Theorem 2.2.1 Let G = (V, E) be a graph with n vertices and e edges. Then G contains a bipartite subgraph with at least e/2 edges.

Proof. Let $T \subseteq V$ be a random subset given by $\Pr[x \in T] = 1/2$, these choices being mutually independent. Set B = V - T. Call an edge $\{x, y\}$ crossing if exactly one of x, y is in T. Let X be the number of crossing edges. We decompose

$$X = \sum_{\{x,y\} \in E} X_{xy} \,,$$

where X_{xy} is the indicator random variable for $\{x,y\}$ being crossing. Then

$$\mathrm{E}\left[X_{xy}\right] = \frac{1}{2}$$

as two fair coin flips have probability 1/2 of being different. Then

$$\mathrm{E}\left[X
ight] = \sum_{\{x,y\} \in E} \mathrm{E}\left[X_{xy}
ight] = rac{e}{2} \,.$$