particular V-statistic, 

V,, = n-” C . - C h(F; X i , ,  . . . , Xi,,,). 
n n 

i = 1  i m = l  

(In Section 6.5, as a preliminary to a treatment of several examples, we discuss 
how to “find” the kernel h(F; x l ,  . . . , x,) effectively in practice.) As discussed 
in 6.1.2, under appropriate conditions on the remainder term R,, = T(F,) - 
T(F) - V,,, the properties of T(FJ - T(F) are thus given by the corre- 
sponding properties of V,, . In particular, 6.4.1 treats asymptotic distribution 
theory, 6.4.2 almost sure behavior, and 6.4.3 the Berry-Essden rate. 

6.4.1 Asymptotic Distribution Theory 
Parallel to the asymptotic distribution theory of U-statistics (Section 5 . 9 ,  we 
have a hierarchy of cases, corresponding to the following condition for the 
cases m = 1,2, . . . . 
Condition A, 

(i) Var,{h(F; X1,. , . , X,)} = 0 for k c m, >O for k = m; 
(ii) n’”lZR,, 4 0. 
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For the case m = 1, the V-statistic V,, is simply a sample mean, and by the 
CLT we have 

Theorem A. Consider a sequence of independent observations {X,} on the 
distribution F. Let T beufunctionalfor which Condition A, holds. Put p(T, F) = 
EF{h(F; XI)} and o'fl, F) = VarF{h(F; XI)}. Assume that 0 < a'(T, F) 
< 00. Then 

T(F,) is AN(T(F) + p(T, F), n-'a'(T, F)). 

Example (Continuation of Examples 6.2.1, 6.2.2A). For the variance 
functional we have 

dirrIF; F, - F) 
= fx2 dF,(x) - f x 2  dF(x) - 2 

so that Condition (L) of 6.3.1 holds, and we approximate T(F,) - T(F) by 
V,, based on h(F; x) = ( x  - pF)z - ug. We have 

p(T, F) = E,h(F; X , )  = 0 

and 

UZ(T, F) = VarF{h(F; xi)} = C(,(F) - U;. 
Further, as seen in Example 6.2.2A, n112R1,, 3 0. Thus the conditions of 
Theorem A are fulfilled, and we have 

as seen previously in Section 2.2. 

For the case m = 2, we have a result similar to Theorem 5.5.2 for U- 
statistics. 

TheoremB. Consider a sequence of independent observations { X , }  on the 
distribution F. Let T be a functional for which Condition A2 holds. Assume that 
h(F; x, y) = h(F; y, x) and that EFh2(F; XI, X,) < 00, EF(h(F; Xi, XJ 
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C 00, and EF{h(F; x, XI)} E C (in x). Put P(T, F) = EFh(F; X1, X2). Denote 
by {A,} the eigenualues ofthe operator A defined on L2(R, F) by 

227, 

m 

A d x )  = S__Ch(F; x, Y) - 10, F)lg(y)dF(y), x E R, g E L2(R, F). 

Then 

np(Fn) - T(F) - p(T, F)1 ' f, hk x i k  3 

k =  1 

where x:k (k = 1, 2, . . .) are independent 

Remark. Observe that the limit distribution has mean zy d k ,  which is not 
necessarily 0. By Dunford and Schwartz (1963), p. 1087, E,{h(F; Xi, X , ) }  
- p(T, F) = x y  d k ,  which is thus finite since E F l h ( F ;  XI,  Xl)l c 00. This 
assumption is not made in the analogous result for LI-statistics. H 
PROOF. By Condition Al ,  it suffices to show that 

uariates. 

where 9. is the V-statistic based on the kernel h(x, y )  = h(F; x, y )  - p(T, F).  
Consider also the associated LI-statistic, 0, = (2)- & & X i ,  X,). As seen in 
the proof of Lemma 5.7.3, 0, is related to c through 

where 
n2(0, - p.1 = (n2 - q2))(0" - m, 

tt. = n - l  p i ( X , ,  X,). 
n 

I =  I 

Thus 

n ( R  - 0") = - 0". 
Note that EF{h(Xl, X,)} = 0. Thus, by the strong convergence of U- 
statistics (Theorem 5.4A), 0. Furthermore, by the SLLN and the 
above remark, % wp? cp d k .  Therefore, 

m 

n ( t  - d k .  
k =  1 

Also, since EFh(F;  x, X,) = 0, 0, satisfies the conditions of Theorem 5.5.2 
and we have 

no, ' f d k ( x : k  - I), 
k =  I 

completing the proof. H 
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For arbitrary m, a general characterization of the limit law of nm/2[T(F,,) - 
T(F)] has been given by Filippova (1962), based on the stochastic integral 
representation of 6.6.3. Under Condition A,, the limit law is that of a random 
variable of the form 

I 
B(g, WO) = J * * * S ’ d F ;  C I ,  . . . , t,)dWO(t,) * - dWO(t,). 

0 0 

Alternatively, Rubin and Vitale (1980) characterize the limit law as that of a 
linear combination of products of Hermite polynomials of independent 
N(0,  1) random variables. (Theorems A and B correspond to special cases of 
the characterizations, for m = 1 and m = 2, respectively.) These general 
characterizations also apply, in modified form, to the higher-order cases for 
CI-statistics. 

6.4.2 Almost Sure Behavior 

Suppose simply that R1, g‘.Oand that EF(h(F; X,)l < 00. Then T(F,,) 2% 
T(F) + AT, F), where p(T, F) = EPh(F; Xl). Typically p(T, F) = 0, giving 
strong consistency of T(F,,) for estimation of T(F). Under higher-order 
moment assumptions, a law of iterated logarithm holds: 

Theorem. Suppose that R,, = o(n- ‘/*(log log n)Il2) wpl. Put l(T, F) = 
E,{h(F; XI)} and a2(T, F) = Var,{h(F; XI)}. Assumehut 0 < u2(T, F) < 
00. Then 

Example (Continuation of Examples 6.2.1A and 6.4.1). For the variance 
functional the conditions of the above theorem have been established in 
previous examples. 

6.4.3 Berry-EsseBn Rate 

We have seen (Theorem 6.4.1A) that asymptotic normality of T(F,) - T(F) 
may be derived by means of an approximation V,, consisting (typically) of the 
first term of the Taylor expansion of 6.2.1 for T(F,) - T(F). A corresponding 
Berry-Essden rate can be investigated through a closer analysis of the re- 
mainder term Rl,. For such purposes, a standard device is the following 
(Problem 6.P.9). 

Lemma. Let the sequence of random oariables (5,) satisfy 

(9 SUPIP(S, 5 t) - Wt)( = O(n-1/2). 
t 
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Then, for any sequences of random variables {An} and positive constants {an}, 

(**I SUplP(Sn + A, I; t) - Wt)I = O(n-1’2) + O(an) + P(IAnI > a,,). 
I 

In applying the lemma, we obtain for tn + A, the best Berry-Essden rate, 
O(n-’12), if we have P( 1A.l > Bn-’”) = O(n- l IZ)  for some constant B > 0. 
In seeking to establish such a rate for statistical functions, we could apply the 
lemma with C,, = nilZ V,,, and A,, = nllzRln and thus seek to establish that, for 
some constant B > 0, P( lRl,,l > En-’) = O(n-”’). The following example 
illustrates the strength and limitations of this approach. 

Example A (Continuation of Examples 6.4.1, 6.4.2). For the variance 
functional we have 

n 

1=1 
t, = n- c [(X, - p)2 - UZ] 

and 

A, = -n’l2(X - P)~. 

Note that, by the classical Berry-EssCen theorem (1.9.5), (*) holds if EIXl l6 
< 00. However, the requirement P(IA,J > Bn-’”) = O(n-’/’) takes the 
form 

P(n(X - p)Z > B) = O(n-”Z), 

whichfails to hold since n(X - p)z has a nondegenerate limit distribution 
with support (0, a). Thus we cannot obtain the best Berry-Esseen rate, 
O(n-lIZ), by dealing with R1, in this fashion. However, we can do almost as 
well. By the classical Berry-EssCen theorem, we have (check) 

P(n(X - p)Z > cz log n) = O(n-’/Z), 

provided that E l X ,  I 3  < 00. Thus, with a,, = uz(log n)n-’12, we have 
P(JA,,I > a,) = O(n-’/’), so that (**) yields for n1Iz(m2 - 0’) the Berry- 
Essben rate O(n- l12(log n)). Of course, for the closely related statistic sz, we 
have already established the best rate O(n- ‘ I 2 )  by U-statistic theory. Thus 
we anticipate that mz should also satisfy this rate. We will in fact establish 
this below, after first developing a more sophisticated method of applying 
the above lemma in connection with statistical functions. 

The preceding example represents a case when the remainder term R,, 
from approximation of T(FJ - T(F) by Vl, = d,T(F; F,, - F )  is not quite 
small enough for the device of the above lemma to yield O(n- lI2)  as a Berry- 
&den rate. From consideration of other examples, it is found that this 
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situation is quite typical. However, by taking as approximation the first two 
terms V,, = dl T(F; F, - F) + &iz T(F; F, - F) of the Taylor expansion 
for T(F,,) - T(F), the remainder term becomes sufficiently reduced for the 
method of the lemma typically to yield O(n-Il2) as the Berry-Es&n rate. In 
this regard, the approximating random variable is no longer a simple 
average. However, it typically is a V-statistic and hence approximately a 
U-statistic, enabling us to exploit the Berry-Essten rate O(n- established 
for U-statistics. We have 

Theorem. Let T(Fn) - T(F) = V2, + Rzn, with 
n n  

where 

Put p(T, F) = Edh(F; XI, X2)) and d(T,  F) = 4 VarF{h,(F; XI)}, where 
hl(F; x) = EF{h(F; x, XI)}. Then 

PROOF. Let U2,  be the U-statistic corresponding to h(F; x, y). By (1) 
and Lemma 6.3.2C, there exists A > 0 such that P( I U,, - Vz, I > An- ’) = 
~ ( n - ~ l ~ ) .  Also, by (1) and Theorem 5.5.1 B, 

Thus (check) the above lemma yields 

Then, by (2), a further application of the lemma yields (3) (check). 

Example B (Continuation of Example A). For the uariance functional, 
check that 

dz T(F; G - F) = - 2 ( ~ 0  - P,)’, 
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v,, = c [(Xi - p)2 - a21 - (X - p)2 
n 1 1 1  

and (check) 

We thus apply the theorem with h(F; x, y )  = f i x  - y)' - u'. Check that the 
requirements on h are met ifElX, l6 < 00 and that p(T, F) = 0 and uZ(T, F )  
= p4 - u4. Thus follows for m2 the Berry-Essten rate O(n-1'2). 

Rzn = 0. 

6.5 EXAMPLES 

Illustration of the reduction methods of Section 6.2 and the application of 
Theorems 6.4.1A, B will be sketched for various examples: sample central 
moments, maximum likelihood estimates, minimum w2 estimates, sample 
quantiles, trimmed means, estimation of p2. Further use of the methods will 
be seen in Chapters 7,8 and 9. See also Andrews et al. (1972) for some im- 
portant examples of differentiation of statistical functions. 

Remark (On techniques of application). In applying Theorem 6.4.1A, the 
key quantity involved in stating the conclusion of the theorem is h(F; x). In 
the presence of relation (L) of 6.3.2, we have (check) 

h(F; X )  = d ,T(F;  6, - F )  

and p(T, F) = E,{h(F; X , ) }  = 0. Thus, in order to state the "answer," 
namely that T(F,,) is AN(T(F),  n-'u2(T, F)), with d ( T ,  F) = E,hZ(F; X,), 
we need only evaluate 

, X E R .  
dT(F + 46, - F)) 

M ( A - 0  

Of course, it remains to check that Condition A, of 6.4.1 holds. 
In some cases we also wish to find h(F; x, y), in order to apply Theorem 

6.4.1B or Theorem 6.4.3. In this case it is usually most effective to evaluate 
dz T(F; G - F), put G = F,,, and then by inspection find the function 
Tz(F; x, y )  considered in 6.3.2. Then we have h(F; x, y )  = @(F;  x )  + 
h(F; y )  + T'(F; x, y) ] ,  as was illustrated in Example 6.4.3B. Alternatively, 
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we can evaluate d l  T(F; Fn - F )  + i d , T ( F ;  F, - F )  and then by inspection 
recognize h(F; x, y). H 

Example A Sample central moments. The kth central moment of a dis- 
tribution F may be expressed as a functional as follows: 

Q Q 

pk = T(F) =: f [X - 1 y dFCy)]’dF(X). 

The sample central moment is 
W 

l)lk = T(F& = 1-2 - x ) k  dFn(%). 

Put = x dF(x)  and FA = F + d(G - F). Then pPA = pF + d& - pp). 

We have 

and (check) 

Thus 

so that 

h(F; X) = (X - /4)’ - kpk- 1X - E p { ( x  - p)’ - kpk- ix}. 
Thus the assertion of Theorem 6.4.1A is that 

mk iS AN(/lk, n-’U2(T, F)), 
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with 

aZ(T, F) = p z k  - plf - 2kPk- i p k +  I + k 2 d -  1 h .  

This result was derived previously in Section 2.2. However, by the present 
technique we have cranked out the “answer” in a purely mechanical fashion. 
Of course, we must validate the “answer” by showing that n1I2 RI ,  3 0. 
Check that 

Rim = mk - b k  + kpk- ibis 

where bJ = n-’ cy,, (X, - p r ,  0 5 j 5 k, and thus (check) 

Example B Maximum likelihood estimation. Under regularity conditions 
(4.4.2) on the family of distributions {F(x ;  6), 6 E 0)  under consideration, 
the maximum likelihood estimate of 6 is the solution of 

and 
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That is, the maximum likelihood estimate is 8(Fn), where 8(F) is the functional 
defined as the solution of 

Under regularity condition on the family { F( -, O), 8 E O}, we have 

Wc find 

by implicit differentiation through the equation 

H(8(FA), A) Y= 0, 

where FA = F + A@,, - F) and H(8,  A) = g(8, x)dFA(x). We have 

aH d W , )  aH 
X l # - @ ( F ) * T l A - o  ' Z l A - 0  O' 

Thus 

Check (using (BI), (B2) and the fact that e(F( ; 0,)) = B0, each 0,) that (B3) 
yields 

and thus 
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as seen previously in 4.2.2. 

Example C Minimum w2 estimation. The “minimum w2 estimate” of 8, 
in connection with a family of distributions { F ( .  ; O), 8 E O}, is the solution of 

/q(e, x, FnMx = 0, 

where 
d 

q(8, X, G) = {CGW - ~ ( x ;  e)iy(X; 8))  

and 

That is, the w2-minimum estimate is 8(F,,), where 8(G) is the functional 
defined as the solution of 

Jq(e, x, GMX = 0. 

By implicit diflerentiation as in Example B, check that 

d 
f (xo; 8) -&j m o ;  8)  d a 8(F + w x , ,  - 0 1 = 

1-0  J[-$ f ( x ;  ell2 d F ( x ;  el’ 

from which Var,{h(F( - ; 8); X)} may be found readily. H 

Example D Sample pth quantile. Let 0 < p < 1. The pth quantile of a 
distribution F is iven by I&, = T(F) = F- ‘(p) and the corresponding sample 
pth quantile by t,, = F; ‘(p) = T(F,,). We have 

TCF + l(Sx, - .F)] = inf{x: F(x) + 1(6,,(x) - F(x)) 2 p} 

= inf{x: F(x) + A[l(x 2 xo) - F(x)J 2 p} 



236 VON MlSES DIFFERENTIABLE STATISTICAL FUNCTIONS 

(for 1 sufficiently small). Confine attention now to the case that F has a 
positive densityfin a neighborhood of F -  l(p). Then, for any xo other than tp. 
it is found (check) that 

The assertion of Theorem 6.4.1A is thus that 

as established previously in Section 2.3. In order to establish the validity of the 
assertion of the theorem, we find using (Dl) that 

and we seek to establish that n112Rln 4 0. But R , ,  is precisely the remainder 
term Rn in the Bahadur representation (Theorem 2.5.1) for epn, and as noted 
in Remark 2.5.l(iv) Ghosh (1971) has shown that n'"R" 4 0, provided 
F ' ( t p )  ' 0. 

Example E a-trimmed mean. Let F be symmetric and continuous. For 
estimation of the mean (=median), a competitor to the sample mean and the 
sample median is the "a-trimmed mean" 

where 0 < a e f. This represents a compromise between the sample mean 
and the sample median, which represent the limiting cases as a + 0 and 
u + 4, respectively. An asymptotically equivalent (in all typical senses) 
version of the a-trimmed mean is defined as 

X(o)n = V F n ) ,  

where 
1 pF-'( l -o)  



EXAMPLES 237 

We shall treat this version here. By application of (Dl) in conjunction with 
(El), we obtain 

For the case F(xo)  < a, this becomes 

where 

c(a) = l - a F - l ( t ) d t  + aF-'(a) + aF-1(1- a). 

The cases F(xo) > 1 - a and a s F(xo) s 1 - a may be treated in similar 
fashion (check). Furthermore, the symmetry assumption yields 

c(a) = T(F) = el,,. 

Thus we arrive at 

dT[F + L(S, - F)] - 
dA Lo - 

It follows that the assertion of Theorem 6.4.1A is 
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Example F Estimation ofp’. Consider 

The corresponding statistical function is 

T(F”) = x2.  
Derive h(F; x) and h(F; xl, x2), and apply Theorems 6.4.1A, B to obtain the 
asymptotic distribution theory for X’ in the cases p # 0, p = 0. (Compare 
Example 5.5.2B.) 

6.6 COMPLEMENTS 

Some useful statistical interpretations of the derivative of a statistical function 
are provided in 6.6.1. Comments on the differential approach for analysis of 
statistical functions based on functionals of a density f are provided in 6.6.2. 
Extension to the case of dependent Xis is discussed in 6.6.3. Normalizations 
other than nd2 are discussed in 6.6.4. 

6.6.1 Statistical Interpretations of the Derivative of a Statistical Function 
In the case of a statistical function having nonvanishing first derivative 
(implying asymptotic normality, under mild restrictions), a variety of 
important features of the estimator may be characterized in terms of this 
derivative. Namely, the asymptotic variance parameter, and certain stability 
properties of the estimator under perturbation of the observations, may be 
characterized. These features are of special interest in studying robustness of 
estimators. We now make these remarks precise. 

Consider observations X1, X2, . . . on a distribution F and a functional 
T(.) .  Suppose that T satisfies relation (L) at F,  that is, d,T(F; G - F) = 
Tl[F; x]d[G(x) - F(x)], as considered in 6.3.1, and put 

h(F; X) = Tl[F; X ]  - Ti[F; x]dF(x). s 
The reduction methodology of Section 6.2 shows that the error of estimation 
in estimating T(F) by T(F,) is given approximately by 

Thus h(F; X,) represents the approximate contribution, or “influence,” 
of the observation X, toward the estimation error T(F,,) - T(F). This notion 
of interpreting h(F; x )  as a measure of “influence” toward error of estimation 
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is due to Hampel (1968,1974), who calls h(F; x), - 00 < x < 00, the injueirce 
curue of the estimator T(FJ for T(F). Note that the curve may be defined 
directly by 

-ao < x < ao. dT[F + A(& - F)] 
M 

h(F; x )  = 

(In the robust estimation literature, the notation n d x )  or ZC(x; F, T) is 
sometimes used.) 

In connection with the interpretation of TCF; a ]  as an “influence curve,” 
Hampel (1974) identifies several key characteristics of the function. The 
“gross-error-sensitiuity ” 

y* = sup(h(F; x)( 

measures the effect of contamination of the data by gross errors, whereby 
some of the observations X i  may have a distribution grossly different from F. 
Specifically, y* is interpreted as the worst possible influence which a fixed 
amount of contamination can have upon the estimator. The “local-shift- 
sensitiuity ” 

x 

measures the effect of “wiggling” the observations, that is, the local effects of 
rounding or grouping of the observations. The “rejection point” p* is defined 
as the distance from the center of symmetry of a distribution to the point at 
which the influence curve becomes identically 0. Thus all observations farther 
away than p* become completely rejected, that is, their “influence” is not only 
truncated but held to 0. This is of special interest in problems in which 
rejection of outliers is of importance. 

Examples. The influence curve of the sample mean is 

f C ( x ; T , F ) = x - p p ,  -ao < x < a .  

We note that in this case y* = co, indicating the extreme sensitivity of the 
sample mean to the influence of “wild” observations. The a-trimmed mean, 
for 0 < 01 < f, provides a correction for this deficiency. Its y* (see Example 
6.5E) is [F“(l - a) - T(F)]/(l - 2a). On the other hand, the sample mean 
has A* = 1 whereas the sample median has A* = 00, due to irregularity of its 
influence curve 



240 VON MlSEs DIPPERENTIABLE STATISTICAL FUNCTIONS 

at the point x = F- 'I2()). Also, contrary perhaps to intuition, the a-trimmed 
mean has p* = 00. However, Hampel (1978,1974) and Andrews et al. (1972) 
discuss estimators which are favorable simultaneously with respect to y*, A* 
and p* (see Chapter 7). fl 

Further discussion of the influence curve and robust estimation is given by 
Huber (1972, 1977). Robustness principles dictate choosing T( 0 )  to control 

6.6.2 Functionnls of Densities 
An analogous theory of statistical functions can be developed with respect to 
parameters given as functionals of densities, say T(f). For example, in 2.6.7 
the efficacy parameter j f2(x)dx arose in certain asymptotic relative efficiency 
considerations. A natural estimator of any such T(f) is given by T(fn), where 
fn is a density estimator off such as considered in 2.1.8. The differential 
approach toward analysis of T(fn) - T(f) is quite useful and can be formu- 
lated in analogy with the treatment of Sections 6.1-6.5. We merely mention 
here certain additional complications that must be dealt with. First, ,the 
structure of the sample density function fn is typically not quite as simple as 
that of the sample distribution function F,. Whereas F,(x) is the average at 
the nth stage of the random variables I(Xl I; x), I ( X ,  I; x), . . . , the estimator 
f.(x) is typically an average over a double array of random variables. This 
carries over to the approximating random variable d,T(f; f, - f) here 
playing the role of d,T(F; F,, - F). Consequently, we need to use a double 
array CLT in deriving the asymptotic normality of T(fn), and we find that 
there does not exist a double array LIL at hand for us to exploit in deriving an 
LIL for T(fn) - T(f). Furthermore, unlike F,(x) as an estimator of F(x), the 
estimatorh(x) is typically biused for estimation off(x). Thus Ef T(f ; f .  - f) 
# 0 in typical cases, so that the analysis must deal with this type of term also. 

See Beran (1977a, b) for minimum Hellinger distance estimation based on 
statistical functions of densities. 

6.6.3 Dependent Observations {X,} 

Note that the asymptotic behavior of T(FJ - T(F) typically depends on the 
X1)s only through two elements, 

IC(x; T, F). 

and R1,. Often R1, can be handled via inequalities involving IlF, - Fll, and 
the like. Thus, for example, the entire theory extends readily to any sequence 
{X,} of possibly dependent variables for which a CLT has been established 
and for which suitable stochastic properties of IlF, - Fll, have beem est- 
ablished. 
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6.6.4 Other Normalizations 
For the random variable T(F,,) - T(F) to have anondegenerate limit law, the 
appropriate normalizing factor in the case that the first nonvanishing term in 
the Taylor expansion is the mth need not always be nmI2. For example, in the 
case m = 1, we have a sum of I.I.D. random variables as d l  T(F; F,, - F), for 
which the correct normalization actually depends on the domain of attrac- 
tion. For attraction to a stable law withexponent a,O < a < 2, the appropriate 
normalization is ntp. See Gnedenko and Kolmogorov (1954) or Feller (1966). 

6.6.5 Computation of Higher Gdteaux Derivativa 
In the presence of Condition (L) of 6.3.1, we have 

Hence 

etc. 

6.P PROBLEMS 

Section 6.2 

1. Check the details for Example 6.2.1. 
2. Formulate and prove the extended form of Theorem 1.12.1A germane 

3. (Continuation of Example 6.2.1) Show, applying Lemma 6.3.28, that 
to the Taylor expansion discussed in 6.2.1. 

dk 
sup lz T(F + A(F, - F)) 1 = o,(n-"'2'k). 

osAsl 

4. Complete the details of Example 6.2.2A. 
5, Complete the argument for Lemma 6.2.2B. 
6. Verify Remarks 6.2.2B (ii), (vii). 
7. Check the claim of Example 6.2.2B. 
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Section 6.3 

(6.3.2). 

Section 6.4 

8. Complete the details for the representation of V,, as a V-statistic 

9. Prove Lemma 6.4.3. 
10. Check details of Examples 6.4.3A, B. 
11. Complete details of proof of Theorem 6.4.3. 

12. Supply thcmissingdetails for Example6.5A(samplecentral moments). 
13. Supply details for Example 6.5B (maximum likelihood estimate). 
14. Supply details for Example 6.5C (minimum 0' estimate). 
15. Supply details for Example 6.5D (sample pth quantile). 
16. Supply details for Example 6.5E (a-trimmed mean). 
17. Supply details for Example 6.5F (estimation of p2). 
18. Apply Theorem 6.4.3 to obtain the Berry-EssCen theorem for the 

Section 6.5 

sample pth quantile (continuation of Problem 15 above). 

Seetion 6.6 
19. Provide details for 6.6.5. 
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M-Estimates 

In this chapter we briefly consider the asymptotic properties of statistics 
which are obtained as solutions of equations. Often the equations correspond 
to some sort of minimization problem, such as in the cases of maximum like- 
lihood estimation, least squares estimation, and the like. We call such statistics 
“M-estimates.” (Recall previous discussion in 4.3.2.) 

A treatment of the class of M-estimates could be carried out along the lines 
of the classical treatment of maximum likelihood estimates, as in 4.2.2. 
However, for an important subclass of M-estimates, we shall apply certain 
specialized methods introduced by Huber (1964). Also, as a general approach, 
we shall formulate M-estimates as statistical functions and apply the methods 
of Chapter 6. Section 7.1 provides a general formulation and various examples. 
The asymptotic properties ofM-estimates, namely consistency and asymptotic 
normality with related rates of convergence, are derived in Section 7.2. 
Various complements and extensions are discussed in Section 7.3. 

Two closely related competing classes of statistics, L-estimates and R- 
estimates, are treated in Chapters 8 and 9. In particular, see Section 9.3. 

7.1 BASIC FORMULATION AND EXAMPLES 

A general formulation of M-estimation is presented in 7.1.1. The special case 
of M-estimation of a location parameter, with particular attention to robust 
estimators, is studied in 7.1.2. 

7.1.1 General Formulation of M-Estimation 

Corresponding to any function #(x, t) ,  we may associate a functional T 
defined on distribution functions F, T(F) being defined as a solution to of the 
equation 

(*I [#(x ,  to)dF(x) = 0. 

243 
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We call such a T(.) the Mfunctional corresponding to $. For a sample 
XI,. . . , X, from F ,  the M-estimate corresponding to $ is the “statistical 
function,’ T(F,), that is, a solution T, of the equation 

In our theorems for such parameters and estimates, we have to allow for the 
possibility that (*) or (**) has multiple solutions. 

When the $ function defining an M-functional has the form I,@, t )  = 
$(x - t )  for some function $, T(F) is called a location parameter. This case 
will be of special interest. 

In typical cases, the equation (*) corresponds to minimization of some 
quantity 

Jdx, to)dF(x), 

the function $ being given by 

d 
$(x, t )  = c P ( X ,  t )  

for some constant c, in the case of p(x, .) sufficiently smooth. 
In a particular estimation problem, the parameter‘of interest 8 may be 

represented as T(F) for various choices of $. The corresponding choices of 
T(F,) thus represent competing estimators. Quite a variety of $ functions can 
thus arise for consideration. It is important that our theorems cover a very 
broad class of such functions. 

Example Parametric Estimation. Let So = {F( ; 0), O E 0 )  represent a 
Uparametric” family ofdistributions. Let t) = $(x, t )  be a function such that 

J@(x, eMF(x;  e) = 0, e E o, 

that is, for F = F(.; 8) the solution of (*) coincides with 0. In this case the 
corresponding M-functional T satisfies T(F(.; 8)) = 0, Oe 0, so that a 
natural estimator of 8 is given by 6 = T(F,). Different choices of $ lead to 
different estimators. For example, if the distributions F(. ; 0)  have densities or 
mass functionsf( ; e), then the maximum likelihood estimator corresponds to 

P(X,  e) = -log f ( x  ; e), 

$(x, 0)  = - 3 log ftx; 0). 
d 
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We have studied maximum likelihood estimation in this fashion in Example 
6.5B. Likewise, in Example 6.5C, we examined minimum o2 estimation, 
corresponding to a different $. 

A location parameter problem is specified by supposing that the members of 
st, are of the form F(x;  0) = Fo(x - O), where Fo is a fixed distribution thus 
generating the family So. It then becomes appropriate from invariance 
considerations to restrict attention to $ of the form $(x, t )  = $(x - t) .  

In classical parametric location estimation, the distribution Fo is assumed 
known. In robust estimation, it is merely assumed that Fo belongs to a 
neighborhood of some specified distribution such as a. (See Example 7.1.2E.) 

In considering several possible $ for a given estimation problem, the 
corresponding influence curues are of interest (recall 6.6.1). Check (Problem 
7.P.1) that the Gateaux differential of an M-functional is 

provided that Ib(T(F)) # 0, where we define 

&(t) = J$(x, t)dF(x), - 00 < t < 03. 

Thus the influence curve of (the M-functional corresponding to) $ is 

Note that IC is proportional to $. Thus the principle of M-estimation 
possesses the nice feature that desired properties for an influence curve may be 
achieved simply by choosing a @ with the given properties. This will be 
illustrated in some of the examples of 7.1.2. 

Further information immediate from (1) is that, under appropriate 
regularity conditions, 

T(F,) is AN(T(F),  n-'o'(T, F)), 

where typically 

This is seen from Theorem 6.4.1A (see Remark 6.5) and the fact that 
IC(x, F, T)dF(x)  = 0. A detailed treatment is carried out in 7.2.2. (In some 

cases d ( T ,  F) comes out differently from the above.) 
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7.1.2 Examples Apropos to Location Parameter Estimation 
The following examples illustrate the wide variety of # functions arising for 
consideration in the contexts of efficient and robust estimation. We consider 
the M-functional T(F) to be a solution of 

j$(x - to)dF(x) =: 0 

and the corresponding M-estimate to be T(F,). 

Example A The least squares estimate. Corresponding to minimization 
of (X ,  - 0)2, the relevant # function is 

#(x) = x, -00 < x < 00. 

For this $,the M-functional T is the mean functional and the M-estimate is the 
samplemean. 

Example B The least absolute values estimate. Corresponding to mini- 
mization of PI IX, - 01, the relevant # function is 

-1, x < 0, 
#(%) = 0, x = 0, [ 1, x > 0. 

Here the corresponding M-functional is the median functional and the cor- 
responding M-estimate the sample median. m 

Example C The maximum likelihood estimate. For the parametric location 
model considered in Example 7.1.1, let Fo have densityfo and take 

The corresponding M-estimate is the maximum likelihood estimate. Note 
that this choice of $ depends on the particular Fo generating the model. 

Example D A form oftrimmed mean. Huber (1964) considers minimization 
of c; p(X, - O), where 
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The relevant # is 
241 

The corresponding M-estimator T, is a type of trimmed mean. In the case that 
no X, satisfies I X ,  - T,I = k, it turns out to be the sample mean of the X,’s 
satisfying I X, - T,I c k. (Problem 7.P.2) Note that this estimator eliminates 
the “influence” of outliers. 

Example E A form of Winsorized mean. Huber (1964)considers minimization 
of c; p(X,  - 8). where 

The relevant $ is 

-k ,  x < -k ,  
x, 1x1 s k  
k,  x > k. 

#(x) = 

The corresponding M-estimator T, is a type of Winsorized mean. It turns out 
to be the sample mean of the modified Xis, where X, becomes replaced by 
T,, f k, whichever is nearer, if I XI - T,,I > k (Problem 7.P.3). This estimator 
limits, but does not entirely eliminate, the influence of outliers. However, it 
has a smoother IC then the $ of Example D. The p( .) of the present example 
represents a compromise between least squares and least absolute values 
estimation. It also represents the optimal choice of p, in the minimax sense, for 
robust estimation of 8 in the normal location model. Specifically, let C denote 
the set of a11 symmetric contaminated normal distributions F = (1 - e)@ + 
EH, where 0 < E < 1 is fixed and H varies over all symmetric distributions. 
Huber (1964) defines a robust M-estimator $ to be the $o which minimaxes 
the asymptotic variance parameter d ( T ,  F), that is, 

sup U’(T’,~, F) = inf sup a2(r’,, F). 
F $ F  

Here F ranges through C, $ ranges over a class of “nice” # functions, and 
u2(‘&, F) is as given in 7.1.1. For the given C, the optimal $,, corresponds to 
the above form, for k defined by j fk  &t)dt + 24(k)/k = 1/(1 - 6). The # 
functions of this form are now known as “Hubers.” Note that the IC function 
is continuous, nondecreasing, and bounded. 

Example F. Hampel (1968,1974) suggested a modification of the “Hubers” 
in order to satisfy qualitative criteria such as low gross-error-sensitivity, small 
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local-sh~-sensitiuity, etc., as discussed in 6.6.1. He required +(x) to return to 
0 for 1x1 sufficiently large: 

O S x S a ,  

a ~ ; x < b ,  

x > c, 

and #(x) = -#( -x), x < 0. This M-estimator has the property of com- 
pletely rejecting outliers while giving up very little efficiency (compared to the 
Hubers) at thenormal. M-estimators of this type are now known as“ Hampels.” 

Example G A smoothed “Hampel”. One of many varieties of smoothed 
Hampels” is given by 

A 
sin ax, 0 I; x < -, 

a 

x > -, 
a 
A 

w = 

A 
sin ax, 0 I; x < -, 

a 

x > -, 
a 
A 

w = 

and #(x) - - $( - x), x < 0. See Andrews et a1 (1972). 

Remarks. (i) Further examples, and small sample size comparisons, are 
provided by Andrews et al. (1972). 

(ii) Construction of robust M-estimates. For high eficiency at the model 
distribution Fo, one requires that the influence function be roughly pro- 
portional to - f~ (x ) / fo (x ) .  For protection against outliers, one requires that 
the influence function be bounded. For protection against the effects of round- 
ofand grouping, one requires the influence function to be reasonably con- 
tinuous in x. In order to stabilize the asymptotic variance of the estimate under 
small changes in Fo, one requires the influence function to be reasonably 
continuous as afunction ofF. These requirements are apropos for any kind of 
estimator. However, in the case of M-estimators, they translate directly into 
similar requirements on the + function. One can thus find a suitable M- 
estimator simply by defining the $ function appropriately. 

7.2 ASYMPTOTIC PROPERTIES OF M-ESTIMATES 

We treat consistency in 7.2.1, asymptotic normality and the law ofthe iterated 
logarithm in 7.2.2, and Berry-Essken rates in 7.2.3. 
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7.2.1 Consistency 
As in 7.1.1, we consider a function $(x, t )  and put AF(t )  = j$(x, t)dF(x). 
Given that the “parametric” equation AF(t )  = 0 has a root to and the “em- 
pirical *’ equation &&) = 0 has a root T,,, under what conditions do we have 
T, wp‘. to? (Here, as usual, we consider a sample XI,. . . , X, from F, with 
sample distribution function F,.) As may be seen from the examples of 7.1.2, 
many I) functions of special interest are of the form $(x, t )  = $(x - t), where 
either $ is monotone or $ is continuous and bounded. These cases, among 
others, are covered by the following two lemmas, based on Huber (1964) and 
Boos (1977), respectively. 

Lemma A .  Let to be an isolated root ofhF(t) = 0. Let $(x, t) be monotone in t. 
Then to is unique and any solution sequence {T,} of the empirical equation 
XFn(t) = 0 converges to to wpl. Gfurther, $(x, t) is continuous in t in a neigh- 
borhood of to, then there exists such a solution sequence. 

PROOF. Assume that $(x, t )  is nonincreasing in t. Then AF( t )  and 
AFn(t), each n, are nonincreasing functions of t .  Since A F ( t )  is monotone, 
AF(tO) = 0, and to is an isolated root, to is the unique root. Let e > 0 be given. 
Then &(to + e) < 0 < &(to - 6). NOW, by the SLLN, AFa(t) * AF(t), each t. 
Therefore, 

lim P(Ap,(to + E) -= 0 < AF,(tO - E), all m 2 n)  = 1. 
n*m 

Complete the argument as an exercise. 

Remark A. Note that to need not actually be a root of &(t) = 0. It sufices 
that &(t) change sign uniquely in a neighborhood of to.  Then we still have, 
for any E > 0, AF(tO + e) < 0 < &(to - E), and the assertions on { T.} follow as 
above. 

For example, by the above lemma the sample mean, the sample median, 
and the Hubers (Examples 7.1.2AY B, E) are, under suitable restrictions, 
consistent estimators of the corresponding location parameters. However, 
for the Hampels (Example 7.1.2F), we need a result such as the following. 

Lemma B. Let to be an isolated root ofXF(t) = 0. Let $(x, t )  be continuous in t 
and bounded. Then the empirical equation hF,(t) = 0 has a solution sequence 
{T,} which converges to to wpl. 

PROOF. Justify that AF(t) and AFn(t), each n, are continuous functions 
oft. Then complete the proof as with Lemma A. 

Corollary. For an M-functional T based on 9, let F be such that T(F) is an 
isolated root ofhF(t) = 0. Suppose that $(x, t) is continuous in t and either 
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monotone in t or bounded. Then the empirical equation Ap,,(t) = 0 admits a 
strongly consistent estimation sequence T,for T(F). 

Remark B. In application of Lemma B in cases when the empirical equation 
A&) = 0 may have multiple solutions, there is the difficulty of fdentffying a 
consistent solution sequence { T,). Thus in practice one needs to go further 
than Lemma B and establish consistency for a particular solution sequence 
obtained by a specified algorithm. 

For example, Collins (1976) considers a robust model for location in which 
the underlying F is governed by the standard normal density on an interval 
to f d and may be arbitrary elsewhere. He requires that # be continuous with 
continuous derivative, be skew-symmetric, and vanish outside an interval 
[ - c, c], c < d. He establishes consistency for T, the Newton method solution 
of d&) = 0 starting with the sample median. 

Portnoy (1977) assumes that F has a symmetric density f satisfying certain 
regularity properties, and requires $ to be bounded and have a bounded and 
8.9. (Lebesgue) uniformly continuous derivative. He establishes consistency 
for T,, the solution of A&) = 0 nearest to any given consistent estimator T .  

7.2.2 Asymptotic Normality and the LIL 
Let $(x, t )  be given, put A&) = $(x, t)dF(x), and let to = T(F) be a solution 
of A&) = 0. Based on { X , }  I.I.D. from F, let T, = T(F,) be a consistent (for 
to) solution sequence of d&) = 0. Conditions for consistency were given in 
7.2.1. Here we investigate the nature of further conditions under which 

n’”(T, - to) 5 N(0, a2(T, F)), (AN) 

with a’(T, F) given by either #2(x, to)dF(x)/[d#o)]2 (as in 7.1.1) or 
$‘(x, to)dF(x)/[j(a$(x, t)/at)l, ,,)dF(x)]’,’depending upon the assumptions 

on #(& 0. 
In some cases we are able also to conclude 

n“’(T, - to) riiii = 1 wpl. ”+- a(T, F)(2 log log n)l” 

Three theorems establishing (AN) will be given. Theorem A, parallel to 
Lemma 7.2.1A, is based on Huber (1964) and deals with #(x, t) monotone in t. 
In the absence of this monotonicity, we can obtain (AN) under differentiability 
restrictions on #(x, a), by an extension of the classical treatment of maximum 
likelihood estimation (recall 4.2.2). For example, conditions such as 

< M(x), with sup E&fM(X) < 00, 
PE e 
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play a role. A development of this type is indicated by Rao (1973), p. 378. As a 
variant of this approach, based on Huber (1964), Theorem B requires a 
condition somewhat weaker than the above. Finally, Theorem C, based on 
Boos (1977), obtains (AN) by a rather different approach employing methods 
of Chapter 6 in conjunction with stochastic properties of llF, - Fll,. Instead 
of differentiability restrictions on $(x, a), a condition is imposed on the varia- 
tion of the function $( ., t )  - $( e .  to), as t -+ to,  The approaches of Theorems 
B and C also lead to (LIL) in straightforward fashion. 

We now give Theorem A. Note that its assumptions include those of 
Lemma 7.2.1A. 

Theorem A. Let to be an isolated root of A&) = 0. Let $(x, t) be monotone in 
t. Suppose that A&) is diflerentiable at t = to, with X;(to) # 0. Suppose that 

$2(x, t)dF(x) isfinitefor t in a neighborhood ofto and is continuous at t = to. 
Then any solution sequence T,, of the empirical equation AF,,(t) = 0 satisfies 
(AN) ,  with a2(T, F) given by I $'(x, to)dF(x)/[&(to)J2. (That T,* to is 
guaranteed by Lemma 7.2.1A.) 

PROOF. Assume that $(x, t )  is nonincreasing in t, so that A,&) is 
nonincreasing. Thus (justify) 

P(Sn(t) < O) s P ( x  s t )  5 f l A F n ( t )  5;. 0). 

Therefore, to obtain (AN), it suffices (check) to show that 

lim P(AFn(tZ,,,) c 0) 3: lim flAFn(tr,,,) 5 0) = Wz), each z, 
I 'OO n*m 

where ts,,, = to + z ~ n - ~ ' ~ ,  with Q = a(T, F). Equivalently (check), we wish 
to show that 

where sf,,, = VarF{$(Xl, ts,,,)) and 

Justify, using the assumptions of the theorem, that nl'zA&,,,) 4 &(t&g and 
that s~,,, -+ -&(tO)Q, as n -+ 00. Thus -n1'2AF(tJsz,n -+ z, n -+ 00, and it 
thus suffices (why?) to show that 

X I  I; z) = Wz), each z. 
n-m 
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Since Ynl, 1 s i 5 n, are I.I.D. with mean 0 and variance 1, each n, we may 
apply the double array CLT (Theorem 1.9.3). The "uniform asymptotic 
negligibility" condition is immediate in the present case, so it remains to 
verify the Lindeberg condition 

lim 1 y2 d ~ ~ , , ( y )  = 0, every e > 0, 
n-oD l y l > n W  

or equivalently (check) 

(1) 

For any q > 0, we have for n sufficiently large that 

lim J t,h2(x, t.,,)dF(x) = 0, every 8 > 0. 
1 1 - 9 )  I W ,  t., dl > n'12s 

Example A The Sample pth Quantile. Let 0 < p c 1. Suppose that F is 
differentiable at 4, and F'(t,) > 0. Take $(x, t )  = I,+ - t), where 

x < 0, 
x = 0, 

Check that for t in a neighborhood of t.,, we have 

and thus 

and 

Check that the remaining conditions of the theorem hold and that a2(T, F) = 
p(l - p)/[F'(~,)J2.Thus AN)holdsforanysolutionsequence T,,ofl,(t) = 0. 
In particular, for T,, = t ,,, as considered in Section 2.3, we again obtain 
Corollary 2.3.3A. 
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ExampleB The Hubers (continuation of Example 7.1.2E). Take $(x, t )  = 
#(x - t), where 

-k, x < -k, 
x, 1x1 S k,  1 k, x > k. 

$(XI = 

Verify, using Theorem A, that any solution sequence T. of A&) = 0 satisfies 
(AN)  with 

The nextl theorem trades monotonicity of #(x, a )  for smoothness restric- 
tions,and also assumes(implicit1y)conditions on $(x, t)suficient for existence 
of a consistent estimator Tn of to. Note that the variance parameter a2(T, F) is 
given by a different formula than in Theorem A. The proof of Theorem B will 
use the following easily proved (Problem 7.P.9) lemma giving simple exten- 
sions of the classical WLLN and SLLN. 

Lemma A. Let g(x, t) be continuous at to uniformly in x. Let F be a distribution 
functionfor which Ig(x, to)IdF(x) < 00. Let {XI} be I.I.D. F and suppose that 

P (1) T, -+ to. 

Then 

Further, ifthe convergence in (1) is wpl, then so is that in (2). 

Theorem B. Let to be an isolated root of &(t) = 0. Let a\lr(x, t)/& be con- 
tinuous at t = to uniformly in x. Suppose that (J$(x, t)/dt)I,, dF(x) isfinite and 
nonzero, and chat j q2(x, to)dF(x) < 00. Let T, be a solution sequence of 
AFn(t) = 0 satisjying T, + to. Then T, satisfies (AN) with d(T, F) = 

PROOF. Since $(x, t )  is differentiable in t ,  so is the function PI +(Xi, t), 
and we have 

j 4f2(X, to)dF(x)/Cj W(x9 t)/WI,, dFWJ2. 

where I - to I 5 I T, - to I .  Since AFn( T.) = 0, we thus have 

-An 
Bn 

n'I2(K - to) = -, 
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where 

and 

Complete the proof using the CLT and Lemma A. a 
Remark A. A variant of Theorem B, due to Boos (1977), relaxes the uniform 
continuity of g(x, t )  = 2$(x, t)/& at t = to to just continuity, but imposes the 
additional conditions that the function g( ., t )  - g(., to) have variation O( 1) as 
t + to and that the function g(x, t)dF(x) be continuous at t = to.  This follows 
by virtue of a corresponding variant of Lemma A (see Problem 7.P.14). 

Example C The maximum likelihood estimate of a location parameter (con- 
tinuation of Example 7.1.2C). Here @(x) = -f6(x)/fo(x) is not necessarily 
monotone. However, under further regularity conditions onfo, Theorem A is 
applicable and yields (check) asymptotic normality with a2(T, F) = l/I(Fo), 

The next theorem bypasses differentiability restrictions on $(x, t), except 
what is implied by differentiability of A&). The following lemma will be used. 
Denote by Il.llv the variation norm, 

where W o )  = j ( f b / f o ) 2  dF0. a 

llhllV = lim &b(h), 
0 4 - w  
b-r w 

where 

the supremum veing taken over all partitions a = xo < - - - < xk = 
interval [a, b]. 

Lemma B. Let thefunction H be continuous with llH Ilv < 00 and thefunction 
K be right-continuous with 11K11 < 00 and K( f 00) = 0. Then 

of the 

I JH dK I s IlHllv, IlKll,. 

PROOF. Apply integration by parts to write H d K -  -I K d H ,  using 
the fact that IH( f 00)l < 00. Then check that I j  K d H I  5; IlKll,. llHllv (or 
see Natanson (1961), p. 232). 
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Theorem C. Let to be an isolated root ofkdt) = 0. Let Q(x, t) be continuous 
in x and satisJy 

(V) 

Suppose that hdt) is diflerentiable at t = to, with &(to) # 0. Suppose that 
Jr2(x, to)dF(x) < 00. Let T, be a solution sequence of kFn(t) = 0 satisfying 

T ,  to. Then T, satisfies (AN) with a2(T, F) = q2(x, to)dF(x)/[&(to)]2. 

PROOF. The differential methodology of Chapter 6 will be applied and, 
in particular, the quasi-diferential notion of 6.2.2 will be exploited. As noted 
in 7.1.1, 

lim IN(-, t) - M., to)lIV = 0. 
1- to 

In order to deal with T(G)  - T(F) - d ,  T(F; G - F), it is useful to define the 
function 

Unfortunately, this expression is not especially manageable. However, the 
quasi-differential device is found to be productive using the auxiliary func- 
tional Tp(G) = X#o)/h(T(G)). We thus have 
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Check that Lemma B is applicable and, with the convergence T, 3 to,‘yields 
that the right-hand side of (1) is o,,(llFn - Film). It follows (why?) that 

n1’2[K - to - TF(F,)dlT(F; F,, - F)] 4 0. 

Finally, check that d’2TF(Fn)dl T(F; F,, - F) 5 N(0, 02(T, F)). H 

Examples D. Consider M-estimation of a location parameter, in which case 
$(x, t )  may be replaced by $(x - t). The regularity conditions on $ imposed 
by Lemmas 7.2.1A, B (for existence of a consistent M-estimation sequence) 
and by Theorem C above (for asymptotic normality) are that $ be continuous, 
either bounded or monotone, and satisfy 

limII$(. - b) - $ ( . ) l l v  = 0. 

These requirements are met by typical $ considered in robust estimation: 
“least pth power” estimates corresponding to I&) = Ixlp- sgn(x), provided 
that 1 < p S 2; the Hubers (Example 7.1.2E); the Hampels (Example 7.1.2F); 
the smoothed Hampel (Example 7.1.2G). In checking (*), a helpful relation is 
IlHll~ = IH’(x)Jdx, for H an absolutely continuous function. 

be0 
(*I 

Remark B. LIL for M-Estimates. Under the conditions of either Theorem 
B or Theorem C, with the convergence of T, to to strengthened to wpl, T,, 
satisfies (LIL). This is readily seen by minor modification in the proofs of these 
results (Problem 7.P.16). 

7.2.3 Berry-Wen Rates 

The approach of 6.4.3 may be applied. For simplicity let us confine attention 
to the case $(x, r )  = $(x - t). As an exercise (Problem 7.P.17), augment the 
development in the proof of Theorem 7.2.2C by evaluating d2 T(F; F,, - F) 
and showing that the remainder R2,, =: T, - to - d,T(F;  F,, - F) - 
fdz T(F; F,, - F) may be expressed in the form R2, = A,, + Bn + Cn + 
where 
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and 

A brute force treatment of these quantities separately leads to 

under moderate restrictions on JI, JI‘, JI” and on XF(t), &(t) and &‘(t) for t in a 
neighborhood of to.  By application (check) of the Dvoretzky-Kiefer- 
Wolfowitz inequality (Theorem 2.1.3A), P ( ( R z n (  > Cn-’) = O(n-‘/’), so 
that Theorem 6.4.3 yields the Berry-EssCen rate O ( ~ I - ~ / ~ )  for the asymptotic 
normality of T,. 

For other discussion of the Berry-EssCen rate for M-estimates, see Bickel 
(1974). 

7.3 COMPLEMENTS 

7.3.1 Information Inequality; Most EtRcient M-Estimation 
Assume regularity conditions permitting the following interchange of order 
of integration and differentiation: 

Then the two forms of a*(”, F )  in 7.2.2 agree. Assume also that F has a 
density f with derivative f’. Further, consider now the case that JI(x, t )  = 
JI(x - t). Then, by integration by parts, (1) yields 

&(to) = - I J I ‘ ( x  - t o ) f (x )dx  = - / J I ( x  - to)f’(x)dx. 

Hence 

and thus, by the Schwarz inequality, (check) 

which is again the “information inequality” discussed in 4.1.3. This lower 
bound is achieved if and only if JI(x - to) is of the form af‘(x) / f (x)  for some 
constant a. To make this more transparent, suppose that F(x)  = Fo(x - to), 
making to = T(F) a location parameter in the location model generated by a 



258 M-ESTIMATES 

distribution Fo (recall Example 7.1.1). Then equality in (*) is achieved if and 
only if $ = $o, where 

for some constant a, that is, if $ is the maximum likelihood estimator. That is, 
the most eflcient M-estimator is the maximum likelihood estimator. Now 
compare the most robust estimator (7.3.2). 

73.2 “Most Robust” M-Estimation 
Let Fo in the location model F(x; 0) = Fo(x - 6) be unknown but assumed 
to belong to a class C of distributions (as in Example 7.1.2E). In some cases 
(see Huber (1964)) there exists a unique “least favorable” FE C, in the sense 
that 

where $ = - fi/f (the $ yielding efficient M-estimation of 6 when F is the 
underlying distribution Fo). But, by (*), 

a’(?$, 0 2 a’(?$, F), all F E C, 

O2<T$, 0 5 a ( T$, F), all $. 

Hence 

sup u’(T$, F) = inf sup a2(T+, F). 
P $ P  

Thus the M-estimator corresponding to $ is most robust in the sense of 
minimaxing the asymptotic variance. We see that the “most robust” M- 
estimator has both a maximum likelihood and a minimax interpretation. For 
the contaminated normal class C of Example 7.1.2E, the least favorable F has 
densityf(x) = (1 - e)(2n)-’” exp Ax). 
73.3 The Differential of an M-Functional 
The proofofTheorem 7.2.2Cshowed that, under theconditions of the theorem, 
T(F; A) = -I $(x, to)dA(x)/&(to) is (recall 6.2.2) a quasf-dgerential with 
respect toll. 11 , and Tp( a). If in addition we require that I!$( 0 ,  to)ll < 00, then 
T(F; A) is a strict differential w.r.t. 11.11, (Problem 7.P.19). 

7.3.4 One!-Step M-Estimators 
Consider solving the empirical equation A&) = 0 by Newton’s method 
starting with some consistent estimator (for the solution to of A&) = 0). 
The first iteration has the form 
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Now check that 

where 

and 

Assume the conditions of Theorem 7.2.28 and also 

(1) rP2(R - to)  = oP(1), n + 00. 

Then immediately (justify) 

n'/2An 1: N(0, n2(T, F)) 

and 

n'l'c,, 4 0. 

Find additional conditions on $ such that 

n1I2B,, 3 0, 

and thus conclude that n1'2(Ti1) - to) 
performance of the "one-step" is the same as the "full iterate." 

7.3.5 Scaling 

As discussed in Huber (1977), in order to make a location M-estimate scale- 
invariant, one must introduce a location-invariant scale estimate s,,, and then 
take T, to be the solution of 

N(0, n2(T, F)), in which case the 



260 M-ESTIMATES 

In this case, if S, estimates u(F), then T,, estimates T(F) defined as the solution 
of 

A recommended choice of s,, is the mean absolute deviation (MAD), 

s, = median of {IX, - mi,. , , , (X, - mi), 

where m = median of {X,, , . . , X,}. Another old favorite is the sample 
interquartile range (discussed in 2.3.6). The results of this chapter extend to 
this formulation of M-estimation. 

73.6 Bahadur Representation for M-&timates 
Let T, be as defined in 7.3.5. Under various regularity conditions on $ and F, 
Carroll (1978) represents T,, as a linear combination of the scale estimate s,, 
and the average of n bounded random variables, except for a remainder term 

7.3.7 M-Estimates for Regression 
See Huber (1973). 

7.38 Multiparameter M-Estimates 

See Huber (1977). 

7.3.9 Connections Between M-Estimates and L- and R-Estimates 
See Chapter 9. 

O(n-'(log log n))wpl. 

7.P PROBLEMS 

Section 7.1 

1. Derive the IC for an M-estimate, as given in 7.1.1. (Hint: use the 
method of Example 6.5B.) 

2. Verify the characterization of the M-estimator of Example 7.1.2D as a 
form of trimmed mean. Exemplify. 

3. Verify the characterization of the M-estimator of Example 7.1.2E as 
a form of Winsorized mean. Exemplify. 

Section 7.2 

4. Complete the proofs of Lemmas 7.2.1A, B. 
5. Does Remark 7.2.1A apply to Lemma B also? 
6. Complete the details of proof of Theorem 7.2.2A. 
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7. Supply details for Example 7.2.2A (the sample pth quantile). 
8. Supply details for Example 7.2.2B (the Hubers). 
9. Prove Lemma 7.2.2A. Hint: write 

10. Complete the proof of Theorem 7.2.28. 
11. Check details of Example 7.2.2C (m.1.e. of location parameter). 
12. Check details of proof of Lemma 7.2.28. 
13. Supply details for the proof of Theorem 7.2.2C. 
14. Prove the variant of Lemma 7.2.2A noted in Remark 7.2.2A. (Hint: 

15. Check the claims of Examples 7.2.21). 
16. Verify Remark 7.2.28 (LIL for M-estimates). 
17. Provide details in 7.2.3 (Berry-Essken rates for M-estimates). 

apply Lemma 7.2.2B.) 

Section 7.3 
18. Details for 7.3.1-2. 
19. Details for 7.3.3. 
20. Details for 7.3.4. 



C H A P T E R  8 

LEstimates 

This chapter deals briefly with the asymptotic properties of statistics which 
may be represented as linear combinations of order statisrics, termed “L- 
estimates” here. This class of statistics is computationally more appealing 
than the M-estimates, yet competes well from the standpoints of robustness 
and efficiency. It also competes well against R-estimates (Chapter 9). 

Section 8.1 provides the basic formulation and a variety of examples 
illustrating the scope of the class. Asymptotic properties, focusing on the case 
of asymptotically normal L-estimates, are treated in Section 8.2. Four different 
methodological approaches are examined. 

8.1 BASIC FORMULATION AND EXAMPLES 

A general formulation of L-estimation is presented in 8.1.1. The special case 
of eficient parametric L-estimation of location and scale parameters is 
treated in 8.1.2. Robust Lestimation is discussed in 8.1.3. From these con- 
siderations it will be seen that the theoretical treatment of L-estimates must 
serve a very wide scope of practical possibilities. 

8.1.1 General Formulation and First Examples 
Consider independent observations X,, . . . , X, on a distribution function F 
and, as usual, denote the ordered values by Xn1 < - . s X,. As discussed in 
2.4.2, many important statistics may be expressed as linear functions of the 
ordered values, that is, in the form 

(1) 

forsomechoiceofconstantscnlY . . . , c,,. Wetcrmsuchstatistics“L-estimates.” 
Simple examples are the sample mean X, the extremes Xn1 and X,,,,, and the 
sample range X, - Xn1. From the discussion of 2.4.3 and 2.4.4, it is clear 
that the asymptotic distribution theory of L-statistics takes quite different 

262 

n 

T, = C C n i X n t  
I =  1 
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forms,dependingon thecharacter ofthecoefficients {c,,~}. The present develop- 
ment will attend only to cases in which T,, is asymptotically normal. 

Examples A. (i) The sample pth quantile, ern, may be expressed in the form 
(1) with cnI = 1 if i = np or if np # [np] and i = [np] + 1, and cnl = 0 
otherwise. 

(ii) Gini's mean digereme, 

considered previously in 5.1.1 as a U-statistic for unbiased estimation of the 
dispersion parameter 8 = E F ( X 1  - X,l, may be represented as an L- 
estimate as follows (supply missing steps): 

which is of form (1) with cRI = 2(2i - n - l)/n(n - 1). 

A convenient subclass of (1) broad enough for all typical applications is 
given by 

Here J(u), 0 5 u 5 1, represents a weights-generating function. It is assumed 
that 0 < p1 < * < p,,, < 1 and that a l ,  . . . , a,,, are nonzero constants. Thus 
T:, is of form (1) with c, ,~ given by n-'J(i/(n + 1)) plus an additional con- 
tribution a, if i = [np,] for somej E { 1, . . . , m}. Typically, J is a fairly smooth 
function. Thus L-estimates of form (1') are sums of two special types of L- 
estimate, one type weighting all the observations according to a reasonably 
smooth weight function, the other type consisting of a weighted sum of a fixed 
number of quantiles. In many cases, of course, the statistic of interest is just a 
single one of these types. Also, in many cases, the initial statistic of interest is 
modified slightly to bring it into the convenient form (1'). For example, the 
sample pth quantile T,, = epn is replaced by Tk = Xn,tnp,, given by (1') with 
the first term absent and the second term corresponding to m = 1, p1 = p ,  
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al = 1. Similarly, Gini's mean difference T, may be replaced by 7'; = 
[(n + l)/(n - l)]T,, which is ofform (1') with J(u) = 4u - 2,O s u s 1, and 
with the second term absent. In such cases, in order that conclusions obtained 
for TL may be applied to T,, a separate analysis showing that T, - Tn is 
negligible in an appropriate sense must be carried out. 

Examples B. (i) The a-trimmed mean (previously considered in Example 
6.5E). Let 0 < a < 1. Then 

is of form (1). Asymptotically equivalent to T, is Tk of form (1') with J(u) = 
1/(1 - 2a) for a < u < 1 - a and = 0 elsewhere, and with m - 0. 

(ii) The a-Winsorized mean. Let 0 < a < 4. Then 

isasymptoticallyequivalent to TLofform(1')with J(u) = 1 fora < u < 1 - a 
and -0 elsewhere, and with m = 2, p1 -- a, p l  = 1 - a, al = a2 - a. 

(iii) The interquartile range (recall 2.3.6) is essentially of form (1') with 
J(u) = 0 and m = 2, p1 = $, p 2  = $, aI  = 4, a2 = f. 

As these examples illustrate, a given statistic such as the interquartile 
range may have two asymptotically equivalent formulations as an Latimate. 
Further, even the form (1') has its variations. In place of J(i/(n + 1)), some 
authors use J(i/n), which is a little neater but makes the definition of J(u) at 
u = 1 a more troublesome issue. Some authors use 

tin 1,- 
in place of J(i/(n + 1)). In this case, we may express the first term of (1') in the 
form 

This requires that J be integrable, but lends itself to formulation of L- 
estimates as statistlcalfunctions. Thus, using this version of weights in the 
first term in (1') and modifying the second term by putting F,' I@,) in place of 
*#. tnpjl* 1 s j s m, we obtain the closely associated class of L-estimates 

(1") 7": P T(Fn), 
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where T( a )  denotes the functional 

More generally, a wide class of L-estimates may be represented as statistical 
functions T(F,), in terms of functionals of the form 

T(F) = 1 F-'(t)dK(t), 

where K ( . )  denotes a linear combination of distribution functions on the 
interval [0,1]. 

Not only does the functional representation help us see what an L-estimate 
is actually estimating, but also it brings into action the useful heuristic tool 
of influence curve analysis. From Example 6.5D and 6.6.1, the influence curve 
of the tth quantile F -  ' ( t )  is 

1 

0 

-00 < x < 00. t - I(x 5 F- ' ( t ) )  

m- '(0) ' 
IC(x;  F-'( t ) ,  F )  = 

(See also Problem 8.P.2.) Thus the functional T2( -)given by the second term of 
(*) has influence curve 

Let us now deal with the functional Ti given by thefirst term of (*). Putting 
Kl(t) = fi J(u)du, we have (Problem 8.P.3) 

Lemma A. F-'(t)J(t)dt isfinite, then 

JO1F-'(t)J(t)dt = dKl(F(x)). 

We thus obtain (Problem 8.P.4), for Kl(.)  a linear combination of distribu- 
tion functions, and in particular for K,( t )  = fi J(u)du, 

Lemma B. Tl(G) - Tl(F) = - j Z W  [K,(G(x)) - K,(F(x))]dx. 

Applying Lemma B, we may obtain the Gateaux differential of T' at F (see 
Problem 8.P.5 for details) and in particular the influence curve 
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The influence curve of the functional T given by (*) is thus 

IC(X; T, F) fC(X; Ti, F) + IC(X; Tz, F). 

Note that the second term, when present, gives the curve jumps of sizes 
a,/f(F-'(p,)) at the points x = F-I(p,), 1 I; j I; m. 

The relevant asymptotic normality assertion for T(F,,) may now be 
formulated. Following the discussion of Remark 6.5, we note that E F { f C ( X ;  
T, F)} = 0 and we define az(T, F) = Var,{IC(X; T, F)}. We thus anticipate 
that T(F,,) is AN(T(F), n-'a'(T, F)). The detailed treatment is provided in 
Section 8.2. 

Clearly, the L-estimates tend to be more attractive computationally than 
the M-estimates. In particular, L-estimation is thus more appealing com- 
putationally than maximum likelihood estimation. Does this mean that 
efficiency must be sacrificed to p i n  this ease of computation? No, it turns out 
in classical parametric estimation problems that the constants cnl may be 
selected so that T, has the same asymptotic variance as the maximum likc- 
lihood estimate. In 8.1.2 we consider a number of specific examples of such 
problems. Furthermore, Bickel and Lehmann (1975) compare M-, L- and 
R-estimates for location estimation in the case of asymmetric F and conclude 
that L-estimates offer the best compromise between the competing demands 
of efficiency at the parametric model and robustness in a nonparametric 
neighborhood of the parametric model. In particular, the trimmed means are 
recommended. In 8.1.3 we consider robust L-estimation. 

Fixed sample size analysis of L-estimation seems to have begun with 
Lloyd (1952), who developed estimators which are unbiased and of minimum 
variance (for each n) in the class of statistics consisting of linear transforma- 
tions of statistia T, of form (1). See David (1970), Chapter 6, for details and 
further references. See Sarhan and Greenberg (1962) for tabulated values. 

An asymptotic analysis was developed by Bennett (1952), who derived 
asymptotically optimal c,,,'s (J functions) by an approach not involving 
considerations of asymptotic normality. Some of his results were obtained 
independently by Jung (1955). 

The asymptotic analysis has become linked with the question ofasymptotic 
normality by several investigators, notable results earliest being given by 
Chernoff, Gastwirth and Johns (1967). Among other things, they demonstrate 
that Bennett's estimators are asymptotically efficient. Alternate methods of 
proving asymptotic normality have been introduced by Stigler (1969), 
Shorack (1969), and Boos (1979). We discuss these various approaches in 
8.2.1-8.2.4, and corresponding strong consistency and LIL results will be 
noted. The related Berry-Essten rates will be discussed in 8.2.5, with special 
attention to results of Bjerve (1977), Helmers (1977), and BOOS and Serfling 
(1979). 
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8.1.2 Examples in Parametric Ipcation and Scale Estimation 
Let the distribution of X,l,.  . . , X n  be a member F(x; el, 0,) of a specified 
location and scale parameter family 9F = {F(x ;  el, a,), (el, 0,) E a}, where 

with density 

and F is a specified distribution with density f. For example, if F = d), then S 
is a family of normal distributions. One or both of and 0, may be unknown. 
The problem under consideration is that of estimation of each unknown 
parameter by an L-estimate, that is, by a statistic of the convenient form 

with the J function selected optimally. Furthermore, solutions are desired in 
both the cases of censored and uncensored data (censored data arises in 
connection with life-testing experiments, or in connection with outlier- 
rejection procedures). We will consider several examples from Chernoff, 
Gastwirth and Johns (1967). 

Assume that 9c satisfies regularity conditions (recall Section 4.2) suf- 
ficient for the asymptotic covariance matrix of the normalized maximum 
likelihood estimates of and 0, to coincide with the inverse of the informa- 
tion matrix 

Defining 
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The problem is to find J functions such that estimates of the form 

have asymptotic covariance matrix n-  '8:l;  l .  

Example A Uncensorgd case, scale known. For estimation of the location 
parameter 8, when the scale parameter O2 is known, the efficient J function is 
found to be 

J(u)  = lT;Li(F-'(u)). 

It is established that the corresponding L-estimate T, is AN(!', n- 'u:), where 
p1 = 8, + 1;;l128, and u: = 8:lif. It follows that T, - li;llz82 is an 
asymptotically efficient estimator of the location parameter el, when the scale 
parameter is known. In particular: 

(i) For the normal family 9 based on F = @, the appropriate weight 
function is, of course, simply J(u) E 1 ; 

(ii) For the logistic family 9 based on 

F(x)  = (1 + e-*)-', -00 < x < 00, 

the appropriate weight function is 

J(u) = 6 ~ ( l  - u), 0 S u S 1; 

(iii) For the Cauchy family 9c based on 

1 
n F(x) = - [tan-'(x) + in], -00 < x < 00, 

the appropriate weight function is 

Example B Uncensored case, location known. For estimation of O2 when 
81 is known, the efficient J function is found to be 

J(u) = l;&(F- '(u)). 

It is established that the corresponding L-estimate T, isAN(p,, n- '&,where 
p2 = 8, + 11;'lI28, and at = 8$ l ; / .  It follows that T, - l ; ~ l I 2 O 1  is an 
asymptotically efficient estimator of B2 when is known. In particular, for 
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the normal, logistic, and Cauchy families considered in Example A, the 
corresponding appropriate weight functions are 

J(u) = a- yu), 

J(u) = - 
n2 + 3 

and 

tan x(u - f) 
secZ n(u - 4)' J(u) = 8 

respectively. 

Example C Uncensored case, location and scale both unknown. In this case 
the vector (T;'), T!?) corresponding to 

CJ l ( 4 ,  J2(u)3 = C G ( F  - 1(4), G ( F  - l(u))lI; 

is AN ((el, ez), n- let IF I). rn 
Example D Censored case, location and scale both unknown. In the case of 
symmetric two-sided censoring of the upper loop% and lower lOOp % 
observations, it is found that the asymptotically efficient estimate of the 
location parameter is formed by using weights specified by 

J(u) = I~;L \ (F- ' (U) )  

w = z ; , 'Cp- ' f2(F- ' (p) )  - f'(F-yp))] 

for the uncensored observations and additional weight 

for the largest and smallest uncensored observations. For the normal family 
we have, putting 6, = 0- I@), 

J(u) = IT:, p < u < 1 - p ,  
= 0, otherwise, 

and 

As a numerical example, for p = 0.05 we have ZI = 0.986 and w = 0.0437, 
yielding the efficient L-estimate 

w = ri,'CPd2(tp) + tp+(tp)I-  

Note the similarity to the p-Winsorized mean (Example 8.l.lB (ii)). a 
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8.1.3 Examples in Robust Estimation 
For robust L-estimation, the influence curve IC(x; T, F) derived in 8.1.1 
should be bounded and reasonably smooth. This curve is the sum of the two 
curves 

IC(X; Ti, F) = - [lo/ 2 X )  - F ~ / ) ] J ( F ~ / ) M J J  

and 

The first curve is smooth, having derivative J(F(x)) (Problem 8.P.6), but can 
be unbounded. To avoid this, robust L-estimation requires that J(u) vanish 
outside some interval (a, b), 0 < a < 6 < 1. The second curve is bounded, but 
has m discontinuities. 

Example A The “Gastwirth”. In the Monte Carlo study by Andrews et al. 
(1972), favorable properties were found for the L-estimate 

0.3F; ‘(4) + 0.4F; ‘(4) + 0.3F; ‘(j), 

proposed by Gastwirth (1966). 

Example B The a-trimmed mean (see Example 8.1.1B(i)). This is the 
L-estimate T(FJ, where 

For F symmetric about F‘ ‘(i), the influence curve is (recall Example 6.5E) 

[F-’(a) - F-’(+)], x < F-’(a), 
1 

F- ‘(a) 5 x 5 F- ‘(1 - a), 
1 

IC(x; T, F) = - [x - F“(f)], { 1 - 2 a  

I x > P 1 ( 1  - a) .  

Thus this L-estimate behaves the same as a certain M-estimate, the “Huber” 
(Example 7.2.2B) with k = F-I(l  - a). 
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Example C The a-Winsorized mean (see Example 8.1.1B(ii)). This is 
T(F,,) based on 

T ( F )  = l - ' ~ - l ( t ) d t  + aF- ' (a)  + ctF-1(1- a). 

Find its influence curve (Problem 8.P.8). 

ExampleD Thesmoothlytrimmedmean. Stigler (1973)providesanexample 
showing that the trimmed mean has nonnormul asymptotic distribution if the 
trimming is at non-unique quantiles of F. As one remedy, he introduces the 
"smoothly trimmed mean," corresponding to a J function of the form 

J(u) = 0, u < f., 

= c ,  a < u < l - a ,  

8.2 ASYMPTOTIC PROPERTIES OF L-ESTIMATES 

In this section we exhibit asymptotic normality of L-estimates under various 
restrictions on J and F. Four different methodological approaches will be 
considered, in 8.2.1-8.2.4, respectively. Consistency and LlL results will also 
be noted, along the way. In 8.2.5 we consider Berry-Essden rates. 

8.2.1 The Approach of Chernoff, Gastwirth and J o b  (1967) 

Chernoff, Gastwirth and Johns (1967) deal with L-estimates in the general 
form 

I 

T, = n - I c Cn1 h(X,,) 
1 1 1  

where h is some measurable function. (This includes as a special case the 
formulation of Section 8.1, given by h(x) = x and replacing cRf in (1) by ncRl .) 
For the purpose of deriving distribution theory for T,, we may assume that 
X , , X z  ,... are given by F-'(U1), F"(U,) ,..., where U1, Uz ,... are 
independent unifbrm (0, 1) variates. Thus X,, = F 1 ( U n f ) ,  1 s f 5 n. Also, 
Put 

v,, = -log(l - U,,,), 1 s i s n. 
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It is readily seen that the V,, are the order statistics of a sample from the 
negatiue exponential distribution, G(x) = 1 - exp(-x), x > 0. Thus, put- 
ting R = h 0 F“ 0 G, the composition of h, F1, and G, we have the re- 
presentation 

n 

I =  1 
T,, = n-’ CC,,~R(V, , ) .  

We now apply differentiability of R in conjunction with the following special 
representation of the V,, (see, e.g., David (1970)). 

Lemma A. The V,, may be represented in distribution as 

f s i s n ,  Z1 Zl v,, = - + 
n + n - i + l ’  

where Z1,. . . , Z ,  are independent random uariables with distribution G. 

Assumprim A. R(v) is continuously digerentiable for 0 < v < 00. Define 
On, = E{V,,} and note that 

l s i s n .  
1 1 

J,, x - + . * .  
n + n - i + l *  

Now apply Lemma A and Assumption A to write 

where 

= 0, v = 

We thus have the representation (check) 

(2) Tn = P n  + Qn + Rn, 
where 

n 

pn n- C cni R J n i ) ,  
1- 1 

n 
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with 

and 
n 

I -  1 
Rn = n-' Ccni(Vni - cni)Gni(Vni)* 

Here p,, is nonrandom, Q, can be shown asymptotically normal by standard 
central limit theory, and R, is a remainder which is found to be asymptotically 
negligible. Note that Q, has variance a:/n, where 

n 

The following further assumptions are needed. First we state an easily proved 
(Problem 8.P.9) preliminary. 

Lemma B. The random variables U,, and Vni can be simultaneously bounded 
in probability: given 8 > 0, there exists 

Uni(E), un'(~), Vni(E), vni(E) 

such that 

P(Uni(E) < Uni < uni(E), 1 I; i s n) 2 1 - E 

and 

P(Vni(E) < Vn, < vni(E), 

Vn,(E) = -log[l - U,,(E)], 

I < i n) 2 1 - E, 

with 

V"1(&) = -log[l - LP(€)] 

and 

Assumption B. For each E > 0, 

where 



274 L-EsnmTEs 

Assumption C. max,,,,, la,,,l = o(n1/2u,,). 

Theorem (Chernoff, Gastwirth and Johns). Under Assumptions A, B, 
and c, 

T, is AN(p,,,n^’uX). 

PROOF (Sketch). It can beshown byacharacteristicfunction argument 
(Problem 8.P.lqa)) that 9’(n1/2Q,,/u,,) + N(0, 1) if and only if Assumption C 
holds, no matter what the values of the constants {a,,,}, Further, it can be 
shown under Assumption B that R, - op(n-1/20,,). (See CGJ (1967) for 
details). 

For the special case 

CGJ (1967) give special conditions under which T, is AN@, n-’a2), where 

and 

where 

and H = h 0 F- See also 8.2.5. 

8.2.2 The Approach of Stigler (1969, 1974) 

We have seen the method of projection used in Chapter 5 and we will see it 
again in Chapter 9. Stigler deals with L-estimates in the form 

Sn = C C n 1 X n l ,  
I -  1 

by approximating the L-estimate by its projection 
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wheregnI is the projection of the order statistic Xnf.  To express this projection, 
we introduce the notation 

and 

The latter is the density of Unf, the ith order statistic of a sample from uniform 
(0,l). Stigler (1969) proves 

Lemma. There is some no = no(F) such that for i 2 no and n - i + 1 2 no, 

(In particular, since 9’{Xn1} = 9{F4’(Unf)}, E{Xnf}  = F-’(u)g,,,(u)du.) 
S t igler develops conditions under which 

so that for S,, AN(E{S,,} ,  d(S,,)) it suffices to deal with S,, by standard central 
limit theory. Noting that 

s,, = n- 

where A,, is nonrandom and Z,,k = c,,, jg(”*) #(u)g,,l(u)du, it suffices to 
verify the Lindeberg condition for &: i z , , k  - EZ,,,). (See details in Stigler 
(1969).) As noted by Stigler (1974), his assumptions leading to S,, AN(E{S,},  
a2(S,,)) may be characterized informally as follows: 

(i) the extremal order statistics do not contribute too much to S,,; 
(ii) the tails ofthe population distribution are smooth and the population 

(iii) the variance of S,, is of the same order as that of 
Stigler (1974) confines attention to the case 

z , , k  + A,,, 
k =  1 

density is continuous and positive over its support: 
(cnI I Xnf.  
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and strengthens the condition (ii) (through assumptions on J) in order 
essentially to be able to dispense with conditions (i) and (ii). He establishes 
several results. (See also Stigler (1979).) 

Theorem A. Suppose that E{X2} < 00, and that J is bounded and continuous 
a.e. F-’. Suppose that 

- 4 )  

a2(J, F) = I, S_~(F(x))J(F(y))CF(min(x, Y)) - F(X)F(YlldX dY 

is positive. Then 

Also, 
S, is AN(E{S,}, a2(S,)). 

lim na2(S,) = a2(J, F). 
n+m 

Theorem B. Suppose that [F(x)(l - F(x))]~/~ dx < a0 and that J(u) = 0 
for 0 < u < a and 1 - a 2 u < 1, is bounded, and satisjies a Lipschitz 
condition of order >+ (except possibly at a finite number of points of F- 
meusure 0). Then 

lim n’/2[E{S,} - p(J, F)] = 0, 
n+ m 

where 
1 

0 
p(J, F) = F-’(u)J(u)du. 

(As nokd by Stigler, if F has regularly varying tails (see Feller (1966), 
p. 268) with a finite exponent, then the conditions E { X 2 }  < 00 and 

j[F(x)(l - F(x))]’” dx < 00 

are equivalent.) 
Under the combined conditions of Theorems A and B, we have that S, is 

AN@(J, F), n-lu2(J, F)). Further, if J puts no weight on the extremes, the 
tail restrictions on F can be dropped (see Stigler’s Theorem 5 and Remark 3): 

Theorem C. Suppose that J(u) is bounded and continuous a.e. F-’, =O for 
0 < u < a and 1 - a < u < 1, and is Lipschitz of order >+ except at ajinite 
set of points of F- measure 0. Then 

S, is AN(p(J, F), n-’a2(J, F)). 
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Example. The a-trimmed mean satisfies the preceding, provided that the 
ath and (1 - a)th quantiles of F are unique. 

For robust L-estimation, it is quite appropriate to place the burden of 
restrictions on J rather than F. 

8.2.3 The Approach of Shorack (1969,1972) 
Shorack (1969, 1972) considers L-estimates in the form 

I 

and, without loss of generality, assumes that XI, Xz, . . . are uniform (0, 1) 
variates. In effect Shorack introduces a signed measure v on (0 , l )  such that 
T. estimates 1 = g dv. He introduces a sequence of signed measures v, 
which approach v in a certain sense and such that v, puts mass n-'cnl at 
i/n, 1 s i 5 n, and 0 elsewhere. Thus 

He then introduces the stochastic process L,(t) = nl/zb 0 F;'(t) - g(t)],  
0 s t s 1, and considers 

By establishing negligibility of the second term, treating the convergence of 
the stochastic process I,,(.), and treating the convergence of the functional 
J L, dv over I,,(.), the asymptotic distribution of T. is derived. His results 
yield the following examples. 

Example A. Let {X,) be I.I.D. F (F arbitrary), with E ( X ( '  < GO for some 
r > 0. Let 

n 

I =  1 
T, = n-' C J ( t n i ) X n l ,  

where maxIsfs,, It,, - i / n l +  0 as n 4 GO and where for some a > 0 

a[min(:, 1 - 31 5 t,, s 1 - a[min(:, 1 - $1, 1 s i 5 n. 

Suppose that J is continuous except at a finite number of points at which F" 
is continuous, and suppose that 

IJ(t)l < M[t(l - t)]-(1'2)+1/'+d, 0 < t < 1, 
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for some b > 0. Let J ,  be a function on [O, 13 equal to J(tRr) for ( I  - l)/n < t 
5 i/n and 1 s 1 5 n with J,(O) = J(tRl). Then 

n”’(T, - AJ,, F)) 5 N O ,  u2(J, F)), 
F-’(t)J,(t)dt and 

u z ( ~ ,  F) = I’ jl[min(s, t )  - s t ]J ( s )J ( t )dF-~(s )d~- l ( t ) .  

where C((Jn, F) = 

0 0  

It is desirable to replace p(J,, F) by p(J, F) -- 
done if J‘ exists and is continuous on (0, 1 )  with 

F’ ‘(t)J(t)dt. This may be 

IJ(t)l 5 M[t(l - t)]-“”’+’/‘+a, 0 < t < 1, 

for some 6 > 0, and the “max-condition” is strengthened to 

n max t,,, - - = O(1). 
1 srsn I 1) 

Ex8mple Al.  Let XI,. . , , X, be a sample from (9 7 N(0, 1). For integral 
r > 0, an estimator of E{X‘+ l}  is given by 

By Example A, 

Ex8mple B The a-trinuned mean. Let XI, .. ., X ,  be a sample from 
Fd = F(. - O), where F is any distribution symmetric about 0. Let 0 < a < 4. 
For n even define 

(Omit n odd.) Then 

where W(-) is the Wiener process (1.11.4). 

Note that Shorack requires J to be smooth but not necessarily boundad, 
and requires little on F. He also deals with mare general J functions under 
additional restrictions on F. 
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Wellner (1977a, b) follows the Shorack set-up and establishes almost sure 
results for T, given by (1). Define J ,  on [O, 13 by J,(O) = cM1 and J,,(t) = 
cnl for (i  - l)/n < t 5 i/n. Set p,, = J,,(t)g(t)dt and y = J(t)g(t)dt. 

Assumption 1. The function g is left continuous on (0, 1) and is of bounded 
variation on (0,l - 0)for all 0 > 0. Forfixed bl, b2 and M, 

IJ(t)l S Mt-bl(l - t)-b', 0 < t < 1, 

and the same bound holds for J,( a), each n. Further, 

lg(t)l < Mt-l+bt+G(f - t)-"+b'+a , O < t < l ,  

for some 6 > 0, and t'-bI-(1/2)8(1 - t)1-b1-(1/2)8 dl g l <  00. m 
Assunrprion 2. limndm J,(t) = J(t), t E (0, 1). 

Theorem. Under Assumption 1, T, - p, * 0. I f  also Assumption 2 holds, 
then T, 2 p. 

Example A* (parallel to Example A above). Let { X,}, F,  T,, and {t,,} be as 
in Example A. Suppose that 

IJ(t)I s M[t ( l  - t ) ] - ' + 1 / ' + d ,  0 < t < 1, 

for some S > 0, and that J is continuous except at finitely many points. Then 

1 

T, J% p(J, F) = F- '(t)J(t)dt. Jb 
Note that the requirements on J in Example A* are milder than in Example 

A. Wellner also develops the LIL for T, given by (1). For this, however, the 
requirements on J follow exactly those of Example A. 

8.2.4 The Differentiable Statistical Function Approach 

Consider the functional T(F)  = T,(F) + T2(F), where 

TI(F)  = IO1F- '(t)J(c)dt, 

with J such that K ( t )  = 
functions on (0, l), and 

J(u)dt is a linear combination of distribution 

m 
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We consider here the L-estimate given by the statistical function T(F,). 
Applying the methods of Chapter 6, we obtain asymptotic normality and the 
LlL in relatively straightforward fashion. 

From 8.1.1 it is readily seen that 
n 

i- I 
dIT(F; F,  - F) = n-I h(F; Xi),  

where 

Note that EF{h(F; X)} = 0. Put a2(T, F) = VarF{h(F; X ) } .  If 0 < a2(T, F) 
< 00, we obtain that T(F,) is AN(T(F), n-'a2(T, F)) if we can establish 
nli2R1, 3 0, where RI,  = Aln + A?,, with 

Now, in Example 6.SD, we have already established 

n112A2, 3 0, 
provided that F'(F-l(pJ)) > 0, j  = 1, , ;. , m. It remains to deal with A,,. 
By Lemma 8.1.1B, we have (check) 

A,, = 7i(Fn) - T ( F )  - d l T ( F ;  F,  - F), i 3: 1,2. 

where we define 

= 0, G ( x )  = F(x ) .  

Via (l), A,, may be handled by any of several natural approaches, each 
involving different trade-offs between restrictions on J and restrictions on F. 
For example, (1) immediately implies 

(2A) I A I n l  5 IIWF~,FIIL.~ * l lFn - f'llm, 
where llhll, = sup, Ih(x)l and llhllL, = Jh(x) ldx.  Since llF, - Fll, = 
Op(n-1'2) as noted earlier in Remark 6.2.2B(ii), we can obtain 1A1,1 = 
o,(n- ' I 2 )  by showing 

To this effect, following Boos (1977, 1979), we introduce 

( 3 4  IIWF",FllL, 4 0. 
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Assumption A. J is bounded and continuous a.e. Lebesgue and a.e. F-', 

and 

Assumption B. J(u) vanishes for u c a and u > p, where 0 < a < p < 1, 
and prove 

Lemma A. Under Assumptions A and 8, 

Jim IIW0,FIlL, = 0. 
110- Fll oo 4 0  

PROOF. First we utilize Assumption B. Let 0 < e < min{a, 1 - 8) .  

-a < a < F-'(a - e) < . F - ' ( p  + e) < b < ao. 

Then, for llG - Fll, < e, x < a implies F(x)  I; a - E c a and thus G(x)  < 
F(x)  + e 5 a, in which case (iustify) WG,,(x) = 0. Similarly, for llG - Fll, 
< e, x > b implies W,,,(X) = 0. Therefore, for llG - Fll, < E, 

Check that there exist a and b such that 

Also, keeping a and b fixed, this identity continues to hold as e -t 0. 

1.3.7). For all x ,  we have 
Next we utilize Assumption A and apply dominated convergence (Theorem 

5 211J11, < 00. 

Let D = { x :  J is discontinuous at F(x)} .  For x 9 D, we have W G , p ( ~ )  + 0 as 
G(x) + F(x). But D is a Lebesgue-null set (why?). Hence 

~ i m  l , W G , F ( x ) l d x  = 0. 
IlG -pII.. - 0  

Therefore, under Assumptions A and B, we have 

(4) n112Aln 4 0. 

Indeed (justify), these assumptions imply 

(5) 

Further, from Example 6SD, we have (justify) 

n l / 2 ~ ~ ~  "g' o((log log n)'"). 

n1I2A2,, = o((1og log n)Il2) 
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provided that F is twice differentiable at the points F'I(p,), 1 5 j S m. 
Therefore, we have proved 

Theorem A. Consider the Lestimate T(F,) = T,(F,) + T2(F,). Suppose 
that Assumptions A and B hold, and that F has positive derivatives at its pJ- 
quantiles, 1 s j 5 m. Assume 0 c a2(T, F) c ao. Then 

n1IZ(T(F,) - T(F)) 4 N(0, &(TI F)). 

rf,/icrrher, F is twice dlgerentiable at its p,-quantiles, 1 5 j 5 m, then the 
corresponding LIL holds. 

Examples A. (i) The trimmed mean. Consider T,(F)  based on J(t)  = 
I(a s t 5 /3)/(/3 - a) and T2(.) E 0. The conditions of the theorem are 
satisfied if the a- and flquantiles of F are unique. 

(ii) The Winsorfzed mean. (Problem 8.P.13). 

It is desirable also to deal with untrimmed J functions. To this effect, Boos 
(1977,1979) uses the following implication of (1): 

where q can be any strategically selected function satisfying 

Assumption B*. jZrn q(F(x))dx c 00. 

In this case the role of Lemma A is given to the following analogue. 

Lemma B. Under Assumptions A and B', 

Iim ll(q F)WO,FlIL, = 0. 
110- Fll no+ 0 

PROOF. analogous to that of Lemma A (Problem 8.P.14). 4 

In order to exploit Lemma B to establish (4) and (9, we require that 
ll(Fn - F)/q 0 FII, satisfy analogues of the properties Op(n- 'I2) and 

0,1(n-1/2(log log n)'") 

known for !IF, - Fll,. OReilly (1974) gives weak convergence results which 
yield the first property for a class of q functions containing in particular 

Q = (4: q(t) = [t(l - t)](1/2)-d, 0 < t < 1; 0 < 6 < 3,. 
James (1975) gives functional LIL results which yield the second property for 
a class of q functions also containing Q. 



ASYMPTOTIC PROPERTIES OF L-ESTIMATES 283 

On the other hand, Gaenssler and Stute (1976) note that the Op(n’1/2) 
property fails for q(t) = “(1 - t)]’/’. For this q, the other property also fails, 
by results of James (1975). Although some of the aforementioned results are 
established only for uniform (0, 1) variates, the conclusions we are drawing are 
valid for general F. We assert: 

and 

Consequently, we have (4) and (5) under Assumptions A and B*. That is, 

Theorem B. Assume the conditions of Theorem A, with Assumption B replaced 
by Assumption B* for some q E Q. Then the assertions of Theorem A remain 
valid. 

Examples B. Let F satisfy 1 [F(x)(l - F ( X ) ) ] ( ” ~ ) - ~  dx < 00 for some 
6 > 0. Then Theorem B is applicable to 

(i) The mean: J(u) = 1 ; 
(ii) Gini’s mean difference: J(u) = 4u - 2; 

(iii) The asymptotically efficient L-estimator for location for the logistic 
family: J(u) = 6u(l - u). W 

Remark. Boos (1977, 1979) actually establishes that 

T(F; A) = - A(x)J(F(x) )~x s 
is a duerentid of T( .) at F w.r.t. suitable II * 11’s. 

Still more can be extracted from (I), via the implication 

(2C) IAln1  5 IIWn,Fllao ’ llFn - FllL,* 

Thus one approach toward obtaining (4) is to establish llF, - FllL, = 
0,,(n-1/2) under suitable restrictions on F, and to establish IIWpn,F((aD 3 0 
under suitable restrictions on J .  We start with llF, - FllL,. 

Lemma D. Let F satisfy [F(x) [ 1 - F(x))] ‘ I2  dx c a. Then 

E{(IFn - FllL,} = O(n-’/2). 
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PROOF. Write F,(x) - F(x) = n- cy- Ydx), where q(x )  = I ( X ,  s x) 
- F(x). Then 

By Tonelli’s Theorem (Royden (1968), p. 270), 

Now check that 

Now we turn to IIWPm,Fl(m and adopt 

Assumption A*. J is continuous on [0, 11. 

Lemma E. Under Assumption A*, 

(Prove as an exercise.) We thus have arrived at 

Theorem C. Let F satisfy [F(x)(l - F(x))]’I2 dx < 00 and h u e  positive 
deriuatiues at its p,-quantiles, 1 S j 5 m. Let J be continuous on [0, I]. Assume 
0 < aZ(T, F) -c ao. Then 

n1’2(T(F,) - T(F)) 4 N(0, d(T,  F)). 

Compared with Theorem B, this theorem requires slightly less on F and 
slightly more on J. Examples B are covered by the present theorem also. 

Note that Theorem C remains true if T(F,) is replaced by T, = + 
T,(F,), where 

Show (Problem 8.P.17) that this assertion follows from 
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Lemma F. Under Assumption A*, 

285 

Prove Lemma F as an exercise. 

8.2.5 Berry-Esden Rates 

For L-estimates in the case of zero weight given to extreme order statistics, 
Rosenkrantz and OReilly (1972) derived the Berry-Essden rate O(n- 1’4). 

However, as we saw in Theorem 2.3.3C, for sample quantiles the rate O(n- 
applies. Thus it is not surprising that the rate O(n-’’4) can be improved to 
O(n- ’ I 2 ) .  We shall give three such results. Theorem A, due to Bjerve (1977), is 
obtained by a refinement of the approach of CGJ (1967) discussed in 8.2.1. The 
result permits quite general weights on the observations between the ath and 
/?th quantiles, where 0 < a < /3 < 1, but requires zero weights on the remaining 
observations. Thus the distribution F need not satisfy any moment condition. 
However, strong smoothness is required. Theorem B, due to Helmers 
(1977a, b), allows weights to be put on all the observations, under sufficient 
smoothness of the weight function and under moment restrictions on F. 
However, F need not be continuous. Helmers’ methods, as well as Bjerve’s, 
incorporate Fourier techniques. Theorem C, due to Boos and Serfling (1979), 
applies the method developed in 6.4.3 and thus implicitly uses the Berry- 
Essden theorem for U-statistics (Theorem 5.5.1B) due to Callaert and Janssen 
(1978). Thus Fourier techniques are bypassed, being subsumed into the U- 
statistic result. Theorem C is close to Theorem B in character. It should be 
noted that a major influence underlying all of these developments was 
provided by ideas in Bickel(1974). 

Bjerve treats L-estimates in the form 

n 

I =  1 
T. n- ’ C cni h(Xn,) 

and utilizes the function I? = h 0 F -  ’ 0 G and the notation pn and 8, defined 
in 8.2.1. He confines attention to the case that 

c,,, = 0 for i 5 an or i > pn, where 0 < a < /3 < 1, 

and introduces constants a and b satisfying 0 < a < -log(l - a) and 
-log(l - p) < b < 00. His theorem imposes further conditions on the 
c,;s as well as severe regularity conditions on R. Namely, Bjerve proves 
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Theorem A .  Let R satisfy a first order Llpschitz condition on [a, b] and 
assume for some constants c > 0 and d < 00 that 

(i) a: > c, all n, 
and 

(ii) n-I EP I C , , ~  c d, all n. 
Then 

PROOF (Sketch). The representation T, = p,, + Q,, + R,, of 8.2.1 is 
refined by writing R,, = M,, + A,,, where 

and 

with 

= 0, u = Vn1. 

It can be shown that 

P(IA,,l > n-'I2) = O(n-*l2) 

and, by a characteristic function approach, that 

(See Bjerve (1977) for details.) The result then follows by Lemma 6.4.3. H 
For the special case 

considered also by CGJ (1967), Theorem A yields (*) with p,, and a,, replaced 
by the constants p and Q defined at the end of 8.2.1; that is, with H = h 0 F- ', 
we have 
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Corollary. Let J and H" satisfy afirst order Lipschitz condition on an open 
interual containing [a, $3, 0 < u < $ < 1, and let J vanish outside [a, $1. 
Let pi , .  . . pm E [q $1. Then (*) holds with p, and a, replaced by p and a. 

We next give Helmers' result, which pertains to L-estimates in the form 

Theorem B. Suppose that 
(i) EFlX13 < 00; 

(ii) J is bounded and continuous on (0,l); 
(iiia) J' exists except possibly at finitely many points; 
(iiib) J' is Lipschitz of order ># on the open intervals where it exists; 
(iv) F- is Lipschitz oforder > 4 on neighborhoods ofthe points where J' 

does not exist ; 
(v) 0 < a2(J, F) = JJ J(F(x))J(F(y))CF(min(x, Y)) 

Then 
- F(x)FQ)]dx dy < 00. 

This theorem is proved in Helmers (1977a) under the additional restriction 

We now establish a closely parallel result for L-estimates of the form T(FJ 
1 I J' ( d F -  < 00, which is eliminated in Helmers (1977b). 

based on the functional T(F) = F-'(u)J(u)du. 

Theorem C. Assume conditions (i), (ii) and (v) of Theorem B. Replace (iii) and 
(iv) by 

(iii') J' exists and is Lipschitz of order 6 > 3 on (0, 1). 

Then 

Remark A. Compared to Theorem B, Theorem C requires existence of J' at 
all points but permits a lower order Lipschitz condition. Also, from the proof 
it will be evident that under a higher order moment assumption EIXl 1' < 00 
for integer v > 3, the Lipschitz order may be relaxed to S > l /v.  W 
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The proof of Theorem C will require the following lemmas, the second of 
which is a parallel of Lemma 8.2.4D. Here llhllL, = [j h2(x)dx]1'2. 

Lemma A. Let the random variable X have distribution F and satigy El X I' 
< a, where k is a positive integer. Let g be a bounded function. Then 

(0 E { j  CW 4 Y) - F(Y)lg(Y)dY) = 0 

6) E { [ j l I ( X  5 Y) - F(Y)IgwldYl') < 00- 
and 

PROOF. Since E ( X (  < 00, we have (why?) y [ F ( - y )  + 1 - Fb)] + 0 
as y 3 ao. Thus yll(X 5 y) - F(y)J + 0 as y + f 00 and hence, by integra- 
tion by parts, 

Sll(X 4 Y )  - Fcv)ldY 5; 1x1 + ElXl. 

Thus (ii) readily follows. Also, by Fubini's theorem, this justifies an inter- 
change of E{ .} and in (i). W 

Lemma B. t e t  EFIXlk < 00, where k is a positive integer. Then 

ElIIF" - Flit:) = O(n-'). 
PROOF. Put Ydt) = I (X i  I; t )  - F(t), 1 s i 4 n. Then 

(a) 

By the use of Lemma A and Fubini's Theorem (check), we have 

E{IIF. - ~112:) = n - 2 k  f: 

Check that we have E{ x , ( t l ) ~ l ( t , ) .  xk(tk)qk(tk)} = 0 except possibly in 
the case that each index in the list i l , j l ,  . . . , ik,jk appears at least twice. In this 
case the number of distinct elements in the set { i l , j l , .  , , , ik,jk} is s k. It 
follows that the number of ways to choose i l , j l , ,  . . , ik,jk such that the 
expectation in (b) is nonzero is O(nk). Thus the number of nonzero terms in the 
summation in (a) is o(nk). 

PROOF OF THEOREM C. We apply Theorem 6.4.3. Thus we express 
T(F,) - T(F) as V2, + R2,, where 

V,,, = dIT(F; F,, - F) + i d ,  T(F;  F, - F )  
I n  

= n - 2  2 h(F; XI, X,). 
1=1 J=l 
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By Problem 8.P.5, 

and 

d z  T(F; Fn - F) = - [Fn(t)  - F(t)]'J' 0 F(t)dt. I-, 
Thus (check) the desired h(F; x, y )  = J[a(x) + a(y) + P(x, y)], where 

W 

a(x) = - [ l ( x  5 t )  - F( t ) ]JoF( t )d t  s_, 
and 

4) 

P(x, Y )  = - 1- p x  5 t )  - FWl Cl(y 5 t )  - F(t)]J' 0 F(t)dt. 

- J-, 
Therefore (check), Rzn is given by 

(0 

{K 0 F,(t) - K 0 F ( t )  - J 0 F(t)[F, , ( t )  - F(t)J 

- 45' 0 F(t)[F,(t) - F(t)J2}dt,  

where K(u) = JyO J(o)do. By the Lip condition on J', we obtain 

4- P(nS'61(Fn - Flit, > 1). 

For 6 > 3, the first right-hand term is (check) O(n-"') by an application of 
Theorem 2.1.3A. The second term is O(n-'l2) by Lemma B above. Therefore, 

P(IR2,I > An-') = O ( ~ I " ' ~ ) ,  

as required in Theorem 6.4.3. 

above (check). 
The required properties of h(F; x, y )  are obtained by use of Lemma A 
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Remark B (Problem 8.P.21). Under the same conditions on F and J ,  (***) 
holds also with T(F,,) replaced by 

(Hint: Show that I T(F,) - T(F)) 5 Mn-' 

inequality.) H 

I IX,l for a constant M. Thus 
showthatP(JT(F,,) - T(F)J > 2 M E J X ,  I n -  c ) = O(n-'),usingChebyshev's 

8.P PROBLEMS 

Section 8.1 

1. Complete details for Example 8.1.1A (Gini's mean difference). 
2. For the functional T(F) = F-'(p) ,  show that the Gateaux derivative 

of Tat F in the direction of G is 

in the case that F has a positive density f at F"(p). (Hint: following Huber 
(1977), put FA = F + A(G - F) and differentiate implicitly with respect to 1 
in the equation FA(&' ' ( p ) )  = p.) 

3. Prove Lemma 8.1.1A. (Hint: Let D be the discontinuity set of F and 
put A = [0, 13 - D. Deal with F-'(t)dK,(t) by a general change of 
variables lemma (e.g., Dunford and Schwartz (1963), p. 182).) 

4. Prove Lemma 8.1.lB. (Hint: Apply Lemma 8.1.1A and integrate by 
parts.) 

5. For the functional TI@) = F'l(r)J(r)dt, put FA = F + 1(G - F) 
and show 

(Hint: Apply Lemma 8.1.1B.) 
6. (Continuation). Show that the influence curve of TI( .) is differentiable, 

with derivative J(F(x)). 
7. (Complement to Problem 5). For the functional T(F) = F - l ( p ) ,  find 

d2 T(F; G - F) for arbitrary G. 
8. Derive the influence curve of the a-Winsorized mean (Example 

8.1.3C). 
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Section 8.2 
9. Prove Lemma 8.2.1 B. 

10. (a) Let {u,,,} be arbitrary constants and put a," = C;=, a,"l. Let 
(2,) be IID negative exponential variates. Put XI = Z I  - 1, i = 1,2,. . . , 
and W, = n-' 2.: anlX1. Show that W, is AN(0, n-la;)  if and only if 

11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

max Ian,[ = ~(n''~a,,). 
I s l s n  

(*I 

(Hint: use characteristic functions.) 
(b) Now let {XI} be IID F, where F has mean 0 and finite variance. Show 

that (*) suffices for W, to be AN(0, n-'a,"). (Hint: apply Theorem 1.9.3.) 
Show that Example 8.2.3A1 is a special case of Example 8.2.3A. 
Complete the details of proof of Lemma 8.2.4A. 
Details for Example 8.2.4A(ii). 
Verify Lemma 8.2.48. 
Minor details for proof of Lemma 8.2.4D. 
Prove Lemma 8.2.4E. 
Prove the assertion preceding Lemma 8.2.4F. 
Prove Lemma 8.2.4F. 
Details for proof of Lemmas 8.2.5A, B. 
Details for proof of Theorem 8.2.5C. 
Verify Remark 8.2.58. 
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R-Es ti mates 

Consider a sample ofindependent observations XI, . . . , XN having respective 
distribution functions F1, . . . , FN not necessarily idenrical. For example, the 
XI)s may correspond to a combined sample formed from samples from several 
different populations. It is often desired to base inference purely on the ranks 
R1, . . . , RN of XI, . . . , XN. This may be due to invariance considerations, or 
to gain the mathematical simplicity of having a finite sample space, or 
because rank procedures are convenient to apply. Section 9.1 provides a basic 
formulation and some examples. We shall confine attention primarily to 
simple linear rank statistics and present in Section 9.2 several methodologies 
for treating asymptotic normality. Some complements are provided in 
Section 9.3, including, in particular, the connections between R-estimates and 
the M- and L-estimates of Chapters 7 and 8. 

9.1 BASIC FORMULATION AND EXAMPLES 

A motivatingexample is provided in 9.1.1, and theclass of linear rank statistics 
is examined in 9.1.2. Our treatment in this chapter emphasizes test statistics. 
However, in 9.1.3 the role of rank-type statistics in estimation is noted, and 
here the connection with the “statistical function” approach of Chapter 6 is 
seen. 

9.1.1 A Motivating Example: Testing Homogeneity of Two Samples 
Consider mutually independent observations XI, . . . , X,, where X,, . . . , X, 
have continuous distribution F and X,, I ,  . . . , XN have continuous distribu- 
tion function G. The problem is to test the hypothesis H o :  F = G. 

An instructive treatment of the problem is provided by Fraser (1957), (j5.3, 
to which the reader is referred for details. By invariance considerations, the 

292 
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data ‘vector X = (XI,. .., X,) is reduced to the vector of ranks R = 
(R . . . , R,). By sufficiency considerations, a further reduction is made, to the 
vector (Rml, . . . , Rmm) of ordered values of the ranks R I ,  . . . , R ,  of the first 
sample. Hence we consider basing a test of H, upon the statistic 

T(W = = ( R m l s  * * * , R m m ) .  

The “best” test statistic based on T(X) depends on the particular class of 
alternatives to Ho against which protection is most desired. We shall consider 
three cases. 

(i) HI : G = F2. For this alternative, the most powerful rank test is found 
to have test function of the form 

m 

P(reject HoIR,,,) = log(R,, + i - 1) $ c. 

Accordingly, an appropriate test statistic is 
m 

(ii) H,: G = qF + pF’(0 < p 5 1, q = 1 - p). For this alternative, the 
locally most powerful rank test (for p in a neighborhood of the “null” valueO) 
is based on the test statistic 

m 

I =  I 

(iii) I f 3 :  F = N(pI, a2),G = N ( p 2 .  c2), pI < p2. For thisalternative,the 
locally most powerful rank test (for p, - p1 in a neighborhood of 0) is the 
“c,-test,” based on the statistic 

m 

where (ZN1, . , . , Z N N )  denotes the order statistic for a random sample of size 
N from N ( 0 ,  1). 

Observe that, even having reduced the data to T(X) = R(,,, a variety of 
statistics based on Tarise for consideration. The class of useful rank statistics 
is clearly very rich. 

Note that in each of the three preceding cases, the relevant statistic is of the 
form 

m 

S = CaN(i, R m i )  
I= 1 

for some choice of constants aN(i,j), 1 < i, j I; N. 
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9.1.2 Linear Rank Statistics 

In general, any statistic T which is a function of R = (R , ,  . . . , RN) is called a 
rank statistic. An important class of rank statistics consists of the linear type, 
given by the form 

N 

1-  1 
T(R) = Cdi, 8th 

where {a(i, j)} is an arbitrary N x N matrix. Any choice of the set ofconstants 
defines such a statistic. As will be discussed in 9.2.5, an arbitrary rank statistic 
may often be suitably approximated by its projection into the family of linear 
rank statistics. 

A useful subclass of the linear rank statistics consists of the simple type, 
given by the form 

N 

I =  1 
S(R) = CC,UN(RI), 

where cl, . . . , cN are arbitrary “regression” constants and aN(1), . . . , aN(N) 
are “scores.” Typically, the scores are generated by a function h(t), 0 < t < 1, 
either by 

(i) a,&) = h(i/(N + l)), 1 5 i s N, 
or by 

(ii) aN = Eh(U,,), 1 5 i S N, 

where U ,  denotes the ith order statistic in a random sample of size N from 
the uniform [O, 11 distribution. The scores given by (ii) occur in statistics 
yielding locally most powerful tests. Those given by (i) have the appeal of 
simplicity. 

Thespecialcaseofc,= l f o r l  s i S m a n d q = O f o r m + l j i S N i s  
called a two-sample simple linear rank statistic, Note that the statistics S2 and 
S3 mentioned in 9.1.1 are of this type, with scores generated by 

h(t) = t ,  0 S t s 1, 

and 

h(t) = V ( t ) ,  0 < t s 1, 

respectively. The statistic S1 of 9.1.1 is of linear form, hut not of the simple 
tY P e a  
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9.1.3 &Estimates 
Consider a two-sample simple Linear rank statistic for shift. That is, the null 
hypothesis is I f o :  G(x) = F(x - A), and the test statistic is of the form 
S = c;I1 a,(R,). A related estimator 8, of the shift parameter A may be 
developed as follows. Find the choice of d such that the statistic S, when 
recomputed using the values X,, - d ,  . . . , X ,  - d in place of X,, . . . , 
XN, comes as close as possible to its null hypothesis expected value, which is 
mN-' cy= a(i). This value bN makes the sample X,, I - &, . . . , XN - A N  
appear to be distributed as a sample from the distribution F and thus serves as 
a natural estimator of A. 

By a similar device, the location parameter of a single sample may be 
estimated. Let XI, . . . , X, be a sample from a distribution F symmetric about 
a location parameter 8. Construct (from the same observations) a "second 
sample *' 

where d is chosen arbitrarily. Now find the value d = 6, such that the 
statistic S computed from the two samples comes as close as possible to its 
null value. For example, if S denotes the two-sample Wilcoxon statistic, 
based on the scores a(i) = i, then 6, turns out to be the Hodges-Lehmann 
estimate, median {&Xi + X,), 1 s i < j 5 m}. 

a(i) = s'" h(t)dt. 

Then the location estimator just discussed is given by T(F,), where F,  
denotes the usual sample distribution function and T ( . )  is the functional 
defined by the implicit equation 

6 

2d - XI,. . . , 2 d  - X , ,  

Let the scores a(i) be generated via 

( 1  - 1 )/m 

I h{)[t  + 1 - F(2T(F) - F-'( t ) ) ]}dt  = 0. 
J 

See Huber (1977) for further details. Thus the methods of Chapter 6 may be 
applied. 

9.2 ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK 
STATISTICS 

Several approaches to the problem of asymptotic normality will be described, 
broadly in 9.2.1 and more specifically in 9.2.2-4. In 9.2.5 we examine in 
general form the important projection method introduced in 5.3.1 in dealing 
with U-statistics and further noted in 8.2.2 in dealing with L-estimates. In 
9.2.6 we present Berry-Essken rates, making use of the projection method. 
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9.2.1 Preliminary Discussion 

The distribution theory of statistics of the form 
N 

1 0  1 
S C c t a N ( h )  

is determined by the following three entities: 

(a) the regression constants cl, . . . , cN; 
(b) the scores generating function h( .); 
(c) the distribution functions F,, . . . , FN. 

The conclusion of asymptotic normality of S, either with “natural” param- 
eters ( E { S } ,  Var{S}), or with other parameters ( p N ,  u;) preferred for their 
simplicity, requires suitable regularity conditions to be imposed on these 
entities. Of course, less regularity in one entity may be balanced by strong 
regularity in another. 

The most regular cl,. . . , cN are those generated by a linear function: 
cj = a + b,, 1 S j S N. A typical relaxation of this degree of regularity is the 
condition that 

be bounded. The mildest condition yet used is that vN = o(N), N + co. 
The severest restriction on F . . . , F N  corresponds to the“nu1l” hypothesis 

F1 = . = FN. Other conditions on F l ,  . . . , FN correspond to alternatives of 
the “local” type (i.e., converging to the null hypothesis in some sense as 
N + 00) or to fixed alternatives of special structure (as of the two-sample 

The regularity conditions concerning the scores are expressed in terms of 
smoothness and boundedness of the scores generating function h. A linear h is 
ideal. 

The asymptotic distribution theory for simple linear rank statistics falls 
roughly into three lines of development, each placing emphasis in a different 
way on the three entities involved. These approaches are described in 9.2.2-4. 
Further background discussion is given in Hdjek (1968). 

9.2.2 Continuation: The Wald and Wolfowitz Approach 

This line of development assumes the strongest regularity on F,, . . . , FN, 
namely that F 1  = = FN, and directs attention toward relaxation of 
restrictions on cl, . . . , cN and a&), . . . , aN(N). The series of results began 
with a result of Hotelling and Pabst (1936), discussed in the example following 
the theorem below. Their work was generalized by Wald and Wolfowitz 
(1943), (1944) in the following theorem. 

tYP+ 
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Theorem (Wald and Wolfowitz). Suppose that FI = = FN, each 
N = 1,2,. . . . Suppose that the quantities 

are O(N - z'"-2)), N 4 oo,for each r = 3,4, . . . . Then 
N 

SN = CcNiaNR, is AN(PN, of> 
I =  I 

and 

E(SN) = PN, Var(SN) = ($3 

where pN = NPNtiN and of = (N - l)aicofa, with 
( c N ~  - CN)2 and of, 

= (N - 1)-' xy 
PROOF, (Sketch). The moments of ( S N  - pN)/aN are shown to con- 

verge to those of N(0,  1). Then the Frtchet-Shohat Theorem (1.5.1B) is 
applied. For details, see Fraser (1957). Chapter 6, or Wilks (1962), §9.5. 

Example. Testing independence by the rank correlation coeficient. A test may 
be based on 

(N - l ) - '  zy (aNi - 

N 

l =  I 
SN = C i R i ,  

which under the null hypothesis is found (check) by the preceding theorem 
to be AN(pN, ~ f ) ,  with 

N(N + 1)2 N 3  
4 4 

h- PN = 

and 

N*(NZ - 1)2 N5  
w -  

" =  14qN - 1) 144' 

A series of extensions of the preceding theorem culminated with necessary 
and sufficient conditions being provided by Hhjek (1961). For detailed 
bibliographic discussion and further results, see Hajek and Sidik (1967), 
pp. 152-168 and 192-198. 

9.2.3 Continuation: The Chernoff and Savage Approach 

The line of development, initiated by Chernoff and Savage (1958), concerns 
the two-sample problem and allows broad assumptions regarding FI,  . . . , FN 
but imposes stringent conditions on the regression constants and the scores 
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generating function. The basic device introduced by Chernoff and Savage is 
the representation of a simple linear rank statistic as a function of the sample 
distribution function, in order to utilize theory for the latter. The representa- 
tion is as follows. 

. . . , X N }  be independent random samples 
from (not necessarily continuous) distribution functions F and G, respectively. 
Put 1, = m/N and n = N - m. Then the distribution function for the 
combined sample is 

Likewise, if F: and G,’ denote the sample distribution functions of the sub- 
samples 

Let {XI,. . . , X,} and {X,+ 

H(r)  = dNF(t)  + (1 - dN)G(t), -a < t < a. 

Hdt) = ANF:(t) + (1 - AN)G,+(t), -00 < t < 00. 
The statistic of interest is 

rn 

smu = aN(Rf). 
I -  I 

Define 

Then 
00 

sm, = m J- /N(HN(x)MG(X)* 

since if XI has rank R f  , then HN(XI)  = RJN andthus JN(HN(XJ)  = JN(RJN) 

The following regularity conditions are assumed for the scores a&), with 
= aN(R1). 

respect to some nonconstant function h: 

(1) lim aN(1 + [uN]) = h(u), 0 < u < 1 ; 
N-m 

(3) 
1 

lim - aN(N) = 0; 
N-m f i  

K[t(l - t)]-k-l/Z+d (k = 4 1 , .  , .) for some 6 > 0, K < 00. 
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Theorem (Chernoff and Savage). Ler m, n + 00 such that kN is bounded 
awayfrom 0 and 1. Assume conditions (1)-(4). Then 

where 

and 

with 

and 

provided that a:. > 0. Further, the asymptotic normality holds uniformly in 
(F, G )  satisfying 

inf Var[B(X1)] > 0, inf Var[B*(Xk)] > 0. 
P,Q) (F.0)  

For proof, see Chernoff and Savage (1958) or, for a somewhat more straight- 
forward development utilizing stochastic process methods, see Pyke and 
Shorack (1968). For related results and extensions, see Hdjek and Siddk 
(1967), pp. 233-237, HBjek (1968), Hoeffding (1973), and Lai (1975). In 
HBjek (1968) the method of projection is used, and a much broader class of 
regression constants is considered. (In 9.2.6 we follow up Hhjek’s treatment 
with corresponding Berry-Esseen rates.) 

9.2.4 Continuation: The LeCam and HPjek Approach 

This line of development was originated independently by Le Cam (1960) and 
Hdjek (1962). As regards FI, . . . , FN, this approach is intermediate between 
the two previously considered ones. It is assumed that the set of distributions 
F 1 , .  . . , F N  is “local” to the (composite) null hypothesis F1 = . = F N  in a 
certain special sense called contiguous. However, the c;s are allowed to satisfy 
merely the weakest restrictions on 

and the function h is allowed to be merely square integrable. For introductory 
discussion, see Hdjek and Siddk (1967), pp. 201-210. 
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9.2.5 The Method of Projection 
Here we introduce in general form the technique used in 5.3.1 with U-statistics 
and in 8.2.2 with L-estimates. Although the method goes back to HoeKding 
(1948), its recent popularization is due to Hiljek (1968), who gives the follow- 
ing result (Problem 9.P.2). 

Lemma (Hhjek). Let Z1, . . . , Z, be indpendent random variables and 
S = S(Z1,. . . , Z,)anystatisticsatisSyingE(S') < 00. Thentherandomoariable 

= fE(SJZ,) - (n - l)E(S) 
I *  1 

sat isfes 

and 
E(S) = E(S) 

E(S - S)' = Var(S) - Var(S). 

The random variable 3 is called the projection of S on Zl, . . . , Z, . Note that 
it is conveniently a sum of independent random variables. In cases that 
E(S - 3)' 4 0 at a suitable rate as n 4 a, the asymptotic normality of S may 
be established by applying classical theory to s. For example, Hhjek (1968) 
uses this approach in treating simple linear rank statistics. 

It is also possible to apply the technique to project ti statistic onto dependent 
random variables. For example, Hdjek and Siddk (1967) p. 59, associate 
with an arbitrary rank statistic T a linear rank statistic 

where 

This random variable is shown to be the projection of T upon the family of 
linear rank statistics. In this fashion, Hiljek and Sidtik derive properties of 
the rank correlation measure known as Kendall's tau, 

d(i, j )  = E ( T J R ,  = j ) ,  1 I; i, j 5 N. 

N 

sign(i - j)sign(R, - R,), 
1 

5 =  
N(N - 1) ,+, 

which is a nonlinear rank statistic, by considering the linear rank statistic 

and showing that Var(Q)/Var(r) 4 1. (Note that, up to a multiplication 
constant, 9 is the rank correlation coefficient known as Spearman's rho.) 
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9.2.6 Berry-Wen Rates for Simple Linear Rank Statistics 

The rate of convergence O(N-’/2+d) for any 6 > 0 is established for two 
theorems of Hdjek (1968) on asymptotic normality of simple linear rank 
statistics. These pertain to smooth and bounded scores, arbitrary regression 
constants, and broad conditions on the distributions of individual observa- 
tions. The results parallel those of Bergstriim and Puri (1977). Whereas 
Bergstrdm and Puri provide explicit constants of proportionality in the O( .) 
terms, the present development is in closer touch with Hdjek (1968), provides 
some alternative arguments of proof, and provides explicit application to 
relax the conditions of a theorem of JureCkovil and Puri (1975) giving the 
above rate for the case of location-shift alternatives. 

Generalizing the line of development of Chernoff and Savage (see 9.2.3), 
Hdjek (1968) established the asymptotic normality of simple linear rank 
statistics under broad conditions. Corresponding to his asymptotic normality 
theorems for the case of smooth and bounded scores, rates of convergence are 
obtained in Theorems B and C below. The method of proof consists in 
approximating the simple linear rank statistic by asumofindependent random 
variables and establishing, for arbitrary v, a suitable bound on the vth moment 
of the error of approximation (Theorem A). 

Let XNI, , . . , X” be independent random variables with ranks RN1, 
, . . , R”. The simple linear rank statistic to be considered is 

N 

S N  = x C N i a N ( R N 1 ) ,  
i =  1 

where cN1, . . . , C” are arbitrary “regression constants” and aN(l),  . . . , aN(N)  
are “scores.” Throughout, the following condition will be assumed. 

Condition A. (i) The scores are generated by a function r#(t), 0 < t < 1, 
in either of the following ways: 

(A21 a&) = E4(U$)), 1 < i 5 N, 

where U$)denotes the ith order statistic in a sample of size N from the uniform 
distribution on (0, 1). 

(ii) 4 has a bounded second derivative. 
(iii) The regression constants satisfy 

N N 

C C N 1  = 0, Cck, = 1, 
i =  1 1= 1 

643) 

044) max c i i  = O(N-’  log N), N 4 00. 
l S 1 S . N  

Note that (A3) may be assumed without loss of generality. 
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The XNI)s are assumed to have continuous distribution functions F N I ,  
1 5; i S N. Put H N ( x )  = N - I  cr-l FN,(x). The derivatives of 4 will be 
denoted by r#i, 4"* etc. Also, put p+ = +(t)dt and u$ = JA [4(t) - $+I2 dt. 
As usual, denote by Q, the standard normal cdf. Hereafter the suffix N will be 
omitted from X N I ,  R N I ,  cNI ,  S N ,  F N I ,  H N  and other notation. 

Thestatistics will be approximated by thesamesum ofindependent random 
variables introduced by Hijek (1968), namely 

where 

with 

u(x) = 1, x 2 0;  u(x) = 0, x < 0. 

Theorem A .  Assume Condition A. Then, for every integer r, there exists a 
constant M = M(+, r) such that 

E(S - ES - T)2r S MN-', all N. 

The case r = 1 was proved by Hajek (1968). The extension to higher order is 
needed for the present purposes. 

Theorem B. Assume Condition A.  (i) If Var S > B > O* N 3 00, then 
for every 6 > 0. 

suplP(S - ES < x(Var S)ll2) - 4(x)I = O(N-1/2+6), N + 00. 
I 

(ii) The assertion remains true with Var S replaced by Var T. 
(iii) Both assertions remain true with ES replaced by 

Compare Theorem 2.1 of Hajek (1968) and Theorem 1.2 of Bergstrdm and 
Puri (1977). 
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Theorem C. Assume Condition A and that 

suplFi(x) - Fj(x)l = O(N-”’ log N), 
I ,  1, x 

N + 00. 

Thenfor every 6 > 0 

SUPIP(S - ES < XU+) - (D(X)~ = O(N-’”+*), N 4 00. 
I 

The assertion remains true with cr: replaced by either Var S or Var T, andlor ES 
replaced by p. 

Compare Theorem 2.2 of Hajek (1968). As a corollary of Theorem C, the case 
of local location-shift alternatives will be treated. The following condition will 
be assumed. 

Condition B. (i) The cdf’s F,  are generated by a cdf F as follows: F,(x) = 
F(x - Ado, 1 s i s N, with A # 0. 

(ii) F has a density f with bounded derivative f‘. 
(iii) The shift coefficients satisfy 

C d ,  = 0, 
N N 

I =  1 I =  1 
C d f  = 1, (B1) 

max df = O(N-’  log N), 
I S I S N  

(B2) 

Note that (Bl) may be assumed without loss of generality. 

N --* 00. 

Corollary. Assume Conditions A ahd B and that 
U 

xc:d: = O(N-’ log N), N -+ 00. 
I =  1 

Then for every 6 > 0 

where 

(The corresponding result of JureCkovd and Puri (1975) requires 4 to have 
four bounded derivatives and requires further conditions on the cis and d;s. 
On the other hand, their result for the case of all F;s identical requires only a 
single bounded derivative for 4.) 
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In proving these results, the main development will be carried out for the 
case of scores given by (Al). In Lemma G it will be shown that the case of 
scores given by (A2) may be reduced to this case. 

Assuming #' bounded, put K 1  = S U ~ ~ < , < ~  I#(t)l and K 2  = S U ~ ~ < ~ < ~  

Ir$"(t)l. By Taylor expansion the statistic S may be written as 

s -  u + v + w, 
where, with pi = R,/(N + I), 1 5 i s N ,  

N 

N 

v = c CI &(E(Pl I XI)) CPr - E(Pl I xi11 

w = C C l K 2 e r C P l  - E(PllX312, 

I =  1 

and 
N 

I =  I 

the random variables e, satisfying l C l l  s 1, 1 s i s N. It will first be shown 
that W may be neglected. To see this, note that, with u( .) as above, 

N 

I= 1 
Ri = c u(X1- XI), 1 s i s N. 

and 

Observe that, given XI, the summands in (1) are conditionally independent 
random variables centered at means. Hence the following classical result, due 
to Marcinkiewicz and Zygmund (1937), is applicable. (Note that it contains 
Lemma 2.2.28, which we have used several times in previous chapters.) 

Lemma A. Let Y Y2, . . . be independent random variables with mean 0. Let v 
be an even integer. Then 

I N Iv n 

where A, is a universal constant depending only on v. 
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Lemma 8. Assume (A3). For each positiue integer r, 

(2) EW" 5 K:'Ao,N-', all N. 

PROOF. Write W in the form W = K 2  xr= c, U;. Apply the Cauchy- 
Schwarz inequality, (A3), Minkowski's inequality, and Lemma A to obtain 

EW:' 5 E [ p ,  - E ( p ,  I X,)I4' 5 A g r  N- 2r. 

Thus (2) follows. 

Thus S may be replaced by Z = U + V, in the sense that E(S - Z)2r = 
O(N-'), N + 00, each r. It will next be shown that, in turn, Z may be replaced 
in the same sense by a sum of independent random variables, namely by its 
project ion 

N 

i= 1 
2 = E(ZIX,)  - (N - l)E(Z). 

Clearly,2 = 0 + Pand  0 = U.ThusZ - 2 = V - 9. 

Lemma C. The projection ofV is 

where 

I+, 

the projection f? is thus given by (3). 

Lemma D.  Assume (A3). For each positive integer r, there exists a constant B ,  
such that 

(6) E(V - 9lzr 5 K:,B,N-',  all^. 
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PROOF. By (3) and (3, 
N N N 

1 1 = 1  I a r p l  11- 1 
II *I1 

E(V - V ) 2 r  = (N + l)-lr " '  C CI," .Cl , ,  c ..' (7) 

where 

Consider a typical term of the form (8). Argue that the expectation in (8) is 
possibly nonzero only if each factor has both indices repeated in other factors. 
Among such cases, consider now only those terms corresponding to a given 
pattern of the possible identities i,, = ib ,  i, = j b ,  j,, = j b  for 1 I; a I; 2r, 
1 5 b 5 2r. For example, for r = 3, one such specific pattern is: i2 = i l ,  
i3  # i t ,  i4 = i l ,  i5 = i 3 ,  i6 # i l ,  16 # i 3 ,  j 2  = j l ,  13 =jl, i4 P ~ I ,  h =L 
j 6  = j , ,  jl = i3,j4 # i l .  In general, there are at most 26r such patterns. For 
such a pattern, let q denote the number of distinct values among il, . . . , izr 
and p the number of distinct values among jl,. . . , j  . Let p1 denote the 
number of distinct values amongjl, . . . , j l r  not appearing among i l ,  . . . ,-i2r 
and put p 2  = p - pI. Within the given constraints, and after selection of 
il, . . . , i I r ,  the number of choices for j , ,  . . . , j t r  clearly is of order O(NPa). 
Now clearly2pl s 2r - p 2 ,  i.e., pI s r - 3 p 2 .  Now let q1 denote the number 
of i l ,  . . . , i2, used only once among i l ,  . . . , i2,. Then obviously qr 5 p z .  It is 
thus seen that the contribution to (7) from summation over jl, . . . , I Z r  is of 
order at most O(Nr-(1/2)gc) ,  since the quantity in (8) is of magnitude SKY. It 
follows that 

I! 

N N 

where al, . . , , a, are integers satisfying al 2 1, u1 + * 

exactly q1 of the a;s are equal to 1. Now, for (I 2 2, 
+ a, = 2r, and 

by (A3). Further, 

(9) 
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Thus 
N N c . . * c Ic$l . . C"P < N(1/2)ql, 

1, I 
11=  1 lq= I 

and we obtain (6). 

Next it is shown that 2 may be replaced by 2 = 0 + v, where 
N 

f = 1  
6 = c Cf4(H(XfN 

and 

with 

Lemma E. Assume (A3). Then 12 - 21 S (K2 + 3K1)N-'I2. 

PROOF. Check that 

And hence 

Lemma F. We have 2 - p = T and there exists a constant ' K ,  = K4(+) 
such that IES - pl 5 K4N-'/*. 
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PROOF. The second assertion is shown by Hiijek (1968), p. 340. To 
obtain the first, check that 

N 

Now, by integration by parts, for any distribution function G we have 

j+'(H(x))G(x)dH(x) = - $(H(x))dG(x) + constant, 

where the constant may depend on 4 and H(.) but not on G( . ) .  Thus the 
above sum reduces to 0. 

Up to this point, only the scores given by (Al)  have been considered. The 
next result provides the basis for interchanging with the scores given by (A2). 

Lemma G. Denote crm c,aN(R,) by  S in the case corresponding to (Al)  and 
by S' in the case corresponding to (A2). Assume (A3). Then there exists K5 = 

s 

K5(4) such that 

I S  - ES - (S' - ES')( 5 K 5 N - ' 1 2 .  

PROOF. It is easily found (see HAjek (1968), p. 341) that 

where KO does not depend on i or N. Thus, by (9), ( S  - S'I I; KoN-'12 and 
hence also ( E S  - ES')  s KoN-'12. Thus the desired assertion follows with 

PROOF OFTHEOREM A. Consider first thecase (Al). By Minkowski's 

K 5 = 2 K o .  

inequality, 

(10) [E(S - ES - T)2']1'2' $ [E(S  - 2)2']1'2r + [E(Z - 2)"]"2' 

+ [E(Z - 2 ) 2 7 " 2 '  + [E(Z - /J - T)2']1/2' 

+ ( E S  - PI. 

By Lemmas B, D, E and F, each term on the right-hand side of (10) may be 
bounded by K N - l I 2  for a constant K = K ( 4 ,  r )  depending only on 4 and r. 
Thus follows the assertion of the theorem. In the case of scores given by (A2), 
we combine Lemma G with the preceding argument. 
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PROOF OF THEOREM B. First assertion (i) will be proved. Put 

aN = suplP(S - ES < x(Var S)"') - @(x)I, 

PN = supIP(T c x(Var S)"') - O(x)I, 

X 

X 

and 

yN = supIP(T < x(Var T)'/') - @(x)I. 
x 

By Lemma 6.4.3, if 

(1 1) B N  = O(aN), N --* 00, 

for a sequence of constants {aN},  then 

(12) d(N = O(U,) + P(JS - ES - TI/(Var S)l" > uN), N 4 OC). 

We shall obtain a condition of form (11) by first considering y N .  By the 
classical Berry-Essten theorem (1.9.5), 

N 

I =  1 
YN 5 C(Var T ) - ~ / '  C E I ~ ~ ( X ~ ) I ~ ,  

where C is a universal constant. Clearly, 
N 

I =  1 
l4(XJl I; KIN-' C Icj - ci I .  

Now 

By the elementary inequality (Lokve (1977), p. 157) 

I X  + Y I "  I; emlxl" + emlyl'", 
where m > 0 and 0, = 1 or 2'"-' according as m s 1 or m 2 1, we thus have 

and hence 

(13) 

Check (Problem 9.P.8) that 
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so that by Theorem A we have 

(14) l(Var S)'12 - (Var T)l/zl < M , , N - ' / ~ ,  

where the constant Mo depends only on 4. It follows that if Var S is bounded 
away from 0, then the same holds for Var T, and conversely. Consequently, by 
the hypothesis of the theorem, and by (12), (13) and (14), we have 

Therefore, by (A3) and (A4), y N  = O ( N -  'Iz log N), N -+ 00. Now it is easily 
seen that 

By (14) the right-most term is O(N-'/'). Hence / I N  = O(N-  'I2 log N). There- 
fore, for any sequence of constants uN satisfying N-'I2 log = o(u,), we 
have (1 1) and thus (12). A further application of Theorem A, with Markov's 
inequality, yields for arbitrary r 

Hence (12) becomes 

aN = O(UN) + O(ai"N-'). 

Choosing uN = O(N-'/'"+ 'I), we obtain 

aN I fJ(N-'/(zr+l)), N + 00. 

Since this holds for arbitrarily large r, the first assertion of Theorem B is 
established. 

Assertions (ii) and (iii) are obtained easily from the foregoing arguments. 

PROOF OF THEOREM C. It is shown by Hiijek (1968), p. 342, that 

I(Var T)"' - c41 5 2'/'(K1 + K2)sup(F,(x) - F,(x)l. 

The proof is now straightforward using the arguments of the preceding 
proof. I 

I ,  1, x 

PROOF OF THE COROLLARY. By Taylor expansion, 

(15) IFh) - a x )  - (-A d,f(x))l s AAZ 4, 
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where A is a constant depending only on F.  Hence, by (Bl) and (B2), 

sup IFAX) - Fkx) I = 0 = U(N' log N), 
1.1. x 

so that the hypothesis of Theorem C is satisfied. It remains to show that ES 
may be replaced by the more convenient parameter p, A further application 
of (15), with (Bl), yields IH(x) - F(x)( S AA2N- ' ,  so that J#(H(x)) - 
t,b(F(x))) 5 K 1 A A 2 N - ' .  Hence, by (9). 

By integration by parts, along with (A3) and (15), 
N 

f =  1 

N 

N 

I =  I 
= f i  + qAAf  C Ci d f ,  

where lql 5 1. Now, by (Bl), xi Icild: s (xi c: d:)'12. Therefore, by (C) and 
the above steps, 

Thus p may be replaced by p in Theorem C. 
l/.t - = O(N"" log N ) ,  N + 00. 

9.3 COMPLEMENTS 

(i) Deviation theory for b a r  rank statistics. Consider a linear rank 
statistic Th. which is AN(pN, a;). In various efficiency applications (as we 
will study in Chapter lo), it is of interest to approximate a probability of the 
type 

for x N  + a. For application to the computation of Bahadur efficiencies, the 
case xN - cN"' is treated by Woodworth (1970). For application to the 
computation of Bayes risk efficiencies, the case xN - c(log N)'I2 is treated by 
Clickner and Sethuraman (1971) and Clickner (1972). 
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(ii) Connection with sampling of finite populations. Note that a two- 
sample simple linear rank statistic may be regarded, under the null-hypothesis 
Fl = - . = FN, as the mean of a sample of size m drawn without replacement 
from the population {a&), . . . ,aN(N)}, 

(iii) Probability inequalities for two-sample linear rank statistics. In 
view of (ii) just discussed, see Serfling (1974). 

(iv) Further general reading. See Savage (1969). 
(v) Connections between M-, L-, and R-statistics. See Jaeckel(l971) for 

initial discussion of these interconnections. One such relation, as discussed 
in Huber (1972,1977), is as follows. For estimation of the location parameter 
8 of a location family based on a distribution F with density f ,  by an estimate 
8 given as a statistical function T(F,,), where F,, is the sample distribution 
function, we have: an M-estimate of T(G) is defined by solving 

!I& - T(G))dG(x) = 0; 

an L-estimate of T(G) is defined by 

T(G) = j ~ ( t y  ‘ ( rwt ;  

an R-estimate of T(G) is defined by solving 

It turns out that the M-estimate for $o = - f ‘/ f, the L-estimate for J( t )  = 
~ & ( F - ~ ( t ) ) / l , ,  where IF = I [f’lf]’ dF, and the R-estimate for J ( t )  = 
ij0(F- ‘(t)),  are ail asymptotically equivalent in distribution and, moreover, 
asymptotically &dent. For general comparison of M-, L- and R-estimates, 
see Bickel and Lehmann (1975). 

9.P PROBLEMS 

Section 9.2 

1. Complete the details for Example 9.2.2. 
2. Prove Lemma 9.2.5 (Projection Lemma). 
3. Complete details for proof of Lemma 9.2.68. 
4. Details for proof of Lemma 9.2.6C. 
5. Details for proof of Lemma 9.2.6D. 
6. Details for proof of Lemma 9.2.68. 
7. Details for proof of Lemma 9.2.6F. 
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8. Provide the step required in the proof of Theorem 9.2.68. That is, show 
that for any random variables S and T, 

I(Var s)lI2 - (Var T)*”(  s (Var{s - T ) ) ’ ’ ~ .  

(Hint: Apply the property )Cov(S, 7’)) s (Var S)’’’(Var T)’I2.) 
9. Let nN = {x,,,, ..., x”), N = 1,2, ..., be a sequence of finite 

populations such that llN has mean pN and variance cr;, Let X N , n  denote the 
mean of a random sample of size n drawn without replacement from the 
population nN. State a central limit theorem for XN,n as n, N 4 00. (Hint: 
note Section 9.3 (ii).) 
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Asymptotic 

Relative Esciency 

Here we consider a variety of approaches toward assessment of the relative 
efficiency of two test procedures in the case of large sample size. The various 
methods of comparison differ with respect to the manner in which the Type 
I and Type I1 error probabilities vary with increasing sample size, and also 
with respect to the manner in which the alternatives under consideration are 
required to behave. Section 10.1 provides a general discussion of six con- 
tributions, due to Pitman, Chernoff, Bahadur, Hodges and Lehman, Hoeff- 
ding, and Rubin and Sethuraman. Detailed examination of their work is 
provided in Sections 10.2-7, respectively. The roles of central limit theory, 
Berry-Esskn theorems, and general deviation theory will be viewed. 

10.1 APPROACHES TOWARD COMPARISON OF TEST PROCEDURES 

Let H, denote a null hypothesis to be tested. Typically, we may represent Ho 
as a specified family Fo of distributions for the data. For any test procedure T, 
we shall denote by T, the version based on a sample of size n. The function 

defined for distribution functions F, is called the powerfunction of T, (or of T). 
For F E .Fo, y,(T, F) represents the probability ofa Type I error. The quantity 

an(T, $0)  = SUP F) 
F s F o  

is called the size of the test. For F # Po, the quantity 

P n V ,  F) = 1 - Y n ( T  F) 

314 
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represents the probability of a Type I I  error. Usually, attention is confined to 
consistent tests: for fixed F # So, B,,(T, F )  + 0 as n -+ 00. Also, usually 
attention is confined to unbiased tests: for F # Po, y,,(T, F) 1 a,,(T, go). 

A general way to compare two such test procedures is through their power 
functions. In this regard we shall use the concept of asymptotic relative 
eficiency (ARE) given in 1.15.4. For two test procedures TA and TB, suppose 
that a performance criterion is tightened in such a way that the respective 
sample sizes n ,  and n2 for TA and TB to perform "equivalently" tend to 00 but 
have ratio nl/nz tending to some limit. Then this limit represents the ARE of 
procedure TB relative to procedure TA and is denoted by e(TB, TA). 

We shall consider several performance criteria. Each entails specifications 
regarding 

(a) a = limn a,,(T, Po), 
(b) an alternative distribution F(") allowed to depend on n, 

and 
(c) B = lim, B,,(T, F'")). 

With respect to (a), the cases a = 0 and a > 0 are distinguished. With 
respect to (c), the cases B = 0 and > 0 are distinguished. With respect to (b), 
the cases F(") E F (fixed), and F(") + 5, in some sense, are distinguished. 

The following table gives relevant details and notation regarding the 
methods we shall examine in Sections 10.2-7. 

Behavior of Behavior of 
Names of Type I Error Type I1 Error Behavior of Notation 
Contributors Probability a,, Probability /I,, Alternatives for ARE Section 

Pitman a,, -+ a > 0 P,, -+ P > 0 F(") -+ S o  ep(- ,  .) 10.2 
F(") = F fixed e d - ,  .) 10.3 

Bahadur a,, -+ 0 fl,, + f l  > 0 F(") = F fixed es(., -) 10.4 
Hodges & 
Lehmann a , - + a > O  P , + O  F") = F fixed eHL( ., +) 10.5 

F(") = F fixed eH(- ,  .) 10.6 
Rubin & 
Sethuraman a,, -+ 0 P n  + 0 F(") + S o  eRS(- ,*)  10.7 

Chernoff a,, + 0 B n  -+O 

HoelTding a,, -+ 0 B n  + 0 

Each of the approaches has its own special motivation and appeal, as we 
shall see. However, it should be noted also that each method, apart from 
intuitive and philosophical appeal, is in part motivated by the availability of 
convenient mathematical tools suitable for theoretical derivation of the 
relevant quantities e(., a). In the Pitman approach, the key tool is central limit 
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theory. In the Rubin-Sethuraman approach, the theory of moderate deviations 
is used. In the other approaches, the theory of large deviations is employed. 
The technique of application of these ARE approaches in any actual statistical 
problem thus involves a trade-off between relevant intuitive considerations 
and relevant technical issues. 

10.2 THE PITMAN APPROACH 

The earliest approach to asymptotic relative efficiency was introduced by 
Pitman (1949). For exposition, see Noether (1955). 

In this approach, two tests sequences T = { T,} and V = { V,} are com- 
pared as the Type I and Type I1 error probabilities tend to positive limits a 
and fly respectively. In order that a, + a > 0 and simultaneously fl, -+ f l  > 0, 
it is necessary to consider p,,( .) evaluated at an alternative F(") converging at a 
suitable rate to the null hypothesis .Fo. (Why?) 

In justification of this approach, we might argue that large sample sizes 
would be relevant in practice only if the alternative of interest were close to 
the null hypothesis and thus hard to distinguish with only a small sample .On 
the other hand, a practical objection to the Pitman approach is that the 
measure of ARE obtained does not depend upon a particular alternative. In 
any case, the approach is very easily carried out, requiring mainly just a 
knowledge of the asymptotic distribution theory of the relevant test statistics. 
As we have .seen in previous chapters, such theorems are readily available 
under mild restrictions. Thus the Pitman approach turns out to be widely 
applicable. 

In 10.2.1 we develop the basic theorem on Pitman A R E  and in 10.2.2 
exemplify it for the problem of testing location. The relationships between 
Pitman ARE and the asymptotic correlation of test statistics is examined in 
10.2.3. Some complements are noted in 10.2.4. 

10.2.1 The Basic'Theorem 

Suppose that the distributions F under consideration may be indexed by a 
set 0 c R, and consider a simple null hypothesis 

to be tested against alternatives 

e > 8,. 

Consider the comparison of test sequences T = { T,} satisfying the following 
conditions, relative to a neighborhood Bo s 8 s Bo + S of the null hypothesis. 
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Pitman Conditions 

(Pl) For some continuous strictly increasing distribution function G, 
and functions pn(0) and on(@, the F,-distribution of (T,, - pn(0))/on(O) 
converges to G uniformly in [e,, 0, + 81: 

(P2) For 6~ [O,, 8, + S ] ,  pn(0) is k times differentiable, with p!')(O0) = 

(P3) For some function d(n) 
. . . = pik- l)(eo) = o < pik)(eo). 

00 and some constant c > 0, 

(P4) For 0, = 0, + O([d(n)]-l 'k),  

(P5) For 8, = 8, + O([d(n)]-'"), 

pik'(en) - pik)(eo), n -+ 00. 

on(en) N on(Oo), n + 00% 

Remarks A. (i) Note that the constant c in (P3) satisfies 

(ii) In typical cases, the test statistics under consideration will satisfy 
(Pl)-(P5) with G = CP in (Pl), k = 1 in (P2), and d(n) = nl/* in (P3). in this 
case 

n"*on(Oo) 
c = lim . B  

n P X ~ O )  
Theorem (Pitman-Noether). (i) Let T = {T,} satisjy (Pl)-(PS). Con- 
sider tesring Ho by critical regions {T,, > uan} with 

(1) an = Peo(Tn > urnn) 4 a, 

where 0 < a < 1. For 0 < fl < 1 - a, and 8, = 8, + O([d(n)J- we haue 

(2) P A W  = Po.(Tn uan) -+ P 
ifand only if 

(3) 
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(ii) Let T, = {TAn) and TB = {Tsn) each satigy (Pl)-(PS) with common 
G, k and d(n) in (Pl)-(P3). Let d(n) = nq, q > 0. Then the Pitman ARB o ~ T A  
relative to TB is giuen by 

PROOF. Check that, by (Pl), 

Thus &(O,) -+ /3 if and only if 

(4) 

Likewise (check), a, -+ a if and only if 

It follows (check, utilizing (PS)) that (4) and (5) together are equivalent to (5) 
and 

together. By (P2) and (P3), 

9 n-bm, H(U - k(&J F i k ' ( k ) .  (0, - e O l k  .- 44 
a.(e,) pikve0) k !  C 

where 0, s 8, s 0,. Thus, by (P4), (6) is equivalent to (3). This completes the 
proof of (i). 

Now consider tests based on TA and TB, having sizes aAn -P a and a,,, -+ a. 
Let 0 < p < 1 - a. kt (0,) be a sequence of alternatives of the form 

0, = e0 + A[d(n)]-''k. 

It follows by (i) that if h(n) is the sample size at which TB performs "equiva- 
lently" to T A  with sample size n, that is, at which TB and TA have the same 
limiting power 1 - for the given sequence of alternatives, 50 that 

BAn(8n)  -+ pBMm)(en) -b fl, 
then we must have d(h(n)) proportional to d(n) and 

(en - eoY d(n) - (0, - eoY d(h(n)) 
k! 6 A  k! CB ' 
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or 

For d(n) = nq, this yields ( / ~ ( n ) / n ) ~  --* (cB/cA), proving (ii). W 

Remarks B. (i) By Remarks A we see that for d(n) = nq, 

For the typical case k = 1 and d(n) = n112, we have 

(ii) For a test T satisfying the Pitman conditions, the limiting power 
against local alternatives is given by part (i) of the theorem: for 

e, = eo + A [ d ( t ~ ) ] - ~ / ~  + o([d(n)]-"'), 

we have from (3) that 

yielding as limiting power 

In particular, for G = @, k = 1, d(n) = we have simply 

I - B =  1 -ak-1(1 - a ) - ! ) .  c 

10.2.2 Example: Teating for Loeation 

Let X, , . . . , X ,  be independent observations having distribution F(x - O), 
for an unknown value 8 E R, where F is a distribution having density f sym- 
metric about 0 and continuous at 0, and having variance og < 00. Consider 
testing 

H o : e = o  

e > 0. 

versus alternatives 

For several test statistics, we shall derive the Pitman ARE'S as functions of F, 
and then consider particular cases of F. 
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The test statistics to be considered are the “mean statistic” 
i n  

TI, = e x ,  = x, 
n l = l  

the “ t-statistic” 

(where s2 = (n - 1)- 11 ( X ,  - X),), the “sign test” statistic 

and the “ Wilcoxon test” statistic 

The statistics based on X have optimal features when F is a normal distri- 
bution. The sign test has optimal features for F double exponential and for a 
nonparametric formulation of the location problem (see Fraser (1957), p. 274, 
for discussion). The Wilcoxon statistic has optimal features in the case of F 
logistic. 

We begin by showing that TI, satisfies the Pitman conditions with Fl,(8) 
= 8, a:,(@ = a$/n, G = 0. k = 1 and d(n) = dl2. Firstly (justify), 

Also, 

by now-familiar results. Thus(P1) is satisfied with G = 4. Also, p’&l) = 1, so 
that (P2) holds with k = 1, and we see that (P3) holds with cI = aF and d(n) 
= nl/Z. Finally, clearly (P4) and (P5) hold. 

We next consider the statistic T,,, and find that it satisfies the Pitman 
conditions with G = 4, k = 1, d(n) = nilZ, and c2 = c1 -- a,,. Wc take 
p,,,(e) = O/aF and af,(e) = l/n. Then 
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Further, by Problem 2.P.10, 

321 

sup Po n1I2-  s t - Wt) +O, n + 00. ‘ I [  f 1 I 
Thus (Pl) is satisfied with G = (0. Also, pi,,(@ = l/a, and we find easily that 
(P2)-(P4) are satisfied with k = 1, d(n) = nilz and, in (P3), c2 = a,. 

At this point we may see from Theorem 10.2.1 that the mean statistic and 
the t-statistic are equivalent test statistics from the standpoint of Pitman ARE: 

e,(T,, 7.2) = 1.  

Considering now T,, , take 

p3,(0) = EeTj, = Eef(X1 > 0)  = Pe(X,  > 0)  = 1 - F ( - 0 )  = F(0) 

and 

Then 

is a standardized binomial (n, F(0)) random variable. Since F(0) lies in a 
neighborhood off for 8 in a neighborhood of 0, it follows by an application of 
the Berry-Essden Theorem (1.9.5), as in the proof of Theorem 2.3.3A, that 
(Pl) holds with G = (0. Also, p;,(0) = f(0) and it is readily found that 
conditions (P2)-(P5) hold with k = 1, d(n) = nilZ and e3 = 1/2f(O). 

The treatment of T4, is left as an exercise. By considering T4“ as a U- 
statistic, show that the Pitman conditions are satisfied with G = 0, k = 1, 
d(n) = nilZ and c4 = 1/(12)1’2 f2 (x )dx .  

Now denote by M the “mean” test TI, by t the “t-test” G, by S the ‘‘sign” 
test T3, and by W the “Wilcoxon” test T4. It now follows from Theorem 
10.2.1 that 

e p W ,  0 = 1, 

M) = 40:.~(0), 

and 



322 ASYMPTOTIC RELATIVE EFFICIENCY 

(Of course, ep(S, W )  is thus determined also.) Note that these give the same 
measures of asymptotic relative efficiency as obtained in 2.6.7 for the as- 
sociated confidence interval procedures. 

We now examine these measures for some particular choices of F. 

Examples. For each choice of F below, the values of eAS, M )  and er(W, M) 
will not otherwise depend upon at. Hence for each F we shall take a “con- 
ventional ’* representative. 

(i) F normal: F = CD. In this case, 

2 
ep(S, M )  = - = 0.637 

1c 

and 
3 

er(W, M )  = - = 0.955. 
1c 

It is of interest that in this instance the limiting value edS,  M )  represents 
the worst efficiency of the sign test relative to the mean (or t-) test. The exact 
relative efficiency is 0.95 for n = 5,0.80 for n 3: 140.70 for n = 20, decreasing 
to 2/n = 0.64 as n + 00. For details, see Dixon (1953). 

We note that the Wilcoxon test is a very good competitor of the mean test 
even in the present case of optimality of the latter. See also the remarks 
following these examples. 

(ii) F double exponential: f ( x )  = ie-Ixl, -OD < x < OD. In this case 
(check) 

and 
er(S, M )  = 2 

ep(W, M) = 3. 

eP(s, M) = 8 
(iii) F unifbrrn: f ( x )  = 1, Ix I < 4. In this case (check) 

ond 

ep(W, M )  = 1. 

(iv) F logistic: f ( x )  = e-x( l  + e - x ) - 2 ,  -OD < x < 00. Explore as an 
exercise. 

Remark. Note in the preceding examples that er(W, M )  is quite high for a 
variety of Fs. In fact, the inequality 

ep( W, M) 2 # = 0.864 
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is shown to hold for all continuous F, with the equality attained for a partic- 
ular F, by Hodges and Lehmann (1956). 

For consideration of the “normal scores” statistic (recall Chapter 9) in this 
regard, see Hodges and Lehmann (1961). W 

10.2.3 Relationship between Pitman ARE and Correlation 

Note that if a test sequence T = {x} satisfies the Pitman conditions, then 
also the “standardized” (in the null hypothesis sense) test sequence T* = 
{ T:}, where 

satisfies the conditions with 

and with the same G,  k, d(n) and c. Thus, it is equivalent to deal with T* in 
place of T. 

In what follows, we consider two standardized test sequences To = 
{Ton} and TI = {TI,,} satisfying the Pitman conditions with G = CP, k = 1, 
d(n) = n1I2, and with constants co 5 c,. Thus e,(Tl, .To) = (co/c1)2 5; 1, so 
T, is as good as T,, if not better. We also assume condition 
(P6) To, and T,, are asymptotically bivariate normal uniformly in 0 in a 

neighborhood of O0. 
We shall denote by p(0) the asymptotic correlation of Ton and TI, under the 

&distribution. 
We now consider some results of van Eeden (1963). 

Theorem. Let To = {To,} and TI = {TI,} satisfy the conditions (Pl)-(P6) 
in standardized form and suppose that 

P(%) -+ ~ ( 0 0 1  = P* as e n  -+ 00 * 

(i) For 0 S 1 s 1, tests oftheform 

Tin = (1 - h)Ton + 
satisfy the Pitman conditions. 

(ii) The “best” such test, that is, the one which maximizes ep(T,, To), is 
TT for 

ifp # 1 and for y taking any value ifp = 1. 
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(iii) For this “best” test, 

and 

a;,,fe0) = (1 - a)z + + 21(1 - I )P.  

Thus (Pl)-(PS) are satisfied with G = (D, k = 1, d(n) = nilz and 

[(l - A ) Z  + P + 2A(1 - I)p]l’Z 
CA = 

(T) + ($) 
To prove (ii), note that 

so it suffices to minimize cA as a function of I. This is left as an exercise. Finally, 
(iii) follows by substitution of y for I in the formula for ep(TA, To). 

Corollary A. IfTo is a best test satisfying (Pl)-(P5), then the Pitman ARE of 
any other test T satisfying (Pl)-(P5) is given by the square ofthe “correlation” 
between T and To, i.e., 

e,(T, To) = P2. 

PROOF. Put T = TI in the theorem. Then, by (iii)* since ep(T,, To) = 1, 
we have e,(T,, To) = p2. m 
CovollaryB. IfToandTl hauep = l,thene,(T,, To) = landedTk, To) = 1, 
all k. I f p  # 1, but ep(TI, To) = 1, then y = 4 and ep(TIIz, To) = 2/(1 + p). 

Thus no improvement in Pitman ARE can result by taking a linear com- 
bination of To and TI having p = 1. However, if p # 1, some improvement is 
possible. 

Remark. Under certain regularity conditions, the result of Corollary A holds 
also in the fixed sample size sense. 
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10.2.4 Complements 

(i) Eff’icucy. We note that the strength of a given test, from the standpoint 
of Pitman ARE, is an increasing function of l/c, where c is the constant ap- 
pearing in the Pitman condition (P3). The quantity l/c is called the “efficacy” 
of the test. Thus the Pitman ARE of one test relative to another is given by the 
corresponding ratio of their respective efficacies. 

(ii) Contiguity. A broader approach toward asymptotic power against 
alternatives local to a null hypothesis involves the notion of “contiguity.” See 
Hiijek and Sidiik (1967)for exposition in the context of rank tests and Roussas 
(1972) for general exposition. 

10.3 THE CHERNOFF INDEX 

One might argue that error probabilities (of both types) of a test ought .to 
decrease to Oas the sample size tends to 03, in order that the increasing expense 
be justified. Accordingly, one might compare two tests asymptotically by 
comparing the rate of convergence to 0 of the relevant error probabilities. 
Chernoff (1952) introduced a method of comparison which falls within such a 
context. 

Specifically, consider testing a simple hypothesis H o  versus a simple 
alternative H,, on the basis of a test statistic which is a sum of I.I.D.’s, 

n 

whereby H o  is rejected if S, > c,, where c, is a selected constant. For example, 
the likelihood ratio test for fixed sample size may be reduced to this form 
(exercise). 

For such sums S,, Chernoff establishes a useful large deviation probability 
result: for t 2 E { Y } ,  P(S, > nt)  behaves roughly like m”, where m is the 
minimum value of the moment generating function of Y - t .  (Thus note that 
P(S, > nt) decreases at an exponential rate.) This result is applied to establish 
the following: if c, is chosen to minimize p, + Aa, (where 2 > 0), then the 
minimum value of p, + l a ,  behaves roughly like p”, where p does not depend 
upon 2. In effect, the critical point c, is selected so that the Type I and Type I1 
error probabilities tend to 0 at the same rate. The value p is called the index 
of the test. In this spirit we may compare two tests A and B by comparing 
sample sizes at which the tests perform equivalently with respect to the 
criterion fl, + da,. The corresponding ARE turns out to be (log pA)/(log pB). 

These remarks will now be precise. In 10.3.1 we present Chernoff’s general 
large deviation theorem, which is of interest in itself and has found wide 
application. In 10.3.2 we utilize the result to develop Chernofl’s ARE. 
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103.1 A Large Deviation Theorem 

Let Yl,. . ., Y,  be I.I.D. with distribution F and put S, = Yl + ... + Y,. 
Assume existence of the moment generating function M ( z )  = Ep{ezY},  z real, 
and put 

m(r) = inf E{ex(r-')} = inf e-"M(z). 

The behavior of large deviation probabilities P(S, 2 r,), where r, + 00 at 
rates slower than O(n), has been discussed in 1.9.5. The case tn = tn is covered 
in the following result. 

x I 

Theorem (Chernofl). lf - 00 < t 5 E {  Y } ,  then 

(1) P(S, 5 nt) 5 [m(t)]". 

IfE{Y} 5 t < + 00, then 

(2) P(S, ;L nt) 5 [m(t)]". 

If0 < E < m(t), thenfor the given cases oft, respectfoely, 

(3) 

Remark. Thus P(S, 2 nr) is bounded above by [m(r)Y, yet for any small 
E > 0 greatly exceeds, for all large n, [m( t )  - 6)". W 

PROOF. To establish (1) we use two simple inequalities. First, check that 
for any z 5 0, 

P(S, s nt)  4 [e-"M(z)l". 

Then check that for t 5 E{ Y }  and for any z 2 0, e-"M(z) 2 1. Thus deduce 
(1). In similar fashion (2) is obtained. 

We now establish (3). First, check that it suffices to treat the case t = 0, to 
which we confine attention for convenience. Now check that if P( Y > 0) = 0 
or P(Y < 0) = 0, then m(0) = P(Y = 0) and (3) readily follows. Hereafter 
we assume that P(Y > 0) > 0 and P(Y < 0) > 0. We next show that the 
general case may be reduced to the discrete case, by defining 

i i -  1 i YU = - if - < Y s; ,  1 -  -1,0,1,..., s =  1,2, .... 
S S 

Letting Sf) = the sum of the Yr) corresponding to Y4, . . . , x ,  we have 

and 
P(S, 5 0) 2 P(S!" 5 0) 

M(')(z) = E{err")} 2 e-I'I"M(z). 
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Since P( Y > 0) > 0 and P( Y < 0) < 0, M(z)  attains its minimum value for a 
finite value of z (check) and hence there exists an s sufficiently large so that 

inf M($)(z) 2 inf M ( z )  - IE. 

Thus (check) (3) follows for the general case if already established for the 
discrete case. 

Finally, we attack (3) for the discrete case that P(Y = yl )  = p I  > 0, 
i = 1,2,. . . . Given 8 > 0, select an integer r such that 

2 2 

min(yl, . . . , y r )  -= 0 < max(yl,. . . , y r )  

and 

Put 

r Q) 

m* = C e2*y'pI = inf C e'ylp,. 

It now suffices (justfy) to show that for.sufficiently large n there exist r 
positive integers n,, . . . , n, such that 

I =  I 2 1 = 1  

and 

(3) 
n !  p;' . . . p:' 

n,  ! * * * n,! 
P(n,, . . . , n,) = > (m* - #@". 

For large nl ,  . . . , n, (not necessarily integers) Stirling's formula gives 

(4) 

Now apply the method of Lagrange multipliers to show that the factor 

Q(n,,  . . . , n,) = fi (!!!!)"' 
1 -  1 

attains a maximum of (rn*)" subject to the restrictions C;= ni = n, C;= nlyi 
= 0, nl > 0,. . . , n, > 0, and the maximizing values of n,, . . . , n, are 
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Assume that y l  S y ,  for i I; r, and put 

nll) = [nlO)], 2 s i s r, 

where C.3 denotes greatest integer part. For large n, the nll) are positive 
integers satisfying (l), (2) and 

and thus (3) by virtue of (4). This completes the proof. W 

using “exponential centering,” see the development in Bahadur (1971). 
The foregoing proof adheres to Chernoff (1952). For another approach, 

We have previously examined large deviation probabilities, 

P(S, - ss, 2 nr), t > 0, 

in 5.6.1, in the more general context 0f.U-statistics. There we derived expon- 
ential-rate exact upper bounds for such probabilities. Here, on the other hand, 
we have obtained exponential rate asymptotic approximations, but only for the 
narrower context of sums S,. Specifically, from the above theorem we have 
the following useful 

Corollary. For t > 0, 

lim n-l log P(Sn - ES, 2 nt) = log m(t + E{Y}). 
n 

10.3.2 A Measure of Asymptotic Relative Efficiency 

Let H o  and Hl be two hypotheses which determine the distribution of Y so 
that po = E{ Y IH,} I; p,  = E {  Y lHl}. For each value of f ,  we consider a 
testwhichrejectsH,,ifS, > nt.Leta, = P(S, > nrIHo),/3, = P(S, I; nt lH1)  
and L be any positive number. Put 

m,(t) = inf E{ez(r - ‘ ) lHI} ,  i = 0, 1, 
2 

and 

p( t )  = max{mo(t), m,( t ) } .  

The index of the test determined by Y is defined as 

p = inf p(t). 
(rOSlS(rl 
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The role of this index is as follows. Let Q,, be the minimum value attained by 
fin + la,, as the number t varies. Then the rate of exponential decrease of Q, to 
0 is characterized by the index p .  That is, Chernoff (1952) proves 

Theorem. For E > 0, 

(Al)  
Qn lim - = 0. 

n (P +el" 

PROOF. For any t in [go, p, ] ,  we immediately have using Theorem 
10.3.1 that 

Q n  5 P(Sn S nt I HI) + Ap(Sn 2 nt I H o )  
5 Cm,(t)3" + lCmo(t)I" 
5 (1 + mm". 

Let E > 0 be given. By the definition of p, there exists t l  in [&, p l ]  such that 
p(tJ $ p + 4 ~ .  Thus (Al)  follows. 

On the other hand, for any t in [po, p l ] ,  we have 

P(Sn S n t l H , )  5 P(Sn 5 nt'IH,), all t' 2 t, 

and 

P(S, 2 nt IH,) 5 P(S, > nt'IHo), all t' 5 t ,  

yielding (check) 

For 0 
10.3.1 

Thus, 

Q n  2 min{P(Sn S nt lHI) ,  IP(S,, 2 ntIHo)}. 

< E c min{m,(r), ml(t)}, we thus have by the second part of Theorem 
that 

in order to obtain (A2), it suffices to find tz in [ p o , p l ]  such that 
p S min{mo(t2), ml(cz)}. Indeed, such a value is given by 

t2 = inf{t: ml(t) 2 p ,  po 5 t 5 p, } .  

First of all, the value t2  is welldefined since ml(pl) = 1 2 p. Next we need to 
use the following continuity properties of the function m(t). Let yo satisfy 
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P(Y c yo) = 0 < P(Y < yo + E), all e > 0. Then (check) m(t) is right- 
continuous for t c E{  Y} and left-continuous for yo < t s E{ Y}. Con- 
sequently, ml(tz) 2 p and ml(t) c p for t < t,. But then, by definition of p, 
mo(t) 2 p for p o  I; t I; t 2 .  Then, by left-continuity of mo(t) for t > po 
(justify), mo(tz) 2 p if t ,  > p. Finally, if t ,  = p o ,  mo(t2) = 1 2 p. W 

We note that the theorem immediately yields 

lim n-'  log Q, = log p. 
W 

Accordingly, we may introduce a measure of asymptotic relative efficiency 
based on the criterion of minimizing /3, + Act, for any specified value of 1. 
Consider two tests TA and TB based on sums as above and having respective 
indices pA and pB. The ChernoflARE of TA relative to TB is given by 

Therefore, if h(n) denotes the sample size at which TB performs "equivalently" 
to TA with sample size n, that is, at which 

(1) Qt.1 - Q,", n + a, 

or merely 

(2) log Qf(n,  log Q,", n + 00, 

then 

(Note that (1) implies (2)-see Problem 10.P. 10.) 

Example A. Tke index of a normal test statistic. kt Y be NM,, a:) under 
hypothesis HI, i = 0, l  (po < b,). Then 

e-"M,(z) = exp[(p, - t)z + iub:z2], 

so that (check) 

and thus (check) 
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Example B. The index of a binomial test statistic. Let Y be B(r. pl)  under 
hypothesis H I ,  i = 0, l(pp < p l ) .  Put q1 = 1 - p l ,  i = 0, 1. Then 

e-"M,(z) = e-"(p,e' + q,)', 

so that (check) 

and (check) 

log p = r { (1 - c)log "1 - 4_" .,I + l o g p g j ,  

where 

Example C. Comparison of Pitman ARE and Chernoff ARE. To illustrate 
the differences between the Pitman ARE and the Chernoff ARE, we will con- 
sider the normal location problem and compare the mean test and the sign test. 
As in 10.2.2, let X I ,  . . . , X, be independent observations having distribution 
F(x - O), for an unknown value 8 E R, but here confine attention to the case 
F = 4 = N(0, 1). Let us test the hypotheses. 

H o :  O = 0 versus H I :  O = O, ,  

where O1 > 0. Let TA denote the mean test, based on X, and let TB denote the 
sign test, based on n-' I (X,  > 0). From Examples A and B we obtain 
(check) 

where a(O) = (logC1 
have from 10.2.2 

- @(O)]}/log{[l - @(O)]/U)(O)}. By comparison, we 

eP(T,, TB) = h. 
We note that the measure e&T,, TB) depends on the particular alternative 
under consideration, whereas ep(T,, T,) does not. We also note the com- 
putational difficulties with the ec measure. As an exercise, numerically 
evaluate the above quantity for a range of values of O1 near and far from the 
null value. Show also that ec(T,, T,) 3 in = ep(T,, TB) as O1 3 0. H 
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10.4 BAHADUR’S “STOCHASTIC COMPARISON ” 

A popular procedure in statistical hypothesis testing is to compute the 
signiJcance leuel of the observed value of the test statistic. This is interpreted 
as a measure of the strength of the observed sample as evidence against the 
null hypothesis. This concept provides another way to compare two test 
procedures, the better procedure being the one which, when the alternative is 
true, on the average yields stronger evidence against the null hypothesis. 
Bahadur (196Oa) introduced a formal notion ofsuch “stochasticcomparison” 
and developed a corresponding measure of asymptotic relative efficiency. We 
present this method in 10.4.1. The relationship between this “stochastic 
comparison “ and methods given in terms of Type I and Type I1 error prob- 
abilities is examined in 10.4.2. Here also the connection with large deoiation 
probabilities is seen. In 10.4.4 a general theorem on the evaluation of Bahadur 
ARE is given. Various examples are provided in 10.4.5. 

10.4.1 “Stochastic Comparison” and a Measure of ARE 
We consider I.I.D. observations XI,. , . , X,  in a general sample space, 

having a distribution indexed by an abstract parameter 0 taking values in a 
set 0. We consider testing the hypothesis 

Ho: l k 0 0  

by a real-valued test statistic T,, whereby H o  becomes rejected for sufficiently 
large values of T,. Let Ge, denote the distribution function of T, under the 
Odistribution of XI,. . , , X,. 

A natural indicator of the significance of the observed data against the null 
hypothesis is given by the “level attained,” defined as 

L, = L”(XI, - - X,) = SUp[l .- Gen(T,)].  
Bee0 

Thequantity SUpe,eo[l - G,,(t)] represents the maximum probability, under 
any one of the null hypothesis models, that the experiment will lead to a test 
statistic exceeding the value t. It is a decreasing function oft. Evaluated at the 
observed T,, it represents the largest probability, under the possible null 
distributions, that a more extreme value than T, would be observed in a 
repetition of the experiment. Thus the “level attained” is a random variable 
representing the degree to which the test statistic T, tends to reject H o .  The 
lower the value of the level attained, the greater the evidence against I f o .  

Bahadur (1960) suggests comparison of two test sequences T’, = { TAn} and 
7‘’ = { TBn} in terms of their performances with respect to “level attained,” 
arguing as follows. Under a nonnull Cdistribution, the test T’,, is “more 
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successful” than the test TBn at the observed sample XI, .  . , , X, if 

LAn(xl ,  * * - Y xn) < LBn(xl,  * - . Y xn)- 
Equivalently, defining 

K ,  = -2 log L,, 

333 

T’,, is more successful than Tsn at the observed sample if K,, > KBn.  Note 
that this approach is a stochastic comparison of TA and TB. 

In typical cases the behavior of L, is as follows. For 8 E Oo , L, converges in 
&distribution to some nondegenerate random variable. On the other hand, 
under an alternative 8 # Oo, L, 4 0 at an exponential rate depending on 8. 

Example. The Location Problem. Let the X,’s have distribution function 
F(x - O), where F is continuous and 8 E O = [0, 00). Let Qo = (0). Consider 
the mean test statistic, 

x T, = n112 -, 
QF 

where Q: = VarF{X). We have 

L n  = 1 - G d T J  

and thus 

Po(& 5 1) = P d G d T , )  2 1 - 0 
= P,(T, 2 G&yl  - I ) )  
= 1 - Go,,(G;,(l - I ) )  = I ,  

that is, under H, L, has thedistribution uniform (0, 1). Note also that 

Go, * @  = N(0,  1). 

Now consider 8 # Oo. We have, by the SLLN, 

P,(n-’”T, -+ 8) = 1, 

in which case L, behaves approximately as 

1 - @ ( n W )  (2nn)-1W1 exp(-fnP). 

That is, in the nonnull case L, behaves approximately as a quantity tending to 
0 exponentially fast. Equivalently, K, behaves approximately as a quantity 
tending to a finite positive limit (in this case 02). These considerations will be 
made more precise in what follows. 

It is thus clear how the stochastic comparison of two test sequences is 
influenced in the case of nonnull 8 by the respective indices of exponential 
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convergence to 0 of the levels attained. A test sequence T = {T,} is said to 
have (exact) slope 48) when 0 “obtains” (that is, when the X i s  have 8- 
distribution) if 

(*I n- ‘K, -+ c(e) as .  (Pe). 

In the nonnull case the limit c(8) may be regarded as a measure of the per- 
formance of T,; the larger the value of c(8), the “faster” T, tends to reject H o e  
For two such test sequences TA and TB, the ratio 

C A ( 8 )  - 
cB(@ 

thus represents a measure of the asymptotic relative efficiency of TA relative to 
TB at the (fixed) alternative 8. Indeed, if h(n) represents the sample size at which 
procedure TB performs “equivalently” to TA in the sense of being equally 
“successful” asymptotically, that is, KB,,(”) may replace K A ,  in relation (*), 
then we must have (check) 

Thus the (exact) Bahadur ARE of TA relative to 7’’ is defined as eB(TA, TB) = 
C A ~ ) / C B ( @ .  

The qualification “exact” in the preceding definitions is to distinguish from 
“approximate *’ versions of these concepts, also introduced by Bahadur 
(1960a), based on the substitution of G for GBn in the definition of L,, where 
Gk * G for all 8 E 0,. We shall not pursue this modification. 

The terminology “s1ope”for c(8) is motivated by the fact that in the case of 
nonnull 8 the random sequence of points {(n,K,) ,n 2 I }  moves out to 
infinity in the plane in the direction of a ray from the origin, with angle 
tan‘ ‘~(0)  between the ray and the maxis. 

A useful characterization of the slope is as follows. Given e, 0 c e < 1, and 
the sequence { X i } ,  denote by N(E)  the random sample size required for the 
test sequence { T,} to become significant at the level e and remain so. Thus 

N(e) = inf{m: L, < E, all n 2 m } ( S  00). 

Bahadur (1967) gives 

Theorem. If(*) holds, with 0 < c(9) < 00, then 
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PROOF. Let S2 denote the sample space in the Pe-model. By (*), 3R0 c R 
such that Pe(S2o) = 1 and for the sequence {X,(w)} is such that 
n-’K,(w) + c(8). Now fix w €a,,. Since c(8) > 0, we have L,(w) > 0 for all 
sufficiently large n and t , (w) 4 0 as n + 00. Therefore (justify), N(E, o) < m 
for every E > 0 and thus N(E,  w )  --* 00 through a subsequence of the integers 
as e + 0. Thus 2 5 N(E,  w )  < 00 for all E sufficiently small, say <el.  For all 
8 < E ~ ,  we thus may write 

The proof is readily completed (as an exercise). W 

It follows that the sample sizes N&) and NB(e) required for procedures TA 
and TB to perform “equivalently,” in the sense of becoming and remaining 
significant at level E, must satisfy 

LN(C,U)(~)  L N ( c . ~ , ) -  

providing another interpretation of the Bahadur ARE. 
Another important aspect of the Bahadur ARE is the connection with 

Type I and Type I1 error probabilities. Not only does this afford another way 
to interpret eB, but also it supports comparison with other ARE measures 
such as e p  and ec. These considerations will be developed in 10.4.2. and will 
lead toward the issue of computation of eB, treated in 10.4.3. 

Futther important discussion of slopes and related matters, with references 
to other work also, is found in Bahadur (1960a, 1967,1971). 

10.4.2 Relationship between Stocbastic Comparison and Error 
Probabilities 
Consider testing Ho by critical regions { T, > t,,} based on { T,}. The relevant 
Type I and Type I1 error probabilities are 

a, = SUP Pe(T, > t,,) 
B e e o  

and 

respectively. 
B R ( @  = PdT, 5; tJ9 

Theorem (Bahadur). Suppose that 
- 2  log an 

+ d  
n 
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Then 

(0 

(ii) 

d > c(e) =, P,@) -, 1, 

d < c(e) =, p,(e) -* 0. 

and 

PROOF. Write 

Bn(8)  Po(& > an) = Po (Kn < - 2 log an) 
= Pe(n-'K, < n-'(-2 loga,)). 

If d > 48) + E,  then for n sufficiently large we have n-'(-2 log u,) > 
46) + e and thus Bn(6) 2 PAn- 'K, < 48) + e) + 1, proving (i). Similarly, 
(ii) is proved. 

Corollary. Suppose that 

- 2  log a, 
n + d, 

and 

Then d = c(0). 

By virtue of this result, ke  see that eB(TA, TB), although based on a concept 
of "stochastic comparison," may also be formulated as the measure of ARE 
obtained by comparing the rates at which the Type I error probabilities (of 
TA and TB) tend to 0 while the Type I1 error probabilities remain fixed at (or 
tend to) a value b(8), 0 < p(8) < 1, for fixed 8. That is, if h(n) denotes the 
sample size at which TB performs equivalently to 7'' with sample size n, in the 
sense that 

then 
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Therefore, in effect, the Bahadur ARE relates to situations in which having 
small Type I error probability is of greater importance than having small 
Type I1 error probabilities. In Section 10.5 we consider a measure of similar 
nature but with the roles of Type I and Type I1 error reversed. In comparison, 
the Chernoff ARE relates to situations in which it is important to have both 
types of error probability small, on more or less an equal basis. 

Like the Chernoff ARE, the Bahadur ARE depends upon a specific alterna- 
tive and thus may pose more computational difficulty than the Pitman ARE. 
However, the Bahadur ARE is easier to evaluate than the Chernoff ARE, 
because it entails precise estimation only of a,, instead of both a, and 8.. This 
is evident from the preceding corollary and will be further clarified from the 
theorem of 10.4.3. 

10.4.3 A Basic Theorem 

We now develop a result which is of use in finding slopes in the Bahadur sense. 
The test statistics considered will be assumed to satisfy the following con- 
ditions. We put O1 = 0 - Oo. 

Bahadur Conditions 
(Bl) For B E  01, 

n-’12T, -+ b(8) as. (Po), 

where -00 < b(8) < 00. 

function g continuous on I, such that 
(B2) There exists an open interval I containing (b(8): 8 E  e,}, and a 

lim -2n- ’  log sup [l - Ge,,(n”2t)] = &), 

Theorem (Bahadur). 1fT. satisfies (Bl)-(B2), thenfor 8 E 0, 

r €1. 
n eeeo  

n- ’ K, + g(b(9)) as. (Pe). 

PROOF. Fix 8 E O,, and let R denote the sample space in the Pe-model. 
By (Bl), 30,  c R such that Pe(R0) = 1 and for w E R, the sequence {X,(w)} 
is such that n- ’ /2T, (o)  -+ b(8). Now fix w E Q,, For any E > 0, we have 

n1/2(b(8) - E )  < T,(o) < n1’2(b(8) + E )  

for all sufficiently large n, and thus also 

-2  log sUPeeeo C1 - GeJn’”(b(8) + &))I Kn(w) 
n n 
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Therefore, for all E sufficiently small that the interval I contains b(8) f E, we 
have by condition (B2) that 

We apply continuity of g to complete the proof. 

Remarks. (i) Condition (B2) makes manifest the role of large deviation 
theory in evaluating Bahadur slopes. Only the null hypothesis large deviation 
probabilities for the test statistic are needed. 

(ii) Variations of the theorem, based on other versions of (B2), have been 
established. See Bahadur (1960a, 1967,1971) and references cited therein. 

(iii) With (Bl) relaxed to convergence in P,-probability, the conclusion of 
the theorem holds in the weak sense. 

(iv) If a given {T,} fails to satisfy (Bl)-(B2), it may well be the case that 
T,’ = h,(T,) does, where h, is a strictly increasing function. In this case the 
slopes of {T.} and {T:} are identical. 

10.4.4 Examples 
Example A. The Normal Location Problem. (Continuation of 10.2.2 and 
Examples 10.3.2C and 10.4.1). Here Oo = {0} and 63, = (0, 00). The statistics 
to becompared are the “mean” test, “t-test,” “sign” test, and “Wilcoxon” test 
(denoted T,,, T,,, T3, and T&,, respectively). In order to evaluate the Bahadur 
ARES for these statistics, we seek their slopes (denoted c@), I = 1, 2, 3,4). 

For simplicity, we confine attention to the case that the &distribution of X 
is N(8, 1). 

We begin with the mean test statistic, 

T,, = n*I2X, 

which by Example 10.4.1 statisfies the Bahadur conditions with b(0) = 0 in 
(BI) and g(t)  = t2  in (B2). Thus, by Theorem 10.4.3, T,, has slope 

cl(e) = 8,. 

c2(e) = iog(i + ez). 

The t-test statistic T2,, n’12X/s, has slope 

For this computation, see Bahadur (1960b, or 1971). The interesting thing to 
observe is that the slope of the t-test is not the same as that of the mean. Thus 
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so that the r-test and mean test are not equivalent from the standpoint of 
Bahadur ARE, in contrast to the equivalence from the standpoint of Pitman 
ARE, as seen in 10.2.2. (For further evidence against the t-test, see Example C 
below.) 

The slope of the sign test statistic, T,, = n1I2(2V, - l), where 

n 

v, = C I ( X ,  > O), 
I =  1 

may be found by a direct handling of the level attained, 

It is shown by Bahadur (1960b) that 

log H(p)]  + 2(npq)”2(, log 

where p = we), q = 1 - p, H ( y )  = 2yy(1 - for 0 < y < 1, and 

112 112 
t n  = (p4)- n (V,  - P)* 

Since Cn N(0,  l), we have 

Thus it is seen that T’, has slope 

c,(e) = 2 10g{2@(8)*(~)[1 - 
We can also obtain this result by an application of Theorem 10.4.3, as follows. 
Check that condition (Bl) holds with b(8) = 2@(0) - 1. Next use Chernors 
Theorem (specifically, Corollary 10.3.1) in conjunction with Example 10.3.2B, 
to obtain condition (B2). That is, write 1 - GOn(n112t) = P(V, > )(t + 1)) 
and apply the Chernoff results to obtain (B2) with g(t) = 2 log H(fi1 + t)), 
for H ( y )  as above. 
We thus have 

2 iOg{2qe)*(~)ci - cp(e)ll-*(e)) 
82 M) = 



e 

eB(S, M) 

cJB) = A b q  - j,'log cosh x A  dx , 
2 1 

0 0.5 1.0 1.5 2.0 3.0 4.0 co 

2/71 = 0.64 0.60 0.51 0.40 0.29 0.15 0.09 0 

where 
q = PO(X, + x ,  > 0) - 4 

and A is the solution of the equation 

c x  tanh XA dx = q, 

See also Bahadur (1971). 

Example B. The Kolmogoroo-Srnirnou Test. (Abrahamson (1967)). Let 0 
index the set of all continuous distribution functions e(x) on the real line, and 
let Ho be simple, 

where 8, denotes a specified continuous distribution function. Consider the 
Kolmogorov-Smirnov statistic 

H,: 8 = e0, 

T, = sUPIF,,(X) - eo(x)l, 
x 

where F,, denotes the sample distribution function. The slope is found by 
Theorem 10.4.3. First, check that condition (Bl), with 

= SUP I w - e O ( 4  I ,  
X 

follows from the Glivenko-Cantelli Theorem (2.1.4A). Regarding condition 
(B2), the reader is referred to Abrahamson (1967) or Bahadur (1971) for 
derivations of (B2) with 

g(t) = 2 inf{h(t, p ) :  0 5 p 5 l}, 

where for 0 < p < 1 - t 

and h(t, p )  = 00 for p > 1 - t. H 
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Example C. The t-Test for a Nonparametric Hypothesis. Consider the 
composite null hypothesis Ho that the data has distribution F belonging to the 
class So of all continuous distributions symmetric about 0. The slopes of 
various rank statistics such as the sign test, the Wilcoxon signed-rank test and 
the normal scores signed-rank test can be obtained by Theorem 10.4.3 in 
straightforward fashion because in each case the null distribution of the test 
statistic does not depend upon the particular F E 9,. For these slopes see 
Bahadur (1960b) and Klotz (1965). But how does the t-test perform in this 
context? The question of finding the slope of the t-test in this context leads to 
an extremal problem in large deviation theory, that of finding the rate of con- 
vergence to 0 of supFeSo P(T, 2 a), where T, = X/s .  This problem is solved 
by Jones and Sethuraman (1978) and the result is applied via Bahadur’s 
Theorem (10.4.3) to obtain the slope of the t-test at alternatives F, satisfying 
certain regularity conditions. It is found that for F, = N(8,  I), 8 # 0, the 
t-test is somewhat inferior to the normal scores signed-rank test. 

10.5 THE HODCES-LEHMANN ASYMPTOTIC RELATIVE EFFICIENCY 

How adequate is the Pitman efficiency? the Chernoff measure? the Bahadur 
approach? It should be clear by now that a comprehensive efficiency compari- 
son of two tests cannot be summarized by a single number or measure. To 
further round out some comparisons, Hodges and Lehmann (1956) introduce 
an ARE measure which is pertinent when one is interested in “the region of 
high power.” That is, two competing tests of size a are compared at fixed 
alternatives as the power tends to 1. In effect, the tests are compared with 
respect to the rate at which the Type I1 error probability tends to 0 at a fixed 
alternative while the Type I error probability is held fixed at a level a, 0 < 
a -= 1. The resulting measure, eHL(TA, Ts), which we call the Hodges-Lehmann 
ARE, is the dual of the Bahadur ARE. The relative importances of the Type I 
and Type I1 error probabilities are reversed. 

Like the Bahadur ARE, the computation of the Hodges-Lehmann ARE 
is less formidable than the Chernoff index, because the exponential rate of 
convergence to 0 needs to be characterized for only one of the error prob- 
abilities instead of for both. 

In the following example, we continue our study of selected statistics in the 
normal location problem and illustrate the computation of eHL(. , .). 

Example. The Normal Location Problem (Continuation of 10.2.2 and 
Examples 10.3.2C, 10.4.1 and 10.4.4A) In general, the critical region { T, > t,,} 
is designed so that a,, tends to a limit a, 0 < a c 1, so that at alternatives 8 we 
have P,(O) + 0 and typically in fact 

(9 - 2n - log p,,(e) -, d(8), 
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for some value 0 < d(0) < 00. Let us now consider 6, = (0) and 0, = 
[0, a), and assume the B-distribution of X to be N(B, 1). For the meun test 
statistic, T, = n112X, we must (why?) take t, equal to a constant in order that 
or, behave as desired. Thus B,(B) is of the form 

p,,(e) = P, (~PX 5 c). 

A straightforward application of Chernoff B results (see Corollary 10.3.1 and 
Example 10.3.2A) yields (*) with 

dM(e)  - 82. 

Similarly, for the sign test, as considered in Example 10.4.4A, we obtain (*) 
with 

ds(e) = -1og{4a(e)[i - uqe)]). 

Thus the Hodges-Lehmann ARE of the sign test relative to the mean test is 

Like the Bahadur ARE e& M), this measure too converges to 2/n as 8 + 0. 
Some values of enL(S, M) are as follows. 

e l 0  0.253 0.524 1.645 3.090 3.719 00 

enL(S, M) I 2/n = 0.64 0.636 0.634 0.614 0.578 0.566 0.5 

Interestingly, as 0 + GO, eHL(S, M) + 4 whereas e&M) + 0. 
Hodges and Lehmann also evaluate the t-test and find that, like the Pitman 

ARE, eHL(t, M) = 1. On the other hand, the Bahadur comparison gives 
(check) 

In 10.4.1 we mentioned an “approximate” version of the Bahadur slope. 
The analogous concept relative to the Hodges-Lehmann approach has been 
investigated by Hettmansperger (1973). 

10.6 HOEFFDINC’S INVESTIGATION (MULTINOMIAL DISTRIBUTIONS) 

In the spirit of the Chernoff approach, Hoeffding (1965) considers the 
comparison of tests at fixed alternatives as both types of error probability 
tend to 0 with increasing sample size. He considers muftinomid d m  and 
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brings to light certain superior features of the likelihood ratio test, establishing 
the following 

Proposition. I f a  given test of size a,, is "suficiently diflerent " from a likeli- 
hood ratio test, then there is a likelihood ratio test of size Sa,, which is con- 
siderably more powerful then the given test at "most" points in the set of 
alternatives when the sample size n is large enough, provided that a,, tends to 0 
at a suitably fast rate. 

In particular, Hoeffding compares the chi-squared test to the likelihood 
ratio test and finds that, in the sense described, chi-square tests of simple 
hypotheses (and of some composite hypotheses) are inferior to the cor- 
responding likelihood ratio tests. 

In 10.6.1 we present a basic large deoiation theorem for the multinomial 
distribution. This is applied in 10.6.2 to characterize optimulity of the likeli- 
hood ratio test. Connections with information numbers are discussed in 10.6.3, 
The chi-squared and likelihood ratio tests are compared in 10.6.4, with dis- 
cussion of the Pitman and Bahadur ARES also. 

10.6.1 A Large Deviation Theorem 

Here we follow Hoeffding (1965), whose development is based essentially on 
work of Sanov (1957). A treatment is also available in Bahadur (1971). 

Let z,, = (nl/n, . . . , nJn) denote the relative frequency vector associated 
with the point (n l ,  . . . , nk) in the sample space of the multinomial ( p l ,  . . . , pk; 
n) distribution. Let 0 be the parameter space, 

Let P,,( - I p) denote the probability function corresponding to the parameter p. 
Thus 

For any subset A of 0, let A(") denote the set of points of the form z,, which 
lie in A. We may extend the definition of P,,(.) to arbitrary sets A in 0 by 
defining 

Pn(A I P) = Pn(A'"'I PI* 
For points x = (xl, . . . , x k )  and p = (pl, . . . , pk) in @,define 
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As will be seen in 10.6.3, this function may be thought of as a distance between 
the points x and p in 0. For sets A c 0 and A c 8, define 

and 

These extend I(x,  p) to a distance between a point and a set. In this context, 
"large deviation** probability refers to a probability of the form P,,(Alp) 
where the distance &A, p) is positive (and remains bounded away from 0 as 
n + 00). 

Theorem. For sets A c 0 and points p E 0, we have uniJbrmly 

Remarks. (i) The qualification "uniformly" means that the O( 0 )  function 
depends only on k and not on the choice of A, p and n. 

(ii) Note that the above approximation is crude, in the sense of giving an 
asymptotic expression for log P,,(A I p) but not one for P,(A 1 p). However, as 
we have seen in Sections 10.3-10.5, this is strong enough for basic applications 
to asymptotic relative efficiency. 

(iii) If the set A corresponds to the critical region of a test (of a hypothesis 
concerning p), then the above result provides an approximation to the asymp- 
totic behavior of the error probabilities. Clearly, we must confine attention to 
tests for which the size a,, tends to 0 faster than any power of n. The case where 
a,, tends to 0 more slowly is not resolved by the present development. (See 
Problem 10.P.19). 

10.6.2 The Emergence of the Likelihood Ratio Test 
It is quickly seen (exercise) that 

(1) P,,(z, I p) = P,,(z, I z,,)e- "('n* '1 

Now consider the problem of testing the hypothesis 

versus an alternative 
H,: PEA(A c 0)  

H : P E A ' =  0 - A ,  

on the basis of an observation Z, = Z,,. 
The likelihood ratio (LR) test is based on the statistic 

SuPr6A pfl(z#lP) - e-nI(xn,A) 

SUPpc A P"(% I PI - 
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(since 0 S I (x ,  p) I; 00 and I(x,  x) = 0). Thus the LR test rejects H, when 

Z(z,, A) > constant. 

Now an arbitrary test rejects Ho when z, E A, where A, is a specified subset 
of 0. By the theorem, the size a, of the test A, satisfies 

a, = sup pn(~,lp) = e-n~(A!?.A)+o(lorN 

Let us now compare the test A, with the LR test which rejects I f o  when 
z, E En, where 

D, = {x: f(x, A) 2 c,} 

P e A  

and 

C, = I ( A r ) ,  A). 

The critical region B, contains the critical region A,. In fact, En is the union 
of all critical regions of tests A; for which I (A; ,  A) 2 c,, that is, of all tests A; 
with size <a, (approximately). Moreover, the size a,‘ of the test B, satisfies .: = - ncn + O(10r n) 

since I(@’, A) = c,. Hence we have 

log a,’ = log a, + O(log n). 

Therefore, if the size a, 4 0 faster than any power of n, the right-hand side is 
dominated by the term log a,, so that the sizes of the tests are approximately 
equal. 

These considerations establish: Given any test A, of size a,, such that 
a, 4 0 faster than any power of n, there exists a LR test which is uniformly at 
least US powerful and asymptotically of the same size. (Why uniformly?) 

Furthermore, at “most” points p E 0 - A, the test En is considerably more 
powerful than A n ,  in the sense that the ratio of Type I1 error probabilities at p 
tends to 0 more rapidly than any power of n. For we have 

At these points p for which 

and 

we have that the ratio of error probabilities 40 faster than any power of n. 
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10.6.3 The Function Z(x, p )  p8 a Distance; Information 

The function I(x, p) has a natural generalization including distributions other 
than multinomial. Suppose that a model is given by a family of distributions 
{Fe, B E  0). For any distributions Fb, and F,,, suppose that Fe0 and F,, have 
densities fe, with respect to some measure p, for example the measure dp = 
fidFe, + dF8,). Define 

with fe, log(feJfe,) interpreted as 0 where &(x) = 0 and interpreted as 00 
where feo(x) > 0, fe , (x)  = 0. Note that this is a generalization of I(x,  p). For 
example, let j t  be counting measure. 

I(F, G )  is an asymmetric measure of distance between F and G. We have 

(i) 0 S I(F, G)  5 ao; 
(ii) If I(F, G) < 00, then F 4 G and I(F, G )  = I log(dF/dG)dF; 
(iii) I(F,  G )  = 0 if and only if F 3: G. 

I(F,  G)  represents an information measure. It measures the ability to dis- 
criminate against G on the basis of observations taken from the distribution 
F. As such, this is asymmetric. To see what this means, consider the following 
example from Chernoff (1952). 

Example Let 0 = {p = (pl, pa): p f  2 0, pI + p 2  = 1). Consider the dis- 
tributions po = (1,O) and p1 = (0.9,O.l). We have 

I(Po9 PI) < a, I(P1, Po) = 00. 

What does this mean? If p1 is the true distribution, only a finite number of 
observations will be needed to obtain an observation in the second cell, 
completely disproving the hypothesis po. Thus the ability of pI to discrimi- 
nate against po is perfect, and this is measured by I(pl, po) = 00. On the other 
hand, if po is the true distribution, the fact that no observations ever occur 
in the second cell will build up evidence against pI in only a gradual fashion. 
In general, points on the boundary of 0 are infinitely far from interiors 
points, but not vice versa. 

Let us now interpret statistically the large deviation theorem of 10.6.1, 
which may be expressed in the form 

pn(~lp)  = e - n W " ) . p ) + O ( l o l n ) e  

The quantity I(A("), p) represents the shortest distance from the point p to 
the set A("). Suppose that A is the critical region of a test: "reject H,: p = po 
when the observed relative frequency vector falls in the region A."The above 
approximation tells us that the size a,, of the test is'not much increased by 
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adjoining to A all points whose “distance” from po is at least I(A, po). The 
test so obtained is at least as powerful, since the new critical region contains 
the first, and has approximately the same size. It turns out that the latter 
test is simply the LR test. 

10.6.4 Comparison of %‘.and LR Tests 
From the considerations of 10.6.2, we see the superiority of the LR test over 
the xz test, with respect to power at “most” points in the parameter space, 
provided that the tests under consideration have size a, tending to 0 at a 
suitably fast rate. The superiority of the LR test is also affirmed by the 
Bahadur approach. From Abrahamson (1965) (or see Bahadur (1971)), we 
have for the x2 test the slope 

Cl@) = 21(A(fA Po), Po), 
where po is the (simple) null hypothesis, and 

and we have for the LR test the slope 

It is readily checked that cl(@ s cz(8), that is, 
cZ(o) = w e ,  p0). 

eB(xZ,LR) s 1. 

As discussed in Bahadur (1971), the set E on which cl(8) = cz(0) is not yet 
known precisely, although some of its features are known. 

With respect to Pitman ARE, however, the x2 and LR tests are equivalent. 
This follows from the equivalence in distribution under the null hypothesis, 
as we saw in Theorem 4.6.1. 

10.7 THE RUBINSEXHURAMAN “BAYES RISK *’ EFFICIENCY 

Rubin and Sethuraman (1965b) consider efficiency of tests from a Bayesian 
point of view, and define the “Bayes Risk” ARE of two tests as the limit of 
the ratio of sample sizes needed to obtain equal Bayes risks. Namely, for a 
statistical procedure T,,, and for e > 0, let N(s )  denote the minimum no such 
that for sample size n > no the Bayes risk of T, is <E. Then the Rubin- 
Sethuraman ARE of a test TA relative to a test TB is given by 

By “Bayes risk of T,” is meant the Bayes risk of the optimal critical region 
based on T,. 
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Illustration. Consider the parameter space 0 = R. Let the null hypothesis 
be Ho : 8 = 0. Let l(8, i ) ,  i = 1,2, denote the losses associated with accepting 
or rejecting Ho, respectively, when 8 is true. Let A@, 8 E 0, denote a prior 
distribution on 0. Then the Bayes risk of a critical region C based on a 
statistic T, is 

Bn(c) = f ( o ) ~ o ,  ~ ) P O ( T ,  Ec) + l + o f ( ~ ~ ~ ( o ,  ~)P#(T, cw 

and the “Bayes risk of T,,” is B:(T) = inf, B,(C). Typically, an asymptotically 
optimal critical region is given by 

C, = { T, > c(Iog n)’”}, 

where T, is normalized to have a nondegenerate limit distribution under 
Ho. Thus moderate deviation probability approximations play a role in 
evaluating B:(T). Why do we wish to approximate the rate at which 
B:( T) + 01 Because these approximations enable us to compute eRs(. , . ). 
In typical problems, it is found that B:(T) satisfies 

B,*(T) - g(c:n-’(log n)), n 00, 

where g is a function depending on the problem but not upon the particular 
procedure T. For two such competing procedures, it thus follows by inverting 
g(.) that 

Moreover, in typical classical problems, this measure eRs(. , .) coincides 
with the Pitman ARE. Like the Pitman approach, the present approach is 
“local” in that the (optimal) Bayes procedure based on T places emphasis 
on “local” alternatives. However, the present approach differs from the 
Pitman approach in the important respect that the size of the test tends to 
0 as n + GO. (Explain), I 

1O.P PROBLEMS 

Section 10.2 

1. Complete details for proof of Theorem 10.2.1. 
2. Provide details for the application of the Berry-Eden theorem in 

showing that the sign test statistic considered as T’, in 10.2.2 satisfies the 
Pitman condition (Pl). Check the other conditions (P2)-(P5) also. 

3. Show that the Wilcoxon statistic considered as T4, in 10.2.2 satisfies 
the Pitman conditions. 
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4. Do the exercises assigned in Examples 10.2.2. 
5. Complete details of proof of Theorem 10.2.3. 

Section 103 
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6. Show that the likelihood ratio test may be represented as a test 

7. Complete the details of proof of Theorem 10.3.1. 
8. Complete the details of proof of Theorem 10.3.2. 
9. Verify Corollary 10.3.1 and also relation (*) in 10.3.2. 

10. Let {a,) and (6,) be sequences of nonnegative constants such that 

11. Let {a,} and (6,) be sequences of nonnegative constants such that 

12. Supply details for Example 10.3.2A. 
13. Supply details for Example 10.3.2B. 
14. Supply details for Example 10.3.2C. 

statistic of the form of a sum of 1.1.D.’~. 

a, -+ 0 and a, - 6,. Show that log a, - log 6,. 

a, -+ 0 and log a, - log b,. Does it follow that a, - 6,? 

Section 10.4 

equivalent performance, as asserted in defining eB. 
15. Justify that en(,, .) is the limit of a ratio h(n)/n of sample sizes for 

16. Complete the details of proof of Theorem 10.4.1. 
17. Complete details on computation of the slope of the sign test in 

Example 10.4.4A. 

Section 10.5 

18. Complete details for Example 10.5. 

Section 10.6 

19. Consider two tests { T,,}, {T:} having sizes a,, a$ which satisfy 

log a: = log a,, + O(log n), n 4 a. 

Show that if a, 3 0 faster than any power of n, then the right-hand side is 
dominated by the term log a,. Thus, if a,+O faster than any power of n, 
then log a,* - log a,. Show, however, that this does not imply that a,* - a,. 

20. Verify relation (1) in 10.6.2. 
21. Check that the Bahadur slope of the x 2  test does not exceed that of the 

LR test, as discussed in 10.6.4. 

Section 10.7 

22. Justify the assertion at the conclusion of Example 10.7. 
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Appendix 

1. CONTINUITY THEOREM FOR PROBABILITY FUNCTIONS 

If events {B,,) are monotone (either B ,  c B2 c 
limit B, then 

lim P(E,) = P(B).  

or B ,  3 B2 3 ...) with 

n*@ 

2. JENSENS INEQUALITY 

If g(.) is a convex function on R, and X and g ( X )  are integrable r.v.’s, then 

B(E{X)) w . l ( X ) ) .  

3. BORELYCANTELLI LEMMA 

(i) For arbitrary events {BJ, if I,, P(B,,) < 00, then P(B,, infinitely 
often) = 0. 

(ii) For independent events {Em}, if & P(B,,) = 00, then P(B,, infinitely 
often) = 1.  

4. MINKOWSKI’S INEQUALITY 

For p 2  1, and r.v.’s X,, ..., X,,, 

351 
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5. FATOU’S LEMMA 

If X n  2 0 wpl ,  then 

E !ig X, 5 lim E { X n } .  
{n-m } n-m 

6. HELLY’S THEOREMS 

(i) Any sequence of nondecreasing functions 

f‘,(x), J‘,(x), * * * 9 Fn(x), * * * 

which are uniformly bounded contains at least one subsequence 

f‘n,(x), Fn,(x), * * 9 Fn,,(x), * * 

which converges weakly to some nondecreasing function F(x). 

decreasing uniformly bounded functions 
(ii) Let f ( x )  be a continuous function and let the sequence of non- 

F,(x), F,(x), * * * 9 FAX), * - - 
converge weakly to the function F(x)  on some finite interval a S x S b, 
where a and b are points of continuity of the function F(x) ;  then 

b b 

n+ lim m Ja f (xwFn(x )  = [ . / ( x ) ~ x ) -  

(iii) If the function J ( x )  is continuous and bounded over the entire real 
line -00 i: x < 00, the sequence of nondecreasing uniformly bounded 
functions Fl(x) ,  F2(x), . . . converges weakly to the function F(x), and 
Fn( - 00) + F( - a) and Fn( + 00) + F( + a), then 

n-rm iim J’j(xwFn(x) = J ’~xw~(x) .  

7. HOLDER’S INEQUALITY 

For p > 0 and q > 0 such that l/p + l/q = 1, and for random variables 
X and 
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