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Preface

This book covers a broad range of limit theorems useful in mathematical
statistics, along with methods of proof and techniques of application. The
manipulation of * probability” theorems to obtain *statistical” theorems
is emphasized. It is hoped that, besides a knowledge of these basic statistical
theorems, an appreciation on the instrumental role of probability theory and
a perspective on practical needs for its further development may be gained.

A one-semester course each on probability theory and mathematical
statistics at the beginning graduate level is presupposed. However, highly
polished expertise is not necessary, the treatment here being self-contained
at an elementary level. The content is readily accessible to students in
statistics, general mathematics, operations research, and selected engineering
fields.

Chapter 1 lays out a variety of tools and foundations basic to asymptotic
theory in statistics as treated in this book. Foremost are: modes of conver-
gence of a sequence of random variables (convergence in distribution, con-
vergence in probability, convergence almost surely, and convergence in the
rth mean); probability limit laws (the law of large numbers, the central
limit theorem, and related results).

Chapter 2 deals systematically with the usual statistics computed from a
sample: the sample distribution function, the sample moments, the sample
quantiles, the order statistics, and cell frequency vectors. Properties such as
asymptotic normality and almost sure convergence are derived. Also, deeper
insights are pursued, including R. R. Bahadur’s fruitful almost sure repre-
sentations for sample quantiles and order statistics. Building on the results
of Chapter 2, Chapter 3 treats the asymptotics of statistics concocted as
transformations of vectors of more basic statistics. Typical examples are
the sample coefficient of variation and the chi-squared statistic. Taylor
series approximations play a key role in the methodology.

The next six chapters deal with important special classes of statistics.
Chapter 4 concerns statistics arising in classical parametric inference and
contingency table analysis. These include maximum likelihood estimates,

vil
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likelikood ratio tests, minimum chi-square methods, and other asymptoti-
cally efficient procedures.

Chapter 5 is devoted to the sweeping class of W. HoefIding’s U-statistics,
which elegantly and usefully generalize the notion of a sample mean. Basic
convergence theorems, probability inequalities, and structural properties
are derived. Introduced and applied here is the important “projection”
method, for approximation of a statistic of arbitrary form by a simple sum
of independent random variables.

Chapter 6 treats the class of R. von Mises’ ‘‘differentiable statistical
functions,” statistics that are formulated as functionals of the sample dis-
tribution function. By differentiation of such a functional in the sense of the
Gateaux derivative, a reduction to an approximating statistic of simpler
structure (essentially a U-statistic) may be developed, leading in a quite
mechanical way to the relevant convergence properties of the statistical
function. This powerful approach is broadly applicable, as most statistics of
interest may be expressed either exactly or approximately as a “statistical
function.”

Chapters 7, 8, and 9 treat statistics obtained as solutions of equations
(““M-estimates”), linear functions of order statistics (*‘L-estimates™),
and rank statistics (“* R-estimates’’), respectively, three classes important
in robust parametric inference and in nonparametric inference. Various
methods, including the projection method introduced in Chapter 5 and the
differential approach of Chapter 6, are utilized in developing the asymptotic
properties of members of these classes.

Chapter 10 presents a survey of approaches toward asymptotic relative
efficiency of statistical test procedures, with special emphasis on the contri-
butions of E. J. G. Pitman, H. Chernoff, R, R. Bahadur, and W, Hoeffding.

To get to the end of the book in a one-semester course, some time-con-
suming material may be skipped without loss of continuity. For example,
Sections 1.4, 1.11, 2.8, 3.6, and 4.3, and the proofs of Theorems 2.3.3C
and 9.2.6A, B, C, may be so omitted.

This book evolved in conjunction with teaching such a course at The
Florida State University in the Department of Statistics, chaired by R. A.
Bradiey. I am thankful for the stimulating professional environment con-
ducive to this activity. Very special thanks are due D, D, Boos for collabora-
tion on portions of Chapters 6, 7, and 8 and for many useful suggestions
overall. I also thank J. Lynch, W. Pirie, R. Randles, I. R. Savage, and J.
Sethuraman for many helpful comments. To the students who have taken this
course with me, 1 acknowledge warmly that each has contributed a con-
structive impact on the development of this book. The support of the Office
of Naval Research, which has sponsored part of the research in Chapters
5,6,7,8,and 9is acknowledged with appreciation. Also, I thank Mrs. Kathy
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Strickland for excellent typing of the manuscript. Finally, most important
of all, 1 express deep gratitude to my wife, Jackie, for encouragement
without which this book would not have been completed.

ROBERT J. SERFLING

Baltimore, Maryland
September 1980
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CHAPTER 1

Preliminary Tools and Foundations

This chapter lays out tools and foundations basic to asymptotic theory in
statistics as treated in this book. It is intended to reinforce previous knowledge
as well as perhaps to fill gaps. As for actual proficiency, that may be gained in
later chapters through the process of implementation of the material.

Of particular importance, Sections 1.2-1.7 treat notions of convergence of
a sequence of random variables, Sections 1.8-1.11 present key probability
limit theorems underlying the statistical limit theorems to be derived, Section
1.12 concerns differentials and Taylor series, and Section 1.15 introduces
concepts of asymptotics of interest in the context of statistical inference
procedures.

1.1 PRELIMINARY NOTATION AND DEFINITIONS

1.1.1 Greatest Integer Part

For x real, {x] denotes the greatest integer less than or equal to x.

1.1.2  O(), o(*), and ~

These symbols are called “big oh,” “little oh,” and “twiddle,” respectively.
They denote ways of comparing the magnitudes of two functions u(x) and (x)
as the argument x tends to a limit L (not necessarily finite). The notation
u(x) = 0(v(x)), x — L, denotes that |u(x)/v(x)| remains bounded as x — L.
The notation u(x) = o(1(x)), x — L, stands for

u(x)

lim —— =0,

x-L D(X)
1



2 PRELIMINARY TOOLS AND FOUNDATIONS
and the notation u(x) ~ 1{x), x —» L, stands for

limg(i)= 1,

x-L U(X)

Probabilistic versions of these “order of magnitude” relations are given in
1.2.6, after introduction of some convergence notions.

Example. Consider the function

e (-(-3)

Obviously, f(n) — 0 as n — co. But we can say more. Check that

f(n) = % + 0(n~%),n— oo,

w

=—+o(n"),n—’oo,

=

3
~=n-00 N
n

1.1.3 Probability Space, Random Variables, Random Vectors

In our discussions there will usually be (sometimes only implicitly) an
underlying probability space (Q, o, P), where Q is a set of points, of is a
a-field of subsets of Q, and P is a probability distribution or measure defined
on the elements of . A random variable X (w) is a transformation of Qinto the
real line R such that images X ~!(B) of Borel sets B are elements of &f. A
collection of random variables X ;(w), X ;(w), ... on a given pair (Q, &) will
typically be denoted simply by X,, X,,.... A random vector is a k-tuple
X = (X,,..., X)) of random variables defined on a given pair (Q, ).

1.1.4 Distributions, Laws, Expectations, Quantiles

Associated with a random vector X = (X,,..., X,) on (. o, P) is a
right-continuous distribution function defined on R* by

FX......X*(‘I’ ey tk) = P({w: xl(w) < tlv ey xk(w) s tk})

forallt = (¢,, ..., t,) € R" This is also known as the probability law of X.
(There is also a left-continuous version.) Two random vectors X and Y,
defined on possibly different probability spaces, “have the same law” if their
distribution functions are the same, and this is denoted by .#(X) = .£(Y), or
Fx = Fy.
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By expectation of a random variable X is meant the Lebesgue-Stieltjes
integral of X (w) with respect to the measure P. Commonly used notations for
this expectation are E{X}, EX, fq X(w)dP(®), [a X(w)P(dw), ( X dP, | X,
2o t dF (1), and § t dFy. All denote the same quantity. Expectation may also
be represented as a Riemann-Stieltjes integral (see Cramér (1946), Sections
7.5 and 9.4). The expectation E{X} is also called the mean of the raidom
variable X. For a random vector X = (X, ..., X,), the mean is defined as
E{X} = (E{X\},..., E{X\}).

Some important characteristics of random variables may be represented
conveniently in terms of expectations, provided that the relevant integrals
exist. For example, the variance of X is given by E{(X — E{X})?}, denoted
Var{X}. More generally, the covariance of two random variables X and Y is
given by E{(X — E{X})(Y — E{Y})}, denoted Cov{X, Y}. (Note that
Cov{X, X) = Var{X}.) Of course, such an expectation may also be repre-
sented as a Riemann-Stieltjes integral,

Cov{X, ¥} = f f (x — E{X})(y — E{Y NdFxy(x, ).

For a random vector X = (X,, ..., X,), the covariance matrix is given by
L= (au)kxk, where Oy = COV{X‘, X!}.
For any univariate distribution function F, and for 0 < p < 1, the quantity

F~!(p) = inf{x: F(x) = p}

is called the pth quantile or fractile of F. It is also denoted §,. In particular,
&1z = F~1(d) is called the median of F.

The function F~'(t), 0 <t < 1, is called the inverse function of F. The
following proposition, giving useful properties of F and F~!, is easily
checked (Problem 1.P.1).

Lemma. Let F be a distribution function. The function F~'(1), 0 <t < 1,
is nondecreasing and left-continuous, and satisfies
(i) F"Y(F(x)) <X, —00 <X < 0,
and
(i) FF () =>t0<t<l.
Hence
(iii) F(x) >tifand only if x = F~!(t).

A further useful lemma, concerning the inverse functions of a weakly
convergent sequence of distributions, is given in 1.5.6.
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1.1.5 M@, ¢?), N, E)

The normal distribution with mean y and variance 62 > 0 corresponds to the
distribution function

1 * 1/t —u\?
F(x) = (Zn—)'“—; I_mexp[— E(Tu) ]dt, -0 < X < 00,

The notation N(y, o2) will be used to denote either this distribution or a
random variable having this distribution—whichever is indicated by the
context. The special distribution function N(0, 1) is known as the standard
normal and is often denoted by ®. In the case 62 = 0, N(u, 0%) will denote the
distribution degenerate at p, that is, the distribution

0, x<y
F(x)={l xZ,‘:

A random vector X = (X, ..., X,) has the k-variate normal distribution
with mean vector p = (uy, ..., ) and covariance matrix £ = (0;)); xy if,
for every nonnull vector & = (a,, ..., @), the random variable aX’ is N(ap’,
ala’), that is, aX' = Zf,, a; X, has the normal distribution with mean
ap’ = Y% a;u;and variance aZa’ = Y %., Y%., a;a,0,;. The notation N(p, E)
will denote either this multivariate distribution or a random vector having this
distribution,

The components X; of a multivariate normal vector are seen to have
(univariate) normal distributions. However, the converse does not hold.
Random variables X,,..., X, may each be normal, yet possess a joint
distribution which is not multivariate normal. Examples are discussed in
Ferguson (1967), Section 3.2.

1.1.6 Chi-squared Distributions

Let Z be k-variate N(p, I), where I denotes the identity matrix of order k. For
the case p = 0, the distribution of ZZ' = Y% Z? is called the chi-squared with
k degrees of freedom. For the case p # 0, the distribution is called noncentral
chi-squared with k degrees of freedom and noncentrality parameter A = py’.
The notation x(4) encompasses both cases and may denote either the random
variable or the distribution. We also denote x2(0) simply by x3.

1.1.7 Characteristic Functions

The characteristic function of a random k-vector X is defined as

$xw = E{e""} = I N Ie“*’ dFyy, teR:
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In particular, the characteristic function of N(0, 1) is exp(—4¢2). See Lukacs
(1970) for a full treatment of characteristic functions.

1.1.8 Absolutely Continuous Distribution Functions

An absolutely continuous distribution function F is one which satisfies
F(x) = f F'(t)de, —0 < x < 00.

That is, F may be represented as the indefinite integral of its derivative. In this
case, any function f such that F(x) = j'i o J(t)dt, all x, is called a density for F.
Any such density must agree with F’ except possibly on a Lebesgue-null set.
Further, if f is continuous at x4, then f(x,) = F'(x,) must hold. This latter
may be seen by elementary arguments. For detailed discussion, see Natanson
(1961), Chapter IX.

1.1.9 LLD.

With reference to a sequence {X;} of random vectors, the abbreviation 1.1.D.
will stand for “independent and identically distributed.”

1.1.10 Indicator Functions

For any set S, the associated indicator function is

1, xe€8§,

Istx) = {0 x¢S.

For convenience, the alternate notation I(S) will sometimes be used for [,
when the argument x is suppressed.

1.1.11 Binomial (n, p)

The binomial distribution with parameters n and p, where nis a positive integer
and 0 < p < 1, corresponds to the probability mass function

plk) = (;‘)p*u -t k=01L...n

The notation B(n, p) will denote either this distribution or a random variable
having this distribution. As is well known, B(n, p) is the distribution of the
number of successes in a series of n independent trials each having success
probability p.

1.1.12 Uniform (a, b)

The uniform distribution on the interval [a, b], denoted U(a, b), corresponds
to the density function f(x) = 1/(b-a), a < x < b, and =0, otherwise.
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1.2 MODES OF CONVERGENCE OF A SEQUENCE OF
RANDOM VARIABLES

Two forms of approximation are of central importance in statistical ap-
plications. In one form, a given random variable is approximated by another
random variable. In the other, a given distribution function is approximated
by another distribution function. Concerning the first case, three modes of
convergence for a sequence of random variables are introduced in 1.2.1,
1.2.2, and 1.2.3. These modes apply also to the second type of approximation,
along with a fourth distinctive mode introduced in 1.2.4. Using certain of
these convergence notions, stochastic versions of the O(-), o(-) relations in
1.1.2 are introduced in 1.2.5. A brief illustration of ideas is provided in 1.2.6.

1.2.1 Convergence in Probability

Let X,, X,,...and X be random variables on a probability space (€, «, P).
We say that X, converges in probability to X if

lim P(| X, — X| <¢) =1, every &> 0.

At
This is written X, » X, n — oo, or p-lim,_, o X, = X. Examples are in 1.2.6,
Section 1.8, and later c'hapters. Extension to the case of X;, X,,...and X
random elements of a metric space is straightforward, by replacing | X, — X|
by the relevant metric (see Billingsley (1968)). In particular, for random k-
vectors X;, X,, ... and X, we shall say that X, 5 X if X, — X|| & 0 in the
above sense, where ||z| = ()., z3)"/? for ze R*. It then follows (Problem

1.P.2) that X, & X if and only if the corresponding component-wise con-
vergences hold.

1.2.2 Convergence with Probability 1

Consider random variables X, X3, ... and X on (, o, P). We say that X,
converges with probability 1 (or strongly, almost surely, almost everywhere, etc.)
to X if

P(lim X, = X) = |
Ulnd ]
This is written X, *2% X, n — 0, or pl-lim,_,, X, = X. Examples are in
1.2.6, Section 1.9, and later chapters. Extension to more general random
elements is straightforward.
An equivalent condition for convergence wpl is
lim P(|X,— X|<¢gallm=n)=1, each ¢>0.

A ®
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This facilitates comparison with convergence in probability. The equivalence
is proved by simple set-theoretic arguments (Halmos (1950), Section 22), as
follows. First check that

) {w: lim X (w) = X(w)} = ﬂ O {w: | X n(w) — X(w)| < & allm > n},

n- >0 o=l
whence
**
{w: lim X (w) = X(w)} = lim lim {w: | X (@) ~ X(w)| < & alim = n}.
n— o =0 n— o

By the continuity theorem for probability functions (Appendix), (**) implies
P(X,— X) =lim lim P(|X,, — X| < gallm = n),
e=~+0 n—
which immediately yields one part of the equivalence. Likewise, (*) implies,
for any ¢ > 0,
P(X,—- X) < lim P(|X,, — X| < e, allm > n),

yielding the other part.

The relation (*) serves also to establish that the set {w: X, (w) = X(w)}
truly belongs to &, as is necessary for “convergence wpl” to be well defined.

A somewhat stronger version of this mode of convergence will be noted in

1.3.4.

1.2.3 Convergence in rth Mean
Consider random variables X ;, X5, ... and X on (, #, P).Forr > 0, we say
that X, converges in rth mean to X if

lim E|X, — X['=0.
This is written X, ,,-'-'-"* X or L,-lim,_,,, X, = X. The higher the value of r, the
more stringent the condition, for an application of Jensen’s inequality (Ap-
pendix) immediately yields

X, BX=X,BX,0<s<r

Given (Q, o, P) and r > 0, denote by L(Q, o, P) the space of random
variables Y such that E| Y| < co. The usual metricin L, is givenbyd(Y, Z) =
Y — Z|,, where

1Yl = E|Y[, O<r<l]|,
*UEIYIT, r2l



8 PRELIMINARY TOOLS AND FOUNDATIONS

Thus convergence in the rth mean may be interpreted as convergence in the
L, metric, in the case of random variables X, X, ... and X belongingto L,.

1.24 Convergence in Distribution

Consider distribution functions F(-), F3(-),... and F(-). Let X, X,,...
and X denote random variables (not necessarily on a common probability
space) having these distributions, respectively. We say that X, converges in
distribution (or in law) to X if

lim F,(t) = F(t), each continuity point ¢ of F.

n=*a0
This is written X, % X, or d-lim,,, X, = X. A detailed examination of this
mode of convergence is provided in Section 1.5. Examples are in 1.2.6,
Section 1.9, and later chapters.

The reader should figure out why this definition would not afford a
satisfactory notion of approximation of a given distribution function by other
ones if the convergence were required to hold for all ¢.

In as much as the definition of X, % X is formulated wholly in terms of the
corresponding distribution functions F, and F, it is sometimes convenient to
use the more direct notation “F, = F” and the alternate terminology “F,
converges weakly to F.” However, as in this book the discussions will tend to
refer directly to various random variables under consideration, the notation
X, % X will be quite useful also.

1 th .
Remark. The convergences 5, =25, and = each represent a sense in

which, for n sufficiently large, X,(w) and X(w) approximate each other as
Sunctions of , @ € Q. This means that the distributions of X, and X cannot be
too dissimilar, whereby approximation in distribution should follow. On the
other hand, the convergence 4, depends only on the distribution functions
involved and does not necessitate that the relevant X, and X approximate
each other as functions of w. In fact, X, and X need not be defined on the same
probability space. Section 1.3 dealsformally with these interrelationships. W

1.2.5 Stochastic O(-) and o(*)

A sequence of random variables {X,}, with respective distribution functions
{F,}, is said to be bounded in probability if for every e > 0 there exist M, and
N, such that

FM)-F(~-M)>1~-¢ all n>N,.

The notation X, = 0,(1) will be used. It is readily seen that X, LAX=
X, = 0,(1) (Problem 1.P.3).
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More generally, for two sequences of random variables {U,} and {V,}, the
notation U, = 0,(V,) denotes that the sequence {U,/V,} is O,(1). Further,
the notation U, = o0,(V,) denotes that U,/V, 24 0. Verify (Problem 1.P.4) that
U, = 0,(V) = U, = 0,(V,).

1.2.6 Example: Proportion of Successes in a Series of Trials

Consider an infinite series of independent trials each having the outcome
“success” with probability p. (The underlying probability space would be
based on the set Q of all infinite sequences w of outcomes of such a series of
trials.) Let X, denote the proportion of successes in the first n trials. Then

() X, p;
) X, 2 p;

(iif) ‘/—( " ],’2 4 NGO, 1);

. f X, —p)
(iv) (log log n)”2

Is it true that

. /n(X, = p) 204
™D Gogtogmt® O
Justification and answers regarding (i)-(v) await material to be covered in
Sections 1.8-1.10, Items (vi) and (vii) may be resolved at once, however, simply
by computing variances (Problem 1.P.5).

1.3 RELATIONSHIPS AMONG THE MODES OF CONVERGENCE

For the four modes of convergence introduced in Section 1.2, we examine here
the key relationships as given by direct implications (1.3.1-1.3.3), partial
converses (1.3.4-1.3.7), and various counter-examples (1.3.8). The question
of convergence of moments, which is related to the topic of convergence in
rth mean, is treated in Section 1.4.
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1.3.1 Convergence wpl Implies Convergence in Probability
Theorem. If X, 225 X, then X, > X.

This is an obvious consequence of the equivalence noted in 1.2.2. Incidentally,
the proposition is not true in genreral for all measures (e.g., see Halmos (1950)).

1.3.2 Convergence in rth Mean Implies Convergence in Probability
tih

Theorem. If X, — X, then X, & X.

PROOF. Using the indicator function notation of 1.1.10 we have, for any
>0,

E\X, - XI"2 E{|1X, — XI'I(|1X, - X| > )} 2 &P(|1X, — X| > ¢)
and thus
P(|IX, - X|>e)<e'E|X, - X|I"->0,n—>00. B

1.3.3 Convergence in Probability Implies Convergence in Distribution
(This will be proved in Section 1.5, but is stated here for completeness.)

1.3.4 Convergence in Probability Sufficiently Fast Implies Convergence wpl
Theorem. If

* i P(IX, - X|>€)< o forevery €>0,

n=1}
then X, 225 X.

PROOF. Let ¢ > 0 be given. We have

**) P(IX,,,—X|>eforsomem2n)=P(O{IX,,,—X|>6})

[
< Y P(IX,— X|>¢)
m=n
Since the sum in (**) is the tail of a convergent series and hence »0as n — oo,
the alternate condition for convergence wpl follows. W

Note that the condition of the theorem defines a mode of convergence
stronger than convergence wpl. Following Hsu and Robbins (1947), we say
that X, converges completely to X if (*) holds.
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1.3.5 Convergence in rth Mean Sufficiently Fast Implies Convergence wpl
The preceding result, in conjunction with the proof of Theorem 1.3.2, yields

Theorem. If Y%, E|Xo — X|" < o0, then X, “2 X.

The hypothesis of the theoremi in fact yields the much stronger conclusion that
the random series ) %, !X, — X|' converges wp! (see Lukacs (1975),
Section 4.2, for details).

1.3.6 Dominated Convergence in Probability Implies Convergence in Mean

Theorem. \ Suppose that X, 5 X, |X,| < Y| wp! (all n), and E|Y|" < 0.
Then X, — X.

PROOF. First let us check that | X| < |Y|wpl. Given 6 > 0, we have
P(X|>1Y|+ 80 <PUX|>|X,|+0)<P(X,~ X|>8)—0, n > 0.
Hence | X| < |Y| + 6 wpl for any 6 > 0 and so for 6 = 0.

Consequently, | X, — X| < | X| + | X,| < 2|Y|wpl.

Now choose and fix ¢ > 0. Since E| Y|" < o0, there exists a finite constant
A, > esuchthat E{|Y|'I(2| Y| > A4,)} < & We thus have

E|X, - XI' = E{|X, - XI'I(|X, — X| > A)}
+ E{|X, - XI'I(1X, - X| < &)}
+ E{|X, — XI'Ic < |X, - X| < A)}
< E{(12YI'IQ21Y > A)} + & + ALP(1X, — X| > ¢)
<2e+ €& + AP(|X, — X| > ¢)
Since P(| X, — X| > €) = 0, n — oo, the right-hand side becomes less than

2'e + 2¢" for all n sufficiently large. W
More general theorems of this type are discussed in Section 1.4.

1.3.7 Dominated Convergence wpl Implies Convergence in Mean

By 1.3.1 we may replace 5 by 225 in Theorem 1.3.6, obtaining

Theorem. Suppose that X, L' IX.l < |Y|wpl (all n), and E|Y| < c0.

vth

Then X, — X.
1.3.8 Some Counterexamples

Sequences {X,} convergent in probability but not wpl are provided in
Examples A, B and C. The sequence in Example B is also convergent in
mean square. A sequence convergent in probability but not in rth mean for
anyr > Ois provided in Example D. Finally, to obtain a sequence convergent
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wpl but not in rth mean for any r > 0, take an appropriate subsequence of the
sequence in Example D (Problem 1.P.6). For more counterexamples, see
Chung (1974), Section 4.1, and Lukacs (1975), Section 2.2, and see Section 2.1.

Example A, The usual textbook examples are versions of the following
(Royden (1968), p. 92). Let (Q, o, P) be the probability space corresponding
to Qthe interval [0, 1], o the Borel setsin [0, 1], and P the Lebesgue measure
on o. Foreachn = 1,2,...,let k, and v, satisfy n = k, + 2,0 < k, < 2™,
and define
_ 1, ifoelk,27™ (k, + 1)27™]
@) = 0, otherwise.

It is easily seen that X, % 0 yet X,(w) = 0 holds nowhere, v €[0,1]. W

Example B. Let Y, Y,,... be LLD. random variables with mean 0 and
variance 1. Define
AR

Xo = (nlog log n)''*
By the central limit theorem (Section 1.9) and theorems presented in Section
l 5, it is clear that X, 5 0. Also, by direct computation, it is immediate that

2040, However, by the law of the iterated logarithm (Section 1.10), it is
evndent that X (w) = 0, n — oo, only for w in a set of probability 0. W

Example C(contributed by J. Sethuraman). Let Y, Y5,...belLlL.D.random

variables. Define X, = Y,/n. "Then clearly X, 5 0. However, X, 24 0if and
only if E| Y| < co. To verify this claim, we apply

Lemma (Chung (1974), Theorem 3.2.1). For any positive random variable
Z,

fP(ZZn)sE{Z}su fP(ZZn).

n=1 n=1

Thus, utilizing the identical distributions assumption we have

YP(IX,2e)= ZP(IY,IZns)s E|Y,|,

n=1 n=1
1+ ZP(lxlza)_u Zﬂlnlzna)z E|Y,|.
n=1 n=1

The result now follows, with the use of the independence assumption, by an
application of the Borel-Cantelli lemma (Appendix). W



CONVERGENCE OF MOMENTS ; UNIFORM INTEGRABILITY 13
Example D. Consider

x =" with probability 1/log n
"~ 10, with probability 1-1/log n.

Clearly X, % 0. However, for any r > 0,

1.4 CONVERGENCE OF MOMENTS; UNIFORM INTEGRABILITY

Suppose that X, converges to X in one of the senses 4,5, 224 or ™ What
isimplied regardingconvergenceof E{X:}to E{X*},or E| X, |*to E| X |'n — c0?
The basic answer is provided by Theorem A, in the general context of 4,
which includes the other modes of convergence. Also, however, specialized
results are provided for the cases % 2 and %25 Theseare givenby Theorems
B, C, and D, respectively.

Before proceeding to these results, we introduce three special notions and
examine their interrelationships. A sequence of random variables {Y,} is
uniformly integrable if

lim sup E{| LI I(| K| > o)} = 0.

€00 n

A sequence of set functions {Q,} defined on & is uniformly absolutely con-
tinuous with respect to a measure P on &/ if, given ¢ > 0, there exists 6 > 0
such that

P(A) < 6 =sup|Q(4)| <&

The sequence {Q,} is equicontinuous at ¢ if, given ¢ > 0 and a sequence {A4,}
in &f decreasing to ¢, there exists M such that

m> M =sup|Q(A4,)] <&

Lemma A. (i) Uniform integrability of {Y,} on (Q, o, P) is equivalent to
the pair of conditions
(@) sup,E|Y,| <o
and

(b) the set functions {Q,} defined by Q,(A) = [ |Y,|dP are uniformly
absolutely continuous with respect to P.
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(ii) Sufficient for uniform integrability of {Y,} is that
supE|Y,|'** < o0
n

for some e > 0.

(iii) Sufficient for uniform integrability of {Y,} is that there be a random
variable Y such that E|Y| < co and

P(lY. 2 y) <P(lY| 2 y)alln > ,ally > 0.

(iv) For set functions Q, each absolutely continuous with respect to a
measure P, equicontinuity at ¢ implies uniform absolute continuity with respect
to P.

PROOF. (i) Chung (1974), p. 96; (ii) note that
E{|YI(|Y,] > o)} < cE|Y|'*
(iii) Billingsley (1968), p. 32; (iv) Kingman and Taylor (1966), p. 178. W

Theorem A. Suppose that X, 5 X and the sequence {X{} is uniformly
integrable, where t > 0. Then E|X[ < oo, lim, E{X]} = E{X"}, and
lim, E|X, | = EIX][".

PROOF. Denote the distribution function of X by F. Let ¢ > 0 be given.
Choose ¢ such that 3¢ are continuity points of F and, by the uniform
integrability, such that

sup E{| X, I'I(| X,| = ¢)} < e

For any d > ¢ such that 3 d are also continuity points of F, we obtain from
the second theorem of Helly (Appendix) that
lim E{|X,I'l(c < |X,| <d)} = E{|X|'I(c < |X| < d)}.
It follows that E{| X |'I(c < | X| < d)} < e for all such choices of d. Letting
d — oo, we obtain E{|X|'I(|X| = c¢)} < & whence E|X|" < o0.
Now, for the same c as above, write

|E{X}} — E{X"}| < |E{X, I(|1X,| < ¢)} — E{X"I(|X| < o)}|
+ E{|X,I'I(1X,| > o)} + E{IXII(IX] > c)}.

By the Helly theorem again, the first term on the right-hand side tends to 0 as
n — 0. The other two terms on the right are each less than . Thus lim,"E{X}}
= E{X"}. A similar argument yields lim, E|X,|" = E|X|". B

By arguments similar to the preceding, the following partial converse to
Theorem A may be obtained (Problem 1.P.7).
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Lemma B. Suppose that X, %X and lim, E|X,|" = E|X|" < 00. Then the
sequence {X"} is uniformly integrable.

We now can easily establish a simple theorem apropos to the case o,

Theorem B. Suppose that X,.—'E’X and E|X|" < . Then lim, E{X[} =
E{X'} and lim, E|X,|" = E|X].

PROOF. For 0 < r < 1, apply the inequality |x + y|" < |x|” + |yI" to
write ||x|” ~ |yI'| < |x — y|" and thus
|E|X,I" — EIXI'| < E|X, - XTI
For r > 1, apply Minkowski’s inequality (Appendix) to obtain
I(EIX, )" — (EIX )| < (EIX, — X|)'""

In either case, lim, E|X,|" = E|X|" < oo follows. Therefore, by Lemma B,
{X"7} is uniformly integrable. Hence, by Theorem A, lim, E{X’} = E{X"}
follows. W

Next we present results oriented to the case 5.

Lemma C. Suppose that X, 2 X and E|X, | < oo, all n. Then the following
statements hold.

(i) X. =5 X if and only if the sequence {X.} is uniformly integrable.
(ii) If the set functions {Q,} defined by Q,(A) = {4 |X,|" dP are equicon-
tinuous at &, then X, X and E| X[ < co.

PROOF. (i) see Chung (1974), pp. 96-97; (ii) see Kingman and Taylor
(1966), pp. 178-180. W

It is easily checked (Problem 1.P.8) that each of parts (i) and (ii) generalizes
Theorem 1.3.6.
Combining Lemma C with Theorem B and Lemma A, we have

Theorem C. Suppose that X, = X and that either

(i) E|X| < oo and {X}} is uniformly integrable,
or

(ii) sup, EIX,I" < oo and the set functions {Q,} defined by Q.(A) =
fa |XaI" AP are equicontinuous at ¢.

Then lim, E{X"} = E{X'} and lim_ E|X,|" = E|X[".
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Finally, for the case -'-"'—lv, the preceding result may be used ; but also, by a
simple application (Problem 1.P.9) of Fatou’s lemma (Appendix), the follow-
ing is easily obtained.

Theorem D. Suppose that X, 225 X. If Tim, E|X,I' < EIX[" < oo, then
lim, E(X"} = E{X'} and lim, E|X, ' = E|X["

As noted at the outset of this section, the fundamental result on convergence
of moments is provided by Theorem A, which imposes a uniform integrability
condition. For practical implementation of the theorem, Lemma A (i), (i), (iii)
provides various sufficient conditions for uniform integrability. Justification
for the trouble of verifying uniform integrability is provided by Lemma B,
which shows that the uniform integrability condition is essentially necessary.

1.8 FURTHER DISCUSSION OF CONVERGENCE IN DISTRIBUTION

This mode of convergence has been treated briefly in Sections 1.2~1.4. Here
we provide a collection of basic facts about it. Recall that the definition of
X, % X is expressed in_terms of the corresponding distribution functions F,
and F, and that the alternate notation F, = F is often convenient. The reader
should formulate “convergence in distribution” for random vectors.

1.5.1 Criteria for Convergence in Distribution

The following three theorems provide methodology for establishing conver-
gence in distribution,

Theorem A. Let the distribution functions F, F,, F,, ... possess respective
characteristic functions ¢, ¢y, $3, .. .. The following statements are equivalent:

(@) F,=>F,
(ii) lim, ¢,(t) = §(t), each real t;
(iii) lim, { g dF, = | g dF, each bounded continuous function g.

PROOF. That (i) implies (iii) is given by the generalized Helly theorem
(Appendix). We now show the converse. Let ¢ be a continuity point of F and
let ¢ > 0 be given. Take any continuous function g satisfying g(x) = 1 for
x<t,0<sgx) sl fort<x<t+e and g(x) =0 for x > ¢t + & Then,
assuming (iii), we obtain (Problem 1.P.10)

lim F,(t) < F(t + ¢).

n-t o
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Similarly, (iii) also gives
lim F,(t) = F(t — &).

Thus (i) follows.
For proof that (i) and (ii) are equivalent, see Gnedenko (1962), p. 285. W

Example. If the characteristic function of a random variable X, tends to the
function exp(—4¢2) as n — oo, then X, > N(0,1). B

The multivariate version of Theorem A is easily formulated.

Theorem B (Fréchet and Shohat). Ler the distribution functions F,
possess finite moments of® = [t*dF (t) for k =1,2,...and n=1,2,....
Assume that the limits o, = lim, o{™ exist (finite), each k. Then

(1) the limits {0} are the moments of a distribution function F;
(ii) if the F given by (i) is unique, then F, = F.

For proof, see Fréchet and Shohat (1931), or Loéve (1977), Section 11.4.
This result provides a convergence of moments criterion for convergence in
distribution. In implementing the criterion, one would also utilize Theorem
1.13, which provides conditions under which the moments {a,} determine a
unique F.

The following result, due to Scheflé (1947), provides a convergence of
densities criterion. (See Problem 1.P.11.)

Theorem C (Scheffé). Let {f,} be a sequence of densities of absolutely
continuous distribution functions, with lim,, f,(x) = {(x), each real x. If f is a
density function, then lim,, { |{,(x) — f(x)|dx = 0.

PROOF. Put g, (x) = [f(x) = f{(x)H(f(x) = fu(x)), each x. Using the
fact that f is a density, check that

[1500 = reotax =2 [,

Now|g.(x)] £ f(x),all x,eachn. Hence, by dominated convergence(Theorem
1.3.7),lim, [ g(x)dx = 0. W

1.5.2 Reduction of Multivariate Case to Univariate Case

The following result, due to Cramér and Wold (1936), allows the question of
convergence of multivariate distribution functions to be reduced to that of
convergence of univariate distribution functions.
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Theorem. InRE, the random vectors X, converge in distribution to the random
vector X if and only if each linear combination of the components of X,, converges
in distribution to the same linear combination of the components of X.

PROOF. PutX,=(X,,..., Xw)andX = (X,,..., X;)and denote the
corresponding characteristic functions by ¢, and ¢. Assume now that for any
real 4,,..., 4,

WXup o+ WXy S 4K, 4+ b X,
Then, by Theorem 1.5.1A,
lim ¢,(td,, ..., tA) = ¢(td,, ..., th), all t.

n—*o

With ¢t = 1, and since A, ..., A, are arbitrary, it follows by the multivariate
version of Theorem 1.5.1A that X, % X.
The converse is proved by a similar argument. W

Some extensions due to Wald and Wolfowitz (1944) and to Varadarajan
(1958) are given in Rao (1973), p. 128. Also, see Billingsley (1968), p. 49, for
discussion of this * Cramer-Wold device.”

1.5.3 Uniformity of Convergence in Distribution

An important question regarding the weak convergence of F,, to F is whether
the pointwise convergences hold uniformly. The following result is quite
useful.

Theorem (Pblya). If F, = F and F is continuous, then
lim sup|F(t) - F(t)| = 0.

n—+o ¢

The proof is left as an exercise (Problem 1.P.12). For generalities, see
Ranga Rao (1962).

1.5.4 Convergence in Distribution for Perturbed Random Variables

A common situation in mathematical statistics is that the statistic of interest
isa slight modification ofa random variable having a known limit distribution.
A fundamental role is played by the following theorem, which was developed
by Slutsky (1925) and popularized by Cramér (1946). Note that no restric-
tions are imposed on the possible dependence among the random variables
involved.
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Theorem (Slutsky). Let X, X and Y, & c, where c is a finite constant.
Then

() Xo+ Y, 3X+c
(i) X,Y,3cX;
@iii) X./Y. > X/cifc #0.
Corollary A. Convergence in probability, X, > X, implies convergence in
distribution, X, 3 X.

Corollary B. Convergence in probability to a constant is equivalent to con-
vergence in distribution to the given constant.

Note that Corollary A was given previously in 1.3.3. The method of proof of
the theorem is demonstrated sufficiently by proving (i). The proofs of (ii) and
(iii) and of the corollaries are left as exercises (see Problems 1.P.13-14).

PROOF OF (i). Choose and fix ¢ such that ¢t — c is a continuity point of
Fx.Lete > Obesuchthatt — ¢ + eandt — ¢ — ¢ are also continuity points

of Fx. Then

FX..+Y..(t)=P(Xn+YnSt)
SPX,+Y,st|Y,—cl<e+P(Y,—clz¢)
SPX,<st—c+¢€)+ P(Y,—c| =e)

Hence, by the hypotheses of the theorem, and by the choice of ¢t — ¢ + ¢,
*) ImFy .y () <imPX,<t—c+e)+TmP(Y,—c|>¢)
= Fy(t — c + ¢).
Similarly,
PX,st-c—-eSsPX,+Y, <)+ P(|]Y,~c|=2¢)

and thus
**) Fx(t — ¢ — &) < lim Fy_.y,(1).

Since t — ¢ is a continuity point of Fy, and since ¢ may be taken arbitrarily
small, (*) and (**) yield

im Fy, .y (8) = Fx(t — ¢) = Fx. (). W
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1.5.5 Asymptotic Normality

The most important special case of convergence in distribution consists of
convergence to a normal distribution. A sequence of random variables {X,}
converges in distribution to N(y, 6), ¢ > 0, if equivalently, the sequence
{(X, — u)/o} converges in distribution to N(0, 1). (Verify by Slutsky’s
Theorem.)

More generally, a sequence of random variables {X,} is asymptotically
normal with “mean” y, and “variance” a2 if ¢, > 0 for all n sufficiently large
and

Xa =t 4 N0, 1),
an
We write “ X, is AN(u,, 02).” Here {u,} and {o,} are sequences of constants,
It is not necessary that u, and a2 be the mean and variance of X, nor even that
X, possess such moments. Note that if X, is AN(u,, 02), it does not necessarily
follow that {X,} converges in distribution to anything. Nevertheless in any
case we have (show why)

SUPIP(X,,St)"P(N(ﬂ,,,d',“:)st)l-’o, n = 0,
t
so that for a range of probability calculations we may treat X, as a N(u,, 63)
random variable.
As exercises (Problems 1.P.15-16), prove the following useful lemmas.
Lemma A. If X, is AN(n,, 62), then also X, is AN([l,, 82) if and only if
ﬂ_’ l’nn“un_'o‘

O O,

Lemma B. If X, is AN(i,, o2), then also a,X, + b, is AN(,, 62) if and
only if

a, — l, "n(an - l) + bn -
O

0.

Example. If X, is AN(n, 2n), then so is

n—1

X,
n

Violy m

but not

S
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We say that a sequence of random vectors {X,} is asymptotically (multi-
variate) normal with “mean vector” p, and “covariance matrix” E, if I,
has nonzero diagonal elements for all n sufficiently large, and for every vector
A such that AX, A’ > O for all n sufficiently large, the sequence AX, is AN(Ap,,
AE,A). We write “X,, is AN(p,, Z,).” Here {n,} is a sequence of vector con-
stants and {Z,} a sequence of covariance matrix constants. As an exercise
(Problem 1.P.17), show that X, is AN(n,, c2X) if and only if

X~ M4 v )

Cn

Here {c,} is a sequence of real constants and X a covariance matrix.

1.5.6 Inverse Functions of Weakly Convergent Distributions

The following result will be utilized in Section 1.6 in proving Theorem 1.6.3.

Lemma. IfF,=F, then the set
{t:0<t < 1,F;(t) » F~ (), n > o0}
contains at most countably many elements.

PROOF. Let 0 < ¢, < 1 be such that F, '(to) # F~'(to), n — co. Then
there exists an £ > 0 such that F~!(t,) + ¢ are continuity points of F and
|F7Y(to) — F~'(to)| > € for infinitely many n=1,2,.... Suppose that
F7(to) < F~(to) — € for infinitely many n. Then, by Lemma 1.1.4(i),
to < FJ(Fy \(to)) < F.(F~'(to) — €). Thus the convergence F,=>F yields
to < F(F~\(to) — €), which in turn yields, by Lemma 1.1.4(i), F~'(to) <
F~MF(F~(to) — €)) < F~'(t,) — & a contradiction. Therefore, we must
have

F7'(to) > F~'(to) + ¢ forinfinitelymany n=12,....
By Lemma 1.1.4(iii), this is equivalent to
F(F~'(ty) + &) <ty forinfinitelymany n=1,2,...,

which by the convergence F,=>F yields F(F~'(t,) + €) < to. But also
to < F(F~'(to)), by Lemma 1.1.4(i). It follows that

to = F(F~'(t0))
and that
F(x) =to for xe[F~'(to), F~(to) + €],
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that is, that F is flat in a right neighborhood of F ~!(¢,). We have thus shown a
one-to-one correspondence between the elements of the set {t:0 <t < 1,
F;7'(t) # F'(t),n = oo} and a subset of the flat portions of F. Since (justify)
there are at most countably many flat portions, the proof is complete. W

1.6 OPERATIONS ON SEQUENCES TO PRODUCE SPECIFIED
CONVERGENCE PROPERTIES

Here we consider the following question: given a sequence {X,} which is
convergent in some sense other than wpl, is there a closely related sequence
{X} which retains the convergence properties of the original sequence but
also converges wp1? The question is answered in three parts, corresponding
respectively to postulated convergence in probability, in rth mean, and in
distribution.

1.6.1 Conversion of Convergence in Probability to Convergence wpl
A standard result of measure theoryis the following (see Royden (1968), p. 230).

Theorem. IfX, 5 X, then there exists a subsequence X,  Suchthat X, el X,
k = o0,

Note that this is merely an existence result. For implications of the theorem
for statistical purposes, see Simons (1971).

1.6.2 Conversion of Convergence in rth Mean to Convergence wpl

Consider the following question: given that X, L"—'»O, under what circum-
stances does the “smoothed” sequence
n X a0
X'=Z'w' I(W >0 w =00)
converge wpl? (Note that simple averaging is included as the special case

w; = 1.) Several results, along with statistical interpretations, are given by
Hall, Kielson and Simons (1971). One of their theorems is the following.

Theorem. A sufficient condition for {X?} to converge to 0 with probability 1

is that

« ElXql"
—_—<

))

n=1

0.

Since convergence in rth mean implies convergence.in probability, a com-
peting result in the present context is provided by Theorem 1.6.1, which
however gives only an existence result whereas the above theorem.is con-
structive.
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1.6.3 Conversion of Convergence in Distribution to Convergence wpl

Let o, 1) denote the Borel sets in [0, 1] and myo, 1, the Lebesgue measure
restricted to [0, 1].

Theorem. In R, suppose that X, 2 X. Then there exist random k-vectors
Y,Y;,Y,,...defined on the probability space ([0, 1], Byo, 1), myo, 1) such that

2X)=2X) ad 2X,)=2X,), n=12...,
and

Y, “5Y, e, myg (Ya—=Y) =1

We shall prove this result only for the case k = 1. The theorem may, in fact,
beestablished in much greater generality. Namely, the mappings X, X, X 5, ...
may be random elements of any separable complete metric space, a generality
which is of interest in considerations involving stochastic processes. See
Skorokhod (1956) for the general treatment, or Breiman (1968), Section 13.9,
for a thorough treatment of the case R*,

The device given by the theorem is sometimes called the “Skorokhod
construction” and the theorem the “Skorokhod representation theorem.”

PROOF (forthecase k = 1). For 0 < ¢t < 1, define

Y)=Fx'(t) and Y, ()=Fz!t), n=12...

Then, using Lemma 1.1.4, we have
Fy(y) = myg (({t: Y(t) < y}) = myp, 1 ({t:t < Fx(3)})
= Fx(y), ally,
that is, £(Y) = £(X). Similarly, £(Y,) = £L(X,),n=1,2,.... It remains
to establish that
mp, 1({t: Yo(t) # Y(1)}) = 0.

This follows immediately from Lemma 1.5.6. W

Remarks. (i) The exceptional set on which Y, fails to converge to Y is
at most countably infinite.

(ii) Similar theorems may be proved in terms of constructions on prob-
ability spaces other than ({0, 1], %y, 1), myo, 1)). However, a desirable feature
of the present theorem is that it does permit the use of this convenient prob-
ability space.

(iii) The theorem is “constructive,” not existential, as is demonstrated by
the proof. W
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1.7 CONVERGENCE PROPERTIES OF TRANSFORMED SEQUENCES

Given that X, —» X in some sense of convergence, and given a function g, a
basic question is whether g(X,) — g(X) in the same sense of convergence. We
deal with this question here. In Chapter 3 we deal with the related but different
question of whether, given that X, is AN(a,, b,), and given a function g, there
exist constants c,, d, such that g(X,) is AN(c,, d,).

Returning to the first question, the following theorem states that the
answer is “yes” if the function g is continuous with Px-probability 1. A
detailed treatment covering a host of similar results may be found in Mann
and Wald (1943). However, the methods of proof there are more cumbersome
than the modern approaches we take here, utilizing for example the Skorokhod
construction.,

Theorem. Let X,, X,, ...and X be random k-vectors defined on a probability
space and let g be a vector-valued Borel function defined on R*. Suppose that g
is continuous with Px-probability 1. Then
() X, ™5 X= g(Xy) 2 g(X);
(i) X, X =g(X.) > g(X);
(iii) X, X = gX,) > gX).
PROOF. We restrict to the case that g is real-valued, the extension for

vector-valued g being routine. Let (Q, &, P) denote the probability space on
which the X’s are defined.

(i) Suppose that X, ¥PL, X. For w e 0 such that X, (w) — X(w) and such
that g is continuous at X(w), we have g(X (w)) - g(X(w)), n -+ . By our

assumptions, the set of such w has P-probability 1. Thus g(X,) =25 g(X).

(ii) Let X, 5 X. Suppose that g(X,) 7 g(X). Then, for some & > 0 and
some A > 0, there exists a subsequence {n,} for which

*) P(lg(X,) — g(X)| > &) > A, allk=1,2,....

But X, & X implies that X, & X and thus, by Theorem 1.6.1, there exists a
subsequence {n,,} of {n,} for which

X

wpl .
ey~ Xy j = 00.

But then, by (i) just proved, and since 25 = &,
g(Xn,) 5 g(X),
contradicting (*). Therefore, g(X,) & g(X).



CONVERGENCE PROPERTIES OF TRANSFORMED SEQUENCES 25

(iii) Let X, % X. By the Skorokhod construction of 1.6.3, we may con-
struct on some probability space (0, o', P’) some random vectors Y,,
Y,,...and Y such that £(Y,) = Z(X)), £(Y,) = Z(X,),...,and £(Y) =
#(X), and, moreover, Y, = Y with P'-probability 1. Let D denote the
discontinuity set of the function g. Then

P'({w': g is discontinuous at Y(w")}) = P(Y~ (D))
= Py(D) = Px(D) = P(X~!(D))
= 0.

Hence, again invoking (i), g(Y,) - g(Y) with P'-probability 1 and thus
g(Y,) 5 g(Y). But the latter is the same as g(X,) > g(X). B

Examples. (i) If X, % N(O, 1), then X2 % y3,
(i) If(X,,Y,) 5 N(O,I), then X,/Y, % Cauchy.
(iii) Tlustration of g for which X, & X but g(X,) % g(X). Let

) = t—1, t<0,
o= +1, t=0,

X, = - %with probability 1,

and
X = 0 with probability 1.

The function g has a single discontinuity, located at ¢ = 0, so that g is dis-
continuous with Px-probability 1. And indeed X, X =0, whereas
g(X) 5 —1butg(X) =g0)=1# -1,

(iv) In Section 2.2 it will be seen that under typical conditions the sample
variance s> = (n — 1)~ Y1 (X; — X)? converges wpl to the population
variance a2, It then follows that the analogue holds for the standard deviation:
s g,

(v) Linear and quadratic functions of vectors. The most commonly
considered functions of vectors converging in some stochastic sense are linear
transformations and quadratic forms.

Corollary. Suppose that the k-vectors X, converge to the k-vector X wpl, or in
probability, or indistribution. Let A, « and By ., be matrices. Then AX; = AX'
and X, BX, — XBX' in the given mode of convergence.
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PROOF. The vector-valued function

Ax' = (‘_ila“x,, cees ‘-ila,,,,x,)

and the real-valued function
k k
xBx' = Y Y byxix,
im] jm1
are continuous functions of x = (x,,...,x). W

Some key applications of the corollary are as follows.

Application A. InR" let X, Lt N(u, ). Let C,, « be a matrix. Then CX;, 4
N(Cp', CEC).

(This follows simply by noting that if X is N(p, Z), then CX' is N(Cp', CEC’).)

ApplicationB. Let X, be AN(p, b2Z). Then

X —
Jl—','T—"—" %, a limit random variable.

(Proof left as exercise—Problem 1.P.22) If b, — O(typically, b, ~ n~1/2), then
follows X, 5 p. More generally, however, we can establish (Problem 1.P.23)

Application C. Let X, be AN(p, £,), withE, = 0. Then X, 5 p.

Application D. (Sums and products of random variables converging wpl or in
probability.) If X, VX and Y, 25 Y, then X, + Y, X+ Y and
XoYo A XY, If X, B X and Y, B Y, then X, + Y, 5 X + Y and X,Y,
5 Xy.

(Proof left as exercise—Problem {.P.24)

1.8 BASIC PROBABILITY LIMIT THEOREMS: THE WLLN AND SLLN

“Weak laws of large numbers” (WLLN) refer to convergence in probability of
averages of random variables, whereas “strong laws of large numbers”
(SLLN) refer to convergence wpl. The first two theorems below give the
WLLN and SLLN for sequences of 1.1.D. random variables, the case of central
importance in this book.
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Theorem A. Let {X} be 1.1.D. with distribution function F. The existence of
constants {a,} for which

-l; ‘;x. a, 0
holds if and only if
*) t[1 — F@®) + F(-t)] - 0,t - oo,

in which case we may choose a, = [, x dF(x).

A sufficient condition for (*) is finiteness of {©, [x|dF(x), but in this case the
following result asserts a stronger convergence.

Theorem B (Kolmogorov). Let {X,} be 1.I.D. The existence of a finite
constant ¢ for which

|

Y X, e
j=1
holds if and only if E{X,} is finite and equals c.

The following theorems provide WLLN or SLLN under relaxation of the
L1.D. assumptions, but at the expense of assuming existence of variances and
restricting their growth with increasing n.

Theorem C (Chebyshev). Let X,, X;,... be uncorrelated with means

M1, Ha, - .. and variances o}, o3,.... If Y1 o = o(n?), n — oo, then
l n l n
Isx -ty 2o
n i-zl '"n |§:|pl

Theorem D (Kolmogorov). Let X,, X;,... be independent with means
My, Hz, ... and variances o3, o3, ... . If the series Y. 6}/ converges, then

2 X -1 Zu:i"—"o-
i=1 n

=R

(**)

i=1

Theorem E. Let X;,X,, ... havemeans y,,|,, ..., variances 63,03, ... ,and
covariances Cov{X,, X;} satisfying

Cov{X;, X;} < p;-10i0(i <)),

where0 < p, < 1forallk = 0,1,....IftheseriesY T p,and ¥ ¢ o3(log i)*/i?
are both convergent, then (**) holds.
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Further reading on Theorem A is found in Feller (1966), p. 232, on Theorems
B, C and D in Rao (1973), pp. 112-114, and on Theorem E in Serfling (1970).
Other useful material is provided by Gnedenko and Kolmogorov (1954) and
Chung (1974).

1.9 BASIC PROBABILITY LIMIT THEOREMS: THE CLT

The central limit theorem (CLT) pertains to the convergence in distribution
of (normalized) sums of random variables. The case of chief importance, 1.1.D.
summands, is treated in 1.9.1. Generalizations allowing non-identical
distributions,double arrays, and arandom number of summands are presented
in 1.9.2, 1.9.3, and 1.9.4, respectively. Finally, error estimates and asymptotic
expansionsrelated tothe CLT are discussed in 1.9.5. Also, some further aspects
of the CLT are treated in Section 1.11.

1.9.1 The LLD. Case
Perhaps the most widely known version of the CLT is

Theorem A (Lindeberg-Lévy). Let {X;} be 1.1.D. with mean s and finite
variance o2, Then

12 d ]
Vo[~ T X, - 1) S N, o),
ny
that is,
| L a?
H ZX| 1S AN('J, -n—).

The multivariate extension of Theorem A may be derived from Theorem A
itself with the use of the Cramér-Wold device (Theorem 1.5.2). We obtain

Theorem B. Let {X;} be 1.1.D. random vectors with mean p and covariance
matrix E. Then

f(,,l Y X —n)—»N(o I),
that is (by Problem 1.P.17),
12 1

Remark. 1t is not necessary, however, to assume finite variances. Feller
(1966), p. 303, gives
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Theorem C. Let {X;} be 1.1.D. withdistribution function F. Then the existence
of constants {a,}, {b,} such that

1 X, is ANGa, by)
ny=

holds if and only if

(t) tz[l - F(t) + F(_t)] -
u()

where U(t) = [, x2 dF(x).

0, t = 00,

(Condition (*) is equivalent to the condition that U(t) vary slowly at oo,
that is, for every o > 0, U(at)/U(t) » 1, t > 0.) N

1.9.2 Generalization: Independent Random Variables Not Necessarily
Identically Distributed

The Lindeberg-Lévy Theorem of 1.9.1 is a special case of

Theorem A (Lindeberg-Feller). Let {X;} be independent with means {;},
finite variances {o?)}, and distribution functions {F;}. Suppose that B =
Y1 of satisfies

c2

) E—;— -0, B, — oo, as n— o0,
Then
1 ¢ 1 & 1
-¥yX is AN|- , B,f)
n I-Zl l (n |.zlul ;17

if and only if the Lindeberg condition

(L) ZLI .‘h—m|>¢BB£t - ul)z dFl(t) -

0,n — o0, each €> 0,

is satisfied.

(See Feller (1966), pp. 256 and 492.) The following corollary provides a
practical criterion for establishing conditions (L) and (V). Indeed, as seen in
the proof, (V) actually follows from (L), so that the key issue is verification of

(L).
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Corollary. Let {X;} be independent with means {3} and finite variances
{o?}). Suppose that, for some v > 2,

LEIX,—wl'=0(B), n- oo

i=]

Then
'_l nE x 's AN l En u “—l Bz
LR ! : njay bpi™ef

PROOF. First we establish that condition (L) follows from the given
hypothesis. For € > 0, write

f (¢ — ) dF () < (eB,)*" f It = ml” dF ()
| It—pi| > 2By

t—pq|>eBy
< (eB)*'E| X, - wl".

By summing these relations, we readily obtain (L).
Next we show that (L) implies

max;,, 0]
B,

For we have,forl <i < n,

(v*) -0, n— oo,

al < (t — u)? dF(t) + ¢*B2.
|t — ue| > eBy,
Hence
maxo? < Y (t — w)* dF(t) + ¢*B2. .
Jsn =1 Jjt=p>eB,
Thus (L) implies (V*).

Finally, check that (V*) implies B, » co,n =+ 0.

A useful special case consists of independent {X;} with common mean u,
common variance g2, and uniformly bounded vth absolute central moments,
E|X;— ul' < M < o (all i), where v > 2.

A convenient multivariate extension of Theorem A is given by Rao (1973),
p. 147:

Theorem B. Let {X|} be independent random vectors with means {w},
covariance matrices {E;} and distribution functions {F,}. Suppose that

E|+"'+2n

- I n— o,
n
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and that
23 Ix - W2 dF@) 0, now, each &>0
Nyt Jiix-pll >evi
Then
12 12 1
-YX is AN|- =L}
nl-zl I (n I-Zlm n )

1.9.3 Generalization: Double Arrays of Random Variables

In the theorems previously considered, asymptotic normality was asserted for
a sequence of sums Y7 X, generated by a single sequence X,, X,,... of
random variables. More generally, we may consider a double array of random
variables:

X“,Xu,...,X““;
XZ]’XZZ""’XZkz;

an! X.JZ! (RS | th,.;

For each n 2 1, there are k, random variables {X,;,1 <j < k,}. It is
assumed that k, — co0. The case k, = n is called a “triangular” array.
Denote by F,; the distribution function of X,;. Also, put

Hnj = E{Xn]}r
kn kﬂ
An =E an]} = Zl“n}r
=1 J=1
kﬂ .
B2 = Var| 3 x,,}.
=1
The Lindeberg-Feller Theorem of 1.9.2 is a special case of

Theorem. Let {X,;:1 <j <k, n=1,2,...} be adouble array with inde-
pendent random variables withinrows. Then the “ uniform asymptotic neglibility”
condition

max P(|X,; — pnyl > tB,) = 0, n— oo, each 1> 0,
ls]sku

and the asymptotic normality condition

ka
Y Xy is AN(A,, BY)

=1
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together hold if and only if the Lindeberg condition

Zlk:l Ill-llm|>63n (t— “nj)z anj(t) -0

3 , n-o0, each €>0,
B

is satisfied.

(See Chung (1974), Section 7.2.) The independence is assumed only within
rows, which themselves may be arbitrarily dependent.
The analogue of Corollary 1.9.2 is (Problem 1.P.26)

Corollary. Let {X,:1<j<k, n=12,...} be a double array with
independent random variables within rows. Suppose that, for some v > 2,

kn
JZ Elxnj — Haj |v = O(B=)9 n— oo.
=1

Then

kn
Y. X, is AN(A,,B2).
=1

1.9.4 Generalization: A Random Number of Summands

The following is a generalization of the classical Theorem 1.9.1A. See Billings-
ley (1968), Chung (1974), and Feller (1966) for further details and generaliza-
tions.

Theorem. Let {X,} be 1.1.D. with mean p and finite variance 62. Let {v,} be a
sequence of integer-valued random variables and {a,} a sequence of positive
constants tending to oo, such that

Var, o
n
Jor some positive constant c. Then
Ya —
Zl-l (xl p’) _d' N(o’ 02).
a

1.9.5 Error Bounds and Asymptotic Expansions

It is of both theoretical and practical interest to characterize the error of
approximation in the CLT. Denote by

G (t) = P(S¥ <)
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the distribution function of the normalized sum
i X, — E(31 X))
[Var(3 X,}1'* °

For the LLD. case, an exact bound on the error of approximation is provided
by the following theorem due to Berry (1941) and Esséen (1945). (However,
the earliest result of this kind was established by Liapounoff (1900, 1901).)

St =

Theorem (Berry-Esséen). Let {X;} be 1.I.D. with mean p and variance
o2 > 0. Then

33EIX
* suplGy() - a0l s LEXLZRE gy
t

The fact that sup,|G,(t) — ®(t)| = 0, n — o0, is, of course, provided under
second-order moment assumptions by the Lindeberg-Lévy Theorem 1.9.1A,
in conjunction with Pélya’s Theorem 1.5.3. Introducing higher-order moment
assumptions, the Berry-Esséen Theorem asserts for this convergence the
rate O(n~1/2). It is the best possible rate in the sense of not being subject to
improvement without narrowing the class of distribution functions considered.

However, various authors have sought to improve the constant 33/4.
Introducing new methods, Zolotarev (1967) reduced to 0.91; subsequently,
van Beeck (1972) sharpened to 0.7975. On the other hand, Esséen (1956) has
determined the following *“asymptotically best” constant:

3+./10 _

p \/2—7: :Ln; s:p{ﬁY_Ts sup|G,(t) — O(t)l}

More generally, independent summands not necessarily identically dis-
tributed are also treated in Berry and Esséen’s work. For this case the right-
hand side of (*) takes the form

Zl-l E|X, - #t|3
[var{Zl-l X(}]:m ’

where C is a universal constant. Extension in another direction, to the case of
a random number of (LL.D.) summands, has recently been carried out by
Landers and Rogge (1976).

For ¢ sufficiently large, while n remains fixed, the quantities G,(¢) and @(¢)
each become so close to 1 that the bound given by (*) is too crude. The
problem in this case may be characterized as one of approximation of “large
deviation” probabilities, with the object of attention becoming the relative
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error in approximation of 1 — G,(t) by 1 — ®(t). Cramér (1938) developed a
general theorem characterizing the ratio

| Gn(‘u)

1- 0(tn)
under the restriction ¢, = o(n'/?), n = oo, for the case of LLD. X/'s having a
moment generating function. In particular, for ¢, = o(n'/%), the ratio tends to
1, whereas for ¢, — o0 at a faster rate the ratio can behave differently. An
important special case of t, = o(n'/5), namely t, ~ c(log n)'/?, has arisen in
connection with the asymptotic relative efficiency of certain statistical pro-
cedures. For this case, 1 — G,(t,) has been dubbed a “moderate deviation”
probability, and the Cramér result [1 — G,(¢,))/[1 — ®(t,)] = 1 has been
obtained by Rubin and Sethuraman (1965a) under less restrictive moment
assumptions. Another “large deviation ” case important in statistical applica-
tions is t, ~ cn'/2, a case not covered by Cramér’s theorem. For this case
Chernoff (1952) has characterized the exponential rate of convergence of
[1 — G,(t,)] to 0. We shall examine this in Chapter 10.

Still another approach to the problem is to refine the Berry-Esséen bound
on |G,(t) — ®(t)|, to reflect dependence on ¢ as well as n. In this direction, (*)
has been replaced by

EIX,—puP 1
IG(t) — )| s C o7 1+

where C is a universal constant. For details, see Ibragimov and Linnik (1971).
In the same vein, under more restrictive assumptions on the distribution
functions involved, an asymptotic expansion of G,(t) — ®(t) in powers of
n~1/2 may be given, the last term in the expansion playing the role of error
bound. For example, a simple result of this form is

1 E((X, - p) ,
160) = B < 13 ) (1 = et 4 o=

all ¢,

uniformly in ¢t (see Ibragimov and Linnik (1971), p. 97). For further reading,
see Cramér (1970), Theorems 25 and 26 and related discussion, Abramowitz
and Stegun (1965), pp. 935 and 955, Wilks (1962), Section 9.4, the book by
Bhattacharya and Ranga Rao (1976), and the expository survey paper by
Bhattacharya (1977).

Alternatively to the measure of discrepancy sup,|G,(t) — ©(t)| used in the
Berry-Esséen Theorem, one may also consider L, metrics (see Ibragimov
and Linnik (1971)) or weak convergence metrics (see Bhattacharya and
Ranga Rao (1976)), and likewise obtain O(n~'/?) as a rate of convergence.

The rate of convergence in the CLT is not only an interesting theoretical
issue, but also has various applications. For example, Bahadur and Ranga
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Rao (1960) make use of such a result in establishing a large deviation theorem
for the sample mean, which theorem then plays a role in asymptotic relative
efficiency considerations. Rubin and Sethuraman (1965a, b) develop “moder-
ate deviation” results, as discussed above, and make similar applications.
Another type of application concerns the law of the iterated logarithm, to be
discussed in the next section.

1.10 BASIC PROBABILITY LIMIT THEOREMS: THE LIL

Complementing the SLLN and the CLT, the “law of the iterated logarithm”
(LIL) characterises the extreme fluctuations occurring in a sequence of
averages, or partial sums. The classical L.I.D. case is covered by

Theorem A (Hartman and Wintner). Let {X,} be I.I.D. with mean p and
finite variance o. Then

Xi—-n _
(2o2nlog log n)1? Lwpl.

lim

In words: with probability 1, for any ¢ > 0, only finitely many of the events

Z’i (Xi— )

Goinloglogmy® > 1 7% n=12..,

are realized, whereas infinitely many of the events

Z’i (X, = w

(20%n log log n)!/? >1-e n=1L2..,

occur.
The LIL complements the CLT by describing the precise extremes of the

fluctuations of the sequence of random variables

1(Xi—w
'Z—la;:/z—, n=l,2,....

The CLT states that this sequence converges in distribution to N(0, 1), but
does not otherwise provide information about the fluctuations of these
random variables about the expected value 0. The LIL asserts that the extreme
fluctuations of this sequence are essentially of the exact order of magnitude
(2log log n)!/2. That is, with probability 1, for any ¢ > 0, all but finitely many
of these fluctuations fall within the boundaries +(1 + £)(2 log log n)!/? and,
moreover, the boundaries +(1 — £)(2 log log n)!/? are reached infinitely
often.
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The LIL also complements—indeed, refines—the SLLN (but assumes
existence of 2nd moments). In terms of the averages dealt with by the SLLN,
l n
- z X [ '

the LIL asserts that the extreme fluctuations are essentially of the exact order
of magnitude

o(2 log log n)*/?

Thus, with probability 1, for any & > 0, the infinite sequence of “confidence
intervals”

l n
{; '-zlx, + (1 + 8)_—;1/7——

o(2 log log n)”’}
contains u with only finitely many exceptions. In this fashion the LIL provides
the basis for concepts of 100 % confidence intervals and tests of power 1. For
further details on such statistical applications of the LIL, consult Robbins
(1970), Robbins and Siegmund (1973, 1974) and Lai (1977).

A version of the LIL for independent X,’s not necessarily identically
distributed was given by Kolmogorov (1929):

Theorem B (Kolmogorov). Let {X,} be independent with means {p;} and
finite variances {c}}. Suppose that B2 = Y1 o? = co and that, for some
sequence of constants {m,}, with probability 1,

B
* - = n
™ [Xo = Mol S m, o((__‘-log Tog B ,2), n - co.
Then
o Z'n' Xi—m)
im GBI loglog By — | WPL

(To facilitate comparison of Theorems A and B, note that log log(ax®) ~
log log x, x — 00.)

Extension of Theorems A and B to the case of { X} a sequence of martingale
differences has been carried out by Stout (19703, b).

Another version of the LIL for independent X,’s not necessarily identically
distributed has been given by Chung (1974), Theorem 7.5.1:

Theorem C (Chung). Let {X;} be independent with means {),;} and finite
variances {o}}. Suppose that B2 = Y} 6} — oo and that, for some € > 0,

"E|X; — wl? 1
(**) 21 |Bl'31 il - 0<(|og Bn)lﬂ)’ n - 0.
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Then

T K-
lim BT log log B, ~ ! "P!

Note that (*) and (**) are overlapping conditions, but very different in
nature.

As discussed above, the LIL augments the information provided by the CLT.
On the other hand, the CLT in conjunction with a suitable rate of convergence
implies the LIL and thus implicitly contains all the “extra” information stated
by the LIL. This was discovered independently by Chung (1950) and Petrov
(1966). The following result is given by Petrov (1971). Note the absence of
moment assumptions, and the mildness of the rate of convergence assumption.

Theorem D (Petrov). Let {X;} be independent random variables and {B,}
a sequence of numbers satisfying

Bn+l_'l

B, —» «, n — oo.

Suppose that, for some € > 0,

pp‘zq IS _(p( —()_l__ n-—- o0
Sl: | Bn 't) t)l ((log Bn)l +‘)’
Then

. X
fim BT Tog log By ~ | Pl

For further discussion and background on the LIL, see Stout (1974),
Chapter 5, Chung (1974), Section 7.5, Freedman (1971), Section 1.5, Breiman
(1968), pp. 291-292, Lamperti (1966), pp. 41-49, and Feller (1957), pp. 191-
198. The latter source provides a simple treatment of the case that {X,} is a
sequence of L.1.D. Bernoulli trials and provides discussion of general forms of
the LIL.

More broadly, for general reading on the “almost sure behavior” of
sequences of random variables, with thorough attention to extensions to
dependent sequences, see the books by Révész (1968) and Stout (1974).

1.11 STOCHASTIC PROCESS FORMULATION OF THE CLT

Here the CLT is formulated in a stochastic process setting, generalizing the
formulation considered in 1.9 and 1.10. A motivating example, which
illustrates the need for such greater generality, is considered in 1.11.1. An
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appropriate stochastic process defined in terms of the sequence of partial
sums, isintroduced in 1.11.2, As a final preparation, the notion of “ convergence
in distribution” in the general setting of stochastic processes is discussed in
1.11.3. On this basis, the stochastic process formulation of the CLT is
presented in 1.11.4, with implications regarding the motivating example and
the usual CLT. Some complementary remarks are given in 1.11.5.

1.11.1 A Motivating Eximple

Let {X,} be LLD. with mean u and finite variance g > 0. The Lindeberg-
Lévy CLT (1.9.1A) concerns the sequence of random variables

s:=—2‘—f,%,;-i), n=1,2,.

and asserts that S* % N(0, 1). This useful result has broad application con-
cerning approximation of the distribution of the random variable S, =
Z’; (X, — wforlarge n. However, suppose that our goal is to approximate the
distribution of the random variable

k
max Y (X, — u) = max{(, S,,..., S,}
0k i=1
for large n. In terms of a suitably normalized random variable, the problem
may be stated as that of approximating the distribution of

S S
M,, = mGX{O, m, ey m'-——;!/—i}.

Here a difficulty emerges. It is seen that M, is not subject to representation as
a direct transformation, g(S¥), of S* only. Thus it is not feasible to solve the
problem simply by applying Theorem 1.7 (iii) on transformations in con-
junction with the convergence S* % N(0, 1). However, such a Scenario can
be implemented if S} becomes replaced by an appropriate stochastic process
or random function, say {Y,(t), 0 < t < 1}, and the concept of - is suitably
extended.

1.11.2 A Relevant Stochastic Process

Let {X,} and {S,} be as in 1.11.1. We define an associated random function
Y(t),0 <t < |, by setting

Y0 =0
and
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and defining Y,(¢) elsewhere on 0 < ¢t < 1 by linear interpolation. Explicitly,

in terms of X4, ..., X,, the stochastic process Y,(-) is given by
nt] - — -—
y@) =2 Xi=pm+ (':,t,,l/z[m])(xl""“ B i<t

As n = o0, we have a sequence of such random functions generated by the
sequence {X,}. The original associated sequence {S}} is recovered by taking
the sequence of values {Y,(1)}.

It is convenient to think of the stochastic process {Y,(t),0 <t <1} asa
random element of a suitable function space. Here the space may be taken to
be C[0, 1], the collection of all continuous functions on the unit interval
o, 1].

We now observe that the random variable M, considered in 1.11.1 may be
expressed as a direct function of the process Y,(-), that is,

Mn = sup Y,,(t) = g(yn('))’

0geg1
where g is the function defined on C[0, 1] by

g(x(+)) = sup x(t), x(-)e C[O0, 1].
0t

Consequently, a scenario for dealing with the convergence in distribution of

M, consists of

(a) establishing a “convergence in distribution” result for the random
function Y,(+), and

(b) establishing that the transformation g satisfies the hypothesis of an
appropriate generalization of Theorem 1.7 (iii).

After laying a general foundation in 1.11.3, we return to this example in
1.11.4.

1.11.3 Notions of Convergence in Distribution

Consider a collection of random variables X, X,, ... and X having respec-
tive distribution functions Fy, F,, ... and F defined on the real line and having
respective probability measures P,, P,, ... and P defined on the Borel sets of
the real line. Three equivalent versions of “convergence of X, to X in dis-
tribution” will now be examined. Recall that in 1.2.4 we defined this to mean
that

™) lim F,(t) = F(t), each continuity point ¢ of F,

Lind ]

and we introduced the notation X, 4 X and alternate terminology “weak
convergence of distributions” and notation F, = F.
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We next consider a condition equivalent to (*) but expressed in terms of
Py, P,,... and P. First we need further terminology. For any set A, the
boundary is defined to be the closure minus the interior and is denoted by 0A.
For any measure P, a set A for which P(0A) = 0 is called a P-continuity set.
In these terms, a condition equivalent to (*) is
(**) lim P,(A) = P(A), each P-continuity set A.

R-*00
The equivalence is proved in Billingsley (1968), Chapter 1, and is discussed
also in Cramér (1946), Sections 6.7 and 8.5. In connection with (**), the
terminology “weak convergence of probability measures” and the notation
P, => P is used.

There is a significant advantage of (**) over (*): it may be formulated in a
considerably more general context. Namely, the variables Xy, X,,...and X
may take values in an arbitrary metric space S. In this case Py, P,,...and P
are defined on the Borel sets in S (i.e., on'the o-field generated by the open sets
with respect to the metric associated with S). In particular, if S is a metrizable
function space, then P,= P denotes “convergence in distribution™ of a
sequence of stochastic processes to a limit stochastic process. Thus, for
example, for the process Y,(-) discussed in 1.11.2, ¥,(-) % Y(-) becomes
defined for an appropriate limit process Y (-).

For completeness, we mention a further equivalent version of weak con-
vergence, also meaningful in the more general setting, and indeed often
adopted as the primary definition. This is the condition

(**%) lim f gaprP, = Ig dP, each bounded continuous function on S.
3w VS s

The equivalence is proved in Billingsley (1968), Chapter 1. See also the proof

of Theorem 1.5.1A.

1.11.4 Donsker’s Theorem and Some Implications

Here we treat formally the “partial sum” stochastic process introduced in
1.11.2. Specifically, for an L.I.D. sequence of random variables { X} defined on
a probability space (R, o, P) and having mean u and finite variance o2, we
consider for each n(n = 1, 2, ...) the stochastic process

T (Xdw) = p) + (1t = [nt]) (X 1(00) — 1)
on'’? ’

Y(t, ) = 0<ts|,
which isa random element of the space C[0, 1]. When convenient, we suppress
the w notation.
The space C[0, 1] may be metrized by

p(x, y) = osupllx(t) - ¥l

i<
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for x = x(-) and y = y(-) in C[0, 1]. Denote by # the class of Borel sets in
C[0, 1] relative to p. Denote by Q, the probability distribution of Y(:) in
C[0, 1], that is, the probability measure on (C, #) induced by the measure P
through the relation

0.(B) = P({w: \,(-,w)eB}), Be&.

We have this designated a new probability space, (C, &, Q,), to serve as a
probability model for the partial sum process Y,(:). In order to be able to
associate with the sequence of,processes {Y,(-)} a limit process Y(-), in the
sense of convergence in distribution, we seek a measure Q on (C, &) such that
Q. = Q. This will be given by Donsker’s Theorem below.

An important probability measure on (C, #) is the Wiener measure, that is,
the probability distribution of one coordinate of the random path traced by a
particle in “ Brownian motion,” or formally the probability measure defined by
the properties:

(8) W(x():x(0) =0) = 1;

(b) forall0 <t <land —o0 < a < oo,

W) X0 S o) = i [ €% du

) for0<stp <ty <---sfyy<land —o0 < ay,..., 0 < 00,
k
W(lﬂ’ {x(-): x(t) — x(t;-,) < “t})

k
= :I-Ix W({x(:): x(t) — x(ti-4) < ai}).

The existence and uniqueness of such a measure is established, for example, in
Billingsley (1968), Section 9.

A random element of C[0, 1] having the distribution W is called a Wiener
process and is denoted for convenience by {W(t),0 < t < 1}, or simply by W,
Thus, for a Wiener process W(:), properties (a), (b) and (c) tell us that

(a) W(0) = 0 with probability 1;

(b) W(t)is N(O, t), each t (0, 1];

) for0<ty <t <.+ <t <1, the increments W(t,) — W(t), ...,
Ww(t,) — W(t,-,) are mutually independent.

We are now ready to state the generalization of the Lindeberg-Lévy CLT.

Theorem (Donsker). Let {X} be I.I.D. with mean p and finite variance o2
Define Y,(-) and Q, as above. Then

Q=W
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(Alternatively, we may state this convergence as Y,(:) 4 w(.)in C[0, 1))
The theorem as stated above is proved in Billingsley (1968), Section 10.
However, the theorem was first established, in a different form, by Donsker
(1951).

To see that the Donsker theorem contains the Lindeberg-Lévy CLT,
consider the set

B, = {x(-):x(1) < a}

in C[0, 1]. It may be verified that B, € &. Since

Y,,(l) = Z?-I (X( - “)

o.nllz 4

we have

p(_Zf:_l.(X‘__") < a) = Q.(B.).

on'’?

It may be verified that B, is a W-continuity set, that is, W(0B,) = 0. Hence, by
(**) of 1.11.3, Donsker’s Theorem yields

lim Q,(B,) = W(B,).

Next one verifies (see 1.11.5(i) for discussion) that

W(B,) = ().

Since a is chosen arbitrarily, the Lindeberg-Lévy CLT follows.
Now let us apply the Donsker theorem in connection with the random
variable

k -
M, = max &-}_Qf_/%_l‘) = sup Y,(t)
0sk<n on 0sts1
considered in 1.11.2. Consider the set
B = {x(-): sup x(t) < a}.
[ E1F 3]
It may be verified that B* belongs to & and is a W-continuity set, so that

lim P(M, < «) = lim Q,(B?) = W(B?).

L] Lhad -]

By determining (again, see 1.11.5(i) for discussion) that

W(B?) = (%)m J" e~V dy  (@>0),
4]

one obtains the limit distribution of M,,.
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The fact that the sets { B¥, @ > 0} are W-continuity sets is equivalent to the
functional g: g(x(+)) = supg <,y X(t) being continuous (relative to the metric
p) with W-probability 1. Thus, by an appropriate extension of Theorem
1.7(iii), the preceding argument could be structured as follows:

M, = g(¥,(-)) 5 g(W(:) = sup W().

0stg1

Elaboration of this approach is found in Billingsley (1968).

1.11.§ Complementary Remarks

(i) The application of Donsker’s Theorem to obtain the limit distribution
of some functional of the partial sum process Y,(-) requires the evaluation of
quantities such as W(B,) and W(B?). This step may be carried out by a
separate application of Donsker’s Theorem. For example, to evaluate W(B}),
the quantity lim, P(M, < «)is evaluated for a particular LL.D. sequence {X},
one selected to make the computations easy. Then Donsker’s Theorem tells us
that the limit so obtained is in fact W(B?). Thus W(B*) has been evaluated, so
that—again by Donsker’s Theorem—the quantity lim, P(M, < a) is known
for the general case of LLD. X's with finite variance. Such a technique
for finding lim, P(M, < a) in the general case represents an application of
what is known as the “invariance principle.” It is based on the fact that the
limit in question is invariant over the choice of sequence {X}, within a wide
class of sequences.

(i) Other limit theorems besides the CLT can likewise be reformulated
and generalized via the theory of convergence of probability measures on
metric spaces. In connection with a given sequence of random variables {X},
we may consider other random functions than Y(.), and other function
spaces than C[0, 1].

(iii) In later chapters, a number of relevant stochastic processes will be
pointed out in connection with various statistics arising for consideration.
However, stochastic process aspects will not be stressed in this book. The
intention is merely to orient the reader for investigation of these matters
elsewhere.

(iv) For detailed treatment of the topic of convergence of probability
measures on metric spaces, the reader is referred to Billingsley (1968) and
Parthasarathy (1967).

1.12 TAYLOR'S THEOREM; DIFFERENTIALS

1.12.1 Taylor’s Theorem
The following theorem is proved in Apostol (1957), p. 96.

Theorem A (Taylor). Let the function g have a finite nth derivative g™
everywhere in the open interval (a, b)and (n — 1)th derivative g™~ continuous
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in the closed interval [a, b]. Let x € [a, b]. For each point y€[a,b], y # x,
there exists a point z interior to the interval joining x and y such that

(k) (n)
g(y) = g(x) + gl LY (x) - x)* + gm_(z_) y— "

Remarks. (i) For the case x = a, we may replace g®)(x) in the above
formula by g%'(a), the kth order right-hand derivative of g at the point a; in
place of continuity of g"~!X(x) at x = g, it is assumed that g%'(x) is continuous
at x = a, for each k = 1,...,n — 1. Likewise, for x = b, g*®(x) may be
replaced by the left-hand derivative g™(b). These extensions are obtained by
minor modification of Apostol’s proof of Theorem A.

(ii) For a generalized Taylor formula replacing derivatives by finite
differences, see Feller (1966), p. 227. W

We can readily establish a multivariate version of Theorem A by reduction
to the univariate case. (We follow Apostol (1957), p. 124.)

Theorem B (Multivariate Version). Let the function g defined on R™ possess
continuous partial derivatives of order n at each point of an open set S = R™,
Let x€8S. For each point ¥, y # X, such that the line segment L(x, y) joining x
and y lies in S, there exists a point Z in the interior of L(x, y) such that

m m k k
g(y) = g(x) + Z D) a UHETLY Ty — =)

Ney W& oty o0t hax jmi

l L L ang(tl) vy tm) .
+ — cee —_— X
n! .z-:x =1 Oty o0, =y jlllx(y" W

PROOF. Define H(a) = g(x + aly — x)) for real «. By the assumed
continuity of the partial derivatives of g, we may apply an extended chain rule
for differentiation of H and obtain

" g(tss st
i@ = § Mentd) o)
i=1 i =x+aly ~x)

and likewise, for 2 < k < n,
$ 5 Palnte

=1 =1 Ot -0,

H®() =

n(}'l, xl,

t=mx+aly—x) j=1

Since L(x, ¥) < S, S open, it follows that the function H satisfies the con-
ditions of Theorem A with respect to the interval [a, b] = [0, 1]. Conse-
quently, wehave

H(")(O) + H(")(z)
n!
where 0 < z < 1. Now note that H(1) = g(y), H@0) = g(x),etc. W

H(1) = H(0) + Z
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A useful alternate form of Taylor’s Theorem is the following, which re-
quires the nth order differentiability to hold only at the point x and which
characterizes the asymptotic behavior of the remainder term.

Theorem C (Young's form of Taylor’s Theorem). Let g have a finite nth
derivative at the point x. Then

(k)
g(y) — 8(x) - Z g ( ) - x)* = o(ly — x|"), a y—x

PROOF. Follows readily by induction. Or see Hardy (1952),p.278. W

1.12.2 Differentials

The appropriate multi-dimensional generalization of derivative of a function
of one argument is given in terms of the differential. A function g defined on R™
is said to have a differential, or to be totally differentiable, at the point x, if the
partial derivatives

og og

Oxy’ " Oy

all exist at X = X, and the function

gxoi)= 3 2

b, tERm,
i=1 ax( X = Xq

(called the “differential ) satisfies the property that, for every & > 0, there
exists a neighborhood N (x,) such that

fg(x) — g(xo) — g(x0; X — Xo)| < &llx — Xofl,  all xe N (x)
Some interrelationships among differentials, partial derivatives, and con-

tinuity are expressed in the following result.

Lemma (Apostol (1957), pp. 110and 118). (i) Ifg has a differential at x,,
then g is continuous at X,.

(ii) If the partial derivatives 0g/0x;, 1 < i < m, exist in a neighborhood of
Xo and are continuous at X, then g has a differential at x,.

1.13 CONDITIONS FOR DETERMINATION OF A DISTRIBUTION
BY ITS MOMENTS

Let F be a distribution on the real line with moment sequence

a,‘=£° *dF(x), k=1,2,....
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The question of when an F having a given moment sequence {a, } is the unique
such distribution arises, for example, in connection with the Fréchet and
Shohat Theorem (1.5.1B). Some sufficient conditions are as follows.

Theorem. The moment sequence {a,} determines the distribution F uniquely
if the Carleman condition

) i a2 = oo

n=1

holds. Each of the following conditions is sufficient for (*):

— 1 @ 1/k
@) lim - (J‘ |x|* dF(x))- =A< o;

k- k

G Y % A converges absolutely in an interval |A| < Aq.
k=1

For proofs, discussion and references to further literature, see Feller (1966),
PP. 224, 230 and 487.
An example of nonuniqueness consists of the class of density functions

Plt) = e """l ~asine'), O0<t<oo,

for0 < & < 1, all of which possess the same moment sequence. For discussion
of this and other oddities, see Feller (1966), p. 224.

1.14 CONDITIONS FOR EXISTENCE OF MOMENTS OF A
DISTRIBUTION

Lemma. For any random variable X,

(@) EIX|=[§P(X|=tMdt, (<o)
and
(ii) if E|X| < oo, then P(I1X| > t) = o(t™!), t = co.

PROOF. Denote by G the distribution function of | X | and let ¢ denote a
(finite) continuity point of G. By integration by parts, we have

4) fo x dG(x) = fo [1 - GOldx — of1 — G(o)],

and hence also

(B) J:x dG(x) < J:[l = G(x)dx.
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Further, it is easily seen that

© cfl - G()] < J x dG(x).

Now suppose that E|X| = co. Then (B) yields (i) for this case. On the
other hand, suppose that E|X| < co. Then (C) yields (ii). Also, making use
of (ii) in conjunction with (A), we obtain (i) for this case. W

The lemma immediately yields (Problem 1.P.29) its own generalization:

Corollary. For any random variable X and real number r > 0,

@ EIX[ =r {5t~ 'P(X]| 2 t)dt
and
(ii) EIX|" < oo, then P(|X]| = t) = o(t™"), t = c0.

Remark. It follows that a necessary and sufficient condition for E| X|' < o©
is that ¢~ 'P(]X| = t) be integrable. Also, if P(|X| = t) = O(t™*), then
E|X'<oforallr<s. W

1.15 ASYMPTOTIC ASPECTS OF STATISTICAL INFERENCE
PROCEDURES

By “inference procedure” is usually meant a statistical procedure for esti-
mating a parameter or testing a hypothesis about a parameter. More generally,
it may be cast in decision-theoretic terms as a procedure for selecting an action
in the face of risks that depend upon an unknown parameter. In the present
discussion, the more general context will not be stressed but should be kept
in mind nevertheless.

Let the family of possible models for the data be represented as a collection
of probability spaces {(€}, o, P,), 0 € ®}, indexed by the “parameter” 6. In
discussing “estimation,” we shall consider estimation of some parametric
function g(6). In discussing “ hypothesis testing,” we have in mind some “null
hypothesis™: 0 € ®y(=®). In either case, the relevant statistic (*estimator”
or “test statistic™) will be represented as a sequence of statistics Ty, T, ... .
Typically, by “statistic” we mean a specified function of the sample, and T,
denotes the evaluation of the function at the first n sample observations
X,,..., X,. This book deals with the asymptotic properties of a great variety
of sequences {T,} of proven or potential interest in statistical inference.

For such sequences {T,}, we treat several important asymptotic features:
“asymptotic unbiasedness” (in the context of estimation only); “ consistency™
(inestimation) and “almost sure behavior ”; “ asymptotic distribution theory”;
“asymptotic relative efficiency.” These notions are discussed in 1.15.1-1,15.4,
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respectively. The concept of “asymptotic efficiency,” which is related to
“asymptoticrelative efficiency,” will be introduced in Chapter 4, in connection
with the theory of maximum likelihood estimation. Some further important
concepts—*deficiency,” *asymptotic sufficiency,” “local asymptotic nor-
mality,” “local asymptotic admissibility,” and “local asymptotic minimaxity”
—are not treated in this book.

1.15.1 Asymptotic Unbiasedness (in Estimation)

Recall that in estimation we say that an estimator T of a parametric function
g(0) is unbiased if Eo{ T} = g(0), all 8 € ©. Accordingly, we say that a sequence
of estimators {T,} is asymptotically unbiased for estimation of g(0) if

lim Eo{T,} = g(6), each 0€0O,

A
(In hypothesis testing, a test is unbiased if at each 0 ¢ ©,, the *“ power” of the
test is at least as high as the “size” of the test. An asymptotic version of this
concept may be defined also, but we shall not pursue it.)

1.15.2 Consistency (in Estimation) and Almost Sure Behavior

A sequence of estimators {T,} for a parametric function g(6) is “consistent”
if T, converges to g(6) in some appropriate sense. We speak of weak consistency,

T, 5 ¢(0),
strong consistency,

T, %5 4(6),
and consistency in rth mean,

T, < g(0).

When the term *consistent” is used without qualification, usually the weak
mode is meant.

(In hypothesis testing, consistency means that at each 6 ¢ ©,, the power of
the test tends to 1 as n — co. We shall not pursue this notion.)

Consistency is usually considered a minimal requirement for an inference
procedure. Those procedures not having such a property are usually dropped
from consideration.

A useful technique for establishing mean square consistency of an estimator
T, is to show that it is asymptotically unbiased and has variance tending to 0.

Recalling the relationships considered in Section 1.3, we see that strong
consistency may be established by proving weak or rth mean consistency with
a sufficiently fast rate of convergence.

There arises the question of which of these forms of consistency is of the
greatest practical interest. To a large extent, this is a philosophical issue, the
answer depending upon one’s point of view. Concerning rth mean consistency
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versus the weak or strong versions, the issue is between “moments” and
“probability concentrations” (see 1.15.4 for some further discussion).
Regarding weak versus strong consistency, some remarks in support of
insisting on the strong version follow.

(i) Many statisticians would find it distasteful to use an estimator which,
if sampling were to continue indefinitely, could possibly fail to converge to
the correct value. After all, there should be some pay-off for increased samp-
ling, which advantage should be exploited by any “good” estimator.

(ii) Anexamplepresented by Stout (1974), Chapter 1, concerns a physician
treating patients with a drug having unknown cure probability  (the same
for each patient). The physician intends to continue use of the drug until a
superior alternative is known. Occasionally he assesses his experience by
estimating @ by the proportion 8, of cures for the n patients treated up to that
point in time. He wants to be able to estimate 6 within a prescribed tolerance
¢ > 0. Moreover, he desires the reassuring feature that, with a specified high
probability, he can reach a point in time such that his current estimate has
become within & of @ and no subsequent value of the estimator would mislead-
ingly wander more than ¢ from 6. That is, the physician desires, for prescribed
& > 0, that there exist an integer N such that

P(maxlé,, -0l < s) >1-34.

n2N
Weak consistency (which follows in this case by the WLLN) asserts only that

P(Ié,,—OISG)—'l, n— oo,

and hence fails to supply the reassurance desired. Only by strong consistency
(which follows in this case by the SLLN) is the existence of such an N guar-
anteed.

(ili) When confronted with two competing sequences {T,} and {T*} of
estimators or test statistics, one wishes to select the best. This decision calls
upon knowledge of the optimum properties, whatever they may be, possessed
by the two sequences. In particular, strong consistency thus becomes a useful
distinguishing property.

So far we have discussed “consistency” and have focused upon the strong
version. More broadly, we can retain the focus on strong consistency but
widen the scope to include the precise asymptotic order of mangitude of the
fluctuations T, — g(0), just as in 1.10 we considered the LIL as a refinement of
the SLLN. In this sense, as a refinement of strong convergence, we will seek to
characterize the “almost sure behavior” of sequences {T,}. Such characteriza-
tions are of interest not only for sequences of estimators but also for sequences
of test statistics. (In the latter case g(6) represents a parameter to which the
test statistic T, converges under the model indexed by 6.)
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1.15.3 The Role of Asymptotic Distribution Theory for Estimators and
Test Statistics

We note that consistency of a sequence T, for g(6) implies convergence in
distribution:

*) T, % 4(6).
However, for purposes of practical application to approximate the probability

distribution of T, we need a result of the type which asserts that a suitably
normalized version,

T:l — Qy
7; = bn 1
converges in distribution to a nondegenerate random variable T, that is,
** Fy, = Fyp,

where F# is a nondegenerate distribution. Note that (*) is of no use in
attempting to approximate the probability P(T, < t,), unless one is satisfied
with an approximation constrained to take only the values 0 or 1. On the
other hand, writing (assuming b, > 0)
AT, <t)= P(T, < ‘——bi)
n

we obtain from (**) the more realistic approximation Fz((t, — a,)/b,) for the
probability P(T, < t,).

Such considerations are relevant in calculating the approximate confidence
coefficients of confidence intervals T, + d, in connection with estimators 7,,
and in finding critical points ¢, for forming critical regions {T, > c,} of
approximate specified size in connection with test statistics T,,.

Thus, in developing the minimal amount of asymptotic theory regarding a
sequence of statistics {T,}, it does not suffice merely to establish a consistency
property. In addition to such a property, one must also seek normalizing
constants a, and b, such that (7, — a,)/b, converges in distribution to a
random variable having a nondegenerate distribution (which then must be
determined).

1.154 Asymptotic Relative Efficiency

For two competing statistical procedures 4 and B, suppose that a desired
performance criterion is specified and let n; and n, be the respective sample
sizes at which the two procedures *perform equivalently” with respect to the
adopted criterion. Then the ratio

ny
n,
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is usually regarded as the relative efficiency (in the given sense) of procedure B
relative to procedure 4. Suppose that the specified performance criterion is
tightened in a way that causes the required sample sizes n, and n, to tend to
oo, If in this case the ratio n,/n, approaches to limit L, then the value L
represents the asymptotic relative efficiency of procedure B relative to
procedure A. It is stressed that the value L obtained depends upon the par-
ticular performance criterion adopted.

As an example, consider estimation. Let {T,,} and {T3,} denote competing
estimation sequences for a parametric function g(f). Suppose that

o:(o))_

n

T, is AN(g(G), “3:0)), Ty, is AN(g(G),

If our criterion is based upon the variance parameters 63(6) and o3(6) of the
asymptotic distributions, then the two procedures “perform equivalently”
at respective sample sizes n; and n, satisfying

%0 _ o0

ny n2
in which case

ny _, 94(6)

n2 0'12:(0).

Thus ¢%(0)/0%(6) emerges as a measure of asymptotic relative efficiency of
procedure B relative to procedure A. If, however, we adopt as performance
criterion the probability concentration of the estimate in an e-neighborhood
of g(6), for ¢ specified and fixed, then a different quantity emerges as the
measure of asymptotic relative efficiency. For a comparison of {T,,} and
{T3,} by this criterion, we may consider the quantities

Pu(e, 0) = P(|Tun — g(0)] > &),  Ppy(s, ) = Po(| T — g(6)] > ),

and compare the rates at which these quantities tend to 0 as n — oo. In typical
cases, the convergence is “exponentially fast”;

log P,.(c, 0 log Pp,(e, 0
LePule® , _ye0, BIREI ., 0,

In such a case, the two procedures may be said to “perform equivalently”
at respective sample sizes n, and n, satisfying

log Pp,,(e, 6)
08 Pan(6)
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In this case

ny _ny'log Pe.(e0) | v 0)
n, nl-1 log PAm(a! 0) ‘)’4(8, 0)’

yielding y4(e, 0)/7.4(¢, 6) as a measure of asymptotic relative efficiency of
procedure B relative to procedure 4, in the sense of the probability con-
centration criterion.

It is thus seen that the “asymptotic variance” and “probability concentra-
tion” criteria yield differing measures of asymptotic relative efficiency. It can
happen in a given problem that these two approaches lead to discordant
measures (one having value > 1, the other <1). For an example, see Basu
(1956).

The preceding discussion has been confined to asymptotic relative efficiency
in estimation. Various examples will appear in Chapters 2-9. For the asymp-
totic variance criterion, the multidimensional version and the related concept
of asymptotic efficiency (in an “absolute” sense) will be treated in Chapter 4.
The notion of asymptotic relative efficiency in testing is deferred to Chapter
10, which is devoted wholly to the topic. (The apparent dichotomy between
estimation and testing should not, however, be taken too seriously, for
“testing” problems can usually be recast in the context of estimation, and
vice versa.)

Further introductory discussion of asymptotic relative efficiency is found
in Cramér (1946), Sections 37.3-37.5, Fraser (1957), Section 7.3, Rao (1973),
Sections 5c.2 and 7a.7, and Bahadur (1967).

1.P PROBLEMS

Section 1.1
1. Prove Lemma 1.14.
Section 1.2
2. (a) Showthat(X,,..., Xux) 5 (X,,..., X,)ifandonlyif X, 5 X,
foreachj=1,...,k
(b) Same problem for <25,
(c) Show that X, = (X,1, ..., Xu) 25Xy = (Xeogs o+ v Xoon) if
and only if, for every ¢ > 0.
lim P{)X,, — X,ll <&allm>n} =1

[ lad ]
3. Show that X, X implies X, = O,(1).
4. Show that U, = o,(V,) implies U, = 0, (V,).
5. Resolve the question posed in 1.2.6.
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Section 1.3
6. Construct a sequence {X,} convergent wpl but not in rth mean, for

any r > 0, by taking an appropriate subsequence of the sequence in Example
1.3.8D.

Section 1.4

7. Prove Lemma 14B.

8. Verify that Lemma 1.4C contains two generalizations of Theorem
1.3.6.

9. Prove Theorem 1.4D.

Section 1.5

10. Do the task assigned in the proof of Theorem 1.5.1A.
11. (a) Show that Scheffé’s Theorem (1.5.1C) is indeed a criterion for

convergence in distribution.
(b) Exemplify a sequence of densities f, pointwise convergent to a

function f not a density.

12. (a) Prove Pélya’s Theorem (1.5.3).
(b) Give a counterexample for the case of F having discontinuities.

13. Prove part (ii) of Slutsky’s Theorem (1.5.4).

14. (a) Prove Corollary 1.5.4A by direct application of Theorem 1.5.4(i).
(b) Prove Corollary 1.54B.

15. Prove Lemma 1.5.5A. (Hint: apply Pdlya’s Theorem.)

16. Prove Lemma 1.5.5B.

17. Show that X, is AN(,, c2E) if and only if

x_"c‘_‘h 4 N, ).

Here {c,} is a sequence of real constants and X a covariance matrix.

18. Prove or give counter-example: If X, 4 X and Y, 5 Y, then X, +
45X+ Y

19. Let X, be AN(u, 6*/n), let Y, be AN(c, v/n), ¢ # 0, and put Z, =
Jn(X, — p)/Y,. Show that Z, is AN(0, 6%/c?). (Hint: apply Problem 1.P.20.)

20. Let X, be AN(y, a2). Show that X, 5 pif and only if o, = 0, n — 0.
(See Problem 1.P.23 for a multivariate extension.)

21. Let X, be AN(y, 02) and let Y, = 0 with probability 1 — n~! and
= n with probability n~*. Show that X, + Y, is AN(y, 03).
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Section 1.7

22. Verify Application B of Corollary 1.7. (Hint: Apply Problem 1.P.17,
Corollary 1.7 and then Theorem 1.7 with g(x) = \/;)

23. Verify Application C of Corollary 1.7. (Hint: Apply the Cramér-
Wold device, Problem 1.P.20, and the argument used in the previous problem.
Alternatively, instead of the latter, Problems 1.P.2 and 1.P.14(b) may be used.)

24. (a) Verify Application D of Corollary 1.7.

(b) Do analogues hold for convergence in distribution?

Section 1.9

25. Derive Theorem 1.9.1B from Theorem 1.9.1A.
26. Obtain Corollary 1.9.3.
27. Let X, be a y2 random variable.
(a) Show that X, is AN(n, 2n).
(b) Evaluate the bound on the error of approximation provided
by the Berry-Esseen Theorem (with van Beeck’s improved constant).

Section 1.13

28. Justify that the distribution N(y, 62) is uniquely determined by its
moments.

Section 1.14
29. Obtain Corollary 1.14 from Lemma 1.14.

Section 1.15

30. Let X, have finite mean u,, n = 1, 2, ... . Consider estimation of a
parameter 6 by X,. Answer (with justifications):
(a) If X, is consistent for 6, must X, be asymptotically unbiased?
(b) If X, is asymptotically unbiased, must X, be consistent?
(c) If X, is asymptotically unbiased and Var{X,} - 0, must X, be
consistent ?
(Hint: See Problem 1.P.21.)



CHAPTER 2

The Basic Sample Statistics

This chapter considersasample X ,, ..., X, ofindependent observations on a
distribution function F and examines the most basic types of statistic usually
ofinterest. The sampledistribution function and the closely related K olmogorov-
Smirnov and Cramér-von Mises statistics, along with sample density functions,
are treated in Section 2.1. The sample moments, the sample quantiles, and the
order statistics are treated in Sections 2.2, 2.3 and 2.4, respectively.

There exist useful asymptotic representations, first introduced by R. R.
Bahadur, by which the sample quantiles and the order statistics may be
expressed in terms of the sample distribution function as simple sums of
random variables. These relationships and their applications are examined
in Section 2.5.

By way of illustration of some of the results on sample moments, sample
quantiles, and order statistics, a study of confidence intervals for (population)
quantiles is provided in Section 2.6.

A common form of statistical reduction of a sample consists of grouping
the observations into cells. The asymptotic multivariate normality of the
corresponding cell frequency vectors is derived in Section 2.7.

Deeper investigation of the basic sample statistics may be carried out
within the framework of stochastic process theory. Some relevant stochastic
processes associated with a sample are pointed out in Section 2.8.

Many statistics of interest may be represented as transformations of one
or more of the “basic” sample statistics. The case of functions of several
sample moments or sample quantiles, or of cell frequency vectors, and the like,
is treated in Chapter 3. The case of statistics defined as functionals of the
sample distribution function is dealt with in Chapter 6.

Further, many statistics of interest may be conceptualized as some sorts of
generalization of a “basic” type. A generalization of the idea of forming a

55
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sample average consists of the U-statistics, introduced by W. Hoeflding.
These are studied in Chapter 5. As a generalization of single order statistics,
the so-called linear functions of order statistics are investigated in Chapter 8.

2.1 THE SAMPLE DISTRIBUTION FUNCTION

Consider an LLD. sequence {X,} with distribution function F. For each
sample of sizem, { Xy, ..., X,}, a corresponding sample distribution function F,,
is constructed by placing at each observation X, a mass 1/n. Thus F, may be
represented as

F,,(x)=-l'; i:l(X,Sx), -0 < X < 0.

=1

(The definition for F defined on R* is completely analogous.)

For each fixed sample {X,, ..., X,}, F,(-) is a distribution function, con-
sidered as a function of x. On the other hand, for each fixed value of x, F,(x) is
a random variable, considered as a function of the sample. In a view encom-
passing both features, F,(-) is a random distribution function and thus may be
treated as a particular stochastic process (a random element of a suitable
function space).

The simplest aspect of F, is that, for each fixed x, F,(x) serves as an estimator
of F(x). For example, note that F,(x) is unbiased: E{F,(x)} = F(x). Other
propertics, such as consistency and asymptotic normality, are treated in
2.1.1.

Considered as a whole, however, the function F, is a very basic sample
statistic, for from it the entire set of sample values can be recovered (although
their order of occurrence is lost). Therefore, it can and does play a fundamental
role in statistical inference. Various aspects are discussed in 2.1.2, and some
important random variables closely related to F, are introduced. One of these,
the Kolmogorov~Smirnov statistic, may be formulated in two ways: as a
measure of distance between F, and F, and as a test statistic for a hypothesis
H: F = F,. For the Kolmogorov-Smirnov distance, some probability in-
equalities are presented in 2.1.3, the almost sure behavior is characterized in
2.1.4, and the asymptotic distribution theory is given in 2.1.5. Asymptotic
distribution theory for the Kolmogorov-Smirnov test statistic is discussed in
2.1.6. For another such random variable, the Cramér-von Mises statistic,
almost sure behavior and asymptotic distribution theory is discussed in 2.1.7.

For the case of a distribution function F having a density f, “ sample density
function” estimators (of f) are of interest and play similar roles to F,.
However, their theoretical treatment is more difficult. A brief introduction is
given in 2.1.8.
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Finally, in 2.1.9, some complementary remarks are made. For a stochastic
process formulation of the sample distribution function, and for related con-
siderations, see Section 2.8.

2.1.1 F,(x) as Pointwise Estimator of F(x)
We have noted above that F,(x) is unbiased for estimation of F(x). Moreover,

Fell - FG o

Var{F,(x)} = - ,  n— o,
so that F,(x) ME (x). That is, F,(x) is consistent in mean square (and hence
weakly consistent) for estimation of F(x). Furthermore, by a direct applica-
tion of the SLLN (Theorem 1.8B), F,(x) is strongly consistent: F(x) ~% F(x).
Indeed, the latter convergence holds uniformly in x (see 2.1.4).

Regarding the distribution theory of F,(x), note that the exact distribution
of nF (x) is simply binomial (n, F(x)). And, immediately from the Lindeberg-
Lévy CLT (1.9.1A), the asymptotic distribution is given by

Theorem. For each fixed x, —0 < x < o0,

FeLL - F(x)]).

Fu(x) is AN(F(x), -

2.1.2 The Role of the Sample Distribution Function in Statistical Inference

We shall consider several ways in which the sample distribution function is
utilized in statistical inference. Firstly, its most direct application is for
estimation of the population distribution function F. Besides pointwise
estimation of F(x), each x, as considered in 2.1.1, it is also of interest to char-
acterize globally the estimation of F by F,. To this effect, a very useful
measure of closeness of F, to F is the Kolmogorov-Smirnov distance

Dn = sup an(x) - F(X)l.

—m<x<co0

A related problem is to express confidence bands for F(x), —o0 < x < 0.
Thus, for selected functions a(x) and b(x), it is of interest to compute prob-
abilities of the form

P(F,(x) — a(x) < F(x) < F(x) + b(x), —00 < x < ).

The general problem.is quite difficult; for discussion and references, see
Durbin (1973a), Section 2.5. However, in the simplest case, namely a(x) =
b(x) = d, the problem reduces to computation of

P(D, < d).
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In this form, and for F continuous, the problem of confidence bands is treated
in Wilks (1962), Section 11.7, as well as in Durbin (1973a).

Secondly, we consider “goodness of fit " test statistics based on the sample
distribution function. The null hypothesis in the simple case is H: F = F,
where F, is specified. A useful procedure is the Ko/mogorov-Smirnov test
statistic

A, = sup |Fy(x) — Fo(x)l,
~w<x<aw
which reduces to D, under the null hypothesis. More broadly, a class of such
statistics is obtained by introducing weight functions:
sup |w(x)[F(x) — Fo(x)]I.
(Similarly, more general versions of D, may be formulated.) There are also
one-sided versions of A,:

Ay

sup [Fy(x) — Fo(x)),

-w<x<®

A7 = sup [Fo(x) — F,(x)]
Another important class of statistics is based on the Cramér-von Mises test
statistic

Comn [ LR = Fol)]? dFe)

and takesthegeneralform n | w(Fo(x))[F.(x) — Fo(x)]? dF¢(x). Forexample,
for w(t) = [¢(1 — t)]~", each discrepancy F,(x) — Fo(x) becomes weighted
by the reciprocal of its standard deviation (under H,), yielding the Anderson-
Darling statistic.

Thirdly, some so-called “tests on the circle” are based on F,. The context
concerns data in the form of directions, and the null hypothesis of randomness
of directions is formulated as randomness of n points distributed on the
circumference of the unit circle. With appropriately defined X’s, a suitable
test statistic is the Kuiper statistic

V=4 — A,

This statistic also happens to have useful properties when used as an alter-
native to A, in the goodness-of-fit problem.

Finally, we mention that the theoretical investigation of many statistics of
interest can advantageously be carried out by representing the statistics,
either exactly or approximately, as functionals of the sample distribution
function, or as functionals of a stochastic process based on the sample
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distribution function. (See Section 2.8 and Chapter 6). In this respect, metrics
such as D, play a useful role.

In light of the foregoing remarks, it is seen that the random variable D, and
related random variables merit extensive investigation. Thus we devote
2.1.3-2.1.6 to this purpose.

An excellent introduction to the theory underlying statistical tests based on
F, is the monograph by Durbin (1973a). An excellent overview of the prob-
abilistic theory for F, considered as a stochastic process, and with attention to
multidimensional F, is the survey paper of Gaenssler and Stute (1979). Useful
further reading is provided by the references in these manuscripts. Also,
further elementary reading of general scope consists of Bickel and Doksum
(1977), Section 9.6, Cramér (1946), Section 25.3, Lindgren (1968), Section 6.4,
Noether (1967), Chapter 4, Rao (1973), Section 6f.1, and Wilks (1962),
Chapters 11 and 14.

2.1.3 Probability Inequalities for the Kolmogorov-Smirnov Distance

Consider an L1.D. sequence {X;} of elements of R*, let F and F, denote the
corresponding population and sample distribution functions, and put
D, = sup [F,(x) — F(x)I.
xe Ry
For the case k = 1, an exponential-type probability inequality for D, was
established by Dvoretzky, Kiefer, and Wolfowitz (1956).

Theorem A (Dvoretzky, Kiefer, and Wolfowitz). Let F be defined on R.
There exists a finite positive constant C (not depending on F) such that

P(D, > d) < Ce~2", d>0,
Joralln=1,2,....

Remarks. (i) DKW actually prove this result only for F uniform on
[0, 1], extension to the general case being left implicit. The extension may be
seen as follows. Given independent observations X; having distribution F and
defined on a common probability space, one can construct independent
uniform [0, 1] variates ¥, such that P[X, = F"'(¥)]=1,1<i<n LetG
denote the uniform [0, 1] distribution and G, the sample distribution function
of the Ys. Then F(x) = G(F(x)) and, by Lemma 1.1.4(iii), (wpl) F,(x) =
G,(F(x)). Thus
Di = sup |F(x)—F(x)|= sup |G(F(x))— G(F(x))l

- mw<xX<o —w<X<o

< sup IGn(t) - G(t)l = Dg’

0<t«]

so that P(Df > d) < P(D¢ > d).
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Alternatively, reduction to the uniform case may be carried out as follows.
Let Y,,..., Y, be independent uniform [0, 1] random variables. Then
L{Xy ..., X)) = LUF'(Y),..., F7I(Y,))}. Thus

g{Dn(Xl’ vy Xn)} = g{Dn(F- l(Yl)’ cery F-l(Yn»}'
But

n=1 Y IF(¥) < %) - F(x)

=1

D(F '(V),...,F"{(¥)) = sup

—w<x<a

n=1 3 I(Y, s F()) — Fx)

im1

n-'iz(v.sz)-zI

i=1

= sup

~w<x<wm

< sup

0<t<1
= 'Dn(Yl’ reey Yn)

(ii) The foregoing construction does not retain the distribution-free
property in generalizing to multidimensional F, For F in R* let F,denote the
jth marginal of F, 1 <j < k, and put F(x) = (Fy(x,), ..., Fi(x)) for x =
Xy, ..., X). Putting Y, = F(X)), | <i <n, and letting GF denote the distribu-
tion of each Y, and G, the sample distribution function of the Y’s, we have
F(x) = Gg(F(x)) and F,(x) = G,(F(x)), so that

F,(x) = F(x) = G,(F(x)) — G (F(x)).
Again, we have achieved a reduction to the case of distributions on the k-
dimensional unit cube, but in some cases the distribution G depends on F.

(Also, see Kiefer and Wolfowitz (1958).)
(iii) Theinequality in Theorem A may be expressed in the form:

P(n'D, > d) < C exp(—2d?).

In 2.1.5 a limit distribution for n'/2D, will be given. Thus the present result
augments the limit distribution result by providing a useful bound for
probabilities of large deviations.

(iv) Theorem A also yields important results on the almost sure behavior
of D,.See2.14.

The exponential bound of Theorem A is quite powerful, as the following
corollary shows.

Corollary. Let F and C be as in Theorem A. Then, for every € > 0,
P(sup Dm> s) < _€_ Pr-
m2n — P
where p, = exp(—2¢2).
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PROOF. Lete> 0.

P(supD,,.> s) < YPD,>e)<CY pr= %—p:. [ ]
man m=n me=pn [ 4

The extension of Theorem A to multidimensional F was established by
Kiefer (1961):

Theorem B (Kiefer). Let F be defined on R*, k > 2. For each € > 0,
there exists a finite positive constant C = C(g, k) (not depending on F) such that

P(D, > d) < Ce~@-ond’ 45

Joralln=1,2,....

As a counter-example to the possibility of extending the result to the case
& = (), as was possible for the 1-dimensional case, Kiefer cites a 2-dimensional
F satisfying P(n'/*D, = d) - 84* exp(—2d*),n - .

(An analogue of the corollary to Theorem A follows from Theorem B.)

2.1.4 Almost Sure Behavior of the Kolmogorov-Smirnov Distance

(We continue the notation of 2.1.3.) The simplest almost sure property of D,
is that it converges to 0 with probability 1:

Theorem A (Glivenko-Cantelli). D, 25 0.

PROOF. For the 1-dimensional case, this result was proved by Glivenko
(1933) for continuous F and by Cantelli (1933) for general F. See Loéve (1977),
p. 21, or Gnedenko (1962), Section 67, for a proof based on application of the
SLLN. Alternatively, simply apply the Dvoretzky-Kiefer- Wolfowitz prob-
ability inequality (Theorem 2.1.3A) in conjunction with Theorem 1.3.4 to
obtain

a0
Y P(D,>¢€) <0 forevery &> 0,
n=1
showing thus that D, converges completely to 0. Even more strongly, we can
utilize Corollary 2.1.3 in similar fashion to establish that sup,,,, D, converges

completely to 0.
Likewise, the multidimensional case of the above theorem may be deduced

from Theorem 2.1.3B. W

The extreme fluctuations in the convergence of D, to 0 are characterized by
the following LIL.
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Theorem B. With probability 1,

—  n'’D,
e @Toglogmy ™ ~ )

where
o(F) = sup {F(x)[1 - F(x)]}"/2.
x6 Rk

(Note that ¢(F) = 4 if F is continuous.)

For F 1-dimensional and continuous, proofs are contained in the papers of
Smirnov (1944), Chung (1949), and Csaki (1968). Kiefer (1961) extended to
multidimensional continuous F and Richter (1974) to general multidimen-
sional F.

2.1.5 Asymptotic Distribution Theory for the Kolmogorov—Smirnov
Distance

We confine attention to the case of F 1-dimensional.

The exact distribution of D, is complicated to express. See Durbin (1973a),
Section 2.4, for discussion of various computational approaches. On the
other.hand, the asymptotic distribution theory, for continuous F, is easy to
state:

Theorem A (Kolmogorov). Let F be 1-dimensional and continuous. Then

limP(n'?D, s d)=1-2Y (=1)*le 2  d>0.

n—w =1

The proposition was originally established by Kolmogorov (1933), using a
representation of F, as aconditioned Poisson process (see 2.1.9). Later writers
have found other approaches. For proof via convergence in distribution in
C[O, 1], see Héjek and Sidak (1967), Section V.3, or Billingsley (1968),
Section 13. Alternatively, see Breiman (1968) or Brillinger (1969) for proof via
Skorokhod constructions.

A convenient feature of the preceding approximation is that it does not
depend upon F. In fact, this is true also of the exact distribution of D, for the
class of continuous F’s (see, e.g., Lindgren (1968), Section 8.1.)

In the case of F having discontinuities, n'/2D, still has a limit distribution,
but it depends on F (through the values of F at the points of discontinuity).
Extension to the case of F having finitely many discontinuities and not being
purely atomic was obtained by Schmid (1958), who gives the limit distribution
explicitly. The general case is treated in Billingsley (1968), Section 16. Here
there is only implicit characterization of the limit distribution, namely, as
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that of a specified functional of a specified Gaussian stochastic process (see
Section 2.8 for details).

For multidimensional F, also, n'/2D, has a limit distribution. This has been
established by Kiefer and Wolfowitz (1958) primarily as an existence result,
the limit distribution not being characterized in general. For dimension > 2,
the limit distribution depends on F even in the continuous case.

Let us also consider one-sided Kolmogorov-Smirnov distances, typified by

Dy = sup [F,(x)— F(x)].
—WE<X<®
For continuous F, the distribution of D,} does not depend on F. The exact
distribution is somewhat more tractable than that of D, (see Durbin (1973a)
for details). The asymptotic distribution, due to Smirnov (1944) (or see
Billingsley (1968), p. 85), is quite simple:

Theorem B (Smirnov). Let F be 1-dimensional and continuous. Then
lim P(n'?D} <d) = limP(m'?D; < —d)=1—e"2¢, d>0.

n— o n-* o0

An associated Berry-Esséen bound of order O(n~'/? log n) has been est-
ablished by Komlés, Major and Tusnady (1975). Asymptotic expansions in
powers of n~!/2 are discussed in Durbin (1973a) and Gaenssler and Stute
(1979).

2.1.6 Asymptotic Distribution Theory for the Kolmogorov-Smirnov Test
Statistic

Let X,, X,, ...be LLD. with (1-dimensional) continuous distribution function
F,and let F, be a specified hypothetical continuous distribution. For the null
hypothesisH: F = Fg,the Kolmogorov-Smirnovteststatistic wasintroduced
in 2.1.2:

An = sup |Fn(x) - Fo(x)l-

The asymptotic distribution of A, under the null hypoihesis is given by
Theorem 2.1.5A, for in thiscase A, = D,. Under the alternative hypothesis H*:
F # F,, the parameter

A= sup |F(x) = Fo(®)l
is relevant. Raghavachari (1973) obtains the limit distribution of n'/3(A, — A),
expressed as the distribution of a specified functional of a specified Gaussian
stochastic process, both specifications depending on F and F, (see Section 2.8
for details). He also obtains analogous results for other Kolmogorov-
Smirnov type statistics considered in 2.1.2.
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2.1.7 Almost Sure Behavior and Asymptotic Distribution Theory of the
Cramér-von Mises Test Statistic

Let {X;}, F and F, be as in 2.1.6. We confine attention to the null hypothesis
situation, in which case F = F and the test statistic introduced in 2.1.2 may
be viewed and written as a measure of disparity between F, and F:

Ci=n Jm [F.(x) — F(x)]? dF(x).

In this respect, we present analogues of results for D, established in 2.1.4 and
2.1.5. We also remark that in the present context C,, like D,, has a distribution
not depending on F,

Theorem A (Finkelstein). With probability 1,

lim -

1
n
n-w 2loglogn  n?’

Finkelstein (1971) obtains this as a corollary of her general theorem on the
LIL for the sample distribution function.

Theorem B. Let & be a random variable representable as
E= °z°: 1l
=i e
where x3,, x31, . . . are independent x} variates. Then
lim P(C, < ¢)=P(E < ¢), c>0

n—*w

For details of proof, and of computation of P(¢ < c), see Durbin (1973a),
Section 4.4,

2.1.8 Sample Density Functions

Let X,, X5, ... be LL.D. with (1-dimensional) absolutely continuous F having
density f = F'. A natural way to estimate f(x) is by a difference quotient
fix) = F(x +b,)— F(x - b,,)‘

2b,
Here {b,} is a sequence of constants selected to —0 at a suitable rate. Noting

that 2nb,, f,(x) has the binomial (n, F(x + b,) — F(x — b,)) distribution, one
finds (Problem 2.P.3) that

E{fi(x)} = f(x) if b,—0, n-— oo,
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and
Var{f(x)} -0 if b,—»0 and nb,— oo, n— oo,

Thus one wants b, to converge to 0 slower than n~!. (Further options on the
choice of {b,} are based on a priori knowledge of f and on the actual sample
size n.) In this case f;(x) is consistent in mean square for estimation of f. Further,
under suitable smoothness restrictions on f at x and additional convergence
restrictions on {b,}, it is found (Problems 2.P.4-5) that f,(x) is AN(f(x),
f(x)/nb,). See Bickel and Doksum (1977) for practical discussion regarding

the estimator f,(x).
A popular alternative estimator of similar type is the histogram

Fy(a + (j + 1)b,) — Fy(a + jb,)
2b, ’

Its asymptotic properties are similar to those of f(x).
A useful class of estimators generalizing f,(x) is defined by the form

T b =L" x - X
s = [ o w(S e = o Ew(=5X)
where W(.)is an integrable nonnegative weight function. (The case W(z) = 4,
{z| < 1, and = O otherwise, gives essentially the simple estimator considered

above.) Under restrictions on W(-), f(-) and {b,}, the almost sure behavior of
the distance

:(X) = xe[a + jby, a + U+ 1)b,).

sup | fu(x) = f(x)}

- <X< o

is characterized by Silverman (1978). For two other such global measures,

Jlx) = f(x) [f(x) — f()7?
| [P e
asymptotic distributions are determined by Bickel and Rosenblatt (1973).

Regarding pointwise estimation of f(x) by f,(x), asymptotic normality results
are given by Rosenblatt (1971).

sup

2.1.9 Complements

(i) The problem of estimation of F is treated from a decision-theoretic
standpoint by Ferguson (1967), Section 4.8. For best “invariant” estimation,
and in connection with various loss functions, some forms of sample distribu-
tion function other than F, arise for consideration. They weight the X,
differently than simply n~! uniformly.

(ii) The speed of the Glivenko-Cantelli convergence is characterized
stochastically by an LIL, as seen in 2.1.4. In terms of nonstochastic quantities,
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such :a/sz E{D,} and E{f |F(x) — F(x)|dx}, Dudley (1969) establishes rates
O(n—"%).

(iii) The Kolmogorov-Smirnov test statistic A, considered in 2.1.2 and
2.1.6is also of interest when the hypothesized F involves unknown nuisance
parameters which have to be estimated from the data in order to formulate A,.
See Durbin (1973a, b) for development of the relevant theory. For further
development, see Neuhaus (1976).

(iv) For theory of Kolmogorov-Smirnov type test statistics generalized
to include regression constants, for power against regression alternatives, see
Héajek and Sidak (1967).

(v) Consider continuous F and thus reduce without loss of generality to F
uniform on [0, 1]. Then (see Durbin (1973a))

(a) {F,(t)} is a Markov process: forany 0 < ¢t; <:-- < t, <, < 1, the
conditional distribution of F,(t,) given F(t,), ..., F.(t,) depends only on
F(t,-1).

(b) {F,(t)} is a conditioned Poisson process: it has the same distribution as
the stochastic process {P,(t)} given P,(1) = 1, where {P,(t)} is the Poisson
process with occurrence rate n and jumps of n~!.

(vi) In 2.1.3 we stated large deviation probability inequalities for D,.
“ Large deviation” probabilities for F, may also be characterized. For suitable
types of set #, of distribution functions, and for F not in %, there exist
numbers c(F, F,) such that

log P(F,€ #,)

. = (F, F), n— o,

See Hoadley (1967), Bahadur (1971), Bahadur and Zabell (1979), and
Chapter 10.
2.2 THE SAMPLE MOMENTS

Let X, X, ... be LLD. with distribution function F. For a positive integer k,
the kth moment of F is defined as

2 = f ® % dF(x) = E{X").

The first moment «, is also called the mean and denoted by u when convenient.
likewise, the kth central moment of F is defined as

m= [ - ) = E(X - )
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Note that gy = 0. The {a;} and {y,} represent important parameters in terms
of which the description of F, or manipulations with F, can sometimes be
greatly simplified. Natural estimators of these parameters are given by the
corresponding moments of the sample distribution function F,. Thus &, may
be estimated by

a=[ warw=1xt *=12.)
- i=1
(and let a, also be denoted by X), and y, may be estimated by
my = f - XFdF =2 S -XF  (k=23,..)
- i=1

Since F, possesses desirable properties as an estimator of F, as seen in Section
2.1, it might be expected that the sample moments g, and the sample central
moments m, possess desirable features as estimators of a, and g, . Indeed, we
shall establish that these estimators are consistent in the usual senses and
jointly are asymptotically multivariate normal in distribution. Further, we
shall examine bias and variance quantities. The estimates a, are treated in
2.2.1. Following some preliminaries in 2.2.2, the estimates m, are treated
in 2.2.3. The results include treatment of the joint asymptotic distribution of
the a.’s and m,’s taken together. In 2.2.4 some complements are presented.

2.2.1 The Estimates a,

Note that a, is a mean of LI.D. random variables having mean o, and variance
ay, — af. Thus by trivial computations and the SLLN (Theorem 1.8B), we
have

Theorem A.
. . wpl .
(l) ai > Oy,

(i) Efay} = o
— w?
(i) Var{ak}=°‘—"—nﬂ.

(It is implicitly assumed that all stated moments are finite.) Note that (i)
implies strong consistency and (ii) and (iii) together yield mean square
consistency.

More comprehensively, the vector (ay, a;, .. ., a,) is the mean of the L1.D.
vectors (X;, X?,..., X5, 1 < i < n. Thus a direct application of the multi-
variate Lindeberg-Lévy CLT (Theorem 1.9.1B) yields that (a,,...,a,) is
asymptotically normal with mean vector (ay,..,, o) and covariances
(044+; — a;a)/n. Formally:
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Theorem B. If o, < o, the random vector n'?(a, — a;, ..., 8 — 04)
converges in distribution to k-variate normal with mean vector (0, ...,0) and
covariance matrix [G;;]y xx, where Gy = 0, — ;0.

2.2.2 Some Preliminary and Auxiliary Results

Preliminary to deriving properties of the estimates m,, it is advantageous to
consider the closely related random variables

b= SK—it G=12..)

i=1

Properties of the m,’s will be deduced from those of the b,’s.
The same arguments employed in dealing with the a,’s immediately yield

Lemma A.
@ b
(i) E{b} = M

_ Mo — B
(iii) For py, < 00, Var{b,} = ———;

(iv) For py, < o0, the random vector (b,, .. ., by) is asymptotically normal
with mean vector (1y, . . ., W) and covariances (W +; — W u)/n.

Note that b, and m, represent alternate ways of estimating 1, by moment
statistics. The use of b, presupposes knowledge of i, whereas m, employs the
sample mean X in place of 1. This makes m, of greater practical utility than by,
but more cumbersome to analyze theoretically.

As another preliminary, we state

Lemma B. Let {Z,} be 1.1.D. with E{Z,} = 0 and with E|Z,|* < oo, where
v = 2. Then

27

f=1

v

E =0Mn'®), n-oo.

For proof and more general results, see Loéve (1977), p. 276, or Marcinkiewicz
and Zygmund (1937). See also Lemma 9.2.6A.
We shall utilize Lemma B through the implication

E{b{} = E{(X — w/} = 0(n~"¥)),  n— o,
forj2 2
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2.2.3 The Estimates m,

Although analogous in form to b, the random variable m, differs crucially in
not being expressible as an average of L.I.D. random variables. Therefore,
instead of dealing with m, directly, we exploit the connection between m, and
the b/s. Writing
my =~ Z(Xi X)) = ;‘Z ,Z .)(Xi - W - X)),
n;=y =1 j=0

we obtain
k

™* me=y (’f)(—l)""b,b'i”,
j=o \J

where we define by = 1.
The following result treats the bias, mean square consistency, mean square

error, and strong consistency of m.
Theorem A.

@) my "y

(it) The bias of m, satisfies

k(k — Duy_yp; — k
E{m,} _“k=%( )N; 1H2 .

(iii) The variance of my satisfies

2% =~ Mi — Zka-nxllkﬂ + k2o iy +O(n"?),

+0Mn %), n-owo;

Var{m,} =
n— o0;

(iv) Hence E(my — 14)* ~ Var{m,} = O(n~'), n- o0.
PROOF. (i) Inrelation (*), apply Lemma 2.2.2A(i) in conjunction with
Application D of Corollary 1.7, and note that u, = 0.
(ii) Again utilize (*) to write
k

Em} —m =Y, (f)(-xyz{b,_,bl,}.

J=1

Now, making use of the independence of the X’s,

E{b,\b,} = :—zE{‘:Zl(Xi —pk! i(xj - I‘)}

=1

~ o TE - i =2
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Similarly,

l n n
E{bi_,b}} = =3 { Z_: . ‘Z Xy, = 03Xy, — (X, — N)}

1

5 T L EO0, -0, - ),

since the expectation of a term in the triple summation is 0 if i3 # i,. Hence

Elb, b3} = ity + n(n — Dotz _ Nk-nz#z +0(n~Y), n-ow.

n3
Similarly (exercise),
E{b,_3b}} = O(n™?), n— 00,
For j > 3, use Holder's inequality (Appendix)
|E{by— ;bi}| < [E|by- j|M*=P]*=MHE|by F)™.

By application of Minkowski's inequality (Appendix) in connection with the
first factor on the right, and Lemma 2.2.2B in connection with the second
factor, we obtain

E{b,_;b}} = O(1)[O(n~*12¥)JI* = O(n~112)
=0n"2%), n->o(>13)

Collecting these results, we have
k
E{m} = py = (1)(—1)"—; + (’;)(-1)2 B2l g o2, oo

(iii) Writing Var{m,} = E{m?} — [E{m,}]?, we seek to compute E{m?}
and combine with the result in (ii). For E{m?}, we need to compute quantities
of the form

E{b,_;,blby_ 1,017} = E{by_ ) by j,nf'* 3},
for 0 < j,, j2 < k. For j, = j, =0, we have
l n
sl = 5 S -t o, -}

npgy + nln — Vi - u?
- M (2 )Mx=":+ﬂzn Y

n n
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For (j,, j2) = (0, 1) or (1, 0), we have

E{b,_b.b 1}=i3 {Z(Xl —#)k li(xl, #)"Z(Xl,“ﬂ)}

h=1 Ia=1 i3=1

II

5| £ ox - w4 T T B0, - wer, -

h#l

+ Y E{(X, - W '(X,, - #)"“}]

iy #i2
1
= 3 [pax + nln — Dud + n(n — D yhesy]

2
_ M+ #:—1#“1 +0(n™?),

n— o,
For j, = j, = 1, we have (exercise)

E{b}_.b}} = #—z:nl’—‘l +0(n~%, n- oo,
and

E{b.b,_,b3} = Wz +0(n"% n- oo

Finally, for j; + j, > 2, we have (exercise)
E{by-jbx-p, b1t} = 0(n~2), n— oo
Consequently, by (*),
E{m{} = E{b}} — 2kE{b:b,-,b,} + k*E{bi_,b}}
+ k(k — DE{bbs_2b3} + O(n=2), n— oo,

Hax — tf = 2k(ud + py st y)
+ K2 iy + k(k — D212
n

=up +
+0(n"?%, n- oo

(iv) trivial. W

Next we establish asymptotic normality of the vector (m,, ..., m,). The
following lemma is useful.
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Lemma. For each k,
n'2(my — py) = n'?(by — Py — ki 1by) + 0,(1), n — oo.
PROOF. By (*), write
n'?(my — ) = n"'3(by — py — kpy—1by)

+ n"’bl[k(u.-l —b-)+ *f k)(-l)""b,b'{"‘ l].
Jj=0

The second term on the right is a product of two factors, the first converging in
distribution and the second converging to 0 wpl, these properties following
from Lemma 2.2.2A. Therefore, by Slutsky’s Theorem (1.5.4), the product
converges to 0 in probability. W

Theorem B. If py < 0, the random vector n'3(m, — Py, ..., my — By)
converges in distribution to (k ~ 1)-variate normal with mean vector (0, ..., 0)
and covariance matrix [o8]u - 1yxx-1)» Where

O = Wiejez = Rirthyer — (0 + Dbz — G + D2y
+ G+ DG + Duypgua.
PROOF. By the preceding lemma, in conjunction with the Cramér-Wold
device (Theorem 1.5.2) and Slutsky’s Theorem, the random vector
n'3(my — pay ... my — )
has the same limit distribution (if any) as ihe vector n'/3(b, — u, — 2uby,
vy by = iy — kit 1b,). But the latter is simply n'/2 times the average of the
11.D. vectors
(X — 1) — gy — 22X — )y (X0 — ) — i — ko (X, — W),
l<i<gn
Application of the CLT (Theorem 1.9.1B) gives the desired resuit. W
By similar techniques, we can obtain asymptotic normality of any vector
@y, ..., Gy, my,...,m,). In particular, let us consider (a,, m;) = (sample

mean, sample variance) = (X, s2). It is readily seen (Problem 2.P.8) that
2

AR — p,s? — o? A»N(o,o,[" #a ])
X —n ) (0, 0) by e — 0*
Here we have denoted 1, by 62, as usual.

2.24 Complements

(i) Examples: the sample mean and the sample variance. The joint asymp-
totic distribution of X and s* was expressed at the conclusion of 2.2.3. From
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this, or directly from Theorems 2.2.1B and 2.2.3B, it is seen that each of these
statistics is asymptotically normal:

2
X s AN(u, "—)
n
and

s? s AN(a’,Eé‘—;;a—‘).

(ii) Rates of convergence in connection with the asymptotic normality of
the sample mean and sample variance. Regarding X, the rate of convergence to
0 of the normal approximation error follows from the Berry-Esséen Theorem
(1.9.5). For 5%, the rate of this convergence is found via consideration of s? as a
U-statistic (Section 5.5).

(iii) Efficiency of “moment” estimators. Despite the good properties of the
moment estimators, there typically are more efficient estimators available
when the distribution F is known to belong to a parametric family. Further,
the “method of moments” is inapplicable if F fails to possess the relevant
moments, as in the case of the Cauchy distribution. (See additional discussion
in 2.3.5and 4.3))

(iv) The case p = 0. In this case the relations o, = y, hold (k = 2, 3,...)
and so the two sets of estimates {a,, a3, ...} and {m,, m,, ...} offer alternative
ways to estimate the parameters {o; = u,, o3 = 43, ...}. In this situation,
Lemma 2.2.3 shows that

my — iy = ay — e — ki1 X + 0 (n"'?).

That is, the errors of estimation using a, and m, differ by a nonnegligible
component, except in the case k = 2.

(v) Correction factors to achieve unbiased estimators. If desired, correction
factors may be introduced to convert the m,’s into unbiased consistent
estimators

n
MZ - n— l ms,
n
My —Dm-2™
M, n(n? —2n+3) 3n(2n - 3) 2

Th-DO-Dn -3 ¢ m-Dn-Dn-3""

etc., for u,, s, 4y, . . . . However, as seen from Theorem 2.2.3A, the bias of the
unadjusted m,’s is asymptotically negligible. Its contribution to the mean
square error is O(n~2), while that of the variance is of order n~!.
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(vi) Rates of convergence in connection with the strong convergence of a,
and my. This topic is treated in 5.1.5.

(vii) Further reading. Cramér (1946), Sections 27,1-6 and 28.1-3,and Rao
(1973), Section 6h. W

2.3 THE SAMPLE QUANTILES

Let F be a distribution function (continuous from the right, as usual). For
0 < p < 1, the pth quantile or fractile of F is defined (recall 1.1.4) as

¢p = inf{x: F(x) = p}
and is alternately denoted by F~!(p). Note that £, satisfies

Other useful properties have been presented in Lemmas 1.1.4 and 1.5.6.

Corresponding to a sample {X |, ..., X,} of observations on F, the sample
pth quantile is defined as the pth quantile of the sample distribution function
F,,thatis,as F, '(p). Regarding the sample pth quantile as an estimator of {,,
we denote it by &,,, or simply by £, when convenient.

It will be seen (2.3.1) that f, is strongly consistent for estimation of §,, under
mild restrictions on F in the neighborhood of §,. We exhibit (2.3.2) bounds on
the related probability

P<sup|£pm - épl > 8)’

m2>n

showing that it converges to 0 at an exponential rate.

The asymptotic distribution theory of E,, is treated in 2.3.3. In particular,
under mild smoothness requirements on F in the neighborhoods of the points
$pir -+ +» $pr the vector of sample quantiles (E,,,, . E,,,‘) is asymptotically
normal. Also, several complementary results will be given, including a rate of
convergence for the asymptotic normality.

If F has a density, then so does the distribution of E,. This result and its
application are discussed in 2.3.4.

Comparison of quantiles versus moments as estimators is made in 2.3.5, and
the mean and median are compared for illustration. In 2.3.6 a measure of
dispersion based on quantiles is examined. Finally, in 2.3.7, brief discussion of
nonparametric tests based on quantiles is provided.

Further background reading may be found in Cramér (1946), Section 28.5,
and Rao (1973), Section 6f.2.

2.3.1 Strong Consistency of £,

The following result asserts that &, is strongly consistent for estimation of £,
unless both F({,) = p and F is flat in a right-neighborhood of §,,.
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Theorem. Let0 < p < 1.IfE is the unique solutionx of F(x—) < p < F(x),
then &,,,. 2L E,.

PROOF. Lete > 0.By the uniqueness condition and the definition of §,,
we have

F(,— ¢ <p<F(,+e)

It was seen in 2.1.1 that F,(&, — &) “25 F(¢, — &) and F,(¢, + &) 2>
F(§, + ¢). Hence (review 1.2.2)

P(F (¢, — e <p<F,({, +¢e)allm=n)—1, n -+ 00,
Thus, by Lemma 1.1.4(ii),
P, —e<n<é+eallman)—1, n-oo.
That is,

P(suplf,,,,, -¢&,1> e) -0, n-— o0

m>n

As an exercise, show that the uniqueness requirement on ¢{, cannot be
dropped (Problem 2.P.11).

In the following subsection, we obtain results which contain the preceding
theorem, but which require more powerful techniques of proof.
2.3.2 A Probability Inequality for |§,, — &,|

We shall use the following result of Hoeffding (1963).

Lemma (Hoeffding). Let Y,, ..., Y, be independent random variables
satisfying P(a < Y, < b) = 1, each i, where a < b. Then, for t > 0,

P< "Zyl - i E{Y,} 2 l’lt) < e~ 2n¥b-a)?
i

Theorem. Let0 < p < 1.Suppose that & is the unique solutionx of F(x—) <
p < F(x). Then, for every € > 0,

P10 — &l > €) < 272", qiln,
where 8, = min{F(§, + €) — p, p — F({, — ¢)}.

PROOF. (We apply Hoeflding's lemma in conjunction with a technique
of proof of Smirnov (1952).) Let & > 0. Write

P(1¢, = &1 >e) = P&, > & + &)+ P&, < &, — o).
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By Lemma 1.1.4,

P > & +8) = P(p > F(¢, + £)

=P(‘ZI(X,> $p+ ) >n(l —p))
i

=r($ %~ S > ).

where ¥, = I(X,; > {, + ¢) and 8, = F(¢, + €) — p. Likewise,
Pn<&— )< P(p < F(é, —¢)
=%im—immzﬁJ
i

=] im=]1

where W, = I(X; <{, —¢) and 8, = p — F({, — £). Therefore, utilizing
Hoeffding’s lemma, we have

P> & +6) < e
and

P, <& —e) e
Putting §, = min{d,, d,}, the proof is complete. W

Thus P(If,, ~ ¢pl > 8) = 0 exponentially fast, which implies (via Theorem
1.3.4) that f,,,, converges completely to ¢,. Even more strongly, we have

Corollary. Under the assumptions of the theorem, for every € > 0,

P(supl&pm - &pl > 8) <

ma2n

2 n
Y [1 38 alln,

where p, = exp(—28}) and 8, = min{F(§, + €) — p,p — F(§, — ¢)}.

(derived the same way as the corollary to Theorem 2.1.3A)

Remarks. (i) The value of & (>0) in the preceding results may depend
upon n if desired.

(ii) The bounds established in these results are exact. They hold for each
n=1,2,...and so may be applied for any fixed n as well as for asymptatic
analyses.

(iii) A slightly modified version of the preceding theorem, asserting the
same exponential rate, may be obtained by using the Dvoretzky-Kiefer-
Wolfowitz probability inequality for D,, instead of the Hoeffding lemma, in
the proof. (Problem 2.P.12). W
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233 Asymptotic Normality of £,

The exact distribution of &, will be examined in 2.3.4. Here we prove asymp-
totic normality of & p in the case that F possesses left- or right-hand derivatives
at the point £,. If F lacks this degree of smoothness at £, the limit distribution
of ¢ p(suitably normalized) need not be normal (no pun intended). The various
possibilities are all covered in Theorem 4 of Smirnov (1952). In the present
treatment we confine attention to the case of chief importance, that in which a
normal law arises as limit.

The following theorem slightly extends Smirnov’s result for the case of a
normal law as limit. However, the corollaries we state are included in
Smirnov's result also.

When assumed to exist, the left- and right-hand derivatives of F at §, will
be denoted by F'(¢{,—) and F'({,+), respectively.

Theorem A. Let 0 < p < 1. Suppose that F is continuous at §,.
(i) If there exists F'(E,~) > 0, then for t < 0,
: 02, — &) )
lim P L L <t] =)
o ([p(l ~PIFE) ©
(i) If there exists F'(§,+) > O, then for t > 0, .

. nllz(&pn - gp) _
Yim P([p(l TPIFED) S ‘) = &0,

(ii) In any case,
lim P(n'(€,, — &;) < 0) = ®(0) = 4.

n—+w

Corollary A. Let 0 <p <. If'F is differentiable at £, and F'(§;) > 0, then

, p(1 - p)
b 5 AN(5 R )

Corollary B. Let 0 < p < 1. If F possesses a density f in a neighborhood of
&, and [ is positive and continuous at &, then

¢ p(1 — p)
T;p,, is AN(&,,W)

These corollaries follow immediately from Theorem A. Firstly, if F is
differentiable at {,, then F'({,—) = F'({,+) = F'({,). Thus Corollary A
follows. Secondly, if fis a density of F, it is not necessary that f = F'. However,
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if f is continuous at x,, then f(xo) = F'(x,). (See 1.1.8) Thus Corollary B
follows from Corollary A. Among these three results, it is Corollary B that is
typically used in practice.

PROOF OF THEOREM A. Fix t. Let A > 0 be a normalizing constant
to be specified later, and put

G(t) = P(—&——i';"l/z(E - ‘) o t).
Applying Lemma 1.1.4 (iii), we have
G(t) = P(8pp < &, + tAn™Y?) = P(p S F (£, + tAn™"2))
= Pnp < Z,(F(§, + tAn™'2))],

where Z,(A) denotes a binomial (n, A) random variable. In terms of the
standardized form of Z,(A),

Z(A) — nA
%O - Gt - B
we have
®* G (t) = P(Z}(Ay) 2 —cu)s
where
Ay = F(¢, + tAn~12)
and

¢ nln(AnI - p)
=TA (1 - A N2
" A1 - A1Y
At this point we may easily obtain (iii). Putting ¢ = 0in (*), we have G,(0) =

P(Z¥(p) = 0) = ®(0) = 4, n -+ oo, by the Lindeberg-Lévy CLT.
Now utilize the Berry-Esséen Theorem (1.9.5) to write

where C is a universal constant, o2 = Var{Z,(A)} = A(1 - A), p, =
E|Z,(A) — AP = A(1 — A)[(1 — A)? + A?], and thus
pa_ (1 — A)? + A?
"= a2 - m
Using (*) to write
&) — G,(t) = P(Z}(A,) < —cp) — [1 — ®(1)]
= P(Z:(Anl) < "'cm) - 0(_‘:m) + o(t) - O(C,.,),
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we have by (**) that

16,0 - 001 < 39 4 101) - 0(c,1.

Since F is continuous at {,, we have A,,(1 — A,)) = p(1 — p) > 0, and thus
WA~ Y2 = 0, n — oo. It remains to investigate whether c,, — t. Writing

- A .F(f, + tAn~ V%) ~ F(¢,)
(3.1 = 3,1 AT
we see that, if t > 0, then

cnl

tA ,
Cnr"W'F(C,ﬁ),

and, if t < 0, then

tA ,
Cu = W‘F(fp—)-

Thus ¢,, — t if either

t>0 and A=[p(1 - p]V¥/F(,+)
or

t<0 and A= [p(1 - p)JV¥F(,-).
This establishes (i) and (ii). W
Remark. The specific rate O(n~'/?) provided by the Berry-Esséen Theorem
was not actually utilized in the preceding proof. However,in proving Theorem
C we do make application of this specific order of magnitude. W

Corollaries A and B cover typical cases in which f,, is asymptotically nor-

mal, that is, a suitably normalized version of £, converges in distribution to
N(O, 1). However, more generally, Theorem A may provide a normal ap-
proximation even when no limit distribution exists. That is, n'/%(€,, — £,)
may fail to have a limit distribution, but its distribution may nevertheless be
approximated, as a function of ¢, by normal distribution probabilities: for
t < 0, based on the distribution N(0, p(1 — p)/[F'({,~)]%); for t > 0, based

on the distribution N(0, p(1 — p)/[F'(¢,+)]*). The various possibilities are
illustrated in the following example.

Example. Estimation of the median. Consider estimation of the median ¢,,,
of F by the sample median &, .

(i) If F has a positive derivative F'({,,;) at x = ;,, then

. 1
61/2 15 AN(fl/:: W)
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(ii) If, further, F has a density f continuous at {,,,, then equivalently we
may write

1
¢, is AN({ ,——————)
" " 43y n
(iii) » However, suppose that F has adensity f whichisdiscontinuousat ¢, ;.
For example, consider the distribution

% 0<sx<#
F(")"{zx—i, b<x<i

A density for F is

_f, o0<x<id
f(x)—{z’ '}SxSi,

which is discontinuous at ¢, , = 4. Thus the sample median ¢, /2 IS not asymp-
totically normal in the strict sense, but nevertheless we can approximate the
probability

P(n'%(¢y,, — &) S 1)

We use the distribution N(0, }) if t < 0 and the distribution N(0, &) if ¢ > 0.
For t = 0, we use the value 4 as an approximation. Wl

The multivariate generalization of Corollary B is

Theorem B. Let 0 < p, <--- < p, < L. Suppose that F has a density f in
neighborhoodsof &,.,, . . . , &, and that {is positive and continuousat &,,, . . ., &5, .
Then (&, ..., 8,,) is asymptotically normal with mean vector (s, ..., &p,)
and covariances oy/n, where

- pl — py)
f(gp‘)f(gpj)

Oy for i<j

and oy = oy fori > j.

One method of proof will be seen in 2.3.4, another in 2.5.1. Or see Cramér
(1946), p. 369.

We now consider the rate of convergence in connection with the asymptotic
normality of £,. Theorem C below provides the rate O(n™ /). Although left
implicit here, an explicit constant of proportionality could be determined by
careful scrutiny of the details of proof (Problem 2.P.13). In proving the
theorem, we shall utilize the probability inequality for |Z,,,, -~ &,| given by
Theorem 2.3.2, as well as the following lemma.
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Lemma. For|ax| < 4.
|®(x + ax?) — ®(x)| < 5|a|sup[xd(x)).
PROOF. By the mean value theorem,
D(x + ax?) — O(x) = ax?P(x*),
where x* lies between x and x + ax?, both of which have the same sign. Since
¢(x) is increasing on (— 00, 0) and decreasing on (0, c0), we have
$(x*) < ¢(x + $x) + ¢(x — 4x)
and hence
x2P(x*) < x2(x + $x) + x2P(x — 4x)
= 3(3x)°¢(3x) + 4(3x)*d(3x)
< Ssup[x’¢(x)]. W

Theorem C. Let0 < p < 1. Suppose that in a neighborhood of &, F possesses
a positive continuous density f and a bounded second derivative F". Then

nt/2 3 .-
e ([p(l =BT S () a0
PROOF. Put A4 = [p(1 - p)]“z/f(f,) and

Gut) = P(n"*(&, — E)/A < 1),

Let L, = B(log n)!/2, We shall introduce restrictions on the constant B as

needed in the course of the proof. Now note that

m

sup |G,(1) — @(t)| = max{ sup |G,(t) — ®(1)I, SUPIG..(t) - d’(‘)l}

Jt]>Ln t<~Ly t>L,

= O(n~ "), n — oo,

< max{G,(—L,) + ®(-L,), 1 — G(L,) + 1 — ®(L,)}
S G(—-Ly) + 1= GyLy)+ 1 — WLy
< P(1¢,, - &, = AL,n™ V%) + 1 — ®(L,).

As is well-known and easily checked (or see Gnedenko (1962), p. 134),

21 -1/2
( ) eTUBE x>0,

1 - P(x) s —————
so that
@ - o) s &

/2B _ oy =112
I (n~ %),
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provided that
3) B> 1.

To obtain a similar result for the other term in (1), we use the probability
inequality given by Theorem 2.3.2, with ¢ given by

&y = (A - Go)Ln"- ”21
where ¢, is arbitrarily chosen subject to 0 < &, < 4. In order to deal with

d,, = min{F(0, + &,) — p, p — F({, — ¢,)}, we utilize Taylor’s Theorem
(1.12.1A) to write

F&, + &) — p = [0, + 1F"(z%)e],
where z* lies between {, and {, + ¢,, and

p— F(, — &) = f(§p)en — 4F"(2**)ed,
where z** lies between ¢, and £, — ¢,. Then
oi, = min{f*)er + fEIF"(z*)ed + HF"(2%))%s8,

S2Cer = [EIF"(2**)e) + IF"(2**)) et
2 & [N, — Me,),

where M satisfies
@) sup [F'(§,+2)| s M < o

lzl<en
for all n under consideration. Hence
'—zn&zz.. < —znslzlf(cp)[f(cp) - MG,,]
= _ZL:(A - 60)2f(€p)[f(cp) - MG,,].
For convenience let us now put
&y = ‘}A.
Recalling the definition of A4, we thus have
[p(1 - p))"*MB(log n)'?
: TR log n.

-8}, < —4p(1 - p)B’(
Hence
)

P18y = &l 2 AL~ Y2) < P(1¢,, — £,( > ¢,)

~wmws-pmafy _ [P0 = p)]"2MB(log n)'/2

=0(n~'?),
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provided that

1
6 B> —
© K= p)

We now treat

up |G,(1) — ®(1)].

]
i< Ln
From the proof of Theorem A, it is seen that

(M) sup|Gy(t) — B < n™"2C sup W(A,,) + sup |B(e) — Bca)l,

|t < Ln lt)<Ln ltI<Ln
where C is a universal constant, A,, = F(¢, + Atn~1/?),
_ (l - Anl)z + AEI
}’(A,.,) = [Am(l _ Am)]llz’

and
n'(A, — p)
= a1 - AT
Dzﬁnins g(z) = [F(¢, + 2) — F3(&, + 2)]™ /2, we have g(0) = [p(1 — p)]~ /2
an
g = —3/¢&, + 2)[1 = 2F(¢, + DI[F(&, + 2) — F¥(&, + 2)]7%7,
and thus
[An(1 =AY~ Y2 = [p(1 — p)]I™ Y + g'(zu)Atn™'72,

where z,, lies between {,and £, + Atn~ /2, Inspection of g'(z) shows that the
quantity

W, = sup lg'(2)I
|e=8p|SALnn~1/2

is finite; in fact
Wa = Wy = f(&p)'é - pllp(1 - p)]—3/2
as n — co. Hence also the quantity

Yo = sup ¥(4,)
lt| s Ln

is finite; in fact
® Tn = Yo = [(1 = p)* + P11 — p)]~¥%

as n — oo,
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Finally, by Taylor’s Theorem again,
F(, + Atn~1?) — F(¢,)
Atn~ 12
= Atlf ) + F'(§)Am™ "),
where &, lies between ¢, and ¢, + Atn~ 2 Thus

_ F'Cp)
Cnt = t(l + 7€)

= t(1 + hytn~ %), say,

nllz(Am -p=A

Atn“”)(l + [p(1 — p)]"%g'(zw)Atn™11%)

where we have
®) sup |hy| = H, = O(1),

lt}<Ln
since F” is bounded in a neighborhood of ¢,. Thus, for n large enough that
(10) H,L,n™'? < 4,
application of the lemma preceding the theorem, with a = h,,n™ /2, yields
(11) |®(t) — Oca)l < SH,n™'2 suplx®d(x)],  |t| < Ly

Since sup,[x2@(x)] < oo, it follows by (7), (8) and (11) that
(12) sup |G,(1) — ()| = O(n~ 7).

lt|<Ln
Combining (1), (2), (5) and (12), the proof is complete. W

A theorem similar to the preceding result has also been established,
independently, by Reiss (1974).

2.34 The Density of £,

If F has a density f, then the distribution G, of E,,, also has a density, g,(t) =
G,(t), for which we now derive an expression.
By Lemma 1.1.4 and the fact that nF,(A) is binomial (n, F(A)), we have

Gi() = P(¢pn S 1) = P(F,(t) 2 p) = P(nF(t) 2 np)

=) (") [F)' 1 - FOI*,

= \i
where
_Jnp if np is an integer
[np] + 1 if np is not an integer.
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Taking derivatives, it is found (Problem 2.P.14) that

at) = n(,',‘, - ll)mt)]m- '[1 — FOI"f .

Incidentally, this result provides another way to prove the asymptotic
normality of E,,,,, as stated in Corollary 2.3.3B. The density of the random
variable n'/%(¢,, — &,) is

ht) = n~ g (&, + tn=112),
Using the expression just derived, it may be shown that

™ lim h(t) = ¢(¢f(C)[p(1 — PI~'%),  eachy,
n—o

that is, h,(t) converges pointwise to the density of N(0, p(1 — p)/f%(£,)). Then
Scheflé’s Theorem (1.5.1C) yields the desired conclusion. For details of proof
of (*), see Cramér (1946) or Rao (1973). Moreover, this technique of proof
generalizes easily for the multivariate extension, Theorem 2.3.3B.

Finally, we comment that from the above expression for G,(t) one can
establish that if F has a finite mean, then for each k, E,,, has finite kth moment
for all sufficiently large n (Problem 2.P.15).

2.3.5 Quantiles Versus Moments

In some instances the quantile approach is feasible and useful when other
approaches are out of the question. For example, to estimate the parameter of
a Cauchy distribution, with density f(x) = /a1 + (x — p)?*], —0 <
x < oo, the sample mean X is not a consistent estimate of the location param-
eter 1. However, the sample median &, 12 is AN(u, n/4n) and thus quite well-
behaved.

When both the quantile and moment approaches are feasible, it is of
interest to examine their relative efficiency. For example, consider a sym-
metric distribution F having finite variance ¢? and mean (= median)
p (= &;;2). In this case both X and & 1/2 are competitors for estimation of u.
Assume that F has a density f positive and continuous at . Then, according
to the theorems we have established,

2
X is AN(u,%)

and

. 1
El/z 18 AN(#,W)-
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If we consider asymptotic relative efficiency in the sense of the criterion of
small asymptotic variance in the normal approximation, then the asymptotic
relative efficiency of &, ;2 relative to X is (recall 1.15.4)

12, X) = 40’ (w),

that is, the limiting ratio of sample sizes (of X and ¢, j2: respectively) at which
performanceis “equivalent.” For a normaldistribution F, thisrelative efficiency
is 2/, indicating the degree of superiority of X over £;,,. As an exercise
(Problem 1.P.16), evaluate e(€, 2 X) for some other distributions F. Discover
some cases when & 1,2 is superior to X.

2.3.6 A Measure of Dispersion Based on Quantiles

An alternative to the standard deviation & of F, as a measure of dispersion, is
the semi-interquartile range

R= 5(53/4 - 51/4)-
A natural estimator of R is the sample analogue
R= f(z:m - 21/4)-

By Theorem 2.3.3B and the Cramér-Wold device (Theorem 1.5.2), it follows
that (Problem 2.P.17)

. 1 3 2 3
R ¢ 18 AN(R, m (fz(f:m) - f(fl/at)f(f:m) * 72(51/4)))
For F = N(u, 6?), we have

2.2
R is AN<0.6745a, @—?)—")

See Cramér (1946), pp. 181 and 370.)

2.3.7 Nonparametric Tests Based on Quantiles

A number of hypothesis-testing problems in nonparametric inference may be
formulated suitablyin terms of quantiles (see Fraser (1957), Chapter 3). Among
these are:

(i) single sample location problem
Hypothesis: £, = v,
Alternative: &, > v
(Here p and v, are to be specified. Of course, other types of
alternative may be considered.
(ii) single sample location and symmetry problem .
Hypothesis: &,,, = vy and F symmetric
Alternative: £, # v, or F not symmetric
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(iii) two-sample scale problem
(Given Xy, ..., X,,11LD.Fand Y,,..., ¥,, L1LD. G)
Hypothesis: F(x) = G(x + ¢), all x
Alternative: {,,(F) — §,,(F) < £,,(G) — &,,(G), all p, < p,.

The most widely known “quantile” test arising for these problems is the
sign test for problem (i). Most texts provide some discussion of it, often in the
context of order statistics, which we shall examine in the forthcoming section.

2.4 THE ORDER STATISTICS

For a sample of independent observations X ,, ..., X, on a distribution F, the
ordered sample values

XXy < X,
or, in more explicit notation,
XmsX2<s < Xons
are called the order statistics and the vector
X = Xogs .-+, Xom)

is called the order statistic of the sample. If F is continuous, then with prob-
ability 1 the order statistics of the sample take distinct values (and conversely).

The exact distribution of the kth order statistic X, is easily found, but
cumbersome to use:

PXyu<x)=) (':)[F(x)]‘[l - F()I"Y, —00 < x < 0,
=k

The asymptotic theory of sequences {X .} of order statistics is discussed in
2.4.3, with some particular results exhibited in 2.4.4. We further discuss
asymptotic theory of order statistics in 2.5, 3.6 and Chapter 8.

Comments on the fundamental role of order statistics and their connection
with sample quantiles are provided in 2.4.1, and on their scope of application
in 2.4.2.

Useful general reading on order statistics consists of David (1970),
Galambos (1978), Renyi (1953), Sarhan and Greenberg (1962), and Wilks
(1948, 1962).

2.4.1 Fundamental Role of the Order Statistics; Connection with the
Sample Quantiles

Since the order statistic X, is equivalent to the sample distribution function
F,, its role is fundamental even if not always explicit. Thus, for example, the
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sample mean X may be regarded as the mean of the order statistics, and the
sample pth quantile may be expressed as

™) 2 = X, np if np is an integer,
P 7 \X,ap+1  if np is not an integer.

The representations of X and £, in terms of order statistics are a bit artificial.
On the other hand, for many useful statistics, the most natural and effective
representations are in terms of order statistics. Examples are the extreme
values X,; and X,,, and the sample range X,, — X,;. (In 2.4.4 it is seen that
these latter examples have asymptotic behavior quite different from asymp-
totic normality.)

The relation (*) may be inverted:

** X = Eu/,.,,., 1sksn

In view of (*) and (**), the entire discussion of order statistics could be carried
out formally in terms of sample quantiles, and vice versa. The choice of
formulation depends upon the point of view which is most relevant and
convenient to the particular purpose or application at hand. Together, there-
fore, the previous section (2.3) and the present section (2.4) comprise the two
basic elements of a single general theory. The cohesion of these basic elements
will be viewed more fully in a complementary analysis developed in 2.5.

2.4.2 Remarks on Applications of Order Statistics

The extreme values, X,,; and X,,, arise quite naturally in the study of floods
or droughts, and in problems of breaking strength or fatigue failure.

A quick measure of dispersion is provided by the sample range, suitably
normalized. More generally, a variety of short-cut procedures for quick
estimates of location or dispersion, or for quick tests of hypotheses about
location or dispersion, are provided in the form of linear functions of order
statistics, that is, statistics of the form ) 7., ¢, X, The class of such statistics
is important also in the context of robust inference. We shall study these
statistics technically in Chapter 8.

Order statistics are clearly relevant in problems with censored data. A
typical situation arises in connection with life-testing experiments, in which a
fixed number n of items are placed on test and the experiment is terminated as
soon as a prescribed number r have failed. The observed lifetimes are thus
Xy <+ < X, whereas the lifetimes X,,.; <+ < X, remain un-
observed. For a survey of some important results on order statistics and their
rolein estimation and hypothesis testing in life testing and reliability problems,
see Gupta and Panchapakesan (1974). A useful methodological text consists
of Mann, Schafer and Singpurwalla (1974).
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Pairs of order statistics, such as (X ,,, X,,), serve to provide distribution-free
tolerance limits (see Wilks (1962), p. 334) and distribution-free confidence
intervals for quantiles (see 2.6).

Some further discussion of applications of order statistics is provided in 3.6.

2.4.3 Asymptotic Behavior of Sequences {X,,_ }.

The discussion here is general. Particular results are given in 2.2.4 and 2.5
(and in principle in 2.3).

For an order statistic X,,, the ratio k/n is called its rank. Consider a
sequence of order statistics, {X ., }n=1, for which k,/n has a limit L (called the
limiting rank). Three cases are distinguished: sequences of central terms
(0 < L < 1), sequences of intermediate terms (L = 0 and k, = o0, 0or L = 1
n — k, = ), and sequences of extreme terms (L = 0 and k, bounded, or
L = 1 and n — k, bounded).

A typical example of a sequence of central terms having limited rank p, where 0
< p<, isthe sequenceof sample pth quantiles {£ pnin= 1 On the basis of our study
of sample quantiles in 2.3, we might speculate that sequences of central terms in
general have asymptotically normal behavior and converge strongly to appropriate
limits. This will be corroborated in 2.5.

An example of a sequence of extreme terms having limiting rank 1 is
{X""}'c'n’ 1

Generalizing work of Gnedenko (1943), Smirnov (1952) provided the
asymptotic distribution theory for both central and extreme sequences. For

each case, he established the class of possible limit distributions and for each
limit distribution the corresponding domain of attraction. For extension to
the case of independent but nonidentically distributed random variables, see
Mejzler and Weissman (1969). For investigation of intermediate sequences,
see Kawata (1951), Cheng (1965) and Watts (1977).

24.4 Asymptotic Behavior of X,

If the random variable (X,, — a,)/b, has a limit distribution for some choice
of constants {a,}, {b,}, then the limit distribution must be of the form G,, G,,
or G,, where

0, t<0,
Gi() = {e"'" t>0
e~ (-v" t<9,
G,(1) = {1 >0

and

Gy(t) =e 7", —00 <t < 0.
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(In G, and G,, « is a positive constant.) This result was established by
Gnedenko (1943), following less rigorous treatments by earlier authors. Each
of the three types G, G, and G, arises in practice, but G; occupies the pre-
eminent position. Typical cases are illustrated by the following examples.

Example A. F is exponential : F(x) = 1 ~ exp(—x), x > 0. Putting 4, =
log nand b, = 1, we have

P(}—("—"b:—a—" < t) = P(X,, —logn<t)
n

= (1 - e—lo.n—l)n

e, n-oo N

Example B. F is logistic: F(x) = [1 + exp(—x)]~!, —0 < x < c0. Again
taking a, = log n and b, = 1, we may obtain (Problem 2.P.18)

P(X,,—logn<t)— e ¢, n—->o. B

Example C. F is normal. F = ®, With
a, = (2log n)'’* — ¥(log log n + log 4n)(2 log n)~ /2

and
b, = (2log )~ /2
it is found (Cramér (1946), p. 374) that

P(E%a"s t)-»e“"', n-o. B

In Examples A and B, the rate of the convergence in distribution is quite
fast. In Example C, however, the error of approximation tends to 0 at the
rate O((log n)~?), for some f > 0, but not faster. For discussion and pictorial
illustration, see Cramér (1946), Section 28.6. The lack of agreement between
the exact and limit distributions is seen to be in the tails of the distributions,
Further literature on the issue is cited in David (1970), p. 209. See also
Galambos (1978), Section 2.10.

Statistics closely related to X,, include the range X,, — X,, and the
studentized extreme deviate, whose asymptotic distributions are discussed in
Section 3.6.

The almost sure asymptotic properties of X ,, can also be characterized. For
example, in connection with F normal, we anticipate by Example C above that
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X, is close to (2 log n)"/2 in appropriate stochastic senses. This is in fact true:
both

P(lim [X,., — (2 log n)"/?] = o) =1

n— o

and

X
im——-">= _=1}=1.
F (3‘1‘3,, @ log ) ) :
Thus X,, satisfies both additive and multiplicative forms of strong con-

vergence. For a treatment of the almost sure behavior of X,, for arbitrary F,
see Galambos (1978), Chapter 4.

25 ASYMPTOTIC REPRESENTATION THEORY FOR SAMPLE
QUANTILES, ORDER STATISTICS, AND SAMPLE DISTRIBUTION
FUNCTIONS

Throughout we deal as usual with a sequence of 1.1.D. observations X {, X5, ...
having distribution function F.

We shall see that it is possible to express sample quantiles and “central”
order statistics asymptotically as sums, via representation as a linear trans-
form of the sample distribution function evaluated at the relevant quantile.
From these representations, a number of important insights and properties
follow.

The representations were pre-figured in Wilks (1962), Section 9.6. However,
they were first presented in their own right, and with a full view of their
significance, by Bahadur (1966). His work gave impetus to a number of
important additional studies, as will be noted.

Bahadur’s representations for sample quantiles and order statistics are
presented in 2.5.1 and 2.5.2, respectively, with discussion of their implications.
A sketch of the proof is presented in general terms in 2.5.3, and the full details
of proof are given in 2.5.4. Further properties of the errors of approximation
in the representations are examined in 2.5.5. An application of the representa-
tion theory will be made in Section 2.6, in connection with the problem of
confidence intervals for quantiles.

Besides references cited herein, further discussion and bibliography may be
found in Kiefer (1970b).

2.5.1 Sample Quantiles as Sums Via the Sample Distribution Function
Theorem (Bahadur (1966)). Let 0 < p < 1. Suppose that F is twice
differentiable at £, with F'(E,) = f(E,) > 0. Then

3 p— Fn(gp)

gpn = gp + f(&p) +R,,



92 THE BASIC SAMPLE STATISTICS
where with probability 1
R, = O(n~¥4(log n)*4), n - oo.

Details of proof are given in 2.5.3 and 2.5.4, and the random variable R, is
examined somewhat further in 2.5.5.

Remarks. (i) By the statement “with probability 1, ¥, = O(g(n)) as
n — co” is meant that there exists a set {0y such that P(Q,) = 1 and for each
w € §), there exists a constant B(w) such that

| Y(w)] < B(w)g(n), all n sufficiently large.

(For Y, given by the R, of the theorem, it can be seen from the proof that the
constants B(w) may be chosen not to depend upon w.)

(ii) Bahadur (1966) actually assumes in addition that F” exists and is
bounded in a neighborhood of {,. However, by substituting in his argument
the use of Young’s form of Taylor’s Theorem instead of the standard version,
the extra requirements on F” may be dropped.

(iii) Actually, Bahadur established that

R, = O(n~¥4(log n)"/*(log log n)'/*), n— o,

with probability 1. (See Remark 2.5.4D.) Further, Kiefer (1967) obtained the
exact order for R,,, namely O(n~ ¥4(log log n)*/4). See 2.5.5 for precise details.

(iv) (continuation) However, for many statistical applications, it suffices
merely to have R, = o,(n~"/?). Ghosh (1971) has obtained this weaker con-
clusion by a simpler proof requiring only that F be once differentiable at £,
with F'({,) > 0.

(v) The conclusion stated in the theorem may alternatively be expressed
as follows: with probability 1

”I/Z(p - Fn(fp))
J ()

(vi) (continuation) The theorem thus provides a link between two
asymptotic normality results, that of E,,, and that of F,({,). We have seen
previously as separate results (Corollary 2.3.3B and Theorem 2.1.1, respec-
tively) that the random variables

”I/Z(Em - Ep) =

+ O(n~Y4(log n)**), n— .

n'(p = F,(§,)
S
each converge in distribution to N(0, p(1 — p)/f*(&,)). The theorem of

Bahadur goes much further, by revealing that the actual difference between
these random variables tends to 0 wpl, and this at a rate O(n~3*(log n)*/2).

nuz(Epn - Ep),



ASYMPTOTIC REPRESENTATION THEORY 93

(vii) Representation of a sample quantile as a sample mean. Let

pP— I(Xl < cp)
f¢&)

Then the conclusion of the theorem may be expressed as follows: wpl

Yi=¢, 4+ =1,2....

L]
& = —'1; Y Y+ 0(n~**(log n)**), n- .
i=1

That is, wpl Ep,, is asymptotically (but not exactly) the mean of the first n
members of the LLD. sequence {Y;}.

(viii} Law of the iterated logarithm for sample quantiles (under the con-
ditions of the theorem). As a consequence of the preceding remark, in con-
junction with the classical LIL (Theorem 1.10A), we have: wp1

n'?(€pm — &) _ [p(1 - p)1'?
m + Gloglogm™ =~ &)

for either choice of sign (Problem 2.P.20). This result has been extended to a
larger class of distributions F by de Haan (1974).

(ix) Asymptotic multivariate normality of sample quantiles (under the
conditions of the theorem). As another consequence of remark (vii), the
conclusion of Theorem 2.3.3B is obtained (Problem 2.P.21). W

2.5.2 Central Order Statistics as Sums Via the Sample Distribution
Function

The following theorem applies to a sequence of “central” order statistics
{X u,} as considered in 2.4.3. It is required, in addition, that the convergence
of k,/n to p be at a sufficiently fast rate.

Theorem (Bahadur (1966)). Let 0 < p < 1. Suppose that F is twice
differentiable at &, with F'(§,) = f(§,) > 0. Let {k,} be a sequence of positive
integers (1 < k., < n) such that

ko _ p+ 0((108 n)A)’ 0 - oo,

n l,11/2

for some A > 4. Then

xnk,, :p ( )f(gp) "( ) l iil'n
Whe’e With p’obabi’ity l

R, = O(n%4(log n)/»B4+1) n 5 oo,
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Remarks. (i) Bahadur (1966) actually assumes in addition that F” exists
and is bounded in a neighborhood of ¢{,. Refer to discussion in Remark
2.5.1(ii).

(ii) Extension to certain cases of “intermediate " order statistics has been
carried out by Watts (1977). W

This theorem, taken in conjunction with Theorem 2.5.1, shows that the
order statistic X, and the sample pth quantile E,,, are roughly equivalent as
estimates of {,, provided that the rank k,/n tends to p sufficiently fast. More
precisely, we have (Problem 2.P.22) the following useful and interesting
result.

Corollary. Assume the conditions of the preceding theorem and suppose that

n n
Then
12 _f oyt Kk
(*) n (xﬂk‘ &pn) r(gp)
and
* 1/2 _ 3 __k_ p(l - P))
**) n'* (X, — &p) N(f(&,)’——f’(&,) .

By (*) it is seen that X, trails along with E,,. as a strongly consistent
estimator of £,. We also see from (*) that the closeness of X, to E,,, is
regulated rigidly by the exact rate of the convergence of k,/n to p. Further,
despite the consistency of X ,_for estimation of £, itis seen by (**) that,on the
other hand, the normalized estimator has a limit normal distribution not
centered at O (unless k = 0), but rather at a constant determined by the exact
rate of convergence of k,/n to p. These aspects will be of particular interest in
our treatment of confidence intervals for quantiles (Section 2.6).

2.5.3 Sketch of Bahadur’s Method of Proof

Here we sketch, in general form, the line of argument used to establish
Theorems 2.5.1 and 2.5.2. Complete details of proof are provided in 2.5.4.
Objective. Suppose that we have an estimator T, satisfying T, *?, 6 and
that we seek to represent T, asymptotically as simply a linear transformation
of G,(6), where G,(+) is a random function which pointwise has the structure
of a sample mean. (For example, G, might be the sample distribution function.)
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Approach. (i) Let G(-) be the function that G, estimates. Assume that G
is sufficiently regular at {, to apply Taylor’s Theorem (in Young’s form) and
obtain a linearization of G(T,):

(M G(T) — G(6) = G'(6)(T, — 0) + A,

where wpl A, = O((T, — 6)*),n - .
(ii) In the left-hand side of (1), switch from G to G,, subject to adding
another component A, to the remainder. This yields

(2) G{(T) — G{6) = G'(6)(T, - 6) + A, + A,.
(iii) Express G,(T,) in the form
G\(T) =c, + 4,,

where ¢, is a constant and A, is suitably negligible. Introduce into (2) and
solve for T,, obtaining:

Cp — Gn(o)
Clearly, the usefulness of (3) depends upon the O(-) terms. This requires judi-
cious choices of T, and G,. In 2.5.4 we take G, to be F, and T, to be either 8’ pn OF
X, In this case A; = O(n~"). Regarding A,, it will be shown that for these
T,wehavethat wpl | T, — 6| = O(n~ "*(log n)"/?),yielding A, = O(n~ ! logn).
Finally, regarding A, Bahadur proves a unique and interesting lemma show-
ing that wpl A, =0(n"¥4(log n)!!/2@* 1)) under the condition that | T, ~ 6| =
O(n~"3(log n)?), whereg > 4.

+ 0(4,) + 0(4)) + O(4A)).

2.5.4 Basic Lemmas and Proofs for Theorems 2.5.1 and 2.5.2
As a preliminary, we consider the following probability inequality, one of
many attributed to S. N. Bernstein. For proof, see Uspensky (1937).

Lemma A (Bernstein). Let Y,,..., Y, be independent random variables
satisfying P(]Y; — E{Y;}| < m) = |, each i, where m < co. Then, for t > 0,

n n nztz
P( IZ:‘Y. - YE{Y}|=2 nt) <2 exp(— 3T Var(Y) +7mnt)’

im1

Joralln=12,.. ..

Remarks A. (i) For the case Var{Y} = o2, the bound reduces to

2exp| — nt’
P\~ 267 v ame/
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(i) For Y, binomial (1, p), the bound may be replaced by
nt?
2 - )
°""( 0+ r))
This version will serve our purposes in the proof of Lemma E below. W

The next two lemmas give conditions under which E,,, and X, are
contained in a suitably small neighborhood of {, for all sufficiently large n,
wpl.

Lemma B. Let 0 < p < 1. Suppose that F is differentiable at &,, with
F'(§,) = f(§;) > O. Then with probability 1

2(log n)!/?
|Epn -&ls W;

PROOF. Since F is continuous at £, with F'({,) > 0, ¢, is the unique
solution of F(x—) < p < F(x) and F({,) = p. Thus we may apply Theorem
2.3.2. Put

for all n sufficiently large.

_ 2(log n)l/?
TN
We then have
F¢,+¢)~p=F(¢, +¢&)— F,)
= f($p)en + o(en)

log n)'/? i
2 %, for all n sufficiently large.

Likewise, p — F({, — ¢,) satisfies a similar relation. Thus, for &, =
min{F({, + &) — p, p — F({, — ¢,)}, we have

2n62 > 2logn, for all g sufficiently large.
Hence, by Theorem 2.3.2,

P&, - &l>e) s %, for all n sufficiently large.

By the Borel-Cantelli Lemma (Appendix), it follows that wpl the relations
1€,n — &,| > &, hold for only finitely many n. W

Remark B. Note from Remark 2.5.1 (viii) that if in addition F"(£,) exists,
then we may assert: with probability |,

(log log n)'/?

|Epn -4l=< W,

for all sufficiently large n.
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Lemma C. Let0<p < 1. Suppose that in a neighborhood of £, F'(x) = f(x)
exists, is positive, and is continuous at &,. Let {k,} be a sequence of positive
integers (1 < k,, < n) such that

k, (log n)*
F =p+ O(W— , n-— oo,

for some A > 4. Then with probability 1

2l A
| Xok, — &pl < ﬁ, JSor all n sufficiently large.
PROOF. Define

. = 2(log n)*
" fEMTE

Following the proof of Theorem 2.3.2, we can establish
P(| X, = &l > &) < 2e72%,  alln,

where 8, = min{F(, + &,) — k,/n, k,/n — F(¢, — &,)}. Then, following the
proof of Lemma B above, we can establish

2n6 > 2logn,  for all n sufficiently large,

and obtain the desired conclusion. (Complete all details as an exercise,
Problem 2.P.24) W

As an exercise (Problem 2.P.25), verify
Lemma D. Let 0 < p < 1. Suppose that F is twice differentiable at &,. Let
T, 224 E,. Thex with probability 1
F(Tn) - F(gp) = F'(gp)(Tn - gp) + O((Tn - gp)z)) n — co.

As our final preparation, we establish the following ingenious result of
Bahadur (1966).

Lemma E (Bahadur). Let0 < p < 1. Suppose that F is twice differentiable
at &, with F'(§,) = f(€,) > 0. Let {a,} be a sequence of positive constants such
that

a, ~con~Y%(logn)?, n- oo,
for some constants ¢y > 0 and q > 4. Put
Hy, = sup |[Fo§, + x) — Fo(§))] — [FE; + x) — F(E]I.

xl S
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Then with probability 1
H,, = O(n~¥4(log n)"/3¢* 1) n - oo,
PROOF. Let {b,} be a sequence of positive integers such that b, ~
con'/4(log n), n - oo. For integers r = —b,, ..., b,, put
Heon = fp + a,b, 'r, U = F(Mps1,0) — F("r.n)!
and
Gr.n = I[Fn("r.n) - Fn(ep)] - [F("r.n) - F(fp)]l'
Using the monotonicity of F, and F, it is easily seen (exercise) that
HP" s Kn + ﬁn
where
K, = max{G,_,,: -b,srs bn}
and
B, = max{a, ,: =b, < r<b, - 1}.

Since M, 41,0 — Mp.n = ayby ! =n"*4, —b, <r < b, — 1, we have by the
Mean Value Theorem that

Oy S [ sup F({, + x)](mu... ~ M) = [ sup F'({, + x)]ﬂ"".
Ix| <on Ix|<an
—b,<r<b,— 1,and thus
) Br=0(n"%*), n- o
We now establish that with probability 1
(¢) K, = O(n~¥*(log n)¥du*1)y  p_,
For this it suffices by the Borel-Cantelli Lemma to show that
(3) EIP(K.. 2 Ya) < 0,

where y, = ¢,n~**(log n)""/?@* 1 _for a constant c, > 0 to be specified later,
Now, crudely but nevertheless effectively, we use

bn
@) P(K,271) S Y PG p2 7

r=-p,

Note that nG, , is distributed as |} Y, — Y1 E{Y;}|, where the Ys are
independent binomial (1, z, ,), with z, , = |F(y,.,) — F(¢,)|. Therefore, by
Bernstein’s Inequality (Lemma A, Remark A(ii)), we have

P(Gr.n 2 yn) < 2e—0,._ "
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where
2
O = B 70
Let ¢, be a constant > f(£,). Then (justify) there exists N such that
F(, + a)) — F(¢)p) < cza,
and
F(,) — F(§, — a,) < c,a,

for alln > N.Then 2, , < c,a, for |r| < b, and n > N. Hence 6, , > 4, for
|r| < b, and n > N, where

ny
" 2csa, + 1)
Note that
i
4cqc,

o, = (log n)

for all n sufficiently large. Given c, and c,, we may choose ¢, large enough
that ¢3/4coc, > 2. It then follows that there exists N* such that
PG, ,27y,) < 2n7?

for |r| < b, and n > N*. Consequently, for n > N*,

P(K, 2 7,).< 8b,n"2
That is,

P(K, 2 7,) = O(n™?).
Hence (3) holds and (2)is valid. Combining with (1), the proofiscomplete. W

Remark C. For an extension of the preceding result to the random variable
H, = supo<p<1 Hpn, see Sen and Ghosh (1971), pp. 192-194. B

PROOF OF THEOREM 2.5.1. Under the conditions of the theorem, we
may apply Lemma B. Therefore, Lemma D is applicable with T; = §,,, and
we have: wpl
) FCm — FCp) = fC)Em— &) + O™ logn), n— oo,
Utilizing Lemma E with ¢ = 4, and again appealing to Lemma B, we may
pass from (*) to: wpl

(**)  Fullpw) = Fi&p) = )G = &) + O(n™¥*(log n)**),  n— 0.
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Finally, since wpl F(§,,) = p + O(n™"), n - o, we have: wpl
p— Fi&) = f(E)Em — &) + O(n™**(log n)**),  n— oo
This completes the proof. H
A similar argument (Problem 2.P.27) yields Theorem 2.5.2.

Remark D. Asacorollaryof Theorem 2.5.1, we have the option of replacing
Lemma B by Remark B, in the proof of Theorem 2.5.1. Therefore, instead of
requiring

a, = O(n~'"*(log n)?)
in Lemma E, we could for this purpose assume merely
a, = O(n~"?*(log log n)'’?).
In this case a revised form of Lemma E would assert the rate
O(n~¥*(log n)*'*(log log n)'/*).
Consequently, this same rate could be asserted in Theorem 2.5.1. Il

2.5.5 The Precise Behavior of the Remainder Term R,

Bahadur (1966) showed (see Theorem 2.5.1 and Remark 2.54D) that
wpl R, = O(n~%4(log n)"’*(log log n)'/%), n — co. Further analysis by
Eicker (1966) revealed that R, = o,(n~**g(n)) if and only if g(n) — co.
Kiefer (1967) obtained very precise details, given by the following two
theorems.

Concerning the precise order of magnitude of the deviations R,, we have

Theorem A (Kiefer). With probability 1

. wMR, 291 — p)]*
hm + fogiogm™ = 3%

Jor either choice of sign.

Concerning the asymptotic distribution theory of R,, we have that n**R,
has a nondegenerate limit distribution:

Theorem B (Kiefer).

. 2 ®
lim POY*EIR, < 2) = f ‘”(u—'z/f)"’([x)T—Lx))—]m)d“'

0

(Here ® and ¢ denote, as usual, the N(0, 1) distribution function and density.)
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The limit distribution in the preceding theorem has mean 0 and variance
[2p(1 — p)/r]*/%. A complementary result has been given by Duttweiler
(1973), as follows.

Theorem C (Duttweiler). Foranye > 0,

E{(n**f€,)R,)} = [2p(1 — p)/n]"/? + o(n~"4*%),  n - 0.

It is also of interest and of value to describe the behavior of the worst
deviation of the form R,, for p taking values 0 < p < 1. For such a discussion,
the quantity R, defined in Theorem 2.5.1 is denoted more explicitly as a
function of p, by R,(p). We thus are concerned now with

RY = sup f(S)IR.(p)I.

O<p<1

This and some related random variables are investigated very thoroughly by
Kiefer (1970a).
Concerning the precise order of magnitude of R¥, we have

Theorem D (Kiefer). With probability 1

m n3/4R: s
a- o (I0g N)!"*(log log n)'"* '

Concerning the asymptotic distribution theory of R*, we have that
n¥4(log n)~ '2R* has a nondegenerate limit distribution:

Theorem E (Kiefer).

lim P(L‘R:— < z) =1- Zi(—l)“‘e’””‘ 2> 0
n-w g n)l/2 i=1 ’ .

It is interesting that the limit distribution appearing in the preceding result
happens to be the same as that of the random variable n'/*D}/? considered in
Section 2.1 (see Theorem 2.1.5A). That is, the random variables

apw
nMap2 n**R}
" 7 (log m)'?

have the same limit distribution. This is, in fact, more than a mere coincidence.
For the following resuit shows that these random variables are closely related
to each other, in the sense of a multiplicative form of the WLLN.
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Theorem F (Kiefer).
nuz R: 2. {

Note that Theorem E then follows from Theorem F in conjunction with
Theorem 2.1.5A (Kolmogorov) and Theorem 1.5.4 (Slutsky).

2.6 CONFIDENCE INTERVALS FOR QUANTILES

Here we consider various methods of determining a confidence interval for a
given quantile {, of a distribution function F. It is assumed that0 < p < 1 and
that F is continuous and strictly increasing in a neighborhood of {,. Additional
regularity properties for F, such as introduced in Sections 2.3-2.5, will be
postulated as needed, either explicitly or implicitly. Throughout, we deal with
LLD. observations X,, X,,... on F. As usual, ® denotes N(0, 1). Also,
K, will denote ®~ (1 — «), the (1 — a)-quantile of ®.

An exact (that is, fixed sample size) distribution-free confidence interval
approach is described in 2.6.1. Then we examine four asymptotic approaches:
one based on sample quantilesin 2.6.2, one based on order statisticsin 2.6.3 (an
equivalence between these two procedures is shown in 2.6.4), one based on
order statistics in terms of the Wilcoxon one-sample statistic in 2.6.5, and one
based on the sample mean in 2.6.6 (in each of the latter two approaches,
attention is confined to the case of the median, i.e., the case p = 1). Finally, in
2.6.7 the asymptotic relative efficiencies of the four asymptotic procedures are
derived according to one criterion of comparison, and also an alternate
criterion is discussed.

2.6.1 An Exact Distribution-Free Approach Based on Order Statistics
Form a confidence interval for £, by using as endpoints two order statistics,
X, and X, where k, and k, are integers, 1 < k, <k, < n. Theinterval thus
defined,
(th’ Xlllz)s
has confidence coefficient not depending on F. For it is easily justified
(exercise) that
P(X o, < §p < X)) = P(F(Xy,) < p < F(X,,))
= P(Unh <p< Unk;)s
where U,, < --- < U,, denote the order statistics for a sample of size n from

the uniform (0, 1) distribution. The computation of the confidence coefficient
may thus be carried out via

P(U,,h <p< U,.h) = l,,(k,,n - kl +1)- l,,(kg, n—k, + l),
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where I (v;, v,) is the incomplete beta function,

_ Ty +vy) (*
To(v1: 02) = £ 5 o

Tables of I,(v,, v;) may be used to select values of k; and k, to achieve a
specified confidence coefficient. Ordinarily, one chooses k, and k, as close
together as possible. See Wilks (1962), Section 11.2, for further details.

Alternatively, the computations can be carried out via tables of binomial
probabilities, since P(U,,, < p < Uy,) may be represented as the probability
that a binomial (n, p) variable takes a value at least k, but less than k,.

The asymptotic approaches in the following subsections provide for
avoiding these cumbersome computations.

i1 =) e

2.6.2 An Asymptotic Approach Based on the Sample pth Quantile

We utilize the asymptotic distribution theory for E,,,, which was seen in 2.3.3
to be AN, p(1 — p)/f 2('f,,)n). Therefore, the confidence interval

I, = 8 _ Ka[p(l - p)]”z e + Ka[p(l - p)]”z
oSG T ™
satisfies
™) confidence coefficient of I, = 1 — 20, n — 00,
and
_ 172
** length of interval I, = M’ all n.

f(Em'?

A drawback of this procedure is that f({,) must be known in order to
express the interval I,. Of course, a modified procedure replacing f(¢,) by a
consistent estimator would eliminate this difficulty. In effect, this is accom-
plished by the procedure we consider next.

2.6.3 An Asymptotic Approach Based on Order Statistics

An asymptotic version of the distribution-free approach of 2.6.1 is obtained
by choosing k, and k, to be appropriate functions of n. Let {k,,} and {k,,} be
sequences of integers satisfying 1 < k,, < k,, < nand

kln Ku[p(l - p)]llz
FI

ksn K.[p(1 — p)1'?
™ PT nl/
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n — 0. Then the intervals
Il.. = (Xnk|,|9 Xnkg,.)! n= 19 2! ceey

are distribution-free and, we shall show, satisfy

™) confidence coefficient of I;, = 1 — 20, n— oo,
and
**) with probability 1,

2K,[p(1 - p)1"?
SEm2

It follows from (*) and (**) that the interval I, is asymptotically equivalent to
the interval Ig,, in a sense discussed precisely in 2.6.4. Yet f(¢,) need not be
known for use of the interval Ig, .

To establish (*) and (**), we first show that I, and I, in fact coincide
asymptotically, in the sense that wp1 the nonoverlapping portions have length
negligible relative to that of the overlap, as n —+ 0. Write

K [p(1 — p)1*?
Xnknu - (enn - _..[;L_((.f")_ﬁl_)

= ”—llz[”llz(xnh.. - epn) +

length of interval Is, ~ n— 0o,

Kalp(l - p)]”‘]
J&p)
Applying Corollary 2.5.2 to the right-hand side, we obtain that wp1

K,[p(1 - p)]*? i
O = (b P o, no
P

That is, the lower endpoints of I, and I, are separated by an amount which
wpl is o(n~'/?), n - oo0. The same is true for the upper endpoints. Since the
length of I, is of exact order n™ !/2, (**) follows. Further, utilizing (1) to write
KJ[p(l — p)]'?
SEn'?

- P(n”’(f,,,. - &) +o,1) >

P(th.. > fp) = P(epn - + ap(n-llz) > fp)

Kl[p(l - P)] 1/2)
&) '

we have from Theorem 1.5.4 (Slutsky) that P(X,,, > ¢,)— «. Similarly,

P(X .. < ¢,) = . Hence (*) is valid.

2.6.4 Asymptotic Equivalence of /,,, and /g, .

Let us formalize the notion of relative efficiency suggested by the preceding
discussion. Take as an efficiency criterion the (almost sure) rate at which the
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length of the confidence interval tends to 0 while the confidence coefficient
tends to a limit y, 0 < y < 1. In this sense, for sample sizes n, and n, re-
spectively, procedures I,,, and I,, perform “equivalently” if n;/n, — 1 asn,
and n, — co. Thus, in this sense, the asymptotic relative efficiency of the
sequence {I,,} to the sequence {Is,} is 1. (A different approach toward
asymptotic relative efficiency is mentioned in 2.6.7.)

2.6.5 An Asymptotic Approach Based on the Wilcoxon One-Sample
Statistic

Here we restrict to the important case p = 4 and develop a procedure based
on a sequential procedure introduced by Geertsema (1970).
Assume that F is symmetric about £, and has a density f satisfying

J'w fi(x)dx < 0.

Denote by G the distribution function of 4(X; + X,), where X, and X, are
independent observations on F. Assume that in a neighborhood of £ ,;, G has
a positive derivative G' = g and a bounded second derivative G”. (It is found
that g(£,,;) = 2 Io—oao S H(x)dx.)

The role played by the order statistics X,; <. < X,, in the approach
given in 2.6.3 will be handed over, in the present development, to the ordered
values

Wy S W< < Wy,
of the N, = 4n(n — 1) averages
KX, +X), 1<i<j<n,

that may be formed from X,..., X,. Geertsema proves for the W,’s an
analogue of the Bahadur representation (Theorem 2.5.2) for the X,’s. The
relevant theorems fall properly within the context of the theory of U-statistics
and will thus be provided in Chapter 5. On the basis of these results, an
interval of the form (W,,, W,, ) may be utilized as a confidence interval for
¢y/2- In particular, if {a,} and {b,} are sequences of integers satisfying 1 <
a, <b,< N,=4n(n - 1)and

o _1 K
N, 2 @n)'?
by 1 K,
N, 2 (@BnV/¥

as n — oo, then the intervals
IWn = (u/na,.a u/nb,.)
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satisfy
&) confidence coefficient of Iy, = 1 — 2a, n— 0o,
and
(**)  with probability 1,

K.
372 F2 W™
These assertions will be justified in Chapter 5.
2.6.6 An Asymptotic Approach Based on the Sample Mean
Still another confidence interval for £, ,, is given by

K,s, K,s,
’Mn = (Xn - W!Xn + n—:/'z_)n

where X, = n~' Y1 X,, 52 = n~! Y3(X, — X,)?, and itis assumed that F is
symmetric about ¢,,, and has finite variance o2, Verify (Problem 2.P.28)
that the intervals {I,,,} satisfy

length of interval I, ~ n— .

™) confidence coefficient of Iy, » 1 — 22, n— o0,
and
** with probability 1,

length of interval I, ~ 2—5—7—;, n -~ 00.
2.6.7 Relative Efficlency Comparisons

Let us make comparisons in the same sense as formulated in 2.6.4. Denote by
e(A, B) the asymptotic relative efficiency of procedure 4 relative to pro-
cedure B. We have seen already that

e(Q,8) =1

Further, it is readily seen from 2.6.3, 2.6.8 and 2.6.6 that, for confidence
intervals for the median ¢,,,,

fUEn)
32 S2(x)dx)?’

e(Q, M) = (S, M) = 40°f*({1,2);

a0 2
e(W, M) = lZaz(f f’(x)dx) .

e(Q, W)= e(S, W) =
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As an exercise, examine these asymptotic relative efficiencies for various
choices of distribution F meeting the relevant assumptions,

The asymptotic relative efficiencies just listed are identical with the Pitman
asymptotic relative efficiencies of the corresponding test procedures, as will
be seen from developments in Chapter 10. This relationship is due to a direct
correspondence between consideration of a confidence interval as the length
tends to 0 while the confidence coefficient tends to a constant 9,0 < y < 1,
and consideration of a test procedure as the “distance” between the alter-
native and the null hypothesis tends to 0 while the power tends to a limit A,
0<A<ll

Other notions of asymptotic comparison of confidence intervals are
possible. For example, we may formulate the sequences of intervals in such
a way that the lengths tend to a specified limit L while the confidence coef-
ficients tend to 1. In this case, efficiency is measured by the rate at which the
confidence coefficients tend to 1, or, more precisely, by the rate at which the
noncoverage probability tends to 0. (The asymptotic relative efficiences
obtained in this way correspond to the notion of Hodges- Lehmannasymptotic
relative efficiency of test procedures, as will be seen in Chapter 10.)

The two notions of asymptotic comparison lead to differing measures of
relative efficiency. In the context of sequential confidence interval procedures,
the notion in which length — 0 while confidence coefficient = 1 — 2a (< 1)
has been used by Geertsema (1970) in comparing confidence interval pro-
cedures based on the sign test, the Wilcoxon test, and the mean test (i.e.,
basically the intervals {I5,}, {Iwn}, and {I,} which we have considered). The
other notion, in which length — L (> 0) while confidence coefficient —1, has
been employed by Serfling and Wackerly (1976) for an alternate comparison
of sequential confidence intervals related to the sign test and mean test.
(Extension to the Wilcoxon test remains open.)

In these two approaches toward asymptotic relative efficiency of con-
fidence interval procedures, differing probabilistic tools are utilized. In the
case of length — 0 while confidence coefficient -+ 1 — 2a (< 1), the main tool
is central limit theory. In the other case, large deviation theory is the key.

2,7 ASYMPTOTIC MULTIVARIATE NORMALITY OF CELL
FREQUENCY VECTORS

Consider a sequence of nindependent trials, with k possible outcomes for each
trial. Let p; denote the probability of occurrence of the jth outcome in any
given trial (34 p; = 1). To avoid trivialities, we assume that p; > 0, each j.
Let n; denote the number of occurrences of the jth outcome in the series of n
trials (3% n, = n). Wecall (n,, ..., n,) the “cell frequency vector” associated
with the n trials.
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Example. Such “cell frequency vectors” may arise in connection with
general data consisting of 1.I.D. random vectors X,,..., X, defined on
(Q, o, P), as follows. Suppose that the X,’s take values in R™ and let
{By,..., By} be a partition of R™ into “cells” of particular interest. The
probability that a given observation X, falls in the cell B, is p; = P(X; '(B))),
1 < j < k. With n, denoting the total number of observations falling in cell
B;, 1 <j < k, the associated “cell frequency vector” is (ny, ..., n).

In particular, let Xy, ..., X, beindependent N(@, 1) random variables. For
a specified constant ¢ > 0,let By = (— 0, ¢),B; = [—¢, c],and B3 = (¢, ).
Then {B,, B,, B;} partitions R into 3 cells with associated probabilities

pi=PX < -¢)=PX,—-0< —-¢c—0)=0(—c - 0),
p3=¢(_c+0)’
and

pp=1-®(=c—0)-D(—c+0)=D0 +c) - WO —c)

Note thus that the probabilities (py, ..., p,) which are associated with the
vector (ny, ..., ;) as parameters may arise as functions of parameters of the
distribution of the X;'s. W

The exact distribution of (ny, ..., n,) is multinomial (n; py, ..., p):

P((ny,...,m)=(ry,...,n)) = ("1 n i,k)Prl""Pi",

for all choices of integers ry > 0,...,r, =20, ry + -+ r,=n
We now show that (n,, ..., n,)is asymptotically k-variate normal. Associate
with the ith trial a random k-vector

Yl=(0""’0’ 1’0’-"’0)’

where the single nonzero component 1 is located in the jth position if the ith
trial yields the jth outcome. Then

Ny, ....,m) = iY,.

el
Further, the Y,'s are LL.D. with mean vector (p,, ..., p;) and (check) covari-
ance matrix X = [0}y xx, Where
o) = {Pl(l = p) ifi=j
(Tha .
—Dib; ifi#j.
From this formulation it follows, by the multivariate Lindeberg-Lévy CLT

(Theorem 1.9.1B), that the vector of relative frequencies (ny/n, ..., n/n) is
AN((pl’ sevy pk)’ n- 12):

*)
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Theorem. The random vector

n n
1/2 1 k
n'?l—=—py...,—= -

(n P1 n Pk)
converges in distribution to k-variate normal with mean 0 and covariance
matrix & = [0;] given by (*).

28 STOCHASTIC PROCESSES ASSOCIATED WITH A SAMPLE

In 1.11.4 we considered a stochastic process on the unit interval [0, 1]
associated in a natural way with the first n partial sums generated by a se-
quence of L1.D. random variables X, X,, ... . That is, for each n, a process
was defined in terms of X,..., X,. For the sequence of such processes
obtained as n — oo, we saw in Donsker’s Theorem a useful generalization of
the CLT. Thus the convergence in distribution of normalized sums to
N(0, 1) was seen to be a corollary of the convergence in distribution of partial
sum processes to the Wiener process. Other corollaries of the generalization
were indicated also.

We now consider various other stochastic processes which may be
associated with a sample X, ..., X, in connection with the various types
of statistic we have been considering. We introduce in 2.8.1 processes of
“partial sum” type associated with the sample moments, in 2.8.2 a “sample
distribution function process,” or “empirical process,” and in 2.8.3 a “sample
quantile process.” Miscellaneous other processes are mentioned in 2.8.4. In
subsequent chapters, further stochastic processes of interest will be introduced
as their relevance becomes apparent.

2.8.1 Partial Sum Processes Associated with Sample Moments
In connection with the sample kth moment,
a = ;ll-lziIXt
we associate a partial sum process based on the random variables
G=Xf-a, l<i<n
The relevant theory is obtained as a special case of Donsker’s Theorem.

2.8.2 The Sample Distribution Function (or * Empirical®’) Process

The asymptotic normality of the sample distribution function F, is viewed
more deeply by considering the stochastic process

n'2[F(x) — F(x)], -0 < x < 0.
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Let us assume that F is continuous, so that we may equivalently consider the
process

Y() =n'?[F(F'®)-1t], 0<t<],

obtained by transforming the domain from (— oo, o) to [0, 1], by putting
x = F~Y(t),0 <t < 1, and defining Y,(0) = Y,(1) = 0.

The random function {Y,(t), 0 <t < 1} is not an element of the function
‘space C[0, 1] considered in Section 1.11. Rather, the natural setting here is the
space D[0, 1] of functions on [0, 1] which are right-continuous and have left-
hand limits. Suitably metrizing D[0, 1] and utilizing the concept of weak
convergence of probability measures on D[0, 1], we have

Y, 4 WO (in D[O, 1] suitably metrized),

where W° denotes a random element of D[0, 1] having the unique Gaussian
measure determined by the mean function

E{W°()} =0
and the covariance function
Cov{Wo(s), Wo(t)} =s(1 —t), O0<s<t<ll.

We shall use the notation W° also for the measure just defined.

The stochastic process WP is essentially a random element of C[0, 1], in
fact. That is, W(C[0, 1]) = 1. Thus, with probability 1, the sample path of
the process W° is a continuous function on [0, 1]. Further, with probability 1,
W°(0) = 0 and W°(1) = 0, that is, the random function takes the value O at
each endpoint of the interval [0, 1]. Thus W?° is picturesquely termed the
“Brownian bridge,” or the “tied-down Wiener” process.

The convergence Y, % W? is proved in Billingsley (1968). An immediate
corollary is that for each fixed x, F,(x) is asymptotically normal as given by
Theorem 2.1.1. Another corollary is the asymptotic distribution of the
(normalized) Kolmogorov-Smirnov distance n'/?D,, which may be written
in terms of the process Y,(-) as

n'?D, = sup |Y,(1)|.

o<i<t
It follows from Y, % W© that
) lim P(n'?D, < d) = W°({x(-): sup |x(t)| < d}),
n—+c 0s5i<t

since {x(-): supp<:<1 |X(t)] < d} can be shown to be a WP-continuity set.
Also,

W°({x(-)f sup |x(t)| < d}) =1-2 fj (=1ytte~2P¢ 450,

0<r<1 J=1
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(See Billingsley (1968) for proofs of these details.) Thus follows Theorem
2.1.5A (Kolmogorov).

As discussed in 2.1.6, the result just stated may be recast as the null-
hypothesis asymptotic distribution of the Kolmogorov-Smirnov test statistic

A, = sup |F(x) — Fo(x)I.

That is, for the process
() = n'?[F(Fo'®) -], 0<t<l,
we have
n'?A, = sup |$(0)

0<r<l

and thus, under Hy: F = F,, we have n'/?A, % sup, | W°(¢)|. Thus, under
H,, n*A, has the limit distribution (1) above.

It is also of interest to have asymptotic distribution theory for A, under a
fixed alternative hypothesis, that is, in the case F # F,. This has been obtained
by Raghavachari (1973). To state the result we introduce some further
notation. Put

A= sup |F(x)— Fo(x)|

and
C, = {x: F(x) — Fo(x) = 4}, C; = {x: F(x) — Fo(x) = —A}.
It is convenient to switch from —o0 < x < o0 to 0 < ¢ < 1. Noting that

A= sup |F(Fg'(1) —tl,

0<t<i

we accordingly put
K( = FO(C,) = {t: Fo- 1(t)E C'}, i= l, 2.

anally, on the measurable space (C[0, 1], #) considered in 1.11, denote by
W? a random element having the unique Gaussian measure determined by
the mean function

E(Wo)} =0
and the covariance function
Cov{WO(s), Wo(t)} = F(Fg'(s)[1 — F(F5'(t)], O0<s<t<l

We shall use the notation W also for the measure just defined.
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Theorem (Raghavachari). Let F be continuous. Then
lim P(nY*(A, — A) < d) = W°({x(-): sup x(t) < d; sup x(t) 2 —d}),
n- e 16Ky teK3z

for —0 <d < 0.

The preceding result contains (1) above as the special case corresponding to
A=0,A, =D, and K, = K, =[0,1], in which case the measure W°
reduces to W°,

It is also of interest to investigate n'/2A, under a sequence of local alter-
natives converging weakly to F, at a suitable rate. In this context, Chibisov
(1965) has derived the limit behavior of the progess ¥,(-).

For further discussion of empirical processes, see 2.8.3 below.

2.8.3 The Sample Quantile Process

The asymptotic normality of sample quantiles, established in 2.3 and 2.5, may
be viewed from more general perspective by considering the stochastic process

Z,(p) = n”z(epn - f,), 0<p<],
with Z,(0) = Z,(1) = 0. We may equivalently write

Z(p)=n’[F7'@)-F '], O<p<l

There is a close relationship between the empirical process Y,(-) considered
in 2.8.2 above and the quantile process Z,(:). This is seen heuristically as
follows (we assume that F is absolutely continuous):

Y(0) = nALFF @) - 1]
- n"’[F,(F;'(:) -29) - t]

= n”’[F(F"(t) - -Z'—l{-g)) - t]
Z,1)
w2
~ [(F~Y@)Z,(2).
That is, there holds the approximate relationship
Yp) = - f¢)Z(p), O<psl
For the case of F uniform [0, L], this becomes Y,(p) = —Z (p),0<p < |,

which suggests Z, % — W°, which is the same as Z, & W°.

A precise and illuminating technical discussion of the empirical and
quantile processes taken together has been given in the appendix of a paper by
Shorack (1972). Another way to see the relationship between the Y,(-) and

I+

—nF(F (D)
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Z,(-) processes is through the Bahadur representation (recall 2.5), which
gives exactly '
_nllz[Fn(cp) — P]
()
- _ X
J&p)

where for each fixed p, wpl n'/?R,(p) = O(n~''* log n), n — .

+ n'2R,(p)

Z,(p) =

+ n'?R,(p),

2.8.4 Miscellaneous Other Processes

(1) The remainder process in the Bahadur representation. This process,
{R{p),0 < p < 1}, has just been discussed in 2.8.3 above and has also been
considered in 2.5.5. Its fundamental role is evident.

(ii) Empirical processes with random perturbations. A modified empirical
process based on a sample distribution function subject to random perturba-
tions and scale factors is treated by Rao and Sethuraman (1975).

(iii) Empirical processes with estimated parameters. It is of interest to
consider modifications of the process Y,(-) in connection with composite
goodness-of-fit hypotheses, where the stated null hypothesis distributions may
depend on parameters which are unknown and thus must be estimated from
the data. In thisregard, see Durbin (1973b), Wood (1975), and Neuhaus (1976).

(iv) “Extremal processes.” A stochastic process associated with the
extreme order statistics {X .}, & fixed, is defined by

- X(nt].k — Qy k
Qi) = PR ns:sn,

where a, and b, are suitable normalizing constants. See Dwass (1964),
Lamperti (1964), and Galambos (1978).

(v) “Spacings” processes. Another type of process based on order
statistics is noted in Section 3.6.

2P PROBLEMS

Miscellaneous

1. Let {a,} be a sequence of constants. Does there exist a sequence of
random variables {X,} satisfying

(a) X, 4 X for some random variable X

and
(b) E{X,} = a,, all n?

Justify your answer.
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2. Let {a,} be a sequence of constants and Y a random variable. Does
there exist a sequence of random variables {X,} satisfying

(a) X, 3 X for some random variable X,
(®) Xo-aY,

and
(c) E{X,} =0, alln?

If “yes,” prove. Otherwise give counter-example.

Section 2.1

3. For the density estimator

b,) — F(x — b,
i = T ) = Fils b,

(a) show that 2nb, f,(x) is distributed binomial (n, F(x + b,) —
F(x — b)),
(b) show that E{f(x)} = f(x)if b, - 0,
(c) show that Var{f(x)} = 0if b, = 0 and nb, — co.
4. (continuation) Apply the Berry-Esséen Theorem (1.9.5) to show that
if f is continuous and positive at x, then there exists a constant K depending
on f(x) but not on n, such that

W(x) — E{f; K
P(ftalr{f.(x{)f}](ﬁ)‘} < ') - o0 I <@y

5. (continuation) (a) Deduce from the preceding results that
(2nb,)" [ £{(x) — E{f(x)})/f**(x) % N(O, 1):
(b) Apply Taylor's Theorem to obtain (nb,)2[E{f(x)} —
f(x)] = 0, n - oo, under suitable smoothness restrictions on f and rate of
convergence restrictions on {b,};
(c) From (a) and (b), establish (2nb,)!2[£i(x) = £()1/f V2 (x) S
N(O, 1) under suitable (stated explicitly) conditions on f and {b,}.

6. Justify that n'/2D,/(log log n)'/? converges to 0 in probability but niot
with probability 1.

Section 2.2

7. Do some of the exercises assigned in the proof of Theorem 2.2.3A.
8. Show that

2

d a “3
nuz(x -4, 52 — az) -~ N((Ov 0), [”3 Ue — 0-4])
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(Hint: Use Lemma 2.2.3 to determine that the off-diagonal element of the
covariance matrix is given by Cov{X, (X, — p)?}.)

9. Show that (X, m,, my,...,m,) is asymptotically k-variate normal
with mean (g, 0%, ps,..., ), and find the asymptotic covariance matrix
n~'Z

10. Let {X,,..., X,} be LLD. with mean y and variance 62 < o0. The
“Student’s t-statistic” for the sample is
7:' = nllz(X" - #)’
s'l
where X, =n~' Y1 X,;and s2 = (n — 1)~' 3} (X; — X,)% Derive the limit
distribution of T,,.

Section 2.3

11.  Show that the uniqueness assumption on ¢, in Theorem 2.3.1 cannot
be dropped.

12. Prove Theorem 2.3.2 as an application of Theorem 2.1.3A. (Hint:
see Remark 2.3.2 (iii).)

13. Obtain an explicit constant of proportionality in the term O(n~1/2)
of Theorem 2.3.3C.

14. Complete the details of derivation of the density of Ep,, in 2.3.4.

15. Let F beadistribution function posessing a finite mean. Let0 < p < 1.
Show that for any k the sample pth quantile fp,, possesses a finite kth moment
for all n sufficiently large. (Hint: apply 1.14.)

16. Evaluate the asymptotic relative efficiency of £, ;2 relative to X by the
criterion of asymptotic variance, for various choices of underlying distribution
F. Follow the guidelines of 2.3.5.

17. Check the asymptotic normality parameters for the sample semi-
interquartile range, considered in 2.3.6.

Section 2.4
18. Check the details of Example 2.4.4B.

Section 2.5

19. Show that X,2' O(g(n)) implies X, = 0,(g(n)).

20. Verify Remark 2.5.1 (viii).

21. Verify Remark 2.5.1 (ix).

22. Prove Corollary 2.5.2.

23. Derive from Theorem 2.5.2 an LIL for sequences of central order
statistics {X,,} for which k,/n — p sufficiently fast.
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24. Complete the details of proof of Lemma 2.5.4C.
25. Prove Lemma 2.54D.
26. Provide missing details for the proof of Lemma 2.54E.

Section 2.6

27. Verify the distribution-free property of the confidence interval
procedure of 2.6.1.

28, Verify the properties claimed for the confidence interval procedure of
2.6.6.

29. Evaluate the asymptotic relative efficiencies of the confidence interval
procedures {Is }, {Iy,} and {I,,}, for various choices of F. Use the formulas
of 2.6.7. Be sure that your choices of F meet the relevant assumptions that
underlie the derivation of these formulas.

30. Investigate the confidence interval approach
- Kn (l - )]1/2 - Ka 1 - ) 12
(Ful(p___[g_nle_p__ |Ful p+___[i.ll_2.’i_
n
for the pth quantile. Develop the asymptotic properties of this interval.

Section 2.7

31. Checkthe covariance matrix X given for the multinomial(i; py, ..., py)
random k-vector.

Section 2.8

32. Formulate explicitly the stochastic process referred to in 2.8.1 and
state the relevant weak convergence result.



CHAPTER 3

Transformations of Given Statistics

In Chapter 2 we examined a variety of statistics which arise fundamentally,
in connection with a sample X, ..., X,. Several instances of asymptotically
normal vectors of statistics were seen. A broad class of statistics of interest,
such as the sample coefficient of variation s/X, may be expressed as a smooth
function of a vector of the basic sample statistics. This chapter provides
methodology for deriving the asymptotic behavior of such statistics and
considers various examples.

More precisely, suppose that a statistic of interest T, is given by g(X,),
where X, is a vector of “basic” statistics about which the asymptotic be-
havior is already known, and g is a function satisfying some mild regularity
conditions. The aim is to deduce the asymptotic behavior of T,,.

It suffices for many applications to consider the situations

@ X,corX,5c;
(b X,5X;
() X,AN(m L,), where L, - 0.

For situations (a) and (b), under mild continuity requirements on g(-), we
may apply Theorem 1.7 to obtain conclusions such as T, /LN g(c), T,5 g(c),
orT, Lt g(X). However, for situation (c), a different type of theorem is needed.
In Section 3.1 we treat the (univariate) case X,(u, 02), o, — 0, and present
theorems which, underadditional regularity conditions on g, yield conclusions
such as “T, is AN(g(u), [g'(#)]%62).” In Section 3.2 the application of these
results, and of Theorem 1.7 as well, is illustrated in connection with the
situations (a), (b), and (c). In particular, variance-stabilizing transformations
and a device called “Tukey’s hanging rootogram” are discussed. Extension
of the theorems of Section 3.1 to vector-valued g and vector X, is carried out

117
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in Section 3.3, followed in Section 3.4 by exemplification for functions of
several sample moments and for “best” linear combinations of several
estimates.

Section 3.5 treats the application of Theorem 1.7 to the important special
case of quadratic forms in asymptotically normal random vectors. The asymp-
totic behavior of the chi-squared statistic, both under the null hypothesis and
under local alternatives, is derived.

Finally, in Section 3.6 some statistics which arise naturally as functions of
order statistics are discussed.

Although much of the development of this chapter is oriented to the case of
functions of asymptotically normal vectors, the methods are applicable more
widely.

3.1 FUNCTIONS OF ASYMPTOTICALLY NORMAL STATISTICS:
UNIVARIATE CASE

Here we present some results apropos to functions g applied to random
variables X, which are asymptotically normal. For convenience and sim-
plicity, we deal with the univariate case separately. Thus here we treat the
simple case that g is real-valued and X, is AN(y, 62), with o, — 0. Multivariate
extensions are developed in Section 3.3.

Theorem A. Suppose that X, is AN(, o2), with 6, — 0. Let g be a real-
valued function differentiable at x = |, with g'(n) # 0. Then
gX,) is ANGEW, [E(W]*c?).

PROOF. We shall show that
* G(Xn)—G(ﬂ)_Xn-#po
© g'wo, o
Then, by Theorem 1.5.4 (Slutsky), the random variable [g(X,) — g(#)1/g'(w)o,
has the same limit distribution as (X, — u)/s,, namely N(0, 1) by assumption,

Define h(p) = 0 and

h(x) = g(x) — g(u)
xX—H

Then, by the differentiability of g at p, h(x) is continuous at y. Therefore, since

X, % ubyProblem 1.P.20,itfollows by Theorem 1.7 (ii)that i(X,) 5 h(u) = 0
and thus, by Slutsky’s Theorem again, that

-g@, x#*apu

X, —u

h(X,)

4 0,

that is, (1) holds. This completes the proof. W
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Remarks. (i) If, further, g is differentiable in a neighborhood of u and
g'(x) is continuous at u, then we may replace g'(u) by the estimate g'(X,) and
have the modified conclusion

9(Xa) — g(u) ¢
dXys, MO

@ii) If, further, a2 is given by 6%(u)/n, where a(u) is a continuous function
of u, then we may replace g, by the estimate o(X,)/n'/? and obtain

n'’[g(X,) — g(W)] 4
g'(X,)a(X,)

NGO, 1. W

Example A. It was seen in 2.2.4 that
s? s AN(az, Ef;_”‘)

It follows that the sample standard deviation s is also asymptotically normal,
namely

. ﬂ4—0'4
s is AN(a, 457 ) [ ]

We now consider the case that g is differentiable at u but g’'(u) = 0. The
following result generalizes Theorem A to include this case.

Theorem B. Suppose that X, is AN(p, 02), with o, = 0. Let g be a real-
valued function differentiable m(=1) times at x = p, with g™(u) # 0 but
g¥(n) = 0for j < m. Then

— g™ (wor
m! g

PROOF. The argument is similar to that for Theorem A, this time using
the function h defined by h(u) = 0 and

h(x) = g(x)——g(u_) — ™), X #u
por} (x— )"

and applying Young’s form of Taylor’s Theorem (1.12.1C). B
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Example B. Let X, be AN(0, 02), 0, =+ 0. Then

log¥(1 + X,)
—g—‘—g—j‘ 1.

(Apply the theorem with g(x) = log?(1 + x), u=0,m=2) N

3.2 EXAMPLES AND APPLICATIONS

Some miscellaneous illustrations of Theorems 1.7, 3.1A and 3.1B are provided
in 3.2.1. Further applications of Theorem 3.1A, in connection with variance-
stabilizing transformations and Tukey’s hanging rootogram, are provided in
3.2.2and 3.2.3.

3.2.1 Miscellaneous Illustrations

In the following, assume that X, is AN(y, 02), o, — 0. What can be said about
the asymptotic behavior of the random variables

1
X:s Yn’ eX..’ long,,I?
Regarding convergence in probability, we have X, > u since g, —» 0 and thus,
by Theorem 1.7,

X252 5;—5%(“##0); Ao Bt log|Xal S loglyl.
n

Moreover, regarding asymptotic distribution theory, we have the following
results,

(i) For u# 0, X2 is AN(u?, 4u%s?), by Theorem 3.1A. For u =0,
X2/a2 3 2, by Theorem 3.1B or Theorem 1.7.

(ii) For pu # 0, 1/X, is AN(1/p, a3/u*), by Theorem 3.1A. The case u = 0
is not covered by Theorem 3.1B, but Theorem 1.7 yields 0,/X, 4 1/NQ, 1).

(iii) For any p, X is AN(e", e**a?).

(iv) For u+ 0, log|X,| is AN(log|ul, a3/u?). For p = 0, log| X,/a,| =
log| N, 1)].

3.2.2 Variance-Stabilizing Transformations

Sometimes the statistic of interest for inference about a parameter 8 is
conveniently asymptotically normal, but with an asymptotic variance
parameter functionally dependent on 6. That is, we have X, AN(6, a3(6)). This
aspect can pose a difficulty. For example, in testing a hypothesis about 8 by
using X, the rejection region would thus depend upon 6. However, by a
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suitable transformation g(+), we may equivalently use ¥, = g(X,)for inference
about g(0) and achieve the feature that Y, is AN(g(6), 7.), where 7, does not
depend upon 6.

In the case that 6%(6) is the form o2(f) = h*(O)v,, where v, = 0, the
appropriate choice of g may be found via Theorem 3.1A. For, if ¥, = g(X,)
and g'(0) # 0, we have

Y, is AN(g(0), [4'(0)1*h*(B)v,).

Thus, in order to obtain that Y, is AN(g(0), c?v,), where c is a constant inde-
pendent of 6, we choose g to be the solution of the differential equation

dg _ ¢

d0 — h(®)
Example. Let X, be Poisson with mean 0n, where 6 > 0. Then (Problem
3.P.1) X, is AN(6n, On), or equivalently,

—":3 is AN (0, g)
n n

Let g be the solution of

dg(0) ¢

a6 T o
Thus g(x) = 2¢x'/2, Choose ¢ = 4 for convenience. It follows that (X ,/n)'/? is
AN(6"%,1/4n), or equivalently X /2 is AN((6n)'/2, 3). This result is the basis
for the following commonly used approximation: if X is Poisson with mean u
and y is large, then X'/ is approximately N(u''%, 1. #H

A further illustration of the variance-stabilizing technique arises in the
following subsection. Other examples may be found in Rao (1973), Section 6.g.

3.2.3 Tukey’s “Hanging Rootogram”

Histograms and other forms of density estimator (recall 2.1.8) provide popular
ways to test a hypothesized distribution. A plot is made depicting both the
observed density estimator, say f,(x), and the hypothesized density, say
Jo(x), for ~o0 < x < o (or a < x < b). This enables one to visually assess
the disparity between (the population density generating) the observed f,(-)
and the hypothetical fy(-). Several features are noteworthy, as follows.

(i) Typically, £,(x) is asymptotically normal. For example, in the case of
the simple f,(-) considered in 2.1.8 and in Problems 2.P.3-5, we have that

Sx) is  AN(f(x), f(x)/2nb,),

where nb, — c0. Thus the observed discrepancies f,(x) — fo(x) are

AN(f(x) = fo(x), f(x)/2nb,).
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(ii) The observed discrepancies fluctuate about the curve traced by fo(x).

(iii) Under the null hypothesis, all discrepancies are asymptotically
normal with mean 0, but nevertheless two observed discrepancies of equal size
may have quite different levels of significance since the asymptotic variance in
the normal approximation depends on x.

Regarding property (i), we comment that it is quite satisfactory to have a
normal approximation available. However, properties (ii) and (iii) make
rather difficult a simultaneous visual assessment of the levels of significance
of these discrepancies. A solution proposed by Tukey to alleviate this
difficulty involves two elements. First, make a variance-stabilizing trans-
formation. From 3.2.2 it is immediately clear that g(x) = x'/? is appro-
priate, giving

2A(x) is  AN(SY*(x), 1/8nb,)

Thus we now compare the curves f1/%(x) and f3/%(x), and under the null
hypothesis the observed discrepancies f1/2(x) — f3/3(x) are AN(O, jnb,),
each x. Secondly, instead of standing the curve f}/3(x) on the base line, it is
suspended from the hypothetical curve f3/%(x). This causes the discrepancies
fi3(x) — f13(x) all to fluctuate about a fixed base line, all with a common
standard deviation (8nb,)”!/2, The device is picturesquely called a hanging
rootogram. For an illustrated practical application, see Healy (1968).

3.3 FUNCTIONS OF ASYMPTOTICALLY NORMAL VECTORS

The following theorem extends Theorem 3.1A to the case of a vector-valued
function g applied to a vector X, which is AN(p, b2E), where b, — 0.

Theorem A. Suppose that X, = Xa1y ..., Xax) is AN(R, b2L), with L a
covariance matrix and b, — 0. Let g(x) = (g4(X), ..., Bu(X)), X = (X1, ..., Xg),
be a vector-valued function for which each component function g(x) is real-
valued and has a nonzero differential g(n; t), t = (t,,.".., t,), at X = . Put

oA

7,
8(X,) is AN(g(w), b2DED).

PROOF. Put I, =hH2E By the definition of asymptotic multivariate
normality (1.5.5), we need to show that for every vector A = (4,,..., 4,)such
that ADL, D'\’ > 0 for all sufficiently large n, we have

Mg(X,) — g’ «
(1) (L_DW/T = N(O, 1).

Then
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Let A satisfy the required condition and suppose that n is already sufficiently
large, and put b,, = (ADXE, D')')"/2, Define functions h;, 1 < i < m, by hy(p)
= 0 and

gi(x) — g(1) — gip; x — p)

h(x) = , b .
® Ix = w e
By the definition of g, having a differential at p (1.12.2), h(x) is continuous
at .
Now
2

Mg(X,) - gw)]bs,' = ‘Z‘ Aibia' [gdXa) — gdw)]

= lZl/hlu‘.‘h‘(x..)llx.. -+ ‘;l,b{,,’g,(u; X, — B
By the linear form of the differential, we have

3) Z‘-tbu gn; X, —p) = Zlfbhnl Z (X, - I‘;)

i=l

ax,
0

~ b Y (X - w3 b5

I=1 Xy

(D)X, - py
" [AD)E,(D)]*

By the assumption on A, and by the definition of asymptotic multivariate
normality, the right-hand side of (3) converges in distribution to N(0, 1). Thus

@ ‘Zliab{..‘g;(u; X, — )3 N, 1).
Now write
Q) z b h(X)IX, — pl = bt IX, — pl ; Ah(Xs).

By Application C of Corollary 1.7, since £, — 0 we have X, & p. Therefore,
since each h, is continuous at p, Theorem 1.7 yields

Z Ak l(xn) i Z Ahi(p) =

i=1
Also, now utilizing the fact that X, is of the form b2E, and applying Application
B of Corollary 1.7, we have

b IX, — pll = ADEDA) 2671 |X, — pll S ().
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It follows by Slutsky’s Theorem that the right-hand side of (5) converges in
probability to 0. Combining this result with (4) and (2), we have (1). W

Remark A. In the above proof, the limit law of [g(x,) — g(p)], suitably
normalized, was found by reducing to the differential, g(n; X, — p), likewise
normalized, and finding its limit law. The latter determination did not involve
the specific form b2E which was assumed for I,. Rather, this assumption
played a role in the reduction step, which had two parts. In one part, only the
property £, — 0 was needed, to establish X, & p. However, for the other part,
to obtain (\DE,D'A")~1/3||X, — p|| = 0(1), a further restriction is evidently
needed. W

An important special case of the theorem is given by the following result for
g real-valued and b, = n™!/2,

Corollary. Suppose that X, = (Xa1, ..., Xox) is AN(u,n"'X), with £ a
covariance matrix. Let g(x) be a real-valued function having a nonzero differ-
ential at X = p. Then

)

8(X,) is AN(S(II): Z Z T e 6
a1 y=1 X
Remarks B. (1) A sufficient condition for g to have a nonzero differential at
pis that the first partial derivatives dg/dx,, 1 < i < k, be continuous at p and
not all zero at p (see Lemma 1.12.2).
(i) Note that in order to obtain the asymptotic normality of g(X,;,
X,.), the asymptotic joint normality of X, ..., X, is needed. W

O
x=pn axl

Analogues of Theorem A for the case of a function g having a differential
vanishingat x = p may be developed as generalizations of Theorem 3.1B. For
simplicity we confine attention to real-valued functions g and state the
following.

Theorem B. Supposethat X, = (Xay, ..., Xox) is AN(m, n ™! E). Let g(x) be a
real-valued function possessing continuous partials of order m (>1) in a
neighborhood of X = p, withall the partials of orderj,1 < j < m — 1, vanishing
atx = W, but with the mth order partials not all vanishing at X = p. Then

1 k
n™2[g(X,) — -§>—~
[(Xa) — 8] = — gl ‘Elax“ % hen ik
whereZ = (Z,,...,Z,) = N(0, L).
PROOF. In conjunction with the multivariate Taylor expansion

(Theorem 1.12.1B), employ arguments similar to those in the proof of
Theorem A. 1B
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Remark C. For the simplest case, m = 2, the limit random variable appear-
ing in the preceding result is a quadratic form ZAZ', where

1 8
A= (— g ) .
x=pn/kxk

2 0x; 0x,
We shall further discuss such random variables in Section 3.5. W

34 FURTHER EXAMPLES AND APPLICATIONS

The behavior of functions of several sample moments is discussed in general in
3.4.1 and illustrated for the sample correlation coefficient in 3.4.2. It should be
noted that statistics which are functions of several sample quantiles, or of both
moments and quantiles, could be treated similarly. In 3.4.3 we consider the
problem of forming an “optimal” linear combination of several asymp-
totically jointly normal statistics.

3.4.1 Functions of Several Sample Moments

Various statistics of interest may be expressed as functions of sample moments.
One group of examples consists of the sample “coefficients” of various kinds,
such as the sample coefficients of variation, of skewness, of kurtosis, of
regression, and of correlation. By Theorem 2.2.1B, the vector of sample
moments (ay, ..., a,) is AN((ay, ..., %), n”'L), for some E. It follows by
Corollary 3.3 that statistics which are functions of (a,, ..., g,) are typically
asymptotically normal with means given by the corresponding functions of
(2, ..., ) and with variances of the form c/n, ¢ constant. As an example, the
correlation coefficient is treated in 3.4.2. Another example, the sample
coefficient of variation s/X, is assigned as an exercise. Useful further discussion
is found in Cramér (1946), Section 28.4. For a treatment of c-sample applica-
tions, see Hsu (1945). For Berry-Esséen rates of order O(n™!) for the error of
approximation in asymptotic normality of functions of sample moments, see
Bhattacharya (1977).

3.4.2 Illustration: the Sample Correlation Coefficient

Let (X,, Y)),...,(X,, Y,) be independent observations on a bivariate
distribution. The correlation of X, and Y, is p = g,,/0,0,, where o,, =
E{(Xl - ux)(Yl - uy)}9 Hx = E{Xl}9 Hy = E{Yl}9 G: = var{xl}, oy =
Var{Y,}. The sample analogue,

L Eo - D -
Fa-n] T i ]
=1 ni=y

p_
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may be expressed as § = g(V), where
n 1 n n
v=@xlzwfzwﬁz&@
= =y nial
and
Zs — 2123
Gs = 2D = D

The vector V is AN(E{V}, n~'E), where L, is the covariance matrix of
(X, 1, X3, Y}, X, Y,). (Compute X as an exercise.) It follows from Corollary
3.3 that

9(21, 23,23, 24, 25) =

p is AN(p,n~'dZd),
g )
d=|— .
(azl 2= E(V)
The elements of d are readily found. Since
30_ = zy(z5 = 2423) _ 22
0z (23— 2DP(ze — D' (23 — 2D)'P(es — 2D

we obtain

where

)
=E(V) T Oz

d, = %9 =PHs _ Wy
6z1 = E(V) 0’,2, 0’,,0’,
Likewise
4= Py B
622 2= E(V) U; UxU’
Verify that
P 1
ds = 207 4s 207’ ds 0,0,

3.4.3 Optimal Linear Combinations

Suppose that we have several estimators d,,, . .., ,, each having merit as an
estimator of the same parameter 6, and suppose that the vector of estimators
is asymptotically jointly normal: X, = (8,4, ..., 8,) is AN((@, . .., 6), n™'E).
Consider estimation of 0 by a linear combination of the given estimates, say

k
an = Zﬁtanh

im1



FURTHER EXAMPLES AND APPLICATIONS 127

where B = (fy, ..., B;) satisfies B, + --- + B, = 1. Such an estimator 8,
is AN(6, n~'BEP’). The “best” such linear combination may be defined as that
which minimizes the asymptotic variance. Thus we seek the choice of p which
minimizes the quadratic form PEP’ subject to the restriction )% §, = 1.

The solution may be obtained as a special case of useful results given by
Rao (1973), Section 1.f, on the extreme values attained by quadradic forms
under linear and quadratic restrictions on the variables. (Assume, without
loss of generality, that X is nonsingular.) In particular, we have that

inf PP = 1
B Bi=1 Y Yhei 0l

where &* = £~! = (of}), and that this infimum is attained at the point

& %
_ . Mi~i 0l Y10}
po—(ﬂox,---,ﬂon)— W_iv---v k x Y
i=1 2.j=10ij i=1 2 j=10ij
For the case k = 2, we have

022 —0y3

) 3
o 011022 — 0713 014032 — Oj;

~0y3 Oy

3 3
041022 — 013 041033 ~ O3

and thus the optimal P is

022 — Oy Oyy — 0y2
"o = (ﬂop ﬂoz) = ( ),

’
Oy + 033 — 20, 04y + 05, — 20y,

in which case
. 2
011033 — 013
01y + 033 — 20y,

BoZBo =

Putting 0} = 0,,, 03 = 0,,, p = 0,2/0,0,, and A = d3/a3, we thus have
g 01 1

1 - p?
T+ A= 247

Assume, without loss of generality, that 0} < o3, that is, A > 1. Then the
preceding formula exhibits, in terms of p and A, the gain due to using the
optimal linear combination instead of simply the better of the two given
estimators. We have

BoZPo Al -pY) (1 — pA'2y?

o2 "1+A—2pA”==1'1+A-2pA‘/7’

BoEBo = UfA
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showing that there is strict reduction of the asymptotic variance if and only if
pAY? # 1. Note also that the “best™ linear combination is represented in

terms of p and A as
A — pA'2 1 - pAl2
po = (ﬁou ﬁoz) - (l + A— szl/Z’ 1 + A — szl/Z .
As an exercise, apply these results in connection with estimation of the mean

of a symmetric distribution by a linear combination of the sample mean and
sample median (Problem 3.P.9).

3.5 QUADRATIC FORMS IN ASYMPTOTICALLY MULTIVARIATE
NORMAL VECTORS

In some applications the statistic of interest is a quadratic form, say T, =
X,CX, in a random vector X, converging in distribution to N(p, ). In this
case, we obtain from Corollary 1.7 that T, % XCX', where X is N(i, E). In
certain other situations, the statistic of interest T, is such that Theorem 3.3B
yields the asymptotic behavior, say n(T, — A) % ZAZ', for some A and A,
where Z is N(0, L). (There is a slight overlap of these two situations.)

In both situations just discussed, a (limit) quadratic form in a multivariate
normal vector arises for consideration. It is of particular interest to know
when the quadratic form has a (possibly noncentral) chi-squared distribution.
We give below a basic theorem of use in identifying such distributions, and
then we apply the result to examine the behavior of the “chi-squared statistic,”
a particular quadratic form in a multinomial vector. We also investigate
other quadratic forms in multinomial vectors.

The theorem we prove will be an extension of the following lemma proved
in Rao (1973), Section 3.b.4.

Lemma. Let X = (X,,..., X,) be N(w, L), L the identity matrix, and let
Cy «« be a symmetric matrix. Then the quadratic form XCX' has a (possibly
noncentral) chi-squared distribution if and only if C is idempotent, that is,
C? = C, in which case the degrees of freedom is rank (C) = trace (C) and the
noncentrality parameter is pCp'.

This is a very useful result but yet is seriously limited by the restriction to
independent X,, ..., X,. For the case p = 0, an extension to the case of
arbitrary covariance matrix was given by Ogasawara and Takahashi (1951). A
broader generalization is provided by the following result.

Theorem. Let X = (X,,...,X.) be N(n, ), and let Cyx be a symmetric
matrix. Assume that, for n = (n e evs Mk

1) NE=0=>np' =0



FORMS IN ASYMPTOTICALLY MULTIVARIATE NORMAL VECTORS 129

Then XCX' has a (possibly noncentral) chi-squared distribution if and only if
#)] LCICE = ECL,

in which case the degrees of freedom is trace (CX) and the noncentrality param-
eter is pCp'.

PROOF. Let A, = ::- > A, = 0 denote the eigenvalues of X. Since I is
symmetric, there exists (see Rao (1973), Section 1.C.3(i) and related dis-
cussion)an orthogonal matrix Bhavingrowsb,, ..., b, whichare eigenvectors
corresponding to 4,, ..., 4, that is,

b,!: = A‘bi, l S i S k.

Thus
4 0
* BEB = A = o= (A6,
0 A
where &, = I(i = j), or
(**) BAB= L.
Put
VvV = XB'.

Since X is N(p, E), it follows by (*) that V is N(uB’, A). Also, since B is
orthogonal, X = VB and thus
XCX' = VBCB'V’,
We now seek to represent V as V = WA'/2, where W = N(a, I,) for some a
and A2 = (A}/25,)), x\. Since pB’ = (puby, ..., pb}), we have by (1) that the
jth component of pB’ is 0 whenever 4; = 0. Define
L [pbiart i 0,
0 if4, =0.
ThusaAY? = (a,4}72,..., 4, A}/?) = pB and V hasthe desired representation
for this choice of & Hence we may write
XCX' = WA'2BCB'A'?W = WDW/,
where D = AY2BCB’A'2, It follows from the lemma that XCX' has a chi-
squared distribution if and only if D* = D. Now
D? = (AY2BCB'AY2)(AY/2BCB'A2)
= A'?BCB’ABCB'A"? = AY?BCECB'A',
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making use of (**). Thus D? = D if and only if
€)) A'2BCECB'A!? = AV2BCB'A'2,
Now check that

AA; = AA; < AV2A | = A4,

and

AA= A A=A AV = A A2,
Thus (3) is equivalent to
(C)) ABCZICB'A = ABCB'A.

Now premultiplying by B’ and postmultiplying by B on each side of (4),
we have (2). Thus we have shown that D? = D if and only if (2) holds. In this
case the degrees of freedom is given by rank (D). Since trace (A!/2AA/2) =
trace (AA) and since AB = BX, we have

rank(D) = trace(ABCB’) = trace(BECB') = trace(EC).
It remains to determine the noncentrality parameter, which is given by
aDa’ = aA'?BCB'A'%a’ = pB'BCBBy = pCp'.

Example A. The case E norsingular and C = L~'. In this case conditions (1)
and (2) of the theorem are trivially satisfied, and thus XX~ !X’ is distributed as

#EE"'W). |

Example B. Multinomial vectors and the *“chi-squared statistic.” Let
(ny, ..., ) be multinomial (n;py,...,p,), with each p; > 0. As seen in
Section 2.7, the vector

. n n
x,,=n”2(-n—l'—l’|,---.;*"l’k) =(Xlll9""xnk)

converges in distribution to N(0, I), where

= {Pi(l - pj)’ i=ja
Y ~=bip) i #j

A popular statistic for testing hypotheses in various situations is the chi-

squared statistic
& (m — np)? & 1 ("1 )2
T, = —_—=p) —|—- .
" 2’; np; 12:'1 pi\n b
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This may be represented as a quadratic form in X,:

=3 Lxz-xcx,

i=1 Pi
where
1/py 0 1
C = ". = (— 5”).
0 1/ps P

We now apply the theorem to determine that the “chi-squared statistic” is,
indeed, asymptotically chi-squared in distribution, with k — 1 degrees of
freedom. That is,

7;-“’13-1-

We apply the theorem with u = 0, in which case condition (1) is trivially
satisfied. Writing 0,; = p(d,, — p)), we have

1
CX = (‘ °'u) = (511 - )

Pi

and thus
x
CZCr = (121(5" - Pl)(‘su - Pj)) = (5u - PJ)'= Cx
and hence (2) holds. We also see from the last step that
x
trace(CX) = Y (1 — p)) = k — 1 (= rank(CE)).
J=1

Thus we have that, for the given matrices X and C,

X,5NOD)=>T,=X,CX. 3., W

Example C (continuation). It is also of interest to consider the behavior of
the statistic 7, when the actual distribution of (ny, ..., n,) is not the hypothe-
sized multinomial (n; p,, ..., p,) distribution in terms of which T, is defined,
but rather some other multinomial distribution, say multinomial (n; p,;,
«++» Pm)» Where the parameter (p,,,..., p,) converges to (p,,...,p,) at a
suitable rate. Whereas the foregoing asymptotic result for 7, corresponds to its
behavior under the null hypothesis, the present consideration concerns the
behavior of T, under a sequence of “local” alternatives to the null hypothesis.
In particular, take

Pu=p+An~'"%  I<i<kn=12...
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Then we may express X, in the form
ny n,
T L .. By e ),
X, =n' (n P> " Pk)+(A1 x)

that is,
X, =X+ A,
where A = (A, ..., A)) satisfies Y% A, = 0 and n~"/3X¥ is a mean of LLD.
random vectors, each multinomial (1;p,,,..., pw). By an appropriate
multivariate CLT for triangular arrays (Problem 3.P.10), we have X} —
N(0, ) and thus X, 4 N(A, ). We now apply our theorem to find that in
this case T, converges in distribution to a noncentral chi-squared variate. We
have already established in Example B that (2) holds and that rank (CE) =
k — 1. This implies that rank () = k — 1 since rank (C) = k. Thus the value
0 occurs with multiplicity 1 as an eigenvalue of E. Further, note that 1, =
(1,...,1) is an eigenvector for the eigenvalue 0, that is, E1; = 0. Finally,
Al = Y% A, = 0. It is seen thus that (1) holds. Noting that
k 2
ACA'= ¥ A—‘,
i=1 Pi
we obtain from the theorem that, for E and C as given,

d A}
X,»NAIL=T, XCX'—»x,‘ l(zp)
]

Note that this noncentrality parameter may be written as

5 (7).

An application of the foregoing convergence is to calculate the approximate
power of T, as a test statistic relative to the null hypothesis

Ho:(ng,...om) is multinomial (n; py, ..., p)
against an alternative
H,:(ny,...,n) is multinomial (n;pt,..., pd).

Suppose that the critical region is {T,, > t,}, where the choice of t, for a level «
test would be based upon the null hypothesis asymptotic x2.. ; distribution of
T, Then the approximate power of T, at the alternative H, is given by inter-
preting (p}, ..., p¥) as (p,y, ..., pu) and calculating the probability that a
random variable having the distribution

Xf—x( Z - (p? _p‘)z)

i=t Di
exceeds the value t,. W
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Example D (continuation). Further quadratic forms in multinomial vectors.
Quadratic forms in

X =np2(M_p B
. n(n Piseos = Py

other than the chi-squared sthtistic may be of interest. As a general treatment,
Rao (1973), Section 6.a.1, considers equivalently the vector

vV = ny, —np, Ny — npy
"\ mp)'? T (p)t2 )
which is related to X, by V, = X, D, where
pr'® 0

D= = (p,'”zﬁ,j).
0 p'

Rao puts
b =@i%...,n")

and establishes the proposition: a sufficient condition for the quadratic form
V,CV,, C symmetric, to converge in distribution to a chi-squared distribution is

™ C’=C and ¢C = ad,

that is, C is idempotent and ¢ is an eigenvector of C, in which case the degrees of
freedom is rank (C) if « = 0 and rank (C) — 1 ifa # 0.
We now show that this result follows from our theorem. By Application A

of Corollary 1.7, V, > N(0, £*), where

' pl(dlj Pj))
= = ( ( ) 1)115 "'( ij plpj)

=L -¢¢.
Applying (*), we have
CE*=C-Cddp=C-ad'¢p
and hence (check)
CIL*CI* = C — 20d'd + o'
But (*) implies « = 0 or 1, so that
CI*CZ* = C — ad'd = CI¥,
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that is, CE* is idempotent. Further, it is seen that
trace(C) = rank(C) if a=0
trace(C) — 1 = rank(C) — 1 if a0
Thus the proposition is established.
In particular, with C = I,, the quadratic form V,CV, is simply the chi-

squared statistic and converges in distribution to x2_,, as seen in Example B.
|

trace(CX*) = {

3.6 FUNCTIONS OF ORDER STATISTICS

Order statistics have previously been discussed in some detail in Section 2.4,
Here we augment that discussion, giving further attention to statistics which
may be expressed as functions of order statistics, and giving brief indication of
some relevant asymptotic distribution theory. As before, the order statistics
of a sample X,,..., X, aredenoted by X,, < --- < X,,.

A variety of short-cut procedures for quick estimates of location or scale
parameters, or for quick tests of related hypotheses, are provided in the form
of linear functions of order statistics, that is statistics of the form

n
Z culX ni:
i=1
For example, the sample range X,,— X,; belongs to this class. Another
example is given by the a-trimmed mean.

1 n=-[na)
n — 2[no jupagiss

which is a popular competitor of X for robust estimation of location. A broad
treatment of linear functions of order statistics is provided in Chapter 8.

In robustness problems where outliers (“contaminated” or “wild”
observations) are of concern, a useful statistic for their detection is the
studentized range.

niy

X — Xu
4,
where &, is an appropriate estimator of a. A one-sided version, for detection of
excessively large observations, may be based on the so-called extreme deviate
X, — X. Likewise, a studentized extreme deviate is given by (X,, — X)/s.

The differences between successive order statistics of the sample are called
the spacings. These are

Dnl=xnl—xn.l-ls 2gign
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The primary roles of Dy, = (D,;, ..., D,,) arise in nonparametric tests of
goodness of fit and in tests that F possesses a specified property of interest. As
an example of the latter, the hypothesis that F possesses a “monotone
failure rate” arises in reliability theory. A general treatment of spacings is
given by Pyke (1965), covering the exact distribution theory of spacings, with
emphasis on F uniform or exponential, and providing a variety of limit
theorems for distributions of spacings and of functions of spacings. Some
recent developments on spacings and some open problems in the asymptotic
theory are discussed in Pyke (1972).
We conclude with two examples of distribution theory.

Example A. The sample range. Suppose that F is symmetric about 0 and
that (X,, — a,)/b, has the limit distribution
Git)=e*"', —w<t<oo

Then, by symmetry, the random variable —(X,, — a,)/b, also has limit
distribution G,. Further, these two random variables are asymptotically
independent, so that their joint asymptotic distribution has density

eTre e _w <5t < .
It follows that the normalized range
(Xun = Xn1) — 2a,
bn

has limit distribution with density

f e T dy = e K g(2e™ /),
where K4(z) is a modified Bessel function of the 2nd kind. See David (1970),
p.21l. W

Example B. The Studentized Extreme Deviate. Suppose that F has mean 0
and variance 1, that (X,, — a,)/b, has limit distribution G, and that

Then it turns out (Berman (1963)) that G is also the limit distribution of the
random variable
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where X =n~' Y1 X, and s? = (n — 1)7' ¥ (X; — X)% In particular, for
F N(, 1),

X, — X log | log 4
y{(z log n)”*(——s——— — (2 logm'? 4+ 28 2‘:‘; 'l'o: n‘)’ﬁ, ")} -G, W

3.P PROBLEMS

Sections 3.1, 3.2

1. Let X, be Poisson with mean A, and suppose that A, — c0 as n — o0.
Show that X, is AN(4,, 4,), n — oo. (Hint: use characteristic functions.)

2. Forthe one-sided Kolmogorov-Smirnov distance D, treated in 2.1.5,
show that 4n(D;")? 5 2.

3. Let X, N(u, ¢?) and let Y, be AN(u, a%/n). Let

_ 0’ |x‘ <1
o) = {axz +b x|21

Investigate the limiting behavior of g(X,) and g(Y,). (By “limiting behavior”
is meant both consistency and asymptotic distribution theory.)
4, Let X,,..., X, be independent N(6, 1) variables, § unknown. Con-
sider estimation of the parametric function
W0) = Pi(X, S c) = ®(c - 0),

where ¢ is a specified number. It is well known that the minimum variance
unbiased estimator of y(8) is

c—-X,

Determine the limiting behavior of this estimator.

o

Sections 3.3, 3.4

5. Provide details of proof for Theorem 3.3B.

6. Complete the details of the sample correlation coefficient illustration
in 3.4.2.

7. Show that the sample correlation coefficient (defined in 3.4.2) con-
verges with probability 1 to the population correlation coefficient. Show also
that it converges in rth mean, each r > 0.

8. Let X,, X;,... be LLD. with mean u and variance o2, and with
M4 < 00. The sample coefficient of variation is s, /X,, where X, = n=! Y} X,
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and s? = (n—1)"! Y1 (X, — X,)?. Derive the asymptotic behavior of
s/ X,. That is, show:

(i) Ifu # 0, then

S,, wp] o

(@) X

Se o 1{o%u, p3  pe— 4
b 7": is AN(;,;[“42_E§+ ;”2022 :

(ii) If p =0, then

s, - 1

X, N@© 1)

9. Consider independent observations X, X, ... on a distribution F
having density F' = f symmetric about u. Assume that F has finite variance
and that F” exists at u. Consider estimation of 2 by a linear combination of the
sample mean X and the sample median £, ,.

(a) Derive the asymptotic bivariate normal distribution of (X, &, 12):
(Hint: use the Bahadur representation.)
(b) Determine the “best” linear combination.

-1/2

Section 3.5
10. Multivariate CLT for triangular array. Let X, = (X,,,..., Xu) be a
meanof nLL.D.randomk-vectors({,;y, . . ., &up)s 1 < j < n,eachhavingmean

(0, ..., 0) and covariance matrix X,. Suppose that £, —» X, n - o0, where L is
a covariance matrix. Suppose that all £, satisfy E|&,;|>** < K for some
fixed e > Oand K < 0. Show that X, is AN(0,n~ 'X). (Hint: apply Corollary
1.9.3 in conjunction with the Cramér-Wold device.)

11. Discuss the asymptotic distribution theory of 7, = X,CX, when
X, 5 Xand C, & C, where C is a constant matrix. In particular, deal with the
modified chi-square statistic

k 2
(n = np)
T* = A L 4
l-zl ny



CHAPTER 4

Asymptotic Theory in

Parametric Inference

This chapter treats statistics which arise in connection with estimation or
hypothesis testing relative to a parametric family of possible distributions for
the data.

Section 4.1 presents a concept of asymptotic optimality in the context of
estimation on the basis of a random sample from a distribution belonging to
the specified family. In particular, Section 4.2 treats estimation by the method
of maximum likelihood, and Section 4.3 considers some other methods of
estimation. Some closely related results concerning hypothesis testing are
given in Section 4.4,

We have seen in Section 2.7 how data in the form of a random sample may
be reduced to multinomial form by grouping the observations into cells.
Thus, asan adjunct to the treatment of Sections 4.1-4.4, we deal with “ product-
multinomial” data in Sections 4.5 (estimation results) and 4.6 (hypothesis
testing results). Of course, this methodology is applicable also without refer-
ence to a parametric family of distributions.

The concept of asymptotic optimality introduced in Section 4.1 is based on
a notion of asymptotic relative efficiency formulated in terms of the gener-
alized variance of multidimensional distributions. This generalizes the one-
dimensional version given in 1.15.4. For the hypothesis testing context,
the treatment of asymptotic relative efficiency is deferred to Chapter 10, which
provides several distinctive notions. (These notions may also be recast in the
estimation context.)

41 ASYMPTOTIC OPTIMALITY IN ESTIMATION

Two notions of asymptotic relative efficiency of estimation procedures were
discussed in 1.15.4, based on the criteria of variance and probability concentra-
tion. The version based on variance has been exemplified in 2.3.5 and 2.6.7.

138
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Here,in 4.1.1 and 4.1.2, we further develop the notion based on variance and,
in particular, introduce the multidimensional version. On this basis, the
classical notion of asymptotic “efficiency” is presented in 4.1.3. Brief comple-
ments are provided in 4.14..

4.1.1 Concentration Ellipsoids and Generalized Variance

The concept of variance as a measure of concentration for a 1-dimensional
distribution may be extended to the case of a k-dimensional distribution in
twoways—in terms ofageometrical entity called the “concentration ellipsoid,”
and in terms of a numerical measure called the “generalized variance.” We
shall follow Cramér (1946), Section 22.7.

For a distribution in R* having mean p and nonsingular covariance matrix
L, the associated concentration ellipsoid is defined to be that ellipsoid such
that a random vector distributed uniformly throughout the ellipsoid has the
same mean p and covariance matrix I. This provides a geometrical entity
representing the concentration of the distribution about its mean p. It is found
that the concentration ellipsoid is given by the set of points

E={x:(x-—mE'(x-p)sk+2},
or
E = {x: Q(x) < k + 2},
where
0(x) = (x — pE~'(x — p)'.

In the t-dimensional case, for a distribution having mean g and variance o2,
this ellipsoid is simply the interval [u — 3'/2q, u + 3'/%g].
The volume of any ellipsoid

{x: (%) < c},
where ¢ > 0, is found (see Cramér (1946), Section 11.2) to be

nikcik I T I 1/2
radk + 1)

Thus the determinant | E| plays in k-dimensions the role played by o2 in one
dimension and so is called the generalized variance.

We may compare two k-dimensional distributions having the same mean
p by comparing their concentration ellipsoids. If, however, we compare only
the volumes of these ellipsoids, then it is equivalent to compare the generalized
variances.
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4.1.2 Application to Estimation: Confidence Ellipsoids and Asymptotic
Relative Efficiency

Consider now the context of estimation of a k-dimensional parameter 8 =
©,,...,0)by 8, =(@,,,...,08,), where 8, is AN(8, n~'Lg), with Le non-
singular. An ellipsoidal confidence region for 0 is given by
E, = {0:n®, - 0)Z3'@®, — 0y < ¢}
= {0' Q(nllz(ou - 0)! z‘"l) < c}n

where
Q(A,C) = ACA’
and it is assumed that g ! is defined. Assuming further that
! 2 Ey,
it follows (why?) that

0(n'*(®, - 8), £5.') — Q(n'/*@, - 0), £ ") 3 0.
Consequently, by Example 3.5A, we have

0(n'*®, - 0),£51) 3 1.
Therefore, if ¢ = ¢, is chosen so that P(x? > c,) = a, we have
PyB€E,) = Po(Q(n'*B, — 0),E5) s c)» P sc) =1~

as n — o0, so that E, represents an ellipsoidal confidence region (confidence
ellipsoid) for 8 having limiting confidence coefficient 1 — « as n — co.

One approach toward comparison of two such estimation procedures is to
compare the volumes of the corresponding confidence ellipsoids, for a specified
value of the limiting confidence coefficient. Such a comparison reduces to
comparison of the generalized variances of the asymptotic multivariate
normal distributions involved and is independent of the choice of confidence
coefficient. This is seen as follows. Let us compare the sequences {8¢"’} and
{02}, where

0" is AN@,n~'ZY),
2(0‘)" = Eg)’

and
(Eg " 3 (E)
for i = 1, 2. Then the corresponding confidence ellipsoids
EO = (0: 9(n'?@ - 0), Q)N <), i=12
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each have asymptotic confidence coefficient | — aand, by 4.1.1, have volumes

n(l/l)k(c'/n)(l/Z)kIzg{”lllz

TGk + 1) ) i=12

It follows that the ratio of sample sizes n,/n, at which 8!’ and 6! perform
“equivalently” (i.e., have confidence ellipsoids whose volumes are asymp-
totically equivalent “in probability ) satisfies

n\' _ IEQ|
m) IR

Hence a numerical measure of the asymptotic relative efficiency of {0{'} with
respect to {0("'} is given by

5\

(=)

Note that the dimension k is involved in this measure. Note also that we
arrive at the same measure if we compare {80!’} and {0>'} on the basis of the
concentration eillipsoids of the respective asymptotic multivariate normal
distributions.

By the preceding approach, we have that {8} is better than {8{*)}, in the
sense of asymptotically smaller confidence ellipsoids (or concentration
ellipsoids), if and only if

M 12§} < 1261

A closely related, but stronger, form of comparison is based on the condition
Q) I — G nonnegative definite,

or equivalently (see Rao (1973), p. 70, Problem 9),

2) (™! — ()~ ! nonnegative definite,

or equivalently

2" xIMx < xE@x,  allx.

Condition (2) is thus a condition for the asymptotic distribution of 8!’ to
possess a concentration ellipsoid contained entirely within that of the asymp-
totic distribution of 8{>. Note that (2) implies (1).

Under certain regularity conditions, there exists a “best” matrix in the
sense of condition (2). This is the topic of 4.1.3.
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4.1.3 The Classical Notion of Asymptotic Efficiency; the Information
Inequality

We now introduce a definition of asymptotic efficiency which corresponds to
the notion of optimal concentration ellipsoid, as discussed in 4.1.2. Let
Xy, ..., X, denote a sample of independent observations from a distribution
Fq belonging to a family # = {F,, 0€ ®}, where 8 = (0,,...,6,) and
@ < R Suppose that the distributions Fg possess densities or mass functions
f(x; 0). Under regularity conditions on #, the matrix

L=lE alogf(X;O).alogf(X;O)
N 26, 26, kxk

is defined and is positive definite. Let 8, = (8,, ..., 8,,) denote an estimator
of 8 based on X, ..., X,. Under reguiarity conditions on the class of esti-
mators 8, under consideration, it may be asserted that if 8, is AN(0, n~1E,),
then the condition

*) Lo — Ig! is nonnegative definite

must hold. This condition means that the asymptotic distribution of 0,
(suitably normalized) has concentration ellipsoid wholly containing that of
the distribution N(0, I !). In this respect, an estimator 8, which is AN(0, I5 )
is “optimal.” (Such an estimator need not exist.) These considerations are
developed in detail in Cramér (1946) and Rao (1973).

The following definition is thus motivated. An estimator 8, which is
AN(9, n~ 15 ') is called asymptotically efficient, or best asymptotically normal
(BAN). Under suitable regularity conditions, an asymptoticalily efficient
estimate exists. One approach toward finding such estimates is the method of
maximum likelihood, treated in Section 4.2. Other approaches toward
asymptotically efficient estimation are included in the methods considered in
Section 4.3.

In the case k = 1, the condition (*) asserts that if §, is AN(6, n~'¢?), then

- l_ 1
9 "2, (ARG
a0

This lower bound to the parameter o2 in the asymptotic normality of 8, is
known as the “Cramer-Rao lower bound.” The quantity I, is known as the
“Fisher information,” so that (**) represents a so-called “information in-
equality.” Likewise, for the general k-dimensional case, Iy is known as the
information matrix and (*) is referred to as the information inequality.
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Example. Consider the family & = {N(6, o3), 0 € R}. Writing

. -1/2,-1 1 (x - 6\?
f(x;0) = (2n)" %65 ' exp| — 5 , —00 < X < 00,
2\ o
we have
dlog f(x;0) x—#6
o0 T
so that

dlog f(X; 0)\* X-6\>1 o3 1
E\W—a )(=F 7—) ~n-a

Therefore, for estimation of the mean of a normal distribution with variance
a2, any “regular” estimator 8, which is AN(6, n~ 'v) must satisfy v > ¢2. It is
thus seen that, in particular, the sample mean X is asymptotically efficient
whereas the sample median is not. However, X is not the only asymptotically
efficient estimator in this problem. See Chapters 6, 7, 8and 9. W

4.1.4 Complements

- (i) Further discussion of the Cramér-Rao bound. See Cramér (1946),
Sections 32.3, 32.6, 32.7. Also, see Rao (1973), Sections 5a.2—-5a.4, for informa-
tion-theoretic interpretations and references to other results giving different
bounds under different assumptions on # and §,.

(ii) Other notions of efficiency. See Rao (1973), Section 5c.2.

(iii) Asymptotic effective variance. To avoid pathologies of “super-
efficient” estimates, Bahadur (1967) introduces a quantity, “asymptotic
effective variance,” to replace asymptotic variance as a criterion.

4.2 ESTIMATION BY THE METHOD OF MAXIMUM LIKELIHOOD

We treat here an approach first suggested by C. F. Gauss, but first developed
into a full-fledged methodology by Fisher (1912). Our treatment will be based
on Cramér (1946). In 4.2.1 we define the method, and in 4.2.2 we characterize
the asymptotic properties of estimates produced by the method.

4.2.1 The Method

Let X,,..., X, be LLD. with distribution Fq belonging to a family # =
{Fy, 8 € ®}, and suppose that the distributions Fg possess densities or mass
functions f(x; 0). Assume @  R*,

The likelihood function of the sample X ,, ..., X, is defined as

L@®: X,,..., X,) = ‘I"]l £(X.; ).
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That is, the joint density (or mass function) of the observations is treated as a
function of 0.

The method of maximum likelihood provides as estimate of 0 any value 8
which maximizes L in ©. (Equivalently, log L may be maximized if convenient
for computations.)

Often the estimate 8 may be obtained by solving the system of likelihood
equations,

dlog L _
591 o=@

and confirming that the solution 8 indeed maximizes L.

Remark. Obviously, the method may be formulated analogously without
the LLD. assumption on X, X,,.... However, in our development of the
asymptotic behavior of the maximum likelihood estimates, the LLD.
assumption will be utilized crucially. W

4.2.2 Consistency, Asymptotic Normelity, and Asymptotic Efficiency of
Maximum Likelihood Estimates

We shall show that, under regularity conditions on #, the maximum likeli-
hood estimates are strongly consistent, asymptotically normal, and asymp-
totically efficient. For simplicity, our treatment will be confined to the case of
a l-dimensional parameter. The multivariate extension will be indicated
without proof. We also confine attention to the case that f(x; 0) is a density.
The treatment for a mass function is similar.

Regularity Conditions on #. Consider © to be an open interval '(not
necessarily finite) in R. We assume:

(R1) For each 0 € ©, the derivatives

dlog f(x; 0) d*log f(x; 0) & log f(x; 6)
6 7 06

exist, all x;
(R2) For each 6, € ©, there exist functions g(x), h(x) and H(x) (possibly
depending on 0,) such that for 0 in a neighborhood N(6,) the relations

: f(x; 0 i ;0
|5’L(5‘—0Q so (LGN e, | ZIBIEDN g by

hold, all x, and

f g(x)dx < o, f Woxdx < ©,  EfH(X)} <  for 0€N(Bo)
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(R3) Foreach 6€0,

0< E,{(aﬁg—gg—’—xi@)z} <o B

Some interpretations of these conditions are as follows. Condition (R1)
insures that the function 0 log f(x; 6)/00 has, for each x, a Taylor expansion
as a function of 6. Condition (R2) insures (justify) that [f(x; 6)dx and
[0 log f(x; 6)/00]dx may be differentiated with respect to 6 under the
integral sign. Condition (R 3) states that the random variable 0 log f(X ; 8)/00
has finite positive variance (we shall see that the mean is 0).

Theorem. Assume regularity conditions (R1), (R2) and (R3) on the family #.
Consider 1.1.D. observations on Fy, for 0 an element of ©. Then, with Pg-
probability 1, the likelihood equations admit a sequence of solutions {0,)
satisfying

(i) strong consistency: 8, - 6,n —» ©;

(ii) asymptotic normality and efficiency:

' 1
9,, is AN(G, nEe{(d log f(X; 9)/59)2}).

PROOF. (modeled after Cramér (1946)) By (R1) and (R2) we have for 1
in the neighborhood N(@) a Taylor expansion of d log f(x; 1)/04 about the
point A = 0, as follows;

dlog f(x; ) 0log f(x;4)

_ 3% log f(x; 4)
7 a1 =@4-9

A=6 oA
+ $#(@A - 0)’H(x),

A=0

where || < 1. Therefore, putting
1 & dlog f(X;; 4)

)

n& oA
13 2 log f(Xi;2)
nS 0A?

A,

I

’
A=0

B,

]

’
A=0

and
l n
Cy=- Y H(X),
n=
we have

¢ LORELD 4+ B~ 0) + HACA - 0,
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where |£*| < 1.(Note that the left-hand side of the likelihood equation, which
is an average of L1.D.’s depending on A, thus becomes represented by an
expression involving A and averages of LL.D.’s not depending on A)

By (R1) and (R2)

Ix;1), 0 ) _0
T""‘ﬁ,“f("’“""‘ﬁ“)"o

and thus also

J'ng_(xi;_j;)dx=0,

oA
It follows that
dlog f(X;60)] _ 1 f(x;0) . .
E’{ L }‘f,f(x;e) oo SO Oux =0
and
9% log f(x; 0)
B\

1 9Y(x:0 L ¥ .,
B J.[f(X;o) 06* - (f(X,O) 0 ) ] J(x; 0)dx

ofpagea)

By (R3), the quantity
. 2
o= nf(LesL0:0))

satisfies 0 < vy < 0.
It follows that

(a) A, is a mean of LL.D.’s with mean 0 and variance v,;
(b) B, is a mean of L1D.’s with mean —u,;
(c) C,is a mean of LL.D.'s with mean E,{ H(X)}.

Therefore, by the SLLN (Theorem 1.8B),
A, 50,8, ™ — vy, C, 2 Ef(H(X)),
and, by the CLT (Theorem 1.9.1A),
A, is AN(O, n™tvg).
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Now let ¢ > O be given, such that ¢ < ve/Ee{ H(X)} and such that the points
A, =0—¢ and A, = 0+ ¢ lie in N(f), the neighborhood specified in
condition (R2). Then, by (*),

19 log L(A)

- 2
PR veel < |A,| + &l B, + vel + 4%|C,|

A¢

and

1 0 log L(4)
n 04
By the strong convergences of A,, B, and C, noted above, we have that with

Pg-probability 1 the right-hand side of each of the above inequalities becomes
<@)vee for all n sufficiently large. For such n, the interval

10 log L(A) 1 0 log L(A)
n al ‘2’ n al A1

thus contains the point 0 and hence, by the continuity of d log L(A)/d4, the
interval

+ vee| < |A,| + €| B, + vyl + 4€2|C,|.
Az

[0—¢64+¢]=1[A,4,]

contains a solution of the likelihood equation. In particular, it contains the
solution

dlog L(A) _ 0}

6,,,=inf{).:6—ss).sﬂ+sand 37

Before going further, let us verify that 8,, is a proper random variable, that
is, is measurable, Note that, for allt > 6 — ¢,

, dlog L(A) } { d log L(A) }
) = f ——== g8 A _
{0, >t} { in R orl o_s‘t;;:s' 1 <0

0—egAgt

Also, by continuity of ¢ log L(A)/0Adin [6 — ¢, 0 + €],

. 0 log L(4) . dlog L(A)
inf —=“= inf ——22
0-egAgt oA 0-cgAst oA
Arational
and
i) loga )I..().) - sup i) loga LQ')_
s

Thus {B,, > t} is a measurable set.
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Next let us obtain a sequence of solutions {8,} not depending upon the
choice of &. For this, let us denote by (Q, &, P,) the underlying probability
space and let us express d,, explicitly as 8,(w). Our definition of 8,,(«)
required that n be sufficiently large, n > N (), say, and that w belong to'a
set Q, having P,-probability 1. Let us now define

Qo = ﬂﬂm.
k=1

Then P4(Q,) = 1 also. For the moment, confine attention to w € Q. Here,
without loss of generality, we may require that

Ni(w) < Nyj3(0) S Nyjp(@) < -+
Hence, for Ny (@) < n < Ny 41y (@), we may define
B,,(O)) = Gn. l/k(w)s

fork=1,2,.... And for n < N(w), we set §,(w) = 0. Finally, for ¢ Q,,
we set O,(w) = 0, all n. It is readily seen that {f,} is a sequence of random
variables which with Pg-probability 1 satisfies:

(1) b, is a solution of the likelihood equation for all n sufficiently large,

and
) Bn—vo,n—voo.

We have thus established strong consistency, statement (i) of the theorem.
To obtain statement (ii), write ‘

_ 1dlog L(})

0 n 31 A=d,

=A, + Bn(an -0+ i'f‘cn(an - 0)2s

which with Py-probability 1 is valid for all n sufficiently large. Therefore,
p— nlle" W_Pl'
Bn + if‘cn(on - 9)

Also, since 0,250, we have B, + 4¢*C, (0, — 0) 25 —v,. Further,
n'’24, 4 N(0, v;). Consequently, by Slutsky’s Theorem,

n'2@, — 6) 5 N, v; V),

establishing statement (ii) of the theorem. W

n'?4, - 9) — 0.

Multidimensional Generalization. For the case of several unknown para-
meters = (8,, ..., 6,), and under appropriate generalizations of the
regularity conditions (R1)-(R3), there exists a sequence {8,} of solutions to
the likelihood equations such that 8, *2% 0 and 8, is AN(®,n™'I5 '), where
I, is the information matrix defined in 4.1.3. W
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Remarks. (i) Other sequences of solutions. The argument leading to state-
ment (ii) of the theorem may be modified to handle any sequence {9*} of
solutions which are weakly consistent for 6, Therefore, if 8% is any solution of
the likelihood equations satisfying 82 =3 6, then 8*is AN(6, n™ 'v; *) (Problem
4,P.3).

(ii) Transformation of parameters. It is readily seen that if we transform to
new parametersf = (fy, ..., B,),where §; = g(8,, ..., 6,),then the maximum
likelihood estimate of P is given by the corresponding transformation of the
maximum likelihood estimate 8, of 8. Thus, under mild regularity conditions
on the transformation, the consistency and asymptotic normality properties
survive under the transformation,

(iii) *“Likelihood processes” associated with a sample. See Rubin (1961).

(iv) Regularity assumptions not involving differentiability. See Wald (1949)
for other assumptions yielding consistency of 8.

(v) Iterative Solution of the Likelihood Equations. The Taylor expansion
appearing in the proof of the theorem is the basis for the following iterative
approach, For an initial guess 8,,, we have

_Olog L) , dlog L(A) 3 02 log L(A)
0= 00 h 00 A=bo Bro = 6) 042 |,
This yields the next iterate
0 log L(4)

3/1 1 =0no

gnl = gno - m)"’—
612 lgano

The process is continued until the sequence 8,0, 9,,0,., ... has converged to
a solution d,. A modification of this procedure is to replace
02 log L(A)
0A?

A=h,;

by its expected value, in order to simplify computations. This version is called
scoring, and the quantity
0 log L(4)
77}

A"onl

is called the “efficient score.”
(vi) Further reading. For techniques of application, see Rao (1973),

Sections 5f, 5g and 8a. W
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4.3 OTHER APPROACHES TOWARD ESTIMATION

Here we discuss the method of moments (4.3.1), minimization methods
(4.3.2), and statistics of special form (4.3.3).

4.3.1 The Method of Moments

Consider asample X,, ..., X, from a distribution Fg of known form but with
unknown parameter 8 = (0, .. ., 6,) to be estimated. The method of moments
consists of producing estimates of 8, . .., 6, by first estimating the distribu-

tion Fy by estimating its moments. This is carried out by equating an ap-
propriate number of sample moments to the corresponding population
moments, thelatter beingexpressed asfunctions of 0. Theestimatesof 6, . . ., 6;
are then obtained by inverting the relationships with the moments.

For example, a N(u, 0?) distribution may be estimated by writing a2

— p? and estimating pu by X and a; by a; = n"! )} X }. This leads to
estlmatlon of the N(u, a%) distribution by N(X, s?), where s? = a, — X2

Of course, in general, the parameters 6,, ..., 6, need not be such simple
functions of the moments of Fg as in the preceding example.

The method of moments, introduced by Pearson (1894), has enjoyed wide
appeal because of its naturalness and expediency. Further, typically the
parameters 6,, . .., 6, are well-behaved functions of the population moments,
so that the estimates given by the corresponding functions of the sample
moments are consistent and asymptotically normal. Indeed, as discussed in
3.4.1, the asymptotic variances are of the form c/n.

On the other hand, typically the method-of-moments estimators are not
asymptotically efficient (an exception being the example considered above).
Thus various authors have introduced schemes for modified method-of-
moments estimators possessing enhanced efficiency. For example, a relatively
simple approach is advanced by Soong (1969), whose “combined moment
estimators” for parameters 0,,...,0, are optimal linear combinations
(recall 3.4.3) of simple moment estimators. Soong also discusses related
earlier work of other investigators and provides for various examples the
asymptotic efficiency curves of several estimators.

Further reading on the method of moments is available in Cramér (1946),
Section 33.1.

4.3.2 Minimization Methods; M-Estimation

A variety of estimation methods are based on minimization of some function
of the observations {X,} and the unknown parameter 0. For example, if 8 is a
location parameter for the observations X,,..., X,, the “least-squares
estimator” of 8 is found by minimizing

do; X,,..., X)) = i(x,-a)’,

i=1



HYPOTHESIS TESTING BY LIKELIHOOD METHODS 151

considered as a function of 8. Similarly, the “least-absolute-values estimator™
of 8 is given by minimizing Z’,‘ | X; — 0]. (These solutions are found to be the
sample mean and sample median, respectively.) Likewise, the maximum
likelihood method of Section 4.2 may be regarded as an approach of this type.

In Section 4.5 we shall consider approaches of this type in connection with
product-multinomial data. There the function to be minimized will be a
distancefunctiond(g(0), §) between a parametricfunction g(8)and anestimator
g of g(8) based on the data. Several distance functions will be considered.

Typically, the problem of minimizing a function of data and parameter
reduces to a problem involving solution of a system of equations for an
estimator 0. In Chapter 7 we treat in general the properties of statistics given
as solutions of equations. Such statistics are termed * M-statistics.”

A related approach toward estimation is to consider a particular class of
estimators, for example those obtained as solutions of equations, and, within
this class, to select the estimator for which a nonrandom function of @ and 0 is
minimized. For example, the mean square error E® - 6)?> might be mini-
mized. The method of maximum likelihood may aiso be derived by this
approach, See also 4.3.3 below.

4.3.3 Statistics of Special Form; L-Estimation and R-Estimation

As mentioned above, the principle of minimization typically leads to the class
of M-estimates (having the special form of being given as solutions of equa-
tions). On the other hand, it is sometimes of interest to restrict attention to
some class of statistics quite different (perhaps more appealing, or simpler) in
form, and within the given class to select an estimator which optimizes some
specfied criterion. The criterion might be to minimize E(d — 6),or E| - 4|,
for example.

A case of special interest consists of linear functions of order statistics, which
we have considered already in Sections 2.4 and 3.6. A general treatment of
these “ L-statistics” is provided in Chapter 8, including discussion of efficient
estimation via L-estimates.

Another case of special interest concerns estimators which are expressed as
Sunctions of the ranks of the observations. These “ R-statistics™ are treated in
Chapter 9, and again the question of efficient estimation is considered.

44 HYPOTHESIS TESTING BY LIKELIHOOD METHODS

Here we shall consider hypothesis testing and shall treat three special test
statistics, each based on the maximum likelihood method. A reason for
involving the maximum likelihood method is to exploit the asymptotic
efficiency. Thus other asymptotically efficient estimates, where applicable,
could be used in the role of the maximum likelihood estimates.
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We formulate the hypothesis testing problem in 4.4.1 and develop certain
preliminaries in 4.4.2. For the case of a simple null hypothesis, the relevant
test statistics are formulated in 4.4.3 and their null-hypothesis asymptotic
distributions are derived. Also, extension to “local” alternatives is considered.
The case of a composite null hypothesis is treated in 4.4.4.

4.4.1 Formulation of the Problem

Let X,,..., X, be LLD. with distribution Fg belonging to a family # =
{Fq, 0 € ®}, where © < R*. Let the distributions Fq possess densities or mass
functions f(x; 0). Assume that the information matrix

L=|E dlog f(X;0)dlog f(X;86)
R a6, a0, Kxk

exists and is positive definite.
A null hypothesis H, (to be tested) will be specified as a subset @, of ©,
where ©, is determined by a set of r( <k) restrictions given by equations

R@® =0 1s<isr

In the case of a simple hypothesis Hy: 0 = 0,, we have ©, = {0,}, and the
functions R,(8) may be taken to be

R(0) = 0, — 0, I<igk

In the case of a composite hypothesis, the set ®, contains more than one
element and we necessarily have r < k. For example, for k = 3, we might have
Hy:0c©, = {0 = (0,,0,,03): 0, = 0,,). In this case r = 1 and the func-
tion R,(6) may be taken to be

R!(o) = ol - 001'
4.4.2 Preliminaries

Throughout we assume the regularity conditions and results given in 4.2.2,
explicitly in connection with Theorem 4.2.2 and implicitly in connection with
its multidimensional extension. Define for 8 = (6,, ..., 6,), the vectors

(1 & dlog f(Xi;0) 1 & dlog f(X;0)
“""‘(Z,).:, a0, ""’;,).:, a6, )
and

d,=0,-0=0,, - 0,,...,0, — 0,

where 8, = (0,,, ..., 8,) denotes a consistent, asymptotically normal, and
asymptotically efficient sequence of solutions of the likelihood equations, as
given by Theorem 4.2.2 (multidimensional extension).
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Lemma A. Let X,, X,,... be L.1.D. with distribution Fg. Then (under ap-
propriate regularity conditions)
() n'a, > NO I);
(i) n'd, S NOI5");
(iii) nagely 'ale S XE;
(iv) ndyeledye 5 X

PROOF. (i) follows directly from the multivariate Lindeberg-Levy
CLT; (ii) is simply the multidimensional version of Theorem 4.2.2; (iii) and (iv)
follow from (i) and (ii), respectively, by means of Example 3.5A. W

It is seen from (i) and (ii) that the vectors
nllza,,o, n”zd"olo
have the same limit distribution namely N(0, Iy). In fact, there holds the
following stronger relationship.
Lemma B, Let X,,X,,... be LL.D. with distribution Fg. Then (under
appropriate regularity conditions)
nllz(ano - dno lo) 4 0.
PROOF. Noting that

1 & dlog /(X 0)
H,,,gl 46,

we obtain by Theorem 1.12B the Taylor expansion

1 Z alosf(X».,*’) &1 & 0% log f(Xm;6)
) T &nns, T 06,0,
i N 63 log f(X,.; 0)
2,50= n me1 00, ao,[ 99,

where 0* lies on the line joining ® and 8,. From the regularity conditions

(extended to the multidimensional parameter case), and from the con-

vergence in distribution of the normalized maximum likelihood estimates, we
see that the second term on the right-hand side may be characterized as

=0,
0=0,

(9131 - 0])

* (on} - 0})(011! - ol)v

0,(n~'/?). Thus we have, foreach i = 1,...,k,
1 & dlog f(X,;0) 0% log f(X,: 0)
12y _ _ M ) —_—m -
n [ 2o, P ,,E, 0,00,  On =0

= 0,(1).
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That is,
nllz(—ano - anJno) 'e’ 0’

1 & %log f(Xp;0)
oo = [‘ z a6, 36, ek

np=1

where

Thus
"”z(ﬂno — dyoly) = 'lllzdno(—lo - Juwo) + Op(l)-
As an exercise, show that the convergence and equality

2% log f(X;0
S E’{ az,fa(a, )}

—_F Olog f(X;0)dlog S(X;O)] _ _,
s 20, a0, o

hold. We thus have

128, — dyole) = n'2dg0,(1) + 0,(1) = 0,(1),
since n'/?d,q converges in distribution. W
We further define

1(8) = log L(®; X, ..., X,) = ¥ log f(X,;6).
i=1

Lemma C. Let X, X,,... be LLD. with distribution Fg. Then (under ap-
propriate regularity conditions)

() [a®) — 1.8)] — ind e led;e 5 0;

(i) 2[1,(0,) — 1.()] > xi.

PROOF. (ii)is a direct consequence of (i) and Lemma A(iv). It remains to
prove (i). By an argument similar to that of Lemma B, we have

k k azl "(0) _ _
1,0 - 4,0,) = ..2. ]gl 30, 36, .5, 0,)(6; — B, + o(1)
= i"dnoloduo

1 & d%log f(X; 0)
* *"""‘[i 2, 36,9,

= dnd, lod)e + 0,(1). W

- l.]d;. + 01)
0=8,
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4.4.3 Test Statistics for a Simple Null Hypothesis
Consider testing Hq: 0 = 0,.
A “likelihood ratio” statistic,
_ L®)
" supece L(0)’
was introduced by Neyman and Pearson (1928). Clearly, A, takes values in

the interval [0, 1] and H, is to be rejected for sufficiently small values of A,,.
Equivalently, the test may be carried out in terms of the statistic

A, = —2log A,,

which turns out to be more convenient for asymptotic considerations.
A second statistic,

W, = "dnoo lénd;.om
was introduced by Wald (1943).
A third statistic,
Vn = "“noo lé_olanOO’

was introduced by Rao (1947).

The three statistics differ somewhat in computational features. Note that
Rao’s statistic does not require explicit computation of the maximum like-
lihood estimates. Nevertheless all three statistics have the same limit chi-
squared distribution under the null hypothesis:

Theorem. Under Hy, the statistics A,, W,, and V, each converge in dis-
tribution to x3.

PROOF. The result for 4, follows by observing that
An = 2[1,,(0,,) - ln(oo)]

and applying Lemma 4.4.2C (ii). (It is assumed that the solution 8, of the
likelihood equations indeed maximizes the likelihood function.) The result
for W, follows from Lemma 4.4.2A (iv) and the fact that I, e, Ig. The result
for V, is given by Lemma 4.4.2A (iii)). W

Let us now consider the behavior of 4,, W, and V, under “local” alternatives,
that is, for a sequence {0,} of the form

0, =0, + n"124,
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where A = (A,, ..., A Let us suppose that the convergences expressed in
Lemmas 4.4.2A (ii), B, and C (i) may be established uniformly in @ for 0 in a
neighborhood of 8. It then would follow that

() n'2d,g, = n'?d,, + A S N(A, I3.1),

7)) ", = n'2d,g Iy, + 0,, (1) > N(Aly,, Is,),
and

3) Ay — W, 220,

where by (3) is meant that Py (|4, ~ W,| > &) = 0, n = oo, for each & > 0.
By (1), (2), (3) and Lemma 3.5B, since I is nonsingular, it then would follow
that the statistics 4,, W, and ¥, each converge in distribution to y2(AlA’).

Therefore, under appropriate regularity conditions, the statistics 4,, W, and
V, are asymptotically equivalent in distribution, both under the null hypo-
thesis and under local alternatives converging sufficiently fast. However, at
fixed alternatives these equivalences are not anticipated to hold.

The technique of application of the limit distribution y?(Al,A’) to calculate
the power of the test statistics A,, W, or V, is as for the chi-squared statistic
discussed in Example 3.5C.

Regarding the uniformity assumed above, see the references cited at the end
of 4.4.4.

4.4.4 Test Statistics for a Composite Null Hypothesis
We adopt the formulation given in 4.4.1, and we assume also that the
specification of ®, may equivalently be given as a transformation

0, = g1(viy .0y V=)

O = (Vs os Vi)

where v = (v;,..., v,_,) ranges through an open subset N c R*~". For
example, if k = 3 and @, = {8: 60, = 6}, then we may take N = {(v,, v3):
(601, V1, v3) € O} and the functions g,, g,,g3 to be g, (v, v2) = gy, g2(v4, v3)
= vy, and g5(vy, v3) = v,.

Assume that R; and g, possess continuous first order partial derivatives and

that
oR,
Co= [Eé;]m
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o[
V) Jkxk-n
isof rank k — r.

In the present context the three test statistics considered in 4.4.3 have the
following more general formulations. The likelihood ratio statistic is given by

is of rank r and

_ SUPsce, L(0) _ SUPR,®) = =R,@®=0 L(8)
" supg.e L(0) supgce L(0) .

Equivalently, we use

A= =2logA,.
The Wald statistic will be based on the vector
be = (R,(0), ..., R(0)).

Concerning this vector, we have by Theorem 3.3A the following result. (Here
0, is as in 4.4.2 and 4.4.3)

Lemma A. Let X,, X,, ... be LLD. with distribution Fg. Then
bs, is AN(bg, n"'Cylg!Cy).

The Wald statistic is defined as
m = nbon(can lb—nlcan)— lbon'

The Rao statistic is based on the estimate 8} which maximizes L(8) subject
to the restrictions R(08) = 0, 1 < i < r. Equivalently, 8 may be represented
as

o: = g(c’n) = (gl(an)’ sy gk(c’n))’

where ¥, is the maximum likelihood estimate of v in the reparametrization
specified by the null hypothesis. Denoting by J, the information matrix for
the v-formulation of the model, we have by Theorems 4.2.2 and 3.3A the
following result.

Lemma B. Under H,, that is, if Xy, X,, .. . have a distribution Fg for 0 € @,,
and thus 8 = g(v) for some v € N, we have
(i) V.is AN(v,n" ;1)
and
(i) 0* is AN, n"'D, J; 'D,).
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Noting that for 0 € @,, that is, for 8 = g(v),

dlog f(x;9) i 6logf(x;0)._¢1@
an j= 60, 6VJ’

we have
ty = anODvo

where

N
Nm=1 avl ’ L Py 6v,,__,

(, = (1 3 Qlog f(Xnig) 1 ¢ dlog f(X,,,;g(v))),

which is the analogue in the v-formulation of a,¢ in the unrestricted model.

An immediate application of Lemma 4.4,2A(i), but in the v-formulation,
yields
LemmaC. Under H,,

t,, is AN(,n-'J)).

On the other hand, application of Lemma 4.4.2A (i) to a,¢, with the use of the

relation t,, = a,D,, yields that
t, is AN, n"'D,I,D,).

Hence

Lemma D. For 0 = g(v),J, = D,IyD,.

Thus the analogue of the Rao statistic given in 4.4.3 is
Vo = nty, 35",
which may be expressed in terms of the statistic 0% as
V, = nages Dy (D}, Ig; Dy,) ™ ' D5, &0

The asymptotic distribution theory of 4,, ¥, and ¥, under the null hypo-
thesis is given by
Theorem. Under H,, each of the statistics A,, W, and V, converges in
distribution to x2.

PROOF. We first deal with W, which presents the least difficulty. Under
H,, we have by = 0 and thus, by Lemma A,

n'?by, 5 N(0, Colg 'Cy).
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Hence Theorem 3.5 immediately yields
nba,(Cols ' Co) ™ 'bs, > 17.
Since
(Co.15,'Ca,) ' 5 (Colg 'Cy) Y,
we thus have
W, = 2.
Next we deal with A,. By an argument similar to the proof of Lemma 4.4.2C,
it is established that
) A= =201, - 10N = n®, — )0, — 67) + 0,(1)
and that
bs, = by, — byy = (8, — 87)Cy + 0,(10, — 02

and
n'2@, — 8%) = 0,(1),
whence
V) W, = n(8, — 8*)Cy(Cols 'C)~'Co(B, — 87)' + 0,(1).
Writing

o(Colg 'Co)Co = K,
and defining Bg by
BeBe = Is' ',
we have (check) that
B Ky B, is indempotent
and hence

rank BgKgBy = trace BoKo B,
= trace By Co(CoBgBp Cy) ~'Co By
= trace (CoBp By Cy)(Co By By Co) '
= trace I, «;
= k.

Since Bg Ko By is idempotent, symmetric, of order k and rank k,

ByKoBy = L.y
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Hence
Ko=(Bg) 'Bg' = (Ig")"" = I,
Therefore, combining (1) and (2), we see that
A — W, 50,
Hence
A5

For V,, see Rao (1973), Section 6e. W

The null hypothesis asymptotic distribution of 1, was originally obtained
by Wilks (1938). The limit theory of A, under local alternatives and of W,
under both null hypothesis and local alternatives was initially explored by
Wald (1943). For further development, see Chernoff (1954, 1956), Feder
(1968), and Davidson and Lever (1970).

4.5 ESTIMATION VIA PRODUCT-MULTINOMIAL DATA

In this section, and in Section 4.6, we consider data corresponding to a
product-multinomial model. In 4.5.1 the model is formulated and the business
of estimating parametersischaracterized. Methods of obtaining asymptotical-
ly efficient estimates are presénted in 4.8.2. A simplifying computational device
is given in 4.5.3, and brief complements in 4.5.4. In Section 4.6 we consider the
closely related matter of testing hypotheses.

4.5.1 The Model, the Parameters, and the Maximum Likelihood Estimates

Muitinomial models and “cell frequency vectors” have been discussed in
Section 2.7. The “ product-multinomial” model is simply an extension of the
scheme to the case of ¢ populations.

Let the ith population have r; “categories™ or “cells,” 1 < i < c. Let p;,
denote the probability that an observation taken on the ith population falls
in the jth cell. Let n; denote the (nonrandom) sample size taken in the ith
population and n;; the (random) observed frequency in the jth cell of the ith
population. Let N = n; + --+ + n.denote the total sample size. We have the
following constraints on the p's:

¥

(1) Zp,,—l=0, Igige.
J=1

Likewise

4]
Yny=n, l<gi<ec
=
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Finally, the probability of the observed frequency matrix
npl<j<sr,1si<gc}
is

H H pif

i=1 1=1 "u J=1

Regarding estimation, let us first note (Problem 4.P.6) that the maximum
likelihood estimates of the p,,’s are given by their sample analogues,

Pu——l, 1gj<sr,1<i<e

(This is found by maximizing the likelihood function subject to the constraints
(1).) We shall employ the notation

p= (pll""’pln;--';pcl"--9pcr,)
for the vector of parameters, and

p=(ﬁll’---’pln;---;pcl’---’pcre)-

for the vector of maximum likelihood estimates.

More generally, we shall suppose that the p,'s are given as specified func-
tions of a set of parameters @,, ..., 6;, and that the problem is to estimate
0=(6,...,6,). An example of such a problem was seen in Section 2.7.
Another example follows.

Example A. Suppose that the ¢ populations of the product-multinomial
model represent different levels of a treatment, and that the r, cells of the ith
population represent response categories. Let us take ry=:--=r. =7
Further, suppose that the response and factor are each “structured.” That is,
attached to the response categories are certain known weightsa,, ..., a,,and
attached to the treatment levels are known weights by, .. ., b,. Finally, sup-
pose that the expected response weights at the various treatment levels have a
linear regression on the treatment level weights. This latter supposition is
expressed as a set of relations

™ Y apy = A+ pb, I<i<ge
=1

where A and u are unknown parameters. We now identify the relevant
parameter vector 0. First, suppose (without loss of generality) that a; # a,.
Now note that, by the constraints (1), we may write

(i) pu=1- jzzpu, Isis<ec
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Also, after eliminating each p,, by (i), we have by (*) that
- A+ pby~ay - B:i (a; — ay)py

(i) Pv o —a lgise
Finally, we also write
(iii) 6y=py 2<5jsr—1, Isi<e

It thus follows from (i), (ii) and (iii) that the components of p may be expressed
entirely in terms of the parameters

0, =4 O,=yu; 6y = pys 2<gjsr—1, 1gige
that is, in terms of O containing k = (r — 2)c + 2 components. We shall
consider this example further below, as well as in 4.6.3. B

The condition that the p; ;s are specified functions of 8,
py=pf0) 1sj<sn, 1<gisq
is equivalent to a set of m = Y 5., r, — ¢ — k constraints, say
2 Hp) =0, I1sism
obtained by eliminating the parameters 6, ..., 6,. These equations are

independent of the ¢ constraints given by (1). Il

Example B (continuation). For the preceding example, we have m =
cr — ¢ — [(r — 2)c + 2] = ¢ — 2. These ¢ — 2 constraints are obtained from
(*) by eliminating A and u. (Problem 4.P.7). W

Example C. The problem of estimation of p may be represented as estima-
tion of 8, where the 6;'s consist of the k = Y., r, — ¢p,’s remaining after
elimination of p,,,, ..., p,,, by the use of (1). In this case m = 0, that is, there
are no additional constraint equations (2). M

The problem of estimation of @ thus becomes equivalent to that of estima-
tion of the original vector p subject to the combined set of m + ¢ constraint
equations (1) and (2). If the representation of 8 in terms of p;'s is given by

0 =g(p) = @:(p), ..., 9:(P))

then an estimator of @ is given by

0 =g = @:h)..... 9P
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where ﬁ= (AT ; ..., B )denotes a vector estimate of p under the
constraints (1) and (2). In particular, if ﬁ denotes the maximum likelihood
estimate of p subject to these constraints, then (under appropriate regularity
conditions on g) the maximum likelihood estimate of @ is given by 8 = g(p).
Therefore, asymptotically efficient estimates of 8 are provided by g(p*) for
any BAN estimate p* of p subject to (1) and (2).

There are two principal advantages to the formulation entirely in terms of
constraints on the p;;’s:

(a) in testing, it is sometimes convenient to express the null hypothesis in
the form of a set of constraint equations on the p;;’s, rather than by a statement
naming further parameters 6, ..., 6, (see 4.6.2 and 4.6.3);

(b) this formulation is suitable for making a computational simplification
of the problem by a linearization technique (4.5.3).

4.5.2 Methods of Asymptotically Efficient Estimation

Regarding estimation of the 6,'s, several approaches will be considered,
following Neyman (1949). Neyman’s objective was to provide estimators
possessing the same large sample efficiency as the maximum likelihood
estimates but possibly superior computational ease or small sample efficiency.
Although the issue of computational ease is now of less concern after great
advances in computer technology, the small sample efficiency remains an
important consideration.
The *“maximum likelihood” approach consists of maximizing

ri

[T I1pf0)
i=1 =1
with respect to 8y, ..., 6,, subject to the constraints (1) (of 4.5.1).
The “minimum x2” approach consists of minimizing

S & by - pf®P
d,(p(0), p) = .§ mjgl e o ﬂ‘,)

with respect to 8y, ..., 6,, subject to the constraints (1).
Finally, the “modified minimum x2” approach consists of minimizing

[ [ - 2
400, 0) = Fm ), Dy ﬁt;u(ﬂ)]

with respect to 8,, ..., 0, subject to the constraints (1).
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Noting that d, and d, are measures of discrepancy between p and f, we
may characterize the maximum likelihood approach in this fashion in terms
of

dO(p(o)! p) = -2 l°8 A(I)(O), p),

where

c niy
Xp®, 9 = 1 [1 [w] -
I=1 jui pu

Each approach leads to a system of equations. However, the relative
convenience of the three systems of equations depends on the nature of the
functions p,l(O). In the case that these are linear in 0,, ..., 6,, the modified
minimum y* approach yields a linear system of equations for 6y, ..., 6;.

In any case, the three systems of equations are asymptotically equivalent in
probability, in the sense that the estimates produced differ only by 0, ,(N~1/2),
as N = oo in such fashion that each n,/N hasalimit;,,0 <, < ,1 i g ¢
For these details, see Cramér (1946), Sections 30.3 and 33.4, and Neyman
(1949).

For appropriate regularity conditions on the parameter space ® and the
functions p,(8), in order for the maximum likelihood estimates to be asymp-
totically efficient, see Rao (1973), Section Se.2.

4.5.3 Linearization Technique

Corresponding to the set of (possibly nonlinear) constraint equations (2)
(of 4.5.1), we associate the set of linear constraint equations

(2*) H¥P =0, 1<ism,
where

HHp) = H@®) + 3 3 2D

i=1 j=1t aPu p=

“(pyy — By,
[

which is the linear part of the Taylor expansion of H/(p) about the point
p = P, the maximum likelihood estimate in the model unrestricted by the
constraints (2).

Neyman (1949) proves that minimization of dy(p, p), d,(p, p), or d,(p, P)
with respect to the py;’s, subject to the constraints (1) and (2), and minimization
alternatively subject to the constraints (1) and (2*), yields estimates pand ﬁ",
respectively, which satisfy

b—p* = o, (N"12,

Further, regarding estimation gf the, parameters 6;,, Neyman establishes
analogous results for estimates % and 9* based on (2) and (2*), respectively.
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As shown in the following example, the application of the linearization
technique in conjunction with the modified minimum x? approach produces
a linear system of equations for asymptotically efficient estimates.

Example. Linearized constraints with modified minimum x* approach. In
order to minimize d,(p, §) with respect to the p;;'s subject to the constraints
(1) and (2*), we introduce Lagrangian multipliers (1 < i < ¢)and (1 <
! < m) and minimize the function

Db b = o0+ T4 £y = 1) + Sustre

with respect to the p;’s, A/’s and ’s. The system of equations obtained by
equating to 0 the partials of D, with respect to the p,'s, A/'s and s is a linear
system. Thus one may obtain asymptotically efficient estimates of the p,/’s
under the constraints (1) and (2), and thus of the 8,’s likewise, by solving a
certain linear system of equations, that is, by inverting a matrix.

4.54 Complements

(i) Further“minimum x? type” approaches. Forareview of such approaches
and of work subsequent to Neyman (1949), see Ferguson (1958).

(ii) Distance measures. The three approaches in 4.5.2 may be regarded as
methods of estimation of 8 by minimization of a distance measure between the
observed p vector (i.e., p) and the hypothetical p vector (i.e., p(8)). (Recall 4.3.2.)
For further distance measures, see Rao (1973), Section 5d.2.

4.6 HYPOTHESIS TESTING VIA PRODUCT-MULTINOMIAL DATA

Continuing the set-up introduced in 4.5.1, we consider in 4.6.1 three test
statistics, each having asymptotic chi-squared distribution under the null
hypothesis. Simplified schemes for computing the test statistics are described
in 4.6.2. Application to the analysis of variance of product-multinomial data
is described in 4.6.3.

4.6.1 Three Test Statistics

For the product-multinomial of 4.5.1, the constraints (1) are an inherent part
of the “unrestricted” model. In this setting, a null hypothesis H, may be
formulated as

Hy: Py = Pu(gu v By),

where the p,'s are given as specified functions of unknown parameters
8 =(0,,...,0) orequivalently as

Hy: H(p) =0, I<l<m
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As in 4.5.2, denote by P the maximum likelihood estimate of p in the unre-
stricted model, and let p* denote an asymptotically efficient estimate of p
under H,, or under the corresponding linearized hypothesis (4.5.3). Each of
the three distance measures considered in 4.5.2 serves as a test statistic when
evaluated at §* and p. That is, each of

d!(ﬁ*’ ﬁ)s i= 0’ l, 2)

is considered as a test statistic for Hy, with H,, to be rejected for large values of
the statistic. Thus the null hypothesis becomes rejected if p and §* are
sufficiently “far apart.”

Theorem (Neyman (1949)). Under H,, each of d(p*.9), i=0,1,2,
converges in distribution to * .

4.6.2 Simplified Computational Schemes

Consider the statistic d,(p*, §) in the case that p* denotes the estimate
obtained by minimizing d,(p, ) with respect to p under (1) and the con-
straints specified by H,. For some types of hypothesis Hy, the statistic
d,(p*, p)canactually be computed without first computing p*. These computa-
tional schemes are due to Bhapkar (1961, 1966).

Bhapkar confines attention to linear hypotheses, on the grounds that non-
linear hypotheses may be reduced to linear ones if desired, by Neyman’s
linearization technique (4.5.3). Also, we shall now confine attention to the
case of an equal number of cells in each population: ry = .- = = r.

Two forms of linear hypothesis H, will be considered. Firstly, let H, be
defined by m linearly independent constraints (also independent of (1) of
4.5.1),

Ho: H(p) = 421 jz‘hlul’u +h=0 1<li<sm,

where hy,; and h; are known constants such that the hypothesis equations
together with (1) have at least one solution for which the p,;'s are positive. For
this hypothesis, Bhapkar shows that

dy(0*, p) = [H,(), ..., Hu(®ICx ' [Hi(B), ..., Hu(®)]'

where Cy denotes the sample estimate of the covariance matrix of the vector
[H(@®), ..., H(P)]. Check that this vector has covariance matrix [cJm x m»
where

Cn = Z Z hmhwpu Z (12 hlul’u) (/Z htuPu)

‘-11- =] n

= ,; nl' Lglh,,,h.upu - (I;h‘”p ")\(E,hwpu)].



HYPOTHESIS TESTING VIA PRODUCT-MULTINOMIAL DATA 167

Thus the matrix Cy is [Cyilmxm, Where cyy is obtained by putting p,; for
Py 1n ¢y,

JNote that the use of d,(p*, p) for testing H, is thus exactly equivalent to
the “ natural ” test based on the asymptotic normality of the unbiased estimate
[H®), ..., Hu(p)] of [H(p), ..., H,(P)], with the covariance matrix of this
estimate estimated by its sample analogue. Note also that, in this situation,
d,(p*, p) represents the Wald-type statistic of 4.4.4.

Secondly, consider a hypothesis of the form

r k
Ho:}):laﬂ’u = Y b,6,, I1<i<e,
= =1

where the a;'s and b,’s are known constants and the 6,’s are unknown param-
eters, and rank [b,].xx = 4 < ¢ — 1. This is a linear hypothesis, defined by
linear functions of unknown parameters, and so it may be reduced to the
form of H, considered previously. (In this case we would have m = ¢ — u.)
For example, recall Example 4.5.1 A, B. However, in many cases the reduction
would be tedious to carry out and not of intrinsic interest. Instead, the problem
may be viewed as a standard problem in “least squares analysis,” Bhapkar
shows. That is,

d,(p*, p) = “Residual Sum of Squares,”

corresponding to application of the general least squares technique on the
variables )} a,p,; with the variances estimated by sample variances. Thus
d,(p*, §) may be obtained as the residual sum of squares corresponding to
minimization of

[ k 2
le_l(“l - Zb,,(),) ’
{=1 T3
where

r r
oy = lealﬁu’ A=ni 'le(a, — )Py,

'4.6.3 Applications: Analysis of Variance of Product-Multinomial Data

For a product-multinomial model as in 4.5.1, let “§” correspond to factor and
“j” to response. Thus factor catggories are indexed by i =1,...,c and
response categories by j=1,...,r. (For simplicity, assume ry = --- =
r. = r.) A response or factor is said to be structured if weights are attached to
its categories, as illustrated earlier in Example 4.5.1A. We now examine some
typical hypotheses and apply the results of 4.6.1 and 4.6.2.

Hypothesis of homogeneity. (Neither response nor factor is structured.) The
null hypothesis is

Hy: py; does not depend on i.
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In terms of constraint functions, this is written
Ho:Hi(p)=py— b3 =0, i=1....c—-Lj=1...,r=1.

The hypothesis thus specifies m = (r — 1)(c — 1) constraints in addition to
the constraints (1).

Under H,, the product-multinomial model reduces to a single multinomial
model, and corresponding BAN estimates of the p;;’s are

n,,+---+nq
— N_ ’

Therefore, by Theorem 4.6.1, each of the statistics d,(p*, p), i =0, 1,2, is
asymptotically x3 - yyc-1). W

Py = i=1,...,c5ij=1,...,r

Hypothesis of mean homogeneity. (The response is structured, and the
hypothesis is “no treatment effects,”)

Hg: Y a;p;; does not depend on j.
J=1

In terms of constraint functions, this is written

Ho: H(p) = jZla;pu - jZla;pu =0, (@(=1...,c—-1)

In terms of further parameters 6,, this is written

r
Ho: lea,pu = 8, (i =1,..., C).

Instead of estimating the p;;'s under H, (as we did in the previous illustration),
we may apply either of Bhapkar’s devices to evaluate d,(p*, p). The least-
squares representation enables us to write immediately

c " 2
dz(p', p) = ‘-zly‘a‘z - (Zl-l yla‘)

’
i=1 "
where
r

o= Y apyn= ¥ (a:l:_ %)’py,

J=1

(As an exercise, check that this is the proper identification with standard
least-squares formulas.) By Theorem 4.6.1, d,(p*, p) is asymptotically x2_,.
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Hypothesis of linearity of regression. (Both response and factor are
structured. The hypothesis of linearity of the regression of response on
“treatment level” is to be tested.)

Ho:jzaﬂ’u=)~+ﬂba. i=1...,¢).
=1

By the least-squares analogy,

c - ad 2
d,(p*, P) = ‘-ZlYlalz - G (y: f.d,;-;-i )

where «; and y, are as in the preceding illustration, and

Y= Yn 6= ‘Zlbm. &= ‘Zlb.’n.

im]

§= Zam. d= ‘Z a;by,.
=1

i=1
Estimates of A and u are

i__es—&d p_yd—és
Ty — a2’ " ye — 82

The statistic d,(p*, p) is asymptotically y2_,.

If linearity is not sustained by the test, then the method may be extended to
test for quadratic regression, etc. W

Further examples and discussion. See, for example, Wilks (1962), Problems
13.7-139and 13.11-13.12. W

4.P PROBLEMS
Miscellaneous
1. Suppose that
@ Xo= oy Xa) > Xo = (Xog, ..., Xox)

and
® Y,=gy. Y de=(cy,... 0

() Show that (X,, Y,) = (X,, ¢).
(i) Apply (i) to obtain that X, + Y, > X, + cand X, Y, % X,¢.
(iii) What are your conclusions in (i) if (b) is replaced by (b') Y, Le?
(iv) What are your conclusions in (i) if (b) is replaced by (b") Y, 3 Y, =
(Yor, .-, You)?

(Justify all answers.)
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Section 4.2

2. Justify the interpretations of regularity conditions (R1)-(R3) in 4.2.2.
3. Prove Remark 4.2.2 (i).

Section 4.4

4. Do the exercise assigned in the proof of Lemma 4.4.2B.
5. Check that BgKgBy is idempotent (in the proof of Theorem 4.4.4).

Section 4.5

6. Verify for the product-multinomial model of 4.5.1 that the maximum
likelihood estimates of the p,;'s are f;; = nyy/n;, respectively.

7. Provide the details for Example 4.5.1B.

Section 4.6

8. Verify the covariance matrix [¢,] asserted in 4.6.2.
9. Do the exercises assigned in 4.6.3.



CHAPTER 5

U-Statistics

From a purely mathematical standpoint, it is desirable and appropriate to
view any given statistic as but a single member of some general class of
statistics having certain important features in common. In such fashion,
several interesting and useful collections of statistics have been formulated as
generalizations of particular statistics that have arisen for consideration as
special cases.

In this and the following four chapters, five such classes will be introduced.
For each class, key features and propositions will be examined, with emphasis
on results pertaining to consistency and asymptotic distribution theory. As a
by-product, new ways of looking at some familiar statistics will be discovered.

The class of statistics to be considered in the present chapter was introduced
in a fundamental paper by Hoeffding (1948). In part, the development rested
upon a paper of Halmos (1946). The class arises as a generalization of the
sample mean, that is, as a generalization of the notion of forming an average.
Typically, although not without important exceptions, the members of the
class are asymptoticaily normal statistics. They also have good consistency
properties. °

The so-called “ U-statistics” are closely connected with a class of statistics
introduced by von Mises (1947), which we shall examine in Chapter 6. Many
statistics of interest fall within these two classes, and' many other statistics
may be approximated by a member of one of these classes.

The basic description of U-statistics is provided in Section 5.1. This includes
relevant definitions, examples, connections with certain other statistics,
martingale structure and other representations, and an optimality property of
U-statistics among unbiased estimators. Section 5.2 deals with the moments,
especially the variance, of U-statistics. An important tool in deriving the
asymptotic theory of U-statistics, the “ projection” of a U-statistic on the basic
observations of the sample, is introduced in Section 5.3. Sections 5.4 and 5.5
treat,respectively, thealmost sure behavior and asymptotic distribution theory

171
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of U-statistics. Section 5.6 provides some further probability bounds and
limit theorems. Several complements are provided in Section 5.7, including a
look at stochastic processes associated with a sequence of U-statistics, and
an examination of the Wilcoxon one-sample statistic as a U-statistic in
connection with the problem of confidence intervals for quantiles (recall
2.6.5).

The method of “projection” introduced in Section 5.3 is of quite general
scope and will be utilized again with other types of statistic in Chapters 8
and 9.

5.1 BASIC DESCRIPTION OF U-STATISTICS

Basic definitions and examples are given in 5.1.1, and a class of closely related
statistics is noted in 5.1.2. These considerations apply to one-sample U-
statistics. Generalization to several samples is given in 5.1.3, and to weighted
versions in 5.1.7. An important optimality property of U-statistics in unbiased
estimation is shown in 5.1.4. The representation of a U-statistic asa martingale
is provided in 5.1.5, and as an average of 1.1.D. averages in 5.1.6.

Additional general discussion of U-statistics may be found in Fraser (1957),
Section 4.2, and in Puri and Sen (1971), Section 3.3.

5.1.1 First Definitions and Examples

Let X, X,,...beindependent observations on a distribution F.(They may be
vector-valued, but usually for simplicity we shall confine attention to the real-
valued case.) Consider a “ parametric function” 8 = 6(F) for which there is an
unbiased estimator. That is, 8(F) may be represented as

6(F) = Ep{h(Xy,..., X)) = f f WCxs, o X dF(xy)  + AF (),

for some function h = h(xy,...,x,), called a “kernel.” Without loss of
generality, we may assume that h is symmetric. For, if not, it may be replaced by
the symmetric kernel

1
— ) h(xyy ooy X )
mlz,,: ! !

where Z,, denotes summation over the m! permutations (i, ..., }) of
a,...,m).

For any kernel h, the corresponding U-statistic for estimation of  on the
basis of a sample Xy, ..., X, of size n > mis obtained by averaging the kernel
h symmetrically over the observations:

U,=UXy,..., X,) = (%52 WX ooy X0,
m
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where ), denotes summation over the (%) combinations of m distinct elements
{isy.-.,im} from {1,..., n}. Clearly, U, is an unbiased estimate of 6.

Examples. (i) 6(F) = mean of F = p(F) = { x dF(x). For the kernel
h(x) = x, the corresponding U-statistic is

Uy X) == $X,= X,
i=1

the sample mean.
(i) O(F) = p*(F) = [f x dF(x)}*. For the kernel h(x,, x,) = x,x,, the
corresponding U-statistic is

2
_— XX,
n(n — 1) 1si§jsn e

(iii) O(F) = variance of F = o*(F) =a | (x — p)? dF(x). For the kernel

U(Xla"'axn)=

X} 4+ x3—-2x,%x; 1

h(xy, x3) = 3 = 'i (xy — xz)z.
the corresponding U-statistic is
2
UX,,..., X)) = —— WX, X
(X, ) n(n_l)lsém( is X))

—_ 1 “ 2 2
_n—l(,;X‘ -—nX)
= sz’

the sample variance.
(iv). O(F) = F(ty) = |, dF(x) = P{X < t;). For the kernel h(x) =
I(x < tg), the corresponding U-statistic is

1 n
U(Xla ceey Xn) = '_, ‘ZI(Xi < to) = Fn(to)a
=1
where F, denotes the sample distribution function.
(v) O(F) = a,(F) = | x* dF(x) = kth moment of F. For the kernel h(x) =
x*, the corresponding U-statistic is

l n
UX,y..os X)) == Y X} = a,
n‘:l

the sample kth moment.
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(vi) O(F) = Eg| X, — X,|, a measure of concentration. For the kernel
h(x,, x3) = |x; — x,|, the corresponding U-statistic is

2
B nin — 1) 15215-.

the statistic known as “Gini’s mean difference.”

(vii) Fisher’s k-statistics for estimation of cumulants are U-statistics (see
Wilks (1962), p. 200).

(viii) O(F) = Epy(Xy) = [ ¥xMF(x); Uy = n~! 3§ n(X)).

(ix) The Wilcoxon one-sample statistic. For estimation of 6(F) =
Pe(X, + X, <0), a kernel is given by h(x,, x;) = I(x, + x, <0) and the
corresponding U-statistic is

UXy,..., X0 |Xi_Xj|’

2
— X, + X, <0).
e B BLCTRR I

(x) O(F) = Jf [F(x, y) = F(x, ©)F(w, y)]* dF(x, y), a measure of de-
pendence for a bivariate distribution F. Putting

W(zy, 23, 23) = I(z; < 2y) — I(z3 < 2y)

U(Xl,...,X,,)=

and
h((xy, Y1) -+ 5 (x5, V) = (x4, Xz, X3W(x1, X4, X5)
X Y(¥1, Y2, YW 1s Ya, Vs,
we have Eg{h} = 6(F), and the corresponding U-statistic is

5!
Ull = ”(n _ l)(n - 2)(” - 3)(” — 4)§h((xip Yh)) -"’(Xisx Ylg))' .

5.1.2 Some Closely Related Statistics: V-Statistics

Corresponding to a U-statistic

U,= 'l' Y h(X,,..., X))
)

for estimation of 6(F) = Eg{h}, the associated von Mises statistic is

V=t ¥ "Zlh(x,.,...,x.,.)

B =1 im=

= O(F u))
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where F, denotes the sample distribution function. Let us term this statistic,
in connection with a kernel h, the associated V-statistic. The connection
between U, and ¥, will be examined closely in 5.7.3 and pursued further in
Chapter 6.

Certain other statistics, too, may be treated as approximately a U-statistic,
the gap being bridged via Slutsky’s Theorem and the like. Thus the domain of
application of the asymptotic theory of U-statistics is considerably wider than
the context of unbiased estimation.

5.1.3 Generalized U-Statistics

The extension to the case of several samples is straightforward. Consider &
independent collections, of independent observations {X{", X{,...},...,
{X®, XP, ...} taken from distributions FV, ..., F®, respectively. Let
6 = 6(F"™, ..., F®) denote a parametric function for which there is an
unbiased estimator. That is,

6= E{h(x(l”’ M Xs':l); e ;X(lk’9 veey Xs::)}!

where h is assumed, without loss of generality, to be symmetric within each of
its k blocks of arguments. Corresponding to the “kernel” h and assuming
ny 2 my, ..., n 2 m, the U-statistic for estimation of 8 is defined as

1
U, = (n! ;h(xffl,---,xi.'l,:--'-:Xﬁ!,---,X*L.)-

I1

J=1

m,

Here {i;, ..., iy} denotes a set of m,; distinct elements of the set {1,2,...,n;},
1 €j <k, and ), denotes summation over all such combinations.

The extension of Hoeffding’s treatment of one-sample U-statistics to the k-
sample case is due to Lehmann (1951) and Dwass (1956). Many statistics of
interest are of the k-sample U-statistic type.

Example. The Wilcoxon 2-sample statistic. Let {X,,..., X, ,} and {Y}, ...,
Y,,} be independent observations from continuous distributions F and G,
respectively. Then, for

0(F, G) = IF dG=PX <Y),
an unbiased estimator is

l n n2
U=—217Y YIX,<Y). W
ByN2 (=1 jmi
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5.1.4 An Optimality Property of U-Statistics

A U-statistic may be represented as the result of conditioning the kernel on
the order statistic. That is, for a kernel h(x,, ..., x,)and asample X, ..., X,,,
n = m, the corresponding U-statistic may be expressed as

U,= E{h(xh teey Xm)lx(n)}'

where X, denotes the order statistic (X,;, ..., X,).

One implication of this representation is that any statistic S = S(X4, ..., X,)
for unbiased estimation of 8 = 6(F) may be “improved” by the correspond-
ing U-statistic. That is, we have

Theorem. LetS = S(Xy, ..., X,) be an unbiased estimator of 8(F) based on a
sampleX,, ..., X,fromthedistribution F. Then the corresponding U-statistic is
also unbiased and

Varg{U} < Varg(S},
with equality if and only if Pg(U = S) = 1.
PROOF. The “kernel” associated with § is

1
";T Z s(xln sevy xl,.)i
P

which in this case (m = n) is the U-statistic associated with itself. That is, the
U-statistic associated with S may be expressed as

U = E{S|X@u}-
Therefore,
Er{U?} = Ef{E*(S|X(}} < EF{E{S*|X(}} = EF{5},

with equality if and only if E{S|X,} is degenerate and equals S with Pg-
probability 1. Since Ep{U} = Eg{S}, the proof is complete. W

Since the order statistic X, is sufficient (in the usual technical sense) for any
family # of distributions containing F, the U-statistic is the result of con-
ditioning on a sufficient statistic. Thus the preceding result is simply a special
case of the Rao~-Blackwell theorem (see Rao (1973), §5a.2). In the case that #
is rich enough that X, is complete sufficient (e.g., if # contains all absolutely
continuous F), then U, is the minimum variance unbiased estimator of 6.
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5.1.5 Martingale Structure of U-Statistics

Some important properties of U-statistics (see 5.2.1, 5.3.3, 5.3.4, Section 5.4)
flow from their martingale structure and a related representation.

Definitions. Consider a probability space (Q, «, P), a sequence of random
variables {Y,}, and a sequence of g-fields {#,} contained in &, such that ¥,
is #,~-measurable and E|]Y,| < oo. Then the sequence {Y,, #,} is called a

Jorward martingale if

(a) fleZC...,

(b) E{Y,,,|#,} =Y, wpl,alln,
and a reverse martingale if

@) #F o2F,;>

) E{Y\#F,.1}=Y,,. wplLalln W

Thefollowing lemmas, due to Hoeffding (196 1)and Berk (1966), respectively,
provide both forward and reverse martingale characterizations for U-
statistics. For the first lemma, some preliminary notation is needed. Consider

a symmetric kernel h(x,,..., X,) satisfying Eg|h(X,,..., X,)| < c0o. We
define the associated functions

hc(xl’ LA ] xc) = EF{h(xl’ cony Xey Xc+l’ teey Xm)}

foreachc = 1,...,m — 1 and put h,, = h. Since

f h(xyy ..., x)dF(x,)---dF(x,) = L h(xyy ..., Xp)dF(xy) - - dF(x,)

x Rm-¢

for every Borel set 4 in R, h, is (a version of) the conditional expectation of
hX,, ..., X )given X,..., X

h(xy,. .. x) = Epe{h(Xy, ..., X)X =%y, ..., Xc = X.}.
Further, note thatfor 1 <c<m -~ 1
ho(xgy ... x)=Eplh.s (x5, ..., X, Xet 1)}
It is convenient to center at expectations, by defining
0(F2 = E{h(X,..., Xw}
h = h — 6(F),

and

h.=h—0F), 1scsm
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We now define
gi(x,) = ﬁl(xl)’
ga(x1, X3) = ﬁz(xn x3) — g1(x1) — g1(x2),
ga(xy, X2, X3) = 53("1’ X3, X3) = 23:01(’51) - Z ga(x;, x,),
(=1 15i<j<3

(‘) gm(xl! very xm) = 5(xl! veey xm) - ‘igl(xl) - Z Gz(xl., xl;)

1gi<iasm
- = Z gﬂl-l(xh""!x‘m-l)'
1gli<<hy-y5m

Clearly, the g.’s are symmetric in their arguments. Also, it is readily seen
(check) that

Eg{g\(X )} =0,
Ep{gi(xy, X3)} = 0,

EF{gm(xl’ covy Xy Xm)} = 0

Now consider a sample X, ..., X,(n > m) and note that the U-statistic
U, corresponding to the kernel h satisfies

n\-!
U, — 6(F) = (m) Sn

where

(1) Sn = Z ﬁ(xlp ---’Xl...)-
1gly<<imsn

Finally, for 1 < ¢ < m, put
Scn = Z gc(le sy Xl,)-
1l <<l <n

Hoeffding’s lemma, which we now state, asserts a martingale property for the
sequence {S,,},». foreachc = 1,..., m, and gives a representation for U, in
terms of Sy,, ..., Spn-

Lemma A (Hoeffding)., Let h = h(x,,..., x,) be a symmetric kernel for
0 = O(F), with Eg]h] < o0. Then

@ U, —6= g (‘:) (2)- S...
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Further, for eachc = 1,...,m,

(3) EF{Scnlxlv--"xk} = Sck’ CSk Sn.

Thus, with F, = o{X,,..., Xy}, the sequence {S.,, #.}ns. is a forward
martingale.

PROOF. The definition of g,, in (*) expresses & in terms of gy, ..., gm-
Substitution in (1) then yields

m—1
Sp=Spn+ 3. Y Y glXiy, s X))
cm] 1Sh< <imEn 1S)1 << ). <m
On the right-hand side, the term for ¢ = 1 may be written
z z g(Xl_‘)’
1< <imgn j=1

In this sum, each g(X,), 1 < i < n, is represented the same number of times.
Since the sum contains (%) - m terms, each g(X,) appears n~ '(%)m times. That
is,thesumS,, = Y1 g(X,) appears (})~ (%) (7) times. In this fashion we obtain

=8 () () ()

which yields (2). To see the martingale property (3), observe that
EF{gc(le ey ch)lxh ey Xk} =0

ifoneofi,,..., i isnotcontainedin {1, ..., k}. Forexample, ifi, ¢ {1, ..., k},

then

Ef{gc(xlp---’xlc)lxh""Xk}
= Ep{Eelg Xy oo oo XXy oo, Xpo Xipo o, X0 11Xy, 0, X
= EF{EF[gc(le""ch)lxl;’---’ch]lxlv""xk}
= Ez{0[X,,...., X} =0

Thus
EF{ScnIXI’ ey Xk} = z gc(Xln sy ch) = Sck' -

18l <<l . <k

Example A. For the case m = 1 and h(x) = x, Lemma A states simply that

U~ 6= 30X~ 0)

i=1

and that {} (X, — 0), (X, ..., X,)} is a forward martingale. W
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The other martingale representation for U, is much simpler:

Lemma B (Berk). Let h=h(x,,...,X,) be a symmetric kernel for 6 =
O(F), with Eg|h| < 0. Then, with F, = o{X4,), Xo41» Xq42,...}, the
sequence {U,, # .} nam is a reverse martingale.

PROOF. (exercise) Apply the representation
Un = E{h(xlv sy Xm)lx(n)}
considered in 5.1.4. W

Example B (continuation). For the case m = 1 and h(x) = x, Lemma B
asserts that X is a reverse martingale. 1

5.1.6 Representation of a U-Statistic as an Average of (Dependent)
Averages of L.1.D. Random Variables

Consider a symmetric kernel h(x,, ..., x,) and a sample X,, ..., X, of size
n > m. Define k = [n/m], the greatest integer <n/m, and define

Wi(xy, ..., X,)
= h(xl’---vxm) + h(xm+l""vx2m) + 4 h(th-m+lv---vka)
X .

Letting ), denote summation over all n! permutations (i,...,i,) of
(1,...,n) and ) denote summation over all (%) combinations {i,, ..., in}
from {1, ..., n}, we have

k Z W(xln LR | xl..) = km !(n - m)! Z h(xh’ ey xl,..)’
14 [

and thus
Y WXy, X,) = ml(n — m)!(")u,,,
? m
or
U, =— z WX, X,).

This expresses U, as an average of n! terms, each of which is itself an average
of k L.1.D. random variables. This type of representation was introduced and
utilized by Hoeffding (1963). We shall apply it in Section 5.6.

5.1.7 Weighted U-Statistics

Consider now an arbitrary kernel h(x,, . .., x,,), not necessarily symmetric, to
be applied as usual to observations X, ..., X, taken m at a time. Suppose
alsothateachtermh(X,,, . ..., X, )becomesweighted bya factor w(i,, ..., i)
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depending only on the indices iy, .. ., i,,. In this case the U-statistic sum takes
the more general form

7;' = ZW(’I, ...,i,,,)h(X,., ""Xim)'

In the case that k is symmetric and the weights w(iy, .. ., i,,) takeonly O or 1
as values, a statistic of this form represents an “incomplete” or “reduced”
U-statistic sum, designed to be computationally simpler than the usual sum.
This is based on the notion that, on account of the dependence among the
(?) terms of the complete sum, it should be possible to use less terms without
losing much information. Such statistics have been investigated by Blom
(1976) and Brown and Kildea (1978).

Certain “permutation statistics” arising in nonparametric inference are
asymptotically equivalent to statistics of the above form, with weights not
necessarily 0- and 1-valued. For these and other applications, the statistics of
form T, with h symmetric and m = 2 have been studied by Shapiro and
Hubert (1979).

Finally, certain “ weighted rank statistics” for simple linear regression take
the form T,. Following Sievers (1978), consider the simple linear regression
model

nw=a+fx;+¢, 1<i<n,

where o and § are unknown parameters, x,, ..., x, are known regression
scores, and e, ..., ¢, are L1.D. with distribution F. Sievers considers infer-
ences for § based on the random variables

n—-1 n

Iz= Z Z ai]¢(}’t—°‘“ﬁxnyj_“—ﬁx1),

i=1 J=i+1
where ¢(u, v) = I(u < v), the weights a;; = 0 are arbitrary, and it is assumed
that x, < --- < x, with at least one strict inequality. For example, a test of
H,: B = P, against H: B > B, may be based on the statistic Tp,. Under the
null hypothesis, the distribution of T, is the same as that of T, when § = 0.
That is, it is the same as

i Y aydle, ey,

i=1 j=i+1
which is of the form T, above. The a;;'s here are selected to achieve high
asymptotic efficiency. Recommended weights are a;; = x; — x,.

52 THE VARIANCE AND OTHER MOMENTS OF A U-STATISTIC

Exact formulas for the variance of a U-statistic are derived in S5.2.1. The
higher moments are difficult to deal with exactly, but useful bounds are
obtained in 5.2.2.
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5.2.1 The Variance of 2 U-Statistic

Consider a symmetric kernel h(x,, ..., X,,) satisfying
Ee{h¥(X,,..., X))} < .

We shall again make use of the functions h, and A, introduced in 5.1.5. Recall
thath, = hand,forl <c<m -1,

h(%1, .0y X)) = Ep{h(xy, .oy Xes X1y oo o5 Xdhs

that A=h—6,h = h, - 6(1 < c < m), where
0 = O(F) = Ep{h(X,,..., X))}
and that,forl <c<m-— 1,
h(xy, .. s %) = Epfhes1(xys .oy X0 Xeu o)}
Note that
Efh(Xy...,X)=0, 1<c<m.

Define {, = Oand,forl <c<m,

(o= Varg{h(X,, ..., X)} = Ep{RA(X,, ..., X.)}.
We have (Problem 5.P.3(i))

0={,<{ < <{, = Varg{h} < 0.

Before proceeding further, let us exemplify these definitions. Note from the
following example that the functions h, and /. depend on F forc <m ~ 1.
The role of these functions is technical.

Example A. 6(F) = d*(F). Writing u = u(F), 0% = 0%(F) and y, = p,(F),
we have

h(xy, x3) = $(x] + x§ — 2x,x3) = ¥(x, — x))?,

5(x1, x3) = h(x,, X;) — 0%,
hy(x) = ¥(x? + 0% + pu? — 2xp),
hy(x)y = Yx* — o + u* — 2xp) = 3[(x — p)* — %),
E{n?} = E{[(X, — p) — (X2 — p)]*}

-13 (;)(— *~IE(X, = WIE((X, — w*~))

j=0
= {Qu, + 60*),
{; = E{h*} — o* = Hp, + 0*),
(i = E{ﬁi} =} Varg{(X, = 1)*} =Hus - 0*). N
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Next let us consider two sets {a,,..., a,} and {b,, ..., b,} of m distinct
integers from {1,..., n} and let ¢ be the number of integers common to the
two sets. It follows (Problem 5.P.4) by symmetry of k and by independence
of {X,,..., X,} that

E}'{ﬁ(xnn LS ] Xnm)ﬁ(xbp LR ] Xb...)} = cr'

Note also that the number of distinct choices for two such sets having

exactly ¢ elements in common is () (7) (7).
With these preliminaries completed, we may now obtain the variance of a

U-statistic. Writing
n\~ 1
Un—6=<m) zﬁ(xlp""xlm)’

we have

Var{U,} = Ef{(U, — 0)’}
-2
= (:,) Y Y Eplh(Xoys-- s Xa DB Xpys o0 X))

LA 141’2

This result and other useful relations from Hoeffding (1948) may be stated as
follows.

Lemma A. The variance of U, is given by
) varet) = (2) 7 8 (7) (0 0
and satisfies
0 ™t < vareluy) < g,
() (0 + DVare(U,,,} < n Vare(U,};
(iii) Varg{U,} = 1:151 +0(n~%, n- oo

Note that (*) is a fixed sample size formula. Derive (i), (ii), and (jii) from (*)
as an exercise.
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Example B (Continuation).

-1
Vary(s?) = (;) 20 = 20, + (]

o, A 4
n nn-1) nn-1)

4
_He— o* + 20
n nn - 1)
4
= ’in—“ +0m™). W

The extension of (*) to the case of a generalized U-statistic is straightforward
(Problem 5.P.6).

An alternative formula for Varg{U,} is obtained by using, instead of h. and
h,, the functions g, introduced in 5.1.5 and the representation given by
Lemma 5.1.5A.

Consider a set {iy, ..., i} of ¢ distinct integers from {1,...,n} and a set
{j1s...,Ja} of d distinct integers from {1, ...,n}, where 1 <c,d < m. It is
evident from the proof of Lemma 5.1.5A that if one of {i,,..., i} is not
contained in {j,, ..., js}, then

EF(gc(Xh’ LR ] X‘e)lxh’ tees Xh} =0.
From this it follows that Eg{g/(X,,..., X, )9d{X;,..., X,)} = O unless
c=dand {i,..., i} = {ji,...,Js} Therefore, for the functions

Sﬂl == Z gt(le ey Xl,)p

1Sl <<l gn

we have

n
E{ScS,,} - (C)E{gcz}9 c= d,

0, c#d.
Hence

Lemma B. The variance of U, is given by
m m -2 n -1
o = § () e

e=1 \ € c

The result (iii) of Lemma A follows slightly more readily from (**) than
from (*).
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Example C (Continuation). We have
g91(x) = hy(x) = 4[(x - u)’ - %),
ga(xy, x3) = 52("1, x3) — h 1(xq) — h 1(X2) = p2 + x4 + x4 — x%3,
E{g}} = = Hus — 0%), as before,

E{gg} = 0‘4,
and thus
2
Varg{s?} = —E{ql} + - o E{Gz}
_ 4
. ot + 20 , as before. W
n nin—1)

The rate of convergence of Var{U,} to 0 depends upon the least ¢ for which
{. is nonvanishing. From either Lemma A or Lemma B, we obtain
Corollary . Let c> 1 and suppose that {o = ++- ={._, = 0 <{.. Then

E(U, — 0)2 = O(n~°), n-— oo.

Note that the condition {, = 0,d < c, is equivalent to the condition E{h3}
= 0,d < ¢, and also to the condition E{g3} = 0,d < c.
5.2.2 Other Moments of U-Statistics
Exact generalizations of Lemmas 5.2.1 A, B for moments of order other than 2
are difficult to work out and complicated even to state. However, for most
purposes, suitable bounds suffice. Fortunately, these are rather easily obtained.
Lemma A. Let r be a real number >2. Suppose that Ex|h|" < 0. Then
*) E|U, - 6] = O(n~/27),  n— oo,

PROOF. We utilize the representation of U, as an average of averages of
LLD.’s (5.1.6),

U= 0 =)' T WXy, X0
P
where W(X,,, X)) = W(X,,, ..., X;) — 0 is an average of k = [n/m]
LLD. terms of the form (X iy ++» X4,.)- By Minkowski’s inequality,
E\U, — 0 < EIW(X,,..., X))

By Lemma 2.2.2B, E| W(X,,..., X)Il = Ok~ V¥), k » 0. W
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Lemma B. Letc > 1 and suppose that{y = ---={,_, =0<U{,. Letr be
an integer >2 and suppose that Eg|h|" < co. Then
) E(U, - ) = O(a~tW/ars+ ), n s o,

where [-] denotes integer part.
PROOF. Write

) E(U, - 0 = (;)' y E{[_’]lﬁ(x,,,, . x,,m)},

where “j” identifies the factor within the product, and Z denotes summation
over all () of the indicated terms. Consider a typical term. For the jth factor,
let p, denote the number of indices repeated in other factors. If p, < ¢ — 1,
then (justify)

E{k(X,,, ..., X,,,)|the p, repeated X, s} = 0.
Thus a term in (1) can have nonzero expectation only if each factor in the
product contains at least ¢ indices which appear in other factors in the pro-

duct. Denote by g the number of distinct elements among the repeated indices
in the r factors of a given product. Then (justify)

r
(03] usgw

For fixed valuesof ¢, p,, . . ., p,, the number of ways to select the indices in the
r factors of a product is of order

(3) O(n!*‘(m-n)*‘"*(m-h)),

where the implicit constants depend upon r and m, but not upon n. Now, by
(2)) qs< [‘} z.;-l p,]. Thus

q+ i(m-—p,)srm+[—l- ij]— ipjg"m"[l il’!‘*’l)]’
J=1 2,5 J=1 2\

since (verify), for any integer x,x — [4x] = [4(x + 1)]. Confining attention to
the case that p, > ¢, ..., p, 2 ¢, we have Y., p; > rc, so that

O] q+ jil(m — p) < rm — [{(rc + 1)].

The number of ways to select the values g, p,, ..., p, depends on r and m, but
not upon n, Thus, by (3) and (4), it follows that the number of terms in the sum
in (1) for which the expectation is possibly nonzero is of order

o(nrm—l(lll)(rﬁ- l)])’ n— oo.
Since (3)~! = O(n~™), the relation (*) is proved. W
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Remarks. (i) Lemma A generalizes to rth order the relation E(U, — 6)? =
O(n~ ') expressed in Lemma 5.2.1A.

(i) Lemma B generalizes to rth order the relation E(U, — 6)2 = O(n~°),
given {._; = 0, expressed in Corollary 5.2.1.

(iii) In the proof of Theorem 2.3.3, it was seen that

E(X — p)® = pyn™% = O(n™?).

This corresponds to (**) in thecase m = 1,¢ = 1, r = 3 of Lemma B.

(iv) For a generalized U-statistic based on k samples, (**) holds with n
givenbyn = min{n,, ..., m}. Theextension of the preceding proof is straight-
forward (Problem 5.P.8).

(v) Anapplication of Lemma B in the case ¢ > 2 arises in connection with
the approximation of a U-statistic by its projection, as discussed in 5.3.2
below. (Indeed, the proof of Lemma B is based on the method used by Grams
and Serfling (1973) to prove Theorem 53.2.) W

5.3 THE PROJECTION OF A U-STATISTIC ON THE BASIC
OBSERVATIONS

An appealing feature of a U-statistic is its simple structure as a sum of
identically distributed random variables. However, except in the case of a
kernel of dimension m = 1, the summands are not all independent, so that a
direct application of the abundant theory for sums of independent random
variables is not possible. On the other hand, by the special device of *pro-
jection,” a U-statistic may be approximated within a sufficient degree of
accuracy by a sum of .1.D. random variables. In this way, classical limit theory
for sums does carry over to U-statistics and yields the relevant asymptotic
distribution theory and almost sure behavior.

Throughout we consider as usual a U-statistic U, based on a symmetric
kernel h = h(x,,..., x,,) and a sample X, ..., X, (n = m) from a distribu-
tion F, with 8§ = Eg{h(X,, ..., X,)}.

In 5.3.1 we define and evaluate the projection U, of a U-statistic U,. In
5.3.2 the moments of U, — 0, are characterized, thus providing the basis for
negligibility of U, — 0, in appropriate senses. As an application, a representa-
tion for U, as a mean of L.1.D.’s plus a negligible random variable is obtained
in 5.3.3. Further applications are made in Sections 5.4 and 5.5.

In the case {; = 0, the projection U, serves no purpose. Thus, in 5.3.4, we
consider an extended notion of projection for the general case {( = -+ =
Cc—l = 0 < Cc'

In Chapter 9 we shall further treat the concept of projection, considering it
in general for an arbitrary statistic S, in place of the U-statistic U,.
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5.3.1 The Projection of U,
Assume Eg|h| < 0. The projection of the U-statistic U, is defined as

(1) 0, = Z. EflU,1X}} - (n = 1)6.

Note that it is exactly a sum of L.1.D. random variables. In terms of the func-
tion h, considered in Section 5.2. we have

@ 0,—6=" S hyX).
n =1

Verify (Problem 5.P.9) this in the wider context of a generalized U-statistic.
From (2) it is evident that 0, is of no interest in the case {, = 0. However, in
this case we pass to a certain analogue (5.3.4).

53.2 The Moments of U, — U,

Here we treat the difference U, — 0,. It is useful that U, — 0, may itself be
expressed as a U-statistic, namely (Problem 5.P.10).

U,- 0,= : YHXi, ..., X))
()

based on the symmetric kernel
H(xyy .oy X)) = h(xq, ..., Xy) — El(xl) — e El(xm) - 6.

Note that E¢{H} = E¢{H|X,} = 0. That s, in an obvious notation, {{"’ = 0.
An application of Lemma 5.2.2B with ¢ = 2 thus yields

Theorem. Let v be an even integer. If ExHY < oo (implied by Egh’ < o),
then

*) Ex(U, — ﬁn)v = 0(n™), n — o0,

For v = 2, relation (*) was established by Hoeffding (1948) and applied to
obtain the CLT for U-statistics, as will be seen in Section 5.5. It also yields the
LIL for U-statistics (Section 5.4). Indeed, as seen below in 5.3.3, it leads to an
almost sure representation of U, as a mean of L1.D.’s. However, for informa-
tion on the rates of convergence in such results as the CLT and SLLN for
U-statistics, the case v > 2 in (*) is apropos. This extension was obtained by
Grams and Serfling (1973). Sections 5.4 and 5.5 exhibit some relevant rates of
convergence.



THE PROJECTION OF A U-STATISTIC ON THE BASIC OBSERVATIONS 189
5.3.3 Almost Sure Representation of a U-Statistic as a Mean of L1,D.’s
Theorem. Let v be an even integer. Suppose that Egh' < co. Put
U,=0, +R,.
Then, for any 8 > 1/v, with probability 1
R,=om '(logn)’),  n- oo,

PROOF. Let é > 1/v. Put 4, = n(log n)~%. It suffices to show that, for
any ¢ > 0, wpl 4,|R,| < ¢ for all n sufficiently large, that is,

) P(A,|R,| > & for infinitely many n) = 0.

Let ¢ > 0begiven. By the Borel-Cantelli lemma, and since 4, is nondecreasing
for large n, it suffices for (1) to show that

¥)) Y P(Azm max |R,| > e) < o0.
k=0 2kgng2k+!

Since R, = U, — U, is itself a U-statistic as noted in 5.3.2 and hence a
reverse martingale as noted in Lemma 5.1.5B, we may apply a standard result
(Loeve (1978), Section 32) to write

P(supw, -0, > :) <t E|U, - 0,0

Jzn

Thus, by Theorem 5.3.2, the kth term in (2) is bounded by (check)
8_v:12knEp|U2k - Uzklv = O((k + l)—dv)_
Since dv > 1, the series in (2) is convergent. W

The foregoing result is given and utilized by Geertsema (1970).

5.3.4 The “Projection” of U, for the General Case
="=0,=0<gi

(It is assumed that Egh*> < o0.) Since {; = 0 for d < c, the variance formula
for U-statistics (Lemma 5.2.1A) yields

m 2
C'( ) ¢
Vary{U,} = ——:-—- +0(Mm Y, n-o o,

and thus

) Varg{n''/2*(U, — 6)} - c! (T)zcc, n— .
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This suggests that in this case the random variable n*/?(U, — ) converges
in distribution to a nondegenerate law.

Now, generalizing 5.3.1, let us define the “projection” of U, to be 0, given
by

On_0= Z Er{Unlxm---,Xl,} - <:)0

1<l <e<icSn

Verify (Problem 5.P.11) that
_mm—=1)---(m—c+1)

B nn—1)m—=c+1) 14, ergn
Again (as in 5.3.2), U, — U, is itself a U-statistic, based on the kernel

H(xl,...,x,,,) = h(xl,...,x,,,) - Z ﬁt(xh,...,x,‘) - 0,

1Sl < <i.gm

@ 0,-0 hlXps . X)),

withEp{H} = E;{H|X,} = --- = Eg{H|X,, ..., X.} = 0,and thus{" = 0.
Hence the variance formula for U-statistics yields
3) E(U, — 0,)* = O(n=** 1),

so that E{n"/?(U, — 0,)?} = O(n™!) and thus
w2y, ~ 0,8 0.

Hence the limit law of n''/2¢(U, — 8) may be found by obtaining that of
nM2(0, — 6). For the cases ¢ = 1and ¢ = 2, this approach is carried out in
Section 5.5.

Note that, more generally, for any even integer v, if E; H' < oo (implied by
Ezh’ < o0), then

@ E|U, - U, = O(~"2™e+ 1)y oo,

The foregoing results may be extended easily to generalized U-statistics
(Problem 5.P.12).

In the case under consideration, that is, {.., = 0 < {_, the “projection”
0, - 6 corresponds to a term in the martingale representation of U, given by
Lemma 5.1.5A. Check (Problem 5.P.13) that Sy, = -+- = S._; , = 0 and

e ()

54 ALMOST SURE BEHAVIOR OF U-STATISTICS

The classical SLLN (Theorem 1.8B) generalizes to U-statistics:

Theorem A. IfEg|h| < oo, then U, *25 6.
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This result was first established by Hoeffding (1961), using the forward
martingale structure of U-statistics given by Lemma 5.1.5A. A more direct
proof, noted by Berk (1966), utilizes the reverse martingale representation of
Lemma 5.1.5B. Since the classical SLLN has been generalized to reverse
martingale sequences (see Doob (1953) or Loéve (1978)), Theorem A is
immediate.

For generalized k-sample U-statistics, Sen (1977) obtains strong con-
vergence of U under the condition E{|h|(log* |h[*" '} < c0.

Under a slightly stronger moment assumption, namely Eph? < oo,
Theorem A can be proved very simply. For, in this case, we have

ExU, - 0)* = 0(n™?)

as established in 5.3.2. Thus Y%, Ex(U, — 0,)? < , so that by Theorem
1.3.5 U, — U, 2% 0. Now, as an application of the classical SLLN,

=l5

=% TR0 mE (X)) = 0

Thus U, *% 6. This argument extends to generalized U-statistics (Problem
5.P.14).
As an alternate proof, also restricted to the second order moment assump-

tion, Theorem 5.3.3 may be applied for the part U, — 0, 2>

In connection with the strong convergence of U-statlstlcs, the following
rate of convergence is established by Grams and Serfling (1973). The argu-
ment uses Theorem 5.3.2 and the reverse martingale property to reduce to U, .

Theorem B. Let v be an even integer. If EEh" < oo, then for any € > 0,

P(suplU,l -0 > s) =0(Mn'""), n-oo.

kzn

The classical LIL may also be extended to U-statistics. As an exercise
(Problem 5.P.15), prove

Theorem C. Leth = h(x,, ..., x,) be a kernel for 8 = O(F), with Egh? < o0
and8; > 0. Then

lim (U, — 9)
n—+o (zmzCI |08 |Og n)”z

=1 wpl.
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5.5 ASYMPTOTIC DISTRIBUTION THEORY OF U-STATISTICS

Consider a kernel h = h(x,, ..., x,,) for unbiased estimation of 8 = 8(F) =
Eg{h}, with Erh* < 0. Let0 = {, < {, < -+ < {,, = Varg{h} be as defined
in 5.2.1. As discussed in 8.3.4, in the case {,_, = 0 < {,, the random variable

n1¥(u, - 6)

has variance tending to a positive constant and its asymptotic distribution
may be obtained by replacing U, by its projection U, . In the present section
we examine the limit distributions for the cases ¢ = 1 and ¢ = 2, which cover
the great majority of applications. For ¢ = 1, treated in 5.5.1, the random
variable n'/3(U, — 6) converges in distribution to a normal law. Correspond-
ing rates of convergence are presented. For ¢ = 2, treated in 5.5.2, the random
variable n(U, — 0) converges in distribution to a weighted sum of (possibly
infinitely many) independent x? random variables.

55.1 TheCase(, > 0

The following result was established by Hoeffding (1948). The proof is left as
an exercise (Problem 5.P.16).

Theorem A. If Exh? < o and §, > 0, then n'3(U, — 6) & N(0, m%(,),
that is,

2
U, is AN(O, ‘“nc‘).

Example A. The sample variance. 6(F) = o*(F). As seen in 5.1.1 and 5.2.1,
h(xy, x2) = ¥(x} + x3 — 2x1x3), {; = (uy — 0*)/4, and

U,, = sz ='—l— Z(X' - X)z.
n—-1 imq
Assuming that F is such that * < pu, < 0,50 that Exh? < 0 and{; > 0, we
obtain from Theorem A that

s? s AN (a’, E—‘%‘i)

Compare Section 2.2, where the same conclusion was established for m, =
(n — Ds?/n.

In particular, suppose that F is binomial (1, p). Then X = p, say, and
(check) s? = np(1 — p)/(n — 1). Check that u, — o* > Oifand onlyif p # 4.
Thus Theorem A is applicable for p # 4. (The case p = 4 will be covered by
Theorem 552.) W
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By routine arguments (Problem 5.P.18) it may be shown that a vector of
several U-statistics based on the same sample is asymptotically multivariate
normal. The appropriate limit covariance matrix may be found by the same
method used in 5.2.1 for the computation of variances to terms of order
o(n~Y).

It is also straightforward (Problem 5.P.19) to extend Theorem A to
generalized U-statistics. In an obvious notation, for a k-sample U-statistic, we
have

K 2
U s AN(G, y @‘—U)

=

provided that n )" m}{,/n; > B > 0 as n = min{n, ..., n,} - 0.

Example B. The Wilcoxon 2-sample statistic (continuation of Example
5.1.3). Here 6 = P(X < Y) and h(x,y) = I(x < y). Check that {,, =
P(X < Yl’ X< Yz) - 02, (12 = P(X < Y, Xz < Y) - 02. Under the null
hypothesis that £(X) = Z(Y),wehaved = {and{,; = P(\, < 1,3 < 1))
—4=4-4%=15={;,. Inthis case

. 11/1 1
v () m
The rate of convergence in the asymptotic normality of U-statistics has
been investigated by Grams and Serfling (1973), Bickel (1974), Chan and

Wierman (1977) and Callaert and Janssen (1978), the latter obtaining the
sharpest result, as follows.

Theorem B. Ifv =E|h|? < w0 and§; > O, then

1/2 _
P(n T < Cvm)™ "1,

sup —W_— < t) — ()

—m<t<®

where C is an absolute constant.

5.5.2 The Case c’ =0< c;

For the function A,(x,, x,) associated with the kernel h = h(x,, ..., X»)
(m 2 2), we define an operator A on the function space L,(R, F) by

Ag) = [ i DOMFO)  xeR,geLs.

That is, A takes a function g into a new function Ag. In connection with any
such operator A, we define the associated eigenvalues ,, 4,, ... to be the real
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numbers A (not necessarily distinct) corresponding to the distinct solutions
g1» g2, .. . of the equation

Ag -2 =0
We shall establish

Theorem. IfEph? < ocoand{, =0 <{,, then

_g’m(m -1

n(U, — 0) 3

Y,

where Y is a random variable of the form
@
Y= Y - D)

where %11, x31, . .. are independent 3 variates, that is, Y has characteristic
Junction

@
Ep{env} = n (l - Zitkj)_ llze— |u".
=1
Before developing the proof, let us illustrate the application of the theorem.

Example A. The sample variance (continuation of Examples 5.2.1A and
5.5.1A). We have hy(x, y) = (x — y)* — 0%, {) = (uy — 6*)/4, and {, =
$(us + 0*). Take now the case {; = O, that is, u, = 0* Then {; = ¢* > 0
and the preceding theorem may be applied. We seek values A such that the
equation

[thx = 9 - *l0)FO) = 240

has solutions g in L,(R, F). It is readily seen (justify) that any such g must be
quadratic in form: g(x) = ax? + bx + c. Substituting this form of g in the
equation and equating coefficients of x°, x! and x2, we obtain the system of
equations

3 [1700)F0) - 0 [riFe) = 1e,  ~ [yoriFo) = 28,
3 [o0XF0) = 10

Solutions (a, b, ¢, 1) depend upon F. In particular, suppose that F is binomial
(1, p), with p = 4. Then (check) 6* = §, u, = o*, [ y* dF(y) = } for all k.
Then (check) the system of equations becomes equivalently

a+b+2c=4d, a+b+c=-264, a+b+c=(4c+ 2l
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Itis then easily found (check) thata = 0,b = —2c,and A = —},in which case
g(x) = ¢(2x — 1), c arbitrary. The theorem thus yields, for this F,

s -PS -4~ w

Remark. Do s* and m; (=(n — 1)s*/n) always have the same asymptotic
distribution? Intuitively this would seem plausible, and indeed typically
it is true. However, for F binomial (1, §), we have (Problem 5.P.22)

n(my — 5 = 1k,
which differs from the above result for s*. W

Example B. 0(F) = u*(F). We have h(x,, x,) = x,x, and

U,,'-"'- ZXin.

L
n i<j
2
Check that {, = u?e?and{, = 0* — 2u*a? Assume that 0 < 0% < co. Then
we have the case {; > 0if u 0 and the case {;, = 0 < {; if 4 = 0. Thus
(i) If p # 0, Theorem 5.5.1A yields

2.2
U, is AN(u’, 4“"6 );
(ii) If u = 0, the above theorem yields (check)

nU, 4
azn"ﬁ_l' N

Example C. (continuation of Example 5.1.1(ix)). Here find that {, > 0 for
any value of 6,0 < 6 < 1. Thus Theorem 5.5.1A covers all situations, and the
present theorem has no role. W

PROOF OF THE THEOREM. On the basis of the discussion in 5.3.4,
our objective is to show that the random variable

. -1
nU, - 06)= T(m—l—) Z ﬁz(xi, Xj)
n - 1<i<jsn
converges in distribution to
m(m — 1)
2 Y,
where

y=354w?-,
j=1
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with W%, Wi, ... being independent x} random variables. Putting
1
T, =~ Y hy(X,, X)),
niay

we have

mm-1) n

n(0, - 0) = 2 n-1

Thus our objective is to show that
™ T.5 Y.

We shall carry this out by the method of characteristic functions, that is, by
showing that

** E;{e"™} - E{e™}, n— oo, each x.

A special representation for f,(x, y) will be used. Let {¢(-)} denote ortho-
normal eigenfunctions corresponding to the eigenvalues {4;} defined in
connection with A,. (See Dunford and Schwartz (1963), pp. 905, 1009, 1083,
1087). Thus

B ={r 17

and A,(x, y) may be expressed as the mean square limit of Y X. ; 4, $u(x)P4(y)
as K — oo, That is,

K 2
(1) lim EF{[Ez(Xl’ X,) - kgl)-n¢k(xl)¢h(xz)] } =

K~o

and we write

) hy(x, y) = Z A du(x)i(y).
Then (Problem 5.P.24(a)), in the same sense,
3 hy(x) = Z A D(X)Ep{d(X)}.

Therefore, since {; = 0,

Es{p(X)} =0, all k.
Furthermore (Problem 5.P.24(b)),

K 2 K
) Er{[ﬁz(x 1 X2) — kgllu (X )P X z)] } = E¢{h}(X 1, X,)} - 'Ellf,
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whence (by (1))

LA = BBy, X)) < 0.
In terms of the representation (2), T, may be expressed as

l <]
I.= ; Z Z Akd’k(x l)¢k(x j)-
itjk=1
Now put
l K
Tx= ; Z Z /lk ¢k(X l)¢k(x j)-
i#jk=1
Using the inequality | — 1] < |z|, we have
IE{ele..} _ E{ele,.g}I < Elele,. —- ele..xl
< Ix|E|T, - Tl
< IxI[E(T, — T)*]Y2.

Next it is shown that

L

&) ET-TW'<s2 } A

k=K+1

Observe that T, — T, is basically of the form of a U-statistic, that is,

where

with
K
gx(x, y) = hy(x, y) — kgll. NN ()

Justify (Problem 5.P.24(c)) that

(62) Exlgn(X1, X;)) = 0
(6b) Edgd(Xu X)) = 3 A2,
k=K+1

(6¢) Ep{gx(x, X)} = 0.
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Hence E{U,,} = 0 and, by Lemma 5.2.1A,

E{Ufk} = ('2')-!&_2 )-:-

K+1
Thus
-1 -] ]
E(T.—T,x)‘=(n—l)’(”) Y B<2 Y A
2 k=K+1 k=K+1
yielding (5).

Now fix x and let ¢ > 0 be given. Choose and fix K large enough that

a 1/2

lx|(2 5 z:) <e
k=K+1

Then we have established that

@) |E{e"*T"} — E{e"T"*}| < g, all n.

Next let us show that

d K

® Tx— Yo= 2 AWi-1)
k=1
We may write
K
Tx = lZ!/h(WE. - Zy,),

where

Wi = 12 3 (X))

i=1

and

Zyn = n"' Y GHX).

i=1
From the foregoing considerations, it is seen that

E{W,} =0, all k and n,
and

Cov{W,,, Wi,} = {(1)’ ; : :’ all j, k and n.
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Therefore, by the Lindeberg-Lévy CLT,
(Wins - ., Wea) > N(O, Ixx ).
Also, since Ex{@(X)} = 1, the classical SLLN gives
Zins s Zi) 25 (1, .0, 1)
Consequently (8) holds and thus
9 |E{e*T"x} — E{e"*'®}| < ¢, all nsufficiently large.
Finally, we show that
(10) |E{e"*Yx} — E{e™"}| < e[E(W3 — 1)2]'2,  alln.

To accomplish this, let the random variables W3, W2, ... be defined on a
common probability space and represent Y as the limit in mean square of Yy
as K — 00. Then

|E{e"®) — E{e")| < [x|[ECY — Yo)]"?
< x| [EW? — 1)’]*/’[ 5 13]"2,
k=K+1

yielding (10). Combining (7), (9) and (10), we have, for any x and any ¢ > 0,
and for all n sufficiently large,

|E{e™T"} — E{""}| < &{2 + [E(W] — 1)’]"?},

proving (**). W
This theorem has also been proved, independently, by Gregory (1977).

5.6 PROBABILITY INEQUALITIES AND DEVIATION PROBABILITIES
FOR U-STATISTICS

Here we augment the convergence results of Sections 5.4 and 5.5 with exact
exponential-rate bounds for P(U, — 6 > t) and with asymptotic estimates of
moderate deviation probabilities

”llz(Un - 0) 1/2
( gy = ogn)'™),
5.6.1 Probability Inequalities for U-Statistics

For any random variable Y possessing a moment generating function E{e*"}
for 0 < s < 54, One may obtain a probability inequality by writing

P(Y — E{Y} 2 t) = P(s[Y — E{Y} — {] = 0) < e™"E{"Y~5¥i})
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and minimizing with respect to s € (0, so]. In applying this technique, we make
use of the following lemmas. The first lemma will involve the function

bl - y
x, y) = e’ e, x>0,y>0.
Sf(x, y) P +x+y y

Lemma A. Let E{Y} = pand Var{Y} = v.
(i) IfP(Y <b)=1,then
E{e"¥~"} < f(s(b — u), sv/(b — p)),s > 0.
(ii) IfP@a<Y <b)=1,then
E{e"Y-m} g ell/anib-u? g 5

PROOF. (i) is proved in Bennett (1962), p. 42. Now, in the proof of
Theorem 2 of Hoeflding (1963), it is shown that

ge™*? + pe*t < /O,
for0<p<1,qg=1—p Putting p= y/(x + y) and z = (x + y), we have
f(x, y) < VO,

so that (i) yields

E{e"T~")} < (1/BWHG-n +vib-mP

Now, as pointed out by Hoeffding (1963), v = E(Y — u)* = E(Y — p)
(Y —a) < (b — WEY — a) = (b — w)(u — a). Thus (ii) follows. W

The next lemma may be proved as an exercise (Problem 5.P.25).

Lemma B. IfE{c'Y} < o0 for 0 <s < sq, and E{Y} = p, then
E{e¥ "} =1+ 0(?), s-0.

In passing to U-statistics, we shall utilize the following relation between the
moment generating function of a U-statistic and that of its kernel.

LemmmaC. Leth = h(x,,..., x,,) satisfy
Vn(s) = Epf{ert®imXm} < o0, 0 <s <s5,.
Then

Ee(e™) < w:(%), 0<s <8k

where k = [n/m)].
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PROOF. By 5.1.6, U,=(n)"'Y, W(X,,..., X,), where each W(-)
is an average of k = [n/m] LLD. random variables. Since the exponential
function is convex, it follows by Jensen's inequality that

esUn — es(ul)'lz, w() < (n !)-1 Z esW(X“.....Xi")_
4
Complete the proof as an exercise (Problem 5.P.26). W

We now give three probability inequalities for U-statistics. The first two,
due to Hoeflding (1963), require h to be bounded and give very useful explicit
exponential-type bounds. The third, due to Berk (1970), requires less on h but
asserts only an implicit exponential-type bound.

Theorem A. Let h =h(x,,...,x,) be a kernel for 0 = 6(F), with a <
h(x,,..., Xn) < b. Put 8 = E{h(X,, ..., X»)} and 6* = Var{h(X,, ..., X,)},
Then,fort > 0and n > m,

n P(U, — 6 > t) g e~ 2in/mit’/b-a)?
and
V) PU,-021t< e~ [n/mi2/2[%% + (1/3)(b— 0]

PROOF. Write, by Lemmas A and C, with k = [n/m] and s > 0,

P(U,, —6> )< E,{e“”"""’} < e-"[e_('/mlll,,(i-)]k
< e~ s+ (1/8)s3(b-a)fk

Now minimize with respect to s and obtain (1). A similar argument leads to

o? (b — )
b=y 0)t]l°g[l +—03 ] - l}
b-9 7 '

It is shown in Bennett (1962) that the right-hand side of (2') is less than or
equal to that of (2). W

(Compare Lemmas 2.3.2 and 2.54A.)

—kt{[l +
2) PU,—~02=1)<exp

Theorem B. Leth = h(x,, ..., x,,) be a kernel for 8 = &(F), with
Eg{e'tXvXm} 2 05, 0 <5 <s,.

Then, for every € > O, there exist C, > 0 and p, < 1 such that
P(U, — 0 > ¢) < C,p?, alln > m,



202 U-STATISTICS
PROOF. For0 <t < sok, where k = [n/m], we have by Lemma C that

PU,-02¢< e'"[e""“”'l’u(%)]k

= [e™"e™**y(s)]%,
where s = t/k. By Lemma B, ¢~ **,(s) = 1 + O(s2), s = 0, so that
e e ()=1—-e+0(?), s-0,
< 1 for s = s, sufficiently small.
Complete the proof as an exercise. [l

Note that Theorems A and B are applicable for n small as well as for n large.

5.6.2 *“Moderate Deviation” Probability Estimates for U-Statistics
A “moderate deviation” probability for a U-statistic is given by

llz(Un - 0)
alc) = P(ETE’CT‘_’T' > (log n)"’).

where ¢ > 0 and it is assumed that the relevant kernel h has finite second
moment and {, > 0. Such probabilities are of interest in connection with
certain asymptotic relative efficiency computations, as will be seen in Chapter
10. Now the CLT for U-statistics tells us that g,(c) — 0. Indeed, Chebyshev’s
inequality yields a bound,

1
a(c) < Tlogn = O((log )~ *).

However, this result and its analogues, O((log n)~"/2""), under v-th order
moment assumptions on h are quite weak. For, in fact, if h is bounded, then
(Problem 5.P.29) Theorem 5.6.1A implies that for any § > 0

W ax(c) = On~11 - damcu=arie)
where a < h < b. Note also that if merely E,|h|® < co is assumed, then for ¢
sufficiently small (namely, ¢ < 1), the Berry-Esséen theorem for U-statistics
(Theorem 5.5.1B) yields an estimate:
1

* ~ ] — 12y -(1)2)c2
™ an(c) ~ 1 — d(c(log n)''?) Grctlogm™ " -
However, under the stronger assumption E|h|* < oo for some v > 3, this
approach does not yield greater latitude on the range of ¢. A more intricate
analysis is needed. To this effect, the following result has been established by

Funk (1970), generalizing a pioneering theorem of Rubin and Sethuraman
(1965a) for the case U, a sample mean.

Theorem. IfEg|h|’ < o0, wherev > 2, then(*) holdsforc* <v — 2.
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57 COMPLEMENTS

In 5.7.1 we discuss stochastic processes associated with a sequence of U-
statistics and generalize the CLT for U-statistics. In 5.7.2 we examine the
Wilcoxon one-sample statistic and prove assertions made in 2.6.5 for a
particular confidence interval procedure. Extension of U-statistic results to
the related V-statistics is treated in 5.7.3. Finally, miscellaneous further
complements and extensions are noted in 5.7.4.

5.7.1 Stochastic Processes Associated with a Sequence of U-Statistics

Leth = h(x,, ..., X,,) be a kernel for @ = O(F), with E¢(h*) < c0 and {, > 0.
For the corresponding sequence of U-statistics, {U,},,m We consider two
associated sequences of stochastic processes on the unit interval {0, 1].

In one of these sequences of stochastic processes, the nth random function is
based on U, ..., U, and summarizes the past history of {U,};<,. In the
other sequence of processes, the nth random functionis basedon U,, U4y, . . .
and summarizes the future history of {U,},,,. Each sequence of processes
converges in distribution to the Wiener process on {0, 1], which we denote by

W(-) (recall 1.11.4).
The process pertaining to the future was introduced and studied by Loynes
(1970). The nth random function, {Z,(t), 0 < ¢t < 1}, is defined by

Z,(0)=0;

U,-6
Z(tw) = Ws

Z,,(z) = zn(‘nh)v ket <t <ty

Var{U,}

k=n, where ¢, = Var{U,}’

Foreachn, the “times” t,,, ty. 4+ 1, - - . form a sequence tendingtoOand Z,(- ) is
a step function continuous from the left. We have

Theorem A (Loynes). Z.(-) % W(.)in D[0, 1].

This result generalizes Theorem 5.5.1A (asymptotic normality of U,) and
provides additional information such as

Corollary. Forx > 0,

(1 lim P(sup(Uk -0 x(Var{U..})"z)

n-* o0 kzn

= P( sup W(t) 2 X) = 2[1 — ¥(x)]

0<tg1
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and

03] lim P( inf(U, — 0) < -—x(Var{U..})”’)

n-w kz2n

= P( inf W(t) < —x) = 2[1 — ®(x)].
0stst
As an exercise, show that the strong convergence of U, to 0 follows from this
corollary, under the assumption E;{h?} < o0.
The process pertaining to the past has been dealt with by Miller and Sen
(1972). Here the nth random function, {Y,(t),0 < t < 1}, is defined by

Y(t) =0, OStsm—;—l;

k k(U, - 6) :

Y,(t) defined elsewhere, 0 < t < 1, by linear interpolation.
Theorem B (Miller and Sen). Y,(-) & W(-)in C[0, 1].

This result likewise generalizes Theorem 5.5.1A and provides additional
information such as

(3) lim P( sup k(U, — 6) > x(m’C,)”’n”’) =21 -®(x)), x>0
n-co msksn

Comparison of (1) and (3) illustrates how Theorems A and B complement
each other in the type of additional information provided beyond Theorem
5.5.1A.

See the Loynes paper for treatment of other random variables besides
U-statistics. See the Miller and Sen paper for discussion of the use of Theorem
B in the sequential analysis of U-statistics.

5.7.2 The Wilcoxon One-Sample Statistic as a U-Statistic

For testing the hypothesis that the median of a continuous symmetric
distribution F is 0, that is, &, = 0, the Wilcoxon one-sample test may be
based on the statistic
Y X+ X;>0)
15i<jsn
Equivalently, one may perform the test by estimating G(0), where G is the
distribution function G(t) = P(}(X, + X,) < 1), with the null hypothesis to
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be rejected if the estimate differs sufficiently from the value 4. In this way one
may treat the related statistic

1
Uy=7~ Y IX,+X,50)

RY 1gi<jsn
2

as an estimate of G(0). This, of course, is a U-statistic (recall Example 5.1.1(ix)),
so that we have the convenience of asymptotic normality (recall Example
5.5.2C-check as exercise).

In 2.6.5 we considered a related confidence interval procedure for &,,,.
In particular, we considered a procedure of Geertsema (1970), giving an
interval

IWn = (mla,.’ mbn)

formed by a pair of the ordered values W,; < -+ < W,y of the N, = (3)
averages (X, + X), 1 < i <j < n. We now show how the properties stated
for Iy, in 2.6.5 follow from a treatment of the U-statistic character of the
random variable
G,.(X) = ! z I[%(X‘ + Xj) < x].
N\ 1gi<jsn
()

Note that G,, considered as a function of x, represents a “sample distribution
function” for the averages X, + X)), 1 < i < j < n. From our theory of U-
statistics, we see that G,(x) is asymptotically normal. In particular, G,(¢,,;) is
asymptotically normal. The connection with the W, s is as follows. Recall the
Bahadur representation (2.5.2) relating order statistics X, to the sample
distribution function F,. Geertsema proves the analogue of this result for

W,...and G,. The argument is similar to that of Theorem 2.5.2, with the use of
Theorem 5.6.1A in place of Lemma 2.54A.

Theorem. Let F satisfy the conditions stated in 2.6.5. Let

k., 1 logn
——+0'an, n-— 00,

Then

n\ -1
(2) kn - Gn(gllz)

Wi = + +R,
= 112 g(12)
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where with probability 1
R,=0(m ¥*logn), n-— o0

It is thus seen, via this theorem, that properties of the interval I, may be
derived from the theory of U-statistics.

§.7.3 Implications for V-Statistics

In connection with a kernel h = h(x,, ..., x,,), let us consider again the
V-statistic introduced in 5.1.2. Under appropriate moment conditions, the
U-statistic and V-statistic associated with h are closely related in behavior, as
the following result shows.

Lemma. Let r be a positive integer. Suppose that
Eelh(X,,....X )l <0, alli<iy...,in<sm
Then
E|U, = V.I'=0(n"").
PROOF. Check that
(U, — V) = (0" — nm) (U, — W),
where n,, =n(n — 1):--(n — m + 1) and W, is the average of all terms
KX, ..., X, ) with at least one equality i, = i,, a # b. Next check that
n" ~ Ny = O(n™"1).

Finally, apply Minkowski’s inequality. 1l

Application of the lemma in the case r = 2 yields

n'}(U, - 1) 50,

in which case n/*(U, — 6) and n'/*(V, — ) have the same limit distribution,
a useful relationship in the case {, > 0. Infact, this latter result can actually be
obtained under slightly weaker moment conditions on the kernel (see
Bonner and Kirschner (1977).)

5.7.4 Further Complements and Extensions

(i) Distribution-free estimation of the variance of a U-statistic is considered
by Sen (1960).

(ii) Consideration of U-statistics when the distribution of X,, X,, ...
are not necessarily identical may be found in Sen (1967).

(iii) Sequential confidence intervals based on U-statistics are treated by
Sproule (1969a, b).
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(iv) Jackknifing of estimates which are functions of U-statistics, in order
to reduce bias and to achieve other properties, is treated by Arvesen (1969).

(v) Further results on probabilities of deviations (recall 5.6.2) of U-
statistics are obtained, via some further results on stochastic processes
associated with U-statistics (recall 5.7.1), by Sen (1974),

(vi) Consideration of U-statistics for dependent observations X, X5, ...
arises in various contexts. For the case of m-dependence, see Sen (1963), (1965).
For the case of sampling without replacement from a finite population, see
Nandi and Sen (1963). For a treatment of the Wilcoxon 2-sample statistic in
the case of samples from a weakly dependent stationary process, see Serfling
(1968).

(vii) A somewhat different treatment of the case {, = 0 < {, has been
given by Rosén (1969). He obtains asymptotic normality for U, when the
observations X, ..., X, are assumed to have a common distribution F®
which behaves in a specified fashion as n — co. In this treatment F® is
constrained not to remain fixed as n — o0,

(viii) A general treatment of symmetric statistics exploiting an orthogonal
expansion technique has been carried out by Rubin and Vitale (1980). For
example, U-statistics and V-statistics are types of symmetric statistics. Rubin
and Vitale provide a unified approach to the asymptotic distribution theory
of such statistics, obtaining as limit random variable a weighted sum of
products of Hermite polynomials evaluated at N(0, 1) variates.

5P PROBLEMS

Section 5.1

1. Check the relations Ep{g,(X,)} =0, Ep{gs(x;, X3)} =0,... in
5.1.5.

2. Prove Lemma 5.1.5B.

Section 5.2

3. (i) Showthat{, <{, < - € {n.
(ii) Show that {, < 4{,. (Hint; Consider the function g, of 5.1.5.)

4, Let {a,,...,ay} and {b,, ..., b,} be two sets of m distinct integers
from {1,..., n} with exactly c integers in common. Show that
Er{ﬁ(xap seey Xa...)ﬁ(xbp vevy Xb,,.)} = C.-a
5. In Lemma 5.2.1A, derive (iii) from (*).
6. Extend Lemma 5.2.1A(*) to the case of a generalized U-statistic.
7. Complete the details of proof for Lemma 5.2.2B.
8. Extend Lemma 5.2.2B to generalized U-statistics.
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Section 5.3
9. The projection of a generalized U-statistic is defined as
kK ny
0= L LEAUIXP} -~ 18,
where N = n; + «++ + n,. Define
hyf(x) = Ep{h(X{), ..., X85 s XP, ..., X®)| XY = x} - 6.

Show that
0-8=3 ¥ ™5 xp.

J=11=1
10. (continuation) Show thatU, — 0, is a U-statistic based on a kernel
H satisfying E.{H} = E,{H|X{"} = 0.
11. Verify relation (2) in 5.3.4..
12, Extend (2), (3) and (4) of 5.3.4 to generalized U-statistics.
13. Letg. and S, be as defined in 5.1.5. Define a kernel G, of order m by

Gdxys ..oy Xm) = Z g:(xlp ey Xie)
1glh<<legm

and let U,, be the U-statistic corresponding to G.. Show that

e ()

u,-6=YU,.

c=1

and thus

Now suppose that {,_, = 0 < {.. Show that U, defined in 5.3.4 satisfies
0,-6=uU,,.

Section 5.4

14. For E h* < oo, show strong convergence of generalized U-statistics.
15. Prove Theorem 5.4C, the LIL for U-statistics. (Hint: apply Theorem

5.3.3)
Section 5.5

16. Prove Theorem 5.5.1A, the CLT for U-statistics.
17. Complete the details for Example 5.5.1A.
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18. Extend Theorem 5.5.1A to a vector of several U-statistics defined on
the same sample.

19. Extend Theorem 5.5.1A to generalized U-statistics (continuation of
Problems 5.P.9, 10, 12).

20. Check the details of Example 5.5.1B.
21. Check the details of Example 5.5.2A.
22. (continuation) Show, for F binomial (1, 4), that

nm; — 4 S — 4k
(Hint: One approach is simply to apply the result obtained in Example
5.5.2A. Another approach is to write m, = p — p? and apply the methods of
Chapter 3.)
23. Check the details of Example 5.5.2B.
24. Complete the details of proof of Theorem 5.5.2.

(@) Prove (3). (Hint: write A;(x) = Eg{h,(x, X,)} and use Jensen’s
inequality to show that

K 2
lim Er{ [ﬁl(x 1) — kE_:ll. (X1 )Es{d(X z)}] }

K-

K 2
< lim Er{[ﬁz(x » X32) — kgl'lk (X )oX z)] } =0.

K~
(b) Prove (4).
(c) Prove (6).
Section 5.6

25. Prove Lemma 5.6.1B. (Hint: Without loss assume E{Y} = 0. Show
that e’ = 1 + sY + $5s°Z, where 0 < Z < Y2%e*')

26. Complete the proof of Lemma 5.6.1C.
27. Complete the proof of Theorem 5.6.1A.
28. Complete the proof of Theorem 5.6.1B.

29. In 5.6.2, show that (1) follows from Theorem 5.6.1A and that (*) for
¢ < 1 follows from Theorem 5.5.1B.

Section 5.7

30. Derive the strong convergence of U-statistics, under the assumption
Eg{h?®} < o, from Corollary 5.7.1.

31. Check the claim of Example 5.5.2C.
32. Apply Theorem 5.7.2 to obtain properties of the confidence interval
Iyn.

33. Complete the details of proof of Lemma 5.7.3.



CHAPTER 6

Von Mises Differentiable

Statistical Functions

Statistics which are representable as functionals T(F,) of the sample distribu-
tion F, are called “statistical functions.” For example, for the variance
parameter g the relevant functional is T(F) = | [x — { x dF(x)]* dF(x) and
T(F,) is the statistic m, considered in Section 2.2. The theoretical investiga-
tion of statistical functions as a class was initiated by von Mises (1947), who
developed an approach for deriving the asymptotic distribution theory of
such statistics. Further development is provided in von Mises (1964) and,
using stochastic process concepts, by Filippova (1962).

Notions of differentiability of T play a key role in the von Mises approach,
analogous to the treatment in Chapter 3 of transformations of asymptotically
normal random vectors. We thus speak of “ differentiable statistical functions.”
In typical cases, T(F,) — T(F) is asymptotically normal. Otherwise a higher
“type” of distribution applies, in close parallel with the hierarchy of cases
seen for U-statistics in Chapter 5.

This chapter develops the “differential approach” for deriving the asymp-
totic distribution theory of statistical functions. In the case of asymptotically
normal T(F,), the related Berry-Esséen rates and laws of iterated logarithm
are obtained also. Section 6.1 formulates the representation of statistics as
functions of F, and sketches the basic scheme for analysis of T(F,) — T(F) by
reduction by the differential method to an appropriate approximating random
variable V,. Methodology for carrying out the reduction to ¥, is provided in
Section 6.2, and useful characterizations of the structure of ¥, are provided in
Section 6.3. These results are applied in Section 6.4 to obtain general results
on the asymptotic distribution theory and almost sure behavior of statistical
functions. A variety of examples are treated in Section 6.5. Certain comple-
ments are provided in Section 6.6, including discussion of some statistical
interpretations of the derivative of a statistical function. Further applications
of the development of this chapter will arise in Chapters 7, 8 and 9.

210
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6.1 STATISTICS CONSIDERED AS FUNCTIONS OF THE SAMPLE
DISTRIBUTION FUNCTION

We consider as usual the context of LLD. observations X,, X,,...on a
distribution function F and denote by F, the sample distribution function
based on X,,..., X,. Many important statistics may be represented as a
function of F,, say T(F,). Since F, is a reasonable estimate of F, indeed
converging to F in a variety of senses as seen in Section 2.1, we may expect
T(F,) to relate to T(F) in similar fashion, provided that the functional T(-) is
sufficiently “well-behaved” in a neighborhood of F. This leads to considera-
tion of F as a “point” in a collection # of distribution functions, and to
consideration of notions of continuity, differentiability, and other regularity
properties for functionals T(-) defined on #. In this context von Mises
(1947) introduced a Taylor expansion for T(-), whereby the difference
T(G) — T(F) may be represented in terms of the “derivatives” of T(-) and
the “difference” G — F.

In 6.1.1 we look at examples of T(F,) and give an informal statement of
von Mises’ general proposition. In 6.1.2 the role of von Mises’ Taylor
expansion is examined,

6.1.1 First Examples and a General Proposition

Here we consider several examples of the broad variety of statistics which are
amenable to analysis by the von Mises approach. Then we state a general
proposition unifying the asymptotic distribution theory of the examples
considered.

Examples. (i) For any function h(x), the statistic

n=| h(x)dF.(x)( =t £h0t))
i=]

is a linear statistical function—that is, linear in the increments dF,(x). In
particular, the sample moments a, = | x* dF,(x) are linear statistical functions.
(ii) ‘The sample kth central moment, T, = m, = T(F,), where

T(F) = ‘[[x - Jix dF(x)]k dF(x).

(iii) Maximum likelihood, minimum chi-square estimates T, are given by
solving equations of the form H(T, F,) = 0.
(iv) The chi-squared statistic is T(F,), where

k 2
T(F) = Zpr‘( AdF—p:) ,

=1
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where {4} is a partition of R into k cells and {p,} is a set of specified (null-
hypothesis) probabilities attached to the cells.

(v) The generalized Cramér-von Mises test statistic, considered in 2.1.2,
is given by T(F,), where T(F) = | W(Fo)(F — F,)* dF,, for w and F,
specified. W

It turns out that examples (i), (ii) and (iii) are asymptotically normal (under
appropriate conditions), example (iv) is asymptotically chi-squared, and
example (v) is somethingstill different (a weighted sum of chi-squared variates).
Nevertheless, within von Mises’ framework, these examples all may be viewed
as special cases of a single unifying theorem, which is stated informally as
follows.

Proposition (von Mises). The type of asymptotic distribution of a differ-
entiable statistical function T, = T(F,) depends upon which is the first
nonvanishing term in the Taylor development of the functional T(-) at the
distribution F of the observations. If it is the linear term, the limit distribution
is normal (under the usual restrictions corresponding to the central limit
theorem). In other cases, * higher” types of limit distribution result.

More precisely, when the first nonvanishing term of the Taylor develop-
ment of T(-) is the one of order m, the random variable n™2[T(F,) — T(F)]
converges in distribution to arandom variable with finite variance. Form = 1,
the limit law is normal. (Actually, the normalization for the order m case can
in some cases differ from n™2, See 6.6.4.)

6.1.2 The Basic Scheme for Analysis of 7(F,)
In 6.2.1 a Taylor expansion of T(F,) — T(F) will be given:

T(F,) - T(F) = d,T(F; F, — F) + %d; T(FiF,— F) + -

Analysis of T(F,) — T(F) is to be carried out by reduction to

an= Z -l'djT(F;Fn_F)
=1
for an appropriate choice of m. The reduction step is performed by dealing
with the remainder term R, = T(F,) — T(F) — V,,, and the properties
of T(F,) — T(F) then are obtained from an m-linear structure typically
possessed by V,,,.
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In the case that T(F,) is asymptotically normal, we prove it by first showing
that

* n'?R,, 5 0.
Then it is checked that V,, has the form of a sample mear of I.1.D. mean 0

random variables, so that n'/2V,, % N(0, ¢%(T, F)) for a certain constant
o%(T, F), whereby

(1) n'2[T(F,) — T(F)] > N0, o¥(T, F)).

In this case the law of the iterated logarithm for T(F,) — T(F) follows by a
similar argument replacing (*) by

** n'?Ry, = o((log log n)"/*)wpl,

yielding
n3[T(F) - T(F)]
@ (T, F)(2loglog )’ ~

In addition, a Berry-Esséen rate for the convergence in (1) may be obtained
through a closer study of R,,. Invariably, standard methods applied to R,,
fail to lead to the best rate, O(n~''2). However, it turns out that if T(F,) —
T(F) is approximated by V., instead of V,,, the resulting (“smaller”) re-
mainder term R,, behaves as needed for the standard devices to lead to the
Berry-Esséen rate O(n~'/2). Namely, one establishes

(***) P(IRz,| > Bn™') = O(n~"/?)
for some constant B > 0, and obtains

n'?[T(F,) — T(F)] ]
P( o(T, F) < ‘) - d’(t)l = 0(n~'2).

Inthecasethat P(Vy, = ¢) = l,thatis, V|, = d,T(F; F, — F)isadegenerate
random variable, the asymptotic distribution of T'(F,) is found by finding the
lowest m such that V,,, is not degenerate. Then a limit law for n™2[T(F,) —
T(F)] is found by establishing n™?R,,, — 0 and dealing with n™2V,,,. For
m > 1, the case of widest practical importance is m = 2. Thus the random
variable V;, has two important roles—one for the case that n[ T(F,) — T(F)]
has a limit law, and one for the Berry-Esséen rate in the case that T(F,) is
asymptotically normal.

Finally, we note that in general the strong consistency of T(F,) for estima-

tion of T(F) typically may be established by proving R, Lo
Methodology for handling the remainder terms R,,, is provided in 6.2.2.

The structure of the V,,, terms is studied in Section 6.3. These results are

applied in Section 6.4 to obtain conclusions such as (1), (2), (3), etc.

1 wpl.

3) sup
t
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6.2 REDUCTION TO A DIFFERENTIAL APPROXIMATION

The basic method of differentiating a functional T(F) is described in 6.2.1
and applied to formulate a Taylor expansion of T(F,) about T(F). In 6.2.2
various techniques of treating the remainder term in the Taylor expansion are
considered.

6.2.1 Diflerentiation of Functionals T'()

Given two points F and G in the space & of all distribution functions, the
“line segment” in & joining F and G consists of the set of distribution
functions {(1 — A)F + AG, 0 < A < 1}, also written as {F + 4G — F),
0 £ A <1}. Consider a functional T defined on F + 4G — F) for all
sufficiently small A. If the limit

4, T(F:G - F) = lim T(F + AG -; F)) — T(F)
A~0+
exists, it is called the GAteaux differential of T at F in the direction of G. Note
that 4, T(F; G — F) is simply the ordinary right-hand derivative, at A = 0,

of the function Q(4) = T(F + A(G — F)) of the real variable A. In general, we
define the kth order Gateaux differential of T at F in the direction of G to be

k
d,T(F;G-F)=i;T(F+/1(G—-F)) ,
d" A=O+4
provided the limit exists.

Example. Consider the functional

T(F) = J'---fh(x,,...,x,)dF(x,)---dF(xe).

where h is symmetric. Writing

T(F + AG - F))
¢ fc J ¢
-3 )r-l [ e xa [T dPesy 1T diGexd ~ Fexal
j=0 =1 i=)+1

and carrying out successive differentiations, we obtain

-‘!*1T(F+A(G—p))=‘i" (c)(c—j)---(c—j—k-i' 1)dc-I-*
di S U

J ¢
x [ [Wsin.ee, %[ arex) 11 dIGG) - Fex]

v w4
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and thus
AT(F;G—-F)=clc— 1) (c—k+1)

c—k k
x f f B(xts ey Xis Yir e Ves) [1 dFOGD T dG(x) ~ FCx)]
im 1 i=1

fork=1,...,c,and d,T(F; G- F) =0,k > c.
In particular, for the mean functional T(F) = [ x dF(x), we have

d,T(F; G — F) = f HO[G(x) ~ F()] = T(G) — T(F)

andd,T(F;G — F) =0fork > 1.
For the variance functional, corresponding to

h(xln xz) = i(xi + x% - lexZ)n
we have (check)

d,T(F;G — F)
= J' x? dG(x) — J'x’ dF(x) — 2 J-x dF(x) J-x dG(x) + Z(J-x dl‘“(x))2

and
2

4, T(F; G — F) = -2(fxdo(x)- fxdr(x)) n

Suppose that the function Q(A) satisfies the usual assumptions for a Taylor
expansion to be valid (the assumptions of Theorem 1.12.1A as extended in
Remark 1.12.1(i)) with respect to the interval 0 < A < 1. (See Problem 6.P.2)
Since Q(0) = T(F), Q(1) = T(G), Q@Y(0) = d,T(F;G — F), Q¥(0) =
d; T(F; G — F), etc., the Taylor expansion for Q(-) may be expressed as a
Taylor expansion for the functional T(-):

™ TG) - T(F)= ), %d,T(F; G- F)

k=1

1 dm+l
+ dem-T T(F + MG ~ F)) "

where 0 < A* < 1. Note that even though we are dealing here with a func-
tional on &, sophisticated functional analysis is not needed at this stage, since
the terms of the expansion may be obtained by routine calculus methods.
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We are not bothering to state explicitly the conditions needed for (*) to
hold formally, because in practice (*) is utilized rather informally, merely as a
guiding concept. As discussed in 6.1.2, our chief concern is

1
R,, = T(F,) —= T(F) - tZl ;—,d;T(F; F, - F),
which may be investigated without requiring that R,,, have the form dictated
by (*), and without requiring that (*) hold for G other than F,.

6.2.2 Methods for Handling the Remainder Term R,,,

As discussed in 6.1.2, the basic property that one would seek to establish for
R, is

) 1Ry 5 0,

In the case that the Taylor expansion of 6.2.1 is rigorous, it suffices for (1) to
show that

+1
M) n™? sup i'-,,—; T(F + MF, - F)| 5
osig1 |dA"

This is the line of attack of von Mises (1947). Check (Problem 6.P.3), using
Lemma 6.3.2B, that (M) holds for the functionals

T(F) = j o+ [ Wty o X)) - dF(x)

considered in Example 6.2.1.

An inconvenience of this approach is that (M) involves an order of differ-
entiability higher than that of interest in (1). In order to avoid dealing with the
unnecessarily complicated random variable appearing in (M), we may
attempt a direct analysis of R,,,. Usually this works out to be very effective in
practice.

Example A, (Continuation of Example 6.2.1). For the variance functional
T(F) = {f h(x1, x2)dF(x,)dF(x,), where h(xy, x;) = ¥(x} + x3 — 2x,x;), we
have (check)

T(G) — T(F) = d,T(F; G — F) = —(ug — us)?,
where ur and ug denote the means of F and G. Thus

Ry, = -(X - ”F)z-
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It follows (check) by the Hartman and Wintner LIL (Theorem 1.10A) that
|IRy,| = O(n~! log log n) wpl
and hence in particular
n'?R,, 50
and
n'R,, = o((log log n)*?)wp],
in conformity with (*) and (**) of 6.1.2. W

As a variant of the Taylor expansion idea, an alternative “guiding concept”
consists of a differential for T at F in a sense stronger than the Gateaux version.
Let us formulate such a notion in close analogy with the differential of 1.12.2
for functions g defined on R* Let 2 be the linear space generated by differ-
ences G — H of members of #, the space of distribution functions, (2 may be
represented as {A: A = ¢(G — H), G, H € #, creal}.) Let 2 be equipped with
a norm |-||. The functional T defined on # is said to have a differential at the
point F € # with respect to the norm |-|| if there exists a functional T(F; A),
defined on A € 2 and linear in the argument A, such that

(D) T(G) — T(F) — T(F; G ~ F) = o(|G — Fl)
as |G — F| = O (T(F; A) is called the “differential ).

Remarks A. (i) To establish (D), it suffices (see Apostol (1957), p. 65) to
verify it for all sequences {G,} satisfying |G, — F|| = 0,n - oo.
(ii) By linearity of T(F; A) is meant that

k k

T(F; Z a,A,) = z a,T(F; A)
i=1 =1

forAy,..., A, €D andreal ay,..., q;.

(iii) In the general context of differentiation in Banach spaces, the differ-
ential T(F; A) would be called the Fréchet derivative of T (see Fréchet (1925),
Dieudonné (1960), Luenberger (1969), and Nashed (1971)). In such treat-
ments, the space on which T is defined is assumed to be a normed linear space.
We intentionally avoid this assumption here, in order that T need only be
defined at points F which are distribution functions. i

It is evident from (D) that the differential approach approximates T'(F,)
— T(F)bythe random variable T'(F; F, — F), whereas the Taylcr expansion
approximates byd, T(F; F, — F). These approaches are in agreement, by the
following result.
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Lemma A. If T has a differential at F with respect to |-{i, then, for any G,
d, T(F; G — F) exists and

d,T(F; G - F) = T(F; G - F).

PROOF. Given G,put F;=F + AG — F). Then F, — F = AG - F)
and thus |F, — F}| = |G — F|| = 0asA — 0(Gfixed). Therefore, by (D)and
the linearity of T(F; A), we have

T(F)) — T(F)= T(F; Fy; = F) + o(|IF, = FY), 4-0,
= AT(F;G - F)+40(1), A-0.

Hence

lim Z(F_*)_;:’_M= T(F;G-F). &
A0+
The role played by the differential in handling the remainder term R,, is
seen from the following result.

Lemma B. Let T have a differential at F with respect to |I-||. Let {X;} be
observations on F (not necessarily independent) such that n''*|F, — F|| =

O,(1), Then n**R,, 5 0,

PROOF. For any ¢ > 0, we have by (D) and Lemma A that there exists
8, > 0 such that

IRyl < &|F, — F}
whenever §F, — Fl| < J,. Let g, > 0 be given. Then

[
P(n'?|R,,| > &) < P(n”’IIF.. - Fjj > f) + P(|F, — Fll > 4,).

Complete the argument as an exercise (Problem 6.P.5). W

Remarks B. (i) The use of (D) instead of (M) bypasses the higher-order
remainder term but introduces the difficulty of handling a norm.

(ii) However, for the sup-norm, ||g|l , = sup,|g(x)|, this enables us to take
advantage of known stochastic properties of the Kolmogorov-Smirnov
distance |F, — F| .. Under the usual assumption of LI.D. observations {X},
the property n'?|F, — F|, = O,(1) required in Lemma B follows im-
mediately from the Dvoretzky-Kiefer-Wolfowitz inequality (Theorem
2.1.3A).

(iii) The choice of norm in seeking to apply Lemma B must serve two
somewhat conflicting purposes. The differentiability of T is more easily
established if |||l is “large,” whereas the property n'/2|F, — F|| = 0,(1) is
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more easily established if ||| is “small.” Also, the two requirements differ in
type, one being related to differential analysis, the other to stochastic analysis.

(iv) Inview of Lemma A, the “candidate” differential T(F; G — F) to be
employed in establishing (D) is given by d,T(F; G — F), which is found by
routine calculus methods as noted in 6.2.1.

(v) Thus the choice of norm ||-|| in Lemma B plays no essential role in the
actual application of the result, for the approximating random variable
d,T(F; F, — F) is defined and found without specification of any norm.

(vi) Nevertheless, the differential approach actually asserts more, for it
characterizes d,T(F; F, — F) as linear and hence as an average of random
variables. That is, letting 4, denote the distribution function degenerate
at x, — o < x < o0, and expressing F, in the form

F,= n~? Z‘sx,v
i=1

we have

i=q

d\T(F;F,— F)=T(F;F, - F) = T(F;n" i(éx.- F))

=n-! Z T(F; 6y, — F).

f=1

(vii) Prove (Problem 6.P.6) an analogue of Lemma B replacing the
convergence O,(1) required for n'/?|F, — Flj by “0((log log n)/?*)wp1™ and
concluding “nr”R,,. = o((log log n)!/*)wp1.” Justify that the requirement is
met in the case of |||, and LLD. observations. W

Remarks C.. (i) In general the role of d, T(F; F, — F) is to approximate
n'*[T(F,) — T(F) — i(T, F)] by n'?[d,T(F;F, — F) — (T, F)], where
W(T,F)=Eg{d,T(F; F, — F)}. Thus (T, F) may be interpreted as an
asymptotic bias quantity. In typical applications, u(T, F) = 0. Note that
whend,T(F; F, — F)is linear, as in Remark B (vi) above, we have u(T, F) =
E({T(F; éx, — F)}.

(ii) The formulation of the differential of T w.r.t. a norm ||-]| has been
geared to the objective of handling R,,. Analogous higher-order derivatives
may be formulated in straightforward fashion for use in connection with
Rpyn,m > 1.

(iti) We have not concerned ourselves with the case that the functional T
is defined only on a subclass of #. The reason is that operationally we will
utilize the differential only conceptually rather than strictly, as will be ex-
plained below. W
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Lemmas A and B and Remarks A, B, and C detail the use of a differential for
T as a tool in establishing stochastic properties of R,,. However, although
appealing and useful as a concept, this form of differential is somewhat too
narrow for the purposes of statistical applications. The following example
illustrates the need for a less rigid formulation.

Example B (continuation of Example A). For the variance functional, in
order to establish differentiability with respect to a norm |j-||, we must show
that L(G, F) » 0 as |G — F| = 0, where

(Mg — )’
L(G, F) G F|
Unfortunately, in the case of |||, it is found (check) by considering specific
examples that L(G, F) need not =0 as |G — Fjj, — 0. Thus (D) can fail to
hold, so that T does not possess a differential at F with respect to ||| , . Hence
Lemma B in its present form cannot be applied. However, we are able never-
theless to establish a stochastic version of (D). Write

L(F,, F) = —[n"*(X — )] - (X — pp)- [n"?)IF, — Flio)™"

By the CLT and the SLLN, the first factor is O,(1) and the second factor is
0,(1). By Theorem 2.1.5A and subsequent discussion, n'/||F, — Fll, % Zp,
where Z; is positive wpl (we exclude the case that F is degenerate). Since the
function g(x) = 1/x is continuous wp1 with respect to the distribution of Z,
the third factor in L(F,, F) is 0,(1). It follows that L(F,, F) 5 0. The proof of
Lemma B carries through unchanged, yielding n'/?R,, 5 0 as desired. Wl

It is thus useful to extend the concept of differential to stochastic versions.
We call T(F; A) a stochastic differential for T with respect to ||-|| and {X} if
F, — F| 5 0and relation (D) holds in the o, sense for G = F,. This suffices
for proving -5 results about R,,. For 2P, results, we utilize a 2%, version of
the stochastic differential.

Although these stochastic versions broaden the scope of statistical ap-
plication of the concept of differential, in practice it is more effective to analyze
R, directly. A comparison of Examples A and B illustrates this point.

This is not to say, however, that manipulations with |F, — F| become
entirely eliminated by a direct approach. Rather, by means of inequalities,
useful upper bounds for |R,,,| in terms of |F, — F|| can lead to properties of
| Rpa| from those of | F, — F . Such an approach, which we term the method of
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differential inequalities, will be exploited in connection with M-estimates
(Chapter 7) and L-estimates (Chapter 8),

We have discussed in detail how to prove n'/?R,, & 0, for the purpose of
approximating n'/2[T(F,) — T(F)] in limit distribution by nY/%d,T(F,
F, — F). Note that this purpose is equally well served by reduction to
T{F,)d,T(F; F, — F), where Ti(-) is any auxiliary functional defined on
& such that T(F,) 5 1. That is, it suffices to prove

*) n'?[T(F,) — T(F) — T{(F,)-d,T(F; F,— F)] 30

in place of n'?R,, 5 0. We apply this scheme as follows. First compute
d,T(F; F, — F). Then select Tx(-) for convenience to make the left-hand side
of (*) manageable and to satisfy Te(F,) & 1. Then proceed to establish (*) by,
for example, the method of differential inequalities noted above. We will apply
this device profitably in connection with M-estimates (Chapter 7).

The foregoing considerations suggest an extension of the concept of
differential. We call T(F; A) a quasi-differential with respect to ||-|| and Ti(-) if
the definition of differential is satisfied with (D) replaced by

(D1) lim T(G) =1
1G-Fi|-0
and
(D2) T(G) — T(F) — T(G)T(F; G — F) = o(|G — FI)).

6.3 METHODOLOGY FOR ANALYSIS OF THE DIFFERENTIAL
APPROXIMATION

Here we examine the structure of the random variable V,,, to which considera-
tion is reduced by the methods of Section 6.2. Under a multilinearity condition
which typically is satisfied in applications, we may represent V,,, as a V-
statistic and as a stochastic integral. In Section 6.4 we make use of these
representations to characterize the asymptotic properties of T(F,) — T(F).

6.3.1 Multi-Linearity Property

In typical cases the kth order Gateaux differential d, T(F; G — F) is k-linear:
there exists a function T,[F; x,, ..., %], (xi, ..., Xx) € R, such that

k
WL 4TEG-P= [ [5Fixn,... %1[1 dIG(x) ~ Flx]. ol G.
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Remarks. (i) A review of 1.12.1 is helpful in interpreting the quantity
T.[F; x4, ..., Xx.], which is the analogue of the kth order partial derivative,

a*g(tl’ 1y 'l)
o, -0t
as a function g defined on R'. Thus T,[F; x,, ..., x,] may be interpreted as
the kth order partial derivative of the functional T(F), considered as a
function of the arguments {dF(x), —o0 < x < oo}, the partial being taken
with all arguments except dF(x,), ..., dF(x,) held fixed.

(ii) The function T,[F; x] may be found, within an additive constant,
simply by evaluating d,T(F; 6, — F). If (L) holds, then d, T(F; 6, — F) =
Ty[F;x] — | T,[F; xJdF(x).

(iii) IfT[F; x,, ..., X;] is constant,considered as a function of x4, ..., X;,
then d, T(F; G — F) = 0 (all G). Note that a constant may be added to
T.[F; x,, ..., x,] without altering its role in Condition (L).

(iv) Ifd,T(F; G — F)is a differential for T at F with respect to a norm,
then by definition d,T(F; G — F) is linear and, as noted in Remark 6.2.2B
(vi), we have

TilF;x] - J'E[F;x]dF(X) =T(F;6,— F)=d,TF;6,—F). W

6.3.2 Representation as a V-Statistic

Under (L), the random variabled, T(F; F, — F)may be expressed in the form
of a V-statistic. This is seen from the following result.

Lemma A. Let F be fixed and h(x,, ..., X,) be given. A functional of the form
k
TG) = [+« [bxs..., x)]] dLG(x) — Fix)]
i=1

may be written as a functional of the form
@) = [+ [itxi, ... 5)dGx,) -+ dGlw),

where the definition of h depends upon F.
PROOF. For k = 1, take A(x) = h(x) — fh(x)dF(x). For k = 2, take

ks, %2) = bk x2) = [ Woxa, xaMFG) = [ s, %))

+ f Hox, % )FGe )F(x3),
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In general, take

k
ﬁ(xl’---’xh)=h(xl’---’xh)— Z h(xy, ..., x)dF(x))

i=1

+ ¥ fh(xl....,x.)dF(x,)dF(x,)_...
15i<jgk

+ (=1 f f Wxy ... X)dF(x,) - dF(x). W

Remark. Check that [ A(x,,..., x)dF(x)=0,1<i<k N
It follows that under (L) there holds the representation
4&T(F;F,—F)=n"*Y ... ¥ LF; Xy,.... X, ],
h=1 k=1

where T,[F; x,, ..., x,] is determined from T[F; x,, ..., x;] as indicated in
the above proof. Therefore, for the random variable
Vi = 2. id,‘T(F; F, - F),
L k!

we have the representation (check)
" "
Ve =n"" Z Z WF; X,,, ..., X,),
h=1 im=1
where h(F; x,, ..., X,,) is determined from T}, T;,..., T,,.
Next we establish a further property of random variables having the
structure given by Condition (L). The property is applied in Problem 6.P.3.

Lemma B. Suppose that Eg{h*(X,,..., X, )} < ©0,all1 < iy,...,in < m.
Then

m 2
) EF{( f . f by, ... 50 [T ALFx) — F(x.)]) } )

PROOF. By Lemma A,

[ frsineoes xm)ifll dLF,(x) — F(x)]
- f f Fxss . X dFoCey) -+ dF ()

=n-"'i Z KXy,.... X,)

fi=] fm=1
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Thus the left-hand side of (1) is given by

)] n-z"'i 2 Z fjE{I;(X,,,...,x,m)h(x,,,...,x,m)}.

=1 im=1 Jy=1 Jm=1

By the remark following Lemma A, the typical term in (2) may be possibly
nonzero only if the sequence of indices iy, ..., iy, jy, ..., jm contains each
member at least twice. The number of such cases is clearly O(n™). Thus (1)
follows. W

We have seen in 5.7.3 the close connection between U- and V-statistics. In
particular, we showed that E|U, — V,|" = O(n™") under rth moment as-
sumptions on the kernel h(x,, ..., x,,). We now prove, for the case m = 2,
an important further relation between U, and V. The result will be of use in
connection with V,,.

Lemma C. Suppose that h(x,, x;) is symmetric in its arguments and satisfies
Erh%(X,, X,) < © and Eg|h(X,, X,)|¥? < 0. Then the corresponding U-
and V-statistics U, and V,, satisfy, for B > 2|Eg{h(X,, X;) — h(Xy, X )}|,

P(|U, — V.| > Bn~!) = o(n~1/?),
PROOF. From the proof of Lemma 5.7.3, we have
Up = Va=n"Y (U, - W),

where

Wy =™t 3 HX,, X))

imy
Hence, using the fact that B > 2| Ex{h(X,, X;) — h(X,, X,)}{, we have
P(|U, = V,| > Bn™ ") = P(|U, — W,| > B)

The first term on the right is O(n~!) by Chebyshev’s inequality and Lemma
5.2.1A. For the second term, we use Theorem 4 of Baum and Katz (1965),
which implies: for {Y;} LLD. with E{Y,} = 0 and E|Y,|" < o0, wherer > 1,
P(|Y| > &) = o(n'"") for all € > 0. Applying the result with r = §, we have
o(n~"'?) for the second term on the right. W
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6.3.3 Representation as a Stochastic Integral

Under Condition (L), the random variabled,, T(F; F, — F) may be expressed
as a stochastic integral, that is, in the form

[ f i, ) [1 AL 6) = PO

for a suitable kernel h. As in 2.1.3, let us represent Z{X,,..., X,} as
L{F~\(Y,),..., F~'(Y,)}, where {Y;} are independent uniform (0, 1) variates.
Let G,(-) denote the sample distribution functionof Y,, ..., Y,, and consider
the corresponding “empirical” stochastic process Y,(t) = n'/[G,(t) — ],
0 <t <1 Thus

£{n*d, T(F; F, - F)}
= .Z’{f- . fh(F_ l(tl)s (KRR F~ l(tm))d Yn(tl) Tt le(tm)}’

so that the limit law of n™*d, T(F; F, ~ F) may be found through an
application of the convergence Y,(-) 4 WO considered in 2.8.2.

6.4 ASYMPTOTIC PROPERTIES OF DIFFERENTIABLE STATISTICAL
FUNCTIONS

Application of the methodology of Sections 6.2 and 6.3 typically leads to
approximation of T(F) by a particular V-statistic,

Von= 1" oo 3 F; X ey X0).

i=1 im=1

(In Section 6.5, as a preliminary to a treatment of several examples, we discuss
how to “find” the kernel h(F; x,, .. ., x,,) effectively in practice.) As discussed
in 6.1.2, under appropriate conditions on the remainder term R, = T(F,) —
T(F) — V,.,, the properties of T(F,) ~ T(F) are thus given by the corre-
sponding properties of V,,,. In particular, 6.4.1 treats asymptotic distribution
theory, 6.4.2 almost sure behavior, and 6.4.3 the Berry-Esséen rate.

6.4.1 Asymptotic Distribution Theory

Paralle! to the asymptotic distribution theory of U-statistics (Section 5.5), we
have a hierarchy of cases, corresponding to the following condition for the
casesm=1,2,....

Condition A,
(i) Varg{h(F;X,,..., X))} =0fork <m, >0fork = m;
(i) n™*Rp 5 0.
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For the case m = 1, the V-statistic ¥, is simply a sample mean, and by the
CLT we have

Theorem A. Consider a sequence of independent observations {X,} on the
distribution F. Let T be a functional for which Condition A, holds. Put W(T,F) =
Er{h(F; X,)} and o*(T,F) = Varg{h(F; X,)}. Assume that 0 < o*(T, F)
< 0. Then

T(F) is AN(T(F) + w(T, F),n™'a’(T, F)).

Example (Continuation of Examples 6.2.1, 6.2.2A). For the variance
functional we have

d,I(F;F, - F)
= f X2 dF (x) - f x? dF(x) — 2 f x dF(x) f x dF,(x) + 2( f x dF(x))2

- f (x — p)? dF,(x) — o

l [
= - Z[(Xl - up)* - of),
niat
so that Condition (L) of 6.3.1 holds, and we approximate T(F,) — T(F) by
¥V, based on h(F; x) = (x — uz)*> — o}. We have
and
oX(T, F) = Varg{h(F; X,)} = p(F) — ot.

Further, as seen in Example 6.2.2A, n'/?R,, 5 0. Thus the conditions of
Theorem A are fulfilled, and we have

— ot
m; is AN (a’, “—‘-—a),
n
as seen previously in Section 2.2. W

For the case m = 2, we have a result similar to Theorem 5.5.2 for U-
statistics.

TheoremB. Consider a sequence of independent observations {X,} on the
distribution F. Let T be a functional for which Condition A , holds. Assume that
h(F; x,y) = h(F;y,x) and that Eph*(F;X,,X;) < o, Eglh(F; X, X))
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< o, and Er{h(F; x, X,)} =C (in x). Put (T, F) = E¢h(F; X,, X,). Denote
by {\;} the eigenvalues of the operator A defined on L,(R, F) by

Ag(x) = f _:[h(F; xy) = W(T, F)lg(y)dF(y), xeR, geLy(R,F)
Then
n[T(F,) = TF) — w(T ] $ hurh,
where X3, (k = 1, 2,...) are independent %? variates.

Remark. Observe that the limit distribution has mean Z;"’ Ay, which is not
necessarily 0. By Dunford and Schwartz (1963), p. 1087, Ef{h(F; X, X,)}
— (T, F) = Y P A, which is thus finite since E¢|h(F; X,, X,)| < 0. This
assumption is not made in the analogous result for U-statistics. W

PROOF. By Condition A,, it suffices to show that
nP, 3 Z A Xix,
k=1
where 7, is the V-statistic based on the kernel A(x, y) = h(F; x, y) — (T, F).
Consider also the associated U-statistic, U, = (3)7! Y A(X,, X,). As seen in
the proof of Lemma 5.7.3, U, is related to ¥, through
n*(0, = 0) = (0* — na,)(O0, — W),
where

W,=n"! iﬁ(x,, X).

i=1

Thus

"(Vn - Un) = m - Un'
Note that Eg{A(X,, X,;)} = 0. Thus, by the strong convergence of U-
statistics (Theorem 5.4A), 0, 25 0. Furthermore, by the SLLN and the
above remark, W, 224 ' A,. Therefore,

(P, - 0) 25 ¥ A

K=1

Also, since Eph(F; x, X,) = 0, U, satisfies the conditions of Theorem 5.5.2
and we have

"Un 3 killk(lfk -1,

completing the proof. W
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For arbitrary m, a general characterization of the limit law of n™2[ T(F,) —
T(F)] has been given by Filippova (1962), based on the stochastic integral
representation of 6.6.3. Under Condition 4,,, the limit law is that of a random
variable of the form

1 1
B(g, W% = J.o ---J.og(F; by oos L XAWO(E)) -+ - dWO(L,).

Alternatively, Rubin and Vitale (1980) characterize the limit law as that of a
linear combination of products of Hermite polynomials of independent
N(0, 1) random variables. (Theorems A and B correspond to special cases of
the characterizations, for m = 1 and m = 2, respectively.) These general
characterizations also apply, in modified form, to the higher-order cases for
U-statistics.

6.4.2 Almost Sure Behavior

Suppose simply that R,, 2 0 and that E [h(F; X )| < co. Then T(F,) <25
T(F) + w(T, F), where (T, F) = Exh(F; X,). Typically (T, F) = 0, giving
strong consistency of T(F,) for estimation of T(F). Under higher-order
moment assumptions, a law of iterated logarithm holds:

Theorem. Suppose that R,, = o(n~'?*(log log n)!/?) wpl. Put (T, F) =
Eg{h(F; X,)} and o*(T, F) = Varg{h(F; X,)}. Assume that 0 < o*(T, F) <
0. Then

= n2[T(F,) ~ T(F) — w(T, F)]
nsw  O(T,F)(2log log n)"/?

= 1 wpl.

Example (Continuation of Examples 6.2.1A and 6.4.1). For the variance
functional the conditions of the above theorem have been established in
previous examples. W

6.4.3 Berry-Esseén Rate

We have seen (Theorem 6.4.1A) that asymptotic normality of T(F,) — T(F)
may be derived by means of an approximation V;, consisting (typically) of the
first term of the Taylor expansion of 6.2.1 for T(F,) — T(F). A corresponding
Berry-Esséen rate can be investigated through a closer analysls of the re-
mainder term R,,. For such purposes, a standard device is the following
(Problem 6.P.9),

Lemma. Let the sequence of random variables {£,} satisfy
* sup|P(, < t) — O(t)| = O(n~1/3),
t
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Then, for any sequences of random variables {A,} and positive constants {a,},
(**) sup|P(, + Ay < 1) — ®(t)| = O(n~Y2) + Ofa,) + P(]A,| > a,).
t

In applying the lemma, we obtain for £, + A, the best Berry-Esséen rate,
O(n~'2), if we have P(|A,| > Bn~?) = O(n~'/?) for some constant B > 0.
In seeking to establish such a rate for statistical functions, we could apply the
lemma with &, = n'/?V,,and A, = n'/?R,, and thus seek to establish that, for
some constant B > 0, P(|R,,| > Bn~') = O(n~'/2). The following example
illustrates the strength and limitations of this approach.

Example A (Continuation of Examples 6.4.1, 6.4.2). For the variance
functional we have

& =n"12Y (X, - p)? = 0%]

i=1
and
A, = -n'(X - w2

Note that, by the classical Berry-Esséen theorem (1.9.5), (*) holds if E| X, |°
< . However, the requirement P(|A,| > Bn~%%) = O(n~'/?) takes the
form

P(n(X — w)* > B) = O(n™ %),

which fails to hold since n(X — u)* has a nondegenerate limit distribution
with support (0, o). Thus we cannot obtain the best Berry-Esseen rate,
O(n~1/?), by dealing with R,, in this fashion. However, we can do almost as
well, By the classical Berry-~Esséen theorem, we have (check)

P(n(X — u)? > o? log n) = O(n~3),

provided that E|X,|® < c0. Thus, with a, = oc%(log n)n~'%, we have
P(|A,| > a,) = O(n~''%), so that (**) yields for n'/*(m, — 0?) the Berry-
Esséen rate O(n~ '/*(log n)). Of course, for the closely related statistic s2, we
have already established the best rate O(n~!/2) by U-statistic theory. Thus
we anticipate that m, should also satisfy this rate, We will in fact establish
this below, after first developing a more sophisticated method of applying
the above lemma in connection with statistical functions. I

The preceding example represents a case when the remainder term R,,
from approximation of T(F,) — T(F) by V,, = d,T(F; F, — F) is not quite
small enough for the device of the above lemma to yield O(n~!/2) as a Berry-
Esséen rate. From consideration of other examples, it is found that this
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situation is quite typical. However, by taking as approximation the first two
terms V,, =d,T(F; F, — F) + 3d, T(F; F, — F) of the Taylor expansion
for T(F,) — T(F), the remainder term becomes sufficiently reduced for the
method of the lemma typically to yield O(n~!/2) as the Berry-Esséen rate. In
this regard, the approximating random variable is no longer a simple
average. However, it typically is a V-statistic and hence approximately a
U-statistic, enabling us to exploit the Berry-Esséen rate O(n~ '/2) established
for U-statistics. We have

Theorem. Let T(F,) — T(F) = V,, + R,,, with

Vin = n".il Zn:lh(F; X, X
where j
ey, h(F; x,y) = h(F; y, x), Eg|h(F; X, X,)* < oo,
and

Ex|h(F; Xy, X)P? < oo,

and, for some A > 0,
2 P(JR;,] > An~!) = O(n~ 173,
Put W(T, F) = Eg{h(F; X,, X,)} and o¥T, F) = 4 Varg{h,(F; X,)}, where
h,(F; x) = Eg{h(F; x, X,)}. Then
P(n”’[T(F,,) ;(;'fl;)) - W(T, F)] < t) — o)

PROOF. Let U,, be the U-statistic corresponding to h(F; x, y). By (1)
and Lemma 6.3.2C, there exists A > 0 such that P(JU,, — V,,| > An~}) =
o(n~1/2), Also, by (1) and Theorem 5.5.1B,

P(nllz(UZn - ”(T) F)) < t) _ (D(t) = O(n—l/2).

= O(n~'/?),

(3) sup

o(T, F)
Thus (check) the above lemma yields

112 -
P ) e

Then, by (2), a further application of the lemma yields (3) (check). W

sup
]

Example B (Continuation of Example A). For the variance functional,
check that

dyT(F; G — F) = —2(ug — pp)?,
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so that .
Van = hl‘.i,[‘x' - = o = (X - p?
l n LJ
= ?Ex l§l{i(x‘ =W X - -0 = (X - (X, — )
1 n n
= L LU - X))
and (check)

Rz" = 0.

We thus apply the theorem with h(F; x, y) = ¥(x — y)? — 2. Check that the
requirements on h are met if E| X, |® < o0 and that u(T, F) = 0 and ¢*(T, F)
= p, — o*. Thus follows for m, the Berry-Esséen rate O(n~'2). W

6.5 EXAMPLES

Illustration of the reduction methods of Section 6.2 and the application of
Theorems 6.4.1A, B will be sketched for various examples: sample central
moments, maximum likelihood estimates, minimum w? estimates, sample
quantiles, trimmed means, estimation of 2. Further use of the methods will
be seen in Chapters 7, 8 and 9. See also Andrews et al. (1972) for some im-
portant examples of differentiation of statistical functions.

Remark (On techniques of application). In applying Theorem 6.4.1A, the
key quantity involved in stating the conclusion of the theorem is h(F; x). In
the presence of relation (L) of 6.3.2, we have (check)

h(F;x) =d,T(F; é, — F)

and (T, F) = E;{h(F; X,)} = 0. Thus, in order to state the “answer,”
namely that T(F,) is AN(T(F), n~'¢*(T, F)), with 6*(T, F) = Ezh*(F; X,),
we need only evaluate

dT(F + A6, — F))
di im0

Of course, it remains to check that Condition A, of 6.4.1 holds.

In some cases we also wish to find h(F; x, y), in order to apply Theorem
6.4.1B or Theorem 6.4.3. In this case it is usually most effective to evaluate
d,T(F;G — F), put G = F,, and then by inspection find the function
To(F; x, y) considered in 6.3.2. Then we have h(F;x, y) = 4[h(F; x) +
h(F; y) + To(F; x, y)), as was illustrated in Example 6.4.3B. Alternatively,

x€R.
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we can evaluate d, T(F; F, — F) + 4d,T(F; F, — F) and then by inspection
recognize h(F; x,y). B

Example A Sample central moments. The kth central moment of a dis-
tribution F may be expressed as a functional as follows:

iy = T(F) = f x- f "y dFO)I* dF()
The sample central moment is
m=TE) = [ - BFdF00

Put yp = [ xdF(x) and F, = F + AG — F). Then y, = pp + Mpg — ).
We have

T(F,) = j (x — e, )t dF(e) + A f (x — gt dIG() — F(x)]
and (check)

d—%ﬁg = —k(ug — ) f(x — g )"t dF (%)
+ fx = e d1G8) - Feol

and

TIED o ik~ Do — ) [ = ek~ dF)

~ 2 — ) [ = e} dLG8) — F)

Thus

HT(F; G = F) = [[6x = W = k- X ]LG) = FEO),
so that

WF;x) = (x — ) = kpy_yx — Ep{(X — p)* — kpy_, X}.
Thus the assertion of Theorem 6.4.1A is that
m, is AN(u, n~'e*(T, F)),
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with
0*(T, F) = ppy — 4§ — 2kt sty + K2ui_ st

This result was derived previously in Section 2.2. However, by the present
technique we have cranked out the “answer” in a purely mechanical fashion.

Of course, we must validate the “answer” by showing that n'/? R,, 5 0.
Check that

Ry, = my = by + kpy_ by,
where b; = n~! Y7, (X, — 1Y, 0 < j < k, and thus (check)

k-1

Riyp= 3, (:f)(" 1)*=b, b4~/ + kpy—yby = 0, (n"?),

i=0

as required. To establish a related Berry-Esséen rate, check that

dy T(F; G = F) = k(k — D)(ug — u)*mi-2

— 2Kyt — 1) f (e — wF= dEG(O) — F()]

=k [t -wty+ - w
= (k = D2 xy1d[G(x) — F(x)1[G(y) — F(»)]1~*.
Complete the details. W
Example B Maximum likelihood estimation. Under regularity conditions

(4.4.2) on the family of distributions {F(x; ), 8 € ®} under consideration,
the maximum likelihood estimate of @ is the solution of

fg(ﬂ, x)dF,(x) = 0,

where
dfé S(x;0)
(0’ x) =
g f(x;0)
and

0y =L Fy:
f(x’o)—dxp(xto)'
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That is, the maximum likelihood estimate is 6(F"), where 6(F) is the functional
defined as the solution of

®1) [ o0, ar -

Under reéularity condition on the family {F(-, 0), 0 € ®}, we have
2@1 J(x;0)

(B2) I e P = f o Fx; 0 =

We find

d
3 0F + A6, = F)

A=0
by implicit differentiation through the equation
H(6(F,), 4) = 0,
where F, = F + MJ,, —~ F)and H(0, A) = | g(0, x)dF ,(x). We have

oH|  doF)|  aH|
59 0= 6(F) dl AmQ al 1Ty )
Thus
06(F ;) oH /6H
B3 e LYY B ) B L]
(B3) 04 im0 0A |1=0/ 90 louor

Check (using (B1), (B2) and the fact that (F(-; 8,)) = 6,, each 6,) that (B3)
yields

. o 1 x0; ) |
210( +l(x°—F»A-o= S(x0;0) w
J(x; 6)
and thus
d
aalogf(xve)

h(F(-; 6); x) =

d 2 '
J.[@ log f(x; 0)] dF(x; 6)
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Therefore, the assertion of Theorem 6.4.1A is that (check)
1

O(F,) is AN /{6, y =\
”Er(-w){[z@ log f(X; 9)] }

as seen previously in4.2.2. W

Example C Minimum w? estimation. The “minimum w? estimate” of 6,
in connection with a family of distributions {F(: ; 6), 6 € ®}, is the solution of

Ja0.5, Fpax = o
where
400, %, ) = 5 ([G(x) = Fex; O] (x; )
and
(¥ 6) = 2. F(x; )
J(x;0) = Ix (x; 6).

That is, the w?-minimum estimate is 6(F,), where 6(G) is the functional
defined as the solution of

f q(6, x, G)dx = 0.
By implicit differentiation as in Example B, check that

£ (o3 0) 25 1x03 6)

- d ) oy
= [ o] oo

from which Varg{h(F(:; 0); X)} may be found readily. W

d
Tl F + A(6,, — F))

Example D Sample pth quantile. Let 0 < p < 1. The pth quantile of a
distribution F is given by {, = T(F) = F~'(p) and the corresponding sample
pth quantile by {,, = F, '(p) = T(F,). We have

T(F + A(d,, — F)] = inf{x: F(x) + A(3,,(x) = F(x)) 2 p}
= inf{x: F(x) + A[I(x 2 x,) — F(x)] = p}

= inf{x: F(x) 2 P2 2 %) il(_xf x°)}
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(for 2 sufficiently small). Confine attention now to the case that F has a
positive density f'in a neighborhood of F ~!(p). Then, for any x, other than{,,.
it is found (check) that

dTIF + 36 = F]|  _p—b:d)
@D i o~ 1E)
= P - l(xo < :p)
AN

The assertion of Theorem 6.4.1A is thus that

. p(l = p)

as established previously in Section 2.3. In order to establish the validity of the
assertion of the theorem, we find using (D1) that

_ P Fu(ép)
JA()

and we seek to establish that n'/2R, 5 0. But R, is precisely the remainder
term R, in the Bahadur representation (Theorem 2.5.1) for E,,, and as noted
in Remark 2.5.1(iv) Ghosh (1971) has shown that n'/2R" & 0, provided
F(¢,)>0 H

(D2) Ry=E.-¢,

Example E o-trimmed mean. Let F be symmetric and continuous. For
estimation of the mean (=median), a competitor to the sample mean and the
sample median is the “a-trimmed mean”

1 n~{an)

n— 2[an] yaim+y

X(l)n = xnk’

where 0 < o < . This represents a compromise between the sample mean
and the sample median, which represent the limiting cases as « —» 0 and
a — 4, respectively. An asymptotically equivalent (in all typical senses)
version of the a-trimmed mean is defined as

X @ = T(F n)’

where

- 1 F-Y1-a) 1 1-a -
E1) T(F)=1—2aj,-.(., xdF) = 7—; | F()Mp.
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We shall treat this version here. By application of (D1) in conjunction with
(E1), we obtain

dT[F + X3, — F)]

1 f"“P—I(xoSF"(P))d

da im0 1 -2 SF~(p))
_ 1 f‘““p—l(r(xo)sm P
1 -2, SF~(p)

For the case F(x,) < &, this becomes

F~ (&) — c(a)

1 1-a p—l 1 1-~-a -
=g [0 - 0 - T2,

1-2J, fF'()

where

1-a
o(a) = F~Ye)dt + aF ~Y(@) + aF (1 — ).
The cases F(xo) > 1 — a and a < F(x,) < 1 — o may be treated in similar
fashion (check). Furthermore, the symmetry assumption yields

c(a) = T(F) = fx/z-
Thus we arrive at

1
T2 [FY®) = &12),  x < F ),

1
dT[F + M6, — F)] =2 &~ ¢12)

di

im0 F o) <x<F (1 -a),

1
1= 2 [F7'(1 —a) - 'fx/z],

{ x>F (1 —a)

It follows that the assertion of Theorem 6.4.1A is

) 1 1 F-t(1—~a)
Xeam 18 AN(f””;(l_-E?U,-.(,, (x = ¢1/2)* dF(x)

+ 20(F () — 61/2)2])- [ |
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Example F  Estimation of 2. Consider
@® 2
T(F) = EX(X} = U x dF(x)] = .

The corresponding statistical function is
T(F,) = X2

Derive h(F; x) and h(F; x,, x,), and apply Theorems 6.4.1A, B to obtain the
asymptotic distribution theory for X2 in the cases u # 0, u = 0. (Compare
Example 552B) H

6.6 COMPLEMENTS

Some useful statistical interpretations of the derivative of a statistical function
are provided in 6.6.1. Comments on the differential approach for analysis of
statistical functions based on functionals of a density f are provided in 6.6.2.
Extension to the case of dependent X's is discussed in 6.6.3. Normalizations
other than n™? are discussed in 6.6.4.

6.6.1 -Statistical Interpretations of the Derivative of a Statistical Function

In the case of a statistical function having nonvanishing first derivative
(implying asymptotic normality, under mild restrictions), a variety of
important features of the estimator may be characterized in terms of this
derivative. Namely, the asymptotic variance parameter, and certain stability
properties of the estimator under perturbation of the observations, may be
characterized. These features are of special interest in studying robustness of
estimators. We now make these remarks precise.

Consider observations X;, X,,... on a distribution F and a functional
T(-). Suppose that T satisfies relation (L) at F, that is, d,T(F; G — F) =
{ T\[F; xJd[G(x) — F(x)], as considered in 6.3.1, and put

WF; %) = TLFsx] = [ T0F; xMFG),

The reduction methodology of Section 6.2 shows that the error of estimation
in estimating T(F) by T(F,) is given approximately by

1 n
~ Y i(F; X)).
=

Thus A(F; X;) represents the approximate contribution, or “influence,”
of the observation X, toward the estimation error T(F,) — T(F). This notion
of interpreting A(F; x) as a measure of “influence” toward error of estimation
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is due to Hampel (1968, 1974), who calls h(F; x), — 00 < x < o0, the influence
curve of the estimator T(F,) for T(F). Note that the curve may be defined
directly by

dT[F + A3, — F)]
da A=0

(In the robust estimation literature, the notation Qg(x) or IC(x; F, T) is
sometimes used.)

In connection with the interpretation of T[F; -] as an “influence curve,”
Hampel (1974) identifies several key characteristics of the function. The
“gross-error-sensitivity”

h(F; x) =

—0 < X < 0.

y* = sup|h(F; x)|

measures the effect of contamination of the data by gross errors, whereby
some of the observations X; may have a distribution grossly different from F.
Specifically, y* is interpreted as the worst possible influence which a fixed
amount of contamination can have upon the estimator. The “local-shift-
sensitivity”

A* = sup

x#y X =

h(F; x) — h(F;y)'
y

measures the effect of “wiggling” the observations, that is, the local effects of
rounding or grouping of the observations. The “rejection point™ p* is defined
as the distance from the center of symmetry of a distribution to the point at
which the influence curve becomes identically 0. Thus all observations farther
away than p* become completely rejected, that is, their “influence” is not only
truncated but held to 0. This is of special interest in problems in which
rejection of outliers is of importance.

Examples. The influence curve of the sample mean is
IC(x; T, F) = x — pp, —00 < X < .

We note that in this case y* = o, indicating the extreme sensitivity of the
sample mean to the influence of “wild” observations. The a-trimmed mean,
for 0 < & < 4, provides a correction for this deficiency. Its y* (see Example
6.5E)is [F~'(1 — a) — T(F)}/(1 - 2a). On the other hand, the sample mean
has A* = 1 whereas the sample median has A* = oo, due to irregularity of its
influence curve

sign[F(x) - 4]

s LR = =31

(sign0 = 0)
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at the point x = F~"2(4). Also, contrary perhaps to intuition, the a-trimmed
mean has p* = co. However, Hampel (1978, 1974) and Andrews et al. (1972)
discuss estimators which are favorable simultaneously with respect to y*, A*
and p* (see Chapter 7). W

Further discussion of the influence curve and robust estimation is given by
Huber (1972, 1977). Robustness principles dictate choosing T(-) to control
IC(x; T, F).

6.6.2 Functionals of Densities

An analogous theory of statistical functions can be developed with respect to
parameters given as functionals of densities, say T(f). For example, in 2.6.7
the efficacy parameter | f?(x)dx arose in certain asymptotic relative efficiency
considerations, A natural estimator of any such T(f)is given by T( /,), where
f, is a density estimator of f such as considered in 2.1.8. The differential
approach toward analysis of T(f,) — T(f) is quite useful and can be formu-
lated in analogy with the treatment of Sections 6.1-6.5. We merely mention
here certain additional complications that must be dealt with. First, the
structure of the sample density function f; is typically not quite as simple as
that of the sample distribution function F,. Whereas F,(x) is the average at
the nth stage of the random variables I(X, < x),I(X, < x),..., theestimator
£.(x) is typically an average over a double array of random variables. This
carries over to the approximating random variable d,T(f; f, — f) here
playing the role of d, T(F; F, — F). Consequently, we need to use a double
array CLT in deriving the asymptotic normality of T(f,), and we find that
there does not exist a double array LIL at hand for us to exploit in deriving an
LIL for T(§;,) — T(f). Furthermore, unlike F,(x) as an estimator of F(x), the
estimator f,(x) is typically biased for estimation of f (x). Thus E, T(f'; f, — f)
# 0in typical cases, so that the analysis must deal with this type of term also.

See Beran (1977a, b) for minimum Hellinger distance estimation based on
statistical functions of densities.

6.6.3 Dependent Observations {X,}

Note that the asymptotic behavior of T(F,) — T(F) typically depends on the
X/'s only through two elements,

l n
Vin == Zh(p, X)
L1

and R,,. Often R,, can be handled via inequalities involving ||F, — F|, and
the like. Thus, for example, the entire theory extends readily to any sequence
{X} of possibly dependent variables for which a CLT has been established
and for which suitable stochastic properties of ||F, — F||,, have been est-
ablished.
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6.6.4 Other Normalizations

For the random variable T(F,) — T(F)to have a nondegenerate limit law, the
appropriate normalizing factor in the case that the first nonvanishing term in
the Taylor expansion is the mth need not always be n™'2, For example, in the
case m = 1, we have a sum of L.1.D. random variables as d, T(F; F, — F), for
which the correct normalization actually depends on the domain of attrac-
tion. For attraction to a stable law withexponent 2,0 < o < 2,theappropriate
normalization is n/®, See Gnedenko and Kolmogorov (1954) or Feller (1966).

6.6.5 Computation of Higher Giteaux Derivatives
In the presence of Condition (L) of 6.3.1, we have

dT(V) _dT(h,)| _ d

F
X " dz ,.O“ET(V*+T:I(W‘V*))
1

- " Ve XMW ) = V)]

T1-AJ)_,

z=0

- f T,V xJAIW(x) — V(x)].

Hence
d*T(V)) ® d )
|, = ) nl | e - v,
etc.
6.P PROBLEMS
Section 6.2

1. Check the details for Example 6.2.1.
2. Formulate and prove the extended form of Theorem 1.12.1A germane

to the Taylor expansion discussed in 6.2.1.
3. (Continuation of Example 6.2.1) Show, applying Lemma 6.3.2B, that

k
o:l:gx ‘% T(F + AF, — F))| = 0 (n~ /2,
Complete the details of Example 6.2.2A.
Complete the argument for Lemma 6.2.2B.
Verify Remarks 6.2.2B (ii), (vii).
Check the claim of Example 6.2.2B.

A o
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Section 6.3

8. Complete the details for the representation of ¥,,, as a V-statistic
(6.3.2).

Section 6.4
9. Prove Lemma 6.4.3.
10. Check details of Examples 6.4.3A, B.
11. Complete details of proof of Theorem 6.4.3.

Section 6.5
12. Supplythe missingdetailsfor Example 6.5A (sample central moments).
13. Supply details for Example 6.5B (maximum likelihood estimate).
14. Supply details for Example 6.5C (minimum w? estimate).
15. Supply details for Example 6.5D (sample pth quantile).
16. Supply details for Example 6.5E (a-trimmed mean).
17.  Supply details for Example 6.5F (estimation of ;?).

18. Apply Theorem 6.4.3 to obtain the Berry-Esséen theorem for the
sample pth quantile (continuation of Problem 15 above).

Section 6.6
19. Provide details for 6.6.5.



CHAPTER 7

M-Estimates

In this chapter we briefly consider the asymptotic properties of statistics
which are obtained as solutions of equations. Often the equations correspond
to some sort of minimization problem, such as in the cases of maximum like-
lihood estimation, least squares estimation, and the like. We call such statistics
“ M-estimates.” (Recall previous discussion in 4.3.2.)

A treatment of the class of M-estimates could be carried out along the lines
of the classical treatment of maximum likelihood estimates, as in 4.2.2.
However, for an important subclass of M-estimates, we shall apply certain
specialized methods introduced by Huber (1964). Also, as a general approach,
we shall formulate M-estimates as statistical functions and apply the methods
of Chapter 6. Section 7.1 provides a general formulation and various examples.
The asymptotic properties of M-estimates, namely consistency and asymptotic
normality with related rates of convergence, are derived in Section 7.2.
Various complements and extensions are discussed in Section 7.3.

Two closely related competing classes of statistics, L-estimates and R-
estimates, are treated in Chapters 8 and 9. In particular, see Section 9.3.

7.1 BASIC FORMULATION AND EXAMPLES

A general formulation of M-estimation is presented in 7.1.1. The special case
of M-estimation of a location parameter, with particular attention to robust
estimators, is studied in 7.1.2.

7.1.1 General Formulation of M-Estimation

Corresponding to any function Y(x, t), we may associate a functional T
defined on distribution functions F, T(F) being defined as a solution ¢, of the
equation

™) f W(x, to)dF(x) = 0.

243
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We call such a T(-) the M-functional corresponding to Y. For a sample
X,,..., X, from F, the M-estimate corresponding to ¥ is the “statistical
function” T(F,), that is, a solution T, of the equation

**) 'Zl'ﬁ(Xn T)=0.
In our theorems for such parameters and estimates, we have to allow for the
possibility that (*) or (**) has multiple solutions.

When the ¢ function defining an M-functional has the form ¥(x,t) =
J(x — t) for some function §, T(F) is called a location parameter. This case
will be of special interest.

In typical cases, the equation (*) corresponds to minimization of some
quantity

[, tro,
the function ¢ being given by
d
'p(x’ t) =C E p(x’ t)

for some constant c, in the case of p(x, -) sufficiently smooth.

In a particular estimation problem, the parameter of interest & may be
represented as T(F) for various choices of . The corresponding choices of
T(F,) thus represent competing estimators. Quite a variety of Y functions can
thus arise for consideration. It is important that our theorems cover a very
broad class of such functions.

Example Parametric Estimation. Let #, = {F(-;6), 0 € ©®} represent a
“parametric” family of distributions. Let y = y(x, t) be a function such that

f Ve, OMF(x;6) =0, 0€®,

that is, for F = F(-; 6) the solution of (*) coincides with 0. In this case the
corresponding M-functional T satisfies T(F(-;8)) =0, 0 ®, so that a
natural estimator of 0 is given by 0= T(F,). Different choices of Y lead to
different estimators. For example, if the distributions F(- ; 6) have densities or
mass functions /(- ; 6), then the maximum likelihood estimator corresponds to

p(x, 0) = —log f(x; 6),

W, 8) = = 25108 f(x; 6)
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We have studied maximum likelihood estimation in this fashion in Example
6.5B. Likewise, in Example 6.5C, we examined minimum w? estimation,
corresponding to a different .

A location parameter problem is specified by supposing that the members of
#, are of the form F(x; 6) = Fy(x — 0), where F, is a fixed distribution thus
generating the family #,. It then becomes appropriate from invariance
considerations to restrict attention to ¥ of the form ¥(x, t) = J(x — t).

In classical parametric location estimation, the distribution F, is assumed
known. In robust estimation, it is merely assumed that F, belongs to a
neighborhood of some specified distribution such as ®. (See Example 7.1.2E.)

|

In considering several possible y for a given estimation problem, the
corresponding influence curves are of interest (recall 6.6.1). Check (Problem
7.P.1) that the Gateaux differential of an M-functional is

_ [ ¥(x, TR)GE)

HTEG=D=="mey

provided that AL(T(F)) # 0, where we define
Ag(t) = f Y(x, t)dF(x), —oo <t< oo,

Thus the influence curve of (the M-functional corresponding to) ¥ is

_¥(x, T(F)

'———A,’:(T(F)) , —0 < X < 00,

m IC(x; F,T) =

Note that IC is proportional to Y. Thus the principle of M-estimation
possesses the nice feature that desired properties for an influence curve may be
achieved simply by choosing a ¢ with the given properties. This will be
illustrated in some of the examples of 7.1.2.

Further information immediate from (1) is that, under appropriate
regularity conditions,

T(F,) is AN(T(F),n"'a*(T, F)),
where typically
V*(x, T(F))dF(x)
AHTFEN?

This is seen from Theorem 6.4.1A (see Remark 6.5) and the fact that
§ IC(x, F, T)dF(x) = 0. A detailed treatment is carried out in 7.2.2. (In some
cases a(T, F) comes out differently from the above.)

o (T,F) = j
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7.1.2 Examples Apropos to Location Parameter Estimation

The following examples illustrate the wide variety of ¥ functions arising for
consideration in the contexts of efficient and robust estimation. We consider
the M-functional T(F) to be a solution of

[uts - rope = 0
and the corresponding M-estimate to be T(F,).

Example A The least squares estimate. Corresponding to minimization
of Y1 (X, — )% the relevant y function is

(x) = x, —~00 < X < 00,

For this i, the M-functional T is the mean functional and the M-estimate is the
samplemean. W

Example B The least absolute values estimate. Corresponding to mini-
mization of Y] | X, — 81, the relevant  function is

-1, x <0,
Yx)=1 0, x=0,
1, x>0

Here the corresponding M-functional is the median functional and the cor-
responding M-estimate the sample median. W

Example C The maximum likelihood estimate. For the parametric location

mode) considered in Example 7.1.1, let F,, have density f, and take

_Jolx)
So(®)’

The corresponding M-estimate is the maximum likelihood estimate. Note
that this choice of y depends on the particular F, generating the model. W

Y(x) =

~00 < X < 00,

Example D A form of trimmed mean. Huber (1964) considers minimization
of Y1 p(X; — 6), where

_[ Ixlsk
px) = {k’, x| > k.
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The relevant ¢ is

x, Ix| < k,
V(x) = {o, x| > k.

The corresponding M-estimator T, is a type of trimmed mean. In the case that
no X, satisfies | X; — T, = k, it turns out to be the sample mean of the X,’s
satisfying | X, — T,} < k. (Problem 7.P.2) Note that this estimator eliminates
the “influence” of outliers. W

Example E A form of Winsorized mean. Huber (1964) considers minimization
of 31 p(X; — 6), where

ix?, Ix| <k
plx) = {klxl 4L x> k

The relevant ¥ is

—k, x < —k,
Yx)=3 x, |xl<k
k, x>k

The corresponding M-estimator T, is a type of Winsorized mean. It turns out
to be the sample mean of the modified X,’s, where X, becomes replaced by
T, + k, whichever is nearer, if | X; — T,| > k (Problem 7.P.3). This estimator
limits, but does not entirely eliminate, the influence of outliers. However, it
has a smoother IC then the y of Example D. The p(-) of the present example
represents a compromise between least squares and least absolute values
estimation. It also represents the optimal choice of p, in the minimax sense, for
robust estimation of @ in the normal location model. Specifically, let C denote
the set of all symmetric contaminated normal distributions F = (1 — &)® +
eH, where 0 < & < 1 is fixed and H varies over all symmetric distributions.
Huber (1964) defines a robust M-estimator y to be the ¥, which minimaxes
the asymptotic variance parameter (T, F), that is,

sup o*(T,,, F) = inf sup o*(T,, F).
F v F

Here F ranges through C, ¥ ranges over a class of “nice” ¢ functions, and
o%(T,, F) is as given in 7.1.1. For the given C, the optimal ¥, corresponds to
the above form, for k defined by %, d()dt + 2¢(k)/k = 1/(1 — €). The ¢
functions of this form are now known as “ Hubers.” Note that the IC function
is continuous, nondecreasing, and bounded. W

Example F. Hampel (1968, 1974) suggested a modification of the “ Hubers”
in order to satisfy qualitative criteria such as low gross-error-sensitivity, small
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local-shift-sensitivity, etc., as discussed in 6.6.1. He required y(x) to return to
0 for | x| sufficiently large:

x, 0<x<a,
a, anSb,
Y(x) =1 (c—x)
a ’ beSC,
c—b
L0, x> ¢,

and Y(x) = —yY(—x), x < 0. This M-estimator has the property of com-
pletely rejecting outliers while giving up very little efficiency (compared to the
Hubers)at thenormal. M-estimators of this type arenow known as* Hampels.”

Example G A smoothed *“ Hampel”. One of many varieties of smoothed
“Hampels” is given by

. n
sin ax, 05x<z,

Y(x) =
0, x> E,
a

and Y(x) = —(~x), x < 0. See Andrews et al (1972). B

Remarks. (1) Further examples, and small sample size comparisons, are
provided by Andrews et al. (1972).

(i1) Construction of robust M-estimates. For high efficiency at the model
distribution F,, one requires that the influence function be roughly pro-
portional to — fo(x)/ fo(x). For protection against outliers, one requires that
the influence function be bounded. For protection against the effects of round-
off and grouping, one requires the influence function to be reasonably con-
tinuous in x. In order to stabilize the asymptotic variance of the estimate under
small changes in F,, one requires the influence function to be reasonably
continuous as a function of F. These requirements are apropos for any kind of
estimator. However, in the case of M-estimators, they translate directly into
similar requirements on the ¥ function. One can thus find a suitable M-
estimator simply by defining the ¥ function appropriately. [l

7.2 ASYMPTOTIC PROPERTIES OF M-ESTIMATES

We treat consistency in 7.2.1, asymptotic normality and the law of the iterated
logarithm in 7.2.2, and Berry-Esséen rates in 7.2.3.



ASYMPTOTIC PROPERTIES OF M-ESTIMATES 249

7.2.1 Consistency

As in 7.1.1, we consider a function y(x, t) and put A.(t) = f¥(x, t)dF(x).
Given that the “parametric” equation A.(t) = 0 has a root ¢, and the “em-
pirical” equation A, () = 0 has a root T,, under what conditions do we have
T, ol to? (Here, as usual, we consider a sample X, ..., X, from F, with
sample distribution function F,.) As may be seen from the examples of 7.1.2,
many  functions of special interest are of the form y/(x, t) = Y(x — t), where
either ¥ is monotone or V is continuous and bounded. These cases, among
others, are covered by the following two lemmas, based on Huber (1964) and

Boos (1977), respectively.

Lemma A. Let ty be an isolated root of Ae(t) = 0. Let Yi(x, t) be monotone in t.
Then t, is unique and any solution sequence {T,} of the empirical equation
Mg, (t) = O converges to to wpl. If, further, V(x, t) is continuous in t in a neigh-
borhood of t,, then there exists such a solution sequence.

PROOF. Assume that y(x,t) is nonincreasing in ¢. Then Ag(t) and
Ag (t), each n, are nonincreasing functions of t. Since Ag(t) is monotone,
A(to) = 0, and t, is an isolated root, ¢, is the unique root. Let ¢ > 0 be given.
Then Ar(to + €) < 0 < Ag(to — €). Now, by the SLLN, A5 () 2% A4(1), each .
Therefore,

lim P(Ap, (to +6) <0 < Ap (tg — ), allm>n) = 1.
n-=aw

Complete the argument as an exercise. i

Remark A. Note that ¢, need not actually be a root of Ax(¢t) = 0. It suffices
that A,(t) change sign uniquely in a neighborhood of t,. Then we still have,
for any & > 0, Ag(to + €) < 0 < Ag(to — ¢), and the assertions on {T,} follow as
above. W

For example, by the above lemma the sample mean, the sample median,
and the Hubers (Examples 7.1.2A, B, E) are, under suitable restrictions,
consistent estimators of the corresponding location parameters. However,
for the Hampels (Example 7.1.2F), we need a result such as the following.

Lemma B. Let ty be anisolated root of Ae(t) = 0. Let Y(x, t) be continuous in t
and bounded. Then the empirical equation Mg (t) = O has a solution sequence
{T.} which converges to to wpl.

PROOF. Justify that A(¢) and Ag(t), each n, are continuous functions
of t. Then complete the proof as with Lemma A. W

Corollary. For an M-functional T based on V, let F be such that T(F) is an
isolated root of Ag(t) = 0. Suppose that V(x, t) is continuous in t and either
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monotone in t or bounded. Then the empirical equation Ag (t) = 0 admits a
strongly consistent estimation sequence T, for T(F).

Remark B. In application of Lemma B in cases when the empirical equation
Ap(t) = 0 may have multiple solutions, there is the difficulty of identifying a
consistent solution sequence {T,}. Thus in practice one needs to go further
than Lemma B and establish consistency for a particular solution sequence
obtained by a specified algorithm.

For example, Collins (1976) considers a robust model for location in which
the underlying F is governed by the standard normal density on an interval
to + d and may be arbitrary elsewhere. He requires that  be continuous with
continuous derivative, be skew-symmetric, and vanish outside an interval
[—c¢, c],¢ < d.Heestablishes consistency for T, the Newton method solution
of Az (t) = 0 starting with the sample median.

Portnoy (1977) assumes that F has a symmetric density f satisfying certain
regularity properties, and requires y to be bounded and have a bounded and
a.s. (Lebesgue) uniformly continuous derivative. He establishes consistency
for T, the solution of A (t) = 0 nearest to any given consistent estimator T.

7.2.2 Asymptotic Normality and the LIL

Let y(x, t) be given, put A¢(t) = | ¥(x, t)dF(x), and let t, = T(F)be asolution
of Ax(t) = 0. Based on {X;} LLD. from F, let T, = T(F,) be a consistent (for
to) solution sequence of Az (t) = 0. Conditions for consistency were given in
7.2.1. Here we investigate the nature of further conditions under which

(AN) nV(T, — to) = N(O, 6X(T, F)),

with ¢(T, F) given by ecither [ y(x, to)dF(x)/[A¥(to)]* (as in 7.1.1) or
HJ’:ISx, to)dF(x)/L f (O (x, £)/01)], =, )AF (x)]? depending upon the assumptions
on Y(x, t).

In some cases we are able also to conclude

n''*(T, — t,)
LIL L] =

(L) fm ST, F@ loglog 7 ~ | ¥PL

Three theorems establishing (AN) will be given. Theorem A, parallel to
Lemma 7.2.1A, is based on Huber (1964) and deals with y(x, t) monotone in t.
In the absence of this monotonicity, we can obtain (AN) under differentiability
restrictions on Y(x, -), by an extension of the classical treatment of maximum
likelihood estimation (recall 4.2.2). For example, conditions such as
0*Y(x, 6)

—a— | < M(x), with sup EgM(X) < oo,
00 PO
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play a role. A development of this type is indicated by Rao (1973), p. 378. As a
variant of this approach, based on Huber (1964), Theorem B requires a
condition somewhat weaker than the above. Finally, Theorem C, based on
Boos (1977), obtains (AN) by a rather different approach employing methods
of Chapter 6 in conjunction with stochastic properties of || F, — F|l,. Instead
of differentiability restrictions on y(x, ), 2 condition is imposed on the varia-
tion of the function y(-, t) — Y(-. t,), ast —= t,. The approaches of Theorems
B and C also lead to (LIL) in straightforward fashion.

We now give Theorem A. Note that its assumptions include those of
Lemma 7.2.1A.

Theorem A. Let t, be an isolated root of Me(t) = 0. Let Y(x, t) be monotone in
t. Suppose that Ae(t) is differentiable at t = tq, with Ap(to) # 0. Suppose that
| V3(x, )dF(x) is finite for t in a neighborhood of to and is continuous at t = to.
Then any solution sequence T, of the empirical equation Mg (t) = O satisfies
(AN), with o*(T, F) given by [ V2(x, to)dF(x)/[Ax(to)]*. (That T, tq is
guaranteed by Lemma 7.2.1A.)

PROOF. Assume that Y(x, t) is nonincreasing in ¢, so that Ap () is
nonincreasing. Thus (justify)

P(2,(t) < 0) < (T, < t) < P(Ag,(t) < 0).
Therefore, to obtain (AN), it suffices (check) to show that
lim P(Ain(tx.n) < 0) = lim P(AF..(tx.n) < 0) = &(2), each z,

Lind ] Ling ]

where ¢, , = to + zan~ V2, with o = o(T, F). Equivalently (check), we wish
to show that

n —nl/2
lim P("_m YYus —f—sﬁ-(ﬁ) =®(z), eachz,

n=w i=1 .

where 53 , = Var {y(X,, t, ,)} and
= [W(Xb t:.n) - Ai‘(t:.n)]

sl.l
Justify, using the assumptions of the theorem, that n'/2A(t,. ) = Ax(to)z0 and
that s, , = —Ax(to)o, as n — oo0. Thus —n"2A(t,, ,)/s,,, = 2, n = 0, and it
thus suffices (why?) to show that

Yu , l<i<n

lim P(n'”2 i ) RS z) = O(2), each z.
=1

Liad" -}
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Since Y,;, 1 < i < n, are LLD. with mean 0 and variance 1, each n, we may
apply the double array CLT (Theorem 1.9.3). The “uniform asymptotic
negligibility” condition is immediate in the present case, so it remains to
verify the Lindeberg condition

lim y*dFy () =0, every e>0,
n=w Yiy|>al/2e
or equivalently (check)
) lim Yix, t, JAF(x) =0, every &> 0.
n=w J|Y(x,ty,m)|>nt3e

For any n > 0, we have for n sufficiently large that

W(x! tO + ") S W(x) t:,n) < W(x' lo - ")) a“ X,y
and thus, putting u(x) = max{|¥(x, to — n)|, [¥(x, to + 1)}, that
Vb MF S [ (dFe)

u(x)>nt/2g

J;V(xvl-,n)bn'/’z
Hence (1) follows (why?). W

Example A The Sample pth Quantile. Let 0 < p < 1. Suppose that F is
differentiable at £, and F'(,) > 0. Take y(x, t) = Y(x — t), where

-1, x <0,
Y(x) = 0, x =0,
p/(1 ~ p), x>0
Check that for ¢ in a neighborhood of {,, we have

Ag(t) = [P_(_____l— __Fg))]
and thus
A(§,) =0
and
e = 0 <0

Check that the remaining conditions of the theorem hold and that 6%(T, F) =
(1 - p)/[F’(é,)]’.Thus%AN)holdsforany solution sequence T, of A () = 0.
In particular, for T, = ¢,, as considered in Section 2.3, we again obtain
Corollary 233A. W
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ExampleB The Hubers (continuation of Example 7.1.2E). Take ¥(x, t) =
V(x — t), where

-k, x < —k,
W(x) =1 x, [x|<k,
k, x > k.

Verify, using Theorem A, that any solution sequence T, of 4 () = O satisfies
(AN) with

_[fiety x* dF(x) + k2 o X dF(x) + k2 |2, dF(x)]
T F) = Fort dFGOY '

The next theorem trades monotonicity of Y(x, -) for smoothness restric-
tions,and also assumes (implicitly) conditions on ¥(x, t) sufficient for existence
of a consistent estimator T, of to. Note that the variance parameter 6(T, F)is
given by a different formula than in Theorem A. The proof of Theorem B will
use the following easily proved (Problem 7.P.9) lemma giving simple exten-
sions of the classical WLLN and SLLN.

Lemma A. Let 8(x, t) be continuous at to uniformly inx. Let F be adistribution
function for which { |g(x, to) [dF(x) < co. Let {X;} be I.1.D. F and suppose that

0] T, 3 to.
Then
1 n
@ 7 (K T) S Ecg(X, to).

Further, if the convergence in (1) is wpl, then so is that in (2).

Theorem B. Let ty be an isolated root of Ag(t) = 0. Let dV(x, t)/ot be con-
tinuous at t = to uniformly inx. Suppose that [ (OW(x, t)/ot),, dF(x) is finite and
nonzero, and that | V2(x, to))dF(x) < oo. Let T, be a solution sequence of
Ag () = O satisfying T,— to. Then T, satisfies (AN) with 6*(T,F) =
§ WA(x, to)FX)/[f aW(x, t)/ar)l,, dF(x)]>

PROOF. Since y(x, t) is differentiable in ¢t, 50 is the function Y} ¥(X,, 1),
and we have

e
ot =T,

n n n a
‘ZIW(X,, 1) - ‘ZIW(Xh to) = (T, — to)‘zl
where | T, — to| < [T, — tol. Since ¢ (T;) = 0, we thus have
—A,

nl/Z(T;l - tO) = B s
n
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where

Ay =12 T WX, 10)

i=1
and

-1 c aW(Xh‘)
l-zl o l=f...

Complete the proof using the CLT and Lemma A. W

B,=n

Remark A. A variant of Theorem B, due to Boos (1977), relaxes the uniform
continuity of g(x, t) = 2y(x, t)/dt at t = t, to just continuity, but imposes the
additional conditions that the function g(-, t) — g(-, t,) have variation O(1) as
t - toandthat the function { g(x, t)dF(x)be continuousat¢ = t,.Thisfollows
by virtue of a corresponding variant of Lemma A (see Problem 7.P.14). W

Example C The maximum likelihood estimate of a location parameter (con-
tinuation of Example 7.1.2C). Here y(x) = — fo(x)/ fo(x) is not necessarily
monotone. However, under further regularity conditions on f;,, Theorem A is
applicable and yields (check) asymptotic normality with *(T, F) = 1/I(F,),
where I(Fo) = { (fo/fo)* dFp,. W

The next theorem bypasses differentiability restrictions on Y(x, ), except
what is implied by differentiability of A,(t). The following lemma will be used.
Denote by |-||y the variation norm,

Ihlly = lim V, 4(h),

a—+ -
b~

where
k
Vas(h) = SUPiglh(xa) = h(x;- I,

the supremum being taken over all partitions a = xy < --+ < x;, = b of the
interval [a, b].

LemmaB. Let the function H be continuous with |H|ly < oo and the function
K be right-continuous with K|, < 00 and K(Z o) = 0. Then

’fHdK

PROOF. Apply integration by parts to write | H dK= —f K dH, using
the fact that | H(+ o0)| < co. Then check that | K dH| < K|l - |Hlly (or
see Natanson (1961), p. 232). W

< [Hlly - IKllo.
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Theorem C. Let ty be an isolated root of Ag(t) = Q. Let (x, t) be continuous
in x and satisfy

\) lim (-, ) = (-, to)llv = O.

t—to

Suppose that Ae(t) is differentiable at t = ty, with Ap(to) # 0. Suppose that
§ W3(x, to)dF(x) < oo. Let T, be a solution sequence of Ag,(t) = O satisfying

Ta D to. Then T, satisfies (AN) with 6*(T, F) = [ W3(x, to)dF(x)/[Ax(to)]*.
PROOF. The differential methodology of Chapter 6 will be applied and,

in particular, the quasi-differential notion of 6.2.2 will be exploited. As noted
in 7.1.1,

—Ag(to)
F(to)

In order to deal with T(G) — T(F) — d, T(F; G — F), itis useful to define the
function

d,T(F;G - F) =

0] =’1'L2:T’10'ﬁ’—), t# o,

= )v'r(to); t= tO'
Thus

AT(G)) = Arlto) | Aqlto)
h(T(G)) Ap(to)’

Unfortunately, this expression is not especially manageable. However, the
quasi-differential device is found to be productive using the auxiliary func-
tional Te(G) = Ag(to)/(T(G)). We thus have

T(G) - T(F) - d,T(F,G — F) =

A{T(G)) — AKto) + Ag(to)
WT(G) ’

with TH(G) = 1 as T(G) — T(F). Assuming A5(T(G)) = 0, we may write

T(G) — T(F) — T{GM,T(F;G — F) =

A(T(G)) — Ap(to) — Ag(to) = — J[!P(x. T(G)) — ¥(x, to)M[G(x) — F(x)].

Specializing to G = F, and T(G) = T,, we thus have
(l) 'I:l_tO-TF(Fu)dIT(F;Fu_F)

_ [ ¥(x, ) = ¥(x, to)Jd[FA(x) — F(x)]
B KT, '
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Check that Lemma B is applicable and, with the convergence T, 5 t,,yields
that the right-hand side of (1) is 0| F, — Fll ). It follows (why?) that

n'2[T, — to — T{(F M, T(F; F, — F)] 5 0.
Finally, check that n'/2T;(F,)d, T(F; F,— F) 5 N0, ¢*(T, F)). ®

Examples D. Consider M-estimation of a location parameter, in which case
Y(x, t) may be replaced by y(x — t). The regularity conditions on ¥ imposed
by Lemmas 7.2.1A, B (for existence of a consistent M-estimation sequence)
and by Theorem C above (for asymptotic normality) are that ¥ be continuous,
either bounded or monotone, and satisfy

™ 'l,iﬂ;IW(- -b)-¥QO)ly =0

These requirements are met by typical ¥ considered in robust estimation:
“Jeast pth power” estimates corresponding to ¥/(x) = |x|?~! sgn(x), provided
that1 < p < 2;the Hubers (Example 7.1.2E); the Hampels (Example 7.1.2F);
the smoothed Hampel (Example 7.1.2G). In checking (*), a helpful relation is
1Hy = le’(x)ldx, for H an absolutely continuous function. M

Remark B. LIL for M-Estimates. Under the conditions of either Theorem
B or Theorem C, with the convergence of T, to t, strengthened to wpl, T,
satisfies (LIL). This is readily seen by minor modification in the proofs of these
results (Problem 7.P.16). I

7.2.3 Berry-Esséen Rates

The approach of 6.4.3 may be applied. For simplicity let us confine attention
to the case Y(x, t) = Y(x — t). As an exercise (Problem 7.P.17), augment the
development in the proof of Theorem 7.2.2C by evaluating d, T(F; F, — F)
and showing that the remainder R,, =T, —t;, —dT(F;F, — F) —
4d, T(F; F, — F) may be expressed in the form R,, = 4, + B, + C, + D,,
where

4 = LV~ T) = ¥(x — t)MIF,(x) - Fx)]
" h(T,) '

1 1
5= [1}(70—) - FT)] f W(x — to)d[F(x) — F(x)},

C = JW(x = to)d[Fo(x) = F(x)]§ ¥'(x = to)d[Fo(x) — F(x)]
" Ag(to) ’
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and

Ax(to) (f W(x — to)d[Fo(x) — F(x)])?
[Ax(t0)]* '

A brute force treatment of these quantities separately leads to

under moderate restrictions on ¥, ', " and on Ax(t), Ax(t) and Ay(t)for tina
neighborhood of t,. By application (check) of the Dvoretzky-Kiefer-
Wolfowitz inequality (Theorem 2.1.3A), P(|R,,| > Cn~1) = O(n~12), so
that Theorem 6.4.3 yields the Berry-Esséen rate O(n~/2) for the asymptotic
normality of T,.

For other discussion of the Berry-Esséen rate for M-estimates, see Bickel
(1974).

D, =

7.3 COMPLEMENTS

7.3.1 Information Inequality ; Most Efficient AM-Estimation

Assume regularity conditions permitting the following interchange of order
of integration and differentiation:

d (o, 1)
0 3 [wes narco =%

Then the two forms of ¢%(T, F) in 7.2.2 agree. Assume also that F has a
density f with derivative f’. Further, consider now the case that y(x, t) =

¥(x - t). Then, by integration by parts, (1) yields
M) = = [W(x = 0 wdx = =[x - )G

dF(x).

t=1g

Hence

JY2(x — to)f (x)dx
[J ¥(x — to)f'(x)dx]?
and thus, by the Schwarz inequality, (check)
1 1
J(F7NHTdF ~ IFy
which is again the “information inequality” discussed in 4.1.3. This lower
bound is achieved if and only if Y(x — t,) is of the form af'(x)/ f(x) for some

constant a. To make this more transparent, suppose that F(x) = Fo(x — to),
making t, = T(F) a location parameter in the location model generated by a

o¥(T,, F) =

™ 0T, F) 2
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distribution F, (recall Example 7.1.1). Then equality in (*) is achieved if and
only if ¢ = y,, where

for some constant g, that is, if  is the maximum likelihood estimator. That is,
the most efficient M-estimator is the maximum likelihood estimator. Now
compare the most robust estimator (7.3.2).

7.3.2 “Most Robust” M-Estimation

Let F, in the location model F(x; 6) = Fo(x — 6) be unknown but assumed
to belong to a class C of distributions (as in Example 7.1.2E). In some cases
(see Huber (1964)) there exists a unique “least favorable” F' € C, in the sense
that

oX (T3, F) 2 6¥(T3, F), allFeC,
where J = — f/f (the { yielding efficient M-estimation of § when F' is the
underlying distribution F,). But, by (*),
oX(T3, F) < o(T,, F),  ally.
Hence
sup 6*(T;, F) = inf sup 6%(T,, F).
F v F

Thus the M-estimator corresponding to \ is most robust in the sense of
minimaxing the asymptotic variance. We see that the “most robust” M-
estimator has both a maximum likelihood and a minimax interpretation. For
the contaminated normal class C of Example 7.1.2E, the least favorable F has
density f(x) = (1 — €)(2r)~ /2 exp p(x).

7.3.3 The Differential of an M-Functional

The proof of Theorem 7.2.2C showed that, under the conditions of the theorem,
T(F; 8) = —] Y(x, to)dA(x)/Ax(to) is (recall 6.2.2) a quasi-differential with

respect tol| |, and T -). If in addition we require that ||y(-, to)lly < co,then
T(F; A) is a strict differential w.r.t. |-| » (Problem 7.P.19).

7.3.4 One-Step M-Estimators

Consider solving the empirical equation 4. (t) = 0 by Newton’s method
starting with some consistent estimator T, (for the solution t, of Ax(t) = 0).
The first iteration has the form

oo B
F,
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with

’ — 1 c al//(X‘, t)

r.‘('n) =n :-21 _—_—6t 1-7‘...
Now check that

A (T) :
() _p = Py _ ZFNn) -
Tn tO T'l tO A"F,,( ”) - A,, + Bn Cm
where
A = -A'Fu(to)
S TG
B = —[).,-,,(7:,) — Ap(to) — 'r..(to)(ﬂ. ~ to)]
" 1 (T) ’
and
c. = DT = %,0)(T, — to)

" ) '
Assume the conditions of Theorem 7.2.2B and also
) (T - t) =0,1), n- .
Then immediately (justify)

n'24, 4 N(O, oX(T, F))
and
n'2c, 5 0.

Find additional conditions on ¢ such that
n'2B, 4 0,

and thus conclude that n'/3(T') — t5) 5 N(0, 0*(T, F)), in which case the
performance of the “one-step” is the same as the “full iterate.”

735 Scaling

As discussed in Huber (1977), in order to make a location M-estimate scale-
invariant, one must introduce a location-invariant scale estimate s,, and then

take T, to be the solution of
” —
Z ,/,(X‘_sﬂ) = 0.

i=1
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In this case, if S, estimates ¢(F), then T, estimates T'(F) defined as the solution

of
T(F) _
J‘!/l( o) )dF(x) =0

A recommended choice of s, is the mean absolute deviation (MAD),
s, = median of {| X, — m|,...,|X, -~ ml|},

where m = median of {X,,..., X,}. Another old favorite is the sample
interquartile range (discussed in 2.3.6). The results of this chapter extend to
this formulation of M-estimation.

7.3.6 Bahadur Representation for M-Estimates

Let T, be as defined in 7.3.5. Under various regularity conditions on y and F,
Carroll (1978) represents T, as a linear combination of the scale estimate s,
and the average of n bounded random variables, except for a remainder term
O(n~'(log log n))wpl.

7.3.7 M-Estimates for Regression

See Huber (1973).

7.3.8 Multiparameter M-Estimates
See Huber (1977).

7.3.9 Connections Between M-Estimates and L- and R-Estimates
See Chapter 9.

7.P PROBLEMS

Section 7.1
1. Derive the IC for an M-estimate, as given in 7.1.1. (Hint: use the
method of Example 6.5B.)

2. Verify the characterization of the M-estimator of Example 7.1.2D asa
form of trimmed mean. Exemplify.

3. Verify the characterization of the M-estimator of Example 7.1.2E as
a form of Winsorized mean. Exemplify.

Section 7.2
4. Complete the proofs of Lemmas 7.2.1A, B.
5. Does Remark 7.2.1A apply to Lemma B also?
6. Complete the details of proof of Theorem 7.2.2A.



7.
8.
9.

10.
11,
12.
13,
14.

apply
15.
16.
17.

36X T) = Erg(X, t0)

PROBLEMS 261

Supply details for Example 7.2.2A (the sample pth quantile).
Supply details for Example 7.2.2B (the Hubers).
Prove Lemma 7.2.2A. Hint: write

<

f Lg%, T,) — gCx, to)JdF (%)

i=1

+ | f 4Cx, t)LF,(x) — FOO]

Complete the proof of Theorem 7.2.2B.

Check details of Example 7.2.2C (m.l.e. of location parameter).
Check details of proof of Lemma 7.2.2B.

Supply details for the proof of Theorem 7.2.2C.

Prove the variant of Lemma 7.2.2A noted in Remark 7.2.2A. (Hint:

Lemma 7.2.2B.)

Check the claims of Examples 7.2.2D.
Verify Remark 7.2.2B (LIL for M-estimates).
Provide details in 7.2.3 (Berry-Esséen rates for M-estimates).

Section 7.3

18.
19.
20.

Details for 7.3.1-2.
Details for 7.3.3.
Details for 7.3.4.



CHAPTER 8

L-Estimates

This chapter deals briefly with the asymptotic properties of statistics which
may be represented as linear combinations of order statistics, termed “L-
estimates” here. This class of statistics is computationally more appealing
than the M-estimates, yet competes well from the standpoints of robustness
and efficiency. It also competes well against R-estimates (Chapter 9).

Section 8.1 provides the basic formulation and a variety of examples
illustrating the scope of the class. Asymptotic properties, focusing on the case
of asymptotically normal L-estimates, are treated in Section 8.2. Four different
methodological approaches are examined.

8.1 BASIC FORMULATION AND EXAMPLES

A general formulation of L-estimation is presented in 8.1.1. The special case
of efficient parametric L-estimation of location and scale parameters is
treated in 8.1.2. Robust L-estimation is discussed in 8.1.3. From these con-
siderations it will be seen that the theoretical treatment of L-estimates must
serve a very wide scope of practical possibilities.

8.1.1 General Formulation and First Examples

Consider independent observations X, ..., X, on a distribution function F
and, as usual, denote the ordered valuesby X,; < --- < X,,. Asdiscussed in
2.4.2, many important statistics may be expressed as linear functions of the
ordered values, that is, in the form

0 7= ¥ouu

for somechoiceofconstantsc,,, .. ., ¢,,. Wetermsuchstatistics “ L-estimates.”
Simple examples are the sample mean X, the extremes X,; and X, and the
sample range X,, — X,,. From the discussion of 2.4.3 and 2.4.4, it is clear
that the asymptotic distribution theory of L-statistics takes quite different

262
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forms,depending on the character of the coefficients {c,,}. The present develop-
ment will attend only to cases in which T,, is asymptotically normal.

Examples A. (i) The sample pth quantile,¢,,, may be expressed in the form
(1) with ¢y =1 if i=np or if np # [np] and i =[np} + 1, and ¢, =0
otherwise.
(ii) Gini’s meandifference,
2
nn—1)<i3s<n

considered previously in 5.1.1 as a U-statistic for unbiased estimation of the
dispersion parameter 6 = E¢|X; — X,|, may be represented as an L-
estimate as follows (supply missing steps):

2 2

le - X]Iy

X, - X)| = —— X, - X,
nin —1) lsl;]sJ ! !| n(n - 1) lsl;]sJ ! !I
2 -1 n

Z (xn] - an)

- ;«T:T) P
n(n " lZ(ZI - DX,
which is of form (1) with ¢, = 2Qi —n— )/n(n —1). A

A convenient subclass of (1) broad enough for all typical applications is
given by

, ’ 12 m
(l) "; 82 ( ) nl + !=Zlajxn.[nm]'

Here J(u), 0 < u < 1, represents a weights-generating function. It is assumed
that0 < p, <.+ < p,, < 1and that a,, .. ., a, are nonzero constants. Thus
T, is of form (1) with ¢, given by n~1J(i/(n + 1)) plus an additional con-
tribution a, ifi = [np,] for some j € {1, ..., m}. Typically, J is a fairly smooth
function. Thus L-estimates of form (l') are sums of two special types of L-
estimate, one type weighting all the observations according to a reasonably
smooth weight function, the other type consisting of a weighted sum of a fixed
number of quantiles. In many cases, of course, the statistic of interest is just a
single one of these types. Also, in many cases, the initial statistic of interest is
modified slightly to bring it into the convenient form (1"). For example, the
sample pth quantile T, = 8,,. is replaced by T, = X, 1, 8iven by (1') with
the first term absent and the second term correspondingtom = 1, p, = p,
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a, = 1. Similarly, Gini’s mean difference T, may be replaced by T, =
[(n + 1)/(n ~ 1)]T,, which is of form (1) with J(u) = 4u — 2,0 S u < 1,and
with the second term absent. In such cases, in order that conclusions obtained
for T, may be applied to T,, a separate analysis showing that T, — T, is
negligible in an appropriate sense must be carried out.

Examples B. (i) The a-trimmed mean (previously considered in Example
6.5E). Let 0 < o < 1. Then

l n—[na)

Th=—5s
n — 2[na] (=[na]+1

X nl
is of form (1). Asymptotically equivalent to T, is T, of form (1') with J(u) =
1/(1 — 2a) fora < u < 1 — a and = 0O elsewhere, and with m = 0.

(ii) The a-Winsorized mean. Let 0 < a < 4. Then

n~ [nx]

T =- ([na]X,, [na]+ 1 + Zl'l- lxnl + [na]X,, n- (ul)
isasymptotically equivalent to T, of form(l YwithJ(w) = llora <u <1 -0«
and =0 elsewhere, and withm =2, p; =0, py=1—-0,a, =a, = a.

(iii) The interquartile range (recall 2.3.6) is essentially of form (1) with
Juy=0andm=2p, =4 p=%a,=%a,=% B

As these examples illustrate, a given statistic such as the interquartile
range may have two asymptotically equivalent formulations as an L-estimate.
Further, even the form (1') has its variations. In place of J(i/(n + 1)), some
authors use J(i/n), which is a little neater but makes the definition of J(u) at
4 = 1 a more troublesome issue. Some authors use

i/n

n J- J(u)du
{~1)n

in place of J(i/(n + 1)). In this case, we may express the first term of (1') in the

form
n /n i N
-1 i = -1
‘;l [J‘“_MJ(u)du]F. (n) LF,, (OJ(t)dt.

This requires that J be integrable, but lends itself to formulation of L-
estimates as statistical functions. Thus, using this version of weights in the
first term in (1') and modifying the second term by putting F,; '(p)) in place of
X, tnp,1» 1 S J < m, we obtain the closely associated class of L-estimates

(1) T, = T(F,),
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where T'(+) denotes the functional
1 m

™ T(F) = j F-'()J(t)de + Y a,F~'(p)).
] J=1

More generally, a wide class of L-estimates may be represented as statistical
functions T(F,), in terms of functionals of the form

1
T(F) = J'o F~ (0K (),

where K(-) denotes a linear combination of distribution functions on the
interval [0, 1].

Not only does the functional representation help us see what an L-estimate
is actually estimating, but also it brings into action the useful heuristic tool
of influence curve analysis. From Example 6.5D and 6.6.1, the influence curve
of the tth quantile F~!(¢) is

t — I(x < F~Y(t))
SF~Yey

(Seealso Problem 8.P.2.) Thus the functional T(-) given by the second term of
(*) has influence curve

IC(x; F~'(t), F) = —00 < x < 00.

) < py—I(x < FY(p))
', F) = (
IC(x; T, F) };a, )

Let us now deal with the functional T; given by the first term of (*). Putting
K@) = [6 J(u)du, we have (Problem 8.P.3)

Lemma A. If {5 F~()J(t)dt is finite, then
1
F~1(t)d =
[ F o < |

x dK,(F(x)).

We thus obtain (Problem 8.P.4), for K,(-) a linear combination of distribu-
tion functions, and in particular for K,(t) = {§ J(u)du,

Lemma B. T,(G) — T(F) = -2, [K{(G(x)) — K,(F(x))]dx.

Applying Lemma B, we may obtain the Gateaux differential of T, at F (see
Problem 8.P.5 for details) and in particular the influence curve

100 T, F) = — f LI < y) — FO)NFG)My.
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The influence curve of the functional T given by (*) is thus
IC(x; T, F) = IC(x; T}, F) + IC(x; Ty, F).

Note that the second term, when present, gives the curve jumps of sizes
a/f(F~'(p)) at the points x = F~}(p), 1 <j <m.

The relevant asymptotic normality assertion for T(F,) may now be
formulated. Following the discussion of Remark 6.5, we note that E;{IC(X ;
T, F)} = 0 and we define ¢*(T, F) = Varg{IC(X; T, F)}. We thus anticipate
that T(F,) is AN(T(F), n~'6*(T, F)). The detailed treatment is provided in
Section 8.2.

Clearly, the L-estimates tend to be more attractive computationally than
the M-estimates. In particular, L-estimation is thus more appealing com-
putationally than maximum likelihood estimation. Does this mean that
efficiency must be sacrificed to gain this ease of computation ? No, it turns out
in classical parametric estimation problems that the constants ¢,, may be
selected so that T, has the same asymptotic variance as the maximum like-
lihood estimate. In 8.1.2 we consider a number of specific examples of such
problems. Furthermore, Bickel and Lehmann (1975) compare M-, L- and
R-estimates for location estimation in the case of asymmetric F and conclude
that L-estimates offer the best compromise between the competing demands
of efficiency at the parametric model and robustness in a nonparametric
neighborhood of the parametric model, In particular, the trimmed means are
recommended. In 8.1.3 we consider robust L-estimation.

Fixed sample size analysis of L-estimation seems to have begun with
Lloyd (1952), who developed estimators which are unbiased and of minimum
variance (for each n) in the class of statistics consisting of linear transforma-
tions of statistics T, of form (1). See David (1970), Chapter 6, for details and
further references. See Sarhan and Greenberg (1962) for tabulated values.

An asymptotic analysis was developed by Bennett (1952), who derived
asymptotically optimal c,’s (J functions) by an approach not involving
considerations of asymptotic normality. Some of his results were obtained
independently by Jung (1955).

The asymptotic analysis has become linked with the question of asymptotic
normality by several investigators, notable results earliest being given by
Chernoff, Gastwirth and Johns (1967). Among other things, they demonstrate
that Bennett’s estimators are asymptotically efficient. Alternate methods of
proving asymptotic normality have been introduced by Stigler (1969),
Shorack (1969), and Boos (1979). We discuss these various approaches in
8.2.1-8.2.4, and corresponding strong consistency and LIL resuits will be
noted. The related Berry-Esséen rates will be discussed in 8.2.5, with special
attention to results of Bjerve (1977), Helmers (1977), and Boos and Serfling
(1979).
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8.1.2 Examples in Parametric Location and Scale Estimation

Let the distribution of X, ..., X, be 2 member F(x; 8y, 0,) of a specified
location and scale parameter family # = {F(x; 6, 8,), (0,, 0,) € ®}, where

F(x; 0y,0,) = F(x — 0‘)
6,

1 -
0::01,09 = - 1(252),

and F is a specified distribution with density f. For example, if F = ®, then #
is a family of normal distributions. One or both of 8, and #, may be unknown.
The problem under consideration is that of estimation of each unknown
parameter by an L-estimate, that is, by a statistic of the convenient form

i
T ;l- (.ZIJ('] + l) >

with the J function selected optimally. Furthermore, solutions are desired in
both the cases of censored and uncensored data (censored data arises in
connection with life-testing experiments, or in connection with outlier-
rejection procedures). We will consider several examples from Chernoff,
Gastwirth and Johns (1967).

Assume that # satisfies regularity conditions (recall Section 4.2) suf-
ficient for the asymptotic covariance matrix of the normalized maximum
likelihood estimates of 6, and 0, to coincide with the inverse of the informa-
tion matrix

_ dlog f(X;0,,0,) dlog f(X;6y,0,)]]
e a0, a0, |

with density

x2

~

Defining

Ly(x) =

_J') _ [y L )]
7oy = [ 709

and assuming that f” exists and x2f’(x) — O as | x| = co, the matrix I, may be
written as 03 I, where

[ mwreas [ Lwros o 1]

Ip = = .
F Iy I

j” XLy () f (M j” xLy(0)f ()
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The problem is to find J functions such that estimates of the form

i
n = ;l' Z (n n l) ni <+ Eaj n.[np;] perhaps)
have asymptotic covariance matrix n='03 1.

Example A Uncensored case, scale known. For estimation of the location
parameter 8, when the scale parameter 8, is known, the efficient J function is
found to be

J() = 17 Ly(F~'(u)).

Itis established that the corresponding L-estimate T, is AN(u,, n~'a}), where
By =0, + I7'1,,0, and o} = 63I7,. It follows that T, — I;,'I,,0, is an
asymptotically efficient estimator of the location parameter 6,, when the scale
parameter is known. In particular:

(i) For the normal family # based on F = ®, the appropriate weight
function is, of course, simply J(u) = 1;
(ii) For the logistic family # based on

Fx)=(1+e 7}, —00 < x < 00,
the appropriate weight function is
Juw==6u(l —u), O<ux<l;
(iii) For the Cauchy family # based on

F(x) = %[tan"(x) + 4n], —00 < X < 00,

the appropriate weight function is

sin 4n(u — §)

Jw) = tann(u — 1)

Example B Uncensored case, location known. For estimation of 6, when
0, is known, the efficient J function is found to be

J() = I3 Ly(F~'(w)).

It isestablished that the corresponding L-estimate T, is AN(u,, n~'63), where
My =0, + 13;'1,,0, and o} = 6313}, It follows that 7, — I3;}1,,0, is an
asymptotically efficient estimator of 6, when 0, is known. In particular, for
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the normal, logistic, and Cauchy families considered in Example A, the
corresponding appropriate weight functions are

Ju) = O (),
) = % [Zu — 14 2u(l — u)log(l—‘:‘—u)],

and

_ o tann(u—4)
) = sec? n(u — 4)’

respectively. W

Example C Uncensored case, location and scale both unknown. In this case
the vector (T, T#) corresponding to

[V 1(), J,(u)] = [LY(F~'(w)), Ly(F~'(u))]1F !
is AN ((6,,0,), n"'0317"). =
Example D Censored case, location and scale both unknown. In the case of
symmetric two-sided censoring of the upper 100p % and lower 100p %
observations, it is found that the asymptotically efficient estimate of the
location parameter is formed by using weights specified by
J(u) = Iy L'y(F~'(w))
for the uncensored observations and additional weight
w= I~ f2(F'(p) - fF~'(@)]
for the largest and smallest uncensored observations. For the normal family
we have, putting £, = @~ !(p),

sp
I, = f_c x*¢()dx + 2p7'¢%(&,) = 1 — 2p + 25, 4(¢,) + 27 'H*(&)),
J(u) = I, p<u<l-—p,
=0, otherwise,

and
w = IT{'[pd*(&,) + &, 0(¢p).
As a numerical example, for p = 0.05 we have I,, = 0.986 and w = 0.0437,
yielding the efficient L-estimate
1 n—[0.05n)

Note the similarity to the p-Winsorized mean (Example 8.1.1B (ii)). W

an + 0'0437(Xn.[0.05nl+l + Xn.n—[O.OSn])-
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8.1.3 Examples in Robust Estimation

For robust L-estimation, the influence curve IC(x; T, F) derived in 8.1.1
should be bounded and reasonably smooth. This curve is the sum of the two
curves

10 T P = = | 110 2 %)~ FONEOMy

and

: - _ v afllF'@)2x) - p]
IC(x; Ty, F) I; FFG) .

The first curve is smooth, having derivative J(F(x)) (Problem 8.P.6), but can
be unbounded. To avoid this, robust L-estimation requires that J(u) vanish

outside some interval (a,b),0 < a < b < 1. The second curve is bounded, but
has m discontinuities,

Example A The “Gastwirth”. Inthe Monte Carlo study by Andrews et al.
(1972), favorable properties were found for the L-estimate

03F;'}) + 04F,; '(}) + 0.3F; \(%),
proposed by Gastwirth (1966). W

Example B The a-trimmed mean (see Example 8.1.1B(i)). This is the
L-estimate T(F,), where

l 1-a -1
=% J; F~(t)de.

For F symmetric about F~'(3), the influence curve is (recall Example 6.5E)

T(F) =

[ (@ - F'd) x<F'@),
IC(x; T, F) - i _lza [x — F7'()], F Y o)< x<F'(1~a),
1 ) .
1= [F7'(d —a) - F'(d)],
| x> F (1 - a).

Thus this L-estimate behaves the same as a certain M-estimate, the “Huber”
(Example 7.2.2B) withk = F~!(1 —a). W
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Example C The a-Winsorized mean (see Example 8.1.1B(ii)). This is
T(F,) based on
1-a
T(F) = F~Y(t)dt + aF ') + aF~ (1 —~ a).

Find its influence curve (Problem 8.P.8). W

ExampleD Thesmoothly trimmedmean. Stigler (1973) providesanexample
showing that the trimmed mean has nonnormal asymptotic distribution if the
trimming is at non-unique quantiles of F. As one remedy, he introduces the
“smoothly trimmed mean,” corresponding to a J function of the form

Jw) =0, u<iy,
=(u—ia)(%€), je<uc<ao,
=c¢c a<u<l-—a,
=(1_5a_u)(_2;c), l—a<u<1—ia
=0, u>ie N

8.2 ASYMPTOTIC PROPERTIES OF L-ESTIMATES

In this section we exhibit asymptotic normality of L-estimates under various
restrictions on J and F. Four different methodological approaches will be
considered, in 8.2.1-8.2.4, respectively. Consistency and LIL results will also
be noted, along the way. In 8.2.5 we consider Berry-Esséen rates.

8.2.1 The Approach of Chernoff, Gastwirth and Johns (1967)

Chernoff, Gastwirth and Johns (1967) deal with L-estimates in the general
form

(1 T=n"'Y cuh(X.)

=1
where h is some measurable function. (This includes as a special case the
formulation of Section 8.1, given by h(x) = x and replacing c,; in (1) by nc,;.)
For the purpose of deriving distribution theory for T,, we may assume that
Xl! XZ! <.. are given by F-I(Ul)v F_l(UZ)v ey Where Ulv UZ, +.. are
independent uniform (0, 1) variates. Thus X,, = F~'(U,), 1 < i < n. Also,
put

an = —IOg(l - Unl)v I<ign
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It is readily seen that the V,, are the order statistics of a sample from the
negative exponential distribution, G(x) = 1 — exp(—x), x > 0. Thus, put-
ting A = ho F~! o G, the composition of h, F~!, and G, we have the re-
presentation

=n"! icnlg(";u)
i=1

We now apply differentiability of A in conjunction with the following special
representation of the ¥, (see, e.g., David (1970)).

Lemma A. The V., may be represented in distribution as

z Z
Vo=t i
nl n+ +n—|+1’ 1gign,

where Z,,...,Z, are independent random variables with distribution G.

Assumption A. F(v) is continuously differentiable for 0 < v < 0. Define
Y = E{V,}and note that

V,,,=%+---+n—_—:_—'_——l, 1gign
Now apply Lemma A and Assumption A to write
A(Va) — ﬂwm—ﬂwng—f¢7+cmwa
where
W) — Aw)

Gu(v) = -H@),  v#EV,

nl
=0,v=19,.

We thus have the representation (check)

) To=ta +Qn +R,,

where

Hp = n-ll-ilcnl H(“’nl)»

=n"! ianl(zl -1,
i=]
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with

1 2 ,
% =TT j;cnjﬂ ({7}
and
n = n_ll-zlcnl(vnl - an)Gnl(an)-

Here n, is nonrandom, Q, can be shown asymptotically normal by standard
central limit theory, and R, is a remainder which is found to be asymptotically
negligible. Note that Q, has variance o?/n, where

n
ol=n"'Y al.

The following further assumptions are needed. First we state an easily proved
(Problem 8.P.9) preliminary,

Lemma B. The random variables U, and V,, can be simultaneously bounded
in probability: given € > 0, there exists

U8, u"E),  vw(e), v"(e)

such that

P(u,(€) < Uy, < u"(e), Isigsn)21-c¢
and

P(vy(e) < Vu <v(e), 1<isn21-g¢,
with

Val€) = —log[l — u,(e)],  v"(e) = —log[l — u"(e)]

and

um(e) < n—Ii-T < u"'(e).

Assumption B, For each € > 0,
n i 1/2
’azllcmlgm(e) [m] = o(no,),
where
gi€) =  sup  |Gn(V)I.

vai(e) <v<vriQ)
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Assumption C. max, ¢, <, |ty| = o(n'?c,).

Theorem (Chernoff, Gastwirth and Johns). Under Assumptions A, B,
and C,

T, is AN(u,, n" o).

PROOF (Sketch). Itcanbeshown byacharacteristicfunctionargument
(Problem 8.P.10(a)) that £(n"/2Q,/a,) — N(O, 1) if and only if Assumption C
holds, no matter what the values of the constants {«,,}. Further, it can be
shown under Assumption B that R, = o,(n~"2g,). (See CGJ (1967) for
details). W

For the special case

=pn"! ZJ( )h(xni) + Z"lh(xn,[ml)

i=1

CGJ (1967) give special conditions under which T, is AN(u, n~'6?), where
1 m
= f J(WH(u)du + JZ a;H(p)
0 =1
and
1
¢l = f a2(u)du,
0
where

1
o) = I__i_u { f JONH )(1 — widw + T, a1 - p,)H'(p,)}
] pj2u

and H = ho F~!, See also 8.2.5.

8.2.2 The Approach of Stigler (1969, 1974)

We have seen the method of projection used in Chapter S and we will see it
again in Chapter 9. Stigler deals with L-estimates in the form

= Z Cni X nis
i=1
by approximating the L-estimate by its projection

sn = ‘-ilcnixnh
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where X, is the projection of the order statistic X,,. To express this projection,
we introduce the notation

1

=__ -1
Y@ ®= = FFTO)

and
gnl(u)“n( )"(l-u)"' O<uc<l

The latter is the density of U ,;, the ith order statistic of a sample from uniform
(0, 1). Stigler (1969) proves

Lemma. Thereissomeng = ng(F) suchthatfori > ngandn — i + 1 2 ny,

n n F(Xx)
xnl = n-lkzl 0 ‘l’(u)gnl(u)du + nE{xn—l.l-l} - (n - l)E{xnl}

(In particular, since £{X,;} = L{F~'(U,)}, E{Xu} = §o F~ (u)gm(u)du.)
Stigler develops conditions under which
ES, - S,
a*(s,)

so that for S, AN(E{S,}, 0%(S,)) it suffices to deal with S, by standard central
limit theory. Noting that

-0,

Sn =n" Z an + An’
k=1

where A, is nonrandom and Z,, = Y1, cu J§** ¥(u)g,(u)du, it suffices to
verify the Lindeberg condition for } 1., (Z.x — EZ,;). (See details in Stigler
(1969).) As noted by Stigler (1974), his assumptions leading to S, AN(E{S,},
0%(S,)) may be characterized informally as follows:

(i) the extremal order statistics do not contribute too much to S,;

(ii) the tails of the population distribution are smooth and the population
density is continuous and positive over its support:

(iii) the variance of S, is of the same order as that of Y |c,y| X ;.

Stigler (1974) confines attention to the case

s = S
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and strengthens the condition (ii) (through assumptions on J) in order
essentially to be able to dispense with conditions (i) and (ii). He establishes
several results. (See also Stigler (1979).)

Theorem A. Suppose that E{X?} < o0, and that J is bounded and continuous
a.e. F~1. Suppose that

o¥(1, F) = f f” JF()IF(y)) [F(min(x, y)) — FXF(y)]dx dy

is positive. Then
S. is AN(E(S,}, %(S,).
Also,
lim no(S,) = a*(J, F).

n-aw

Theorem B. Suppose that | [F(x)(1 — F(x))]"2 dx < oo and that J(u) = 0
for 0O<u<aand 1 — a <u < 1, is bounded, and satisfies a Lipschitz
condition of order >4 (except possibly at a finite number of points of F~*
measure 0). Then

lim n'?[E{S,} — n(, F)] = 0,

where
1
nJ, F) = J F~1(u)J(u)du.
1]

(As noted by Stigler, if F has regularly varying tails (see Feller (1966),
p. 268) with a finite exponent, then the conditions E{X?} < o and

f[F(x)(l ~ F(x))]V* dx <

are equivalent.)

Under the combined conditions of Theorems A and B, we have that S, is
AN(u(J, F), n~16%(J, F)). Further, if J puts no weight on the extremes, the
tail restrictions on F can be dropped (see Stigler’s Theorem 5 and Remark 3):

Theorem C. Suppose that J(u) is bounded and continuous a.e. F~!, =0 for
O<u<aandl —a <u < 1,and is Lipschitz of order >} except at a finite
set of points of F~! measure 0. Then

S, is AN, F), n"'6%(, F)).
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Example. The a-trimmed mean satisfies the preceding, provided that the
ath and (1 ~ a)th quantiles of F are unique.

For robust L-estimation, it is quite appropriate to place the burden of
restrictions on J rather than F.
8.2.3 The Approach of Shorack (1969, 1972)
Shorack (1969, 1972) considers L-estimates in the form

) T, = n""ilc..g(x,.)

and, without loss of generality, assumes that X,, X,, ... are uniform (0, 1)
variates. In effect Shorack introduces a signed measure v on (0, 1) such that
T, estimates u = [§ g dv. He introduces a sequence of signed measures v,
which approach v in a certain sense and such that v, puts mass n~'c, at
i/n,1 < i < n,and Oelsewhere. Thus

1
T= [ goFrt v,
0

He then introduces the stochastic process L,(t) = n'/3[go F; '(t) — g(t)],
0 <t < 1, and considers

1 1
nV (T, — p) = .[ L,dv + n'? j geF7 ' d(v, — v).
(1] (1]

By establishing negligibility of the second term, treating the convergence of
the stochastic process L,(-), and treating the convergence of the functional
{ L, dv over L,(-), the asymptotic distribution of T, is derived. His results
yield the following examples.

Example A. Let {X;} be LLD. F (F arbitrary), with E|X | < oo for some
r>0, Let

n
7; = n_| ZJ(tul)th
i=1
where max, ;<. |ty — i/n| = 0 as n & oo and where for some a > 0

a[min(i, 1- l)] Stys1- a[min(i, 1 - i)], I<ign
n n n n

Suppose that J is continuous except at a finite number of points at which F~!
is continuous, and suppose that

[J(O)] < Mt — ]~ Wa*rir+s <t <,
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for some 6 > 0. Let J, be a function on [0, 1] equal to J(¢,;) for (i — 1)/n < ¢
< i/fnand | i < nwith J,(0) = J(t,,). Then

nV(T, - u(J,, F)) > N(O, 6*(J, F)),
where u(J,, F) = |5 F~'(t)J(t)dt and

o*(J,F) = Jd f}min(s, t) — st)(s)J(O)dF ~ (s)dF ~'(¢).
o Jo

It is desirable to replace u(J,, F) by u(J, F) = f§ F~'(t)J(t)dt. This may be
done if J' exists and is continuous on (0, 1) with

'J(‘)l < M[l(l — t)]-(lIIH' llr+6, 0<t< 1,

for some 6 > 0, and the “max-condition” is strengthened to

n max
1<ign

=0(1). W

i
bni _;;

Example Al. Let X,,..., X, be a sample from ® = N(0, 1). For integral
r > 0, an estimator of E{X"* '} is given by

" i r
= n-1 -1
T;' " 1-21 [(D (n + 1)] X”'.
By Example A,

nllz(n _ E{X"”})—"N(O, E{X2r+2} _ Ez{xru})_ .

Example B The a-trimmed mean. Let X,,...,X, be a sample from
Fy = F(- — 0), where F is any distribution symmetric about 0. Let0 < « < .
For n even define

U2 [Z(i - [na] - IJ(XM + Xu.n—H-l)
{=[na)+ 1 2(&" - [”0‘])2 '

(Omitn odd.) Then
n'*(T, - 6) LA -—-—74 21/2 fm(t — a)W(t)dF~(¢t)
" (- 2“) a '
where W(-) is the Wiener process (1.11.4). W

Note that Shorack requires J to be smooth but not necessarily bounded,
and requires little on F. He also deals with mare general J functions under
additional restrictions on F.
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Wellner (1977a, b) follows the Shorack set-up and establishes almost sure
results for T, given by (1). Define J, on [0, 1] by J,(0) = ¢,, and J,(t) =
cw for (i — 1)/n < t < ifn. Set u, = [§ J()g(t)dt and p = [} J(t)g(t)dt.

Assumption 1. The function g is left continuous on (0, 1) and is of bounded
variation on (8,1 — 0) for all ® > 0. For fixed by, b, and M,

HOl<sMt™1-1"%, O0<t<],
and the same bound holds for J.(-), each n. Further,
IB(()I < Mt-l+b.+6(1 - t)-l+bz+8’ O<t < 1’

for some & > 0, and [§ t' =0~ W2¥(| — g)i-ba=(/28 q 9| < 0, W

Assumption 2. lim, ., J (t) = J(1), te (0, 1).

wpl

Theorem. Under Assumption 1, T, — p, — 0. If also Assumption 2 holds,
then T, 24 .

Example A* (parallel to Example A above). Let {X,},F, T,,and {t,;} beas
in Example A. Suppose that

[J(@®)] < M[t(1 — £)]~1H1r+e O<t <],
for some & > 0, and that J is continuous except at finitely many points. Then
1
7,220, P = [ ok m
0
Note that the requirements on J in Example A* are milder than in Example
A. Wellner also develops the LIL for T, given by (1). For this, however, the

requirements on J follow exactly those of Example A.

8.24 The Differentiable Statistical Function Approach
Consider the functional T(F) = T,(F) + T,(F), where

1
T(F) = fo F~ a0,

with J such that K(t) = g J(u)dt is a linear combination of distribution
functions on (0, 1), and

T = Jila,r' ().
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We consider here the L-estimate given by the statistical function T(F,).
Applying the methods of Chapter 6, we obtain asymptotic normality and the
LIL in relatively straightforward fashion.

From 8.1.1 it is readily seen that

d,T(F;F,—F)=n"! ih(F; X)),

i=1

where
WE:x) = - | [y 2 x) - FOMF S o, 2L e 2 )
Fix) = - [ 1020 - FOUEOMy + 502 rlh

Note that E¢{h(F; X)} = 0. Put 6%(T, F) = Var,{h(F; X)}. If 0 < 6*(T, F)
< oo, we obtain that T(F,) is AN(T(F), n~ 'o*(T, F)) if we can establish
n''?R,, 5 0, where R,, = A;, + A,,, with
A, = T(F,) — T(F) - d,T(F;F,—- F), i=12
Now, in Example 6.5D, we have already established
”I/ZAZ" A 0’

provided that F'(F~'(p))) > 0,j = 1,..., m. It remains to deal with A,,.
By Lemma 8.1.1B, we have (check)

M A== [ KEE - KFE) - JFEGIFE) - Foldx

= - J'_m WFm ;(x) ‘ [Fn(x) - F(x)]dxs

where we define
K(G(x)) — K(F(x))
Wo.r(x) G(x) - F(x)
=0, G(x)= F(x).
Via (1), A,, may be handled by any of several natural approaches, each

involving different trade-offs between restrictions on J and restrictions on F.
For example, (1) immediately implies

(2A) |Awl < IWs, fll, - IFa = Fllo,

where [kl = sup, |h(x)| and [Al., = §|h(x)|dx. Since |[F, — Fl, =
0,(n""'?) as noted carlier in Remark 6.2.2B(ii), we can obtain |4, =
0,(n~ ') by showing

(3A) IW,.elle, 5 0.
To this effect, following Boos (1977, 1979), we introduce

= J(F(x)),  G(x) # F(x),
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Assumption A. J is bounded and continuous a.e. Lebesgue and a.e. F~!,

and

Assumption B. J(u) vanishes foru < x andu > §, where 0 < a < B < 1,
and prove

Lemma A. Under Assumptions A and B,
lim HWG.I-‘"Ll = 0.

HG-Fllao~0
PROOF. First we utilize Assumption B. Let 0 < ¢ < min{a, 1 — f}.
Check that there exist a and b such that
—o<a<F YNae—-e)<F 'f+¢)<b< oo

Then, for |G — Fll, < & x < aimplies F(x) < a — ¢ < a and thus G(x) <
F(x) + ¢ < «, in which case (justify) W (x) = 0. Similarly, for |G — Fll,
< & x > bimplies W, g(x) = 0. Therefore, for |G — F|, < &,

b
™ o, llz, = f | We. (9l dx.

Also, keeping a and b fixed, this identity continues to hold as ¢ — 0.

Next we utilize Assumption A and apply dominated convergence (Theorem
1.3.7). For all x, we have
G{x

)
|We o)) < 1G() = F()|~! f @)l + 1JFC)|

F(x)

< 2o < oo0.
Let D = {x: J is discontinuous at F(x)}. For x ¢ D, we have W; ¢(x) = 0 as
G(x) — F(x). But D is a Lebesgue-null set (why?). Hence

b
fim f W r(0)ldx =0, W

G - Fll, 0
Therefore, under Assumptions A and B, we have
“) n'?A,, 5 0.
Indeed (justify), these assumptions imply
€ n'?A,, "E' of(log log n)''?).
Further, from Example 6.5D, we have (justify)
n'2A,, = o{(log log n)"'?)
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provided that F is twice differentiable at the points F~'(p), 1 <j < m.
Therefore, we have proved

Theorem A. Consider the L-estimate T(F,) = T,(F,) + T,(F,). Suppose
that Assumptions A and B hold, and that F has positive derivatives at its py-
quantiles, 1 <j < m. Assume 0 < 0*(T, F) < c0. Then

n'3(T(F,) — T(F)) % N(0, o*(T, F)).
If, further, F is twice differentiable at its p,-quantiles, 1 < j < m, then the
corresponding LIL holds.

Examples A. (i) The trimmed mean. Consider T,(F) based on J(t) =
e <t < PP — o) and T(-) = 0. The conditions of the theorem are
satisfied if the a- and f-quantiles of F are unique.

(ii) The Winsorized mean. (Problem 8.P.13). W

It is desirable also to deal with untrimmed J functions. To this effect, Boos

(1977, 1979) uses the following implication of (1):

(Fn"'F)
qoF

where g can be any strategically selected function satisfying

(2B) |Awl < (g F)We, plle, -

Assumption B*. {2, q(F(x))dx < co.

In this case the role of Lemma A is given to the following analogue.

Lemma B. Under Assumptions A and B*,

lim  J(q°F)Wg,rll, = 0.
IG-Fllw—0

PROOF. analogous to that of Lemma A (Problem 8.P.14). W

In order to exploit Lemma B to establish (4) and (5), we require that
I(F, ~ F)/q F|, satisfy analogues of the properties O,(n~ "/ ) and

Ouwpr(n~"*(log log n)"'?)

known for ||F, — F| . O'Reilly (1974) gives weak convergence results which
yield the first property for a class of 4 functions containing in particular

Q={q:qt)=[t(1 -~ )]V»% O0<t<1;0<d<4}

James (1975) gives functional LIL results which yield the second property for
a class of g functions also containing Q.
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On the other hand, Gaenssler and Stute (1976) note that the O (n'”’)
property fails for g(¢t) = [t(1 — £)]"/2. For this g, the other property also fails,
by results of James (1975). Although some of the aforementioned results are
established only for uniform (0, 1) variates, the conclusions we are drawing are
valid for general F. We assert:

LemmaC. For qeQ,
"(Fn = F)/q ° F”m = op(n_llz)
and

"2 O(n~ V(log log n)"'?).
Consequently, we have (4) and (5) under Assumptions A and B*. That is,

Theorem B. Assume the conditions of Theorem A, with Assumption B replaced
by Assumption B* for some q € Q. Then the assertions of Theorem A remain
valid.

Examples B. Let F satisfy §[F(x)(1 — F(x))]"/®~?dx < o0 for some
6 > 0. Then Theorem B is applicable to

(i) The mean: J(u) = 1;
(ii) Gini’s mean difference: J(u) = 4u — 2;
(iii) The asymptotically efficient L-estimator for location for the logistic
family: J(u) = 6u(1 —u). W

Remark. Boos (1977, 1979) actually establishes that
T(F;A) = — f A(x)J(F(x))dx

is a differential of T(-) at F w.r.t. suitable ||-I’'s. W

Still more can be extracted from (1), via the implication
20) [Asal < |We, pllw* IFs — Flli,
Thus one approach toward obtaining (4) is to establish |F, — F|l,, =
0,(n”'/?) under suitable restrictions on F, and to establish [|W;, rll, = 0
under suitable restrictions on J, We start with |F, — F|,.
Lemma D. Let F satisfy | [FX)[1 — F(x))]"/* dx < co. Then

E{|F, = Fl,} = O(@™").
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PROOF. Write F,(x) — F(x)=n"" Y., Y(x), where Y(x)=I(X;<x)
— F(x). Then

dx.

}dx.

}Sn”“ﬁvxb—ﬂﬂWW -

n-! i Y{(x)

=1

nn—mm=f

By Tonelli’s Theorem (Royden (1968), p. 270),

Emn—th=j4

n1 Y ¥(x)
{=1

Now check that

g

Now we turn to | W, rll, and adopt

n-1 iY,(x)

i}

Assumption A*. ] is continuous on [0, 1].
Lemma E. Under Assumption A*,

lim |Wg gl = 0.
IG-Flio~0

(Prove as an exercise.) We thus have arrived at

Theorem C. Let F satisfy § [F(x)(1 — F(x))]"? dx < oo and have positive
derivatives at its p;-quantiles, | < j < m. Let J be continuous on [0, 1]. Assume
0 < o*(T, F) < o0. Then

n'}(T(F,) ~ T(F)) > N(O, 6*(T, F)).

Compared with Theorem B, this theorem requires slightly less on F and
slightly more on J. Examples B are covered by the present theorem also.

Note that Theorem C remains true if T(F,) is replaced by T, = T,; +
Ty(F,), where

Tu=n"' Z‘l<'i')xn(~

=1 \N

Show (Problem 8.P.17) that this assertion follows from
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Lemma F. Under Assumption A*,

K(E) - x(5) - 2()

Prove Lemma F as an exercise.

max
15isn

= o(n"1!).

8.2.5 Berry-Esséen Rates

For L-estimates in the case of zero weight given to extreme order statistics,
Rosenkrantz and O'Reilly (1972) derived the Berry-Esséen rate O(n~ /%),
However, as we saw in Theorem 2.3.3C, for sample quantiles the rate O(n~ 1/?)
applies. Thus it is not surprising that the rate O(n~'/*) can be improved to
O(n~'/%). We shall give three such results. Theorem A, due to Bjerve (1977), is
obtained by a refinement of the approach of CGJ (1967) discussed in 8.2.1. The
result permits quite general weights on the observations between the ath and
pth quantiles, where 0 < a < f < 1, but requires zero weights on the remaining
observations. Thus the distribution F need not satisfy any moment condition.
However, strong smoothness is required. Theorem B, due to Helmers
(1977a, b), allows weights to be put on all the observations, under sufficient
smoothness of the weight function and under moment restrictions on F.
However, F need not be continuous. Helmers’ methods, as well as Bjerve’s,
incorporate Fourier techniques. Theorem C, due to Boos and Serfling (1979),
applies the method developed in 6.4.3 and thus implicitly uses the Berry-
Esséen theorem for U-statistics (Theorem 5.5.1B) due to Callaert and Janssen
(1978). Thus Fourier techniques are bypassed, being subsumed into the U-
statistic result. Theorem C is close to Theorem B in character. It should be
noted that a major influence underlying all of these developments was
provided by ideas in Bickel (1974).
Bjerve treats L-estimates in the form

T, =11 cuh(Xn)

i=1

and utilizes the function f = ho F~! o G and the notation u, and o, defined
in 8.2.1. He confines attention to the case that

¢u=0 for i<an or i> fn, where O <a<f <1,

and introduces constants a and b satisfying 0 < a < —log(l — &) and
—log(l - B) < b < oo, His theorem imposes further conditions on the
cu’s as well as severe regularity conditions on A. Namely, Bjerve proves
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Theorem A. Let H satisfy a first order Lipschitz condition on [a, b] and
assume for some constants ¢ > 0 and d < oo that

(i) o2>calln,

and
() n™ 'Y loyl <d,alln.
Then
n'*(T, — 1,) -1/2
*) st:p P(———&T_ < t) - ‘D(t)l = O~ Y%).

PROOF (Sketch). The representation T, = p, + @, + R, of 8.2.1is
refined by writing R, = M, + A,, where

My= 17 3 2 e OV ~ 3°

1=1
and
A, = n~! icnl(vnl - 5-1)36-1("..0’
=1
with
{Glll(v) - l Hﬂ("-, ‘)}
o=y 2 "
ani(v) - (v — an) ' v # vllh

= 0, V= vlll'

It can be shown that

P(1A,| > n~Y%) = O(n™ /%)

and, by a characteristic function approach, that

P(”U’(Q;"' M,.) < t) - (b(t)l = 0(”-112).

sup
4
(See Bjerve (1977) for details.) The result then follows by Lemma 6.4.3. W
For the special case

T,=n"'YJ <;—-_{_—i)h(x ) + Jg:lajh(x )

im}
considered also by CGJ (1967), Theorem A yields (*) with u, and g, replaced

by the constants p and o defined at the end of 8.2.1; that is, with H = ho F~?,
we have
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Corollary. Let J and H" satisfy a first order Lipschitz condition on an open
interval containing [, B), 0 < & < B < 1, and let J vanish outside [a, B].
Let py, ... Pm€[o, B]. Then (*) holds with p, and o, replaced by | and o.

We next give Helmers’ result, which pertains to L-estimates in the form

T,=n" ZJ( i )x,,,.

{=1 n+1

Theorem B. Suppose that

() EglXP < o0;
(ii) J is bounded and continuous on (0, 1);
(iiia) Y exists except possibly at finitely many points,
(iiib) Y is Lipschitz of order >4 on the open intervals where it exists;
(iv) F~'is Lipschitz of order >4 on neighborhoods of the points where J'
does not exist;
(v) 0 < o?(J,F) = [ JF)I(F(y))[F(min(x, y))
~ F(x)F(y)]dx dy < co.
Then
= O(n~1?),

I N

This theorem is proved in Helmers (1977a) under the additional restriction
f1J'|dF~! < o, which is eliminated in Helmers (1977b).

We now establish a closely parallel result for L-estimates of the form T(F,)
based on the functional T(F) = [§ F~'(u)J(u)du.

Theorem C. Assume conditions (i), (ii) and (v) of Theorem B. Replace (iii) and
(iv) by

(iii") Y exists and is Lipschitz of order 6 > 4 on (0, 1).

Then

= O(n~'?),

(“‘) sup
1

st)—lb(t)

P n'/3(T(F,) — T(F))
o(J, F)

Remark A. Compared to Theorem B, Theorem C requires existence of J' at
all points but permits a lower order Lipschitz condition. Also, from the proof
it will be evident that under a higher order moment assumption E| X, |' < o0
for integer v > 3, the Lipschitz order may be relaxed to 6 > 1/v. B
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The proof of Theorem C will require the following lemmas, the second of
which is a parallel of Lemma 8.2.4D. Here |||, = [| h*(x)dx]"/2.

Lemma A. Let the random variable X have distribution F and satisfy E| X |*
< o0, where k is a positive integer. Let g be a bounded function. Then

() E{f[IX <y) - F(»]g@y)dy} =0

-and
(i) E{[fIKX <y) - F»)Ig®)ldy]*} < co.

PROOF. Since E|X| < oo, we have (why?) y[F(—y) + 1 — F(»)] =0
as y — oo. Thus y|I(X < y) — F(y)| = Oas y — £ oo and hence, by integra-
tion by parts,

J’mx <) - FO)ldy < | X| + E|X].

Thus (ii) readily follows. Also, by Fubini’s theorem, this justifies an inter-
change of E{-} and [in (i). W

Lemma B. Let Ex|X|* < o0, where k is a positive integer. Then
E{||F, - F|#5} = O(n™").
PROOF. Put Y(1)=IKX,<t)— F(t),1 <i<n. Then
(@) E(IF, - FIf} =n"*% 3 .. ¥ ¥ E{H Y..(c)Y,.mdz}.
=l =1 k=1 ju=1 -

By the use of Lemma A and Fubini’s Theorem (check), we have

k ) k
®) E{n Y..(:)Y,.(:)dr} = f ” f E{n Y..(r.)v,.(:.)}d:, edt
fm1 I=1

Check that we have E{Y, (t,)Y,,(t;) -+ Y, (t) Y, (t)} = O except possibly in
the case that each index in the list iy, j,, . . . , ix,jx appears at least twice. In this
case the number of distinct elements in the set {i;, j,,..., i, jx} is < k. It
follows that the number of ways to choose i,,jy,..., i, jx such that the
expectation in (b) is nonzero is O(n*). Thus the number of nonzero terms in the
summation in (a) is O(n*). W

PROOF OF THEOREM C. We apply Theorem 6.4.3. Thus we express
T(F,) — T(F)as V;, + R,,, where

Vip=d,T(F;F, — F) + 4d, T(F; F, — F)

n"f; f;h(F; X, X).

(=1 j=1
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By Problem 8.P.5,

d,T(F;F,— F)= — J':n [F,(t) — F(t))J o F(t)dt
and )
d, T(F;F,— F)= ~ J'-m [F.(t) — F(t)]?J’ « F(t)dt.
Thus (check) the desired h(F; x, y) =;[a(x) + a(y) + B(x, y)], where
o(x) = — f [(x £ t) — F(t))J o F(t)dt

and )

B(x,y) = — f :o[l(x < )~ FOIUQ < ©) - FOW' o F@)t.
Therefore (check), R, is given by

- f " (Ko Fyt) = Ko F(t) = J o FOLIFAt) ~ F®)]

— 4o FQ)[F,(t) = F()]*}dt,
where K(u) = {4 J(v)dv. By the Lip condition on J’, we obtain

(1)  [|Rwnl<iC len(t) — F(©)***dt < 4C||F, = F||%|F, — F|%,.
Let A > 0 be given. By (1),

2
() P(IRz,| > An™Y) < P(nllF.. — FILIF, — FIf, > —g)

24
< P(n‘/°||F,, ~ FI2, > F)

+ P(n¥|F, — F||}, > 1).
For 6 > 4, the first right-hand term is (check) O(n~'/2) by an application of
Theorem 2.1.3A. The second term is O(n~ */2) by Lemma B above. Therefore,
P(|R3,| > An™") = O(n™ /%),

as required in Theorem 6.4.3.
The required properties of h(F; x, y) are obtained by use of Lemma A
above (check). W
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Remark B (Problem 8.P.21). Under the same conditions on F and J, (***)
holds also with T(F,) replaced by

ro=

(Hint: Show that |T(F,) — T(F)| < Mn~? ; | X;| for a constant M. Thus
showthat P() T(F,) — T(F)] > 2ME|X,|n" ') = O(n~!), using Chebyshev's
inequality.) W

8.P PROBLEMS

Section 8.1

1. Complete details for Example 8.1.1A (Gini's mean difference).
2. For the functional T(F) = F~'(p), show that the Giteaux derivative
of T at F in the direction of G is

o p—G(Fl(p)
4WTF; G = F) =315

in the case that F has a positive density f at F~!(p). (Hint: following Huber
(1977), put F, = F + AG — F) and differentiate implicitly with respect to A
in the equation F,(F; '(p)) = p.)

3. Prove Lemma 8.1.1A. (Hint: Let D be the discontinuity set of F and
put A =[0,1] — D. Deal with [, F~'(t)ddK,(t) by a general change of
variables lemma (e.g., Dunford and Schwartz (1963), p. 182).)

4. Prove Lemma 8.1.1B. (Hint: Apply Lemma 8.1.1A and integrate by
parts.)

5. For the functional Ty(F) = [} F~'(¢)J(t)dt, put F, = F + (G — F)
and show

d*T(F,)
i\

= = [ 166 - Foops® - (F o

(Hint: Apply Lemma 8.1.1B.)

6. (Continuation). Show that the influence curve of T,(-) isdifferentiable,
with derivative J(F(x)).

7. (Complement to Problem 5). For the functional T(F) = F~!(p), find
d; T(F; G — F) for arbitrary G.
81 gC) Derive the influence curve of the a-Winsorized mean (Example
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Section 8.2
9. Prove Lemma 8.2.1B.
10. (a) Let {a,} be arbitrary constants and put 62 = n~' Y7_, a2, Let
{Z;} be IID negative exponential variates. Put X, =2, - 1,i=1,2,...,
and W, = n~' Y., a0, X,. Show that W, is AN(0, n~*¢?) if and only if

(.) max |anl| = o(nllzon)-
1gisn

(Hint: use characteristic functions.)

(b) Now let {X;} be IID F, where F has mean 0 and finite variance. Show
that (*) suffices for W, to be AN(O, n~'02). (Hint: apply Theorem 1.9.3.)
11. Show that Example 8.2.3A1 is a special case of Example 8.2.3A.

12. Complete the details of proof of Lemma 8.2.4A.
13. Details for Example 8.2.4A(ii).

14. Verify Lemma 8.2.4B.

15. Minor details for proof of Lemma 8.2.4D.

16. Prove Lemma 8.2.4E.

17. Prove the assertion preceding Lemma 8.2.4F.
18. Prove Lemma 8.2.4F.

19. Details for proof of Lemmas 8.2.5A, B.

20. Details for proof of Theorem 8.2.5C.

21. Verify Remark 8.2.5B.



CHAPTER 9

R-Estimates

Consider a sample of independent observations Xy, ..., Xy having respective
distribution functions F, ..., Fy not necessarily identical. For example, the
X's may correspond to a combined sample formed from samples from several
different populations. It is often desired to base inference purely on the ranks
R,,...,Ryof X,,..., Xy. This may be due to invariance considerations, or
to gain the mathematical simplicity of having a finite sample space, or
because rank procedures are convenient to apply. Section 9.1 provides a basic
formulation and some examples. We shall confine attention primarily to
simple linear rank statistics and present in Section 9.2 several methodologies
for treating asymptotic normality. Some complements are provided in
Section 9.3, including, in particular, the connections between R-estimates and
the M- and L-estimates of Chapters 7 and 8.

9.1 BASIC FORMULATION AND EXAMPLES

A motivating example is provided in 9.1.1, and the class of linear rank statistics
is examined in 9.1.2. Our treatment in this chapter emphasizes test statistics.
However, in 9.1.3 the role of rank-type statistics in estimation is noted, and
here the connection with the “statistical function” approach of Chapter 6 is
seen.

9.1.1 A Motivating Example: Testing Homogeneity of Two Samples

Consider mutually independent observations X, ..., Xy, where X, ..., X,
have continuous distribution F and X,, ., ..., Xy have continuous distribu-
tion function G. The problem is to test the hypothesis H,: F = G.

An instructive treatment of the problem is provided by Fraser (1957),§5.3,
to which the reader is referred for details. By invariance considerations, the

292
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data vector X = (X,,..., Xy) is reduced to the vector of ranks R =
(Ry, ..., Ry). By sufficiency considerations, a further reduction is made, to the
vector (Rpy, - ..+ Rmm) of ordered values of the ranks R,, ..., R, of the first
sample. Hence we consider basing a test of Hy upon the statistic

T(X) = R(m) = (Rpm1y .-+ Roum).

The “best” test statistic based on T(X) depends on the particular class of
alternatives to H, against which protection is most desired. We shall consider
three cases.

(i) H,:G = F2 For this alternative, the most powerful rank test is found
to have test function of the form

! m
P(reject Ho[Rp) =1y if Y log(Rp +i—1)Z c.
0 i=1

Accordingly, an appropriate test statistic is
Sl = ZIOg(le +i- l).
i=1

(ii) Hy;:G=qF + pF}(0 < p <1, q=1— p). For this alternative, the
locally most powerful rank test (for p in a neighborhood of the “null” value 0)
is based on the test statistic

Sz = Z R""'.
i=1

(i) H,: F = N(u,, 6%),G = N(u,, 6%), u, < p,.For this alternative, the
locally most powerful rank test (for u, — u, in a neighborhood of 0) is the
“c,~test,” based on the statistic

Sy = LEZnr)

where (Zy;, ..., Zyy) denotes the order statistic for a random sample of size
N from N(0, 1).

Observe that, even having reduced the data to T(X) = R, a variety of
statistics based on T arise for consideration. The class of useful rank statistics
is clearly very rich. '

Note that in each of the three preceding cases, the relevant statistic is of the
form

S =Y an(i, Ry)

i=1

for some choice of constants ay(i, /), 1 < i,j < N.
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9.1.2 Linear Rank Statistics

In general, any statistic T which is a function of R = (R,, ..., Ry)iscalled a
rank statistic. An important class of rank statistics consists of the linear type,
given by the form

N
T(R) = } a(i, Ry,

i=1

where {a(i, /)} isan arbitrary N x N matrix. Any choice of the set of constants
defines such a statistic. As will be discussed in 9.2.5, an arbitrary rank statistic
may often be suitably approximated by its projection into the family of linear
rank statistics.

A useful subclass of the linear rank statistics consists of the simple type,
given by the form

N
S(R) = ‘ZlclaN(Rl)s

where ¢,, ..., cy are arbitrary “regression” constants and ay(1), ..., ay(N)
are “scores.” Typically, the scores are generated by a function h(t),0 <t < 1,
either by

(i) an(i) = h(i/(N +1)),1 <i<N,
or by
(ii) ay = Eh(UN‘), 1 < i < N,

where Uy, denotes the ith order statistic in a random sample of size N from
the uniform [0, 1] distribution. The scores given by (ii) occur in statistics
yielding locally most powerful tests. Those given by (i) have the appeal of
simplicity.

The special case of c; = 1 for ] <i<mand¢;=0form+1<i<Nis
called a two-sample simple linear rank statistic. Note that the statistics S, and
S, mentioned in 9.1.1 are of this type, with scores generated by

h(t) =1t, 0<tg],
and
h(t) = ® (o), 0t

respectively. The statistic S, of 9.1.1 is of linear form, but not of the simple
type.
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9.1.3 R-Estimates

Consider a two-sample simple linear rank statistic for shift. That is, the null
hypothesis is Hy: G(x) = F(x — A), and the test statistic is of the form
S =T, ay(R). A related estimator Ay of the shift parameter A may be
developed as follows. Find the choice of d such that the statistic S, when
recomputed using the values X,,,, — d,..., Xy —dinplaceof X,,,,, ...,
Xy, comes as close as possible to its null hypothesis expected value, which is
mN =1 Y'X., a(i). This value Ay makes the sample X,,,, — Ay, ..., Xy — Ay
appear to be distributed as a sample from the distribution F and thus serves as
anatural estimator of A.

By a similar device, the location parameter of a single sample may be
estimated. Let X, ..., X,, beasamplefrom a distribution F symmetric about
a location parameter 6. Construct (from the same observations) a “second
sample”

2d-X,,...,2d- X,

where d is chosen arbitrarily. Now find the value d = 8, such that the
statistic S computed from the two samples comes as close as possible to its
null value. For example, if S denotes the two-sample Wilcoxon statistic,
based on the scores a(i) = i, then , turns out to be the Hodges-Lehmann
estimate, median {¥(X, + X)), 1 Si<j < m).

Let the scores a(i) be generated via

im
a(i) = f Het.
G- 1)jm
Then the location estimator just discussed is given by T(F,), where F,,
denotes the usual sample distribution function and T(-) is the functional
defined by the implicit equation

f Lt + 1 — FQT(F) — F-Y ()]}t = O,

See Huber (1977) for further details. Thus the methods of Chapter 6 may be
applied.

9.2 ASYMPTOTIC NORMALITY OF SIMPLE LINEAR RANK
STATISTICS

Several approaches to the problem of asymptotic normality will be described,
broadly in 9.2.1 and more specifically in 9.2.2-4. In 9.2.5 we examine in
general form the important projection method introduced in 5.3.1 in dealing
with U-statistics and further noted in 8.2.2 in dealing with L-estimates. In
9.2.6 we present Berry-Esséen rates, making use of the projection method.
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9.2.1 Preliminary Discussion
The distribution theory of statistics of the form

N
§= chaN(Rl)

i=1
is determined by the following three entities:

(a) the regression constants ¢y, ..., Cy;
(b) the scores generating function h(:);
(c) the distribution functions Fy, ..., Fy.

The conclusion of asymptotic normality of S, either with “natural” param-
eters (E{S}, Var{S}), or with other parameters (uy, 63) preferred for their
simplicity, requires suitable regularity conditions to be imposed on these
entities. Of course, less regularity in one entity may be balanced by strong
regularity in another.

The most regular ¢,,...,cy are those generated by a linear function:
c;=a+b;, 1 <j < N.Atypical relaxation of this degree of regularity is the
condition that

o= maxy<ign (C‘ - 6)2
YTUNTN - o

be bounded. The mildest condition yet used is that vy = o(N), N - co.

The severest restrictionon Fy, .. ., Fycorrespondsto the “null” hypothesis
Fy = .+ = Fy.Other conditionson Fy, ..., Fy correspond to alternatives of
the “local” type (i.e., converging to the null hypothesis in some sense as
N — o0) or to fixed alternatives of special structure (as of the two-sample
type).

The regularity conditions concerning the scores are expressed in terms of
smoothness and boundedness of the scores generating function h. A linear h is
ideal.

The asymptotic distribution theory for simple linear rank statistics falls
roughly into three lines of development, each placing emphasis in a different
way on the three entities involved. These approaches are described in 9.2.2-4.
Further background discussion is given in Hdjek (1968),

9.2.2 Continuation: The Wald and Wolfowitz Approach

This line of development assumes the strongest regularity on F,, ..., Fy,
namely that F; = ... = Fy, and directs attention toward relaxation of
restrictions on cy, ..., cy and ay(1), ..., ay(N). The series of results began
with a result of Hotelling and Pabst (1936), discussed in the example following
the theorem below. Their work was generalized by Wald and Wolfowitz
(1943), (1944) in the following theorem.
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Theorem (Wald and Wolfowitz). Suppose that F, =..- = Fy, each
N =1, 2,.... Suppose that the quantities

Yie1 (on — €N Yie1 (an — 3N)
Do on - on)’7* [§:1=1 (ay, — an)*]72

are (N -¥r=2) N — o, for eachr = 3,4, .... Then

N
Sn= Y cnang, is AN(uy,o3)

i=1
and
E(Sn) = un, Var(Sy) = of,
where py = Néndy and of = (N — 1)ok o2, with o, =(N - 1)"' Y
(e —N)? and of, = (N — D71 Y (ay, — 3N
PROOF _ (Sketch). The moments of (Sy — uy)/o, are shown to con-

verge to those of N(0, 1). Then the Fréchet-Shohat Theorem (1.5.1B) is
applied. For details, see Fraser (1957), Chapter 6, or Wilks (1962), §9.5. W

Example. Testing independence by the rank correlation coefficient. A test may
be based on

N
SN = Z l.R‘,

i=1

which under the null hypothesis is found (check) by the preceding theorem
to be AN(uy, 02), with

N(N + 1) N3
W= 7

and
N}(N? - 1)? _N_’

aan =1 "1 ™®

of =

A series of extensions of the preceding theorem culminated with necessary
and sufficient conditions being provided by Hajek (1961). For detailed
bibliographic discussion and further results, see Hajek and Sidak (1967),
pp. 152-168 and 192-198.

9.2.3 Continuation: The Chernoff and Savage Approach

The line of development, initiated by Chernoff and Savage (1958), concerns
the two-sample problem and allows broad assumptions regarding F, ..., Fy
but imposes stringent conditions on the regression constants and the scores
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generating function. The basic device introduced by Chernoff and Savage is
the representation of a simple linear rank statistic as a function of the sample
distribution function, in order to utilize theory for the latter. The representa-
tion is as follows.

Let {X,,..., X} and {X,+1,..., Xy} be independent random samples
from (not necessarily continuous) distribution functions F and G, respectively.
Put 4y = m/N and n = N — m. Then the distribution function for the
combined sample is

H(t) = A, F(t) + (1 — A))G(0), -00 < t < 00.
Likewise, if F* and G* denote the sample distribution functions of the sub-
samples
H\(t) = AZF40) + (1 — 4)GX(2), - <t <.

The statistic of interest is
Sn = ‘ilaN(R,).

Define

JN(%) =ayi), I1<igN.
Then

Sun = [ JMHAOMFH),
since (1; )§ hasrank R,, then Hy(X) = R/N andthus Jy(Hx(X)) = Jy(R,/N)
= ay(R).

The following regularity conditions are assumed for the scores ay(i), with
respect to some nonconstant function h:

) limay(1 + [uN])=hu), O<u<l;
N-w
15 R ]z, :
@ T .E'N [a,,(x,) h( N) 0.
3) Ji"l —IA; ay(N) = 0;

k
'd ) < K[(1 — ] % V2*%k =0,1,..) forsome 6>0,K < 0.
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Theorem (Chernoff and Savage). Let m, n — o0 such that Ay is bounded
away from 0 and 1. Assume conditions (1)-(4). Then

Smn is AN(u'mm c:ln)’

where
bon =m0 [ BCHOF(R)
and
oln = 1 {(1 = M)Var[B(X,)] + Ay Var[B*(Xw)1),
with
B = | W(HENG()
and ”

B*x) = | W(HOF(),

provided that ok, > 0. Further, the asymptotic normality holds uniformly in
(F, G) satisfying

inf Var[B(X,)] > 0, inf Var[B*(Xy)] > 0.

(F.G) (F.G)

For proof, see Chernoffand Savage (1958) or, for a somewhat more straight-
forward development utilizing stochastic process methods, see Pyke and
Shorack (1968). For related results and extensions, see Hdjek and Siddk
(1967), pp. 233-237, Hajek (1968), Hoeffding (1973), and Lai (1975). In
Hajek (1968) the method of projection is used, and a much broader class of
regression constants is considered. (In 9.2.6 we follow up H4ajek’s treatment
with corresponding Berry-Esséen rates.)

9.2.4 Continuation: The LeCam and Hdjek Approach

This line of development was originated independently by Le Cam (1960) and
Hdjek (1962). As regards F,, ..., Fy, this approach is intermediate between
the two previously considered ones. It is assumed that the set of distributions
Fy, ..., Fyis “local” to the (composite) null hypothesis F;, = -.- = Fyina
certain special sense called contiguous. However, the ¢’s are allowed to satisfy
merely the weakest restrictions on

max; ;< (¢; — €)?
l/N Zf’-l (ci — é)2 ’

and the function h is allowed to be merely square integrable. For introductory
discussion, see Hajek and Siddk (1967), pp. 201-210.
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9.2.5 The Method of Projection

Here we introduce in general form the technique used in 5.3.1 with U-statistics
and in 8.2.2 with L-estimates. Although the method goes back to Hoeflding
(1948), its recent popularization is due to Hajek (1968), who gives the follow-
ing result (Problem 9.P.2).

Lemma (Hdjek). Let Z,,...,Z, be indpendent random variables and
S =S(Z,, ..., Z,)anystatistic satisfying E(S?) < o0. Thenthe randomvariable

§= TEGIZ) - (0~ DES)

=1
satisfies

E(S) = E(S)

and
E@S ~ S)? = Var(S) — Var(S).

The random variable § is called the projection of S on Z,,...,Z, Notethat
it is conveniently a sum of independent random variables. In cases that
E(S ~ 8)? - Oat asuitablerate asn — oo, the asymptotic normality of S may
be established by applying classical theory to §. For example, Héjek (1968)
uses this approach in treating simple linear rank statistics.

Itis also possible to apply the technique to project d statistic onto dependent
random variables. For example, Hdjek and Siddk (1967), p. 59, associate
with an arbitrary rank statistic T a linear rank statistic

N-11%
T= N 2.4, R) ~ (n — 2)E(T),

i=1
where

ai,)=ETI|R,=j, 1<ij<sN.

This random variable is shown to be the projection of T upon the family of
linear rank statistics. In this fashion, Hajek and Sidak derive properties of
the rank correlation measure known as Kendall’s tau,

l N
T = ———— ) sign(i — j)sign(R; — R)),
which is a nonlinear rank statistic, by considering the linear rank statistic

8 “f, N+1 N+1
o (-5 (k-1

and showing that Var(f)/Var(r) - 1. (Note that, up to a multiplication
constant, £ is the rank correlation coefficient known as Spearman’s rho.)
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9.2.6 Berry-Esséen Rates for Simple Linear Rank Statistics

The rate of convergence O(N ~1/2*%) for any & > 0 is established for two
theorems of Hdjek (1968) on asymptotic normality of simple linear rank
statistics. These pertain to smooth and bounded scores, arbitrary regression
constants, and broad conditions on the distributions of individual observa-
tions. The results parallel those of Bergstrém and Puri (1977). Whereas
Bergstrédm and Puri provide explicit constants of proportionality in the O(-)
terms, the present development is in closer touch with Héjek (1968), provides
some alternative arguments of proof, and provides explicit application to
relax the conditions of a theorem of Juret¢kovd and Puri (1975) giving the
above rate for the case of location-shift alternatives.

Generalizing the line of development of Chernoff and Savage (see 9.2.3),
Hijek (1968) established the asymptotic normality of simple linear rank
statistics under broad conditions. Corresponding to his asymptotic normality
theorems for the case of smooth and bounded scores, rates of convergence are
obtained in Theorems B and C below. The method of proof consists in
approximating the simple linear rank statistic by a sum of independent random
variables and establishing, for arbitrary v, a suitable bound on the vth moment
of the error of approximation (Theorem A).

Let Xy;, ..., Xyy be independent random variables with ranks Ry,
..., Ryy. The simple linear rank statistic to be considered is

N
Sy = ‘Z cyvian(Ry),
=1

where cyy, . . ., Cyn are arbitrary * regression constants™ and ay(1), ..., ay(N)
are “scores.” Throughout, the following condition will be assumed.

Condition A. (i) The scores are generated by a function ¢(t), 0 <t < 1,
in either of the following ways:

(A1) ax(i) = ¢(ﬁ) 1<i<N,
(A2) ay(i) = E¢(UY), 1<i<N,

where U denotes the ith order statistic in a sample of size N from the uniform
distribution on (0, 1).

(ii) ¢ has a bounded second derivative.

(iii) The regression constants satisfy

N
(A3) Zcm =0,

i=1 i=1

(A% max ¢, =ON"'logN), N-o©. BN

1<isN

Note that (A3) may be assumed without loss of generality.

2 _
=1

™=
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The X,,'s are assumed to have continuous distribution functions Fy;,
1 <i<N. Put Hyx) = N1 Fydx). The denvatnves of ¢ will be
denoted by ¢', ¢", etc. Also, put uy = {3 d(e)dt and 63 = {3 [d(t) — u,)* dt.
As usual, denote by @ the standard normal cdf. Hereafter the suffix N will be
omitted from Xy;, Ryi, ¢nis Sy Fais Hy and other notation.

Thesstatistic S will beapproximated by the samesum of independent random
variables introduced by Hajek (1968), namely

N
T= ZI:(X l)’
i=1
where
N
o =M™ 3 (e~ e j [u(y — %) — FO)IHOMFL),
with

u(x) = 1, x=>0; u(x) =0, x <0.

Theorem A, Assume Condition A. Then, for every integer r, there exists a
constant M = M(¢, r) such that
ES-ES-T)* <MN™, glIN.

The case r = 1 was proved by Hdjek (1968). The extension to higher order is
needed for the present purposes.

Theorem B. Assume Condition A. (i) If Var S> B > 0, N — oo, then
Jor every 8 > 0.

sup|P(S — ES < x(Var §)¥/?) — ®(x)| = O(N~Y2+%) N - 0.

(ii) The assertion remains true with Var S replaced by Var T.
(ili) Both assertions remain true with ES replaced by

h= Zc, [otenarco.

Compare Theorem 2.1 of Hajek (1968) and Theorem 1.2 of Bergstrém and
Puri (1977).
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Theorem C. Assume Condition A and that
sup|Fy(x) — Fy(x)| = O(N~"2]logN), N - co.
ilx

Then for every & > 0
sup|P(S — ES < xa,) — O(x)| = O(N"1/2*%) N o,

The assertion remains true with 5 replaced by either Var S or Var T, and/or ES
replaced by .

Compare Theorem 2.2 of Hajek (1968). As a corollary of Theorem C, the case
of local location-shift alternatives will be treated. The following condition will
be assumed.

Condition B. (i) The cdf’s F, are generated by a cdf F as follows: F(x) =
F(x —Ad),1 <i < N,withA #0,

(ii) F has a density f with bounded derivative f".

(iii) The shift coefficients satisfy

N N
(B1) Zdl = 0, de =1,
i=1 i=1
(B2) maxd? =ON"'logN), N-o© R

1<i<N
Note that (B1) may be assumed without loss of generality.

Corollary. Assume Conditions A and B and that

N
© Y.ctd? =O(N"'logN), N- .
i=y

Then for every & > 0
sup|P(S — fi < x6,) — O(x)| = O(N~1/2*) N o .

where

N
= A(iZICId.) f¢’(F(X))f’(X)dX-

(The corresponding result of Jureckovd and Puri (1975) requires ¢ to have
four bounded derivatives and requires further conditions on the ¢,’s and d's.
On the other hand, their result for the case of all F,'s identical requires only a
single bounded derivative for ¢.)
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In proving these results, the main development will be carried out for the
case of scores given by (A1). In Lemma G it will be shown that the case of
scores given by (A2) may be reduced to this case.

Assuming ¢” bounded, put K; = supg<,<; |¢'(t)} and K; = supg<,<;
|¢"(t)|. By Taylor expansion the statistic S may be written as

S=U+V+W,
where, withp, = R/(N +1),1 i< N,

N
U= 'Zi ¢ (E(p X)),

N
V= 'Z‘ i ¢d'(E(ei| X))o — E(pi| X))

and
N
W = 'ZlCaKzfa[m - E(Pilxi)]z,

the random variables ¢, satisfying |£;] < 1,1 < i < N. It will first be shown
that W may be neglected. To see this, note that, with u(-) as above,

N

Ri=YuX,—X), 1<i<N.

i=1
Thus .
E(pi| X)) = JZ‘F,(x,) + 1} /(N +1)
J*i
and
1 N
)] P — E(pl X)) = m,;,[“(x' - X)) - F{X)].

j#i

Observe that, given X, the summands in (1) are conditionally independent
random variables centered at means. Hence the following classical result, due
to Marcinkiewicz and Zygmund (1937), is applicable. (Note that it contains
Lemma 2.2.2B, which we have used several times in previous chapters.)

LemmaA. LetY, Y,,...beindependent random variables withmeanO0. Let v
be an even integer. Then

N
E|YY,

i=1

v n
< Avn(lIZ)v- lz EIY'P’
i=1

where A, is a universal constant depending only on v.
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Lemma B. Assume (A3). For each positive integer r,
Q) EW?¥ < K¥A,N"%,  4lIN.

PROOF. Write W in the form W = K, Y\, ¢, W,. Apply the Cauchy-
Schwarz inequality, (A3), Minkowski’s inequality, and Lemma A to obtain

EW} < E[p; — E(pi| X))]* < A, N™7".
Thus (2) follows. W

Thus S may be replaced by Z = U + V, in the sense that E(S ~ Z)¥ =
O(N~"), N — o0, each r. It will next be shown that, in turn, Z may be replaced
in the same sense by a sum of independent random variables, namely by its
projection

N
= ,Z’,E(ZIX‘) — (N - 1)E(2).

Clearly,2=0+Pand 0 =U.ThusZ-2 =V - V.

Lemma C. The projection of V is

1 N N
i Z ;C LX),

i=1]

where
@ 1w = [[a - % - ROWERIX, = YMF),
PROOF. Put

Y, = ¢'(E(pil X)) [w(X; — X)) — FLX)].

Show that the projection of Y, for i # j, is ¥, = I,(X ). Since, by (1) and the
definition of V,

1

lle

6] V=

N
NTTL 50T
Y

the projection ¥ is thus given by (3). W

LemmaD. Assume (A3). For each positive integer r, there exists a constant B,
such that

(6) E(V- WV <K¥B,N~", allN.
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PROOF. By (3)and (5),

N
0 BV -V =N+ D> o T ayeey 3 o
fy=1 fap==1 j::ll‘

N
Z 6!].11. vennlap. Jard

et
where
2r
® 5'1.11.-~-er = Ehl:ll[ylklk - lhdk(xlk)]'

Consider a typical term of the form (8). Argue that the expectation in (8) is
possibly nonzero only if each factor has both indices repeated in other factors.
Among such cases, consider now only those terms corresponding to a given
pattern of the possible identities i, = iy, i, = jy, jo=Jp for 1 <a <2r,
1 < b < 2r. For example, for r = 3, one such specific pattern is: i, = i,,
iy # iy, dg = dy, U5 =y, Ig # Uy, ls # i3, J2 = j1s J3 = juis Ja # )1 Js = Jas
j6 = jarJ1 = i3, je # i;. In general, there are at most 2% such patterns. For
such a pattern, let g denote the number of distinct values among iy, ..., i,
and p the number of distinct values among jy, ..., j,,. Let p, denote the
number of distinct values among j,, ..., j,, not appearing among iy, ...,4,
and put p, = p — p,. Within the given constraints, and after selection of
i1, ..., i3, the number of choices for jy, ..., j; clearly is of order O(N"*).
Now clearly 2p; < 2r — p,,ie, p; S r — 4p,. Now let g, denote the number
of iy, ..., iy, used only once among iy, ..., i,. Then obviously ¢, < p,. It is
thus seen that the contribution to (7) from summation over jy, ..., ja, is of
order at most O(N"~1/241), since the quantity in (8) is of magnitude <K3". It
follows that

N
E(V - P) < (N + )" *KFTON"" W] 3 - i lefy -« iyl

h=1  lg=1

where ay,...,a, are integers satisfying @, 21, a; + -+ + a, = 2r, and
exactly ¢, of the a's are equal to 1. Now, fora > 2,

N N (1/2)a
Zlc(I“S(ZC?) =1,
i=1 i=1
by (A3). Further,
N 1 N 1/2
©) Yl < N(ﬁ Zc.’) = N2,
{

i=1 =1
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Thus

N

i Z cfxl . “a' < N(llz)m

and we obtain (6). W
Next it is shown that 2 may be replaced by 2 =  + 7 where

- N
= ’;cl (H(X )

and

. 1 N N
=NZ ZC jl(Xl)s

i= l
with

L) = [[uy = 0 ~ FONSHGMF ).

Lemma E. Assume (A3). Then|2 — Z| < (K, + 3K,)N~12,
PROOF. Check that

1 — F(X) — H(X)
N+1

E(p)| X)) = HX)) +

And hence
[S(E(pi| X)) — HH(X))| < KN~
Therefore, by (9), |U — U| < KN~ "2 Now

1 1}
P-V= Z jZ CJ[IJI(X D= lx)] - < V— = Zc,l,,(X D
i=1 ='l
But |P| <K, Y lal < K,N'2, e, lIVI < KN7'2 Snmllarly,
IN“' Y cili(X)| < KyN~Y2, Finally, |1,,(X)-1,,(x,)|5 K,N-! so
that
N

’Z Z _cj[ljl(Xl)— LX)]|<K,N'2 m

Now we connect with the random variable 7" of Theorem A.

Lemma F. We have Z — u =T and there exists a constant Ky = K(9)
such that |ES — p| < K,N~1/2,
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PROOF. The second assertion is shown by Hajek (1968), p. 340. To
obtain the first, check that

N
Z-p~-T= IZICz{d’(H(Xz)) — E¢(H(X)))

+ [[utx = X0 = F1$HEMHG)
Now, by integration by parts, for any distribution function G we have
J- ¢'(H(x))G(x)dH(x) = — f ¢(H(x))dG(x) + constant,
where the constant may depend on ¢ and H(-) but not on G(:). Thus the
above sum reducesto 0. Wl
Up to this point, only the scores given by (A1) have been considered. The

next result provides the basis for interchanging with the scores given by (A2).

Lemma G. Denote ) % c,an(R,) by S in the case corresponding to (A1) and
by S’ in the case corresponding to (A2). Assume (A3). Then there exists Kg =
Ks(d) such that

IS — ES — (§' — ES)| < KN~ 12,
PROOF. It is easily found (see Hajek (1968), p. 341) that

i _
¢(—N——-‘i———l_) - E¢(U%’)| < KoN7Y,

where K, does not depend on i or N. Thus, by (9), |5 — §'| < KoN~ "2 and
hence also |ES — ES’'| < Ko N~ "2, Thus the desired assertion follows with

Ks=2K,.
PROOF OF THEOREMA. Consider first the case (A1). By Minkowski’s
inequality,

(10) [E(S — ES — T)*]V* < [ES - 2)1V*> + [E(Z - 2)*]V>
+ [E(Z - Z)Zr]l/Zr + [E(Z —u- T)Zr]l/zr
+ |ES — pul.
By Lemmas B, D, E and F, each term on the right-hand side of (10) may be
bounded by KN~ '/ for a constant K = K(¢, r) depending only on ¢ and r.

Thus follows the assertion of the theorem. In the case of scores given by (A2),
we combine Lemma G with the preceding argument. [l
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PROOF OF THEOREM B. First assertion (i) will be proved. Put
ay = sup|P(S — ES < x(Var §)"?) — ®(x)|,
x

Bn = sup|P(T < x(Var 5)"'?) — ®(x)|,

and
yn = sup|P(T < x(Var T)'?) — d&(x)|.
By Lemma 6.4.3, if
(ll) ﬂN = O(aN)9 N — 00,

for a sequence of constants {ay}, then
(12) oy = O(ay) + P(|S — ES — T|/(Var S)'* > ay), N - .

We shall obtain a condition of form (11) by first considering yy. By the
classical Berry-Esséen theorem (1.9.5),

N
Yw S C(Var T)™*2 Y E[I(X))%,
i=1
where C is a universal constant. Clearly,
N
XIS KyN"PY e —al.
i=1
Now
N 2 N
(ZICJ - Cll) SN X~ Ct)z] = N[1 + Nc}].
j=1 =1

By the elementary inequality (Loéve (1977), p. 157)
Ix + yI" < 0,,|x|" + 6,]yI"

wherem > 0and 6,, = 1 or 2"~ ! accordingasm < 1 orm > 1, we thus have
N 3
(Z ley = cll) < NYRVYL 4+ N3¢, ?)
J=1
and hence

N N
(13) ZXEII‘(X:)P < 2”’K?[N'“2 + Z‘IC:P]-
i= i=

Check (Problem 9.P.8) that
|(Var §)Y/2 — (Var T)*?| < (Var{§ — T}H'?,
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so that by Theorem A we have
(14) [(Var §)'/2 — (Var T)'?| < MgN~ 113,

where the constant M, depends only on ¢, It follows that if Var S is bounded
away from 0, then the same holds for Var T, and conversely. Consequently, by
‘the hypothesis of the theorem, and by (12), (13) and (14), we have

N
v = O(N—IIZ) + 0( Z lC‘la), N = 0.
i=1

Therefore, by (A3) and (A4), yy = O(N~ "2 log N), N = 0. Now it is easily
seen that

(Var §)'/?
By <+ 0( (—W 1]}

By (14) the right-most term is O(N ~!/2). Hence By = O(N~ "2 log N). There-
fore, for any sequence of constants ay satisfying N~"2 log N = O(ay), we
have (11) and thus (12). A further application of Theorem A, with Markov's
inequality, yields for arbitrary r

|IS—ES-~T|
(Var S)'72

Hence (12) becomes

> aN} < ay¥(VarS)""MN™".

Uy = O(an) + 0(0; 2'N-’).
Choosing ay = O(N~"2r* 1)) we obtain
ay = O(N~*Dy N o o0,

Since this holds for arbitrarily large r, the first assertion of Theorem B is
established.
Assertions (ii) and (iii) are obtained easily from the foregoing arguments.

[ |
PROOF OF THEOREM C. It is shown by Hajek (1968), p. 342, that
|(Var T)!'? — a4] < 2V*(K, + K,)sup|F(x) — F{(x)|.
[

The proof is now straightforward using the arguments of the preceding
proof. W

PROOF OF THE COROLLARY. By Taylor expansion,
(15) |Fi(x) = F(x) ~ (—Ad, f(x))| < 4A* d},
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where A is a constant depending only on F. Hence, by (B1) and (B2),
sup|F(x) — Fx)| = O(maxld,l) = O(N~12 |og N),
L,y x i

so that the hypothesis of Theorem C is satisfied. It remains to show that ES
may be replaced by the more convenient parameter . A further application
of (15), with (B1), yields |H(x) — F(x)| < AA2N~!, so that |@¢(H(x)) —
d(F(x))| < K,AA*N"'. Hence, by (9).

l# - ZC: fd’(F(x))dF;(x) < K,AA*N-12,

By integration by parts, along with (A3) and (15),

: |
e je»(F(x»dF.(x) - 2 " jF.(xw (FOOMF(x)

i=1

- - zc. [~ a)swpEexFe

+ "AAz ZC‘ d‘z

i=1

N
=+ nAA? Y ¢ d},
i=1
where || < 1. Now, by (B1), 3, lc;ld} < (3 cf d})"/2. Therefore, by (C) and
the above steps,
|lu—al=0ON""*1ogN), N - oo
Thus u may be replaced by ji in Theorem C. W

9.3 COMPLEMENTS

() Deviation theory for linear rank statistics. Consider a linear rank
statistic T, which is AN(uy, o). In various efficiency applications (as we
will study in Chapter 10), it is of interest to approximate a probability of the
type

Py(xy) = p(uz XN)
ON

for xy — oo0. For application to the computation of Bahadur efficiencies, the
case xy ~ cN'? is treated by Woodworth (1970). For application to the
computation of Bayes risk efficiencies, the case xy ~ c(log N)!/? is treated by
Clickner and Sethuraman (1971) and Clickner (1972).
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(ii) Connection with sampling of finite populations. Note that a two-
sample simple linear rank statistic may be regarded, under the null-hypothesis
F, = ... = Fy,as the mean of a sample of size m drawn without replacement
from the population {ay(1), . . . ,ay(N)}.

(iii) Probability inequalities for two-sample linear rank statistics. In
view of (ii) just discussed, see Serfling (1974).

(iv) Further general reading. See Savage (1969).

(v) Comnections between M-, L-, and R-statistics. See Jaeckel (1971) for
initial discussion of these interconnections. One such relation, as discussed
in Huber (1972, 1977), is as follows. For estimation of the location parameter
0 of a location family based on a distribution F with density /, by an estimate
0 given as a statistical function T(F,), where F, is the sample distribution
function, we have: an M-estimate of T(G) is defined by solving

[vtx - T@MG0) =0
an L-estimate of T(G) is defined by
7(6) = [JOF~ @
an R-estimate of T(G) is defined by solving

I J(G(x) +1 = g(z'r(c) - x)) dG(x) = 0.

It turns out that the M-estimate for Y, = —f'/f, the L-estimate for J(t) =
Vo(F~'())/I5, where Ip = [[f'/f]*dF, and the R-estimate for J(1) =
Vo(F (1)), are all asymptotically equivalent in distribution and, moreover,
asymptotically efficient. For general comparison of M-, L- and R-estimates,
see Bickel and Lehmann (1975).

9.P PROBLEMS

Section 9.2

1. Complete the details for Example 9.2.2.
Prove Lemma 9.2.5 (Projection Lemma).
Complete details for proof of Lemma 9.2.6B.
Details for proof of Lemma 9.2.6C.

Details for proof of Lemma 9.2.6D.

Details for proof of Lemma 9.2.6E.

Details for proof of Lemma 9.2.6F.

NouwswN
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8. Provide the step required in the proof of Theorem 9.2.6B. That is, show
that for any random variables S and T,

[(Var S)2 — (Var T)Y?| < (Var{S — T}H'2.

(Hint: Apply the property |Cov(S, T)| < (Var S)V/}(Var T)"2)

9. Let Ily={xy; ....Xyn}» N=1,2,..., be a sequence of finite
populations such that ITy has mean uy and variance g, Let X w,» denote the
mean of a random sample of size n drawn without replacement from the
population Iy. State a central limit theorem for Xy , as n, N - co. (Hint:
note Section 9.3 (ii).)



CHAPTER 10

Asymptotic
Relative Efficiency

Here we consider a variety of approaches toward assessment of the relative
efficiency of two test procedures in the case of large sample size. The various
methods of comparison differ with respect to the manner in which the Type
I and Type 11 error probabilities vary with increasing sample size, and also
with respect to the manner in which the alternatives under consideration are
required to behave. Section 10.1 provides a general discussion of six con-
tributions, due to Pitman, Chernoff, Bahadur, Hodges and Lehman, Hoeff-
ding, and Rubin and Sethuraman. Detailed examination of their work is
provided in Sections 10.2-7, respectively. The roles of central limit theory,
Berry-Esséen theorems, and general deviation theory will be viewed.

10.1 APPROACHES TOWARD COMPARISON OF TEST PROCEDURES

Let H, denote a null hypothesis to be tested. Typically, we may represent H,
as a specified family # , of distributions for the data. For any test procedure 7,
we shall denote by T, the version based on a sample of size n. The function

(T, F) = Pg(T, rejects Hy),

defined for distribution functions F, is called the power function of T, (or of T').
For F e #,,v,(T, F) represents the probability of a Type I error. The quantity

an(T’ fO) = sup yn(T’ F)
Fe %o

is called the size of the test. For F ¢ # g, the quantity
BT, F) =1 - y(T, F)
314
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represents the probability of a T'ype I1 error. Usually, attention is confined to
consistent tests: for fixed F¢ #,, (T, F) - 0 as n - o0. Also, usually
attention is confined to unbiased tests: for F ¢ #, y,(T, F) > a,(T, ).

A general way to compare two such test procedures is through their power
functions. In this regard we shall use the concept of asymptotic relative
efficiency (ARE) given in 1.15.4. For two test procedures T, and Ty, suppose
that a performance criterion is tightened in such a way that the respective
sample sizes n, and n, for T, and Ty to perform “equivalently” tend to oo but
have ratio n,/n, tending to some limit. Then this limit represents the ARE of
procedure T} relative to procedure T, and is denoted by e(73, T,).

We shall consider several performance criteria. Each entails specifications
regarding

(@) a=lim, a(T, &)
(b) an alternative distribution F™™ allowed to depend on n,
and

() B = lim, B(T, F*).

With respect to (a), the cases « = 0 and a > 0 are distinguished. With
respect to (c), the cases § = Oand § > Oare distinguished. With respect to (b),
the cases F™™ = F (fixed), and F* — %, in some sense, are distinguished.

The following table gives relevant details and notation regarding the
methods we shall examine in Sections 10.2-7.

Behavior of Behavior of

Names of Type I Error  Type Il Error  Behavior of  Notation
Contributors Probability «, Probability , Alternatives for ARE Section

Pitman a,—-a>0 f,-Bf>0 F"F, ep(s, ") 10.2
Chernoff a, -0 B,—0 F® = F fixed e, ") 103
Bahadur a, -0 B,—»B>0 F®™=Ffixed ex,-) 104
Hodges &

Lehmann o, = o>0 B.,—0 F® = F fixed ey (-, ") 10.5
Hoeffding a, -0 B, -0 F™ = F fixed eg(-,*) 10.6
Rubin &

Sethuraman o, — 0 Bg,—»0 F™ - &, ers(:s*) 10.7

Each of the approaches has its own special motivation and appeal, as we
shall see. However, it should be noted also that each method, apart from
intuitive and philosophical appeal, is in part motivated by the availability of
convenient mathematical tools suitable for theoretical derivation of the
relevant quantities e( -, -). In the Pitman approach, the key tool is central limit
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theory. In the Rubin-Sethuraman approach, the theory of moderate deviations
is used. In the other approaches, the theory of large deviations is employed.
The technique of application of these ARE approaches in any actual statistical
problem thus involves a trade-off between relevant intuitive considerations
and relevant technical issues.

102 THE PITMAN APPROACH

The earliest approach to asymptotic relative efficiency was introduced by
Pitman (1949). For exposition, see Noether (1955).

In this approach, two tests sequences T = {T,} and U = {U,} are com-
pared as the Type I and Type II error probabilities tend to positive limits a
and B, respectively. In order that a, — a > 0and simultaneously 8, —» § > 0,
itis necessary to consider f,(-) evaluated at an alternative F*” converging at a
suitable rate to the null hypothesis #,. (Why?)

In justification of this approach, we might argue that large sample sizes
would be relevant in practice only if the alternative of interest were close to
the null hypothesis and thus hard to distinguish with only a small sample .On
the other hand, a practical objection to the Pitrman approach is that the
measure of ARE obtained does not depend upon a particular alternative. In
any case, the approach is very easily carried out, requiring mainly just a
knowledge of the asymptotic distribution theory of the relevant test statistics.
As we have seen in previous chapters, such theorems are readily available
under mild restrictions. Thus the Pitman approach turns out to be widely
applicable.

In 10.2.1 we develop the basic theorem on Pitman ARE and in 10.2.2
exemplify it for the problem of testing location. The relationships between
Pitman ARE and the asymptotic correlation of test statistics is examined in
10.2.3. Some complements are noted in 10.2.4.

10.2.1 The Basic Theorem

Suppose that the distributions F under consideration may be indexed by a
set ® c R, and consider a simple null hypothesis

H 0: 0 = 00
to be tested against alternatives
0> 0,.

Consider the comparison of test sequences T = {T,} satisfying the following
conditions, relative to a neighborhood 8y < 6 < 6, + 8 ofthenullhypothesis.
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Pitman Conditions

(P1) For some continuous strictly increasing distribution function G,
and functions u,(0) and o0,(0), the Fg-distribution of (T, — u,(0))/c,(0)
converges to G uniformly in [6,, 8, + 6]:

T, — 4in(6) )
s s Pl——<t] - G(t
9050220*'3 -wl:lp<w ( 0,,(9) ( )

(P2) For 0€[6,, 0y + 6], u,(0) is k times differentiable, with u{!%(0,) =
= = Bo) = 0 < u(B).
(P3) For some function d(n) —» co and some constant ¢ > 0,

l‘:.”(eo)
d(n) ’

(P4) For 6, = 6, + O([d(n)]™ %),
u®(0,) ~ u*(0,), n— .
(P5) For 6, = 0, + O([d(n)] '),

-0, n— oo,

g,(00) ~ ¢ n—

0,,(0,,) ~ 0,,(00), n — oo. .
Remarks A. (i) Note that the constant ¢ in (P3) satisfies
. d(n)a,(6,)
¢ = lim ————.
n #9)(00)
(i1) In typical cases, the test statistics under consideration will satisfy

(P1)-(P5) with G = ® in (P1), k = 1 in (P2), and d(n) = n'/2 in (P3). In this
case

. n'2g,(0,)
¢ = lim ———
n Hn(60)

Theorem (Pitman-Noether). (i) Let T = {T,} satisfy (P1)-(P5). Con-
sider testing Hy by critical regions {T, > u,_} with

1 ty = Po(To > 1)) — o,

where0 <a < 1.ForO < B <1 — a,and 8, = 0, + O([d(n)]~'/*), we have
(2 Ba(0,) = Py (T, < u,,) — B

if and only if

A%
) @O IO , g-11 - oy - G-14p)
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(ii) Let T, = {T,o} and Ty = {Tg,} each satisfy (P1)-(PS) with common
G, k and d(n) in (P1)~(P3). Let d(n) = n%,q > 0. Then the Pitman ARE of T,
relative to Ty is given by

1/
ee(Ta, To) = (‘c’—") "
PROOF. Check that, by (P1),
lﬂ,w.) - c(“-;‘?——-{,‘)“”) | 40, nocw.
Thus ,(6,) — B if and only if

m T P 0,, -
@ = B0 G-1¢p,
Likewise (check), a, — « if and only if
© Al (B

It follows (check, utilizing (P5)) that (4) and (5) together are equivalent to (5)
and

I‘n(on) - I‘n(oo)
6 %) — Fat7o)
© 580
together. By (P2) and (P3),
”n(on) - .un(oo) ~ }‘5,”(0.) . (0,, - OO)k . d(_n)
“nwo) ﬂs.”(oO) k! c’
where 8, < 8, < 6,. Thus, by (P4), (6) is equivalent to (3). This completes the
proof of (i).
Now consider tests based on T, and T, having sizes a,, — a and ag, — a.
Let 0 < f <1~ a. Let {6,} be a sequence of alternatives of the form
0, = 0o + A[d(n)]~ ',

It follows by (i) that if h(n) is the sample size at which T performs “equiva-
lently” to T, with sample size n, that is, at which T, and T, have the same
limiting power 1 — f for the given sequence of alternatives, so that

pAn(on) - pn plh(n)(on) hnd B!
then we must have d(h(n)) proportional to d(n) and

(6, = 80)* d(n) _ (6, — 6o)" d(h(n))
kU e, k! e

=Gl —a)-G™'(B)

= 00,
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or
d(h(n)) ¢

-

dn)y ¢,
For d(n) = n%, this yields (h(n)/n)? = (cp/c,), proving (ii). 1
Remarks B. (i) By Remarks A we see that for d(n) = nf,
aan(00)uin(00) '
[64..(00)#2;3(00)] '
For the typical case k = 1 and d(n) = n!’?, we have

[Gs..((?o)ui«.((?o)]2
& 4n(00)u,(0,)

(i) For a test T satisfying the Pitman conditions, the limiting power
against local alternatives is given by part (i) of the theorem: for

0, = 6o + ALd(M)]™'* + o([d(m)]~ '),
we have from (3) that

ep(Ty, Tp) = lim

ep(TA, T.B) = lim

Ak
iz =67 ~2) =GB,

yielding as limiting power
k
t-f=1-~G G"(l—a)—-ﬁ—- .
) kle
In particular, for G = ®, k = 1, d(n) = n1/2, we have simply

1—,3=1-<b(<b-'(1—a)-§). ]

10.2.2 Example: Testing for Location

Let X,,..., X, be independent observations having distribution F(x — ),
for an unknown value 6 € R, where F is a distribution having density f sym-
metric about 0 and continuous at 0, and having variance ¢ < oo. Consider
testing

H 0: 0 = 0
versus alternatives
f>0.

For several test statistics, we shall derive the Pitman ARE's as functions of F,
and then consider particular cases of F.
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The test statistics to be considered are the “ mean statistic™

1z
THn ==; E:}(‘== IL

i=1
the “t-statistic”

X

T2u=;‘

(where s? = (n — 1)~! Y1 (X, — X)?), the “sign test” statistic

T == 10X, > 0),

i=1

and the “Wilcoxon test” statistic

-1
n
Tew = (2) Y IX, + X;>0)
1gi<jsn

The statistics based on X have optimal features when F is a normal distri-
bution. The sign test has optimal features for F double exponential and for a
nonparametric formulation of the location problem (see Fraser (1957), p. 274,
for discussion). The Wilcoxon statistic has optimal features in the case of F
logistic.

We begin by showing that T, satisfies the Pitman conditions with yu, (6)
=0, a2,(0) = o}/n, G = ®, k = 1 and d(n) = n'/2 Firstly (justify),

Tiw — 14(6) - 172 X-o0 - 1/2 X
P’(——_a,,,(ﬂ) < t) == P,(n or St] = Py[n ;;St .

Also,

sup P(,l:n”z X < t] . [0) I -0, n-— oo,

t Or i
by now-familiar results. Thus (P1)is satisfied with G = ®. Also, y},(0) = 1,80
that (P2) holds with k = 1, and we see that (P3) holds with ¢, = o and d(n)
= n'/2, Finally, clearly (P4) and (P5) hold.

We next consider the statistic T;,, and find that it satisfies the Pitman
conditions with G = ®, k = 1, d(n) = n*?, and ¢, = ¢, = a;. We take
#2,(0) = 0/6; and 63,(6) = 1/n. Then

Tlu - I‘Zn(o) - X 0
geontll R e R
X
= P(,[n"z s t].



THE PITMAN APPROACH 321

Further, by Problem 2.P.10,

sup Po[n”2 § < t] .3 l -0, n—oo.
t

Thus (P1) is satisfied with G = ®. Also, p3,(f) = 1/o¢ and we find easily that
(P2)-(P4) are satisfied with k = 1, d(n) = n'/? and, in (P3), c, = oF.

At this point we may see from Theorem 10.2.1 that the mean statistic and
the ¢-statistic are equivalent test statistics from the standpoint of Pitman ARE:

eP(Th TZ) =1

Considering now Ty,, take
H3n(0) = E Ty, = EgI(X, > 0) = P(X, > 0) =1~ F(~0) = F(6)

and
FO[1 ~ FO)]

1
030) = Vary Toy = 43 O)[1 = 13u(0)] = ——

Then

T3n - ”311(9)
03,.(9)

is a standardized binomial (n, F(6)) random variable. Since F(@) lies in a
neighborhood of 4 for @ in a neighborhood of 0, it follows by an application of
the Berry—Esséen Theorem (1.9.5), as in the proof of Theorem 2.3.3A, that
(P1) holds with G = ®. Also, u3,(0) = f(0) and it is readily found that
conditions (P2)-(PS5) hold with k = 1, d(n) = n'/? and ¢y = 1/2f(0).

The treatment of T, is left as an exercise. By considering T, as a U-
statistic, show that the Pitman conditions are satisfied with G = ®, k = 1,
d(n) = n'* and ¢, = 1/(12)" | f*(x)dx.

Now denote by M the “mean” test T, by ¢ the “¢-test” T, by S the “sign”
test Ty, and by W the “Wilcoxon” test T,. It now follows from Theorem

10.2.1 that
ep(M,t) =1,
ep(S, M) = 4o} f(0),
and
2

es(W, M) = 1za%[ f f’(x)dx]
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(Of course, ep(S, W) is thus determined also.) Note that these give the same
measures of asymptotic relative efficiency as obtained in 2.6.7 for the as-
sociated confidence interval procedures.

We now examine these measures for some particular choices of F.

Examples. For each choice of F below, the values of ex(S, M) and ep(W, M)
will not otherwise depend upon o#. Hence for each F we shall take a “con-
ventional” representative.

(i) F normal: F = @, In this case,
ex(S, M) = % = 0.637
and

es(W, M) = % = 0.955.

It is of interest that in this instance the limiting value ep(S, M) represents
the worst efficiency of the sign test relative to the mean (or t-) test. The exact
relative efficiency is 0.95forn = 5,0.80 for n = 10,0.70for n = 20, decreasing
to 2/n = 0.64 as n — o0. For details, see Dixon (1953).

We note that the Wilcoxon test is a very good competitor of the mean test
even in the present case of optimality of the latter. See also the remarks
following these examples,

(i) F double exponential: f(x) =3e "™, —o0 < x < c0. In this case
(check)

ex(S, M) = 2
and
es(W, M) = 4.
(iii) F uniform: f(x) = 1, |x| < 4. In this case (check)
ep(S, M) = §
and
ep(W, M) =1.

(iv) F logistic: f(x) =e *(1 + e *)"% —o0 < x < co. Explore as an
exercise. W

Remark. Note in the preceding examples that ex(W, M) is quite high for a
variety of F's. In fact, the inequality

ep(W, M) > 13§ = 0.864
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is shown to hold for all continuous F, with the equality attained for a partic-
ular F, by Hodges and Lehmann (1956).

For consideration of the “normal scores” statistic (recall Chapter 9) in this
regard, see Hodges and Lehmann (1961). W

10.2.3 Relationship between Pitman ARE and Correlation

Note that if a test sequence T = {T,} satisfies the Pitman conditions, then
also the “standardized” (in the null hypothesis sense) test sequence T* =
{T?*}, where

T* = 7:! - I‘n(oo)

" ouf)
satisfies the conditions with
I‘n(o) - l‘n(oo) 0,,(0)
*0) = 7 —, o) = ————=
KO ="y =56
and with the same G, k, d(n) and c. Thus, it is equivalent to deal with T* in

place of T.

In what follows, we consider two standardized test sequences T =
{Ton} and T; = {T;,} satisfying the Pitman conditions with G = ®, k = 1,
d(n) = n'’2, and with constants ¢, < c,. Thus ep(T}, Tp) = (co/c,)* < 1, so
To is as good as Ty, if not better. We also assume condition

(P6) T, and T,, are asymptotically bivariate normal uniformly in 6 in a
neighborhood of 6,.

We shall denote by p(0) the asymptotic correlation of T, and Ty, under the

0-distribution.
We now consider some results of van Eeden (1963).

Theorem. Let To = {Ty,} and T, = {T,,} satisfy the conditions (P1)~(P6)
in standardized form and suppose that
P(0.) = P(Bp) =p,  as6,— 6.
(i) For0 < A < |, tests of the form
Tan = (1 = M)To, + ATy,

satisfy the Pitman conditions.
(ii) The “best” such test, that is, the one which maximizes ep(T,, To), is

T, for
y= Co — PC; - ey X(T,, To) — p
(1 ~p)co+c) (1 —p)[1+e*(Ty, Ty)]

if p # 1 and for y taking any value if p = 1.
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(iii) For this “ best” test,

[ed/*(Ty, To) — p)?
1-p? '

PROOF. (i) Put p,,(0) = (1 — Duo(0) + Any,(6) and  3,(6) =
(1 — 1)%3,(0) + A261,(0) + 2U(1 ~ A)oo,(0)a4,(0)p(6). Then

cP(Tya TO) =1+

-4
Hin(00) = (1 — Dpga(00) + Auia(Bo) ~ n" 2(.1__ + _A_)

Co €
and

o3(00) = (1 — 1)* + 22 + 24(1 - A)p.
Thus (P1)-(P5) are satisfied with G = @, k = 1, d(n) = n*/? and
[0 = ) + 22 + 2401 — W)p]*~?

=)+
+ —

Co ¢y
2

ex(Ty, Ty) = (27) ,

so it suffices to minimize ¢, as a function of A. This is left as an exercise. Finally,
(iii) follows by substitution of y for A in the formula for ep(T;, T,). B

¢,

To prove (ii), note that

Corollary A. IfT, is a best test satisfying (P1)-(P5), then the Pitman ARE of
any other test T satisfying (P1)-(P5) is given by the square of the “ correlation”
between T and T,, i.e.,

ep(T, To) = p*.
PROOF. Put T = T, in the theorem. Then, by (iii), since ep(T,, Tp) = 1,
we have ep(T, Tp) = p*. W

CorollaryB. If Toand T, havep = 1,theney(T,, To) = landey(T,, Ty) = 1,
all \. If p # 1, but ey(T,, Ty) = 1, then y = 4 and ex(T,;;, To) = 2/(1 + p).

Thus no improvement in Pitman ARE can result by taking a linear com-
bination of Ty and T, having p = 1. However, if p # 1, some improvement is
possible.

Remark. Under certain regularity conditions, the result of Corollary A holds
also in the fixed sample size sense.
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10.2.4 Complements

(i) Efficacy. We note that the strength of a given test, from the standpoint
of Pitman ARE, is an increasing function of 1/c, where ¢ is the constant ap-
pearing in the Pitman condition (P3). The quantity 1/c is called the “efficacy ”
of the test. Thus the Pitman ARE of one test relative to another is given by the
corresponding ratio of their respective efficacies.

(ii) Contiguity. A broader approach toward asymptotic power against
alternatives local to a null hypothesis involves the notion of “ contiguity.” See
Hajek and Sidak {1967) for exposition in the context of rank tests and Roussas
(1972) for general exposition.

10.3 THE CHERNOFF INDEX

One might argue that error probabilities (of both types) of a test ought to
decrease to 0 as the sample size tends to oo, in order that the increasing expense
be justified. Accordingly, one might compare two tests asymptotically by
comparing the rate of convergence to 0 of the relevant error probabilities.
Chernoff (1952) introduced a method of comparison which falls within such a
context.

Specifically, consider testing a simple hypothesis H, versus a simple
alternative H,, on the basis of a test statistic which is a sum of I.1.D’s,

whereby H, is rejected if S, > c,, where ¢, is a selected constant. For example,
the likelihood ratio test for fixed sample size may be reduced to this form
(exercise).

For such sums S,, Chernoff establishes a useful large deviation probability
resuit: for ¢t > E{Y}, P(S, > nt) behaves roughly like m", where m is the
minimum value of the moment generating function of Y — ¢. (Thus note that
P(S, > nt) decreases at an exponential rate.) This result is applied to establish
the following: if c, is chosen to minimize B, 4+ Ao, (where A > 0), then the
minimum value of §, + Ax, behaves roughly like p", where p does not depend
upon A. In effect, the critical point c, is selected so that the Type I and Type Il
error probabilities tend to O at the same rate. The value p is called the index
of the test. In this spirit we may compare two tests A and B by comparing
sample sizes at which the tests perform equivalently with respect to the
criterion B, + Aa,. The corresponding ARE turns out to be (log p ,)/(log p5).

These remarks will now be precise. In 10.3.1 we present Chernoff’s general
large deviation theorem, which is of interest in itself and has found wide
application. In 10.3.2 we utilize the result to develop Chernoff’s ARE.
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10.3.1 A Large Deviation Theorem

Let Y,,..., Y, be LLD. with distribution F and put S, =Y, +--- + ¥,.
Assume existence of the moment generating function M(z) = Eg{e*"}, z real,
and put

m(t) = inf E{e"" "} = inf e""M(2).
z 2
The behavior of large deviation probabilities P(S, = t,), where ¢, - oo at
rates slower than O(n), has been discussed in 1.9.5. The case t, = tnis covered
in the following result.

Theorem (Chernoff). If —oo <t < E{Y}, then

) P(S, < nt) < [m(t)]".
IfE{Y} <t < + 0, then
) P(S, = nt) < [m(t)]".

If 0 < & < m(t), then for the given cases of t, respectively,

. (m) —€) . (m(t) —e)
@ e TP Sl TR

Remark. Thus P(S, 2 nt) is bounded above by [m(r)]", yet for any small
& > O greatly exceeds, for all large n, [m(t) — £]". W

PROOF. To establish (1) we use two simple inequalities. First, check that
for any z £ 0,

P(S, < nt) < [e”"M(©)]"

Then check that for t < E{Y} and forany z > 0,e "*M(z) = 1. Thus deduce
(1). In similar fashion (2) is obtained.

We now establish (3). First, check that it suffices to treat the case t = 0, to
which we confine attention for convenience. Now check that if P(Y > 0) = 0
or P(Y < 0) = 0, then m(0) = P(Y = 0) and (3) readily follows. Hereafter
we assume that P(Y > 0) > 0 and P(Y < 0) > 0. We next show that the
general case may be reduced to the discrete case, by defining

i—-1

Y"’=§ if —S——<Ys§, i=—1,01....,s=12....

Letting S’ = the sum of the Y{" corresponding to Yy, ..., ¥,, we have
P(S, < 0) > P(S¥ < 0)
and
MY(z) = E{e*""} 2 e~ IHM(2).
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Since P(Y > 0) > Oand P(Y < 0) < 0, M(2) attains its minimum value for a
finite value of z (check) and hence there exists an s sufficiently large so that

inf M¥(z) > inf M(2) — 1.

Thus (check) (3) follows for the general case if already established for the
discrete case.

Finally, we attack (3) for the discrete case that P(Y = y)=p, >0,
i=1,2,....Given ¢ > 0, select an integer r such that

min(ylv -'-vyr) <0< max(ylv ---vyr)
and

inf ) ep, > inf Y e™'p, — 4.

z i=] 2 i=1
Put
r r
m* = Y e*V'p; = inf ) e”'p,.
i=1 z i=1

It now suffices (Justify) to show that for sufficiently large n there exist r
positive integers n,, ..., n, such that

r

(l) an =n,
i=1
) ‘;"t}’t <0,
and
Iptt...pr
(3) P(nlv ey nr) =£n.|p_!l-—-_-n—f!'— > (m* - *6)"'

For large ny, ..., n, (not necessarily integers) Stirling’s formula gives
r ny
4) P(ny,...,n) 2 {[’[ (ﬂ’—‘) }n‘“/’)'.
i=1\ M
Now apply the method of Lagrange multipliers to show that the factor
r np ni
Q(nl! seey nr) = n (T‘)
i=1 i

attains a maximum of (m*)" subject to the restrictions Y 7=y n; = n, Y=y n;y,
=0,n, >0,...,n >0, and the maximizing values of n,, ..., n, are

2*y
=" 1<igr
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Assume that y, < y;fori < r, and put
nfV=[nf", 2<i<n

r

n=n— Y nM,

i=2

where [-] denotes greatest integer part. For large n, the nf" are positive
integers satisfying (1), (2) and

0.t = (2 ooy,

and thus (3) by virtue of (4). This completes the proof. W

The foregoing proof adheres to Chernoff (1952). For another approach,
using “exponential centering,” see the development in Bahadur (1971).
We have previously examined large deviation probabilities,

P(S, — ES, 2 ni),t > 0,

in 5.6.1, in the more general context of -U-statistics. There we derived expon-
ential-rate exact upper bounds for such probabilities. Here, on the other hand,
we have obtained exponential rate asymptotic approximations, but only for the
narrower context of sums S,. Specifically, from the above theorem we have
the following useful

Corollary. Fort >0,
lim n~?! log P(S, — ES, = nt) = log m(t + E{Y}).

10.3.2 A Measure of Asymptotic Relative Efficiency

Let H, and H, be two hypotheses which determine the distribution of Y so
that uo = E{Y|H,} < u, = E{Y|H,}. For each value of ¢, we consider a
test which rejects H, if S, > nt. Leta, = P(S, > nt|H,), B, = P(S, < nt|H,)
and A be any positive number. Put

m(t) = infl E{¢"~"|H,)}, i=0,1,

and
p(t) = max{mo(t), my(1)}.
The index of the test determined by Y is defined as
p= inf p(t)

BoSISHy
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The role of this index is as follows. Let Q, be the minimum value attained by
Bn + Ax,asthe number ¢ varies. Then the rate of exponential decrease of Q, to
0 is characterized by the index p. That is, Chernoff (1952) proves

Theorem. Foreg > 0,

o Qa
(AD e
ForO0<e<p,

. QQ
(A2) h.l.n Goe 0

PROOF. For any t in [y, 4], we immediately have using Theorem
10.3.1 that

0, < P(S, < nt{H,) + AP(S, = nt{H,)
< [0 + Almo(0)]"
< (1 + Hlp])"
Let £ > 0 be given. By the definition of p, there exists ¢, in [yo, #;] such that

p(t,) < p + 4e. Thus (A1) follows.
On the other hand, for any ¢ in [1,, 4,], we have

PSS, <nt|H,) < P(S, < nt'|Hy), allt' 21,
and
P(S, = nt|Hy) < P(S, > nt'|Hy), allt <t
yielding (check)
Q, 2 min{P(S, < nt|H,), AP(S, 2 nt|H,)}.

For 0 < & < min{mq(t), m,(¢t)}, we thus have by the second part of Theorem
10.3.1 that

lim [min{mo(t),th(t)} —£]" =0

Thus, in order to obtain (A2), it suffices to find ¢; in [yg, #;] such that
p < min{my(t,), m,(t,)}. Indeed, such a value is given by

t=inf{t:m () 2 p, o St < 4}

First of all, the value ¢, is well-defined since m;(u;) = 1 > p. Next we need to
use the following continuity properties of the function m(z). Let y, satisfy
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P(Y <yo) =0 < P(Y < yo +¢), all £ >0. Then (check) m(t) is right-
continuous for ¢t < E{Y} and left-continuous for y, <t < E{Y}. Con-
sequently, m,(t;) = p and m,(t) < p for t < t,. But then, by definition of p,
my(t) = p for po St St,. Then, by left-continuity of my(t) for t > p,
(justify), mO(tz) - if t, > M Fina"y, if t; = Yy, mo(tz) =12 p. [ ]

We note that the theorem immediately yields

*) limn~!log Q, = log p.

Accordingly, we may introduce a measure of asymptotic relative efficiency
based on the criterion of minimizing f#, + A, for any specified value of A,
Consider two tests T, and T based on sums as above and having respective
indices p, and pg. The Chernoff ARE of T, relative to Ty is given by

(log p,)
(log pg)’

Therefore, if h(n) denotes the sample size at which T performs “equivalently”
to T, with sample size n, that is, at which

ec(Ty, Ty) =

0) Ok ~ 0,  n- o,

or merely

) log Qi ~ l0g @7,  n— 0,
then

m M _ (ogpy) _
] n (108 pl)
(Note that (1) implies (2)—see Problem 10.P.10.)

eC(TA ’ TB)

Example A. The index of a normal test statistic. Let Y be N(y;, o2) under
hypothesis H;, i = 0, 1 (4o < p,). Then

e "M(z2) = exp[(1; — 1)z + {0{2’],

Y
iy =] - 2

so that (check)

and thus (check)

- p(ﬂxﬂo + 00#1) - exp[ o - #o)z] -

o, + 0y (61 + 0'0)2
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Example B. The index of a binomial test statistic. Let Y be B(r, p;) under
hypothesis H;, i = 0, 1(po < p1). Putg; =1 — p;, i = 0, 1. Then

e— le‘(z) = e— lz(p‘ e: + q‘)r’
so that (check)

log my(t) = (r — t)log[(r 'fi t):l +1 log[it&]

logp = r{(l - c)log[aq_o—c)] +c log[p—c"]},

_ log(do/q1)
log(qo/q:1) + log(p1/Po)’

Show that log p ~ —r(p; — Po)*/8Pogo 8 py = po. M

and (check)

where

Do <€ <Py

Example C. Comparison of Pitman ARE and Chernoff ARE. To illustrate
the differences between the Pitman ARE and the Chernoff ARE, we will con-
sider the normal location problem and compare the mean test and the sign test.
Asin 10.2.2, let X, ..., X, be independent observations having distribution
F(x — 0), for an unknown value 8 € R, but here confine attention to the case
F = ® = N(0, 1). Let us test the hypotheses.

Hy:0=0 versus H;:60=20,,
where 8, > 0. Let T, denote the mean test, based on X, and let T denote the
sign test, based on n~! Y., I(X; > 0). From Examples A and B we obtain
(check)
63/8
log{2a(6,)"*"[1 — a(6,)]' ~*®"}’

where a(@) = {log[1 — ®(0)]}/1og{[1 — ®(6)]/9(6)}. By comparison, we
have from 10.2.2

ec(Ty, Tp) =

ep(Ty, Tp) = 4m.

We note that the measure e(T,, T;) depends on the particular alternative
under consideration, whereas ez(T,, T3) does not. We also note the com-
putational difficulties with the e measure. As an exercise, numerically
evaluate the above quantity for a range of values of 6, near and far from the
null value. Show also that e(T, Ty) = 47 = ep(T,, T3) as 6, = 0. W
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104 BAHADUR'S “STOCHASTIC COMPARISON"

A popular procedure in statistical hypothesis testing is to compute the
significance level of the observed value of the test statistic. This is interpreted
as a measure of the strength of the observed sample as evidence against the
null hypothesis. This concept provides another way to compare two test
procedures, the better procedure being the one which, when the alternative is
true, on the average yields stronger evidence against the null hypothesis.
Bahadur (1960a) introduced a formal notion of such “stochastic comparison”
and developed a corresponding measure of asymptotic relative efficiency. We
present this method in 10.4.1. The relationship between this “stochastic
comparison” and methods given in terms of Type I and Type II error prob-
abilities is examined in 10.4.2. Here also the connection with large deviation
probabilities is seen. In 10.4.4 a general theorem on the evaluation of Bahadur
ARE is given. Various examples are provided in 10.4.5.

10.4.1 “Stochastic Comparison” and a Measure of ARE

We consider LLD. observations X,,..., X, in a general sample space,
having a distribution indexed by an abstract parameter 0 taking values in a
set ©. We consider testing the hypothesis

Ho:0€®o

by a real-valued test statistic T,, whereby H, becomes rejected for sufficiently
large values of T,. Let G,, denote the distribution function of 7, under the
0-distribution of X, ..., X,.

A natural indicator of the significance of the observed data against the null
hypothesis is given by the “level attained,” defined as

Ln = Ln(xh secy Xu) = suP[l - GOI(T;)]'

8eBo

The quantity supye,[1 — Ggn(t)] represents the maximum probability, under
any one of the null hypothesis models, that the experiment will lead to a test
statistic exceeding the value ¢. It is a decreasing function of ¢. Evaluated at the
observed T,, it represents the largest probability, under the possible null
distributions, that a more extreme value than T, would be observed in a
repetition of the experiment. Thus the “level attained” is a random variable
representing the degree to which the test statistic T, tends to reject Hy. The
lower the value of the level attained, the greater the evidence against H,.

Bahadur (1960) suggests comparison of two test sequences T, = {T,,} and
Tp = {Tp,} in terms of their performances with respect to “level attained,”
arguing as follows. Under a nonnull @-distribution, the test T, is “more
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successful” than the test Ty, at the observed sample X, ..., X, if
L(Xyy.oos X)) < Lg(Xy, ..., X,).
Equivalently, defining
K,=-2loglL,,

Ty, is more successful than Ty, at the observed sample if K ,, > Kjz,. Note
that this approach is a stochastic comparison of T, and Tj.

In typical cases the behavior of L, is as follows. For 6 € @, L, converges in
0-distribution to some nondegenerate random variable. On the other hand,
under an alternative 8¢ ©,, L, — 0 at an exponential rate depending on 0.

Example. The Location Problem. Let the X’s have distribution function
F(x — ), where F is continuous and 8 € ® = [0, 0). Let ®, = {0}. Consider
the mean test statistic,

T, = n'/? Z ,
Of
where 6} = Vary{X}. We have
L,=1-GoT)
and thus
Po(L, < 1) = Po(Goo(T) 2 1 = 1)
= Py(T, 2 Gg,'(1 — D)
=1~ Gon(Go,'(1 = D) =1,
that is, under H, L, has the distribution uniform (0, 1). Note also that
Go, = ® = N(0, 1).
Now consider 8 ¢ @,. We have, by the SLLN,
Py(n™ T, > 0) = 1,
in which case L, behaves approximately as
1 — ®(n''29) ~ 2nn)~ 1207 ! exp(—1n?).

That is, in the nonnull case L, behaves approximately as a quantity tending to
0 exponentially fast. Equivalently, K, behaves approximately as a quantity
tending to a finite positive limit (in this case 8%). These considerations will be
made more precise in what follows. W

It is thus clear how the stochastic comparison of two test sequences is
influenced in the case of nonnull by the respective indices of exponential
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convergence to 0 of the levels attained. A test sequence T = {T,} is said to
have (exact) slope c(0) when & “obtains™ (that is, when the X,'s have 6-
distribution) if

™ n~ K, - c(f) as. (P,

In the nonnull case the limit ¢(f) may be regarded as a measure of the per-
formance of T,,; the larger the value of ¢(6), the “faster™ T, tends to reject H.
For two such test sequences T, and Ty, the ratio

c4(6)
cx(0)

thus represents a measure of the asymptotic relative efficiency of T, relative to
Ty at the (fixed) alternative 6. Indeed, if h(n) represents the sample size at which
procedure T performs “equivalently” to T, in the sense of being equally
“successful” asymptotically, that is, Kpg,, may replace K ,, in relation (*),
then we must have (check)

H) i)
n cy6)

Thus the (exact) Bahadur ARE of T relative to Ty is defined as ey(T,, Tp) =
c4(6)/cp(0).

The qualification “exact” in the preceding definitions is to distinguish from
“approximate” versions of these concepts, also introduced by Bahadur
(1960a), based on the substitution of G for G,, in the definition of L,, where
Ggn = G for all @ € ©,. We shall not pursue this modification.

The terminology “slope ™ for ¢(#) is motivated by the fact that in the case of
nonnull # the random sequence of points {(n, K,), n > 1} moves out to
infinity in the plane in the direction of a ray from the origin, with angle
tan~ !¢(#) between the ray and the n-axis.

A useful characterization of the slope is as follows. Given ¢,0 < ¢ < 1, and
the sequence {X;}, denote by N(g) the random sample size required for the
test sequence {7} to become significant at the level ¢ and remain so. Thus

N(e) = inf{m: L, < ¢, all n > m}(< 0).
Bahadur (1967) gives
Theorem . If (*) holds, with 0 < ¢(6) < oo, then

. —2loge
lim
=0 N(F.)

=c(0) as (Pg)
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PROOF. LetQdenote the sample space in the Pg-model. By (*),3Q, = Q
such that Py(Q,) = ! and for we ), the sequence {X,(w)} is such that
n~ 'K, (w) = ¢(f). Now fix w e €,. Since ¢(6) > 0, we have L,(w) > 0 for all
sufficiently large nand L. (w) - 0 asn — oo. Therefore (justify), N(¢, w) < oo
for every € > 0 and thus N(e, w) —» oo through a subsequence of the integers
as € = 0. Thus 2 < N(g, w) < oo for all ¢ sufficiently small, say <e¢,. For all
£ < g,, we thus may write

Ly, o)) < € S Ly, - 1(@).
The proof is readily completed (as an exercise). W

It follows that the sample sizes N ,(¢) and N g(¢) required for procedures T,
and Ty to perform “equivalently,” in the sense of becoming and remaining
significant at level ¢, must satisfy

Nyo) _ cul) _
m ¥ ~ cs®

providing another interpretation of the Bahadur ARE.

Another important aspect of the Bahadur ARE is the connection with
Type I and Type Il error probabilities. Not only does this afford another way
to interpret eg, but also it supports comparison with other ARE measures
such as ep and ec. These considerations will be developed in 10.4.2. and will
lead toward the issue of computation of eg, treated in 10.4.3.

Further important discussion of slopes and related matters, with references
to other work also, is found in Bahadur (1960a, 1967, 1971).

10.4.2 Relationship between Stochastic Comparison and Error
Probabilities

Consider testing H,, by critical regions {T, > t,} based on {7,}. The relevant
Type I and Type Il error probabilities are

a, = sup Py(T, > t,)
0660

eg(Ty, Tp) as. (Py),

and
B.(0) = Py(T, < t,),
respectively.

Theorem (Bahadur). Suppose that
—2log a,
—_—
n

d
and

Kn P
Tl— 3 c(e).
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Then

(@) d > c(6) = B.(6) — 1,
and

(i) d < ¢(6) = B,(6) — 0.

PROOF. Write
ﬂn(o) = PG(Ln > an) = Pﬂ(Kn < =2 IOg an)
= Py(n 'K, < n" (-2 log a,)).

If d> c(f) + & then for n sufficiently large we have n™!(—2log a,) >
o(0) + ¢ and thus B,(0) > Pe(n" 'K, < c(0) + &) — 1, proving (i). Similarly,
(ii) is proved. |
Corollary. Suppose that
—2log a, o
n

Bu(®) -+ PBG6), O0<BO <1,

d,

and

K
Infg
- c(0).

Then d = c¢(8).

By virtue of this result, we see that ey(T,,, Tp), although based on a concept
of “stochastic comparison,” may also be formulated as the measure of ARE
obtained by comparing the rates at which the Type I error probabilities (of
T, and Ty) tend to 0 while the Type II error probabilities remain fixed at (or
tend to) a value §(6), 0 < f(0) < 1, for fixed 0. That is, if h(n) denotes the
sample size at which T, performs equivalently to T, with sample size n, in the
sense that

(log a g, xm)

(log o4, =L Bown© > BO),  Ban—BO)

then

hn) _ [(ogas)/n] _ cu6)

n " T(108 apwe/H(n)]  ca(6)’
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Therefore, in effect, the Bahadur ARE relates to situations in which having
small Type I error probability is of greater importance than having small
Type II error probabilities. In Section 10.5 we consider a measure of similar
nature but with the roles of Type I and Type II error reversed. In comparison,
the Chernoff ARE relates to situations in which it is important to have both
types of error probability small, on more or less an equal basis.

Like the Chernoff ARE, the Bahadur ARE depends upon a specific alterna-
tive and thus may pose more computational difficulty than the Pitman ARE.
However, the Bahadur ARE is easier to evaluate than the Chernoff ARE,
because it entails precise estimation only of «, instead of both a, and §,. This
is evident from the preceding corollary and will be further clarified from the
theorem of 10.4.3.

10.4.3 A Basic Theorem

We now develop a result which is of use in finding slopes in the Bahadur sense.
The test statistics considered will be assumed to satisfy the following con-
ditions. We put ©, = © — ©,.

Bahadur Conditions
(B1) Forfe®,,
n"12T, - b(B) as. (Py),

where — o0 < b(f) < oo.
(B2) There exists an open interval I containing {b(6): 0€ ®,}, and a
function g continuous on I, such that

lim —=2n"'log sup [1 — Go,(n'?0)] = g(t), tel. A

06y
Theorem (Bahadur). If T, satisfies (B1)-(B2), then for 6 ©,
n~ 'K, - gb0) as. (Py).

PROOF. Fix fe ©®,, and let Q denote the sample space in the P;-model.
By (B1), 3Q, < Q such that Py(Q,) = 1 and for w € Q, the sequence { X, (w)}
is such that n~ 12T (w) — b(#). Now fix w € Q,, For any ¢ > 0, we have

n'2(b(8) — &) < T(w) < n*’*(b() + &)
for all sufficiently large n, and thus also
-2 IOg SUPye o, [l - GOn(nllz(b(e) + 8))] < K,,((D)
n n

< ~210g supsce, [1 ~ Gonln'*(B(6) — €))]
n
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Therefore, for all ¢ sufficiently small that the interval I contains b(#) + &, we
have by condition (B2) that

g(b(0) + ¢) < lim K"'f“’) < fim K‘;f“’) < g(b(0) — o).

We apply continuity of g to complete the proof. W

Remarks. (i) Condition (B2) makes manifest the role of large deviation
theory in evaluating Bahadur slopes. Only the null hypothesis large deviation
probabilities for the test statistic are needed.

(i) Variations of the theorem, based on other versions of (B2), have been
established. See Bahadur (1960a, 1967, 1971) and references cited therein.

(ili) With(B1)relaxed to convergence in P,-probability, the conclusion of
the theorem holds in the weak sense.

(iv) If agiven {T,} fails to satisfy (B1)-(B2), it may well be the case that
T¥ = h,(T,) does, where h, is a strictly increasing function. In this case the
slopes of {T,} and {T*} are identical. W

10.4.4 Examples

Example A. The Normal Location Problem. (Continuation of 10.2.2 and
Examples 10.3.2C and 10.4.1). Here ®, = {0} and ®; = (0, c0). The statistics
to be compared are the “mean” test, “¢-test,” “sign " test, and “Wilcoxon” test
(denoted T,,, T5,, T3, and T,,, respectively). In order to evaluate the Bahadur
ARE’s for these statistics, we seek their slopes (denoted ¢(0), 1 = 1, 2, 3, 4).

For simplicity, we confine attention to the case that the §-distribution of X
is N(6, 1).

We begin with the mean test statistic,

T,y = n'2¥,

which by Example 10.4.1 statisfies the Bahadur conditions with (@) = 6 in
(B1) and g(t) = t? in (B2). Thus, by Theorem 10.4.3, T}, has slope

Cl(e) = 02.
The t-test statistic T;,, n'/2X /s, has slope
c,(6) = log(1 + 6%).

For this computation, see Bahadur (1960b, or 1971). The interesting thing to
observe is that the slope of the t-test is not the same as that of the mean. Thus

2
log(1 + 6%) <

e,(t, M) = 02

1,
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so that the ¢-test and mean test are not equivalent from the standpoint of
Bahadur ARE, in contrast to the equivalence from the standpoint of Pitman
ARE, as seen in 10.2.2. (For further evidence against the ¢-test, see Example C

below.)
The slope of the sign test statistic, Ty, = n'/3(2V, — 1), where

V,=n"t T I(X, > 0),
i=1
may be found by a direct handling of the level attained,

L= 3 (”) &

j=nV, J

It is shown by Bahadur (1960b) that

log Ly, = -i{n[Z log H(p)] + 2(npg)'/*¢, log(g) + 53}

—4logn-4 Iog[ﬁtﬁ%_—l)j] + o0p,(1),

where p = ®6),q=1—p, HQy) = 2y’(1 —y)' ’for0 <y < 1, and
§n = (@)™ V20"V, — p).
Since ¢, 4 N(O, 1), we have

& - —2|0gL3,,
n B n

% 2 log H(®(0)).

Thus it is seen that Ty, has slope
¢3(6) = 2 log{20(8)*[1 — B(6)]* ~ ).

We can also obtain this result by an application of Theorem 10.4.3, as follows.
Check that condition (B1) holds with b(6) = 2®(0) — 1. Next use Chernoff’s
Theorem (specifically, Corollary 10.3.1) in conjunction with Example 10.3.2B,
to obtain condition (B2). That is, write 1 — Go,(n'/3t) = P(V, > ¥t + 1))
and apply the Chernoff results to obtain (B2) with g(t) = 2 log H3(1 + 1)),
for H(y) as above.

We thus have

2 log{20(6)*“[1 — B(F))' ~*@}

eg(S, M) = 7
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Show that ex(S, M) - 2/n = ep(S, M) as 6 — 0. Some values of eg(S, M) are
as follows.

0 I 0 05 10 1S5 20 30 40 o

eg(S, M) I 2/n =064 060 051 040 029 015 009 O
The slope of the Wilcoxon test statistic has been found by Klotz (1965). It is

1
c® =5 [Ar] - f log cosh xA dx],
0
where
n=PyX, +X;>0)-1}
and A is the solution of the equation

f x tanh xA dx = n,

[

See also Bahadur (1971). B

Example B, The Kolmogorov-Smirnov Test. (Abrahamson (1967)). Let ©
index the set of all continuous distribution functions 8(x) on the real line, and
let H, be simple,

Ho: 0 = 60,

where 0, denotes a specified continuous distribution function. Consider the
Kolmogorov-Smirnov statistic

T, = n''* sup|F,(x) — 0,(x)I,
where F, denotes the sample distribution function. The slope is found by
Theorem 10.4.3. First, check that condition (B1), with
b(0) = sup|6(x) — Bo(x)I,
follows from the Glivenko-Cantelli Theorem (2.1.4A). Regarding condition

(B2), the reader is referred to Abrahamson (1967) or Bahadur (1971) for
derivations of (B2) with

g@®) = 2inf{h(t,p):0 < p < 1},
whereforO0<p <1 -1t

h(t,p) = (¢t + p)log(t : p) +(-t- P)log(ll%;p)

andh(t,p) =0 forp>1-~1r N
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Example C. The t-Test for a Nonparametric Hypothesis. Consider the
composite null hypothesis H, that the data has distribution F belonging to the
class &, of all continuous distributions symmetric about 0. The slopes of
various rank statistics such as the sign test, the Wilcoxon signed-rank test and
the normal scores signed-rank test can be obtained by Theorem 10.4.3 in
straightforward fashion because in each case the null distribution of the test
statistic does not depend upon the particular F € #,. For these slopes see
Bahadur (1960b) and Klotz (1965). But how does the t-test perform in this
context? The question of finding the slope of the ¢-test in this context leads to
an extremal problem in large deviation theory, that of finding the rate of con-
vergence to 0 of supy, g, P(T, = a), where T, = X/s. This problem is solved
by Jones and Sethuraman (1978) and the result is applied via Bahadur’s
Theorem (10.4.3) to obtain the slope of the t-test at alternatives F satisfying
certain regularity conditions. It is found that for F, = N(6, 1), 0 # 0, the
t-test is somewhat inferior to the normal scores signed-rank test. i

10.5 THE HODGES-LEHMANN ASYMPTOTIC RELATIVE EFFICIENCY

How adequate is the Pitman efficiency ? the Chernoff measure? the Bahadur
approach? It should be clear by now that a comprehensive efficiency compari-
son of two tests cannot be summarized by a single number or measure. To
further round out some comparisons, Hodges and Lehmann (1956) introduce
an ARE measure which is pertinent when one is interested in “the region of
high power.” That is, two competing tests of size o are compared at fixed
alternatives as the power tends to 1. In effect, the tests are compared with
respect to the rate at which the Type II error probability tends to 0 at a fixed
alternative while the Type I error probability is held fixed at a level «, 0 <
o < 1. Theresulting measure, ey, (T, Tg), which we call the Hodges- Lehmann
ARE, is the dual of the Bahadur ARE. The relative importances of the Type I
and Type II error probabilities are reversed.

Like the Bahadur ARE, the computation of the Hodges-Lehmann ARE
is less formidable than the Chernoff index, because the exponential rate of
convergence to 0 needs to be characterized for only one of the error prob-
abilities instead of for both.

In the following example, we continue our study of selected statistics in the
normal location problem and illustrate the computation of ey, (., .).

Example. The Normal Location Problem (Continuation of 10.2.2 and
Examples 10.3.2C, 10.4.1 and 10.4.4A) In general, the critical region {T, > ¢,}
is designed so that o, tends to a limit &, 0 < & < 1, so that at alternatives @ we
have B,(6) — 0 and typically in fact

™ ~2n~" log B,(6) — d(6),
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for some value 0 < d(f) < 0. Let us now consider ®, = {0} and ®, =
[0, ), and assume the f-distribution of X to be N(8, 1). For the mean test
statistic, T, = n'/2X, we must (why?) take ¢, equal to a constant in order that
a, behave as desired. Thus B,(0) is of the form

B(6) = Py(n'*X < o).

A straightforward application of Chernoff’s results (see Corollary 10.3.1 and
Example 10.3.2A) yields (*) with

dy(6) = 6%,

Similarly, for the sign test, as considered in Example 10.4.4A, we obtain (*)
with

ds(6) = —log{4®(0)[1 — MO)]}.
Thus the Hodges-Lehmann ARE of the sign test relative to the mean test is
—log{4®(0)[1 — ®(0)]}
62 )

eHL(S9 M) =

Like the Bahadur ARE eg(S, M), this measure too converges to 2/r as 6 — 0.
Some values of e, (S, M) are as follows.

6 I 0 0253 0.524 1.645 3.090 3719 o

ey (S, M) ' 2/n =064 0636 0.634 0614 0.578 0.566 0.5

Interestingly, as 8 — 00, ey (S, M) — 4 whereas ex(S, M) — 0.

Hodges and Lehmann also evaluate the ¢-test and find that, like the Pitman
ARE, ey (t, M) = 1. On the other hand, the Bahadur comparison gives
(check)

log(1 + 6%) _

eslt, M) = =253

. B

In 10.4.1 we mentioned an “approximate” version of the Bahadur slope.
The analogous concept relative to the Hodges-Lehmann approach has been
investigated by Hettmansperger (1973).

106 HOEFFDING'S INVESTIGATION (MULTINOMIAL DISTRIBUTIONS)

In the spirit of the Chernoff approach, Hoeffding (1965) considers the
comparison of tests at fixed alternatives as both types of error probability
tend to O with increasing sample size. He considers multinomial data and
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brings to light certain superior features of the likelihood ratio test, establishing
the following

Proposition. If a given test of size a,, is ** sufficiently different” from a likeli-
hood ratio test, then there is a likelihood ratio test of size <u, which is con-
siderably more powerful then the given test at “‘most” points in the set of
alternatives when the sample size n is large enough, provided that o, tends to 0
at a suitably fast rate.

In particular, Hoeffding compares the chi-squared test to the likelihood
ratio test and finds that, in the sense described, chi-square tests of simple
hypotheses (and of some composite hypotheses) are inferior to the cor-
responding likelihood ratio tests.

In 10.6.1 we present a basic large deviation theorem for the multinomial
distribution. This is applied in 10.6.2 to characterize optimality of the likeli-
hood ratio test. Connections with information numbers are discussed in 10.6.3.
The chi-squared and likelihood ratio tests are compared in 10.6.4, with dis-
cussion of the Pitman and Bahadur ARE’s also.

10.6.1 A Large Deviation Theorem

Here we follow Hoeffding (1965), whose development is based essentially on
work of Sanov (1957). A treatment is also available in Bahadur (1971).

Let z, = (ny/n, ..., m/n) denote the relative frequency vector associated
with the point (ny, . .., n,) in the sample space of the multinomial (p,, ..., p;;
n) distribution. Let © be the parameter space,

k
0= {P=(P|,~~~»Pk)7!’120’ [=Z|p' = l}'

Let P,(-|p) denote the probability function corresponding to the parameter p.
Thus

k pn‘
Pn({zn}lp) = "'n '_‘i-
=1 M

For any subset 4 of ©, let A™ denote the set of points of the form z, which
lie in A. We may extend the definition of P,(-) to arbitrary sets 4 in ® by
defining

Pn(A |P) = Pn(A(")Ip)'
For pointsx = (x,,...,x,)andp = (py, ..., py) in O, define

k x
x,p=Yx log(——').
i=1 Pi
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As will be seen in 10.6.3, this function may be thought of as a distance between
the points x and p in ©. For sets 4 c © and A < O, define
I(4, P) = inf I(X, I’)

xsA

I(x, A) = inf I(x, p).
pesA
These extend I(x, p) to a distance between a point and a set. In this context,
“large deviation” probability refers to a probability of the form P,(A4|p)
where the distance I(A, p) is positive (and remains bounded away from 0 as
n - oo).

and

Theorem. For sets A < © and points p € ©, we have uniformly

log Po(Alp) _

v ~I(A™, p) + 0(13‘5-'—'), n - o.

n
Remarks. (i) The qualification “uniformly” means that the O(-) function
depends only on k and not on the choice of 4, p and n.

(ii) Note that the above approximation is crude, in the sense of giving an
asymptotic expression for log P,(A4|p) but not one for P,(A|p). However, as
we have seen in Sections 10.3-10.5, this is strong enough for basic applications
to asymptotic relative efficiency. '

(iii) Ifthe set A corresponds to the critical region of a test (of a hypothesis
concerning p), then the above result provides an approximation to the asymp-
totic behavior of the error probabilities. Clearly, we must confine attention to
tests for which the size a, tends to 0 faster than any power of n. The case where
a, tends to 0 more slowly is not resolved by the present development. (See
Problem 10.P.19). B

10.62 The Emergence of the Likelihood Ratio Test
It is quickly seen (exercise) that
(1) Py(2,|p) = Py(z;|2,)e™ """
Now consider the problem of testing the hypothesis
Ho:pe AA < ©)

versus an alternative

H:peN =0 - A,
on the basis of an observation Z,, = Z,,.
The likelihood ratio (LR) test is based on the statistic

SUPyor Pulal®) _ , -ario.
SUPpen Pa(za|P)
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(since 0 < I(x, p) < oo and I(x, x) = 0). Thus the LR test rejects H, when
I(z,, A) > constant.

Now an arbitrary test rejects H, when z,, € A, where A, is a specified subset
of ©. By the theorem, the size «, of the test A4, satisfies

o, = sup Pn(Anlp) = e—nl(A&"’.A)+0(lo|n).
peA
Let us now compare the test A, with the LR test which rejects H, when
z, € B,, where
B, = {x: I(x, A) 2 c,}
and
¢, = I(A™, A).

The critical region B, contains the critical region A4,. In fact, B, is the union
of all critical regions of tests A, for which I(4;, A) = c,, that is, of all tests 4/,
with size <a, (approximately). Moreover, the size a¥ of the test B, satisfies

a:r = @ "n +O(logn)

since I(B®, A) = c,. Hence we have
log a* = log o, + O(log n).

Therefore, if the size a, — 0 faster than any power of n, the right-hand side is
dominated by the term log a,, so that the sizes of the tests are approximately
equal.

These considerations establish: Given any test A, of size «,, such that
a, — 0 faster than any power of n, there exists a LR test which is uniformly at
least as powerful and asymptotically of the same size. (Why uniformly?)

.Furthermore, at “most” points pe ® — A, the test B, is considerably more
powerful than A,, in the sense that the ratio of Type II error probabilities at p
tends to 0 more rapidly than any power of n. For we have

P(B,|p) = g~ "B, p) -~ 1A, p)) + Ollogn)
P.(4,1p)

At these points p for which
(i) P(4,lp)#0

and

n[l(BS:l)! P) - I(As."), P)]
log n -

(i1)

we have that the ratio of error probabilities —0 faster than any power of n.
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10.6.3 The Function Kx, p) as a Distance; Information

The function I(x, p) has a natural generalization including distributions other
than multinomial. Suppose that a model is given by a family of distributions
{F,, 0 € ©}. For any distributions F,, and F,,, suppose that Fq and F,, have
densities f;, with respect to some measure p, for example the measure dp =
{(dF,, + dF,,). Define

I Fo) = [ i ton{ 22
0
with fy, 10g(fy,/ fe,) interpreted as 0 where f5,(x) = 0 and interpreted as oo
where fy,(x) > 0, fp,(x) = 0. Note that this is a generalization of I(x, p). For
example, let u be counting measure.
I(F, G) is an asymmetric measure of distance between F and G. We have

(i) 0<IF,G)< ;
(i) IfI(F,G) < oo, then F < G and I(F, G) = [ log(dF/dG)dF;
(i) I(F,G) = Oifand onlyif F = G.

I(F, G) represents an information measure. It measures the ability to dis-
criminate against G on the basis of observations taken from the distribution
F. As such, this is asymmetric. To see what this means, consider the folowing
example from Chernoff (1952).

Example Let © = {p = (py, p;): p 2 0, p; + p; = 1}. Consider the dis-
tributions p, = (1, 0) and p, = (0.9, 0.1). We have

I(po, Py) < 00, 1(py, po) = 0.

What does this mean? If p, is the true distribution, only a finite number of
observations will be needed to obtain an observation in the second cell,
completely disproving the hypothesis p,. Thus the ability of p, to discrimi-
nate against p, is perfect, and this is measured by I(p,, po) = . On the other
hand, if p, is the true distribution, the fact that no observations ever occur
in the second cell will build up evidence against p, in only a gradual fashion.
In general, points on the boundary of © are infinitely far from interiors
points, but not vice versa. Wl

Let us now interpret statistically the large deviation theorem of 10.6.1,
which may be expressed in the form

P, (A|p) = e™"4"™.p)+Oclogn)

The quantity I(A™, p) represents the shortest distance from the point p to
the set A™. Suppose that A is the critical region of a test: “reject Hy: p = po
when the observed relative frequency vector falls in the region 4.” The above
approximation tells us that the size a, of the test is not much increased by
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adjoining to A all points whose “distance” from p, is at least /(4, p,). The
test so obtained is at least as powerful, since the new critical region contains
the first, and has approximately the same size, It turns out that the latter
test is simply the LR test.

10.6.4 Comparison of 4* and LR Tests

From the considerations of 10.6.2, we see the superiority of the LR test over
the y? test, with respect to power at “most” points in the parameter space,
provided that the tests under consideration have size a«, tending to 0 at a
suitably fast rate. The superiority of the LR test is also affirmed by the
Bahadur approach. From Abrahamson (1965) (or see Bahadur (1971)), we
have for the yx? test the slope

cl(o) = 2I(A(o) pO)) p0)9
where p,, is the (simple) null hypothesis, and

A@®, po) = {PI pe B, i i = poy)’ > i (e Pou)z}’
i=1

Pot i=1 Pot

and we have for the LR test the slope
c2(8) = 21(8, p,).
It is readily checked that ¢,(0) < c,(8), that is,
es(x’, LR) < 1..

As discussed in Bahadur (1971), the set E on which ¢,(8) = ¢,(8) is not yet
known precisely, although some of its features are known.

With respect to Pitman ARE, however, the 2 and LR tests are equivalent.
This follows from the equivalence in distribution under the null hypothesis,
as we saw in Theorem 4.6.1.

10.7 THE RUBIN-SETHURAMAN “BAYES RISK” EFFICIENCY

Rubin and Sethuraman (1965b) consider efficiency of tests from a Bayesian
point of view, and define the “Bayes Risk” ARE of two tests as the limit of
the ratio of sample sizes needed to obtain equal Bayes risks. Namely, for a
statistical procedure T,, and for ¢ > 0, let N(¢) denote the minimum ny such
that for sample size n > n, the Bayes risk of T, is <e&. Then the Rubin-
Sethuraman ARE of a test T, relative to a test T} is given by

. Nge)
ers(Ty, Tp) = lim .
By “Bayes risk of T,” is meant the Bayes risk of the optimal critical region
based on T,
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Illustration. Consider the parameter space ©® = R. Let the null hypothesis
be Hy: 0 = 0. Let 1(0,i),i = 1, 2, denote the losses associated with accepting
or rejecting Hy, respectively, when 6 is true. Let f{0), 0 € @, denote a prior
distribution on ®. Then the Bayes risk of a critical region C based on a
statistic T, is

B,(C) = f(O)0, 2)P((T, € C) + J:Mf (OO, P(T, ¢ C)do

and the “Bayes risk of T,” is B¥(T) = inf¢ B,(C). Typically, an asymptotically
optimal critical region is given by

C, = {T, > c(log n)'1?},

where T, is normalized to have a nondegenerate limit distribution under
H,. Thus moderate deviation probability approximations play a role in
evaluating B}(T). Why do we wish to approximate the rate at which
B¥(T) - 0? Because these approximations enable us to compute egs(., .).
In typical problems, it is found that BY(T) satisfies

BX(T) ~ g(cin~'(logn)), n- o,

where g is a function depending on the problem but not upon the particular
procedure T. For two such competing procedures, it thus follows by inverting
g(-) that

3
eps(Ty, Tp) = 2
A

Moreover, in typical classical problems, this measure egs(., .) coincides
with the Pitman ARE. Like the Pitman approach, the present approach is
“local” in that the (optimal) Bayes procedure based on T places emphasis
on “local” alternatives. However, the present approach differs from the
Pitman approach in the important respect that the size of the test tends to
0 as n — oo. (Explain), Wl

10.P PROBLEMS

Section 10.2

1. Complete details for proof of Theorem 10.2.1.

2. Provide details for the application of the Berry-Esséen theorem in
showing that the sign test statistic considered as T, in 10.2.2 satisfies the
Pitman condition (P1). Check the other conditions (P2)-(P5) also.

3. Show that the Wilcoxon statistic considered as Ty, in 10.2.2 satisfies
the Pitman conditions.
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4. Do the exercises assigned in Examples 10.2.2.
5. Complete details of proof of Theorem 10.2.3.

Section 10.3

6. Show that the likelihood ratio test may be represented as a test
statistic of the form of a sum of LL.D.’s.
7. Complete the details of proof of Theorem 10.3.1.

8. Complete the details of proof of Theorem 10.3.2.

9. Verify Corollary 10.3.1 and also relation (*) in 10.3.2.

10. Let {a,} and {b,} be sequences of nonnegative constants such that
a, = 0and a, ~ b,. Show that log a, ~ log b,.

11. Let {a,} and {b,} be sequences of nonnegative constants such that
a, = 0 and log a, ~ log b,. Does it follow that a, ~ b,?

12.  Supply details for Example 10.3.2A.
13.  Supply details for Example 10.3.2B.
14. Supply details for Example 10.3.2C.

Section 10.4

15. Justify that eg(,, .) is the limit of a ratio h(n)/n of sample sizes for
equivalent performance, as asserted in defining ep.

16. Complete the details of proof of Theorem 10.4.1.

17. Complete details on computation of the slope of the sign test in
Example 10.4.4A.

Section 10.5
18. Complete details for Example 10.5.
Section 10.6
19. Consider two tests {T,}, {T;*} having sizes o,, &* which satisfy
log o} = log a, + O(log n), n— 0.

Show that if «, — O faster than any power of n, then the right-hand side is
dominated by the term log «,. Thus, if «, — 0 faster than any power of n,
then log a* ~ log a,. Show, however, that this does not imply that o} ~ o,.

20. Verify relation (1) in 10.6.2.

21. Check that the Bahadur slope of the x? test does not exceed that of the
LR test, as discussed in 10.6.4.

Section 10.7

22. Justify the assertion at the conclusion of Example 10.7.
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Appendix

1. CONTINUITY THEOREM FOR PROBABILITY FUNCTIONS

If events {B,} are monotone (either B, « B, = --- or B, > B, > --) with
limit B, then

lim P(B,) = P(B).

n-*o0

2. JENSEN'S INEQUALITY

If g(-) is a convex function on R, and X and g(X) are integrable r.v.’s, then

g(E{X}) < E(g(X)}-

3. BOREL-CANTELLI LEMMA
(i) For arbitrary events {B,}, if ), P(B,) < co, then P(B, infinitely

often) = 0.
(if) For independent events {B,}, if ), P(B,) = co, then P(B, infinitely
often) = 1.

4. MINKOWSKI'S INEQUALITY

Forp> lL,andr.v's Xy,..., X,,

[E{ Z":X'lp}]w = ,Z":I[E“Xllp}]”’.
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3s2 APPENDIX
§. FATOU'S LEMMA
If X, =2 Owpl, then

E{!@ x,} < lim E{X,).

n=* a0 n-+ao

6. HELLY’S THEOREMS
(i) Any sequence of nondecreasing functions
Fy(x), Fo(x), ..., Fy(x), ...
which are uniformly bounded contains at least one subsequence

Fp(x), Fpi(x), ..., Fpfx),...

which converges weakly to some nondecreasing function F(x).
(ii) Let f(x) be a continuous function and let the sequence of non-
decreasing uniformly bounded functions

F(x), Fy(x), ..., F(x), ...

converge weakly to the function F(x) on some finite interval a < x < b,
where g and b are points of continuity of the function F(x); then

b b
tim [ f00dF,(x) = f FOdF ().

(iii) If the function f(x) is continuous and bounded over the entire real
line — o0 < x < o0, the sequence of nondecreasing uniformly bounded
functions Fy(x), Fj(x),... converges weakly to the function F(x), and
F(— ) - F(— o) and F,(+ o) = F(+ o), then

lim | foodF,(x) = f FOF ().

n-*ao

7. HOLDER'S INEQUALITY

For p > 0 and g > 0 such that 1/p + 1/g = 1, and for random variables
Xand Y,

EIXY| < (E|XI)'E|Y[H'A.
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