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Preface

Differential equations, which describe how quantities change across time or
space, arise naturally in science and engineering, and indeed in almost every
field of study where measurements can be taken. For this reason, students
from a wide range of disciplines learn the fundamentals of calculus. They meet
differentiation and its evil twin, integration, and they are taught how to solve
some carefully chosen examples. These traditional pencil-and-paper techniques
provide an excellent means to put across the underlying theory, but they have
limited practical value. Most realistic mathematical models cannot be solved
in this way; instead, they must be dealt with by computational methods that
deliver approximate solutions.

Since the advent of digital computers in the mid 20th century, a vast amount
of effort has been expended in designing, analysing and applying computational
techniques for differential equations. The topic has reached such a level of im-
portance that undergraduate students in mathematics, engineering, and physi-
cal sciences are typically exposed to one or more courses in the area. This book
provides material for the typical first course—a short (20- to 30-hour) intro-
duction to numerical methods for initial-value ordinary differential equations
(ODEs). It is our belief that, in addition to exposing students to core ideas in
numerical analysis, this type of course can also highlight the usefulness of tools
from calculus and analysis, in the best traditions of applied mathematics.

As a prerequisite, we assume a level of background knowledge consistent
with a standard first course in calculus (Taylor series, chain rule,O(h) notation,
solving linear constant-coefficient ODEs). Some key results are summarized in
Appendices B–D. For students wishing to brush up further on these topics,
there are many textbooks on the market, including [12, 38, 64, 70], and a
plethora of on-line material can be reached via any reputable search engine.
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There are already several undergraduate-level textbooks available that cover
numerical methods for initial-value ODEs, and many other general-purpose nu-
merical analysis texts devote one or more chapters to this topic. However, we
feel that there is a niche for a well-focused and elementary text that concen-
trates on mathematical issues without losing sight of the applied nature of the
topic. This fits in with the general philosophy of the Springer Undergraduate
Mathematics Series (SUMS), which aims to produce practical and concise texts
for undergraduates in mathematics and the sciences worldwide.

Based on many years of experience in teaching calculus and numerical analy-
sis to students in mathematics, engineering, and physical sciences, we have cho-
sen to follow the tried-and-tested format of Definition/Theorem/Proof, omit-
ting some of the more technical proofs. We believe that this type of structure
allows students to appreciate how a useful theory can be built up in a sequence
of logical steps. Within this formalization we have included a wealth of theo-
retical and computational examples that motivate and illustrate the ideas. The
material is broken down into manageable chapters, which are intended to repre-
sent one or two hours of lecturing. In keeping with the style of a typical lecture,
we are happy to repeat material (such as the specification of our initial-value
ODE, or the general form of a linear multistep method) rather than frequently
cross-reference between separate chapters. Each chapter ends with a set of ex-
ercises that serve both to fill in some details and allow students to test their
understanding. We have used a starring system: one star (?) for exercises with
short/simple answers, moving up to three stars (? ? ?) for longer/harder exer-
cises. Outline solutions to all exercises are available to authorized instructors
at the book’s website, which is available via http://www.springer.com. This
website also has links to useful resources and will host a list of corrections to
the book (feel free to send us those).

To produce an elementary book like this, a number of tough decisions must
be made about what to leave out. Our omissions can be grouped into two
categories.

Theoretical We have glossed over the subject of existence and uniqueness of
solutions for ODEs. Rigorous analysis is beyond the scope of this book,
and very little understanding is imparted by simply stating without proof
the usual global Lipschitz conditions (which fail to be satisfied by most
realistic ODE models). Hence, our approach is always to assume that the
ODE has smooth solutions. From a numerical analysis perspective, we have
reluctantly shied away from a general-purpose Gronwall-style convergence
analysis and instead study global error propagation only for linear, scalar
constant-coefficient ODEs. Convergence results are then stated, without
proof, more generally. This book has a strong emphasis on numerical stabil-
ity and qualitative properties of numerical methods hence; implicit methods



Preface ix

have a prominent role. However, we do not attempt to study general con-
ditions under which implicit recurrences have unique solutions, and how
they can be computed. Instead, we give simple examples and pose exer-
cises that illustrate some of the issues involved. Finally, although it would
be mathematically elegant to deal with systems of ODEs throughout the
book, we have found that students are much more comfortable with scalar
problems. Hence, where possible, we do method development and analysis
on the scalar case, and then explain what, if anything, must be changed
to accommodate systems. To minimize confusion, we reserve a bold math-
ematical font (x, f , . . . ) for vector-valued quantities.

Practical This book does not set programming exercises: any computations
that are required can be done quickly with a calculator. We feel that this
is in keeping with the style of SUMS books; also, with the extensive range
of high-quality ODE software available in the public domain, it could be
argued that there is little need for students to write their own low-level
computer code. The main aim of this book is to give students an under-
standing of what goes on “under the hood” in scientific computing soft-
ware, and to equip them with a feel for the strengths and limitations of
numerical methods. However, we strongly encourage readers to copy the
experiments in the book using whatever computational tools they have
available, and we hope that this material will encourage students to take
further courses with a more practical scientific computing flavour. We rec-
ommend the texts Ascher and Petzold [2] and Shampine et al. [62, 63] for
accessible treatments of the practical side of ODE computations and ref-
erences to state-of-the-art software. Most computations in this book were
carried out in the Matlab c© environment [34, Chapter 12].

By keeping the content tightly focused, we were able to make space for
some modern material that, in our opinion, deserves a higher profile outside
the research literature. We have chosen four topics that (a) can be dealt with
using fairly simple mathematical concepts, and (b) give an indication of the
current open challenges in the area:

1. Nonlinear dynamics: spurious fixed points and period two solutions.

2. Modified equations: construction, analysis, and interpretation.

3. Geometric integration: linear and quadratic invariants, symplecticness.

4. Stochastic differential equations: Brownian motion, Euler–Maruyama, weak
and strong convergence.

The field of numerical methods for initial-value ODEs is fortunate to be
blessed with several high-quality, comprehensive research-level monographs.
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Rather than pepper this book with references to the same classic texts, it seems
more appropriate to state here that, for all general numerical ODE questions,
the oracles are [6], [28] and [29]: that is,

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd
edition, Wiley, 2008,

E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equa-
tions I: Nonstiff Problems, 2nd edition, Springer, 1993,

E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff
and Differential-Algebraic Problems, 2nd edition, Springer, 1996.

To learn more about the topics touched on in Chapters 12–16, we recom-
mend Stuart and Humphries [65] for numerical dynamics, Hairer et al. [26],
Leimkuhler and Reich [45], and Sanz-Serna and Calvo [61] for geometric in-
tegration, and Kloeden and Platen [42] and Milstein and Tretyakov [52] for
stochastic differential equations.
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1
ODEs—An Introduction

Mathematical models in a vast range of disciplines, from science and technology
to sociology and business, describe how quantities change. This leads naturally
to the language of ordinary differential equations (ODEs). Typically, we first
encounter ODEs in basic calculus courses, and we see examples that can be
solved with pencil-and-paper techniques. This way, we learn about ODEs that
are linear (constant or variable coefficient), homogeneous or inhomogeneous,
separable, etc. Other ODEs not belonging to one of these classes may also be
solvable by special one-off tricks. However, what motivates this book is the fact
that the overwhelming majority of ODEs do not have solutions that can be
expressed in terms of simple functions. Just as there is no formula in terms of
a and b for the integral ∫ b

a

e−t2 dt,

there is generally no way to solve ODEs exactly. For this reason, we must rely
on numerical methods that produce approximations to the desired solutions.
Since the advent of widespread digital computing in the 1960s, a great many
theoretical and practical developments have been made in this area, and new
ideas continue to emerge. This introductory book on numerical ODEs is there-
fore able to draw on a well-established body of knowledge and also hint at
current challenges.

We begin by introducing some simple examples of ODEs and by motivating
the need for numerical approximations.

D.F. Griffiths, D.J. Higham, Numerical Methods for Ordinary Differential Equations,  
Springer Undergraduate Mathematics Series, DOI 10.1007/978-0-85729-148-6_1,  
© Springer-Verlag London Limited 2010 



2 1. ODEs—An Introduction

Example 1.1

The ODE1

x′(t) = sin(t)− x(t) (1.1)

has a general solution given by the formula x(t) = A e−t + 1
2 sin(t) − 1

2 cos(t),
where A is an arbitrary constant. No such formula is known for the equation

x′(t) = sin(t)− 0.1x3(t), (1.2)

although its solutions, shown in Figure 1.1(right), have a remarkable similarity
to those of equation (1.1) (shown on the left) for the same range of starting
points (depicted by solid dots: •).
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Fig. 1.1 Solution curves for the ODEs (1.1) and (1.2) in Example 1.1

Although this book concerns numerical methods, it is informative to see
how simple ODEs like (1.1) can be solved by pencil-and-paper techniques. To
determine the exact solutions of linear problems of the form

x′(t) = λ(t)x(t) + f(t) (1.3)

we may first consider the homogeneous equation2 that arises when we ignore
terms not involving x or its derivatives. Solving x′(t) = λ(t)x(t) gives the so-
called complementary function x(t) = Ag(t), where

g(t) = exp
(∫ t

0

λ(s) ds

)
1Here, and throughout, we shall use the notation x′(t) to denote the derivative

d

dt
x(t) of x(t).
2A function F (x) is said to be homogeneous (of degree one) if F (λx) = λF (x). It

implies that the equation F (x) = 0 remains unchanged if x is replaced by λx.
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is the integrating factor and A is an arbitrary constant. The original problem
can now be solved by a process known as variation of constants. A solution is
sought in which the constant A is replaced by a function of t. That is, we seek
a particular solution of the form x(t) = a(t)g(t). Substituting this into (1.3)
and simplifying the result gives

a′(t) =
f(t)
g(t)

,

which allows a(t) to be expressed as an integral. The general solution is obtained
by adding this particular solution to the complementary function, so that

x(t) = Ag(t) + g(t)
∫ t

0

f(s)
g(s)

ds. (1.4)

This formula is often useful in the theoretical study of differential equations,
and its analogue for sequences will be used to analyse numerical methods in
later chapters; its utility for constructing solutions is limited by the need to
evaluate integrals.

Example 1.2

The differential equation

x′(t) +
2

1 + t4
x(t) = sin(t)

has the impressive looking integrating factor

g(t) =

{
exp

[
2 tan−1(1 +

√
2t)

]
exp

[
2 tan−1(1−

√
2t)

] t2 +
√

2t + 1
t2 −

√
2t + 1

}1/(2
√

2)

,

which can be used to give the general solution

x(t) = Ag(t) + g(t)
∫ t

0

sin(s)
g(s)

ds.

The integral can be shown to exist for all t ≥ 0, but it cannot be evaluated in
closed form. Solutions from a variety of starting points are shown in Figure 1.2
(these were computed using a Runge–Kutta method of a type we will discuss
later). This illustrates the fact that knowledge of an integrating factor may be
useful in deducing properties of the solution but, to compute and draw graphs
of trajectories, it may be much more efficient to solve the initial-value problem
(IVP) using a suitable numerical method.
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Fig. 1.2 Solution curves for the ODE
in Example 1.2. The various starting
values are indicated by solid dots (•)

In this book we are concerned with first-order ODEs of the general form

x′(t) = f(t, x(t)) (1.5)

in which f(t, x) is a given function. For example, f(t, x) = sin(t) − x in (1.1),
and in (1.2) we have f(t, x) = sin(t)− 0.1x3.

The solutions of equations such as (1.5) form a family of curves in the (t, x)
plane—as illustrated in Figure 1.1—and our task is to determine just one curve
from that family, namely the one that passes through a specified point. That
is to say, we shall be concerned with numerical methods that will determine an
approximate solution to the IVP

x′(t) = f(t, x(t)), t > t0
x(t0) = η

}
. (1.6)

For example, the heavier curves emanating from the points P shown in Fig-
ure 1.1 are the solutions of the IVPsfor the differential equations (1.1) and
(1.2) in Example 1.1 with the common starting value x( 5

2 ) = 5. We emphasize
that approximate solutions will only be computed to IVPs—general solutions
containing arbitrary constants cannot be approximated by the techniques de-
scribed in this book. Because most ODEs describe the temporal rate of change
of some physical quantity, we will refer to t as the time variable.

It will always be assumed that the IVP has a solution in some time interval
[t0, tf ] for some value of tf > t0. In many cases there is a solution for all t > t0
but we are usually interested in the solution only for a limited time, perhaps
up until it approaches a steady state—after which time the solution changes
imperceptibly. In some instances (such as those modelling explosions, for in-
stance) the solution may not exist for all time. See, for instance, Exercise 1.3.
The reference texts listed in the Preface provide more information regarding
existence and uniqueness theory for ODEs.

Problems of the type (1.6) involving just a single first-order differential
equation form only a small class of the ODEs that might need to be solved in
practical applications. However, the methods we describe will also be applicable
to systems of differential equations and thereby cover many more possibilities.
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1.1 Systems of ODEs

Consider the IVP for the pair of ODEs

u′(t) = p(t, u, v), u(t0) = η0,

v′(t) = q(t, u, v), v(t0) = η1,
(1.7)

where u = u(t) and v = v(t). Generally these are coupled equations that have to
be solved simultaneously. They can be written as a vector system of differential
equations by defining

x =
[
u

v

]
, f(t,x) =

[
p(t, u, v)
q(t, u, v)

]
, η =

[
η0

η1

]
,

so that we have the vector form of (1.6):

x′(t) = f(t,x(t)), t > t0
x(t0) = η

}
. (1.8)

In this case, x,η ∈ R2 and f : R × R2 → R2. The convention in this book is
that bold-faced symbols, such as x and f , are used to distinguish vector-valued
quantities from their scalar counterparts shown in normal font: x, f .

More generally, IVPsfor coupled systems of m first-order ODEs will also
be written in the form (1.8) and in such cases x and η will represent vectors
in Rm and f : R× Rm → Rm.

Differential equations in which the time variable does not appear explicitly
are said to be autonomous. Thus, x′(t) = g(x(t)) and x′(t) = x(t)(1 − x(t))
are autonomous but x′(t) = (1 − 2t)x(t) is not. Non-autonomous ODEs can
be rewritten as autonomous systems—we shall illustrate the process for the
two-variable system (1.7). We now define

x =

t

u

v

, f(x) =

 1
p(t, u, v)
q(t, u, v)

, η =

t0
η0

η1

.

The first component x1 of x satisfies x′1(t) = 1 with x1(0) = t0 and so x1(t) ≡ t.
We now have the autonomous IVP

x′(t) = f(x(t)), t > t0
x(t0) = η

}
. (1.9)
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Example 1.3 (Lotka–Volterra Equations)

The Lotka–Volterra equations (developed circa 1925) offer a simplistic model of
the conflict between populations of predators and prey. Suppose, for instance,
that the numbers of rabbits and foxes in a certain region at time t are u(t) and
v(t) respectively. Then, given the initial population sizes u(0) and v(0) at time
t = 0, their numbers might evolve according to the autonomous system

u′(t) = 0.05u(t)
(
1− 0.01v(t)

)
,

v′(t) = 0.1v(t)
(
0.005u(t)− 2

)
.

(1.10)

These ODEs reproduce certain features that make sense in this predator-prey
situation. In the first of these:

– Increasing the number of foxes (v(t)) decreases the rate (u′(t)) at which
rabbits are produced (because more rabbits get eaten).

– Increasing the number of rabbits (u(t)) increases the rate at which rabbits
are produced (because more pairs of rabbits are available to mate).

The solutions corresponding to an initial population of 1500 rabbits (solid
curves) and 100 foxes (dashed curves) are shown on the left of Figure 1.3.
On the right we plot these, and other solutions, in the phase plane, i.e., the
locus of the point (u(t), v(t)) parameterized by t for 0 ≤ t ≤ 600. Initially there
are 100 foxes and the three curves correspond to there being initially 600, 1000,
and 1500 rabbits (the starting values are shown by solid dots). The periodic
nature of the populations can be deduced from the fact that these are closed
curves. The “centre” of rotation is indicated by a small circle.

The text by Murray [56] is packed with examples where ODEs are used to
model biological processes.
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Fig. 1.3 Solutions for the Lotka–Volterra equations (1.10)
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Example 1.4 (Biochemical Reactions)

In biochemistry, a Michaelis–Menten-type process involving

– a substrate S,

– an enzyme E,

– a complex C, and

– a product P

could be summarized through the reactions

S + E
c1→ C

C
c2→ S + E

C
c3→ P + E.

In the framework of chemical kinetics, this set of reactions may be interpreted
as the ODE system

S′(t) = −c1S(t) E(t) + c2C(t),

E′(t) = −c1S(t) E(t) + (c2 + c3)C(t),

C ′(t) = c1S(t) E(t)− (c2 + c3)C(t),

P ′(t) = c3C(t),

where S(t), E(t), C(t) and P (t) denote the concentrations of substrate, enzyme,
complex and product, respectively, at time t.

Letting x(t) be the vector [S(t), E(t), C(t), P (t)]T, this system fits into the
general form (1.8) with m = 4 components and

f(t,x) =


−c1x1x2 + c2x3

−c1x1x2 + (c2 + c3)x3

c1x1x2 − (c2 + c3)x3

c3x3

.

In Figure 1.4 we show how the levels of substrate and product, x1(t) and
x4(t) respectively, evolve over time. It is clear that the substrate becomes de-
pleted as product is created. Here we took initial conditions of x1(0) = 5×10−7,
x2(0) = 2× 10−7, x3(0) = x4(0) = 0, with rate constants c1 = 106, c2 = 10−4,
c3 = 0.1, based on those in Wilkinson [69] that were also used in Higham [33].

We refer to Alon [1] and Higham [33] for more details about how ODE
models are used in chemistry and biochemistry.
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Fig. 1.4 Substrate and product con-
centrations from the chemical kinetics
ODE of Example 1.4

Example 1.5 (Fox-Rabbit Pursuit)

Curves of pursuit arise naturally in military and predator-prey scenarios when-
ever there is a moving target. Imagine that a rabbit follows a predefined path,
(r(t), s(t)), in the plane in an attempt to shake off the attentions of a fox. Sup-
pose further that the fox runs at a speed that is a constant factor k times the
speed of the rabbit, and that the fox chases in such a way that at all times its
tangent points at the rabbit. Straightforward arguments then show that the
fox’s path (x(t), y(t)) satisfies

x′(t) = R(t) (r(t)− x(t)),

y′(t) = R(t) (s(t)− y(t)),

where

R(t) =
k
√

r′(t)2 + s′(t)2√
(r(t)− x(t))2 + (s(t)− y(t))2

.

In the case where the rabbit’s path (r(t), s(t)) is known, this is an ODE system
of the form (1.8) with m = 2 components.

In Figure 1.5 the rabbit follows an outward spiral[
r(t)
s(t)

]
=
√

1 + t

[
cos t

sin t

]
,

shown as a dashed curve in the x, y plane, with a solid dot marking the initial
location. The fox’s path, found by solving the ODE with a numerical method,
is shown as a solid line. The fox is initially located at x(0) = 3, y(0) = 0
and travels k = 1.1 times as quickly as the rabbit. We solved the ODE up to
t = 5.0710, which is just before the critical time where rabbit and fox meet
(marked by an asterisk). At that point the ODE would be ill defined because
of a division-by-zero error in the definition of R(t) (and because of a lack of
rabbit!).
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Fig. 1.5 Fox-rabbit pursuit curve
from Example 1.5

This example is taken from Higham and Higham [34, Chapter 12], where
further details are available. A comprehensive and very entertaining coverage
of historical developments in the field of pursuit curves can be found in Nahin’s
book [58].

Example 1.6 (Zombie Outbreak)

ODEs are often used in epidemiology and population dynamics to describe the
spread of a disease. To illustrate these ideas in an eye-catching science fiction
context, Munz et al. [55] imagined a zombie outbreak. At each time t, their
model records the levels of

– humans H(t),

– zombies Z(t),

– removed (‘dead’ zombies) R(t), which may return as zombies.

It is assumed that a zombie may irreversibly convert a human into a zombie. On
the other hand, zombies cannot be killed, but a plucky human may temporarily
send a zombie into the ‘removed’ class. The simplest version of the model takes
the form

H ′(t) = −βH(t)Z(t),

Z ′(t) = βH(t)Z(t) + ζR(t)− αH(t)Z(t),

R′(t) = αH(t)Z(t)− ζR(t).

The (constant, positive) parameters in the model are:

– α, dealing with human–zombie encounters that remove zombies.

– β, dealing with human–zombie encounters that convert humans to zombies.

– ζ, dealing with removed zombies that revert to zombie status.
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Figure 1.6 shows the case where β = 0.01. α = 0.005 and ζ = 0.02. We
set the initial human population to be H(0) = 500 with Z(0) = 10 zombies.
We have in mind the scenario where a group of zombies from Lenzie, near
Glasgow, attacks the small community of Newport in Fife. The figure shows
the evolution of the human and zombie levels, and the doomsday outcome of
total zombification.

The issue of how to infer the model parameters from observed human/zombie
population levels is treated in [7].
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Fig. 1.6 Human and zombie popula-
tion levels from Example 1.6

Example 1.7 (Method of Lines for Partial Differential Equations)

The numerical solution of partial differential equations (PDEs) can lead to
extremely large systems of ODEs. Consider the solution of Fisher’s equation

∂u

∂t
=

∂2u

∂x2
+ u(1− u)

defined for 0 < x < 5 and t > 0. The solution u(t, x) also has to satisfy
boundary conditions u(t, 0) = 0 and u(t, 5) = 1, and match given initial data
u(0, x), which we take to be

u(0, x) = ex/5−1 sin2 3
10πx, 0 ≤ x ≤ 5.

This is a simple example of one of the many initial-boundary-value problems for
equations of reaction-diffusion type that occur in chemistry, biology, ecology,
and countless other areas. It can be solved numerically by dividing the interval
0 < x < 5 into 5N subintervals (say) by the points xj = j/N , j = 0 : 5N and
using uj(t) to denote the approximation to u(xj , t) at each of these locations.3

After approximating the second derivative in the equation by finite differences

3For integers m < n, j = m : n is shorthand for j = m, m + 1, m + 2, . . . , n.



1.1 Systems of ODEs 11

(see, for instance, Leveque [47] or Morton and Mayers [54]) we arrive at a
system of 5N − 1 differential equations, of which a typical equation is

u′j = N2(uj−1 − 2uj + uj+1) + uj − u2
j,

(j = 1 : 5N−1) with end conditions u0(t) = 0, u5N (t) = 1 and initial conditions
that specify the values of uj(0):

uj(0) = e1−j/5N sin2 3j
10N π, j = 1 : 5N − 1.

By defining the vector function of t

u(t) = [u1(t), u2(t), . . . , u5N−1(t)]T

and the (5N − 1)× (5N − 1) tridiagonal matrix A

A = N2


−2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2

 (1.11)

we obtain a system of the form

u′(t) = Au(t) + g(u(t)), t > 0,

where the jth component of g(u) is uj − u2
j (except for the last component,

g5N−1(u), which has an additional term, N2, due to the non-zero boundary
condition at x = 5) and u(0) = η is the known vector of initial data. The
solution with N = 6 is shown in Figure 1.7 for 0 ≤ t ≤ 0.1.

0
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5
0

1

t
xj

u
j
(t

)

Fig. 1.7 Solution for the 29 ODEs
approximating Fisher’s equation with
N = 6. The initial conditions for
the components are indicated by solid
dots (•)

Generally, PDEs involving one spatial variable (x) typically lead to 100–1000
ODEs. With two spatial variables (x and y) these numbers become 1002–10002

so the number of ODEs in a system may run to millions.
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1.2 Higher Order Differential Equations

Some mathematical models involve derivatives higher than the first. For ex-
ample, Newton’s laws of motion involve acceleration—the second derivative of
position with respect to time. Such higher-order ODEs are automatically con-
tained in the framework of systems of first-order ODEs. We first illustrate the
idea with an example.

Example 1.8 (Van der Pol Oscillator)

For the second-order IVP

x′′(t) + 10(1− x2(t))x′(t) + x(t) = sin πt,

x(t0) = η0, x′(t0) = η1,

we define u = x, v = x′ so that

u′(t) = v(t),

v′(t) = −10(1− u2(t))v(t)− u(t) + sinπt,

with initial conditions u(t0) = η0 and v(t0) = η1. These equations are now in
the form (1.7), so that we may again write them as (1.8), where

x(t) =
[
u(t)
v(t)

]
, f(t,x(t)) =

[
v(t)

−10
(
1− u2(t)

)
v(t)− u(t) + sinπt

]
.

The solution of the unforced equation, where the term sinπt is dropped, for
the initial condition u(0) = 1, v(0) = 5 is shown in Figure 1.8 for 0 ≤ t ≤ 100.
After a short initial phase (0 ≤ t ≤ 0.33—shown as a broken curve emanating
from P) the solution approaches a periodic motion; the limiting closed curve
is known as a limit cycle. In the figure on the left the solution v(t) ≡ x′(t) is
shown as a broken curve and appears as a sequence of spikes.

It is straightforward to extend the second-order example in Example 1.8 to
a differential equation of order m:

x(m)(t) = f
(
t, x(t), x′(t), . . . , x(m−1)(t)

)
. (1.12)

New dependent variables may be introduced for the function x(t) and each of
its first (m− 1) derivatives:

x1(t) = x(t),

x2(t) = x′(t),
...

xm(t) = x(m−1)(t).
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Fig. 1.8 Solution for the ODEs representing the unforced Van der Pol equa-
tion of Example 1.8. On the left, u(t) ≡ x(t) (solid curve) and v(t) ≡ x′(t)
(broken curve) are shown as functions of t. The phase portrait is drawn on the
right, where P marks the initial point

There are obvious relationships between the first (m− 1) such functions:

x′1(t) = x2(t),

x′2(t) = x3(t),
...

x′m−1(t) = xm(t).

These, together with the differential equation, which has become,

x′m(t) = f(t, x1(t), x2(t), . . . , xm(t)),

give a total of m ODEs for the components of the m-dimensional vector function
x = [x1, x2, . . . , xm]T. The corresponding IVP for x(t) has values specified for
the function itself as well as its first (m − 1) derivatives at the initial time
t = t0, and these give directly the initial conditions for the m components of
x(t0). We therefore have an IVP of the form (1.8), where

f(t,x(t)) =


x2(t)
x3(t)

...
xm(t)

f(t, x1(t), x2(t), . . . , xm(t))

, η =


x(0)
x′(0)

...
x(m−2)(0)
x(m−1)(0)

.

The general principle in this book is that numerical methods will be constructed
and analysed, in the first instance, for approximating the solutions of IVPs for
scalar problems of the form given in (1.6), after which we will discuss how the
same methods apply to problems in the vector form (1.8).
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1.3 Some Model Problems

One of our strategies in assessing numerical methods is to apply them to very
simple problems to gain understanding of their behaviour and then attempt to
translate this understanding to more realistic scenarios.

Examples of simple model ODEs are:

1. x′(t) = λx(t), x(0) = 1, λ ∈ <; usually λ < 0 so that x(t) → 0 as t →∞.

2. x′(t) = ix(t), x(0) = 1 (i =
√
−1) modelling oscillatory motion (see Exer-

cise 1.6).

3. x′(t) = −100x(t) + 100e−t, x(0) = 2. The exact solution is x(t) = e−t +
e−100t, which combines two decaying terms, one of which is very rapid and
one that decays more slowly. Hence, there are two distinct time scales in
this solution.4

4. x′(t) = 1, x(0) = 0.

5. x′(t) = 0, x(0) = 0.

The last two, in particular, are trivial, but of course, a numerical method, if
it is to be useful, must work well on such simple examples—if methods cannot
reproduce the solutions to these problems then they are deemed to be un-
suitable for solving any IVPs. Through use of simple ODEs we can highlight
deficiencies; and the simpler the ODE, the simpler the analysis is.

Example 1.9 (A Cooling Cup of Coffee)

Although linear ODEs such as 1–5 above are useful for testing numerical meth-
ods, they may also arise as mathematical models. For example, suppose that
a cup of boiling coffee is prepared at time t = 0 and cools according to New-
ton’s law of cooling: the rate of change of temperature is proportional to the
difference in temperature between the coffee and the surrounding room (see,
for instance, Chapter 12 of Fulford et al. [20]). Suppose that u(t) represents
the coffee temperature (in degrees Celsius) after t hours. This leads to the
differential equation

u′(t) = −α(u(t)− v),

where α is known as the rate constant (which will be taken to be α = 8◦C h−1)
and v represents room temperature. We consider a number of scenarios (see Fig-
ure 1.9).

4Recall that the function A e−λt (λ ∈ R) decays to half its initial value (A at
t = 0) in a time t = (log 2)/λ ≈ 0.7/λ, commonly referred to as its half-life. The
larger the rate constant λ is, the more quickly it decays.
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1. Room temperature is a constant v = 20◦C. We then have a scalar IVP

u′(t) = −8(u(t)− 20), u(0) = 100. (1.13)

This has solution u(t) = 80e−8t + 20.

2. The room is also cooling according to Newton’s law from an initial temper-
ature of 20◦C with a rate constant 1/8 and exterior temperature of 5◦C.
With v(t) denoting room temperature, we have the following system of two
ODEs

u′(t) = −8(u(t)− v(t)), u(0) = 100,

v′(t) = −(v(t)− 5)/8, v(0) = 20.
(1.14)

The second of these ODEs may be solved to give

v(t) = 15e−t/8 + 5,

which can be used to give a scalar IVP for u:

u′(t) = −8(u(t)− 15e−t/8 − 5), u(0) = 100. (1.15)

It follows that u(t) = 1675
21 e−8t + 320

21 e−t/8 + 5 (see Exercise 1.13).

3. There is a third situation where the coffee container is well insulated and
the room is not. We may model this by the IVP

u′(t) = − 1
8 (u(t)− 5 + 5025e−8t), u(0) = 100, (1.16)

so that it has the same solution as (1.15). Although the two problems have
the same solution, numerical methods applied to the two problems will
generally behave differently, and this will be explored in due course (see
Examples 6.1 and 6.2).
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Fig. 1.9 The solution of (1.13) (left) and (1.14)–(1.16) (right)
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EXERCISES

1.1.? Use the variation of constants formula (1.4) to derive the exact
solution of the ODE (1.1).

1.2.?? Complete the details leading up to the variation of constants for-
mula (1.4).

1.3.?? Show that the IVP x′(t) = x(t)(1 − x(t)), x(10) = −1/5, has
solution x(t) = 1/(1 − 6e10−t). Deduce that x(t) → −∞ as t →
10 + log 6 ≈ 11.79—the solution is said to blow up in finite time.

1.4.?? Show that x(t) = t(4 − t)/4 satisfies both the ODE x′(t) =√
1− x(t) and the starting condition x(0) = 0 but cannot be a

solution of the IVP for t > 2 since the formula for x(t) has a nega-
tive derivative while the right-hand side of the ODE is non-negative
for all t.

1.5.?? Rewrite the following IVPsas IVPs for first order systems, as illus-
trated in Section 1.2.

(a) Simple harmonic motion:

θ′′(t) + θ(t) = 0, θ(0) = π/10, θ′(0) = 0.

(b)

x′′(t)− x′(t)− 2x(t) = 1 + 2t, x(0) = 1, x′(0) = 1.

(c)

x′′′(t)− 2x′′(t)− x′(t) + 2x(t) = 1− 2t,

x(0) = 1, x′(0) = 1, x′′(0) = 0.

1.6.?? Suppose that λ ∈ C. Show that the complex ODE x′(t) = λx(t)
may be written as a first-order system of two real ODEs. (Hint: let
x(t) = u(t)+iv(t) and λ = a+ib and consider the real and imaginary
parts of the result.)

When a = 0, use the chain rule to verify that

d
dt

(
u2(t) + v2(t)

)
= 0

so that solutions lie on the family of circles u2(t) + v2(t) = constant
in the u-v phase plane.
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1.7.? Write the differential equation of Example 1.2 as an autonomous
system with two components.

1.8.? Use the system of ODEs (1.10) to decide whether the periodic mo-
tion described by the rightmost set of curves in Figure 1.3 is clock-
wise or counter clockwise.

1.9.?? Show that the IVP

x′′(t)− ax′(t)− bx(t) = f(t), x(0) = ξ, x′(0) = η

may be written as a first-order system x′(t) = Ax(t) + g(t), where
A is a 2 × 2 matrix, x = [x, x′]T and the components of the 2 × 1
vector g should be related to the forcing function f(t). What is the
characteristic polynomial of A?

1.10.?? Write the IVP

x′′′(t)− ax′′(t)− bx′(t)− cx = f(t),

x(0) = ξ, x′(0) = η, x′′(0) = ζ

as a first-order system x′(t) = Ax(t) + g(t). What is the character-
istic polynomial of A?

1.11.? By summing the first, third and fourth ODEs in the Michaelis–
Menten chemical kinetics system of Example 1.4, show that S′(t) +
C ′(t) + P ′(t) = 0. This implies that the total amount of “substrate
plus complex plus product” does not change over time. Convince
yourself that this conservation law is intuitively reasonable, given
the three chemical reactions involved. (Invariants of this type will
be discussed in Chapter 14.)

1.12.? Show that, for the populations in Example 1.6, the total population
H(t) + Z(t) + R(t) remains constant in time.

1.13.? Differentiate u(t) = 1675
21 e−8t + 320

21 e−t/8 + 5 and hence verify that
this function solves both the ODEs (1.15) and (1.16).

1.14.??? Suppose that x(t) denotes the solution of the ODE x′(t) = 1 +
x2(t).

(a) Find the general solution of the given differential equation and
show that it contains one arbitrary constant.

(b) Use the change of dependent variable x(t) = −y′(t)/y(t) to show
that x(t) will solve the given first-order differential equation pro-
vided y(t) solves a certain linear second-order differential equa-
tion and determine the general solution for y(t).
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Deduce the general solution for x(t) and explain why this ap-
pears to contain two arbitrary constants.

1.15.? Consider the logistic equation x′(t) = ax(t)
(
1− x(t)

X

)
, in which the

positive constants a and X are known as the growth (proliferation)
rate and carrying capacity, respectively. This might model the num-
ber of prey x(t) at time t in a total population of predators and prey
comprising a fixed number X of individuals.

Derive the corresponding ODE for the fraction u(τ) = x(t)/X of
prey in the population as a function of the scaled time τ = a t.



2
Euler’s Method

During the course of this book we will describe three families of methods for nu-
merically solving IVPs: the Taylor series (TS) method, linear multistep methods
(LMMs) and Runge–Kutta (RK) methods.

They aim to solve all IVPs of the form

x′(t) = f(t, x(t)), t > t0
x(t0) = η

}
(2.1)

that possess a unique solution on some specified interval, t ∈ [t0, tf ] say.
The three families can all be interpreted as generalisations of the world’s

simplest method: Euler’s method. It is appropriate, therefore, that we start
with detailed descriptions of Euler’s method and its derivation, how it can be
applied to systems of ODEs as well as to scalar problems, and how it behaves
numerically.

We shall, throughout, use h to refer to a “small” positive number called the
“step size” or “grid size”: we will seek approximations to the solution of the
IVP at particular times t = t0, t0+h, t0+2h, ..., t0+nh, . . ., i.e., approximations
to the sequence of numbers x(t0), x(t0+h), x(t0+2h),. . . , x(t0+nh), . . ., rather
than an approximation to the curve {x(t) : t0 ≤ t ≤ tf}.
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2.1 A Preliminary Example

To illustrate the process we begin with a specific example before treating the
general case.

Example 2.1

Use a step size h = 0.3 to develop an approximate solution to the IVP

x′(t) = (1− 2t)x(t), t > 0
x(0) = 1

}
(2.2)

over the interval 0 ≤ t ≤ 0.9.

We have purposely chosen a problem with a known exact solution

x(t) = exp[ 14 − ( 1
2 − t)2] (2.3)

so that we can more easily judge the level of accuracy of our approximations.
At t = 0 we have x(0) = 1 and, from the ODE, x′(0) = 1. This information

enables us to construct the tangent line to the solution curve at t = 0: x = 1+t.
At the specified value t = 0.3 we take the value x = 1.3 as our approximation:
x(0.3) ≈ 1.3. This is illustrated on the left of Figure 2.1—here the line joining
P0(0,1) and P1(0.3, 1.3) is tangent to the exact solution at t = 0.

To organize the results we let tn = nh, n = 0, 1, 2, . . ., denote the times at
which we obtain approximate values and denote by xn the computed approxi-
mation to the exact solution x(tn) at t = tn. It is also convenient to record the
value of the right side of the ODE at the point (tn, xn):

x′n = (1− 2tn)xn.

The initial conditions and first step are summarized by

n = 0 : t0 = 0 , n = 1 : t1 = t0 + h = 0.3,

x0 = 1, x1 = x0 + hx′0 = 1.3,

x′0 = 1, x′1 = (1− 2t1)x1 = 0.52.

The process is now repeated: we construct a line through P1(t1, x1) that
is tangent to the solution of the differential equation that passes through P1

(shown as a dashed curve in Figure 2.1 (m iddle)). This tangent line passes
through (t1, x1) and has slope x′1:

x = x1 + (t− t1)x′1.
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At t = 2h we find
x2 = x1 + hx′1,

so the calculations for the next two steps are

n = 2 : t2 = t1 + 0.3 = 0.6, n = 3 : t3 = t2 + h = 0.9,

x2 = x1 + hx′1 = 1.456, x3 = x2 + hx′2 = 1.3686,

x′2 = (1− 2t2)x2 = −0.2912, x′3 = (1− 2t3)x3 = −1.0949.

The points Pn(tn, xn) (n = 0, 1, 2, 3) are shown in Figure 2.1. For each n the line
PnPn+1 is tangent to the solution of the differential equation x′(t) = (1−2t)x(t)
that passes through the point x(t) = xn at t = tn.

2.1.1 Analysing the Numbers

The computed points P1, P2, P3 in Figure 2.1 are an appreciable distance from
the solid curve representing the exact solution of our IVP. This is a consequence
of the fact that our chosen time step h = 0.3 is too large. In Figure 2.2 we show
the results of computing the numerical solutions (shown as solid dots) over
the extended interval 0 ≤ t ≤ 3 with h = 0.3, 0.15, and 0.075. Each time h is
halved:

1. Twice as many steps are needed to find the solution at t = 3.
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Fig. 2.1 The development of a numerical solution to the IVP in Example 2.1
over three time steps. The exact solution of the IVP is shown as a solid curve
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Fig. 2.2 Numerical solutions for Example 2.1 with h = 0.3 (left), h = 0.15
(middle) and h = 0.075 (right)



22 2. Euler’s Method

h xn Global errors (GEs) GE/h

0.3 x3 = 1.3686 x(0.9)− x3 = −0.2745 −0.91
0.15 x6 = 1.2267 x(0.9)− x6 = −0.1325 −0.89
0.075 x12 = 1.1591 x(0.9)− x12 = −0.0649 −0.86
Exact x(0.9) = 1.0942

Table 2.1 Numerical results at t = 0.9 with h = 0.3, 0.15 and 0.075

2. The computed points lie closer to the exact solution curve. This illustrates
the notion that the numerical solution converges to the exact solution as
h → 0.

To obtain more concrete evidence, the numerical solutions at t = 0.9 are shown
in Table 2.1; since the exact solution at this time is known, the errors in the
approximate values may be calculated. The difference

en = x(tn)− xn

is referred to as the global error (GE) at t = tn. It is seen from the table that
halving h results in the error being approximately halved. This suggests that
the GE is proportional to h:

en ∝ h.

It is possible to prove that this is true for a wide class of (nonlinear) IVPs;
we will develop some theory along these lines in Section 2.4 for a model linear
problem. The final column in Table 2.1 suggests that the constant of propor-
tionality in this case is about −0.9 : en ≈ −0.9h, when nh = 0.9; so, were
we to require an accuracy of three decimal places, h would have to be small
enough that |en| < 0.0005, i.e. h < 0.0005/0.9 ≈ 0.00055. Consequently, the
integration to t = 0.9 would require about n = 0.9/h ≈ 1620 steps.

An alternative view is that, for each additional digit of accuracy, the GE
should be reduced by a factor of 10, so h should also be reduced by a factor of 10
and, consequently, 10 times as many steps are required to integrate to the same
final time. Thus, 10 times as much computational effort has to be expended to
improve the approximation by just one decimal place—a substantial increase
in cost.

2.2 Landau Notation

We will make extensive use of the standard notation wherein O(hp), with p a
positive integer, refers to a quantity that decays at least as quickly as hp when



2.3 The General Case 23

h is small enough. More precisely, we write z = O(hp) if there exist positive
constants h0 and C such that

|z| ≤ Chp, for all 0 < h < h0,

so that z converges to zero as h → 0 and the order (or rate) of convergence is p.
The O(hp) notation is intended to convey the impression that we are interested
primarily in p and not C, and we say that “z is of order hp” or “z is of pth
order”. For example, the Maclaurin expansion of eh is

eh = 1 + h + 1
2!h

2 + 1
3!h

3 + · · ·+ 1
n!h

n + · · · ,

from which we deduce

eh = 1 +O(h) (2.4a)

= 1 + h +O(h2) (2.4b)

= 1 + h + 1
2!h

2 +O(h3). (2.4c)

We use this idea to compare the magnitudes of different terms: for example,
the O(h3) term in (2.4c) will always be smaller than the O(h2) term in (2.4b)
provided h is sufficiently small; the higher the order, the smaller the term. The
notion of “sufficiently small” is not precise in general: h3 is less than h2 for
h < 1, while 100h3 is less than h2 for h < 1/100. Thus, the smallness of h

depends on the context.
All methods that we discuss will be founded on the assumption that the

solution x(t) is smooth in the sense that as many derivatives as we require are
continuous on the interval (t0, tf). This will allow us to use as many terms as
we wish in Taylor series expansions.

2.3 The General Case

To develop Euler’s method for solving the general IVP (2.1) the approximation
process begins by considering the Taylor series of x(t + h) with remainder (see
Appendix B):

x(t + h) = x(t) + hx′(t) + R1(t). (2.5)

The remainder term R1(t) is called the local truncation error (LTE). If x(t)
is twice continuously differentiable on the interval (t0, tf) the remainder term
may be written as

R1(t) = 1
2!h

2x′′(ξ), ξ ∈ (t, t + h). (2.6)
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Then, if a positive number M exists so that |x′′(t)| ≤ M for all t ∈ (t0, tf), it
follows that

|R1(t)| ≤ 1
2Mh2,

i.e., R1(t) = O(h2).
To derive Euler’s method we begin by substituting x′(t) = f(t, x) into the

Taylor series (2.5) to obtain

x(t + h) = x(t) + hf(t, x(t)) + R1(t). (2.7)

We now introduce a grid of points t = tn, where

tn = t0 + nh, n = 1 : N (2.8)

and N = b(tf − t0)/hc is the number of steps1 of length h needed to reach, but
not exceed, t = tf . With t = tn (for n < N) in (2.7) we have

x(tn+1) = x(tn) + hf(tn, x(tn)) + R1(tn), n = 0 : N − 1,

and, with the initial condition x(t0) = η, we would be able to compute the
exact solution of the IVP on the grid {tn}N

n=0 using this recurrence relation
were the LTE term R1(t) not present.

However, since R1(t) = O(h2), it can be made arbitrarily small (by taking
h to be sufficiently small) and, when neglected, we obtain Euler’s method,

xn+1 = xn + hf(tn, xn), n = 0, 1, 2, . . . ,

with which we can compute the sequence {xn} given that x0 = η. We shall use
the notation

fn ≡ f(tn, xn) (2.9)

for the value of the derivative at t = tn, so that Euler’s method may be written
as

xn+1 = xn + hfn. (2.10)

On occasions (such as when dealing with components of systems of ODEs)
it is more convenient to write x′n for the approximation of the derivative of x

at t = tn. Then Euler’s method would be written as

xn+1 = xn + hx′n. (2.11)

1bxc is the “floor” function—take the integer part of x and ignore the fractional
part.



2.4 Analysing the Method 25

Example 2.2

Use Euler’s method to solve the IVP

x′(t) = 2x(t)
(
1− x(t)

)
, t > 10,

x(10) = 1/5,

for 10 ≤ t ≤ 11 with h = 0.2.

With f(t, x) = 2x(1−x) and η = 1/5, we calculate, for each n = 0, 1, 2, . . .,
the values2 tn, xn and x′n. The calculations for the first five steps are shown in
Table 2.2 and the points {(tn, xn)}, when the computation is extended to the
interval 10 ≤ t ≤ 13, are shown in Figure 2.3 by dots; the solid curve shows
the exact solution of the IVP: x(t) = 1/(1 + 4 exp(2(10− t))).

n tn xn x′n = 2xn(1− xn)
0 10.0 0.2 0.32 (starting condition)
1 10.2 0.2640 0.3886
2 10.4 0.3417 0.4499
3 10.6 0.4317 0.4907
4 10.8 0.5298 0.4982
5 11.0 0.6295 0.4665

Table 2.2 Numerical results for Example 2.2 for 10 ≤ t ≤ 11 with h = 0.2
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n Fig. 2.3 Numerical solution to Ex-

ample 2.2 (dots) and the exact solution
of the IVP(solid curve)

2.4 Analysing the Method

In this section the behaviour of numerical methods, and Euler’s method in
particular, is investigated in the limit h → 0. When h is decreased, it is required

2It is not necessary to tabulate the values of tn in this example since the ODE
is autonomous—its right-hand side does not involve t explicitly. It is, nevertheless,
good practice to record its value.
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that the numerical solution should approach the exact solution, i.e. the size of
the GE

|en| ≡ |x(tn)− xn|

at t = t0 + nh should also decrease. This is intuitively reasonable; as we put
in more computational effort, we should obtain a more accurate solution. The
situation is, however, a little more subtle than is immediately apparent. If we
were to consistently compare, say, the fourth terms in the sequences {x(tn)}
and {xn} computed with h = 0.5, 0.25, and 0.125, then we would compute the
error at t4 = t0 + 2.0, t0 + 1.0 and t0 + 0.5, respectively. That is, we would be
comparing errors at different times when different values of h were employed.
Even more worryingly, as h → 0, t4 = t0 + 4h → t0, and we would eventually
be comparing x4 with x(t0) = η—the initial condition. What must be done is
to compare the exact solution of the IVP and the numerical solution at a fixed
time t = t∗, say, within the interval of integration. For this, the relevant value
of the index n is calculated from tn = t0 + nh = t∗, or n = (t∗ − t0)/h, so that
n →∞ as h → 0. The situation is illustrated in Figure 2.4.

h = 0.125: r r r r r r r r r r r r r r r r r r r r rt0 t2 t4 t16

h = 0.25: r r r r r r r r r r rt0 t1 t2 t3 t4 t8

h = 0.5: r r r r r rt0 t1 t2 t3 t4

6

t = 0
6

t = 2

Fig. 2.4 The grids associated with grid sizes h = 0.5, 0.25, and 0.125

Some results from Euler’s method were analysed in Section 2.1.1 and it ap-
peared that the GE was proportional to h: en ∝ h when nh = 0.9, suggesting
that the GEat t∗ = 0.9 could be made arbitrarily small by choosing a corre-
spondingly small step size h. That is, we could, were we prepared to take a
sufficient number of small steps, obtain an approximation that was as accurate
as we pleased. This suggests that the Euler’s method is convergent.

Definition 2.3

A numerical method is said to converge to the solution x(t) of a given IVP at
t = t∗ if the GE en = x(tn)− xn at tn = t∗ satisfies

|en| → 0 (2.12)
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as h → 0. It converges at a pth-order rate if en = O(hp) for some p > 0.3

We will take the view that numerical methods are of no value unless they
are convergent—so any desired accuracy can be guaranteed by taking h to be
sufficiently small.

It may be proved that Euler’s method converges for IVPs of the form given
by Equation (2.1) whenever it has a unique solution for t0 ≤ t ≤ tf . However,
the proof (see Hairer et al. [28] or Braun [5]) is rather technical owing to the
fact that it has to cope with a general nonlinear ODE. We shall therefore
be less ambitious and provide a proof only for a linear constant-coefficient
case; the conclusions we draw will be relevant to more general situations. In
particular, the result will indicate how the local errors committed at each step
by truncating a Taylor series accumulate to produce the GE.

Theorem 2.4

Euler’s method applied to the IVP

x′(t) =λx(t) + g(t), 0 < t ≤ tf ,

x(0) =1,

where λ ∈ C and g is a continuously differentiable function, converges and the
GE at any t ∈ [0, tf ] is O(h).

Proof

Euler’s method for this IVP gives

xn+1 = xn + λhxn + hg(tn) = (1 + λh)xn + hg(tn) (2.13)

while, from the Taylor series expansion (2.5) of the exact solution,

x(tn+1) = x(tn) + hx′(tn) + R1(tn),

= x(tn) + h
(
λx(tn) + g(tn)

)
+ R1(tn). (2.14)

By subtracting (2.13) from (2.14) we find that the GE en = x(tn)− xn satisfies
the difference equation

en+1 = (1 + hλ)en + Tn+1, (2.15)

where we have written Tn+1 instead of R1(tn) to simplify the notation. Fur-
thermore, since x0 = x(t0) = η, we have e0 = 0. Equation (2.15) dictates how

3By convention we refer to the largest such value of p as the “order of the method.”
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the GE at the next step (en+1) combines the LTE committed at the current
step (Tn+1) with the GE inherited from earlier steps (en). A similar equation
holds for more general ODEs although λ would have to be allowed to vary from
step to step.

Substituting n = 0, 1, 2 into (2.15) we find, using e0 = 0,

e1 = T1,

e2 = (1 + hλ)e1 + T2 = (1 + hλ)T1 + T2,

e3 = (1 + hλ)e2 + T3 = (1 + hλ)2T1 + (1 + hλ)T2 + T3,

which suggests the general formula4

en = (1 + hλ)n−1T1 + (1 + hλ)n−2T2 + · · ·+ Tn

=
n∑

j=1

(1 + hλ)n−jTj . (2.16)

All that remains is to find an upper bound for the right-hand side. First, using
Exercise 2.8 (with x = |λ|),

|1 + hλ| ≤ 1 + h|λ| ≤ eh|λ|

and so
|1 + hλ|n−j ≤ e(n−j)h|λ| = e|λ|tn−j ≤ e|λ|,tf

since (n− j)h = tn−j ≤ tf for nh ≤ tf and 0 < j ≤ n.
Second, since |Tj | ≤ C h2 for some constant C (independent of h or j), each

term in the summation on the right of (2.16) is bounded by h2C e|λ|tf and so

|en| ≤ nh2C e|λ|tf = htfC e|λ|tf

(using nh = tf). Thus, so long as tf is finite, en = O(h) and we have proved
that Euler’s method converges at a first-order rate.

The proof makes it clear that the contribution of the LTE Tj at time t = tj
to the approximation of xn at time t = tn is (1 + hλ)n−jTj , with 1 + hλ > −1.
The LTE is amplified if λ is real and positive, and diminished if λ is real
and negative. The most important observation, however, is that an LTE Tn =
O(hp+1) of order (p + 1) leads to a GE en = O(hp) of order p; the cumulative
effect of introducing a truncation error at each step is to lose one power of h.

4This can be proved to be correct either by the process described in Exercise 2.9
or by induction.
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2.5 Application to Systems

We shall illustrate by an example how Euler’s method applies to systems of
ODEs.

Example 2.5

Use Euler’s method to compute an approximate solution at t = 0.2 of the IVP
x′′(t) + x(t) = t, t > 0, with x(0) = 1 and x′(0) = 2. Use a step length h = 0.1.

In order to convert the second-order equation to a system, let u = x and v = x′,
so v′ = u′′ = x′′ = −u + t. This gives the system

u′(t) = v(t)
v′(t) = t− u(t)

}
(2.17)

on the interval t > 0 with initial conditions u(0) = 1, v(0) = 2. By Taylor series,

u(t + h) = u(t) + hu′(t) +O(h2),

v(t + h) = v(t) + hv′(t) +O(h2).

Neglecting the remainder terms gives Euler’s method for the system (2.17):

tn+1 = tn + h,

un+1 = un + hu′n, u′n+1 = vn+1,

vn+1 = vn + hv′n, v′n+1 = tn+1 − un+1.

Note that both un+1 and vn+1 must generally be calculated before calculat-
ing the derivative approximations u′n+1 and v′n+1. The starting conditions are
u0 = 1, v0 = 2 at t = t0 = 0 and the given differential equations lead to
u′0 = v0 = 2 and v′0 = t0 − u0 = −1. Applying the above recurrence relations
first with n = 0 and then n = 1 gives

n = 0 : t1 = 0.1, n = 1 : t2 = 0.2,

u1 = u0 + 0.1u′0 = 1.2, u2 = 1.39,

v1 = v0 + 0.1v′0 = 1.9, v2 = 1.79,

u′1 = 1.9, u′2 = 1.79,

v′1 = t1 − u1 = −1.1, v′2 = t2 − u2 = −1.19.

The computations proceed in a similar fashion until the required end time is
reached.
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EXERCISES

2.1.? Use Euler’s method with h = 0.2 to show that the solution of the
IVP x′(t) = t2−x(t)2, t > 0, with x(0) = 1 is approximately x(0.4) ≈
0.68.

Show that this estimate changes to x(0.4) ≈ 0.708 if the calculation
is repeated with h = 0.1.

2.2.?? Obtain the recurrence relation that enables xn+1 to be calculated
from xn when Euler’s method is applied to the IVP x′(t) = λx(t),
x(0) = 1 with λ = −10. In each of the cases h = 1/6 and h = 1/12

(a) calculate x1, x2 and x3,

(b) plot the points (t0, x0), (t1, x1), (t2, x2), and (t3, x3) and compare
with a sketch of the exact solution x(t) = eλt.

Comment on your results. What is the largest value of h that can
be used when λ = −10 to ensure that xn > 0 for all n = 1, 2, 3, . . .?

2.3.?? Apply Euler’s method to the IVP

x′(t) = 1 + t− x(t), t > 0
x(0) = 0

}
.

Calculate x1, x2, . . . and deduce an expression for xn in terms of
tn = nh and thereby guess the exact solution of the IVP. Use the
expression (2.6) to calculate the LTE and then appeal to the proof
of Theorem 2.4 to explain why xn = x(tn).

2.4.? Derive Euler’s method for the first-order system

u′(t) = −2u(t) + v(t)

v′(t) = −u(t)− 2v(t)

with initial conditions u(0) = 1, v(0) = 0. Use h = 0.1 to compute
approximate values for u(0.2) and v(0.2).

2.5.? Rewrite the IVP

x′′(t) + x(t)x′(t) + 4x(t) = t2, t > 0,

x(0) = 0, x′(0) = 1,

as a first-order system and use Euler’s method with h = 0.1 to
estimate x(0.2) and x′(0.2).

2.6.? Derive Euler’s method for the first-order systems obtained in Exer-
cise 1.5 (b) and (c).
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2.7.??? This question concerns approximations to the IVP

x′′(t) + 3x′(t) + 2x(t) = t2, t > 0,

x(0) = 1, x′(0) = 0.
(2.18)

(a) Write the above initial value problem as a first-order system
and hence derive Euler’s method for computing approximations
to x(tn+1) and x′(tn+1) in terms of approximations to x(tn) and
x′(tn).

(b) By eliminating y, show that the system

x′(t) = y(t)− 2x(t)
y′(t) = t2 − y(t)

}
has the same solution x(t) as the IVP (2.18) provided that
x(0) = 1, and that y(0) is suitably chosen. What is the ap-
propriate value of y(0)?

(c) Apply Euler’s method to the system in part (b) and give for-
mulae for computing approximations to x(tn+1) and y(tn+1) in
terms of approximations to x(tn) and y(tn).

(d) Show that the approximations to x(t2) produced by the methods
in (a) and (c) are identical provided both methods use the same
value of h.

2.8.?? Prove that ex ≥ 1 + x for all x ≥ 0. [Hint: use the fact that et ≥ 1
for all t ≥ 0 and integrate both sides over the interval 0 ≤ t ≤ x

(where x ≥ 0).]

2.9.?? Replace n by j−1 in the recurrence relation (2.15) and divide both
sides by (1 + λh)j to obtain

ej

(1 + λh)j
− ej−1

(1 + λh)j−1
=

Tj

(1 + λh)j
.

By summing both sides from j = 1 to j = n, show that the result
simplifies to give Equation (2.16).



3
The Taylor Series Method

3.1 Introduction

Euler’s method was introduced in Chapter 2 by truncating the O(h2) terms
in the Taylor series of x(th + h) about the point t = tn. The accuracy of the
approximations generated by the method could be controlled by adjusting the
step size h—a strategy that is not always practical, since one may need an
inordinate number of steps for high accuracy. For instance, around 1 million
steps are necessary to solve the IVP of Example 2.1 to an accuracy of about
10−6 for 0 ≤ t ≤ 1.

An alternative is to use a more sophisticated recurrence relation at each
step in order to achieve greater accuracy (for the same value of h) or a similar
level of accuracy with a larger value of h (and, therefore, fewer steps).

There are many ways of attaining this goal. In this chapter we investigate
the possibility of improving the efficiency by including further terms in the
Taylor series. Other means will be developed in succeeding chapters.

We shall again be concerned with the solution of an IVP of the form

x′(t) = f(t, x), t > t0
x(t0) = η

}
(3.1)

over the interval, t ∈ [t0, tf ]. We describe a second-order method before treating
the case of general order p.
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3.2 An Order-Two Method: TS(2)

As discussed in Appendix B, the second-order Taylor series expansion

x(t + h) = x(t) + hx′(t) + 1
2!h

2x′′(t) + R2(t)

has remainder term R2(t) = O(h3). Setting t = tn we obtain (since tn+1 =
tn + h)

x(tn+1) = x(tn) + hx′(tn) + 1
2!h

2x′′(tn) +O(h3).

Neglecting the remainder term on the grounds that it is small leads to the
formula

xn+1 = xn + hx′n + 1
2h2x′′n, (3.2)

in which xn, x′n, and x′′n denote approximations to x(tn), x′(tn), and x′′(tn)
respectively. We shall refer to this as the TS(2) method (some authors call it
the three-term TS method—in our naming regime, Euler’s method becomes
TS(1)). As in Chapter 2, the value of x′n can be computed from the IVP (3.1):

x′n = f(tn, xn).

For x′′n we need to differentiate both sides of the ODE, as illustrated on the fol-
lowing example (which was previously used in Example 2.1 for Euler’s method).

Example 3.1

Apply the TS(2) method (3.2) to solve the IVP

x′(t) = (1− 2t)x(t), t > 0
x(0) = 1

}
(3.3)

using h = 0.3 and h = 0.15 and compare the accuracy at t = 1.2 with that of
Euler’s method, given that the exact solution is x(t) = exp[ 14 − (t− 1

2 )2].

In order to apply the formula (3.2) we must express x′′(t) in terms of x(t) and
t (it could also involve x′(t), but this can be substituted for from the ODE):
with the chain rule we find (the general case is dealt with in Exercise 3.9)

x′′(t) =
d
dt

[(1− 2t)x(t)] = −2x(t) + (1− 2t)x′(t)

= [(1− 2t)2 − 2]x(t),

and so the TS(2) method is given by

xn+1 = xn + h(1− 2tn)xn + 1
2h2[(1− 2tn)2 − 2]xn, n = 0, 1, . . . ,
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where tn = nh and x0 = 1. For the purposes of hand calculation it can be
preferable to use (3.2) and arrange the results as shown below:

n = 0: t0 = 0 , n = 1: t1 = t0 + h = 0.3,

x0 = 1, x1 = x0 + hx′0 + 1
2h2x′′0 = 1.2550,

x′0 = 1, x′1 = (1− 2t1)x1 = 0.5020,

x′′0 = −1, x′′1 = [(1− 2t1)2 − 2]x1 = −2.3092,

with a similar layout for n = 2, 3, . . ..
In Figure 3.1 the computations are extended to the interval 0 ≤ t ≤ 4 and

the numerical values with associated GEs at t = 1.2 are tabulated in Table 3.1.
We observed in Example 2.1 that the GE in Euler’s method was halved by
halving h, reflecting the relationship en ∝ h. However, from Table 3.1, we see
that the error for the TS(2) method is reduced by a factor of roughly 4 as h is
halved (0.0031 ≈ 0.0118/4), suggesting that the GE en ∝ h2.

We deduce from Table 3.1 that, at t = 1.2,1

GE for Euler’s method ≈ −0.77h

GE for TS(2) method ≈ 0.14h2.

These results suggest that, to achieve an accuracy of 0.01, the step size in
Euler’s method would have to satisfy 0.77h = 0.01, from which h ≈ 0.013 and
we would need about 1.2/0.013 ≈ 92 steps to integrate to t = 1.2. What are
the corresponding values for TS(2)? (Answer: h ≈ 0.27 and five steps). This
illustrates the huge potential advantages of using a higher order method.

0 1 2 3 4
0

0.5

1

1.5

tn

x
n

Fig. 3.1 Numerical solutions for
Example 3.1
× : Euler’s method, h = 0.3,
• : Euler’s method, h = 0.15,
◦ : TS(2) method, h = 0.15.

Solutions at t = 1.2 GEs at t = 1.2
h Euler: TS(1) TS(2) Euler: TS(1) TS(2) GE for TS(2)/h2

0.30 1.0402 0.7748 −0.2535 0.0118 0.131
0.15 0.9014 0.7836 −0.1148 0.0031 0.138

Table 3.1 Numerical solutions and global errors at t = 1.2 for Example 3.1.
The exact solution is x(1.2) = e−0.24 = 0.7866.

1These relations were deduced from the assertions en = C1h for Euler and en =
C2h

2 for TS(2) and choosing the constants C1, C2 so as to match the data in Table 3.1
for h = 0.15.
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3.2.1 Commentary on the Construction

It was shown in Figure 2.1 that Euler’s method could be viewed as the con-
struction of a polygonal curve; the vertices of the polygon representing the
numerical values at the points (tn, xn) and the gradients of the line segments
being dictated by the right-hand side of the ODE evaluated at their left end-
points.

For TS(2) we can take a similar, view with the sides of the “polygon” being
quadratic curves given by

x = xn + (t− tn)x′n + 1
2h2(t− tn)2x′′n

for tn ≤ t ≤ tn+1. These curves are shown as connecting the points Pn and
Pn+1 in Figure 3.2 for n = 0, 1, 2 when h = 0.3 for the IVP in Example 3.1.
These are directly comparable to the polygonal case in Figure 2.1, and the
improvement provided by TS(2) is seen to be dramatic.

3.3 An Order-p Method: TS(p)

It is straightforward to extend the TS(2) method described in the previous
section to higher order, so we simply sketch the main ideas. The pth- order
Taylor series of x(t + h) with remainder is given by

x(t + h) = x(t) + hx′(t) + 1
2!h

2x′′(t) + · · · + 1
p!h

px(p)(t) + Rp(t) (3.4)

as discussed in Appendix B. When x(t) is (p + 1) times continuously differen-
tiable on the interval (t0, tf) the remainder term can be written as

Rp(t) =
1

(p + 1)!
hp+1x(p+1)(ξ), ξ ∈ (t, t + h),
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Fig. 3.2 The development of TS(2) for the IVP in Example 3.1 over the first
three time steps. The exact solution of the IVP is shown as a solid curve
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and, if |x(p+1)(t)| ≤ M for all t ∈ (t0, tf), then

|Rp(t)| ≤
M

(p + 1)!
hp+1,

whence Rp(t) = O(hp+1).
The TS(p) method is obtained by applying the expansion at t = tn and

ignoring the remainder term to give

xn+1 = xn + hx′n + 1
2h2x′′n + · · ·+ 1

p!h
px

(p)
n , (3.5)

in which xn, x′n, . . . x
(p)
n denote approximations to x(tn), x′(tn) . . . , x(p)(tn),

respectively. It is necessary to differentiate the right side of the ODE (p − 1)
times in order to complete the specification of the method.

We note that, if the numerical and exact solutions were to coincide at the
start of a step, xn = x(tn) (this is called the localizing assumption), then the
error at the end of the step would be x(tn+1) − xn+1 = Rp(tn). This means
that we can interpret the remainder term Rp(tn), more usually called the LTE,
as a measure of the error committed at each step.

3.4 Convergence

We avoid a proof of convergence for general problems and instead generalize
Theorem 2.4 given in Section 2.4 for Euler’s method.

Theorem 3.2

The Taylor series method TS(p) applied to the IVP

x′(t) =λx(t) + g(t), 0 < t ≤ tf ,

x(0) = 1,

where λ ∈ C and g is a p times continuously differentiable function, converges
and the GE at any t ∈ [0, tf ] is O(hp).

Proof

See Exercises 3.10 and 3.11.
In summary, the issues that have to be addressed in updating the proof for

Euler’s method are:
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1. showing that the conditions given on g ensure that x(t) is a (p + 1) times
continuously differentiable function;

2. determining a suitable modification of equation (2.15);

3. finding an appropriate generalization of Exercise 2.8.

3.5 Application to Systems

We illustrate the application of TS(2) to systems of ODEs by solving the same
IVP as in Section 2.5.

Example 3.3

Use the TS(2) method with a step length h = 0.1 to compute an approximate
solution at t = 0.2 of the IVP

u′(t) = v(t),

v′(t) = t− u(t)
(3.6)

on the interval t > 0 with initial conditions u(0) = 1, v(0) = 2.

The formulae for updating u and v are

un+1 = un + hu′n + 1
2h2u′′n,

vn+1 = vn + hv′n + 1
2h2v′′n.

Since u′(t) = v(t) we have

u′′(t) = v′(t) = t− u(t).

Differentiating v′(t) = t− u(t) leads to

v′′(t) = 1− u′(t) = 1− v(t),

which gives us the requisite formulae:

u′n = vn, u′′n = v′n = tn − un, v′′n = 1− vn.

Note that u′n = vn and u′′n = v′n will always be the case when a second-order
differential equation is converted to a first-order system. The results of the
calculation are laid out in the table below.
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n tn un u′n = vn u′′n = v′n v′′n
0 0 1.0000 2.0000 −1.0000 −1.0000
1 0.1 1.1950 1.8950 −1.0950 −0.8950
2 0.2 1.3790 1.7810 −1.1790 −0.7810

The component parts of the recurrence relations can be combined to give

un+1 = un + hvn + 1
2h2(tn − un),

vn+1 = vn + h(tn − un) + 1
2h2(1− vn),

but these are perhaps less convenient for computation by hand.

3.6 Postscript

The examples in this chapter show the dramatic improvements in efficiency
(measured roughly as the amount of computation needed to attain a specific
accuracy) that can be brought about by increasing the order of a method.
The Taylor series approach makes this systematic, but each increase in order
is accompanied by the need to differentiate the right-hand side of the ODE
one more time. If the right hand side of an ODE is given by a complicated
formula, or if we have a large system, it may not be practical to attempt even
the second-order TS method. For this reason Taylor series methods are not
widely used.

In the following chapters we will study methods that achieve order greater
than one while avoiding the need to differentiate the differential equation.

EXERCISES

3.1.? Use the TS(2) method to solve the IVP

x′(t) =2x(t)
(
1− x(t)

)
, t > 10,

x(10) = 1/5,

with h = 0.5 and compare the accuracy of the solution at t = 11
with that of Euler’s method using h = 0.2 (see Example 2.2).

3.2.?? Apply the TS(2) method to the IVP

x′(t) = 1 + t− x(t), t > 0
x(0) = 0

}
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and derive a recurrence formula for determining xn+1 in terms of
xn, tn, and h. Use this recurrence to calculate x1, x2, . . . and deduce
an expression for xn in terms of n and h. Show that xn = x(tn) for
n = 0, 1, 2, . . . . Explain your findings by appealing to the nature of
the LTE (remainder term) in this case.

3.3.? Derive the TS(2) method for the first-order systems obtained in Ex-
ercise 1.5 (a). Use both TS(1) and TS(2) to determine approximate
solutions at t = 0.2 using h = 0.1.

3.4.?? One way of estimating the GE without knowledge of the exact solu-
tion is to compute approximate solutions at t = tn using both TS(p)
and TS(p + 1). We will denote these by x

[p]
n and x

[p+1]
n , respectively.

The GE in the lower order method is, by definition,

en = x(tn)− x[p]
n

with en = O(hp) and, for the higher order method: x(tn)− x
[p+1]
n =

O(hp+1). Thus,

en = x[p+1]
n − x[p]

n +O(hp+1),

from which it follows that the leading term in the GE of the lower or-
der method may be estimated by the difference in the two computed
solutions.

Use this process on the data in the first three columns of Table 3.1
and compare with the actual GE for Euler’s method given in the
fourth column.

3.5.?? Apply Euler’s method to the IVP x′(t) = λx(t), x(0) = 1, with a
step size h. Assuming that λ is a real number:

(a) What further condition is required on λ to ensure that the solu-
tion x(t) → 0 as t →∞?

(b) What condition on h then ensures that |xn| → 0 as n →∞?

Compare the cases where λ = −1 and λ = −100.

What is the corresponding condition if TS(2) is used instead of
Euler’s method?

3.6.?? Write down the TS(3) method for the IVP x′(t) = λx(t), x(0) = 1.
Repeat for the IVP in Example 3.1.

3.7.??? A rough estimate of the effort required in evaluating a formula
may be obtained by counting the number of arithmetic operations
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(+,−,×,÷)—this is known as the number of flops (floating point
operations). For example, the calculation of 3 + 4/52 needs three
flops. These may be used as a basis for comparing different methods.

What are the flop counts per step for the TS(p) methods for the IVP
in Example 3.1 for p = 1, 2, 3?

How many flops do you estimate would be required by TS(1) and
TS(2) in Example 3.1 to achieve a GE of 0.01? (Use the data provided
in Table 3.1.) Comment on your answer.

3.8.?? For the IVP

u′(t) = v(t), v′(t) = −u(t), t > 0,

u(0) = 1, v(0) = 0,

use the chain rule to differentiate u2(t) + v2(t) with respect to t.
Hence prove that u2(t) + v2(t) = 1 for all t ≥ 0.

Use the TS(2) method to derive a means of computing un+1 and
vn+1 in terms of un and vn.

Prove that this TS(2) approximation satisfies u2
n + v2

n = (1 + 1
4h4)n

when u0 = 1 and v0 = 0. (The issue of preserving invariants of an
ODE is discussed in Chapter 14.)

3.9.? If x′(t) = f(t, x(t)), show that

x′′(t) = ft(t, x) + f(t, x)fx(t, x),

where ft and fx are the partial derivatives of f(t, x).

3.10.??? Prove that
ex ≥ 1 + x + 1

2!x
2 + · · ·+ 1

p!x
p

for all x ≥ 0. [Hint: use induction starting with the case given in
Exercise 2.9 and integrate to move from one induction step to the
next.]

3.11.??? When x(t) denotes the solution of the IVP in Theorem 3.2, the
first p derivatives required for the Taylor expansion (3.4) of x(tn +h)
may be obtained by repeated differentiation of the ODE:

x′(tn) = λx(tn) + g(tn),

x′′(tn) = λx′(tn) + g′(tn),
...

x(p)(tn) = λx(p−1)(tn) + g(tn).
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By using analogous relationships between approximations of the
derivatives (x(j+1)

n = λx
(j)
n + g(j)(tn) for the (j + 1)th derivative,

for example) show that the GE for the TS(p) method (3.5) for the
same IVP satisfies

en+1 = r(λh)en + Tn+1, n = 0, 1, 2, . . . ,

where r(s) = 1 + s + 1
2!s

2 + · · · + 1
p!s

p, the first (p + 1) terms in
the Maclaurin expansion of es, and Tn+1 = O(hp+1) [compare with
Equation (2.15)].

Hence complete the proof of Theorem 3.2.



4
Linear Multistep Methods—I:
Construction and Consistency

4.1 Introduction

The effectiveness of the family of TS(p) methods has been evident in the pre-
ceding chapter. For order p > 1, however, they suffer a serious disadvantage
in that they require the right-hand side of the differential equation to be dif-
ferentiated a number of times. This often rules out their use in real-world
applications, which generally involve (large) systems of ODEs whose differen-
tiation is impractical unless automated tools are used [23]. We look, therefore,
for alternatives that do not require the use of second and higher derivatives of
the solution.

The families of linear multistep methods (LMMs) that we turn to next
generally achieve higher order by exploiting the “history” that is available—
values of x and x′ that were computed at the previous k steps are combined
to generate an approximation at the next step. This information is assimilated
via what are effectively multipoint Taylor expansions.

We begin with two illustrative examples before describing a more general
strategy. In order to distinguish between Taylor expansions of arbitrary func-
tions (that are assumed to have as many continuous derivatives as our expan-
sions require) and Taylor expansions of solutions of our differential equations
(which may not have the requisite number of continuous derivatives) we use
z(t) for the former.
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The development of the TS(2) method in Chapter 3 began with the Taylor
expansion

z(t + h) = z(t) + hz′(t) + 1
2h2z′′(t) +O(h3) (4.1)

and proceeded by applying this with z = x, the solution of our IVP, and
neglecting the remainder term.1 At this stage

x(t + h) = x(t) + hf(t, x(t)) + 1
2h2x′′(t) +O(h3).

In TS(2) x′′ was obtained by differentiating x′(t) = f(t, x(t)). LMMs, on the
other hand, avoid this by using an approximation to x′′(t). There are several
possible ways of doing this, of which we will describe two (more systematic
derivations of both methods will be given later in this chapter).

4.1.1 The Trapezoidal Rule

We use a second Taylor expansion—that of z′(t + h):

z′(t + h) = z′(t) + hz′′(t) +O(h2), (4.2)

so that hz′′(t) = z′(t+h)−z′(t)+O(h2) (the sign of order terms is immaterial),
which, when substituted into (4.1), leads to

z(t + h) = z(t) + hz′(t) + 1
2h

[
z′(t + h)− z′(t) +O(h2)

]
+O(h3)

= z(t) + 1
2h [z′(t + h) + z′(t)] +O(h3). (4.3)

It is worth emphasizing that this expansion is valid for any three-times contin-
uously differentiable function z(t). We now apply it with z = x, the solution of
our ODE x′ = f(t, x), to give

x(t + h) = x(t) + 1
2h [f(t + h, x(t + h)) + f(t, x(t))] +O(h3). (4.4)

Evaluating this at t = tn and neglecting the remainder term leads to the
trapezoidal rule:

xn+1 = xn + 1
2h [f(tn+1, xn+1) + f(tn, xn)] . (4.5)

1Note that rearranging (4.1) gives

z′(t) =
z(t + h)− z(t)

h
+O(h),

which is consistent with the definition of a derivative:

z′(t) = lim
h→0

z(t + h)− z(t)

h
.
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Notation. In order to simplify the presentation of LMMs, we shall use the
abbreviations

fn = f(tn, xn), fn+j = f(tn+j , xn+j), etc. (4.6)

These are approximations to the gradient of the solution at tn = t0 + nh

and tn+j = tn + jh. They should not be confused with f(tn, x(tn)) and
f(tn+j , x(tn+j)), which are gradients of the exact solution at these times.

Our trapezoidal rule may then be written as

xn+1 − xn = 1
2h(fn+1 + fn). (4.7)

Since fn+1 = f(tn+1, xn+1) we see that xn+1 appears also on the right hand side
of (4.7) and so, unlike the TS(p) methods, we do not have a direct expression
for xn+1 in terms of data available from earlier times. Methods having this
property are known as implicit methods.

4.1.2 The 2-step Adams–Bashforth method: AB(2)

The treatment for the two-step Adams–Bashforth method (which we will refer
to as AB(2)) is similar to that for the trapezoidal rule, except that the expansion
(4.2) is replaced with

z′(t− h) = z′(t)− hz′′(t) +O(h2). (4.8)

It follows that hz′′(t) = z′(t)− z′(t−h) +O(h2), which, when substituted into
(4.1), gives

z(t + h) = z(t) + hz′(t) + 1
2h

[
z′(t)− z′(t− h) +O(h2)

]
+O(h3)

= z(t) + 1
2h [3z′(t)− z′(t− h)] +O(h3). (4.9)

Now, with z = x, the solution of our ODE x′ = f(t, x), this gives

x(t + h) = x(t) + 1
2h [3f(t, x(t))− f(t− h, x(t− h))] +O(h3).

Evaluating this at t = tn and neglecting the remainder term leads to AB(2):

xn+1 = xn + 1
2h(3fn − fn−1).

In this equation the solution xn+1 at time tn+1 is given in terms of data at the
two previous time levels: t = tn and t = tn−1. This is an example of a two-step
LMM. It is usual to write such methods in a form where the smallest index
is n:

xn+2 = xn+1 + 1
2h(3fn+1 − fn). (4.10)
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Example 4.1

Apply the TS(2), trapezoidal and AB(2) methods to the IVP x′(t) = (1 −
2t)x(t), t ∈ (0, 4], x(0) = 1 (cf. Examples 2.1 and 3.1) with h = 0.2 and
h = 0.1. Compare the accuracy achieved by the various methods at t = 1.2.

The application of TS(2) is described in Example 3.1. With f(t, x) = (1−
2t)x, the trapezoidal rule gives

xn+1 = xn + 1
2h[(1− 2tn+1)xn+1 + (1− 2tn)xn],

which can be rearranged to read

xn+1 =
1 + 1

2h(1− 2tn)
1− 1

2h(1− 2tn+1)
xn (4.11)

for n = 0, 1, 2, . . . and x0 = 1. When h = 0.2 we take n = 6 steps to reach
t = 1.2, at which point we obtain x6 = 0.789 47. Comparing this with the exact
solution x(1.2) = 0.786 63 gives a GE of −0.0028.

For the AB(2) method, we find

xn+2 = xn+1 + 1
2h[3(1− 2tn+1)xn+1 − (1− 2tn)xn]

=
[
1 + 3

2h(1− 2tn+1)
]
xn+1 − 1

2h(1− 2tn)xn,

which holds for n ≥ 0. When n = 0 we have x0 = 1, t0 = 0, t1 = h, and

x2 =
[
1 + 3

2h(1− 2h)
]
x1 − 1

2h.

It is necessary to use some other method to find the additional starting value
x1 before we can begin. Two obvious possibilities are to use either Euler’s
method, x1 = (1 + h)x0 (we label the results ABE), or the value computed by
the trapezoidal rule (4.11) with n = 0 (leading to ABT).

The calculation of the sequence {xn} is best organized with a start-up phase:
first calculate f0 = 1 from the initial data x = x0 at t = t0. The solution at
t = t1 is then calculated by Euler’s method (for instance):

t1 = t0 + h = 0.2,

x1 = x0 + hf0 = 1.2 (Euler’s method),

f1 = (1− 2t1)x1 = 0.72;

then, for each n = 0, 1, 2, . . . , xn+2 and fn+2 are calculated from

tn+2 = tn+1 + h,

xn+2 = xn+1 + 1
2h(3fn+1 − fn),

fn+2 = (1− 2tn+2)xn+2,
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Fig. 4.1 Numerical solutions (left) and GEs (right) as functions of time with
h = 0.2 for Example 4.1

h TS(2) Trap. ABE ABT
0.2 5.4 −2.8 −3.6 17.6
0.1 1.4 −0.71 −0.66 4.0

Ratio 3.90 4.00 5.49 4.40

Table 4.1 Global errors (multiplied by 103) at t = 1.2

so that the value of f at t = tn+2 is available in the succeeding steps—i.e. the
value of f at any given grid point needs be computed only once.

The solutions obtained with these methods are shown in Figure 4.1 (left)
as functions of tn. These are indistinguishable from the exact solution curve
except near to the maximum at t = 1

2 ; the corresponding GEs are shown in the
right of the figure. The GEs at t = 1.2 (obtained by subtracting the numerical
solutions from the exact solution) are shown in Table 4.1 for h = 0.2 and
h = 0.1. Dividing the GE when h = 0.2 by that when h = 0.1 leads to the
bottom row in Table 4.1. Since this ratio is close to 4, it suggests that the four
methods shown all converge at a second-order rate: en ∝ h2. Surprisingly, the
GE of ABE is smaller than that of ABT, which uses a more accurate starting
value x1. However, when we look at the behaviour of the GE over the whole
domain in Figure 4.1, we see that ABE has a particularly large GE at t ≈ 0.5;
to sample the errors at only one time may be misleading. Closer scrutiny of
the figure reveals that the greatest overall accuracy is given by the trapezoidal
rule, and we estimate that

GETS(2) ≈ −GEtrap, GEABT ≈ −2 GEtrap, GEABE ≈ −5 GEtrap.
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k p Method Name
1 1 xn+1 − xn = hfn Euler
1 1 xn+1 − xn = hfn+1 Backward Euler
1 2 xn+1 − xn = 1

2h(fn+1 + fn) trapezoidal
2 2 xn+2 − xn+1 = 1

2h(3fn+1 − fn) two-step Adams–Bashforth
2 2 xn+2 − xn+1 = 1

12h(5fn+2 + 8fn+1 − fn) two-step Adams–Moulton
2 4 xn+2 − xn = 1

3h(fn+2 + 4fn+1 + fn) Simpson’s rule
2 3 xn+2 + 4xn+1 − 5xn = h(4fn+1 + 2fn) Dahlquist (see Example 4.11)

Table 4.2 Examples of LMMs showing their step number (k) and order (p)

4.2 Two-Step Methods

So far we have encountered three examples of LMMs: Euler’s method, the
trapezoidal rule (4.7 ) and the AB(2) method (4.10). The last two were derived
from the expansions (4.3) and (4.9), which are valid for all three times differ-
entiable functions z, and which we regard as being generalizations of Taylor
series—they relate the values of z and z′(t) at several different points.

For the time being we shall be concerned only with two-step LMMs, such
as AB(2), that involve the three time levels tn, tn+1, and tn+2. For these, we
need to find the coefficients α0, α1, β0, β1, and β2 so that

z(t + 2h) + α1z(t + h) + α0z(t)

= h(β2z
′(t + 2h) + β1z

′(t + h) + β0z
′(t)) +O(hp+1), (4.12)

where p might be specified in some cases or we might try to make p as large
as possible in others. We have taken α2 = 1 as a normalizing condition (the
coefficient of z(t + 2h)).

Choosing z = x, where x′ = f(t, x), and dropping the O(hp+1) remainder
term, we arrive at the general two-step LMM

xn+2 + α1xn+1 + α0xn = h(β2fn+2 + β1fn+1 + β0fn). (4.13)

An LMM is said to be explicit (of explicit type) if β2 = 0 and implicit if β2 6= 0.
For example, Euler’s method (xn+1 = xn + hfn) is an example of an explicit
one-step LMM while the trapezoidal rule is an example of an implicit one-step
method.

On occasion we may write (4.13) in the form

xn+2 + α1xn+1 + α0xn = h(β2x
′
n+2 + β1x

′
n+1 + β0x

′
n).

Some further examples of one- and two-step LMMs are listed in Table 4.2.
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4.2.1 Consistency

In order to streamline the process of determining the coefficients in the LMM
(4.13), we introduce the notion of a linear difference operator.

Definition 4.2

The linear difference operator Lh associated with the LMM (4.13) is defined
for an arbitrary continuously differentiable function z(t) by

Lhz(t) = z(t + 2h) + α1z(t + h) + α0z(t)−
h(β2z

′(t + 2h) + β1z
′(t + h) + β0z

′(t)).

Apart from the remainder term, this is the difference between the left- and
right-hand sides of (4.12). Lh is a linear operator since, for constants a and b,

Lh(az(t) + bw(t)) = aLhz(t) + bLhw(t).

The construction of new methods amounts to finding suitable coefficients
{αj , βj}. We shall prove later in this chapter that the coefficients should be
determined so as to ensure that the resulting LMM is consistent.

Definition 4.3

A linear difference operator Lh is said to be consistent of order p if

Lhz(t) = O(hp+1)

with p > 0 for every smooth function z.

An LMM whose difference operator is consistent of order p for some p > 0 is
said to be consistent. A method that fails to meet this requirement is called
inconsistent (see Exercise 4.9). This definition is in keeping with our findings
for TS(p) methods: an LTE of order (p + 1) gives rise to convergence of order
p (Theorem 3.2).

Example 4.4

Show that Euler’s method is consistent.

The linear difference operator for Euler’s method is

Lhz(t) = z(t + h)− z(t)− hz′(t),
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which, by Taylor expansion, gives

Lhz(t) = 1
2!h

2z′′(t) +O(h3),

and so Lhz(t) = O(h2) and the method is consistent of order 1 (p = 1). �

Example 4.5

What is the order of consistency of the last method listed in Table 4.2?

The associated linear difference operator is

Lhz(t) = z(t + 2h) + 4z(t + h)− 5z(t)− h(4z′(t + h) + 2z′(t)).

With the aid of the Taylor expansions

z(t + 2h) = z(t) + 2hz′(t) + 2h2z′′(t) + 4
3h3z′′′(t) + 2

3h4z′′′′(t) +O(h5),

z(t + h) = z(t) + hz′(t) + 1
2h2z′′(t) + 1

6h3z′′′(t) + 1
24h4z′′′′(t) +O(h5),

z′(t + h) = z′(t) + hz′′(t) + 1
2h2z′′′(t) + 1

6h3z′′′′(t) +O(h4),

we find (collecting terms appropriately)

Lhz(t) = [1 + 4− 5] z(t)

+ h [2 + 4− [4 + 2]] z′(t)

+ h2 [2 + 2− 4] z′′(t)

+ h3
[
4
3 + 4× 1

6 − 4× 1
2

]
z′′′(t)

+ h4
[
2
3 + 4× 1

24 − 4× 1
6

]
z′′′′(t) +O(h5).

Thus, Lhz(t) = 1
6h4z′′′′(t) + O(h5) and so Lhz(t) = O(h4) and the method

is consistent of order p = 3. It is, in fact, the explicit two-step method having
highest possible order.

4.2.2 Construction

In the previous section the coefficients of LMMs were given and we were then
able to find their order and error constants. We now describe how the coeffi-
cients may be determined by the method of undetermined coefficients.

For the general two-step LMM given by Equation (4.13) the associated
linear difference operator is (see Definition 4.2)

Lhz(t) = z(t + 2h) + α1z(t + h) + α0z(t)−
h(β2z

′(t + 2h) + β1z
′(t + h) + β0z

′(t)) (4.14)
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and the right-hand side may be expanded with the aid of the Taylor expansions

z(t + 2h) = z(t) + 2hz′(t) + 2h2z′′(t) + 4
3h3z′′′(t) + . . . ,

z(t + h) = z(t) + hz′(t) + 1
2h2z′′(t) + 1

6h3z′′′(t) + . . . ,

z′(t + 2h) = z′(t) + 2hz′′(t) + 2h2z′′′(t) + 4
3h3z′′′′(t) + . . . ,

z′(t + h) = z′(t) + hz′′(t) + 1
2h2z′′′(t) + 1

6h3z′′′′(t) + . . . .

The precise number of terms that should be retained depends on either the
order required2 or the maximum order possible with the “template” used—
some coefficients in the LMM may be set to zero in order to achieve a method
with a particular pattern of terms. It will also become clear as we proceed
that it is generally advantageous not to fix all the coefficients so as to achieve
maximum order of consistency, but to retain some free parameters to meet
other demands (notably stability).

We focus initially on the issue of consistency, i.e. what is needed for methods
to have order at least p = 1. Expanding the right of (4.14) we find (collecting
terms appropriately)

Lhz(t) =
(
1 + α1 + α0

)
z(t) + h

[
2 + α1 − (β2 + β1 + β0)

]
z′(t) +O(h2).

We shall have
Lhz(t) = O(h2)

and, therefore, consistency of order 1, if the coefficients are chosen so that

1 + α1 + α0 = 0,

2 + α1 = β2 + β1 + β0.
(4.15)

These conditions can be written more concisely if we introduce two poly-
nomials.

Definition 4.6

The first and second characteristic polynomials of the LMM

xn+2 + α1xn+1 + α0xn = h(β2fn+2 + β1fn+1 + β0fn)

are defined to be

ρ(r) = r2 + α1r + α0, σ(r) = β2r
2 + β1r + β0 (4.16)

respectively.
2For order p all terms up to those containing hp+1 must be retained but, since the

β-terms are already multiplied by h, the expansions of the z′ terms need only include
terms up to hp.



52 4. Linear Multistep Methods—I

The following result is a direct consequence of Definition 4.3 and writing con-
ditions (4.15) in terms of the characteristic polynomials.

Theorem 4.7

The two-step LMM

xn+2 + α1xn+1 + α0xn = h(β2fn+2 + β1fn+1 + β0fn)

is consistent with the ODE x′(t) = f(t, x(t)) if, and only if,

ρ(1) = 0 and ρ′(1) = σ(1).

In general, when the right side of the linear difference operator (4.14) is
expanded to higher order terms and these are collected appropriately, it is
found that

Lhz(t) = C0z(t) + C1hz′(t) + · · ·+ Cph
pz(p)(t) +O(hp+1), (4.17)

where, as in the lead up to (4.15), C0 = 1 + α1 + α0 and C1 = 2 + α1 − (β2 +
β1 +β0). The coefficients Cj are each linear combinations of the α and β values
that do not involve h. In view of Definition 4.3, an LMM will be consistent of
order p if

C0 = C1 = · · · = Cp = 0,

in which case
Lhz(t) = Cp+1h

p+1z(p+1)(t) +O(hp+2). (4.18)

The first non-zero coefficient Cp+1 is known as the error constant.
The next theorem sheds light on the significance of consistency.

Theorem 4.8

A convergent LMM is consistent.

Thus consistency is necessary for convergence, but it is not true to say that
consistent methods are always convergent.

Proof

Suppose that the LMM (4.13) is convergent. Definition 2.3 then implies that
xn+2 → x(t∗ + 2h), xn+1 → x(t∗ + h) and xn → x(t∗) as h → 0 when tn = t∗.
However, since tn+2, tn+1 → t∗, taking the limit on both sides of

xn+2 + α1xn+1 + α0xn = h(β2fn+2 + β1fn+1 + β0fn)
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leads to
ρ(1)x(t∗) = 0.

But x(t∗) 6= 0, in general, and so ρ(1) = 0, the first of the consistency conditions
in Theorem 4.7.

For the second part of the proof the limit h → 0 is taken of both sides of

xn+2 + α1xn+1 + α0xn

h
= β2fn+2 + β1fn+1 + β0fn.

The right-hand side converges to the limit σ(1)f(t∗, x(t∗)) and, for the left-hand
side, we use the limits xn+2 → x(t∗ + 2h), xn+1 → x(t∗ + h), and xn → x(t∗)
together with l’Hôpital’s rule to conclude that

lim
h→0

xn+2 + α1xn+1 + α0xn

h
= (2 + α1)x′(t∗).

Thus, the limiting function x(t) satisfies3

ρ′(1)x′(t∗) = σ(1)f(t∗, x(t∗))

at t = t∗, which is not the correct differential equation unless ρ′(1) = σ(1).

Example 4.9

Determine the coefficients in the 1-step LMM

xn+1 + α0xn = h(β1fn+1 + β0fn)

so that the resulting method has order 1. Find the error constant and show
that there is a unique method having order 2. What is the error constant for
the resulting method?

The associated linear difference operator is, by definition,

Lhz(t) = z(t + h) + α0z(t)− h(β1z
′(t + h) + β0z

′(t)) (4.19)

and Taylor expanding the terms z(t + h) and z′(t + h) gives

Lhz(t) = (1 + α0)z(t) +
(
1− (β1 + β0)

)
hz′(t) +O(h2).

Therefore, we shall have consistency (i.e., order at least 1) if the terms in z(t)
and hz′(t) vanish. This will be the case if

1 + α0 = 0 and 1 = β1 + β0.

3The details are left to Exercise 4.17.
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These are two equations in three unknowns and their general solution may be
expressed as α0 = −1, β1 = θ, β0 = 1−θ, which gives rise to the one-parameter
family of LMMs known as the θ-method:

xn+1 − xn = h(θfn+1 + (1− θ)fn). (4.20)

The error constant is C2, for which we have to retain one more term in each of
the Taylor expansions of z(t + h) and z′(t + h). We then find

Lhz(t) = ( 1
2 − θ)h2z′′(t) +O(h3)

so that C2 = 1
2 − θ. The common choices for θ are:

1. θ = 0. Euler’s method: xn+1 − xn = hfn.

2. θ = 1. Backward Euler method: xn+1 − xn = hfn+1 (see Table 4.2). This
is also known as the implicit Euler method.

3. θ = 1
2 . trapezoidal rule: xn+1 − xn = 1

2h(fn + fn+1). This is the unique
value of θ for which C2 = 0 and the method becomes of second order. To
compute its error constant C3, the Taylor expansions must be extended by
one term (with θ = 1

2 ), so:

Lhz(t) = h3( 1
6 −

1
2θ)z′′′(t) +O(h4)

= − 1
12h3z′′′(t) +O(h4)

and, therefore, C3 = − 1
12 .

Example 4.10

Determine the coefficients in the two-step LMM

xn+2 + α0xn = h(β1fn+1 + β0fn)

so that it has as high an order of consistency as possible. What is this order
and what is the error constant for the resulting method?

The associated linear difference operator is

Lhz(t) = z(t + 2h) + α0z(t)− h(β1z
′(t + h) + β0z

′(t)).

The LMM contains three arbitrary constants so we expect to be able to sat-
isfy three linear equations; that is, we should be able to make the terms in
z(t), hz′(t), and h2z′′(t) in the Taylor expansion of Lhz(t) all vanish leaving
Lhz(t) = C3h

3z′′′(t)+O(h4). We therefore expect to have order p = 2; for this
to occur we have to retain terms up to h3z′′′(t). (For some methods we get a
“bonus” in that the next term is automatically zero—see Simpson’s method.)
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With the aid of the Taylor series

z(t + 2h) = z(t) + 2hz′(t) + 2h2z′′(t) + 4
3h3z′′′(t) + 2

3h4z′′′′(t) +O(h5)

z′(t + h) = z′(t) + hz′′(t) + 1
2h2z′′′(t) + 1

6h3z′′′′(t) +O(h4)

we find, on collecting terms in powers of h,

Lhz(t) = [1 + α0] z(t) + h [2− (β1 + β0)] z′(t)

+ h2 [2− β1] z′′(t)

+ h3
[
4
3 −

1
2β1

]
z′′′(t) +O(h4).

Setting the coefficients of the first three terms to zero gives

1 + α0 = 0, 2 = β1 + β0, 2 = β1

whose solution is α0 = −1, β1 = 2, β0 = 0 and the resulting LMM is

xn+2 − xn = 2hfn+1, (4.21)

known in some circles as the mid-point rule and in others as the “leap-frog”
method; we shall see in the next chapter that it belongs to the class of Nyström
methods. It follows that

Lhz(t) = 1
3h3z′′′(t) +O(h4)

and so Lhz(t) = O(h3) and the method is consistent of order p = 2 with error
constant C3 = 1

3 .
An alternative approach to constructing LMMs based on interpolating poly-

nomials is suggested by Exercises 4.18 and 4.19.
Is this all there is to constructing LMMs? Theorem 4.8 did not say that

consistent methods are convergent, and the following numerical example indi-
cates that some further property is required to generate a useful (convergent)
method.

Example 4.11

Use the method

xn+2 + 4xn+1 − 5xn = h(4fn+1 + 2fn)

(see Example 4.5) to solve the IVP x′(t) = −x(t) for t > 0 with x(0) = 1. Use
the three different grid sizes h = 0.1, 0.001 and 0.0001 and, for the additional
starting value, use x1 = e−h.
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h = 0.1 h = 0.01 h = 0.001
x7 = 0.544 x13= 0.938 x19= 1.070
x8 = 0.199 x14= 0.567 x20= 0.535
x9 = 1.735 x15= 2.384 x21= 3.205
x10= −6.677 x16= −6.810 x22= −10.159
x11= 37.706 x17= 39.382 x23= 56.697
x12=−197.958 x18=−193.017 x24=−277.788

Table 4.3 The numerical solutions for Example 4.11

Since fn = −xn and fn+1 = −xn+1 the LMM leads to the difference equa-
tion

xn+2 = −4(1 + h)xn+1 + (5− 2h)xn, n = 0, 1, 2, . . . ,

which is used to compute the values given in Table 4.3. In each case we see
that the numerical solution oscillates wildly within just a few steps, making
the method completely worthless.

Behaviour of the type seen in the preceding example had been experienced
frequently ever since LMMs were first introduced in the 19th century, but
it took until 1956 for the Swedish numerical analyst Germund Dahlquist to
discover the cause—this example was used in his original work and reappears
in his book with A. Björck [16]. He proved that for a method to be convergent
(and therefore useful) it not only had to be consistent (have order ≥ 1), but it
also had to satisfy a property known as zero-stability. This is addressed in the
next chapter.

We conclude this chapter by extending two-step LMMs so as to incorporate
further terms from the history of the numerical solution. This generalization
will allow us the opportunity of summarizing the main ideas to date.

4.3 k-Step Methods

The one- and two-step methods that have been discussed thus far generalize
quite naturally to k-step methods. The most general method takes the form

xn+k+αk−1xn+k−1+· · ·+α0xn = h
�
βkfn+k+βk−1fn+k−1+· · ·+β0fn

�
(4.22)

and is of implicit type unless βk = 0, when it becomes explicit. It uses k past
values of the pair xn+j , fn+j (j = 0 : k−1), as well as fn+k in the implicit case,
in order to calculate xn+k. The coefficients have been normalized so that the
coefficient of xn+k is αk = 1. This method has first and second characteristic
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polynomials (see Definition 4.6)

ρ(r) = rk + αk−1r
k−1 + · · ·+ α0,

σ(r) = βkrk + βk−1r
k−1 + · · ·+ β0,

(4.23)

and an associated linear difference operator defined by (see Definition 4.2)

Lhz(t) ≡
k∑

j=0

αjz(t + jh)− hβjz
′(t + jh). (4.24)

Taylor expanding the right-hand side about the point h = 0 and collecting
terms in powers of h leads to (see (4.17))

Lhz(t) = C0z(t)+C1hz′(t)+ · · ·+Cph
pz(p)(t)+Cp+1h

p+1z(p+1)(t)+O(hp+2),

in which C0 = ρ(1), C1 = ρ′(1) − σ(1), and the coefficients C0, C1, C2, . . . are
linear combinations of β0, β1, . . . , βk, α0, α2, . . . , αk (αk = 1). The method has
order p if

C0 = C1 = · · · = Cp = 0

and the first non-zero coefficient Cp+1 is the error constant.4

The general implicit (explicit) k-step LMM has 2k +1 (2k) arbitrary coeffi-
cients; so, provided the linear relationships are linearly independent, we would
expect to be able to achieve order 2k with implicit methods and (2k − 1) with
explicit methods. We do not offer proofs of these assertions since it will turn
out in the next chapter that, because of the type of instability observed in Ex-
ample 4.11, convergent methods cannot, in general, achieve such high orders.

EXERCISES

4.1.? Distinguish the implicit methods from the explicit methods in Ta-
ble 4.2.

4.2.?? Consider the problem of using the trapezoidal rule to solve the
IVP x′(t) = −x2(t), x(0) = 1. Show that it is necessary to solve
a quadratic equation in order to determine xn+1 from xn and that
an appropriate root can be identified by making use of the property
that xn+1 → xn as h → 0.

Hence find an approximate solution at t = 0.2 using h = 0.1.

4It is common to define the error constant to be Cp+1/σ(1)—we shall call this the
scaled error constant. See the footnote on page 69 for an explanation.
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4.3.?? Consider the IVP x′(t) = 1 + x2(t), x(0) = 0. When the backward
Euler method is applied to this problem the numerical solution x1

at time t1 = h is defined implicitly as the solution of a quadratic
equation. Explain carefully why it is appropriate to choose the root
given by

x1 =
2h

1 +
√

1− 4h2
.

4.4.?? The backward Euler method is to be applied to the IVP x′(t) =
2
√

x(t), with x(0) = 1. Use an argument similar to that in Exer-
cise 4.2 to explain carefully why this leads to

xn+1 =
(
h +

√
xn + h2

)2

for a convergent process.

4.5.? Write down the linear difference operator Lh associated with the
backward Euler method and, working from first principles, find the
precise form of the leading term in the LTE, i.e. find its order and
error constant.

4.6.? Investigate the consistency of the LMM

xn+2 − xn = 1
4h(3fn+1 − fn).

4.7.? What values should the parameters a and b have so that the following
LMMs are consistent:

(a) xn+2 − axn+1 − 2xn = hbfn,

(b) xn+2 + xn+1 + axn = h(fn+2 + bfn).

4.8.? If β1 were to be kept free in Example 4.10, say β1 = θ, show that
this would lead to the one-parameter family of order 1 methods:

xn+2 − xn = h(θfn+1 + (2− θ)fn).

What is the error constant of this method? What value of θ produces
the highest order?

4.9.?? Show that the LMM xn+1 = xn + 2hfn is not consistent and that,
when used to solve the IVP x′(t) = 1 for t ∈ (0, 1], x(0) = 0, it
leads to xn = 2nh. Hence, by writing down the GE x(tn)−xn when
tn = 1, show that the method is not convergent.
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4.10.? Determine the order and error constant of the LMM

3xn+2 − 4xn+1 + xn = 2hfn+2, (4.25)

which is known as the “two-step backward differentiation formula”:
BDF(2).

4.11.? Determine the two-step LMM of the form

xn+2 + α1xn+1 − axn = hβ2fn+2

that has maximum order when a is retained as a free parameter.

4.12.?? Show that an LMM of the form

xn+2 − xn+1 = h(β2fn+2 + β1fn+1 + β0fn)

has maximum order when β2 = 5/12, β1 = 2/3, and β0 = −1/12.
What is the error constant of this method (known as the two-step
Adams–Moulton method (AM(2))?

4.13.??? Write down the linear difference operator Lh associated with
Simpson’s rule

xn+2 − xn = 1
3h(fn+2 + 4fn+1 + fn).

Use the Taylor expansions of z(t+2h) and z(t) about the point t+h:

z(t + 2h) = z(t + h) + hz′(t + h) + 1
2!h

2z′′(t + h) + . . . ,

z(t) = z(t + h)− hz′(t + h) + 1
2!h

2z′′(t + h)− . . . ,

with similar expansions for z′(t + 2h) and z′(t), to show that it has
order p = 4 (the maximum possible for a two-step method) with
error constant C5 = −1/90.

What is the advantage of using these non-standard expansions?

4.14.??? Show that the general coefficient Cm (m > 0) in the expansion
(4.17) is given by

Cm =
2∑

j=0

[
1
m!

jmαj −
1

(m− 1)!
jm−1βj

]
, (4.26)

where α2 = 1 is the normalizing condition.

Use this expression to verify the error constants found in Exam-
ples 4.4 and 4.10.
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4.15.?? Show that the conditions (4.15) for consistency are equivalent to
the equations Lhz(t) = 0 with the choices z(t) = 1 and z(t) = t.

Hence prove that Lhz(t) = 0 whenever z(t) is a linear function of t.

4.16.?? If x′(t) = g(t), t ∈ [a, b], with x(a) = 0, show that x(b) =
∫ b

a
g(t) dt.

Use the trapezoidal rule with h = 1/2 to compute an approximate
value for the integral

∫ 1

0
t3 dt and compare with the exact value.

4.17.??? Complete the details of the proof of the second part of The-
orem 4.8. Explain, in particular, why it is necessary to invoke
l’Hôpital’s rule.

4.18.?? Determine the quadratic polynomial5 p(t) that satisfies the condi-
tions

p(tn+1) = xn+1, p′(tn+1) = fn+1, p′(tn) = fn.

Show that xn+2 = p(tn+2) leads to the AB(2) method (4.10).

4.19.?? Find a quadratic polynomial p(t) that satisfies the conditions

p(tn) = xn, p′(tn) = fn, p′(tn+1) = fn+1.

Show that xn+1 = p(tn+1) leads to the trapezoidal rule (4.7).

5The construction of p(t) can be simplified by seeking coefficients A, B, and C
such that p(t) = A + B(t− tn+1) + C(t− tn+1)

2.



5
Linear Multistep Methods—II:

Convergence and Zero-Stability

5.1 Convergence and Zero-Stability

Means of determining the coefficients in LMMs were described in Chapter 4
and criteria now need to be established to identify those methods that are
practically useful. In this section we describe some of the behaviour that should
be expected of methods (in general) and, in subsequent sections, indicate how
this behaviour can be designed into LMMs.

A basic requirement of any method is that its solutions should converge
to those of the corresponding IVP as h → 0. To formalize this concept, our
original specification in Definition 2.3 must be tailored to accommodate the
additional starting values needed for k-step LMMs.

In order to solve the IVP

x′(t) = f(t, x(t)), t > t0
x(t0) = η

}
(5.1)

over some time interval t ∈ [t0, tf ], we choose a step-size h, a k-step LMM

xn+k+αk−1xn+k−1+· · ·+α0xn = h
(
βkfn+k+βk−1fn+k−1+· · ·+β0fn

)
, (5.2)

and starting values

x0 = η0, x1 = η1, . . . , xk−1 = ηk−1. (5.3)
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The values xk, xk+1, ..., xN are then calculated from (5.2) with n = 0 : N − k,
where Nh = tf − t0.

Our aim is to develop methods with as wide a range of applicability as
possible; that is, we expect the methods we develop to be capable of solving
all IVPsof the form (5.1) that have unique solutions. We have no interest in
methods that can solve only particular IVPsor particular types of IVP.

In addition to the issues related to convergence that we previously discussed
in Section 2.4 (for Euler’s method) and Section 3.4 (for TS(p) methods), the
main point to be borne in mind when dealing with k-step LMMs concerns the
additional starting values (5.3). These will generally contain some level of error1

which must tend to zero as h → 0, so that

lim
h→0

ηj = η, j = 0 : k − 1. (5.4)

In practice, the additional starting values x1, . . . , xk−1 would be calculated
using an appropriate numerical method. For example, condition (5.4) would be
satisfied if we used k − 1 steps of Euler’s method.

Definition 5.1 (Convergence)

The LMM (5.2) with starting values satisfying (5.4) is said to be convergent if,
for all IVPs (5.1) that possess a unique solution x(t) for t ∈ [t0, tf ],

lim
h→0

nh=t∗−t0

xn = x(t∗) (5.5)

holds for all t∗ ∈ [t0, tf ].

The next objective is to establish conditions on the coefficients of the general
LMM that will ensure convergence. Theorem 4.8 shows that consistency is a
necessary prerequisite, but Example 4.11 strongly suggests that, on its own, it
is not sufficient. Recall that consistency implies that ρ(1) = 0 and ρ′(1) = σ(1):

k∑
j=0

αj = 0,
k∑

j=0

jαj =
k∑

j=0

βj , (5.6)

with our normalizing condition αk = 1.

Example 5.2

Explain the the non-convergence of the two-step LMM

xn+2 + 4xn+1 − 5xn = h(4fn+1 + 2fn)
1Although it is natural to choose η0 = η, the given starting value for the ODE,

this is not necessary for convergence.
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that was observed in Example 4.11 by applying the method to the (trivial)
IVP x′(t) = 0 with initial condition x(0) = 1. Use starting values x0 = 1
and x1 = 1 + h (recall that the definition of convergence requires only that
x1 → x(0) as h → 0).

The method becomes, in this case,

xn+2 + 4xn+1 − 5xn = 0. (5.7)

This is a two-step constant-coefficient difference equation whose auxiliary equa-
tion is

r2 + 4r − 5 = (r − 1)(r + 5).

The general solution of the difference equation (see Appendix D) is

xn = A + B(−5)n,

where A and B are arbitrary constants. The initial condition x0 = 1 implies
that A + B = 1 and x1 = 1 + h leads to

1 + h = A + B(−5).

These solve to give B = −h/6 and A = 1− h/6, and so

xn = 1 + 1
6h[1− (−5)n].

It is the presence of the term (−5)n that causes the disaster: suppose, for
instance, that t = 1, so nh = 1, then

h|(−5)n| = 1
n

5n →∞ as h → 0.

When h = 0.1, for example, n = 10 and 1
n5n ≈ 106, so the divergence of xn is,

potentially, very rapid.
The auxiliary equation of (5.7) is the first characteristic polynomial, ρ(r),

of the LMM. It has the property ρ(1) = 0, i.e. r = 1 is a root of ρ(r) for all
consistent methods. This means that the first characteristic polynomial of any
consistent two-step LMM will factorize as

ρ(r) = (r − 1)(r − a)

for some value of a (in the previous example we had a = −5, which led to the
trouble). A method with this characteristic polynomial applied to x′(t) = 0
would give a general solution

xn = A + Ban,

which suggests that we should restrict ourselves to methods for which |a| ≤ 1
so that |a|n does not go to infinity with n. This turns out to be not quite
sufficient, as the next example shows.
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Example 5.3

Investigate the convergence of the three-step LMM

xn+3 + xn+2 − xn+1 − xn = 4hfn

when applied to the model problem x′(t) = 0, x(0) = 1 with starting values
x0 = 1, x1 = 1− h, and x2 = 1− 2h.

Establishing consistency of the method is left to Exercise 5.7.
The homogeneous difference equation xn+3 + xn+2 − xn+1 − xn = 0 has

auxiliary equation
ρ(r) = (r − 1)(r + 1)2

and, therefore, its general solution is

xn = A + (B + Cn)(−1)n

(see Appendix D). With the given starting values, the solution can be shown
to be

xn = 1− h + (−1)n(h− tn), (5.8)

while the exact solution of the IVP is, of course, x(t) = 1. Thus, for example,
at t = t∗ = 1, x(1) = 1 while, |xn − 1 + h| = 1 − h for all values of h with
t∗ = nh = 1. The GE, therefore, has the property |x(1)−xn| → 1 and does not
tend to zero as h → 0. Hence, the method is consistent but not convergent.

This leads to the following definition.

Definition 5.4 (Root Condition)

A polynomial is said to satisfy the root condition if all its roots lie within or
on the unit circle, with those on the boundary being simple. In other words,
all roots satisfy |r| ≤ 1 and any that satisfy |r| = 1 are simple.2

A polynomial satisfies the strict root condition if all its roots lie inside the
unit circle; that is, |r| < 1.

Thus, ρ(r) = r2 − 1 satisfies the root condition, while ρ(r) = (r − 1)2

does not.

Definition 5.5 (Zero-Stability)

An LMM is said to be zero-stable if its first characteristic polynomial ρ(r)
satisfies the root condition.

2We say that λ is a simple root of ρ(r) if λ− r is a factor of ρ(r), but (λ− r)2 is
not.
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All consistent one-step LMMs have first characteristic polynomial ρ(r) = r− 1
and so satisfy the root condition automatically, which is why this notion was
not needed in the study of Euler’s method or the Taylor series methods. We
are now in a position to state Dahlquist’s celebrated theorem.

Theorem 5.6 (Dahlquist (1956))

An LMM is convergent if, and only if, it is both consistent and zero-stable.

The main purpose of this theorem is to filter out the many LMMs that fail its
conditions; we are left to focus our attention on those that pass—the convergent
methods. An explanation of why both conditions together are sufficient is given
in Section 5.3 in the context of a scalar linear IVP.

Zero-stability places a significant restriction on the attainable order of
LMMs, as the next theorem attests—recall that the order of an implicit (ex-
plicit) k-step LMM could be as high as 2k (2k − 1).

Theorem 5.7 (First Dahlquist Barrier (1959))

The order p of a stable k-step LMM satisfies

1. p ≤ k + 2 if k is even;

2. p ≤ k + 1 if k is odd;

3. p ≤ k if βk ≤ 0 (in particular for all explicit methods).

Proofs of Theorems 5.6 and 5.7 were originally given in the landmark papers
of Dahlquist [14, 15]. They may also be found in the book of Hairer et al. [28].

Had we been armed with this barrier theorem earlier, the method described
in Example 4.11 could have been dismissed immediately, since it violates part
3 of the theorem (it is explicit with k = 2 and p = 3).

5.2 Classic Families of LMMs

The first four families of classical methods we describe below are constructed by
choosing methods that have a particularly simple first characteristic polynomial
that will automatically be zero-stable. The remaining coefficients are chosen so
that the resulting method will have maximum order.
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1. Adams–Bashforth (1883): These have first characteristic polynomials

ρ(r) = rk − rk−1,

which have a simple root r = 1 and a root of multiplicity (k − 1) at r = 0.
Methods in this family are also explicit, so

xn+k − xn+k−1 = h
(
βk−1fn+k−1 + · · ·+ β0fn

)
and the k coefficients β0, . . . , βk−1 are chosen so that C0 = C1 = · · · =
Ck−1 = 0 and give, therefore, a method of order p = k. This is the
highest possible order of a zero-stable explicit k-step method (part 3 of
Theorem 5.7) and is attained despite imposing severe restrictions on its
structure.

We have already encountered the k = 1 member—Euler’s method—and
the AB(2) method (4.10) for k = 2. With k = 3 the AB(3) method is

xn+3 − xn+2 = 1
12h

(
23fn+2 − 48fn+1 + 5fn

)
, (5.9)

which has order p = 3 and error constant C3 = 3
8 .

2. Adams–Moulton (1926): These are implicit versions of the Adams–Bashforth
family, having the form

xn+k − xn+k−1 = h
(
βkfn+k + · · ·+ β0fn

)
.

There is one more coefficient than the corresponding Adams–Bashforth
method so we can attain order k + 1. For k = 1 we have the trape-
zoidal rule (4.7). The two-step Adams–Moulton method (AM(2)—see Ex-
ercise 4.12) has order 3 and not the maximum possible order (4) for an
implicit two-step method implied by Theorem 5.7. For k = 3, the AM(3)
method

xn+3 − xn+2 = 1
24h

(
9fn+3 + 19fn+2 − 5fn+1 + fn

)
has order 4 and error constant C4 = −19/720.

3. Nyström method (1925):s These are explicit methods with k ≥ 2 having
first characteristic polynomial ρ(r) = rk − rk−2, so take the general form

xn+k − xn+k−2 = h
(
βk−1fn+k−1 + · · ·+ β0fn

)
.

They have the same number of free coefficients as the AB family and are
chosen to achieve order p = k, the same order as the corresponding AB
method. The two-step version is the second-order mid-point rule (4.21).
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4. Milne–Simpson (1926): These are the implicit analogues of Nyström meth-
ods:

xn+k − xn+k−2 = h
(
βkfn+k + · · ·+ β0fn

)
.

The simplest member of the family is Simpson’s rule (see Exercise 4.13),
which has k = 2 and order p = 4. The high degree of symmetry present
in the structure of the method allows it to attain the maximum possible
order for a zero-stable two-step method (unlike AM(2) above).

5. Backward differentiation formulas (BDFs—1952). These form a generaliza-
tion of the backward Euler method (see Table 4.2). The simplest possible
form is chosen for the second characteristic polynomial consistent with the
method being implicit: σ(r) = βkrk. Thus,

xn+k + αk−1xn+k−1 + · · ·+ α0xn = hβkfn+k

and the (k+1) free coefficients are chosen to achieve order k—not the higher
order (k+2) that can be achieved with the most general implicit zero-stable
k-step LMMs. Despite this, they form an important family because they
have compensating strengths, as we shall see in Chapter 6.

It may be shown (see Iserles [39, Lemma 2.3], for instance) that the first
characteristic polynomial, ρ(r), of these methods is given by

ρ(r) =
1
c

k∑
j=1

1
j
rk−j(r − 1)j , c =

k∑
j=1

1
j
. (5.10)

Zero-stability is easily checked for each k—the BDF(2) method of Exer-
cise 4.10 is stable, as are other members up to k = 6; thereafter they are
all unstable.

5.3 Analysis of Errors: From Local to Global

The convergence of Euler’s method was analysed in Theorem 2.4 for the special
case when it was applied to the IVP

x′(t) =λx(t) + g(t), 0 < t ≤ tf

x(0) = 1.
(5.11)

In this section we shall indicate the additional features that have to be ac-
counted for when analysing the convergence of k-step LMMs with k > 1. To
get across the key concepts, it is sufficient to look at the behaviour of two-step
methods.
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As discussed in Section 4.3, LMMs are constructed from Taylor expansions
in such a manner that their associated linear difference operators have the
property

Lhz(t) = Cp+1h
p+1z(p+1)(t) + · · · ,

where z is any (p + 1)-times continuously differentiable function.
The LTE, denoted by Tn+2, is defined to be the value of the left-hand side

of this expression when we replace z by x, the exact solution of our IVP. So,
for our two-step method we define, at t = tn+2,

Tn+2 = Lhx(tn). (5.12)

When x(t) is a (p + 1)-times continuously differentiable function we have

Tn+2 = Cp+1h
p+1x(p+1)(t) + · · · ,

so that Tn+2 = O(hp+1). Let yn = x(tn) (for all n) denote the exact solution of
the IVP (5.11) at a typical grid point tn. The general two-step LMM applied
to the IVP (5.11) leads to

xn+2 + α1xn+1 + α0xn =

hλ
(
β2xn+2 + β1xn+1 + β0xn

)
+ h(β2g(tn+2) + β1g(tn+1) + β0g(tn)). (5.13)

With Definition 4.2 for Lh and equation (5.12) we find that the exact solution
satisfies the same equation with the addition of Tn+2 on the right:

yn+2 + α1yn+1 + α0yn =

hλ
(
β2yn+2 + β1yn+1 + β0yn

)
+ h(β2g(tn+2) + β1g(tn+1) + β0g(tn)) + Tn+2. (5.14)

Subtracting (5.13) from (5.14), the GE en = x(tn)− xn ≡ yn − xn is found to
satisfy the difference equation

(1− hλβ2)en+2 + (α1 − hλβ1)en+1 + (α0 − hλβ0)en = Tn+2, (5.15)

with the starting values e0 = 0 and e1 = x(t1)−η1, which may be assumed to be
small (the definition of convergence stipulates that the error in starting values
must tend to zero as h → 0). This is the equation that governs the way “local”
errors Tn+2 accumulate into the “global” error {en}. Usage of the terms “local”
and “global” reflects the fact that the LTE Tn+2 can be calculated locally (for
each time tn) via Equation (5.12), whereas the GE results from the overall
accumulation of all LTEs—a global process.

In order to simplify the next stage of the analysis, let us assume that the
LTE terms Tn+2 are constant: Tn+2 = T , for all n. As discussed in Appendix D,
the general solution of (5.15) is then comprised of two components:
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1. A particular solution, en = P , which is constant. Substituting en+2 =
en+1 = en = P into (5.15) and using the consistency condition 1+α1+α0 =
0, we find that3

P =
T

hλσ(1)
;

so, if T = O(hp+1), it follows that P = O(hp).

2. The general solution of the homogeneous equation. If the auxiliary equation

(1− hλβ2)r2 + (α1 − hλβ1)r + (α0 − hλβ0) = 0

has distinct roots, r1 6= r2, then this contribution is

Arn
1 + Brn

2 ,

where A and B are arbitrary constants.

Thus, the general solution for the GE is, in this case,

en = Arn
1 + Brn

2 + P. (5.16)

The constants A and B are determined from the starting values. As h → 0,
the roots r1 and r2 tend to the roots of the first characteristic polynomial ρ(r).
If the root condition in Definition 5.4 is violated, then their contribution will
completely swamp the GE and lead to divergence. The LTE contributes to the
GE through the term P = O(hp), so consistency (p > 0) ensures that this
tends to zero with h.

Consistency of an LMM ensures that the local errors are small, while zero-
stability ensures that they propagate so as to give small GEs.

5.4 Interpreting the Truncation Error

We extend the discussion in the previous subsection so as to give an alternative—
and perhaps more intuitive—interpretation of the LTE (5.12) of an LMM. To
simplify the presentation we will again restrict ourselves to the case of a lin-
ear ODE solved with a two-step method, but the conclusions are valid more
generally.

3The presence of the factor σ(1) in the denominator induces many writers to define
the error constant of an LMM to be Cp+1/σ(1) and not Cp+1 as we have done. We
shall refer to Cp+1/σ(1) as the scaled error constant; it is seen on page 89 to be a key
feature of Dahlquist’s Second Barrier Theorem.
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Suppose we were to compute xn+2 from (5.13) when the past values were
exact—that is, xn+1 = yn+1 and xn = yn (recall that yn+j = x(tn+j))—and
we denote the result by x̃:

x̃n+2 + α1xn+1 + α0xn =

hλ
(
β2x̃n+2 + β1xn+1 + β0xn

)
+ h(β2g(tn+2) + β1g(tn+1) + β0g(tn)).

Subtracting this from (5.14) gives

(1− hλβ2)(yn+2 − x̃n+2) = Tn+2.

1. In the explicit case (β2 = 0), Tn+2 = yn+2 − x̃n+2: the LTE is the error
committed in one step on the assumption that the back values are exact.

2. In the implicit case (β2 6= 0), the binomial expansion:

(1− hλβ2)−1 = 1 + hλβ2 +O(h2) = 1 +O(h)

and the fact that Tn+2 = O(hp+1) for a method of order p shows that
(1 +O(h))Tn+2 = yn+2 − x̃n+2 and hence

Tn+2 = yn+2 − x̃n+2 +O(hp+2).

So, the leading term in the LTEis the error committed in one step on the
assumption that the back values are exact.

The assumption that back values are exact is known as the localizing as-
sumption (Lambert [44, p. 56]).

EXERCISES

5.1.? Investigate the zero-stability of the two-step LMMs

(a) xn+2 − 4xn+1 + 3xn = −2hfn,

(b) 3xn+2 − 4xn+1 + xn = ahfn.

Are there values of a in part (b) for which the method is convergent?

5.2.?? Show that the order of the LMM

xn+2 + (b− 1)xn+1 − bxn = 1
4h [(b + 3)fn+2 + (3b + 1)fn]

is 2 if b 6= −1 and 3 if b = −1.
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Show that the method is not zero-stable when b = −1, and illustrate
the divergence by applying it to the IVP x′(t) = 0, x(0) = 0 with
starting values x0 = 0 and x1 = h.4

5.3.?? Show that the LMM

xn+2 + 2axn+1 − (2a + 1)xn = h((a + 2)fn+1 + afn)

has order 2 in general and express the error constant in terms of a.

Deduce that there is one choice of the parameter a for which the
method has order 3 but that this method is not zero-stable. How is
this method related to Example 4.11?

What value of a leads to a convergent method with smallest possible
error constant?

5.4.?? Consider the one-parameter family of LMMs

xn+2 + 4axn+1 − (1 + 4a)xn = h
(
(1 + a)fn+1 + (1 + 3a)fn

)
.

for solving the ODE x′(t) = f(t, x(t)).

(a) Determine the error constant for this family of methods and
identify the method of highest order.

(b) For what values of a are members of this family convergent?

Is the method of highest order convergent? Explain your answer
carefully.

5.5.? Prove that any consistent one-step LMM is always zero-stable.

5.6.? Suppose that the first characteristic polynomial ρ(r) of a convergent
LMM is a quadratic polynomial. Prove that the most general form
of ρ is

ρ(r) = (r − 1)(r − a)

for a parameter a ∈ [−1, 1).

5.7.?? For Example 5.3, verify that

(a) the method is consistent;

(b) the numerical solution at time tn is given by the expression (5.8);

(c) the method is not zero-stable.
4This example illustrates the conflicting requirements of trying to achieve maxi-

mum order of consistency while maintaining zero-stability. When b = −1 the charac-
teristic polynomials ρ and σ have a common factor—such methods are called reducible
LMMs.
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5.8.? Prove that the method

xn+3 + xn+2 − xn+1 − xn = h(fn+3 + fn+2 + fn+1 + fn)

is consistent but not convergent.

5.9.? Investigate the convergence, or otherwise, of the method

xn+3 − xn+2 + xn+1 − xn = 1
2h(fn+3 + fn+2 + fn+1 + fn).

5.10.? Prove that σ(1) 6= 0 for a convergent k-step LMM.

5.11.? Consider the two-parameter family of LMMs

xn+2 − xn = h (β1fn+1 + β0fn).

Show that there is a one-parameter family of convergent methods of
this type.

Determine the error constant for each of the convergent methods and
identify the method of highest order. What is its error constant?

5.12.??? Apply the LMM xn+2 − 2xn+1 + xn = h(fn+1 − fn) to the IVP
x′(t) = −x(t) with x(0) = 1 and the starting values x0 = x1 = 1
(note that these satisfy our criterion (5.4)). Show that the exact
solution of the LMM in this case is xn = A + B(1 − h)n. Find the
values of A and B and discuss the convergence of the method by
directly comparing the expressions for xn and x(tn).

Extend your solution to the initial values x0 = 1, x1 = 1 + ah.

Relate your conclusions to the zero-stability of the method.

5.13.? Consider the family of LMMs

xn+2 + (θ − 2)xn+1 + (1− θ)xn = 1
4h ((6 + θ)fn+2 + 3(θ − 2)fn) ,

in which θ is a parameter.

Determine the order and error constant for the method and show
that both are independent of θ.

For what range of θ values is the method convergent? Explain your
answer.

5.14.?? Determine the coefficients in the three-step BDF(3) method (see
page 67) and calculate its error constant. Verify that it has order
p = 3 and that the coefficients give rise to the first characteristic
polynomial (5.10) with k = 3. Examine the zero-stability of the
resulting method.
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5.15.?? The first characteristic polynomial of the general BDF(k) is given
by (5.10). Use consistency of the method to derive an expression for
the second characteristic polynomial σ(r).

Verify that, when k = 2, these characteristic polynomials give rise
to the BDF(2) method given in Exercise 4.10.

5.16.??? Use the starting values e0 = 0 and e1 = x(h) − η1 to determine
the constants A and B in (5.16) and hence show that

en = (x(h)− η1)
rn
1 − rn

2

r1 − r2
+ P

(
1− 1− r2

r1 − r2
rn
1 +

1− r1

r1 − r2
rn
2

)
.

If the first characteristic polynomial has roots r = 1 and r = a,
then it may be shown that r1 = 1 +O(h) and r2 = a +O(h), where
−1 ≤ a < 1 and, consequently, r1−r2 = 1−a+O(h) is bounded away
from zero as h → 0. It then follows that en = O(hp) if P = O(hp)
and the error in the additional starting value is of the same order:
η1 = x(h) +O(hp).



6
Linear Multistep Methods—III:

Absolute Stability

6.1 Absolute Stability—Motivation

The study of convergence for LMMs involves the limit

xn → x(t∗) when n →∞ and h → 0 in such a way that tn = t0 + nh = t∗,
where t∗ is fixed value of the “time” variable t.

Thus, convergent methods generate numerical solutions that are arbitrarily
close to the exact solution of the IVP provided that h is taken to be suffi-
ciently small. Since non-convergent methods are of little practical use we shall
henceforth assume that all LMMs used are convergent—they are consistent and
zero-stable.

Being in possession of a convergent method may not be much comfort in
practice if one ascertains that h needs to be particularly small to obtain results
of even modest accuracy. If h < 10−6, for instance, then more than 1 million
steps would be needed in order to integrate over each unit of time; this may
be entirely impractical. In this chapter we begin the investigation into the
behaviour of solutions of LMMs when h is not arbitrarily small. We give a
numerical example before pursing this question.

Springer Undergraduate Mathematics Series, DOI 10.1007/978-0-85729-148-6_6,  
© Springer-Verlag London Limited 2010 

D.F. Griffiths, D.J. Higham, Numerical Methods for Ordinary Differential Equations,  
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Example 6.1

Use Euler’s method to solve the IVP (see Example 1.9)

x′(t) = −8x(t)− 40(3e−t/8 − 1), x(0) = 100.

We know that the exact solution of this problem is given by

x(t) =
1675
21

e−8t +
320
21

e−t/8 + 5.

This function is shown in Figure 6.1. The temperature x(t) drops quite rapidly
from 100◦C to room temperature (about 20◦C) and then falls slowly to the
exterior temperature (about 5◦C).

Turning now to the numerical solution, Euler’s method applied to this ODE
gives

xn+1 = (1− 8h)xn + h
(
120e−tn/8 + 40

)
, n = 0, 1, 2, . . . ,

with tn = nh and x0 = 100.
The leftmost graph in Figure 6.2 shows xn versus tn when h = 1/3. The nu-

merical solution has ever-increasing oscillations—a classic symptom of numeri-
cal instability—reaching a maximum amplitude of 106. The numerical solution
bears no resemblance to the exact solution shown in Figure 6.1.

Reducing h (slightly) to 1/5 has a dramatic effect on the solution (middle
graph): it now decays in time while continuing to oscillate until about t ≈ 2,
after which point it becomes a smooth curve.

When h is further reduced to 1/9 the solution resembles the exact solution,
but the solid and broken curves do not become close until t ≈ 0.5.

In Figure 6.3 we plot the GEs (GE) |x(nh)− xn| on a log-linear scale.1

The linear growth of the GE on this scale for h = 1/3 suggests exponential
growth. In contrast, for h = 1/5, the error decays exponentially over the interval

0 4 8 12 16
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40
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80

100

t

u
(t

)

Fig. 6.1
The exact solution to Example 6.1

1If the GE were to vary exponentially with n, en = c rn, then log en = n log r+log c
and a graph of log en versus n would be a straight line with slope log r. When r > 1
the slope would be positive, corresponding to exponential growth, while the slope
would be negative if 0 < r < 1, corresponding to exponential decay.
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Fig. 6.2 Solutions to Example 6.1 using Euler’s method with h = 1/3 (left),
h = 1/5 (middle) and h = 1/9 (right). The exact solution of the IVP is shown
as a broken curve

0 ≤ t ≤ 4 where it reaches a level of about about 10−3. Were we to be interested
in an accuracy of about 1◦C, this would be achieved at around t = 1.8 h.

For h = 1/9 there is a more rapid initial exponential decay of the error until
it, too, levels out, at a similar value of about 10−3 at t = 1.3 h.

The theory that we shall present below can be used to show (see Exam-
ple 6.7) that Euler’s method suffers a form of instability for this IVP when
h ≥ 1/4; this is clearly supported by the numerical evidence we have pre-
sented. This is typical: Euler’s method is of no practical use for problems with
exponentially decaying solutions unless h is small enough. Furthermore, when
h is chosen small enough to avoid exponential growth of the GE, the accuracy
of the long-term solution may be much higher than is required.

This behaviour is caused by the exponent e−8t in the complementary func-
tion; had it been e−80t we would have needed to take h to be 10 times smaller
and we would have generated, as a consequence, a numerical solution that was
10 times more accurate. Thus, in this problem, we are forced to choose a small
value of h in order to avoid instability and, while this will produce a solu-
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Fig. 6.3 The GEs associated with the solutions to Example 6.1 using Euler’s
method (left) and the backward Euler method (right) with h = 1/3 (+), h =
1/5 (◦), and h = 1/9 (•)
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tion of high accuracy, it is likely to be more accurate than required by the
application—the method is inefficient since we have expended more effort than
necessary when only moderate accuracy is called for.

We now contrast this behaviour with that of the backward Euler method:

xn+1 = xn − 8hxn+1 + h
(
120e−tn+1/8 + 40

)
, n = 0, 1, 2, . . . ,

which is rearranged to read

xn+1 =
1

1 + 8h

[
xn + h(120e−tn+1/8 + 40)

]
, n = 0, 1, 2, . . . ,

with tn+1 = (n + 1)h and x0 = 100.
Solutions corresponding to h = 1/3, 1/5, 1/9 are shown in Figure 6.4. Com-

paring with Figure 6.2 it is evident that there are no oscillations and the nu-
merical solutions are reasonable approximations of the exact solution for each
of the values of h. The behaviour is such that small changes to h lead to small
changes in the numerical solutions (and associated GEs)—this is a desirable,
stable feature.

The local truncation errors for forward and backward Euler methods are
equal but opposite in sign. However, the way that these errors propagate is
clearly different. In this example the backward Euler method is much superior
to that of the Euler method since we are able to choose h on grounds of accuracy
alone without having to be concerned with exponentially growing oscillations
for larger values of h.
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Fig. 6.4 Solutions to Example 6.1 using the backward Euler method with
h = 1/3 (left), h = 1/5 (middle), and h = 1/9 (right). The exact solution of
the IVP is shown as a broken curve

Example 6.2

Use the forward and backward Euler methods to solve the IVP (see (1.16))

x′(t) = − 1
8 (x(t)− 5− 5025e−8t), x(0) = 100.
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Compare the results produced with those of the previous example which has
the same exact solution (see Example 1.9).

The forward and backward Euler methods are, respectively,

xn+1 = (1− 1
8h)xn − h(5− 5025e−8tn),

xn+1 =
1

1 + h/8
[
xn − h(5− 5025e−8tn+1)

]
,

with x0 = 100 in each case. The GEs obtained when these methods are deployed
with h = 1/3 and 1/9 are shown in Figure 6.5. In both cases the GEs are
quite large over the interval of integration and decay slowly (proportional to
e−t/8). However, the most important feature in the present context is that
there is no indication of the exponential growth that we saw in the previous
example with Euler’s method with h = 1/3. In this example the forcing function
decays rapidly relative to the solutions of the homogeneous equation (e−8t

versus e−t/8), whereas the roles are reversed in Example 6.1. This suggests
that the exponentially growing oscillations observed in Figure 6.2 with h = 1/3
are associated with rapidly decaying solutions of the homogeneous equation.
This is the motivation for studying homogeneous equations in the remainder
of this chapter.

6.2 Absolute Stability

The numerical results for Examples 6.1 and 6.2 lead us to absolute stability
theory, in which we examine the effect of applying (convergent) LMMs to the
model scalar problem

x′(t) = λx(t), (6.1)
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Fig. 6.5 The GEs associated with the solutions to Example 6.2 using Euler’s
method (left) and the backward Euler method (right) with h = 1/3 (+) and
h = 1/9 (•)
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in which λ may be complex2 and has negative real part : <(λ) < 0. The general
solution has the form x(t) = c eλt in which c is an arbitrary constant. Hence,
x(t) → 0 as t →∞, regardless of the value of c.

Our aim is to determine those LMMs which, when applied to (6.1), give
solutions {xn} that also tend to zero as tn → ∞ with a given fixed step size
h. Note that this property is different from that used by convergence theory,
which also required the limit n → ∞, since h is now fixed. This notion has
proved, perhaps surprisingly, to be both important and useful over many years
and we formalize our aspirations by the following definition.

Definition 6.3 (Absolute Stability)

An LMM is said to be absolutely stable if, when applied to the test problem
x′(t) = λx(t) with <(λ) < 0 and a given value of ĥ = hλ,3 its solutions tend to
zero as n →∞ for any choice of starting values.

Our definition of absolute stability is motivated by the idea of asking for
the numerical method to reproduce the long-term behaviour of the model ODE
(6.1). However, from Section 5.3 it should be clear that this condition is very
similar to the requirement that the GE should be damped as time increases—
this is the property that we looked at in Example 6.1. Hence, absolute stability
is an important factor in the control of the GE. Applying the general two-step
LMM (see Equation (4.13)) to the ODE x′(t) = λx(t) we have

xn+2 + α1xn+1 + α0xn = hλ(β2xn+2 + β1xn+1 + β0xn),

which can be rearranged to give the two-step linear difference equation

(1− ĥβ2)xn+2 + (α1 − ĥβ1)xn+1 + (α0 − ĥβ0)xn = 0. (6.2)

This equation is relatively easy to analyse since it is a homogeneous linear
difference equation with constant coefficients (see Appendix D). It has solutions
of the form xn = arn, where r is a root of the auxiliary equation

(1− ĥβ2)r2 + (α1 − ĥβ1)r + (α0 − ĥβ0) = 0. (6.3)

We denote the polynomial on the left-hand side by p(r). Notice that

p(r) = ρ(r)− ĥσ(r).

2The reason for allowing λ to be complex will become clear in Chapter 7 during
the application to systems of differential equations.

3We introduce the single parameter bh since the parameters h and λ occur only as
the product hλ.
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We refer to p(r) as the stability polynomial of the LMM; it is a polynomial of
degree 2 whose coefficients depend (linearly) on the parameter ĥ.

This stability polynomial will have two roots, r1 and r2, and so (6.2) will
have the general solution

xn = arn
1 + brn

2 ,

for arbitrary constants a and b provided that r1 6= r2.4 In order to have |xn| → 0
as n →∞ for any choices of a and b, it is necessary to have |r1| < 1 and |r2| < 1,
i.e., the polynomial p(r) must satisfy the strict root condition (Definition 5.4).
This gives the following result.

Lemma 6.4

An LMM is absolutely stable for a given value of ĥ = λh if, and only if, its
stability polynomial p(r) satisfies the strict root condition (Definition 5.4).

An LMM will not, in general, be absolutely stable for every choice of ĥ, so we
are led to define the following.

Definition 6.5 (Region of Absolute Stability)

The set of values R in the complex ĥ-plane for which an LMM is absolutely
stable forms its region of absolute stability.

We must, therefore, address the question of whether, and for what values
of ĥ, the roots of p(r) satisfy |r| < 1. Cases where λ is real (and negative) are
easier to analyse so, for these, we define the following.

Definition 6.6 (Interval of Absolute Stability)

The interval of absolute stability of an LMM is the largest interval of the form
R0 = (ĥ0, 0), with ĥ0 < 0, for which the LMM is absolutely stable for all real
values of ĥ ∈ R0.

The interval of absolute stability is found by looking at the intersection of
the region of absolute stability with the negative real ĥ axis.

4The case of equality is unimportant since it could be countered by making a small
change to the value of h.
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Example 6.7

Find the region of absolute stability of Euler’s method: xn+1 − xn = hfn.

Applied to x′(t) = λx(t) we have fn ≡ f(tn, xn) = λxn so that

xn+1 = xn + hλxn = (1 + ĥ)xn.

This has stability polynomial p(r) = r − 1− ĥ with the single root r1 = 1 + ĥ.
The region of absolute stability is, therefore, the open disc |1 + ĥ| < 1 whose
boundary is the circle of radius 1 centred at ĥ = −1. To see this, let ĥ = x̂+iŷ,
then the boundary equation |1 + ĥ|2 = 1 leads to (x̂ + 1)2 + ŷ2 = 1.

If ĥ is real, the interval of absolute stability is given by

−1 < 1 + ĥ < 1,

which leads to ĥ ∈ (−2, 0). See Figure 6.6.
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ℑ(ĥ)

O

−3 −2 −1 0

−1.5

−1

−0.5

0

0.5

1

1.5

ℜ(ĥ)

ℑ(ĥ)

O

A  h = 1/2

h
= 8/25

h
= 1/5

Fig. 6.6 The region of absolute stability for Euler’s method (shaded) and the
interval of absolute stability (broken line). On the right the line OA is the locus
of the points (−4h, 3h) for Example 6.8

If Euler’s method were to be applied to x′(t) = −8x(t), then ĥ = −8h and
absolute stability would require h < 1/4. Similarly, for x′ = −80x, we would
have ĥ = −80h and absolute stability would require h < 1/40. This is the reason
that sensible results were computed with Euler’s method in Example 6.1 only
when h < 1/4.

Example 6.8

What is the largest value of h that can be used so that Euler’s method is
absolutely stable when used to solve the ODE x′(t) = λx(t) with λ = −3 + 4i?
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In this case ĥ = h(−4 + 3i), |1 + ĥ| = |1 + h(−4 + 3i)|, and

|1 + ĥ|2 = |1 + h(−4 + 3i)|2 = (1− 4h)2 + 9h2.

Since |1 + ĥ| < 1 is equivalent to |1 + ĥ|2 − 1 < 0 we calculate

|1 + ĥ|2 − 1 = h(−8 + 25h)

and conclude that the right-hand side will be negative if h < 8/25.
To interpret the situation geometrically, let ĥ = x̂ + iŷ, where x̂ = −4h

and ŷ = 3h. As h varies, the locus of the points (−4h, 3h) is a straight line in
the complex ĥ-plane having equation ŷ = − 4

3 x̂—this is shown as the line OA
in Figure 6.6 (right). The indicated points on this line are at h = 2/5, 8/25
and h = 1/2. When h = 8/25 the point (−4h, 3h) lies on the boundary of the
region of stability.

Example 6.9

Find the region of absolute stability of the trapezoidal rule:

xn+1 − xn = 1
2h[fn+1 + fn].

The stability polynomial is

p(r) = r − 1− 1
2 ĥ(r + 1),

which has the single root

r1 =
1 + 1

2 ĥ

1− 1
2 ĥ

.

It may be verified (Exercise 6.1) that |r1| < 1 for all values of ĥ with negative
real part, so the region of absolute stability is the entire left half plane and the
interval of absolute stability is given by ĥ ∈ (−∞, 0). See Figure 6.7.

ℜ(ĥ)

ℑ(ĥ)

O

Fig. 6.7 The region of absolute stability for the
trapezoidal rule (shaded) and the interval of ab-
solute stability (−∞, 0) (Broken line). The axes
have no scale because the region is infinite
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Thus, if the trapezoidal rule were to be applied to the problems in Exam-
ples 6.1 or 6.8, we would have absolute stability regardless of the size of h; this
means that h can be chosen on grounds of accuracy without regard to stability.

The following lemma is useful when the stability polynomial is quadratic
and ĥ is real.

Lemma 6.10 (Jury Conditions)

The quadratic polynomial q(r) = r2 + ar + b, where a and b are both real
parameters, will satisfy the strict root condition of Definition 5.4 if, and only
if,

(i) b < 1, (ii) 1 + a + b > 0, and (iii) 1− a + b > 0.

These are often called Jury conditions [40] and they define the triangular region
shown in Figure 6.8.

Proof

Using the quadratic formula, the roots of q(r) = r2 + ar + b are given by

r1, r2 = 1
2

(
−a±

√
a2 − 4b

)
.

When a2 < 4b the roots form a complex conjugate pair and, since b is equal
to the product of the roots, we find that b = r1r2 = |r1|2 = |r2|2. Hence, the
strict root condition holds if, and only if, b < 1. The inequality a2 < 4b also
implies that (ii) and (iii) are satisfied (see Exercise 6.4).

In the case of real roots (a2 ≥ 4b), the root of largest magnitude R is

R = max{|r1|, |r2|} = 1
2

(
|a|+

√
a2 − 4b

)
.
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Fig. 6.8 The interior of the shaded
triangle shows the points (a, b) where
the polynomial q(r) = r2 + ar + b sat-
isfies the strict root conditions. (Solu-
tions are complex for values of a and b

above the broken line: b = a2/4)
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This is an increasing function of |a|, and R = 1 when |a| = 1 + b. Hence,
0 ≤ R < 1 if, and only if, 0 ≤ |a| < 1 + b. Also, since the strict root condition
implies that |r1r2| < 1, it follows that |b| < 1 and condition (i) must hold.

Combining the results for real and complex roots, we find that the strict
root condition is satisfied if, and only if, |a| − 1 < b < 1.

These conditions are equivalent to

q(0) < 1 and q(±1) > 0,

which may be easier to remember. To apply this lemma to the stability poly-
nomial (6.3) for a general two-step LMM it is first necessary to divide by the
coefficient of r2, so

a =
α1 − ĥβ1

1− ĥβ2

, b =
α0 − ĥβ0

1− ĥβ2

.

The denominators in these coefficients are necessarily positive for all ĥ ∈ R0

(see Exercise 6.12), so the conditions q(±1) > 0 can be replaced by p(±1) > 0.
For explicit LMMs, β2 = 0 and q(r) will coincide with the stability polynomial
p(r).

Example 6.11

Find the interval of absolute stability of the LMM:

xn+2 − xn+1 = hfn.

The stability polynomial is quadratic in r:

p(r) = r2 − r − ĥ; (6.4)

since ĥ is real, the coefficients of this polynomial are real, and we can use
Lemma 6.10 to determine precisely when it satisfies the strict root condition.
Moreover, p(r) ≡ q(r), so the conditions for absolute stability are p(±1) > 0
and p(0) < 1. We find

p(0) < 1 :− ĥ < 1 ⇒ ĥ > −1,

p(1) > 0 :− ĥ > 0 ⇒ ĥ < 0,

p(−1) > 0 : 2− ĥ > 0⇒ ĥ < 2.

In order to satisfy all three inequalities, we must have −1 < ĥ < 0. So the
interval of absolute stability is (−1, 0).
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Example 6.12

Find the interval of absolute stability of the mid-point rule: xn+2−xn = 2hfn+1.

In this case
p(r) = r2 − 2ĥr − 1,

whose roots are

r+ = ĥ +
√

1 + ĥ2, r− = ĥ−
√

1 + ĥ2,

and it should be immediately obvious that |r−| > 1 when ĥ < 0, so the method
can never be absolutely stable. To see the consequences of this, the method
is applied to the IVP x′(t) = −8x(t) with x(0) = 1. The results are shown
in Figure 6.9 with h = 1/40 (ĥ = 1/5) and h = 1/120 (ĥ = 1/15) and the
additional starting value provided by the exact solution at t = t1. The solutions
of the mid-point rule are given by (the details are left to Exercise 6.13)

xn = Arn
+ + Brn

−, (6.5)

where the constants A and B are chosen to satisfy the starting conditions
x0 = 1, x1 = ebh. It can be shown that

r+ = ebh +O(ĥ3) and r− = −e−bh +O(ĥ3),

so that rn
+ = eλt∗ +O(h2) and rn

− = (−1)ne−λt∗ +O(h2) at t∗ = nh. The first
of these approximates the corresponding term in the exact solution, eλt∗ , while
r− has no such role—for this reason it is usually referred to as a spurious root:
the ODE is of first order but the difference equation that approximates it is of
second order. On solving for A and B and expanding the results in a Maclaurin
series in ĥ we find

A = 1 +O(h2), B = − 1
12h3 +O(h4).
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Fig. 6.9 Numerical solution by the mid-point rule for Example 6.12 with
h = 1/40 (left) and h = 1/120 (right)
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Hence, the first term Arn
+ in the solution (6.5) approximates the exact solution

to within O(h2) while the second term satisfies

Brn
− = − 1

12h3(−1)n e−λt∗ +O(h4).

It is this term that causes problems: it is exponentially growing when <(λ) < 0
(and the exact solution is exponentially decaying) and the factor (−1)n causes
it to alternate in sign on consecutive steps (producing the oscillations evident
in Figure 6.9). On a positive note, it has an amplitude proportional to h3, so
becomes negligible compared with the dominant O(h2) term in the GE when
h is sufficiently small.

Other Nyström and Milne–Simpson methods have similar properties, so
cannot be recommended for solving problems with damping (<(λ) < 0). How-
ever, it is a different story if λ is purely imaginary (oscillatory problems)—see
Section 7.3.

6.3 The Boundary Locus Method

It is, in general, quite difficult to determine the region of absolute stability of an
LMM since we have to decide, for each ĥ ∈ C, whether the roots of the stability
polynomial satisfy the strict root condition (|r| < 1). It is more attractive to
look for the boundary of the region, because at least one of the roots of p(r)
on the boundary has modulus |r| = 1. Thus, the boundary is a subset of the
points ĥ ∈ C for which r = eis, where s ∈ R. Substituting r = eis into the
stability polynomial and solving for ĥ we obtain ĥ = ĥ(s) and plotting the
locus in the complex plane gives a curve, part of which will be the required
boundary. We illustrate the process with an example that contains most of the
important features.

Example 6.13

Use the boundary locus method to determine the boundary of the region of
absolute stability of the LMM xn+2 − xn+1 = hfn (see Example 6.11).

With r = eis the stability polynomial (6.4) gives ĥ = r2 − r, and so

ĥ(s) = e2is − eis = [cos(2s)− cos(s)] + i[sin(2s)− sin(s)].

Plotting the locus of the points x̂(s) = cos(2s)− cos(s), ŷ(s) = sin(2s)− sin(s)
for 0 ≤ s < 2π we obtain the curve shown in Figure 6.10, which divides the
plane into three subregions—it remains to decide which subregion is the region
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Fig. 6.10 Stability region R for Example 6.13
(shaded). The solid curve is the locus of points
where the stability polynomial p(r) has at least one
root r with |r| = 1

of absolute stability. We need only test one point in each subregion: if the roots
at that point satisfy the strict root condition then the point lies in the region
of absolute stability, otherwise it does not lie in the region. This is done in the
table below.

ĥ p(r) Roots |r| Absolutely stable
− 1

2 r2 − r + 1
2 r = (1± i)/2 |r| = 1/

√
2 < 1 yes

1 r2 − r − 1 r = (1±
√

5)/2 |r| > 1 no
−2 r2 − r + 2 r = (1± i

√
7)/2 |r| > 1 no

We conclude that the region of absolute stability is the shaded region in
Figure 6.10. The curve intersects itself when =(ĥ(s)) = 0. This is easily shown
to occur when cos s = 1

2 , so sin s = 1
2

√
3 and ĥ = −1. The interval of absolute

stability is, therefore, (−1, 0), in agreement with Example 6.11.

6.4 A-stability

Some LMMs (the trapezoidal rule is one example) applied to the model prob-
lem (6.1) have the satisfying property that xn → 0 as n → ∞ whenever
x(t) → 0 as t →∞ regardless of the size of h. This is sufficiently important to
give the set of all such methods a name:

Definition 6.14 (A-Stability)

A numerical method is said to be A-stable if its region of absolute stability R
includes the entire left half plane (<(ĥ) < 0).

This is a severe requirement, as evidenced by the following theorem.
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Theorem 6.15 (Dahlquist’s Second Barrier Theorem)

1. There is no A-stable explicit LMM.

2. An A-stable (implicit) LMM cannot have order p > 2.

3. The order-two A-stable LMM with scaled error constant (Cp+1/σ(1)) of
smallest magnitude is the trapezoidal rule.

Proof

See Hairer and Wanner [29].

We can relax our requirements when λ is real.

Definition 6.16 (A0-Stability)

A numerical method is said to be A0-stable if its interval of absolute stability
includes the entire left real axis (<(ĥ) < 0, =(ĥ) = 0).

As a parting remark, we observe that A-stability has been defined in terms of
the simple linear differential equation x′(t) = λx(t). What is remarkable (and
not fully understood) is why methods which are A-stable generally outperform
other methods on more general non-linear problems.

EXERCISES

6.1.?? By writing ĥ = 2X + 2iY in Example 6.9 prove that

|r1|2 − 1 =
4X

(1−X)2 + Y 2

and deduce that |r1| < 1 for all <(ĥ) < 0.

What can be concluded about the interval of absolute stability of
the trapezoidal rule?

6.2.?? Prove that the region of absolute stability of the backward Euler
method xn+1 = xn + hfn+1 is given by |1 − ĥ| > 1. By writing
ĥ = x̂ + iŷ show that this corresponds to the exterior of the circle
(x̂− 1)2 + ŷ 2 = 1. Sketch a diagram analogous to Figure 6.6.
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x̂ = 1/(2θ − 1)

Fig. 6.11 The region of absolute stability for the θ-method (shaded) and the
interval of absolute stability (broken line). Left: 0 ≤ θ < 1

2 ; right: 1
2 < θ ≤ 1.

See Exercise 6.3.

6.3.?? Determine the region of absolute stability of the θ-method

xn+1 − xn = h(θfn+1 + (1− θ)fn).

By writing ĥ = x̂ + iŷ show that this corresponds to the exterior of
the circle

x̂ 2 +
2

2θ − 1
x̂ + ŷ 2 = 0

if 1
2 < θ ≤ 1 and to the interior of the circle if 0 ≤ θ < 1

2 . See
Figure 6.11. What happens at θ = 1

2?

6.4.? Verify the identity

a2 − 4b = (|a| − 2)2 − 4
(
1 + b− |a|

)
for any real numbers a, b and deduce that b > |a| − 1 whenever
a2 < 4b, as required in the proof of Lemma 6.10.

6.5.? Find the interval of absolute stability of the LMM

xn+2 − xn = 1
2h(fn+1 + 3fn).

6.6.? Find the interval of absolute stability of the two-step Adams–
Bashforth method (AB(2))

xn+2 − xn+1 = 1
2h(3fn+1 − fn).

6.7.?? Consider the one-parameter family of LMMs

xn+2 − 4θxn+1 − (1− 4θ)xn = h
(
(1− θ)fn+2 + (1− 3θ)fn

)
for solving the ODE x′(t) = f(t, x), where the notation is standard.

(a) Determine the error constant for this family of methods and
identify the method of highest order. What is its error constant?
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Fig. 6.12 Stability regions R for Exercise 6.9. One belongs to the Adams–
Bashforth method AB(2) and the other to the Adams–Moulton method AM(2)

(b) For what values of θ are members of this family of methods
convergent?

Is the method of highest order convergent? Explain your answer
carefully.

(c) Prove that the method is A0-stable when θ = 1/4.

6.8.??? What is the stability polynomial of the LMM

xn+2 − (1 + a)xn+1 + axn =
1
12h[(5 + a)fn+2 + 8(1− a)fn+1 − (1 + 5a)fn].

– Why must the condition −1 ≤ a < 1 be stipulated?

– Assuming that ĥ ∈ R, show that the discriminant of the (quadratic)
stability polynomial is strictly positive for all values of ĥ and a.
What information does this give regarding its roots?

– Deduce that the interval of absolute stability is (−6 1+a
1−a , 0).

6.9.?? Shown in Figure 6.12 are the stability regions of the AB(2) (see
Exercise 6.6) and the Adams–Moulton method (AM(2))

xn+2 − xn+1 = 1
12h(5fn+2 + 8fn+1 − fn). (6.6)

Use the boundary locus method to ascertain which region belongs
to which method.

6.10.? Apply the boundary locus method to the mid-point rule (see Exam-
ple 6.12) to show that

ĥ(s) = i sin s

so that the region of absolute stability consists of that part of the
imaginary axis between −i and i.
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6.11.?? Show that the LMM

xn+2 − xn+1 = 1
4h(fn+2 + 2fn+1 + fn)

is A0-stable.

6.12.?? Prove that the coefficient of r2 in the stability polynomial (6.3) is
always positive for ĥ in the interval of absolute stability; i.e.

1− ĥβ2 > 0 for all ĥ ∈ R0.

6.13.??? Complete the details in Example 6.12. Show, in particular, that
A = 1

2 (1 + a) and B = 1
2 (1− a), where

a =
ebh − ĥ√
1 + ĥ2

= 1 + 1
6 ĥ3 +O(ĥ4).

Deduce that A = 1 +O(ĥ3) and B = O(ĥ3).

6.14.?? Find the interval of absolute stability of each member of the con-
vergent family of LMMs of the form (see Exercise 5.11)

xn+2 − xn = h (β1fn+1 + β0fn).

Why can no member of the family be identified as having the largest
such interval?

6.15.??? Show that all convergent members of the family of methods

xn+2 + (θ − 2)xn+1 + (1− θ)xn = 1
4h [(6 + θ)fn+2 + 3(θ − 2)fn],

parameterized by θ, are also A0-stable.

6.16.?? Show that the method

2xn+2 − 3xn+1 + xn = 1
2h (4fn+2 − 3fn+1 + fn)

is A0-stable.

6.17.??? Consider the family of LMMs

xn+2 − 2axn+1 + (2a− 1) xn = h [afn+2 + (2− 3a) fn+1],

where a is a parameter.

(a) What are its first and second characteristic polynomials?

(b) When is the method consistent?

(c) Under what conditions is it zero-stable?
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(d) When is the method convergent?

(e) What is its order? What is the error constant?

(f) Are there any members of the family that are A0-stable?

(g) What conclusions can you draw concerning the backward differ-
entiation formula (BDF(2))

3xn+2 − 4xn+1 + xn = 2hfn+2?

(h) Verify that all three statements of Dahlquist’s second barrier
theorem hold for this family of methods.

6.18.?? Show that the method 2xn+2 − xn+1 − xn = 3hfn+2 is A0-stable.

Use the boundary locus method to show that, on the boundary of
the region of stability, ĥ(s) = (2 − e−is − e−2is)/3. Deduce that
<(ĥ(s)) ≥ 0 for all s and conclude that the method is A-stable.

6.19.? Use Lemma 6.10 to derive necessary and sufficient conditions on
the (real) coefficients (a, b) for the roots of the polynomial q(r) =
r2 + ar + b to satisfy the root condition. Pay particular attention to
double roots having modulus equal to one.

6.20.??? Suppose that a convergent LMM has a cubic characteristic poly-
nomial

ρ(r) = r3 + ar2 + br + c.

Prove that

(a) it can be factorized as ρ(r) = (r − 1)(r2 + (1 + a)r − c);

(b) the coefficients a and c must satisfy

2 + a− c > 0, a + c ≤ 0, 1 + c ≥ 0

while excluding the point (a, c) = (1,−1).

[Hint: use Lemma 6.10, paying particular attention to roots of
ρ(r) with |r| = 1.]

6.21.??? The composite Euler method uses Euler’s method with a step size
h0 on even-numbered steps and a step size h1 on odd-numbered
steps, so

x2m+1 = x2m + h0f2m and x2m+2 = x2m+1 + h1f2m+1,

where h0 = (1 − γ)h, h1 = (1 + γ)h (0 ≤ γ < 1) so a time interval
of 2h is covered in two consecutive steps. The interval of absolute
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stability of this composite method can be deduced by applying it to
the ODE x′(t) = λx(t) and examining the ratio R(ĥ) = x2m+2/x2m.
Show that R(ĥ) = (1 + ĥ)2 − γ2ĥ2.

By determining the global minimum of the function R(ĥ), prove
that −1 < R(ĥ) < 1 if, and only if, ĥ lies in the interval of absolute
stability given by

− 2
1− γ2

< ĥ < 0.

Deduce that the largest interval of absolute stability is ĥ ∈ (−4, 0)
and occurs when γ = 1/

√
2. Hence, the composite method may be

used in a stable manner with a value of h that is twice as large as the
standard Euler method. The region of absolute stability with γ = 0
is the same as for Euler’s method (Figure 6.8); when γ = 3/5 and
1/
√

2 it is as shown in Figure 6.13.

6.22.?? Suppose that γ = 1/
√

2 and λ = −8 + i in the previous exercise.
Show that the method will be absolutely stable when h = 1/8 and
3/8 but not when h = 1/4 and 1/2. Relate these results to the region
of absolute stability shown in Figure 6.13. See also Exercise 10.14.
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Fig. 6.13 The region of absolute stability for the composite Euler method for
Exercise 6.21 when γ = 3/5 and 1/

√
2



7
Linear Multistep Methods—IV:

Systems of ODEs

In this chapter we describe the use of LMMs to solve systems of ODEs and
show how the notion of absolute stability can be generalized to such problems.
We begin with an example.

Example 7.1

Use the LMM (AB(2))

xn+2 − xn+1 = 1
2h(3fn+1 − fn)

to compute the solution at t = 0.2 of the IVP

u′(t) = −tu(t)v(t),

v′(t) = −u2(t),

with u = 1, v = 2 at t = 0. Use h = 0.1 and Euler’s method to calculate u1

and v1.

We begin by using the differential equations to calculate u′(0) = 0 and
v′(1) = −1 so we have the starting values

t0 = 0, u0 = 1, v0 = 2, u′0 = 0, v′0 = −1.

Springer Undergraduate Mathematics Series, DOI 10.1007/978-0-85729-148-6_7,  
© Springer-Verlag London Limited 2010 

D.F. Griffiths, D.J. Higham, Numerical Methods for Ordinary Differential Equations,  
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Then, applying Euler’s method (see Section 2.5) to each of the individual ODEs:

n = 0 : t1 = 0.1,

u1 = u0 + hu′0 = 1,

v1 = v0 + hv′0 = 1.9,

with which we can compute u′1 = −t1u1v1 = −0.19 and v′1 = −u2
1 = −1.

When the given LMM is applied to both the u and v differential equations
it is seen that we have to calculate, for each n = 0, 1, 2, . . . ,

tn+2 = tn+1 + h,

un+2 = un+1 + 1
2h(3u′n+1 − u′n),

vn+2 = vn+1 + 1
2h(3v′n+1 − v′n),

u′n+2 = −tn+2un+2vn+2,

v′n+2 = −u2
n+2.

So,

n = 0 : t2 = t1 + h = 0.2,

u2 = u1 + 1
2h(3u′1 − u′0) = 0.9715,

v2 = v1 + 1
2h(3v′1 − v′0) = 1.8,

u′2 = −t2u2v2 = −0.19,

v′2 = −u2
2 = −1.0.

The computations of the first few steps are summarized in Table 7.1.
More generally, for the system of ODEs written in vector form,

u′(t) = f(t,u(t)), t > t0,

with u(t0) = u0, the first step is computed by Euler’s method , after which

tn+2 = tn+1 + h,

un+2 = un+1 + 1
2h(3u′n+1 − u′n),

u′n+2 = f(tn+2,un+2),

for n = 0, 1, 2, . . . .

n tn un vn u′n v′n
0 0 1.0000 2.0000 0 −1.0000 Initial data
1 0.1000 1.0000 1.9000 −0.1900 −1.0000 Euler’s Method
2 0.2000 0.9715 1.8000 −0.1900 −1.0000 AB(2)
3 0.3000 0.9525 1.7000 −0.3497 −0.9438 . . .

Table 7.1 Numerical solutions for Example 7.1
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7.1 Absolute Stability for Systems

The notion of absolute stability for systems of ODEs requires us to apply our
LMM to the model problem involving a system of m first-order linear ODEs
with constant coefficients:

u′(t) = Au(t), (7.1)

where u(t) is an m-dimensional vector (u(t) ∈ Rm) and A is a constant m×m

matrix (A ∈ Rm×m). We first recall some aspects of ODE theory.

Diagonalization of ODEs. In order to understand how solutions of the ODE
system behave we carry out a “diagonalization” process. We assume that A is a
diagonalizable matrix, i.e. it has m linearly independent eigenvectors v1, . . . ,vm

with corresponding eigenvalues λ1, . . . , λm:

Avj = λjvj .

Under these circumstances, there exists a (possibly complex) nonsingular ma-
trix V whose columns are the vectors v1, . . . ,vm, such that

V −1AV = Λ,

where Λ is the m×m diagonal matrix with entries λ1, . . . , λm on the diagonal.
Defining u(t) = V x(t), then x(t) satisfies the differential equation

x′(t) = Λx(t), (7.2)

a typical component of which is

x′(t) = λx(t), (7.3)

where λ is an eigenvalue of A. The solution of the linear system (7.1) has
been reduced to solving a collection of scalar problems of the type studied in
Section 6.2, one for each eigenvalue of A. Since x(t) and u(t) are connected
through a fixed linear transformation, they have the same long-term behaviour.
Hence, the scalar problems (7.3) tell us everything we need to know. This is
illustrated in the next example and formalized in the theorem that follows.

Example 7.2

Determine the general solution of the system (7.1) when

A =
[

1 3
−2 −4

]
and examine the behaviour of solutions as t →∞.
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The matrix A may be diagonalized using

V =
[

3 −1
−2 1

]
into the form

V −1AV =
[
−1 0

0 −2

]
.

This shows that A has eigenvalues λ1 = −1 and λ2 = −2, with corresponding
eigenvectors

v1 =
[

3
−2

]
, v2 =

[
−1

1

]
.

In some circumstances it would be convenient to work with the normalized
eigenvectors 1√

13
v1 and 1√

2
v2, but in our context normalizing is not helpful.

Using u′(t) = Au(t), the new variables x(t) = V −1u(t) satisfy

x′(t) = V −1u′(t) = V −1Au(t) = V −1AV x(t) =
[
−1 0

0 −2

]
x(t).

We have now uncoupled the system into the two scalar problems x′(t) = −x(t)
and y′(t) = −2y(t), where x(t) = [x(t), y(t)]T. These have general solutions
x(t) = A e−t and y(t) = B e−2t, where the constants A and B depend on the
initial data. It follows that u(t) has the general form

u(t) = V x(t) =
[

3 −1
−2 1

] [
A e−t

B e−2t

]
= A e−t

[
3

−2

]
+ B e−2t

[
−1

1

]
.

It is now obvious that u(t) → 0 as t → ∞, and it is clear from the derivation
that this property follows directly from the nature of the two eigenvalues.

Absolute stability is concerned with solutions of unforced ODEs that tend
to zero as t →∞ and these are characterized in the following theorem.

Theorem 7.3

If A is a diagonalizable matrix having eigenvalues λ1, . . . , λm, then the solutions
of u′(t) = Au(t) tend to zero as t → ∞ for all choices of initial conditions if,
and only if, <(λj) < 0 for each j = 1, 2, . . . ,m. (<(λ) denotes the real part
of λ.)

For a proof see Braun [5, Section 4.2], Nagle et al. [57, Section 12.7] or
O’Malley [59, Section 5.3].
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Diagonalization of LMMs. Applying the general two-step LMM

xn+2 + α1xn+1 + α0xn = h(β2fn+2 + β1fn+1 + β0fn) (7.4)

to the system u′(t) = Au(t) we obtain (since fn = Aun)

un+2 + α1un+1 + α0un = hA(β2un+2 + β1un+1 + β0un). (7.5)

Following the treatment of scalar ODEs, we define un+j = V xn+j for each
n and each j. Then, (7.5) becomes, on multiplying by V −1,

V −1un+2 + α1V
−1un+1 + α0V

−1un

= hV −1A(β2un+2 + β1un+1 + β0un)

= hV −1AV (β2V
−1un+2 + β1V

−1un+1 + β0V
−1un),

which simplifies to

xn+2 + α1xn+1 + α0xn = hΛ(β2xn+2 + β1xn+1 + β0xn).

This is precisely the recurrence that arises when we apply the LMM directly
to the diagonalized system of ODEs (7.2). The components are now uncoupled
and, if we write xn to denote a typical component of xn, we find

xn+2 + α1xn+1 + α0xn = hλ(β2xn+2 + β1xn+1 + β0xn), (7.6)

in which λ is a typical eigenvalue of A. This is the same equation (6.2) that
was obtained when the general two-step LMM (7.4) was applied to the scalar
ODE (7.3).

We have shown that the two processes

1. apply the LMM

2. diagonalise A

commute—the same result is obtained regardless of the order in which the op-
erations are carried out. This can be illustrated by the “commutative diagram”

u′ = Au
Apply LMM−−−−−−−−−−→ (7.5)yDiagonalize

yDiagonalize

x′ = Λx
Apply LMM−−−−−−−−−−→ (7.6)

in which the route taken from top left to bottom right is immaterial.1

We now return to the question of absolute stability—the following definition
is simply a rephrasing of Definition 6.3 to accommodate systems of ODEs and
k-step methods.

1In practice, though, the constants hidden inside the arrows can be important. See
Trefethen and coworkers [35, 67] for details of the fascinating topic of pseudoeigen-
values.
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Definition 7.4 (Absolute Stability)

Suppose that all solutions of u′(t) = Au(t) tend to zero as t → ∞ for all
choices of initial condition u0. A k-step numerical method with a given stepsize
h applied to such a system is said to be absolutely stable if all its solutions tend
to zero as n →∞ for all choices of starting values u0,u1, . . . ,uk−1.

Using the diagonalization trick that produced (7.2) and (7.3), we can appeal
to the scalar analysis from Chapter 6. We know that un → 0 if, and only if,
xn → 0, and hence we simply require that all solutions to (7.6) tend to zero
for every eigenvalue λ of A. Thus

An LMM is absolutely stable for the diagonalizable system u′(t) =
Au(t) if λh ∈ R (the region of absolute stability) for every eigenvalue
λ of A.

In other words, to analyse the behaviour of any LMM applied to (7.1), we
need only consider its application to the scalar problem (7.3) and our results can
be transferred to systems of ODEs simply by interpreting λ as any eigenvalue
of A.

Example 7.5

What is the largest step size h allowed by absolute stability when the system

u′(t) = −11u(t) + 100v(t), v′(t) = u(t)− 11v(t) (7.7)

is solved using Euler’s method?

Euler’s method is, in this case,

un+1 = un + h
(
−11un + 100vn

)
,

vn+1 = vn + h
(
un − 11vn

)
.

The system of ODEs may be written in matrix-vector form u′(t) = Au(t) with
coefficient matrix

A =
[
−11 100

1 −11

]
,

which has eigenvalues −1 and −21. Since these are real we use the interval of
absolute stability of Euler’s method (see Example 6.7), which requires hλ ∈
(−2, 0). Therefore, h must satisfy

−2 < −h < 0 and − 2 < −21h < 0,

i.e. 0 < h < 2
21 ≈ 0.0952.



7.1 Absolute Stability for Systems 101

0 1 2 3 4 5
0

1

2

3

4

5

t

u
(t

),
v
(t

)

Fig. 7.1 The components u(t) (solid curve)
and v(t) (dashed curve) of the solution of the
IVP of Example 7.5

The exact solution of the ODEs with initial values u(0) = v(0) = 1 is shown
in Figure 7.1. There is a “rapid initial transient” as one component grows to
its maximum at a time t = 0.14, after which it decays more gradually to zero.
The fast transient is governed by the eigenvalue λ = −21 and the slow decay
by λ = −1, the exact solution being (see Exercise 7.1)[

u

v

]
= 11

20

[
10
1

]
e−t − 9

20

[
10
−1

]
e−21t. (7.8)

Results for Euler’s method with various step sizes are shown in Figure 7.2.

h = 0.0962, which is 1% over the stability limit h = 2/21 (Figure 7.2 left).
Although the amplitude of the solution grows only slowly, the rapid oscil-
lations are a tell-tale sign of instability.

h = 0.0905, which is 5% under the limit (Figure 7.2 middle). Although the
solution tends to zero (because we are within the limit of absolute stability)
there continue to be strong oscillations and the solution does not begin to
be accurate until t nears the end of the interval of integration.

h = 0.0476, which is 50% of the limit (Figure 7.2 right). We now have a smooth
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Fig. 7.2 The u(t) component in Example 7.5 (solid line) and the correspond-
ing component of the numerical solution un by Euler’s method (dashed line)
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solution (u(t) is the solid line and v(t) the dashed line).2 The numerical
solution is indistinguishable from the exact solution (thin solid line) for
t > 0.2.

7.2 Stiff Systems

Examples 6.1 and 7.5 show that in certain types of system we have to use
a small step size in order to produce an absolutely stable solution when, on
grounds of accuracy, we would have expected to have been able to use a much
larger value of h. Linear problems of this kind are characterized by matrices
whose eigenvalues have negative real parts (so that u(t) → 0 as t → ∞), but
some have small absolute values while others are very large. That is, the ratio

maxj −<(λj)
minj −<(λj)

may be extremely large (a ratio of 106 is not uncommon). We say that such
problems are stiff. If we apply a method whose region of absolute stability is
bounded, we find that the step length is restricted by the most negative eigen-
value, while the long-term solution u(t) will be dominated by the least negative
eigenvalues. Therefore, very many time steps must be taken to compute the so-
lution over a moderately long time. A by-product is that the numerical solution
may be much more accurate than is needed.

The use of an A-stable method in such circumstances allows h to be chosen
simply on grounds of accuracy, with no regard for stability. Thus, A-stable
methods are particularly important for stiff systems.

7.3 Oscillatory Systems

Although all unforced physical processes exhibit some level of damping (and
their mathematical models should, therefore, be solved by absolutely stable
methods), some processes are best regarded as being undamped. Examples are
(a) the motion of the planets, (b) inviscid flow of high-speed gases (where the
effects of viscosity of a fluid may be ignored), and (c) molecular dynamics
(which simulates the interactions of atoms and molecules). The Lotka–Volterra

2To avoid oscillations, the roots of the stability polynomial should satisfy 0 < r < 1
(rather than −1 < r < 1) and, for Euler’s method, this leads to λh ∈ (−1, 0).
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equations (Example 1.3) modelling a naive predator-prey situation also have
no damping.

Allowing complex-valued functions, the simplest oscillator is described by

x′(t) = iωx(t),

which is a special case of the equation x′(t) = λx(t) we have met several
times (see (6.1) and (7.3), for instance) with λ = iω, an imaginary number.
The general solution of this equation is x(t) = c eiωt, where c is an arbitrary
constant. Taking the absolute value, we have

|x(t)| = |c|,

and the motion in the complex plane is circular with a radius dictated by
the starting condition. Numerical methods can be applied to complex prob-
lems, but we prefer to use the equivalent real system (see Exercise 1.6). The
next example illustrates the unsuitability of both forward and backward Eu-
ler methods for solving oscillatory problems. A particularly large step size is
chosen to exaggerate the effects so that they are more easily visualized.

Example 7.6

Use Euler’s method, the trapezoidal rule and the backward Euler method with
h = 0.5 to solve the IVP

u′(t) = −v(t), v′(t) = u(t),

u(0) = 1, v(0) = 0.

We calculate

d
dt

(
u2(t) + v2(t)

)
= 2u(t)u′(t) + 2v(t)v′(t) = 0 (7.9)

so that the function u2(t)+v2(t) remains constant in time: the motion in the u-v
phase plane is circular. This example examines which of the one-step methods
can reproduce this type of motion.

Euler’s method: un+1 = un − hvn and vn+1 = vn + hun for n = 0, 1, . . . with
u0 = 1 and v0 = 0.

The first three steps are shown on the left of Figure 7.3 (◦ symbols) and
the numerical solution clearly spirals outwards. At the nth step the mo-
tion generated by Euler’s method is tangential to the circle with radius√

u2
n + v2

n (these circles are shown as dotted curves). An easy calculation
shows that

u2
n+1 + v2

n+1 = (1 + h2)(u2
n + v2

n),
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so that the distance to the origin increases by a factor
√

1 + h2 at each step.
Thus, Euler’s method displays a weak form of instability—not sufficient to
prevent convergence (were we to take the limit h → 0) but strong enough to
make it unsuitable for simulating, for instance, the motion of the planets.

Backward Euler method: un+1 = un − hvn+1 and vn+1 = vn + hun+1 for n =
0, 1, . . . with u0 = 1 and v0 = 0. Thus,[

1 h

−h 1

] [
un+1

vn+1

]
=

[
un

vn

]
leading to [

un+1

vn+1

]
=

1
1 + h2

[
1 h

−h 1

] [
un

vn

]
.

The first three steps are shown on the right of Figure 7.3 (◦ symbols) and
the numerical solution clearly spirals inwards. At the nth step the motion
is tangential to the circle with radius

√
u2

n+1 + v2
n+1. It can be shown that

u2
n+1 + v2

n+1 =
1

1 + h2
(u2

n + v2
n),

so that the distance to the origin decreases by a factor 1/
√

1 + h2 at each
step. Thus, the backward Euler method applies too much damping at each
step.

Trapezoidal rule: un+1 = un − 1
2h(vn+1 + vn) and vn+1 = vn + 1

2h(un+1 + un)
for n = 0, 1, . . . with u0 = 1 and v0 = 0. Thus,[

1 h/2
−h/2 1

] [
un+1

vn+1

]
=

[
1 −h/2

h/2 1

] [
un

vn

]
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Fig. 7.3 Numerical solution of the system in Example 7.6 by Euler’s method
(left), trapezoidal rule (middle), and backward Euler (right), all using h = 1/2
and drawn in the u-v phase plane. The exact solution is shown by the dashed
circle
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leading to [
un+1

vn+1

]
=

1
4 + h2

[
4− h2 −4h

4h 4− h2

] [
un

vn

]
. (7.10)

The first 12 steps are shown in Figure 7.3 (centre: ◦ symbols) and the
numerical solution appears to follow a circular motion: it can be confirmed
algebraically that (7.10) implies that (see Exercise 7.7)

u2
n+1 + v2

n+1 = u2
n + v2

n. (7.11)

The trapezoidal rule faithfully computes the amplitude of the solution; it
has, however, a second-order phase error—see Exercise 7.7.

More generally, linear systems of higher dimension have the familiar structure

u′(t) = Au(t),

but, for oscillatory problems, the eigenvalues of A are imaginary numbers and
so A is typically a skew-symmetric matrix. In Chapter 14 we consider general
quadratic invariants, of which (7.9) is a special case.

7.4 Postscript

It would be wrong to give the impression that LMMs whose stability polynomi-
als have all their roots strictly on the unit circle are the only, or even preferred,
candidates for solving undamped problems.

When an absolutely stable numerical method is used to solve a damped
problem (characterized by having eigenvalues with negative real parts) the LTE
committed at one step is itself damped in subsequent steps. This can be seen
most clearly in the expression (2.16) for the GE for Euler’s method applied to
x′(t) = λx(t)—the effect at t = tn of the LTE, Tj , committed at the jth step is

(1 + hλ)n−jTj ,

with |1+hλ| < 1. A similar argument applies to the rounding error committed
at the jth step.

In contrast, local errors committed in undamped LMMs can persist for all
time (in periodic problems the LTE will also be periodic, so there will usually
be some measure of cancellation of local errors over a period). There may,
however, be some advantage in these situation in using LMMs that include a
small amount of damping.
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EXERCISES

7.1.? Confirm by direct differentiation that (7.8) solves the system of
ODEs (7.7).

7.2.? Following the ideas in Example 7.2, investigate the t →∞ behaviour
of solutions to (7.1) in the case where

A =
[
27 −15
50 −28

]
.

We will start you off with the observation that[
27 −15
50 −28

] [
3
5

]
=

[
6
10

]
and

[
27 −15
50 −28

] [
1
2

]
=

[
−3
−6

]
.

7.3.? What condition must the step length h satisfy in order to achieve
absolute stability when Euler’s method is applied to the system
u′(t) = v(t), v′(t) = −200u(t)− 20v(t)?

7.4.?? What is the largest value of h for which Euler’s method is absolutely
stable when applied to the system u′(t) = Au(t) when

A =
[
−1 1
−1 −1

]
?

7.5.? Show that 0 < h < 1
4 is required for absolute stability when the IVP

(see Equation (1.14))

u′(t) = −8(u(t)− v(t)), u(0) = 100,

v′(t) = −(v(t)− 5)/8, v(0) = 20

is solved using Euler’s method.

The exact solution of the IVP is shown in Figure 1.9 (right) and the
numerical solutions with h = 1/3, 1/5, and 1/9 in Figure 7.4. The
behaviour of the u-component of the solution (◦ and dashed lines) is
almost identical to that for the equivalent scalar problem discussed
in Example 6.1 (see Figure 6.2).

7.6.? Show that u(t) in Example 7.6 satisfies the second-order ODE
u′′(t) + u(t) = 0 (known as the simple harmonic equation) with
initial conditions u(0) = 1, u′(0) = 0.
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Fig. 7.4 Solution of the system in Exercise 7.5 by Euler’s method with h = 1/3
(left), h = 1/5 (middle) and h = 1/9 (right). The u-component is depicted by
◦/dashed lines and the v-component by •/solid lines

7.7.??? Prove that (7.11) follows from (7.10).

In view of this relationship one may write un = R cos(θn) and vn =
R sin(θn), where R2 = u2

0 + v2
0 . Prove that

tan(θn+1 − θn) =
h

1− h2/4

and, consequently, tan 1
2 (θn+1 − θn) = 1

2h.

Use the Maclaurin expansion tan−1 z = z − 1
3z3 + O(z5) to show

that the numerical solution rotates through an angle

θn+1 − θn = h− 1
12h3 +O(h5)

on each step while the exact solution rotates through an angle h.
Hence, after n steps where nh = t∗, the numerical solution underro-
tates by an angle 1

12 t∗h2 +O(h4)—this is known as the phase error.

7.8.?? The matrix

A(α) =
[
cos α − sinα

sinα cos α

]
is known as a rotation matrix since Au rotates a general vec-
tor u ∈ R2 counter clockwise through an angle α. Show that (a)
det A(α) = 1, (b) A(α)A(β) = A(α + β) and (c) A(α)−1 = A(−α).

Show also that the trapezoidal rule applied to the system in Exam-
ple 7.6 may be written in matrix-vector form as

A(−α)un+1 = A(α)un,

where α = tan−1( 1
2h). Deduce that the numerical solution rotates

through an angle 2α in each time step in agreement with the previous
exercise.
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7.9.?? Consider the complex IVP x′(t) = ix(t) with x(0) = 1 that was
introduced in Section 7.3. Show that the roots of the stability poly-
nomial (λ = i, ĥ = ih) for the mid-point rule (Example 6.12) satisfy
|r±| = 1 for h ≤ 1 and that |r| > 1 for larger values of h.

7.10.??? Show that the behaviour for Simpson’s rule (see Table 4.2) applied
to the complex IVP x′(t) = ix(t), x(0) = 1 is similar to that of the
mid-point rule in the previous exercise. What is the largest value of
h for which the roots of its stability polynomial satisfy |r| = 1?



8
Linear Multistep Methods—V:

Solving Implicit Methods

8.1 Introduction

The discussion of absolute stability in previous chapters shows that it can
be advantageous to use an implicit LMM—usually when the step size in an
explicit method has to be chosen on grounds of stability rather than accuracy.
One then has to compute the numerical solution at each step by solving a
nonlinear system of algebraic equations. For example, when a k-step LMM is
used to solve the IVP

x′(t) = f(t,x(t)), t > t0
x(t0) = η

}
, (8.1)

xn+k is computed from

xn+k +αk−1xn+k−1+ · · ·+α0xn = h
(
βkfn+k +βk−1fn+k−1 · · ·+β0fn

)
, (8.2)

with fn+k = f(tn+k,xn+k). Defining

gn = h
(
βk−1fn+k−1 · · ·+ β0fn

)
− αk−1xn+k−1 − · · · − α0xn,

which is entirely comprised of known quantities, then xn+k is the solution u of
the nonlinear equation

u = hβkf(tn+k,u) + gn. (8.3)

Springer Undergraduate Mathematics Series, DOI 10.1007/978-0-85729-148-6_8,  
© Springer-Verlag London Limited 2010 

D.F. Griffiths, D.J. Higham, Numerical Methods for Ordinary Differential Equations,  
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This equation always has a solution when h = 0 (u = gn) and we shall assume
that this continues to be so when h is sufficiently small. Since this is a nonlinear
equation, it may have zero, one or more solutions1—in the latter case it makes
sense to choose the solution closest to xn+k−1, the value at the previous step.

The approach taken to solve Equation (8.3) depends on the nature of the
problem: if stiffness (see Section 7.2) is not an issue then we shall use either
a fixed-point iteration or pairs of LMMs called predictor-corrector pairs, oth-
erwise the Newton–Raphson method will be used. These are described in the
following sections.

8.2 Fixed-Point Iteration

fixed-point iteration, also known as Picard iteration or the method of successive
substitutions, involves making an initial guess, u[0] say, and substituting this
into the right-hand side of (8.3), thereby producing the next approximation
to the root. Generally, the next approximation, u[`+1], is computed from u[`]

using
u[`+1] = hβkf(tn+k,u[`]) + gn, ` = 0, 1, 2, . . . . (8.4)

There are a number of immediate issues:

1. Choice of initial guess u[0]. Typically, the closer we can choose this to the
(unknown) value of xn+k the fewer iterations will be required to obtain an
accurate approximation. An obvious choice is to use the solution xn+k−1

from the previous time step. In the next section we describe an improve-
ment on this by making use of a “predictor”.

2. Does the sequence u[`] converge? To analyse this, we suppose that u[`] =
xn+k +E[`] and then, using the vector form of the Taylor expansion (C.3)
in Appendix C, we find

f(tn+k,u[`]) = f(tn+k,xn+k +E[`])

≈ f(tn+k,xn+k) +
∂f

∂x
(tn+k,xn+k)E[`]. (8.5)

Substituting this into the right-hand side of (8.4) and subtracting Equation
(8.3) from the result gives

E[`+1] ≈ hβkBE[`], (8.6)

where we have used
B =

∂f

∂x
(tn+k,xn+k)

1This issue was addressed for some scalar problems in Exercises 4.2–4.4.



8.2 Fixed-Point Iteration 111

to denote the Jacobian of f at the point (tn+k,xn+k). We can get some
insight by observing that if λB is an eigenvalue of B with corresponding
eigenvector v, then choosing E[0] = v and assuming equality in (8.6) we
have

E[`] =
(
hβkλB

)`
v.

It follows that E[`] cannot tend to zero as ` →∞ unless

h|βkλB | < 1

for each eigenvalue λB of B (see, for example, Kelley [41, Theorem 1.3.2
and Chapter 4] for a more complete analysis). This condition tells us, in
principle, how small h needs to be in order for the fixed-point iteration
(8.4) to converge. In practice, it is too expensive to calculate the Jacobian
and its eigenvalues, but what we can glean from this condition is that there
is a restriction on h not dissimilar to that required for absolute stability. It
is for this reason that fixed-point iteration is not suitable for stiff problems.

3. Termination of the iteration. This is a rather delicate issue and we direct
interested readers to the book of Dahlquist and Björk [17, Chapter 6] for
a detailed discussion in the scalar case. A rather crude criterion is to ter-
minate the iteration when the difference between successive iterations is
sufficiently small:

‖E[`+1] −E[`]‖ ≤ ε,

for some small positive number ε, though this can be give a misleading im-
pression of closeness to the solution when the iteration is slowly convergent
(see Exercise 8.16).

The above discussion tends to mitigate against the use of fixed-point itera-
tions, and an alternative is described in the next section.

Example 8.1

Use the backward Euler method with step length h = 0.1 to calculate an
approximate solution to the IVP x′(t) = 2x(t)(1− x(t)), x(0) = 1/5 at t = h.

The backward Euler method applied to this IVP leads to

xn+1 = xn + 2hxn+1(1− xn+1), n = 0, 1, 2, . . . , (8.7)

with t0 = 0 and x0 = 1/5. Then x1 is the solution of the nonlinear equation

u = 0.2 + 0.2u(1− u). (8.8)
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With a starting guess, u[0] = 0.2, successive approximations are calculated from
the iteration

u[`+1] = 0.2 + 0.2u[`](1− u[`]), ` = 0, 1, 2, . . .

and shown in Table 8.1.

` 0 1 2 3 4

u[`] 0.2 0.232 0.2356 0.2360 0.2360
u[`+1] − u[`] 0.032 0.0036 0.0004 0.0000

Table 8.1 Results showing the convergence u[`] → x1 for Example 8.1

The iteration clearly converges and u[3] and u[4] agree to four decimal places,
so we can take x1 ≈ u[4] = 0.2360. It should be noted that each iterate has
about one more digit of accuracy than its predecessor, the explanation for this
is left to Exercise 8.3. In this example (8.7) is a quadratic equation that may
be solved directly. Its roots are 0.236 07 . . . (agreeing with the value calculated
above) and −4.2361, which is clearly spurious in this case.

Note that
u[`+1] − u[`] = 0.2 + 0.2u[`](1− u[`])− u[`]. (8.9)

The right-hand side is the residual when y = u[`] is substituted into Equation
(8.8) and is a measure of how well u[`] satisfies the equation.

There are many variants of predictor-corrector methods. We will restrict our-
selves to describing the simplest (and perhaps the most commonly used) ver-
sion. They are designed to address two of the three main issues raised in the
previous section. They do this by using a pair of LMMs: one explicit and one
implicit. In our examples they will both be of the same order of accuracy, p,
say. The forward and backward Euler methods are a possible first-order pair
and the combination of AB(2) and trapezoidal rule is a popular second-order
pair. More generally, pairs of Adams–Bashforth and Adams–Moulton methods
(see Section 5.2) of the same order of accuracy can be used.

We suppose that the explicit method is given by

xn+k + α∗k−1xn+k−1 + · · ·+ α∗0xn = h
(
β∗k−1fn+k−1 · · ·+ β∗0fn

)
, (8.10)

with error constant C∗
p+1, and the implicit method by (8.2) with error constant

Cp+1. Since we have supposed that the two methods have the same order, it

8.3 Predictor-Corrector Methods



usually happens that α0 = β0 = 0 in (8.2) so that, strictly speaking, the implicit
method has step number k − 1.

The computation of xn+k proceeds by

1. using the explicit LMM (8.10) to determine a “predicted” value which we
denote by x[0]

n+k,

2. evaluating the right-hand side of the ODE with this value: f [0]
n+k =

f(tn+k,x
[0]
n+k);

3. calculating the value of xn+k by replacing fn+k by f [0]
n+k on the right of

(8.2);

4. evaluating the right-hand side of the ODE with this value: fn+k =
f(tn+k,xn+k).

The four steps of this algorithm are known by the acronym PECE forpredict,
evaluate, correct and evaluate.

One of the by-products of using predictor and corrector formulae of the same
order is that it can be shown that (see Exercise 8.18 and Lambert’s book [44,
Chapter 4])

Cp+1

C∗
p+1 − Cp+1

(
xn+k − x[0]

n+k

)
(8.11)

provides an estimate of the leading term in the LTE of the corrector—this is
known as Milne’s device. If the computation proceeds with

xn+k +
Cp+1

C∗
p+1 − Cp+1

(
xn+k − x[0]

n+k

)
instead of xn+k then the process is called local extrapolation. This updated
value will be accurate of order O(hp+1) and be expected to improve the accu-
racy of the numerical solution. In these cases the evaluation of fn+k should be
carried out after this update rather than at stage 4 listed above.

Estimates of the LTE, such as that given by (8.11), can also prove to be
useful in methods that vary the step length h from one step to the next (see
Exercise 11.13).

Example 8.2

Use the forward and backward Euler methods as a predictor-corrector pair
to calculate x1 for the IVP of Example 8.1 with h = 0.1. Use Milne’s device
to estimate the LTE at the end of this step and, hence, find a higher order
approximation to x1.

8.3 Predictor-Corrector Methods 113
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With f(t, x) = 2x(1 − x), the steps of the PECE method are, with x0 = 0.2,
f0 = 2x0(1− x0) = 0.32 and h = 0.1:

P: x
[0]
1 = x0 + 0.1f0 = 0.232,

E: f
[0]
1 = f(t1, x

[0]
1 ) = 0.356 35,

C: x1 = x0 + 0.1f
[0]
1 = 0.235 64,

E: f1 = f(t1, x1) = 0.360 23.

The forward and backward Euler methods have order p = 1 and error
constants C∗

2 = 1/2 and C2 = −1/2 respectively. The estimate (8.11) of the
LTE gives, in this case,

− 1
2

(
x1 − x[0]

1

)
= −0.001 82,

When this is added to the above value of x1, we obtain the second order accurate
value 0.233 72. It can be shown that the exact solution of the IVP at t = t1 is
x(t1) = 0.233 92 and the updated approximation is seen to be accurate to three
significant figures.

The absolute stability properties of predictor-corrector pairs can be deduced
as described in Exercises 8.7 and 8.15. The regions of absolute stability are
generally much closer to those of the predictor than to the corrector. They
are explicit methods (since they do not involve the solution of equations to
determine xn+k) and so cannot be A-stable.

8.4 The Newton–Raphson Method

To apply the Newton–Raphson method, we write (8.3) as F (u) = 0, where the
function F is defined by

F (u) = u− hβkf(tn+k,u)− gn, (8.12)

whose solution is xn+k = u. Suppose that we have an approximation u[`]

to xn+k and we define E[`] = u[`] − xn+k as in Section 8.2. Then, since
F (xn+k) = 0, we have by Taylor expansion (see Appendix C)

0 = F (xn+k)

= F (u[`] −E[`])

≈ F (u[`])− ∂F

∂x
(u[`])E[`].
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Supposing that the Jacobian is nonsingular,2 the solution Ê[`] of the (linear)
system of algebraic equations

∂F

∂x
(u[`])Ê[`] = F (u[`]) (8.13)

is expected to be close to E[`](= u[`] − xn+k) and an improved approximation
for the solution is then given by

u[`+1] = u[`] − Ê[`]. (8.14)

The Newton–Raphson method converges very rapidly (under reasonable as-
sumptions) provided that the initial guess is sufficiently close to xn+k—in fact,
convergence is quadratic, in the sense that the magnitude ‖E[`+1]‖ of the dis-
tance from the new approximation to the exact solution is proportional to
‖E[`]‖2 (see, for example, Kelley [41, Chapter 5]). In practical terms this is in-
terpreted as saying that if the `th approximation is correct to d digits, say, then
the (` + 1)th is accurate to 2d digits—the number of correct digits doubles at
each iteration. The cost of this rapid convergence is, of course, the need to com-
pute the Jacobian matrix and then solve the linear system of equations (8.13)
at each iteration.

Unlike the fixed-point iteration method, if the nonlinear equations are solved
accurately at each step, then the absolute stability characteristics of the implicit
LMM are maintained.

Example 8.3

Use the Newton–Raphson method to find an approximation to the IVP

x′(t) = −2y(t)3, x(0) = 1,

y′(t) = 2x(t)− y(t)3, y(0) = 1
(8.15)

at t = h with the backward Euler method and a step length h = 0.1.

Using u = [u, v]T to represent the solution xn+1, the backward Euler method
leads to the equations

u = xn − 2hv3,

v = yn + h(2u− v3).
(8.16)

At n = 0, we have to solve F (u) = 0, where

F (u) =
[

u− 1 + 2hv3

v − 1− h(2u− v3)

]
.

2The Jacobian of F is related to that of f by ∂F
∂x

(u) = I − hβk
∂f
∂x

(tn+k, u). This
will be nonsingular if h is sufficiently small.
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` 0 1 2 3

u[`] 1.00 0.774 647 887 0.773 901 924 0.773 901 807
1.00 1.042 253 521 1.041 731 347 1.041 731 265

Ê[`] 2.2535× 10−1 7.4596× 10−4 1.1711× 10−7 2.9131× 10−15

−4.2254× 10−2 5.2217× 10−4 8.1975× 10−8 1.9628× 10−15

E[`] 2.2610× 10−1 7.4608× 10−4 1.1711× 10−7 2.8866× 10−15

−4.1731× 10−2 5.2226× 10−4 8.1975× 10−8 1.9984× 10−15

Table 8.2 Results illustrating convergence of the Newton–Raphson iteration
to determine x1 in Example 8.15

The Jacobian of F (u) is given by

∂F

∂x
(u) =

[
1 6hv2

−2h 1 + 3hv2

]
so a typical iteration of the Newton–Raphson method involves solving[

1 6h(v[`])2

−2h 1 + 3h(v[`])2

]
Ê[`] = F (u[`])

and then setting u[`+1] = u[`] − Ê[`], for ` = 0, 1, 2, . . . with u[0] = [1, 1]T. The
results are summarized in Table 8.2. Not only have we shown more iterations
than necessary, we have also included more digits in each entry than the accu-
racy of the method warrants. This has been done to fully illustrate how rapidly
convergence occurs and to show that convergence is indeed quadratic (see Ex-
ercise 8.13). The last two rows of the table have been computed by preforming
two further iterations and regarding the result as being the exact solution to
(8.16). It is also seen from Table 8.2 that Ê[`] ≈ E[`]—this is a consequence
of the rapid convergence. Since the underlying method is only first-order ac-
curate and the grid size h = 0.1 is quite large, the first iterate u[1] is already
sufficiently accurate.

8.5 Postscript

The efficient treatment of implicit methods is an essential requirement for deal-
ing with stiff systems of ODEs. We have given an introduction to the basic ideas,
but further refinements are common. For example, using an explicit LMM as
a predictor will generally provide a better starting value for fixed-point itera-
tions. Also, at the end of Section 8.2 it was shown in (8.9) that u[`+1] − u[`]

was equal to the residual when u = u[`] was substituted into the implicit LMM.
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Fig. 8.1 Numerical solutions for Ex-
ample 8.3 integrated over 0 ≤ t ≤
10. The circles show the solution with
backward Euler and the crosses the so-
lution with local extrapolation, both
with h = 0.1. The solid curve shows
an accurate solution computed with an
RK method

Recalling that the LTE is obtained when the exact solution is substituted into
the same equation, it makes sense for the iteration process to be terminated
when u[`+1] − u[`] is of the same magnitude as the LTE. The predicted value
can then be used, via Milne’s device, to estimate the LTE.

The idea of using an explicit predictor with Milne’s device can also be used
with the Newton–Raphson method. In Example 8.3, the use of Euler’s method
to predict a value of x1 would give

x
[0]
1 = x0 + hf(t0,x0) =

[
0.8
1.1

]
.

The earlier use of the Newton–Raphson iteration to solve the backward Euler
equations gave x1 = [0.7739, 1.0417]T (see Table 8.2) and these two approxima-
tions can be combined in Milne’s device (Equation (8.11) with p = 1, C∗

2 = 1
2 ,

and C2 = − 1
2 ) to give the LTE estimate

− 1
2 (x1 − x[0]

1 ) =
[
0.013
0.029

]
.

For local extrapolation this is added to the backward Euler solution to give
the updated solution x1 = [0.7752, 1.0707]T which lies much closer to the exact
solution x(t1) = [0.7757, 1.0661]T (to four decimal places).

The system is now integrated over the time interval 0 ≤ t ≤ 10 and the
resulting phase plane solutions are shown in Figure 8.1. The numerical solution
using the backward Euler method is shown by circles (◦), the solution with local
extrapolation by crosses (×), and an accurate numerical solution (computed
with the Matlab command ode45) as a solid curve. The extrapolated solution,
which was obtained with little additional computational cost, is significantly
more accurate than the backward Euler solution.
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EXERCISES

8.1.?? Solve the quadratic equation (8.7) for xn+1 in terms of xn and h.
Discuss the behaviour of these solutions as h → 0.

8.2.? Extend the calculation in Example 8.2 to determine x2. What is the
improved value given by Milne’s device?

8.3.? Calculate E[`](= u[`] − x1) for the data in Table 8.1 for ` = 0 : 3
on the basis that x1 = 0.236 07. Show that these values have the
property that E[`+1]/E[`] is approximately constant and the value
of this constant is approximately hB, where B is an appropriate
Jacobian evaluated at x = x1, thus confirming the approximation
(8.6). Deduce that successive iterates gain approximately one extra
digit of accuracy.

8.4.? Apply the backward Euler method with h = 0.1 to solve the IVP de-
scribed in Example 8.3. Calculate the first two fixed-point iterations
in the determination of x1 from a starting guess of u[0] = x0.

8.5.? For the system of ODEs in Example 8.3, show that

d
dt

(
x(t)2 + 1

2y(t)4
)

= −2y(t)6.

The quantity V (t) ≡ x(t)2 + 1
2y(t)4 is an example of a Lyapunov

function. Its time derivative is negative except when y(t) = 0, in
which case, x′(t) = 0 and y′(t) = 2x(t)—so the motion is vertical and
counterclockwise in the phase plane. V (t) is therefore a decreasing
function of t, from which it can be concluded that, in the long term,
the solution spirals to the origin.

8.6.?? Apply the forward and backward Euler methods as a predictor-
corrector pair to approximate x1 for the IVP described in Exam-
ple 8.3 with h = 0.1. Compare your answers with those given in
Table 8.2.

Use Milne’s device to produce a revised estimate of the solution at
t = t1.

8.7.?? Apply the forward and backward Euler methods as a predictor-
corrector pair to solve the model equation x′(t) = λx(t) and show
that

xn+1 = (1 + ĥ + ĥ2)xn,

where ĥ = hλ. Hence, show that the interval of absolute stability of
this method is ĥ ∈ (−1, 0). The region of absolute stability is shown
in Figure 8.2 (left).
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Fig. 8.2 The region of absolute stability for the forward/backward Euler
PECE method for Exercise 8.7 (left) and the AB(2)/trapezoidal pair for Exer-
cise 8.15 (right)

8.8.? (Based on Stuart and Humphries [65, page 270].) Applying the back-
ward Euler method to the ODE x′(t) = −x3(t) requires us to find a
root of the cubic equation g(u) = u− xn + hu3. Show that, for any
fixed h > 0 and xn,

(i) g(u) → −∞ as u → −∞;

(ii) g(u) →∞ as u →∞;

(iii) g(u) is monotonically increasing.

Deduce that there is always a unique solution for the backward Euler
method in this case.

This example is studied further in Exercise 14.12.

8.9.?? The scalar function f is said to satisfy a one-sided Lipschitz con-
dition if there exists a constant γ such that, for all u, v,

(u− v)(f(u)− f(v)) ≤ γ(u− v)2.

Consider applying backward Euler to the ODE x′(t) = f(x). Show
that when f satisfies a one-sided Lipschitz condition there is always
a unique solution if hγ < 1. In particular, this implies that there
is a unique solution for any step size when γ ≤ 0. (Hint: if there
are two distinct solutions, u and v, then u = xn + hf(u) and v =
xn+hf(v). Subtract one equation from the other, multiply both sides
by u − v and apply the one-sided Lipschitz condition.) These ideas
can be generalized for systems of ODEs; see, for example, Stuart and
Humphries [65].

8.10.?? Following on from Exercises 8.8 and 8.9, show that f(u) = −u3

satisfies a one-sided Lipschitz condition with γ = 0. Also show that
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f(u) = u − u3 satisfies a one-sided Lipschitz condition and, hence,
find a condition on h that guarantees a unique solution for backward
Euler applied to x′(t) = x(t)− x3(t).

8.11.? Use the Newton–Raphson method to solve Equation (8.8) with
u[0] = 0.2. How many iterations are required so that |u[`+1]− u[`]| <
0.001?

8.12.?? Use the AB(2) and trapezoidal methods

xn+2 = xn+1 + 1
2h(3fn+1 − fn), C∗

3 = 5
12 ,

xn+2 = xn+1 + 1
2h(fn+2 + fn+1), C3 = − 1

12 ,

as a predictor-corrector pair to calculate x2 for the IVP of Exam-
ple 8.1 with h = 0.1 and the extra starting value x1 = 0.233 922. Use
the error constants shown above with Milne’s device to estimate the
LTE at the end of this step and incorporate this to find a higher or-
der approximation to x2. How do these two solutions compare with
the exact solution x(t2) = 0.271 645 (to six decimal places).

This process is generalized in Exercise 11.13 to variable step sizes.

8.13.? Suppose that E[`] = [p[`], q[`]]T. Use the data provided in the last
two rows of Table 8.2 to show that

(p[`])2

p[`+1]
≈ 4.75

for ` = 1, 2, thus confirming quadratic convergence. Show that a
similar result holds for the second component q[`].

8.14.?? Write down the equations that have to be solved when the trape-
zoidal rule is used to compute an approximation to x(t1) for the
IVP described in Example 8.3 with h = 0.1. Carry out two iter-
ations when the Newton–Raphson method is used to solve these
equations starting from the initial guess x(0) = [1, 1]T. How does
the numerical solution at this stage compare with the values ob-
tained in Exercise 8.6 from the backward Euler method with and
without local extrapolation?

8.15.??? Show that the PECE pair comprising AB(2) and trapezoidal meth-
ods of Exercise 8.12 applied to ODE x′(t) = λx(t) leads to

xn+2 = (1 + ĥ + 3
4 ĥ2)xn+1 − 1

4 ĥ2xn.

Hence, show that the the interval of absolute stability of this method
is ĥ ∈ (−2, 0). The region of absolute stability is shown in Figure 8.2
(right).
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8.16.? Suppose that C is a positive constant, −1 < r < 1, and v a unit
vector. The sequence E[`] = Cr`v converges geometrically to zero
(behaviour typical of fixed-point iterations). Show that

‖E[`+1] −E[`]‖ = (1− r)‖E[`]‖

and so the distance to the limit is given by

‖E[`]‖ =
ε

1− r

when ‖E[`+1]−E[`]‖ = ε. Thus, when the iteration is slowly conver-
gent (r is close to, but smaller than, unity), the distance from the
limit may be considerably further than the distance between suc-
cessive iterates. Thus, to ensure that ‖E[`]‖ < δ, iterations should
continue until ‖E[`+1] −E[`]‖ < (1− r)δ.

8.17.? Using the values of E[`] and r = hB calculated in Exercise 8.3, verify
that the data in Table 8.1 satisfy (approximately) the result

|E[`]| = |E[`+1] − E[`]|
1− r

that was derived in the previous exercise.

8.18.?? It was shown in Section 5.4 that, for linear ODEs, the leading term
in the LTE for both explicit and implicit two-step LMMs was equal
to the difference between the computed approximation x̃ and the
exact solution x(tn+2), under the localizing assumption that all back
values are exact. This result holds more generally and, updating the
notation to match the predictor-corrector setting, we have, under
the localizing assumption,

P: x(tn+k)− x[0]
n+k = T ∗n+k

= hp+1C∗
p+1

dp+1x

dtp+1
(tn+k)

C: x(tn+k)− xn+k = Tn+k +O(hp+2)

= hp+1Cp+1
dp+1x

dtp+1
(tn+k) +O(hp+2).

By ignoring higher order terms, express hp+1x(p+1)(tn+k) in terms
of x[0]

n+k and xn+k. Hence, show that the leading term in Tn+k is
given by (8.11).



9
Runge–Kutta Method—I:

Order Conditions

9.1 Introductory Examples

Runge–Kutta (RK) methods are one-step methods composed of a number of
stages. A weighted average of the slopes (f) of the solution computed at nearby
points is used to determine the solution at t = tn+1 from that at t = tn. Euler’s
method is the simplest such method and involves just one stage.

As in earlier chapters, we will develop methods for solving the IVP

x′(t) = f(t, x(t)), t > t0
x(t0) = η

}
. (9.1)

We give two examples of RK methods before going on to describe the general
method.

Example 9.1 (An Explicit RK Method)

Use the two-stage RK method (known as the “modified Euler method”) given
by

k1 = f(tn, xn),

k2 = f(tn + 1
2h, xn + 1

2hk1),

xn+1 = xn + hk2,

tn+1 = tn + h

Springer Undergraduate Mathematics Series, DOI 10.1007/978-0-85729-148-6_9,  
© Springer-Verlag London Limited 2010 

D.F. Griffiths, D.J. Higham, Numerical Methods for Ordinary Differential Equations,  
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to calculate approximate solutions to the IVP (see Example 2.1)

x′(t) = (1− 2t)x(t), t > 0,

x(0) = 1
(9.2)

at t = h and t = 2h using h = 0.2.

We find that

k1 = f(tn, xn) = (1− 2tn)xn,

k2 = f(tn + 1
2h, xn + 1

2hk1)

= (1− 2tn − h)(xn + 1
2hk1).

So, with h = 0.2:

n = 0: k1 = (1− 2t0)x0 = 1,

k2 = (1− 2t0 − h)(x0 + 1
2hk1) = 0.8(1.1) = 0.88,

x1 = x0 + hk2 = 1.176,

t1 = t0 + 0.2 = 0.2.

n = 1: k1 = (1− 2t1)x1 = 0.6× 1.176 = 0.7056,

k2 = (1− 2t1 − h)(x1 + 1
2hk1) = 0.498 62,

x2 = x1 + hk2 = 1.176 + 0.2× 0.498 62 = 1.2757,

t2 = t1 + 0.2 = 0.4.

This is an example of an explicit RK method: each k can be calculated without
having to solve any equations. When the calculations are extended to t = 1.2
and repeated with h = 0.1 we find the GEs shown in the final column of
Table 9.1. The GEs for this method are comparable with those from the second-
order methods of earlier chapters.

h TS(2) Trap. ABE ABT RK(2)
0.2 5.4 −2.8 −3.6 17.6 3.5
0.1 1.4 −0.71 −0.66 4.0 0.67

Ratio 3.90 4.00 5.49 4.40 5.24

Table 9.1 Global errors (multiplied by 103) at t = 1.2 for the RK(2) method of
Example 9.1 alongside the GEs for the second-order methods used in Table 4.1
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Example 9.2 (An Implicit RK Method)

For the implicit RK method defined by

k1 = f(tn + ( 1
2 − γ)h, xn + 1

4hk1 + ( 1
4 − γ)hk2),

k2 = f(tn + ( 1
2 + γ)h, xn + ( 1

4 + γ)hk1 + 1
4hk2),

xn+1 = xn + 1
2h(k1 + k2),

where γ =
√

3/6, determine xn+1 in terms of xn when applied to the IVP
x′(t) = λx(t) with x(0) = 1.

With f(t, x) = λx, we obtain

k1 = λ(xn + 1
4hk1 + ( 1

4 − γ)hk2),

k2 = λ(xn + ( 1
4 + γ)hk1 + 1

4hk2).

Writing ĥ = hλ, these equations may be rearranged to read[
1− 1

4 ĥ −( 1
4 − γ)ĥ

−( 1
4 + γ)ĥ 1− 1

4 ĥ

] [
k1

k2

]
=

[
1
1

]
λxn, (9.3)

which may be solved for k1 and k2. It may then be shown that (see Exer-
cise 9.10)

xn+1 =
1 + 1

2 ĥ + 1
12 ĥ2

1− 1
2 ĥ + 1

12 ĥ2
xn. (9.4)

Implicit RK methods are obviously much more complicated than both their
explicit versions and corresponding LMMs. The complexity can be justified
by improved stability and higher order: the method described in the previous
example is A-stable and of fourth-order (see Exercises 9.10 and 10.13).

9.2 General RK Methods

The general s-stage RK method may be written in the form

xn+1 = xn + h
s∑

i=1

biki, (9.5)

where the {ki} are computed from the function f :

ki = f

tn + cih, xn + h
s∑

j=1

ai,jkj

 , i = 1 : s. (9.6)
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c1 a1,1 a1,2 . . . a1,s

c2 a2,1 a2,2 . . . a2,s

...
...

...
cs as,1 as,2 . . . as,s

b1 b2 . . . bs

Table 9.2 The Butcher array for a full (implicit) RK method

Exercise 9.3 shows that it is natural to impose the condition

ci =
s∑

j=1

ai,j , i = 1 : s, (9.7)

so we will do this throughout. Thus, given a value of s, the method depends on
s2 + s parameters {ai,j , bj}. These can be conveniently displayed in a tableau
known as the Butcher array—see Table 9.2. For instance, the Butcher arrays
for Examples 9.1 and 9.2 are shown below:

0 0 0
1
2

1
2 0

0 1

1
2 − γ 1

4
1
4 − γ

1
2 + γ 1

4 + γ 1
4

1
2

1
2

In general, Equations (9.6) constitutes s nonlinear equations to determine {ki};
once found, these values are substituted into (9.5) to determine xn+1. Thus, a
general RK method is implicit.

However, if ai,j = 0 for all j ≥ i (the matrix1 A = (ai,j) is strictly lower
triangular) the tableau is shown in Table 9.3 and k1, k2, . . . , ks may be com-
puted in turn from (9.6) without the need to solve any nonlinear equations; we
say that the method is explicit. These are the classical RK methods. We shall

0 0 0 . . . 0
c2 a2,1 0 . . . 0

c3 a3,1 a3,2 . . .
...

...
...

. . . 0 0
cs as,1 as,2 . . . as,s−1 0

b1 b2 . . . bs−1 bs

Table 9.3 The Butcher array for an explicit RK method
1We use A in calligraphic font to distinguish the coefficient matrix of an RK

method from the matrix A that appears in a model linear system of ODEs: u′(t) =
Au(t).
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omit the zeros above the diagonal when writing a Butcher array for an explicit
method.

In the remainder of this chapter we look at the issue of choosing parameter
values to obtain the highest possible order. Chapter 10 then looks at absolute
stability. We will focus almost exclusively on explicit RK methods, and hence,
for brevity, “RK method” will mean “explicit RK method” by default, and we
will make it clear when implicit methods are being considered.

Definition 9.3 (Local Truncation Error)

The LTE, Tn+1, of an RK method is defined to be the difference between the
exact and the numerical solution of the IVP at time t = tn+1:

Tn+1 = x(tn+1)− xn+1,

under the localizing assumption that xn = x(tn), i.e. that the current numerical
solution xn is exact. If Tn+1 = O(hp+1) (p > 0), the method is said to be of
order p.

We note that this definition of order agrees with the versions used for TS
methods (Section 3.3) and LMMs (Section 5.4).

9.3 One-Stage Methods

There is no simple equivalent of the linear difference operator for RK methods
and a more direct approach is required in order to calculate the LTE.

When s = 1 we have xn+1 = xn + hb1k1 and k1 = f(tn + c1h, xn + a1,1k1).
However, since we are only considering explicit methods, c1 = a1,1 = 0 and so
k1 = f(tn, xn) ≡ fn, leading to

xn+1 = xn + hb1fn.

This expansion is compared with that for x(tn+1):

x(tn+1) = x(tn) + hx′(tn) + 1
2!h

2x′′(tn) +O(h3).

Differentiating the differential equation x′(t) = f(t, x(t)) with respect to t using
the chain rule gives

x′′(t) = ft + x′(t)fx = ft + ffx

and so
x(t + h) = x(t) + hf + 1

2!h
2
(
ft + ffx

)
+O(h3), (9.8)
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where f and its partial derivatives are evaluated at (t, x). Applying the local-
izing assumption xn = x(tn) (so that f = fn, etc.) to this when t = tn we
obtain

Tn+1 = x(tn+1)− xn+1

= h(1− b1)fn + 1
2!h

2
(
ft + ffx

)∣∣
t=tn

+O(h3).

The method will, therefore, be consistent of order p = 1 on choosing b1 = 1,
leading to Euler’s method, the only first-order one-stage explicit RK method.

Of course, we could have viewed this method as a one-step LMM and come
to the same conclusion that b1 = 1 by applying the second of the conditions
for consistency: ρ′(1) = σ(1) (Theorem 4.7).

9.4 Two-Stage Methods

With two stages, s = 2, the most general form is given by (bearing in mind
(9.7))

k1 = f(tn, xn)
k2 = f(tn + ah, xn + ahk1)
xn+1 = xn + h(b1k1 + b2k2)

. (9.9)

We shall require the Taylor expansion of k2 as a function of h, which, in turn,
requires the Taylor expansion of a function of two variables (see Appendix C):

f(t + αh, x + βh) = f(t, x) + h(αft(t, x) + βfx(t, x)) +O(h2).

Hence, since k1 = fn,

f(tn + ah, xn + ahk1) = fn + ah
(
ft + ffx

)∣∣
t=tn

+O(h2). (9.10)

Substituting this into the equation for xn+1, we obtain

xn+1 = xn + h(b1k1 + b2k2)

= xn + hb1fn + hb2

(
fn + ah

(
ft + ffx

)∣∣
t=tn

+O(h2)
)

= xn + h(b1 + b2)fn + ab2h
2

(
ft + ffx

)∣∣
t=tn

+O(h3). (9.11)

From Definition 9.3 the LTE is obtained by subtracting (9.11) from (9.8) with
t = tn and assuming that xn = x(tn):

Tn+1 = h(1− b1 − b2)fn + h2
(

1
2 − ab2

) (
ft + ffx

)∣∣
t=tn

+O(h3). (9.12)

The terms on the right of (9.12) have a complicated structure, in contrast to the
equivalent expressions for LMMs. This means that there is no direct analogue
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LTE Order conditions Order
O(h2) if b1 + b2 = 1 for any a p = 1
O(h3) if b1 + b2 = 1 ab2 = 1

2 p = 2

Table 9.4 The order conditions for two-stage methods

here of the error constants of LMMs. The LTE is, in general, O(h), giving
order p = 0; the method is not consistent. Setting the coefficients of successive
leading terms in (9.12) to zero gives the order conditions listed in Table 9.4.

The general two-stage RK method has three free parameters and only two
conditions need be imposed to obtain consistency of order 2. It would appear
that the remaining free parameter might be chosen to increase the order further.
However, had we carried one further term in each expansion and applied the
order 2 conditions we would have found

Tn+1 = h3
[
( 1
6−b2a

2)
(
ftt+2ffxt+f2fxx+fx(ft+ffx)

)
+ 1

6fx

(
ft+ffx

)]
+O(h4).

It should be clear that there are no values of the parameters a, b1, b2 for which
the method has order 3 (Tn+1 = O(h4)).

Defining b2 = θ, we have the family of two-stage RK methods with Butcher
array shown in Table 9.5. All methods in the family have order 2 for θ 6= 0. The
most popular methods from this family are the improved Euler method (θ = 1

2 )
and the modified Euler method (θ = 1; see Example 9.1).

0 0
a a 0 a = 1/(2θ)

1− θ θ

Table 9.5 The Butcher array for the family of second-order, two-stage RK
methods

9.5 Three–Stage Methods

The most general three-stage RK method is given by

k1 = f(tn, xn),

k2 = f(tn + c2h, xn + ha2,1k1),

k3 = f(tn + c3h, xn + ha3,1k1 + ha3,2k2),

xn+1 = xn + h
(
b1k1 + b2k2 + b3k3

)
,

corresponding to the following tableau:
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0 0
c2 a2,1 0
c3 a3,1 a3,2 0

b1 b2 b3

It follows from (9.7) that

a2,1 = c2 and a3,1 + a3,2 = c3, (9.13)

so the method has six free parameters.
The manipulations are significantly more complicated for constructing

three-stage methods, so we shall summarize the conditions for third-order ac-
curacy without giving any details. The strategy is to expand k1, k2, and k3

about the point (tn, xn) and to substitute these into the equation

xn+1 = xn + h
(
b1k1 + b2k2 + b3k3

)
so as to obtain an expansion for xn+1 in terms of powers of h.

This expansion is compared, term by term, with the expansion of the exact
solution (see (9.8) and Exercise 9.14):

x(t + h) = x(t) + hf + 1
2h2(ft + ffx)

+ 1
6h3(ftt + 2ffxt + f2fxx + fx(ft + ffx)) +O(h4),

where f and its partial derivatives are evaluated at (t, x). This process leads
to the conditions shown in Table 9.6.

There are four nonlinear equations2 in the six unknowns c2, c3, a3,2, b1, b2, b3.
There is no choice of these parameters that will give a method of order greater
than three.

b1 + b2 + b3 = 1 (order 1 condition)

b2c2 + b3c3 = 1
2 (order 2 condition)

b2c
2
2 + b3c

2
3 = 1

3

c2a3,2b3 = 1
6

}
(order 3 conditions)

Table 9.6 Order conditions for three-stage RK methods

2When b3 = 0 the first two equations give the order 2 conditions for two-stage RK
methods.
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Two commonly used methods from this family are Heun’s and Kutta’s third
order rules; see Table 9.7.

0 0
1
3

1
3 0

2
3 0 2

3 0
1
4 0 3

4

0 0
1
2

1
2 0

1 −1 2 0
1
6

4
3

1
6

Table 9.7 Heun’s third order rule & Kutta’s third order rule

9.6 Four-Stage Methods

A general four-stage RK method has 10 free parameters ( 1
2s(s + 1)) and eight

conditions are needed to obtain methods of maximum possible order—which is
p = 4 (Lambert [44, pages 178–9]). The most popular of all RK methods (of
any stage number) is the four-stage, fourth-order method shown in Table 9.8;
it is commonly referred to as the RK method.

0 0
1
2

1
2 0

1
2 0 1

2 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Table 9.8 The classic four-stage, fourth-order method

9.7 Attainable Order of RK Methods

It may appear from the development to this point that it is always possible to
find RK methods with s stages that have order s. This is not so for s > 4. The
number of stages necessary for a given order is known up to order 8, but there
are no precise results for higher orders. To appreciate the level of complexity
involved, it is known that between 12 and 17 stages will be required for order
9 and the coefficients must satisfy 486 nonlinear algebraic equations. Also, for
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methods of order higher than 4, the order when applied to systems may be
lower than when applied to scalar ODEs. A structure to tackle such problems
was provided by Butcher in the early 1970s, and many of the results that have
flowed from this are summarized in the books of Butcher [6] and Hairer et
al. [28].

9.8 Postscript

RK methods were devised in the early years of the 20th century. This was an
era when all calculations were performed by hand and so the free parameters
remaining, after the relevant order conditions were satisfied, were chosen to give
as many zero entries as possible in the Butcher array while trying to ensure
that the nonzero entries were fractions involving small integers. In the era of
modern digital computing, attention has shifted to minimizing the coefficients
that appear in the leading terms of the LTE.

EXERCISES

9.1.? Use the improved Euler RK(2) method with h = 0.2 to compute x1

and x2 for the IVP of Example 9.1 (this may be carried out with a
hand calculator).

9.2.? Prove that the RK method (9.5)–(9.6) applied to the IVP x′(t) = 1,
x(0) = 0, will not converge unless

s∑
i=1

bi = 1.

9.3.?? As described in Section 1.1, the scalar ODE x′(t) = f(t, x(t)), with
x(0) = η, may be written in the form of two autonomous ODEs,
u′(t) = f(u(t)), where

u(t) =
[
u(t)
v(t)

]
, f

([
u

v

])
=

[
1

f(u, v)

]
,

and u(0) = 0, v(0) = η. Show that the condition (9.7) arises natu-
rally when we ask for a RK method to produce the same numerical
approximation when applied to either version of the problem.
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9.4.? Show that the one-stage method in Section 9.3 is a special case of
the two-stage process (9.9) by choosing appropriate values of a, b1,
and b2. Hence show that we must have b1 = 1 so that the method in
Section 9.3 has order one.

9.5.?? Prove, from first principles, that the RK method

k1 = f(tn, xn),

k2 = f(tn + h, xn + hk1),

xn+1 = xn + 1
2h(k1 + k2),

is a consistent method (of order at least p = 1) for solving the IVP
x′(t) = f(t, x(t)), with x(0) = η.

9.6.?? Prove, from first principles, that the RK method

k1 = f(tn, xn),

k2 = f(tn + 3
2h, xn + 3

2hk1),

xn+1 = xn + 1
3h(2k1 + k2),

is consistent of at least second order for solving the initial value
problem x′(t) = f(t, x(t)), t > 0 with x(0) = η.

9.7.? Consider the solution of the IVP x′(t) = (1− 2t)x(t) with x(0) = 1.
Verify the values (to six decimal places) given below for x1 with
h = 0.1 and the methods shown. The digits underlined coincide
with those in the exact solution x(h) = exp[ 14 − ( 1

2 − h)2].

Improved Modified Heun Kutta Fourth
Euler Euler third order order

1.094 000 1.094 500 1.094 179 1.094 187 1.094 174

9.8.?? Apply the general second-order, two-stage RK method (see Ta-
ble 9.5) to the ODE x′(t) = t2. Compare xn+1 with the Taylor
expansion of x(tn+1) and comment on the order of the LTE.

9.9.?? Apply the general second-order, two-stage RK method (see Ta-
ble 9.5) to the ODE x′(t) = λx(t). Compare xn+1 with the Tay-
lor expansion of x(tn+1) and show that the difference is O(h3) if
xn = x(tn). We conclude that the order of the method cannot ex-
ceed two while the calculations in Section 9.4 show that the order is
at least 2; the order must therefore be exactly 2.
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9.10.??? Show that (9.4) follows from (9.3) (since xn+1 = xn+ 1
2h(k1+k2)).

By matching coefficients of powers of ĥ on both sides of

1− 1
2 ĥ + 1

12 ĥ2 = (1 + 1
2 ĥ + 1

12 ĥ2)(a0 + a1ĥ + a2ĥ
3 + · · · ),

or otherwise, show that the Maclaurin expansion of the right side of
(9.4) is

xn+1 = (1 + ĥ + 1
2 ĥ2 + 1

6 ĥ3 + 1
24 ĥ4 + 1

144 ĥ5)xn +O(ĥ6).

Deduce that the method cannot be of order higher than four.

9.11.?? Show that the RK method with Butcher tableau

0 0 0

1 1
2

1
2

1
2

1
2

is equivalent to the trapezoidal rule (4.5).

9.12.? Find a solution of the third-order conditions so that c2 = c3 and
b2 = b3 (Nyström’s third-order method).

9.13.? Show that, for any given third-order, three-stage RK method, it is
possible to construct a second-order, two-stage method that uses the
same values of k1 and k2.

9.14.??? If x′(t) = f(t, x(t)), use the chain rule to verify that

x′′′(t) = ftt + 2ffxt + f2fxx + fx(ft + ffx),

where f and its partial derivatives are evaluated at (x, t).

9.15.??? Use the result derived in the previous exercise to show, from
first principles, that Heun’s method (see Table 9.7) is a third-order
method.



10
Runge-Kutta Methods–II

Absolute Stability

10.1 Absolute Stability of RK Methods

The notion of absolute stability developed in Chapter 6 for LMMs is equally
relevant to RK methods. Applying an RK method to the linear ODE x′(t) =
λx(t) with <(λ) < 0, absolute stability requires that xn → 0 as n →∞.

We begin with the most general two-stage, second-order RK method dis-
cussed in Section 9.4.

Example 10.1

Investigate the absolute stability of the RK method with Butcher array

0 0
a a 0 a = 1/(2θ).

1− θ θ

Applying this method to the solution of the ODE x′(t) = λx(t) and writing

Springer Undergraduate Mathematics Series, DOI 10.1007/978-0-85729-148-6_10,  
© Springer-Verlag London Limited 2010 

D.F. Griffiths, D.J. Higham, Numerical Methods for Ordinary Differential Equations,  
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ĥ = λh, we find that1

hk1 = hf(tn, xn) = hλxn = ĥxn,

hk2 = hf(tn + ah, xn + ahk1),

= ĥ(xn + ahk1) = ĥ(1 + aĥ)xn.

Hence,

xn+1 = xn + (1− θ)hk1 + θhk2

=
(
1 + ĥ(1 + θaĥ)

)
xn

and, since aθ = 1
2 , it follows that

xn+1 = R(ĥ)xn, (10.1)

where
R(ĥ) = 1 + ĥ + 1

2 ĥ2 (10.2)

is known as the stability function2 of the RK method. Equation (10.1) is a
one-step difference equation having auxiliary equation (stability polynomial)

p(r) = r −
(
1 + ĥ + 1

2 ĥ2
)
.

Some remarks are in order:

(i) The stability function is linear in r and has only one root r = R(ĥ).

(ii) The stability function is the same for all explicit two-stage, second-order
RK methods—R(ĥ) does not depend on the parameter a.

(iii) The root r = R(ĥ) satisfies R(ĥ) = ebh+O(ĥp+1)) with p = 2 for this family
of second-order methods.

(iv) The solution of (10.1) will tend to zero as n → ∞, regardless of the value
of x0, if, and only if, |R(ĥ)| < 1; this is the condition for absolute stability.

The interval of absolute stability is the set of real values ĥ for which
|R(ĥ)| < 1. This leads to

−1 < 1 + ĥ + 1
2 ĥ2 < 1.

The left inequality is satisfied for all real ĥ and the right inequality is satisfied
if, and only if, −2 < ĥ < 0. This is the interval of stability. The boundary of the

1It is usually more convenient to calculate hki (for each i) since the result can be

expressed in terms of bh only, and does not involve h or λ separately.
2Clearly, R(bh) is a polynomial in this example and is, indeed, a polynomial for all

explicit methods. However, as seen in Example 9.2, implicit methods lead to rational

expressions in bh.
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region of absolute stability, despite having a rather a simple shape (Figure 10.1,
top right), is defined by a complicated expression (Exercise 10.9). What is
required is a means of computing the largest value of h for a given (complex)
value of λ. Writing λ = a + ib, then ĥ = h(a + ib) and it can be shown that the
equation |1 + ĥ + 1

2 ĥ2|2 = 1 leads to the following cubic polynomial in h:

(a2 + b2)2h3 + 4a(a2 + b2)h2 + 8a2h + 8a = 0. (10.3)

The real root of this equation gives the largest value of h for which the method
is absolutely stable.

10.1.1 s-Stage Methods of Order s

The results of Example 10.1 generalize to s-stage methods of order s (which
exist only for s ≤ 4—see Section 9.7) as follows:

(a) When applied to x′(t) = λx(t), the RK method leads to xn+1 = R(ĥ)xn,

where the stability function R(ĥ) is a polynomial in ĥ of degree s (see
Exercises 10.7 and 10.8).

(b) Taylor expansion of the exact solution x(tn+1) about t = tn and using
x′(t) = λx(t), x′′(t) = λ2x(t), etc., leads to

x(tn+1) =
(
1 + ĥ +

1
2!

ĥ2 + · · ·+ 1
s!

ĥs
)
x(tn) +O(ĥs+1). (10.4)

(c) Under the localizing assumption xn = x(tn) and supposing the method to
have order s, then xn+1 = x(tn+1) +O(hs+1). It follows from (a) and (b)
that

R(ĥ) = 1 + ĥ +
1
2!

ĥ2 + · · ·+ 1
s!

ĥs. (10.5)

Thus, all s-stage, s-order RK methods have the same stability function,
R(ĥ). Clearly,

R(ĥ) = ebh +O(ĥs+1).

Also |R(ĥ)| → ∞ as ĥ → −∞ so that no explicit RK method can be either
A-stable or A0-stable. The intervals/regions of absolute stability are defined as
the set of real/complex values of ĥ for which |R(ĥ)| < 1. (Since R(ĥ) = 1 at
ĥ = 0, RK methods are always zero-stable.)

The intervals of absolute stability (IAS) of the four s-stage, sth-order RK
methods (1 ≤ s ≤ 4) are given in Table 10.1 and their regions of absolute
stability are shown in Figure 10.1. Note that the area of the region, as well as
the length of the interval of absolute stability, increases with s.
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s R(ĥ) IAS

1 1 + ĥ (−2, 0)

2 1 + ĥ + 1
2 ĥ2 (−2, 0)

3 1 + ĥ + 1
2 ĥ2 + 1

6 ĥ3 (−2.513, 0)

4 1 + ĥ + 1
2 ĥ2 + 1

6 ĥ3 + 1
24 ĥ4 (−2.785, 0)

Table 10.1 Intervals of absolute stability (IAS) for s-stage, s-order explicit
RK methods

−4 −2 0 2

−2

0

2 ℑ(λh )

ℜ(λh )

RK(1)

−4 −2 0 2

−2

0

2 ℑ(λh )

ℜ(λh )

RK(2)

−4 −2 0 2

−2

0

2 ℑ(λh )

ℜ(λh )

RK(3)

−4 −2 0 2

−2

0

2 ℑ(λh )

ℜ(λh )

RK(4)

Fig. 10.1 The region of of absolute stability for the s-stage, sth-order RK
methods. (RK(1) is Euler’s method: cf. Figure 6.6)

10.2 RK Methods for Systems

When applying explicit RK methods to IVPs for systems of the form

x′(t) = f(t,x(t)), t > t0
x(t0) = η

}
, (10.6)

where x ∈ Rd is a d-dimensional vector, each of the stage slopes k1,k2, . . . ,ks

becomes a vector. When performing hand calculations it may be preferable to
use a different symbol for each component of ki:

k1 =

k1

`1
...

, k2 =

k2

`2
...

, etc.

This is illustrated in the next example, which revisits Example 7.1.
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Example 10.2

Use the improved Euler RK(2) method with h = 0.1 to determine the solution
at t = 0.1 of the IVP

u′(t) = −tu(t)v(t),

v′(t) = −u2(t),

with u = 1, v = 2 at t = 0.

The Butcher array of the improved Euler method is (Table 9.5 with θ = 1
2 )

0 0
1
2

1
2 0
1
2

1
2

n = 0: t0 = 0,

k1 = −t0u0v0 = 0,

`1 = −u2
0 = −1,

k2 = −(t0 + 1
2h)(u0 + 1

2hk1)(v0 + 1
2h`1) = −0.0975,

`2 = −(u0 + 1
2hk1)2 = −1,

u1 = u0 + h(k1 + k2) = 0.9902,

v1 = v0 + h(`1 + `2) = 1.900,

t1 = 0.1.

Note that u gets updated using k and the v gets updated using `. A possible
layout of calculations is shown in Table 10.2, where they are continued for one
further step.

n tn k1 k2 xn =
[
un

vn

]
0 0.0 1

2 Initial data
1 0.1 0.0000 −0.0975 0.9902

−1.0000 −1.0000 1.9000
2 0.2 −0.1881 −0.2723 0.9630

−0.9806 −0.9621 1.8038

Table 10.2 Numerical solutions for the first two steps of Example 10.2
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10.3 Absolute Stability for Systems

The absolute stability of LMMs applied to systems was discussed in Sec-
tion 7.1—see Definition 7.4; a similar investigation is now carried out for RK
methods by applying them to the model problem

u′(t) = Au(t), (10.7)

where u(t) is an m-dimensional vector (u(t) ∈ Rm) and A is a constant m×m

matrix (A ∈ Rm×m).

Example 10.3

Investigate the absolute stability properties of the family of second-order, two-
stage RK(2) methods.

The scalar version of this example is treated in Example 10.1. The correspond-
ing calculations are

hk1 = hf(tn,un) = hAun,

hk2 = hf(tn + ah,un + ahk1)

= hA(un + ahk1) = hA(1 + ahA)un.

Hence,

un+1 = un + (1− θ)hk1 + θhk2

=
(
1 + hA + 1

2hA2
)
un

(since aθ = 1
2 ), so that

un+1 = R(hA)un, (10.8)

where R(ĥ) is the stability function defined by equation (10.2). Thus, the
matrix-vector version is analogous to the scalar version provided that ĥ(= hλ)
is interpreted here as hA.

We assume, as in Section 7.1, that A is diagonalized by the matrix V , so
that V −1AV = Λ, where Λ is the diagonal matrix of eigenvalues. Then

V −1R(hA)V = R(hΛ)

(see Exercise 10.12). Multiplying both sides of (10.8) by V −1 and applying the
change of variables un+j = V xn+j leads to

xn+1 = R(hΛ)xn,



10.3 Absolute Stability for Systems 141

a system in which all the components are uncoupled. If xn denotes a typical
component of xn and λ the corresponding eigenvalue, then

xn+1 = R(ĥ)xn, ĥ = hλ,

the same equation that was obtained in the scalar case.
The results of this example generalize quite naturally to other explicit RK

methods; to ensure absolute stability, ĥ = hλ should lie in the region of absolute
stability of the method for every eigenvalue λ of A.

EXERCISES

10.1.? Verify that the two three-stage RK methods given in Table 9.7 have
the same stability function R(ĥ).

10.2.?? Show, by considering the roots of the equations R(ĥ) = 1 and
R(ĥ) = −1, that all three-stage, third-order RK methods have the
same interval of absolute stability (h∗, 0), where h∗ lies between −2
and −3.

10.3.??? Apply the RK(4) method defined in Table 9.8 to the ODE x′(t) =
λx(t) and verify that it leads to xn+1 = R(ĥ)xn, where R(ĥ) is
defined by (10.5) with s = 4.

Show that R(ĥ) may be written as

R(ĥ) = 1
4 + 1

3 (ĥ + 3
2 )2 + 1

24 ĥ2(ĥ + 2)2

and deduce that the equation R(ĥ) = −1 has no real roots.

Prove that the method has interval of absolute stability (h∗, 0),
where R(h∗) = 1, and h∗ lies between −2 and −3.

10.4.?? Show that s-stage, sth-order RK methods have interval of stability
(h∗, 0) for s = 1, 2, 3, 4, where h∗ is defined by R(h∗) = (−1)s.

10.5.?? Use the Newton–Raphson method to solve the equations R(h∗) =
(−1)s for s = 3 and s = 4 obtained in the previous exercise. Use a
starting guess h[0] = −2.5 and verify that the roots agree with the
values given in Table 10.1 to three decimal places.

10.6.?? Determine the interval of absolute stability for the RK method

k1 = f(tn, xn),

k2 = f(tn + h/a, xn + hk1/a),

xn+1 = xn + h((1− a)k1 + ak2)
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and show that it is independent of the parameter a.

Show how the stability function for this method can be used to
establish an upper limit to its order of convergence.

10.7.??? Suppose that an RK method, defined by the Butcher array

c A
bT

with c = (c1, . . . , cs)T, b = (b1, . . . , bs)T and A = (ai,j), an s × s

matrix, is applied to the scalar test equation x′(t) = λx(t). If k =
[k1, . . . , ks]T and e = [1, 1, . . . , 1]T, show that

k = λ(I − ĥA)−1exn.

Hence show that xn+1 = R(ĥ)xn and the stability function R(ĥ) is
given by

R(ĥ) = 1 + ĥbT(I − ĥA)−1e.

10.8.??? Using the Cayley–Hamilton Theorem, or otherwise, prove that
As = 0 (it is nilpotent) when A is a strictly lower triangular s × s

matrix . Hence prove that

(I − ĥA)−1 = I + ĥA+ ĥ2A2 + · · ·+ ĥs−1As−1.

Deduce that, when A is the Butcher matrix for an explicit RK
method, the stability function R(ĥ) of Exercise 10.7 is a polynomial
in ĥ of degree s.

10.9.??? The boundary of the region of absolute stability of all second-order
two-stage RK methods is given by |1 + ĥ + 1

2 ĥ2| = 1. If ĥ = p + iq,
show that this leads to

(p + 1)2 +
(√

q2 + 1− 1
)2

= 1.

Hence, show that the boundary can be parameterized in real form
by

p = cos(φ)− 1, q = ±
√

(2 + sin(φ)) sin(φ)

for 0 ≤ φ ≤ π.

10.10.? If λ = −4 ± i show, using (10.3), that all two-stage, second-order
RK methods are absolutely stable for 0 < h < 0.498.
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10.11.?? Show that any two-stage, second-order RK method applied to the
system u′(t) = Au(t), where

A =
[
−5 −2

2 −5

]
,

will be absolutely stable if h < 0.392. Hint: use (10.3).

What is the corresponding result for the matrix A =
[
−50 −20

20 −50

]
?

10.12.?? Suppose that the s × s matrix A is diagonalized by the s × s

matrix V :
V −1AV = Λ,

where Λ is an s× s diagonal matrix. Prove that V also diagonalizes
all positive powers of A, i.e. V −1AkV = Λk for any positive integer k.

Deduce that V −1R(hA)V = R(hΛ), where R(ĥ) is a polynomial of
degree s in ĥ.

10.13.??? Prove that the method of Example 9.2 is A-stable, i.e. absolutely
stable for all <(ĥ) < 0.

[Hint: Write R(ĥ) = 1 + ĥ/D and show that |R(ĥ)|2 − 1 < 0.]

10.14.??? Show that the RK method given by the Butcher matrix

0 0
c c 0

c 1− c

is consistent of order 1.

Show that one step of this method is equivalent to taking two steps
with Euler’s method—the first step with a step size ch and the sec-
ond with a step size (1 − c)h. When c = 1

2 (1 − γ), relate this to
the composite Euler method described in Exercise 6.21 and, hence,
deduce the interval of absolute stability of the given RK method.

10.15.??? A semi-implicit RK method is given by the Butcher matrix

0 0 0 0
1
2

5
24

1
3 − 1

24

1 0 1 0
1
6

2
3

1
6

Determine the ratio xn+1/xn when the method is applied to x′(t) =
λx(t). Deduce that the method cannot be A-stable.



11
Adaptive Step Size Selection

All the methods discussed thus far have been parameterized by the step size
h. The number of steps required to integrate over a given interval [0, tf ] is
proportional to 1/h and the accuracy of the results is proportional to hp, for
a method of order p. Thus, halving h is expected to double1 the amount of
computational effort while reducing the error by a factor of 2p (more than an
extra digit of accuracy if p > 3).

We now explore the possibility of taking a different step length, hn, at step
number n, say, in order to improve efficiency—to obtain the same accuracy with
fewer steps or better accuracy with the same number of steps. We want to adapt
the step size to local conditions—to take short steps when the solution varies
rapidly and longer steps when there is relatively little activity. The process
of calculating suitable step sizes should be automatic (by formula rather than
by human intervention) and inexpensive (accounting for a small percentage of
the overall computing cost, otherwise one might as well repeat the calculations
with a smaller, constant step size h).

We shall describe methods for computing numerical solutions at times t =
t0, t1, t2, . . . that are not equally spaced, so we define the sequence of step sizes

hn = tn+1 − tn, n = 0, 1, 2, . . . . (11.1)

What should be the strategy for calculating these step sizes? It appears in-
tuitively attractive that they be chosen so as to ensure that our solutions

1These ball-park estimates are based on h being sufficiently small so that O(hp)
quantities are dominated by their leading terms.
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have a certain accuracy—three correct decimal places or four correct signif-
icant figures, for example. This is not always possible, as the following example
illustrates.

Example 11.1

Using knowledge of the exact solution of the IVP

x′(t) = 2t, x(0) = 0,

show that it is not possible to choose the sequence of step sizes hn in Euler’s
method so that the solution is correct to precisely 0.01 at each step.

The method is given by

xn+1 = xn + 2hntn,

tn+1 = tn + hn,

with x0 = t0 = 0. Thus, x1 = 0, t1 = h0, while the exact solution at this time
is x(t1) = h2

0. The GE x(t1) − x1 is equal to 0.01 when h2
0 = 0.01; that is,

h0 = 0.1. For the second step,

x2 = x1 + 2h1t1,

where t1 = 0.1, so x2 = 0.2h1 while x(t2) = (0.1 + h1)2. The GE is

x(t1)− x1 = 0.01 + h2
1

and can equal 0.01 only if h1 = 0. It is not possible to obtain a GE of 0.01 after
two steps unless the GE after one step is less than this amount.

Thus, in order to obtain a given accuracy at time t = tf , say, it may be neces-
sary in some problems to have much greater accuracy at earlier times; in others,
lower accuracy may be sufficient. While it is possible to devise algorithms that
can cope with both scenarios (see, for instance, Eriksson et al. [19]), most cur-
rent software for solving ODEs is not based on controlling the GE. Rather, the
most common strategy is to require the user to specify a number tol, called the
tolerance, and the software is designed to adapt the step size so that the LTE
at each step does not exceed this value.2 Our aim here is to present a brief
introduction to this type of adaptive step size selection. We shall address only
one step methods, in which case the calculations are based on the relationship

Tn+1 = H(tn)hp+1
n +O(hp+2

n ) (11.2)
2The situation is a little more intricate in practice, since software is typically

designed to use a relative error tolerance in addition to an absolute error tolerance—
see, for instance, the book by Shampine et al. [63, Section 1.4]. We shall limit ourselves
to just one tolerance.
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(for some function H(t)) between the step size hn and the leading term in the
LTE of a pth-order method3 for the step from t = tn to t = tn+1.

The calculations are organized along the following lines. Suppose that the
pairs (t0, x0), (t1, x1), . . . , (tn, xn) have already been computed for some value
of n ≥ 0 along with a provisional value hnew for hn, the length of the next time
step. There are four main stages in the calculation of the next step.

(a) Set hn = hnew and calculate provisional values of xn+1 and tn+1 = tn + hn.

(b) Estimate a numerical value T̂n+1 for the LTE Tn+1 at t = tn+1 based on
data currently available. (How this is done is method-specific and will be
described presently.)

(c) If T̂n+1 < tol we could have used a larger step size, while if T̂n+1 > tol the
step we have taken is unacceptable and it will have to be recalculated with
a smaller step size.

In both situations we ask: “Based on (11.2), what step size, hnew, would
have given an LTE exactly equal to tol?” From step (b) we know that
T̂n+1 ≈ H(tn)hp+1

n , while to achieve |Tn+1| = tol in (11.2) we require

tol ≈ |H(tn)|hp+1
new ; (11.3)

so, after eliminating H(tn), we take hnew to be

hnew = hn

∣∣∣∣∣ tol

T̂n+1

∣∣∣∣∣
1/(p+1)

. (11.4)

This is used in two ways in the next stage.

(d) If the estimated value of LTE obtained in stage (b) is too large4—|Tn+1| >
tol—the current step is rejected. In this case we return to the previous
step—stage (a) on this list—with the value of hnew given by (11.4) and
recalculate xn+1 and tn+1.

Otherwise we proceed to the next time step with the values of (tn+1, xn+1)
and hnew.

This process is common to all the methods we will describe and its implemen-
tation requires a means of calculating an estimate T̂n+1 of the LTE (Tn+1) and
a suitable initial step length (h0).

3For instance, Tn+1 = Lhx(tn) = Cp+2h
p+1
n x(p+1)(tn) + O(hp+2) for a pth-order

LMM (see Equation (4.18)) so H(t) = Cp+1x
(p+1)(t). The corresponding expression

for two-stage RK methods is given at the end of Section 9.4, but, as we shall see, the
function H(t) for RK methods is estimated indirectly.

4In practice a little leeway is given and a step is rejected if, for example,

|bTn+1| > 1.1tol.
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Equation (11.4) implies that hnew ∝ tol1/(p+1) and, since the GE is of
order p, it follows that GE ∝ tolp/(p+1). For this reason we conduct numerical
experiments in pairs with tolerances that differ by a ratio of 10p+1. The size of
computed time steps should then differ by a factor of about 10 and experiments
with the smaller tolerance should require about 10 times as many steps to
integrate over the same interval. Also, the GE in the two experiments should
differ by a factor of 10p, so the smaller tolerance should have p more correct
decimal digits than the larger tolerance. This is often made clearer graphically
by plotting the scaled GE, defined by

scaled GE =
GE

tolp/(p+1)
,

as a function of time. The curves produced by the two experiments should lie
roughly on top of each other.

In the remainder of this chapter we will present a number of examples to
illustrate how methods of different types may be constructed and, via numerical
examples, give some indication of how they perform.

11.1 Taylor Series Methods

These are the most straightforward methods for which to design step size se-
lection, since the leading term in the LTE may be expressed in terms of x(t)
and t by forming successive derivatives of the ODE.

The TS(p) method is given by (see equation (3.5))

xn+1 = xn + hnx′n + 1
2!h

2
nx′′n + · · ·+ 1

p!h
p
nx

(p)
n . (11.5)

The LTE for the step from t = tn to t = tn+1 is given by

Tn+1 = 1
(p+1)!h

p+1
n x(p+1)(tn) +O(hp+2

n ),

in which the leading term can be approximated by replacing x(p+1)(tn) by
x

(p+1)
n . Thus,

T̂n+1 = 1
(p+1)!h

p+1
n x

(p+1)
n , (11.6)

whose right-hand side is a computable quantity since it can be expressed in
terms of the previously computed quantities hn, tn, and xn by differentiating
the ODE p times. With (11.4) and (11.6) the step size update is given by

hnew =
∣∣∣∣ (p + 1)! tol

x
(p+1)
n

∣∣∣∣1/(p+1)

; (11.7)
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so, if the current step is accepted, we progress with hn+1 = hnew. Otherwise
the step is recomputed with hn = hnew.

It remains to choose a suitable value for the first step length h0. This may
be done by setting |T0| = tol, from which we find

h0 =
∣∣∣∣ (p + 1)! tol

x(p+1)(t0)

∣∣∣∣1/(p+1)

. (11.8)

Example 11.2

Apply the TS(1) and TS(2) methods to solve the IVP (see Example 2.1)

x′(t) = (1− 2t)x(t), t > 0
x(0) = 1

}
(11.9)

using adaptive step size selection.

The TS(1) method at the nth step is Euler’s method with a step size hn:

xn+1 = xn + hnx′n, tn+1 = tn + hn, (11.10)

where x′n = (1− 2tn)xn. By differentiating the ODE (see Example 2.1) we find

x′′(tn) =
[
(1− 2tn)2 − 2

]
x(tn)

and this may be approximated by replacing the exact solution x(tn) by the
numerical solution xn at t = tn to give

x′′n =
[
(1− 2tn)2 − 2

]
xn. (11.11)

The step size update is then given by (11.4) with p = 1; that is,5

hnew = hn

∣∣∣∣2 tol

x′′n

∣∣∣∣1/2

. (11.12)

Finally, since t0 = 0 and x0 = 1 we find from (11.11) that x′′0 = −1 and so
equation (11.8) gives h0 =

√
2 tol.

5The denominator in (11.12) vanishes when xn+1 = 0, but this is easily accom-
modated since Equation (11.10) then implies that fn+1 = 0 so that xn+2 = xn+1 = 0
at all subsequent steps.

A more significant problem would occur at tn = 1
2
(1 +

√
2), since it would lead

to x′′n = 0. When tn is close to this value the leading term in in Tn+1 may well be
much smaller than the remainder and our estimate of the LTE is likely to be too
small. Should this lead to hnew being too large the check carried out at the end of
each step would reject the step and it would be recomputed with a smaller step size.
If it should happen that x′′n = 0, division by zero is avoided in our experiments by
choosing hn+1 = hn.
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TS(1) TS(2)
tol No. steps Max. error tol No. steps Max. error

10−2 21 8.3× 10−2 10−2 11 2.3× 10−2

10−4 207 8.4× 10−3 10−5 101 1.8× 10−4

Table 11.1 Numerical results for TS(1) and TS(2) methods for solving the
IVP (11.9) in Example 11.2

The results of numerical experiments with tol = 10−2 and 10−4 are reported
in Table 11.1 and Figure 11.1. The discussion on page 148, just before the start
of this section, suggests that hnew ∝ tol1/2; so, reducing tol by a factor of
100 should result in around 10 times as many time steps being required. This
is confirmed by the second column of the table, where the number of steps
increases from 21 to 207. The results in the third column of the table show
that the GE is reduced (almost exactly) by a factor of 10 when tol is reduced
by a factor of 100, confirming the expected relationship GE ∝ tol1/2.

In the time step history shown in Figure 11.1 (right) there is a local increase
in hn for t ≈ 1.2 corresponding to the zero in the denominator of (11.12) (see
footnote 5). It does not appear from the left-hand figure to have any significant
effect on the GE. The asterisks indicate rejected time steps (see stage (d) on
page 147). An explanation for the rejection of the final step in each of the
simulations is offered in Exercise 11.4.

For the second-order method TS(2) (see Example 3.1)

xn+1 = xn + hnx′n + 1
2h2

nx′′n, tn+1 = tn + hn, (11.13)

and the step size is updated using (11.7) with p = 2. The third derivative
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Fig. 11.1 Numerical results for Example 11.2 using TS(1). Shown are the
variation of GE (left) and time step hn (right) versus time tn with tolerances
tol = 10−2, 10−4
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Fig. 11.2 Numerical results for Example 11.2 using TS(2). Left: the variation
of GE for the adaptive method with tol = 10−2 (solid dots) and also the fixed
time step method with h = 1/3 (circles). Right: time step hn versus time tn
with tolerances tol = 10−2, 10−5. Asterisks (∗) indicate rejected steps

required can be found by differentiating the expression given earlier for x′′(t).
The results of numerical experiments with tol = 10−2 and 10−5 shown in

Table 11.1 are in accordance with the estimates hn ∝ tol1/3 and GE ∝ tol2/3.
It is also evident that TS(2) achieves much greater accuracy than TS(1) with
substantially fewer steps.

The GE as a function of time is shown in Figure 11.2 (left) for tol = 10−2.
Also shown is the GE of the fixed-step version of TS(2) described in Exam-
ple 3.2 that uses the same number of steps (12); thus, h = 1/3. The peak GE
of the fixed-step method is more than 20 times larger than the variable-step
equivalent, illustrating the significant gains in efficiency that can be achieved
with the use of adaptive time steps.

Our final example of the TS method illustrates how the same ideas can be
applied to the solution of systems of ODEs. It also serves as a warning that time
steps have to conform to the absolute stability requirements of the method.

Example 11.3

Use the TS(1) method with automatic time step selection to solve the IVP (1.14)
introduced in Example 1.9 to describe a cooling cup of coffee.

The system (1.14) can be written in the matrix-vector form x′(t) = Ax(t) + g,
where

x(t) =
[
u(t)
v(t)

]
, A =

[
−8 8

0 −1/8

]
, g =

[
0

5/8

]
,

and, since g is constant, x′′(t) = Ax′(t) = A2x(t) + Ag. The initial condi-
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tion is x(0) = [100, 20]T. The equations in (11.10) have their obvious vector
counterparts:

xn+1 = xn + hnx
′
n, tn+1 = tn + hn; (11.14)

to interpret the vector form of (11.12), we need a means of measuring the
magnitude of the vector x′′n. We shall use the Euclidean length, defined by

‖x‖ = (xTx)1/2

for a real vector x. Hence, (11.12) becomes

hnew = hn

(
2 tol

‖x′′n‖

)1/2

. (11.15)

The initial time step is given by the vector analogue of (11.8); that is,

h0 =
(

2 tol

‖x′′0‖

)1/2

,

which gives h0 ≈ 0.0198×tol1/2. This, together with (11.14) and (11.15), serves
to define the method.

The numerical results obtained with this method for tol = 10−2 and 10−4

are shown in Figure 11.3. The GE shown on the left appears to behave as
expected—reducing tol by a factor of 100 reduces the GE by a factor of 10. To
check this more carefully we have plotted (middle) the GE scaled by tol1/2. The
two sets of results lie on top of each other for early times (up to about t = 2),
but there is evident divergence in the later stages, accompanied by perceptible
oscillations for tol = 10−2.

This departure from expected behaviour is due to the fairly violent oscilla-
tions in the time step, as seen in the rightmost plot. These, in turn, result from
the need to restrict the step sizes in order to achieve absolute stability (see
Chapter 6). To explain this, we first note that the eigenvalues of the matrix
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Fig. 11.3 Numerical results for Example 11.3 using TS(1). Shown are the
variation of GE (left), the scaled GE (that is, GE/tol1/2) (middle), and time
step hn (right) versus time tn. The tolerances used are tol = 10−2, 10−4
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A—which govern the dynamics of the system—are λ = −8 and −1/8 and the
interval of absolute stability of Euler’s method (Example 6.7) is (−2, 0). It is
therefore necessary for ĥ ≡ λh ∈ (−2, 0) for each eigenvalue, that is, h ≤ 1

4 .

Whenever formula (11.15) returns a value hnew > 1
4 , instability causes an

increase in the local error. The step size is then reduced below this critical level
at the next step. The LTE is then smaller than tol, inducing an increase in step
size, and the oscillations therefore escalate with time.

Because the magnitude of the solution in this example is initially 100, com-
pared with 1 in previous examples, these tolerances are, relatively speaking,
100 times smaller than previously. Equivalent tolerances in this example would
need to be 100 times larger than those we have used, but these would have
led to even more severe oscillations in the time step. With tol = 10−2 the level
of GE is roughly 0.1, which corresponds to a relative error of only 0.1%—so,
meeting the requirements of absolute stability leads to perhaps smaller GEs
than are strictly necessary for most applications.

The moral of this example is that methods with step size control can-
not overcome the requirements of absolute stability, and these requirements
may force smaller step sizes—and hence more computational effort and higher
accuracy—than the choice of tol would suggest.

11.2 One-Step Linear Multistep Methods

The general procedure for selecting time steps for LMMs is essentially the same
as that for TS methods described in the previous section. The main difference
is that repeated differentiation of the differential equation cannot be used to
estimate the LTE, as this would negate the benefits of using LMMs. Hence,
a new technique has to be devised for estimating higher derivatives x′′(tn),
x′′′(tn), etc. of the exact solution.

The study of k-step LMMs with k > 1 becomes quite involved, so we will
restrict ourselves to the one-step case.

Example 11.4

Devise a strategy for selecting the step size in Euler’s method (TS(1)) that
does not require differentiation of the ODE. Illustrate by applying the method
to the IVP (11.9) used in Example 11.2.

The underlying method is the same as that in Example 11.2, namely

xn+1 = xn + hnx′n, tn+1 = tn + hn,
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for which the LTE at the end of the current step is

Tn+1 = 1
2!h

2
nx′′(tn) +O(h2

n).

The term x′′(tn+1) is approximated using the Taylor expansion of x′(tn+1)
about the point tn:

x′(tn+1) = x′(tn)− hnx′′(tn) +O(h2
n),

which can be rearranged to give

x′′(tn) =
x′(tn+1)− x′(tn)

hn
+O(hn).

This can be estimated in terms of numerically computed quantities by

x′′(tn+1) ≈
x′n+1 − x′n

hn
.

Hence, Tn+1 is approximated by

T̂n+1 = 1
2hn(x′n+1 − x′n), (11.16)

and this is used in (11.12)) to update the step size.6 We choose a small initial
step size h0 = 0.1tol and allow the adaptive mechanism to increase it automat-
ically during subsequent steps.

The results are shown in Figure 11.4 for tolerances tol = 10−2 and 10−4.
It is not surprising that these show a strong resemblance to those for TS(1) in
Figure 11.1.

Example 11.5

Develop an algorithm based on the trapezoidal rule with automatic step size
selection and apply the result to the IVP of Example 11.2.

When h varies with n, the trapezoidal rule becomes

xn+1 − xn = 1
2hn(fn+1 + fn) (11.17)

and the LTE at t = tn is given by (see Example 4.9)

Tn+1 = − 1
12h3

nx′′′(tn) +O(h4
n). (11.18)

The step-size-changing formula, (11.4) with p = 2, requires an estimate, T̂n+1,
of Tn+1. This will require us to estimate x′′′(tn).

6Notice that the values of x′n and x′n+1 are already available, since they are re-

quired to apply Euler’s method. The cost of calculating bTn+1 is therefore negligible.
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Fig. 11.4 Numerical results for Example 11.4 using Euler’s method. Shown
are the variation of GE (left) and time step hn (right) versus time tn with
tolerances tol = 10−2, 10−4

This is done by using the Taylor expansions (see Appendix B)

x′(tn+1) = x′(tn) + hnx′′(tn) + 1
2h2

nx′′′(tn) +O(h3
n),

x′(tn−1) = x′(tn)− hn−1x
′′(tn) + 1

2h2
n−1x

′′′(tn) +O(h3
n−1),

which make use of tn+1 = tn + hn and tn−1 = tn − hn−1. When they are
rearranged as

x′(tn+1)− x′(tn)
hn

= x′′(tn) + 1
2hnx′′′(tn) +O(h2

n),

x′(tn)− x′(tn−1)
hn−1

= x′′(tn)− 1
2hn−1x

′′′(tn) +O(h2
n−1),

x′′(tn) may be eliminated by subtracting the second of these equations from
the first. The resulting expression, when solved for x′′′(tn), leads to

x′′′(tn) =
2

hn + hn−1

(
x′(tn+1)− x′(tn)

hn
− x′(tn)− x′(tn−1)

hn−1

)
+O(h),

where we have used h to denote the larger of hn and hn−1 in the remainder
term. Thus, x′′′(tn) can be approximated by

x′′′(tn) ≈ 2
hn + hn−1

(
x′n+1 − x′n

hn
−

x′n − x′n−1

hn−1

)
,

since it is written in terms of previously computed quantities x′n−1, x′n, and
x′n+1. By combining these approximations we find that the step size can be
updated via

hnew = hn

∣∣∣∣∣ tol

T̂n+1

∣∣∣∣∣
1/3

, (11.19)



156 11. Adaptive Step Size Selection

where (see equation (11.18))

T̂n+1 = −1
6

h3
n

hn + hn−1

(
x′n+1 − x′n

hn
−

x′n − x′n−1

hn−1

)
. (11.20)

The integration process is initiated using two steps with very small time steps
(h0 = h1 = tol, say) and formula (11.19) is then used to predict a suitable step
size for subsequent time levels. We see in the right of Figure 11.5 that h2 � h1

and the time steps immediately settle down to an appropriate level. Comparing
this figure with Figure 11.2 for TS(2) we see that the step sizes chosen for the
two methods are very similar.

For a second-order method the GE is expected to be proportional to tol2/3;
this is confirmed in the left part of Figure 11.5 where the scaled global errors
GE/tol2/3 are approximately equal in the two cases.
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Fig. 11.5 The numerical results for Example 11.5 using the trapezoidal rule.
Shown are the scaled GE (that is, GE/tol2/3) (left) and step sizes hn (right) ver-
sus t for tolerances tol = 10−2 and 10−5 (dashed curve). Asterisks (∗) indicate
rejected steps

11.3 Runge–Kutta Methods

We recall (Definition 9.3) that the LTE of an RK method is defined to be the
difference between the exact and the numerical solution of the IVP at time
t = tn+1 under the localizing assumption that xn = x(tn); that is, the two
quantities were equal at the beginning of the step.

The idea here is to use two (related) RK methods, one of order p and another
of order p+1, to approximate the LTE. Suppose that these two methods produce
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solutions x
〈p〉
n+1 and x

〈p+1〉
n+1 . Then the difference x

〈p+1〉
n+1 − x

〈p〉
n+1 will provide an

estimate of the error in the lower order method. Generally, such an approach
would be grossly inefficient, since it would involve computing two sets of k-
values. This duplication can be avoided by choosing the free parameters in our
methods so that the k values for the lower order method are a subset of those
of the higher order method (see Exercise 9.13). In this way we get two methods
almost for the price of one, and the LTE estimate can be obtained with little
additional computation.

Example 11.6 (RK(1,2))

Use Euler’s method together with the second-order improved Euler method
with Butcher tableau

0
1 1

1
2

1
2

to illustrate the construction of a method with adaptive step size control. Use
the resulting method to approximate the solution of the IVP of Example 11.2.

Since k1 = f(tn, xn), we observe that xn+1 = xn + hnk1 is simply the
one-stage, first-order method RK(1) (Euler’s method). Suppose we denote the
result of this calculation by x〈1〉; that is,

x
〈1〉
n+1 = xn + hnk1. (11.21)

Also, if x
〈2〉
n+1 is the result of using the improved Euler method (see Section 9.4),

then
x
〈2〉
n+1 = xn + 1

2hn

(
k1 + k2

)
, (11.22)

where k2 = f
(
tn +hn, xn +hnk1

)
. The LTE Tn+1 in Euler’s method at t = tn+1

is estimated by the difference

T̂n+1 = x
〈2〉
n+1 − x

〈1〉
n+1,

so that the updating formula (11.4) gives

hnew = hn

∣∣∣∣∣ tol

T̂n+1

∣∣∣∣∣
1/2

, T̂n+1 = 1
2hn(k2 − k1),

and we set xn+1 = x
〈1〉
n+1. When this method is applied to the IVP (11.9) with

h0 = tol, the scaled GE and the time steps are shown in Figure 11.6 as functions
of time for tolerances tol = 10−2 and 10−4. These show a strong similarity to
the results shown in Figures 11.1 and 11.4 for our other first-order methods.
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Fig. 11.6 Numerical results for Example 11.2 using RK(1,2). The variation
of scaled GE (that is, GE/tol1/2) (left) and time step hn (right) versus time
tn with tolerances tol = 10−2 (solid) and 10−4 (dashed). Asterisks (∗) indicate
rejected steps

Example 11.7 (RK(2,3))

Use the third-order method with Butcher tableau

0 0
1 1 0
1
2

1
4

1
4 0

1
6

1
6

2
3

to illustrate the construction of a method with adaptive step size control. Use
the resulting method to approximate the solution of the IVP of Example 11.2.

When xn+1 is computed using only the first two rows of this tableau

x
〈2〉
n+1 = xn + 1

2hn

(
k1 + k2

)
we find that this method is the second order improved Euler method (see the
previous example). On the other hand,

x
〈3〉
n+1 = xn + 1

6hn

(
k1 + k2 + 4k3

)
gives a method which is third-order accurate (see Exercise 11.14). The difference
x
〈3〉
n+1 − x

〈2〉
n+1 leads to the estimate

T̂n+1 = 1
3hn

(
k1 + k2 − 2k3

)
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Fig. 11.7 Numerical results for Example 11.2 using RK(2,3). The variation
of scaled GE (that is, GE/tol2/3) (left) and time step hn (right) versus time
tn with tolerances tol = 10−2 (solid) and 10−5 (dashed). Asterisks (∗) indicate
rejected steps

for the LTE. Then, with p = 2 in (11.4), the update is given by

hnew = hn

∣∣∣∣∣ tol

T̂n+1

∣∣∣∣∣
1/3

.

In our experiments we have used an initial step size h0 = tol.
When applied to the the IVP of Example 11.2, the results are shown in

Figure 11.7. The correlation between the scaled GE with the two tolerances is
not as pronounced as with the other methods in this chapter (the correlation
improves as tol is reduced).

11.4 Postscript

A summary of the results obtained with the methods described in this chapter
is given in Table 11.2. The main points to observe are that:

(a) methods of the same order have very similar performance;

(b) second-order methods are much more efficient than first-order methods—
they deliver greater accuracy with fewer steps.

These conclusions apply only to nonstiff problems. On stiff systems the step
size will be restricted by absolute stability and, in these cases, implicit methods
would outperform explicit methods independently of their orders. For example,
when the IVP of Example 11.3 is solved by the backward Euler method (see
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tol = 10−2 tol = 10−4

No. steps Max. |GE| No. steps Max. |GE|
TS(1) 23(10) 0.081 209(8) 0.0084
Euler 25(7) 0.083 213(6) 0.0084
Backward Euler 24(5) 0.081 213(7) 0.0084
RK(1,2) 27(8) 0.079 216(9) 0.0083

tol = 10−2 tol = 10−5

TS(2) 12(7) 0.023 102(13) 0.00018
trapezoidal 13(2) 0.012 86(11) 0.00014
RK(2,3) 15(4) 0.027 98(11) 0.00015
RK(2,3)(Extrapolated) 14(4) 0.010 98(11) 0.00005

Table 11.2 Summary of numerical results for the methods described in this
chapter showing the number of steps to integrate over the interval (0, 4), the
number of rejected steps in parentheses, and the maximum |GE| taken over the
interval

Exercise 11.8) rather than TS(1), we obtain the results shown in Figure 11.8.
On comparing Figures 11.3 and 11.8 we see that for the more relaxed tolerance
of 10−2 the implicit method is allowed to use time steps that grow smoothly
with t because the error control strategy is not detecting any instability.

Rejected time steps impose an additional computational burden; in order
to reduce their occurrence, the main formula (11.4) for updating the step size
is often altered by including a “safety factor” of 0.9 on the right. The step size
used is therefore just 90% of the theoretically predicted value and will lead
to roughly 10% more steps being required—thus, this adjustment need only
be made if the number of rejected steps (which should be monitored as the
integration proceeds) approaches 10% of the number of steps used to date.

In RK methods the choice of step size is based on the estimate of the LTE
of the lower order method (x〈p〉). However, the solution x〈p+1〉 would normally
be expected to give a more accurate approximation. It is common, therefore, to
use xn+1 = x

〈p+1〉
n+1 when a step is accepted—the RK process is then said to be in

local extrapolation mode. The results for RK(2,3) operated in this way are shown
in the final row of Table 11.2 and, despite the lack of theoretical justification,
we see superior results to the basic RK(2,3) method. The codes for solving
IVPs presented in Matlab, for instance, use local extrapolation. Information
on these may be found in the book by Shampine et al. [63]. Moler [53] gives
a detailed description of the implementation of a simplified version of a (2,3)
Runge–Kutta pair devised by Bogacki and Shampine [4] that is the basis of the
Matlab function ode23.
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Fig. 11.8 Numerical results for Example 11.3 using the backward Euler
method. Shown are the variation of GE (left), the scaled GE (that is, GE/tol1/2)
(middle), and time step hn (right) versus time tn. The tolerances used are
tol = 10−2, 10−4. These should be compared with the corresponding plots for
TS(1) shown in Figure 11.3

EXERCISES

11.1.? Show that the conclusion from Example 11.1 is true regardless of the
accuracy requested. That is, if h0 is chosen so that |x(t1)−x1| = tol,
then |x(t2)− x2| = tol is unachievable for any choice of h1 > 0.

11.2.? Repeat Example 11.1 for the backward Euler method

xn+1 = xn + 2hntn+1, tn+1 = tn + hn.

(Note: in this case we require |x(tn)− xn| = 0.01 for each n.)

11.3.? Show that the TS(1) method described in Example 11.2 applied to
the IVP x′(t) = λx(t), x(0) = 1, leads to

xn+1 = (1 + hnλ)xn, hnew =
∣∣∣∣ 2 tol

λ2xn

∣∣∣∣1/2

, x0 = 1.

[This exercise is explored further in Exercise 13.12.]

11.4.? Prove for the TS(1) method described in Example 11.2 that|xn+1| <
|xn| (the analogue of absolute stability in this case) for tn > 1

2 if

hn <
2

2tn − 1
.

This implies that the step size must tend to zero as t → ∞ despite
the fact that the solution tends to zero. The final steps in the exper-
iments reported in Figure 11.1 (right) were rejected so as to avoid
hn exceeding this value. (This is a situation where using an implicit
LMM would be advantageous.)
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11.5.?? Use a similar argument to that in the previous exercise to prove
that |xn+1| < |xn| for the TS(2) method described in Example 11.2
if

hn <
2(2tn − 1)

(2tn − 1)2 − 2

when tn > 1
2 +

√
2
3 . Compare the limit imposed on hn by this in-

equality when tn ≈ 3 with the two final rejected steps shown in
Figure 11.2 for tol = 10−2.

11.6.? Show that
x′′′(t) = (1− 2t)

[
(1− 2t)2 − 6

]
x(t)

for the IVP (11.9). Use this in conjunction with Equation (11.7) for
p = 2 to explain the local maxima in the plot of hn versus t in
Figure 11.2 for t ≤ 2.

11.7.?? Devise a step-sizing algorithm for TS(3) applied to the IVP (11.9).

11.8.? Explain why the step-size-changing formula for the backward Euler
method is identical to that for Euler’s method described in Exam-
ple 11.4.

11.9.?? Show that the negative of the expression given by (11.16) provides
an estimate for the LTE of the backward Euler method. Show that
this estimate may also be derived via Milne’s device (8.11) for the
predictor-corrector pair described in Example 8.2.

11.10.?? Calculate x1, t1, and h1 when the IVP (11.9) is solved with h0 = tol,
tol = 10−2, and (a) TS(1), (b) TS(2) and (c) Euler’s method (as in
Example 11.4).

11.11.?? Calculate (t1, x1) and (t2, x2) when the IVP (11.9) is solved using
the trapezoidal rule with h0 = h1 = tol, tol = 10−2 (see Exam-
ple 11.5).

11.12.?? The coefficients of LMMs with step number k > 1 have to be
adjusted when the step sizes used are not the same for every step.
There is more than one way to do this, but for the AB(2) method
(Section 4.1.2) a popular choice is

xn+1 = xn + 1
2hn

[(
2 +

hn

hn−1

)
x′n −

hn

hn−1
x′n−1

]
. (11.23)

The LTE of this method at t = tn is defined by

Lhx(tn) = x(tn+1)−x(tn)− 1
2hn

[(
2 +

hn

hn−1

)
x′(tn)− hn

hn−1
x′(tn−1)

]
.

(11.24)
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Show, by Taylor expansion, that

Lhx(tn) = 1
12 (2hn + 3hn−1)h2

nx′′′(tn) +O(h4),

where h = max{hn−1, hn}.

11.13.??? Suppose that the Adams–Bashforth method AB(2) and the trape-
zoidal rule are to be used in predictor-corrector mode with variable
step sizes. Let x

[0]
n+1 and xn+1 denote, respectively, the values com-

puted at t = tn+1 by Equations (11.23) and (11.17). By following a
process similar to that described in Exercise 8.18 for constant step
sizes and using the expression for the LTE of the AB(2) method given
in the previous exercise, show that the generalization of Milne’s de-
vice (8.11) to this situation gives the estimate

T̂n+1 = − 1
3

hn

hn + hn−1

(
xn+1 − x

[0]
n+1

)
for the LTE Tn+1. Verify that this agrees with the estimate (11.20)
derived earlier in this chapter7. Verify that the result agrees with
that in Exercise 8.12 when hn−1 = hn = h.

11.14.? Show, by using the results of Table 9.6, or otherwise, that the RK
method defined by the tableau in Example 11.7 is consistent of or-
der 3.

11.15.??? Show that the modified Euler method (Table 9.5 with θ = 1) uses
two of the same k-values as Kutta’s third-order method (Table 9.7).

Write down an adaptive time-step process based on this pair of meth-
ods and verify, when it is applied to the IVP (11.9) with h0 = tol

and tol = 0.01, that x2 = 1.252 and t2 = 0.321.

7Writing the estimated LTE for the trapezoidal rule in terms of the difference
between predicted and corrected values is more common than using the form (11.20).



12
Long-Term Dynamics

There are many applications where one is concerned with the long-term be-
haviour of nonlinear ODEs. It is therefore of great interest to know whether
this behaviour is accurately captured when they are solved by numerical meth-
ods. We will restrict attention to autonomous systems of the form1

x′(t) = f(x(t)) (12.1)

in which x ∈ Rm and the function f depends only on x and not explicitly on t.
Equations of this type occur sufficiently often to make their study useful and
their analysis is much easier than for their non-autonomous counterparts where
f depends also on t. One immediate advantage is that we can work in the phase
plane. For example, if x = [x, y]T ∈ R2, we may investigate the evolution of the
solution as a curve (x(t), y(t)) parameterized by t. See, for example, Figure 1.3
(right) for describing solutions of the Lotka–Volterra equations.

We will first discuss the behaviour of solutions of the differential equations—
the continuous case. This will be followed by an application of similar principles
to numerical methods applied to the differential equations—the discrete case.
The aim is to deduce qualitative information regarding solutions—building up
a picture of the behaviour of solutions without needing to find any general
solutions (which is rarely possible). The approach is to look for constant so-
lutions and then to investigate, by linearization, how nearby solutions behave.

1Of course, as described in Section 1.1, any non-autonomous ODE may be trans-
formed into autonomous form. However, this chapter focuses on autonomous ODEs
with fixed points, which rules out such a transformation.
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Our treatment will necessarily be brief; for further details we recommend the
books by Braun [5, Chapter 4], Stuart and Humphries [65] and Verhulst [68].

12.1 The Continuous Case

Suppose that x(t) = x∗, where x∗ is a constant, is a solution of (12.1). Clearly
we must have f(x∗) = 0, and this motivates a definition.

Definition 12.1 (Fixed Point)

If x∗ ∈ Rm satisfies f(x∗) = 0 then x∗ is called a fixed point2 of the system
(12.1).

Suppose that a solution becomes close to a fixed point. Will this solution
be attracted towards it or be repelled away from it? The following definition
allows us to phrase this mathematically.

Definition 12.2 (Linear Stability)

A fixed point x∗ of (12.1) is linearly stable (or locally attracting) if there exists
a neighbourhood3 around x∗ such that any solution x(t) entering this neigh-
bourhood satisfies x(t) → x∗ as t →∞.

To investigate linear stability we write a solution of the ODE system in the
form

x(t) = x∗ + εu(t), (12.2)

where ε is a “small” real number, and ask whether u(t) grows or decays. We
do this by substituting (12.2) into (12.1) to obtain

εu′(t) = f(x∗ + εu(t)). (12.3)

Using the Taylor expansion of a function of several variables (see Appendix C)

f(x∗ + εu(t)) = f(x∗) + ε
∂f

∂x
(x∗)u(t) +O(ε2)

2Also known as an equilibrium point, critical point, rest state, or steady state.
3The phrase “neighbourhood around x∗” means the set of points z within a sphere

of radius δ centred at x∗, for any positive value of δ. Thus, neighbourhoods can be
arbitrarily small but must contain x∗ strictly in their interior.
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and neglecting the O(ε2) term, (12.3) becomes, to first order,

u′(t) = Au(t), (12.4)

where A is the m×m matrix

A =
∂f

∂x
(x∗), (12.5)

known as the Jacobian of the system (12.1) at x∗. In two dimensions, where
x = [x, y]T ∈ R2 and f = [f, g]T, the matrix A has the 2× 2 form

A =
[
fx fy

gx gy

]
.

The system (12.4) is known as the linearization of (12.1) at x∗, the idea being
that in the neighbourhood of x∗ the behaviour of solutions of (12.1) can be
deduced by studying solutions of the linear system (12.4). From (12.2) we see
that u(t) shows us how a small perturbation from x∗ evolves over time. A
sufficient condition that the solution x = x∗ be linearly stable is that u(t) → 0
in (12.4) as t →∞. The next result follows from Theorem 7.3.

Theorem 12.3 (Linear Stability)

A fixed point x∗ of the system x′(t) = f(x(t)) is linearly stable if <(λA) < 0

for every eigenvalue λA of the Jacobian A =
∂f

∂x
(x∗).

Example 12.4

Determine the fixed points of the logistic equation x′(t) = 2x(t)
(
1− x(t)

)
and

investigate whether they are linearly stable (see Example 2.2).

In this example we are dealing with scalar quantities (m = 1) with f(x) =
2x(1− x). The fixed points are given by f(x) = 0, and so x∗1 = 0 and x∗2 = 1.

The Jacobian is also scalar. It is given by the 1× 1 matrix

∂f

∂x
(x) = 2− 4x,

so that
∂f

∂x
(0) = 2 > 0 and

∂f

∂x
(1) = −2 < 0.

Hence, the fixed point x∗1 = 0 is locally repelling—solutions starting close to
x = 0 will move further away—while x∗2 = 1 will attract nearby solutions. This
is illustrated in Figure 2.3, where a solution starting from x(0) = 0.2 moves
away from x = 0 and is attracted to x = 1 as t →∞.
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Example 12.5

Investigate the nature of the fixed points of the Lotka–Volterra system (see
Example 1.34)

x′(t) = 0.05x(t)
(
1− 0.01y(t)

)
,

y′(t) = 0.1y(t)
(
0.005x(t)− 2

)
.

(12.6)

Now

f(x) =
[
f(x, y)
g(x, y)

]
, f(x, y) = 0.05x(1− 0.01y), g(x, y) = 0.1y(0.005x− 2).

The fixed points are solutions of the simultaneous nonlinear algebraic equations
f(x, y) = 0 and g(x, y) = 0. These lead to the two fixed points

x∗1 =
[
0
0

]
and x∗2 =

[
400
100

]
.

The Jacobian of the system is found to be

∂f

∂x
(x) =

[
0.05(1− 0.01y) −0.0005x

0.0005y 0.1(0.005x− 2)

]
.

At the first fixed point x∗1 the Jacobian is

∂f

∂x
(x∗1) =

[
0.05 0
0 −0.2

]
,

whose eigenvalues are λ1 = 0.05 and λ2 = −0.2. One of these is positive, so
the origin is not an attracting fixed point. At the second fixed point x∗2 the
Jacobian is

∂f

∂x
(x∗2) =

[
0 −0.2

0.05 0

]
,

whose eigenvalues are λ1 = ±0.1i. The real parts of both eigenvalues are zero,
so it is not possible to deduce the precise behaviour of the original system
without taking the nonlinear terms into account. This would take us beyond
the scope of this book (see Braun [5, Section 4.10] or Verhulst [68] for a detailed
study); we observe from Figure 1.3 that the motion is periodic (indicated by
the closed curves) around (400, 100), and this is in keeping with the findings
of Section 7.3, where imaginary eigenvalues were seen to be associated with
oscillatory behaviour.

4We have used dependent variables x, y here so that u, v can be used for the
linearized system.
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12.2 The Discrete Case

In this section we study the dynamical behaviour of the discrete map

xn+1 = F (xn), (12.7)

where xn ∈ Rm and F (x) is assumed to be a continuously differentiable func-
tion of the m-dimensional vector x. In the context of numerical methods for
solving systems of ODEs such as (12.1), F is parameterized by the step size h:
Euler’s method, for example, leads to

F (x) = x+ hf(x). (12.8)

Definition 12.6 (Fixed Point)

If x∗ ∈ Rm satisfies x∗ = F (x∗) then x∗ is called a fixed point of the discrete
map (12.7).

Definition 12.7 (Linear Stability)

A fixed point x∗ of (12.7) is linearly stable (or locally attracting) if there exists
a neighbourhood around x∗ such that any solution xn entering this neighbour-
hood satisfies xn → x∗ as n →∞.

Mimicking the continuous case, we can investigate linear stability by writing

xn = x∗ + εun.

Substituting this into (12.7) and using the Taylor expansion

F (x∗ + εun) = F (x∗) + ε
∂F

∂x
un +O(ε2)

we obtain, on neglecting terms of order O(ε2), the linearization of (12.7) at x∗:

un+1 = Bun, (12.9)

where the m×m matrix

B =
∂F

∂x
(x∗)

is the Jacobian of the function F (x) at x∗. The following is an analogue of
Theorem 12.3.
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Theorem 12.8 (Linear Stability)

A fixed point x∗ of the system xn+1 = F (xn) is linearly stable if |λB | < 1 for

every eigenvalue λB of the Jacobian B =
∂F

∂x
(x∗).

Proof

See, for example, Kelley [41, Theorem 1.3.2 and Chapter 4].

Some insight into Theorem 12.8 can be gleaned (using an argument similar to
that used in Section 8.2) by observing that if λB is an eigenvalue of B with
corresponding eigenvector v then, choosing u0 = v, the solution of (12.9) is
un = λn

Bv. It follows that this un cannot tend to zero as n →∞ when |λB | ≥ 1.
The next theorem gives an indication of the relationship between the fixed

points of the ODE and those that result when the ODE is solved by Euler’s
method. Its conclusions remain true for all LMMs, but we will not prove this.

Theorem 12.9

Suppose that Euler’s method is applied to the ODE system (12.1) leading to
the discrete map (12.7) with F (x) defined in (12.8). Then x∗ is a fixed point
of (12.7) if, and only if, it is a fixed point of (12.1).

Suppose that x∗ is a linearly stable fixed point of (12.1) with <(λA) < 0

for every eigenvalue λA of the Jacobian A =
∂f

∂x
(x∗). Then it is also a linearly

stable fixed point of (12.7) provided that hλA ∈ R, the region of absolute
stability of Euler’s method (Figure 6.6), for every eigenvalue λA of A.

Proof

The proof of the first part is left as Exercise 12.2. For the second part, F (x) is
defined by (12.8) so its Jacobian is given by

∂F

∂x
(x) = I + h

∂f

∂x
(x),

where I is the m × m identity matrix. Therefore, the matrix B in (12.9) is
related to the matrix A in (12.4) through

B = I + hA,

where I is the m×m identity matrix, and it follows that the eigenvalues λA of
A and λB of B are related by (see Exercise 12.3)

λB = 1 + hλA.
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We are assuming that x∗ is a linearly stable fixed point of (12.1) and the
eigenvalues of A satisfy <(λA) < 0. It follows from Theorem 12.8 that x∗ will
also be a linearly stable fixed point of Euler’s method provided |1 + hλA| < 1,
which is the condition derived in Example 6.7 for ĥ = hλA to lie in the region
of absolute stability.

We will show in Example 12.11 that the first part of the previous theorem
is not true for the modified Euler method. In fact it does not hold for general
explicit RK methods, as they may admit fixed points that are not fixed points
of the ODE system.

Example 12.10

Investigate the linear stability of the fixed points of the map obtained when
Euler’s method is applied to the ODE x′(t) = 2x(t)

(
1−x(t)

)
that was analysed

in Example 12.4.

The map is given by

xn+1 = F (xn), where F (x) = x + hf(x), (12.10)

and f(x) = 2x(1 − x). It is readily shown that the fixed points are x∗ = 0, 1.
The Jacobian is the 1× 1 matrix

∂F

∂x
(x) = 1 + 2h(1− 2x)

and so
∂F

∂x
(0) = 1 + 2h and

∂F

∂x
(1) = 1− 2h.

Since ∂F
∂x (0) > 1 for all h > 0, the fixed point x∗ = 0 is not linearly stable and

all solutions close to xn = 0 are repelled.
At the other fixed point x∗ = 1 we have∣∣∣∣∂F

∂x
(1)

∣∣∣∣ = |1− 2h| < 1

if, and only if, 0 < h < 1, in which case it is linearly stable.
In this example λA = fx(1) = −2 and the interval of absolute stability of

Euler’s method is hλA ∈ (−2, 0). This translates to 0 < h < 1, confirming the
relationship between linear stability of true fixed points and absolute stability
of the numerical method identified in Theorem 12.9.

The results of an experiment to test these conclusions are shown in Fig-
ure 12.1. Here, we carried out the iteration (12.10) for 500 steps and then
plotted the points (h, xn) for the next 20 steps (where, if it possesses one, the
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Fig. 12.1 Bifurcation diagram for Eu-
ler’s method applied to the logistic
equation of Example 12.4. The points
(h, xn), 500 < n ≤ 520 are plotted for
each h.

sequence would be expected to have reached its stable steady state to within
graphical accuracy). This process was repeated for many values of h between
0 and 2 and several initial values were used for each value of h.

We see in Figure 12.1 that the sequence xn seems to settle down to the
fixed point x∗ = 1 for 0 < h < 1. The “fixed point” branches to the right of
the value h = 1, x = 1—this is a “period 2” solution, where alternate values of
xn take the values a+ b and a− b (see Exercise 12.4). This branching is known
as a bifurcation (literally to divide into two branches).

The period 2 solution can be found analytically by studying the fixed points
of the iterated map xn+1 = F(xn), where F(x) = F (F (x)), and its linear stabil-
ity analysed by calculating the Jacobian ∂F/∂x at the fixed points. In this way,
it can be shown that the period 2 solution loses stability at h = 1

2

√
6 ≈ 1.22,

at which a further period-doubling occurs leading to a period 4 solution. These
period-doublings continue along with other high-period solutions as h increases.
For certain values of h, the solution becomes “chaotic”—defined loosely as a
sequence that does not repeat itself as n →∞.

The bifurcation to a period 2 solution occurs when h increases so that hλA

leaves the region of absolute stability. This behaviour contrasts with that when
absolute stability is lost in linear systems, where |xn| → ∞ as n →∞ (see, for
example, Figure 6.2).

For detailed studies of similar quadratic maps see Thompson and Stew-
art [66, Section 9.2].

Our next example contains features common to many RK methods but not
present in the previous example.

Example 12.11

Determine the fixed points of the modified Euler method described in Exam-
ple 9.1 when applied to the scalar equation x′(t) = 2x(t)

(
1−x(t)

)
and examine

their linear stability.
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The method is defined by the recurrence

xn+1 = xn + hf
(
xn + 1

2hf(xn)
)
,

where f(x) = 2x(1− x). To find the fixed points we set xn+1 = xn = x so that
they satisfy the equation5

f
(
x + 1

2hf(x)
)

= 0.

Since f(y) = 0 has the two roots y = 0, 1, the fixed points satisfy

x + 1
2hf(x) = 0 or 1. (12.11)

These equations then lead to the four fixed points (see Exercise 12.5)

x∗1 = 0, x∗2 = 1, x∗3 = 1/h, and x∗4 = 1 + 1/h. (12.12)

With F (x) = x + hf(x + 1
2hf(x)) the Jacobian is given by

F ′(x) = 1 + hf ′(x + 1
2hf(x))

(
1 + 1

2hf ′(x)
)

(12.13)

with which it may be verified that

1. x∗1 = 0 is not linearly stable for any h > 0;

2. x∗2 = 1 is linearly stable for 0 < h < 1;

3. x∗3 = 1/h is linearly stable for 1 < h < 1
2 (1 +

√
5) ≈ 1.62;

4. x∗4 = 1 + 1/h is linearly stable for 1 < h < 1
2 (−1 +

√
5) ≈ 0.62.

These results are confirmed by the bifurcation diagram shown in Figure 12.2
(left). There is some cause for some concern, since the numerical method has
linearly stable fixed points (x∗3 and x∗4) that are not fixed points of the ODE—
they are so-called spurious fixed points—and so numerical experiments could
lead to false conclusions being drawn regarding the dynamical properties of the
system being simulated. However, since these spurious fixed points depend on
h they may be detected by repeating the simulation with a different value of
h—any appreciable change to the fixed point would signal that it is spurious.
The results of such an experiment are shown in Figure 12.2 (right) where the
solution reaches the fixed point x∗3 = 1/h = 0.8 when h = 1.25, but when h is
reduced to 0.625 it approaches the correct fixed point x∗1 = 1.

When the fixed points x∗2 and x∗1 lose stability as h is increased there ap-
pears to be a sequence of period-doubling bifurcations similar to those observed
in the previous example—the dynamics become too complicated for us to sum-
marize here. The occurrence of spurious fixed points is not restricted to the
modified Euler method—it is common to all explicit RK methods. A more de-
tailed investigation of the dynamical behaviour of RK methods is presented in
Griffiths et al. [25].

5When f(x) is a polynomial of degree d in x, then f(x + 1
2
hf(x)) will be a poly-

nomial of degree d2.
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Fig. 12.2 A bifurcation diagram for the modified Euler method applied to
the logistic equation of Example 12.4 is shown on the left. On the right are
individual solutions from the method with h = 1.25 (×) and h = 0.625 (◦)

EXERCISES

12.1.?? Show that the system

x′(t) = y(t)− y2(t),

y′(t) = x(t)− x2(t)
(12.14)

has four fixed points and investigate their linear stability. (A phase
portrait of solutions to this system is shown in Figure 13.4 (right).)

12.2.? Prove the first part of Theorem 12.9. That is, prove that f(x∗) = 0
implies that F (x∗) = 0 and vice versa when f and F are related via
(12.8).

12.3.? If m × m matrices A and B are related via B = I + hA, prove
that they share the same eigenvectors and that the corresponding
eigenvalues are related via λB = 1 + hλA.

12.4.?? Verify, by substitution, that the difference equation (12.10) has a
solution of the form xn = a + (−1)nb, where

a =
1 + h

2h
and b =

√
h2 − 1
2h

,

which is real for h > 1.

12.5.?? Verify the expressions (12.12) for the fixed points and (12.13) for
the Jacobian in Example 12.11.
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12.6.?? Repeat the calculations of fixed points and their linear stability
in Example 12.11 for the function f(x) = αx(1 − x), where α is a
positive constant. Check your results with those given in the example
when α = 2.

12.7.??? Consider the AB(2) method (4.10) applied to the scalar equation
x′(t) = f(x(t)). Show that this may be written in the form of the map
(12.7) by defining yn = xn+1, zn = xn (which implies zn+1 = yn)

xn =
[
yn

zn

]
, and F (xn) =

[
yn + 1

2h
(
3f(yn)− f(zn)

)
yn

]
.

In the case f(x) = 2x(1 − x), show that there are two fixed points
x∗ = [0, 0]T and x∗ = [1, 1]T.

Verify that the Jacobian of the map is given by

∂F

∂x
(x) =

[
1 + 3

2hf ′(y) − 1
2hf ′(z)

1 0

]
and, hence, investigate the linear stability of the fixed points. Do
your results agree with the bifurcation diagram shown in Fig-
ure 12.3?

12.8.?? Suppose the separable Hamiltonian problem (see (15.14))

p′(t) = −V ′(q),

q′(t) = T ′(p)

is such that V ′(0) = T ′(0) = 0, V ′′(0) > 0 and T ′′(0) > 0. Show
that the Jacobian at the equilibrium point p = q = 0 has purely
imaginary eigenvalues.
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Fig. 12.3 Bifurcation diagram for the
AB(2) method applied to the logistic
equation of Exercise 12.7
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12.9.??? Consider the application of the trapezoidal rule to the logistic
equation

x′(t) = x(t)
(
X − x(t)

)
,

in which X is a positive constant. The numerical solution is studied
in the xnxn+1 phase plane—that is, we study the set of points having
coordinates (xn, xn+1).

(a) Show that the points (xn, xn+1) lie on a circle passing through
the origin having centre at(

X

2
+

1
h

,
X

2
− 1

h

)
.

(b) Explain why the fixed points of the numerical method should lie
at the intersection of the circle with the line xn+1 = xn.

(c) Calculate the Jacobian dxn+1/dxn of the mapping and deduce
that one fixed point is stable while the other is unstable for all
h > 0.

Show also that the Jacobian evaluated at either fixed point is
positive for hX < 2.

(d) With x0 = 1, verify the values of x1 given in the table below for
hX = 1 (to represent 0 < hX < 2) and for hX = 5 (to represent
hX > 2) with X = 10.

n 0 1 2 3 4 5
hX = 5 1.000 7.690 10.584 9.720 10.114 9.950
hX = 1 1.000 2.349 4.484 6.807 8.523 9.424

Sketch the situation described in parts (a) and (b) for hX = 1
and for hX = 5 with X = 10 and use the data given in the table
to draw a cobweb diagram6 in each case.

Observe that xn approaches the fixed point monotonically when
hX < 2, but not when hX > 2.

6The figure created by joining (0, x0) to (x0, x1) then this point to (x1, x1), which
is joined to (x1, x2), and so forth is known as a cobweb diagram.



13
Modified Equations

13.1 Introduction

Thus far the emphasis in this book has been focused firmly on the solutions of
IVPs and how well these are approximated by a variety of numerical methods.
This attention is now shifted to the numerical method (primarily LMMs) and
we ask whether the numerically computed values might be closer to the solution
of a modified differential equation than they are to the solution of the original
differential equation. At first sight this may appear to introduce an unnecessary
level of complication, but we will see in this chapter (as well as those that follow
on geometric integration) that constructing a new ODE that very accurately
approximates the numerical method can provide important insights about our
computations.

If we suppose that the original IVP has solution x(t) and the numerical
solution is xn at time tn, we then look for a new function y(t), the solution
of a nearby ODE, such that y(tn) is closer than x(tn) to xn at time tn. Since
en = x(tn)−xn ≈ x(tn)−y(tn), properties that may be deduced concerning y(t)
can be translated into properties of xn and the difference between the curves
x(t) and y(t) will give an idea of the global error. The differential equation
satisfied by y(t) is called a modified equation.

The most common way of deriving such an equation is to show that the
method being studied has a higher order of consistency to the modified equation
than it does to the original ODE. This is the approach that we will adopt. We
will also show that modified equations are not unique, each numerical method
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178 13. Modified Equations

has an unlimited number of modified equations of any given order of accuracy—
we generally choose the simplest equation subject to the requirement that y(t)
should be a smooth function.

13.2 One-Step Methods

In this section we shall construct modified equations for Euler’s method and
a number of variants that are more appropriate for different types of ODE
systems.

Example 13.1 (Euler’s Method)

Determine a modified equation corresponding to Euler’s method applied to the
autonomous IVP x′(t) = f(x(t)), x(0) = η.

The numerical method is, in this case, xn+1 = xn+hfn, with x0 = η. Regarding
this as a one-stage RK we recall that, as in Chapter 9, the LTE of the method
may be computed from

Tn+1 = x(tn+1)− xn+1 (13.1)

under the localizing assumption that xn = x(tn) (see Definition 9.3). It was
shown in Section 9.3 that Tn+1 = O(h2).

We now construct a modified equation—or more correctly a modified IVP—
of the form

y′(t) = f(y(t)) + hpg(y(t)), t > t0, (13.2)

with y(t0) = η. The integer p and function g(y) are determined so that the
LTE, calculated from1

T̂n+1 = y(tn+1)− xn+1, (13.3)

is of higher order in h than the standard quantity (13.1) when the localizing
assumption that xn = y(tn) is employed.

We shall require the Taylor expansion

y(t + h) = y(t) + hy′(t) + 1
2h2y′′(t) +O(h3)

= y(t) + h
(
f(y(t)) + hpg(y(t))

)
+ 1

2h2

(
df

dy
(y(t))f(y(t)) + hp dg

dy
(y(t))g(y(t))

)
+O(h3),

1We use a circumflex on the LTE to distinguish it from the standard definition
based on x(t).
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where we have taken the time derivative of the right-hand side of (13.2) using
the chain rule in order to find y′′(t). If we now choose p = 1 and reorganize the
terms, we find

y(t + h) = y(t) + hf(y(t)) + h2
(
g(y(t)) +

1
2

df

dy
(y(t))f(y(t))

)
+O(h3). (13.4)

It follows from the localizing assumption xn = y(tn) that xn+1 = y(tn) +
hf(y(tn)) and so, from (13.3),

T̂n+1 = h2
(
g(y(tn)) +

1
2

df

dy
(y(tn))

)
+O(h3).

Hence, by choosing

g(y(t)) = −1
2

df

dy
(y(t))f(y(t))

we shall have T̂n+1 = O(h3) so, while the method xn+1 = xn + hfn is a first-
order approximation to x′(t) = f(x(t)), it is a second-order approximation
of

y′(t) =
(

1− 1
2
h

df

dy
(y(t))

)
f(y(t)). (13.5)

This is our modified equation: it is the original ODE modified by the addition
of a small O(h) term—the order of the additional term being, generally, the
same as the order of accuracy of the method. We deduce from (13.5) that
|y′(t)| < |f(y(t))| when df/dy > 0. Thus, the rate of change of y(t) (and
consequently the numerical solution xn) will be less than that of the exact
solution x(t) of the original problem—the numerical solution will then have
a tendency to underestimate the magnitude of the true solution under these
circumstances. The opposite conclusion will hold when df/dy < 0.

To obtain more detailed information we suppose that f is a linear function:

f(y) = λy.

The modified equation becomes

y′(t) = µy(t), µ = λ(1− 1
2λh). (13.6)

Defining the GE ên = y(tn)− xn we find, using (13.3) and xn+1 = (1 + λh)xn,
that

ên+1 = (1 + λh)ên + T̂n+1, (13.7)

with ê0 = 0. This is essentially the same as the recurrence (2.15) for the GE for
Euler’s method, so the proof of Theorem 2.4 can be adapted to prove second-
order convergence. That is, ên = O(h2) (see Exercise 13.1).
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Thus, (13.6) is a suitable modified equation—when h is sufficiently small,
xn is closer to y(tn) than it is to x(tn), since

ên = y(tn)− xn = O(h2), while en = x(tn)− xn = O(h).

This is borne out in Figure 13.1, where we show the solution of the original
problem x(t) (solid curve), the solution of the modified equation y(t) (dashed
curve), and the numerical solution xn with h = 0.1 (circles), λ = −5 (left), and
λ = 5 (right).

We easily calculate in this example that x(t) = eλt and y(t) = eµt. When
λ ∈ R it can be shown that µ < λ so long as 1+ 1

2λh > 0 (which will always be
the case if h is sufficiently small). Hence, if λ < 0, y(t) (and therefore also xn)
will decay faster than x(t) (see Figure 13.1, left). Contrariwise, when λ > 0,
y(t) (and xn) will increase more slowly than x(t) (see Figure 13.1, right)—in
both cases one could say that Euler’s method introduces too much damping.
It is possible, as described in Exercise 13.3, to derive a modified equation that
approximates the numerical method to higher orders. The solutions of such a
method of order 3 are shown as dotted curves in Figure 13.1.

By retaining the first two terms in the binomial expansion2 of (1+ 1
2λh)−1,

λ

1 + 1
2λh

= λ(1− 1
2λh) +O(h2),
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Fig. 13.1 The circles show the numerical solutions for Example 13.1 with
h = 0.1, λ = −5 (left), and λ = 5 (right). The solid curve shows the solution
x(t) of the original ODE x′(t) = λx(t), the dashed curve y(t) the solution of
the modified Equation (13.6) and the dotted curve the solution of the modified
equation of order 3 given in Exercise 13.3

2We use p = −1 in (1 + z)p = 1 + pz + 1
2
p(p− 1)z2 + . . . (which is convergent for

|z| < 1) and retain only the first two terms. See, for example, [12, 64].
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we are led to an alternative modified equation

y′(t) = µy(t), µ =
λ

1 + 1
2λh

, (13.8)

with which the numerical method is also consistent of second order. This illus-
trates the non-uniqueness of modified equations. It also allows us to demon-
strate the important principal that one cannot deduce stability properties of a
numerical method by analysing its modified equation(s). Here, when λ < 0, the
solutions to the original modified Equation (13.6) decay to zero for all h > 0,
since µ < 0. For the alternative modified Equation (13.8), µ < 0 only for those
step sizes h for which 1 + 1

2hλ > 0. Thus the two possible modified equations
have quite different behaviours when h is too large. So the concept is only
relevant for sufficiently small h.

Example 13.2

Use modified equations to compare the behaviour of forward and backward
Euler methods for solving the logistic equation x′(t) = 2x(t)

(
1 − x(t)

)
with

initial condition x(0) = 0.1.

With f(y) = 2y(1 − y), the modified equation (13.5) for Euler’s method
becomes

y′(t) =
[
1− hy(1− 2y)

]
y(1− y), (13.9)

while that for the backward Euler method is (see Exercise 13.5)

y′(t) =
[
1 + hy(1− 2y)

]
y(1− y), (13.10)

the initial condition being y(0) = 0.1 in both cases. The right-hand sides of both
these equations are positive for 0 < y < 1 and h < 1, so the corresponding
IVPs have monotonically increasing solutions.

For 0.5 < y < 1 the solution y(t) of (13.9) satisfies y′(t) < y(1− y), so the
solution of the modified equation (and, therefore, the solution of the forward
Euler method) increases more slowly than the exact solution x(t), while, for
0.5 < y < 1, y′(t) > y(1 − y) and the numerical solution grows more quickly.
These properties are reversed for Equation (13.10) and the backward Euler
method. These deductions are confirmed by the numerical results shown in
Figure 13.2 with h = 0.3 and h = 0.15.

In our next example we stay with Euler’s method, but this time it is applied
to a system of ODEs. The steps involved in the construction of a modified
system of equations are similar to those in Example 13.1, except that vector
quantities are involved.
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Fig. 13.2 Numerical solutions of the logistic equation with the forward Euler
method (circles) and backward Euler method (crosses) of Example 13.2 with
h = 0.3 (left) and h = 0.15 (right). Also shown is the exact solution x(t) of the
IVP (solid curve)

Example 13.3

Euler’s method applied to the IVP

u′(t) = −v(t), v′(t) = u(t),

u(0) = 1, v(0) = 0
(13.11)

leads to

un+1 = un − hvn, vn+1 = vn + hun, n = 0, 1, . . . ,

u0 = 1, v0 = 0,
(13.12)

and the numerical solutions with h = 1/2 are displayed on the left of Figure 7.3.
Derive a modified system of equations that will capture the behaviour of the
numerical solution.

We suppose that the modified equation is a system of two ODEs with de-
pendent variables x(t) and y(t). The LTE of the given method is, therefore,

T̂n+1 =
[
x(t + h)− x(t) + hy(t)
y(t + h)− y(t)− hx(t)

]
, t = nh, (13.13)

which, by Taylor expansion, becomes

T̂n+1 = h

[
x′(t) + 1

2hx′′(t) + y(t)
y′(t) + 1

2hy′′(t)− x(t)

]
+O(h3). (13.14)

We now suppose that the modified equations take the form

x′(t) = −y(t) + ha(x, y),

y′(t) = x(t) + hb(x, y),
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where the functions a(x, y) and b(x, y) are to be determined. Differentiating
these with respect to t gives

x′′(t) = −y′(t) +O(h) = −x(t) +O(h),

y′′(t) = x′(t) +O(h) = −y(t) +O(h).

Substitution into (13.14) then leads to

T̂n+1 = h2

[
a(x, y)− 1

2x(t)
b(x, y)− 1

2y(t)

]
+O(h3).

Therefore, T̂n+1 = O(h3) on choosing a(x, y) = 1
2x and b(x, y) = 1

2y. Our
modified system of equations is, therefore,

x′(t) = −y(t) + 1
2hx(t),

y′(t) = x(t) + 1
2hy(t).

(13.15)

They can be written in matrix-vector form as (see also Exercise 13.6)

x′(t) = Âx(t), x(t) =
[
x(t)
y(t)

]
, Â =

[
1
2h −1
1 1

2h

]
. (13.16)

When x(t) and y(t) satisfy these ODEs the LTE (13.13) is of order O(h3) and
so Euler’s method must be convergent to x(t) of order 2. That is, the solutions
of (13.12) satisfy

un = x(tn) +O(h2), vn = y(tn) +O(h2).

In order to use these modified equations to explain the behaviour of numer-
ical solutions observed in Example 7.6 (see Figure 7.3, left), we observe that
the eigenvalues of the matrix A in (13.16) are given by

λ± = 1
2h± i.

These have (small) positive real parts, which means that the solutions in the
phase plane will spiral outwards. This behaviour can be quantified without
having to solve the modified system; it can be deduced (the details are left to
Exercise 13.8) that

x2(t) + y2(t) = eht. (13.17)

The curve described by this equation is a spiral and is shown in Figure 13.3 as
a dashed line that accurately predicts the behaviour of the numerical solution
(shown as dots) when h = 1/3 (such a large step size is used for illustrative
purposes).

The behaviour of Euler’s method in the previous example was clearly in-
appropriate for dealing with an oscillatory problem (characterized by solutions
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Fig. 13.3 Left: the numerical solutions for Example 13.3 for 0 ≤ t ≤ 5. The
dots show the solution of (13.12) with h = 1/3 in the u-v phase plane; the
solid curve is the circular trajectory of the original IVP and the dashed line
the solution of the modified Equation (13.16). In the centre and on the right
are shown the corresponding results for Examples 13.4 and 13.5

forming closed curves in the phase plane). We show in the next two exam-
ples how small modifications of the method lead to a dramatic improvement in
performance.

In the first variation of Euler’s method, the usual “forward Euler” (FE)
method is applied to the first ODE of the system (13.11) while the backward
version (BE) is applied to the second equation.

Example 13.4 (The Symplectic Euler Method)

Derive a modified system of equations that will describe the behaviour of so-
lutions of the method

FE : un+1 = un − hvn,

BE : vn+1 = vn + hun+1,
(13.18)

for the IVP (13.11) from the previous example.

Following the same steps as the previous example it can be shown that,
instead of (13.15), we arrive at

x′(t) = −y(t) + 1
2hx(t)

y′(t) = x(t)− 1
2hy(t)

}
, (13.19)

which differs from (13.15) in that the sign of y(t) on the right-hand side of the
second equation has changed. It is now possible to deduce that the trajectories
in the phase plane lie on one of the family of ellipses

x2(t)− hx(t)y(t) + y2(t) = constant (13.20)

(see Exercise 13.9). In this particular case the initial conditions x(0) = 1,
y(0) = 0 fix the constant term to be 1. This ellipse is shown in Figure 13.3
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(centre) as a dashed curve. The numerically computed points (un, vn) lie, to
within graphical accuracy, exactly on this ellipse. As h → 0 the ellipse collapses
to the circle x2(t) + y2(t) = 1 (shown as a solid curve), which is the trajectory
followed by the exact solution of the original equations (see Example 13.1).
Because the numerical solutions follow closed orbits the method is well suited
to integration of the system over long time intervals. This result would not
be significant if it held only for this linear system of differential equations,
since it can be solved exactly and there is no practical need for a numerical
method. However, the method generalizes quite simply to nonlinear situations,
as described in Exercise 13.11. This method is also discussed in a more general
context in Section 15.3.

The symplectic Euler method (13.18) offers a significant improvement over
the standard Euler method but it is still only a first-order accurate method.
The second variation of Euler’s method leads to a second-order method. In
its basic form it begins by applying the symplectic Euler method with a step
size h/2 and then repeats the process with the order of the ODEs reversed.
This removes the bias present in the symplectic Euler method (FE is always
applied before BE). The use of half step sizes h/2 necessitates the introduction
of quantities such as un− 1

2
and un+ 1

2
(known as “half-integer” values) which

approximate solutions, respectively, at times t = (n− 1
2 )h and (n+ 1

2 )h, midway
between the points t = tn−1, t = tn and t = tn+1 on the temporal grid.

Example 13.5 (The Störmer–Verlet Method)

Derive a modified system of equations that will describe the behaviour of so-
lutions of the method

FE : un+ 1
2

= un − 1
2hvn,

BE : vn+ 1
2

= vn + 1
2hun+ 1

2

FE : vn+1 = vn+ 1
2

+ 1
2hun+ 1

2

}
BE : un+1 = un+ 1

2
− 1

2hvn+1

vn+1 = vn + hun+ 1
2
, (13.21)

for the IVP (13.11) from the previous example.

As indicated, the middle two stages may be combined into one. Further
computational savings can be achieved by also combining the last stage of one
step with the first step of the next stage. Thus, for computational purposes,
the algorithm involves:

1. u 1
2

= u0 − 1
2hv0 and v1 = v0 + hu 1

2
.

2. un+ 1
2

= un− 1
2

+ hvn and vn+1 = vn + hun+ 1
2

for n = 1, 2, . . . .
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3. Should the values of u and v be required at time t = tn+1:
un+1 = un+ 1

2
− 1

2hvn+1.

Thus, v is computed at integer nodes and u at half-integer nodes.
For the purposes of analysis, all half-integer values are eliminated from

(13.18), so the update from un, vn to un+1, vn+1 may be written as[
un+1

vn+1

]
=

[
un

vn

]
+ h

[
−vn

un

]
− 1

2
h2

[
un

vn

]
+

1
4
h3

[
vn

0

]
. (13.22)

Before embarking on the construction of modified equations we check the
LTE of the method. The original ODE system is expressed in matrix-vector
form as

u′(t) = Au(t), A =
[
0 −1
1 0

]
and we observe that A2 = −I, A3 = −A so that

u′′(t) = Au′(t) = A2u(t) = −u(t), u′′′(t) = −u′(t) = −Au(t).

The Taylor expansion

u(t + h) = u(t) + hu′(t) + 1
2h2u′′(t) + 1

3!h
3u′′′(t) +O(h4)

therefore becomes

u(t + h) =
(
I + hA− 1

2h2I − 1
3!h

3A
)
u(t) +O(h4).

Equation (13.22) can be written in matrix-vector form as

un+1 =
(
I + hA− 1

2h2I + 1
4h3

[
0 1
0 0

])
un,

so, under the localizing assumption un = u(tn), we have

u(tn+1)− un+1 = O(h3),

showing that the Störmer–Verlet method is consistent of order 2.
We next seek a matrix B so that the numerical solution is consistent of

order three with the modified system

x′(t) = (A + h2B)x(t). (13.23)

It follows by successive differentiation that

x′′(t) = (A + h2B)x′(t) = (A + h2B)2x(t) +O(h4)

= A2x(t) +O(h2) = −x(t) +O(h2)
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and x′′′(t) = −Ax(t) +O(h2). Using these in the Taylor expansion of x(t + h)
we find

x(t + h) = x(t) + hx′(t) + 1
2h2x′′(t) + 1

3!h
3x′′′(t) +O(h4)

= x(t) + h(A + h2B)x(t)

− 1
2h2 − x(t)− 1

3!h
3Ax(t) +O(h4)

=
[
I + hA− 1

2h2I − h3( 1
3!A + B)

]
x(t) +O(h4).

Now, under the localizing assumption that un = x(tn), we find

x(tn+1)− un+1 = h3
(
− 1

3!A + B − 1
4

[
0 1
0 0

])
x(tn) +O(h4).

The right-hand side will be of fourth order if

B = 1
3!A + 1

4

[
0 1
0 0

]
= 1

12

[
0 −1
2 0

]
.

The Störmer–Verlet method is, therefore, consistent of order three with the
modified system (13.23). It then follows (see Exercise 13.10) that the compo-
nents of x(t) lie on the ellipse

(1 + 1
6h2)x2(t) + (1 + 1

12h2)y2(t) = constant (13.24)

and, from the initial conditions, the constant = 1 + 1
6h2. This is shown as a

dashed curve in Figure 13.3 (right) when h = 1/3 and is virtually indistinguish-
able from the circle on which the exact solution u(t) lies.

It was shown in Example 7.6 that the solutions of the trapezoidal rule
lie on precisely the same circle as the exact solution of the IVP. This would
appear to give it an advantage over the symplectic Euler method (13.18) and
the Störmer–Verlet method (13.21). However, counting against the trapezoidal
rule are the facts that (a) it is implicit and, therefore computationally expensive
in a nonlinear context, and (b) the exact “conservation of energy” property does
not generalize to nonlinear problems as it does for the other methods.

13.3 A Two-Step Method

The examples thus far have sought to find a modified equation with which the
method has a higher order of consistency than with the original ODE. Our final
example has a different nature and shows that a method applied to a scalar
problem may also be a consistent approximation of a system.



188 13. Modified Equations

Example 13.6 (The Mid-Point Rule)

Derive a modified system of equations that can be used to explain the behaviour
of the mid-point rule (see Example 6.12) when it is used to solve the IVP
u′(t) = u(t)− u2(t), u(0) = 0.1. The numerical solution with h = 0.1 is shown
in Figure 13.4 (left) and is seen to have periodic bursts of activity while the
exact solution is effectively constant for t > 5.

The mid-point rule applied to the given ODE leads to the nonlinear differ-
ence equation

un+2 − un = 2hun+1(1− un+1) (13.25)

with u0 = 0.1 and we assume that the second initial condition is obtained via
Euler’s method:

u1 = u0 + hu0(1− u0).

We observe in Figure 13.4 (left) that the numerical solution (dots) is indis-
tinguishable from the exact solution (solid curve) up until about t = 5, after
which consecutive values of un oscillate around the steady state u = 1. This
suggests that we treat the even- and odd-numbered values of un differently. We
shall suppose that, un ≈ x(tn) for even values of n and that un ≈ y(tn) for odd
values of n, where the smooth functions x(t) and y(t) will be the solutions of
a (yet to be determined) modified system of ODEs.

The LTE will be different depending on the parity of n:

Tn+2 =

{
x(tn+2)− x(tn)− 2hy(tn+1)

(
1− y(tn+1)

)
, when n is even,

y(tn+2)− y(tn)− 2hx(tn+1)
(
1− x(tn+1)

)
, when n is odd,

(13.26)
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Fig. 13.4 Left: numerical solutions for Example 13.6 with h = 0.1 (dots) and
the exact solution u(t) (solid curve). Right: the numerical solution (dots) is
seen to lie on one of the family (13.28) of ellipses in phase space
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and Taylor expansion3 leads to

Tn+2 =

{
2h

(
x′(tn+1)− y(tn+1)

(
1− y(tn+1)

))
+O(h3), when n is even,

2h
(
y′(tn+1)− x(tn+1)

(
1− x(tn+1)

))
+O(h3), when n is odd.

This suggests that the method, which is a one-step map from (un, un+1) to
(un+1, un+2), is consistent of order 2 with the system

x′(t) = y(t)− y2(t)

y′(t) = x(t)− x2(t)

}
. (13.27)

In contrast to the previous examples this system does not have h-dependent
coefficients. Since

dy

dx
=

y′(t)
x′(t)

,

we deduce that y, regarded as a function of x, satisfies the separable differential
equation

(y(t)− y2(t))
dy

dx
= x(t)− x2(t).

This can be integrated to give (following factorization)

(x− y)
[
1
2x + 1

2y − 1
3 (x2 + xy + y2)

]
= constant. (13.28)

These curves are shown in Figure 13.4 (right) with values −0.15,−0.1, . . . , 0.15
for the constant. Superimposed are the points (u2m, u2m−1) showing even- ver-
sus odd-numbered values of the solution sequence. The dots leading directly
from the origin O to the point marked A(1, 1) correspond to the smooth part
of the trajectory up to about t = 5. On OA we have x = y, which implies
that x = y = u, and so even- and odd-numbered points both approximate the
original solution u(t).

When the solution approaches the steady state we can substitute u(t) =
1 − εv(t) into u′(t) = u(t) − u2(t) to give v′(t) = −v(t) + εv2(t). When ε is
small, u(t) is close to 1 and the linearized equation4 v′(t) = −v(t) indicates
that the solution is attracted to v = 0, that is u = 1, exponentially in time.
However, it was shown in Example 6.12 that the mid-point rule cannot be
absolutely stable for any h > 0. It is this loss of (weak) stability that causes
the oscillatory behaviour—corresponding to a trajectory moving in a closed
semi-elliptic path in the phase plane. The long-term behaviour of the system
(13.27) is the subject of Exercise 12.1.

3It is more efficient here to Taylor expand each of the quantities x(tn+2), x(tn),
y(tn+2), y(tn) about t = tn+1 because this avoids having to expand the nonlinear
terms.

4See Section 12.1 on Long Term Dynamics.
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How can this behaviour be reconciled with the fact that, because the mid-
point rule is zero-stable and a consistent method of order 2 to the original
ODE, its solutions must converge to u(t), the solution of u′(t) = u(t) − u2(t),
u(0) = 0.1? In the phase plane it takes an infinite time for the exact solution
of the ODEs to reach the point A and convergence of a numerical method is
only guaranteed for finite time intervals [0, tf ]. Moreover, as h → 0, the time at
which the instability sets in tends to infinity and so the motion on any interval
[0, tf ] is ultimately free of oscillations.

13.4 Postscript

In cases where the modified equations are differential equations with h-dependent
coefficients they should tend towards the original differential equations as
h → 0. This provides a basic check on derived modified equations. See the
article by Griffiths and Sanz-Serna [24] for further examples of modified equa-
tions for both ordinary and partial differential equations in a relatively simple
setting.

Modified equations are related to the idea of “backward error analysis”
in linear algebra that was developed around 1950 (see N.J. Higham [36, Sec-
tion 1.5]). The motivating idea is that instead of regarding our computed values
as an approximate solution to the given problem, we may regard them as an
exact solution to a nearby problem. We may then try to quantify the concept
of “nearby” and study whether the nearby problem inherits properties of the
given problem. In our context, the nearby problem arises by adding small terms
to the right-hand side of the ODE. An alternative would be to allow the initial
conditions to be perturbed, which leads to the concept of shadowing. This has
been extensively studied in the context of dynamical systems (see, for example,
Chow and Vleck [8]).

EXERCISES

13.1.? For Example 13.1, amend the proof of Theorem 2.4 to prove that
ên = O(h2) (Hint: it is only necessary to take account of the fact
that |T̂j | ≤ Ch3.)

13.2.?? Show that the LTE (13.3) is of order O(h3) when y(t) is the solution
of the alternative modified Equation (13.8). Hence, conclude that xn

is a second-order approximation to y(tn). Show that the arguments
based on (13.6) about the overdamping effects of Euler’s method
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could also be deduced from (13.8).

13.3.?? Show that the LTE (13.3) is of order O(h3) when y(t) is the solution
of the modified equation y′(t) = µy(t), where5

µ = λ
(
1− 1

2λh + 1
3λ2h2

)
.

Hence, conclude that xn is a third-order approximation to y(tn).

13.4.?? Consider the backward Euler method (1− λh)xn+1 = xn applied
to the ODE x′(t) = λx(t). Show that the LTE is given by

T̂n+1 = y(tn + h)− (1− λh)−1y(tn)

and is of order O(h3) when y(t) satisfies the second-order ODE

y′(t) = λ(1 + 1
2λh)y(t).

Deduce that |y(t)| > |x(t)| for t > 0 when 0 < 1 + 1
2λh < 1 and

y(0) = x(0).

13.5.?? Consider the backward Euler method xn+1 = xn + hfn+1 applied
to the ODE x′(t) = f(x(t)). By writing xn+1 = xn + δn, show that

f(xn+1) = f(xn) + h
df

dx
(xn)δn +O(h2).

Use this, together with the expansion (13.4) and the localizing as-
sumption, to deduce the modified equation

y′(t) =
(

1 + 1
2h

df

dy
(y(t))

)
f(y(t)). (13.29)

13.6.?? Show that y′(t) = A(I− 1
2hA)y(t) is a modified equation for Euler’s

method applied to the linear system of ODEs x′(t) = Ax(t), where
x,y ∈ Rm and A is an m×m matrix.

Identify an appropriate matrix A for the ODEs in Example 13.3 and
verify that the “modified matrix” in (13.16) is Â = A(I − 1

2hA).

5An alternative way of finding suitable values of µ is to substitute y(t) = eµt into

(13.3) to give bTn+1 = eµtn
`
eµh − 1− λh

´
. Hence, bTn+1 = O(hp+1) if µ is chosen so

that eµh = 1 + λh +O(hp+1). Thus, µ can be obtained by truncating the Maclaurin
series expansion of

µ =
1

h
log(1 + λh) = λ− 1

2
λ2h + 1

3
λ3h2 + · · ·+ (−1)p 1

p+1
λp+1hp + · · · .
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13.7.??? Use the modified system derived in the previous question to discuss
the behaviour of Euler’s method applied to x′(t) = Ax(t), when
x(t0) is an eigenvector of A, in the cases where the matrix A is (a)
positive definite, (b) negative definite, and (c) skew-symmetric.

13.8.? Use the identity

d
dt

(
x2(t) + y2(t)

)
= 2x(t)x′(t) + 2y(t)y′(t)

together with the ODEs (13.15) to prove that

d
dt

(
x2(t) + y2(t)

)
= h

(
x2(t) + y2(t)

)
,

which is a first-order constant-coefficient linear differential equation
in the dependent variable w(t) = x2(t) + y2(t). Hence, prove that
x(t) and y(t) satisfy Equation (13.17).

13.9.?? Complete the details leading up to (13.19).

Show that
d
dt

(
x2(t)− hx(t)y(t) + y2(t)

)
= 0

and, hence, deduce that Equation (13.20) holds.

13.10.? Deduce that the solutions of the modified system derived in Exam-
ple 13.5 lie on the family of ellipses (13.24).

13.11.??? Show that the nonlinear oscillator u′′(t) + f(u) = 0 (cf. Exer-
cise 7.6) is equivalent to the first-order system

u′(t) = −v(t), v′(t) = f(u(t)). (13.30)

Suppose that F (u) is such that f(u) =
dF (u)

du
. Show that the solu-

tions of this system satisfy

d
dt

(
2F (u(t)) + v2(t)

)
= 0

and, therefore, lie on the family of curves v2(t)+2F (u(t)) = constant.
The system (13.30) may be solved numerically by a generalization
of the method in Example 13.4:

un+1 = un − hvn, vn+1 = vn + hf(un+1), n = 0, 1, . . . ,

with u0 = 1 and v0 = 0. Derive the modified system

x′(t) = −y(t) + 1
2hf(x(t))

y′(t) = f(x(t))− 1
2h

df

dx
(x(t))y(t)

.
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Deduce that
d
dt

(
2F (x(t))− hf(x(t))y(t) + y2(t)

)
= 0

and hence that solutions lie on the family of curves

2F (x(t))− hf(x(t))y(t) + y2(t) = constant

in the x-y phase plane. Verify that these results coincide with those
of Example 13.4 when f(u) = u.

13.12.??? It follows from Exercise 11.3 that the TS(1) method of Exam-
ple 11.2 applied to the IVPx′(t) = −λx(t), x(0) = 1, leads to

xn+1 = (1− hnλ)xn, tn+1 = tn + hn,

hn =
∣∣∣∣ 2 tol

λ2xn

∣∣∣∣1/2

, t0 = 0, x0 = 1,
(13.31)

on the assumption that no steps are rejected. Suppose that (tn, xn)
denotes an approximation to a point on the parameterized curve
(t(s), x(s)) at s = sn, where sn = n∆s and ∆s =

√
2tol is a constant

step size in s. Assuming that λ > 0, show that the equations (13.31)
are a consistent approximation of the IVP

d
ds

x(s) = −λg(s)x(s),
d
ds

t(s) = g(s),

with x(0) = 1, t(0) = 0, and g(s) = 1/(λ
√

x(s)).

Solve these ODEs for x(s) and t(s) and verify that the expected
solution is obtained when the parameter s is eliminated. Show that
x(s) = 0 for s = 2 regardless of the value of λ. Deduce that the
numerical solution xn is expected to reach the fixed point x = 0
in approximately

√
2/tol time steps. Sample numerical results are

presented in Figure 13.5 (
√

2/tol =
√

200 ≈ 14.14 and x14 = 0.0046.
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Fig. 13.5 Numerical solution for Exercise 13.12 with λ = 1 and tol = 0.01.
Left: (sn, xn) (Circles) and (s, x(s)) (solid), Right: (sn, tn) (circles) and (s, t(s))
(solid)



14
Geometric Integration Part I—Invariants

14.1 Introduction

We judge a numerical method by its ability to “approximate” the ODE. It is
perfectly natural to

– fix an initial condition,

– fix a time tf

and ask how closely the method can match x(tf), perhaps in the limit h → 0.
This led us, in earlier chapters, to the concepts of global error and order of
convergence. However, there are other senses in which approximation quality
may be studied. We have seen that absolute stability deals with long-time be-
haviour on linear ODEs, and we have also looked at simple long-time dynamics
on nonlinear problems with fixed points. In this chapter and the next we look
at another well-defined sense in which the ability of a numerical method to re-
produce the behaviour of an ODE can be quantified—we consider ODEs with a
conservative nature—that is, certain algebraic quantities remain constant (are
conserved) along trajectories. This gives us a taste of a very active research area
that has become known as geometric integration, a term that, to the best of our
knowledge, was coined by Sanz-Serna in his review article [60]. The material in
these two chapters borrows heavily from Hairer et al. [26] and Sanz-Serna and
Calvo [61].

Throughout both chapters, we focus on autonomous ODEs, where the right-
hand side does not depend explicitly upon t, so we have x′(t) = f(x).

Springer Undergraduate Mathematics Series, DOI 10.1007/978-0-85729-148-6_14,  
© Springer-Verlag London Limited 2010 

D.F. Griffiths, D.J. Higham, Numerical Methods for Ordinary Differential Equations,  
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14.2 Linear Invariants

A simple chemical reaction known as a reversible isometry may be written

X1

k1 X1



k2 X2

X2. (14.1)

Here, a molecule of chemical species X1 may spontaneously convert into a
molecule of chemical species X2, and vice versa. The constants k1 and k2 re-
flect the rates at which these two reactions occur. If these two species are not
involved in any other reactions, then clearly, the sum of the number of X1 and
X2 molecules remains constant.

The mass action ODE for this chemical system has the form

u′(t) = −k1u(t) + k2v(t)

v′(t) = k1u(t)− k2v(t),

}
(14.2)

where u(t) and v(t) represent the concentrations of X1 and X2 respectively.
For initial conditions u(0) = A and v(0) = B, this ODE has solution

u(t) =
k2(A + B)

k1 + k2
+

[
A− k2(A + B)

k1 + k2

]
e−(k1+k2)t,

v(t) =
k1(A + B)

k1 + k2
+

[
B − k1(A + B)

k1 + k2

]
e−(k1+k2)t;

(14.3)

see Exercise 14.1. Adding gives u(t) + v(t) = A + B, showing that the ODE
system automatically preserves the sum of the concentrations of species X1 and
X2.

Applying Euler’s method to (14.2) gives us

un+1 = un − hk1un + hk2vn,

vn+1 = vn + hk1un − hk2vn.

Summing these two equations, we find that un+1 +vn+1 = un +vn. This shows
that Euler’s method preserves the total concentration, matching the property
of the ODE. This is not a coincidence—by developing a little theory, we will
show that a more general result holds.

Instead of solving the system (14.2) and combining the solutions, we could
simply add the two ODEs, noting that the right-hand sides cancel, to give
u′(t) + v′(t) = 0; that is,

d
dt

(u(t) + v(t)) = 0.

We may deduce immediately that u(t) + v(t) remains constant along any solu-
tion of the ODE. Given a general ODE system x′(t) = f(x) with x(t) ∈ Rm
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and f : Rm → Rm, we say that there is a linear invariant if some linear
combination of the solution components is always preserved:

d
dt

(c1x1(t) + c2x2(t) + · · ·+ cmxm(t)) = 0,

where c1, c2, . . . , cm are constants. We may write this more compactly as

d
dt
cTx(t) = 0,

where c ∈ Rm. Because each x′i is given by fi(x), this is equivalent to

c1f1(x) + c2f2(x) + · · ·+ cmfm(x) = 0,

which we may write as

cTf(x) = 0, for any x ∈ Rm. (14.4)

The condition (14.4) asks for f to satisfy a specific geometric property: wher-
ever it is evaluated, the result must always be orthogonal to the fixed vector c.

For Euler’s method, xn+1 = xn + hf (xn) and, under the condition (14.4),
we have

cTxn+1 = cTxn + hcTf (xn) = cTxn, (14.5)

so the corresponding linear combination of the components in the numerical
solution is also preserved. More generally, since they update from step to step
by adding multiples of f values, it is easy to see that any consistent linear
multistep method and any Runge–Kutta method will preserve linear invariants
of an ODE; see Exercise 14.2.

Linear invariants arise naturally in several application areas.

– In chemical kinetics systems like (14.2), it is common for some linear combi-
nation of the individual population counts to remain fixed. (This might not
be as simple as maintaining the overall sum; for example, one molecule of
species X1 may combine with one molecule of species X2 to produce a single
molecule of species X3.)

– In mechanical models, the overall mass of a system may be conserved.

– In stochastic models where an ODE takes the form of a “master equation”
describing the evolution of discrete probabilities, the total probability must
sum to one.

– In epidemic models where individuals move between susceptible, infected and
recovered states, the overall population size may be fixed.

In all cases, we have shown that standard numerical methods automatically
inherit the same property. Now it is time to move on to nonlinear invariants.
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14.3 Quadratic Invariants

The angular momentum of a free rigid body with centre of mass at the origin
can be described by the ODE system [26, Example 1.7, Chapter IV]

x′1(t) = a1 x2(t) x3(t)

x′2(t) = a2 x3(t) x1(t)

x′3(t) = a3 x1(t) x2(t)

. (14.6)

Here, a1, a2, and a3 are constants that depend on the fixed principal moments
of inertia, I1, I2, and I3, according to

a1 =
I2 − I3

I2 I3
, a2 =

I3 − I1

I3 I1
, a3 =

I1 − I2

I1 I2
.

Note that, by construction,

a1 + a2 + a3 = 0. (14.7)

The quantity x2
1(t)+x2

2(t)+x2
3(t) is an invariant for this system; it remains con-

stant over time along any solution. We can check this by direct differentiation,
using the form of the ODEs (14.6) and the property (14.7):

d
dt

(
x2

1 + x2
2 + x2

3

)
= 2x1 x′1 + 2 x2 x′2 + 2 x3 x′3

= 2x1 a1 x2 x3 + 2 x2 a2 x3 x1 + 2 x3 a3 x1 x2

= 2x1 x2 x3 (a1 + a2 + a3)

= 0. (14.8)

So, every solution of (14.6) lives on a sphere; that is,

x2
1(0) + x2

2(0) + x2
3(0) = R2

implies that
x2

1(t) + x2
2(t) + x2

3(t) = R2

for all t > 0. Exercise 14.5 asks you to check that the quantity

x2
1

I1
+

x2
2

I2
+

x2
3

I3
(14.9)

is also an invariant for this system. It follows that solutions are further con-
strained to live on fixed ellipsoids. So, overall, any solution lies on a curve
formed by the intersection of a sphere and an ellipsoid. Examples of such curves
are shown in Figure 14.1, which we will return to soon.
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Generally, we will say that an ODE system x′(t) = f(x) has a quadratic
invariant if the function

xTC x (14.10)

is preserved, where C ∈ Rm×m is a symmetric matrix. For the rigid body
example (14.6) we have just seen that there are two quadratic invariants, with

C =

 1 0 0
0 1 0
0 0 1

 and C =

 1/I1 0 0
0 1/I2 0
0 0 1/I3

 . (14.11)

By definition, if (14.10) is an invariant then its time derivative is zero, giving

0 =
d
dt

(
xTC x

)
= x′

T
C x+ xTC x′ = 2xTC x′ = 2xTC f(x),

where we have used C = CT and x′(t) = f(x). This shows that xTC x is a
quadratic invariant if and only if the function f satisfies

xTC f(x) = 0, for any x ∈ Rm. (14.12)

The implicit mid-point rule is defined by

xn+1 = xn + hf

(
xn + xn+1

2

)
. (14.13)

This method achieves the commendable feat of preserving quadratic invariants
of the ODE for any choice of stepsize h. To see this, we will simplify the notation
by letting

fmid
n := f

(
xn + xn+1

2

)
.

Then one step of the implicit midpoint rule produces an approximation xn+1

for which

xT
n+1Cxn+1 =

(
xn + hfmid

n

)T
C

(
xn + hfmid

n

)
= xT

nCxn + 2hxT
nCfmid

n + h2fmid
n

T
Cfmid

n .

From (14.13), we may write

xn =
xn + xn+1

2
− 1

2hfmid
n ,

and so

xT
n+1Cxn+1 = xT

nCxn + 2h

(
xn + xn+1

2
− 1

2hfmid
n

)T

Cfmid + h2fmid
n

T
Cfmid

n

= xT
nCxn + 2h

(
xn + xn+1

2

)T

Cfmid
n .
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But the last term on the right disappears when we invoke the condition (14.12).
Hence,

xT
n+1Cxn+1 = xT

nCxn,

confirming that the numerical method shares the quadratic invariant.
By contrast, applying Euler’s method

xn+1 = xn + hfn, (14.14)

we find, with fn denoting f (xn), that

xT
n+1Cxn+1 =

(
xn + hfT

n

)
C (xn + hfn)

= xT
nCxn + 2hxT

nCfn + h2fT
n Cfn

= xT
nCxn + h2fT

n Cfn.

The extra term h2fT
n Cfn will be nonzero in general, and hence Euler’s method

does not preserve quadratic invariants of the ODE. In fact, for the two types of
matrix C in (14.11)1 we have fT

n Cfn > 0 for any fn 6= 0. So, on the rigid body
problem (14.6) Euler’s method produces an approximation that drifts outwards
onto increasingly large spheres and ellipsoids. This is a more general case of
the behaviour observed in Examples 7.6 and 13.3.

These results are confirmed experimentally in Figure 14.1, which is inspired
by Hairer et al. [26, Figure 1.1, Chapter IV, page 96]. Here, we illustrate the
behaviour of the implicit mid-point rule (left) and Euler’s method (right) on
the rigid body problem (14.6). In each picture, the dots denote the numerical
approximations, plotted in the x1, x2, x3 phase space. In this case we have
x1(0)2 + x2(0)2 + x3(0)2 = 1, and the corresponding unit spheres are indicated
in the pictures. The solid curves mark the intersection between the sphere and
various ellipsoids of the form (14.9) with I1 = 2, I2 = 1 and I3 = 2/3. Any
exact solution to the ODE remains on such an intersection, and we see that the
numerical solution provided by the implicit mid-point rule shares this property.
The Euler approximation, however, shown on the right, is seen to violate these
constraints by spiralling away from the surface of the sphere.

Example 14.1 (Kepler Problem)

The Kepler two-body problem describes the motion of two planets. With ap-
propriate normalization, this ODE system takes the form [26, 61]

p′1(t) = − q1

(q2
1 + q2

2)3/2
, q′1(t) = p1,

p′2(t) = − q2

(q2
1 + q2

2)3/2
, q′2(t) = p2,

(14.15)

1And, more generally, for any symmetric positive definite matrix C.
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Fig. 14.1 Dots show numerical approximations for the implicit mid-point rule
(left) and Euler’s method (right) on the rigid body problem (14.6). Intersections
between the unit sphere and ellipsoids of the form (14.9) are marked as solid
lines. (This figure is based on Figure 1.1 in Chapter IV of the book by Hairer
et al. [26])

where q1(t) and q2(t) give the position of one planet moving in a plane relative
to the other at time t.

This system has a quadratic invariant of the form

q1p2 − q2p1, (14.16)

which corresponds to angular momentum. This can be checked by direct dif-
ferentiation:

d
dt

(q1p2 − q2p1) = q′1p2 + q1p
′
2 − q′2p1 − q2p

′
1

= p1p2 −
q1q2

(q2
1 + q2

2)3/2
− p2p1 +

q1q2

(q2
1 + q2

2)3/2
= 0.

However, the system also has a nonlinear invariant given by the Hamiltonian
function

H(p1, p2, q1, q2) = 1
2

(
p2
1 + p2

2

)
− 1√

q2
1 + q2

2

, (14.17)

(see Exercise 14.11), so called because the original ODEs (14.15) may be written
in the form

p′1(t) = − ∂

∂q1
H(p1, p2, q1, q2), q′1(t) =

∂

∂p1
H(p1, p2, q1, q2),

p′2(t) = − ∂

∂q2
H(p1, p2, q1, q2), q′2(t) =

∂

∂p2
H(p1, p2, q1, q2).

(14.18)

Hamiltonian ODEs are considered in the next chapter2.
2We will consider problems where H : R2 → R, but the same ideas extend to the

more general case of H : R2d → R.



202 14. Geometric Integration Part I—Invariants

14.4 Modified Equations and Invariants

Suppose now that the ODE system x′(t) = f(x), with x(t) ∈ Rm and f :
Rm → Rm, has a general nonlinear invariant defined by some smooth function
F : Rm → R, so that F(x(t)) remains constant along any solution. By the
chain rule, this means that, for any x(t),

0 =
d
dt
F(x(t)) =

m∑
i=1

∂F(x(t))
∂xi

(f(x(t)))i .

We may write this as

(∇F(x))T f(x) = 0, for any x ∈ Rm, (14.19)

where ∇F denotes the vector of partial derivatives of F . This is a direct gen-
eralization of the linear invariant case (14.4) and the quadratic invariant case
(14.12).

Suppose we have a numerical method of order p that is able to preserve the
same invariant. So, from any initial value x(0), if we take N steps to reach time
tf = Nh then the global error satisfies

xN − x(tf) = O(hp), (14.20)

and, because the invariant is preserved, we have

F(xN ) = F(x(0)). (14.21)

Now, following the ideas in Chapter 13, we know that it is generally possible
to construct a modified IVP of the form

y′(t) = f(y) + hpg(y), y(0) = x(0), (14.22)

such that the numerical method approximates the solution y(t) even more
accurately than it approximates the original solution x(t). In general, by adding
the extra term on the right-hand side in (14.22), we are able to increase the
order by one, so that

xN − y(tf) = O(hp+1). (14.23)

We will show now that this modified equation automatically inherits the in-
variance property of the ODE and numerical method. This can be done through
a contradiction argument. Suppose that the modified equation (14.22) does not
satisfy the invariance property (14.19). Then there must be at least one point
x? ∈ Rm where (∇F(x?))T g(x?) 6= 0. By switching from F to −F if neces-
sary, we may assume that this nonzero value is positive and then, by continuity,
there must be a region B containing x? for which

(∇F(x))T g(x) > C, for all x ∈ B,
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where C > 0 is a constant. If we choose x? as our initial condition and let [0, tf ]
be a time interval over which y(t) remains inside the region B, then,

d
dt
F(y(t)) = hp (∇F(y(t)))T g(x) > Chp, for t ∈ [0, tf ].

After integrating both sides with respect to t from 0 to tf , we find

|F(y(tf))−F(y(0))| > Ctfh
p. (14.24)

On the other hand, since the method preserves the invariant, we have F(xN ) =
F(y(0)), so

F(y(tf))−F(y(0)) = F(y(tf))−F(xN ).

Because F is smooth and we are working in a compact set B, the difference on
the right may be bounded by a multiple of the difference in the arguments3.
So, using (14.23), we have

F(y(tf))−F(y(0)) = O(hp+1).

However, this contradicts the bound (14.24). So we conclude that the modified
equation must preserve the invariant.

14.5 Discussion

It is natural to ask which standard numerical methods can preserve quadratic
invariants. In the case of Runge–Kutta methods, (9.5)) and (9.6), there is a
very neat result. Cooper [10] proved that the condition

biaij + bjaji = bibj , for all i, j = 1, . . . , s, (14.25)

characterizes successful methods. Of course, it is also possible to construct ad
hoc methods that deal with specific classes of ODEs with quadratic, or more
general, invariants.

The result that a modified equation inherits invariants that are shared by
the ODE and the numerical method can be established very generally for one-
step methods, and the same principle applies for other properties, including
reversibility, volume preservation, fixed point preservation and, as we study in
the next chapter, symplecticness. The proof by contradiction argument that we
used was taken from Gonzalez et al. [22], where those other properties are also
considered.

3More precisely, we may assume that a Lipschitz condition |F(x)−F(y)| ≤ L‖x−
y‖ holds for x, y ∈ B.
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The modified equation concept plays a central role in the modern study
of geometric integration. By optimizing over the number of extra terms in the
modified equation, it is possible to show that the difference between a numerical
solution and its closest modified equation can be bounded by C exp(−D/h)
over a time interval 0 ≤ t ≤ E/h, where C, D and E are constants. This is
an exponentially small bound that applies over arbitrarily large time; a very
rare phenomenon in numerical ODEs!4 Establishing the existence of a modified
equation with the same structure as the original ODE is often a key step in
proving further positive results, such as mild growth of the global error as a
function of time.

Finally, we should add that not all properties of an ODE and numerical
method are automatically inherited by a modified equation; see Exercise 14.12
for an illustration.

EXERCISES

14.1.?? Confirm that (14.3) satisfies the ODE system (14.2). Also check
that this solution gives u(t) + v(t) ≡ A + B. What happens to this
solution as t → ∞? Explain the result intuitively in terms of the
reaction rate constants k1 and k2.

14.2.?? By generalizing the analysis for the Euler case in (14.5), show
that any consistent linear multistep method and any Runge–Kutta
method will preserve linear invariants of an ODE. You may assume
that the starting values for a k-step LMM satisfy cTηj = K, j = 0 :
k− 1, for some constant K when c is any vector such that equation
(14.4) holds.

14.3.?? Show that the second-order Taylor series method, TS(2), from
Chapter 3, applied to (14.2) takes the form[

un+1

vn+1

]
=

[
un

vn

]
+ h

(
1− 1

2h(k1 + k2)
) [
−k1 k2

k1 −k2

] [
un

vn

]
.

Confirm that this method also preserves the linear invariant.

14.4.?? For the system (14.2) show that u′(t) = Au(t), where A may be
written as the outer product

A =
[
−1

1

] [
k1,−k2

]
.

4We should note, however, that the bound does not involve the solution of the
original ODE. Over a long time interval the modified equation might not remain close
to the underlying problem.
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Deduce that Aj =
(
−k1 − k2

)j−1
A (j = 1, 2, 3, . . . ) and hence gen-

eralise the previous exercise to the TS(p) method for p > 2.

14.5.? By differentiating directly, as in (14.8), show that the quadratic
expression (14.9) is an invariant for the ODE system (14.6).

14.6.? For (14.6) confirm that (14.12) holds for the two choices of matrix
C in (14.11).

14.7.?? Show that the implicit mid-point rule (14.13) may be regarded as
an implicit Runge–Kutta method with Butcher tableau (as defined
in Section 9.2) given by

1
2

1
2

1
.

14.8.??? By following the analysis for the implicit mid-point rule, show that
the implicit Runge–Kutta method with Butcher tableau

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

called the order 4 Gauss method, also preserves quadratic invariants
of an ODE system for any step size h.

14.9.? The backward Euler method produces xn+1 = xn + hf (xn+1),
instead of (14.14). In this case show that

xT
nCxn = xT

n+1Cxn+1 + h2fT
n Cfn

when (14.12) holds for the ODE. Hence, explain how the picture
on the right in Figure 14.1 would change if Euler’s method were
replaced by backward Euler.

14.10.? Show that the invariant (14.16) may be written in the form

[
p1 p2 q1 q2

]
C


p1

p2

q1

q2

 ,

where C ∈ R4×4 is symmetric, so that it fits into the format required
in (14.10).
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14.11.? By directly differentiating, show that H in (14.17) is an invariant
for the Kepler problem (14.15).

14.12.??? (Based on Gonzalez et al. [22, Section 4.6].) Consider the scalar
ODE x′(t) = f(x(t)), with f(x) = −x3. Letting F(x) = x4/4, use
the chain rule to show that

d
dt
F(x(t)) = − (f(x(t)))2 . (14.26)

Deduce that
lim

t→∞
x(t) = 0, for any x(0).

For this ODE, rather than being an invariant, F is a Lyapunov func-
tion that always decreases along each non-constant trajectory. For
the backward Euler method xn+1 = xn−hx3

n+1, by using the Taylor
series with remainder it is possible to prove a discrete analogue of
(14.26),

F(xn+1)−F(xn)
h

≤ −
(

xn+1 − xn

h

)2

.

It follows that, given any h,

lim
n→∞

xn = 0, for any x(0).

Show that
y′(t) = −y3(t) +

3h

2
y5(t)

is a modified equation for backward Euler on this ODE, and also
deduce that

lim
t→∞

|y(t)| = ∞, when y(0) >

√
2
3h

.

This gives an example of a qualitative property that is shared by an
ODE and a numerical method for all h, but is not inherited by a
corresponding modified equation.



15
Geometric Integration Part
II—Hamiltonian Dynamics

This chapter continues our study of geometric features of ODEs. We look at
Hamiltonian problems, which possess the important property of symplecticness.
As in the previous chapter our emphasis is on

– showing that methods must be carefully chosen if they are to possess the
correct geometric property, and

– using the idea of modified equations to explain the qualitative behaviour of
numerical methods.

15.1 Symplectic Maps

As a lead-in to the topics of Hamiltonian ODEs and symplectic maps, we begin
with some key geometric concepts. Figure 15.1 depicts a parallelogram with
vertices at (0, 0), (a, b), (a + c, b + d), and (c, d). The area of the parallelogram
can be written as |ad− bc|; see Exercise 15.1. If we remove the absolute value
sign, then the remaining expression ad− bc is positive if the vertices are listed
in clockwise order, otherwise it is negative. Hence, characterizing the parallel-
ogram in terms of the two vectors

u =
[
a

b

]
and v =

[
c

d

]
,
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we may define the oriented area, areao(u,v), to be ad − bc. Equivalently, we
may write

areao(u,v) = uTJv, (15.1)

where J ∈ R2×2 has the form

J =
[

0 1
−1 0

]
.

(a,b)

(a+c,b+d)

(c,d)

Fig. 15.1 Parallelogram

Now, given a matrix A ∈ R2×2, we may ask whether the oriented-area is
preserved under the linear mapping u 7→ Au and v 7→ Av. From (15.1), we will
have areao(u,v) = areao(Au, Av) if and only if uTATJAv = uTAv. Hence,
the linear mapping guarantees to preserve oriented area if, and only if,

ATJA = J. (15.2)

Figure 15.2 illustrates this idea. Here, the parallelogram on the right is found
by applying a linear mapping to u and v, and, since we have chosen a matrix
A for which ATJA = J , the oriented area is preserved. We also note that the
condition (15.2) is equivalent to det(A) = 1; see Exercise 15.5. However, we
prefer to use the formulation (15.2) as it is convenient algebraically and, for
our purposes, it extends more naturally to the case of higher dimensions.

Adopting a more general viewpoint, we may consider any smooth nonlinear
mapping g : R2 → R2. When is g oriented area preserving? In other words,
if we take a two-dimensional region and apply the map g to every point, this
will give us a new region in R2. Under what conditions will the two regions
always have the same oriented area? Fixing on a point x ∈ R2, we imagine a
small parallelogram formed by the vectors x + ε and x + δ, where ε, δ ∈ R2

are arbitrary but small, as indicated in the left-hand picture of Figure 15.3.
Placing the origin at x, we know from (15.1) that the oriented area of this
parallelogram is given by

εTJδ. (15.3)
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u

u + v

v

Au

Au + Av

Av

Fig. 15.2 The parallelogram on the right was formed by using a matrix A to
map the vectors u and v that define the edges of the parallelogram on the left.
In this case det(A) = 1, so the area is preserved

If we apply the map g to this parallelogram then we get a region in R2, as
indicated in the right-hand picture. Because ε and δ are small, the sides of
this region can be approximated by straight lines, and the new region can be
approximated by a parallelogram. Also, by linearizing the map, as explained
in Appendix C, we may approximate the locations of the vertices g(x+ ε) and
g(x+ δ) using (C.3) to obtain

g(x+ ε) ≈ g(x) +
∂g

∂x
(x) ε,

g(x+ δ) ≈ g(x) +
∂g

∂x
(x) δ.

Here the Jacobian ∂g/∂x is the matrix of partial derivatives, see (C.4). Placing
the origin at g(x), the oriented area of this region may be approximated by
the oriented area of the parallelogram, to give

εT

(
∂g

∂x

)T

J

(
∂g

∂x

)
δ. (15.4)

Equating the oriented areas (15.3) and (15.4) gives the relation

εTJδ = εT

(
∂g

∂x

)T

J

(
∂g

∂x

)
δ.

Now the directions ε and δ are arbitrary, and we would like this area preser-
vation to hold for any choices. This leads us to the condition

J =
(

∂g

∂x

)T

J

(
∂g

∂x

)
. (15.5)

The final step is to argue that any region in R2 can be approximated to any
desired level of accuracy by a collection of small parallelograms. Hence, this
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x

x + ǫ

x + δ

g(x)
g(x + ε)

g(x + δ)

Fig. 15.3 The region on the right illustrates the effect of applying a smooth
nonlinear map g to the set of points making up the parallelogram on the left.
If the original parallelogram is small, then the map is well approximated by its
linearisation (equivalently, the new region is well approximated by a parallelo-
gram).

condition is enough to guarantee area preservation in general. These arguments
can be made rigorous and a smooth map g satisfying condition (15.5) does
indeed preserve oriented area.

We will use the word symplectic to denote maps that satisfy (15.5).1

15.2 Hamiltonian ODEs

With a unit mass and unit gravitational constant the motion of a pendulum
can be modelled by the ODE system

p′(t) = − sin q(t),

q′(t) = p(t).
(15.6)

Here, the position coordinate, q(t), denotes the angle between the rod and the
vertical at time t.

Figure 15.4 shows solutions of this system in the q, p phase space. In each
case, the initial condition is marked with a circle. We have also indicated the

1For maps in R2d where d > 1, the concept of symplecticness is stronger than
simple preservation of volume—it is equivalent to preserving the sum of the oriented
areas of projections on to two-dimensional subspaces. However, the characterization
(15.5) remains valid when the matrix J is generalized appropriately to higher di-
mension, and the algebraic manipulations that we will use can be carried through
automatically.
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vector field for this system—an arrow shows the direction and size of the tan-
gent vector for a solution passing through that point. In other words, an arrow
at the point (q, p) has direction given by the vector (p,− sin q) and length pro-
portional to

√
p2 + sin2 q. There is a fixed point at p = q = 0, corresponding

to the pendulum resting in its lowest position, and an unstable fixed point at
q = π, p = 0, corresponding to the pendulum resting precariously in its highest
position. For any solution, the function

H(p, q) = 1
2p2 − cos q (15.7)

satisfies
d
dt

H(p, q) = pp′ + (sin q)q′ = −p sin q + (sin q)p = 0.

Hence, H(p, q) remains constant along each solution. In fact, for −1 < H < 1,
we have the typical “grandfather clock” libration—solutions where the angle
q oscillates between two fixed values ±c. One such solution is shown towards
the centre of Figure 15.4. For H > 1, the angle q varies monotonically; here,
the pendulum continually swings beyond the vertical. Two of these solutions
are shown in the upper and lower regions of the figure. The intermediate case,
H = 1, corresponds to the unstable resting points and the separatrices that
connect them are marked with dashed lines (see Exercise 15.8). We also note
that the problem is 2π periodic in the angle q.

The pendulum system (15.6) may be written in terms of the function H :
R2 → R2 in (15.7) as

dp

dt
= −∂H

∂q
,

dq

dt
=

∂H

∂p
.

(15.8)
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Fig. 15.4 Vector field and particular solutions of the pendulum system (15.6).
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It turns out that many other important ODE systems can also be written in
this special form (or higher-dimensional analogues, as in the Kepler example
(14.18)). Hence, this class of problems is worthy of special attention. Generally,
any system of the form (15.8) is called a Hamiltonian ODE and H(p, q) is
referred to as the corresponding Hamiltonian function. The invariance of H

that we saw for the pendulum example carries through, because, by the chain
rule,

d
dt

H(p, q) =
∂H

∂p
p′ +

∂H

∂q
q′ = −∂H

∂p

∂H

∂q
+

∂H

∂q

∂H

∂p
= 0.

However, in addition to preserving the Hamiltonian function, these problems
also have a symplectic character. To see this, we need to introduce the time t

flow map, ψt, which takes the initial condition p(0) = p0, q(0) = q0 and maps
it to the solution p(t), q(t); that is,

ψt

([
p0

q0

])
=

[
p(t)
q(t)

]
.

Once we have fixed t, this defines a map ψt : R2 → R2, and we may therefore
investigate whether this map preserves oriented area.

Before carrying this out, the results of a numerical experiment are displayed
in Figure 15.5. The effect of applying ψt to all the points in the shaded circular
disc with centre at q = 0, p = 1.6 and radius 0.55 is shown for t = 1 and t = 2
and t = 3. In other words, taking every point in the disk as an initial value for
the ODE system, we show where the solution lies at times t = 1, 2, 3. At time
t = 1, the disk is rotated clockwise and squashed into a distorted egg shape.
At time t = 2 the region is stretched into a teardrop by the vector field, and
by t = 3 it has taken on a tadpole shape.
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Fig. 15.5 Illustration of the area-preserving property for the flow of the pen-
dulum system (15.6)
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It would be reasonable to conjecture from Figure 15.5 that the time t flow
map ψt is symplectic—the shaded regions appear to have equal areas. To pro-
vide a proof we use the approach used in the previous section with g(x) ≡ ψt(x)
and x = [p, q]T. We first note that, for t = 0, ψt collapses to the identity map,
so its Jacobian (C.4) is the identity matrix, which trivially satisfies (15.5). Next,
we consider how the right-hand side of (15.5) evolves over time. The Jacobian
matrix (C.7) for (15.6) has the form[

0 − cos q

1 0

]
.

Then, letting

P (t) =
∂ψt

∂x0

denote the matrix of partial derivatives, the variational equation for this matrix
has the form

P ′(t) =
[

0 − cos q

1 0

]
P (t)

(see (C.6)). It follows that

d
dt

(
P (t)TJP (t)

)
= P ′(t)TJP (t) + P (t)TJP ′(t)

= P (t)T
[

0 1
− cos q 0

] [
0 1

−1 0

]
P (t)

+ P (t)T
[

0 1
−1 0

] [
0 − cos q

1 0

]
P (t)

= P (t)T
([

−1 0
0 − cos q

]
+

[
1 0
0 cos q

])
P (t)

= 0. (15.9)

Having first established that (15.5) holds at time t = 0, we have now shown that
the right-hand side of (15.5) does not change over time; hence, the condition
holds for any time t. That is, the time t flow map, ψt, for the pendulum equation
is symplectic for any t.

The general case, where H(p, q) is any Hamiltonian function in (15.8), can
be handled without much more effort. The ODE then has a Jacobian of the
form [

−Hpq −Hqq

Hpp Hqp

]
.

Here, we have adopted the compact notation where, for example, Hpq denotes
∂2H/∂p∂q. This Jacobian may be written as J−1∇2H, where

J−1 =
[

0 −1
1 0

]
and ∇2H =

[
Hpp Hqp

Hpq Hqq

]
.
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Here, the symmetric matrix ∇2H is called the Hessian of H. The computations
leading up to (15.9) then generalise to

d
dt

(
P (t)TJP (t)

)
= P ′(t)TJP (t) + P (t)TJP ′(t)

= P (t)T∇2HJ−T JP (t) + P (t)T∇2HP (t) = 0,

since J−T J = −I. So the argument used for the pendulum ODE extends to
show that any Hamiltonian ODE has a symplectic time t flow map, ψt.

15.3 Approximating Hamiltonian ODEs

We will describe two examples of approximating systems of Hamiltonian ODEs.

Example 15.1

Show that map generated when Euler’s method is applied the pendulum ODEs
(15.6) is not symplectic.

Euler’s method corresponds to the map[
pn+1

qn+1

]
=

[
pn − h sin qn

qn + hpn

]
. (15.10)

We find that 
∂pn+1

∂pn

∂pn+1

∂qn
∂qn+1

∂pn

∂qn+1

∂qn

 =
[

1 −h cos qn

h 1

]
,

and the right-hand side of (15.5) is[
0 1 + h2 cos qn

−1− h2 cos qn 0

]
.

Since this is not the identity matrix, the map arising from Euler’s method on
this ODE is not symplectic for any step size h > 0.

Figure 15.6 (top) shows what happens when the exact flow map in Fig-
ure 15.5 is replaced by the Euler map (15.10) with step size h = 1. The disk
of initial values clearly starts to expand its area, before collapsing into a thin
smear. Figure 15.6 (bottom) repeats the experiment, this time using the back-
ward Euler method. Here, the region spirals towards the origin, and the area
appears to shrink. Exercise 15.7 asks you to check that the corresponding map
is not symplectic.
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Fig. 15.6 Area evolution for the forward Euler method (top) and backward
Euler method (bottom) applied to the pendulum system (15.6)

Example 15.2

Extend the symplectic Euler method from Example 13.4 to the general Hamil-
tonian system of ODEs (15.8) and verify that the resulting map is symplectic.

The symplectic Euler method can be regarded as a combination of forward
and backward Euler methods where the updates are implicit in the p variable
and explicit in the q variable. When applied to the system (15.8) it leads to

pn+1 = pn − h
∂H

∂q
(pn+1, qn),

qn+1 = qn + h
∂H

∂p
(pn+1, qn).

(15.11)
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As its name suggests, the method is symplectic. To confirm this property
we first compute partial derivatives to obtain

∂pn+1

∂pn
= 1− hHpq(pn+1, qn)

∂pn+1

∂pn
,

∂pn+1

∂qn
= −hHqq(pn+1, qn)− hHpq(pn+1, qn)

∂pn+1

∂qn
,

∂qn+1

∂pn
= hHpp(pn+1, qn)

∂pn+1

∂pn
,

∂qn+1

∂qn
= 1 + hHqp(pn+1, qn) + hHpp(pn+1, qn)

∂pn+1

∂qn
.

Collecting these together, we have

[
1 + hHpq(pn+1, qn) 0
−hHpp(pn+1, qn) 1

]
∂pn+1

∂pn

∂pn+1

∂qn
∂qn+1

∂pn

∂qn+1

∂qn

 =
[

1 −hHqq(pn+1, qn)
0 1 + hHqp(pn+1, qn)

]
.

We may solve to obtain the Jacobian explicitly, and verify that (15.5) holds.
Alternatively, taking determinants directly in this expression leads to the equiv-
alent condition

det




∂pn+1

∂pn

∂pn+1

∂qn
∂qn+1

∂pn

∂qn+1

∂qn


 = 1.

Figure 15.7 shows how the results in Figure 15.6 change when the symplectic
Euler method is used. Comparing the regions in Figure 15.7 with those in
Figure 15.5 for the exact time t flow map, we see that the symplectic Euler
method is not producing highly accurate approximations—this is to be expected
with a relatively large stepsize of h = 1. However, the method gives a much
better qualitative feel for the behaviour of this ODE than the non-symplectic
explicit or implicit Euler methods. In Section 15.4 we will briefly look at the
question of how to quantify the benefits of symplecticness.

An important practical point is that the symplectic Euler method (15.11)
is explicit on the pendulum ODE (15.6). Given pn and qn, we may compute
pn+1 = pn − h sin qn and then qn+1 = qn + hpn+1. Hence this method, which
is first-order accurate, is just as cheap to compute with as the basic Euler
method. This explicit nature carries through more generally when the Hamil-
tonian function H(p, q) has the separable form

H(p, q) = T (p) + V (q), (15.12)
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Fig. 15.7 Area evolution for the symplectic Euler method applied to the
pendulum ODE (15.6)

which often arises in mechanics, with T and V representing the kinetic and
potential energies, respectively. In this case, symplectic Euler takes the form

pn+1 = pn − hV ′(qn),

qn+1 = qn + hT ′(pn+1).
(15.13)

15.4 Modified Equations

We will now analyse the map (15.13) arising when the symplectic Euler method
(15.11) is applied to the separable Hamiltonian problem

p′(t) = −V ′(q),

q′(t) = T ′(p),
(15.14)

corresponding to (15.12), in the spirit of Chapter 13 and Section 14.4. Special
cases of these equations were studied in examples given in these earlier chapters.
We look for a modified equation of the form

u′(t) = −V ′(v) + hA(u, v),

v′(t) = T ′(u) + hB(u, v).
(15.15)

We would like one step of the symplectic Euler method applied to the
original problem to match this new problem even more closely. In other words,
we would like the map (15.13) to match the time h flow map of the modified
problem (15.15) more closely than it matches the original problem (15.14).
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We therefore Taylor expand the modified problem over one step and choose
the functions A and B to match the Taylor expansion of the numerical method
as closely as possible.

To expand u, we need an expression for the second derivative. We have

d2u

dt2
=

d
dt

u′

=
d
dt

(−V ′(v) + hA(u, v))

=
∂

∂u
(−V ′(v) + hA(u, v))

d
dt

u +
∂

∂v
(−V ′(v) + hA(u, v))

d
dt

v

= O(h)− (V ′′(v) +O(h)) (T ′(u) +O(h))

= −V ′′(v)T ′(u) +O(h).

Hence, a Taylor expansion may be written

u(tn + h) = u(tn) + hu′(tn) + 1
2h2u′′(tn) +O(h3)

= u(tn)− hV ′(v(tn))

+ h2
(
A(u(tn), v(tn))− 1

2V ′′(v(tn))T ′(u(tn))
)

+O(h3).

So, to match the map (15.13) up to O(h3) we require

A(p, q) = 1
2V ′′(q)T ′(p). (15.16)

Similarly,

d2v

dt2
=

d
dt

v′

=
d
dt

(T ′(u) + hB(u, v))

=
∂

∂u
(T ′(u) + hB(u, v))

d
dt

u +
∂

∂v
(T ′(u) + hB(u, v))

d
dt

v

= −T ′′(u)V ′(v) +O(h).

So a Taylor expansion for v is

v(tn + h) = v(tn) + hv′(tn) + 1
2h2v′′(tn) +O(h3)

= v(tn) + hT ′(u(tn))

+ h2
(
B(u(tn), v(tn))− 1

2T ′′(u(tn))V ′(v(tn))
)

+O(h3).

(15.17)
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Now, because the second component of the map (15.13) involves pn+1, we must
expand to obtain

qn+1 = qn + hT ′(pn+1)

= qn + hT ′(pn − hV ′(qn))

= qn + h
(
T ′(pn)− T ′′(pn)hV ′(qn) +O(h2)

)
. (15.18)

Matching this expansion with (15.17) up to O(h3) requires

h2B(p, q)− 1
2h2T ′′(p)V ′(q) = −h2T ′′(p)V ′(q),

which rearranges to
B(p, q) = − 1

2T ′′(p)V ′(q). (15.19)

Inserting our expressions (15.16) and (15.19) into (15.15), we obtain the mod-
ified equation

u′ = −V ′(v) + 1
2hV ′′(v)T ′(u),

v′ = T ′(u)− 1
2hT ′′(u)V ′(v).

(15.20)

It is straightforward to check that this has the form (15.8) of a Hamiltonian
problem, with

H(p, q) = T (p) + V (q)− 1
2hT ′(p)V ′(q). (15.21)

So the symplectic Euler method may be accurately approximated by a modified
equation that shares the Hamiltonian structure of the underlying ODE.

In Figure 15.8 we combine the information from Figure 15.5 concerning the
exact flow map (dark shading) and Figure 15.7 concerning the h map of the
symplectic Euler method (light shading). Between these two sets of regions, we
have inserted in medium shading with a dashed white border the regions arising
from the time t = 1 flow map of the modified equation (15.20) We see that,
even for this relatively large value of h, the modified equation does a visibly
better job than the original ODE of describing the numerical approximation.

Applying the Euler method to the separable problem (15.14) produces the
map

pn+1 = pn − hV ′(qn),

qn+1 = qn + hT ′(pn).

This differs from the symplectic Euler method (15.13) in that pn, rather than
pn+1, appears on the right-hand side of the second equation. It follows that if
we repeat the procedure above and look for a modified problem of the form
(15.15), then the same A(p, q) arises, but, because the −h2T ′′(u)V ′(v) term is
missing from the right-hand side of (15.18), we obtain

B(p, q) = 1
2T ′′(p)V ′(q).
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The resulting modified problem for Euler’s method is

u′ = −V ′(v) + 1
2hV ′′(v)T ′(u),

v′ = T ′(u) + 1
2hT ′′(u)V ′(v).

(15.22)

This is not of the Hamiltonian form (15.8).
In summary, the symplectic Euler method has produced a modified equation

of Hamiltonian form, and the regular, nonsymplectic, Euler method has not.
We may move on to the next level of modified equation for the symplectic

Euler method, by looking for functions C(u, v) and D(u, v) in

u′ = −V ′(v) + 1
2hV ′′(v)T ′(u) + h2C(u, v),

v′ = T ′(u)− 1
2hT ′′(u)V ′(v) + h2D(u, v),

(15.23)

such that the relevant expansions match to O(h4). After some effort (see Ex-
ercise 15.14) we find that this modified equation is also of Hamiltonian form,
with

H(p, q) = T (p) + V (q)− 1
2hT ′(p)V ′(q)

+ 1
12h2

(
V ′′(q)T ′(p)2 + T ′′(p)V ′(q)2

)
. (15.24)

This example illustrates a phenomenon that holds true in great generality:
numerical methods that give symplectic maps on Hamiltonian ODEs give rise
to modified equations of any desired order that are themselves Hamiltonian.
So these methods are extremely well described by problems that are (a) close
to the original ODE and (b) have the same structure as the original ODE. By
contrast, nonsymplectic methods, such as the Euler method that we examined
on the pendulum problem, do not have this desirable property.
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Fig. 15.8 Area evolution: Light shading for symplectic Euler method applied
to the pendulum system (15.6), medium shading with white dashed border for
the modified equation (15.20), dark shading for the exact flow map
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15.5 Discussion

In 1988 three researchers, Lasagni, Sanz-Serna, and Suris, independently pub-
lished a condition that characterizes symplectiness for Runge–Kutta methods.
This turned out to be the same as the condition (14.25) that characterizes
preservation of quadratic invariants. Many other authors have looked at de-
signing and analysing numerical methods for general Hamiltonian ODEs or for
specific classes arising in particular applications. The modified equation view-
point appears to offer the best set of analytical tools for quantifying the benefit
of symplecticness, and many interesting issues can be looked at. For example,
the Kepler problem (14.15) is not only of Hamiltonian form with a quadratic
invariant, but also has a property known as reversibility. Which combination
of these three properties is it possible, or desirable, for a numerical method
to match? In addition to symplecticness, there are many other closely related
problems involving Lie group structures, and these ideas also extend readily
beyond ODEs into the realms of partial and stochastic differential equations.
Overall, there are many open questions in the field of geometric integration,
and the area remains very active.

EXERCISES

15.1.?? The product Jv corresponds to a clockwise rotation of v through
a right angle. Deduce from the formula for the scalar product of two
vectors that uTJv = ‖u‖ ‖v‖ sin θ, where θ is the angle between u
and v and ‖u‖ = (uTu)1/2. Hence prove that the oriented area is
given by the expression (15.1).

15.2.? Let A(α) denote the rotation matrix in Exercise 7.8. Show that
areao(A(α)u, A(α)v) = areao(u,v) for any two vectors u, v ∈ R2

and any angle α. This proves that the oriented area is unaffected
when both vectors are rotated through equal angles.

15.3.? Show that the oriented area function (15.1) is linear, in the sense
that areao(x + z,y) = areao(x,y) + areao(z,y). Draw a picture to
illustrate this result. (Hint: from Exercise 15.2 it is OK to assume
that y is parallel with the vertical axis.)

15.4.? Let

B =
[

a c

b d

]
∈ R2×2.

Show that the vertices of the parallelogram in Figure 15.1 arise when
B is applied to the vertices of the unit square. Also, show that the
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oriented area has the form det (B).

15.5.? For A ∈ R2×2, show that the left-hand side of (15.2) is equivalent
to the matrix [

0 det(A)
−det(A) 0

]
.

This confirms that the condition (15.2) is equivalent to det(A) = 1.

15.6.? Show that the Cremona map [30][
x1

x2

]
7→

[
x1 cos λ− (x2 − x2

1) sinλ

x1 sinλ + (x2 − x2
1) cos λ

]
,

where λ is constant, is symplectic.

15.7.?? The backward Euler method applied to the pendulum ODE (15.6)
corresponds to the implicit relations[

pn+1

qn+1

]
=

[
pn − h sin qn+1

qn + hpn+1

]
. (15.25)

Taking partial derivatives, using the chain rule, show that

[
1 h cos qn+1

−h 1

]
∂pn+1

∂pn

∂pn+1

∂qn
∂qn+1

∂pn

∂qn+1

∂qn

 =
[

1 0
0 1

]
.

Deduce that

det




∂pn+1

∂pn

∂pn+1

∂qn
∂qn+1

∂pn

∂qn+1

∂qn


 =

1
1 + h2 cos qn+1

.

This shows that the backward Euler method does not produce a
symplectic map on this problem for any step size h > 0.

15.8.? With H(p, q) defined by (15.7), show that the separatrices H(p, q) =
1 (shown as dashed lines in Figure 15.4) are given by p = ±2 cos(q/2).

15.9.??? The “adjoint” of the symplectic Euler method (15.11) has the
form2

pn+1 = pn − h
∂H

∂q
(pn, qn+1),

qn+1 = qn + h
∂H

∂p
(pn, qn+1).

(15.26)

2Some authors refer to (15.26) as the symplectic Euler method, in which case
(15.11) becomes the adjoint.
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Show that this method is also symplectic. Can it be implemented as
an explicit method on separable problems of the form (15.12)?

15.10.??? Show that the implicit mid-point rule (14.13) is symplectic.

15.11.? Show that the symplectic Euler method (15.13) reduces to the
method used in Example 13.4 when V (q) = 1

2q2 and T (p) = 1
2p2.

Verify also that the Hamiltonian (15.21) reduces to a multiple of
(13.20).

15.12.??? (Based on Sanz-Serna and Calvo [61, Example 10.1] and Beyn [3].)
The time t flow map of a constant coefficient linear system x′(t) =
Ax(t), where A ∈ Rm×m, may be written

ψt(x0) = exp (At)x0.

Here, exp denotes the matrix exponential, which may be defined by
extending the usual scalar power series to the matrix analogue:

exp(X) = I + X +
1
2!

X2 +
1
3!

X3 + · · · .

Show that the time h flow map of the m = 2 system (which depends
on h) [

u′(t)
v′(t)

]
=

(
h−1 log

[
1 −h

h 1− h2

]) [
u(t)
v(t)

]
corresponds to one step of the symplectic Euler method (15.11) on
the Hamiltonian ODE with H(p, q) = (p2 + q2)/2. Here, log denotes
the matrix logarithm [37], for which exp(log(A)) = A. This is one
of the rare cases where we are able to find an exact modified equa-
tion, rather than truncate at some point in an h-expansion. Find an
equivalent exact modified equation for the adjoint method (15.26)
applied to the same Hamiltonian problem.

15.13.??? By following the derivation of (15.20), construct a modified equa-
tion for the adjoint of the symplectic Euler method, defined in
(15.26), when applied to a separable problem of the form (15.14).
Also, show that this modified equation is Hamiltonian.

15.14.??? By matching expansions up to O(h4), derive a modified equation
of the form (15.23) for the symplectic Euler method (15.13) applied
to the separable Hamiltonian problem (15.14), and show that the
result is a Hamiltonian problem with H(p, q) as in (15.24).



16
Stochastic Differential Equations

16.1 Introduction

Many mathematical modelling scenarios involve an inherent level of uncer-
tainty. For example, rate constants in a chemical reaction model might be
obtained experimentally, in which case they are subject to measurement er-
rors. Or the simulation of an epidemic might require an educated guess for the
initial number of infected individuals. More fundamentally, there may be mi-
croscopic effects that (a) we are not able or willing to account for directly, but
(b) can be approximated stochastically. For example, the dynamics of a coin
toss could, in principle, be simulated to high precision if we were prepared to
measure initial conditions sufficiently accurately and take account of environ-
mental effects, such as wind speed and air pressure. However, for most practical
purposes it is perfectly adequate, and much more straightforward, to model the
outcome of the coin toss using a random variable that is equally likely to take
the value heads or tails. Stochastic models may also be used in an attempt to
deal with ignorance. For example, in mathematical finance, there appears to
be no universal “law of motion” for the movement of stock prices, but random
models seem to fit well to real data.

There are many ways to incorporate randomness into quantitative modelling
and simulation. We focus here, very briefly, on a specific approach that is
mathematically elegant and is becoming increasingly popular. The underlying
theory is relatively new in comparison with Newton’s calculus—the classic work
by Ito was done in the 1940s, and the design and study of numerical methods is
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an active research topic. Our aim here is to give a nontechnical and accessible
introduction, in the manner of the expository article by Higham [31]. For further
information, in roughly increasing order of technical difficulty, we recommend
Mikosch [51], Cyganowski et al. [13], Mao [49], Milsein and Tretyakov [52] and
Kloeden and Platen [42].

16.2 Random Variables

In this chapter, we deal informally with scalar continuous random variables,
which take values in the range (−∞,∞). We may characterize such a random
variable, X, by the probability that X lies in any interval [a, b]:

P (a ≤ X ≤ b) =
∫ b

a

p(y) dy. (16.1)

Here, p is known as the probability density function for X, and the left-hand side
of (16.1) is read as “the probability that X lies between a and b.” Figure 16.1
illustrates this idea: the chance of X taking values between a and b is given
by the corresponding area under the curve. So regions where the density p is
large correspond to likely values. Because probabilities cannot be negative, and
because X must lie somewhere, a density function p must satisfy

(a) p(y) ≥ 0, for all y ∈ R;

(b)
∫ ∞

−∞
p(y) dy = 1.

An extremely important case is

p(y) =
1√

2σ2π
exp

(
− (y − µ)2

2σ2

)
, (16.2)

a b

p(y)
Fig. 16.1 Illustration of the identity
(16.1). The probability that X lies be-
tween a and b is given by the area un-
der the probability density function for
a ≤ y ≤ b
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Fig. 16.2 Some density functions
(16.2) corresponding to normally dis-
tributed random variables

where µ and σ ≥ 0 are fixed parameters. Examples with µ = 0 and σ = 1,
µ = 0 and σ = 2, µ = −1 and σ = 1, and µ = 2 and σ = 0.75 are plotted
in Figure 16.2. If X has a probability density function given by (16.2) then we
write X ∼ N(µ, σ2) and say that X is a normally distributed random variable.1

In particular, when X ∼ N(0, 1) we say that X has the standard normal distri-
bution. The bell-shaped nature of p in (16.2) turns out to be ubiquitous—the
celebrated Central Limit Theorem says that, loosely, whenever a large number
of random sources are combined whatever their individual nature, the overall
effect can be well approximated by a single normally distributed random vari-
able.

The parameters µ and σ in (16.2) play well-defined roles. The value y =
µ corresponds to a peak and an axis of symmetry of p, and σ controls the
“spread.” More generally, given a random variable X with probability density
function p, we define the mean, or expected value, to be2

E[X] :=
∫ ∞

−∞
y p(y) dy. (16.3)

It is easy to check that E[X] = µ with the normal density (16.2); see Exer-
cise 16.1. The variance of X may then be defined as the expected value of the
new random variable (X − E[X])2; that is,

var[X] := E
[
(X − E[X])2

]
. (16.4)

Intuitively, the size of the variance captures the extent to which X may vary
about its mean. In the normal case (16.2) we have var[X] = σ2; see Exer-
cise 16.3.

1The word normal here does not imply “common” or “typical”; it stems from the
geometric concept of orthogonality.

2In this informal treatment, any integral that we write is implicitly assumed to
take a finite value.
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16.3 Computing with Random Variables

A pseudo-random number generator is a computational algorithm that gives us
a new number, or sample, each time we request one. En masse, these samples
appear to agree with a specified density function. In other words, recalling
the picture in Figure 16.1, if we call the pseudo-random number generator
lots of times, then the proportion of samples in any interval [a, b] would be
approximately the same as the integral in (16.1). If we think of each sample
coming out of the pseudo-random number generator as being the result of
an independent trial, then we can make the intuitively reasonable connection
between the probability of the event a ≤ X ≤ b and the frequency at which
that event is observed over a long sequence of independent trials. For example,
if a and b are chosen such that P (a ≤ X ≤ b) = 1

2 , then, in the long term, we
would expect half of the calls to a suitable pseudo-random number generator
to produce samples lying in the interval [a, b].

In this book we will assume that a pseudo-random number generator corre-
sponding to a random variable X ∼ N(0, 1) is available. For example, Matlab

has a built-in function randn, and 10 calls to this function produced the samples

-0.4326

-1.6656

0.1253

0.2877

-1.1465

1.1909

1.1892

-0.0376

0.3273

0.1746

and another ten produced

-0.1867

0.7258

-0.5883

2.1832

-0.1364

0.1139

1.0668

0.0593

-0.0956

-0.8323
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Suppose we generate M samples from randn. We may divide the y-axis into
bins of length ∆y and let Ni denote the number of samples in each subinterval
[i∆y, (i + 1)∆y]. Then the integral-based definition of probability (16.1) tells us
that

P (i∆y ≤ X ≤ (i + 1)∆y) =
∫ (i+1)∆y

i∆y

p(y) dy ≈ p(i∆y)∆y. (16.5)

This was obtained by approximating the area under the curve by the area of
a rectangle with height p(i∆y) and base ∆y; this is valid when ∆y is small.
On the other hand, identifying the probability of an event with its long-term
observed frequency, we have

P (i∆y ≤ X ≤ (i + 1)∆y) ≈
Ni

M
. (16.6)

Combining (16.5) and (16.6) gives us

p(i∆y) ≈
Ni

∆yM
. (16.7)

Figure 16.3 makes this concrete. Here, we took M = 10000 samples from Mat-

lab’s randn and used 17 subintervals on the y-axis, with centres at −4, −3.5,
−3, . . . , 3.5, 4. The histogram shows the appropriately scaled proportion of
samples lying in each interval; the height of each rectangle is given by the
right-hand side of (16.7). We have superimposed the probability density func-
tion (16.2) with µ = 0 and σ = 1, which is seen to match the computed data.

In many circumstances, our aim is to find the expected value of some random
variable, X, and we are able to use a pseudo-random number generator to
compute samples from its distribution. If {ξi}M

i=1 is a set of such samples, then
it is intuitively reasonable that the sample mean

aM :=
1
M

M∑
i=1

ξi (16.8)

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

pseudo-random data
N(0,1) densi ty Fig. 16.3 Histogram of samples from

a N(0, 1) pseudo-random number gener-
ator, with probability density function
(16.2) for µ = 0 and σ = 1 superim-
posed. This illustrates the idea that en
masse the samples appear to come from
the appropriate distribution
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can be used to approximate E[X]. Standard statistical results3 can be used to
show that in the asymptotic M →∞ limit, the range[

aM −
1.96

√
var[X]√
M

,aM +
1.96

√
var[X]√
M

]
(16.9)

is a 95% confidence interval for E[X]. This may be understood as follows: if we
were to repeat the computation of aM in (16.8) many times, each time using
fresh samples from our pseudo-random number generator, then the statement
“the exact mean lies in this interval” would be true 95% of the time. In practice,
we typically do not have access to the exact variance, var[X], which is required
in (16.9). From (16.4) we see that the variance is itself a particular case of
an expected value, so the idea in (16.8) can be repeated to give the sample
variance

b2
M :=

1
M

M∑
i=1

(ξi − aM )2 .

Here, the unknown expected value E[X] has been replaced by the sample mean
aM .4 Hence, instead of (16.9) we may use the more practical alternative[

aM −
1.96

√
b2
M√

M
,aM +

1.96
√

b2
M√

M

]
. (16.10)

As an illustration, consider a random variable of the form

X = e−1+2Y , where Y ∼ N(0, 1).

In this case, we can compute samples by calling a standard normal pseudo-
random number generator, scaling the output by 2 and shifting by −1 and
then exponentiating. Table 16.1 shows the sample means (16.8) and confidence
intervals (16.10) that arose when we used M = 102, 103, . . . , 107. For this simple
example, it can be shown that the exact mean has the value E[X] = 1 (see
Exercise 16.4) so we can judge the accuracy of the results. Of course, this
type of computation, which is known as a Monte Carlo simulation, is useful in
those circumstances where the exact mean cannot be obtained analytically. We
see that the accuracy of the sample mean and the precision of the confidence
interval improve as the number of samples, M , increases. In fact, we can see
directly from the definition (16.10) that the width of the confidence interval
scales with M like 1/

√
M ; so, to obtain one more decimal place of accuracy we

need to do 100 times more computation. For this reason, Monte Carlo simulation
is impractical when very high accuracy is required.

3More precisely, the Strong Law of Large Numbers and the Central Limit Theo-
rem.

4There is a well-defined sense in which this version of the sample variance is
improved if we multiply it by the factor M/(M − 1). However, a justification for this
is beyond the scope of the book, and the effect is negligible when M is large.
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M aM confidence interval
102 0.9445 [0.4234, 1.4656]
103 0.8713 [0.6690, 1.0737]
104 1.0982 [0.9593, 1.2371]
105 1.0163 [0.9640, 1.0685]
106 0.9941 [0.9808, 1.0074]
107 1.0015 [0.9964, 1.0066]

Table 16.1 Sample means and confidence intervals for Monte Carlo simula-
tionsof a random variable X for which E[X] = 1

16.4 Stochastic Differential Equations

We know that the Euler iteration

xn+1 = xn + hf(xn)

produces a sequence {xn} that converges to a solution of the ODE x′(t) =
f(x(t)). To introduce a stochastic element we will give each xn+1 a random
“kick,” so that

xn+1 = xn + hf(xn) +
√

h ξn g(xn). (16.11)

Here, ξn denotes the result of a call to a standard normal pseudo-random
number generator and g is a given function. So the size of the random kick is
generally state-dependent—it depends upon the current approximation xn, via
the value g(xn). We also see a factor

√
h in the random term. Why is it not

h, or h1/4 or h2? It turns out that
√

h is the correct scaling when we consider
the limit h → 0. A larger power of h would cause the noise to disappear and
a smaller power of h would cause the noise to swamp out the original ODE
completely.

Given functions f and g and an initial condition x(0), we can think of a
process x(t) that arises when we take the h → 0 limit in (16.11). In other words,
just as in the deterministic case, we can fix t and consider the limit as h → 0
of xN where Nh = t. Of course, this construction for x(t) leads to a random
variable—each set of pseudo-random numbers {ξn}N−1

n=0 gives us a new sample
from the distribution of x(t).

Assuming that this h → 0 limit is valid, we will refer to x(t) as the solution
to a stochastic differential equation (SDE). There are thus three ingredients for
an SDE

– A function f , which plays the same role as the right-hand side of an ODE.
In the SDE context this is called the drift coefficient.
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– A function g, which affects the size of the noise contribution. This is known
as the diffusion coefficient.

– An initial condition, x(0). The initial condition might be deterministic, but
more generally it is allowed to be a random variable—in that case we simply
use a pseudo-random number generator to pick the starting value x0 for
(16.11).

As an illustration, we will consider the case where f and g are linear; that
is,

f(x) = ax, g(x) = bx, (16.12)

where a and b > 0 are constants, and we fix x(0) = 1. For the dark curve
in Figure 16.4 we take a = 2, b = 1, and x(0) = 1, and show the results of
applying the iteration (16.11) with a step size h = 10−3 for 0 ≤ t ≤ 1. The
closely spaced, but discrete, points {xn} have been joined by straight lines for
clarity. This gives the impression of a continuous but jagged curve. This can
be formalized—the limiting h → 0 solution produces paths that are continuous
but nowhere differentiable. For the lighter curve in Figure 16.4 we repeated the
experiment with different pseudo-random samples ξn and with the diffusion
strength b increased to 2. We see that this gives a more noisy or “volatile”
path.

0 0.2 0.4 0.6 0.8 1
0
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t

x

b = 1
b = 2

Fig. 16.4 Results for the iteration
(16.11) with drift and diffusion coef-
ficients from (16.12) and a step size
h = 10−3. Here, for the same drift
strength, a = 2, we show a path with
b = 1 (dark) and b = 2 (light)

We emphasize that the details in Figure 16.4 would change if we repeated
the experiments with fresh pseudo-random numbers. To illustrate this idea, in
the upper picture of Figure 16.5 we show 50 different paths, each computed
as in Figure 16.4, with a = 0.06 and b = 0.75. At the final time, t = 1, each
path produces a single number that, in the h → 0 limit, may be regarded as a
sample from the distribution of the random variable x(1) describing the SDE
solution at t = 1. In the lower picture of Figure 16.5 we produced a histogram
for 104 such samples. Overall, the figure illustrates two different ways to think
about an SDE. We can consider individual paths evolving over time, as in the
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upper picture, or we can fix a point in time and consider the distribution of
values at that point, as in the lower picture. From the latter perspective, by
studying this simple SDE analytically it can be shown, given a deterministic
initial condition, that for the exact solution the random variable x(t) at time t

has a so-called lognormal probability density function given by

p(y) =
exp

(
−[log(y/x(0))−(a− 1

2 b2)t]2

2b2t

)
yb
√

2πt
, for y > 0, (16.13)

and p(y) = 0 for y ≤ 0. We have superimposed this density function for t = 1
in the lower picture of Figure 16.5, and we see that it matches the histogram
closely. Exercise 16.6 asks you to check that (16.13) defines a valid density
function, and to confirm that the mean and variance take the form

E[x(t)] = x0 eat, (16.14)

var[x(t)] = x2
0 e2at

(
eb2t − 1

)
. (16.15)

0 0.2 0.4 0.6 0.8 1
0

2
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x
(t

)
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0
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1
104 samples from x(t) at t = 1

x(1)

Fig. 16.5 Upper: In the manner of Figure 16.4, 50 paths using (16.11) for
the linear case (16.12) with a = 0.06 and b = 0.75. Lower: In the manner of
Figure 16.3, binned path values at the final time t = 1 and probability density
function (16.13) superimposed as a dashed curve.
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16.5 Examples of SDEs

In this section we mention a few examples of SDE models that have been
proposed in various application areas.

Example 16.1

In mathematical finance, SDEs are often used to represent quantities whose
future values are uncertain. The linear case (16.12) is by far the most popular
model for assets, such as company share prices, and it forms the basis of the
celebrated Black–Scholes theory of option valuation [32]. If b = 0 then we revert
to the simple deterministic ODE x′(t) = ax(t), for which x(t) = eatx(0). This
describes the growth of an investment that has a guaranteed fixed rate a. The
stochastic term that arises when b 6= 0 reflects the uncertainty in the rate of
return for a typical financial asset.5 In this context, b is called the volatility.

Example 16.2

A mean-reverting square-root process is an SDE with

f(x) = a (µ− x) , g(x) = b
√

x, (16.16)

where a, µ, and b > 0 are constants. For this SDE

E[x(t)] = µ + e−at(E[X(0)]− µ) (16.17)

(see Exercise 16.9) so we see that µ represents the long-term mean value. This
model is often used to represent an interest rate; and in this context it is as-
sociated with the names Cox, Ingersoll and Ross [11]. Given a positive initial
condition, it can be shown that the solution never becomes negative, so the
square root in the diffusion coefficient, g(x), always makes sense. See, for ex-
ample, Kwok [43] and Mao [49] for more details.

Example 16.3

The traditional logistic ODE for population growth can be generalized to allow
for stochastic effects by taking

f(x) = rx (K − x) , g(x) = βx, (16.18)

where r, K and β > 0 are constants. Here, x(t) denotes the population density
of a species at time t, with carrying capacity K and characteristic timescale
1/r [56], and β governs the strength of the environmental noise.

5Or the authors’ pension funds.
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Example 16.4

The case where

f(x) = r (G− x) , g(x) =
√

εx (1− x), (16.19)

with r, ε > 0 and 0 < G < 1 is suggested by Cobb [9] as a model for the motion
over time of an individual through the liberal–conservative political spectrum.
Here x(t) = 0 denotes an extreme liberal and x(t) = 1 denotes an extreme
conservative. With this choice of diffusion term, g(x), a person with extreme
views is less likely to undergo random fluctuations than one nearer the centre
of the political spectrum.

Example 16.5

The SDE with

f(x) = −µ

(
x

1− x2

)
, g(x) = σ, (16.20)

with µ and σ > 0, is proposed by Lesmono et al. [46]. Here, in an environ-
ment where two political parties, A and B, are dominant, x(t) represents the
difference PA(t)−PB(t), where PA(t) and PB(t) denote the proportions of the
population that intend to vote for parties A and B, respectively, at time t.

Example 16.6

Letting V (x) denote the double-well potential

V (x) = x2(x− 2)2; (16.21)

as shown in Figure 16.6, we may construct the SDE with

f(x) = −V ′(x), g(x) = σ. (16.22)

When σ = 0, we see from the chain rule that the resulting ODE x′(t) =
−V ′(x(t)) satisfies

d
dt

V (x(t)) = V ′(x(t))
d
dt

x(t) = − (V ′(x(t)))2 .

So, along any solution curve, x(t), the potential V (·) is nonincreasing. More-
over, it strictly decreases until it reaches a stationary point; with reference to
Figure 16.6, any solution with x(0) 6= 1 slides down a wall of the potential well
and comes to rest at the appropriate minimum x = 0 or x = 2. In the additive
noise case, σ > 0, it is now possible for a solution to overcome the potential
barrier that separates the two stable rest states—a path may occasionally jump
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over the central hump and thereby move from the vicinity of one well to the
other. This gives a simple caricature of a bistable switching mechanism that is
important in biology and physics.
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Fig. 16.6 Double–well potential func-
tion V (x) from (16.21)

16.6 Convergence of a Numerical Method

Our informal approach here is to regard an SDE as whatever arises when we
take the h → 0 limit in the iteration (16.11). For any fixed h > 0, we may then
interpret (16.11) as a numerical method that allows us to compute approxima-
tions for this SDE. In fact, this way of extending the basic Euler method gives
what is known as the Euler–Maruyama method. If we focus on the final-time
value, tf , then we may ask how accurately the numerical method can approxi-
mate the random variable x(tf) from the SDE. For the example in Figure 16.5,
the lower picture shows that the histogram closely matches the correct density
function. Letting tf = nh, so that n →∞ and h → 0 with tf fixed, how can we
generalize the concept of order of convergence that we developed for ODEs?

It turns out that there are many, nonequivalent, ways in which to measure
the accuracy of the numerical method. If we let xn denote the random variable
corresponding to the numerical approximation at time tf , so that the endpoint
of each path in the upper picture of Figure 16.5 gives us a sample for xn,
then we could study the difference between the expected values of the random
variables x(tf) and xn. This quantifies what is known as the weak error of the
method,6 and it can be shown that this error decays at first order; that is,

E [x(tf)]− E [xn] = O(h). (16.23)
6More generally, the weak error can be defined by comparing moments—expected

values of powers of x(tf) and xn.
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In Figure 16.7 we compute approximations to the weak error, as defined in
the left-hand side of (16.23), for the linear SDE given by (16.12) with a = 2,
b = 1 and x(0) = 1. The asterisks show the weak error values for a range of
step sizes h. In each case, we used the known exact value (16.14) for the mean
of the SDE solution, and to approximate the mean of the numerical method we
computed a large number of paths and used the sample mean (16.8), making
sure that the 95% confidence intervals were negligible relative to the actual
weak errors. Figure 16.7 uses a log-log scale, and the asterisks appear to lie
roughly on a straight line. A reference line with slope equal to one is shown.
In the least-squares sense, the best straight line approximation to the asterisk
data gives a slope of 0.9858 with a residual of 0.0508. So, overall, the weak
errors are consistent with the first-order behaviour quoted in (16.23).

The first-order rate of weak convergence in (16.23) matches what we know
about the deterministic case—when we switch off the noise, g ≡ 0, the method
reverts to standard Euler, for which convergence of order 1 is attained.

On the other hand, if we are not concerned with “the error of the means”
but rather “the mean of the error,” then it may be more appropriate to look at
the strong error E[|x(tf)− xn|]. It can be shown that this version of the error
decays at a rate of only one half; that is,

E [|x(tf)− xn|] = O(h1/2). (16.24)

To make this concrete, for the same SDE and step sizes as in the weak tests,
the circles in Figure 16.7 show approximations to the strong error. Samples for
the “exact” SDE solution, xn, were obtained by following more highly resolved
paths—see, for example, Higham [31] for more information. The circles in the
figure appear to lie approximately on a straight line that agrees with the ref-
erence line of slope one half, and a least-squares fit to the circle data gives a
slope of 0.5384 with residual 0.0266, consistent with (16.24).

We emphasize that this result marks a significant departure from the deter-
ministic ODE case, where the underlying Euler method attains first order. The
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Fig. 16.7 Asterisks show weak er-
rors (16.23) and circles show strong er-
rors (16.24) for the Euler–Maruyama
method (16.11) applied to the linear
SDE (16.12)
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degradation in approximation power when we measure error in the strong sense
of (16.24) is caused by a lack of smoothness that is evident from Figures 16.4
and 16.5; we cannot appeal directly to the type of Taylor series expansion
that served us so well in the preceding chapters, and a complete understanding
requires the tools of stochastic calculus.

16.7 Discussion

Although we have focussed here on scalar problems, the concept of SDEs ex-
tends naturally to the case of systems, x(t) ∈ Rm, with multiple noise terms,
and the Euler–Maruyama method (16.11) carries through straightforwardly,
retaining the same weak and strong order.

For deterministic ODEs, Euler’s method would typically be dismissed as
having an order of convergence that is too low to be of practical use. For SDEs,
however, Euler–Maruyama, and certain low order implicit variations, are widely
used in practice. There are two good reasons.

1. Designing higher order methods is much more tricky, especially in the case
of systems, and those that have been put forward tend to have severe
computational overheads.

2. Souping-up the iteration (16.11) is of limited use if the simulations are part of
a Monte Carlo style computation. In that case the relatively slow O(1/

√
M)

rate at which the confidence interval shrinks is likely to provide the bottle-
neck.

Following up on point 2, we mention that recent work of Giles [21] makes it
clear that, in a Monte Carlo context, where we wish to compute the expected
value of a quantity involving the solution of an SDE,

– the concepts of weak and strong convergence are both useful, and

– it is worthwhile to study the interaction between the weak and strong dis-
cretization errors arising from the timestepping method and the statistical
sampling error arising from the Monte Carlo method, in order to optimize
the overall efficiency.

Researchers in numerical methods for SDEs are actively pursuing many of
the issues that we have discussed in the ODE context, such as analysis of stabil-
ity, preservation of geometric features, construction of modified equations and
design of adaptive step size algorithms. There are also many new challenges, in-
cluding the development of multiscale methods that mix together deterministic
and stochastic regimes in order to model complex systems.
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EXERCISES

16.1.? Using the definition of the mean (16.3), show that E[X] = µ for
X ∼ N(µ, σ2). [Hint: you may use without proof the fact that∫∞
−∞ p(y) dy = 1 for p(y) in (16.2).]

16.2.? Given that the expectation operator is linear, so that for any two
random variables X and Y and any α, β ∈ R,

E[αX + βY ] = αE[X] + βE[Y ], (16.25)

show that the variance, defined in (16.4), may also be written

var[X] := E
[
X2

]
− (E[X])2 . (16.26)

16.3.?? If the random variable X has probability density function p(y)
then, generally, for any function h, we have

E[h(X)] :=
∫ ∞

−∞
h(y) p(y) dy. (16.27)

Following on from Exercises 16.1 and 16.2 show that for X ∼
N(µ, σ2) we have E[X2] = µ2 + σ2 and hence var[X] = σ2.

16.4.?? Using h(y) = exp(−1 + 2y) in (16.27), show that E[X] = 1 for
X = exp(−1 + 2Y ) with Y ∼ N(0, 1).

16.5.? Based on the definition of the confidence interval (16.10), if we did
not already know the exact answer, roughly how many more rows
would be needed in Table 16.1 in order for us to be 95% confident
that we have correctly computed the first five significant digits in
the expected value?

16.6.?? Show that p(y) in (16.13) satisfies
∫∞
−∞ p(y) dy = 1 and, by eval-

uating
∫∞
−∞ y p(y) dy and

∫∞
−∞ y2 p(y) dy, confirm the expressions

(16.14) and (16.15).

16.7.??? For the case where f(x) = ax and g(x) = bx, the Euler–Maruyama
method (16.11) takes the form

xk+1 = (1 + ha)xk +
√

hbZkxk, (16.28)

where each Zk ∼ N(0, 1). Suppose the initial condition x(0) = x0

is deterministic. By construction, we have E[Zk] = 0 and E[Z2
k ] =
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var[Zk] = 1. Because a fresh call to a pseudo-random number genera-
tor is made on each step, we can say that Zk and xk are independent,
and it follows that

E[xkZk] = E[xk]E[Zk] = 0,

E[x2
kZk] = E[x2

k]E[Zk] = 0,

E[x2
kZ2

k ] = E[x2
k]E[Z2

k ] = E[x2
k].

Taking expectations in (16.28), and using the linearity property
(16.25), we find that

E [xk+1] = E
[
xk (1 + ha) +

√
hbxkZk

]
= (1 + ha) E[xk] +

√
hbE[xkZk]

= (1 + ha) E[xk].

So,
E [xn] = (1 + ha)n

x0.

Consider now the limit where h → 0 and n →∞ with nh = tf fixed,
as in the convergence analysis of Theorem 2.4. Show that

E [xn] → eatf x0, (16.29)

in agreement with the expression (16.14) for the SDE.

Similarly, squaring both sides in (16.28) and then taking expected
values, and using the linearity property (16.25), we have

E
[
x2

k+1

]
= E

[
x2

k (1 + ha)2 + 2 (1 + ha)
√

hbx2
kZk + hb2x2

kZ2
k

]
= (1 + ha)2 E

[
x2

k

]
+ 2 (1 + ha)

√
hbE

[
x2

kZk

]
+ hb2E

[
x2

kZ2
k

]
= (1 + ha)2 E

[
x2

k

]
+ 0 + hb2E

[
x2

k

]
=

(
(1 + ha)2 + hb2

)
E

[
x2

k

]
.

By taking logarithms, or otherwise, show that in the same limit
h → 0 and n →∞ with nh = tf fixed we have

E
[
x2

n

]
→ e(2a+b2)tf x2

0,

so that
var[xn] = e2atf

(
eb2tf − 1

)
x2

0,

in agreement with the expression (16.15) for the SDE.
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16.8.??? Repeat the steps in Exercise 16.7 to get expressions for the mean
and variance in the additive noise case where f(x) = ax and g(x) =
b. This is an example of an Ornstein–Uhlenbeck process.

16.9.?? Follow the arguments that led to (16.29) in order to justify the
expression (16.17) for the mean-reverting square root process.



A
Glossary and Notation

AB: Adams–Bashforth—names of a family of explicit LMMs. AB(2) denotes
the two-step, second-order Adams–Bashforth method.

AM: Adams–Moulton—names of a family of implicit LMMs. AM(2) denotes
the two-step, third-order Adams–Moulton method.

BDF: backward differentiation formula.

BE: backward Euler (method).

Cp+1 : error constant of a pth-order LMM.

CF: complementary function—the general solution of a homogeneous linear
difference or differential equation.

4E: difference equation.

E(·) : expected value.

fn : the value of f(t, x) at t = tn and x = xn.

FE: forward Euler (method).

GE: global error—the difference between the exact solution x(tn) at t = tn
and the numerical solution xn: en = x(tn)− xn.

∇: gradient operator. ∇F denotes the vector of partial derivatives of F .

h : step size—numerical solutions are sought at times tn = t0 + nh for n =
0, 1, 2, . . . .
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ĥ : λh, where λ is the coefficient in the first-order equation x′(t) = λx(t) or an
eigenvalue of the matrix A in the system of ODEs x′(t) = Ax(t).

I: identity matrix.

=(λ): imaginary part of a complex number λ.

IAS: interval of absolute stability.

IC: initial condition.

IVP: initial value problem—an ODE together with initial condition(s).

j = m : n: for integers m < n this is shorthand for the sequence of consecutive
integers from m to n. That is, j = m,m + 1,m + 2, . . . , n.

Lh : linear difference operator.

LMM: linear multistep method.

LTE: local truncation error—generally the remainder term R in a Taylor series
expansion.

ODE: ordinary differential equation.

P(a ≤ X ≤ b): probability that X lies in the interval [a, b].

PS: particular solution—any solution of an inhomogeneous linear difference or
differential equation.

ρ(r): first characteristic polynomial of a LMM.

R: region of absolute stability.

R0: interval of absolute stability.

<(λ): real part of a complex number λ.

RK: Runge–Kutta. RK(p) (p ≤ 4) is a p–stage, pth order RK method.
RK(p, q) denotes a pair of RK methods for use in adaptive time–stepping.

R(ĥ): stability function of an RK method.

σ(r): second characteristic polynomial of a LMM.

SDE: stochastic differential equation.

tf : final time at which solution is required.

tn: a grid point, generally, tn = t0 + nh, at which the numerical solution is
computed.

Tn: local truncation error at time t = tn.
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T̂n: In Chapter 11 it denotes an approximation to the local truncation error Tn,
usually based on the leading term in its Taylor expansion. In Chapter 13
it denotes the local truncation error based on the solution of the modified,
rather than the original, IVP.

TS: Taylor Series. TS(p)—the Taylor Series method with p + 1 terms (up to,
and including, pth derivatives).

var(·) : variance.

x: a scalar-valued quantity while x denotes a vector-valued quantity.

x′(t): derivative of x(t) with respect to t.

xn, x′n, x′′n, . . . : approximations to x(tn), x′(tn), x′′(tn), . . . .

X ∼ N(µ, σ2): a normally distributed random variable with mean µ and vari-
ance σ2.



B
Taylor Series

B.1 Expansions

The idea behind Taylor series expansions is to approximate a smooth function
g : R → R locally by a polynomial. We suppose here that all derivatives of g

are bounded. The approximating polynomial will be chosen to match as many
derivatives of g as possible at a certain point, say a. Fixing a, we have, from
the definition of a derivative,

g(a + h)− g(a)
h

≈ g′(a), (B.1)

for small h. This rearranges to

g(a + h) ≈ g(a) + hg′(a). (B.2)

As h varies, the right-hand side in (B.2) defines the tangent line to the function
g based on the point x = a. This is a first order polynomial approximation,
or Taylor series expansion with two terms—it is close to the function g for
sufficiently small h. Differentiating with respect to h and setting h = 0 we
see that the polynomial g(a) + hg′(a) in (B.2) matches the zeroth and first
derivatives of g. We may improve the accuracy of the approximation by adding
a second order term of the form h2g′′(a)/2; so

g(a + h) ≈ g(a) + hg′(a) +
h2

2
g′′(a). (B.3)
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The right-hand side now matches a further derivative of g at h = 0. Generally,
a Taylor series expansion for g about the point a with p+1 terms has the form

g(a + h) ≈ g(a) + hg′(a) +
h2

2
g
′′
(a) + · · ·+ hp

p!
g(p)(a), (B.4)

where g(p) denotes the pth derivative. This pth-degree polynomial matches
derivatives of g at the point a from order zero to p.

It is sometimes more convenient to rewrite these expansions with a + h

as a single independent variable, say x. The expansions (B.2) and (B.3) then
become

g(x) ≈ g(a) + (x− a)g′(a)

and

g(x) ≈ g(a) + (x− a)g′(a) +
(x− a)2

2
g′′(a)

respectively, and x is required to be close to a for the approximations to be
close to g. For the general Taylor expansion (B.4) we then have

g(x) ≈ g(a) + (x− a)g′(a) +
(x− a)2

2
g′′(a) + · · ·+ (x− a)p

p!
g(p)(a). (B.5)

Figure B.1 illustrates the case of p = 1, 2, 3 when g(x) = x e1−x2
and a = 1.

The expansions developed in this chapter are extended in Appendix C to
functions of two variables. When the point of expansion is the origin, Taylor
series are often referred to as Maclaurin series.

B.2 Accuracy

Increasing the order of our Taylor series expansion by one involves adding a
term with an extra power of h. The next term that we would include in the
right-hand side of (B.4) to improve the accuracy would be proportional hp+1.
Using the asymptotic order notation, as introduced in Section 2.2, we may
write

g(a + h) = g(a) + hg′(a) +
h2

2
g′′(a) + · · ·+ hp

p!
g(p)(a) +O(hp+1),

as h → 0, to quantify the accuracy in (B.4). For the version in (B.5), this
becomes

g(x) = g(a)+(x−a)g′(a)+
(x− a)2

2
g′′(a)+· · ·+(x− a)p

p!
g(p)(a)+O((x−a)p+1),

as x → a.
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Fig. B.1 In each picture, the function g(x) = x e1−x2
is shown as a solid

curve. On the left, the Taylor series with two terms (linear) about the point
x = 1 is shown as a dashed curve. The middle and right pictures show the
Taylor series with three terms (quadratic) and four terms (cubic) respectively

The error introduced by the Taylor series can be expressed succinctly, albeit
slightly mysteriously. Returning to (B.1), the Mean Value Theorem tells us that
the secant approximation (g(a + h) − g(a))/h must match the first derivative
of g for at least one point,1 say c, between a and a + h; that is,

g(a + h)− g(a)
h

= g′(c).

This shows that
g(a + h) = g(a) + hg′(c). (B.6)

This idea extends to a general Taylor series expansion. For (B.4), we have

g(a+h) = g(a)+hg′(a)+
h2

2
g′′(a)+ · · ·+ hp

p!
g(p)(a)+

hp+1

(p + 1)!
g(p+1)(c), (B.7)

where c is a point between a and a + h. We emphasize that
1For a concrete example, suppose that a car is driven at an average speed of 100

miles per hour over a stretch of road. This average speed is computed as the ratio of
total distance to total time, corresponding to the secant curve on the left hand side
of (B.1). It is intuitively reasonable that this car cannot always have been travelling
more slowly than 100 miles per hour over this period, and similarly it cannot always
have been travelling more quickly than 100 miles per hour. So at some point in time
over that period, it must have been travelling at exactly 100 miles per hour. (Of
course more than one such time may exist.)
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– although we know that at least one such c exists in that interval, its exact
location is unknown;

– c may be different for each choice of h.

For (B.5), we may write

g(x) = g(a) + (x− a)g′(a) +
(x− a)2

2
g′′(a)+

· · ·+ (x− a)p

p!
g(p)(a) +

(x− a)p+1

(p + 1)!
g(p+1)(c), (B.8)

where c is a point between a and x.
We refer to (B.7) and (B.8) as Taylor series expansions with remainder.

EXERCISES

B.1.? Show that the first four terms in the Taylor series of g(x) = x e1−x2

about the point a = 1 are

g(x) ≈ 1− (x− 1)− (x− 1)2 + 5
3 (x− 1)3.

B.2.? Determine the first three terms in the Maclaurin expansion of e−x.
Hence, or otherwise, show that the first three non-zero terms in the
Maclaurin expansion of g(x) = x e1−x2

are given by

g(x) ≈ e
(
x− x3 + 1

2x5
)
.



C
Jacobians and Variational Equations

The Taylor series expansion of a function of more than one variable was used in
the process of linearization in Chapter 12 and, in Section 15.1, it was applied to
discrete maps with two components. To see how such expansions can be derived
from the scalar version developed in Appendix B, we consider a general map
g : R2 → R2, which we write more explicitly as

g(x) =
[
g1(x1, x2)
g2(x1, x2)

]
.

Extension to the general case of g : Rm → Rm is straightforward. Now, if we
make a small perturbation to the argument x, what happens to the value of
g? Introducing a small quantity ε ∈ R2 with components ε1 and ε2, we may
expand in the first argument—using a two-term Taylor series as described in
Appendix B—to obtain

g1(x1 + ε1, x2 + ε2) ≈ g1(x1, x2 + ε2) +
∂g1

∂x1
(x1, x2 + ε2)ε1.

Then expanding g1(x1, x2 + ε2) in the second argument gives

g1(x1 + ε1, x2 + ε2) ≈ g1(x1, x2) +
∂g1

∂x2
(x1, x2)ε2 +

∂g1

∂x1
(x1, x2 + ε2)ε1.

The final term on the right-hand side could be expanded as ∂g1/∂x1(x1, x2)ε1

plus second order terms in ε1 and ε2. So we arrive at the expansion

g1(x1 + ε1, x2 + ε2) ≈ g1(x1, x2) +
∂g1

∂x1
(x1, x2)ε1 +

∂g1

∂x2
(x1, x2)ε2. (C.1)
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Analogously,

g2(x1 + ε1, x2 + ε2) ≈ g2(x1, x2) +
∂g2

∂x1
(x1, x2)ε1 +

∂g2

∂x2
(x1, x2)ε2. (C.2)

The expansions (C.1) and (C.2) can be put together in matrix-vector form as

g(x+ ε) ≈ g(x) +
∂g

∂x
(x) ε, (C.3)

where ∂g/∂x denotes the Jacobian of g:

∂g

∂x
=

 ∂g1

∂x1

∂g1

∂x2
∂g2

∂x1

∂g2

∂x2

 . (C.4)

In Chapter 15 we also looked at the derivatives of an ODE solution with
respect to the initial conditions. Here, we briefly explain how the relevant varia-
tional equations can be derived. We will restrict ourselves to the case of two au-
tonomous ODEs, x′(t) = f(x(t)), for x ∈ R2, with initial conditions x1(0) = a

and x2(0) = b. We write this more explicitly as[
x′1
x′2

]
=

[
f1(x1, x2)
f2(x1, x2)

]
, x1(0) = a, x2(0) = b. (C.5)

Our aim is to derive an ODE for the collection of partial derivatives ∂x1/∂a,
∂x1/∂b, ∂x2/∂a and ∂x2/∂b. Differentiating ∂x1/∂a with respect to time, in-
terchanging the order of the derivatives, and using the chain rule, we find that

d
dt

(
∂x1

∂a

)
=

∂

∂a

(
dx1

dt

)
=

∂

∂a
(f1(x1, x2)) =

∂f1

∂x1

∂x1

∂a
+

∂f1

∂x2

∂x2

∂a
.

Analogously, we have

d
dt

(
∂x1

∂b

)
=

∂f1

∂x1

∂x1

∂b
+

∂f1

∂x2

∂x2

∂b
,

d
dt

(
∂x2

∂a

)
=

∂f2

∂x1

∂x1

∂a
+

∂f2

∂x2

∂x2

∂a
,

d
dt

(
∂x2

∂b

)
=

∂f2

∂x1

∂x1

∂b
+

∂f2

∂x2

∂x2

∂b
.

Putting the four partial derivatives into a matrix, these relations may be written

d
dt

 ∂x1

∂a

∂x1

∂b
∂x2

∂a

∂x2

∂b

 =


∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2


 ∂x1

∂a

∂x1

∂b
∂x2

∂a

∂x2

∂b

. (C.6)
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Here, the matrix 
∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

, (C.7)

which is known as the Jacobian of the ODE system, is to be evaluated along
the solution x1(t), x2(t) of (C.5).



D
Constant-Coefficient Difference Equations

We will describe here means of solving simple linear constant-coefficient differ-
ence equations (4Es for short). For a more in-depth introduction we recom-
mend the books by Dahlquist and Björk [17, Section 3.3.5] or Elaydi [18].

A kth order difference is a relationship between k+1 consecutive terms of a
sequence x0, x1, . . . , xn, . . . . In a kth-order linear constant-coefficient 4E this
relationship is of the form

akxn+k + ak−1xn+k−1 + · · ·+ a0xn = fn (D.1)

in which the coefficients are ak, ak−1, . . . , a0, and fn is a given sequence of
numbers. We shall assume throughout that n runs consecutively through the
non-negative integers: n = 0, 1, . . . . We shall also assume that neither a0 nor
ak is zero, for otherwise this could be written as a 4E of order lower than k.

Our objective is: given k > 0, a set of coefficients and the sequence fn to
obtain a formula for the nth term of the sequence satisfying (D.1). We shall
focus mainly on first (k = 1) and second-order (k = 2) 4Es and also consider
only the cases when either fn ≡ 0 for all n (called the homogeneous case) or
when the forcing term fn has a particularly simple form.

As for linear constant-coefficient ODEs, the general solution of 4Es of the
form (D.1) may be composed of the sum of a complementary function (CF—the
general solution of the homogeneous 4E) and a particular solution (PS—any
solution of the given 4E). The arbitrary constants in a general solution may be
fixed by specifying the appropriate number (k) of starting conditions: xj = ηj ,
for j = 0 : k − 1.
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D.1 First-order Equations

Consider the first-order linear constant-coefficient problem:

xn+1 = axn + b, n = 0, 1, . . . . (D.2)

By setting, in turn, n = 0, 1, 2 we can compute

x1 = ax0 + b,

x2 = ax1 + b = a2x0 + (a + 1)b,

x3 = ax2 + b = a3x0 + (a2 + a + 1)b

and, continuing in the same vein, we can clearly compute any term in the
sequence xn, although the nature of the nth term may not be obvious.

A systematic approach first considers the homogeneous equation xn+1 =
axn for which x1 = ax0, x2 = ax1 = a2x0 and, by induction, the nth term is
xn = anx0, for any value of x0. Setting x0 = A, an arbitrary constant, the CF
is given by

xn = Aan.

We next look for a particular solution. Since the right-hand side of (D.2) is con-
stant, we look for a PS in the form of a constant sequence xn = C. Substituting
xn = xn+1 = C into (D.2) leads to

C =
b

1− a
, (a 6= 1).

Constant solutions are often referred to as fixed points (FPs) of the 4E (see
Chapter 12—Long-Term Dynamics).

The sum of the CF and PS:

xn = Aan +
b

1− a
(a 6= 1), (D.3)

is seen, by substitution, to be a solution of (D.2). It can be proved that there
are no other solutions of this equation and that this is, therefore, the general
solution (GS) provided that a 6= 1.

When a = 1 the recurrence becomes

xn+1 − xn = b,

so, by the telescoping series property,

xn = (xn − xn−1) + (xn−1 − xn−2) + · · ·+ (x1 − x0) + x0

= b + b + · · ·+ b + x0

= nb + x0.
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Hence, the GS in this case is

xn = A + nb,

where A is an arbitrary constant.
Before proceeding to the solution of second-order equations, we note that

the GS of (D.2) allows us to find the GS of the 4E

xn+1 = axn + bkn, n = 0, 1, . . . (D.4)

by means of the substitution (known as the variation of constants) xn = knyn.
We find that yn satisfies

yn+1 =
(a

k

)
yn +

b

k
, (D.5)

which is of the form (D.2). By comparing with the solution of (D.2) it is readily
shown that (D.5) has GS

yn =

A(a/k)n +
b/k

1− a/k
(a/k 6= 1),

A + (b/k)n (a/k = 1).

Hence, using xn = knyn, it is seen that (D.4) has GS

xn =

Aan +
b

k − a
kn (a 6= k),

Akn + bnkn−1 (a = k).
(D.6)

D.2 Second-order Equations

We begin by looking for the GS of the homogeneous equation

xn+2 + axn+1 + bxn = 0. (D.7)

This equation will have solutions of the form xn = Arn, where A is an arbitrary
constant, provided that r is a root of the quadratic equation

r2 + ar + b = 0, (D.8)

known as the auxiliary equation. Suppose that this equation has roots α and
β, then, since (r − α)(r − β) = r2 − (α + β)r + αβ, it follows that

a = −(α + β), b = αβ.

Thus, the inhomogeneous 4E

xn+2 + axn+1 + bxn = fn (D.9)
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may be written as xn+2 − (α + β)xn+1 + αβxn = fn. That is,(
xn+2 − αxn+1

)
− β

(
xn+1 − αxn

)
= fn.

By defining yn = xn+1 − αxn this becomes yn+1 − βyn = fn and we have
succeeded in rewriting (D.9) as the first-order system of 4Es

xn+1 − αxn = yn

yn+1 − βyn = fn

}
. (D.10)

In the homogeneous case fn ≡ 0 the second of these has GS yn = Cβn, where
C is an arbitrary constant, and then the first becomes

xn+1 − αxn = Cβn.

This has the same form as (D.4) and so we can deduce its GS immediately

xn =

{
Aαn + Bβn (α 6= β),

(A + Bn)αn (α = β),
(D.11)

where A and B are arbitrary constants (B can be expressed in terms of α, β

and C).
Notice that, in the case that α = β and |α| = 1, then |xn| → ∞ in general

as n → ∞, and this is the reason that multiple roots lying on the unit circle
in the complex plane had to be excluded in the definition of the root condition
used for zero-stability (Definitions 5.4 and 5.5).

The only inhomogeneous case of (D.9) that we will consider is for a constant
forcing term, in which case fn ≡ f for all n. Then, the second of (D.10) has GS

yn =

Cβn +
f

1− β
(β 6= 1),

C + nf (β = 1).

When this is substituted into the right-hand side of the first equation in (D.10)
we can employ a similar process to that in the previous section to find1

xn =



Aαn + Bβn +
f

(1− α)(1− β)
, (α 6= 1, β 6= 1, α 6= β)

(A + Bn)αn +
f

(1− α)2
(α = β 6= 1),

Aαn + B +
f

1− α
n (α 6= β = 1),

An + Bβn +
f

1− β
n (β 6= α = 1),

A + Bn + 1
2fn2, (α = β = 1).

1It may be verified by substitution that the last of these results, xn = A + Bn +
1
2
fn2, satisfies xn+2 − 2xn+1 + xn = f .
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D.3 Higher Order Equations

Seeking solutions of the homogeneous equation

akxn+k + ak−1xn+k−1 + · · ·+ a0xn = 0

in the form xn = Arn requires r to be a root of the auxiliary equation

akrk + ak−1r
k−1 + · · ·+ a0 = 0. (D.12)

For each root r of this equation, suppose that it has multiplicity m, then there
is a contribution

P (n)rn

to the CF, where P (n) is a polynomial in n of degree m − 1 (and so contains
m arbitrary coefficients). For example, when m = 1, the polynomial P (n) has
degree 0 and is, therefore, a constant (P (n) = A); when m = 2, the polynomial
P (n) has degree 1 and has the form P (n) = A + Bn. The full CF is the sum
of all such terms over all roots of the auxiliary equation.

EXERCISES

D.1.? Determine general solutions of the 4Es

(a) 2xn+1 = xn + 3, (b) xn+1 = 2xn + 3, (c) xn+1 = xn + 3.

Find also the solutions satisfying the initial condition x0 = 5 in each
case. Discuss the behaviour of solutions as n →∞.

D.2.?? Use Equation (D.3) to show that the solution of (D.2) that satisfies
x0 = η is given by

xn = ηan + b
1− an

1− a
(a 6= 1). (D.13)

By employing l’Hôpital’s rule, show that this reduces to xn = η +nb

in the limit a → 1.

Verify this result by showing that (D.13) may be written

xn = ηan + b(1 + a + a2 + · · ·+ an−1)

and then setting a = 1.

D.3.?? Determine general solutions of the 4Es

a) 2xn+1 = xn + 3× 2n,
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b) xn+1 = 2xn + 3× 2n,

c) xn+1 = xn + 3× 2n.

D.4.?? Determine general solutions of the 4Es

(a) xn+2 − 3xn+1 − 4xn = 3, (b) xn+2 − 3xn+1 − 4xn = 3× 2n,

(c) xn+2 − 4xn+1 + 4xn = 3, (d) xn+2 − 4xn+1 + 4xn = 3× 2n.

In case (a), find the solution satisfying the starting conditions x0 = 0
and x1 = −1.

D.5.?? Show that the auxiliary equation of the 4E

xn+5 − 8xn+4 + 25xn+3 − 38xn+2 + 28xn+1 − 8xn = 0

can be factorized as (r − 2)3(r − 1)2 = 0. Hence, find the GS of the
4E.
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AB, see method, Adams–Bashforth
absolute stability, see stability, absolute
acceleration, 12
adaptive step size, see step size, adaptive
additive noise, 241
adjoint, 222
AM, see method, Adams–Moulton
angular momentum, 198, 201
area preservation, 210
assets, 234
attracting, 166, 167, 169
authors’ pension funds, 234
autonomous, 5–6, 25, 132, 165, 178, 195,

252
auxiliary equation, see equation,

auxiliary

backward error analysis, 190
backward Euler method, see method,

backward Euler
barrier theorem, see Dahlquist
BDF, see method, backward differentia-

tion formula
bifurcation, 172–175
binomial expansion, 70, 180
biochemistry, 7
biological processes, 6
bistable switching, 236
Black–Scholes, 234
blow up in finite time, 16
boundary locus method, 87–88, 93
Butcher tableau, 129, 132, 134, 157, 205

carrying capacity, 18, 234
Cayley–Hamilton Theorem, 142
Central Limit Theorem, 227, 230
chain rule, 16, 127, 179, 206, 212, 222,

235, 252
chaotic, 172
characteristic polynomial, 51–60, 63, 64,

66, 67, 69, 93
chemical kinetics, 7, 197
chemical reaction, 196
cobweb diagram, 176
coffee example, 14, 76–79, 151
commutative diagram, 99
complementary function, 2, 243
composite Euler method, see method,

Euler, composite
concentrations, 7, 196
confidence interval, 230, 231, 237, 239
conservation law, 17
conservative, 195
consistent, 49–60, 62, 65, 69, 75, 92, 129,

133, 143, 187, 189
continuous derivatives, 23
convergence, 22, 26, 72, 195, 240
– quadratic, 115
– Euler’s method, 26, 28, 104, 179
– LMM, 52, 55, 61–73, 75
– rate, 27–28
– for SDE, 236
– Taylor series method, 37
convergence rate, 47
coupled system, 5
Cremona map, 222
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critical point, see fixed point
curves of pursuit, 8

Dahlquist, 56, 93
– Convergence Theorem, 65
– First Barrier Theorem, 65
– Second Barrier Theorem, 69, 89
damping, 102, 105
density function, see probability density

function
deterministic, 234
diagonalizable matrix, see matrix,

diagonalizable
diagonalization
– for LMMs, 99
– for ODEs, 97
– for RK methods, 140
difference equation, see equation,

difference
diffusion coefficient, 232, 234
diffusion term, 235
discrete map, 251
double-well potential, 235
drift coefficient, 231, 232

efficiency, 39
eigenvalue, 97–102, 105, 111, 140, 152,

168, 170, 175, 183
eigenvector, 97, 170, 174
ellipsoid, 198
epidemic models, 197
equation
– auxiliary, 63, 69, 80, 136, 257, 259
– difference, 27, 29, 56, 63, 68, 86,

255–260
– Fisher’s, 10
– homogeneous, 69
– linearized, 165, 167, 169, 189
– logistic, 18, 167, 175, 176, 234
– Lotka–Volterra, 6, 102, 165, 168
– Michaelis–Menten-type, 7
– modified, 177–193, 202–204, 217–220,

238
– partial differential, 10, 221
– reaction-diffusion, 10
– simple harmonic, 106
– Van der Pol, 12
– variational, 213, 252
equilibrium point, see fixed point
error constant, 52–54, 57–59, 69, 72, 93,

112–114
– scaled, 69, 89
Euclidean length, 152
Euler’s method, see method, Euler

existence, 4
expectation, 239
expected value, 227, 229, 236

fast transient, 101
Fisher’s equation, 10–11
fixed point, 166, 195, 211, 235, 256
– preservation, 203
– spurious, 173
– unstable, 211
floor function, 24
flops (floating point operations), 41
fox, 6, 8

GE, see global error
general solution, 2, 3, 17, 69, 165, 256
geometric integration, 195–223
global error, 22, 26, 27, 35, 46, 47, 67–69,

76, 195, 243
– equation for, 27, 68
– scaled, 148
grandfather clock, 211
grid size, see step size

half-life, 14
Hamiltonian, 201
– dynamics, 207–223
– function, 212
– separable, 175, 216
higher-order ODEs, 12
histogram, 229
history, 43
homogeneous
– equation, 2
– function, 2

implicit Euler method, see method,
backward Euler

implicit method, 45
implicit mid-point rule, see method,

implicit mid-point
initial value, see starting value
initial value problem, 3, 13, 19, 244
– autonomous, 5
initial-value problem
– second-order, 12
instability, 57, 76, 101, 104, 153, 160
integrating factor, 3
interpolating polynomial, 55
invariance, 212
invariant
– linear, 196–197
– quadratic, 198–201
inviscid flow, 102
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iteration
– fixed-point, 110
– Newton–Raphson, 110, 114–116, 141
– Picard, 110
IVP, see initial value problem

Jacobian, 111, 115, 167–176, 209,
251–253

Jury conditions, 84

Kepler, 200, 212, 221
kinetic energy, 217

l’Hôpital’s rule, 53, 60, 259
Landau notation, 22
Lenzie, 10
libration, 211
Lie group, 221
limit cycle, 12
linear difference operator, 49, 50, 52, 54,

57, 58, 68
linear multistep method, see method,

linear multistep
linear stability, see stability, linear
linearization, see equation, linearized
Lipschitz condition, 203
– one sided, 119
LMM, see method, linear multistep
local extrapolation, 113, 160
local truncation error, 78, 113
– controlling, 146
– Euler’s method, 23, 28
– interpretation, 69
– LMM, 68–70
– RK method, 127
– Taylor series method, 37, 40, 148
localizing assumption, 37, 70, 121, 127,

137, 156, 178, 179, 186, 191
log-linear scale, 76
log-log scale, 237
logistic, see equation, logistic
lognormal, 233
long-term behaviour, 97, 118, 165–176,

195
Lotka–Volterra equations, see equation,

Lotka–Volterra
LTE, see local truncation error
Lyapunov function, 118, 206

Maclaurin expansion, 23, 42, 86, 107,
191, 248

mass action, 196
mathematical finance, 234
Matlab, 117, 228, 229

matrix, 17, 97, 140, 151, 167, 170, 183,
186, 191, 199, 208, 209, 213, 252

– diagonalizable, 98, 140
– exponential, 223
– logarithm, 223
– lower triangular, 126, 142
– of partial derivatives, see Jacobian
– rotation, 107, 221
– skew-symmetric, 105, 192
– tridiagonal, 11
mean, 227, 237, 239
mean-reverting square-root process, 234,

241
mechanical models, 197
method
– Adams–Bashforth, 45–47, 48, 66, 95,

112, 162–163, 243
– Adams–Moulton, 48, 59, 66, 112, 243
– backward differentiation formula, 59,

67, 72, 93
– backward Euler, 48, 54, 58, 67, 78–79,

103, 111–121, 159, 181, 191, 205, 214
– Dahlquist, 48
– Euler, 19–31, 34, 35, 39, 46, 48, 49,

54, 65, 66, 76, 78, 82, 95, 100, 103,
106, 112–121, 128, 149, 153, 157, 171,
178, 196, 197, 200, 214, 231

– – composite, 93, 143
– – for systems, 29, 30
– – improved, 129, 132–133, 139, 157,

158, 163
– – modified, 123, 129, 133, 171, 173
– – symplectic, 184–187, 215
– Euler–Maruyama, 236, 238, 239
– explicit LMM, 57, 66
– Gauss, 205
– Heun, 131, 133
– implicit LMM, 66, 161
– implicit mid-point, 199, 205, 223
– leap-frog, 55
– linear multistep, 19, 43–121, 153–156,

197
– – two-step, 48–56, 59, 99
– – explicit, 48, 50, 56–70
– – implicit, 45, 48, 56–57, 70, 109–117
– – k-step, 56–57
– – reducible, 71
– mid-point, 55, 66, 86–87, 91, 108,

188–190
– Milne–Simpson, 67, 87
– Monte Carlo, 231, 238
– Nyström, 55, 66, 87
– ode23, 160
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– ode45, 117
– of undetermined coefficients, 50
– one-step, 48, 178, 203
– predictor-corrector, 110, 112, 118–121,

162, 163
– Runge–Kutta, 3, 19, 123–143, 197,

203
– – classical fourth-order, 131
– – Heun’s 3rd order, 131
– – implicit, 125–127, 205
– – improved Euler, 129, 132–133, 157,

158
– – Kutta 3rd order, 131
– – Kutta third-order, 163
– – modified Euler, 129
– – Nyström’s third-order, 134
– – semi-implicit, 143
– Simpson, 48, 54, 59, 67, 108
– Störmer–Verlet, 185
– Taylor series, 19, 33–42, 44, 46, 65,

148–153, 204
– – for systems, 38
– θ, 54
– trapezoidal, 44–45, 46–48, 54, 57, 60,

66, 83, 84, 88, 103, 112, 120, 134, 154,
163, 176, 187

Method of Lines, 10
method of successive substitutions, 110
Michaelis–Menten, 7, 17
mid–point rule, see method, mid-point
Milne’s device, 113–121, 162, 163
modified equation, see equation,

modified
molecular dynamics, 102
moments, 236
Monte Carlo, see method, Monte Carlo
multiscale, 238

neighbourhood, 166
Newport, 10
Newton’s
– law of cooling, 14
– laws of motion, 12
Newton–Raphson method, see iteration,

Newton–Raphson
nilpotent, 142
non–convergence, 62
normal distribution
– standard, 227
normalizing condition, 48, 56, 59, 62
normally distributed, 227

O(hp), 22
ODE, see ordinary differential equation

order, 23, 35, 39, 43, 44, 47, 49–51, 54,
57, 59, 66, 93

– Euler’s method, 28
– LMM, 49, 65
– pth, 27, 36, 49, 127
– Runge–Kutta method, 127
– Taylor series method, 33
Order notation, 22
ordinary differential equation
– complex, 16
– higher-order, 12
– model, 14–15
– second-order, 38
– system, 5, 29, 30, 38, 43, 95–108
– theory, 97
oriented area, 208
Ornstein–Uhlenbeck process, 241
orthogonal, 197
oscillations, 87, 101, 152, 189
oscillatory, see system, oscillatory

partial differential equations, 10, 190
particular solution, 3, 69, 244
PECE, see method, predictor-corrector
pendulum, 210–214
period-doubling, 172, 173
periodic, 6, 12, 17, 168
phase
– error, 105, 107
– plane, 6, 16, 103, 117, 165, 183, 184,

188–190, 193, 200
– portrait, 13
phase space, see phase plane
planets, 102, 200
population, 197, 234
– density, 234
– predators, 6
– prey, 6
potential barrier, 235
potential energy, 217
predator-prey, 8
predators, 6
predictor-corrector, see method,

predictor-corrector
prey, 6
probability, 197, 228
probability density function, 226, 227,

229, 233, 236, 239
pseudo-random number
– generator, 228–232, 240
pseudoeigenvalues, 99

rabbit, 6, 8
randn, 228, 229



Index 271

random variable, 226, 236, 239
rate constant, 14
rate of convergence, see order
recurrence relation, see equation,

difference, 30, 31
rejected time steps, 160
remainder term, 23, 34, 36, 37, 40, 48, 49
repelling, 167, 171
residual, 112, 116
rest state, see fixed point
reversibility, 203, 221
reversible isometry, 196
RK, see method, Runge–Kutta
root condition, 64, 69, 258
– strict, 64, 81, 84, 87
root locus, see boundary locus

sample mean, 229, 231, 237
sample variance, 230
SDE, see stochastic differential equation
second-order IVP, 12
separable differential equation, 189
separatrices, 211
shadowing, 190
simple harmonic motion, 16
simple root, 64
Simpson’s rule, see method, Simpson
smooth function, 23, 49
spurious fixed point, see fixed point,

spurious
spurious root, 86, 112
stability, 51
– A, 88, 93, 102, 143
– A0, 89
– absolute, 111, 195
– – for adaptive step size, 152
– – for systems, 97–102, 140–141
– – interval of, 81–88, 89, 94, 100,

136–137
– – of LMM, 79–88, 114, 189
– – of RK, 135–143
– – region of, 81–88, 88, 93, 100,

136–143, 170
– function, 136, 140, 142
– linear, 166–176
– polynomial, 81, 85, 87, 92, 102, 108,

136–137
– – quadratic, 84
– zero, 56, 61, 64–65, 75, 92, 137
starting values, 46, 61, 62, 68, 86, 100,

103
steady state, see fixed point, 4, 189
step number, 48
step size, 19, 160
– adaptive, 145–163
– history, 150

– rejected, 147, 150
stiff problems, see system, stiff
stochastic
– differential equation, 221, 231–241
– models, 197
strong convergence, 238
strong error, 237, 238
Strong Law of Large Numbers, 230
symbols
– bold-faced, 5
symplectic, 184, 203, 207–210
system
– coupled, 5
– first-order, 16, 30, 97, 192, 258
– oscillatory, 87, 102–105, 168, 183
– stiff, 102, 110, 111, 116, 159
– vector, 5

Taylor expansion, see Taylor series
Taylor series, 23, 27, 29, 43, 50, 51, 54,

59, 68, 110, 137, 155, 178, 189, 218,
238, 247–250

– generalization, 48
– several variables, 128, 166, 169,

251–252
– with remainder, 23, 36, 206, 250
Taylor series method, see method,

Taylor series
temperature, 76
time step, see step size
time variable, 4
tolerance, 146
transient, 101
trapezoidal rule, see method, trapezoidal
TS(p), see method, Taylor series

uncertainty, 225
undamped, 102
undead, see zombie
uniqueness, 4

Van der Pol oscillator, 12–13
variance, 227, 230, 239
variation of constants, 3, 16, 257
variational equation, see equation,

variational
vector magnitude, 152
volatility, 232, 234
volume preservation, 203

weak convergence, 238
weak error, 236, 238

zero stability, see stability, zero
zombie, 9
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