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SERIES EDITOR’S INTRODUCTION

The basic linear model estimated by ordinary least squares (OLS)
regression makes a good first cut at the data, but may not make a
good last cut, The Gauss-Markov assumptions upon which it rests are
powerful in concept, but demanding in practice. On the one hand, if
the dependent variable is skewed or categorical, the analyst might turn
from OLS to logit estimation. (In this series, see DeMaris, Logit Mod-
eling, No. 85; Hagenaars, Loglinear Models with Latent Variables, No.
94; Ishii-Kuntz, Ordinal Log-Linear Models, No. 97; Menard, Applied
Logistic Regression Analysis, No. 106). On the other hand, the analyst
might resort to probit, and so consult the monographs which make
that comparison (Aldrich and Nelson, Linear Probability, Logit, and
Probit Models, No. 45; Liao, Interpreting Probability Models, No. 101).
Still differently, perhaps the variables are censored, or consist of event
counts, in which case the monographs by Breen (Regression Models:
Censored, Sample Selected or Truncated Data, No. 111) and (Allison,
Event History Analysis, No. 46) merit more attention.

These departures from OLS are well and good. The problem is that
they are piecemeal. Each assumption violation receives treatment in
isolation, with special procedures. Lost is the interconnection of the
issues and the methods. However, here Professor Gill offers a unified
approach in the generalized linear model, which subsumes the basic lin-
ear model, as well as logit and other probability models, First, com-
mon probability density and probability mass functions are brought
under one roof, as the exponential family. Then, the maximum likeli-
hood function for that family of distributions is developed. After this
setup, in what constitutes the heart of the monograph (Chapter 4),
the linear model is generalized by means of a link function compati-
ble with discrete, bounded dependent variables.

With regard to software, most standard packages now support
generalized linear models, and its computational technique of itera-
tive weighted least squares (IWLS). To illustrate the application of
IWLS and the interpretation of the coefficients, the author provides

vii
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numerous original modeling exercises on real world social science
data. He examines the following questions: capital punishment in the
American states; a taxation vote for the new Scottish parliament;
standardized educational testing in California; the assignment of bills
to congressional committees; the world copper price. Such a wide
variety gives the reader a good feel for the results generated by the
method.

In generalized linear modeling, issues of residual behavior and
model fit are as important as they are with basic linear modeling,
although arriving at accepted performance benchmarks is more dif-
ficult. While these residuals are commonly not normally distributed,
normality still remains a useful diagnostic standard. Five different
kinds of residuals are available for examination: response, Pearson,
working, Anscombe, and deviance. According to Dr. Gill, the de-
viance residual is the most useful. Turning to goodness of fit, there
are also five choices: the chi-square approximation, the Akaike in-
formation criterion, the Schwartz criterion; graphs, and the summed
deviance statistic (which the author is partial to).

In social science research, the principle of Occam’s razor—
parsimony—has high value. The usual assumptions of OLS are few
and have taken analysts far. However, interval measurement and nor-
mality requirements can be barriers on the road. Generalized linear
modeling, carefully articulated by Professor Gill, helps remove those
barriers and, at the same time, preserve the parsimony principle.

—Michael S. Lewis-Beck
Series Editor




GENERALIZED
LINEAR MODELS:
A UNIFIED APPROACH

JEFF GILL
University of Florida

1. INTRODUCTION

Social scientists employ a vast array of data-analytic techniques to
explore and explain various empirical phenomenon. Many, if not
most, of these tools are imported wholesale from applied statistics.
This has been a productive research strategy since a large number
of the problems encountered by social science researchers can be
solved by well-developed and readily available statistical methodolo-
gies. Unfortunately, it is sometimes the case that in this diffusion of
intellectual material, techniques are unnecessarily treated as distinct
and particular. This is certainly true of class of regression techniques
that include: logit and probit regression, truncated distribution mod-
els, event count models, probability outcome models, and the basic
linear model. All of these (and more) are actually special cases of the
Generalized Linear Model: a single methodology for producing model
parameter estimates.

A typical social science graduate methodological education starts
with learning the linear model (actually this is where some cases also
end), followed by an introduction to discrete choice models, survival
models, counting models, and perhaps more. This leads to a very com-
partmented and necessarily limited view of the world. It also means
that a multitude of special procedures, specifications, and diagnostics
must be learned separately. Conversely, the approach taken in this
monograph is to see all of these approaches as special cases of one
generalized procedure. Therefore, the material in this work comple-
ments other texts by tying together and synthesizing seemingly distinct
tools.



This monograph explains and demonstrates a unified approach to
applying regression models in the social sciences. Once the general
framework is understood, then the appropriate choice of model con-
figuration is determined simply by the structure of the outcome vari-
able and the nature of the dispersion. This process not only leads to
a better understanding of the theoretical basis of the moedel, but also
increases the researcher’s flexibility with regard to new data types.

The basic principle behind the generalized linear model is that
the systematic component of the linear model can be transformed
to create an analytical framework that closely resembles the stan-
dard linear model but accommodates a wide variety of nonnormal
and noninterval measured outcome variables. The Gauss-Markov as-
sumptions that underlie linear model theory require that the error
component be distributed independently with mean zero and constant
variance. If the outcome variable is drawn from a nonnormal distribu-
tion, then these assumptions often cannot be met and serious errors
of estimation efficiency occur, although the linear model is robust to
mild deviations. Generalized linear models employ a “link function”
which defines the relationship between the systematic component of
the data and the outcome variable in such a way that asymptotic nor-
mality and constancy of variance are no longer required. However,
it is still important to be able to assume uncorrelated observations.
This allows the creation of a wide class of models loosened from the
restrictions of standard linear theory.

To unify seemingly diverse probabilistic forms, the generalized
approach first recasts common probability density functions and
probability mass functions into a consolidated exponential fam-
ily form. This facilitates the development of a more rigorous and
thorough theoretical treatment of the principles underlying transfor-
mationally developed linear models. The first unifying treatment by
Nelder and Wedderburn (1972) demonstrated that an understanding
of the results from applied statistical work can be greatly enhanced
by this further development of the general theory.

The approach taken here emphasizes the theoretical foundations
of the generalized linear model rather than a laundry list of applica-
tions. As a result, most of the effort will be spent on the mathematical
statistical theory that supports this construct. Several familiar distri-
butions are developed as examples, but the emphasis on theory means
that readers will be able to develop an appropriate generalized linear
model specification for their own data-analytic applications.




Model Specification

George Box is purported to have said “All models are wrong, Some
are useful.” This is an observation that developing statistical models
is necessarily a simplification and a reduction in supplied informa-
tion. Model specification is a process of determining what features of
the data are important and what features need not be reported. This
activity focuses on determining which explanatory variables to include
and which to ignore, positing a mathematical and probabilistic rela-
tionship between the explanatory variables and the outcome variable,
and establishing some criteria for success. Model specification and
implementation produce summary statistics which are hopefully suf-
ficient in the statistical and colloquial sense for unknown population
parameters of interest.

Model specification is really more art than science in that a huge
number of possible specifications can be developed from even a mod-
est set of factors.! Generally the researcher has a theoretical justi-
fication for some subset of specifications, and in most fields there
are conventions about variable inclusion. At the foundation of this
process is a trade-off between parsimony and fit. Specifying parsimo-
nious models is efficient in that less important effects are ignored.
Such models are often highly generalizable because the conditions
of applicability are more easily obtained (wide scope). However, the
more simple the model becomes, the extreme being describing all out-
come variable behavior by the mean p, the greater the probability that
the error term contains important systematic information, holding all
other considerations constant. In the worst case, this leads to biased
estimators. Also, whenever there is any stochastic component to the
model, whether it leads to bias or not, the model is literally wrong in
the Box sense mentioned previously.

We can also develop a model that is completely correct though
limited in its ability to describe the underlying structure of the data.
Such a model, called saturated or full, is essentially a set of param-
eters equal to the number of data points, each indexed by an in-
dicator function. So every parameter is exactly correct since it per-
fectly describes the location of an observed data point. However, this
model provides no data reduction and has limited inferential value.?
Saturated models are tremendously useful heuristic devices that al-
low us to benchmark hypothesized model specifications (¢f. Lindsey,
1997, pp. 214-215, and Neter, Kutner, Nachtsheim, & Wasserman,



1996, pp. 586-587). Later it will be shown that the saturated model
is required to create a residual-like deviance for assessing the quality
of fit for a tested specification. Typical statistical models differ from
saturated models in that they are an attempt to reduce the size and
complexity of an observed set of data down to a small number of
summary statistics. These models trade certainty for greater simplic-
ity by making inferential claims about underlying population values.
The estimated parameter values from this procedure are quite liter-
ally wrong, but by providing the associated level of uncertainty the
degree of reliability is assessed.

In general, the purpose of model specification is to develop ¥, a set
of fitted values from the model that closely resembles the observed
outcome variable values, Y. The closer ¥ is to Y, the more we feel
that our model accurately describes reality. However, this goal is not
solitary or we would simply be content with the saturated model.
Thus, 2 good model balances the competing objectives of parsimony
and fit,

Generalized linear models do not differ in anty important way from
regular linear models in terms of the process of model specification
except that a link function is included to accommodate noncontinuous
and possibly bounded outcome variables. Therefore, all of the admo-
nitions about the dangers of data mining, star-gazing, inverse prob-
ability misinterpretation, and probabilistic theory confirmation apply
(Gill, 1999; Greenwald, 1975; Leamer, 1978; Lindsay, 1995; Miller,
1990; Rozeboom, 1960). It is also important to be aware that a single
data set can lead to many perfectly plausible model specifications and
subsequent substantive conclusions (Raftery, 1995).

Some important restrictions should be noted. Generalized lincar
models require uncorrelated cases. Time series and spatial problems
can be accommodated but not without additional and sometimes com-
plicated enhancements. Also, there can be only one error term speci-
fied in the model. While the distribution of this error term is no longer
required to be asymptotically normal with constant variance (as in the
linear model), approaches such as cell means models with “stacked”
error terms are excluded in the basic framework. Finally, generalized
linear models are inherently parametric in that the form of the likeli-
hood function is completely defined by the researcher. Relaxation of
this requirement through the use of smoothers leads to the more flex-
ible but more complicated form referred to as generalized additive
models (Hastie & Tibshirani, 1990).
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Prerequisites and Preliminaries

Probability Distributions

Distributions of random variables are described by their probability
mass functions (discrete case, PMF) or their probability density func-
tions (continuous case, PDF). Probability mass functions and prob-
ability density functions are just probabilistic statements (probability
functions specifically) about the distribution of some random variable,
Y, over a defined range (support). In the discrete case it is denoted
P(Y = y) for the probability that the random variable Y takes on
some realization y, and in the continuous case we just use f(y). If the
random variable is conditioned on known or unknown terms, then it
is common to be explicit about this relationship in the notation. For
example, the distribution of a normal random variable is conditioned
on the population mean (1) and variance (o?), and is thus denoted
fylu, o?).

Example 1.1: Uniform Distributions over the Unit Interval. A vari-
able that is uniformly distributed over [0,1] has the probability
function,

k-category discrete case (PMF): continuous case (PDF):

1 _ ——, fora=0<y
P(Y:y)m{k’ for y"”.lsza“"k f(y)m b—a <b=1
0, otherwise 0, otherwise
(1.1)

There is no ambiguity here; a uniform random variable over [0, 1] can
be discrete, or it can be continuous. A discrete example is the coding
of the outcome of the toss of a fair coin, and a continuous example
is perhaps the unconditional probability of a judicial decision. The
essential requirement is that the specified PMF or PDF describe the
characteristics of the data generation process: bounds and differences
in probabilities. The uniform distribution is useful when describing
equal probability events over some unknown range ([0, 1] in this case).

There are some mathematical necessities required for probability
functions to be well defined. Probability distributions must be defined
with regard to some measure, i.c., specified over some measure space.
This means that a probability function has no meaning except with



regard to a measure of the space to which it is applied so that there
is some structure on the set of outcomes. Define a o-algebra as a
class of outcomes that includes (1) the full sample space (all possi-
ble outcomes), (2) the compliment of any included outcome, and (3)
the property that the union of any countable collection of outcomes
is also included. A measure is a function that assigns nonnegative val-
ues to outcomes and collections of outcomes in the o-algebra. The
classic example of a measure is the Lebesgue measure: some specified
k-dimensional finite Euclidean space in which specific subregions can
be uniquely identified. Another germane measure is the counting mea-
sure which is simply the set of integers from zero to infinity or some
specified limit. Thus, these measures characterize the way outcomes
are treated probabilistically.

Greatly simplified, a probability function on a given measure has
the requirements that something must happen with probability one,
nothing happens with probability zero, and the sum of the prob-
ability of disjoint events is equal to the probability of the union of
these events. Furthermore probabilities are bounded by zero and one
over this measure and any event outside of the measure has prob-
ability zero of occurrence. This theoretical “tidying up” is necessary
to avoid pathologies such as negative probabilities and incomplete
sample spaces. It is also required that PMFs sum to one and PDFs
integrate to one (thus termed “proper”). Violation of this stipulation
is equivalent to saying that the probability function uniformly under-
estimates or overestimates the probability of occurrences.

I will often talk of a family of distributions to indicate that
parameterizations alter the characteristics of the probability function.
For instance the Gaussian-normal family of distributions is a famil-
jar set of unimodal symmetric distributions which vary by location,
determined by u, and dispersion or scale, determined by o?. The
idea of a family is very useful because it reminds us that these are
mathematically similar forms which change only by altering specified
parameter values. In particular, I will focus on the exponential family
of distributions in the development of generalized linear models.

The Linear Model

It is assumed that the reader is familiar with the multiple regression
linear model in matrix notation summarized by

Y=XB+e, (12)
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where Y is an n x 1 column vector containing the outcome variable,
X is an n x k matrix of explanatory variables with rank % and a lead-
ing column vector of ones, B is a k x 1 column vector of estimated
coefficients, and € is a #» x 1 column vector of disturbances. On the
right-hand side, X is called the systematic component and € is called
the stochastic component.

As the name implies, generalized linear models are built on the
framework of the classic linear model which dates back to the 19th
century {Gauss and Legendre). The linear model, as elegant as it
is, requires a relatively strict set of assumptions. The Gauss-Markov
theorem states that if:

1. the relationship between each explanatory variable and the ocutcome
variable is approximately linear in structure,

2. the residuals are independent with mean zero and constant variance,

3. there is no correlation between any regressor and disturbance,

then the solution produced by selecting coefficient values that mini-
mize the sum of the squared residuals is unbiased and has the lowest
total variance among unbiased linear alternatives. The first two
restrictions are eliminated with the basic generalized linear model
approach and the third can be relaxed with more advanced forms.
However, the dependence of the variance on the mean function
must be known (except in the extension based on quasi-likelihood
functions). Generalized linear models provide a way to analyze the
effects of explanatory variables in a way that closely resembles that
of analyzing covariates in a standard linear model, except that the as-
sumptions are far less confining. The key is the specification of a link
function which links the systematic component of the linear model
(XB) with a wider class outcome variables and residual forms.

Linear Algebra and Calculus

Models and results will be discussed in matrix notation, but no
linear algebra beyond Greene (2000, Chap. 1), or the first half
of an introductory undergraduate linear algebra text is required.
Some limited calculus knowledge is quite helpful to understanding
the theoretical underpinnings of the generalized linear model. This
monograph will assume familiarity with calculus at roughly the level
of Kleppner and Ramsey’s (1985) Quick Calculus or more generally



a first semester course. The discussion remains useful to someone
without calculus knowledge with the sole exception that some of the
derivations would be difficult to follow.

Software

Understanding generalized linear models is not necessarily useful
without the means of applying this understanding in practice. Con-
sequently, software, scripts, supporting documentation, data for the
examples, and some extended mathematical derivations are avail-
able freely at the author’s webpage: httpi/iweb.clas.ufl.edu/~jgill.
Resources and worked examples are included for several general
purpose and programming environment packages: Splus, R, Gauss,
SAS, SPSS, Stata, and LIMDEP.

Originally GLIM (Generalized Linear Interactive Modeling, Baker &
Nelder, 1978) was the only package that supported generalized linear
models and incorporated the associated numerical technique: iterative
weighted least squares. However, virtually every popular package now
has appropriate routines. Nonetheless, the effect that GLIM had on
the development of generalized linear models was enormous. Since
widespread use of the latest version, GLIM 4, has faded considerably,
software support is not included on the author’s webpage.

Looking Forward

The plan of this monograph is as follows. I begin with a detailed
discussion of the exponential family of distributions. This is impor-
tant because the basic setup of generalized linear models applies only
to parametric forms that fit this category. Next, the likelihood func-
tion for the common exponential family is derived, and from this we
produce the mean and variance functions. The unified approach is
apparent here because regardless of the original form of the prob-
ability function, the moments are derived in exactly the same manner.
The next section introduces the linear structure and the link function
which allows the generalization to take place. This idea represents the
core of the theory. The computational estimation procedure for gen-
eralized linear models is introduced, and finally residuals and model
fit are discussed in detail. Throughout, examples are provided as prac-
tical illustrations of applying the generalized linear model to actual
data,
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2, THE EXPONENTIAL FAMILY

The development of the theory of the generalized linear model is
based upon the exponential family of distributions.® This formal-
ization simply recharacterizes familiar functions into a formula that
is more useful theoretically and demonstrates similarity between
seemingly disparate mathematical forms. It should be noted that
the exponential family form refers to a method in which all of the
terms in the expression for these PDFs and PMFs are moved into
the exponent to provide common notation. This does not imply some
restrictive relationship with the well-known exponential probabil-
ity density function. While generalized linear models require that
the parameterization specification be restricted to cases that can be
transformed to this exponential family form, it is done purely for
computational reasons.

Justification

Fisher (1934) developed the idea that many commonly applied
probability mass functions and probability density functions are re-
ally just special cases of a more general classification he called the
exponential family. The basic idea is to identify a general mathemat-
ical structure to the function in which uniformly labeled subfunctions
characterize individual differences. The label “exponential family”
comes from the convention that subfunctions are contained within
the exponent component of the natural exponential function (i.e., the
irrational number e = 2.718281 ... raised to some specified power).
This is not a rigid restriction as any subfunction that is not in the
exponent can be placed there by substituting its natural logarithm.

The primary payoff to reparameterizing a common and familiar
function into the exponential form is that the isolated subfunc-
tions quite naturally produce a small number of statistics which
compactly summarize even large data sets without any loss of in-
formation. Specifically, the exponential family form readily yields
sufficient statistics for the unknown parameters. A sufficient statis-
tic for some parameter is one which contains all of the information
available in a given data set about the parameter. For example, if
we are interested in estimating the true range, {a, b}, for some uni-
formly distributed random variable (Example 1.1, but generalizing
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the bounds): X; € [a, b]VX,. Then a sufficient statistic is the vector
containing the first and last order statistics: [x(, X()] from the sam-
ple of size n (i.e., the smallest and largest of the sampled values).
No other elements of the data and no other statistic that we could
construct from the data would provide further information about the
limits. Therefore [xyy, X(»)] provides “sufficient” information about
the unknown parameters from the given data.

It has been shown {Barndorff-Nielsen, 1978, p. 114) that exponen-
tial family probability functions have all of their moments. The nth
moment of a random variable about an arbitrary point, a is u, =
E[(X — a)"], and if a is equal to the expected value of X then
this is called the nth central moment. The first moment is the arith-
metic mean of the random variable X, and the second moment along
with the square of the first can be used to produce the variance:
VAR[X] = E[X?] - E[X]?. While we are often interested only in
the first two moments, the infinite moment property is very useful in
assessing higher order moments in more complex settings. In general,
it is straightforward to calculate the moment generating function and
the cumulant generating function for exponential family forms. These
are simply functions that provide any desired moment or cumulant
{logged moments) with guick calculations.

Two important classes of probability density functions are not mem-
bers of the exponential family. The student’s ¢ and the uniform distri-
bution cannot be put into the form of (2.1). In general, a probability
function in which the parameterization is dependent on the bounds,
such as the uniform distribution, are not members of the exponen-
tial family. Even if a probability function is not an exponential fam-
ily member, it can sometimes qualify under particular circumstances.
The Weibull probability density function (useful for modeling failure
times), f(yly, B) = (y/B)y"'exp(~y?/B) for x = 0,7, 8 > 0, is
not an exponential family form since it cannot be rewritten in the
required form (2.2). However, if y is known {(or we are willing to .
assign an estimate), then the Weibull PDF reduces to an exponential
family form.

Some widely used members of the exponential family that facilitate
generalized linear models but are not discussed here include: beta,
multinomial, curved normal, Dirichiet, Pareto, and inverse gamma.
The theoretical focus of this monograph is intended to provide read-
ers with an understanding necessary to successfully encounter these
and other distributional forms.
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Derivation

Suppose we consider a one-parameter conditional probability den-
sity function or probability mass function for the random variable Z
of the form: f(zlZ). This is read as “f of z given zeta.” This function,
or more specifically this family of PDFs or PMFs, is classified as an
exponential family if it can be written in the form,

f(zl8) = expl(2)u({)]r(2)s(2), (2.1)

where: r and ¢ are real-valued functions of z that do not depend on
{, and s and u are real-valued functions of { that do not depend on
z, and r(z) > 0,5({) > 0 vz, £.

Furthermore, (2.1) can easily be rewritten as

£(elg) = explt(2)uld) + log(r(@) + g (@) (22)

interaction additive component
component

The second part of the right-hand side of the equation is labeled the
“additive component” because the summed components are distinct
and additive with regard to z and {. The first part of the right-hand
side is labeled the “interaction component” because it is reminiscent
of the interaction specification of two parameters in a standard linear
model. In other words, it is the component that reflects the product-
indistinguishable relationship between z and {. It should be noted
that the interaction component must specify #(z)u(¢) in a strictly mul-
tiplicative manner. So a term such as —(1/8)y”, as seen in the expo-
nent of the Weibull PDF, disqualifies this PDF from the exponential
family classification.

In addition, the exponential structure of (2.2) is preserved under
random sampling such that the joint density function of independent,
identically distributed (i.id}) Z = {Z,, Z,,..., Z,} is

f(212) = exp [u(:) Yz + Y log(r(z)) + 1og(s(z))]. @3
i=] e

This means that the joint distribution of a systematic random sample
of variates with exponential family marginal distributions is also an
exponential family form. While the following chapters develop the
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theory of generalized linear models with (2.2) for simplicity, the joint
density function, (2.3), is the more appropriate form since data are
used. Fortunately there is no loss of generality since the joint density
function is also an exponential family form. If it makes the exposition
easier to follow, picture (2.2) with subscript { as an index of the data:

f(z18) = exple(z)u(Z) + log(r(z;)) + log(s({))]-

Canonical Form

The canonical form is a handy simplification that greatly facilitates
moment calculations as shown in Chapter 3. It is a one-to-one trans-
formation (i.e., the inverse function of this function returns the same
unique value) of terms of the probability function that reduces the
complexity of the symbolism and reveals structure. It turns out to be
much easier to work with an exponential family form when the for-
mat of the terms in the function says something directly about the
behavior of the data.

If 1(z) = z in (2.2), then we say that this PDF or PMF is in its
canonical form for the random variable Z. Otherwise we can make the
simple transformation: y = £(z) to force a canonical form. Similarly,
if w({) = ¢ in (2.2), then this PDF or PMF is in its canonical form
for the parameter {. Again, if not, we can force a canonical form by
transforming: 8 == u({), and call # the canonical parameter.

In many cases it is not necessary to perform these transformations
as the canonical form already exists or the transformed functions are
tabulated for various exponential families of distributions. The final
form after these transformations is the following general expression:

f(y16) = exp[y6 — b(8) + c(¥)]. 24)

Note that the only term with both y and ¢ is a multiplicative term.
McCullagh and Nelder (1989, p. 30) call b(0) the “cumulant function,”
but b(8) is also often called a “normalizing constant” because it is
the only nonfunction of the data and can therefore be manipulated to
ensure that (2.4) sums or integrates to one. This is a minor point here
as all of the commonly applied forms of (2.4) are well behaved in this
respect. More importantly, b(6) will play a key role in calculating the
moments of the distribution. In addition, the form of 8, the canonical
link between the original form and the # parameterized form, is also
important. The canonical link is used to generalize the linear model by
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connecting the linear-additive component to the nonnormal outcome
variable.

The form of (2.4) is not unique in that linear transformations can
be applied to exchange values of y and 8 between the additive com-
ponent and the interaction component. In general, however, common
families of PDFs and PMFs are typically parameterized in a standard
form which minimizes the number of interaction terms. Also, it will
sometimes be helpful to use (2.4) expressed as a joint distribution
of the data, particularly when working with the likelihood function
(Chapter 3). This is just:

f(y|6) = 3XP!: Zn:J’iB — nb(0) + ic(}'i):l- (2.5)
i=1 i=1

The canonical form is used in each of the developed examples in
this monograph. There is absolutely no information gained or lost
by this treatment, rather the form of (2.5) is an equivalent form to
(2.3) where certain structures such as 8 and 5(8) are isolated for
theoretical consideration. As will be shown, these terms are the key
to generalizing the linear model.

Multiparameter Models

Up until now only single parameter forms have been presented. If
generalized linear models were confined to single parameter density
functions, they would be quite restrictive. Suppose now that there
are k parameters specified. A k-dimensional parameter vector, rather
than just a scalar @, is now easily incorporated into the exponential
family form of (2.4):

k
f(y10) = GXP[ > y8; - b(6)) + C(y)]- (2.6)
=l

J’m

Here the dimension of 8 can be arbitrarily large, but is often as small
as 2, as in the normal (8 = {u, 6*}) or the gamma (8 = {a, 8}).

In the following examples, several common probability functions
are rewritten in exponential family form with the intermediate steps
shown (for the most part). It is actually not strictly necessary to show
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the process since the number of PDFs and PMFs of interest is rela-
tively small. However, there is great utility in seeing the steps both as
an instructional exercise and as a starting point for other distributions
of interest not covered herein. Also, in each case the b(8) term is
derived. The importance of doing this will be apparent in Chapter 3.

Example 2.1: Poisson Distribution. The Poisson distribution is often
used to model counts such as the number of arrivals, deaths, or fail-
ures, in a given time period. The Poisson distribution assumes that
for short time intervals, the probability of an arrival is fixed and pro-
portional to the length of the interval. It is indexed by only one (nec-
essarily positive) parameter which is both the mean and variance.

Given the random variable, Y, distributed Poisson with expected
number of occurrences per interval u, we can rewrite the familiar
Poisson PMF in the following manner:

et
fOl) = ——— = exp[y log(p) — p miOg(yf)]-
y St e !

¥ O I 4

In this example, the three components from (2.4) are labeled by the
underbraces. The interaction component, ylog(u), clearly identifies
9 = log(u) as the canonical link. Also b(8) is simply 4. Therefore,
the () term parameterized by  (i.e., the canonical form) is obtained
by taking the inverse of 8 = log(s) to solve for u. This produces:

Obviously the Poisson distribution is a simple parametric form in this
regard.

Example 2.2: Binomial Distribution. The binomial distribution sum-
marizes the outcome of multiple binary outcome (Bernoulli) trials
such as flipping a coin. This distribution is particularly useful for mod-
eling counts of successes or failures given a number of independent
trials such as votes received given an electorate, international wars
given country-dyads in a region, or bankruptcies given company starts.

Suppose now that Y is distributed binomial (n, p) where Y is the
number of “successes” in a known number of » trials given a prob-
ability of success p. We can rewrite the binomial PMF in exponential
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family form as*
FOln, p) = (j)py(a oy
= exp [ log (;) + ylog(p) -+ (n — y)log(1 - p)]

= eXp ylog( ' ) ~{~nlog(l - p))+log (n) .
e e )
yo oo e(y)

From the first term in the exponent, we can see that the canonical link
for the binomial distribution is 6 = log( p/(1 —~ p)), so substituting the
inverse of the canonical link function into b(#) produces (with modest
algebra):

b(6) = [-nlog(1 - p)]

= nlog(l + exp(8)).
f=log{ p/(1- p}}

So the expression for the b(8) term in terms of the canonical param-
eter is:

Ib(e) = nlog(1l + exp(8)) [

In this example, n was treated as a known quantity or simply ignored
as a nuisance parameter. Suppose instead that p was known and we

developed the exponential family PMF with n as the parameter of
interest,

fQyln, p) = CXP[log (;z) + ylog(p) + (n — y)log(1 — p)}
= expflog(n!) —log({n — y)1) = log(y)) +---]. (2.7

However, we cannot separate n and y in log({n ~ y)!) and they are
not in product form, so this is not an exponential family PMF in this
context.
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Example 2.3: Normal Distribution. The normal distribution is with-
out question the workhorse of social science data analysis. Given its
simplicity in practice and well-understood theoretical foundations, this
is not surprising. The linear model (OLS) is based on normal dis-
tribution theory and, as we shall see in Chapter 4, this comprises a
very simple special case of the generalized linear model.

Often we need to explicitly treat nuisance parameters instead of
ignoring them or assuming they are known as was done in the pre-
vious binomial example. The most important case of a two parameter
exponential family is when the second parameter is a scale param-
eter. Suppose i is such a scale parameter, then expression (2.4) is
rewritten: ‘

b(6)
a()

When a given PDF or PMF does not have a scale parameter then
a() = 1, and (2.8) reduces to (2.4). In addition, (2.8) can be put
into the more general form of (2.6) if we define 8 = {6, a(y)™'}
and rearrange. However, this form would no longer remind us of the
important role the scale parameter plays.

The Gaussian normal distribution fits this class of exponential fami-
lies. The subclass is called a location-scale family and has the attribute
that it is fully specified by two parameters: a centering or location
parameter, and a dispersion parameter, It can be rewritten,

f(yilu': 0'2) = \/'2";}*&"2' exp[ - 2_2__5(}’ - #)2}

f(y18) = exp[ +c(y, tﬁ)} (2.8)

“6XP[-~ glog(ZW“ —m—(y —2yp+p )]
2 2
By o 222 2
uexpli(\_f: > )/&_J+ 5 (0_2+10g(21m ))]
yé "‘2’: a(y) .
(ny)

Note that the p parameter (the mean) is already in canonical form
(6 = p). so b(#) is simply:

b(8) =&
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This treatment assumes that g is the parameter of interest and o2
is the nuisance parameter, but we might want to look at the oppo-
site situation. However, in this treatment, M is not considered a scale
parameter. Treating ¢ as the variable of interest produces,

i 1
FOle, 0'2) = eXp l: —3 iog(2mr2 - 2—03()?2 —2yp— Mz):!

1 1 -1 2
= eXp [ P (y,u - -éyz) E3 (log(21rarz) - 53):{
Sy N .

2] v 4 -
z b(8)

Now the canonical lin'k is0=1/0%50¢% = #-1, and we can calculate
the new b(8):

b(6) = -«;- (iog(?.mrz) - g.;.)

1 1 1,
= m—iiog(z'n-) + 3 log(8) + la 6.

Example 2.4: Gamma Distribution. The gamma distribution is par-
ticularly useful for modeling terms that are required to be nonnega-
tive such as variances, Furthermore, the gamma distribution has two
important special cases: the y? distribution is gamma (p/2, %) for p
degrees of freedom, and the exponential distribution is gamma (1, B),
both of which arise quite often in applied settings.

Assume Y is now distributed gamma indexed by two parameters:
the shape parameter, and the inverse-scale parameter, The gamma
distribution is most commonly written as

1
fOle, B) = F—(g)"ﬁ“}’“"le'm, ya, B >0

For our purposes, a more convenient form is produced by transform-
ing: @ = 8, B = 8/pn. The exponential family form of the gamma is
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produced by

&
_[? | -8y

zexp[smg(swalog(u)—1og(r(8))+(a—1)log(y)—5}]

mexp[(— i—y—bg(u)) / ;1§
s e Vg

e
9y b(8) a(y)

+8log(8)+(8-1)log(y) —Iog(F(S)Z].
c(yft#) '

From the first term in the last equation, the canonical link for the
gamma family variable p, is 8 = —1/p. So b(#) = log(p) = log(—1/6)
with the restriction: 8 < 0. Therefore:

[ b(6) = —log(=6) |

Example 2.5: Negative Binomial Distribution. The binomial distri-
bution measures the number of successes in a given number of fixed
trials, whereas the negative binomial distribution measures the num-
ber of failures before the rth success.> An important application of
the negative binomial distribution is in survey research design. If the
researcher knows the value of p from previous surveys, then the neg-
ative binomial can provide the number of subjects to contact to get
the desired number of responses for analysis.

If Y is a distributed negative binomial with success probability p
and a goal of r successes, then the PMF in exponential family form is
produced by

fOln py = (r i );,“ 1) p(1-py

—1
= exp[ylog(l — p)+rlog(p) +log (r+y )]
N, ot itiiiss? L ——— y
ey
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The canonical link is easily identified as 6 = log(1 — p). Substituting
this into b(8) and applying some algebra gives

| 5(8) = rlog(1 — exp(6)) |

We have now shown that some of the most useful and popular
PMFs and PDFs can easily be represented in the exponential family
form. The payoff for this effort is yet to come, but it can readily be
seen that if b(6) has particular theoretical significance then isolating
it as we have in the 8 parameterization is helpful. This is exactly the
case as b(9) is the engine for producing moments from the exponen-
tial family form through some basic likelihood theory. In addition, this
chapter has a utility even for those sceptical of the generalized linear
model framework. The reparameterization of commonly used PDFs
and PMFs into the exponential family form highlights some well-
known, but not necessarily intuitive relationships between parametric
forms. For instance, virtually all introductory statistics texts explain
that the normal distribution is the limiting form for the binomial dis-
tribution. Setting the first and second derivatives of the b(8) function
in these forms equal to each other gives the appropriate asymptotic
reparameterization: p = np, o = np(1 — p).

3. LIKELIHOOD THEORY AND THE MOMENTS

Maximum Likelihood Estimation

To make inferences about the unknown parameters, we would like
to develop the likelihood and score functions for (2.4). Maximizing
the likelihood function with regard to coefficient values is without
question the most frequently used estimation technique in applied
statistics. Since asymptotic theory assures us that for sufficiently Jarge
samples the likelihood surface is unimodal in & dimensions for expo-
nential family forms (Fahrmeir & Kaufman, 1985; Jgrgensen, 1983;
Wedderburn, 1976), then this process is equivalent to finding the
k-dimensional mode.
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Our real interest lies in obtaining the posterior distribution of the
unknown k-dimensional @ coefficient vector, given an observed matrix
of data values: f{07X). This allows us t0 determine the “most likely”
values of the @ vector using the k-dimensional mode (maximum likeli-
hood inference, Fisher, 1925), or simply 10 probabilistically describe
this distribution (as in Bayesian inference). This posterior is produced
by the application of Bayes law,

F(O1X) = f(xw)i;—é%, 3.1

where f(X|0) is the n-dimensional joint PDF or PMF of the data
(the probability of the sample for a fixed 8) under the assumption
that the data are independent and identically distributed accord-
ing to f(X; @) Vi=1,....1 and P(8), P(X) are the corresponding
unconditional probabilities.

The Bayesian approach integrates out P(X) (or ignores it using
proportionality) and stipulates an assumed (prior) distribution on 8,
thus allowing fairly direct computation of f (8|X) from (3.1). If we
regard f(X[0) as a function of 8 for given observed data X (we can
consider the observed data as fixed, P(X) = 1, since it occurred),
then L{0|X) = f(X|8) is called a likelihood function (DeGroot, 1986,
p. 339). The maximum likelihood principle states that an admissible 0
that maximizes likelihood function probability (discrete case) or den-
sity (continuous case), relative to alternative values of 0 provides the
o that is most “likely” to have generated the observed data: X, given
the assumed parametric form. Restated, if 8 is the maximum likeli-
hood estimator for the unknown parameter vector, then it is neces-
sarily true that L(B{X) = L(8]X) V8 € ©, where © is the admissible
range of 8.

The likelihood function differs from the inverse probability, f{8{X),
in that it is necessarily a relative function since probabilistic uncer-
tainty is a characteristic of the random variable X not the unknown but
fixed 0. Barnett (1973, p. 131) clarifies this distinction: “Probability re-
mains attached to X, not 8; it simply reflects inferentially on 8.” Thus,
maximum likelihood estimation substitutes the unbounded notion of
tikelihood for the bounded definition of probability (Barnett, 1973,
p. 13%; Casella & Berger, 1990, p. 266; Fisher, 1922, p. 327, King,
1989, p. 23). This is an important theoretical distinction, but of littlc
significance in applied practice.
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Typically, it is mathematically more convenient to work with the
natural log of the likelihood function. This does not change any of the
resulting parameter estimates because the likelihood function and the
log likelihood function have identical modal points. Using (2.4), with
the scale parameter added (as in the normal example) and returning
to a single parameter of interest, 4, case accompanied by a scale pa-
rameter, a(¢), the basic likelihood function is very simple:

16, wly) = log(f(y16, ¥))

= tog(exp[ YD oy, )]
=220 sy, (32)

It is certainly not a coincidence that working with the natural log of
the exponential family form simplifies our calculations. One of the
reasons for casting all of the terms into the exponent is that at this
stage the exponent becomes expendable and the terms are easy to
work with,

The score function is the first derivative of the log likelihood func-
tion with respect to the parameters of interest. For the time being the
scale parameter, 4, is treated as a nuisance parameter. The resulting
score function, denoted as (84, y), is produced by

; &
(61, ¥) = 2101w, )

3 ry6— b(6)
= %[W + ¢y, !!’)]
_ ¥ = 9/99 b(9) ’ng)b ) (3.3)

Setting /(6}y, y) equal to zero and solving for the parameter of inter-
est gives the maximum likelihood estimate, 8. This is now the most
likely value of 6 from the parameter space @ treating the observed
data as given: § maximizes the likelihood function at the observed
values. The Likelihood Principle (Birnbaum, 1962) states that once
the data are observed, and therefore treated as given, all of the avail-
able evidence for estimating # is contained in the likelihood function,
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K8, ¢ly). This is a very handy data reduction tool because it tells us
exactly what treatment of the data is important to us and allows us to
ignore an infinite number of alternates.

Suppose we use the notation for the exponential family form
expressed as the joint probability function of the observed in-
dependent, identically distributed (ii.d) data (25): f(y{8) =
exp{27,y,8 — nb(0) + ELlc(y,.)]. Setting the score function from
this joint PDF or PMF equal to zero and rearranging gives the
likelihood equation,

2ot =n mg(b(e)) (3.4)

~where %t(y;) is the remaining function of the data, depending on
the form of the PDF or PME The underlying theory is remarkably
strong. Solving (3.4) for the unknown coefficient produces an esti-
mator that is unique (a unimodal posterior distribution), consistent
(converges in probability), and asymptotically efficient (the variance
of the estimator achieves the lowest possible value as the sample size
becomes adequately large: the Cramér-Rao lower bound). This com-
bined with the central limit theorem gives the asymptotic normal form

for the estimator: /(8 — B)W»n(G 2.9)- Furthermore, Z#(y;) is a suf-
ficient statistic for 8, meaning that all of the relevant information
about § in the data is contained in %t(y;). For example, the normal
log likelihood expressed as a joint exponential family form as in (2.5)
is 108, dly) = (uZy, — ap?/2)/a? — (1/20%)5y} — (n/2) log(2ma?).
So, t{y) = Zy;, 8/88(nu?/2) = ny and equating gives the maximum
likelihood estimate of p to be the sample average which we know
from basic texts: (1/n)Zy;.

Calculating the Mean of the Exponential Family

An important quantity to calculate is the mean of the PDF or PMF
in the context of (2.4). The generalization of the linear model is done
by connecting the linear predictor, 8 = X, from a standard linear
models analysis of the explanatory variables to the nonnormal out-
come variable through its mean function. Therefore, the expected
value (first moment) plays a key theoretical role in the development
of generalized linear models. The expected value caleulation of (2.4)
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with respect to the data (Y) is

y = 0/36b(6)7
EY[_"“E”(‘;,;“}“—"] =0,
¥ — 3/56b(6)
“““Wf (»d(y) =0,
[ 10y [ ZDs0)dy=o, 9
[r0a-Z2 [ sy =o.
Y Y
E£(Y] 1

The last step requires general regularity conditions® with regard to the
bounds of integration and all exponential family distributions meet
this requirement (Casella & Berger, 1990). From this derivation,” we
get the wonderfully useful result that

E[Y] = %b(6)]

So all that is required from (2.4) to get the mean of a particular expo-
nential family of distributions, a quantity I will call p for uniformity
across examples, is b(8). This is an illustration of the value of express-
ing exponential family distributions in canonical form, since the first
derivative of b(8) immediately produces the first moment.

Example 3.1: Mean for the Poisson Probability Mass Functions, The
procedure for obtaining the expected value (mean) is just to perform
the differentiation of b(8) with regard to 8 and then substitute in the
canonical link and solve. Generally this is a very simple process.

Recall that for the Poisson distribution: the normalizing constant is
b(8) = exp(8), and the canonical link function is 8 = log(w). So

3 J
%b(f)) =3 exp(6) = 3XP(9)|g=mg(#) = H
Of course the result that

for a Poisson distributed random variable is exactly what we would
expect.
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Example 3.2: Mean for the Binomial Probability Mass Function.
For the binomial distribution, b(8) = n log(l + exp(6)), and
6 = log(p/(1 — p)). Therefore, from the following we get the
mean function,

%5(9) - :%(n log(1 + exp(8)))

= n{1+ exp())~! exp( 6)[9m]0g(p/(l~l,))

= n(l + exp(!og(1 f p)))w} e"P(k’g(pﬁ 1))

=n1-p)(557),

where some algebra is required in addition to taking the derivative.

Once again

is the expected result from standard moments analysis.

Example 3.3: Mean for the Normal Probability Density Function. The
normal form of the exponential family has b(8) = 8°/2, and simply
¢ = p. Therefore,

¥ 3 /&
—=b(0) = 55(“5") =0}, (3.6)

This is the most straightforward and important case:

Euen

Example 3.4: Mean for the Gamma Probability Density Function. Re-
call that for the gamma exponential family form, 8§ = —1/u and
b(9) = —log(—#). This produces:

d

p) 1
550(0) = —5(~log(=0)) = = glommtyn = 1

For the gamma distribution, we found that

[Ei=2)
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This is equivalent to E[Y] = «/B when the gamma PDF is expressed
in the familiar form;

fQle, B) = F("S Y le B, (u=oaf,8=a).

Example 3.5: Mean for the Negative Binomial Probability Mass Func-

tion. For the negative binomial distribution, b(6) = r log(1 —exp{#)),
and 8 = log(1 — p). The mean is obtained by

b(B) r log(1 — exp(8))

- r(l = exp(8))™ €xp(8)] 051
1 —
m

So for the negative binomial we get the mean function

E[Y]=rit|

While this may seem like an inordinate amount of effort to specify
mean functions for commonly used distributions, the value lies in fur-
ther understanding the unified approach that results from expressing
probability functions in exponential family form. The mean function
is pivotal to the working of generalized linear models because, as we
see in Chapter 4, the link function connects linear predictor to the
mean of the exponential family form.

Calculating the Variance of the Exponential Family

Just as we have derived the first moment in the previous text, we can
obtain the variance from the second moment. Since E[Y]=3/20b(0)
and I(8, y|y) = 0, then the variance calculations for the exponential
family form are greatly simplified. First we obtain the variance and
derivative of the score function and then apply a well-known mathe-
matical statistics relationship.
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The variance of the score function is

VARU(B,l#iy)]=E[(f(6,t!fly)—-E{l'(e,¢|y)])2]=5[(2(9,¢|y)m0)2]
- E[(Mﬂa E[(y—a/aab(e))z]

a(y) 2*(¥)
(wa[Y])Z]
= B e
[ a*(¥)
1
= WVAR{Y]. (3.7)
The derivative of the score function with respect to 8 is
3 8 (y—3/30b(8) 1 &
Ziown =5 ) = amaet® 69

The utility of deriving (3.7) and (3.8) comes from the relation:
E[(I(8, $1y))*] = E(—d/3061(6, w|y)) for exponential families (Casella
& Berger, 1990, p. 312). This means that we can equate (3.7) and
(3.8) to solve for VAR[Y],

2

1 1 4
WVAR{Y] = mz&ib(a),
VAR[Y] = a(rj;)g;b(a). (3.9)

We now have expressions for the mean and variance of Y expressed
in the terms of the exponential family format (2.4) with the a(y) term
included.

Example 3.6: Variance for the Poisson Probability Mass Function.

g 3
VAR[Y] = () 2535(6) = 1525 &XP(D)]gmig(y = XP0B() = b
Once again

VAR[Y] = p

is the expected result.
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Example 3.7: Variance for the Binomial Probability Mass Function.

VAR[Y] = a(#)2b(0)

562
= 13.52_(,1 log(1 + exp(8)))
= :;%("(1 + exp(6)) ™! exp(8))

= n exp(6)[(1 + exp(8))™*
~ (14 exp(6))~2 3@(9)]le=:og(p/(1~p))

(2 155) " - (0 725) )

= np(l - p).

[ VAR[Y] = np(1 - p) |

is the familiar form for the variance of the binomial distribution.

Example 3.8: Variance for the Normal Frobability Density Function,

7 r* 3
VAR{Y]ma(ap) b(f)) 2362(-2—) o? =0, (3.10)

VAR[Y] = ¢2

is the obvious result.

Example 3.9: Variance for the Gamma Probability Density Function.

2
VAR[Y] = a(9) 2500 = + 2~ tog(-0)) = 12 (L)
1 2

= “5((—1)9_2”0:—1/# =k @.11)
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This result,

VAR[Y] = 112},

is equivalent to a/B? in the other familiar notation for the gamma
PDE

Example 3.10: Variance for the Negative Binomial Probability Mass
Function.

2
VAR[Y |=a($)5555(6)

a —
= Igar(l —exp(8)) ' exp(9)
— rexp(8)[ (1~ exp(8)) 2 exp(8)-+(1=exp(0)) ™ |louiogi-)

=r(1-p)[(1-(1—p)) 21~ py+(1-(1—-p) ']
_r{l=p) '
=2

Also,

VAR[Y] =r(1-p)/P’

is exactly what we expected.

The Variance Function

1t is common to define a variance function for a given exponential
family expression in which the 6 notation is preserved for compat-
ibility with the b(#) form. The variance function is used in general-
ized linear models to indicate the dependence of the variance of Y on
location and scale parameters. It is also important in developing useful
residuals analysis as discussed in Chapter 6. The variance function is
simply defined as: 2 = °/96%b(6), meaning that VAR[Y] = a(y)r?
indexed by 8. Note that the dependence on b(8) explicitly states that
the variance function is conditional on the mean function, whereas
there was no such stipulation with the a(y) form.
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TABLE 3.1

Normalizing Constants and Variance Functions
Distribution B(9) = j':_zb(e)
Poisson exp{d) exp(#)
Binomial n log(l + exp(8)) n exp(8Y(1 + exp(o))?
Normal % 1
Gamma ~log(~8) ;‘—2-
Negative binomial rlog(l — exp(8)) r exp(8)(1 — exp(8))-?

The variance of Y can also be expressed with prior weighting,
usually coming from point estimation theory: VAR[Y] = (¥/w)+?
where W is a dispersion parameter and w is a prior weight. For ex-
ample, a mean from a sample of size n, and a population with known
variance o2, is

2 2
VAR[X] = 2= _ T
w n

It is convention to leave the variance function in terms of the
canonical parameter, 6, rather than return it to the parameterization
in the original probability function as was done for the variance of

Y. Table 3.1 summarizes the variance functions for the distributions
studied.

4. LINEAR STRUCTURE AND THE LINK FUNCTION

This is the most important chapter of the monograph. It describes
the theory by which the standard linear model is generalized to
accommodate nonnormal outcome variables such as discrete choices,
counts, survival periods, truncated varieties, and more. The basic
philosophy is to employ a function of the mean vector to link the nor-
mal theory environment with Gauss-Markov assumptions, to another
environment that encompasses a wide class of outcome variables.

The first part of this monograph explored the exponential family
and showed how seemingly distinct probability functions had an
underlying theoretical similarity. That similarity is exploited in this
chapter by showing how the @ specification and the b(8) function
lead to logical link functions under general conditions.
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The Generalization

Consider the standard linear model meeting the Gauss—Markov
conditions. This can be expressed as

vV = Xp + €, 4.1
{nx1) (nxk)(kal) (nx1) ( )
EVl]= 6 = XB . (42)

(nx1)  (nx1)  (exk)(kx1)

'The right-hand sides of the two equations are very familiar: X is the
design or model matrix of observed data values, B is the vector of
unknown coefficients to be estimated, Xp is called the “linear struc-
ture vector,” and € are the independent normaily distributed error
terms with constant variance: the random component. On the left-
hand side of (4.2), E{V] = 0 is the vector of means: the systematic
component. The variable, V, is distributed ii.d. normal with mean
6, and constant variance o*. So far this is exactly the linear model
described in basic statistics texts.

Now suppose we generalize slightly this well-known form with
a new “linear predictor” based on the mean of the outcome
variable, '

(nx1)  (ax1}  (nxk)(kx1)

where g( ) is an invertible, smooth function of the mean vector p
(i.e., no discontinuities). At this point we drop the V vector of normal
variates completely since it is an artificial construct; these realizations
never actually existed. The V vector is only useful in setting up the
right-hand side of (4.1) and (4.2).

Information from the explanatory variables is now expressed only
through the link from the linear structure, XB, to the linear predictor,
0 = g(p.), controlled by the form of the link function, g( ). This link
function connects the linear predictor to the mean of the outcome
variable not directly to the expression of the outcome variable itself
(as in the linear model), so the outcome variable can now take on
a variety of nonnormal forms. By this manner, the generalized linear
model extends the standard linear model to accommodate nonnormal
response functions with transformations to linearity.




31

The generalization of the linear model now has three components
derived from the previous expressions.

L

IL

HL

Stochastic component: Y is the random or stochastic component which
remains distributed i.i.d. according to a specific exponential family dis-
tribution such as those in Chapter 2, with mean p. This component is
sometimes also called the “error structure,” or “response distribution.”

Systematic component: 8 = Xf is the systematic component produc-
ing the linear predictor. So the explanatory variables, X, affect the
observed outcome variable, Y, only through the functional form of the
£( ) function.

Link function: the stochastic component and the systematic component
are linked by a function of @ which is exactly the canonical link function
developed in Chapter 2 and summarized in Table 4.1. The link function
connects the stochastic component which describes some response vari-
able from a wide variety of forms to all of the standard normal theory
supporting the systematic component through the mean function,

gl =0=Xp,
g7 (g(m)) = g7(8) = g (XB) = p = E[Y].

So the inverse of the link function ensures that X, where we insert f
the estimated coefficient vector, maintains the Gauss-Markov assump-
tions for linear models and all of the standard theory applies even
though the outcome variable takes on a variety of nonnormal forms.

TABLE 4.1
Natural Link Function Summary for Example Distributions
Canonical Link: Inverse Link:
Distribution , 8 = gl p=g8)
Poisson log(x) exp(#)
o N p exp(8)
Binomial logit link: log ( 1= M) T+ exp(8)
probit link: D u) T(8)
cloglog link: log(—log(1 — }) 1 — exp{—exp(6))
Normal I 6
1 1
G wl wl
amima 3

i
Negative binomial log(1l — ) 1 — exp(8)
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We can think of g(j) as “tricking” the linear model into thinking that
it is still acting upon normally distributed outcome variables.

The link function connects the linear predictor, the systematic com-
ponent {8), to the expected value of the specified exponential fam-
ity form (). This statement is much more powerful than it initially
appears. The outcome variable described by the exponential family
form is affected by the explanatory variables strictly through the link
function applied to systematic component, g~}(XB), and nothing else.
This data reduction is accomplished because g~ (XB) is a sufficient
statistic for p, given the assumed parametric form (PMF or PDF) and
a correctly specified link function.

Actually, although it is traditional to describe the generalized linear
model by these three components, there are really four. The residuals
comprise the fourth component and are critical determinants of model
quality, as shown in Chapter 6.

The payoff to notating and understanding distributions in exponen-
tial family form is that the canonical link function is simply the 8 =
u({) component from the interaction component in (2.2) expressed
in canonical form. In other words, once the exponential family form
is expressed, the link function is immediately identified. For exam-
ple, since the exponential family form for the negative binomial
PMF is

fyin p) = exz{y log(1 — p) + log(p) + log (r " i’) N 1)]

then the canonical link function is 6 = log(1 — p). Even more simply,
in standard linear models the link function is the identity function:
@ = w. This states that the canonical parameter equals the systematic
component, so the linear predictor is just the expected value.

Distributions

Table 4.1 summarizes the link functions for the distributions
included as running examples. Note that g( ) and g~'( ) are both
included.

In Table 4.1 there are three expressions for the canonical link
for the binomial PME The first link function, fogit, is the one that
naturally occurs from the exponential family form expression for the
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canonical term (Example 2.2). The probit link function (based on
the cumulative standard normal distribution, denoted ®), and the
cloglog link function are close but not exact approximations of the
same mathematical form, and are practical conveniences rather than
theoretically derived expressions. The differences are really apparent
only in the tails of these distributions (especially with the cloglog). In
general, with social science data any of these link functions can be
used and will provide identical substantive conclusions.

Example 4.1: Poisson Generalized Linear Model of Capital Punish-
ment Data. Consider an example in which the outcome variable is
the number of times that capital punishment is implemented on a
state level in the United States for the year 1997, Included in the
data are explanatory variables for: median per capita income in dol-
lars, the percent of the population classified as living in poverty, the
percent of Black citizens in the population, the rate of violent crimes
per 100,000 residents for the year before (1996), a dummy variable to
indicate whether the state is in the South, and the proportion of the
population with a college degree of some kind.® In 1997, executions
were carried out in 17 states with a national total of 74. The origi-
nal data for this problem are provided in Table 4.2 and constitute the
X matrix in the earlier discussion (except that the X matrix necessar-
ily contains a leading vector of ones for the constant instead of the
outcome variable in the first column).

The model is developed from the Poisson link function in Table 4.1,
0 == log(p), with the objective of finding the best § vector in

£7(8) = g7 (XB)
R
17x1
= exp{XB]
= exp[18, + INCB, + POV, + BLKB; + CRIg,
+S0UB; + DEG 4]
= E[Y] = E[EXE].

The systematic component here is Xp, the stochastic component is
Y = EXE, and the link function is 8 = log(g). The goal is to esti-
mate the coefficient vector: B = {B;, B, B2, B3, Bs. Bs. B¢} in the
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previous context. From this notation, it is clear that the rate of exe-
cutions is affected by the explanatory variables only through the link
function. It should also be noted that the quality of the model is still
partly a function of appropriate variable inclusion, casewise indepen-
dence, and measurement quality exactly as in the standard linear model.
In this generalized linear model, we have the additional assumption
that 8 = log(p) is the appropriate link function.

Example 4.2: Gamma Generalized Linear Model of Electoral Politics
in Scotland. On September 11, 1997, Scottish voters overwhelmingly
(74.3%) approved the establishment of the first Scottish national par-
liament in nearly 300 years. On the same ballot, the voters gave strong
support (63.5%) to granting this parliament taxation powers. This
vote represents a watershed event in the modern history of Scotland
which was a free and independent country until 1707. Whether this
event is simply an incremental part of the current Labor government’s
decentralization program or a genuine step toward renewed Scottish
independence within Europe remains an open question.

The popular press in the United Kingdom and elsewhere empha-
sized Scottish pride and nationalism as driving factors in the voters’
minds. The question addressed here is whether or not social and
economic factors were important as perhaps more rational determi-
nants of the vote. The data are aggregated to 32 unitary authorities
(also called council districts). These are the official local divisions in
Scotland since 1996, before which there were 12 administrative re-
gions. Despite the greater journalistic attention paid to the first vote
establishing the Scottish parliament, it can be argued that granting
taxation powers to a new legislature is more consequential. The out-
come variable analyzed here is therefore the protaxation granting vote
percentage measured at the couneil district level.

The data set, collected from UK. government sources, includes
40 potential explanatory variables from which 6 are selected for this
model (all 40 are available to readers in the data set provided at my
website). Because the other local taxing body is the council, a variable
for the amount of council tax is included, measured in £ Sterling as
of April, 1997 per two adults before miscellaneous adjustments. The
data include several variables concerning employment and unemploy-
ment benefits. The variable selected here is the female percentage of
total claims for unemployment benefits as of January, 1998. Due to
the complexities of measuring actual unemployment rates from na-
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tionally collected statistics on those who apply for benefits, female
applicants appear to be a better indication of underlying unemploy-
ment activity in Scotland: they are more tikely to apply when unem-
ployed and less likely to participate in unrecorded economic activities.
As a way of measuring regional variation in population aging, the
standardized mortality rate (United Kingdom equals 100) is included.
Interestingly, this measure is higher than the U.K. benchmark in 30
of the 32 Scottish council districts. To include general labor force ac-
tivity, a variable is specified indicating the percent of economically
active individuals relative to the population of working age. Finally,
as a way to look at family size and perhaps commitment to community
building (and therefore an implied tolerance for greater taxation), the
percentage of children aged 5 to 15 is included.

As a percentage {actually converted to a proportion here simply to
make the scale of the coefficient estimates more readable) the out-
come variable is bounded by zero and 160. It is regrettably common
to see researchers apply the standard linear model in this setting and
then obtain estimates from ordinary least squares estimation, This is
a flawed practice, but in varying degrees. If the data are centered in
the middle of the interval and no censoring is involved at the bounds,
then the results, while theoretically unjustified, are likely to be quite
reasonable. However, if the data are concentrated at either end of
the interval or there is some amount of censoring at the bounds, then
serious errors of estimation can occur.’ An appropriate model, pro-
vided that there is no censoring at the upper bound, is a generalized
linear model with the gamma link function. This model is often used
to model variance since the outcome variable is defined over the sam-
ple space [0, +00]. Because vote percentages over 100 are not defined
and do not exist, then this is a good choice of model for this example.

The model for these data using the gamma link function is pro-
duced by

g 1(0)=g"}(XB)
[ —
I2x1
1
Xp
— —[18,+COUB, +UNMB, + MOR B3+ ACT B, + AGESs] ™

= E[Y]=E[YES].
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The systematic component here is XP, the stochastic component is
Y = YES, and the link function is § = —1/u.. One challenge with the
analysis of these data is that there is relatively little variation through
each of the variables in Table 4.3. In some senses, this is a good
problem to have, but it makes it slightly more challenging to identify
regional differentiation.

5. ESTIMATION PROCEDURES

Estimation Technigues

This chapter develops the statistical computing technique used to
produce maximum likelihood estimates for coefficients in general-
ized linear models: iterative weighted least squares (IWLS). All sta-
tistical software uses some iterative root-finding procedure to find
maximum likelihood estimates; the advantage of iterative weighed
least squares is that it finds these estimates for any generalized lin-
ear model specification based on an exponential family form (and a
number of others as well, ¢f. Green, 1984). Nelder and Wedderburn
(1972) proposed iteratively weighted least squares in their founding
article as an integrating numerical technique for obtaining maximum
likelihood coefficient estimates, and the GLIM package (Baker and
Nelder, 1978) was the first to provide IWLS in a commercial form.
All professional-level statistical computing implementations now em-
ploy IWLS to find maximum likelihood estimates for generalized lin-
ear models. To fully understand the numerical aspects of this tech-
nique, I first discuss finding coefficient estimates in nonlinear models
(i.c., simple root finding), then I discuss weighted regression, and fi-
nally I discuss the iterating algorithm. This provides a background for
understanding the special nature of reweighting estimation.

Newton—Raphson and Root Finding

In most parametric data-analytic settings in the social sciences the
problem of finding coefficient estimates given data and a model is
equivalent to finding the most likely parameter value in the parameter
space. For instance, in a simple binomial experiment where 10 flips of
a coin produce five heads, the most likely value for the unknown but
true probability of a heads is 0.5. In addition, 0.4 and 0.6 are slightly
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Jess likely to be the underlying probability, 0.3 and 0.7 are even less
likely, and so forth. So the problem of finding a maximally likely value
of the unknown probability is equivalent to finding the mode of the
function for the probability given the data over the parameter space,
which happens to be [0, 1] in this case. This process as described is
essentially maximum likelihood estimation.

In many settings, the problem of finding the best possible estimate
for some coefficient value is simply finding a mode. In nonlinear
models, we are often driven to use numerical techniques rather than
well-developed theory. Numerical techniques in this context refer
to the application of some algorithm that manipulates the data and
the specified model to produce a mathematical solution for the
modal point. Unlike well-proven theoretical approaches, such as that
provided by least squares for linear models or the central limit the-
orem for simple sampling distributions, there is a certain amount of
“messiness” inherent in numerical analysis due to machine-generated
round-off and truncation in intermediate steps of the applied algo-
rithm. Well-programmed numerical techniques recognize this state of
affairs and are coded accordingly.

If we visualize the problem of numerical maximum likelihood
estimation as that of finding the top of an “ant hill” in the parame-
ter space, then it is easy to see that this is equivalent to finding the
parameter value where the derivative of the likelihood function is
equal to zero: where the tangent line is horizontal. Fortunately, many
techniques have been developed by mathematicians to attack this
problem. The most famous, and perhaps most widely used, is called
Newton-Raphson and is based on (Sir Isaac) Newton’s method for
finding the roots of polynomial equations.

Newton’s method is based on a Taylor series expansion around
some given point. This is the principle that there exists a relation-
ship between the value of a mathematical function (with continuous
derivatives over the relevant support) at a given point, xo, and the
function value at another (perhaps close) point, x,, given by

£ = F(xo) + G5y = 50)f ()
ey = P ) + 3G = 2P0+

where f' is the first derivative with respect to x, f" is the second
derivative with respect to x, and so on. Infinite precision is achieved
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only with infinite application of the series (as opposed to just the four
terms previously provided), and is therefore unobtainable. For the
purposes of most statistical estimation, only the first two terms are
required as a step in an iterative process. Note also that the rapidly
growing factorial function in the denominator means that later terms
will be unimportant.

Suppose we are interested in finding the point, x;, such that
f(x,) = 0. This is a root of the function, f( ), in the sense that it pro-
vides a solution to the polynomial expressed by the function. It can
also be thought of as the point where the function crosses the x-axis
in a graph of x versus f(x). We could find this point using the Taylor
series expansion in one step if we had an infinite precision calculator:

0= f(xe) + (x; ~ x0)f"(x0)
+%(x1 — x0)*f"(x0) + 31"["(-"1 =1l f(x)+ ...

Lacking that resource, it is clear from the additive nature of the Taylor
series expansion that we could use some subset of the terms on the
right-hand side to at least get closer to the desired point:

0= flxg) + (x1 — x0)f(xp) (CRY

This shorteut is referred to as the Gauss-Newton method because it is
based on Newton’s algorithm, but leads to a least squares solution in
multivariate problems. Newton’s method rearranges (5.1) to produce
at the (j + 1)th step,

_ _ 5
XD o D ﬂff:;(f%% (5.2)

so that progressively improved estimates are produced until f(x(+1)
is sufficiently close to zero. It is shown that this method converges
rapidly (quadratically in fact) to a solution provided that the selected
starting point is reasonably close to the solution. However, the results
can be disastrous if this condition is not met.

The Newton-Raphson algorithm when applied to mode finding in
a statistical setting adapts (5.1) to find the root of the score function
(3.3): the first derivative of the log likelihood. First consider the single
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parameter estimation problem where we seek the mode of log likeli-
hood function (3.2) from Chapter 3. If we treat the score function
provided by (3.3) as the function of analysis from the Taylor expan-
sion, then iterative estimates are produced by

d/361(8D|y)
puU+D - gl _ 2 5.3
7736 2010]y) -3)

Now generalize (5.3) by allowing muitlpie coefficients. The goal is
to estimate a k-dimensional § estimate given data and a model. The
applicable multivariate likelihood updating equation is provided by

) L3 . -1
G+1y — gt — ) Iy e 0]
00+ = 60 — % 1(0 1y>(aeé, TC) D)

Sometimes the Hessian matrix, H = §%/30 c?ﬁ'l(BU)ly), is difficult
to calculate and is replaced by its expectation with regard to 6,
A = E,4(3%/0 38'[(0%]y)). This modification is referred to as Fisher
scoring (1925). For exponential family distributions and natural link
functions (Table 4.1), the observed and expected Hessian matrix are
identical (Fahrmeir & Tutz, 1994, p. 39; Lehmann & Casella, 1998,
pp. 124-128).

At each step of the Newton-Raphson algorithm, a system of equa-
tions determined by the multivariate normal equations must be solved.
This is of the form:

, . a .
U+1) _ glUNA = e (4}
(0 YA = 200 1(6Yy). (5.5)

Given that there already exists a normal form, it is computation-
ally convenient to solve on each iteration by least squares. Therefore
the problem of mode finding reduces to a repeated weighted least
squares application in which the inverse of the diagonal values of A
are the appropriate weights. The next subsection describes weighted
least squares in the general context.

Weighted Least Squares

The least squares estimate of linear model regression coefficients is
produced by: 8 = (X’X)"'X'Y. This is not only a solution that mini-
mizes the summed squared errors, (Y — XB)Y (Y - X{8), but is also the
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maximurm likelihood estimate. A standard technique for compensat-
ing for nonconstant error variance (heteroscedasticity) is to insert a
diagonal matrix of weights, , into the calculation of 8 such that the
heteroscedasticity is mitigated. The matrix is created by taking the
error variance of the ith case (estimated or known), v;, and assign-
ing the inverse to the ith diagonak Q; = 1/v;. The idea is that large
error variances are reduced by multiplication of the reciprocal.

To further explain this idea of weighted regression, begin with the
standard linear model from (1.2):

Y'i = XIB + €;, (5.6)

Now observe that there is heteroscedasticity in the error term so: € =
€v;, where the shared (minimum) variance is ¢ (i.e., nonindexed), and
differences are reflected in the v, term. To give a trivial, but instruc-
tive, example, visualize a heteroscedastic error vector: E = [1,2,3,4]
Then € =1, and the v-vector is v = {1, 2, 3, 4]. So by the earlier logic,
the £} matrix for this example is:

o ? 0 0 1000
0 L o0 ¢ 0 L oo
= b3 = 2
=19 3 z 0 00 1o
0 0 o0 L 000 %
]

We can premultiply each term in (5.6), by the square root of the
€} matrix (that is by the standard deviation). This “square root” is
actually produced from a Cholesky factorization: if A is a positive
definite,’ symmetric (A’ = A) matrix, then there must exist a matrix
G such that: A = GG'. In our case, this decomposition is greatly
simplified because the £ matrix has only diagonal values {all off-
diagonal values equal to zero), Therefore the Cholesky factorization
is produced simply from the square root of these diagonal values.
Premultiplying (5.6) as such, gives:

Q12Y, = QX + 0%, (5.7

So if the heteroscedasticity in the error term is expressed as
the diagonals of a matrix: € ~ (0, 0?V), then (5.7) gives: € ~
(0,Q0%V) = (0,0?), and the heteroscedasticity is removed.
Now instead of minimizing (Y —XB)Y(Y —XB), we minimize
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(Y - XB)’.O."l(Y — Xp), and the weighted least squares estima-
tor is found by f = (X'QX)™'X'QY. The latter result is found by
rearranging {5.7). The weighted least squares estimator gives the best
linear unbiased estimate (BLUE) of the coefficient estimator in the
presence of heteroscedasticity. Note also that if the residuals are
homoscedastic, then the weights are simply 1 and (5.7) reduces to
(5.6).

Iterative Weighted Least Squares

Suppose that the individual variances used to make the recipro-
cal diagonal values for € are unknown and cannot be easily esti-
mated, but it is known that they are a function of the mean of the
outcome variable: v; = f(E[Y;]). So if the expected value of the out-
come variable, E[Y;] = u, and the form of the relation function, f( ),
are known then this is a very straightforward estimation procedure.
Unfortunately, even though it is very common for the variance struc-
ture to be dependent on the mean function, it is relatively rare o
know the exact form of the dependence.

A solution to this problem is to iteratively estimate the weights,
improving the estimate on each cycle using the mean function. Since

ol .

p = g H(XB), then the coefficient estimate, §, provides a mean esti-
mate and vice versa. So the algorithm iteratively estimates these quan-
tities using progressively improving weights. This proceeds as follows:

1. Assign starting values (0 the weights, generally equal to one (i€,
unweighted regression). 1/1}51) = 1, and construct the diagonal matrix
Q, guarding against division by zero.

2. Estimate B using weighted least squares with the current weights. The
jth estimate is: 8l = (X' QX)X QY.

3. Update the weights using the new estimated mean vector: 1 /vﬁ“” =
VAR{#;)-

4. Repeat steps 2 and 3 until convergence (i.c., XU XU is sufficiently
close to zero).

Under very general conditions, satisfied by the exponential family of
distributions, the iterative weighted least squares procedure finds the
mode of the likelihood function, thus producing the maximum likeli-

~

hood estimate of the unknown coefficient vector, 3. Furthermore, the

matrix produced by: &2(X'QX)! converges in probability to the vari-
ance matrix of P as desired.
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Because we have an explicit link function identified in a generalized
linear model, the form of the multivariate normal equation (5.8) is
modified to include this embedded transformation:

al(8Dy) ag~'(6)

(0UD — gUNHA = — 5210y 7(0)

(5.8)

Its easy to see that in the case of the linear model, when the link
i8 just the identity function, that (5.8) simplifies to (5.5). The overall
strategy of the IWLS procedure for generalized linear models is fairly
simple: Newton-Raphson with Fisher scoring applied iteratively to the
modified normal equation (5.8). For excellent detailed analyses and
extensions of this procedure, the reader is directed to Green (1984)
and del Pino (1989).

Example 5.1: Poisson Generalized Linear Model of Capital Punish-
ment, Continued. Returning to the problem of modeling the applica-
tion of capital punishment at the state-wide level in the United States,
we now implement the iterative weighted least squares algorithm to
produce the desired 8 coefficients in ElY]}= ‘1(XB) This produces
the output in Table 5.1.

The iterative weighted least squares algorithm converged in three
iterations in this example partly due to the simplicity of the example

TABLE 5.1
Meodeling Capital Punishment in the United States: 1997
Standard 95% Confidence
Coefficient Ermor Interval

(Intercept} ~6.30665 4.17678 [—14.49209: 1.87969]
Median income 0.00027 0.00005 { 0.00017: 000037}
Percent poverty 0.06897 - 007979 [ —0.08741: 0.22534]
Percent Black -0.09500 0.02284 [ ~0.13978: —0.05023]
log(Violent crime) 0.22124 0.44243 [ —0.64591: 1.08838]
South 2.30088 0.42875 [ 146955 3.15022]
Degree proportion -~ 19.70241 4.46366 {—28.45102:-10.95380]
Null deviance: 136.573, df = 16 Maximized I( ) : —31.7375

Summed deviance: 18.212, df = 11 AlC: 77.475
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and partly due to the well-behaved structure of the likelihood sur-
face. The standard errors are calculated from the square root of
the diagonal of the variance—covariance matrix which is the neg-
ative inverse of the expected Hessian matrix discussed previously:
A = E(3%/3000'l(8Dy)). Since the expected Hessian calculation
is used in this example, the estimation algorithm is Fisher scoring.
The variance-covariance matrix is often useful in these settings for
determining the existence of problems such as multicollinearity (large
off-diagonal values) and near-nonidentifiability (rows or columns with
all values equal to or near zero). The variance covariance matrix in
this problem shows no signs of such pathologies:

Int INC POV
17.445501654 —0.000131052 —0.198325558
~0.000131052  0.000000003  0.000001862

VC = (-A)" = _0.198325558  0.000001862  0.006365688
0.017689695  0.000000113  0.000158039
_1484011921 0000004171  0.003911954
0368916884 ~0.000006245 —0.017825119

| —4.651658695 —0.000094858  0.121451892
BLK log(CRI) SOU DEG |

0017689605 —1.484011921  0.368916884 —4.651658695

0000000113  0.000004171 —0.000006245 —0.000094858

0000158039  0.003911954 —0.017825119  0.121451892

0.000521871 —0.003283494 —0.005090192 ~0.033679253

_0.003283494  0.195742167 —0.001384018  (0.397439934

_0.005090192 —0.001384018  0.183825030  0.298730196

0033679253 0397439934  0.298730196  19.924250374 |

Several interesting substantive conclusions are provided by this
model. The coefficient for percent of poverty in the state, and the
previous year’s log-crime rate have 95% confidence intervals that
bound zero. So there is no evidence provided by this model and
these data that the rate of executions is tied to poverty levels or the
preceding year’s crime rate. These are often used as explanations
for higher murder rates and therefore presumably higher execution
rates. However, higher income and education levels both have 95%
confidence intervals bounded away from zero (far away in fact). The
coefficient for income is positively signed inferring that higher levels
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of income are associated with more executions. Interestingly, states
with higher education levels tend to have fewer executions. It has
been suggested that increased education (generally at the university
level} can provide a distaste for capital punishment.

The negative sign on the coefficient for percent Black population
is also interesting as it has a 95% confidence interval bounded away
from zero. One possible explanation is linked to the preponderance of
evidence that the death penalty is applied disproportionately to Black
prisoners {Baldus & Cole, 1980). The large and positive coefficient
indicating that a state is in the South is not surprising given the history
of capital punishment in that region of the country.

Two admonitions are warranted at this point. First, note that 95%
confidence intervails are provided in Table 5.1 rather than f-statistics
and p-values. Actually, the four coefficients with 95% confidence
intervals bounded away from zero in this model could have reported
99.9% confidence intervals bounded away from zero if it were im-
portant to provide such a finding. The use of confidence intervals
rather than p-values or “stars” throughout the text is done to avoid
the common misinterpretations of these devices that are prevalent in
the social sciences (Gill, 1999). Confidence intervals provide all of
the information that p values would supply: a 95% confidence inter-
val bounded away from zero is functionally equivalent to a p-value
lower than 0.05.

Second, the coefficients in Table 5.1 should not be interpreted like
linear model coefficients: a one unit change in the kth explanatory
variable value does not provide a 8, change in the outcome variable
because the relationship is expressed through the nonlinear link func-
tion. A more appropriate interpretation is to look at first differences:
analyzing outcome variable differences at two researcher determined
levels of some explanatory variable value. In the capital punishment
example, if we hold all the explanatory variables constant at their
mean except for the dummy variable indicating whether or not the
state is in the South, then the first difference for this dummy vari-
able is: 8.156401. This means that there is an expected increase of
about eight executions per year just because a state is in the South.
It should be noted, as we see later when discussing residuals, that the
Texas case is driving this finding to a great degree.

Figure 5.1 provides another way of looking at the output from the
Poisson generalized linear model (GLM) model of capital punish-
ment. In this graphical display the expected count of executions is
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plotted along the Y-axis and each of the explanatory variables is
plotted over its observed range along the X-axis with the dummy
variable either off (thin line) or on (thick line). The variables not
displayed in a particular graph are held constant at their mean. In
this way, we can see how changes in a specified explanatory factor
differ in affecting the outcome variable depending on the status of
the dichotomous variable, controlling for the others. For example, in
Panel 1, we see that as income increases, the expected number of
executions increases only slightly for non-South states but increases
dramatically and seemingly exponentially for states in the South,
There is a similar effect apparent between panels 3 and 5. As
both the percentage of blacks and the education level increases, the
expected number of executions for states in the South dramatically
decreases until it nearly converges with non-South states at the up-
per limit. Note that this approach provides far more information than
simply observing that the sign on the coefficient estimate is negative.

Example 5.2: Gamma Generalized Linear Model of Electoral Politics
in Scotland, Continued. Returning to the Scottish voting example dis-
cussed in Chapter 4, we now run the generalized linear model with

the gamma link function, & = —1/u. This produces the output in
Table 5.2.
TABLE 5.2
Modeling the Vote for Parliamentary Taxation: 1997
Standard 95% Confidence
Coefficient Error Interval

(Intercept} -1.77653 1.14789 [-4.14566: 0.59261)
Council tax 0.00496 0.00162 [ 0.00162: 0.00831)
Female unemployment 0.20344 0.05321 [ 0.09363: 0.31326)
Standardized mortality -0.00718 0.00271 [-0.01278:-0.00159)
Economically active 0.01119 4.00406 [ 0.00281: 0.01956)
GDP —-0.00001 0.00001 [—0.00004: 0.00001)
Percent aged 5-15 -0.05187 0.02403 [{—0.10145:-0.00228)
Council tax: Female un. ~0.00024 0.00007 {~0.00040:0.00005]
Null deviance: 0.536072, df =31 Maximized /() : 63.89

Summed deviance: 0.087389, df = 24 AIC: -111.78
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The iterative weighted least squares algorithm converged in two it-
erations in this example. The dispersion parameter, a(¢) = 1/3, is
estimated to be 0.003584. We use this information when we return to
this example in the following text during the discussion of residuals
and model fit. In addition, an interaction term between the coun-
cil tax variable and the female unemployment variables is added to
the model. This is done in exactly the same way as in standard lin-
ear models. Here it shows some evidence that increasing amounts of
council taxes are associated with a decrease in the slope of female
unemployment change. It should be noted that no causality is thus
asserted,

The resulting model has a number of interesting findings. First, it
is surprising that the gross domestic product (GDP) is not 95% con-
fidence interval (CI) bounded away from zero (i.e., not statistically
significant at the p < 0.05 level), One would think that the level of
economic production in a given region would shape attitudes about
taxation policy and taxation authority, but there is no evidence of that
effect from these data and this model. The other economic variable,
the current level of the council tax, does have a coefficient that is
95% CI bounded away from zero. The sign is positive suggesting that
counci! districts with higher taxes (such as Glasgow) see parliamentary
taxation as a potential substitute for an uneven levy that currently dis-
advantages them. Also, the higher taxed districts are generally more
urban, and it could be that urban voters rather than higher taxed
voters have a greater preference for parliamentary taxation authority
(although this claim is not specifically tested here).

Each of the sacial variables has a 95% CI bounded away from zero,
and the model clearly favors these social effects over economic effects
as explanations of the vote. Both employment related variables are
signed positively, which is a little befuddling. Higher levels of unem-
ployment, as measured through female applications for benefits, are
associated with greater support for the new taxation authority. Yet
higher levels of working age individuals participating in the economy
are also associated with greater support. The mortality index is nega-
tively signed, which seems to imply that older constituencies are less
enthusiastic about parliamentary taxation or perhaps more inclined
toward tradition. Finally, those districts with higher numbers of chil-
dren in the 5-15 range are less likely to support the proposition. Since
the current council tax provides breaks for families with children, this
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could be a concern that some new tax scheme in the future might
have different priorities.

The quality of the fit of the model developed in this example will
be analyzed in the following text. In the interim, one quick indication
is that all but one of the explanatory variables has a 95% confidence
interval bounded away from zero.

6. RESIDUALS AND MODEL FIT
Defining Residuals

Residuals (errors, disturbances) are typically analyzed in linear
modeling with the goal of identifying poorly fitting values. If it is
observed that there exist a sufficiently large number of these poorly
fitting values, then often the linear fit is determined to be inappro-
priate for the data. Other common uses of residuals include: looking
for signs of nonlinearity, evaluating the effect of new explanatory
variables, creating goodness of fit statistics, and evaluating lever-
age (distance from the mean) and influence (change exerted on the
coefficient) for individual data points.

Because of the generalization to a wider class of outcome variable
forms, residuals in generalized linear models are often not normally
distributed and therefore require a more careful analysis. Despite this
challenge, we would very much like to have a form of the residuals
from a generalized linear model that is as close as possible to normally
distributed around zero, or at least “nearly identically distributed” in
Cox and Snell’s language (1968). The motivation is that we can then
apply a wide range of graphical and inferential tools developed for
the linear model to investigate potential outliers and other interest-
ing behavior. The core emphasis in this chapter is the discussion of
Anscombe and deviance residuals which are attempts to describe the
stochastic behavior of the data relative to a constructed generalized
linear model in a format that closely resembles the normal theory
analysis of standard linear model residuals.

Actually, five different types of residuals are used with generalized
linear models and are discussed in this chapter: response, Pearson,
working, Anscombe, and deviance. For the standard linear model
these forms are equivalent. However, for other exponential family
forms, they can differ substantially and confusingly.
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A substantial advantage of the generalized linear model is its free-
dom from the standard Gauss-Markov assumption that the residuals
have mean zero and constant variance, Yet this freedom comes with
the price of interpreting more complex stochastic structures. Cur-
rently, the dominant philosophy is to assess this stochastic element
by looking at (summed) discrepancies: a function that describes the
difference between observed and expected outcome data for some
specified model: D = Y [, d(8, y;). This definition is left intentionally
vague for the moment to stress that the format of D is widely applica-
ble. For instance, if the discrepancy in D is measured as the squared
arithmetic difference from a single mean, then this becomes the stan-
dard form for the variance. In terms of generalized linear models, the
squared difference from the mean will prove to be an overly restrictive
definition of discrepancy, and a likelihood-based measure will show to
be far more useful.

For the standard linear model, the residual vector is not only quite
easy to calculate, it also plays a central role in determining the quality
of fit of the model. The response residual vector, is calculated simply
as Rpesponse = Y — Xp and is used to measure both the dispersion
around the fitted line, and the level of compliance with the Gauss—
Markov assumptions. As applied to generalized linear models, the
linear predictor needs to be transformed by the link function to be
comparable with the response vector. Therefore, the response residual
vector for generalized linear models is: Rpesponse = Y - g HXB)

1t is scldom mentioned in introductory texts, but the linear model
is moderately robust to minor deviations from the standard assump-
tions. Individual cases in social science data sets are not uncommonly
correlated in some relatively mild or benign fashion. Sometimes there
will be large outliers with or without influence (individually causing
nontrivial change in the estimated slopes). In many of these situations
the substantive conclusions are barely affected or at least minimally
affected in comparison to the assumed effects of measurement error.
Furthermore, asymptotic normality of the residuals is still achiev-
able in a more general setting by appealing to the Lindeburg-Feller
variant of the central limit theorem. This theorem relaxes casewise
independence in favor of the condition that no single term dominates
in the sum. However, it is far more typical with generalized linear
models to produce residuals which deviate substantially rather than
mildly from the basic conditions. In these cases, response residuals
tell us very little.
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A basic alternative to the standard response residual is the Pearson
residual. This is the response residual scaled by the standard deviation
of the prediction:

Y—p
R = — e,
Pearson V. AR{;.L}

Pearson residuals are an attempt to provide some sense of scale to the
response residual by dividing by the standard error of the prediction.
The name comes from the fact that the sum of the Pearson resid-
uals for a Poisson generalized linear model is the Pearson y* good-
ness of fit measure reported by all statistical packages. In ideal and
asymptotic situations, the Pearson residuals are normally distributed.
Unfortunately, like response residuals, Pearson residuals can be very
skewed, and can therefore provide a misleading measure of typical
dispersion.

In the process of fitting generalized linear models, software pro-
grams use the iterative weighted least squares algorithm. As described
in Chapter 5, a set of working weights is calculated at each step of a
linear estimation until the appropriate derivative is sufficiently close
to zero. An occasionally useful quantity is the residual produced from
the last (i.e., determining) step of the iterative weighting process: the
difference between the current working response and the linear pre-
dictor. This is defined as

é
RWorking = (y - p’)(‘;‘él‘"

This residual is sometimes used as a diagnostic for evaluating con-
vergence as well as an indication of model fit at this point. A lack
of general theory for working residuals hampers their use in a more
broad context.

Anscombe Residuals

One imaginative strategy to compensate for the nonnormality prob-
lems with Pearson residuals is to alter both terms in the numerator of
the Pearson residual such that the residuals are distributed as close
to normally as possible (Anscombe, 1960, 1961). The idea is to trans-
form the residuals in such a way that first-order asymptotic skewness
is mitigated and the form is approximately unimodal and symmetric.
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This new function, A(y), is given by

Ay) = [ VAR[p]™ dps, 6.1)

where VAR[p] is the variance function from Chapter 3 expressed in
terms of p. The Anscombe residual applies this function to both Y and
1, adjusting for the scale of the variance to normatize by dividing with

%A(y)ﬁi, (62)

using the definition of +* from Table 3.1 in Chapter 3. This solution
therefore uses differential equations to mimic normality to the great-
est extent possible. There is a maddeningly great diversity of the forms
that the Anscombe residuals take in the literature (McCullagh &
Nelder, 1989, p. 38; Fahrmeir & Tutz, 1994, p. 132; Pierce & Schafer,
1986, p. 978; and Cox & Snell, 1968, pp. 258-261). A partial expla-
nation for this diversity of forms is the desire of a number of authors
to “smooth” the estimates toward the mean by adding or subtracting
a constant to integer values in a manner similar to Yates® correction
factor in chi-square tests of independence. This will not produce a no-
ticeable difference, however, with large sample sizes. There are also
a number of bias-correcting strategies of varying complexity and use-
fulness. This monograph takes the position of McCullagh and Nelder
(1989), that the simplest form is the best at this level, and drops these
enhancements for the sake of parsimony rather than as a criticism of
such approaches.

Table 6.1 shows the production of Anscombe residuals for the
running example exponential family forms. Following McCullagh
and Nelder (1989), constants are dropped out before the differen-
tial equation calculations since they cancel in the final step anyway.
The Anscombe residual form for the standard linear model is not
included in Table 6.1 since these residuals are already normal by
construct.

The development of the binomial transformation in Table 6.1 dif-
fers from the described procedure. Directly applying the A(y) =
[(VAR[p])"* dp integral jeads to the incomplete beta function:
B(a,b) = fy " 1(1 ~ £)b-1 dt, which is analytically intractable and
difficult to numericaily tabulate. Cox and Snell (1968) use the trick
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TABLE 6.1
Anscombe Residuals
3
A(y) f(V’AR[;.:,])"'B du = j(“)-m dp = _“z.rs
Poisson %A(y)-\/;f ~——A{y)\f— [_EMZ[J}J-" uth
R, % ( ym " “m) s
22 2 2
Ay) P} = f CR- P =1,(5,3)B(3 5
Binomial PR AL
¥,
b | ) -
A(y) f (VAR[u])™ dp = f (2 dpp = 3
Gamma ;;A(Y)JT—’ [ aﬂ:&n”ﬁ]ﬂ = p?
R, (1P — ply i
A(y) o) = [frea-orau=1,(3.3)8(3.2)
Negative w1 = gy
binomizl \
B | ) - s

that by dividing the incomplete beta function, ¢(u), by the complete
beta function, B(a, b) = I'(a)l'(b)/T'(a + b) (where the gamma func-
tion is the continuous analog of the discrete factorial notation: “1”),
one gets a symmetric form which is easier to tabulate™ (Cox & Snell,
p. 260). Furthermore, they find that the normalizing factor in the
denominator has excellent empirical propertaes although no specific
theoretical justification is given.

The binomial form in Table 6.1 contrasts the empirical outcomes:
Y;/m;, the number of successes in m trials per case, and the con-
tribution from the systematic component through the link function:
;. For clarification of the process for obtaining binomial Anscombe
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residuals, consider the hypothetical example in which y;/m; = (.12,
and p; = 0.24, Using the Cox and Snell table, we can look up the
values: [y, = 0.181, fj,4 = 0.292. The Anscombe residual then is

produced by:
2y g (2.2 (2.2
¢(m,-)—10‘12(3’§)3(3’3

== (0.181)(2.05339) = 0.3716636,

2 2 2 2
d(py) = 10.24(5: 3) B (3, 5)

= (0.292)(2.05339) = 0.5995899,
w1 )8 = (0.24)/5(1 -~ 0.24)15 = 0.7530737,

_ 0.3716636 — 0.5995899

4= 070 = -(0.3026613.

The literature on Anscombe residuals contains no direct diseussion
of the negative binomial PMFE The prescribed negative binomial A(y)
integral produces an even more unpleasant form than the binomial:
f(p? — Y3 dp. The recommendation is to appeal to similarity
with the binomial distribution and adapt the Cox and Snell approach.
Suppose that X, is a distributed binomial with n trials and prob-
ability p, and X, is a distributed negative binomial with r successes
desired and probability p. Then the cumulative distribution functions
are equivalent at the points r — 1 and n - r at these points: Fy (r —
1) = Fy,(n —r) (Casella & Berger, 1990, p. 123), and this can be
thought of as the point where a series of hypothetically consecutive
failures end. Based on this equivalence, an argument can be made to
treat these Anscombe residuals equivalently. This approach is taken in
Table 6.1, where the only difference is the probability determination
in the numerator.

The Deviance Function and Deviance Residuals

By far the most useful category of residuals for the generalized
linear model is the deviance residual. This is also the most general
form. A common way to look at model specification is the analysis of
the likelihood ratio statistic comparing a proposed model specification
relative to the saturated model (n data points, n specified parameters,
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using the exact same data and link function). The difference in fit is
generally called the summed deviance. Since this deviance is com-
posed of the contributions from each data point and the difference
between summarizing with a relatively small subset of parameters and
one parameter for every data point, then these individual deviances
are directly analogous to residuals.

Starting with the log likelihood for a proposed model from the (3.2)
notation, add the “"” notation as a reminder that it is evaluated at
the maximum likelihood values:

8, wly) = }jy‘“ = ,f)( ) 4 oy, ),

Also, consider the same log likelihood function with the same data
and the same link function, except that it now has n coefficients for
the r data points, i.e., the saturated model log likelihood function
with the “”” function to denote the n-length @ vector:

i@, wiy)—z"‘ )( )t ety ).

This is the highest possible value for the log likelihood function
achievable with the given data, y. Yet it is also often unhelpful ana-
lytzcaliy except as a benchmark. The deviance function is defined as
minus twice the log likelihood ratio (that is the arithmetic difference
since both terms are already written on the log metric):

D(e,y>:—2Z[f<é,wy>—z(é,¢ly>]
i=1

(gt

fe=l

(M 1)

=mzz[y.»(é—é)w(b(é)—b(ﬁ))]aw)-‘- (63)
fa=l

Sometimes this deviance function (or summed deviance) is indexed
by a weighting factor, w;, to accommodate grouped data. Also, when
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a(yr} is included (6.3} is called the scaled deviance function; otherwise
it is predictably called unscaled.

This is a measure of the summed difference of the data-weighted
maximum likelihood estimates and the b(8) parameters. Thus the
deviation function gives a measure of the trade-off between a sat-
urated model which fits every single data point, assigning all variation
to the systematic component, and a proposed model which reflects
the researcher’s belief about the identification of the systemanc and
random components, Hypothesis tests of fit are performed using the
asymptotic property that D(0,y) ~ x2_, (although the asymptotic
rate of convergence varies dramatically depending on the exponen-
tial family form). Observe also that the b(#) function developed in
Chapter 2 plays a critical role once again.

Although calculating D(8, y) is relatively straightforward, we usu-
ally do not need to develop this calculation as many texts provide the
result for frequently used PDFs and PMFs. For the running examples,
the deviance functions are given in Table 6.2.

A utility of the deviance function is that it also allows a look at the
individual deviance contributions in an analogous way to linear model
residuals. The single point deviance function is just the deviance func-
tion for the y;th point (i.e., without the summation):

4(8, y7) = ~2[ (8 ~ 8) ~ (6(®) — b(®) Ja()".

TABLE 6.2
Deviance Functions
Distribution Canonical Parameter Deviance Function
Poisson {p} 8 = tog(n) 22[}@ log(*'ymif) -%+ #-,-]

Binomiat {m, p) 8= log (.1_’:;) E{y. tag(y' ) + (m, y,)log( ::i )]

mt; i

Normal {u, o) =g Ty - ¥
Gamma (i, 8) 9=~':I 22[“!%("&.)'}“ M]
Negative 8 = log{l — u} 2 E[Y, k)g( ) +{1+5) 10g( i’;')]

binomial {¢, p)
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To define the deviance residual at the y; point, we take the square
1008,

RDevtancc (y‘ #1)\/ d(e yr

where (y; — ;)/|y; — pil is just a sign-preserving function.

Pierce and Schafer (1986) study the deviance residual in detail and
recommend that a continuity correction of Ef(y; — p;)/VAR[y]]® be
added to each term in the right-hand column of Table 6.2 to improve
the normal approximation. Furthermore, in the case of binomial, neg-
ative binomial, and Poasson exponential family forms, they prescribe
adding or subtracting 4 3 to integer valued y; outcomes to move these
values toward the mean. These are then called adjusted deviances.

Despite completely different derivations, Anscombe and deviance
residuals behave in a surprisingly similar fashion. This is because in
both cases the goal was normality. In general, these two approaches
are quite successful in producing residual structures that are: centered
at zero, have standard error of one, and are approximately normal.

Example 6.1: Poisson Generalized Linear Model of Capital Punish-
ment, Continued. Returning once again to the Poisson-based exam-
ple using 1997 capital punishment data in the United States, we now
look at various residuals from the model. These data were chosen
specifically because there is one case with a noticeably large outcome
variable value: Texas. This makes the residuals analysis particularly
interesting given the perceived dominance by this one case. Table 6.3
provides the residual vectors for each type studied.

Note from Table 6.3 that in no single case does the sign of the resi-
dual change across residual types. If a change of sign were observed,
a coding error should be suspected. The table also reinforces the
point that deviance and Anscombe residuals are not very different
in practice although they look very different in theory. In addition,
the Pearson residuals are not very different from the deviance or
Anscombe residuals in this example except for one point (Missouri)
producing a notable skewness, exactly as the theoretical discussion
predicted for Pearson residuals. The large, positive residuals for
Missouri indicate that it has more executions than expected given the
observed levels of the explanatory variables.
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Looking at the deviance and Anscombe columns one is inclined
to worry less about the effect of Texas as an outlier and more
about Florida. This is because the Texas case has great influence on
the parameter estimates and therefore the resulting ;. Florida, for
instance, is similar in many of the explanatory variable values to Texas
but does not have nearly as many executions, and is subsequently
further separated from the fit.

Pregibon (1981) suggests jackknifing out (temporarily removing for
reanalysis) cases and looking at the resulting changes to the coeffi-
cient values. If the change is quite substantial, then we know that the
jackknifed case had high influence on that coefficient. This can be
done manually by removing the case and rerunning the analysis, but
Pregibon also provides a one-step estimate (1981, p. 713) that is com-
putationally superior for large data sets. Figure 6.1 is a modification
of Pregibon’s index plot construct in which all of the coefficients from
the Poisson model of capital punishment are re-estimated jackknif-
ing out the cases listed numerically on the X -axis by the order given
in Table 4.2. The horizontal line indicates the coefficient value for
the complete data matrix. Therefore, the distance between the point
and the line indicates how much the coefficient estimate changes by
removing this case.

Figure 6.1 shows that Texas does indeed exert great influence on
the coefficient estimates. Index plots are an excellent way to show the
effect of one or a few cases on the resulting estimates, but only for
a relatively small number of cases. Picture Figure 6.1 with a sample
size of several thousand. In these cases, one of several approaches
are helpful. The researcher could sort the jackknifed values taking
the top 5-10% in absolute value before plotting. These are. the ones
we are inclined to worry about anyway. Second, if interest was focused
on an overall diagnostic picture rather than individual cases, the plot
could show a smoothed function of the sorted index values rather than
individual points as was done here.

Measuring and Comparing Goodness of Fit

There are five primary methods for assessing how well a particular
generalized linear model fits the data: the chi-square approximation
to the Pearson statistic, the summed deviance, the Akaike informa-
tion criterion, the Schwartz criterion, and graphical techniques. Each
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of these approaches is useful, but the summed deviance statistic ap-
pears to be the best overall measure of lack of fit because it provides
the most intuitive indication of individual level contributions to the fit,
However, no single measure provides “the right answer,” and when-
ever possible more than one approach shouild be used.

The Pearson statistic is the sum of the squared Pearson residuals:

T o ST o D el O
X “;RPcarson"Z[ VAR[}L]] ‘ (6~4)

i=1

If the sample size is sufficiently large, then X?/a(¢) ~ x2_, where
n is the sample size and k is the number of explanatory variables
including the constant. Unfortunately, this statistic is very poorly
behaved for relatively small sample sizes and readers should be wary
of reported values based on double digit sample sizes (as in Exam-
ple 4.2). The utility of this distributional property is that large X2
values are determined to reside in the tail of the y? distribution and
the model can therefore be “rejected” as poorly fitting.

The summed deviance has already been presented in this chapter,
but not discussed as a measure of goodness of fit. Given sufficient
sample size, it is also true that (8, y)/a(y) ~ x%_,. However, for
enumerative outcome data (dichotomous, counts), the convergence of
the deviance function to a Xﬁ_k is much slower than the Pearson statis-
tic. In any case involving enumerative data, one is strongly advised
to add or subtract % to each outcome variable in the direction of
the mean. This continuity correction greatly improves the distribu-
tional result. Pierce and Schafer (1986) as well as Peers (1971) re-
mind us, though, that just because the Pearson statistic is more nearly
chi-square distributed, it does not mean that it is necessarily a supe-
rior measure of fit than the summed deviance. Although, the summed
deviance is somewhat more problematic with regard to the discrete-
ness of the outcome variables, it is vastly superior when considering
likelihood-based inference.

A third, completely unexplored, alternative is to exploit the simi-
larity between Anscombe residuals and deviance residuals, and cre-
ate a new goodness of fit statistic that is simply the summed square
of the Anscombe residuals. This has the advantage of being less ill-
affected by enumerative outcome variables, The logic of this proposal
is based on Pierce and Schafer’s observation that “Whether one uses
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the deviance or Anscombe residuals is a matter of taste and compu-
tational convenience.” (1986, p. 985).

Deviance residuals are also very useful for comparing to a pro-
posed, nested model specification. In the previous discussion, the
outer nesting mode! was the saturated model, but it need not be. Sup-
pose we are comparing two nested model specifications, M, and M,
with p < n and g < p parameters, respectively. Then the likelihood
ratio statistic:

D(M,) - D(M,)
a(iy)

is distributed approximately y2_, subject to a few complications (see
Fahrmeir & Tutz, 1994; or McCullagh & Nelder, 1989). If we do not
know the value of a{¢), such as in the Poisson case, then it is esti-
mated and a modified likelihood ratio statistic is used:

D(M,) ~ D(My)
a(d¥p—q)

This modified statistic is distributed according to the F-distribution
with n — p and p — g degrees of freedom.

A commonly used measure of goodness of fit is the Akaike infor-
mation criterion (AIC) (Akaike, 1973, 1974, 1976). The principle is
to select a model that minimizes the negative likelihood penalized by
the number of parameters,

AIC = —2i(ly) + 2p, (6.5)

where [(Bly) is the maximized model log likelihood value and p is the
number of explanatory variables in the model (including the constant).
This construct is very useful in comparing and selecting nonnested
model specifications, but the practitioner should certainly not rely ex-
clusively on AIC criteria. Many authors have noted that the AIC has a
strong bias toward models that overfit with extra parameters since the
penalty component is obviously linear with increases in the number
of explanatory variables, and the log likelihood often increases more
rapidly (Carlin & Louis, 1996, p. 49; Neftci, 1982, p. 539; Sawa, 1978,
p- 1280). However, a substantial benefit is that by including a penalty
for increasing degrees of freedom, the AIC explicitly recognizes that
basing model quality decisions on the value of the log likelihood alone
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is a poor strategy since the likelihood never decreases by adding more
explanatory variables regardless of their inferential quality.

Another commonly used measure of goodness of fit is that proposed
by Schwarz (1978), called both the Schwarz criterion and the Bayesian
information criterion {BIC). Even though it is derived from a different
statistical perspective, the BIC resembles the AIC in calculation,

BIC = —2/(Bly) + p log(n), (6.6)

where n is the sample size. Despite the strong visual similarity
expressed between the AIC and the BIC, the two measures can
indicate different model specifications from a set of alternatives as
being optimal, with the AIC favoring more explanatory variables and
a better fit and the BIC favoring fewer explanatory variables (parsi-
mony) and a poorer fit (Koehler & Murphree, 1988, p. 188; Neftci,
1982, p. 537; Sawa, 1978, p. 1280). Since the BIC explicitly includes
sample size in the calculation, it is obviously more appropriate in
model comparisons where sample size differs, and a model that can
achieve a reasonable log likelihood fit with a smaller sample is penal-
ized less than a comparable model with a larger sample. Whereas the
AIC is just a convenient construction loosely derived from maximum
likelihood and negative entropy (Amemiya, 1985, p. 147; Greene,
1997, p. 401; Koehler & Murphree, 1988, p. 189), the BIC is strongly
connected with Bayesian theory. For instance, as n — oo,

(BIC, - BIC,)~log B 0,
log B

where BIC, and BIC, are the BIC quantities for competing model

specifications @ and b, and B is the Bayes factor between these models.

Therefore, the BIC is an approximation to the log of the Bayes factor

that is often much easier to calculate (Kass, 1993).

There are other competing model selection criteria as well as mod-
ifications of the AIC and the BIC that provide useful comparisons,
but the basic Akaike and Schwarz constructs dominate empirical work.
Although it can be shown that nearly all of these measures are asymp-
totically equivalent (Zhang, 1992), Amemiya (1980) provides simula-
tion evidence that the BIC finds the correct model more often than
the AIC for small samples. However, Neftci’s (1982) study found that
the BIC was noticeably more sensitive to transformations on the data
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than the AIC. Since these measures are only one part of the assess-
ment of model quality and neither has remarkably superior properties,
the choice of which to use is primarily a function of personal prefer-
ence. Amemiya states his preference for the AIC due to its simplicity
(1981, p. 1505, footnote 13), and statistical software packages gener-
ally give the AIC as the default measure.

.Asymptotic Properties

It is convenient at this point to briefly review some asymptotic prop-
erties of the estimated quantities from a generalized linear model: co-
efficients, goodness of fit statistics, and residuals. The coefficients are
maximum likelihood estimates generated by a numerical technique
(iterative weighted least squares) rather than an analytical approach.
This means that the extensive theoretical foundation developed for
maximum likelihood estimation applies in this case, and this section
reviews the conditions under which these principles hold. I also extend
the discussion of the asymptotic chi-square distribution of the two pri-
mary test statistics, as well as review some large-n properties of the
residuals from a generalized linear model fit.

Chapter 5 introduced the Hessian matrix as the second derivative
of the likelihood function at the maximum likelihood values, 6. The
negative expectation of this matrix,

d? ;
10) = ~Eo( 5055101) ).

is called the information matrix, and plays an important role in evalu-
ating the asymptotic behavior of the estimator. A useful and theo-
retically important feature of a given square matrix is the set of
eigenvalues associated with this matrix. Every p x p matrix, A, has
p scalar values, A;, i = 1,..., p, such that: Ah; = A;h; for some
corresponding vector, ;. In this decomposition, A; is called an eigen-
value of A and k; is called an eigenvector of A, These eigenvalues
show important structural features of the matrix. For instance, the
number of nonzero eigenvalues is the rank of the A, the sum of the
eigenvalues is the trace of A, and the product of the eigenvalues is
the determinant of A.

The information matrix is especially easy to work with because it
is symmetric, and unless there are serious computational problems, it
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is also positive definite. Generalized linear models built upon expo-
nential families and natural link functions produce positive definite
information matrices under very reasonable regularity conditions:

L. The sample space for the coefficient vector is open in M* and convex
for k explanatory variables,

2. the linear predictor transformed by the link function is defined over the
sample space of the outcome variable,

3. the link function is twice differentiable,

4. the X' X matrix is full rank,

These conditions are explored in much greater detail in Fahrmeir
and Kaufman (1985), Lehmann and Casella (1988), and Le Cam
and Yang (1990). Given the foregoing regularity conditions, if (1)
small changes in the coefficient estimate produce arbitrarily small
changes in the normed information matrix in any direction, and )
the smallest absolute eigenvalue of the information matrix produces
asymptotic divergence: )\,,,,i,,I(G)’;;—;o oo, then the coefficient estima-

tor: (1) exists, (2) converges in probability to the true value, and
(3) is asymptotically normal with a covariance matrix equal to the in-
verse of the information matrix. This is summarized by the notation:

Jﬁ(é-e)—g;n(o, 1(8)~1). A condition of divergence seems odd at first,
but recall that the information matrix functions in the denominator
of expressions for variances. These conditions are only very broadly
stated here and for details the reader should consult Fahrmeir and
Tutz (1994, Appendix A2),

It has been shown that the maximum likelihood estimates from
these models are still reasonably well behaved under more challeng-
ing circumstances than those required in the last paragraph. These
applications include: clustered units (Bradley & Gart, 1962, Zeger &
Karim, 1991), non-i.i.d. samples (Nordberg, 1980, Jgrgensen, 1983),
sparse tables (Brown & Fuchs, 1983), generalized autoregressive lin-
car models (Kaufman, 1987), and mixed models (McGilchrist, 1994),
It is easy to be relatively comfortable under typical or even these more
challenging circumstances, provided there is a large sample size. Not
having that luxury, what can be done to check asymptotic conditions?

The primary diagnostic advise is to check the minimum absolute
eigenvalue from the information matrix, which can also be normal-
ized prior to eigenanalysis to remove the scale of the explanatory
variables. Some statistical packages make it relatively easy to evaluate
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this quantity {(Splus, R, Gauss, LIMDEP). For any package that pro-
vides a variance~covariance matrix there is a handy shortcut. If A; is
an eigenvalue of the matrix A, then 1/4; is an eigenvalue of the matrix
A~!, provided it exists (nonsingular). So we can evaluate the inverse
of the maximum eigenvalue of the variance—covariance matrix instead
of the minimum eigenvalue of the information matrix.

It is desirable that Ay, not have a double digit negative exponent
component, but since the quantity is scale-dependent it is often useful
to first normalize the information matrix. When it is not convenient
(or possible) to evaluate the eigenstructure of the information matrix,
other symptoms may help. If at least one of the coefficients has an
extremely large standard error, it may be an indication of a very small
minimum eigenvalue. This is a handy but imperfect approach.

The asymptotic properties of two important test statistics, the
summed deviance and the Pearson statistic, were discussed in the last
section. Under ideal circumstances, both of these converge in distri-
bution to Xﬁ_ ¢~ Of the two, the Pearson statistic possesses a superior
chi-square approximation because it is composed of more nearly nor-
mal terms which are then squared. Pierce and Schafer (1986) show
a noticeable difference in the behavior of these two statistics for a
binomial model with # = 20 and m = 10. The advice here is to never
depend exclusively on the asymptotic convergence of these measures
for any sample size smaller than this. However, it is often the case
that the social science researcher is not in a position to choose the
sample size, and it is still always worth the effort to calculate these
values.

Checking the distributional properties of the residuals can be help-
" ful in diagnostic situations. In addition to constructing test statistics,
the residuals themselves often provide important information. While
the residuals from a generalized linear model are not required to be
asymptotically normal around zero, systematic patterns in the distri-
bution can be an indication of misspecification or mismeasurement.
By far, the best method of evaluating the distribution of residuals is
by graphing them various ways. Different methods are presented in
the following examples.

FExample 6.2: Poisson Generalized Linear Model of Capital Punish-
ment, Continued. Returning very briefly to the Poisson model of cap-
ital punishment in Table 5.1, we see that the deviance function of
18.212 on 10 degrees of freedom for the specified model provides
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a substantial improvement over the null deviance (calculated from a
model explaining all systematic effects by the mean) of 136.573. A chi-
square test of the summed deviance finds that it is not in the tail with
a predefined alpha-level of 0.05, suggesting a reasonable overall fit.
In general, a quick test of fit is looking to see whether the summed
deviance is not substantially larger than the degrees of freedom. Now
we apply the suggested idea of summing squared Anscombe residuals.
The result from performing this operation on the Anscombe residu-
als in Table 6.3 is 18.482, which is very nearly the same value as the
summed deviance.

Example 6.3: Gamma Generalized Linear Model of Electoral Politics
in Scotland, Continued. Assessing the quality of fit for the Scottish
elections model is a bit more subtle than the other examples because
of the units of the outcome variable and the relatively low variability
of the effects. In fact, if one was willing to live without any explana-
tory value, summarizing the outcome variable with a mean only pro-
duces an amazingly low null deviance of 0.536072. However, we are
interested in producing models that explain outcome variable changes
with regard to specific factors. In attempting to do so here, the model
produces a summed deviance of 0.087389, a good reduction in propor-
tion. In addition, the minimum eigenvalue of the information matrix
is 0.7564709.

In the previous description of this model, it was argued that an in-
teraction term between the variables for council tax and female unem-
ployment claims was useful in describing outcome variable behavior.
Some evidence supporting this claim was found in the 95% confidence
interval for the coefficient being bounded away from zero. How it adds
to the overall quality of the model becomes more apparent after per-
forming an analysis of deviance. This is provided in Table 6.4 where
the terms are sequentially entered into the model, and therefore the
calculation of the summed deviance, with the interaction being last.

Unfortunately, this analysis of deviance is always order-dependent
so the deviance residual contribution from adding a specified variable
as reported is conditional on the previously added variables. Regard-
less of this attribute, we can evaluate whether or not the interaction
term contributes reasonably to the fit. It is placed last in the order of
analysis so that whatever conclusion we reach, the value of this term
is conditional fully on the rest of the terms in the model. From look-
ing at the second and fourth columns, we can see that the marginal
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TABLE 64
Analysis of Deviance for the Scottish Vote Model
Individual Variable Summed Statistic
Deviance Residual F

df Residual df Deviance Statistic  P(>F)
Null model 31 0.53607
Council tax 1 0.23227 30 030380  64.8037 0.0000...
Female unemployment 1 0.11949 29 018431 333394 0.0000...
Standardized mortality 1 0.02746 28 0.15685 7.6625  0.0106
Economically active 1 0.02298 27 0.13387 64109 0.0183
GpDp 1 0.00052 26 013335 0.1435  0.7081
Percent aged 5-15 1 0.00732 25 012603 2.0438 (1657
Council tax: Female 1 0.038564 24 008739 10.7806 0.0031

unemployment

contribution from the interaction term is nontrivial. More importantly,
we can test the hypothesis that the variable contributes to the fit of
the model using the F test previously described (since the dispersion
parameter, a(i), was estimated). For a model on row k of the ta-
ble with p, degrees of freedom nested within a model on row k& — 1
with p,_, degrees of freedom (necessarily larger), this test statistic is
calculated:

D(ﬂfsz) - D(My)
a(p X pr-1 — Pi)

So the F statistic on the last row of Table 6.4 is calculated by

fk,k—i =

0.12603 — 0.08739
fos = (0.003584182)(25 — 24) 10.7806,

indicating strong evidence that the interaction term should be in-
cluded in the model (note the p-value in the last column of Table 6.4).
In addition, we can readily see corroborating evidence that GDP is
not particularly reliable or important in the context of this model.
Interestingly, the variable indicating the percentage of middle range
children does not seem to be contributing a substantial amount to
our summed deviance reduction, even though it has a 95% confidence
interval bounded away from zero.
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Example 6.4: Binomial Generalized Linear Model of Educa-
tional Standardized Testing. Measuring and modeling the educational
process is a particularly difficult empirical task. Furthermore, we are
typically not only interested in describing the current state of the
educational institutions and policies; we seek to explain what policies
“work”™ and why. Even defining whether or not a program is success-
ful can be difficult and about the only principle that scholars in this
area agree on is that our current understanding is rudimentary at
best (Boyd, 1998).

There are two primary academic schools of thought on the problem.
Economists (Hanushek, 1981, 1986, 1994; Boyd & Hartman, 1998;
Becker & Baumol, 1996) generally focus on the parametric specifi-
cation of the production function (a “systems” model of the process
which evaluates outputs as a function of definable and measurable in-
puts). Conversely, education scholars (Hedges, Laine, & Greenwald,
1994; Wirt & Kirst, 1975) tend to evaluate more qualitatively, seck-
ing macrotrends across cases and time as well as the implications
of changing laws and policies. These two approaches often develop
contradictory findings as evidenced by bitter debates such as in the
determination of the marginal value of decreasing class size,

This example examines recent California state data on educational
policy and outcomes (STAR program results for 1998). The data came
from standardized testing by the California Department of Education
(CDE) that required evaluation of 2nd-11th grade students by the
Stanford 9 test on a variety of subjects. These data are recorded for
individuals and aggregated at various levels from schools to the full
state.!2 The level of analysis here is the unified school district, pro-
viding 303 cases. The outcome variable is the number of 9th graders
scoring over the mathematics national median value for the district
given the total number of 9th graders taking the mathematics exam
(hence a binomial GLM).

The explanatory variables are grouped into two functional cat-
egories. The first, environmental factors, includes four variables
traditionally used in the literature that are typically powerful expla-
nations of learning outcomes. The proportion of low income students
(LOWINC) is measured by the percentage of students who qualify for
reduced or free lunch plans. Proportions of minority students are also
included (PERASIAN, PERBLACK, and PERHISP). Poverty has
been shown to strongly affect education outcomes. Racial variables
are often important because according to numerous studies, economic
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factors and discrimination negatively and disproportionately affect
particular minorities in terms of educational outcomes.

The second group, policy factors, includes six explanatory variables.
These are: per-pupil expenditures in thousands of dollars (PER-
SPEN), median teacher salary including benefits also in thousands
of dollars {AVSAL), mean teacher experience in years (AVYRSEX),
the pupil-teacher ratio in the classroom (PTRATIO), the percent of
minority teachers (PERMINTE), the percent of students taking col-
lege credit courses (PCTAF), the percent of schools in the district
which are charter schools (PCTCHRT), and the percent of schools in
the district operating year-round programs (PCTYRRND),

The model is set up with a logit link function

8wy =log(75-),

although nearly identical results were observed with the probit
and cloglog link functions. In addition to the listed variables, sev-
eral interactions are added to the model. The outcome is listed in
Table 6.5.

Each of the 20 included explanatory variables in the model pro-
duced a 95% confidence interval bounded away from zero (but not
the intercept). Actually, if Table 6.5 were constructed with 99.9%
intervals instead of 95%, then every interval would still be bounded
away from zero. As expected, the environmental variables are reliable
indicators of educational outcomes. Increasing the percent of minor-
ity teachers appears to improve learning outcomes. This is consistent
with findings in the literature that suggest that minority students are
greatly assisted by minority teachers while nonminority students are
not correspondingly ill-affected (Meier, Stewart, & England, 1991;
Murnane, 1975).

The large and negative coefficients for pupil-teacher ratios support
current public policy efforts (particularly in California) to reduce class
sizes. This, of course, comes with a cost. Since the coefficient is large
and positive for the teachers’ experience variable, bringing in many
new and necessarily inexperienced teachers has at least a short run
negative effect. Furthermore, the negative coefficient on the inter-
action effect between percent minority teachers and years experience
implies that more experienced teachers tend to be nonminorities. So,
the positive effect of hiring new minority teachers could be reduced
slightly by their short-term inexperience.
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Without a little background, the sign of the coefficient for per-
cent of schools within the district operating year-round is perplexing.
A common argument for year-round schools is that the relatively
long time that students have away from the classroom in the sum-
mer means that part of the school year is spent catching up and
remembering previous lessons. However, year-round schools come
in two flavors: single track in which all of the students are on the
same schedule, and multitrack in which the students share class-
rooms and other resources by alternating schedules. Evidence is that
multitrack schools perform noticecably worse for various sociological
reasons than single-track schools and traditionally scheduled schools
(Weaver, 1992; Quinlan, 1987).

Often the best way to understand generalized linear models with
interaction effects is by using first differences. The principle of first
differences is to select two levels of interest for a given explanatory
variable and to calculate the difference in impact on fhe outcome
variable hoiding all of the other variables constant at some value,
usually the mean. Therefore, when looking at a variable of interest in
a table of first differences, the observed difference includes the main
effect as well as all of the interaction effects that include that particular
variable.

Table 6.6 provides first differences for each main effect variable in
the two models over the interquartile range and over the whole range.
Thus, for example, the interquartile range for percent low income is
26.68-55.46%, and the first difference for this explanatory variable
over this interval is —11.89%. In other words, districts do about 12%
worse at the third quartile than at the first quartile.

Looking at first differences clarifies some of the perplexing results
from Table 6.5, For instance, the coefficient for per student spending
in Table 6.5 has negative coefficient (—1.95217 using dollars as the
measure). This is the contribution of this explanatory value in the
nonsensical scenario where all other interacting variables are fixed
at zero. If there is a large discrepancy between the magnitude of
the effect in the estimation table and the first difference result, it
means that the interactions dominate the zero-effect marginal. The
first differences for per student spending in the model, moving from
the first quartile to the third quartile improves the expected pass rate
about 1% and moving across the whole range of spending for districts
improves the expected pass rate slightly less than 6%.
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Of great concern is the summed deviance of 4078.8 on 282 degrees
of freedom (4054.928 for adjusted deviances). Clearly, this is in the
tail of the chi-square distribution (no formal test needed) and none
of the smoothing techniques in the literature will have an effect. First
it should be noted that the deviance was reduced about 90% from
the null. This observation along with the high quality of the coeffi-
cient estimates and the minimum eigenvalue (0.4173) of the infor-
mation matrix, motivate further investigation as to whether the fit is
acceptable.

Figure 6.2 provides three very useful diagnostics for looking at the
quality of the fit for the developed model. The first panel provides
a comparison of the fitted values, g~!(XB), versus the observed out-
come variable values, Y. The diagonal line in this panel is the linear
regression line of the fitted values regressed on these observed values.
If this were the saturated model, then all of the points would land on
the line. So a model’s difference from the saturated benchmark is the
degree to which the points deviate from the line. If there existed sys-
tematic bias in the fit, say from omitted variables, then the slope would
be much different than one. For instance, a slope noticeably less than
one would indicate that the model systematically underfit cases with
larger observed values and overfit cases with smaller oberved values.
In Figure 6.2, the linear regression produces an intercept and a slope
(a = —0.004961283 and S = 0.989823091) which are very near the
perfect ideal.

Panel two in Figure 6.2 displays a residual dependence plot. These
are the fitted values, g~1(X;B), plotted against the Pearson resid-
uals. Any discernible pattern or curvature in a residual dependence
plot is an indication of either: systematic effects contained within the
stochastic term, a poor choice for the link function, or a very badly
measured variable. This plot shows a very healthy residuals structure.

The final panel in Figure 6.2 plots the deviance residual quantiles
(Y-axis) against the quantiles from an equal number of sorted normal
variates with mean zero and standard deviation one. The purpose of
this normal-quantile plot is to evaluate whether or not the obtained
deviance residuals are approximately normally distributed. If one were
to plot perfectly normally distributed residuals against the N(0,1)
benchmark here, the plot would be an approximately straight line
with slope equal to the mean of the normal variates.

For the model developed here, there is evidence that the deviance
residuals are approximately normally distributed. Again, we can see
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some outliers at the end, but these are small in number and not
terribly ill-behaved. Indications of residual distributions that deviate
strongly from the desired normality show up as “8” type curves in the
normal-quantile plot. It should be noted again that generalized lin-
ear models are not required to have normally distributed residuals,
Therefore, linearity in the normal-guantile plot in this context is not
_a condition of model quality, rather a helpful description of residuais
behavior,

This residuals analysis shows that it is unlikely that the model suf-
fers from omitted variable bias affecting the stochastic component
or misspecification of the link function. The summed deviance could
probably be reduced significantly by including an explanatory vari-
able that many researchers have pointed to as a critical determinant
in the education production function: parental involvement, possibly
measured by the level of PTA activity. Unfortunately, the State of
California does not track and measure this variable for these data.

Example 6.5: Negative Binomial Generalized Linear Model, Congres-
sional Activity: 1995. As a simple illustration of one use for a negative
binomial GLM, consider the assignment of bills to committees during
the first 100 days that the House of Representatives is in session after
an election. This period is typically quite busy as Congress usually
sees election issues as subsequent legislative mandates (though not
always with successful or intended successful outcomes). The first 100
days of the 104th House was certainly no exception to this observed
phenomenon. The new Republican majority busily addressed 40 years
of minority party frustration and attempted to fulfill their promises
outlined in the “Contract with America,”

The negative binomial distribution has the same sample space (i.e.,
on the counting measure) as the Poisson, but contains an additional
parameter which can be thought of as gamma distributed and there-
fore used to model a variance function. This configuration, Poisson
distributed mean and gamma distributed variance, naturally produces
the negative binomiai PME In this manner, we can model counts
while relaxing the assumption that the mean and variance are iden-
tical. This turns out to be enormously useful for count data that is
observed to be overdispersed: VAR[Y] = 8E[Y], 8 >» 1. Often when
there is noticeable heterogeneity in the sample, such overdispersion
results.
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The data in this example contain the number of bills assigned to
committee in the first 100 days of the 103rd and 104th Houses, the
number of members on the committee, the number of subcommittees,
the number of staff assigned to the committee, and a dummy variable
indicating whether or not it is a high prestige committee. These data
are provided in Table 6.7.

If bill assignments in the 104th House are perceived as events (at
the committee level), then it is natural to consider applying a gener-
alized lincar model with a Poisson link function. Unfortunately, this
model fits poorly as measured by some of the diagnostics already
discussed (summed deviance of 393.43 on 14 degrees of freedom, for
example). The culprit appears to be a variance term that is larger than
the expected value, and thus violates a Poisson assumption, motivating
the negative binomial specification developed here.

The negative binomial model is developed with the link function:
6 = log(1 — p). It is possible with many statistical packages to either
assign a known value for the variance function or to estimate it. Given
that we have no prior information about the nature of the variance
function, it is estimated here. The resulting output is provided in
Table 6.8,

From Table 6.8, we can see that the model provides a quite reason-
able fit. The summed deviance term is not in the tail of a chi-square
distribution for 13 degrees of freedom, and the smallest eigenvatue
of the information matrix is 0.1366226. The dispersion parameter is
estimated to be a(¢) = 1.494362, indicating that we were justified in
developing a negative binomial specification for these counts.

Both the coefficients for the prestige variable and the variable for
the size of the committee (measured by number of members) have
95% confidence intervals that bound zero. There is therefore no ev-
idence that these are important determinants of the quantity of bills
assigned, given these data and this formulated model. This is inter-
esting because some committees in Congress are larger presumably
because they have more activity. However, the size of the commit-
tee is likely to be affected by 40 years of Democratic policy priorities
as well. Other measures of size and resources for a committee is its
number of staff and its subcommittees. The corresponding coefficients
for both of these both have 95% confidence intervals bounded away
from zero. Predictably, the interaction term for these variables also
has a 95% confidence interval bounded away from zero, although the
negative sign is mysterious,



b

1915139y [evoissIFuc]) ‘Xapuf jeuorssarduc)y (93N0g

¥ 7 0 /4 4 91 souadipoiug
I 0 0 6 ¢ o1 jonpuo’) JO SpIEpUEI
89 £ET 0 1 0 [4! WBisieaQ 3sa0H
8T 144 0 9¢ € 2 SIRITY SUBISISA
g & g 62 b4 £t sselsng [[BWS
LZ Y4 0 85 t as 20UIDG
¢el 59 0 178 g 19 atnjonisegui-uoeodsueiy
[4:a3 86 0 8¢ 3 44 $331n089Y
68 SL [y 4 L g% Ajunoas feucHeN
18 09 0 9F [ 24 armproudy
€57 891 0 95 s g€ Aresopnif
6¥1 ZL 0 66 L is WICISY WIWUIIACL)
£9 0y 0 89 £ ¥y suonRiey [EUCHBWIANU]
L2 961 0 6L 4 &% FIESLULEOY
1e1 851 ] 69 g £ ssnunuoddQ [ruonEINPpT-IIUOU0dT
sT1 101 0 19 § 16 Surjueg
See (444 I | 74 S 6% SURAIY pUe SAem
vy 12 4 sZ z £1 sopy
£T 01 i 6& 0 (a7 198png
9 6 1 601 g1 85 suoneudorddy
el —siig PIEQTSINE aBysaid Hog SAMUBUCIGNS 248 BT

80

SKe(T 0O 1811 ‘ooNMIII0O] 0} paUBIssy siig

L9 91gVL




81

TABLE 6.8
Modeling Bill Assignment—104th House, First 100 Days
Standard 95% Confidence

Coefficient Error Interval
(Intercept) ~6.80543 2.54651 [—12.30683:—1.30402)
Size ~0.02825 0.02093 { —0.07345: 0.01696}
Subcommittees 1.30159 0.54370 [ 0.22701: 2.47619]
log(Staff) 3.00971 0.79450 [ 1.29329: 4.72613]
Prestige —-1.32367 044102 [ —1.27644: 0.62911]
Bills in 103rd 0.00656 0.00139 { 0.00355: 0.00957)
Subcommittees; ~0.32364 0.12489 [ =~ 0.59345:—0.05384]

log(STAFF)

Null deviance: 107.314, df = 19 Maximized I( ):10,559
Summed deviance: 20.948, df = 13 AIC: 121,130

It is not surprising that the coefficient for the variable indicating
committee counts in the 103rd House is also reliable. Seemingly this
tells us that party control and a change of agenda do not make huge
changes in the assignment of bills to committee during the first 100
days of a Congress. In other words, a certain amount of work of a
similar nature needs to take place regardless of policy priorities of
the Ieadership.

Figure 6.3 shows another way of looking at model residuals. In this
display, the Pearson residuals are shown by the dots and the deviance
residuals are indicated by the length of the vertical lines. These resid-
ual quantities are both sorted by the order of the outcome variable.
Therefore, if there were some unintended systematic effects in the
stochastic term, we would expect to see some sort of a trend in the
display. It is clear that none is present. The horizontal bands indi-
cate one and two times the standard error of the Pearson residuals in
both the positive and negative directions, and can be used to look for
outlying points.

Example 6.6: Two-Stage Generalized Linear Model, the World Cop-
per Market: 1951-1975. A common managerial economic problem is
the estimation of a model of supply and demand functions for a cer-
tain good given data. A typical application is a linear regression model
to find explanatory effects that influence market price and quantity
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from which elasticities can be calculated at selected points. The cen-
tral problem is one of endogeneity: price affects demand and demand
affects price. The classic solution is to implement a two-stage process
in which the endogenous variable for price is regressed onto some
exogenous variables to create a predicted price vector, then this pre-
dicted price vector is used as one of a set of explanatory variables to
regress quantity. The model is fully identified if the first stage of the
model has one or more explanatory variables not included in the sec-
ond stage. If the regression technique used in this process is the stan-
dard linear model, then this is called two-stage least squares (2SLS).

This two-stage estimation process can be applied to the generalized
linear model. The process performed here simply inserts a noniden-
tity link function at the regression stages. As an example, consider
a model for the world demand for copper over the years 1951-1975.
Maurice and Smithson (1985) provide a 2SLS model using: world con-
sumption of copper in 1000 metric tons (QTY), the constant dollar
adjusted price of copper (PRI), and aluminum (ALM, which is a sub-
stitute in many industrial settings), an index of real per capita income
base 1970 (INC), and an annual measure of manufacturer inventory
change (INV). As an attempt to capture technological improvements
in manufacturing over this period, the authors use a simple integer
time index 1-25 (TME) over the years as an additional explanatory
variable. These data are provided in Table 6.9.

The first model provides predicted price of copper as a function of
real income, the price of aluminum, inventories of copper, and the
‘time surrogate for technological change. The second model gives the
expected quantity produced as a function of the predicted price, real
income, and the price of aluminum. The model is identified because
time and inventories are excluded from the second stage. The 2SLS
model can be summarized as

Stage 1. Predicted(PRI) = 189 + INC 8, + ALM 8,,
+INV 8;; + TME B4
Stage 2: EJQTY] = 18, + Predicted(PRI) 85,
+INC By, + ALM By,

From this specification Maurice and Smithson get a useful linear
model for estimating the demand function conditioned on these
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TABLE 6.9
The World Copper Market: 1951-1975

Worid Copper Copper Aluminum Income Inventory
Year Consumption Price Price Index Change
1951 3173.00 26.56 19.76 0.70 0.97679
1952 328110 2731 20.78 0.71 1.03937
1953 3135.70 32.95 2255 0.72 1.05153
1954 3359.10 33.90 23.06 0.70 0.97312
1955 3755.10 42.70 24.93 0.74 1.02345
1956 3875.90 46.11 26.50 0.74 1.04135
1957 3905.70 3170 27.24 0.74 0.97686
1958 3957.60 27.23 26.21 0.72 0.98069
1959 4279.10 32.89 26.09 0.75 1.02888
1960 4627.90 33.78 27.40 077 1.03392
1961 4910.20 31.66 26.94 0.76 0.97922
1962 4508.40 32.28 25.18 0.79 0.99679
1963 §327.90 32.38 23.94 0.83 0.96630
1964 5878.40 3375 25.07 0.85 1.02915
1965 6075.20 36.25 25.37 0.89 1.07950
1966 6312.70 36.24 24.55 0.93 1.05073
1967 6056.80 T 3823 24.98 0.95 1.62788
1968 6375.90 40.83 24.96 0.99 1.0279%
1969 6974.30 44.62 25.52 1.00 0.99151
1970 7101.60 5227 26.01 1.00 1.00191
1971 7071.70 45.16 25.46 1.02 0.95644
1972 7754.80 42.50 22.17 1067 0.96947
1973 8480.30 43,70 18.56 112 0.98220
1974 8105.20 47.88 21.32 110 1.00793
1975 7157.20 36.33 22,75 1.07 0.93810
TME QryYy PRI INC ALM INV

Source: Maurice and Smithson (1985).

exogenous variables. There is, however, a problem with the time vari-
able as a measurement of technological improvement and change in
the manufacturing process. There is evidence that this is not a lin-
ear change over these years, and in particular that most innovations
occurred early in the time period. Using an integer scale as the 2SLS
model has done, imposes a strict linearity condition here. An obvious
fix is to drop the time-technology variable entirely, or to transform
it in some logical manner. Unfortunately, these strategies produce a
substantially worse fit to these data using the standard linear model.

A histogram of the outcome variable indicates a strongly right-
skewed distribution, suggesting that the linear model might not be the
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best choice. In addition, there is a slight downturn for the last pro-
duction value, indicating a discontinuation of the linear trend. Instead
of the two-stage least squares linear model, a two-stage gamma GLM
with 8 = —1/4 is built with the following specification:

Stage 1: Predicted(PRI) = g~ '[1B,y + INC B, + ALM B,
+INV B3 + log(TME) 8,4]
Stage 2: E[QTY] = g™'[1By + Predicted(PRI) 8,
+ INC B, + ALM B4],

where the g~}(XB) is the gamma link function. This model specifica-
tion produces the results in Table 6.10.

Every term in the model produces a 95% confidence interval
bounded away from zero. The summed deviance is far from being
in the tail of the chi-square distribution for 21 degrees of freedom.
‘The minimum of the eigenvalue of the normed information matrix
is: —0.0015. By all accounts this model appears to fit these data quite
well. While we should feel relatively satisfied with this model, it is
still wise to look at some diagnostics such as the behavior of the
residuals. Figure 6.4 gives these. There is little indication of a poor
fit or of systematic effects remaining in the residuals.

Initially, the sign on the coefficient for price is surprising since a
positive value implies that higher prices are associated with greater
demand that contradicts basic theory for a normal good {the 2SLS

TABLE 6.10
Modeling the World Copper Market: 1951-1975
Standard 95% Confidence
Coefficient Error Interval
{(Intercept) 0.00080558 0.60006566 [ 0.00066904: 0.00094212]
Predicted(PRI} 0.00000449 0.00000162 [ 0.00000111: 0.00000786]
INC ~{0.00058689 0.00006905 [~0.00073049:~0.00044329}
ALM ~(.00001082 0.00000234 [0.00001568:—0.00000596)
Null deviance: 2.36735, df = 24 Maximized /{ }: ~185.755

Summed deviance: 0.14290, df = 21 AIC: 379.51
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model had a negative sign). However, once we recall that the link
function is necessarily acting on the linear predictor, this makes sense.
For example, we can construct the first difference for price using its
first and third quartile (thus bracketing the interquartile range), keep-
ing the other two variables constant at their mean. This produces:
E[QTY y] = 5566.772, and E[QTY ;) = 4527.485, for a first differ-
ence of —1039.287. So as price moves from the 25th percentile to the
75th percentile, the expected drop in the world for demand is a little
over one million (1,039,287) metric tons.

7. CONCLUSION

Summary

We started in Chapter 1 with a general introduction to the lan-
guage and setup of generalized linear models. This was followed by
some classic mathematical statistics theory in Chapter 2. Here we saw
that most commonly used PDFs and PMFs can be expressed in a
single exponential family form. This has the advantage of identifying
and highlighting particular structural components such as b(6) and
a(y). Likelihood theory and moment calculations using the exponen-
tial family form were provided in detail in Chapter 3. This material
is important enough to fill volumes on its own (and in fact does §0).
Here we focused on calculating the first two moments and identifying
the variance function. The most important chapter in the monograph
followed. Chapter 4 provided the link from the standard linear setup,
with interval measurement and assumed normality, to the broader
class of outcome variable forms. The link function represents the core
of generalized linear model theory since it is the mechanism that al-
lows generalization beyond the Gauss~Markov assumptions. Chapter
5 discussed the important statistical computing issues associated with
producing estimates for the generalized linear model. The basics of
iterative weighted least squares was explained and demonstrated with
examples. Chapter 6 contains the material that readers of generalized
linear models care about most: does the prescribed model provide a
good fit to the data? Here we looked at residuals analysis as well as
some commonly applied tests.

Throughout the second half of the monograph, there has been
an emphasis on looking at data. Except for the educational testing
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problem (n = 303), every example provided the raw data, and all
examples included graphical displays to highlight various features of
the data or model. The maxim that researchers should spend some
time looking at the data before applying various parameterizations
and summaries cannot be overemphasized. Furthermore, these exam-
ples are real, original data-analytic problems, not simply contrivances
for presentational convenience. It is not infrequently the case that a
text explains some data analytic procedure with the aid of a stylized
simple “data set” that bears little resemblance to problems readers
subsequently face in their own work. This disconnect can be very frus-
trating when applying principles in practice. However, since the data
included here address actual, unpublished problems, they are neces-
sarily more “messy,” containing issues such as: a dominant outlier,
small outcome variation, reliable coefficients but large deviance, and
the need for a two-stage process. This is an intentional feature of the
monograph as it better reflects the actual process of social science
data analysis.

Related Topics

“There are several associated and related topics not discussed in this
monograph. An important application of generalized linear models
is to the analysis of grouped and tabular data. Generalized linear
models are quite adept at addressing these problems and the con-
cerned reader is directed to Fahrmeir and Tatz (1994) or Lindsey
(1997). Generalized additive models are a natural extension of a gen-
eralized linear model in which the form of the relationship between
cach explanatory variable and the outcome variable can be defined
nonparametrically. This is a marvelously flexible tool despite some
of the complications that can arise. However, ¢ven a well-developed
generalized additive model lacks something that a generalized lin-
ear model necessarily possesses: a direct analytical expression for the
model relationship. Thé seminal work on generalized additive models
is Hastic and Tibshirani (1990).

Further Reading

The standard and classic reference for generalized linear mod-
cls is McCultagh and Nelder (1989). Despite the popularity of this
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text, it remains somewhat elusive to many social scientists due to the
level of discussion and the preponderance of biostatistics examples
(lizards, beetles, wheezing coalminers, etc.). The article by Nelder and
Wedderburn (1972) is well worth reading as it is the original defin-
ing work on generalized linear models. The recent book by Lindsey
provides a wealth of extensions such as spatial interaction, dynamic
modeling, and polynomial specifications. The advanced level book by
Fahrmeir and Tutz (1994) is extremely rich in theory and offers many
useful practical points to those with some experience in mathematical
statistics, Dobson (1990} offers an accessible introduction with some
usefu] problem sets.

Generalized linear models are also an active research area in the
current statistics literature, and many extensions and refinements are
being developed. Zeger and Karim (1991) apply generalized linear
modeling to clustered data and use the Gibbs sampler to circumvent
the ensuing intractable likelihood function. Others such as Su and
Wei (1991) look extensively at assessing model quality in a variety
of more complex settings. A generalized linear mived model can be
developed to accommodate outcome variables conditional on mixtures
of possibly correlated random and fixed effects (Breslow & Clayton,
1993; Wang, Lin, Gutierrez, & Carroll, 1998; Wolfinger & O’Connell,
1993), but not without some computational challenges (McCulloch,
1997). Buonaccorsi (1996) develops tools for compensating for bias-
inducing measurement error in the outcome variable.

As mentioned previously, quasi-likelihood functions are being
applied to models that lift the restriction to exponential family forms.
In this construct, only separate characterizations of the first two
moments are required rather than a specific PDF or PME This liter-
ature begins roughly with Wedderburn (1974) and McCullagh (1983),
but gains momentum with Chapter 9 of McCullagh and Nelder
(1989). Some other works on quasi-likelihood generalized linear
models have focused on a broader approach to modeling dispersion
(Efron, 1986; Nelder & Pregibon, 1987; Pregibon, 1984).

The standard algorithm for computing parameter values, iterative
weighted least squares (IWLS), s restricted at present to the exponen-
tial family form. Loosening this restriction is currently an active area
of research. Hirdle, Mammen, and Miiller (1998) develop a gener-
alized partially linear model and use Severini and Staniswalis’ (1994)
quasi-likelihood estimation algorithm. Generalized estimating equa-
tions (Liang & Zeger, 1986; Zeger & Liang, 1986) are an extension
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of generalized linear models that accommodate time series, or clus-
tered research designs by allowing for autocorrelation although still
requiring single-period independence. This approach (GEE) does not
require that the functional form be identified as an exponential family
form, yet it uses the same mean and variance function developed for
generalized linear models for computational ease.

Bayesian variants of the generalized linear model have been used to
incorporate prior information about the p vector. The recent explo-
sion in computing power available to researchers has tremendously
benefited Bayesian approaches, some of which build upon the gen-
eralized linear model. Cook and Broemeling (1994), Albert (1988),
and Naylor and Smith (1982) provide excellent overviews with an em-
phasis on computing issues. Other provocative works include Ibrahim
and Laud (1991) on the use of a Jeffreys’ prior, Walker and Mallick
(1997) on frailty models, Zeliner and Rossi (1984) on binary out-
come variables, and West, Harrison, and Migon {(1985) on forecast-
ing. Hierarchical generalized linear models with Bayesian priors and
hyperpriors are currently the vanguard in applied methods in this
area. Good examples include Daniels and Gatsonis {1999), Albert and
Chib (1996), Ghosh, Natarajan, Stroud, and Carlin (1998), as well as
Bennet, Racine-Poon, and Wakefield (1996).

Motivation

The process of generating social science statistical models has four
steps: obtaining and coding the data, specifying a probability model,
applying the model to the data to obtain inferences, and finally deter-
mining the quality of the fit of the model to the data. This monograph
directly addresses the last three steps with a unified process for devel-
oping and testing empirical models. Once a researcher is comfortable
with the theoretical basis of the generalized linear model, then speci-
fication is simplified to two primary tasks: variable inclusion decisions
and selection of an appropriate link function. In other words, it is not
necessary to rattle through an extensive toolbox full of distinct and
separate techniques.

The generalized linear model is a flexible, unified framework for
applying parametric models to social science data. The flexibility stems
from the broad class of probability statements that are included under
the exponential family form. The theory bridges the chasm between
discrete and continuous probability models by recasting both PDFs
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and PMF's into this common exponential family form. Therefore, pro-
vided that an appropriate link function is selected, the distinction
between levels of measurement is not an important consideration.

The GLM framework includes an integrated set of techniques for
evaluating and presenting goodness of fit for the specified model.
By concentrating quality assessment on a more general measure,
deviances, generalized linear models provide a more cohesive frame-
work for gauging model quality. Furthermore, this approach moves
attention away from flawed measures of model fit such as the R?
measure in the linear model, common fixation with p-values, and
linear misinterpretation of logit-probit coefficients.

Given that nearly every statistical computing software package read-
ily accommodates the generalized linear modeling approach, there are
few technical impediments to widespread use. The major impediment
to widespread use is not technical, rather it is a reluctance to embrace
the theory. The theoretical underpinnings can be somewhat chaHeng-
ing, and in particular when explained to a different audience. This
monograph has taken the approach that understanding the theory is
critical, but that it should be explained and applied in a way that social
scientists find accessible.
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NOTES

1. For instance, suppose we had V' explanatory variables, where we can pick r =
V to include in a simple additive model. Then the total number of specifications is:
T, (). To illustrate, V = 20 produces T2 (%) = 1,048,575 possible models.

2. There are two notable exceptions. First, the interaction term in the saturated
log-linear mode! for a contingency table (saturated in this context means that there
arc as many parameters as cells in the table) demonstrates the strength of association
of a hypothesized relationship, and can be tested to provide inferential evidence of
nonindependence. Useful discussions can be found in Bishop, Fienberg, and Holland
{1975); Good (1986); Krzanowski {1988, Chap. 10); and Upton {1991). The second
useful application of the saturated model is in a time series where there exists a time-
varying parameter and it is desired to have an estimate for each point. In this setup,
the parameters can be aflowed to vary as smooth functions of the other variables and
as a function of time (Harvey, i989; Harvey & Koopman, 1993; Hastie & Tibshirani,
1993). These structural time series models are formulated to use unobserved features
of the data that affect patterns of interest such as periodicity.

3. While this is strictly true, recent work has relaxed this assumption applying a
wider class of probability functions in which full specification: of the parametric form
is replaced by merely characterizing the first two moments. This allows separating
of the mean and variance functions and estimation is accomplished by employing a
“quasilikelihood” function. This approach has the advantage of accommodating situa-
tions in which the data are not Lid. See Wedderburn (1974) and McCullagh (1983) for
discussions.

4. Tt should be noted that most statistical packages do not allow an explicit form
for the binomial coefficient or “choose™ operator,

()= 5@

in an estimation routine. This is not a serious problem as the gamma function can be
substituted according to

(n) _ I(n+1)
¥ T T+ DRy + B’
where ['{a) = [ *~'e""dL.

5. An alternative but equivalent form,

fomp= (17 )r 0=y,

measures the number of trials necessary to get r Successes.

6. Specifically that one can apply Leibnitz’s rale for constant bounds (a, b}
dfdi f: fly ) dy = f:’(a/aw) F(3, 1) dy, or Lebesgue's dominated convergence theo-
rem for infinite bounds: d/dy [T f(y ) dy = J2(3199) (3, ) dy where there exists
some function g(y) = [(f(» &)\ such that {7 g(y) < co.
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7. For discrete random variables, replace the integration with the summation in
(3.5).

8. This measure inciudes AA degree and above. The observed figures appear low
since children and currently enrolled college students are included in the denominator.
It also does not count college attendance short of receiving a degree.

9. For an example see “WORKSHOP: A Unified Theory of Generalized Linear
Models,” Jeff Gill, presented to the Boston Chapter of the American Statistical Assq.
ciation, February, 1998. Available at: http://web.clas.ufl.edu/~jgill.

10. A matrix, A, is positive definite if for any nonzero k x 1 vector x, XAx > 0.

11. T have reproduced this mathematical function for ¢ — 1 = ~1/3 b -1 —1/3
and was able to exactly replicate Cox and Snell’s table using Laguerre~Gaussian quadra-
ture. This table and lookup routines written for various statistical packages is available
in electronic form at my webpage: http://web. clas.ufl.edu/~jgill. The provided
form of the Cox and Snelf table is changed from the original in that it is now two cal-
umn vectors: the first is the index value and the second is the I( ) value. This approach
facilitates software lookup rather than the traditional Fisheresque approach with col-
umn and row indices requiring human interaction, A partial reason that Anscombe
residuals are less popular than other forms is the difficulty in obtaining these tabular
values.

I2. The data sets are freely available from the source {http://goldmine.cde,
ca.gov) or my webpage. Demographic data are provided by CDE’s educational de-
mographics unit, and income data are provided by the National Center for Education
Statistics. For some nontrivial data collection and aggregation issues see Theobald and
Gill (1999).
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