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Preface 

What is R? 

R is a computer language for statistical computing similar to the S language developed at 
Bell Laboratories. The R software was initially written by Ross Ihaka and Robert 
Gentleman in the mid 1990s. Since 1997, the R project has been organized by the R 
Development Core Team. R is open-source software and is part of the GNU project. R is 
being developed for the Unix, Macintosh, and Windows families of operating systems. 
The R home page (http://www.r-project.org/) contains more information about R and 
instructions for downloading a copy. 

R is excellent software to use while first learning statistics. It provides a coherent, 
flexible system for data analysis that can be extended as needed. The open-source nature 
of R ensures its availability. R’s similarity to S allows you to migrate to the commercially 
supported S-Plus software if desired. Finally, despite its reputation, R is as suitable for 
students learning statistics as it is for researchers using statistics. 

The purpose of this book 

This book started as a set of notes, titled “simpleR,” that were written to fill a gap in 
documentation for using R in an introductory statistics class. The College of Staten Island 
had been paying a per-seat fee to use a commercial statistics program. The cost of the 
program precluded widespread installation and curtailed accessibility. It was determined 
that the students would be better served if they could learn statistics with a software 
package that taught them good computer skills at the outset, could be installed all over 
campus and at home with relative ease, and was free to use. However, no suitable 
materials were available to accompany the class text. Hence, the basis for “simpleR”—a 
set of notes to accompany an in-class text. 

Now, as R gains wider acceptance, for pedagogic, style, and economic rea-sons, there 
is an increase, but no abundance, in available documentation. The adoption of R as the 
statistical software of choice when learning statistics depends on introductory materials. 
This book aims to serve the needs of students in introductory applied-statistics classes 
that are based on precalculus skills. An emphasis is put on finding simple-looking 
solutions, rather than clever ones. Certainly, this material could be covered more quickly 
(and is in other books such as those by Dalgaard, Fox, and Venables and Ripley). The 
goal here is to make it as accessible to student-learners as possible. 

This book aims to serve a hybrid purpose: to cover both statistical topics and the R 
software. Though the material stands alone, this book is also intended to be useful as an 
accompaniment to a standard introductory statistics book. 



Description of this book 

The pacing and content of this book are a bit different from those in most introductory 
texts. More time is spent with exploratory data analysis (EDA) than is typical, a chapter 
on simulation is included, and a unified approach to linear models is given. If this book is 
being used in a semester-long sequence, keep in mind that the early material is 
conceptually easier but requires that the student learn more on the computer. The pacing 
is not as might be expected, as time must be spent learning the software and its 
idiosyncrasies. 

Chapters 1 through 4 take a rather leisurely approach to the material, developing the 
tools of data manipulation and exploration. The material is broken up so that users who 
wish only to analyze univariate data can safely avoid the details of data frames, lists, and 
model formulas covered in Chapter 4. Those wishing to cover all the topics in the book 
can work straight through these first four chapters. 

Chapter 5 covers populations, random samples, sampling distributions, and the central 
limit theorem. There is no attempt to cover the background probability concepts 
thoroughly. We go over only what is needed in the sequel to make statistical inference. 

Chapter 6 introduces simulation and the basics of defining functions. Since R is a 
programming language, simulations are a strong selling point for R’s use in the 
classroom. 

Traditional topics in statistical inference are covered in chapters 7–11. Chapters 7, 8, 
and 9 cover confidence intervals, significance tests, and goodness of fit. Chapters 10 and 
11 cover linear models. Although this material is broken up into chapters on linear 
regression and analysis of variance, for the most part we use a common approach to both. 

Chapter 12 covers a few extensions to the linear model to illustrate how R is used in a 
consistent manner with many different statistical models. The necessary background to 
appreciate the models is left for the reader to find. 

The appendices cover some background material and have information on writing 
functions and producing graphics that goes beyond the scope of the rest of the text. 

Typographic conventions 

The book uses a few quirky typographic conventions. Variables and commands are 
typeset with a data typeface; functions as a. function() (with accompanying parentheses); 
and arguments to functions as col= (with a trailing equal sign). Help-page references have 
a leading question mark: ?par. Data sets are typeset like faithful. Those that require a 
package to be loaded prior to usage also have the package name, such as Animals 
(MASS). Large blocks of commands are set off with a vertical bar: 

> hist(rnorm(100))  # draw histogram 

Often the commands include a comment, as does the one above. The output is formatted 
to have 4 digits and 65 characters per column, and the type size is smaller, in order to get 
more information in a single line. This may cause minor differences if the examples are 
tried with different settings. 



Web accompaniments 

The home page for this book is 

http://www.math.csi.cuny.edu/UsingR 

On this page you will find solutions to selected homework problems (a full solutions 
manual for instructors is available from the publisher), a list of errata, and an 
accompanying package containing data sets and a few functions used in the text. The 
UsingR package contains data sets collected from various places. Consult the help page 
of a data set for proper attribution. The package needs to be installed on your computer 
prior to usage. If your computer has an internet connection, the command 

> install.packages("UsingR") 

will fetch the package from CRAN, R’s warehouse of add-on packages, and install it. The 
command library (UsingR) will load the package for use. 

If for some reason this fails, the package can be retrieved from this book’s home page 
with the commands 

> where="http://www.math.csi.cuny.edu/UsingR" 
> install.packages("UsingR",contriburl=where) 

Finally, if that fails, the package can be downloaded from the home page and installed 
manually as described in Chapter 1. 

Using R 

The R software is obtained from the Comprehensive R Archive Network (CRAN), which 
may be reached from the main R web site http://www.r-project/. org. Some basic details 
for installation appear in Appendix A and more detail is on the CRAN website. This book 
was written to reflect the changes introduced by version 2.0.0 of R. R has approximately 
two new major releases per year (the second number in the version number). Despite the 
addition of numerous improvements with each new version, the maintainers of R do a 
very careful job with the upgrades to R. Minor bug fixes appear in maintenance versions 
(the third number). It is recommended that you upgrade your installation to keep pace 
with these changes to R, although these new releases may affect some of the details given 
in this text. 
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Chapter 1  
Data 

1.1 What is data? 

When we read the newspaper or watch TV news or read online news sites, we find 
ourselves inundated with data and its interpretation. Most often the data is presented in a 
summarized format, leading the reader to draw conclusions. Statistics allow us to 
summarize data in the familiar terms of counts, proportions, and averages. What is often 
missing, though, is information telling us how to interpret the statistic. The goal of this 
book is to learn about data: how to summarize it, how to present it, and how to infer from 
it when appropriate. 

■ Example 1.1: Tax-cut rhetoric In spring 2003, while promoting a tax cut, 
President of the United States George W.Bush said, “Under this plan, 92 million 
Americans receive an average tax cut of $1,083.” Yet the Urban InstituteBrookings 
Institution Tax Policy Center reports that 80% of Americans would receive less than this, 
the middle 20% would have an average tax cut of only $256, and almost half of all 
taxpayers would receive a tax cut of less than $100. 

Can this be true? Seemingly not, but it is possible. What is being shown here are 
various ways of measuring the “center” of some set of numbers: in this case, the center of 
the amounts people would save under a proposed tax plan. The president uses the familiar 
mean to find a value of $1,083, yet the median amount is closer to $100. The value of 
$256 is a trimmed mean. When is it appropriate to use a mean to summarize a center? 
When is the median or a trimmed mean more appropriate? In this example, we see that 
the facts can look entirely different based on how we choose to present them. ■ 

■ Example 1.2: A public-opinion poll A news web site runs a daily online poll to 
record its readers’ opinions on a variety of topics. Often, several thousand people “click 
in” with their opinion. The web site reports the numbers but leaves for discussion the 
validity of the poll. 

What is the difference between this type of poll and a scientific public-opinion poll? 
The goal of both is to gauge the opinions of some population. What is calculated is the 
proportion based on a sample from that population. In the news-web site case, the sample 
is self-selected. With this, no statistical inference can be drawn about a larger population. 
The results represent only the people who clicked in. 

The term statistical inference refers to using a probability model to link the data to a 
wider context. In a scientific poll where the sample is randomly chosen, probability 
models can be employed to allow us to infer the true opinions of a larger population. In 
this case, a statistic formed from a sample is used to estimate an unknown parameter of 
the population. The inference won’t be exact, but our intuition is that it is usually within 
some margin of error, which gets smaller as the size of the sample gets larger. 



■ Example 1.3: Effectiveness of a diet pill 
The weight-loss supplement ephedra was popular until its risky side effects became better 
known. Because of its side effects, ephedra was removed from sale in Canada and the 
U.S. Its effectiveness is also in question, although in combination with caffeine ephedra 
is widely thought to work well. The Muscletech company commissioned a number of 
studies in the year 2001 to see if its ephedra-based product, Hydroxycut, was effective for 
weight loss. One study found that Hydroxycut users lost 15 pounds of fat mass in 12 
weeks, while those taking a placebo (a sugar pill) lost 10. 

Even before asking whether the results are statistically significant, a skeptical observer 
might ask several questions about the trial. We know who funded the trial. Did this fact 
affect the outcome? Were the groups randomly assigned or chosen to favor the company? 
Were those in the placebo group aware that they were taking a placebo? Were the 
researchers aware of who was in the placebo group? Is the difference in weight lost 
attributable to chance and not the ephedra pill? Is the ephedra pill safe to use? 

A randomized experiment is used to measure effectiveness. An idealized one would 
begin with a group of subjects, or experimental units. These would be randomly allocated 
into possibly several treatment groups, one being the control group. A treatment is 
applied to each subject, with those in the control group receiving a placebo. In the 
example, there are just two groups—those who get a dosage of ephedra and those who 
get a placebo. After the treatment, observations are made and recorded for further 
analysis. 

The role of the randomization is to avoid bias, or a “stacking of the deck.” Sometimes, 
to cut down on variations, the subjects are matched in groups with common 
characteristics, so that similar treatments would be expected to yield similar results. To 
ensure that subjects do not improve because they expect they should, a blind experiment 
may be used. For this, a control group is given a treatment that appears to be the same but 
is really not. To further eliminate the chance of bias, a double-blind experiment is used. 
In a double-blind experiment, the researchers themselves are unaware of which treatment 
group a subject is in. This sounds like a lot of work, but it is necessary to try to eliminate 
the effects of other variables besides the treatment (confounding variables) that may 
affect the results. This is the only way a cause-and-effect relationship can be drawn. 

Assume for the moment that the industry-sponsored research on ephedra was 
unbiased. Was the reported difference significant? Not according to a New York Times 
article from June 2003: 

In an internal memorandum accompanying the study, a Muscletech 
official warned, “None of these results can be deemed significant,” adding 
that “Hydroxycut can’t be claimed as superior” to the placebo. To get 
around that, the official proposed that copy writers simply say, “Lose 15 
pounds of fat in 12 weeks with Hydroxycut and exercise!” 

How one chooses to compare or present results can have a dramatic effect on what is 
implied. 

■ Example 1.4: The impact of legalized abortion on crime Does abortion cut down 
on crime? Steven Levitt, a University of Chicago economist, and John Donohue, a 
Stanford University law professor, concluded in a paper in the May 2001 Quarterly 
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Journal of Economics that legalizing abortion in the United States in 1973 led to the drop 
in crime seen in the country two decades later. Their data? An analysis of crime rates 
from 1985 to 1997 correlated against abortion rates of two decades prior; the timing of 
the decline in crime coincided with the period when children born shortly after Roe v. 
Wade would be reaching their late teenage years. States that were the first to legalize 
abortion, including New York, Washington, Alaska, and Hawaii, were the first to see a 
drop in crime, and states with the highest abortion rates had a larger decrease. 

Levitt and Donohue may have convinced those who wanted to be convinced, but those 
who didn’t want to be convinced found many flaws in the study. The major problem is 
that in an observational study such as this one, it is impossible to eliminate confounding 
variables, despite the ingenuity of the approach. For example, did a higher rate of 
incarceration lead to a drop in crime? What about a”war on drugs”? In trying to prove a 
cause and effect with an observational study, we are always open to explanations based 
on variables that are beyond our control. Remember that it took decades to prove the 
detrimental effects of smoking on health, despite the results of several observational 
studies. 

■ Example 1.5: What is the maximum heart rate? A common rule of thumb is that 
one’s maximum heart rate when exercising should be about 220 minus one’s age. This is 
a linear relationship between age and maximum heart rate. Although this formula is easy 
to remember and use, researchers suggest that there are more accurate formulas to use 
when needed. 

The actual relationship between age and maximum heart rate is not exactly linear. It 
also depends on other factors, such as the type of athlete or the type of activity. However, 
the ease of understanding linear relationships makes them useful, even when they are not 
entirely accurate. 

The statistical method of fitting a linear relationship to data is called linear regression. 
It can be used in a variety of situations and is one of the most widely used statistical 
techniques. 

■ Example 1.6: Shark populations in decline Beginning in the 1950s with the 
advent of large-scale commercial fishing, the populations of several fish species have had 
a precipitous decline. How can we estimate the size of the original stock given the current 
population? There were no accurate surveys at the time the fishing rate began to increase. 
One approach was published in Nature by Myers and Worm. They gathered as much data 
as possible for a species and then fit a nonlinear statistical model to the data. For each 
species, an estimate can be found for the percentage decline. Then, data for all the 
surveyed species can be combined to make inferences about the remaining species. It has 
been estimated, although with controversy, that the populations as of 2003 are 10% of 
their preindustrial size. 

1.1.1 Problems 

1.1 Find an article in a newspaper or on the internet that shows the results of a poll. Circle 
any wording indicating how the poll was taken and what results are suggested. 

1.2 Find an article in the newspaper or on the internet that shows the results of a 
clinical trial. Describe the experimental setup. Was there a control group? Was it a 
scientific study? Was it an observational study? What were the findings? 
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1.3 Find an article in the newspaper or on the internet that relies on statistics and is not 
about a survey. Explain what statistics the writer used and how they strengthened the 
writer’s argument. 

1.2 Some R essentials 

Before we can use the computer to help us look at statistical problems, we need to 
familiarize ourselves with the way it is used. First we learn some basic concepts for 
interacting with the computer such as how to store, access, and manipulate data. It is 
assumed that R is already installed on your computer. For information on installing R 
please refer to Appendix A. 

1.2.1 Starting R 

R is started in different ways depending on the platform used and the intent of usage. 
This book primarily covers using R in an interactive mode. That is, we ask R a question, 
and it responds with an answer. 

To begin in Windows, we click on the R icon on the desktop, or find the program 
under the start menu. A new window pops up with a command-line subwindow. For 
Linux, R is often started simply by typing “R” at a command prompt. When R is started, 
a command line and perhaps other things await our usage. 

The command line, or console, is where we can interact with R. It looks something 
like this: 

R : Copyright 2004, The R Foundation for Statistical 
Computing 
Version 2.0.0 (2004–10–04), ISBN 3–900051–07–0 
R is free software and comes with ABSOLUTELY NO 
WARRANTY. 
You are welcome to redistribute it under certain 
conditions. 
Type ’license()’ or ’licence()’ for distribution 
details. 
R is a collaborative project with many contributors. 
Type ’contributors()’ for more information and 
’citation()’ on how to cite R or R packages in 
publications. 
Type ’derno()’ for some demos, ’help()’ ‘for on-line 
help, or 
’help.start()’ for a HTML browser interface to help. 
Type ’q()’ to quit R. 
[Previously saved workspace restored] 
> 

The version number is printed, as is some useful information for new users, including 
instructions on quitting R from the command line. 
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When R starts, it searches for any saved work in the current directory. If it finds some, 
that work will be reloaded and we are reminded that it was done. When we quit R, it will 
offer to save the current session. Thus we can continue our work from session to session. 

The command prompt, >, is the final thing shown. This is where we type commands to 
be processed by R. This happens when we hit the ENTER key. 

Appendix B describes some graphical interfaces available for R. These can make 
certain tasks in R easier to do. The primary aim of this book, however, is to cover basic 
usage of the command-line interface.  

1.2.2 Using R as a calculator 

The simplest usage of R is performing basic arithmetic, as we would do with a calculator. 
R uses familiar notation for math operations, such as +, −, *, and /. Powers are taken with 
^. As usual, we use parentheses to group operations.* 

The following example is from an interactive R session. A command is typed at the 
prompt followed by the ENTER key. Multiple commands per line can be evaluated if 
separated by a semicolon, ;. The result of the last command is printed in the output. 

(We typeset the example with the command prompt showing, but this shouldn’t be 
typed when trying these examples.) 

> 2 + 2 
[1] 4 
> 2 ^ 2 
[1] 4 
> (1–2) * 3 
[1] − 3 
> 1–2 * 3 
[1] − 5 

The answer to each “question” is printed starting with a [1]. This notation will make 
sense once data vectors are explained. 

Functions Many mathematical and statistical functions are available in R. They are all 
used in a similar manner. A function has a name, which is typed, followed by a pair of 
parentheses (required). Arguments are added inside this pair of parentheses as needed. 

We show some familiar functions below. (The # is the comment character. All text in 
the line following this is treated as a comment. In the examples, the comments are 
provided for comprehension; they should not be typed if you are trying these examples.) 

> sqrt(2)              # the square root 
[1] 1.414 
> sin(pi)              # the sine function 
[1] 1.225e-16          # this is 0! 
> exp(1)               # this is exp(x) = e^x 
[1] 2.718 
> log(10)              # the log base e 
[1] 2.303 
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The result of sin (pi) is the very small 1.225· 10–16 and not precisely 0, as it should be. 
Such numeric differences are not uncommon. The logarithm† has base e for its default 
behavior.  

* The full order of operations is covered in the help page for Syntax. 
† This book has a few examples where logarithms and exponentials are important, although for the 
most part knowledge of these function is not essential for following the material. 

Many functions in R have extra arguments that allow us to change the default 
behavior. For example, to use base 10 for the logarithm, we could use either of the 
following: 

> log(10,10) 
[1] 1 
> log(10, base=10) 
[1] 1 

To understand the first one, log(10, 10), we need to know that R expects the base to be 
the second argument of the function. The second example uses a named argument, of the 
type base=, to say explicitly that the base is 10. The first style contains less typing; the 
second is easier to remember and read. This book will typically use named arguments for 
clarity. 

Warnings and errors When R finds a command it doesn’t understand, it will respond 
with an error message. For example: 

> squareroot(2) 
Error: couldn’t find function “squareroot” 
> sqrt 2 
Error: syntax error 
> sqrt(−2) 
[1] NaN 
Warning message: 
NaNs produced in: sqrt(−2) 
> sqrt(2                        # the +, like >, is not 
typed 
+ ) 
[1] 1.414 

The first command produced an Error: and no output, as R could not find a function with 
that name. The second command failed to use parentheses around the argument, causing 
R to issue a syntax error. Parentheses are required to use a function. We typeset function 
names with parentheses to remind us of that. The third command produced an output, but 
R guessed it wasn’t what we wanted. The output NaN means “not a number,” in response 
to the request for a square root of a negative number. Consequently, a Warning was 
printed. The last command shows what happens if R encounters a line that is not 
complete. The continuation prompt, +, is printed, indicating more input is expected. 
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1.2.3 Assignment 

It is often convenient to name a value so that we can use it later. Doing so is called 
assignment. Assigment is straightforward. We put a name on the left-hand side of the 
equals sign and the value on the right. Assignment does not produce any printed output. 

> x = 2                # assignment is quiet 
> x + 3                # x is now 2 
[1] 5  
> pi                         # pi is a built-in 
constant 
[1] 3.142 
> e^2                        # e is not 
Error: Object “e” not found 
> e = exp(1)                 # e is now its familiar 
value 
> e^2 
[1] 7.389 

The variable e is not previously assigned, unlike the built-in constant pi. If we insist 
though, we can assign it as illustrated. 

Assignment with=versus <– Assignment can cause confusion if we are trying to 
understand the syntax as a mathematical equation. If we write 

x=2x+1   

as a mathematical equation, we have a single solution: −1. In R, though, the same 
expression, x=2*x+1, is interpreted to assign the value of 2*x+1 to the value of x. This 
updates the previous value of x. So if x has a value of 2 prior to this line, it leaves with a 
value of 5. 

This type of confusion can be minimized by using the alternate assignment operator 
<−. The R expression x <− 2*x+1 then “visually” looks like what it does. In fact, −> also 
works as assignment only to the right-hand side. Additionally, there is another operator 
for assignment, <<−. This is useful when we are programming in R. 

This book uses the equals sign=for assignment, as it is widely used in other computer-
programming languages and shorter to type. Its introduction into R is relatively recent 
(version 1.4.0). 

Acceptable variable names We are free to make variable names out of letters, 
numbers, and the dot or underline characters. A name starts with a letter or a dot (a 
leading dot may not be followed by a number). We cannot use mathematical operators, 
such as +, −, *, and /.‡ Some examples are 

> x = 2 
> n = 25 
> a.really.long.number = 123456789 
> AReallySmallNumber = 0.000000001 

Case is important. Some variable names are naturally used to represent certain types of 
data. Often n is for a length; x or y stores a data vector; and i and j are for integers and 
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indices. Variables that begin with the dot character are usually reserved for programmers. 
These conventions are not forced upon us, but consistently using them makes it easier to 
look back and understand what we’ve done.  

‡The help page for make. names () describes this in more detail. 

1.2.4 Using c () to enter data 

A data set usually contains many observations, not just one. We reference the different 
observations by an index, as in x1, x2, …, xn. We always use n to be the number of 
observations, unless specified otherwise. For example, the number of whale beachings 
per year in Texas during the 1990s was 

74 122 235 111 292 111 211 133 156 79 

To store this data in R we use a data vector. Data vectors can be made with the c () 
function, which combines its arguments. The whale data can be entered, as follows: 

> whales = c(74, 122, 235, 111, 292, 111, 211, 133, 
156, 79) 

The values are separated by a comma. Once stored, the values can be printed by typing 
the variable name 

> whales 
    
[1] 74 122 235 111 292 111 211 133 156 79 

The [1] refers to the first observation. If more than one row is output, then this number 
refers to the first observation in that row. 

The c () function can also combine data vectors. For example: 

> x = c(74, 122, 235, 111, 292) 
> y = c(111, 211, 133, 156, 79) 
> c(x,y) 
[1] 74 122 235 111 292 111 211 133 156 79 

Data vectors have a type One restriction on data vectors is that all the values have the 
same type. This can be numeric, as in whales, characters strings, as in 

> Simpsons = c("Homer",’Marge’,"Bart","Lisa","Maggie") 

or one of the other types we will encounter. Character strings are made with matching 
quotes, either double, ", or single,’. 

If we mix the type within a data vector, the data will be coerced into a common type, 
which is usually a character. This can prevent arithmetic operations. 
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Giving data vectors named entries A data vector can have its entries named. These 
will show up when it is printed. The names () function is used to retrieve and set values 
for the names. This is done as follows: 

> names(simpsons) = c("dad","mom","son","daughter 
1","daughter 2") 
> names(simpsons) 
[1] “dad”       “mom”    “son”   “daughter 1" 
[5] “daughter 2" 
> simpsons 
       dad       mom      son daughter 1 daughter 2 
   "Homer"   "Marge"   "Bart"     "Lisa"   "Maggie" 

When used to assign values for the names, the names () function appears on the other side 
of the assignment, unlike most functions, as it modifies the attributes of the data vector. 
The last command shows that a data vector with names is printed with the names above 
the values.  

1.2.5 Using functions on a data vector 

Once the data is stored in a variable, we can use functions on it. Most R functions work 
on vectors exactly as we would want them to. For example, the sum () function will add 
up all the numbers in the data vector, and the length () function will return the number of 
values in the data vector. 

> sum(whales)                 # total number of 
beachings 
[1] 1524  
> length(whales)              # length of data vector 
[1] 10 
> sum(whales)/length(whales)  # average no. of 
beachings 
[1] 152.4 
> mean(whales)                # mean function finds 
average 
[1] 152.4 

We can find the average as the total sum over the length, or we can use the mean() 
function. R has many built-in functions for doing such things. Other useful functions to 
know about are sort (), min (), max (), range (), diff (), and cumsum (). 

> sort(whales)                 # the sorted values 
[1]  74 79 111 111 122 133 156 211 235 292 
> min(whales)                  # the minimum value 
[1] 74 
> max(whales)                  # the maximum value 
[1] 292 
> range(whales)                # range returns both min 
and max 
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[1] 74 292 
> diff(whales)                 # diff returns 
differences 
[1]   48  113 −124 181 −181  100 −78 23−77 
> cumsum(whales)               # a cumulative, or 
running tally 
[1]   74  196  431 542  834  945  1156 1289 1445 1524 

Vectorization of functions 
Performing arithmetic in R is made much easier by the vectorization of functions. That is, 
most functions will do their operation on each entry of the data vector at the same time. 
For example, the number of whales that beached in Florida during the 1990s is 

89 254 306 292 274 233 294 204 204 90 

We enter this in and then look at the sum and differences for the states. 

     

> whales.fla = c(89, 254, 306, 292, 274, 233, 294, 204, 
204, 90) 
> whales + whales.fla 
[1] 163 376 541 403 566 344 505 337 360 169 
> whales—whales.fla                   # florida usually 
has more 
[1] −15 −132 −71 −181    18  −122  −83  −71  −48  −11 
> whales—mean(whales)            # difference from 
average 
[1] −78.4 −30.4 82.6 −41.4 139.6 −41.4 58.6 −19.4 3.6 
−73.4 

The + operator adds up each corresponding entry, and the − operator subtracts each 
corresponding entry. The last example shows that a single number, in this case mean 
(whales), can be subtracted from a vector. The result is to subtract the number from each 
entry in the data vector. This is an example of data recycling. R repeats values from one 
vector so that its length matches the other. 

Other arithmetic functions, such as sin(), cos(), exp(), log(), ^ and sqrt (), are 
vectorized, as will be seen in the examples throughout this book. 

■ Example 1.7: The variance A set of numbers has a summary number called the 
variance, which is related to the average squared distance from the mean. A formula (  
is the average) is 

 

  

Although the var () function will do this work for us in the future, we show how we could 
do this directly in R using the vectorization of functions. The key here is to find the 
squared differences and then add up the values. 
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> x = c(2,3,5,7,11) 
> xbar = mean(x) 
> x—xbar                     # the difference 
[1] −3.6 −2.6 −0.6 1.4 5.4 
> (x−xbar)^2                   # the squared difference 
[1] 12.96  6.76  0.36 1.96 29.16 
> sum((x−xbar)^2)              # sum of squared 
differences 
[1] 51.2 
> n = length(x) 
> n 
[1] 5 
> sum((x−xbar)^2)/ (n-1) 
[1] 12.8 

That is, the variance for these numbers is 12.8. ■ 
Functions are like pets A silly analogy: to remember how to use functions in R, think 

of them as being like pets. They don’t come unless we call them by name (spelled 
properly). They have a mouth (the parentheses) that likes to be fed (in this case the 
arguments to the function), and they will complain if they are not fed properly. 

Finding help 
Using R to do statistics requires knowing a lot of different functions—more than most of 
us can keep in our head at any given time. Thankfully, R has excellent built-in help 
facilities. These can be consulted for information about what is returned by a function, for 
details on additional arguments, and for example usages of the function or data set. 

The help() function is the primary interface to the help system. For exam-pie, help 
("mean") will find help on the mean() function. A useful shortcut is the ?, as in ?mean, or 
? "mean". The quoted form is needed for some function names. The help page may show 
up in the terminal, a separate window, or even in a web browser, depending on your 
setup. 

This works great if we can remember the name of the desired function. If not, there are 
other ways to search. The function help. search() will search each entry in the help 
system. For example, help, search ("mean") returns many matches of functions that 
mention the word “mean” in certain parts of their help page. To match just function 
names, the well-named apropos () function will search through the available function 
names and variables for matches. For example, apropos ("mean") will return all 
documented functions and variables with the word “mean” in their names. 

If we want to explore the help pages to see what is there, the help. start () function will 
open a web browser to an index of all the available documentation, including the 
manuals, if installed. All subsequent uses of help() or ? will appear in the browser. A 
standard installation of R includes a few manuals. These can be viewed in HTML format 
through help. start () or they can be printed out. These manuals may be daunting at first, 
but they are full of excellent information. 

Most help pages have interesting examples. These can be run one-by-one by cutting 
and pasting into the console, or all at once by using the function example (). A typical 
usage would be example (mean). 
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Simplifying editing by working smarter not harder 
Using the command line in R can involve a fair amount of typing. However, there are 
ways to reduce the amount of typing necessary. 

Using the arrow keys to make editing data easier R’s console keeps a history of the 
commands entered in. The history () function shows the last 25. Individually, the 
commands can be accessed using the up- and down-arrow keys. Repeatedly pushing the 
up arrow will scroll backward through the history. This can be extremely useful, as we 
can reuse previous commands. Many times we wish to change only a small part of a 
previous command, such as when a typo is made. With the arrow commands we can 
access the previous command then edit it as desired. Table 1.1 has a summary of 
shortcuts. 

Using data.entry () or edit () to edit data Many ports of R have a primitive 
spreadsheet interface for editing data. This is available through the dat a. entry () 
function. For example, data. entry (x) will allow us to edit the data vector x. 

The function does not make a new variable. To use data. entry () to make a new 
variable, we can first create a simple one, as we have done below, and then finish the data 
entry with the spreadsheet. 

> x = c(1)               # 1 will be first entry 

Table 1.1 Keyboard shortcuts for the command 
line 

↑ (up arrow) Recalls the previously entered command from the history list; multiple pushes 
scrolls through the command history list 

↓ (down 
arrow) 

Scrolls forward in the history list 

← (left arrow) Moves cursor to the left 
→ (right 
arrow) 

Moves cursor to the right 

HOME 
(CTRL-a) 

Moves cursor to beginning of current line 

END (CTRL-
e) 

Moves cursor to end of current line 

> data.entry(x) 

The edit () function also allows us to edit a data vector. We need to assign back its output, 
otherwise the edits will be lost. For a data vector, the edit () command uses a text editor. 
A spreadsheet interface is used for more complicated data objects. 

1.2.6 Creating structured data 

Sometimes numbers have some structure or pattern. Take, for example, the integers 1 
through 99. To enter these into an R session one by one would be very tedious. 
Fortunately, R has shortcuts for entering data that is sequential or that is repeated in some 
way. 
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Simple sequences A sequence from 1 to 99 by 1’s is given by 1:99 in R. The colon 
operator, :, is used to create sequences from a to b by 1’s. Some examples: 

> 1:10 
[1]  1  2  3  4  5  6  7  8  9  10 
> rev(1:10)                      # countdown 
[1]  10  9  8  7  6  5  4  3  2   1 
> 10:1                           # a > b  
[1]  10  9  8  7  6  5  4  3  2   1 

Arithmetic sequences An arithmetic sequence is determined by a starting point, a; a step 
size, h; and a number of points, n. The sequence is 

a, a+h, a+2h, a+3h, …, a+(n−1)h.   

These sequences can be created in R directly. 

> a = 1; h = 4; n = 5  # use ; to separate commands 
> a + h*(0:(n−1))      # note 0:(n−1) is not 0:n −1 
[1]  1  5  9 13 17 

It is usually desirable to specify either the step size and the starting and ending points or 
the starting and ending points and the length of the arithmetic sequence. The seq() 
function allows us to do this. 

> seq(1,9,by=2)     # odd numbers 
[1] 1 3 5 7 9 
> seq(1,10,by=2)    # as 11 > 10 it is not included 
[1] 1 3 5 7 9 
> seq(1,9,length=5) # 5 numbers only 
[1] 1 3 5 7 9 

Repeated numbers When a vector of repeated values is desired, the rep() function is 
used. The simplest usage is to repeat its first argument a specified number of times, as in 

> rep(1,10) 
[1] 1 1 1 1 1 1 1 1 1 1 
> rep(1:3,3) 
[1] 1 2 3 1 2 3 1 2 3 

More complicated patterns can be repeated by specifying pairs of equal-sized vectors. In 
this case, each term of the first is repeated the corresponding number of times in the 
second. 

> rep(c("long","short"),c(1,2))  # 1 long and 2 short 
[1] "long"  "short" "short" 
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1.2.7 Problems 

1.4 Use R as you would a calculator to find numeric answers to the following: 

1. 1+2(3+4) 
2. 43+32+1 

3.  

4.  

1.5 Rewrite these R expressions as math expressions, using parentheses to show the order 
in which R performs the computations: 

1. 2+3–4 
2. 2+3*4 
3. 2/3/4 
4. 2^3^4 

1.6 Enter the following data into a variable p with c () 

2 3 5 7 11 13 17 19 

Use length() to check its length. 
1.7 You recorded your car’s mileage at your last eight fill-ups as 

65311 65624 65908 66219 66499 66821 67145 67447 

Enter these numbers into the variable gas. Use the function diff () on the data. What does 
it give? Interpret what both of these commands return: mean (gas) and mean(diff (gas)). 

1.8 Let our small data set be 

2 5 4 10 8 

1. Enter this data into a data vector x. 
2. Find the square of each number. 
3. Subtract 6 from each number. 
4. Subtract 9 from each number and then square the answers. 

Use the vectorization of functions to do so. 
1.9 The asking price of used MINI Coopers varies from seller to seller. An online 

classifieds listing has these values in thousands: 

15.9 21.4 19.9 21.9 20.0 16.5 17.9 17.5 

1. What is the smallest amount? The largest? 
2. Find the average amount. 
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3. Find the differences of the largest and smallest amounts from the mean. 

Enter in the data and apply one of R’s functions to find answers to the above questions. 
1.10 The monthly sales figures of Hummer H2 vehicles in the United States during 

2002 were 

[Jan] 2700 2600 3050 2900 3000 2500 2600 3000 2800 
[Oct] 3200 2800 3400 

(according to a graphic from the New York Times). Enter this data into a variable H2. Use 
cumsum() to find the cumulative total of sales for 2002. What was the total number sold? 
Using diff (), find the month with the greatest increase from the previous month, and the 
month with the greatest decrease from the previous month. 

1.11 Four successive National Health and Examination surveys showed the average 
amount of calories consumed by a 20-to-29-year-old male to be 2,450, 2,439, 2,866, and 
2,618 (http://www.cdc.gov). The percentage of calories from fat was 37%, 36.2%, 34%, 
and 32.1%. The percentage from carbohydrates was 42.2%, 43.1%, 48.1%, and 50%. Is 
the average number of fat calories going up or going down? Is this consistent with the 
fact that over the same time frame (1971 to 2000) the prevalence of obesity in the United 
States increased  

from 14.5% to 30.9%? 
1.12 Create the following sequences: 

1. "a" , "a" , "a" , "a", "a". 
2. 1, 3, …, 99 (the odd numbers in [1, 100]) 
3. 1, 1, 1, 2, 2, 2, 3, 3, 3 
4. 1, 1, 1, 2, 2, 3 
5. 1, 2, 3, 4, 5, 4, 3, 2, 1 

using :, seq(), or rep() as appropriate. 
1.13 Store the following data sets into a variable any way you can: 

1. 1, 2, 3, 5, 8, 13, 21, 34 (the Fibonacci series) 
2. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (positive integers) 
3. 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10 (reciprocals) 
4. 1, 8, 27, 64, 125, 216 (the cubes) 
5. 1964, 1965, …, 2003 (some years) 
6. 14, 18, 23, 28, 34, 42, 50, 59, 66, 72, 79, 86, 96, 103, 110 (stops on New York’s No. 9 

subway) 
7. 0, 25, 50, 75, 100, …, 975, 1000 (0 to 1000 by 25s) 

Use c() only when : or seq() will not work. 
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1.3 Accessing data by using indices 

Using R to access the entries in a data vector is straightforward. Each observation, x1, x2, 
…, xn, is referred to by its index using square brackets, as in x [1], x [2], …, x [n]. Using 
the indices, we can access and assign to the values stored in the data vector. 

We keep track of eBay’s Friday stock price in the variable ebay. The first two months 
of data are 

88.8 88.3 90.2 93.5 95.2 94.7 99.2 99.4 101.6 

These are entered as 

> ebay = c(88.8, 88.3, 90.2, 93.5, 95.2, 94.7, 99.2, 
99.4, 101.6) 
> length(ebay) 
[1] 9 

The first value is clearly 88.8 and the last 101.6. We can get these directly, as in 

> ebay[1] 
[1] 88.8 
> ebay[9] 
[1] 101.6 
> ebay[length(ebay)]         # in case length isn’t 
known 
[1] 101.6 

Slicing R also allows slicing, or taking more than one entry at a time. If x is the data 
vector, and vec is a vector of positive indices, then x [vec] is a new vector corresponding 
to those indices. For the ebay example, the first four entries are for the first month. They 
can be found by 

> ebay[1:4] 
[1] 88.8 88.3 90.2 93.5 

The first, fifth, and ninth Fridays can be accessed using c (1, 5, 9) as the index. 

> ebay[c(1,5,9)] 
[1]  88.8 95.2 101.6 

Negative indices If the index in x [i] is positive, we can intuit the result. The ith value of 
x is returned if i is between 1 and n. If i is bigger than n, a value of NA is returned, 
indicating “not available.” 

However, if i is negative and no less than −n, then a useful convention is employed to 
return all but the ith value of the vector. For example, x [−1] is all of x but the first entry. 
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> ebay[−1]                      # all but the first 
[1]  88.3  90.2  93.5  95.2  94.7  99.2  99.4 101.6 
> ebay[−(1:4)]                  # all but the 1st – 4th 
[1]  95.2  94.7  99.2  99.4 101.6 

Accessing by names In R, when the data vector has names, then the values can be 
accessed by their names. This is done by using the names in place of the indices. A 
simple example follows: 

> x = 1:3 
> names(x) = c("one","two","three") # set the names 
> x["one"] 
one 
    
1 

Parentheses for functions; square brackets for data vectors The usage of parentheses, 
(), and square brackets, [], can be confusing at first. To add to the confusion, lists will use 
double square brackets [[]]. It helps to remember that R uses parentheses for functions 
and square brackets for data objects. 

1.3.1 Assigning values to data vector 

We can assign values to a data vector element by element using indices. The simplest 
case, x [i]=a, would assign a value of a to the ith element of x if i is positive. If i is bigger 
than the length of the vector x, then x is enlarged. For example, to change the first entry 
in ebay to 88.0 we could do 

> ebay[1] =88.0 
> ebay 
[1]  88.0 88.3 90.2 93.5 95.2 94.7 99.2 99.4 101.6 

We can assign more than one value at a time. The case x[vec]<−y will assign to the 
indices specified by vec the values of y. For example, adding the next month’s stock 
prices to ebay can be done as follows: 

> ebay[10:13]=c(97.0,99.3,102.0,101.8) 
> ebay 
[1] 88.0 88.3 90.2 93.5 95.2 94.7 99.2 99.4 101.6 97.0 
[11] 99.3 102.0 101.8 

Data recycling If y is shorter than the values specified by vec, its values are recycled. 
That is, y is repeated enough times to fill out the request. If y is too long, then it is 
truncated. 
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1.3.2 Logical values 

When using R interactively, we naturally imagine that we are having a dialogue with R. 
We ask a question, and R answers. Our questions may have numeric answers consisting 
of a single value (e.g., “What is the sum of x?”), a vector of numeric answers (e.g., “What 
are the differences between x and y?”), or they may by true-or-false answers (e.g., “x is 
bigger than 2?”). R expressions which involve just values of true or false are called 
logical expressions. In R the keywords TRUE and FALSE are used to indicate true or 
false (these can be abbreviated T or F, although it is not recommended as T and F may 
hold some other value). A question like, “Is x bigger than 2?” is answered for each 
element of x. For example, “Which values of ebay are more than 100?” is asked with 
ebay > 100 and answered for each value of x as TRUE and FALSE. 

> ebay > 100 
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 
TRUE FALSE 
[11] FALSE  TRUE  TRUE 

This output is hard to parse as displayed but is very useful when used as the indices of a 
data vector. When x is a data vector and vec is a logical vector of the same length as x 
then, x [vec] returns the values of x for which vec’s values are TRUE. These indices can 
be found with the which() function. For example: 

> ebay[ ebay > 100 ]        # values bigger than 100 
[1] 101.6 102.0 101.8    
> which(ebay > 100)         # which indices 
[1]  9 12 13 
> ebay[c(9,12,13)]          # directly 
[1] 101.6 102.0 101.8 

Some functions are usefully adapted to logical vectors (the logical vector is coerced to a 
numeric one). In particular, the sum function will add up all the TRUE values as 1 and all 
the FALSE values as 0. This is exactly what is needed to find counts and proportions. 

> sum(ebay > 100)       # number bigger than 100 
[1] 3 
> sum(ebay > 100)/length(ebay)   # proportion bigger 
[1] 0.2308 

Table 1.2 summarizes the ways to manipulate a data vector.  

Table 1.2 Ways to manipulate a data vector 
Suppose x is a data vector of length n=length (x). 
x[1] the first element of x 
x[length(x)] the last element of x 
x[i] the ith entry if 1≤i≤n, NA if i>n, all but the ith if −n≤ i≤−1, an error if i<−n, and an 
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empty vector if i=0 
x[c (2, 3)] the second and third entries 
x [−c (2, 3)] all but the second and third entries 
x [1] =5 assign a value of 5 to first entry; also x [1]<−5 
x[c (1, 4)]=c 
(2, 3) 

assign values to first and fourth entries 

x [indices]=y assign to those indices indicated by the values of indices: if y is not long enough, 
values are recycled; if y is to long, just its initial values are used and a warning is 
issued 

x<3 vector with length n of TRUE or FALSE depending if x[i]<3 
which (x<3) which indices correspond to the TRUE values of x< 3 
x [x<3] the x values when x<3 is TRUE. Same as x[which (x<3)] 

Creating logical vectors by conditions 
Logical vectors are created directly using c (), or more commonly as a response to some 
question or condition. The logical operators are <, <=, >, =>, ==, and ! =. The meanings 
should be clear from their common usage, but equals is == and not simply =. The 
operator !=means not equal. The ! operator will switch values of a logical vector. 

Comparisons between logical vectors are also possible: “and” is done with &; “or” is 
done with |. Each entry is compared and a vector is returned. The longer forms && and | | 
evaluate left to right until a TRUE or FALSE is determined. Unlike the shorter forms, 
which return a vector of values, the longer forms return a single value for their answer.  

To illustrate: 

> x = 1:5 
> x < 5                     # is x less than 5 
[1] TRUE TRUE TRUE TRUE FALSE 
> x > 1                     # is x more than 1 
[1] FALSE TRUE TRUE TRUE TRUE 
> x > l & x < 5             # is x bigger than 1 and 
less than 5 
[1] FALSE TRUE TRUE TRUE FALSE 
> x > 1 && x < 5            # First one is false 
[1] FALSE 
> x > 1 | x < 5             # is x bigger than 1 or 
less than 5 
[1] TRUE TRUE TRUE TRUE TRUE 
> x > 1 || x < 5            # First one true 
[1] TRUE 
> x == 3                    # is x equal to 3 
[1] FALSE FALSE TRUE FALSE FALSE 
> x != 3                    # is x not equal to 3 
[1] TRUE TRUE FALSE TRUE TRUE 
> ! x == 3                  # not (x equal to 3) 
[1] TRUE TRUE FALSE TRUE TRUE 

The expression of equality, ==, allows us to compare a data vector with a value. If we 
wish to use a range of values we can use the %in% operator. 
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> x == c(2, 4) 
[1] FALSE FALSE FALSE TRUE FALSE 
Warning message: 
longer object length 
        is not a multiple of shorter object length in: 
x == c(2, 4) 
> x %in% c(2, 4) 
[1] FALSE TRUE FALSE TRUE FALSE 

The last command shows that the second and fourth entries of x are in the data vector c 
(2,4). The first command shows that recycling is applied, then the data vectors are 
compared element by element. The warning is issued, as this type of implicit usage is 
often unintended. 

For numeric comparisons, the operators == and !=do not allow for rounding errors. 
Consult the help pages ?"<" and ?all. equal to see a workaround. 

1.3.3 Missing values 

Sometimes data is not available. This is different from not possible or null. R uses the 
value NA to indicate this. With operations on a data vector NA values are treated as 
though they can’t be found. For example, adding with a value of NA returns an NA, as 
the addition cannot be carried out. A natural way to check whether a data value is NA 
would be x == NA. However, a value cannot be compared to NA, so rather than an 
answer of TRUE, the value NA is given. To check whether a value is NA, the function 
is.na() is used instead. 

For example, the number of O-ring failures for the first six flights of the United States 
space shuttle Challenger were (there is no data for the fourth flight): 

0 1 0 NA 0 0 

We enter this in using NA as follows: 

> shuttle = c(0, 1, 0, NA, 0, 0) 
> shuttle 
[1]  0  1  0 NA  0  0 
> shuttle > 0                   # note NA in answer 
[1] FALSE  TRUE FALSE    NA FALSE FALSE 
> shuttle == NA                 # doesn’t work! 
[1] NA NA NA NA NA NA 
> is.na(shuttle) 
[1] FALSE FALSE FALSE  TRUE FALSE FALSE 
> mean(shuttle)                 # can’t add to get the 
mean 
[1] NA 
> mean(shuttle, na.rm=TRUE)     # na.rm means remove NA 
[1] 0.2 
> mean(shuttle[!is.na(shuttle)])# hard way 
[1] 0.2 
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Many R functions have an argument na. rm=, which can be set to be TRUE in order to 
remove NAs or FALSE. This is a convenient alternative to using constructs such as 
x[!is.na(x)]. 

1.3.4 Managing the work environment 

If an R session runs long enough, there typically comes a point when there are more 
variables defined than can be remembered. The ls() function and the objects ects () 
function will list all the objects (variables, functions, etc.) in a given work environment. 
The browseEnv() function does so using web browser to show the results. The simplest 
usage is ls(), which shows all the objects that have been defined or loaded into your work 
environment. To filter the request, the pattern= argument can be used. If this argument is 
a quoted string then all objects with that string in their names will be listed. More 
complicated matching patterns are possible. 

To trim down the size of the work environment the functions rm () or remove () can be 
used. These are used by specifying a name of the objects to be removed. The name may 
or may not be quoted. For example, rm ("tmp") or rm (tmp) will remove the variable tmp 
from the current work environment. Multiple names are possible if separated by commas, 
or if given in vector form, as quoted strings, to the argument list=. 

1.3.5 Problems 

1.14 You track your commute times for two weeks (ten days), recording the following 
times in minutes:  

17 16 20 24 22 15 21 15 17 22 

Enter these into R. Use the function max() to find the longest commute time, the function 
mean() to find the average, and the function min() to find the minimum. 

Oops, the 24 was a mistake. It should have been 18. How can you fix this? Do so, and 
then find the new average. 

How many times was your commute 20 minutes or more? What percent of your 
commutes are less than 18 minutes long? 

1.15 According to The Digital Bits (http://www.digitalbits.com/), monthly sales (in 
10,000s) of DVD players in 2003 were 

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
79 74 161 127 133 210 99 143 249 249 368 302 

Enter the data into a data vector dvd. By slicing, form two data vectors: one containing 
the months with 31 days, the other the remaining months. Compare the means of these 
two data vectors. 

1.16 Your cell-phone bill varies from month to month. The monthly amounts in 
dollars for the last year were 

46 33 39 37 46 30 48 32 49 35 30 48 
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Enter this data into a variable called bill. Use the sum function to find the amount you 
spent last year on the cell phone. What is the smallest amount you spent in a month? 
What is the largest? How many months was the amount greater than $40? What 
percentage was this? 

1.17 The average salary in major league baseball for the years 1990–1999 are given 
(in millions) by: 

0.57 0.89 1.08 1.12 1.18 1.07 1.17 1.38 1.44 1.72 

Use diff () to find the differences from year to year. Are there any years where the 
amount dropped from the previous year? 

The percentage difference is the difference divided by the previous year times 100. 
This can be found by dividing the output of diff () by the first nine numbers (not all ten). 
After doing this, determine which year has the biggest percentage increase. 

1.18 Define x and y with 

> x = c(1, 3, 5, 7, 9) 
> y = c(2, 3, 5, 7, 11, 13) 

Try to guess the results of these R commands: 

1. x+1 
2. y*2 
3. length (x) and length (y)  
4. x+y (recycling) 
5. sum(x>5) and sum(x[x>5]) 
6. sum(x>5|x<3) 
7. y[3] 
8. y[−3] 
9. y[x] (What is NA?) 
10. y[y>=7] 

Remember that you access entries in a vector with []. 
1.19 Consider the following “inequalities.” Can you determine how the comparisons 

are being done? 

> "ABCDE" == "ABCDE" 
[1] TRUE 
> "ABCDE" < "ABCDEF" 
[1] TRUE 
> ”ABCDE" < "abcde" 
[1] TRUE 
> ”ZZZZZ" < "aaaaa" 
[1] TRUE 
> "11" < "8" 
[1] TRUE 
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1.4 Reading in other sources of data 

Typing in data sets can be a real chore. It also provides a perfect opportunity for errors to 
creep into a data set. If the data is already recorded in some format, it’s better to be able 
to read it in. The way this is done depends on how the data is stored, as data sets may be 
found on web pages, as formatted text files, as spreadsheets, or built in to the R program. 

1.4.1 Using R’s built-in libraries and data sets 

R is designed to have a small code kernel, with additional functionality provided by 
external packages. A modest example would be the data sets that accompany this book. 
More importantly, many libraries extend R’s base functionality. Many of these come 
standard with an R installation; others can be downloaded and installed from the 
Comprehensive R Archive Network (CRAN), http://www.r-project.org/, as described 
below and in Appendix A. 

Most packages are not loaded by default, as they take up computer memory that may 
be in short supply. Rather, they are selectively loaded using either the library () or require 
() functions. For instance, the package pkgname is loaded with library (pkgname). In the 
Windows and Mac OS X GUIs pack-ages can be loaded using a menu bar item. 

In addition to new functions, many packages contain built-in data sets to provide 
examples of the features the package introduces. R comes with a collection of built-in 
data sets in the datasets package that can be referenced by name. For example, the lynx 
data set records the number of lynx trappings in Canada for some time period. Typing the 
data set name will reference the values: 

> range(lynx)              # range of values 
[1]   39 6991 

The packages not automatically loaded when R starts need to be loaded, using library(), 
before their data sets are visible. As of version 2.0.0 of R, data sets in a package may be 
loaded automatically when the package is. This is the case with the data sets referenced in 
this text. However, a package need not support this. When this is the case, an extra step 
of loading the data set using the data() command is needed. For example, to load the 
survey data set in the MASS package, could be done in this manner: 

library(MASS) 
data(survey)              # redundant for versions >= 
2.0.0 

To load a data set without the overhead of loading its package the above sequence of 
commands may be abbreviated by specifying the package name to data(), as in 

> data(survey, package="MASS") 

However, this will not load in the help files, if present, for the data set or the rest of the 
package. In R, most built-in data sets are well documented, in which case we can check 
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what the data set provides, as with ?lynx. See Table 1.3 for more details on data() and 
library(). 

Accessing the variables in a data set: $, attach(), and with() 
A data set can store a single variable, such as lynx, or several variables, such as the 
survey data set in the MASS package. Usually, data sets that store several variables are 
stored as data frames. This format combines many variables in a rectangular grid, like a 
spreadsheet, where each column is a different variable, and usually each row corresponds 
to the same subject or experimental unit. This conveniently allows us to have all the data 
vectors together in one object. 

The different variables of a data frame typically have names, but initially these names 
are not directly accessible as variables. We can access the values by name, but we must 
also include the name of the data frame. The $ syntax can be used to do this, as in 

> library(MASS)                 # load package. 
Includes geyser 
> names(geyser)                 # what are variable 
names of geyser 
[1] "waiting" "duration"        # or ?geyser for more 
detail 
> geyser$waiting                # access waiting 
variable in geyser 
    
[1]  80  71  57  80  75  77  60  86  77  56  81  50  89
  54  90 
… 

Table 1.3 library() and data() usage 
library() list all the installed packages 
library(pkg) Load the package pkg. Use lib.loc=argument to load package from a non-

privileged directory. 
data() list all available data sets in loaded packages 
data(package="pkg") list all data sets for this package 
data(ds) load the data set ds 
data(ds,package=("pkg") load the data set from package 
?ds find help on this data set 
update.packages() contact CRAN and interactively update installed packages 
install.packages(pkg) Install the package named pkg. This gets package from CRAN. Use 

lib=argument to specify a nonprivileged directory for installation. The 
contriburl=…allows us to specify other servers to find the package. 

Alternately, with a bit more typing, the data can be referred to using index notation as 
with geyser [ ["waiting"]]. Both these styles use the syntax for a list discussed in Chapter 
4. 

Having to type the data frame name each time we reference a variable can be 
cumbersome when multiple references are performed. There are several ways to avoid 
this. 
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A convenient method, which requires little typing, is to “attach” a data frame to the 
current environment with the attach() function, so that the column names are visible. 
Attached data sets are detached with the function detach (). As this style works well in 
interactive sessions, we employ it often in this book. However, as discussed in Chapter 4, 
this style can be confusing if we plan to change values in the data set or wish to use other 
variables with the same name as a variable in an attached data set or the same name as a 
data set. 

The function with() essentially performs the attach() and detach() commands at once. 
A template for its usage is 

with(data.frame, command) 

If we desire more than one command, we can give a block of commands by surrounding 
the commands in curly braces. One caveat: assignment done inside the block using=(or 
even <−) will be lost.  

Beginning in Chapter 3 we will see that many functions in R allow an argument data= 
to specify a data frame to find the variables in. 

Examples of these styles are shown below using the built-in Sitka data set. These 
illustrate a common task of loading a data set, and finally accessing a variable in the data 
set. We use names () to show the variable names. 

> data(Sitka)                   # load data set, 
optional 
> names(Sitka)                  # variable names 
[1] “size”  “Time”  “tree”  “treat” 
> tree                          # not visible 
Error: Object “tree” not found 
> length(Sitka$tree)            # length 
[1] 395 
> with(Sitka,range(tree))       # what is range 
[1] 1 79 
> attach(Sitka) 
> summary(tree) 
    Min. 1st Qu.  Median   Mean  3rd Qu.    Max. 
       1      20      40     40       60      79 
> detach(Sitka) 

It is a good idea to use detach() to clear out the attached variable, as these variables can 
be confusing if their names coincide with others we have used. 

1.4.2 Using the data sets that accompany this book 

The UsingR package contains the data sets that accompany this book. It needs to be 
installed prior to usage. 

Installing an R package 
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If you have the proper administrative permissions on your computer and the package you 
wish to install is housed on CRAN, then installing a package on the computer can be 
done with the command 

> install.packages(packagename) 

In the Windows and Mac OS X GUIs a menu bar item allows us to browse and install a 
package. Once installed, a package can be loaded with library() and the data sets accessed 
with data(), as with the built-in packages. 

If we do not have the necessary administrative permissions we can specify a directory 
where the packages can be written using the argument lib=. When loading the package 
with library(), the lib. loc= argument can be used to specify the same directory. In each 
case, the directory can be specified by a string, such as lib="c: /R/localpackage". 

If the package is not on CRAN, but on some other server, the argument contriburl= 
can be given to specify the server. For example: to install the UsingR package from its 
home page try these commands: 

> where = "http://www.math.csi.cuny.edu/UsingR" 
> install.packages("UsingR",contriburl=where) 

If this fails (and it will if the site is not set up properly), download the package file and 
install it directly. A package is a zip archive under Windows; otherwise it is a tar.gz 
archive. Once downloaded, the package can be installed from the menu bar in Windows, 
or from the command line under UNIX. If the package name is aPackage_0.1. tar.gz, the 
latter is done at the command line from a shell (not the R prompt, as these are not R 
functions) with the command 

R CMD INSTALL aPackage_0.1.tar.gz 

1.4.3 Other methods of data entry 

What follows is a short description of other methods of data entry. It can be skipped on 
first reading and referenced as needed. 

Cut and paste 
Copying and pasting from some other program, such as a web browser, is a very common 
way to import data. If the data is separated by commas, then wrapping it inside the c() 
function works well. Sometimes, though, a data set doesn’t already have commas in it. In 
this case, using c() can be tedious. Use the function scan() instead. This function reads in 
the input until a blank line is entered. 

For example, the whale data could have been entered in as 

> whales = scan() 
1:74 122 235 111 292 111 211 133 156 79 
11: 
Read 10 items 
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Using source () to read in R commands 
The function dump () can be used to write values of R objects to a text file. For example, 
dump ("x", "somefile. txt") will write the contents of the variable x into the file somefile 
.txt, which is in the current working directory. Find this with getwd(). We can dump more 
than one object per file by specifying a vector of object names. The source() function will 
read in the output of dump() to restore the objects, providing a convenient way to transfer 
data sets from one R session to another. 

The function source() reads in a file of R commands as though they were typed at the 
prompt. This allows us to type our commands into a file using a text editor and read them 
into an R session. There are many advantages to this. For example, the commands can be 
edited all at once or saved in separate files for future reference. 

For the most part, this book uses an interactive style to interface with R, but this is 
mostly for pedagogic reasons. Once the basic commands are learned, we begin to do 
more complicated combinations with the commands. At this point using source(), or 
something similar, is much more convenient.  

Reading data from formatted data sources 
Data can also be found in formatted data files, such as a file of numbers for a single data 
set, a table of numbers, or a file of comma-separated values (csv).R has ways of reading 
each of these (and others). 

For example, if the Texas whale data were stored in a file called “whale.txt” in this 
format 

74 122 235 111 292 111 211 133 156 79 

then scan() could be used to read it in, as in 

> whale = scan(file="whale.txt”) 
Read 10 items 

Options exist that allow some formatting in the data set, such as including a separator, 
like a comma, (sep=), or allowing for comment lines (comment.char=). 

Tables of data can be read in with the read. table () function. For example, if 
“whale.txt” contained data in this tabular format, with numbers separated by white space, 

texas florida 
74 89 
122 254 
…   
79 90 

then the data could be read in as 

> read.table("whale.txt",header=TRUE) 
   texas florida 
1     74      89 
2    122     254 
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…. 
10    79      90 

The extra argument header=TRUE says that a header includes information for the column 
names. The function read.csv() will perform a similar task, only on csv files. Most 
spreadsheets can export csv files, which is a convenient way to import spreadsheet data. 

Both read. table () and read.csv() return a data frame storing the data. 
Specifying the file In the functions scan(), source(), read.table(), and read.csv(), the 

argument file= is used to specify the file name. The function file.choose() allows us to 
choose the file interactively, rather than typing it. It is used as follows: 

> read.table(file = file.choose()) 

We can also specify the file name directly. A file is referred to by its name and 
sometimes its path. While R is running, it has a working directory to which file names 
may refer. The working directory is returned by the getwd() function and set by the 
setwd() function. If a file is in the working directory, then the file name may simply be 
quoted.  

When a file is not in the working directory, it can be specified with its path. The 
syntax varies, depending on the operating system. UNIX traditionally uses a forward 
slash to separate directories, Windows a backward slash. As the backward slash has other 
uses in UNIX, it must be written with two backward slashes when used to separate 
directories. Windows users can also use the forward slash. 

For example, both "C:/R/data.txt" and "C:\\R\\data.txt" refer to the same file, data. txt, 
in the R directory on the “C” drive. 

With a UNIX operating system, we can specify the file as is done at the shell: 

> source(file="~/R/data.txt")     # tilde expansion 
works 

Finding files from the internet R also has the ability to choose files from the internet 
using the url() function. Suppose the webpage 
http://www.math.csi.cuny.edu/UsingR/Data/whale.txt contained data in tabular format. 

Then the following would read this web page as if it 
were a local file. 
> site = 
"http://www.math.csi.cuny.edu/UsingR/Data/whale.txt" 
> read.table(file=url(site), header=TRUE) 

The url () function is used only for clarity, the file will be found without it, as in 

> read.table(file=site, header=TRUE) 
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1.4.4 Problems 

1.20 The built-in data set islands contains the size of the world’s land masses that exceed 
10,000 square miles. Use sort() with the argument decreasing=TRUE to find the seven 
largest land masses. 

1.21 Load the data set primes (UsingR). This is the set of prime numbers in [1,2003]. 
How many are there? How many in the range [1,100]? [100,1000]? 

1.22 Load the data set primes (UsingR). We wish to find all the twin primes. These are 
numbers p and p+2, where both are prime. 

1. Explain what primes[−1] returns. 
2. If you set n=length (primes), explain what primes[−n] returns. 
3. Why might primes [−1]—primes [−n] give clues as to what the twin primes are? 

How many twin primes are there in the data set? 
1.23 For the data set treering, which contains tree-ring widths in dimension-less units, 

use an R function to answer the following: 

1. How many observations are there? 
2. Find the smallest observation. 
3. Find the largest observation. 
4. How many are bigger than 1.5? 

1.24 The data set mandms (UsingR) contains the targeted color distribution in a bag of 
M&Ms as percentages for varies types of packaging. Answer these questions. 

1. Which packaging is missing one of the six colors? 

2. Which types of packaging have an equal distribution of colors? 

3. Which packaging has a single color that is more likely than all the others? What 
color is this? 

1.25 The t imes variable in the data set nym. 2002 (UsingR) contains the time to finish 
for several participants in the 2002 New York City Marathon. Answer these questions. 

1. How many times are stored in the data set? 

2. What was the fastest time in minutes? Convert this into hours and minutes using R. 

3. What was the slowest time in minutes? Convert this into hours and minutes using R. 

1.26 For the data set rivers, which is the longest river? The shortest? 
1.27 The data set uspop contains decade-by-decade population figures for the United 

States from 1790 to 1970. 

1. Use names() and seq() to add the year names to the data vector. 
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2. Use diff() to find the inter-decade differences. Which decade had the greatest 
increase? 

3. Explain why you could reasonably expect that the difference will always increase 
with each decade. Is this the case with the data? 
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Chapter 2  
Univariate data 

In statistics, data can initially be considered to be one of three basic types: categorical, 
discrete numeric, and continuous numeric. Methods for viewing and summarizing data 
depend on which type it is, so we need to be aware of how each is handled and what we 
can do with it. In this chapter we look at graphical and numeric summaries of a data set 
for a single variable. The graphical summaries allow us to grasp qualitative aspects of a 
data set immediately. Numerical summaries allow us to compare values for the sample 
with parameters for a population. These comparisons will be the subject of the second 
half of this text. 

When a data set consists of a single variable, it is called a univariate data set. We study 
univariate data sets in this chapter. When there are two variables in a data set, the data is 
bivariate, and when there are two or more variables the data set is multivariate. 

Categorical data is data that records categories. An example is a survey that records 
whether a person is for or against a specific proposition. A police force might keep track 
of the race of the people it pulls over on the highway, or whether a driver was using a cell 
phone at the time of an accident. The United States census, which takes place every ten 
years, asks several questions of a categorical nature. In the year 2000, a question 
regarding race included 15 categories with write-in space for three more answers 
(respondents could mark themselves as multiracial.) Another example is a doctor’s chart, 
which records patient data. Gender and illness history might be treated as categories. 

Let’s continue with the medical example. A person’s age and weight are numeric 
quantities. Both are typically discrete numeric quantities usually reported as integers 
(most people wouldn’t say they are 4.673 years old). If the precise values were needed, 
then they could, in theory, take on a continuum of values. They would then be considered 
continuous. Why the distinction? We can clearly turn a continuous number into a discrete 
number by truncation, and into a categorical one by binning (e.g., 40- to 50-year-olds). 
For some summaries and statistical tests it is important to know whether the data can 
have ties (two or more data points with the same value). For discrete data there can be 
ties; for continuous data it is generally not true that there can be ties. 

A simple way to remember these is to ask, What is the average value? If it doesn’t 
make sense, then the data is categorical (such as the average of a nonsmoker and a 
smoker); if it makes sense but might not be an answer (such as 18.5 for age when we 
record only integers), then the data is discrete. Otherwise the data is likely to be 
continuous. 



2.1 Categorical data 

Categorical data is summarized by tables or graphically with barplots, dot charts, and pie 
charts. 

2.1.1 Tables 

Tables are widely used to summarize data. A bank will use tables to show current interest 
rates; a newspaper will use tables to show a data set when a graphic isn’t warranted; a 
baseball game is summarized in tables. The main R function for creating tables is, 
unsurprisingly, table(). 

In its simplest usage, table(x) finds all the unique values in the data vector x and then 
tabulates the frequencies of their occurrence. 

For example, if the results of a small survey are “yes,” “yes,” “no,” “yes,” and “no,” 
then these can be tabulated as 

> res = c("Y", Y", "N", "Y", "N") 
> table(res) 
res 
N Y 
2 3 

Such small data sets can, of course, be summarized without the computer. In this next 
example, we examine a larger, built-in data set, yet there is no more work involved than 
with a smaller data set. 

■ Example 2.1: Weather in May The United States National Weather Service 
collects an enormous amount of data on a daily basis—some categorical, much numeric. 
It is necessary to summarize the data for consumption by its many users. For example, 
suppose the day’s weather is characterized as “clear,” “cloudy,” or “partly cloudy.” 
Observations in Central Park for the month of May 2003 are stored in the 
central.park.cloud (UsingR) data set. 

> library(UsingR)               # need to do once 
> central.park.cloud 
[1] partly.cloudy partly.cloudy partly.cloudy clear  
[5] partly.cloudy partly.cloudy clear     cloudy 
… 
[29] clear         clear         partly.cloudy 
Levels: clear partly.cloudy cloudy 

However, the data is better presented in a tabular format, as in Table 2.1  

Table 2.1 Weather in Central Park for May 2003 
clear partly cloudy cloudy
11 11 9 
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The table() function will produce this type of output: 

> table(central.park.cloud) 
central.park.cloud 
        clear partly.cloudy     cloudy 
           11            11          9 

2.1.2 Barplots 

Categorical data is also summarized in a graphical manner. Perhaps most commonly, this 
is done with a barplot (or bar chart). A barplot in its simplest usage arranges the levels of 
the variable in some order and then represents their frequency with a bar of a height 
proportional to the frequency. 

In R, barplots are made with the barplot() function. It uses a summarized version of the 
data, often the result of the table() function.* The summarized data can be either 
frequencies or proportions. The resulting graph will look the same, but the scales on the 
y-axis will differ. 

■ Example 2.2: A first barplot Twenty-five students are surveyed about their beer 
preferences. The categories to choose from are coded as (1) domestic can, (2) domestic 
bottle, (3) microbrew, and (4) import. The raw data is 

3 4 1 1 3 4 3 3 1 3 2 1 2 1 2 3 2 3 1 1 1 1 4 3 1 

Let’s make a barplot of both frequencies and proportions. We first use scan () instead of 
c(), to read in the data. Then we plot (Figure 2.1) in several ways. The last two graphs 
have different scales. For barplots, it is most common to use the frequencies.  

*In version 1.9.0 of R one must coerce the resulting table into a data vector to get the desired plot. 
This can be done with the command t(table(x)) 

> beer=scan() 
1:3 4 1 1 3 4 3  3 1 3 2 1 2 1 2 3 2 3 1 1 1 1 4 3 1 
26: 
Read 25 items 
> barplot(beer)                      # this isn’t 
correct 
> barplot(table(beer),               # frequencies 
+ xlab="beer", ylab="frequency") 
> barplot(table(beer)/length(beer),  # proportions 
+ x lab="beer", ylab="proportion") 

The + symbol is the continuation prompt. Just like the usual prompt, >, it isn’t typed but 
is printed by R. 

The barplot on the left in Figure 2.1 is not correct, as the data isn’t summarized. As 
well, the barplot() function hasn’t labeled the x-and y-axes, making it impossible for the 
reader to identify what is being shown. In the subsequent barplots, the extra arguments 
xlab= and ylab= are used to label the x- and yaxes.  
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Figure 2.1 Barplot of beer: the first 
needs to be summarized; the second 
and third show frequencies and 
proportions 

■ Example 2.3: Misleading barplots When people view a barplot, they are trying to 
visualize differences between the data presented. People tend to assume a scale starts at 0. 
A graphic designer can deliberately mislead the reader by making a graphic non-0 based 
(and not mentioning having done this). Such misleading barplots appear frequently in the 
media. 

We can see how this is done by looking at a data set on sales figures (Figure 2.2). 

> sales = c(45,44,46)           # quarterly sales 
> names(sales) = c("John","Jack","Suzy”) # include 
names 
> barplot(sales, main="Sales", ylab="Thousands") # 
basic barplot 
> barplot(sales, main="Sales", ylab="Thousands", 
+ ylim=c(42,46), xpd=FALSE)     # extra arguments to 
fudge plot 

 

Figure 2.2 Two barplots showing the 
same data. The right one is 
misleading, as the y-axis does not 
start at 0. 
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There are names on the bars because the data vector was given names. The argument 
names.arg=could also be used. We used the argument ylim=to set the limits on the y-axis 
and xpd= to have R print only within these limits. 

The second barplot seems to indicate a much greater difference in sales than the first, 
despite its representing the same information. As people expect barplots to start at 0, we 
should always draw them that way. 

■ Example 2.4: Time series data shown with barplots Barplots are often used to 
illustrate what are technically time series. A time series is a measurement of the same 
thing taken at several points in time. For example: the high temperature in May 2003 at 
Central Park is stored in the MAX variable of the central.park (UsingR) data set. In 
Figure 2.3 the data is presented using the following commands. We assume the UsingR 
package has already been loaded using the command library (UsingR). 

> barplot(central.park$MAX,     # used $ notation, not 
attach() 
+ names.arg=1:31,               # + is continuation 
prompt 
+ xlab="day", ylab="max. temp.”) 

The graph seems familiar, as we regularly see such graphs in the media. Still, it could be 
criticized for “chart junk” (this term was coined by E.Tufte to refer to excessive amounts 
of chart ink used to display a relationship). ■ 

The barplot() function is used similarly to the other plotting functions. The basic 
function provides a graphic that can be adjusted using various arguments. Most of these 
have names that are consistent from plotting function to plotting function. For the 
barplot() function we showed these arguments: names can be changed with names. arg=; 
axis limits set with xlim= or ylim=; and the plot region was clipped using xpd=. The 
arguments horizontal=TRUE (draws the bars horizontally) and col=(sets the bars colors) 
were not shown. 

Although doing so is a bit redundant, some people like to put labels on top of the bars 
of a barplot. This can be done using the text() function. Simply save  

 

Figure 2.3 Maximum temperatures 
in Central Park during May 2003. 
This barplot shows time-series data 
rather than categorical data. 

Univariate data     35



the output of the barplot() function and then call text() with postions for the x and y 
coordinates; an argument, labels=, for the text; and the argument pos=1 to put the text 
just below the bar. This example (not shown) illustrates the process: 

> our.data = c(1,2,2.5); names(our.data)=1:4 
> bp = barplot(our.data) 
> text(bp, our.data, labels = our.data, pos = 1) 

The x-coordinates are returned by barplot(); the y-coordinates of the text are the heights 
of the bars given by the values in the data vector. 

2.1.3 Pie charts 

The pie chart graphic is used to display the relative frequencies or proportions of the 
levels of a categorical variable. The pie chart represents these as wedges of a circle or pie. 
Pie charts, like barplots, are widely found in the media. However, unlike barplots, pie 
charts have lost favor among statisticians, as they don’t really do well what they aim to 
do. 

Creating a pie chart is more or less the same as creating a barplot, except that we use 
the pie() function. Similar arguments are used to add names or change the colors. 

For example, to produce a pie chart for the sales data in Example 2.3, we use the 
following commands (Figure 2.4): 

> sales 
John Jack Suzy 
  45   44   46 
> pie(sales, main="sales") 

The argument main= is used to set a main title. Alternatively, the title () function can be 
used to add a title to a figure. Again, the names attribute of sales is used to label the pie 
chart. Alternatively, the labels= argument is available. For the graphic in the text, 
col=gray (c (, 7, .85, .95)) was used to change the colors.  

 

Figure 2.4 An example of a pie 
chart. Can the sales leader be 
identified? 
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Why are pie charts a poor choice? The help page for pie(), (?pie), gives a clue as to 
why: 

Pie charts are a very bad way of displaying information. The eye is good 
at judging linear measures and bad at judging relative areas. A bar chart or 
dot chart is a preferable way of displaying this type of data. 

To illustrate why the pie chart is misleading, look again at Figure 2.4. It is practically 
impossible to tell who has made the most sales. The pie chart fails at discerning 
differences. The bar chart example in Figure 2.2 shows that the barplot can be effective in 
highlighting differences, but using it this way can be misleading. 

2.1.4 Dot charts 

Using a dot chart, also known as a Cleveland dotplot, is one way to highlight differences 
without being misleading. The default dot chart shows the values of the variables as big 
dots in a horizontal display over the range of the data. Differences from the maximum 
and minimum values are very obvious, but to see their absolute values we must look at 
the scale. The primary arguments to dot chart() are the data vector and an optional set of 
labels specified by the argument labels=. Again, if the data vector has names, these will 
be used by default. Other options exist to change the range of the data (xlim=), the colors 
involved (color=, gcolor=, lcolor=), and the plotting characters (pch=, gpch=). 

> dotchart(sales,xlab="Amount of sales") 

Figure 2.5 shows the differences quite clearly. 

 

Figure 2.5 The dot chart highlights 
differences between categories 
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2.1.5 Factors 

Where does the ordering of the categories come from in the examples on creating tables? 
If we looked at the help page for table() we would find that the data should be 
interpretable as a “factor.” R uses factors to store categorical data. 

Factors are made with the function factor() or the function as. factor() and have a 
specific set of values called levels(). 

At first glance, factors appear to be similar to data vectors, but they are not. We see 
below that they are printed differently and do not have numeric values. 

> 1:5                          # a numeric vector 
(integer) 
[1] 1 2 3 4 5 
> factor(1:5)                  # now a factor. Note 
levels 
[1] 1 2 3 4 5 
Levels: 12345 
> mean(factor(1:5))            # factors are not 
numeric 
[1] NA 
Warning message: 
argument is not numeric or logical: returning NA in: 
mean.default(factor(1:5)) 
> letters [1:5]                # a character vector 
[1] “a” “b” “c” “d” “e” 
> factor(letters[1:5])         # turned into a factor 
[1] a b c d e 
Levels: a b c d e 

The initial order of the levels in a factor is determined by the sort () function. In the 
example with mean() an error is returned, as factors are treated as numeric even if their 
levels are given numeric-looking values. We used letters to return a character vector. This 
built-in variable contains the 26 letters a through z. The capital letters are in LETTERS. 
Chapter 4 has more on factors.  

2.1.6 Problems 

2.1 Find an example of a table in the media summarizing a univariate variable. Could 
you construct a potential data set that would have this table? 

2.2 Try to find an example in the media of a misleading barplot. Why is it misleading? 
Do you think it was meant to be? 

2.3 Find an example in the media of a pie chart. Does it do a good job of presenting 
the data? 

2.4 Load and attach the data set central .park (UsingR). The WX variable contains a 
list of numbers representing bad weather (e.g., 1 for fog, 3 for thunder, 8 for smoke or 
haze). NA is used when none of the types occurred. Make a table of the data, then make a 
table with the extra argument exclude=FALSE. Why is the second table better? 

Using R for introductory statistics     38



2.5 Web developers need to know which browsers people use, as they need to support 
many different platforms. Table 2.2 contains usage percentages based on an analysis of a 
United States Geological Society web server. 

Table 2.2 Web browser statistics 
Browser statistics   
Internet Explorer 86%
Gecko-based (Netscape, Mozilla) 4%
Netscape Navigator 4 5%
Opera 1%
unidentified 4%
source http://www.upsdell.com/BrowserNews/stat.htm

Make a bar chart, a pie chart, and a dot chart of this data. 
2.6 According to the New York Times, the top-selling MP3 players for August 2003 

are as shown in Table 2.3 with their market shares. Assume the total market share is $22 
million. 

1. What percent is “other”? 

2. Find the dollar amount (not the percentage amount) for each company. 

3. Make a bar chart, dot chart, and pie chart of the data, including “other.” Which chart 
shows the relationship best? 

4. Comment on how out-of-date this data seems. 

Table 2.3 Sales of MP3 players. Total $22 million 
MP3 players 
Apple 18%
RCA 15%
Rio 14.4%
iRiver 13.5%
Creative Labs 6.2%

2.7 Make a dot chart of the mpg variable in the mtcars data set. Specify the argument 
labels=using the command rownames(mtcars), which returns the names of each row of 
the data frame. 

2.8 The data set npdb (UsingR) contains information on malpractice awards in the 
United States. Attach the data set and make a table of the state variable. Which state had 
the most awards? (Using sort () on your table is useful here.) 

2.9 For the malpractice-award data set npdb (UsingR), the variable ID is an 
identification number unique to a doctor but not traceable back to the doctor. It allows a 
look at a doctor’s malpractice record without sacrificing anonymity. 

The commands 
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> table(npdb$ID) 

create a table of malpractice awards for each of the 6,369 doctors. What does the 
command table (table (ID)) do, and why is this interesting? 

2.10 The data set MLBattend (UsingR) contains attendance information for major 
league baseball between 1969 and 2000. The following commands will extract just the 
wins for the New York Yankees, in chronological order. 

> attach(MLBattend) 
> wins[franchise == "NYA"] 
[1]  80  93  82  79  80  89  83  97  100  100  89  103 
 59  79  91 
… 
> detach(MLBattend)             # tidy up 

Add the names 1969:2000 to your variable. Then make a barplot and dot chart showing 
this data in chronological order.  

2.2 Numeric data 

For univariate data, we want to understand the distribution of the data. What is the range 
of the data? What is the central tendency? How spread out are the values? We can answer 
these questions graphically or numerically. In this section, we’ll see how. The familiar 
mean and standard deviation will be introduced, as will the p th quantile, which extends 
the idea of a median to measure position in a data set. 

2.2.1 Stem-and-leafplots 

If we run across a data set, the first thing we should do is organize the data so that a sense 
of the values becomes more clear. A useful way to do so for a relatively small data set is 
with a stem-and-leaf plot. This is a way to code a set of numeric values that minimizes 
writing and gives a fairly clear idea of what the data is, in terms of its range and 
distribution. For each data point only a single digit is recorded, making a compact 
display. These digits are the “leaves.” The stem is the part of the data value to the left of 
the leaf. 

To illustrate, we have the following data for the number of points scored in a game by 
each member of a basketball team: 

2 3 16 23 14 12 4 13 2 0 0 0 6 28 31 14 4 8 2 5 

The stem in this case would naturally be the 10s digit. A number like 23 would be written 
as a 2 for the stem and a 3 for the leaf. The results are tabulated as shown below in the 
output of stem(). 

> x = scan() 
1:2 3 16 23 14 12 4 13 2 0 0 0 6 28 31 14 4 8 2 5 
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21: 
Read 20 items 
> stem(x) 
  The decimal point is 1 digit(s) to the right of the |  
  0 | 000222344568 
  1 | 23446 
  2 | 38 
  3 | 1 

The stem is written to the left and the leaf to the right of the |. If this isn’t clear, look at 
the values in the row with a stem of 1. They are 12, 13, 14, 14, and 16. For many data 
sets, the data is faithfully recorded. In some cases, the data values are truncated to 
accommodate the format. 

The stem-and-leaf plot gives us a good understanding of a data set. At a glance we can 
tell the minimum and maximum values (0 and 31); the shape of the distribution of 
numbers (mostly in the 0 to 10 range); and, if we want to, the “middle” of the distribution 
(between 5 and 6). 

In practice, stem-and-leaf plots are usually done by hand as data is being collected. 
This ris best done in two passes: a first to get the stem and the leaves, and a second to sort 
the leaves. We may decide the latter step is not necessary, depending on what we want to 
know about the numbers. 

The stem() function As illustrated, stem-and-leaf plots are done in R with the stem() 
function. The basic usage is simply stem(x), where x is a data vector. If there are too 
many leaves for a stem, the extra argument scale= can be set, as in stem(x,scale=2). 

A back-to-back stem and leaf diagram can be used to show two similarly distributed 
data sets. For the second data set, the left side of the stem is used. There is no built-in R 
function to generate these. 

2.2.2 Strip charts 

An alternative to a stem-and-leaf plot is a strip chart (also referred to as a dotplot). This 
graphic plots each value of a data set along a line (or strip). As with a stem-and-leaf plot, 
we can read off all the data. Unlike the stem-and-leaf plot, however, the strip chart does 
not take up much vertical space on a page and so is a favorite of some authors. Variants 
are often found in the media.  
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Figure 2.6 An example of a strip 
chart showing each value in a data 
set 

Strip charts are created in R with the stripchart() function. The extra argument 
method="stack” will create stacks when there are ties in the data. Otherwise, multiple 
values will show up as a single plot character. 

Figure 2.6 shows the data on heights of 4-year-olds contained in the data set kid. 
weights (UsingR). The following commands produce the graphic: 

> attach(kid.weights) 
> x=height[48 <= age & age < 60]   # four year olds 
> 
stripchart(x,method="stack",xlab="x",pch=1,offset=1,cex
=2) 
> detach(kid.weights)           # tidy up 

A lot of extra arguments are needed to make these graphs look right. The argument xlab= 
adjusts the label on the x-axis, pch=1 uses a different plot character than the default 
square, cex= changes the size of the plot character, and of f set= pushes the points apart. 

In this book, we use a visually stripped-down version of this graphic (Figure 2.7) 
made with the DOTplot() function available in the UsingR package. 

> DOTplot(x) 

 

Figure 2.7 Alternative to stripchart(), 
with fewer lines 

2.2.3 The center: mean, median, and mode 

Viewing the distribution of a data set with a stem-and-leaf plot or a strip chart can be 
overwhelming if there is too much data. It is also convenient to have concise, numeric 
summaries of a data set. Most of these summaries are familiar from everyday usage. Not 
only will the numeric summaries simplify a description of the data—they also allow us to 
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compare different data sets quantitatively. In this section we cover central tendency; in 
the next we cover measures of spread. 

The most familiar notion of the center of a numeric data set is the average value of the 
numbers. In statistics, the average of a data set is called the sample mean and is denoted 
by  

The sample mean 
The sample mean of the numeric data set, x1, x2, …, xn, is 

 (2.1)  
The mean() function will compute the sample mean for a data vector. Additional 
arguments include trim= to perform a trimmed mean and na.rm= for removal of missing 
data. 

The mean can be found directly from the formula, as in 

> x = scan() 
1:2 3 16 23 14 12 4 13 2 0 0 0 6 28 31 14 4 8 2 5 
21: 
Read 20 items 
> sum(x)/length(x) 
[1] 9.35 

Using the mean() function is preferable, though: 

> mean(x) 
[1] 9.35 

The mean is the most familiar notion of center, but there are times when it isn’t the best. 
Consider, for example, the average wealth of the patrons of a bar before and after 
Microsoft co-founder Bill Gates steps in. Really large values can skew the average, 
making a misleading measure of center. 

The median 
A more resistant measure of the center is the sample median, which is the “middle” 
value of a distribution of numbers. Arrange the data from smallest to biggest. When there 
is an odd number of data points, the median is the middle one; when there is an even 
number of data points, the median is the average of the two middle ones. 

The sample median 
The sample median, m, of x1, x2,…,xn is the middle value of the sorted values. Let the 
sorted data be denoted by x(1)≤ x(2)≤ …≤x(n). Then 
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(22) 

The sample median is found in R with the median() function. 

For example: 

> bar = c(50,60,100,75,200)       # bar patrons worth 
in 1000s 
> bar.with.gates = c(bar,50000)   # after Bill Gates 
enters 
> mean(bar) 
[1] 97 
> mean(bar.with.gates)      # mean is sensitive to 
large values 
[1] 8414 
> median(bar) 
[1] 75 
> median(bar.with.gates)    # median is resistant 
[1] 87.5 

The example shows that a single large value can change the value of the sample mean 
considerably, whereas the sample median is much less influenced by the large value. 
Statistics that are not greatly influenced by a few values far from the bulk of the data are 
called resistant statistics. 

Visualizing the mean and median from a graphic 
Figure 2.8 shows how to visualize the mean and median from a strip chart (and, similarly, 
from a stem-and-leaf plot). The strip chart implicitly orders the data from smallest to 
largest; to find the median we look for the middle point. This is done by counting. When 
there is an even number, an average is taken of the two middle ones. 

The formula for the mean can be interpreted using the physics formula for a center of 
mass. In this view, the mean is the balancing point of the strip chart when we imagine the 
points as equal weights on a seesaw. 

With this intuition, we can see why a single extremely large or small data point can 
skew the mean but not the median.  
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Figure 2.8 The median is the middle 
point, the mean the balance point 

The trimmed mean 
A modification of the mean that makes it more resistant is the trimmed mean. To 
compute the trimmed mean, we compute the mean after “trimming” a certain percentage 
of the smallest and largest values from the data. Consequently, if there are a few values 
that skew the mean, they won’t skew the trimmed mean. 

The mean() function can be used with the trim= argument to compute a trimmed 
mean. Its value is the proportion to be trimmed from both sides. 

■ Example 2.5: Income distributions are skewed 
The cfb (UsingR) data set contains a sampling of the data contained in the Survey of 

Consumer Finances conducted in the year 2001 by the U.S. Federal Reserve Board. Many 
of the variables have some values much bigger than the bulk of the data. This is common 
in income distributions, as some fortunate people accumulate enormous wealth in a 
lifetime, but few can accumulate enormous debt. 

The INCOME variable contains yearly income figures by household. For this data, we 
compare the different measures of center. 

> income=cfb$INCOME 
> mean(income) 
[1] 63403 
> median(income) 
[1] 38033 
> mean(income, trim=.2) 
[1] 41992 
> sum(income <= mean(income))/length(income)*100 
[1] 70.5 

The data is clearly skewed to the right, as the mean is significantly more than the median. 
The trimmed mean is more in line with the median. The last line shows that 70.5% of the 
values are less than or equal to the sample mean. ■ 

The mode and midrange of a data set 
The mode of a data set is the most common value in the data set. It applies only to 
discrete numeric data. There is no built-in function to find the mode, as it is not a very 
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good summary of a data set. However, it can be found using commands we’ve seen 
previously. For example, if x stores the data, then the mode may be found as follows: 

> x=c(72,75,84,84,98,94,55, 62) 
> which(table(x) == max(table(x))) 
84 
5 

That is, the value of 84, which is the fifth, after sorting, of x. Alternately, the function 
which. max(), which determines the position of the max in a data vector, finds this value 
with which.max(table(x)).  

The midrange is a natural measure of center—the middle of the range. It can be found 
using mean (range(x)). For some data sets it is close to the mean, but not when there are 
outliers. As it is even more sensitive to these than the mean, it isn’t widely used to 
summarize the center. 

Summation notation 
The definition of the mean involves a summation: 

 
  

In statistics, this is usually written in a more compact form using summation notation. 
The above sum is rewritten as 

 
  

The symbol ∑, the Greek capital sigma, is used to indicate a sum. The i=1 on the bottom 
and n on top indicate that we should include xi for i=1, 2 , …, n, that is x1, x2, …, xn. 
Sometimes the indices are explicitly indicated, as in 

 

  

When the variable that is being summed over is not in doubt, the summation notation is 
often shortened. For example, 

 
  

Notationally, this is how summations are handled in R using the sum() function. If x is a 
data vector, then sum(x) adds up x[1]+x[2]+…+x[n]. 

The summation notation can be confusing at first but offers the advantages of being 
more compact to write and easier to manipulate algebraically. It also forces our attention 
on the operation of addition. 

■ Example 2.6: Another formula for the mean We can use the summation formula 
to present another useful formula for the mean. Let Range (x) be all the values of the data 
set. When we add x1+x2+…+xn, if there are ties in the data, it is natural to group the same 
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numbers first and then add. For example, if there are four 5’s, we would just add a single 
value of 4.5, or 20. Let nk=#{i:xi=k}; that is, the number of data points equal to k. We can 
then write the sample mean as 

 

  

Here pk=nk/n is the proportion of times the data is k. 
The last sum is a weighted average. The weights are the pk—nonnegative numbers 

that add to 1. 

2.2.4 Variation: the variance, standard deviation, and IQR 

The center of a distribution of numbers may not adequately describe the entire 
distribution. For example, consider the data in Table 2.4 on test scores for two different 
tests presented in a back-to-back stem-and-leaf plot. 

Table 2.4 Two test results 
first test stem second test
  4 07 
  5   
  6   

75 7   
87520 8 260 

  9   
  10 00 

The means are about the same, but clearly there is more variation in the second test—two 
students aced it with 100s, but two failed miserably. In the first test, the students all did 
roughly the same. In short, there is more “spread,” or variation, in the second test. 

The sample range 
There are many ways to measure spread. The simplest is the range of the data. 
Sometimes the range refers to the distance between the smallest and largest values, and 
other times it refers to these two values as a pair. The function range() returns the 
smallest and largest values, as in range(x). The distance between the two is computed by 
diff (range(x)). 

The term distance between two points x and y refers to the value |x−y|, which is 
nonnegative. The difference between x and y is x−y, which may be negative. We also call 
this the deviation. 

Sample variance 
Using the idea of a center, we can think of variation in terms of deviations from the 
center. Using the mean for the center, the variation of a single data point can be assessed 
using the value A sum of all these differences will give a sense of the total 
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variation. Just adding these values gives a value of 0, as terms cancel. A remedy is to add 
the squared deviations  

If there is a lot of spread in the data, then this sum will be relatively large; if there is 
not much spread, it will be relatively small. Of course, this sum can be large because n is 
large, not just because there is much spread. We take care of that by dividing our sum by 
a scale factor. If we divided by n we would have the “average squared deviation.” It is 
conventional, though, to divide by n−1, producing the sample variance: 

 
  

We will see that many of the statistics we consider can be analyzed this way: one piece 
that intuitively makes sense and a divisor that allows us to compare the statistic among 
different data sets. 

The sample standard deviation is the square root of the variance. It has the 
advantage of having the same units as the mean. However, the interpretation remains: 
large values indicate more spread. 

The sample variance and standard deviation 
For a numeric data set x1, x2, …, xn, the sample variance is defined by 

 (2.3) 

The sample standard deviation is the square root of the sample variance: 

 
(2.4) 

The sample variance is computed in R using the var() function, the sample standard 
deviation with the sd() function. 

To illustrate on the test-scores data: 

> test.scores = c(80,85,75,77,87,82,88) 
> test.scores.b = c(100,90,50,57,82,100,86) 
> mean(test.scores) 
[1] 82 
> mean(test.scores.b)              # means are similar 
[1] 80.71 
> n = length(test.scores) 
# compute directly 
> (1/(n−1)) * sum( (test.scores − mean(test.scores))^2 
) 
[1] 24.67 
> var(test.scores)              # built-in var function 
[1] 24.67 
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> var(test.scores.b)            # larger, as 
anticipated 
[1] 394.2 
> sd(test.scores) 
[1] 4.967 

Quantiles, quintiles, percentiles, and more 
The standard deviation, like the mean, can be skewed when an exceptionally large or 
small value is in the data. More resistant alternatives are available. A conceptually simple 
one (the IQR) is to take the range of the middle 50% of the data. That is, trim off 25% of 
the data from the left and right, and then take the range of what is remaining. 

To be precise, we need to generalize the concept of the median. The median splits the 
data in half—half smaller than the median and half bigger. The quantiles generalize this. 
The pth quantile is at position 1+p(n−1) in the sorted data. When this is not an integer, a 
weighted average is used. † This value essentially splits the data so 100p% is smaller and 
100(1−p)% is larger. Here p ranges from 0 to 1. The median then is the 0.5 quantile. 

The percentiles do the same thing, except that a scale of 0 to 100 is used, instead of 0 
to 1. The term quartiles refers to the 0,25, 50,75, and 100 percentiles, and the term 
quintiles refers to the 0, 20,40, 60, 80, and 100 percentiles. 

The quantile () function returns the quantiles. This function is called with the data 
vector and a value (or values) for p. We illustrate on a very simple data set, for which the 
answers are easily guessed. 

> x = 0:5                     # 0,1,2,3,4,5 
> length(x) 
[1] 6 
> sum(sort(x)[3:4])/2         # the median the hard way 
[1] 2.5 
> median(x)                   # easy way. Clearly the 
middle 
[1] 2.5 
> quantile(x,.25) 
25% 
1.25 
> quantile(x,c(0.25,0.5,0.75)) # more than 1 at a time 

† There are other definitions used for the pth quantile implemented in the quantile() function. These 
alternatives are specified with the type= argument. The default is type 7. See ?quantile for the 
details. 

25% 50% 75% 
1.25 2.50 3.75 
> quantile(x)            # default gives quartiles 
0% 25% 50% 75% 100% 
0.00 1.25 2.50 3.75 5.00 

■ Example 2.7: Executive pay The exec.pay (UsingR) data set contains compensation to 
CEOs of 199 U.S. companies in the year 2000 in units of $10,000. The data is not 
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symmetrically distributed, as a stem-and-leaf plot will show. Let’s use the quantile() 
function to look at the data: 

> sum(exec.pay > 100)/length(exec.pay) # proportion 
more 
[1] 0.09045                     # 9% make more than 1 
million 
> quantile(exec.pay,0.9)        # 914,000 dollars is 90 
percentile 
90% 
91.4 
> quantile(exec.pay,0.99)       # 9 million is top 1 
percentile 
997, 
906.6 
> sum(exec.pay <= 10)/length(exec.pay) 
[1] 0.1457                      # 14 percent make 
100,000 or less 
> quantile(exec.pay,.10)        # the 10 percentile is 
90,000 
10% 
9 

Quantiles versus proportions For a data vector x we can ask two related but inverse 
questions : what proportion of the data is less than or equal to a specified value? Or for a 
specified proportion, what value has this proportion of the data less than or equal? The 
latter question is answered by the quantile function. 

The inter-quartile range 
Returning to the idea of the middle 50% of the data, this would be the distance between 
the 75th percentile and the 25th percentile. This is known as the interquartile range and 
is found in R with the IQR() function. 

For the executive pay data the IQR is 

> IQR(exec.pay) 
[1] 27.5 

Whereas, for comparison, the standard deviation is 

> sd(exec.pay) 
[1] 207.0 

This is much bigger, as the largest values of exec. pay are much larger than the others and 
skew the results.  

z-scores 
The z-score of a value is the number of standard deviations the value is from the sample 
mean of the data set. That is, 
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As with the quantiles, z-scores give a sense of the size a value has within a set of data. In 
R the collection of z scores for a data set are returned by the scale() function. The set of z-
scores will have sample mean of 0 and standard deviation 1, allowing for comparisons 
among samples with different senses of scale. 

Numeric summaries of the data 
A short description of a distribution of numbers could be made with the range, the mean, 
and the standard deviation. It might also make sense to summarize the data with the 
range, the quartiles, and the mean. In R, the summary() function does just this for a 
numeric data vector. 

For the executive-pay data set we have 

> summary(exec.pay) 
     
Min. 1st Qu.  Median  Mean 3rd Qu.   Max. 
      
0.0    14.0    27.0  59.9    41.5 2510.0 

There is a large difference between the mean and the median. We would want to be 
careful using the mean to describe the center of this data set. In fact, the mean is actually 
the 84th percentile: 

> sum(exec.pay <= mean(exec.pay))/length(exec.pay) 
[1] 0.8392 

That is, only 16% make more than the average. 
In the sequel we will see that the summary () function returns reasonable numeric 

summaries for other types of objects in R. 

Hinges and the five-number summary 
There is a historically popular set of alternatives to the quartiles called the hinges, which 
are somewhat easier to compute by hand. Quickly put, the lower hinge is the median of 
the lower half of the data, and the upper hinge the median of the upper half of the data. In 
Figure 2.9, when n=6, the upper and lower halves include three (n/2) data points; when 
n=7, there are still three ((n−1)/2) points in each. The difference is that when n is odd, the 
median is removed from the data when considering the upper and lower halves. 

The hinges are returned as part of the five-number summary, which is output by the 
fivemim() function. 

The lower and upper hinges can be different from the quartiles Q1 and Q3. For 
example, with n=6, the first quartile is at position 1+(1/4)(6–1)=2.25. That is, a quarter of 
the way between the second and third data points after sorting.  
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Figure 2.9 Hinges, marked with 
diamonds, are medians of left and 
right halves of the data. The left and 
right halves of data consist of n/2 
points when n is even, and (n−1)/2 
points when n is odd. 

This is different from the lower hinge, which from Figure 2.9 is seen to be the second 
data point after sorting. 

The IQR is the difference between the third and first quartiles. The H-spread is used 
for the difference of the upper and lower hinges. Some books call the IQR the Q-spread; 
others refer to the H-spread as the IQR. 

2.2.5 Problems 

2.11 Read this stem-and-leaf plot. First find the median by hand. Then enter in the data 
and find the median using median(). 

The decimal point is 1 digit(s) to the right of the | 
8 | 028 
9 | 115578 
10 | 1669 
11 | 01 

2.12 Figure 2.10 contains a strip chart of a data set. Estimate the median, mean, and 10% 
trimmed mean. Enter in the data as accurately as you can and then check your estimates 
using the appropriate function in R. 

 

Figure 2.10 Strip chart of a data set
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2.13 Can you copyedit this paragraph from the August 16, 2003 New York Times? 

The median sales price, which increased to $575,000, almost 12 per-cent 
more than the median for the previous quarter and almost 13 percent more 
than the median for the period a year ago, was at its highest level since the 
first market overview report was issued in 1989. (The median price is 
midway between the highest and lowest prices.) 

2.14 In real estate articles the median is often used to describe the center, as opposed to 
the mean. To see why, consider this example from the August 16, 2003 New York Times 
on apartment prices: 

The average and the median sales prices of cooperative apartments were 
at record highs, with the average up almost 9 percent to $775,052 from the 
first quarter this year, and the median price at $479,000, also an increase 
of almost 9 percent. 

Explain how using the median might affect the reader’s sense of the center. 
2.15 The data set pi2000 (UsingR) contains the first 2,000 digits of π. What is the 

percentage of digits that are 3 or less? What percentage of the digits are 5 or more? 
2.16 The data set rivers contains the lengths (in miles) of 141 major rivers in North 

America. 

1. What proportion are less than 500 miles long? 

2. What proportion are less than the mean length? 

3. What is the 0.75 quantile? 

2.17 The time variable in the nym. 2002 (UsingR) data set contains the time to finish 
the 2002 New York City marathon for a random sample of the finishers. 

1. What percent ran the race in under 3 hours? 

2. What is the time cutoff for the top 10%? The top 25%? 

3. What time cuts off the bottom 10%? 

Do you expect this data set to be symmetrically distributed? 
2.18 Compare values of the mean, median, and 25% trimmed mean on the built-in 

rivers data set. Is there a big difference among the three? 
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2.19 The built-in data set islands contains the size of the world’s land masses that 
exceed 10,000 square miles. Make a stem-and-leaf plot, then compare the mean, median, 
and 25% trimmed mean. Are they similar? 

2.20 The data set OBP (UsingR) contains the on-base percentages for the 2002 major 
league baseball season. The value labeled bondsba01 contains this value for Barry Bonds. 
What is his z-score?  

2.21 For the rivers data set, use the scale() function to find the z-scores. Verify that the 
z-scores have sample mean() and sample standard deviation 1. 

2.22 The median absolute deviation is defined as 
mad(x)=1.4826·median(|xi-median(x)|). 

(2.5) 

This is a resistant measure of spread and is implemented in the mad () function. Explain 
in words what it measures. Compare the values of the sample standard deviation, IQR, 
and median absolute deviation for the exec.pay (UsingR) data set. 

2.23 The data set npdb (UsingR) contains malpractice-award information. The 
variable amount is the size of malpractice awards in dollars. Find the mean and median 
award amount. What percentile is the mean? Can you explain why this might be the case? 

2.24 The data set cabinet (UsingR) contains information on the amount each member 
of President George W.Bush’s cabinet saved due to the passing of a tax bill in 2003. This 
information is stored in the variable est.tax. savings. Compare the median and the mean. 
Explain the difference. 

2.25 We may prefer the standard deviation to measure spread over the variance as the 
units are the same as the mean. Some disciplines, such as ecology, prefer to have a 
unitless measurement of spread. The coefficient of variation is defined as the standard 
deviation divided by the mean. 

One advantage is that the coefficient of variation matches our intuition of spread. For 
example, the numbers 1, 2, 3, 4 and 1001, 1002, 1003, 1004 have the same standard 
deviation but much different coefficient of variations. Somehow, we mentally think of the 
latter set of numbers as closer together. 

For the rivers and pi2000 (UsingR) data sets, find the coefficient of variation. 
2.26 A lag plot of a data vector plots successive values of the data against each other. 

By using a lag plot, we can tell whether future values depend on previous values: if not, 
the graph is scattered; if so, there is often a pattern. 

Making a lag plot (with lag 1) is quickly done with the indexing notation of negative 
numbers. For example, these commands produce a lag plot‡ of x: 

> n = length(x) 
> plot(x[−n],x[−1]) 

(The plot () function plots pairs of points when called with two data vectors.) Look at the 
lag plots of the following data sets:  

‡This is better implemented in the lag.plot() function from the ts package. 

1. x=rnorm(100) (random data) 
2. x=sin(1:100) (structured data, but see plot (x)) 
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Comment on any patterns you see. 
2.27 Verify that the following are true for the summation notation: 

 
  

2.28 Show that for any data set 

 
  

2.29 The sample variance definition, Equation (2.3), has a nice interpretation, but the 
following formula is easier to compute by hand: 

 
  

The term means to square the data values, then find the sample average, whereas 
finds the sample average, then squares the answer. Show that the equivalence follows 
from the definition. 

2.3 Shape of a distribution 

The stem-and-leaf plot tells us more about the data at a glance than a few numeric 
summaries, although not as precisely. However, when a data set is large, it tells us too 
much about the data. Other graphical summaries are presented here that work for larger 
data sets too. These include the histogram, which at first glance looks like a barplot, and 
the boxplot, which is a graphical representation of the five-number summary. 

In addition to learning these graphical displays, we will develop a vocabulary to 
describe the shape of a distribution. Concepts will include the notion of modes or peaks 
of a distribution, the symmetry or skew of a distribution, and the length of the tails of a 
distribution. 

2.3.1 Histogram 

A histogram is a visual representation of the distribution of a data set. At a glance, the 
viewer should be able to see where there is a relatively large amount of data, and where 
there is very little. Figure 2.11 is a histogram of the waiting variable from the data set 
faithful, recording the waiting time between eruptions of Old Faithful. The histogram is 
created with the hist() function. Its simplest usage is just hist(x), but many alternatives 
exist. This histogram has two distinct peaks or modes.  
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Figure 2.11 Histogram of waiting 
variable in faithful data set 

Figure 2.11 was created with these commands: 

> attach(faithful) 
> hist(waiting) 

The graphic is similar, but not identical, to a barplot. The histogram also uses bars to 
indicate frequency or proportion, but for an interval not a category. The construction is as 
follows. First, a contiguous collection of disjoint intervals, called bins, covering all the 
data points is chosen. “Disjoint” means no overlap, so the intervals look like (a,b] or 
[a,b). That is, the first interval contains all the values from a to b including b but not a, 
and the second all the values including a but not b. Next, the number of data points, or 
frequency, in each of these intervals is counted. Finally, a bar is drawn above the interval 
so that the area of the bar is proportional to the frequency. If the intervals defining the 
bins all have the same length, then the height of the bar is proportional to the frequency. 

Finding the mean and median from a histogram As described for the strip chart, 
the mean is a balance point. From a histogram the mean can be estimated from the 
balance point of the graph, were the figure constructed from some uniform material. The 
median, on the other hand, should visually separate the area into two equal-area pieces. 

Creating histograms in R with hist() 
When constructing a histogram, we make a decision as to which bins to use and how high 
to draw the bars, as they need be only in the correct proportion. R has a few built-in 
choices for the bin selection. Two common choices for the height of the bars are either 
the frequency or total count, or the proportion of the whole. In the latter case, the total 
area covered by the bars will be 1, a desirable feature when probability models are 
considered. 

For hist(), the bin size is controlled by the breaks=argument. This can be specified by 
the name of an algorithm, the number of breaks desired, or the location of the breaks. For 
example, these commands would all make histograms: 
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> hist(waiting)                 # use defaults 
> hist(waiting,breaks=10)       # suggest 10 breaks 
> hist(waiting,breaks=seq(43,108,length=10)) # use 
these breaks 
> hist(waiting,breaks="scott")  # use “Scott” algorithm 

If these graphs are made, we will be surprised that the second histogram has more than 
ten bins, despite our suggestion. We directly specify the breaks as a vector of cut points 
to get exactly what is wanted. The “Sturges” algorithm is the default; “Scott” is an 
alternative, as is “Friedman-Diaconis,” which may be abbreviated as FD. 

The choice to draw a histogram of frequencies or proportions is made by the argument 
probability=. By default, this is FALSE and frequencies are drawn. Setting it to TRUE 
will create histograms where the total area is 1. For example, the commands 

> hist(waiting) 
> hist(waiting,prob=T)        # shortened 
probability=TRUE 

will create identical-looking graphs, but the y-axes will differ. We used prob=T to shorten 
the typing of probability=TRUE. Although T can usually be used as a substitute for 
TRUE, there is no guarantee it will work, as we can assign new values to a variable 
named T. 

By default, R uses intervals of the type (a,b]. If we want the left-most interval to be of 
the type [a, b] (i.e., include a), we use the argument include. lowest=TRUE. 

■ Example 2.8: Baseball’s on-base percentage Statistical summaries are very much 
a part of baseball. A common statistic is the “on-base percentage” (OBP), which indicates 
how successful a player is as a batter. This “percentage” is usually given as a 
“proportion,” or a number between 0 and 1. The data set OBP (UsingR) contains the OBP 
for the year 2002, according to the Sam Lahman baseball database 
(http://www.baseball1.com/). 

This command will produce the histogram in Figure 2.12. 

> hist(OBP,breaks="Scott",prob=TRUE,col=gray(0.9)) 

The distribution has a single peak and is fairly symmetric, except for the one outlier on 
the right side of the distribution. The outlier is Barry Bonds, who had a tremendous 
season in 2002. 

The arguments to hist() are good ones, but not the default. They are those from the 
truehist() function in the MASS package, which may be used as an alternate to hist().  
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Figure 2.12 Histogram of on-base 
percentage for the 2002 MLB season 

Adding a title to a histogram or other graphic The hist() function adds a default title to 
a histogram. This can be changed with the main=argument. This argument is common to 
many of the plotting functions we will encounter. For example, this command produces a 
histogram with a custom title: 

> hist(OBP, main="My histogram of the OBP dataset") 

Setting main= to an empty string or NULL will print no title. In this case, one can be 
added at a later point with the title() function. In addition, this function can be used to 
label the x- and y-axes with the arguments xlab= and ylab=. 

Density estimates and frequency polygons 
In many statistics books, a frequency polygon is presented in addition to a histogram. 
Figure 2.13 displays such a frequency polygon for the waiting variable. To draw a 
frequency polygon, we select the bins (all the same size) and find the frequencies, as we 
would for the histogram. Rather than draw a bar, though, we draw a point at the midpoint 
of the bin with height given by the frequency, then connect these points with straight 
lines to form a polygon. 

Creating a frequency polygon The commands to create the frequency polygon in 
Figure 2.13 are: 

> bins = seq(42, 109, by=10) 
> freqs <− table(cut(waiting, bins)) 
> y.pts = c(0, freqs, 0) 
> x.pts = seq(37,107,by=10) 
> plot(x.pts,y.pts,type="l")     # connect points with 
lines 
> rug(waiting)                   # show values 
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Figure 2.13 Frequency polygon for 
waiting variable of the faithful data 
set 

The plot() function is used to plot points. It will be discussed more thoroughly in the next 
chapter. The type="1" argument to plot() is used to draw line segments between the 
points instead of plotting the points. The rug() function is used to display the data points 
using hash marks along the x-axis. This example shows how we can use the cut() function 
and the table() function to turn continuous numeric data into discrete numeric data, or 
even categorical data. The output of cut() is simply the bin that the data point is in, where 
bins are specified with a vector of endpoints. For example, if this vector is c (1, 3, 5) then 
the bins are (1, 3], (3, 5]. The left-most endpoint is not included by default; if the extra 
argument include. lowest=TRUE is given, it will be included. (We could also use the 
output from hist() to do most of this.) 

The frequency polygon is used to tie in the histogram with the notion of a probability 
density, which will be discussed when probabilities are discussed in Chapter 5. However, 
it is more desirable to estimate the density directly, as the frequency polygon, like the 
histogram, is very dependent on the choice of bins. 

Estimating the density The density() function will find a density estimate from the 
data. To use it, we give it the data vector and, optionally, an argument as to what 
algorithm to use. The result can be viewed with either the plot() function or the lines() 
function. A new graphic showing the densityplot is produced by the command plot 
(density(x)). The example uses lines() to add to the existing graphic. 

> attach(faithful) 
> hist(waiting, breaks="scott", prob=TRUE, 
main="",ylab="") 
> lines(density(waiting))       # add to histogram 
> detach(waiting)               # tidy up 

In Figure 2.14, the density estimate clearly shows the two peaks in this data set. It is 
layered on top of the histogram plotted with total area 1 (from prob=TRUE).  
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Figure 2.14 Histogram of waiting 
with density estimate 

2.3.2 Modes, symmetry, and skew 

Using the histogram and density estimate of a univariate data set, we can broadly classify 
the distribution according to the number of peaks, the symmetry, and the size of the tails. 
These attributes are essential to know when we want to make statistical inferences about 
the data. 

Modes 
A mode of a distribution is a peak, or a local maximum, in its density (found using the 
density estimate). A data set can be characterized by its number of modes. A unimodal 
distribution has a single mode—it occurs at “the mode.” The mode is sometimes used to 
represent the center of a distribution. Distributions with two modes are termed bimodal 
distributions; those with two or more modes are multimodal distributions. 

For example, the waiting data set shown in Figure 2.14 is bimodal. The data set 
galaxies (MASS) shown in Figure 2.15 is an example of a multimodal data set. In the 
same figure, we see that the OBP data set could be considered unimodal if the Barry 
Bonds outlier is removed from the data. 

Symmetry 
A univariate data set has a symmetric distribution if it spreads out in a similar way to 
the left and right of some central point. That is, the histogram or density estimate should 
have two sides that are nearly mirror images of one another. The OBP data set (Figure 
2.15) is an example of a symmetric data set if once again the Barry Bonds outlier is 
removed. The waiting data set in Figure 2.14 is not symmetric. 

Another type of a symmetric data set is the “well-shaped” distribution. These  
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Figure 2.15 Galaxies data is 
multimodal; OBP data is unimodal 

distributions have very little in the middle and a lot at the ends. Surprisingly, these 
distribution show up in unlikely places. Economic data can show this shape—e.g., the 
vanishing middle class—as can grade distributions. A more theoretical example is the 
location of the last tie in a game of chance. Imagine a coin is tossed 100 times, and a 
running count of heads and tails is kept. After 100 tosses, the number of heads may be 
more than the number of tails, the same, or less. The last tie is defined as the last toss on 
which there were the same number of heads as tails. This is a number in the range of 0 to 
100. A simulation of this was done 200 times. The results are stored in the data set last 
.tie (UsingR). A histogram of the data is shown in Figure 2.16.  

 

Figure 2.16 An example of a 
symmetric, well-shaped distribution. 
This graphic shows 200 simulations 
of 100 coin tosses. For each 
simulation, the location of the last 
time there are an equal number of 
heads and tails is recorded. 
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Tails of a distribution and skew 
The tails of a distribution are the very large and very small values of the distribution. 
They give the shape of the histogram on the far left and right—hence the name. Many 
inferences about a distribution are affected by its tails. A distribution is called a long-
tailed distribution if the data set contains values far from the body of the data. This is 
made precise after the normal distribution is introduced as a reference. Long tails are also 
know as “fat tails.” Alternatively, a distribution is called a short-tailed distribution if 
there are no values far from the body. 

A distribution is a skewed distribution if one tail is significantly fatter or longer than 
the other. A distribution with a longer left tail is termed skewed left; a distribution with a 
longer right tail is termed skewed right. 

We’ve seen how very large or very small values in a data set can skew the mean. We 
will call a data point that doesn’t fit the pattern set by the majority of the data an outlier. 
Outliers may be the result of an underlying distribution with a long tail or a mixture of 
distributions, or they may indicate mistakes of some sort in the data. 

■ Example 2.9: Asset distributions are long-tailed The distributions of assets, like 
incomes, are typically skewed right. For example, the amount of equity a household has 
in vehicles (cars, boats, etc.) is contained in the VEHIC variable of the cfb (UsingR) data 
set. Figure 2.17 shows the long-tailed distribution. The summary() function shows a 
significant difference between the median and mean as expected in these situations. 

> attach(cfb)                 # it is a data frame 
> summary(VEHIC) 
   Min. 1st Qu. Median   Mean 3rd Qu.   Max. 
      0    3880  11000  15400   21300 188000 
> hist(VEHIC,breaks="Scott",prob=TRUE) 
> lines(density(VEHIC)) 
> detach(cfb) 

Measures of center for symmetric data When a data set is symmetric and not too long 
tailed, then the mean, trimmed mean, and median are approximately the same. In this 
case, the more familiar mean is usually used to measure center. 

Measuring the center for long-tailed distributions If a distribution has very long 
tails, the mean may be a poor indicator of the center, as values far from the mean may 
have a significant effect on the mean. In this case, a trimmed mean or median is preferred 
if the data is symmetric, and a median is preferred if the data is skewed. 

For similar reasons, the IQR is preferred to the standard deviation when summarizing 
spread in a long-tailed distribution.  

Using R for introductory statistics     62



 

Figure 2.17 Amount of equity in 
vehicles 

2.3.3 Boxplots 

A histogram with a density is a good plot for visually finding the center, the spread, the 
tails, and the shape of a distribution. However, it doesn’t work so well to compare 
distributions, as histograms are hard to read when overlapped and take up too much space 
when stacked on top of each other. We will use layered densityplots in the sequel instead. 
But this too, works well only for a handful of data sets at once. A clever diagram for 
presenting just enough information to see the center, spread, skew, and length of tails in a 
data set is the boxplot or box-and-whisker plot. This graphic allows us to compare many 
distributions in one figure. 

A boxplot graphically displays the five-number summary, which contains the 
minimum, the lower hinge, the median, the upper hinge, and the maximum. (The hinges 
give essentially the same information as the quartiles.) The choice of hinges over the 
quartiles was made by John Tukey, who invented the boxplot. 

To show spread, a box is drawn with side length stretching between the two hinges. 
This length is basically the IQR. The center is illustrated by marking the median with a 
line through the box. The range is shown with whiskers. In the simplest case, these are 
drawn extending from the box to the minimum and maximum data values. Another 
convention is to make the length of the whiskers no longer than 1.5 times the length of 
the box. Data values that aren’t contained in this range are marked separately with points. 

Symmetry of the distribution is reflected in symmetry of the boxplot in both the 
location of the median within the box and the lengths of the two whiskers. 

■ Example 2.10: All-time gross movie sales Figure 2.18 shows a boxplot of the 
Gross variable in the data set alltime .movies (UsingR). This records the gross domestic 
(U.S.) ticket sales for the top 79 movies of all time. The mini-mum, lower hinge, median, 
upper hinge, and maximum are marked. In addition, the upper whisker extends from the 
upper hinge to the largest data point that is less than 1.5 times the H-spread plus the upper 
hinge. Points larger than this are marked separately, including the one corresponding to 
the maximum. This boxplot shows a data set that is skewed right. It has a long right tail 
and short left tail. 
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Figure 2.18 Boxplot of all-time gross 
movie revenues in United States 

Making boxplots in R Boxplots are drawn in R with the boxplot () function. Figure 2.18 
was made with these commands: 

> attach(alltime.movies) 
> boxplot(Gross,ylab="All-time gross sales") 
> f= fivemun(Gross) 
> text(rep(1.3,5),f,labels=c("minimum","lower hinge", 
+   "median","upper hinge","maximum")) 

The text() function places the values of labels=on the graphic as specified. Common 
arguments for boxplot() are col= to set a color for the box, horizontal=TRUE to change 
the orientation of the boxplot, and notch=TRUE to add a notch to the waist of the box 
where the median is marked. 

Getting the outliers If we are curious as to what the top five movies are that are 
marked separately, we can use the fivemim() function to find out. (First we get the names 
using the rownames() function.) 

> f = fivenum(Gross) 
> the.names = rownames(alltime.movies)  
> the.names[Gross > f[4] + 1.5*(f[4]-f[2])] 
[1] “Titanic                                " 
[2] “Star Wars                              " 
[3] “E.T.                                   " 
[4] “Star Wars: The Phantom Menace          " 
[5] “Spider-Man                             " 
> detach(alltime.movies)       # tidy up 

Alternately, this information is available in the (invisible) output of the boxplot() function 
in the list element named “out”. 
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2.3.4 Problems 

2.30 For the data sets bumpers (UsingR), firstchi (UsingR), and math (UsingR), make 
histograms. Try to predict the mean, median, and standard deviation. Check your guesses 
with the appropriate R commands. 

2.31 We can generate random data with the “r” functions. For example, 

> x=rnorm(100) 

produces 100 random numbers with a normal distribution. Create two different 
histograms for two different times of defining x as above. Do you get the same 
histogram? 

2.32 Fit a density estimate to the data set pi2000 (UsingR). Compare with the 
appropriate histogram. Why might you want to add an argument like breaks =0:10−.5 to 
hist()? 

2.33 The data set normtemp (UsingR) contains body measurements for 130 healthy, 
randomly selected individuals. The variable temperature contains normal body 
temperature. Make a histogram. Estimate the sample mean body temperature, and then 
check using mean(). 

2.34 The data set DDT (MASS) contains independent measurements of the pesticide 
DDT on kale. Make a histogram and a boxplot of the data. From these, estimate the mean 
and standard deviation. Check your answers with the appropriate functions. 

2.35 There are several built-in data sets on the 50 United States. For instance, state. 
area (,) showing the area of each U.S. state, and state. abb (,) showing a common 
abbreviation. First, use state. abb to give names to the state. area variable, then find the 
percent of states with area less than New Jersey (NJ). What percent have area less than 
New York (NY)? Make a histogram of all the data. Can you identify the outlier? 

2.36 The time variable of the nym. 2002 (UsingR) data set contains the time to finish 
the 2002 New York City marathon for a random sample of runners. Make a histogram 
and describe the shape. Can you explain why the shape is as it is? 

2.37 The lawsuits (UsingR) data set contains simulated data on the settlement amounts 
of 250 common fund class actions in $10,000s. Look at the differences between the mean 
and the median. Explain why some would say the average is too high and others would 
say the average is the wrong way to summarize the data. 

2.38 The data set babyboom (UsingR) contains data on the births of 44 children in a 
one-day period at a Brisbane, Australia, hospital. Make a histogram of the wt variable, 
which records birth weight. Is it symmetric or skewed? 

The variable running. time records the time after midnight of each birth. The 
command diff (running.time) records the differences or inter-arrival times. Make a 
histogram of this data. What is the general shape? Is it uniform? 

2.39 The data set hall. fame (UsingR) contains baseball statistics for several baseball 
players. Make histograms of the following variables and describe their shapes: HR, BA, 
and OBP. 

2.40 Find a graphic in the newspaper or on the web. Try to use R to produce a similar 
figure. 

2.41 Why are the boxplot whiskers chosen with the factor of 1.5? Why not some other 
factor? You can see the results of other choices by setting the range=argument. Use 
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x=rnorm(1000) for your data. Try values of 0.5, 1, 1.5, and 2 to see which shows the tails 
of the distribution best. (This random sample should not have a heavy tail or a light tail, 
meaning it will usually have a handful of points beyond the whiskers in a sample of this 
size.) 

2.42 The data set cf b (UsingR) contains a sampling of the data from a survey of 
consumer finances. For the variables AGE, EDUC, NETWORTH, and log (SAVING 
+1), describe their distribution using the concepts of modes, symmetry, and tails. Can you 
convince yourself that these distributions should have the shape they do? Why? 

2.43 The brightness (UsingR) data set contains the brightness for 966 stars in a sector 
of the sky. It comes from the Hipparcos catalog. Make a histogram of the data. Describe 
the shape of the distribution. 

2.44 It can be illuminating to view two different graphics of the same data set at once. 
A simple way to stack graphics is to specify that a figure will contain two graphics by 
using the command 

> par(mfrow=c(2,1)              # 2 rows, 1 column for 
graphic figures 

Then, if x is the data set, the commands 

> hist(x) 
> boxplot(x, horizontal=TRUE) 

will produce stacked graphics. (The graphics device will remain divided until you change 
it back with a command such as par (mfrow=c(1, 1)) or close the device.) 

For the data set lawsuits (UsingR), make stacked graphics of lawsuits and log 
(lawsuits). Could you have guessed where the middle 50% of the data would have been 
without the help of the boxplot? 

2.45 Sometimes a data set is so skewed that it can help if we transform the data prior 
to looking at it. A common transformation for long-tailed data sets is to take the 
logarithm of the data. For example, the exec.pay (UsingR) data set is highly skewed. 
Look at histograms before and after taking a logarithmic transform. Which is better at 
showing the data and why? (You can transform with the command log (1+exec. pay, 
10).) Find the median and the mean for the transformed data. How do they correspond to 
the median and mean of the untransformed data? 

2.46 The skew of a data set is sometimes defined as 

 

  

Explain why this might make sense as a measurement of skew. Find the skew for the 
pi2000 (UsingR) data set and the exec. pay (UsingR) data sets.  
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Chapter 3  
Bivariate data 

This chapter looks at data contained in two variables (bivariate data). With univariate 
data, we summarized a data set with measures of center and spread and the shape of a 
distribution with words such as “symmetric” and “long-tailed.” With bivariate data we 
can ask additional questions about the relationship between the two variables. 

Take, for instance, data on test scores. If two classes take the same test, the students’ 
scores will be two samples that should have similarly shaped distributions but will be 
otherwise unrelated as pairs of data. However, if we focus on two exams for the same 
group of students, the scores should be related. For example, a better student would be 
expected to do better on both exams. Consequently, in addition to the characterization of 
data as categorical or numeric, we will also need to know when the data is paired off in 
some way. 

3.1 Pairs of categorical variables 

Bivariate, categorical data is often presented in the form of a (two-way) contingency 
table. The table is found by counting the occurrences of each possible pair of levels and 
placing the frequencies in a rectangular grid. Such tables allow us to focus on the 
relationships by comparing the rows or columns. Later, statistical tests will be developed 
to determine whether the distribution for a given variable depends on the other variable. 

Our data may come in a summarized or unsummarized format. The data entry is 
different for each.  

3.1.1 Making two-way tables from summarized data 

If the data already appears in tabular format and we wish to analyze it inside R, how is 
the data keyed in? Data vectors were created using the c() function. One simple way to 
make a table is to combine data vectors together as rows (with rbind()) or as columns 
(with cbind()). 

To illustrate: an informal survey of seat-belt usage in California examined the 
relationship between a parent’s use of a seat belt and a child’s. The data appears in Table 
3.1. A quick glance at the table shows a definite relationship between the two variables: 
the child’s being buckled is greatly determined by the parent’s. 



Table 3.1 Seat-belt usage in California 
  Child 
Parent buckled unbuckled
buckled 56 8 
unbuckled 2 16 

We can enter these numbers into R in several ways. 
Creating the table as a combination of the row (or column) vectors is done as follows: 

> rbind(c(56,8),c(2,16))    # combine rows 
     [,1] [,2] 
[1,]   56    8 
[2,]    2   16 
> cbind(c(56,2),c(8,16))    # bind as columns 
     [,1] [,2] 
[1,]   56    8 
[2,]    2   16 

Combining rows (or columns) of numeric vectors results in a matrix—a rectangular 
collection of numbers. We can also make a matrix directly using the matrix() function. To 
enter in the numbers we need only specify the correct size. In this case we have two rows. 
The data entry would look like this: 

> x = matrix(c(56,2,8,16),nrow=2) 
> x 
       
[,1] [,2] 
[1,]   56    8 
[2,]    2   16 

The data is filled in column by column. Set byrow=TRUE to do this row by row. 
Alternately, we may enter in the data using the edit() function. This will open a 

spreadsheet (if available) when called on a matrix. Thus the commands 

> x = matrix(1)           # need to initialize x 
> x = edit(x)             # will edit matrix with 
spreadsheet 

will open the spreadsheet and store the answer into x when done. The 1 will be the first 
entry. We can edit this as needed. 

Giving names to a matrix It isn’t necessary, but it is nice to give the matrix row and 
column names. The rownames() and colnames() functions will do so. As with the 
names() function, these are used in a slightly different manner. As they modify the 
attributes of the matrix, the functions appear on the left side of the assignment. 

> rownames(x) = c("buckled","unbuckled") 
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> colnames(x) = c("buckled","unbuckled") 
> x 
          buckled unbuckled 
buckled        56         8 
unbuckled       2        16 

The dimnames() function can set both at once and allows us to specify variable names. A 
list is used to specify these, as made by list(). Lists are discussed further in Chapter 4. For 
this usage, the variable name and values are given in name=value format. The row 
variable comes first, then the column. 

> tmp = c("unbuckled","buckled") # less typing 
> dimnames(x) = list(parent=tmp,child=tmp) # uses a 
named list 
> x 
           child 
parent      unbuckled  buckled 
  unbuckled        56        8 
  buckled           2       16 

If the matrix is made with rbind(), then names for the row vectors can be specified in 
name=value format. Furthermore, column names will come from the vectors if present. 

> x = c(56,8); names(x) = c("unbuckled","buckled") 
> y = c(2,16) 
> rbind(unbuckled=x,buckled=y)  # names rows, columns 
come from x 
            
unbuckled buckled 
unbuckled        56       8 
buckled           2      16 

3.1.2 Making two-way tables from unsummarized data 

With unsummarized data, two-way tables are made with the table() function, just as in the 
univariate case. If the two data vectors are x and y, then the command table(x, y) will 
create the table. 

■ Example 3.1: Is past performance an indicator of future performance? 
A common belief is that an A student in one class will be an A student in the next. Is 

this so? The data set grades (UsingR) contains the grades students received in a math 
class and their grades in a previous math class.  

> library (UsingR)         # once per session 
> grades 
    prev  grade 
1    B+     B+ 
2    A−     A− 
3    B+     A− 
… 
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122  B      B 
> attach(grades) 
> table(prev, grade)       # also table (grades) works 
      grade 
prev    A   A−  B+   B   B−   C+   C   D   F 
   A    15  3   1    4   0    0    3   2   0 
   A−    3  1   1    0   0    0    0   0   0 
   B+    0  2   2    1   2    0    0   1   1 
   B     0  1   1    4   3    1    3   0   2 
   B−    0  1   0    2   0    0    1   0   0 
   C+    1  1   0    0   0    0    1   0   0 
   C     1  0   0    1   1    3    5   9   7 
   D     0  0   0    1   a    a    4   3   1 
   F     1  0   0    1   1    1    3   4  11 

A quick glance at the table indicates that the current grade relates quite a bit to the 
previous grade. Of those students whose previous grade was an A, fifteen got an A in the 
next class; only three of the students whose previous grade was a B or worse received an 
A in the next class. 

3.1.3 Marginal distributions of two-way tables 

A two-way table involves two variables. The distribution of each variable separately is 
called the marginal distribution. The marginal distributions can be found from the table 
by summing down the rows or columns. The sum() function won’t work, as it will add all 
the values. Rather, we need to apply the sum() function to just the rows or just the 
columns. This is done with the function apply(). The command apply(x, 1, sum) will sum 
the rows, and apply (x, 2, sum) will sum the columns. The margin. table() function 
conveniently implements this. Just remember that 1 is for rows and 2 is for columns. 

For the seat-belt data stored in x we have: 

> X 
           child 
parent      unbuckled  buckled 
  unbuckled        56        8 
  buckled           2       16 
> margin.table(x,1)              # row sum is for 
parents 
[1] 64 18 
> margin.table(x,2)              # column sum for kids 
[1] 58 24 

The two marginal distributions are similar: the majority in each case wore seat belts. 
Alternatively, the function addmargins () will return the marginal distributions by 

extending the table. For example: 

> addmargins(x) 
           child 
parent      unbuckled  buckled  Sum 
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  unbuckled        56        8   64 
  buckled           2       16   18 
  Sum              58       24   82 

Looking at the marginal distributions of the grade data also shows two similar 
distributions: 

> margin.table(table(prev,grade),1) # previous. Also 
table(prev) 
prev 
A    A−   B+   B    B−   C+   C    D    F  
  28    5    9   15    4    3    27   9   22 
> margin.table(table(prev,grade),2) # current 
grade 
A    A−   B+   B    B−   C+   C    D    F 
  21    9    5   14    7    5    20  19   22 

The grade distributions, surprisingly, are somewhat “well-shaped.” 

3.1.4 Conditional distributions of two-way tables 

We may be interested in comparing the various rows of a two-way table. For example, is 
there a difference in the grade a student gets if her previous grade is a B or a C? Or does 
the fact that a parent wears a seat belt affect the chance a child does? These questions are 
answered by comparing the rows or columns in a two-way table. It is usually much easier 
to compare proportions or percentages and not the absolute counts. 

For example, to answer the question of whether a parent wearing a seat belt changes 
the chance a child does, we might want to consider Table 3.2. 

Table 3.2 Proportions of children with seat belt 
on 

  Child 
Parent buckled unbuckled
buckled 0.875 0.125 
unbuckled 0.1111 0.8889 

From this table, the proportions clearly show that 87.5% of children wear seat belts when 
their parents do, but only 11% do when their parents don’t. In this example, the rows add 
to 1 but the columns need not, as the rows were divided by the row sums. 

For a given row or column, calculating these proportions is done with a command 
such as x/sum(x). But this needs to be applied to each row or column. This can be done 
with apply(), as described before, or with the convenient function prop.table(). Again, we 
specify whether we want the conditional rows or columns with a 1 or a 2. 

For example, to find out how a previous grade affects a current one, we want to look at 
the proportions of the rows. 
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> options("digits"=1)           # to fit on the page 
> prop.table(table(prev,grade),1) 
      grade 
prev    A    A−   B+   B    B−   C+   C    D    F 
   A   0.54 0.11 0.04 0.14 0.00 0.00 0.11 0.07 0.00 
      … 
   C   0.04 0.00 0.00 0.04 0.04 0.11 0.19 0.33 0.26 
   D   0.00 0.00 0.00 0.11 0.00 0.00 0.44 0.33 0.11 
   F   0.05 0.00 0.00 0.05 0.05 0.05 0.14 0.18 0.50 
> options("digits"=4)           # set back to original 
> detach(grades)                # tidy up 

From comparing the rows, it is apparent that the previous grade has a big influence on the 
current grade. 

The opt ions () function is used to set the number of digits that are displayed in the 
output of decimal numbers. It was set to 1 to make the table print without breaking in the 
space provided. 

3.1.5 Graphical summaries of two-way contingency tables 

Barplots can be used effectively to show the data in a two-way table. To do this, one 
variable is chosen to form the categories for the barplot. Then, either the bars for each 
level of the category are segmented, to indicate the proportions of the other variable, or 
separate bars are plotted side by side. 

The barplot () function will plot segmented barplots when its first argument is a two-
way table. Levels of the columns will form the categories, and the sub-bars or segments 
will be proportioned by the values in each column. Segmented bar graphs are the default; 
use beside=TRUE to get side-by-side bars. 

If x stores the seat-belt data, we have: 

> barplot(x, xlab="Parent", main="Child seat-belt 
usage") 
> barplot(x, xlab="Parent", main="Child seat-belt 
usage",beside=TRUE) 

We can add a legend to the barplot with the argument legend. text=TRUE, or by 
specifying a vector of names for legend. text=. For example, try 

| > barplot(x,main="Child seat belt 
usage",legend.text=TRUE) 

For the seat-belt data, if we wanted the parents’ distribution (the rows) to be  
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Figure 3.1 Segmented and side-by-
side barplots showing distribution of 
child’s seat-belt usage depending on 
whether parent is buckled or 
unbuckled 

the primary distribution, then we need to flip the table around. This is done with the 
transpose function, t(), as in barplot(t(x)). 

Sometimes a relationship is better presented as proportions than counts. To do this, we 
apply prop. table() prior to the barplot. 

3.1.6 Problems 

3.1 Find an example of a two-way contingency table in the media. Identify the two 
variables and summarize the data that is presented. 

3.2 Wired magazine announced that as of July 2003 the percentage of all e-mail that is 
spam (junk e-mail) is above 50% and climbing. A user may get over 100 e-mail messages 
a day, making spam a time-consuming and expensive reality. Table 3.3 lists the amount 
of spam in commercial e-mail and the total amount of commercial e-mail by year with 
some predicted amounts. Enter in the data and then recreate the table. Make a segmented 
barplot showing the amount of spam and the total amount of e-mail. 

Table 3.3 Volume of spam in commercial e-mail 
(in billions) 

  2000 2001 2002 2003 2004 2005
spam 50 110 225 315 390 450
total 125 210 375 475 590 700
Source: Wired magazine September 2003

3.3 The data set coins (UsingR) contains the number of coins in a change bin and the 
years they were minted. Do the following: 

1. How much money is in the change bin? 
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2. Make a barplot of the years. Is there a trend? 

3. Try to fill in Table 3.4. (Use cut (), but look at ?cut and its arguments.) 

Table 3.4 Fill in this table using coins 
Year 1920–1929 1930–1939 1940–1949 1950–1959 1960–1969
Amount 3     2   
Year 1970–1979 1980–1989 1990–1999 2000–2009   
Amount       88   

3.4 The data set dvdsales (UsingR) contains monthly sales of DVD players from their 
initial time on the market through May 2004. Make side-by-side barplots of monthly 
sales by year. (The data needs to be transposed using t(); otherwise the barplots will be 
broken up by month.) 

3.5 The f lorida (UsingR) data set contains county-by-county tallies of the votes cast in 
the 2000 United States presidential election for the state of Florida. The main candidates 
were George Bush and Al Gore. Make a segmented barplot of the proportion of Bush 
votes versus the proportion of Gore votes by county. Are these proportions always close 
to the 50% proportion for the state? 

3.6 In 1996, changes in the United States welfare laws resulted in more monies being 
spent on noncash assistance (child care, training, etc.) than on cash assistance. A table of 
the percentages of cash assistance is given in Table 3.5. Make a segmented barplot 
illustrating the percentages for both. The total spending is approximately $25 billion per 
year. 

Table 3.5 Shift in what welfare provides 
  ’97 ’98 ’99 ’00 ’01 ’02
Cash assistance 76% 70% 68% 52% 48% 46%
source: New York Times October 13, 2003 

3.7 The data set UScereal (MASS) contains information about cereals on a shelf of a 
United States grocery store. Make a table showing the relationship between 
manufacturer, mfr, and shelf placement, shelf. Are there any obvious differences between 
manufacturers? 

3.2 Comparing independent samples 

In many situations we have two samples that may or may not come from the same 
population. For example, a medical trial may have a treatment group and a control group. 
Are any measured effects the same for each? A consumer may be comparing two car 
companies. From samples, can he tell if the ownership costs will be about the same? 
When two samples are drawn from populations in such a manner that knowing the 
outcomes of one sample doesn’t affect the knowledge of the distribution of the other 
sample, we say that they are independent samples. For independent samples, we may be 
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interested in comparing their populations. Are the centers the same? The spreads? Do 
they have the same shape distribution? In Chapter 7 we use statistical models to help 
answer such questions. In this section, we learn to explore the relationships graphically to 
gain insight into the answers. 

3.2.1 Side-by-side boxplots 

The stem-and-leaf plot and boxplot were very effective at summarizing a distribution. 
The stem-and-leaf plot was used when the data set was small; the boxplot can be used on 
larger data sets. By putting them side by side or back to back, we can make comparisons 
of the two samples. 

Table 3.6 Weight loss during ephedra trial (in 
pounds) 

placebo treatment  ephedra treatment
42000 0 0 

5 0 679 
4443 1 13 
775 1 66678 

 2 01 

Table 3.6 contains hypothetical data on weight loss during a clinical trial of the ephedra 
supplement. As mentioned in Example 1.3, ephedra is a popular supplement that was 
forced off the market due to its side effects. 

The back-to-back stem-and-leaf plot shows that the ephedra group has a larger center. 
The question of whether this is “significant” is answered using a t-test, which is covered 
in Chapter 8. 

The stem() function doesn’t make back-to-back stem-and-leaf plots. If the data set is 
too large to make a stem-and-leaf plot by hand, side-by-side boxplots are useful for 
highlighting differences. (These are better named parallel boxplots, as they may be 
displayed horizontally or vertically.) 

The command boxplot(x, y) will create side-by-side boxplots from two variables. The 
names= argument is used to label the boxplots in Figure 3.2. The figure shows slightly 
different distributions, with, perhaps, similar medians. 

> pl = c(0, a, a, 2, 4, 5, 14, 14, 14, 13, 17, 17, 15) 
> ep = c(0, 6, 7, 9, 11, 13, 16, 16, 16, 17, 18, 20, 
21) 
> boxplot(pl,ep, names=c("placebo","ephedra")) 
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Figure 3.2 Left graphic shows side-
by-side boxplots of placebo and 
ephedra group. Right graphic 
contains densityplots of the two 
variables. 

3.2.2 Densityplots 

We can compare distributions with two histograms, but it is difficult to put both on the 
same graphic. Densityplots, however, lend themselves readily to this. * 

We draw the first densityplot with the plot() function and add subsequent ones with 
the lines () function. The argument lty=can be set to a value between 1 and 6, to change 
the type of line drawn for identification purposes. For example, the densityplots in Figure 
3.2 are made as follows:  

*You can compare histograms by recording the graphs. In the Windows GUI, you can turn on 
recording from the menu bar of the graph window. In general, you can store the current plot in a 
variable with recordPlot(), and view this stored plot with replayPlot(). 

> plot(density(pi),ylim=c(0,0.07), main="densityplots 
of ep and pi") 
> lines(density(ep), lty=2) 

The argument ylim=adjusts the y-axis to accommodate both densities. The value was 
arrived at after we plotted both densities and found the maximum values. 

3.2.3 Strip charts 

Strip charts can compare distributions effectively when the values are similar and there 
aren’t too many. To create a strip chart with multiple data vectors, we first combine the 
data vectors into a list with the list() function. By using a named list the stripchart will be 
drawn with labels for the data sets. 
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> stripchart(list(ephedra=ep,placebo=pl), # named list 
+ method = "stack",             # stack multiples 
+ pch=16,offset = 1/2, cex=3)   # big circles—not 
squares 

Figure 3.3 shows the graphic (slightly modified). 

 

Figure 3.3 Strip chart of placebo and 
ephedra group 

3.2.4 Quantile-quantile plots 

The boxplot uses the quartiles (essentially) of a data set to graphically represent a data set 
succinctly. If we use more of the quantiles, a very clear picture of the data can be had at 
the expense of a more complicated graph to read. A quantile-quantile plot (q-q plot) 
plots the quantiles of one distribution against the quantiles of another as points. If the 
distributions have similar shapes, the points will fall roughly along a straight line. If they 
are different, the points will not lie near a line, in a manner that can indicate why not. 

A normal quantile plot plots the quantiles of a data set against the quantiles of a 
benchmark distribution (the normal distribution introduced in Chapter 5). Again, the 
basic idea is that if the data set is similar to the benchmark one, then the graph will 
essentially be a straight line. If not, then the line will be “curved” in a manner that can be 
interpreted from the graph. 

Figure 3.4 shows the q-q plot for two theoretical distributions that are clearly not the 
same shape. Each shaded region is 5% of the total area. The difference in the shapes 
produces differences in the quantiles that curve the q-q plot. 

Bivariate data     77



 

Figure 3.4 Quantile-quantile plot of 
two distributions. The shaded areas 
represent similar areas. As the 
distributions have different shapes, 
the q-q plot has a curve. 

Creating q-q plots The R function to make a q-q plot is qqplot(), as in qqplot (x, y). The 
qqnorm() function, as in qqnorm(x), will produce a normal quantile plot. In this case, a 
reference line may be added with the qqline() function, as in qqline(x). 

Figure 3.5 shows six normal quantile graphs for data that is a combination of 
symmetric, or skewed right, and short, normal or long tailed. The combination 
(normal/symmetric) looks like a straight line. Were we to plot a histogram of this data, 
we would see the familiar bell-shaped curve. The figure (short/symmetric) shows what 
happens with short tails. In particular, if the right tail is short, it forces the quantile graph 
to curve down. In contrast, the graph (long/skewed) curves up, as this data has a long 
right tail. 

3.2.5 Problems 

3.8 The use of a cell phone while driving is often thought to increase the chance of an 
accident. The data set reaction, time (UsingR) is simulated data on the time it takes to 
react to an external event while driving. Subjects with  
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Figure 3.5 Six qqnorm() graphs for 
different types of data 

control =="C" are not using a cell phone, and those with control =="T" are. Their time to 
respond to some external event is recorded in seconds. 

Create side-by-side boxplots of the variable react ion. time for the two values of 
control. Compare the centers and spreads. 

3.9 For the data set twins (UsingR) make a boxplot of the Foster and Biological 
variables. Do they appear to have the same spread? The same center? 

3.10 The data set stud. recs (UsingR) contains 160 SAT scores for incoming college 
students stored in the variables sat.v and sat.m. Produce sideby-side densityplots of the 
data. Do the two data sets appear to have the same center? Then make a quantile-quantile 
plot. Do the data sets appear to have the same shape? 

3.11 For the data set morley, make a boxplot of the Speed variable for Expt ==1 and 
Expt ==2. These data sets are the measurements of the speed of light for two different 
experiments. Do they appear to have the same spread? The same center? 

3.12 The data set normtemp (UsingR) contains normal body temperature 
measurements for 130 healthy individuals recorded in the variable temperature. The 
variable gender is 1 for a male subject and 2 for a female subject. Break the data up by 
gender and create side-by-side boxplots. Does it appear that males and females have 
similar normal body temperatures? 

Bivariate data     79



3.3 Relationships in numeric data 

There are many scientific relationships between numeric variables. Among them: 
distance equals rate times time, pressure is proportional to temperature; and demand is 
inverse to supply. Many relationships are not precisely known, prompting an examination 
of the data. For instance, is there a relationship between a person’s height and weight? 

If a bivariate data set has a natural pairing, such as (x1, y1), …, (xn,yn), then it likely 
makes sense for us to investigate the data set jointly, as a two-way table does for 
categorical data. 

3.3.1 Using scatterplots to investigate relationships 

A scatterplot is a good place to start when investigating a relationship between two 
numeric variables. A scatterplot plots the values of one data vector against another as 
points (xi, yi) in a Cartesian plane. 

The plot() function will make a scatterplot. A basic template for its usage is 
Plot (x, y)   

where x and y are data vectors containing the paired data. The plot() function is used to 
make many types of plots, including densityplots, as seen. For scatterplots, there are 
several options to plot() that can adjust how the points are drawn, whether the points are 
connected with lines, etc. We show a few examples and then collect them in Table 3.7. 

■ Example 3.2: Home values Buying a home has historically been a good 
investment. Still, there are expenses. Typically, a homeowner needs to pay a property tax 
in proportion to the assessed value of the home. To ensure some semblance of fairness, 
the assessed values should be updated periodically. In Maplewood, New Jersey, 
properties were reassessed in the year 2000 for the first time in 30 years. The data set 
homedata (UsingR) contains values for 150 randomly chosen homes. A scatterplot of 
assessed values should show a rela-tionship, as homes that were expensive in 1970 
should still have been expensive in 2000. We can use this data set to get an insight into 
the change in property values for these 30 years. 

The scatterplot is made after loading the data set. 

> attach(homedata) 
> plot(y1970, y2000)            # make the scatterplot 
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Figure 3.6 Assessed values of homes 
in Maplewood, N.J. in 1970 and 2000 

Figure 3.6 shows the scatterplot. The data falls more or less along a straight line, although 
with some variation. A few questions immediately come to mind. For instance, what are 
the distributions of each variable like? What is the change in price? 

> summary(y1970) 
   Min. 1st Qu.  Median   Mean 3rd Qu.   Max. 
  20300   57000   68500  71300   83500 139000 
>  summary(y2000) 
   Min. 1st Qu.  Median   Mean 3rd Qu.   Max. 
  51600 163000 260000 274000 342000 745000 260000 
>  summary(y2000/y1970) 
   Min. 1st Qu.  Median   Mean 3rd Qu.   Max. 
  2.10     2.89    3.80   3.68    4.30   5.97 
  detach(homedata)             # tidy up 

For the 1970 data, the mean and the median are nearly the same. Not so for the 2000 data. 
Property values are often skewed right. In this sampling, some houses went up in value 
just over two times and others nearly six times. On average they went up 3.68 times. 

When one is buying a home, it is obviously desirable to figure out which homes are 
likely to appreciate more than others.  

■ Example 3.3: Does the weather predict the stock market? As a large amount of 
stock traders work in New York City, it may be true that unseasonably good or bad 
weather there affects the performance of the stock market. The data set maydow 
(UsingR) contains data for the Dow Jones Industrial Average (DJIA) and maximum 
temperatures in Central Park for May 2003. This month was unseasonably cool and wet. 
The data set contains only maximum temperature, so we can ask for that month, whether 
there was a relationship between maximum temperature and the stock market? 

> attach(maydow) 
> names(maydow) 
[1] "Day"      "DJA"     "max.temp" 
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> plot(max.temp[−1], diff(DJA), main="Max. temp versus 
daily change") 
> detach(maydow) 

 

Figure 3.7 Maximum temperature 
versus daily change in DJIA 

Figure 3.7 contains the plot of maximum daily temperature versus daily change in the 
variable DJA calculated using the diff () function. We needed to drop the first day’s 
temperature, as we have no difference data for that day. This was done using negative 
indexing, max. temp [−1] . The scatterplot shows no trend. If the temperature does 
influence the stock market, more data would be needed to see exactly how. 

■ Example 3.4: Kids’ weights: the relationship between height and weight 
The proportions of the human body have long been of interest to humankind. Even 

Jonathan Swift wrote in Gulliver’s Travels (1726), 

Then they measured my right Thumb, and desired no more; for by a 
mathematical Computation, that twice round the Thumb is once round the 
Wrist, and so on to the Neck and the Waist, and by the help of my old 
Shirt, which I displayed on the Ground before them for a Pattern, they 
fitted me exactly. 

Just as it seems intuitive that the bigger you are the bigger your thumb, it seems clear that 
the taller you are the heavier you are. What is the relationship between height and 
weight? Is it linear? Nonlinear? The body mass index (BMI) is a ratio of weight to height 
squared in the units of kilograms/meters2. This well-used statistic suggests height and 
weight are in a squared relationship. 

The data set kid. weights (UsingR) contains height and weight data for children ages a 
to 12 years. A plot of height versus weight is found with the following. (The 
pch=argument forces the plot character to be “M” for the boys and “F” for the girls.) 

> attach(kid.weights) 
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> plot(height, weight, pch=as.character(gender)) 
> detach(kid.weights) 

 

Figure 3.8 Height versus weight for 
kid.weights 

Figure 3.8 indicates that weight may be related to the height squared. It certainly does not 
appear to be a straight-line relationship. 

Arguments for the plot() function The plot() function, and other graphing functions 
like hist(), boxplot(), and lines(), take extra arguments that can control portions of the 
graphic. Table 3.7 list some of the possible arguments. More details are found on the help 
pages for the individual functions. Most of these arguments are graphics parameters that 
may also be queried and set using par(). The documentation for these arguments is found 
in the help page for par(). (This function is discussed more fully in Appendix D.) Some of 
the arguments, such as main=, xlim=, and xlab=, can be used only with plotting  

functions that set up a plot window (called high-level plotting functions). 

Table 3.7 Useful arguments for plot() and other 
graphic functions 

main= Title to put on the graphic. 
xlab= Label for the x-axis. Similarly for ylab=. 
xlim= Specify the x-limits, as in xlim=c(0, 10), for the interval [0, 10]. 

Similar argument for the y-axis is ylim=. 
type= Type of plot to make. Use "p" for points (the default), "1" (ell not one) for lines, and "h" for 

vertical lines. 
bty= Type of box to draw. Use "l" for “L”-shaped, default is "o", which is “O”-shaped. Details in 

?par. 
pch= The style of point that is plotted. This can be a number or a single character. Numbers 

between a and 25 give different symbols. The command plot (0:25, pch=0:25) will show 
those possible. 

cex= Magnification factor. Default is 1. 
lty= When lines are plotted, specifies the type of line to be drawn. Different numbers correspond 

to different dash combinations. (See ?par for full details.) 

Bivariate data     83



lwd= The thickness of lines. Numbers bigger than 1 increase the default. 
col= Specifies the color to use for the points or lines. 

3.3.2 The correlation between two variables 

The correlation between two variables numerically describes whether larger- and smaller-
than-average values of one variable are related to larger- or smaller-thanaverage values of 
the other variable. 

Figure 3.9 shows two data sets: the scattered one on the left is weakly correlated; the 
one on the right with a trend is strongly correlated. We drew horizontal and vertical lines 
through breaking the figure into four quadrants. The correlated data shows that 
larger than average values of the x variable are paired with larger-than-average values of 
the y variable, as these points are concentrated in upper-right quadrant and not scattered 
throughout both right quadrants. Similarly for smaller-than-average values. 

For the correlated data, the products will tend to be positive, as this 
happens in both the upper-right and lower-left quadrants. This is not the case with the 
scattered data set. Because of this, the quantity will be useful in 
describing the correlation between two variables. When the data is uncorrelated, the 
terms will tend to cancel each other out; for correlated data they will not.  

 

Figure 3.9 Two data sets with 
horizontal and vertical lines drawn 
through The data set on the left 
shows weak correlation and data 
spread throughout the four 
quadrants of the plot. The data set 
on the right is strongly correlated, 
and the data is concentrated into 
opposite quadrants. 

To produce a numeric summary that can be used to compare data sets, this sum is scaled 
by a term related to the product of the sample standard deviations. With this scaling, the 
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correlation only involves the respective z-scores, and the quantity is always between −1 
and 1. 

When there is a linear relationship between x and y then values of r2 close to 1 indicate 
a strong linear relationship, and values close to a a weak linear relationship. (Sometimes r 
may be close to a, but a different type of relationship holds.) 

The Pearson correlation coefficient 
The Pearson correlation coefficient, r, of two data vectors x and y is defined by 

(3.1) 

The value of r is between −1 and 1. 
In R this is found with the cor() function, as in cor(x, y). 

We look at the correlations for the three data sets just discussed. First we attach the 
variable names, as they have been previously detached. 

> attach(homedata); attach(maydow); attach(kid.weights) 

In Example 3.2, on Maplewood home values, we saw a nearly linear relationship between 
the 1970 assessed values and the 2000 ones. The correlation in this case is 

> cor(y1970,y2000) 
[1] 0.9111 

In Example 3.3, where the temperature’s influence on the Dow Jones average was 
considered, no trend was discernible. The correlation in this example is 

> cor(max.temp[−1],diff(DJA)) 
[1] 0.01029 

In the height-and-weight example, the correlation is 

> cor(height,weight) 
[1] 0.8238 

The number is close to 1, but we have our doubts that a linear relationship a correct 
description. 

The Spearman rank correlation 
If the relationship between the variables is not linear but is increasing, such as the 
apparent curve for the height-and-weight data set, we can still use the correlation 
coefficient to understand the strength of the relationship. Rather than use the raw data for 
the calculation, we use the ranked data. That is, the data is ordered from smallest to 
largest, and a data point’s rank is its position after sorting, with 1 being the smallest and n 
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the largest. Ties are averaged. The Spearman rank correlation is the Pearson 
correlation coefficient computed with the ranked data. 

The rank() function will rank the data. 

> x = c(30,20,7,42,50,20) 
> rank(x)                      # ties are averaged 
[1] 4.0 2.5 1.0 5.0 6.0 2.5 

The first three numbers are interpreted as: 30 is the fourth smallest value, 20 is tied for 
second and third, and 7 is the smallest. 

Computing the Spearman correlation is done with cor () using the argument 
method="spearman" (which can be abbreviated). It can also be done directly combining 
cor() with rank(). 

For our examples, the correlations are as follows: 

## homedata example, r = 0.9111 
> cor(rank(y1970), rank(y2000)) 
[1] 0.907 
## Dow Jones example, r = 0.01029 
> cor(max.temp[−1], diff(DJA), method="spearman") # 
slight? 
[1] 0.1316 
## height and weight example, r = 0.8238 
> cor(height,weight, m="s") # abbreviated 
[1] 0.8822 
> detach(homedata); detach(maydow); detach(kid.weights) 

The data on home values is basically linear, and there the Spearman correlation actually 
went down. For the height-versus-weight data, the Spearman correlation coefficient 
increases as expected, as the trend there appears to be more quadratic than linear. 

3.3.3 Problems 

3.13 For the homedata (UsingR) data set, make a histogram and density estimate of the 
multiplicative change in values (the variable y2000/y1970). Describe the shape, and 
explain why it is shaped thus. (Hint: There are two sides to the tracks.) 

3.14 The galton on (UsingR) data set contains measurements of a child’s height and an 
average of his or her parents’ heights (analyzed by Francis Galton in 1885). Find the 
Pearson and Spearman correlation coefficients. 

3.15 The data set normtemp (UsingR) contains body measurements for 130 healthy, 
randomly selected individuals. The variable temperature measures normal body 
temperature, and the variable hr measures resting heart rate. Make a scatterplot of the two 
variables and find the Pearson correlation coefficient. 

3.16 The data set fat (UsingR) contains several measurements of 252 men. The 
variable body. fat contains body-fat percentage, and the variable BMI records the body 
mass index (weight divided by height squared). Make a scatterplot of the two variables 
and then find the correlation coefficient. 
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3.17 The data set twins (UsingR) contains IQ scores for pairs of identical twins who 
were separated at birth. Make a scatterplot of the variables Foster and Biological. Based 
on the scatterplot, predict what the Pearson correlation coefficient will be and whether the 
Pearson and Spearman coefficients will be similar. Check your guesses. 

3.18 The state.x77 data set contains various information for each of the fifty United 
States. We wish to explore possible relationships among the variables. First, we make the 
data set easier to work with by turning it into a data frame. 

> x77 = data.frame(state.x77) 
> attach(x77) 

Now, make scatterplots of Population and Frost; Population and Murder; Population and 
Area; and Income and HS. Grad. Do any relationships appear linear? Are there any 
surprising correlations? 

3.19 The data set nym.2002 (UsingR) contains information about the 2002 New York 
City Marathon. What do you expect the correlation between age and finishing time to be? 
Find it and see whether you were close. 

3.20 For the data set state. center do this plot: 

> with(state.center,plot(x,y)) 

Can you tell from the shape of the points what the data set is? 
3.21 The batting (UsingR) data set contains baseball statistics for the 2002 major 

league baseball season. Make a scatterplot to see whether there is any trend. What is the 
correlation between the number of strikeouts (SO) and the number of home runs (HR)? 
Does the data suggest that in order to hit a lot of home runs one should strike out a lot? 

3.22 The galton on (UsingR) data set contains data recorded by Gallon in 1885 on the 
heights of children and their parents. The data is discrete, so a simple scatterplot does not 
show all the data points. In this case, it is useful to “jitter” the points a little when plotting 
by adding a bit of noise to each point. The jitter() function will do this. An optional 
argument, fact or=, allows us to adjust the amount of jitter. Plot the data as below and 
find a value for factor=that shows the data better. 

> attach(galton) 
> plot(jitter(parent,factor=1),jitter(child,factor=l)) 

3.4 Simple linear regression 

In this section, we introduce the simple linear regression model for describing paired data 
sets that are related in a linear manner. When we say that variables x and y have a linear 
relationship in a mathematical sense we mean that y=mx+b, where m is the slope of the 
line and b the intercept. We call x the independent variable and y the dependent one. 

In statistics, we don’t assume these variables have an exact linear relationship: rather, 
the possibility for noise or error is taken into account. 
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In the simple linear regression model for describing the relationship between xi and 
yi, an error term is added to the linear relationship: 

yi=β0+β1xi+εi. 
(3.2) 

The value εi is an error term, and the coefficients β0 and β1 are the regression 
coefficients.† The data vector x is called the predictor variable and y the  

†These are Greek letters: ε is epsilon and β is beta. 

response variable. The error terms are unknown, as are the regression coefficients. The 
goal of linear regression is to estimate the regression coefficients in a reasonable manner 
from the data. 

The term "linear" applies to the way the regression coefficients are used. The model 
would also be considered a linear model. The term “simple” is used 

to emphasize that only one predictor variable is used, in contrast with the multiple 
regression model, which is discussed in Chapter 10. 

Estimating the intercept β0 and the slope β1 gives an estimate for the underlying linear 
relationship. We use "hats" to denote the estimates. The estimated regression line is then 
written 

   

For each data point xi we have a corresponding value, with being a 
point on the estimated regression line. 

We refer to as the predicted value for yi, and to the estimated regression line as the 
prediction line. The difference between the true value yi and this predicted value is the 
residual, ei: 
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Figure 3.10 Prediction line with 
residual for (x3, y3) indicated 

Geometrically, the residual is the signed vertical distance of the point (xi,yi) to the 
prediction line as seem in Figure 3.10. If the estimated line is a good one, these distances 
should be small. The method of least squares chooses the line (equivalently the 
coefficients) so that the sum of the squared residuals is as small as possible. This is a 
tractable problem and its solution gives 

 

(3.3)  

Interpreting, the regression line goes through the point and has slope given by  

3.4.1 Using the regression model for prediction 

One of the primary uses of simple linear regression is to make predictions for the 
response value for new values of the predictor. For example, high school GPAs may be 
used by colleges during the admission process to predict college GPAs. Once the 
coefficients are estimated, the value of used for the prediction. 

3.4.2 Finding the regression coefficients using lm() 

The regression coefficients could certainly be found directly from the formulas, but we 
would like to have some convenient function do it for us directly. R provides the lm() 
function for linear models. The most basic usage is 

lm(model.formula)   

The model.formula is a formula that represents the simple linear regression model. The 
notation for this is y ~ x. The ~ in this notation is read “is modeled by,” so the model 
formula y ~ x would be read “y is modeled by x.” The model formula implicitly assumes 
an intercept term and a linear model. The model formula approach is quite flexible, as we 
will see. We approach the notation step by step, on a need-to-know basis. A 
comprehensive description is contained in the manual An Introduction to R that 
accompanies R. 

■ Example 3.5: The regression line for the Maple wood home data 
The data set homedata (UsingR) showed a strong linear trend between the 1970 
assessments and the 2000 assessments. The regression coefficients are found from the 
data as follows: 

> attach(homedata) 
> lm(y2000 ~ y1970) 
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Call: 
1m(formula = y2000 ~ y1970) 
Coefficients: 
(Intercept)        y1970 
   −1.13e+05    5.43e+00 

The value of is indicated by (Intercept), and the value of appears under the variable 
name y1970. 

It is recommended that the results of the modeling be stored, as there are several ways 
of extracting more information than is initially shown. For example, we assign the results 
of the homedata model to the variable res. 

> res=lm(y2000 ~ y1970)              # type res to see 
default output 

The intercept is negative $113,000 and the slope is 5.43. Such a big negative intercept 
might seem odd. Did we make a mistake? We doublecheck using the formulas: 

> sxy = sum((y1970 − mean(y1970)) * (y2000 − 
mean(y2000))) 
> sx2 = sum( (y1970 − mean(y1970))^2) 
> sxy/sx2 
[1] 5.429 
> mean(y2000) − sxy/sx2 * mean(y1970) 
[1] −113153 

The negative intercept should be a warning not to use this model for prediction with a 
really low 1970 home value. In general, predictions should be restricted to the range of 
the predictor variable. 

Adding the regression line to a scatterplot: abline() 
Adding a regression line to the scatterplot is facilitated with the convenient, but oddly 
named, abline() function. (Read it “a-b-line.”) 

> plot(y1970,y2000, main="−113,000+5.43 x") 
> abline(res) 

The output of lm(), stored in res, is plotted by abline(). We see in Figure 3.11 that the 
data tends to cluster around the regression line, although there is much variability. 

In addition to adding regression lines, the abline() function can add other lines to a 
graphic. The line y=a+bx is added with abline(a,b); the horizontal line y=c is added with 
abline (h=c); and the vertical line x=c with abline(v=c). 

Using the regression line for predictions 
One of the uses of the regression line is to predict the y value for a given x value. For 
example, the year-2000 predicted value of a house worth $50,000 dollars in 1970 is found 
from the regression line with 
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That is, the y-value on the prediction line for the given value of x. This is 

> −113000+5.43 * 50000 
[1] 158500 

 

Figure 3.11 Home-data scatterplot 
with least-squares regression line 

The previous calculation can be done without having to type in the coefficients, possibly 
adding round-off error to the answers. The coefficients are returned by the function 
coef(). Multiplying by a vector of the type (1, x) and adding will produce 

 

> betas = coef(res) 
> sum(betas * c(1,50000))    # beta0 * 1+betal * 50000 
[1] 158308                   # no rounding in betas 
this way 

There are other useful extractor functions, such as coef(). For example, the function 
residuals() returns the residuals, and predict() will perform predictions as above. To 
illustrate for the data point (55100, 130200) we find the predicted and residual value. 

To specify the x value desired for prediction to predict() requires a data frame with 
properly named variables. Data frames will be discussed more fully in the next chapter. 
For this usage, we note that the function data. frame() will create a data frame, and the 
names are set with the format name=values. 

To use predict() with xi=55,100 is done with 

> predict(res, data.frame(y1970=55100)) 
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[1] 185997 

The residual can then be computed by subtraction: 

> 130200—predict(res, data.frame(y1970=55100)) 
[1] −55797 

The residual is also returned by residuals() after finding out which index corresponds to 
the data point: 

> residuals(res)[which(y1970 == 55100 & y2000 == 
130200)] 
  6688 
−55797 

We needed both conditions, as there are two homes with an assessed value of $55,100 in 
1970. 

More on model formulas Model formulas can be used with many R functions—for 
instance, the plot() function. The plot() function is an example of a generic function in R. 
For these functions, different implementations are used based on the first argument. 
When the first argument of the plot() function is a model formula containing numeric 
predictor and response variables, a scatterplot is created. Previously, we’ve seen that 
when the argument is the output of the density() function a densityplot is produced. Other 
usages will be introduced in the sequel. The scatterplot and regression line could then be 
made as follows: 

> plot(y2000 ~ y1970) 
> res = lm(y2000 ~ y1970) 
> abline(res) 

A small advantage to this usage is that the typing can be reused with the history 
mechanism. This could also be achieved by saving the model formula to a variable. 

More importantly, the model formula offers some additional flexibility. With model 
formula, the argument data= can usually be used to attach a data frame temporarily. This 
convenience is similar to that offered more generally by the function with(). Both styles 
provide an environment where R can reference the variables within a data frame by their 
name, avoiding the trouble of attaching and detaching the data frame. Equally useful is 
the argument subset=, which can be used to restrict the rows that are used in the data. 
This argument can be specified by a logical condition or a specification of indices. 

We will use both of these arguments in the upcoming examples. 

3.4.3 Transformations of the data 

As the old adage goes, “If all you have is a hammer, everything looks like a nail.” The 
linear model is a hammer of sorts; we often try to make the problem at hand fit the 
model. As such, it sometimes makes sense to transform the data to make the linear model 
appropriate. 
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■ Example 3.6: Kids’ weights: Is weight related to height squared? 
In Figure 3.8, the relationship between height and weight is given for the kid. weights 
(UsingR) data set. In Example 3.4, we mentioned that the BMI suggests a relationship 
between height squared and weight. We model this as follows: 

> height.sq = kid.weights$height^2 
> plot(weight ~ height.sq, data=kid.weights) 
> res = 1m(weight ~ height.sq, data=kid.weights) 
> abline(res) 
> res  
Call: 
1m(formula = weight ~ height.sq, data=kid.weights) 
Coefficients: 
(Intercept)      height.sq 
     3.1089         0.0244 

 

Figure 3.12 Height squared versus 
weight 

Figure 3.12 shows a better fit with a linear model than before. However, the BMI is not 
constant during a person’s growth years, so this is not exactly the expected relationship. 

Using a model formula with transformations If we had tried the above example 
using this model formula, we’d be in for a surprise: 

> plot(weight ~ height^2, data=kid.weights) # not as 
expected 
> res = lm(weight ~ height^2, data=kid.weights) 
> abline(res) 

The resulting graph would look identical to the graph of height versus weight in Figure 
3.8 and not the graph of height squared versus weight in Figure 3.12. 

The reason for this is that the model formula syntax uses the familiar math notations *, 
/, ^ differently. To use them in their ordinary sense, we need to insulate them in the 
formulas with the I() function, as in: 
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> plot(weight ~ I(height^2), data=kid.weights) 
> res = lm(weight ~ I(height^2), data=kid.weights) 
> abline(res) 

3.4.4 Interacting with a scatterplot 

When looking at a scatterplot we see the trend of the data as well as individual data 
points. If one of these data points stands out, how can it be identified? Which index in the 
data set corresponds to it? What are its x-and y-coordinates? If the data set is small, the 
answers can be identified by visual inspection of the data. For larger data sets, better 
methods are available. 

The R function to identify points on a scatterplot by their corresponding index is 
identify(). A template for its usage is 

identify (x, y, labels=…,n=…)   

In order to work, identify () must know about the points we want to identify. These are 
specified as variables and not as a model formula. The value n= specifies the number of 
points to identify. By default, identify() identifies points with each mouse click until 
instructed to stop. (This varies from system to system. Typically it’s a right-click in 
Windows, a middle-click in Linux, and the escape key in Mac OS X.) As points are 
identified, R will put the index of the point next to it. The argument labels= allows for the 
placement of other text. The identify() function returns the indices of the selected points. 

For example, if our plot is made with plot(x,y), identify(x,y,n=1) will identify the 
closest point to our first mouse click on the scatterplot by its index, whereas identify (x,y, 
labels=names(x)) will let us identify as many points as we want, labeling them by the 
names of x. 

The function locator() will locate the (x, y) coordinates of the points we select with our 
mouse. It is called with the number of points desired, as with locator (2). The return value 
is a list containing two data vectors, x and y, holding the x and y positions of the selected 
points. 

■ Example 3.7: Florida 2000 The florida (UsingR) data set contains county-by-
county vote counts for the 2000 United States presidential election in the state of Florida. 
This election was extremely close and was marred by several technical issues, such as 
poorly designed ballots and outdated voting equipment. As an academic exercise only, 
we might try to correct for one of these issues statistically in an attempt to divine the true 
intent of the voters. 

As both Pat Buchanan and George Bush were conservative candidates (Bush was the 
Republican and Buchanan was an Independent), there should be some relationship 
between the number of votes for Buchanan and those for Bush. A scatterplot (Figure 
3.13) is illuminating. There are two outliers. We identify the outliers as follows: 

> plot(BUCHANAN ~ BUSH, data=florida) 
> res = 1m(BUCHANAN ~ BUSH, data=florida)     # store 
it 
> abline(res) 
> with(florida, 
identify(BUSH,BUCHANAN,n=2,labels=County)) 
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[1] 13 50 
> florida$County[c(13,50)] 
[1] DADE       PALM BEACH 
67 Levels: ALACHUA BAKER BAY BRADFORD BREVARD … 
WASHINGTON 

(We use both with() and the dollar-sign notation instead of attaching the data frame.)  

 

Figure 3.13 Scatterplot of Bush and 
Buchanan votes by county in Florida 

There is a strong linear relationship with two outliers. If the relationship were exactly 
linear without intercept, this would say that Buchanan always had the same percentage of 
conservative votes. 

Palm Beach County’s infamous “butterfly ballot” design was believed to have caused 
many people to cast votes incorrectly. Suppose this were true. How many votes might 
this have cost Al Gore, the Democrat? Say that the extra Buchanan votes were to go to 
Gore. How many extra Buchanan votes were there? One way to estimate the amount is to 
use the regression line to make a prediction based on the number of Bush votes for that 
county. 

The predicted amount and residual for Palm Beach are found as follows: 

> with(florida, predict(res, data.frame(BUSH = 
BUSH[50]))) 
[1] 796.8 
> residuals(res)[50] 
  50 
2610 

This simple analysis indicates that Buchanan received 2,610 of Gore’s votes—many 
more than the 567 that decided the state and the presidency. (The Palm Beach Post, using 
different data, concluded that Gore lost 6,607 votes when voters marked more than one 
name on the butterfly ballot.) 

Bivariate data     95



3.4.5 Outliers in the regression model 

For the simple linear regression model, there are two types of outliers. For the individual 
variables, there can be outliers in the univariate sense—a data point that doesn’t fit the 
pattern set by the bulk of the data. In addition, there can be outliers in the regression 
model. These would be points that are far from the trend or pattern of the data. In the 
Florida 2000 example, both Dade County and Palm  

Beach County are outliers in the regression. 
■ Example 3.8: Emissions versus GDP The emissions (UsingR) data set contains 

data for several countries on CO2 emissions and per-capita gross domestic product 
(GDP). A scatterplot with a regression line indicates one isolated point that seems to 
“pull” the regression line upward. The regression line found 

without this point has a much different slope. 
> f=C02 ~ perCapita          # save formula 
> plot(f, data=emissions) 
> abline(lm(C02 ~ perCapita, data=emissions)) 
> abline(lm(f, data=emissions, subset=−1) , lty=2) 

 

Figure 3.14 Emissions data with and 
without the United States data point 

(In this example, we save the model formula for reuse and take advantage of the subset= 
argument with model formulas.) 

The isolated point is the United States. This point is an outlier for the CO2 variable 
separately, but not for the per-capita GDP. It is an outlier in the bivariate sense, as it 
stands far off from the trend set by the rest of the data. In addition, it is an influential 
observation, as its presence dramatically affects the regression line. 

3.4.6 Resistant regression lines: lqs () and rlm() 

In the previous example, the regression line was computed two ways. In Figure 3.14 the 
two lines are definitely different. Our eye should be able to see that the outlier pulls the 
initial regression line up quite a bit; hence the first one has a bigger slope.  
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Just like the mean and the standard deviation, the regression coefficients are subject to 
strong influences from outliers. For the mean and standard deviation we discussed 
resistant alternatives, such as the median or the IQR. As well, several resistant 
alternatives exist for the regression line. 

Least-trimmed squares 
The trimmed mean finds the mean after first trimming off values from the left and right 
of the distribution. This makes a measure of center that is less sensitive to outliers. The 
method of least-trimmed squares is similar (but computationally much more difficult). 

The least-squares regression line is found conceptually by calculating for each line the 
sum of the squared residuals and then minimizing this value over all possible lines. Least-
trimmed squares does the same, only the sum of the squared residuals is replaced by the 
sum of the q smallest squared residuals, where q is roughly n/2. 

The least-trimmed squares algorithm is implemented in the lqs() function from the 
MASS package. This package is not loaded automatically. The default algorithm for the 
lqs() function is least-trimmed squares. As with 1m, the data is specified using a model 
formula. 

To illustrate on the emissions data, we add a least-trimmed squares line with line type 
3: 

> library(MASS)                 # load library if not 
already done 
> abline(lqs(f,data=emissions), lty=3) 

Resistant regression using rlm() 
Alternatively, we can use the rlm() function, also from the MASS package, for resistant 
regression. It is not as resistant to outliers as lqs() by default but can be made so with the 
method=“MM”. As with 1m() and lqs(), the function is called using a model formula. 

> abline(rlm(f, data=emissions, method="MM"), lty=4) 

R’s programmers strive to use a consistent interface to this type of function. Thus, it is no 
more difficult to find any of these regression lines, though the mathematics behind the 
calculations can be much harder. 

Adding legends to plots 
This example currently has a scatterplot and four different regression lines. We’ve been 
careful to draw each line with a different line type, but it is hard to tell which line is 
which without some sort of legend. The legend() function will do this for us. 

To use legend(), we need to specify where to draw the legend, what labels to place, 
and how things are marked. The placement can be specified in (x, y) coordinates or done 
with the mouse using locator (n=1). The labels are speci-fied with the legend= argument. 
Markings may be done with different line types (lty=), as above where we used line types 
1–4; with different colors (col=); or even with different plot characters (pch=). 

To add a legend to the plot shown in Figure 3.15, we issue the following commands: 
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> the.labels = c("lm","lm w/o 1","least trimmed 
squares”, 
+ "rlm with MM") 
> the.ltys = 1:4 
> legend(5000,6000,legend=the.labels,lty=the.Itys) 

 

Figure 3.15 Emissions data with four 
different regression lines 

3.4.7 Trend lines 

If a scatterplot suggests some relationship, but not an obvious transformation to make a 
linear relationship, we can still superimpose a “trend line” on top of the data using one of 
the many scatterplot smoothing techniques available in R. These produce a smooth curve 
summarizing the relationship between the two variables. 

The stats package provides several functions for creating trend lines. The scatter. 
smooth() function uses the loess() function from the same package to plot both the 
scatterplot and a trend line. Additionally, smooth. spline() will fit the data using cubic 
splines, and the supsmu() function will perform Friedman’s “super smoother” algorithm. 

■ Example 3.9: Five years of temperature data Weather data should show seasonal 
trends. The data set five.yr. temperature (UsingR) has five years of New York City 
temperature data. A scatterplot shows a periodic, sinusoidal pattern. In Figure 3.16, three 
trend lines are shown, although two are nearly identical. 

> attach(five.yr.temperature) 
> scatter.smooth(temps ~ days,col=gray(.75),bty="n”) 
> lines(smooth.spline(temps ~ days), lty=2, lwd=2) 
> lines(supsmu(days, temps), lty=3, lwd=2) 
> legend(locator(1),lty=c(1,2,3),lwd=c(1,2,2), 
+   legend=c("scatter.smooth","smooth.spline","supsmu")
) 
> detach(five.yr.temperature) 
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Figure 3.16 Temperature data with 
three trend lines 

3.4.8 Problems 

3.23 Try to establish the relationship that twice around the thumb is once around the 
wrist. Measure some volunteers’ thumbs and wrists and fit a regression line. What should 
the slope be? While you are at it, try to find relationships between the thumb and neck 
size, or thumb and waist. What do you think: Did Gulliver’s shirt fit well? 

3.24 The data set fat (UsingR) contains ten body circumference measurements. Fit a 
linear model modeling the circumference of the abdomen by the circumference of the 
wrist. A 17-cm wrist size has what predicted abdomen size? 

3.25 The data set wtloss (MASS) contains measurements of a patient’s weight in 
kilograms during a weight-rehabilitation program. Make a scatterplot showing how the 
variable Weight decays as a function of Days. 

1. What is the Pearson correlation coefficient of the two variables? 

2. Does the data appear appropriate for a linear model? (A linear model says that for 
two comparable time periods the same amount of weight is expected to be lost.) 

3. Fit a linear model. Store the results in res. Add the regression line to your 
scatterplot. Does the regression line fit the data well? 

4. Make a plot of the residuals, residuals (res), against the Days variable. Comment on 
the shape of the points. 

3.26 The data frame x77 contains data from each of the fifty United States. First 
coerce the state. x77 variable into a data frame with 

> x77 = data.frame(state.x77) 

For each of the following models, make a scatterplot and add the regression line. 
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1. The model of illiteracy rate (Illiteracy) modeled by high school graduation rate HS. 
Grad. 

2. The model of life expectancy (Life. Exp) modeled by (Murder()) the murder rate. 
3. The model of income (Income) modeled by the illiteracy rate (Illiteracy). 

Write a sentence or two describing any relationship. In particular, do you find it as 
expected or is it surprising? 

3.27 The data set batting (UsingR) contains baseball statistics for the year 2002. Fit a 
linear model to runs batted in (RBI) modeled by number of home runs (HR). Make a 
scatterplot and add a regression line. In 2002, Mike Piazza had 33 home runs and 98 runs 
batted in. What is his predicted number of RBIs based on his number of home runs? 
What is his residual? 

3.28 In the American culture, it is not considered unusual or inappropriate for a man to 
date a younger woman. But it is viewed as inappropriate for a man to date a much 
younger woman. Just what is too young? Some say anything less than half the man’s age 
plus seven. This is tested with a survey of ten people, each indicating what the cutoff is 
for various ages. The results are in the data set too.young (UsingR). Fit the regression 
model and compare it with the rule of thumb by also plotting the line y=7+(1/2)x. How do 
they compare? 

3.29 The data set diamond (UsingR) contains data about the price of 48 diamond 
rings. The variable price records the price in Singapore dollars and the variable carat 
records the size of the diamond. Make a scatterplot of carat versus price. Use pch=5 to 
plot with diamonds. Add the regression line and predict the amount a one-third carat 
diamond ring would cost. 

3.30 The data set Animals (MASS) contains the body weight and brain weight of 
several different animals. A simple scatterplot will not suggest the true relationship, but a 
log-transform of both variables will. Do this transform and then find the slope of the 
regression line. 

Compare this slope to that found from a robust regression model using lqs( ). 
Comment on any differences. 

3.31 To gain an understanding of the variability present in a measurement, a 
researcher may repeat or replicate a measurement several times. The data set breakdown 
(UsingR) includes measurements in minutes of the time it takes an insulating fluid to 
break down as a function of an applied voltage. The relationship calls for a log-transform. 

Plot the voltage against the logarithm of time. Find the coefficients for simple linear 
regression and discuss the amount of variance for each level of the voltage. 

3.32 The motors (MASS) data set contains measurements on how long, in hours, it 
takes a motor to fail. For a range of temperatures, in degrees Celsius, a number of motors 
were run in an accelerated manner until they failed, or until time was cut off. (When time 
is cut off the data is said to have been censored.) The data shows a relationship between 
increased temperature and shortened life span. 

The commands 

> data(motors, package="MASS") 
> plot(time ~ temp, pch=cens, data=motors) 
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produce a scatterplot of the variable time modeled by temp. The pch=cens argument 
marks points that were censored with a square; otherwise a circle is used. Make the 
scatterplot and answer the following: 

1. How many different temperatures were used in the experiment? 

2. Does the data look to be a candidate for a linear model? (You might want to 
consider why the data point (150,8000) is marked with a square.) 

3. Fit a linear model. What are the coefficients? 

4. Use the linear model to make a prediction for the accelerated lifetime of a motor run 
at a temperature of 210°C. 

3.33 The data set mw.ages (UsingR) contains census 2000 data on the age distribution 
of residents of Maplewood, New Jersey. The data is broken down by male and female. 

Attach the data set and make a plot of the Male and Female variables added together. 
Connect the dots using the argument type="l". For example, with the command 
plot(1:103,Male + Female,type="l"). 

Next, layer on top two trend lines, one for male and one for female, using the 
supsmu() function. What age group is missing from this town? 
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Chapter 4  
Multivariate Data 

Multivariate data can be summarized and viewed in ways that are similar to those 
discussed for bivariate and univariate data, although differences exist, as there are many 
more possible relationships. These differences can be handled by looking at all the 
variables simultaneously, or by holding some variables constant while we look at others. 

The tools used are similar to those for bivariate data, though if we enhance our data-
manipulation skills the work will be easier. This chapter includes more details on R’s 
data frames, lists, and model formula notation. Also included is an introduction to R’s 
lattice graphics package, which greatly enhances certain explorations of multivariate data. 

4.1 Viewing multivariate data 

In this chapter we look at three typical examples of multivariate data. The first 
summarizes survey results (categorical data), the second compares independent samples; 
and the third searches for relationships among many different variables. 

4.1.1 Summarizing categorical data 

Just as we used tables to summarize bivariate data, we use them for multivariate data as 
well. However, as a table shows only two relationships at once, we will need to use 
several when looking at three or more relationships. 

■ Example 4.1: Student expenses The student. expenses (UsingR) data set contains 
the results of a simple survey. Students were asked which of five different expenses they 
incur. The data is in Table 4.1. 

Even a small table like this contains too much information for us to identify  

Table 4.1 Student expenses survey 
Student cell.phone cable, tv dial.up cable.modem car
1 Y Y Y N Y
2 Y N N N N
3 N N N N Y
4 Y Y N Y Y
5 N N N N N
6 Y N Y N Y
7 Y N N Y N
8 N N N N Y
9 Y Y N N Y



10 Y N Y N N

any trends quickly. We would like to be able to summarize such data flexibly. We’ve 
used the table() function to make two-way tables. We can use it here as well. Let’s look 
at the relationship between having a cell phone and a car: 

> library(UsingR)             # once per session 
> attach(student.expenses) 
> names(student.expenses) 
[1] "cell.phone"  "cable.tv"  “dial.up"  "cable.modem" 
[5] "car" 
> table(cell.phone,car) 
          car 
cell.phone N Y 
         N 1 2 
         Y 3 4 

In this small sample, almost all the students have at least one of the two, with both being 
most common. 

Three-way contingency tables (or, more generally, n-way contingency tables) show 
relationships among three (or n) variables using tables. We fix the values of the extra 
variable(s) while presenting a two-way table for the main relationship. To investigate 
whether paying for a cable modem affects the relationship between having a cell phone 
and a car, we can use a three-way table. 

> table(cell.phone,car,cable.modem) 
, , cable.modem = N 
          car 
cell.phone N Y 
         N 1 2 
         Y 2 3 
, , cable.modem = Y 
          car 
cell.phone N Y 
         N 0 0 
         Y 1 1 

It appears that paying for a cable modem requires cutbacks elsewhere. 
The table() function uses the first two variables for the main tables and the remaining 

variables to construct different tables for each combination of the variables. In this case, 
two other tables for the levels of cable. modem. 

Flattened contingency tables 
This type of information is usually formatted differently to save space. In Table 4.2 the 
tables are set side-by-side, with the column headings layered to indicate the levels of the 
conditioning factor. 
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Table 4.2 Student expenses 
  Modem
  N Y
  Car Car
Cell phone N Y N Y
N 1 2 a a
Y 2 3 1 1

This layout can be achieved with the ftable() (flatten table) function. Its simplest usage is 
to call it on the result of a table() command. For example: 

> ftable(table(cell.phone,car,cable.modem)) 
# not side-by-side 

This isn’t quite what we want, as Table 4.2 has only one variable for the row. This is 
done by specifying the desired row variables or column variables. The column variables 
are set with the argument col. vars=. This argument expects a vector of variable names or 
indices. 

> ftable(table(cell.phone,car,cable.modem), 
+ col.vars=c("cable.modem","car")) # specify column 
variables 
           cable.modem N   Y 
           car         N Y N  Y 
cell.phone 
N                     1  2 0  0 
Y                     2  3 1  1 
> detach(student.expenses) 

4.1.2 Comparing independent samples 

When we have data for several variables of the same type, we often want to compare 
their centers, spreads, or distributions. This can be done quite effectively using boxplots. 

■ Example 4.2: Taxi-in-and-out times at Newark Liberty International Airport 
The data set ewr (UsingR) contains taxi-in-and-out data for airplanes landing at Newark 
Liberty airport. The data set contains monthly averages for eight major carriers. An 
examination of this data allows us to see which airlines take off and land faster than the 
others. We treat the data as a collection of independent samples and use boxplots to 
investigate the differences. Figure 4.1 shows the boxplots. 

> attach(ewr) 
> names(ewr) 
[1] "Year" "Month"  "AA"   "CO"   "DL"     "HP" 
[7] "NW"   "TW"     "UA"   "US"   "inorout" 
> boxplot(AA,CO,DL,HP,NW,TW,US,US) 
> detach(ewr) 
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Figure 4.1 Taxi-in-and-out times at 
Newark Liberty airport 

From the boxplots we see that the second airline (Continental) appears to be the worst, as 
the minimum, maximum, and median amount of time are all relatively large. However, 
the fourth (America West) has the largest median. 

The boxplot() function will make a boxplot for each data vector it is called with. This 
is straightforward to use but has many limitations. It is tedious and prone to errors, as 
much needs to be typed. As well, adding names to the boxplots must be done separately. 
More importantly, it is a chore to do other things with the data. For example, the variable 
inorout indicates whether the time is for taxi in or taxi out. Taxi-in times should all be 
about the same, as airplanes usually land and go to their assigned gate with little delay. 
Taxi-out times are more likely to vary, as the queue to take off varies in length depending 
on the time of day. In the next section we see how to manipulate data to view this 
difference. 

4.1.3 Comparing relationships 

Scatterplots are used to investigate relationships between two variables. They can also be 
used when there are more than two variables. We can make multiple scatterplots, or plot 
multiple relationships on the same scatterplot using different plot characters or colors to 
distinguish the variables. 

■ Example 4.3: Birth variables The data set babies (UsingR) contains several 
variables collected from new mothers as part of a study on child health and development. 
The variables include gestation period, maternal age, whether and how much the mother 
smokes, and other factors, such as mother’s level of education. In all, there are 23 
variables. 

R has a built-in function for creating scatterplots of all possible pairs of variables. This 
graphic is called a scatterplot matrix and is made with the pairs() function, as in pairs 
(babies). For the babies data set this command will create over 500 graphs, as there are so 
many variables. We hold off on using pairs() until we see how to extract subsets of the 
variables in a data frame. 

We can still explore the data with scatterplots, using different colors or plotting 
characters to mark the points based on information from other factors. In this way, we 
can see more than two variables at once. For example, the plot of gestation versus weight 
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in Figure 4.2 shows a definite expected trend: the longer the gestation period the more 
time a baby has to increase its birth weight. Do other factors, such as maternal smoking 
or maternal weight, affect this relationship? 

To plot with different plot characters, we set the pch=argument using another variable 
to decide the plot character. First we recede the data with NA, as the data set uses 999 for 
missing data (cf. ?babies). 

> attach(babies) 
> gestation[gestation == 999]= NA # 999 is code for NA 
> plot(gestation,wt)           # scatterplot 
> plot(gestation,wt,pch=smoke) # different plot 
characters 
> table(smoke)                 # values of plot 
characters 
smoke 
  0   1   2   3   9 
544 484  95 103  10 
> legend(locator(1), 
+ legend=c("never","yes","until pregnant","long 
ago","unknown"), 
+ pch=c(0:3,9)) 

The table() function was used to find out the range of values of smoke. We consulted the 
help page (?babies) to find out what the values mean. 

Figure 4.2 is a little too crowded to tell if any further relationship exists.  

 

Figure 4.2 Scatterplot of gestation 
versus weight by smoke factor 

Sometimes different colors will help where different plot characters don’t. To change 
colors we set the col=argument in plot(). We use rainbow() to create five colors and then 
extract these using the values of smoke as indices. We want our indices to be 1, 2, 3, 4, 5, 
so we change the “9” to a “4” and then add 1. This is done as follows: 

> smoke[smoke == 9] = 4 
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> plot(gestation,wt, col = rainbow(5)[smoke+1] ) 

If we make the scatterplot, it shows that changing colors tells more of a story than 
changing the plot characters. Still, no additional trends show up. 

What might be useful are different scatterplots for each level of the smoke factor. This 
can be done by subsetting, as is described next, or by using the lattice package described 
later on. 

Plotting additional points and functions 
Figure 4.2 is made all at once. There are times when we would like to add new points or 
lines to an existing plot, as we did in the previous chapter when we added a regression 
line to a graph. To do this, it helps to understand that R’s plotting functions come in two 
types: “high-level” plot functions, like plot(), and “low-level” functions, like abline(). 
The difference between the two is that the high-level ones set up a graphic window and 
produce a graphic, while the low-level ones add to the current graphic window. Table 4.3 
collects many useful plotting functions used in the examples. 

We redo Example 4.3 plotting just a few variables separately. For fun, we will add 
regression lines. 

First we need to make a plot. The following makes one for the occurrences where 
smoke has a value of ().  

Table 4.3 Various plotting functions for creating 
or adding to figures 

plot() When used for scatterplots, will plot points by default. Use argument type=“1” to produce 
lines. High-level function, used to make many types of figures. 

points() A low-level plot function with arguments similar to plot(). 
lines() Similar to points() but connects points with lines segments. 
abline() Function for adding lines to a figure. The arguments a= and b= will plot the line y=a+bx, 

the arguments h= and v= will plot horizontal or vertical lines. 
curve() A high- or low-level plot function for adding the graph of a function of x. When argument 

add=TRUE is given, will draw graph on the current figure using the current range of x 
values. If add=TRUE is not given, it will produce a new graph over the range specified 
with from= and to=. The defaults are a and 1. The function to be graphed may be specified 
by name or written as a function of x. 

rug() Adds lines along the x- or y-axis to show data values in a univariate data set. By default, 
the lines are drawn on the x-axis; use side=2 to draw on the y-axis. 

arrows() Adds arrows to a figure. 
text() Adds text to a figure at specified points. 
title() Adds labels to a figure. Argument main= will set main title, sub= the subtitle, xlab= and 

ylab= will set x and y labels. 
legend() Adds a legend to a figure. 

> gestation[gestation == 999] = NA 
> f = wt[smoke == a] ~ gestation[smoke == 0]  # save 
typing 
> plot(f, xlab="gestatation", ylab="wt") 
> abline(lm(f)) 
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We stored the model formula to save on typing. 
To add to the graphic, we use points () with a similar syntax: 

> f1 = wt[smoke == 1] ~ gestation[smoke == 1] 
> points(f1, pch=16) 
> abline(lm(fl), cex=2, lty=2) 
> legend(150,175, legend=c("0 = never smoked","1 = 
smokes now"), 
+ pch=c(1,16), lty=1:2) 
> detach(babies) 

The choice of plot character allows us to see the different data sets easily, as illustrated in 
Figure 4.3.  

 

Figure 4.3 Scatterplot of gestation 
versus weight with smoking status 
added 

4.1.4 Problems 

4.1 The samhda (UsingR) data set contains variables from a Substance Abuse and Mental 
Health survey for American teens. Make a three-way contingency table of the variables 
gender, amt. smoke, and marijuana. Use the levels of gender to break up the two-way 
tables. Are there any suspected differences? 

Repeat using the variable live. with. father in place of gender. 
4.2 The data set Cars93 (MASS) contains information on numerous cars. We want to 

investigate, using tables, any relationships between miles per gallon, price, and type. 
Before doing so, we turn numeric variables into categorical ones using cut (). 

> library(MASS)                 # loads Cars93 data set 
> mpg = with(Cars93,cut(MPG.city,c(0,17,25,55))) 
> names(mpg)= c("bad","decent","excellent”) 
> price = with(Cars93,cut(Price,c(0,10,20,62))) 
> names(price) = c("cheap","mid-priced","expensive”) 
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Make the above conversions, then make a flattened contingency table of mpg, price, and 
Type. Do you see any patterns? 

4.3 In the previous exercise, variables in the data set Cars93 (MASS) were 
investigated with tables. Now, make a scatterplot of the variables MPG. city and Price, 
marking the points according to their Type. Do you see any trend? 

4.4 For the car safety (UsingR) data set, make a scatterplot of the variable Driver. 
deaths versus Other. deaths. Use pch=as. numeric (type) to change the plot character 
based on the value of type. Label any outliers with their make or model using identify (). 
Do you notice any trends?  

4.5 The cancer (UsingR) data set contains survival times for cancer patients organized 
by the type of cancer. Make side-by-side boxplots of the variables stomach, bronchus, 
colon, ovary, and breast. Which type has the longest tail? Which has the smallest spread? 
Are the centers all similar? 

4.6 The data set UScereal (MASS) lists facts about specific cereals sold in a United 
States supermarket. For this data set investigate the following: 

1. Is there a relationship between manufacturer (mfr), and vitamin type (vitamins by 
shelf location (shelf)? Do you expect one? Why? 

2. Look at the relationship between calories and sugars with a scatterplot. Identify the 
outliers. Are these also fat-laden cereals? 

3. Now look at the relationship between calories and sugars with a scatterplot using 
different size points given by cex=2*sqrt (fat). (This is called a bubble plot. The area of 
each bubble is proportional to the value of fat.) Describe any additional trend that is seen 
by adding the bubbles. 

Can you think of any other expected relationships between the variables? 

4.2 R basics: data frames and lists 

Multivariate data consists of multiple data vectors considered as a whole. We are free to 
work with our data as separate variables, but there are many advantages to combining 
them into a single data object. This makes it easier to save our work, is convenient for 
many functions, and is much more organized. In R these “objects” are usually data 
frames. 

A data frame is used to store rectangular grids of data. Usually each row corresponds 
to measurements on the same subject, statistical unit, or experimental unit. Each column 
is a data vector containing data for one of the variables. The collection of entries need not 
all be of the same type (e.g., numeric, character, or logical), but each column must 
contain the same type of entry as they are data vectors. A rectangular collection of values, 
all of the same type, may also be stored in a matrix. Although data frames are not 
necessarily matrices, as their values need not be numbers, they share the same methods of 
access. 
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A list is a more general type of storage than a data frame. Think of a list as a collection 
of components. Each component can be any R object, such as a vector, a data frame, a 
function, or even another list. In particular, a data frame is a list with top-level 
components given by equal-length data vectors. A list is a very flexible type of data 
object. Many of the functions in R, such as lm(), have return values that are lists, 
although only selected portions may be displayed when the return value is printed. 

Lists can be used to store variables of different lengths, such as the cancer (UsingR) 
data set, but it is usually more convenient to store such data in a data frame with two 
columns—one column recording the measurements and the other a factor recording 
which variable the value belongs to. 

As a data frame is a special type of list, it can be accessed as either a matrix or a list. 

4.2.1 Creating a data frame or list 

Data frames are created with the data.frame() function, and lists are made with the list() 
function. Data frames are also returned by read.table() and read, csv(). 

For example: 

> x=1:2                         # define x 
> y=letters[1:2]                # y=c("a","b”) 
> z=1:3                         # z has 3 elements, x,y 
only 2 
> data.frame(x,y)               # rectangular, cols are 
variables 
  x y 
1 1 a 
2 2 b 
> data.frame(x,y,z)             # not all the same 
size. 
Error in data.frame(x, y, z) : arguments imply 
differing number 
of rows: 2, 3 

Data frames must have variables of the same length. 
Lists are created using the function list(). 

> list(x,y,z) 
[[1]] 
[1] 1 2 
[[2]] 
[1] "a" "b" 
[[3]] 
[1] 1 2 3 

The odd-looking numbers that appear with the command list(x, y, z) specify where the 
values are stored. The first one, [[1]], says this is for the first toplevel component of the 
list, which is a data vector. The following [1] refers to the first entry of this data vector. 
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One difference that isn’t apparent in the output, when using data.frame to create a data 
frame, is that character variables, such as y, are coerced to be factors, unless insulated 
with I. This coercion isn’t done by list(). This can cause confusion when trying to add 
new values to the variable. 

Adding names to a data frame or list 
Just like data vectors, both data frames and lists can have a names attribute. These are 
found and set by the names() function or when we define the object. The names of a list 
refer to the top-level components. For data frames, these top-level components are the 
variables. In the above examples, the command data.frame(x,y) assigns names of x and y 
automatically, but the list() function does not. If we want to define names when using 
data.frame() or list() we can use a name=value format, as in 

> list(x.name=x,"y name"=y)    # quotes may be needed 
$x.name 
[1] 1 2 
$"y name” 
[1] "a" "b" 

The names() function can be used to retrieve or assign the names. When assigning names 
it is used on the left side of the assignment (when using the equals sign). For example: 

> eg=data.frame(x,y)            # store the data frame 
> names(eg)                     # the current names 
[1] "x" "y" 
> names(eg) = c("x.name","y name”) # change the names 
> names(eg)                     # names are changed 
[1] "x.name" "y name" 

Data frames can also have their column names accessed with the function colnames() and 
their rows named with rownames(). Both can be set at the same time with dimnames(). 
The row names must be unique, and it is recommended that column names be also. These 
functions are applicable to matrix-like objects. 

The size of a data frame or list 
Data frames represent a number of variables, each with the same number of entries. The 
ewr (UsingR) is an example. As this data is matrix-like, its size is determined by the 
number of rows and columns. The dim() function returns the size of matrix-like objects: 

> dim(ewr)                    # number or rows and 
columns 
[1] 46 11 
> dim(ewr)[2]                 # number of cols is 2nd 
[1] 11 

Row and column sizes may also be found directly with nrow() and ncol(). 
A list need not be rectangular. Its size is defined by the number of top-level 

components in it. This is found with the function length(). As data frames are lists whose 
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top-level components are data vectors, the length of a data frame is the number of 
variables it contains. 

> length(ewr)                  # number of top-level 
components 
[1] 11 

4.2.2 Accessing values in a data frame 

The values of a data frame can be accessed in several ways. We’ve seen that we can 
reference a variable in a data frame by name. Additionally, we see how to access 
elements of each variable, or multiple elements at once.  

Accessing variables in a data frame by name 
Up to this point, most of the times that we have used the data in a data frame we have 
“attached” the data frame so that the variables are accessible in our work environment by 
their names. This is fine when the values will not be modified, but can be confusing 
otherwise. When R attaches a data frame it makes a copy of the variables. If we make 
changes to the variables, the data frame is not actually changed. This results in two 
variables with the same names but different values. 

The following example makes a data frame using data.frame() and then attaches it. 
When a change is made, it alters the copy but not the data frame. 

> x = data.frame(a=1:2,b=3:4)   # make a data frame 
> a                             # a is not there 
Error: Object "a" not found 
> attach(x)                     # now a and b are there 
> a                             # a is a vector 
[1] 1 2 
> a[1] =5                       # assignment 
> a                             # a has changed 
[1] 5 2 
> x                             # not x though 
    
a b 
1 1 3 
2 2 4 
> detach(x)                     # remove x 
> a                             # a is there and 
changed  
[1] 5 2 
> x                             # x is not changed 
    
a b 
1 1 3 
2 2 4 

The with() function and the data= argument were mentioned in Chapter 1 as alternatives 
to attaching a data frame. We will use these when it is convenient. 
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Accessing a data frame using [,] notation 
When we use a spreadsheet, we refer to the cell entries by their column names and rows 
number. Data-frame entries can be referred to by their column names (or numbers) and/or 
their row names (or numbers). 

Entries of a data vector are accessed with the [] notation. This allows us to specify the 
entries we want by their indices or names. If df is the data frame, the basic notation is 

df[row, column]   

There are two positions to put values, though we may leave them blank on purpose. In 
particular, the value of row can be a single number (to access that row), a vector of 
numbers (to access those rows), a single name or vector of names (to match the row 
names), a logical vector of the appropriate length, or left blank to match all the rows. 
Similarly for the value of column. As with data vectors, rows and columns begin 
numbering at 1. 

In this example, we create a simple data frame with two variables, each with three 
entries, and then we add row names. Afterward, we illustrate several styles of access. 

> df=data.frame(x=1:3,y=4:6) # add in column names 
> rownames(df)=c("row 1","row 2","row 3") # add row 
names 
> df 
      x y 
row 1 1 4 
row 2 2 5 
row 3 3 6 
> df[3,2]                      # row=3,col=2 
[1] 6 
> df["row 3","y"]              # by name 
[1] 6 
> df[1:3,1]                    # rows 1, 2 and 3; 
column 1 
[1] 1 2 3 
> df[1:2,1:2]                  # rows 1 and 2, columns 
1 and 2 
      x y 
row 1 1 4 
row 2 2 5 
> df[,1]                       # all rows, column 1, 
returns vector 
[1] 123 
> df [1,]                      # row 1, all columns 
      x y 
row 1 1 4 
> df[c(T,F,T),]                # rows 1 and 3 (T=TRUE) 
      x y 
row 1 1 4 
row 3 3 6 

■ Example 4.4: Using data-frame notation to simplify tasks 
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The data-frame notation allows us to take subsets of the data frames in a natural and 
efficient manner. To illustrate, let’s consider the data set babies (UsingR) again. We wish 
to see if any relationships appear between the gestation time (gestation), birth weight 
(wt), mother’s age (age), and family income (inc). 

Again, we need to massage the data to work with R. Several of these variables have a 
special numeric code for data that is not available (NA). Looking at the documentation of 
babies (UsingR) (with ?babies), we see that gestation uses 999, age uses 99, and income 
is really a categorical variable that uses 98 for “not available.” 

We can set these values to NA as follows: 

## bad idea, doesn’t change babies, only copies 
> attach(babies) 
> gestation[gestation == 999] = NA  
> age[age == 99] = NA 
> inc[inc == 98] = NA 
> pairs(babies[,c("gestation","wt","age","inc")]) 

But the graphic produced by pairs() won’t be correct, as we didn’t actually change the 
values in the data frame babies; rather we modified the local copies produced by attach(). 

A better way to make these changes is to find the indices that are not good for the 
variables gestation, age, and inc and use these for extraction as follows: 

> rm(gestation); rm(age); rm(inc) # clear out copies 
> detach(babies); attach(babies)  # really clear out 
> not.these = (gestation == 999) | (age == 99) | (inc 
== 98) 
## A logical not and named extraction 
> tmp = babies[!not.these, 
c("gestation","age","wt","inc")] 
> pairs(tmp) 
> detach(babies) 

The pairs() function produces the scatterplot matrix (Figure 4.4) of the new data frame 
tmp. We had to remove the copies of the variables gestation, age, and inc that were 
created in the previous try at this. To be sure that we used the correct variables, we 
detached and reattached the data set. Trends we might want to investigate are the 
relationship between gestation period and birth weight and the relationship of income and 
age. 
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Figure 4.4 Scatterplot matrix of four 
variables from babies 

■ Example 4.5: Accessing a data frame with logical vectors The data set ewr (UsingR) 
contains the taxi-in and taxi-out times at Newark Liberty airport. In Example 4.2 we 
noted that it would be nice to break up the data based on the variable inorout. We do this 
by extracting just those rows that have an inorout value of in (or out). Noting that 
columns 3 through 10 are for the  

airlines, we can construct the side-by-side boxplots with these commands: 

> attach(ewr) 
> boxplot(ewr[inorout == "in",  3:10], main="Taxi in") 
> boxplot(ewr[inorout == "out", 3:10], main="Taxi out") 
> detach(ewr) 

 

Figure 4.5 Taxi in and out times by 
airline 

The “rows” argument to the ewr data frame is a logical vector of the correct length. 
From Figure 4.5, as expected, we see that the airlines have less spread when taxiing in 

and that the taxi-in times are much shorter than the out times, as there is no takeoff queue 
to go through. 
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The argument to boxplot() is a data frame and not a data vector. If the first argument 
to boxplot() is a list, then each component is plotted with separate boxplots. As a data 
frame is a list, this behavior makes using boxplot() much easier than typing in all the 
variable names. When a boxplot is called with a list, any names for the list are used to 
label the boxplot. 

The subset() function An alternate to using using the [,] notation to extract values 
from a data frame is to use the subset() function: 

new.df=subset (old.df, subset=…, select=…)   

The subset=argument works as it does in the formula interface by using a logical 
condition to restrict the rows used; select=, on the other hand, is used to restrict the 
columns when given a vector of the desired variable names or indices. (See ?subset for 
more clever uses.) When we use subset (), the variable names are searched within the 
data frame. There is no need to attach the data frame or use with (). 

The previous examples could have been completed as follows: 

> ewr.in =  subset(ewr,subset= inorout == 
"in",  select=3:10) 
> ewr.out = subset(ewr,subset= inorout == "out", 
select=3:10)  
> boxplot(ewr.in, main="Taxi in") 
> boxplot(ewr.out, main="Taxi out") 

■ Example 4.6: Sorting a data frame by one of its columns 
The sort() function can be used to arrange the values of a data vector in increasing or 

decreasing order. For example, sorting the miles per gallon variable (mpg) of the mtcars 
data frame is done as follows: 

> attach(mtcars) 
> sort(mpg) 
[1] 10.4 10.4 13.3 14.3 14.7 15.0 15.2 15.2 15.5 15.8 
16.4 17.3 

Or from largest to smallest with 

> sort(mpg, decreasing=TRUE) 
[1] 33.9 32.4 30.4 30.4 27.3 26.0 24.4 22.8 22.8 21.5 
21.4 21.4 

Often, we would like to sort a data frame by one of its columns and have the other 
columns reflect this new order. For this, sort() will not work; rather we need to work a bit 
harder. The basic idea is to rearrange, or permute, the row indices so that the new data 
frame is sorted as desired. The function that does the rearranging is order(). If x and y are 
data vectors, then the command order(x) will return the indices of the sorted values of x, 
so x [order(x)] will be x sorted from smallest to largest. The command order (x, y) will 
find the order of x and break ties using the order of y. More variables are possible. The 
command order (x, decreasing=TRUE) will sort in decreasing order. 
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To illustrate, without the output, we show how to sort the data set mtcars in various 
ways: 

> mtcars[order(mpg),]          # sort by miles per 
gallon 
> mtcars[order(mpg, decreasing=TRUE), ] # best mpg 
first 
> rownames(mtcars[order(mpg, decreasing=TRUE), ]) # 
only names 
> mtcars[order(cyl,hp),]       # by cylinders then 
horsepower 
> detach(mtcars) 

Accessing a list 
The [,] notation for accessing a data frame is inherited from the notation for a matrix, 
which in R is a rectangular collection of values of the same type. Data frames, which are 
also lists, can be accessed using the notation for lists described next. 

List access using [[]] The double-square-bracket notation, [[]], is used to access list 
components, as in 1st [[position]]. It can match using a number for position or a name (if 
the list has names). If position is a vector, then recursive indexing occurs (cf. ?Extract).  

For example: 

> 1st = list(a=1:2,b=letters[1:3],c=FALSE) 
> lst[[1]]                        # first component 
[1] 1 2 
> 1st[[’a’]]                      # by name 
[1] 1 2 

The $ notation The convenient syntax lst$varname is a shortcut for the notation 1st [ 
[“varname”]]. The variable name may need to be quoted. 

> 1st = list(one.to.two=1:2, "a-e"=letters[1:5]) 
> lst$one.to.two                # access with $ 
[1] 1 2 
> lst$o                         # unique shortening 
[1] 1 2 
> lst$a-e                       # needs quotes to work 
Error: Object "e" not found 
> lst$"a-e" 
[1] "a" "b" "c" "d" "e" 

This example also illustrates that R will match names even if they are not exactly the 
same. It will match, as long as we use enough letters to identify that name uniquely 
among the possible names. When the name includes blanks or other special characters, it 
needs to be quoted. 

Lists as vectors The vector notation, [], can be used with lists just as it is with vectors. 
It returns a list of those components specified by the indices. When 1st is a list, 1st [1] 
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returns a list with just the first component of 1st, whereas 1st [ [1]] returns the first 
component. 

For example, we define a list and then access the first element as a vector: 

> 1st = list(a=1:2,b=letters[1:2],c=FALSE) 
> lst[1] 
$a 
[1] 1 2 

A list with just the first component is returned as indicated by the $a that is printed in the 
output. This is the name of that component. When a list prints [[1]], it indicates that the 
first component has no name. 

The vector notation for data frames is different from that for lists, as the return value 
remains a data frame. Suppose we do the above with a data frame using just the first two 
variables. 

> df=data.frame(a=1:2,b=letters[1:2]) 
> df [1] 
  a 
1 1 
2 2 

If df were treated as a list, and not a data frame, then the return value would be a list with 
the specified top-level components. The different formatting of the  

Table 4.4 Different ways to access a data frame 
mtcars mpg cyl disp hp drat wt qsec vs
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0
…          
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1
…          
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1

To access the row “Honda Civic” 
   mtcars[’Honda Civic’,]        By row name 
   mtcars[’Honda’,]              Can shorten the name 
if unique match 
   mtcars[19,]                   It is also the 19th 
row in the data set 
To access the column “mpg” 
   mtcars[,’mpg’]                By column name 
   mtcars [,1]                   It is column 1 
   mtcars$mpg                    list access by name 
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   mtcars[[’mpg’]]               Alternate list access. 
Note, mtcars [’mpg’] is not a 
                                 vector but a data 
frame. 
To access the value “30.4” 
   mtcars[’Honda’,’mpg’]         By name (with match) 
   mtcars[19,1]                  By row and column 
number 
   mtcars$mpg[19]                mtcars$mpg is a 
vector, this is the 19th entry. 

output indicates that this isn’t the case. In the data-frame case, this list is then coerced 
into a data frame. The vector notation specifies the desired variables. 

Table 4.4 summarizes the various ways to access elements of a data frame. 

4.2.3 Setting values in a data frame or list 

We’ve seen that we can’t change a data frame’s values by attaching it and then assigning 
to the variables, as this modifies the copy. Rather, we must assign val¬ ues to the data 
frame directly. Setting values in a data frame or list is similar to setting them in a data 
vector. The basic expressions have forms like 

df[rows, cols]=values 
1st$name=value, or  
1st$name[i]=value. 

  

In the [,] notation, if values does not have the same size and type as the values that we are 
replacing, recycling will be done; if the length of values is too big, however, an error 
message is thrown. New rows and columns can be created by assigning to the desired 
indices. Keep in mind that the resulting data frame cannot have any empty columns 
(holes). 

> df = data.frame(a=1:2,b=3:4)   # with names 
> df[1,1]=5                      # first row, first 
column 
> df[,2]=9:10                    # all rows, second 
column 
> df[1:2,3:4] = cbind(11:12,13:14) # rows and columns 
at once 
> df                             # new columns added 
  a  b  c  d 
1 5  9 11 13 
2 2 10 12 14 
> df[1:2, 10:11]=cbind(11:12,13:14) # would create a 
hole 
Error in "[<-.data.frame"('*tmp* … 
        new columns would leave holes after existing 
columns 
> df[,2:3]=a                     # recycling occurs 
> df 

Multivariate data     119



  a b c  d 
1 5 0 0 13 
2 2 0 0 14 

Using $ with a list refers to a data vector that can be set accordingly, either all at once or 
position by position, as with: 

> 1st = list(a=1:2,b=l:4,c=c("A","B","C")) 
> lst$a = 1:5                     # replace the data 
vector 
> lst$b[3] = 16                   # replace single 
element 
> lst$c[4]= “D"                   # appends to the 
vector 
> 1st 
$a 
[1] 1 2 3 4 5 
$b 
[1]  1  2 16 4 
$c 
[1] "A" "B" "C" "D" 

The c() function can be used to combine lists using the top-level components. This can be 
used with data frames with the same number of rows, but the result is a list, not a data 
frame. It can be turned into a data frame again by using data.frame(). 

4.2.4 Applying functions to a data frame or list 

In Chapter 3 we noted that apply() could be used to apply a function to the rows or 
columns of a matrix. The same can be done for a data frame, as it is matrix-like. 
Although many functions in R adapt themselves to do what we would want, there are 
times when ambiguities force us to work a little harder by using this technique. For 
example, if a data frame contains just numbers, the function mean() will find the mean of 
each variable, whereas median() will find the median of the entire data set. We illustrate 
on the ewr (UsingR) data set: 

> df = ewr[ , 3:10]            # make a data frame of 
the times 
> mean(df)                     # mean is as desired  
   AA    CO    DL    HP    NW    TW    UA    US 
17.83 20.02 16.63 19.60 15.80 16.28 17.69 15.49 
> median(df)                    # median is not as 
desired 
Error in median(df) : need numeric data 
> apply(df,2,median)            # median of columns 
   AA    CO    DL    HP    NW    TW    UA    US 
16.05 18.15 15.50 18.95 14.55 15.65 16.45 14.45 
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We can apply functions to lists as well as matrices with the lapply () function or its user-
friendly version, sapply (). Either will apply a function to each top-level component of a 
list or the entries of a vector. The lapply () function will return a list, whereas sapply () 
will simplify the results into a vector or matrix when appropriate. 

For example, since a data frame is also a list, the median of each variable above could 
have been found with 

> sapply(df,median) 
   AA    CO    DL    HP    NW    TW    UA    US 
16.05 18.15 15.50 18.95 14.55 15.65 16.45 14.45 

(Compare this to the output of lapply (df, median).) 

4.2.5 Problems 

4.7 Use the data set mtcars. 

1. Sort the data set by weight, heaviest first. 

2. Which car gets the best mileage (largest mpg)? Which gets the worst? 

3. The cars in rows c(1:3, 8:14, 18:21, 26:28, 30:32) were imported into the United 
States. Compare the variable mpg for imported and domestic cars using a boxplot. Is 
there a difference? 

4. Make a scatterplot of weight, wt, versus miles per gallon, mpg. Label the points 
according to the number of cylinders, cyl. Describe any trends. 

4.8 The data set cfb (UsingR) contains consumer finance data for 1,000 consumers. 
Create a data frame consisting of just those consumers with positive INCOME and 
negative NETWORTH. What is its size? 

4.9 The data set hall, fame (UsingR) contains numerous baseball statistics, including 
Hall of Fame status, for 1,034 players. 

1. Make a histogram of the number of home runs hit (HR). 
2. Extract a data frame containing at bats (AB), hits (hits), home runs (HR), and runs 

batted in (RBI) for all players who are in the Hall of Fame. (The latter can be found 
with Hall.Fame.Membership!="not a member".) Save the data into the data frame hf. 

3. For the new data frame, hf, make four boxplots using the command: 

          boxplot(lapply(hf,scale)) 

(The scale() function allows all four variables to be compared easily.) 
Which of the four variables has the most skew? 

Use matrix notation, list notation, or the subset() function to do the above. 
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4.10 The data set dvdsales (UsingR) can be viewed graphically with the command 

> barplot(t(dvdsales), beside=TRUE) 

1. Remake the barplots so that the years increase from left to right. 

2. Which R commands will find the year with the largest sales? 

3. Which R commands will find the month with the largest sales? 

4.11 Use the data set ewr (UsingR). We extract just the values for the times with 
df=ewr [,3:10]. The mean of each column is found by using mean (df). How would you 
find the mean of each row? Why might this be interesting? 

4.12 The data set u2 (UsingR) contains the time in seconds for albums released by the 
band U2 from 1980 to 1997. The data is stored in a list. 

1. Make a boxplot of the song lengths by album. Which album has the most spread? 
Are the means all similar? 

2. Use sapply() to find the mean song time for each album. Which album has the 
shortest mean? Repeat with the median. Are the results similar? 

3. What are the three longest songs? The unlist() function will turn a list into a vector. 
First unlist the song lengths, then sort. 

Could you use a data frame to store this data? 
4.13 The data set normt emp (UsingR) contains measurements for 130 healthy, 

randomly selected individuals. The variable temperature contains body temperature, and 
gender contains the gender, coded 1 for male and 2 for female. Make layered densityplots 
of temperature, splitting the data by gender. Do the two distributions look to be the same? 

4.14 What do you think this notation for data frames returns: df [,] ? 

4.3 Using model formula with multivariate data 

In Example 4.5 we broke up a variable into two pieces based on the value of a second 
variable. This is a common task and works well. When the value of the second variable 
has many levels, it is more efficient to use the model-formula notation. We’ve already 
seen other advantages to this approach, such as being able to specify a data frame to find 
the variables using data=and to put conditions on the rows considered using subset=.  

4.3.1 Boxplots from a model formula 

In Example 4.4 the inc variable is discrete and not continuous, as it has been turned into a 
categorical factor by binning, using a bin size of $2,500. Rather than plot gestation versus 
inc with a scatterplot, as is done in a panel of Figure 4.4, a boxplot would be more 
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appropriate. The boxplot allows us to compare centers and spreads much more easily. As 
there are nine levels to the income variable, we wouldn’t want to specify the data with 
commands like gestation [inc == 1]. Instead, we can use the model formula gestation ~ 
inc with boxplot(). We read the formula as gestation is modeled by inc, which is 
interpreted by boxplot() by splitting the variable gestation into pieces corresponding to 
the values of inc and creating boxplots for each. 

We use this approach three times. The last appears in Figure 4.6, where the argument 
varwidth=TRUE is specified to show boxes with width depending on the relative size of 
the sample. 

> boxplot(gestation ~ inc, data=babies) # not yet 
> boxplot(gestation ~ inc, subset=gestation != 999 & 
inc != 98, 
+ data=babies)                 # better 
> boxplot(gestation ~ inc, subset=gestation != 999 & 
inc != 98, 
+ data=babies,varwidth=TRUE,   # variable width to see 
sizes 
+ xlab="income level”, ylab="gestation (days)") 

 

Figure 4.6 Boxplot of gestation times 
for income levels 

4.3.2 The plot () function with model formula 

Both boxplot() and plot() are generic functions allowing the programmers of R to write 
model-formula interfaces to them. The boxplot() function always draws boxplots, but 
we’ve seen already that the plot() function can draw many types of plots (depending on 
its first argument). In Example 3.6 the plot() command was called with a model formula 
of the type numeric ~ numeric, resulting in a scatterplot. If x and y are paired, numeric 
data vectors, then the model formula y ~ x represents the model yi=β0+β1xi+εi. The 
typical plot for viewing this type of model is the scatterplot. 
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A model formula of the type numeric ~ factor represents the statistical model 
That is, for each level i of the factor, there is a sample, 

with mean described by µi. 
As this model says something about the means of the different samples, multiple 

boxplots are useful for viewing the data. A boxplot allows us to compare the medians, 
which are basically the mean if the data is not skewed. Consequently, it is the plot made 
when the plot () function encounters such a model formula. That is, if x is a numeric data 
vector and f a factor indicating which group the corresponding element of x belongs to, 
then the command plot (x ~ f) will create side-by-side boxplots of values of x split up by 
the levels of f. 

For example, Figure 4.6 could also have been made with the commands 

> plot(gestation ~ factor(inc), data=babies, 
varwidth=TRUE, 
+ subset = gestation != 999 & inc !=98, 
+ xlab="income level", ylab="gestation (days)") 

The function factor() explicitly makes inc a factor and not a numeric data vector. 
Otherwise, the arguments are identical to those to the boxplot() function that created 
Figure 4.6. 

4.3.3 Creating contingency tables with xtabs() 

We saw in Example 4.1 how to make a three-way contingency table using the table() 
function starting with raw data. What if we had only the count data? How could we enter 
it in to make a three-way contingency table? We can enter the data in as a data frame and 
then use xtabs() to create contingency tables. The xtabs() function offers a formula 
interface as an alternative to table(). 

The function as.data.frame() inverts what xtabs() and table() do. It will create a data 
frame with all possible combinations of the variable levels and a count of frequencies 
when called on a contingency table. 

■ Example 4.7: Seat-belt usage factors The three-way table in Table 4.5 shows 
percentages of seat-belt usage for two years, broken down by type of law enforcement 
and type of car. Law enforcement is primary if a driver can be pulled over and ticketed 
for not wearing a seat belt, and secondary if a driver can be ticketed for this offense only 
if pulled over for another infraction. This data comes from a summary of the 2002 
Moving Traffic Study as part of NOPUS (http://www.nhtsa.gov/), which identified these 
two factors as the primary factors in determining seat-belt usage. 

We show how to enter the data into R using a data frame, and from there  

Table 4.5 Seat-belt data by type of law and 
vehicle 

Enforcement primary secondary
Year 2001 2002 2001 2002
Car type         
passenger 71 82 71 71 
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pickup 70 71 50 55 
van/SUV 79 83 70 73 
a source: 2002 NOPUS 

recreate the table. 
Though this is not count data, the data entry is similar. First we turn the contingency 

table into a data frame by creating the proper variables. We enter the percentages in 
column by column. After doing this, we create variables for car, year, and enforcement 
that have values matching the percentages. Using rep() greatly reduces the work. 

> percents = c(71,70,79,82,71,83,71,50,70,71,55,73) 
> car = rep(c("passenger","pickup","van/suv"), 4) 
> year = rep(rep(2001:2002,c(3,3)), 2) 
> enforcement = rep(c("primary","secondary"), c(6,6)) 
> seatbelts = data.frame(percents, car, year, 
enforcement) 
> seatbelts 
   percents       car year enforcement 
1        71 passenger 2001     primary 
2        70    pickup 2001     primary 
… 
12       73   van/suv 2002   secondary 

The xtabs() function creates contingency tables using a model-formula interface. The 
formula may or may not have a response. If no response is present, xtabs() will tabulate 
the data as though it has not been summarized in the way table() does. We have the 
equivalent of summarized data stored in percents, so we will use this variable as the 
response. The cross-classifying variables on the right side of the model formula are 
“added” in with +. The first two variables form the main tables; any additional ones are 
used to break up the contingency tables. For example: 

> tab = xtabs(percents ~ car+year+enforcement, 
data=seatbelt) 
> tab 
, , enforcement = primary 
             
year 
car         2001 2002 
    
passenger 71    82 
    
pickup    70    71 
    
van/suv   79    83  
, , enforcement = secondary 
          year 
car         2001 2002 
  passenger 71   71 
  pickup    50   55 
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  van/suv   70   73 

The ftable() command can again be used to flatten the tables. We specify the column 
variables to make the output look like Table 4.5. 

> ftable(tab, col.vars=c("enforcement","year")) 
          enforcement primary     secondary 
          year           2001 2002     2001 2002 
car 
  passenger                71   82       71   71 
  pickup                   70   71       50   55 
  van/suv                  79   83       70   73 

4.3.4 Manipulating data frames: split () and stack () 

When a formula interface isn’t available for a function, the split() function can be used to 
split up a variable by the levels of some factor. If x stores the data and f is a factor 
indicating which sample the respective data values belong to, then the command split(x, 
f) will return a list with top-level components containing the values of x corresponding to 
the levels of f. For example, the command boxplot(split(x,f)) produces the same result as 
the command boxplot(x ~ f). 

Applying a single function to each component of the list returned by split() may also 
be done with the tapply() function. The basic format is 

tapply (x, f, function)   

The function can be a named function, such as mean, or one we define ourselves, as will 
be discussed in Chapter 6. 

Inverse to split() is stack(), which takes a collection of variables stored in a data frame 
or list and stacks them into two variables. One contains the values, and the other indicates 
which variable the data originally came from. The function unstack() reverses this 
process and is similar to split(), except that it returns a data frame (and not a list), if 
possible. 

For example, the data set cancer (UsingR) contains survival times for different types 
of cancer. The data is stored in a list, not a data frame, as the samples do not have the 
same length. We can create a data object, for which the model formula will work using 
stack().  

> cancer 
$stomach 
  [1] 124 42   25   45 412  51 1112  46  103  876 146 
340 
[13] 396 
… 
$breast 
[1] 1235 24 1581 1166  40 727 3808 791 1804 3460 719 
> stack(cancer) 
   values     ind 
1     124 stomach 
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2      42 stomach 
… 
63   3460  breast 
64    719  breast 

The variable names in the output of stack() are always values to store the data and ind to 
indicate which sample the data is from. When we use stack(), it is important that the 
variables in the data frame or list have names, so that ind can indicate which variable the 
data is from. 

4.3.5 Problems 

4.15 The data set MLBattend (UsingR) contains attendance data for major league 
baseball between the years 1969 and 2000. For each year, make boxplots of attendance. 
Can you pick out two seasons that were shortened by strikes? (There were three, but the 
third is hard to see.) 

4.16 The data set MLBattend (UsingR) contains several variables concerning 
attendance at major league baseball games from 1969 to 2000. Compare the mean 
number of runs scored per team for each league before and after 1972 (when the 
designated hitter was introduced). Is there a difference? Hint: the function tapply() can be 
used, as in 

> tapply(runs.scored,league,mean) 
    AL    NL 
713.3 675.4 

However, do this for the data before and after 1972. 
4.17 The data set npdb (UsingR) contains malpractice-award information for the years 

2000 to 2003 in the United States. The variable ID contains an identification number 
unique to a doctor. The command table (table (ID) ) shows that only 5% of doctors are 
involved in multiple awards. Perhaps these few are the cause of the large insurance 
payouts? How can we check graphically? 

We’ll make boxplots of the total award amount per doctor broken down by the number 
of awards that doctor has against him and investigate. First though, we need to 
manipulate the data. 

1. The command tmp=split (award, ID) will form the list tmp with each element 
corresponding to the awards for a given doctor. Explain what these commands do: 
sapply (tmp, sum) and sapply (tmp, length). 

2. Make a data frame with the command 

> df = data.frame(sum = sapply(x,sum), number = 
sapply(x,length)) 

With this, create side-by-side boxplots of the total amount by a doctor broken 
down by the number of awards. 
What do you conclude about these 5% being the main cause of the damages? 
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4.18 The data set morley contains measurements of the speed of light. Make side-by-side 
boxplots of the Speed variable for each experiment recorded by Expt. Are the centers 
similar or different? Are the spreads similar or different? 

4.19 For the data set PlantGrowth, make boxplots of the weight variable for each level 
of group. Are the centers similar or different? Are the spreads similar or different? 

4.20 For the data set Insect Sprays, make boxplots of the count variable for levels C, 
D, and E. Hint: These can be found with a command such as 

> spray %in% c("C" ,"D" , “E") 

Use this with the model notation and the argument subset= when making the boxplots. 
4.21 The pairs() function also has a model-formula interface. We can redo Example 

(4.4) with the command 

> pairs(~ gestation + age + wt + inc, data = babies, 
+ subset = gestation < 999 & age < 99 & inc < 98) 

For the US cereal (MASS) data set, use the formula interface to make a scatterplot matrix 
of the variables calories, carbo, protein, fat, fibre, and sugars. Which relationships show a 
linear trend? 

4.4 Lattice graphics 

In Figure 4.2 various colors and plotting characters were used to show whether the third 
variable, smoke, affected the relationship between gestation time and birth weight. As we 
noted, the figure was a bit crowded for this approach. A better solution would be to create 
a separate scatterplot for each level of the third variable. These graphs can be made using 
the lattice graphics package. 

The add-on package lattice is modeled after Cleveland’s Trellis graphics concepts and 
uses the newer, low-level plotting commands available in the grid package. These two are 
recommended packages and should be part of a standard R installation. 

The graphics shown below are useful and easy to create. Many other usages are 
possible. If the package is loaded (with library (lattice)), a description of lattice graphics 
is available in the help system under ?Lattice. The help page ?xyplot also contains 
extensive documentation.* 

The basic idea is that the graphic consists of a number of panels. Each panel 
corresponds to some value(s) of a conditioning variable. The lattice graphing functions 
are called using the model-formula interface. The formulas have the format 

response ~ predictor|condition   

The response variable is not always present. For univariate graphs, such as histograms, it 
is not given; for bivariate graphs, such as scatterplots, it is. The optional condition 
variable is either a factor or a numeric value. If it is a factor, there is a separate panel for 
each level. If it is numeric, “shingles” are created that split up the range of the variable to 
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make several panels. Each panel uses the same scale for the axes, allowing for easy 
comparison between the graphics. 

Before beginning, we load the lattice package and override the default background 
color, as it is not the best for reproduction. 

> library(lattice)           # load in the package 
> trellis.device(bg="white") # set background to white. 

This can also be achieved by setting the lattice “theme,” using options (): 

> options(lattice.theme="col.whitebg") 

If we desire, this command can be placed into a startup file† to change the default 
automatically. 

What follows are directions for making several types of graphs using the lattice 
package. 

Histograms Histograms are univariate. The following command shows histograms of 
birth weight (wt) for different levels of the factor smoke. Note that the response variable 
is left blank. 

> histogram( ~ wt | factor(smoke), data=babies, 
+ subset=wt != 999, type="density") 

The last argument, type=“density”, makes the total area of the histogram add to 1. (The 
argument prob=TRUE was used with hist().) 

Densityplots The density estimate is an alternative to a histogram. Density estimates 
are graphed with the densityplot() function, as in  

* Some online documentation exists in Volume 2/2 of the R News newsletter (http://cran.r-
project.org/doc/Rnews) and the grid package author’s home page 
(http://www.stat.auckland.ac.nz/~paul/grid/grid.html). 
† See Appendix A for information about startup files. 

densityplot( ~ wt | factor(smoke), data=babies) 

Boxplots Boxplots can be univariate or multivariate. 
The relationship between gestation time and income was investigated in Figure 4.6. A 

similar graph can be made with the function bwplot (). (A boxplot is also known as a 
box-and-whisker plot, hence the name.) 

> bwplot(gestation ~ factor(inc), data=babies, 
+ subset = gestation != 999 ) 

Figure 4.7 shows this broken down further by the smoking variable. 

> bwplot(gestation ~ factor(inc) | factor(smoke), 
data=babies, 
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+ subset = gestation != 999) 

 

Figure 4.7 Gestation versus income 
level by smoking status 

Scatterplots The lattice function xyplot() produces scatterplots. As these are graphs of 
bivariate relationships, a response variable is needed. This example will plot the 
relationship between gestation time and weight for each level of the factor smoke. 

| > xyplot(wt ~ gestation | factor(smoke), data = 
babies, 
+ subset = (wt != 999 & gestation != 999)) 

Scatterplots with regression line The last example can be improved if we add a 
regression line, as was done using abline(). However, the panels of the scatterplot do not 
allow this type of command directly. Rather, lines are added as the panels are drawn. To 
override the default graphic, we specify a panel-drawing function. The following 
command creates a panel function called plot. regression. (User-defined functions will be 
discussed in Chapter 6.) 

> plot.regression=function(x,y) { 
+ panel.xyplot(x,y)           # make x-y plot 
+ panel.abline(1m(y ~ x))     # add a regression line 
+} 

This function is used as the value of the panel= argument: 

> xyplot(wt ~ gestation | factor(smoke), data=babies, 
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+ subset=(wt != 999 & gestation != 999), 
+ panel=panel.regression)     # a new panel function 

Figure 4.8 contains the graphic. We might ask, “Are the slopes similar?” and, “What 
would it mean if they aren’t?”  

 

Figure 4.8 Gestation versus weight 
for levels of smoke 

4.4.1 Problems 

4.22 The kid. weights (UsingR) data set contains measurements for several children. 
There is a clear relationship between height and weight. Break the data down by the age 
of the child. As age is numeric, it helps to turn it into a factor: cut (age/12, 3*(0:4)). Do 
you see the same trend for all the age groups?  

4.23 For the kid.weights (UsingR) data set, explore the relationship of weight and 
gender for the age ranges 0–3, 3–6, 6–9, and 9–12. Is the relationship always the same? 

4.24 The female. inc (UsingR) data set contains income and race data for females in 
the United States for the year 2001. Make a boxplot of the income variable broken up by 
the race variable. Do there appear to be any major differences among the races? In 
addition, compute the summary statistics for each racial group in the data. 

4.25 The data set ToothGrowth contains measurements of tooth growth for different 
dosages of a supplement. Use the function bwplot() to make boxplots of len for each level 
of dose broken up by the levels of supp. You need to make dose a factor first. Also, 
repeat the graphic after reversing the role of the two factors. 

4.26 The car safety (UsingR) data set contains data on accident fatalities per million 
vehicles for several types of cars. Make boxplots of Driver. deaths broken down by type. 
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Which type of car has the largest spread? Repeat using the variable Driver.deaths+Other 
.deaths. Which has the largest spread? Are there any trends? 

4.27 The data set Orange contains data on the growth of five orange trees. Use 
xyplot() to make a scatterplot of the variable circumference modeled by age for each 
level of Tree. Are the growth patterns similar? 

4.28 The data set survey (MASS) contains survey information on students. 

1. Make scatterplots using xyplot() of the writing-hand size (Wr.Hnd) versus non-
writing-hand size (NW.Hnd), broken down by gender (Sex). Is there a trend? 

2. Make boxplots using bwplot() of Pulse() for the four levels of Smoke broken down 
by gender Sex. Are there any trends? Differences? 

Do you expect any other linear relationships among the variables? 

4.5 Types of data in R 

(This section may be skipped initially. It is somewhat technical and isn’t used directly in 
the remainder of the text.) 

The basic structures for storing data in R are data vectors for univariate data, matrices 
and data frames for rectangular data, and lists for more general needs. Each data vector 
must contain the same type of data. The basic types are numeric, logical, and character. 

Many objects in R also have a class attribute given by the class() function. It is the 
class of an object that is used by R to give different meanings to generic functions, such 
as plot() and summary(). 

4.5.1 Factors 

Factors should also be considered to be another storage type, as they are handled 
differently than a data vector. Recall, factors keep track of categorical data, as can a data 
vector, yet unlike other data types, their values can come only from the specified levels of 
the factor. Manipulating the levels requires knowing how to do a few things: creating a 
factor, listing the levels, adding a level, dropping levels, and ordering levels. 

Creating factors 
Factors are made with factor() or as. factor(). These functions coerce the data into a factor 
and define the levels of the new factor. For example: 

> x = 1:3; fac=letters[1:3] 
> factor(x)                      # default uses sorted 
order 
[1] 1 2 3 
Levels: 1 2 3 
> factor(fac)                    # same with characters 
[1] a b c 
Levels: a b c 

Using R for introductory statistics     132



When a factor is printed, the levels also appear. 
It is important to realize that these are factors and not numbers. For example, we can’t 

add factors. 

> x + factor(x) 
[1] NA NA NA 
Warning message: 
"+" not meaningful for factors in: Ops.factor(x, 
factor(x)) 

Adding levels: levels=and levels() 
When defining a factor, the levels= argument can be used to specify the levels. 

> factor(x,levels=1:10)      # add more levels than 3 
[1] 1 2 3 
Levels: 1 2 3 4 5 6 7 8 9 10 
> factor(x,levels=fac)       # get NA if not in levels 
[1] <NA> <NA> <NA> 
Levels: a b c 

The values of data vector being coerced into a factor should match those specified to 
levels=. 

The levels() function can list the levels of a factor directly and allows us to change or 
add to the levels.  

> x = factor(1:5) 
> x 
[1] 1 2 3 4 5 
Levels: 1 2 3 4 5 
> levels(x)                     # character vector 
[1] "1" "2" "3" "4" "5" 

The levels() function can also change the levels of a factor. As levels() changes an 
attribute of the data vector, like names(), it appears on the other side of the assignment. 
For example: 

> x = factor(1:3) 
> x 
[1] 1 2 3 
Levels: 1 2 3 
> levels(x) = letters [1:3] 
> x 
[1] a b c 
Levels: a b c 
> levels(x) = 1:10                      # add more 
levels 
> x 
[1] 1 2 3 
Levels: 1 2 3 4 5 6 7 8 9 10 
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The number of new levels must be at least as great as the current number. 

Dropping levels of factors 
If we take a subset from a factor, we may want the levels to be shortened to match only 
those values in the subset. By default, our subset will contain all the old levels. 
Releveling can be done in a few ways. The levels () function won’t work, as that expects 
the same or more levels. However, factor () will work: 

> x = factor(letters[1:5]) 
> x 
[1] a b c d e 
Levels: a b c d e 
> x[1:3] 
[1] a b c 
Levels: a b c d e 
> factor(x[1:3]) 
[1] a b c 
Levels: a b c 

A more direct way to relevel is to use the drop=TRUE argument when doing the 
extraction: 

> x[1:3,drop=TRUE] 
[1] a b c 
Levels: a b c 

Ordering levels in a factor 
The ordering of the levels is usually done alphabetically (according to the result of sort 
(unique(x)). If we want a specific ordering of the levels, we can set the levels directly in 
the levels= argument of factor() or using levels(). 

For example: 

> 1 = letters [1:5]         # the first 5 letters 
> factor(1)                 # order of levels is by 
ASCII 
[1] a b c d e 
Levels: a b c d e 
> factor(1,levels=rev(1))   # specific order of levels 
[1] a b c d e 
Levels: e d c b a 

If we want a certain level to be considered first, the relevel() function can be used, as in 
relevel (factor, ref =…). 

4.5.2 Coercion of objects 
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Coercion is the act of forcing one data type into another. This is typically done with an 
“as.” function, such as as.data.frame(), although we’ll see that some coercion happens 
implicitly. 

Coercing different data types 
We use the language data vector to refer to an indexed set of data of length n all of the 
same type. The types we have encountered are “numeric” for storing numbers, 
“character” for storing strings, “factor” for storing factors, and “logical” for storing 
logical expressions. We can convert from one type to another with the “as.” functions, 
such as as.numeric() or as. character(). We can check the type with the corresponding 
“is.” functions. For example: 

> x = 1:5 
> 
c(is.numeric(x),is.character(x),is.factor(x),is.logical
(x)) 
[1] TRUE FALSE FALSE FALSE 
> x = as.character(x) 
> x 
[1] "1" "2" "3" "4" "5" 
> 
c(is.numeric(x),is.character(x),is.factor(x),is.logical
(x)) 
[1] FALSE TRUE FALSE FALSE 
> x = as.factor(x) 
> x 
[1] 12345 
Levels: 12345 
> 
c(is.numeric(x),is.character(x),is.factor(x),is.logical
(x)) 
[1] FALSE FALSE TRUE FALSE 
> as.logical(x) 
[1] NA NA NA NA NA 

Each type prints differently. When coercion fails, a value of NA is returned. The coercion 
to logical is picky. Values like a or “F” or “FALSE” will coerce to FALSE, but not 
values like “0” (a character) or “f.” 

A caveat: although we use the term “data vector” to describe these data sets, the is. 
vector() function does not consider factors to be vectors. 

Coercing factors to other types 
Coercing factors can be tricky, as they print differently from how they are stored. An 
artificial example will illustrate: 

> f = factor(letters[1:5]) 
> f 
[1] a  b c d e 
Levels:  a b c d e 
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> unclass(f) # shows how f is stored 
[1] 1 2 3 4 5 
attr(,"levels”) 
[1] “a” “b” “c” “d” “e” 
> as.vector(f) # coerce to vector type 
[1] “a” “b” “c” “d” “e” 
> as.integer(f) # coerce to integers 
[1] 1 2 3 4 5 

The unclass() function shows that a factor is stored using an internal coding involving 
numbers. The attribute “levels” gives the levels. The coercion to a vector gives a 
character vector in this case; the coercion to an integer returns the internal codes. 

The final one can cause confusion. Consider this example: 

> g = factor(2:4) 
> g 
[1] 2 3 4 
Levels: 2 3 4 
> as.numeric(g) 
[1] 1 2 3 
> as.numeric(as.character(g)) 
[1] 2 3 4 

The as. numeric() command by itself returns the codes when applied to a factor. To get 
the levels as numbers, we convert to character, then to numeric: 

> as.numeric(as.character(x)) 
[1] 2 3 4 

As a convenience, when factors are used to label graphs, say with the labels= argument of 
the text() function, this conversion is done automatically. 

Coercing vectors, data frames, and lists 
There are “as.” functions to coerce data storage from one type to another. But they can’t 
do all the work.  

Coercing a vector to a data frame If we want to coerce a vector into a data frame we 
can do it with the function as.data. frame(). If x is a vector, then as.data.frame(x) will 
produce a data frame with one column vector. By default, strings will be coerced to 
factors. 

We may want to create a matrix from our numbers before coercing to a data frame. 
This can be achieved by setting the dim() attribute of the data vector. The dim() function 
takes a vector where each component specifies the size of that dimension. As usual, rows 
first, then columns. 

> x = 1:8 
> dim(x)=c(2,4)           #2 rows 4 columns 
> x                       # column by column 
    [,1] [,2] [,3] [,4] 
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[1,]   1    3    5    7 
[2,]   2    4    6    8 
> as.data.frame(x)        # turn matrix to data frame 
  V1 V2 V3 V4 
1  1  3  5  7 
2  2  4  6  8 

Coercing a data frame or list into a vector To coerce a list or data frame into a vector, 
we should start out with all the same type of data, otherwise the data will be coerced 
implicitly. The unlist() function, when applied to a list, will form a vector of all the 
“atomic” components of the list, recursively traversing through a list to do so. When 
applied to a data frame it goes column by column creating a vector. For example: 

> x = 1:8;dim(x) = c(2,4);df = data.frame(x) 
> df 
  X1 X2 X3 X4 
1  1  3  5  7 
2  2  4  6  8 
> unlist(df) 
X11 X12 X21 X22 X31 X32 X41 X42 
  1   2   3   4   5   6   7   8 
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Chapter 5  
Describing populations 

Statistical inference is the process of forming judgments about a population based on a 
sample from the population. In this chapter we describe populations and samples using 
the language of probability. 

5.1 Populations 

In order to make statistical inferences based on data we need a probability model for the 
data. Consider a univariate data set. A single data point is just one of a possible range of 
values. This range of values will be called the population. We use the term random 
variable to be a random number drawn from a population. A data point will be a 
realization of some random variable. We make a distinction between whether or not we 
have observed or realized a random variable. Once observed, the value of the random 
variable is known. Prior to being observed, it is full of potential—it can be any value in 
the population it comes from. For most cases, not all values or ranges of values of a 
population are equally likely, so to fully describe a random variable prior to observing it, 
we need to indicate the probability that the random variable is some value or in a range of 
values. We refer to a description of the range and the probabilities as the distribution of 
a random variable. 

By probability we mean some number between a and 1 that describes the likelihood of 
our random variable having some value. Our intuition for probabilities may come from a 
physical understanding of how the numbers are generated. For example, when tossing a 
fair coin we would think that the probability of heads would be one-half. Similarly, when 
a die is rolled the probability of rolling a would be one-sixth. These are both examples 
in which all outcomes are equally likely and finite in number. In this case, the probability 
of some event, a collection of outcomes, is the number of outcomes in the event divided 
by the total number of outcomes. In particular, this says the probability of any event is 
between a and 1. 

For situations where our intuition comes about by performing the same action over 
and over again, our idea of the probability of some event comes from a proportion of 
times that event occurs. For example, the batting average of a baseball player is a running 
proportion of a player’s success at bat. Over the course of a season, we expect this 
number to get closer to the probability that an official at bat will be a success. This is an 
example in which a long-term frequency is used to give a probability. 

For other populations, the probabilities are simply assigned or postulated, and our 
model is accurate as far as it matches the reality of the data collected. We indicate 
probabilities using a P() and random variables with letters such as X. For example, 
P(X≤5) would mean the probability the random variable X is less than or equal to 5. 



5.1.1 Discrete random variables 

Numeric data can be discrete or continuous. As such, our model for data comes in the 
same two flavors. 

Let X be a discrete random variable. The range of X is the set of all k where P(X=k]>0. 
The distribution of X is a specification of these probabilities. Distributions are not 
arbitrary, as for each k in the range, P(X=k)>0 and P(X=k)≤1. Furthermore, as X has 
some value, we have ∑k P(X=k)=1. 

Here are a few examples for which the distribution can be calculated. 
■ Example 5.1: Number of heads in two coin tosses If a coin is tossed two times we 

can keep track of the outcome as a pair. (H, T), for example, denotes “heads” then “tails.” 
The set {(H,H), (H, T), (T,H),(T, T}} contains all possible outcomes. If X is the number of 
heads, then X is either 0, 1, or 2. Intuitively, we know that for a fair coin all the outcomes 
have the same probability, so P(X= 0)=1/4, P(X=1)=1/2, and P(X=2)=1/4. 

■ Example 5.2: Picking balls from a bag Imagine a bag with N balls, of which R are 
red and N—R are green. We pick a ball, note its color, replace the ball, and repeat. Let X 
be the number of red balls. As in the previous example, X is 0, 1, or 2. The probability 
that X=2 is intuitively (R/N)·(R/N) as R/N is the probability of picking a red ball on any 
one pick. The probability that X=0 is ((N−R)/N)2 by the same reasoning, and as all 
probabilities add to 1, P(X=1)=2(R/N)((N−R)/N). This specifies the distribution of X. 

The binomial distribution describes the result of selecting n balls, not two.  
The intuition that leads us to multiply two probabilities together is due to the two 

events being independent. Two events are independent if knowledge that one occurs 
doesn’t change the probability of the other occurring. Two events are disjoint if they 
can’t both occur for a given outcome. Probabilities add with disjoint events. 

■ Example 5.3: Specifying a distribution We can specify the distribution of a 
discrete random variable by first specifying the range of values and then assigning to 
each k a number pk=P(X=k) such that ∑pk=1 and pk≥0. To visualize a physical model 
where this can be realized, imagine making a pie chart with areas proportional to pk, 
placing a spinner in the middle, and spinning. The ending position determines the value 
of the random variable. 

Figure 5.1 shows a spike plot of a distribution and a spinner model to realize values of 
X. A spike plot shows the probabilities for each value in the range of X as spikes, 
emphasizing the discreteness of the distribution. The spike plot is made with the 
following commands: 

> k = 0:4 
> p=c(1,2,3,2,1)/9 
> plot(k,p,type="h",xlab="k", 
ylab="probability",ylim=c(0,max(p))) 
> points(k,p,pch=16,cex=2)      # add the balls to top 
of spike 

The argument type="h" plots the vertical lines of the spike plot. 
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Figure 5.1 Spike plot of distribution 
of X and a spinner model to realize 
values of X with the specified 
probabilities 

Using sample() to generate random values 
R will generate observations of a discrete random variable with the sample () function. If 
the data vector k contains the values we are sampling from, and p contains the 
probabilities of each value being selected, then the command sample(k, size=1, prob=p) 
will select one of the values of k with proba-bilities specified by p. 

For example, the number of heads for two coin tosses can be simulated as follows: 

> k = 0:2 
> p = c(1,2,1)/4 
> sample(k,size=1,prob=p) 
[1] 0 
> sample(k,size=1,prob=p) 
[1] 2 

The default probabilities for prob= make each value of k equally likely. We can use this 
to simulate rolling a pair of dice and adding their values: 

> sample(1:6,size=1) +sampled :6, size=1) 
[1] 12 
> sampled: 6, size=1)+sampled : 6, size=1) 
[1] 5 

The mean and standard deviation of a discrete random variable 
For a data set, the mean and standard deviation are summaries of center and spread. For 
random variables these concepts carry over, though the definitions are different. 

The population mean is denoted by µ (the Greek letter mu). If X is a random variable 
with this population, then the mean is also called the “the expected value of X” and is 
written E(X). A formula for the expected value of a discrete random variable is 

 (5.1) 
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This is a weighted average of the values in the range of X. 
On the spike plot, the mean is viewed as a balancing point if there is a weight assigned 

to each value in the range of X proportional to the probability. 
The population standard deviation is denoted by σ (the Greek letter sigma). The 

standard deviation is the square root of the variance. If X is a discrete random variable, 
then its variance is defined by σ2=VAR(X)=E((X−µ)2). This is the expected value of the 
random variable (X−µ)2. That is, the population variance measures spread in terms of the 
expected squared distance from the mean. 

5.1.2 Continuous random variables 

Continuous data is modeled by continuous random variables. For a continuous random 
variable X, it is not fruitful to specify probabilities like P(X=k) for each value in the 
range, as the range has too many values. Rather, we specify probabilities based on the 
chance that X is in some interval. For example, P(a< X≤b), which would be the chance 
that the random variable is more than a but less than or equal to b.  

Rather than try to enumerate values for all a and b, these probabilities are given in 
terms of an area for a specific picture. 

A function f(x) is the density of X if, for all b, P(X≤b) is equal to the area under the 
graph of f and above the x-axis to the left of b. Figure 5.2 shows this by shading the area 
under f to the left of b. Although in most cases computing these areas is more advanced 
than what is covered in this text, we can find their values for many different densities 
using the appropriate group of functions in R. 

 

Figure 5.2 P(X≤b) is defined by the 
area to left of b under the density of 
X 

Using our intuitive notions of probability, for f(x) to be a density of X the total area under 
f(x) should be 1 and f(x)≥0 for all x. Otherwise, some intervals could get negative 
probabilities. Areas can also be broken up into pieces, as Figure 5.3 illustrates, showing 
P(a<X≤b)=P(X≤b)−P(X≤a). This reasoning also gives the useful complement rule: for 
any b, P(X≤b)=1−P(X>b). 
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Figure 5.3 Shaded areas can be 
broken into pieces and manipulated. 
This illustrates P(a < X ≤ b)=P(X 
≤b)- P(X ≤ a). 

For example, the uniform distribution on [0, 1] has density f(x)=1 on the interval [0, 1] 
and is 0 otherwise. Let X be a random variable with this density.  

Then P(X≤b)=b if 0≤b≤1, as the specified area is a rectangle with length b and height 
1. As well, P(X>b)=1−b for the same reason. Clearly, we have P(X≤b)=1−P(X>b). 

The p.d.f. and c.d.f. 
For a discrete random variable it is common to define a function f(k) by f(k)= P(X=k). 
Similarly, for a continuous random variable X, it is common to denote the density of X by 
f(x). Both usages are called p.d.f.’s. For the discrete case, p.d.f. stands for probability 
distribution function, and for the continuous case, probability density function. The 
cumulative distribution function, c.d.f., is F(b)=P(X≤b). In the discrete case this is given 
by ∑k≤bP(X=k), and in the continuous case it is the area to the left of b under the density 
f(x). 

The mean and standard deviation of a continuous random variable 
The concepts of the mean and standard deviation apply for continuous random variables, 
although their definitions require calculus. The intuitive notion for the mean of X is that it 
is the balancing point for the density of X. The notation µ or E(X) is used for the mean, 
and σ or SD(X) is used for the standard deviation. 

If X has a uniform distribution on [0, 1], then the mean is 1/2. This is clearly the 
balancing point of the graph of the density, which is constant on the interval. The 
variance can be calculated to be 1/12, so σ is about .289. 

Quantiles of a continuous random variable 
The quantiles of a data set roughly split the data by proportions. Let X be a continuous 
random variable with positive density. Referring to Figure 5.2, we see that for any given 
area between a and 1 there is a b for which the area to the right of b under f is the desired 
amount. That is, for each p in [0, 1] there is a b such that P(X≤b)=p. This defines the p-
quantile or 100· p percentile of X. The quantile function is inverse to the c.d.f., as it 
returns the x value for a given area, whereas the c.d.f. returns the area for a given x value. 
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5.1.3 Sampling from a population 

Our probability model for a data point is that it is an observation of a random variable 
whose distribution describes the parent population. To perform statistical inference about 
a parent population, we desire a sample from the population. That is, a sequence of 
random variables X1,X2,…, Xn. A sequence is identically distributed if each random 
variable has the same distribution. A sequence is independent if knowing the value of 
some of the random variables does not give additional information about the distribution 
of the others. A sequence that is both independent and identically distributed is called an 
i.i.d. sequence, or a random sample.  

Toss a coin n times. If we let Xi be 1 for a heads on the ith coin toss and 0 otherwise, 
then clearly X1, X2, …, Xn is an i.i.d. sequence. For the spinner analogy of generating 
discrete random variables, the different numbers will be i.i.d. if the spinner is spun so 
hard each time that it forgets where it started and is equally likely to stop at any angle. 

If we get our random numbers by randomly selecting from a finite population, then the 
values will be independent if the sampling is done with replacement. This might seem 
counterintuitive, as there is a chance a member is selected more than once, so the values 
seem dependent. However, the distribution of a future observation is not changed by 
knowing a previous observation. 

Random samples generated by sample() 
The sample() function will take samples of size n from a discrete distribution by 
specifying size=n. The sample will be done with replacement if we specify 
replace=TRUE. This is important if we want to produce an i.i.d. sample. The default is to 
sample without replacement. 

## toss a coin 10 times. Heads=1, tails=0 
> sample(0:1,size=10,replace=TRUE) 
[1] 0 0 1 1 1 1 1 0 1 0 
> sampled:6,size=10,replace=TRUE)   ## roll a die 10 
times 
[1] 1422214644 
## sum of dice roll 10 times 
> sampled: 6, size=10,replace=TRUE) + sampled : 6, 
size=10,replace=TRUE) 
[1] 7 7 7 9 12 4 7 9 5 4 

■ Example 5.4: Public-opinion polls as random samples 
The goal of a public-opinion poll is to find the proportion of a target population that 
shares a given attitude. This is achieved by selecting a sample from the target population 
and finding the sample proportion who have the given attitude. A public-opinion poll can 
be thought of as a random sample from a target population if each person polled is 
randomly chosen from the entire population with replacement. Assume we know that the 
target population of 10,000 people has 6,200 that would answer “yes” to our survey 
question. Then a sample of size 10 could be generated by 

> sample(rep(0:1,c(3200,6800)),size=10,replace=T) 
[1]  1 0 1 0 1 1 1 1 1 0 
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The rep() function produces 10,000 values: 3,200 O’s and 6,800 1’s. 
The target population is different from the “population,” or distribution, of the random 

variables. For the responses, the possible values are coded with a 0 or 1 with respective 
probabilities 1−p and p. Using this distribution, a random sample can also be produced by 
specifying the probabilities using prob=: 

> sample(0:1,size=10,replace=T,prob=c(l-.62,.62)) 
[1] 0 1 0 1 0 0 0 1 1 0 

5.1.4 Sampling distributions 

A statistic is a value derived from a random sample. Examples are the sample mean, 
and the sample median. Since a statistic depends on a 

random sample, it, too, is a random variable. To emphasize this, we use a capital The 
distribution of a statistic is known as its sampling distribution. 

The sampling distribution of a statistic can be quite complicated. However, for many 
common statistics, properties of the sampling distribution are known and are related to 
the population parameters. For example, the sample mean of a random sample has 

 
  

That is, the mean of is the same as the mean of the parent population, and the standard 
deviation of is related to the standard deviation of the parent population, but it differs 
as it is smaller by a factor of These facts allow us to use to make inferences 
about the population mean. 

5.1.5 Problems 

5.1 Toss two coins. Let X be the resulting number of heads and Y be the number of tails. 
Find the distribution of each. 

5.2 Roll a pair of dice. Let X be the largest value shown on the two dice. Use sample () 
to simulate five values of X. 

5.3 The National Basketball Association lottery to award the first pick in the draft is 
held by putting 1,000 balls into a hopper and selecting one. The teams with the worst 
records the previous year have a greater proportion of the balls. The data set nba.draft 
(UsingR) contains the ball allocation for the year 2002. Use sample() with Team as the 
data vector and prob=Balls to simulate the draft. What team do you select? Repeat until 
Golden State is chosen. How long did it take? 

5.4 Let be the p.d.f. of a triangular random variable X. Find 
 

5.5 Let X have the uniform distribution on [0, 1]. That is, it has density f(x)=1 for 
0≤x≤1. For 0≤p≤1 find the quantile function that returns b, where P(X≤b)=p. 

5.6 Repeat the previous problem for the triangular distribution with density 
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5.7 Toss two coins. Let X be the number of heads and Y the number of tails. Are X and 
Y independent? 

5.2 Families of distributions 

In statistics there are a number of distributions that come in families. Each family is 
described by a function that has a number of parameters characterizing the distribution. 
For example, the uniform distribution is a continuous distribution on the interval [a,b] 
that assigns equal probability to equal-sized areas in the interval. The parameters are a 
and b, the endpoints of the intervals. 

5.2.1 The d, p, q, and r functions 

R has four types of functions for getting information about a family of distributions. 
The “d” functions return the p.d.f. of the distribution, whereas the “p” functions return the 
c.d.f. of the distribution. The “q” functions return the quantiles, and the “r” functions 
return random samples from a distribution. 

These functions are all used similarly. Each family has a name and some parameters. 
The function name is found by combining either d, p, q, or r with the name for the family. 
The parameter names vary from family to family but are consistent within a family. 

For example, the uniform distribution on [a,b] has two parameters. The family name 
is unif. In R the parameters are named min= and max=. 

> dunif(x=1, min=0, max=3) 
[1] 0.3333 
> punif(q=2, min=0, max=3) 
[1] 0.6667 
> qunif(p=1/2, min=0, max=3) 
[1] 1.5 
> runif(n=1, min=0, max=3) 
[1] 1.260 

The above commands are for the uniform distribution on [0, 3]. They show that the 
density is 1/3 at x=1 (as it is for all 0≤x≤3); the area to the left of 2 is 2/3; the median or 
.5-quantile is 1.5; and a realization of a random variable is 1.260. This last command will 
vary each time it is run. 

It is useful to know that the arguments to these functions can be vectors, in which case 
other arguments are recycled. For example, multiple quantiles can be found at once. 
These commands will find the quintiles: 

> ps = seq(0,1,by=.2)         # vector 
> names(ps)=as.character(seq(0,100,by=20)) # give names  
> qunif(ps, min=0, max=1) 
  0  20  40  60  80 100 
0.0 0.2 0.4 0.6 0.8 1.0 
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This command, on the other hand, will find five uniform samples from five different 
distributions. 

> runif(5, min=0, max=1:5)       # recycle min, 
[1] 0.6331 0.6244 1.9252 2.8582 3.0076 

5.2.2 Binomial, normal, and some other named distributions 

There are a few basic distributions that are used in many different probability models: 
among them are the Bernoulli, binomial, and normal distributions. 

Bernoulli random variables 
A Bernoulli random variable X is one that has only two values: a or 1. The distribution 
of X is characterized by p=P(X = 1). We use Bernoulli (p) to refer to this distribution. 
Often the term “success” is given to the event when X=1 and “failure” to the event when 
X=a. If we toss a coin and let X be 1 if a heads occurs, then X is a Bernoulli random 
variable where the value of p would be 1/2 if the coin is fair. A sequence of coin tosses 
would be an i.i.d. sequence of Bernoulli random variables, also known as a sequence of 
Bernoulli trials. 

A Bernoulli random variable has a mean µ=p and a variance σ2=p( 1−p). 
In R, the sample() command can be used to generate random samples from this 

distribution. For example, to generate ten random samples when p=1/4 can be done with 

> n = 10; p = 1/4 
> sample(0:1, size=n, replace=TRUE,prob=c(1-p,p)) 
[1] 0 0 0 0 0 0 0 1 0 0 

Binomial random variables 
A binomial random variable X counts the number of successes in n Bernoulli trials. 
There are two parameters that describe the distribution of X: the number of trials, n, and 
the success probability, p. Let Binomial (n, p) denote this distribution. The possible range 
of values for X is 0, 1, …, n. The distribution of X is known to be 

 
  

The term is called the binomial coefficient and is defined by  

 
  

where n! is the factorial of n, or n·(n−1)…2·1. By convention, 0!=1. The binomial 
coefficient, counts the number of ways k objects can be chosen from n distinct objects 
and is read “n choose k.” The choose() function finds the binomial coefficients. 

The mean of a Binomial (n, p) random variable is µ=np, and the standard deviation is 
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In R the family name for the binomial is binom, and the parameters are labeled size= 
for n and prob= for p. 

■ Example 5.5: Tossing ten coins Toss a coin ten times. Let X be the number of 
heads. If the coin is fair, X has a Binomial(10,1/2) distribution. 

The probability that X=5 can be found directly from the distribution with the choose() 
function: 

> choose(10,5) * (1/2)^5 * (1/2)^(10–5) 
[1] 0.2461 

This work is better done using the “d” function, dbinom(): 

> dbinom(5, size=10, prob=1/2) 
[1] 0.2461 

The probability that there are six or fewer heads, P(X≤6)=∑k≤6 P(X=k), can be given 
either of these two ways: 

> sum(dbinom(0:6,size=10,prob=l/2)) 
[1] 0.8281 
> pbinom(6,size=10,p=1/2) 
[1] 0.8281 

If we wanted the probability of seven or more heads, we could answer using 
P(X≥7)=1−P(X≤6), or using the extra argument lower .tail=FALSE. 

This returns P(X>k) rather than P(X≤k). 
> sum(dbinom(7:10,size=10,prob=l/2)) 
[1] 0.1719 
> pbinom(6,size=10,p=1/2) 
[1] 0.1719 
> pbinom(6,size=10,p=1/2, lower.tail=FALSE) # k=6 not 
7! 
[1] 0.1719 

A spike plot (Figure 5.4) of the distribution can be produced using dbinom(): 

> heights=dbinom(0:10,size=10,prob=1/2) 
> plot(0:10, heights, type="h", 
+ main="Spike plot of X", xlab="k", ylab="p.d.f.") 
> points(0:10, heights, pch=16,cex=2) 

■ Example 5.6: Binomial model for a public-opinion poll In a public-opinion poll, the 
proportion of “yes” respondents is used to make inferences about the population 
proportion. If the respondents are chosen by sampling with replacement from the 
population, and the “yes” responses are coded by a 1 and the “no”  
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Figure 5.4 Spike plot of 
Binomial(10,1/2) distribution 

responses by a 0, then the sequence of responses is an i.i.d. Bernoulli sequence with 
parameter p, the population proportion. The number of “yes” respondents is then a 
Binomial(n, p) random variable where n is the size of the sample. 

For instance, if it is known that 62% of the population would respond favorably to the 
question were they asked, and a sample of size 100 is asked, what is the probability that 
60% or less of the sample responded favorably? 

> pbinom(60, size=100, prob=0.62) 
[1] 0.3759 

Normal random variables 
The normal distribution is a continuous distribution that describes many populations in 
nature. Additionally, it is used to describe the sampling distribution of certain statistics. 
The normal distribution is a family of distributions with density given by 

 
  

The two parameters are the mean, µ, and the standard deviation, a. We use Normal(µ, σ) 
to denote this distribution, although many books use the variance, σ2, for the second 
parameter. 

The R family name is norm and the parameters are labeled mean= and sd=. 
Figure 5.5 shows graphs of two normal densities, f(x|µ=0,σ=1) and f(x|µ=4, σ=1/2). 

The curves are symmetric and bell-shaped. The mean, µ, is a point of symmetry for the 
density. The standard deviation controls the spread of the curve. The distance between 
the inflection points, where the curves change from opening down to opening up, is two 
standard deviations. 

The figure also shows two shaded areas. Let Z have Normal(0, 1) distribution and X 
have Normal(4,1/2) distribution. Then the left shaded region is P(Z≤1.5) and the right one 
is P(X≤4.75). The random variable Z is called a standard normal, as it has mean a and 
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variance 1. A key property of the normal distribution is that for any normal random 
variable the z-score, (X−µ)/σ, is a standard normal. This says that areas are determined by 
z-scores. In Figure 5.5 the two shaded areas are the same, as each represents the area to 
the left of 1.5 standard deviations above the mean. 

We can verify this with the “p” function: 

> pnorm(1.5,  mean=0,sd=1) 
[1] 0.9332 
> pnorm(4.75, mean=4,sd=1/2)      # same z-score as 
above 
[1] 0.9332 

 

Figure 5.5 Two normal densities: the 
standard normal, f(x|0,1), and 
f(x|4,1/2). For each, the shaded area 
corresponds to a z-score of 3/2 or 
less. 

It is useful to know some areas for the normal distribution based on z-scores. For 
example, the IQR is the range of the middle 50%. We can find this for the standard 
normal by breaking the total area into quarters. 

> qnorm(c(.25,.5,.75)) 
[1] −0.6745  0.0000  0.6745 

We use qnorm() to specify the area we want. The mean and standard deviation are taken 
from the defaults of 0 and 1. For any normal random variable, this says the IQR is about 
1.35σ. 

How much area is no more than one standard deviation from the mean? We use 
pnorm() to find this: 

> pnorm(1)−pnorm(−1) 
[1] 0.6827 
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We see that roughly 68% of the area is in this range. For two and three standard 
deviations the numbers are 95% and 99.7%. We illustrate two ways to find these: 

> 1–2*pnorm(−2)      # subtract area of two tails 
[1] 0.9545 
> diff(pnorm(c(−3,3))) # use diff to subtract 
[1] 0.9973 

This says that 95% of the time a normal random variable is within two standard 
deviations of the mean, and 99.7% of the time it is within three standard deviations of its 
mean. These three values, 68%, 95%, and 99.7%, are useful to remember as rules of 
thumb. 

■ Example 5.7: What percent of men are at least 6 feet tall? Many distributions in 
nature are well approximated by the normal distribution. For example, the population of 
heights for adult males within an ethnic class. Assume for some group the mean is 70.2 
inches, and the standard deviation is 2.89 inches. What percentage of adult males are 
taller than 6 feet? What percentage are taller than 2 meters? Assuming the model applies 
for all males, what does it predict for the tallest male on the planet? 

We convert 6 feet into 72 inches and use pnorm to see that 73% are 6 feet or shorter: 

> mu = 70.2; sigma = 2.89 
> pnorm(72,mean = mu,sd = sigma) 
[1] 0.7332 

To answer the question for meters we convert to metric. Each inch is 2.54 centimeters, or 
0.0254 meters. 

> conv = 0.0254 
> pnorm(2/conv,mean = mu, sd = sigma) 
[1] 0.9984 

That is, fewer than 1% are 2 meters or taller. 
Finally, the tallest man could be found using quantiles. There are roughly 2.5 billion 

males, so the tallest man would be in the top 1/(2.5 billion) quantile: 

> p=1–1/2500000000 
> qnorm(p,mu,sigma)/12 
[1] 7.33 

This predicts 7 feet 4 inches, not even the tallest in the NBA. Expecting a probability 
model with just two parameters to describe a distribution like this completely is asking 
too much. • 

■ Example 5.8: Testing the rules of thumb We can test the rules of thumb using 
random samples from the normal distribution as provided by rnorm(). 

First we create 1,000 random samples and assign them to res: 

> mu = 100; sigma = 10 
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> res = rnorm(1000,mean = mu,sd = sigma) 
> k = 1;sum(res > mu − k*sigma & res < mu + k*sigma)  
[1] 694 
> k = 2;sum(res > mu − k*sigma & res < mu + k*sigma) 
[1] 958 
> k = 3;sum(res > mu − k*sigma & res < mu + k*sigma) 
[1] 998 

Our simulation has 69.4%, 95.8%, and 99.8% of the data within 1, 2, and 3 standard 
deviations of the mean. If we repeat this simulation, the answers will likely differ, as the 
1,000 random numbers will vary each time. 

5.2.3 Popular distributions to describe populations 

Many populations are well described by the normal distribution; others are not. For 
example, a population may be multimodal, not symmetric, or have longer tails than the 
normal distribution. Many other families of distributions have been defined to describe 
different populations. We highlight a few. 

Uniform distribution 
The uniform distribution on [a,b] is useful to describe populations that have no preferred 
values over their range. For a finite range of values, the sample() function can choose one 
with equal probabilities. The uniform distribution would be used when there is a range of 
values that is continuous. 

The density is a constant on [a,b]. As the total area is 1, the height is 1/(b− a). The 
mean is in the middle of the interval, µ=(a+b)/2. The variance is (b—a)2/12. The 
distribution has short tails. 

As mentioned, the family name in R is unif, and the parameters are min= and max= 
with defaults a and 1. We use Uniform(a, b) to denote this distribution. The left graphic 
in Figure 5.6 shows a histogram and boxplot of 25 random samples from Uniform(0, 10). 
On the histogram are superimposed the empirical density and the population density. The 
random sample is shown using the rug() function. 

> res = runif(50, min=0, max=10) 
## fig= setting uses bottom 35% of diagram 
> par(fig=c(0,1,0,.35)) 
> boxplot(res,horizontal=TRUE, bty="n", xlab="uniform 
sample") 
## fig= setting uses top 75% of figure 
> par(fig=c(0,1,.25,1), new=TRUE) 
> hist(res, prob=TRUE, main="", col=gray(.9)) 
> lines(density(res),lty=2) 
> curve(dunif(x, min=0, max=10), lwd=2, add=TRUE) 
> rug(res) 

(We overlaid two graphics by using the fig=argument to par(). This parameter sets the 
portion of the graphic device to draw on. You may manually specify the range on the x-
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axis in the histogram using xlim=to get the axes to match. Other layouts are possible, as 
detailed in the help page ?lay out.)  

 

Figure 5.6 Histogram and boxplot of 
50 samples from the Uniform(0, 10) 
distribution and the Exponential(1/5) 
distribution. Both empirical 
densities and population densities 
are drawn. 

Exponential distribution 
The exponential distribution is an example of a skewed distribution. It is a popular model 
for populations such as the length of time a light bulb lasts. The density is f(x\λ)=λe−λx, 
x≥0. The parameter λ is related to the mean by µ=1/λ and to the standard deviation by 
σ=1/λ. 

In R the family name is exp and the parameter is labeled rate=. We refer to this 
distribution as Exponential (λ). 

The right graphic of Figure 5.6 shows a random sample of size 50 from the 
Exponential (1/5) distribution, made as follows: 

> res = rexp(50, rate=1/5) 
## boxplot 
> par(fig=c(0,1,0,.35)) 
> boxplot(res, horizontal=TRUE, bty="n", 
xlab="exponential sample”) 
## histogram 
> par(fig=c(0,1,.25,1), new=TRUE) 
## store values, then find largest y one to set ylim= 
> tmp.hist = hist(res, plot=FALSE) 
> tmp.edens = density(res) 
> tmp.dens = dexp(0, rate=1/5) 
> y.max = max(tmp.hist$density, tmp.edens$y, tmp.dens) 
## make plots 
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> hist(res, ylim=c(0,y.max), prob=TRUE, main="", 
col=gray(.9)) 
> lines(density(res), lty=2) 
> curve(dexp(x, rate=1/5), lwd=2, add=TRUE) 
> rug(res) 

Plotting the histogram and then adding the empirical and population densities as shown 
may lead to truncated graphs, as the y-limits of the histogram may not be large enough. In 
the above, we look first at the maximum y-values of the histogram and the two densities. 
Then we set the ylim= argument in the call to hist(). Finding the maximum value differs 
in each case. For the hist() function, more is returned than just a graphic. We store the 
result and access the density part with tmp. hist$density. For the empirical density, two 
named parts of the return value are x and y. We want the maximum of the y value. 
Finally, the population density is maximal at 0, so we simply use the dexp() function at a 
to give this. For other densities, we may need to find the maximum by other means. 

Lognormal distribution 
The lognormal distribution is a heavily skewed continuous distribution on the positive 
numbers. A lognormal random variable, X, has its name as log(X) is normally distributed. 
Lognormal distributions describe populations such as income distribution. 

In R the family name is Inorm. The two parameters are labeled meanlog= and sdlog=. 
These are the mean and standard deviation of log(X), not of X. 

Figure 5.7 shows a sample of size 50 from the lognormal distribution, with parameters 
meanlog=0 and sdlog=1. 

 

Figure 5.7 Histogram and boxplot of 
50 samples from lognormal 
distribution with meanlog=0 and 
sdlog=1 

5.2.4 Sampling distributions 
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The following three distributions are used to describe sampling distributions. These are 
the t-distribution, the F-distribution, and the chi-squared distribution (sometimes written 
using the Greek symbol χ). 

The family names in R are t, f, and chisq. Their parameters are termed “degrees of 
freedom” and are related to the sample size when used as sampling distributions. For the t 
and chi-squared distributions, the degrees-of-freedom argument is df=. For the F-
distribution, as two degrees of freedom are specified, the arguments are df1= and df2=. 

For example, values l and r for each distribution containing 95% of the area can be 
found as follows: 

> qt(c(.025,.975), df=10)         # 10 degrees of 
freedom 
[1] −2.228 2.228 
> qf(c(.025,.975), dfl=10, df2=5) # 10 and 5 degrees of 
freedom 
[1] 0.2361 6.6192 
> qchisq(c(.025,.975), df=10)     # 10 degrees of 
freedom 
[1] 3.247 20.483 

5.2.5 Problems 

5.8 A die is rolled five times. What is the probability of three or more rolls of four? 
5.9 Suppose a decent bowler can get a strike with probability p=.3. What is the chance 

he gets 12 strikes in a row? 
5.10 A fair coin is tossed 100,000 times. The number of heads is recorded. What is the 

probability that there are between 49,800 and 50,200 heads? 
5.11 Suppose that, on average, a baseball player gets a hit once every three times she 

bats. What is the probability that she gets four hits in four at bats? 
5.12 Use the binomial distribution to decide which is more likely: rolling two dice 

twenty-four times and getting at least one double sixes, or rolling one die four times and 
getting at least one six? 

5.13 A sample of 100 people is drawn from a population of 600,000. If it is known 
that 40% of the population has a specific attribute, what is the probability that 35 or fewer 
in the sample have that attribute? 

5.14 If Z is Normal(0, 1), find the following: 

1. P(Z≤2.2) 
2. P(−1<Z≤2) 
3. P(Z>2.5) 
4. b such that P(−b<Z≤b)=0.90. 

5.15 Suppose that the population of adult, male black bears has weights that are 
approximately distributed as Normal(350,75). What is the probability that a randomly 
observed male bear weighs more than 450 pounds?  

5.16 The maximum score on the math ACT test is 36. If the average score for all high 
school seniors who took the exam was 20.6 with a standard deviation of 5.5, what percent 
received the passing mark of 22 or better? If 1,000,000 students took the test, how many 
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more would be expected to fail if the passing mark were moved to 23 or better? Assume a 
normal distribution of scores. 

5.17 A study found that foot lengths for Japanese women are normally distributed with 
mean 24.9 centimeters and standard deviation 1.05 centimeters. For this population, find 
the probability that a randomly chosen foot is less than 26 centimeters long. What is the 
95th percentile? 

5.18 Assume that the average finger length for females is 3.20 inches, with a standard 
deviation of 0.35 inches, and that the distribution of lengths is normal. If a glove 
manufacturer makes a glove that fits fingers with lengths between 3.5 and 4 inches, what 
percent of the population will the glove fit? 

5.19 The term “six sigma” refers to an attempt to reduce errors to the point that the 
chance of their happening is less than the area more than six standard deviations from the 
mean. What is this area if the distribution is normal? 

5.20 Cereal is sold by weight not volume. This introduces variability in the volume 
due to settling. As such, the height to which a cereal box is filled is random. If the heights 
for a certain type of cereal and box have a Normal(12, 0.5) distribution in units of inches, 
what is the chance that a randomly chosen cereal box has cereal height of 10.7 inches or 
less? 

5.21 For the f height variable in the father. son (UsingR) data set, compute what 
percent of the data is within 1, 2, and 3 standard deviations from the mean. Compare to 
the percentages 68%, 95%, and 99.7%. 

5.22 Find the quintiles of the standard normal distribution. 
5.23 For a Uniform(0, 1) random variable, the mean and variance are 1/2 and 1/12. 

Find the area within 1, 2, and 3 standard deviations from the mean and compare to 68%, 
95%, and 99.7%. Do the same for the Exponential(l/5) distribution with mean and 
standard deviation of 5. 

5.24 A q-q plot is an excellent way to investigate whether a distribution is 
approximately normal. For the symmetric distributions Uniform(0, 1), Normal(0, 1) and t 
with 3 degrees of freedom, take a random sample of size 100 and plot a quantile-normal 
plot using qqnorm(). Compare the three and comment on the curve of the plot as it relates 
to the tail length. (The uniform is short-tailed; the t-distribution with 3 degrees of 
freedom is long-tailed.)  

5.25 For the t-distribution, we can see that as the degrees of freedom get large the 
density approaches the normal. To investigate, plot the standard normal density with the 
command 

> curve(dnorm(x),−4,4) 

and add densities for the t-distribution with k=5,10,25,50, and 100 degrees of freedom. 
These can be added as follows: 

> k=5; curve(dt(x,df=k), lty=k, add=TRUE) 

5.26 The mean of a chi-squared random variable with k degrees of freedom is k. Can you 
guess the variance? Plot the density of the chi-squared distribution for k=2, 8, 18, 32, 50, 
and 72, and then try to guess. The first plot can be done with curve (), as in 
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> curve(dchisq(x,df=2), 0, 100) 

Subsequent ones can be added with 

> k=8; curve(dchisq(x,df=k), add=TRUE) 

5.3 The central limit theorem 

It was remarked that for an i.i.d. sample from a population the distribution of the sample 
mean had expected value µ and standard deviation where µ and σ are the 
population parameters. For large enough n, we see in this section that the sampling 
distribution of is normal or approximately normal. 

5.3.1 Normal parent population 

When the sample X1, X2, …, Xn is drawn from a Normal(µ, σ) population, the distribution 
of is precisely the normal distribution. Figure 5.8 draws densities for the population, 
and the sampling distribution of for n=5 and 25 when µ=0 and σ=1. 

> n=25; curve(dnorm(x,mean=0,sd=l/sqrt(n)), −3,3, 
+ xlab="x",ylab="Densities of sample mean",bty="1") 
> n=5;  curve(dnorm(x,mean=0,sd=l/sqrt(n)), add=TRUE) 
> n=1;  curve(dnorm(x,mean=0,sd=l/sqrt(n)), add=TRUE) 

The center stays the same, but as n gets bigger, the spread of gets smaller and smaller. 
If the sample size goes up by a factor of 4, the standard deviation goes down by 1/2 and 
the density concentrates on the mean. That is, with greater and greater probability, the 
random value of is close to the mean, µ, of the parent population. This phenomenon of 
the sample average concentrating on the mean is known as the law of large numbers. 

For example, if adult male heights are normally distributed with mean 70.2 inches and 
standard deviation 2.89 inches, the average height of 25 randomly  
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Figure 5.8 Density of for n=5 and 
n=25 along with parent population 
Normal(0, 1). As n increases, the 
density concentrates on µ. 

chosen males is again normal with mean 70.2 but standard deviation 1/5 as large. The 
probability that the sample average is between 70 and 71 is found with 

> mu=70.2; sigma=2.89; n=25 
> diff( pnorm(70:71, mu, sigma/sqrt(n)) ) 
[1] 0.5522 

Compare this to the probability for a single person 

> diff( pnorm(70:71, mu, sigma) ) 
[1] 0.1366 

5.3.2 Nonnormal parent population 

The central limit theorem states that for any parent population with mean µ and standard 
deviation σ, the sampling distribution of for large n satisfies 

 
  

where Z is a standard normal random variable. That is, for n big enough, the distribution 
of once standardized is approximately a standard normal distribution. We also refer to 
this as saying is asymptotically normal. 

Figure 5.9 illustrates the central limit theorem for data with an Exponential (1) 
distribution. This parent population and simulations of the distribution of for n=5, 25, 
and 100 are drawn. As n gets bigger, the sampling distribution of becomes more and 
more bell shaped. 
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Figure 5.9 was produced by simulating the sampling distribution of Simulations 
will be discussed in the next chapter. 

■ Example 5.9: Average service time The time it takes to check out at a  

 

Figure 5.9 Density estimates for 
when n=5,25,100 for an 
Exponential(1) population. As n 
increases, density becomes bell 
shaped and concentrates on µ=1. 

grocery store can vary widely. A certain checker has a historic average of oneminute 
service time per customer, with a one-minute standard deviation. If she sees 20 
customers, what is the probability that her check-out times average 0.9 minutes or less? 

We assume that each service time has the unspecified parent population with µ=1 and 
σ=1 and the sequence of service times is i.i.d. As well, we assume that n is large enough 
that the distribution is approximately Normal Then is given by 

> pnorm(.9, mean=1, sd = 1/sqrt(20)) 
[1] 0.3274 

There are other consequences of the central limit theorem. For example, if we replace σ 
with the sample standard deviation s when we standardize we still have 

 
  

This fact will be behind many of the statements in the next two chapters. This does not 
tell us what the sampling distribution is when n is not large; that will be discussed later. 

In this next example, we show how the central limit theorem applies to the binomial 
distribution for large n. 

■ Example 5.10: The normal approximation to the binomial distribution For an 
i.i.d. sequence of Bernoulli trials X1, X2, Xn with success probability p, the sample mean, 

is simply the number of successes divide by n, or the proportion of successes. We will 

Using R for introductory statistics     158



use the notation of in this case. The central limit theorem says that asymptotically 
normal with mean p and standard deviation  

If X is the number of successes, then X is Binomial(n, p). Since we know that 

X is approximately normal with mean np and variance That is, a binomial 
random variable is approximately normal if n is large enough. 

Let X have a Binomial(30,2/3) distribution. Figure 5.10 shows a plot of the 
distribution over [10,30]. The shaded boxes above each integer k have base 1 and height 
P(X=k), so their area is equal to P(X=k). The normal curve that is added to the figure has 

mean and standard deviation equal to that of X: µ=30·2/3=20 and 
From, the figure, we can see that the area of the shaded boxes, P(k≤22), is well 
approximated by the area to the left of 22.5 under the normal curve. This says P(X≤22) ≈ 
P(Z≤(22.5−µ)/σ) for a standard normal Z. For a general binomial random variable with 
mean µ and standard deviation σ, the approximation P(a≤X ≤b)≈P((a−1/2− µ)/σ≤ 
Z≤(b+1/2−µ)/σ) is an improvement to the central limit theorem. 

 

Figure 5.10 Plot of Binomial (30, 2/3) 
distribution marked by dots. The 
area of the rectangle covering k is 
the same as the probability of k 
successes. The drawn density is the 
normal distribution with the same 
population mean and standard 
deviation as the binomial. 

5.3.3 Problems 

5.27 Compare the exact probability of getting 42 or fewer heads in 100 coin tosses to the 
probability given by the normal approximation.  

5.28 Historically, a certain baseball player has averaged three hits every ten official at 
bats (he’s a .300 hitter). Assume a binomial model for the number of hits in a 600-at-bat 
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season. What is the probability the player has a batting average higher than .350? Use the 
normal approximation to answer. 

5.29 Assume that a population is evenly divided on an issue (p=1/2). A random 
sample of size 1,000 is taken. What is the probability the random sample will have 550 or 
more in favor of the issue? Answer using a normal approximation. 

5.30 An elevator can safely hold 3,500 pounds. A sign in the elevator limits the 
passenger count to 15. If the adult population has a mean weight of 180 pounds with a 
25-pound standard deviation, how unusual would it be, if the central limit theorem 
applied, that an elevator holding 15 people would be carrying more than 3,500 pounds? 

5.31 A restaurant sells an average of 25 bottles of wine per night, with a variance of 4. 
Assuming the central limit theorem applies, what is the probability that the restaurant will 
sell more than 775 bottles in the next 30 days? 

5.32 A traffic officer writes an average of four tickets per day, with a variance of one 
ticket. Assume the central limit theorem applies. What is the probability that she will 
write fewer than 75 tickets in a 21-day cycle? 
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Chapter 6  
Simulation 

One informal description of insanity is “repeating the same action while expecting a 
different result.” By this notion, the act of simulating a distribution could be considered 
somewhat insane, as it involves repeatedly sampling from a distribution and investigating 
the differences in the results. But simulating a distribution is far from insane. Simulating 
a distribution can give us great insight into the distribution’s shape, its tails, its mean and 
variance, etc. We’ll use simulation to justify the size of n needed in the central limit 
theorem for approximate normality of the sample mean. Simulation is useful with such 
specific questions, as well as with those of a more exploratory nature. 

In this chapter, we will develop two new computer skills. First for loops will be 
introduced. These are used to repeat something again and again, such as sampling from a 
distribution. Then we will see how to define simple functions in R.Defining functions not 
only makes for less typing; it also organizes your work and train of thought. This is 
indispensable when you approach larger problems. 

6.1 The normal approximation for the binomial 

We begin with a simulation to see how big n should be for the binomial distribution to be 
approximated by the normal distribution. Although we know explicitly the distribution of 
the binomial, we approach this problem by taking a random sample from this distribution 
to illustrate the approach of simulation. 

To perform the simulation, we will take m samples from the binomial distribution for 
some n and p. We should take m to be some large number, so that we get a good idea of 
the underlying population the sample comes from. We will then compare our sample to 
the normal distribution with µ=np, and σ2=np(1−p). If the sample appears to come from 
this distribution; we will say the approximation is valid.  

Let p=1/2. We can use the rbinom() function to generate the sample of size m. We try 
n=5, 15, and 25. In Figure 6.1 we look at the samples with histograms that are overlaid 
with the corresponding normal distribution. 

> m = 200; p = 1/2; 
> n = 5 
> res = rbinom(m,n,p)                # store results 
> hist(res, prob=TRUE, main="n = 5") # don’t forget 
prob=TRUE 
> curve(dnorm(x, n*p, sqrt(n*p*(1-p))), add=TRUE) # add 
density 
### repeat last 3 commands with n=15, n=25 



 

Figure 6.1 Histograms of normal 
approximation to binomial with 
p=1/2 and n=5, 10, and 25 

We see from the figure that for n=5 the approximation is not valid at all—the discreteness 
of the binomial distribution is still apparent. By n=15 and 25, the approximation looks 
pretty good. This agrees with the rule of thumb that when np and n(1−p) are both greater 
than 5 the normal approximation is valid. 

A better way to judge normality than with a histogram is with the quantilenormal plot 
made by qqnorm(). If the sampling distribution is normal then this plot will show an 
approximate straight line. 

> m = 200; p = 1/5; n = 25 
> res = rbinom(m,n,p) 
> qqnorm(res) 

Figure 6.2 shows the graph. The discreteness of the binomial shows through, but we can 
see that the points are approximately on a straight line, as they should be if the 
distribution is approximately normal. 

6.2 for loops 

Generating samples from the binomial distribution was straightforward due to the 
rbinom() function. For other statistics, we can generate samples, but perhaps only one at a 
time. In this case, to get a large enough sample to investigate the sampling distribution, 
we use a for loop to repeat the sampling.  
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Figure 6.2 Quantile-normal plot of 
binomial sample for n=25, p=1/5 

The central limit theorem tells us that the sampling distribution of is approximately 
normal if n is large enough. To see how big n needs to be we can repeat the above 
approach. That is, we find a large sample from the sampling distribution of and 
compare it to the normal distribution. 

Assume our population is Uniform(0,1), and we want to investigate whether 
is normally distributed when n=10. A single sample from the sampling 

distribution of can be found with the command mean (runif (10)). 
To draw repeated samples, we can use a for loop. A for loop will repeat itself in a 

predictable manner. For example, these commands will repeat the sampling 100 times, 
storing the answer in the res variable. 

> res = c() 
> for(i in 1:100) { 
+ res[i] = mean(runif(10)) 
+ } 

The variable res now holds 100 samples of for n=10 and each Xi being Uniform (0,1). 

The basic format of a for loop is 
for(variable.name in values) { 
block_of.commands 
} 

The keyword for is used. The variable .name is often something like i or j but can be any 
valid name. Inside the block of the for loop the variable takes on a different value each 
time through. The values can be a vector or a list. In the example it is 1:100, or the 
numbers 1 through 100. It could be something like letters to loop over the lowercase 
letters, or x to loop over the values of x. When it is a list, the value of variable .name 
loops over the top-level components.  
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6.3 Simulations related to the central limit theorem 

We use a for loop to investigate the normality of for different parent populations and 
different sample sizes. For example, if the Xi are Uniform(0, 1) we can simulate for 
n=2, 10, 25, and 100 with these commands: 

## set up plot window 
> plot(0,0,type="n",xlim=c(0,1),ylim=c(0,13.5), 
+     xlab="Density estimate",ylab="f(x)") 
> m = 500;a=0;b=1 
> n = 2 
> for (i in 1:m) res[i]=mean(runif(n,a,b)) 
> lines(density(res),lwd=2) 
## repeat last 3 lines with n=10, 25, and 100 

 

Figure 6.3 Density estimates for for 
n=2, 10, 25, and 100 with Uniform(0, 
1) data 

In Figure 6.3 a density estimate is plotted for each simulation. Observe how the densities 
squeeze in and become approximately bell shaped, as expected, even for n=10. As the 
standard deviation of is if n goes up four times (from 25 to 100, for example), 
the standard deviation gets cut in half. Comparing the density estimate for n=25 and 
n=100, we can see that the n=100 graph has about half the spread. 

In this example the for loop takes the shortened form 

for(i in values) a_single_command 

If there is just a single command, then no braces are necessary. This is convenient when 
we use the up arrow to edit previous command lines. 

In the problems, you are asked to simulate for a variety of parent populations to 
verify that the more skewed the data is, the larger n must be for the normal distribution to 
approximate the sampling distribution of  
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6.4 Defining a function 

In the previous examples, we have found a single sample of using a command like 

> mean(runif(n)) 

This generates n i.i.d. samples from the uniform distribution and computes their sample 
mean. It is often convenient to define functions to perform tasks that require more than 
one step. Functions can simplify our typing, organize our thoughts, and save our work for 
reuse. This section covers some of the basics of functions—their basic structure and the 
passing of arguments. More details are available in Appendix E. 

A basic function in R is conceptually similar to a mathematical function. In R, a 
function has a name (usually), a rule (the body of the function), a way of defining the 
inputs (the arguments to a function), and an output (the last command evaluated). 

Functions in R are created with the f unction() keyword. For example, we define a 
function to find the mean of a sample of size 10 from the Exponential (1) distribution as 
follows: 

> f = function() { 
+ mean(rexp(10)) 
+} 

To use this function, we type the name and parentheses 

> f() 
[1] 0.7301 

This function is named f. The keyword function() creates a function and assigns it to f. 
The body of the function is enclosed in braces: {}. The return value is the last line 
evaluated. In this case, only one line is evaluated—the one finding the mean(). (As with 
for loops, in this case the braces are optional.) In the next example we will discuss how to 
input arguments into a function. 

If we define a function to find a single observation from the sampling distribution, 
then our simulation can be done with generic commands such as these: 

> res = c() 
> ford in 1:500) res[i] = f() 

6.4.1 Editing a function 

An advantage of using functions to do our work is that they can be edited. The entire 
function needn’t be retyped when changes are desired. Basic editing can be done with 
either the fix() function or the edit() function. For example, the command fix(f) will open 
an editor (in Windows this defaults to notepad) to the definition of your function f. You 
make the desired changes to your function then exit the editor. The changes are assigned 
to f which can be used as desired. 
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The edit() function works similarly, but you must assign its return value, as in 

> f = edit(f) 

6.4.2 Function arguments 

A function usually has a different answer depending on the value of its arguments. 
Passing arguments to R functions is quite flexible. We can do this by name or position. 
As well, as writers of functions, we can create reasonable defaults. 

Let’s look at our function f, which finds the mean of ten exponentials. If we edit its 
definition to be 

f=function(n=10){ 
mean(rexp(n)) 
} 

then we can pass in the size of the sample, n, as a parameter. We can call this function in 
several ways: f(), f(10), and f(n=10) are all the same and use n=10. This command uses 
n=100: f(100). The first argument to f is named n and is given a default value of 10 by the 
n=10 specification in the definition. Calling f by f() uses the defaults values. Calling f by 
f(100) uses the position of the argument to assign the values inside the function. In this 
case, the 100 is assigned to the only argument, n=. When we call f with f(n=100) we use 
a named argument. With this style there is no doubt what value n is being set to. 

With fdefined, simulating 200 samples of for n=50 can be done as follows: 

> res = c() 
> ford in 1:200) res[i]=f(n = 50) 

Better still, we might want to pass in a parameter to the exponential. The rate of the 
exponential is 1 over its mean. So changing f to 

f = function(n = 10, rate = 1) { 
mean(rexp(n, rate = rate)) 
} 

sets the first argument of f to n with a default of 10 and the second to rate with a default 
of 1. This allows us to change the size and rate as in f(50,2), which would take 50 Xi’s 
each with rate 2 or mean 1/2. Alternately, we could do f(rate=1/2), which would use the 
default of 10 for n and use the value of 1/2 for rate. (Note that f (1/2) will not do this, as 
the 1/2 would match the position for n and not that of rate.) 

The arguments of a function are returned by the args() command. This can help you 
sort out the available arguments and their names as a quick alternative to the more 
informative help page. When consulting the help pages of R’s builtin functions, 
the…argument appears frequently. This argument allows the function writer to pass along 
arbitrarily named arguments to function calls inside the body of a function. 
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6.4.3 The function body 

The function body is a block of commands enclosed in braces. As mentioned, the braces 
are optional if there is a single command. The return value for a function is the last 
command executed. The function return() will force the return of a function, with its 
argument becoming the return value.  

Some commands executed during a function behave differently from when they are 
executed at the command line—in particular, printing and assignment. 

During interactive usage, typing the name of an R object causes it to be “printed.” This 
shows the contents in a nice way, and varies by the type of object. For example, factors 
and data vectors print differently. Inside a function, nothing is printed unless you ask it to 
be.* The function print() will display an object as though it were typed on the command 
line. The function cat() can be used to concatenate values together. Unlike print(), the 
cat() function will not print a new line character, nor the element numbers, such as [1]. A 
new line can be printed by including "\n" in the cat() command. When a function is 
called, the return value will print unless it is assigned to some object. If you don’t want 
this, such as when producing a graphic, the function invisible() will suppress the printing. 

Assignment inside a function block is a little different. Within a block, assignment to a 
variable masks any variable outside the block. This example defines x to be 5 outside the 
block, but then assigns x to be 6 inside the block. When x is printed inside the block the 
value of 6 shows; however, x has not changed once outside the block. 

> x = 5 
> f = function() { 
+ x = 6 
+ x 
+} 
> f() 
[1] 6 
> x 
[1] 5 

If you really want to force x to change inside the block, the global assignment operator 
<<− can be used, as can the function assign(). Consult the help pages ?"<<−" and ?assign 
for more detail. 

In the example above, the value of x used inside the block is the one assigned inside 
the block. If none had been assigned, R would have looked for a definition outside the 
block. For example: 

> x = 5 
> f = function() print (x) 
> f() 
[1] 5 
> rm(x) 
> f () 
Error: Object “x” not found 

When no variable named x is be found, an error message is issued.  
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* In Windows you may need to call flush, console() () to get the output. See the FAQ for details. 

6.5 Investigating distributions 

■ Example 6.1: The sample median 
The sample median, M, is a measurement of central tendency like the sample mean. Does 
it, too, have an approximately normal distribution? How does the sampling distribution of 
M reflect the parent distribution of the sample? Will M converge to some parameter of 
the parent distribution as converges to µ?  

 

Figure 6.4 Density estimates for 
simulations of the sample median 
from exponential data. As n 
increases, the sampling distribution 
appears to become normally 
distributed and concentrates on the 
median of the parent population. 

To investigate these questions, we will perform a simulation. Assume we have a random 
sample X1, X2, …, Xn taken from the Exponential(1) distribution. This distribution has 
mean 1 and median log(2) = .6931. We perform a simulation for n = 25, 100, and 400. 
First we define a function to find the median from the sample: 

> f = function(n) median(rexp(n)) 

Now we generate samples for different sizes of n. 

> m = 500 
> res.25 = c(); res.100 = c(); res.400 = c() 
> ford in 1:m) res.25[i] = f(25) 
> for(i in 1:m) res.100[i] = f(100) 
> for(i in 1:m) res.400[i] = f(400) 
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> summary(res.25) 
   Min. 1st Qu. Median  Mean 3rd Qu.  Max. 
  0.237   0.571  0.688 0.707   0.822 1.640 
> summary(res.100) 
   Min. 1st Qu. Median  Mean 3rd Qu. Max. 
  0.393   0.629  0.682 0.699   0.764 1.090 
> summary(res.400) 
   Min. 1st Qu. Median  Mean 3rd Qu. Max. 
  0.539   0.659  0.692 0.693   0.727 0.845 

The summary() commands show that the mean and median are similar for each sample 
and appear to be centered around the median of the parent population. 

We plot three density estimates to see the shape of the distribution in Figure 6.4. We 
plot the one for n=400 first, so the y-axis is large enough to accommodate the three 
graphs. 

> plot(density(res.400), xlim = range(res.25), 
type="1", main="", 
+ xlab="sampling distributions of median for n=25, 100, 
400") 
) 
> lines(density(res.100)) 
> lines(density(res.25)) 

As n gets large, the sampling distribution tends to a normal distribution which is centered 
on the median of the parent population. 

■ Example 6.2: Comparing measurements of spread Simulations can help guide us 
in our choices. For example, we can use either the standard deviation or the IQR to 
measure spread. Why would we choose one over the other? One good reason would be if 
the sampling variation of one is significantly smaller than that of the other. 

Let’s compare the spread of the sampling distribution for both statistics using 
boxplots. First, define two functions f() and g() as  

> f = function(n) sd(rnorm(n)) 
> g = function(n) IQR(rnorm(n)) 

Then we can simulate with 

> res.sd = c(); res.iqr = c() 
> for(i in 1:200) { 
+ res.sd[i] = f(100) 
+ res.iqr[i] = g(100) 
+} 
> boxplot(list(sd=res.sd, iqr=res.iqr)) 

Figure 6.5 shows side-by-side boxplots illustrating that the spread of the IQR is wider 
than that of the mean. For normal data, the standard deviation is a better measure of 
spread. 
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The standard deviation isn’t always a better measure of spread. We will repeat the 
simulation with exponential data and investigate. Before doing so, we look at script files, 
which save a sequence of commands to be executed. 

6.5.1 Script files and source() 

R can “read” the contents of a file and execute the commands as though they were typed 
in at the command line. The command to do this is source(), as in 
source(file=“filename”). (Most of the GUIs have this ability.) 

For example, if a file named “sim.R” contains these 
commands 
## file sim.R 
f = function(n) sd(rexp(n)) 
g = function(n) IQR(rexp(n))  

 

Figure 6.5 Boxplot of standard 
deviation and IQR for normal data 

res.sd = c(); res.iqr = c() 
for(i in 1:200){ 
res.sd[i] = f(100) 
res.iqr[i] = g(100) 
} 
boxplot(list(sd=res.sd, iqr=res.iqr)) 

then the command 

> source("sim.R") 

will read and evaluate these commands producing a graph similar to Figure 6.6. With 
exponential data, the spread of each statistic is similar. The more skewed or long-tailed 
the data is, the wider the spread of the standard deviation compared to the IQR. 

By using a separate file to type our commands, we can more easily make changes than 
with the command line, and we can save our work for later use. 
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6.5.2 The geometric distribution 

In a sequence of i.i.d. Bernoulli trials, there is a time of the first success. This can happen 
on the first trial, the second trial, or at any other point. Let X be the time of the first 
success. Then X is a random variable with distribution on the positive integers. The 
distribution of X is called the geometric distribution and is 

f(k)=P(X=k)=(1−p)k−1p.   

Let’s simulate the random variable X to investigate its mean. To find a single sample 
from the distribution of X we can toss coins until we have a success. A while() loop is 
ideal for this type of situation, as we don’t know in advance how many times we will 
need to toss the coin.  

 

Figure 6.6 Simulation of standard 
deviation and IQR for Exponential(1) 
data 

first.success = function(p) { 
k = a; 
success = FALSE 
while(success == FALSE) { 
k = k + 1 
if(rbinom(1,1,p) == 1) success = TRUE 
} 
k 

The while loop repeats a block of commands until its condition is met. In this case, the 
value of success is not FALSE. Inside the while loop, an if statement is used. When the if 
statement is true, it sets the value of success to TRUE, effectively terminating the while 
loop. The command rbinom(1, 1, p) is one sample from the Binomial(1, p) distribution—
basically a coin toss. 

We should expect that if the success probability is small, then the time of the first 
success should be large. We compare the distribution with p=.5 and with p=.05 using 
summary().  
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> res.5 = c();res.05 = c() 
> for(i in 1:500) { 
+ res.5[i] = first.success(0.5) 
+ res.05[i] = first.success(0.05) 
+ } 
> summary(res.5) 
  Min. 1st Qu. Median Mean 3rd Qu.  Max. 
  1.00    1.00   1.00 2.01    2.00 11.00 
> summary(res.05) 
  Min. 1st Qu. Median Mean 3rd Qu.  Max. 
   1.0     6.0   13.0 20.1    28.0 120.0 

From the output of summary() it appears that the sampling distribution has mean 2=1/0.5 
and 20=1/0.05 respectively. For any p in [0, 1] the mean of the geometric distribution is 
1/p.  

6.6 Bootstrap samples 

The basic idea of a bootstrap sample is to sample with replacement from the data, 
thereby creating a new random sample of the same size as the original. For this random 
sample the value of the statistic is computed. Call this a replicate. This process is 
repeated to get the sampling distribution of the replicates. From this, inferences are made 
about the unknown parameters. 

For example, we can estimate µ with the bootstrap. Let the replicate, be the sample 
mean of the i th bootstrap sample. We estimate µ with the sample mean of these 
replicates. In doing so, we get an estimate for the population parameter and a sense of the 
variation in the estimate. 

■ Example 6.3: Albatross by catch 
The by catch (UsingR) data set† contains the number of albatross incidentally caught by 
squid fishers for 897 hauls of fishing nets, as measured by an observer program. 

We wish to investigate the number of albatross caught. We can summarize this with 
the sample mean, but to get an idea of the underlying distribution of the sample mean, we 
generate 1,000 bootstrap samples and look at their means. 

First, the data in by catch (UsingR) is summarized for compactness. We expand it to 
include all 897 hauls. 

> data(bycatch) 
> hauls = with(bycatch, rep(no.albatross,no.hauls)) 
> n = length(hauls) 

Now n is 897, and hauls is a data vector containing the number of albatross caught on 
each of the 897 hauls. A histogram shows a skewed distribution. Usually, none are 
caught, but occasionally many are. As the data is skewed, we know the sample mean can 
be a poor predictor of the center. So we create 1,000 bootstrap samples as follows, using 
sample(). 
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> xbarstar = c() 
> ford in 1:1000) { 
+ boot.samp = sample(hauls, n, replace=TRUE) 
+ xbarstar[i] = mean(boot.samp) 
+ } 

For each bootstrap sample we find the replicate The data vector xbarstar contains 
1,000 realizations. Estimates for the population mean and variance are 

> mean(xbarstar) 
[1] 0.2789 
> sd(xbarstar) 
[1] 0.04001 

Furthermore, we can find out where the sample mean usually is with the quantile() 
function: 

> quantile(xbarstar,c(0.05,0.95)) 
57, 957. 
0.2107 0.3467 

† From Hilborn and Mangel, The Ecological Detective 

Which says that 90% of the time it is in [.2107, .3467]. 

6.7 Alternates to for loops 

Although for loops are a good way to approach a problem of repeating something, they 
are not necessarily the preferred approach to a problem in R. For practical reasons, 
alternatives to for loops can be faster. For aesthetic reasons, a vectorized approach may 
be desired. In this approach, we use a function on multiple values at once, rather than one 
at a time as in a for loop. 

The speed issue can often be overcome by using a matrix. We illustrate by using a 
matrix to simulate the sample mean. We create a matrix with m=100 rows and n=10 
columns of random numbers using matrix() as follows: 

> m = 100; n = 10 
> tmp = matrix(rnorm(m*n), nrow=m) 

The rnorm(m*n) command returns 1,000 normal samples, which are placed in a matrix 
with 100 rows. This is specified by the argument nrow=m. We want to find the mean of 
each row. We do so with apply():  

> xbar = apply(tmp,1, mean) 
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We did simulations by repeatedly calling a function to generate a realization of our 
statistic. Conceptually, we can picture this as applying the function to each value in the 
vector of values looped over in the for loop. The sapply() function also does just that, so 
we can use sapply() to replace the for loop in a simulation. 

For example, this command will generate ten random samples of the mean of 25 
random numbers: 

> m = 10; n = 25 
> sapply(1:m, function(x) mean(rnorm(n))) 
[1] −0.06627  0.09835 −0.29290 −0.42287 0.47297 
−0.26416 
[7] −0.39610 −0.04068 −0.08084  0.20296 

The sim() function in the UsingR package uses sapply() to produce simulations of the 
sampling distribution of many statistics for user-specified populations. The above 
simulation would be done as 

> library(UsingR) 
> sim(n=25, m=10, statistic="mean”, family="norm”, 
mean=0, sd=1) 

The argument statistic=is the name of the desired statistic and family= the family name of 
the R function that produces the desired random sample. 

6.8 Problems 

6.1 Do simulations of the binomial for n=100 and p=0.02 and for n=100 and p=0.2. Do 
both distributions appear to be approximately normal? Discuss.  

6.2 The data set lawsuits (UsingR) is very long tailed. However, the central limit 
theorem will apply for the sampling distribution of To see how big n needs to be for 
approximate normality, repeat the following simulation for different values of n until the 
sampling distribution of appears normal. 

> data(lawsuits) 
> res = c() 
> n = 5 
> ford in 1:300) res[i] = 
mean(sample(lawsuits,n,replace=TRUE)) 
> plot(density(scale(res))) 

The scale() command finds the z-scores for each value in the data vector. After scaling, 
compare the shapes of distributions with different means and standard deviations. This 
way you can layer subsequent density estimates with the command lines (density 
(scale(res))) and look for normality. 

How big should n be to get a bell-shaped sampling distribution for  
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6.3 For what value of n does look approximately normal when each is Uniform(0, 
1)? (Run several simulations for different n’s and decide where the switch to normality 
begins.) 

6.4 For what value of n does look approximately normal when each Xi is 
(Exponential(1) (rexp(n, 1))? 

6.5 For what value of n does look approximately normal when each Xi has a t-
distribution with 3 degrees of freedom (rt (n, 3))? 

6.6 Compare the distributions of the sample mean and sample median when the Xi 
have the t distribution with 3 degrees of freedom and n=10. Which has a bigger spread? 

6.7 The χ2 distribution arises when we add a number of independent, squared standard 
normals. Instead of using rchisq() to generate samples, we can simulate by adding 
normally distributed numbers. For example, we can simulate a χ2 distribution with 4 
degrees of freedom with 

> res = c() 
> for(i in 1:500) res[i] = sum(rnorm(4)^2) 
> qqnorm(res) 

Repeat the above for 10, 25, and 50 degrees of freedom. Does the data ever appear 
approximately normal? Why would you expect that? 

6.8 The correlation between and s2 depends on the parent distribution. For a normal 
parent distribution the two are actually independent. For other distributions, this isn’t so. 

To investigate, we can simulate both statistics from a sample of size 10 and 
observe their correlation with a scatterplot and the cor() function. 

> xbar = c();std = c() 
> for(i in 1:500) {  
+ sam = rnorm(10) 
+ xbar [i] = mean(sam); std[i] = sd(sam) 
+} 
> plot(xbar,std) 
> cor(xbar,std) 
[1] 0.09986 

The scatterplot (not shown) and small correlation is consistent with known independence 
of the variables. 

Repeat the above with the t-distribution with 3 degrees of freedom (a longtailed 
symmetric distribution) and the exponential distribution with rate 1 (a skewed 
distribution). Are there differences? Explain. 

6.9 For a normal population the statistic has a normal 
distribution. Let 

 
  

That is, σ is replaced by s, the sample standard deviation. The sampling distribution of T 
is different from that of Z. 
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To see that the sampling distribution is not a normal distribution, perform a simulation 
for n=3, 10, 25, 50, and 100. Compare normality with a q-q plot. For n=3 this is done as 
follows: 

> n = 3; m = 200; 
> res = c() 
> for(i in 1:m) { 
+ x = rnorm(n)                # mu = 0, sigma = 1 
+ res[i] = (mean(x)−0)/ (sd(x)/sqrt(n)) 
+} 
> qqnorm(res) 

For which values of n is the sampling distribution long tailed? For which values is it 
approximately normal? 

6.10 In the previous exercise it is seen that for a normal population the sampling 
distribution of 

 
  

is not the normal distribution. Rather, it is the t-distribution with n−1 degrees of freedom. 
Investigate this with a q-q plot using a random sample from the t-distribution to compare 
with the simulation of T. For n=3 this is done as follows: 

> n=3; m=1000; 
> res=c() 
> for(i in 1:m) { 
+ x=rnorm(n)                # mu=0, sigma=1 
+ res[i]=(mean(x)−0)/ (sd(x)/sqrt(n))  
+} 
> qqplot(res,rt(m, df=n−1)) 

Verify this graphically for n=3, 10, 25, 50, and 100. 
6.11 In the previous exercise, the sampling distribution of 

 
  

was seen to be the t-distribution when the sample comes from a normally distributed 
population. What about other populations? Repeat the above with the following three 
mean-zero distributions: the t-distribution with 15 degrees of freedom (symmetric, 
longish tails), the t-distribution with 2 degrees of freedom (symmetric with long tails), 
and exponential with rate 1 minus 1 (rexp(10) −1), which is skewed right with mean 0. 
Do all three populations result in T having an approximate t-distribution? Do any? 

6.12 We can use probability to estimate a value of π. How? The idea dates to 1777 and 
Georges Buffon. Pick a point at random from a square of side length 2 centered at the 
origin. Inside the square draw a circle of radius 1. The probability that the point is inside 
the circle is equal to the area of the circle divided by the area of the square: 
(π·12)/(22)=π/4. We can simulate the probability and then multiply by 4 to estimate π. 
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This function will do the simulation and make the plot: 

simpi <− function(n = 1000) { 
## draw box, circle plot points, and return no inside 
plot(0,0,pch=" ",xlim=c(−1,1),ylim=c(−1,1)) 
polygon(c(−1,−1,1,1,−1),c(−1,1,1,−1,−1)) # square 
theta = seq(0,2*pi,length = 100) 
polygon(cos(theta),sin(theta))        # circle 
x = runif(n,min=−1,max=1) 
y = runif(n,min=−1,max=1) 
inorout = x^2+y^2 < 1 
points(x,y,pch=as.numeric(inorout)) 
return(sum(inorout)) 
} 

The simulation could be done with just one line: 

> n = 1000; x = runif(n,−1,1);y = 
runif(n,−1,1);sum(x~2+y^2<1)/n 

Do a simulation to estimate π. What do you get? Use the binomial model and the known 
value of π to find the standard deviation of the random variable you estimated. 
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Chapter 7  
Confidence intervals 

In this chapter we use probability models to make statistical inferences about the parent 
distribution of a sample. A motivating example is the way in which a public-opinion poll 
is used to make inferences about the unknown opinions of a population. 

7.1 Confidence interval ideas 

■ Example 7.1: How old is the universe? The age .universe (UsingR) data set contains 
estimates for the age of the universe, dating back to some early estimates based on the 
age of the earth. As of 2003, the best estimate for the age of the universe is 13.7 billion 
years old, as computed by the Wilkinson microwave anisotropy probe 
(http://map.gsfc.nasa.gov/). This is reported to have a margin of error of 1% with 95% 
confidence. That is, the age is estimated to be in the interval (13.56, 13.84) with high 
probability. Figure 7.1 shows other such intervals given by various people over time. 
Most, but not all, of the modern estimates contain the value of 13.7 billion years. This 
does not mean any of the estimates were calculated incorrectly. There is no guarantee, 
only a high probability, that a confidence interval will always contain the unknown 
parameter. 

7.1.1 Finding confidence intervals using simulation 

To explore the main concepts of a confidence interval, let’s consider the example of a 
simple survey. We’ll assume the following scenario. A population exists of 10,000 
people; each has a strong opinion for or against some proposition. We  

 

 



 

Figure 7.1 Various estimates for the 
age of universe, some historic, some 
modern. Ranges are represented by 
dotted lines. When the estimate is a 
lower bound, only a bottom bar is 
drawn. The current best estimate of 
13.7 billion years old is drawn with a 
horizontal line. This estimate has a 
margin of error of 1%. 

wish to know the true proportion of the population that is for the proposition. We can’t 
afford to ask all 10,000 people, but we can survey 100 at random. If our sample 
proportion is called and the true proportion is p, what can we infer about the unknown 
p based on  

Sometimes it helps to change the question to one involving simple objects. In this 
case, imagine we have 10,000 balls inside a box with a certain proportion, p, labeled with 
a “1,” and the remaining labeled with a “0.” We then select 100 of the balls at random 
and count the 1’s. 

In order to gain some insight, we will do a simulation for which we know the answer 
(the true value of p). Suppose the true proportion for the population is p=0.56. That is 
5,600 are for the proposition and 4,400 are against. To sample without replacement we 
use the sample() command. A single sample is found as follows: 

> pop = rep(0:1,c(10000–5600, 5600)) 
> phat = mean(sample(pop,100)) 
> phat 
[1] 0.59 

In this example, using the mean() function is equivalent to finding the proportion. If we 
simulate this sampling 1,000 times we can get a good understanding of the sampling 
distribution of from the repeated values of phat. The following will do so and store the 
results in a data vector called res. 
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> res = c() 
> for(i in 1:1000) res[i] = mean(sample(pop,100)) 

From the values in res we can discern intervals where we are pretty confident will be. 
In particular, using the quantile () function, we have these intervals for 80%, 90%, and 
95% of the data (see Figure 7.2):  

> quantile(res,c(0.1,0.9))        # 80% of the time 
10%  90% 
0.50 0.63 
> quantile(res,c(0.05,0.95))      # 90% of the time 
  5%   95% 
0.48  0.64 
> quantile (res, c (0.025,0.975)) # 95% of the time 
2.5%  97.5% 
0.47   0.66 

 

Figure 7.2 Percent of values in the 
indicated intervals 

These suggest the following probability statements: 

 

  

We interpret these by envisioning picking one of the 1,000 samples at random and asking 
the probability that it is in that range. This should be close to the true probability that is 
in the range, as we have generated many realizations of  

In this example, we know that p=0.56. Rewriting 0.50=p−0.06, for example, the first 
one becomes 
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which, when we subtract p from all sides, becomes 

   

This says that the distance between p and is less than 0.07 with 80% probability. We 
could have done this for any percentage, not just 80%. So we get this relationship: If we 
fix a probability, we can find an amount whereby the distance between p and is less 
than this amount with the given probability. 

Continuing, we turn this around by subtracting from all sides (and flipping the 
signs) to get 

   

That is, from a single randomly chosen value of we can find an interval, 
that contains p with probability 0.80. 

As before, something similar is true for other probabilities. If we specify a probability, 
then we can find an interval around a randomly chosen sample value, that contains p 
with the specified probability. This interval is called a confidence interval, as we have a 
certain confidence (given by the probability) that the parameter, p, is in this random 
interval. 

7.2 Confidence intervals for a population proportion, p 

In the previous example, the exact distribution of is hypergeometric, as we sampled 
without replacement. If we sampled with replacement, then the distribution would be 
Binomial(100, p) divided by 100. Unless p is very close to 1 or 0, the distribution of 
should be normal by the normal approximation to the binomial. Thus, we should expect 
that is approximately normal, as the differences between sampling with or without 
replacement should be slight when there are 10,000 in the population and only 100 
chosen. 

If we know that the distribution of is approximately normal, we can find confidence 
intervals that use this known distribution rather than a simulation. This will allow us to 
make general statements about the relationship between the confidence probability and 
the size of the interval. 

In order to use the normal approximation we need to make some assumptions about 
our sampling. First, we either sample with replacement or sample from a population that 
is so much bigger in size than the size of the sample that it is irrelevant. Next, we need to 
assume that np and n(1−p) are both bigger than 5, even though p is unknown. 

Assuming the binomial model applies, we can derive that the mean of is p and 

Thus, if we let 1−α be our confidence probability, then we can 
find from the normal distribution a corresponding z* for which  

p(−z*≤Z≤z*)=1−α   
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As is approximately normal, we standardize it to get this relationship: 

 (7.1) 

That is, with probability 1−α, p is in the interval  
This almost specifies a confidence interval, except that involves the unknown 

value of p. There are two ways around this problem. In this case, we can actually solve 
the equations and get an interval for p in terms of alone. However, for instructive 
purposes, we will make another assumption to simplify the math. Let’s assume that the 
value of is approximately The central 
limit still applies with this divisor. Consequently, for n large enough 

 
  

The value is called the standard error of It is known from the sample and is 
found by replacing the unknown population parameter in the standard deviation with the 
known statistic. This assumption is good provided n is large enough. 

Confidence intervals for p 
Assume n is large enough so that 

 
  

is approximately normal where 

   

Let α and z* be related by the distribution of a standard normal random variable 
through 

P(−z*≤Z≤z*)=1−α.   

Then the interval contains p with approximate probability 
1−α. The interval is referred to as a (1−α) 100% confidence interval and is often 
abbreviated The probability is called the level of confidence and the value 

the margin of error. 

The prop.test() function can be used to compute confidence intervals of proportions. 

Finding z* from a. From Figure 7.3 we see that z* (also called zα/2 in other books) is 
related to α/2. In particular, either 
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In R this becomes one of 

> zstar = −qnorm(alpha/2)      # left tail 
> zstar = qnorm(1−alpha/2)     # right tail 

The inverse relationship would be found by 

> alpha = 2*pnorm(−zstar) 

 

Figure 7.3 The relationship between 
z* or za/2, and α 

■ Example 7.2: Presidential job performance A Zogby America poll involved 1,013 
likely voters selected randomly from throughout the 48 contiguous United States using 
listed residential telephone numbers.The surveyers found that 466 voters rated the 
president’s job performance as “good” or “excellent.” Find a 95% confidence interval for 
the true proportion. 

This type of polling is about as close to a random sample as can be gotten with limited 
resources, though there are several sources of possible bias to consider. For example, not 
everyone in the United States has a listed residential telephone number, so the sample is 
only from households that do. Additionally, nonresponse can be very high in such 
surveys, introducing another potential bias. For simplicity, we’ll assume the sample is a 
random sample from the population of likely voters and that n=1013 is large enough so 
that the normal approximation applies.  

As a 95% confidence interval for p would be To find this 
we have 

> n = 1013 
> phat = 466/n 
> SE = sqrt(phat*(1−phat) /n) 
> alpha = .05 
> zstar = −qnorm(alpha/2) 
> zstar                         # nearly 2 if doing by 
hand 
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[1] 1.96 
> c(phat − zstar * SE, phat + zstar*SE) 
[1] 0.4293 0.4907 

The confidence interval does not include p=.5. 
The last line matches the formulas, but it takes less typing to use 

> phat + c(−1,1)*zstar*SE 
[1] 0.4293 0.4907 

■ Example 7.3: The missing confidence level In United States newspapers the results of 
a survey are often printed with the sample proportion, the sample size, and a margin of 
error. The confidence level is almost always missing but can be inferred from the three 
pieces of information. If a survey has n=1,000, and a margin of error of 3 
percentage points, what is α? 

Assuming the survey is done with a random sample, we are given that 

Solve for z* and then 1−α as follows: 

> zstar = 0.03 / sqrt(.57*(1−.57)/1000) 
> zstar 
[1] 1.916 
> alpha = 2* pnorm(−zstar) 
> alpha 
[1] 0.05533 
> 1− alpha 
[1] 0.9447 

There is an implied 95% confidence level. 

7.2.1 Using prop.test() to find confidence intervals 

The above examples were done the hard way. R provides a built-in function, prop. test(), 
to compute confidence intervals of proportions. A template for usage is 

prop.test (x, n, conf.level=0.95, conf.int=TRUE)   

The frequency, given by x; the sample size, given by n; and a confidence level, set with 
conf. level=, need to be specified. The default confidence level is 0.95, and by default a 
confidence interval will be returned.  

For instance, in the example of the Zogby poll, n=1013, and 1−α=0.95. 
The confidence interval is found with 

> prop.test(466,1013,conf.level=0.95) 
        1−sample proportions test with continuity 
correction 
data: 466 out of 1013, null probability 0.5 
X-squared = 6.318, df = 1, p−value = 0.01195 
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alternative hypothesis: true p is not equal to 0.5 
95 percent confidence interval: 
0.4290 0.4913 
sample estimates: 
   P 
0.46 

The output contains more than we needed. We see, though, that just after the line 95 
percent confidence interval: are two values, 0.4290 and 0.4913, which are the endpoints 
of our interval. These are slightly different from our previously found endpoints, as the 
formula used by prop. test() is found by solving Equation 7.1 exactly rather than by using 
the standard error to approximate the answer. 

The extra argument conf. level=0.95 sets the confidence level. The default is 0.95, so 
in this case it could have been left off. 

binom.test() 
The function binom. test() will also find confidence intervals. In this case, it uses the 
binomial distribution in place of the normal approximation. 

7.2.2 Problems 

7.1 Find an example in the media in which the results of a poll are presented. Identify the 
population, the size of the sample, the confidence interval, the margin of error, and the 
confidence level. 

7.2 In Example 7.2 a random sample from the United States population is taken by 
using listed residential phone numbers. Which segments of the population would be 
missed by this sampling method? 

7.3 The web site http://www.cnn.com/ conducts daily polls. Explain why the site’s 
disclaimer reads: 

This Quick Vote is not scientific and reflects the opinions of only those 
Internet users who have chosen to participate. The results cannot be 
assumed to represent the opinions of Internet users in general, nor the 
public as a whole. 

7.4 Suppose a Zogby poll with 1,013 randomly selected participants and the 
http://www.cnn.com/ poll (see the previous problem) with 80,000 respondents ask the 
same question. If there is a discrepancy in the sample proportion, which would you 
believe is closer to the unknown population parameter? 

7.5 Find 80% and 90% confidence intervals for a survey with n=100 and  
7.6 A student wishes to find the proportion of left-handed people. She surveys 100 

fellow students and finds that only 5 are left-handed. Does a 95% confidence interval 
contain the value of p=1/10? 

7.7 Of the last ten times you’ve dropped your toast, it has landed sticky-side down 
nine times. If these are a random sample from the Bernoulli(p) distribution, find an 80% 
confidence interval for p, the probability of the sticky side landing down. 
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7.8 A New York Times article from October 9, 2003, contains this explanation about an 
exit survey for a California recall election: 

In theory, in 19 cases out of 20, the results from such polls should differ 
by no more than plus or minus two percentage points from what would 
have been obtained by seeking to interview everyone who cast a ballot in 
the recall election. 

Assume a simple random sample and How big was n? 

7.9 An erstwhile commercial claimed that “Four out of five dentists surveyed would 
recommend Trident for their patients who chew gum.” 

Assume the results were based on a random sample from the population of all dentists. 
Find a 90% confidence interval for the true proportion if the sample size was n=5. Repeat 
with n=100 and n=1,000. 

7.10 A survey is taken of 250 students, and a of 0.45 is found. The same survey is 
repeated with 1,000 students, and the same value is found. Compare the two 95% 
confidence intervals. What is the relationship? Is the margin of error for the second one 
four times smaller? How much smaller is it? 

7.11 How big a survey is needed to be certain that a 95% confidence interval has a 
margin of error no bigger than 0.01 ? How does this change if you are asked for an 80% 
confidence interval? 

7.12 The phrasing, “The true value, p, is in the confidence interval with 95% 
probability” requires some care. Either p is or isn’t in a given interval. What it means is 
that if we repeated the sampling, there is a 95% chance the true value is in the random 
interval. We can investigate this with a simulation. The commands below will find 
several confidence intervals at once. 

> m = 50; n=20; p = .5;           # toss 20 coins 50 
times, 
> alpha = 0.10;zstar = qnorm(1 − alpha/2) 
> phat = rbinom(m,n,p)/n          # divide by n for 
proportions 
> SE = sqrt(phat*(1−phat)/n)      # compute SE 

We can find the proportion that contains p using 

> sum(phat—zstar*SE < p & p < phat + zstar * SE)/m 

and draw a nice graphic with 

> matplot(rbind(phat − zstar*SE, phat + zstar*SE), 
+         rbind(1:m,1:m),type="1",lty=1) 
> abline(v=p)                  # indicate parameter 
value 

Do the simulation above. What percentage of the 50 confidence intervals contain p=0.5? 
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7.3 Confidence intervals for the population mean, µ 

The success of finding a confidence interval for p in terms of depended on knowing the 
sampling distribution of once we standardized it. We can use the same approach to find 
a confidence interval for µ, the population mean, from the sample mean  

 

Figure 7.4 Simulation of sampling 
distribution of T with n=5. Densities 
of normal distribution and t-
distribution are drawn on the 
histogram to illustrate that the 
sampling distribution of T has longer 
tails than the normal distribution. 

For a random sample X1, X2, …, Xn, the central limit theorem and the formu-las for the 
mean and standard deviation of tell us that for large n 

 
  

will have an approximately normal distribution. This implies, for example, that roughly 
95% of the time Z is no larger than 2 in absolute value. In terms of intervals, this can be 
used to say that µ is in the random interval with probability 0.95. 

However, σ is usually not known. The standard errror, replaces the 
unknown a by the known sample standard deviation, s. Consider 

 
  

Again, as the central limit theorem still applies, T has a sampling distribution that is 
approximately normal when n is large enough. This fact can be used to construct 
confidence intervals such as a 95% confidence interval of  
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When n is not large, T will also be of value when the population for the random 
sample is normally distributed. In this case, the sampling distribution of T is the t-
distribution with n−1 degrees of freedom. The t-distribution is a symmetric, bell-shaped 
distribution that asymptotically approaches the standard normal distribution but for small 
n has fatter tails. The degrees of freedom, n−1, is a parameter for this distribution the way 
the mean and standard deviation are for the normal distribution. Figure 7.4 shows the 
results of a simulation of T for n=5. The figures show that T, with 5 degrees of freedom, 
is long tailed compared to the normal distribution. 

Confidence intervals for the mean 
Let X1,X2, …, Xn be a random sample from a population with mean µ and variance σ2. Let 

be the sample mean, and  
If n is small and the population is Normal(µ,σ), then a (1−α) 100% confidence interval 

for µ is given by 

   

where t* is related to α through the t-distribution with n−1 degrees of freedom by  
P(−t*≤Tn−1≤t*)=1−α.    

For unsummarized data, the function t. test () will compute the confidence intervals. A 
template for its usage is 

t.test(x, conf.level=0.95)   

The data is stored in a data vector (named x above) and the confidence level is 
specified with conf. level=. 

If n is large enough for the central limit theorem to apply to the sampling distribution 
of T, then a (1−α) 100% confidence interval for µ is given by 

   

where z* is related to α by 
P(−z≤Z≤z*)1−α.    

Finding t* with R Computing the value of t* (also called tα/2,k) for a given α and vice 
versa is done in a manner similar to finding z*, except that a different density is used. As 
R is a consistent language, changing to a new density requires nothing more than using 
the proper family name—t, for the t-distribution, and norm for the normal—and 
specifying the parameter values. In particular, if n is the sample size, then the two are 
related as follows: 

> tstar = qt(1 − alpha/2,df=n−1) 
> alpha = 2*pt(−tstar, df=n−1) 

By way of contrast, for z* the corresponding commands are 
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> zstar = qnorm(1 − alpha/2) 
> alpha = 2*pnorm(−zstar) 

■ Example 7.4: Average height Students in a class of 30 have an average height of 66 
inches, with a standard deviation of 4 inches. Assume that these heights are normally 
distributed, and that the class can be considered a random sample from the entire college 
population. What is an 80% confidence interval for the mean height of all the college 
students? 

Our assumptions allow us to apply the confidence interval for the mean, so the answer 
is Computing gives 

> xbar = 66; s = 4; n = 30 
> alpha = 0.2 
> tstar = qt(1 − alpha/2, df = n−1) 
> tstar 
[1] 1.311 
> SE = s/sqrt(n) 
> c(xbar − tstar*SE, xbar + tstar*SE) 
[1] 65.04 66.96 

■ Example 7.5: Making coffee A barista at “t-test espresso” has been trained to set the 
bean grinder so that a 25-second espresso shot results in 2 ounces of espresso. Knowing 
that variations are the norm, he pours eight shots and measures the amounts to be 1.95, 
1.80, 2.10, 1.82, 1.75, 2.01, 1.83, and 1.90 ounces. Find a 90% confidence interval for the 
mean shot size. Does it include 2.0? 

As we have the data, we can use t.test() directly. We enter in the data, verify normality 
(with a quantile-quantile plot), and then use t.test(): 

> ozs = c(1.95, 1.80, 2.10, 1.82, 1.75, 2.01, 1.83, 
1.90) 
> qqnorm(ozs)                   # approximately linear 
> t.test(ozs,conf.level=0.80) 
         One Sample t-test 
data: ozs 
t = 45.25, df = 7, p-value = 6.724e−10 
alternative hypothesis: true mean is not equal to a 
80 percent confidence interval: 
1.836 1.954 
sample estimates: 
mean of x 
    1.895 

Finding the confidence interval to be (1.836, 1.954), the barista sees that 2.0 is not in the 
interval. The barista adjusts the grind to be less fine and switches to decaf. ■ 

The T-statistic is robust The confidence interval for the mean relies on the fact that 
the sampling distribution of is the t-distribution with n−1 degrees 
of freedom. This is true when the Xi are i.i.d. normal. What if the Xi are not normal? 
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If n is small, we can do simulations to see that the distribution of T is still 
approximately the t-distribution if the parent distribution of the Xi is not too far from 
normal. That is, the tails can’t be too long, or the skew can’t be too great. When n is 
large, the central limit theorem applies. A statistic whose sampling distribution doesn’t 
change dramatically for moderate changes in the population distribution is called a 
robust statistic. 

7.3.1 One-sided confidence intervals 

When finding a confidence interval for the mean for a given a, we found t* so that 
P(−t*≤Tn−1 ≤ t*)=1−α. This method returns symmetric confidence intervals. The basic 
idea is that the area under the density of the sampling distribution that lies outside the 
confidence interval is evenly split on each side. This leaves α/2 area in each tail. This is 
similar to Figure 7.3, in which the normal density is shown with equal allocation of the 
area to the tails. This approach is not the only one. This extra area can be allocated in any 
proportion to the left or right of the confidence interval. One-sided confidence intervals 
put the area all on one side or the other. For confidence intervals for the mean, based on 
the T statistic, these would be found for a given a by finding t* such that P(t*≤Tn−1)=1−α 
or P(Tn−1≤t*)=1−α. 

In R, the prop.test(), binom.test(), and t.test() functions can return one-sided 
confidence intervals. When the argument alt="less" is used, an interval of the type (−∞, 
b] is printed. Similarly, when alt="greater" is used, an interval of the type [b, ∞) is printed. 

■ Example 7.6: Serving coffee The barista at "t-test espresso" is told that the optimal 
serving temperature for coffee is 180°F. Five temperatures are taken of the served coffee: 
175, 185, 170, 184, and 175 degrees. Find a 90% confidence interval of the form (−∞, b] 
for the mean temperature. 

Using t.test() with alt="less" will give this type of one-sided confidence interval: 

> x = c(175, 185, 170, 184, 175) 
> t.test(x.conf.level = 0.90, alt="less") 
        One Sample t-test 
data: x 
t = 61.57, df = 4, p-value = 1 
alternative hypothesis: true mean is less than a 
90 percent confidence interval: 
   −Inf 182.2 
sample estimates: 
mean of x 
    177.8 

The confidence interval contains the value of 180 degrees. 

7.3.2 Problems 

7.13 A hard-drive manufacturer would like to ensure that the mean time between failures 
(MTBF) for its new hard drive is 1 million hours. A stress test is designed that can 
simulate the workload at a much faster pace. The testers assume that a test lasting 10 days 
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correlates with the failure time exceeding the 1-million-hour mark. In stress tests of 15 
hard drives they found an average of 9.5 days, with a standard deviation of 1 day. Does a 
90% confidence level include 10 days?  

7.14 The stud. recs (UsingR) data set contains math SAT scores in the variable sat. m. 
Find a 90% confidence interval for the mean math SAT score for this data. 

7.15 For the homedata (UsingR) data set find 90% confidence intervals for both 
variables y1970 and y2000. Use t.test(), but first discuss whether it is appropriate. 

7.16 The variable weight in the kid.weights (UsingR) data set contains the weights of 
a random sample of children. Find a 90% confidence interval for the weight of 5-year-
olds. You’ll need to isolate just the 5-year-olds’ data first. Here’s one way: 

> attach(kid.weights) 
> ind = age < (5+1)*12 & age >= 5*12 
> weight[ind]                   # just five-year olds 
> detach(kid.weights) 

7.17 The brightness (UsingR) data set contains information on the brightness of stars in a 
sector of the sky. Find a 90% confidence interval for the mean. 

7.18 The data set normtemp (UsingR) contains measurements of 130 healthy, 
randomly selected individuals. The variable temperature contains normal body 
temperature. Does the data appear to come from a normal distribution? Is so, find a 90% 
confidence interval for the mean normal body temperature. Does it include 98.6 °F? 

7.19 The t-distribution is also called the Student t-distribution. (A Guinness Brewery 
employee, William Gosset, derived the distribution of T to handle small samples. As 
Guinness did not allow publication of research results at the time, Gosset chose to publish 
under the pseudonym Student.) 

Gosset applied his research to a data set containing height and left-middlefinger 
measurements of 3,000 criminals. These values were written on cards and randomly 
sorted into 750 samples, each containing four criminals. (This is how simulations were 
done previously.) 

Suppose the first sample of four had an average height of 67.5 inches, with a standard 
deviation of 2.54. From this sample, find a 95% confidence interval for the mean height 
of the 3,000 data points. 

7.20 We can investigate how robust the T statistic is to changes in the underlying 
parent population from normality. In particular, we can verify that if the parent 
population is not too skewed or is symmetric without too heavy a tail then the T statistic 
will still have the t-distribution for its sampling distribution. 

A simulation of the T statistic when Xi are Normal(0, 1) may be done as follows:  

> n = 10; m = 250; df = n−1 
> res = c() 
> ford in 1:m) { 
+ x = rnorm(n)                  # change this line only 
+ res[i] = (mean(x) − 0)/(sd(x)/sqrt(n)) 
+} 
> qqplotCres, rt(m,df=df)) 
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The quantile-quantile plot compares the distribution of the sample with a sample from the 
t-distribution. If you type this in you will see that the points are close to linear, as the 
sampling distribution is the t-distribution. 

To test different parent populations you can change the line x=rnorm(n) to some other 
distributions with mean a. For example, try a short-tailed distribution with 
x=runif(n)−1/2; a symmetric, long-tailed distribution with x =rt(n, 3); a not so long-tailed, 
symmetric distribution with x=rt (n, 30); and a skewed distribution with x=rexp(n)−1. 

7.21 We can compare the relationship of the t-distribution with n−1 degrees of 
freedom with the normal distribution in several ways. As n gets large, the t-distribution 
converges to the standard normal. But what happens when n is “small,” and what do we 
mean by “large”? 

A few comparative graphs can give us an idea. For n=10 we can use boxplots of 
simulated data to examine the tails, or we can compare plots of theoretical quantiles or 
densities. These plots are created as follows: 

> n = 10 
> boxplot(rt(1000,df=n−1),rnorm(1000)) 
> x = seq(0,1,length=150) 
> plot(qt(x,df=n−1), qnorm(x));abline(0,1) 
> curve(dnorm(x),−3.5,3.5) 
> curve(dt(x,df=n−l), lty=2, add=TRUE) 

Repeat the above for n=3, 25, 50, and 100. What value of n seems “large” enough to say 
that the two distributions are essentially the same? 

7.22 When the parent population is Normal(µ, σ) with known σ, then confidence 
intervals of the type 

   

are both applicable. We have that far enough in the tail, z*<t*, but sometimes s<σ, so 
there is no clear winner as to which confidence interval is smaller. 

Run a simulation 200 times in which the margin of error is calculated both ways for a 
sample of size 10 with σ=2 and µ=0. Use a 90% confidence level. What percent of the 
time was the confidence interval using smaller?  

7.4 Other confidence intervals 

To form confidence intervals, we have used the key fact that certain statistics, 

 

  

have known sampling distributions that do not involve any population parameters. From 
this, we could then solve for confidence intervals for the parameter in terms of known 
quantities. 
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In general, such a statistic is called a pivotal quantity and can be used to generate a 
number of confidence intervals in various situations. 

7.4.1 Confidence interval for σ2 

For example, if the Xi are i.i.d. normals, then the distribution of 

 
  

is known to be the χ2 -distribution (chi-squared) with n−1 degrees of freedom. This 
allows us to solve for confidence intervals for σ2 in terms of the sample variance s2. 

In particular, a (1−α) 100% confidence interval can be found as follows. For a given α, 
let l* and r* solve 

   

If we choose l* and r* to yield equal areas in the tails, we can find them with 

> lstar = qchisq(alpha/2, df=n−1) 
> rstar = qchisq(1−alpha/2, df=n−1) 

Then 

 
  

can be rewritten as 

 
  

In other words, the interval ((n−1)s2/r*, (n−1)s2/l*) gives a (1−α)100% confidence 
interval for σ2. 

■ Example 7.7: How long is your commute? A commuter believes her commuting 
times are independent and vary according to a normal distribution, with unknown mean 
and variance. She would like to estimate the variance to get an idea of the spread of 
times. 

To compute the variance, she records her commute time on a daily basis. Over 10 
commutes she reports a mean commute time of 25 minutes, with a variance of 12 
minutes. What is a 95% confidence interval for the variance? 

We are given s2=12 and n=10, and we assume each Xi is normal and i.i.d. From this 
we find 

> s2 = 12; n = 10 
> alpha = .05 
> lstar = qchisqCalpha/2, df = n−1) 
> rstar = qchisq(1−alpha/2, df = n−1) 
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> (n−1)*s2 * c(1/rstar,1/1star)       # CI for sigma 
squared 
[1] 5.677 39.994 
> sqrt((n−1)*s2 * c(1/rstar,1/1star)) # CI for sigma 
[1] 2.383 6.324 

After taking the square roots, we get a 95% confidence interval for σ, which is (2.324, 
6.324). 

7.4.2 Problems 

7.23 Let X1, X2, …, Xn and Y1, Y2, …, Ym be two i.i.d. samples with sample variances sx 
and sy respectively. A confidence interval for the equivalence of sample variances can be 
given from the following statistic: 

 

  

If the underlying Xi and Yi are normally distributed, then the distribution of F is known to 
be the F-distribution with n−1 and m−1 degrees of freedom. That is, F is a pivotal 

quantity, so probability statements such as can be answered 
with the known quantiles of the F distribution. For example, 

> n = 11; m = 16 
> alpha = 0.10 
> qf(c(alpha/2, 1 − alpha/2),dfl=n−1,df2=m−1) 
[1] 0.3515 2.5437 

says that when n=11 and m= 16. That is, 

 

  

with 90% confidence.  
Suppose n=10, m=20, sx=2.3, and sy=2.8. Find an 80% confidence interval for the ratio 

of σx/σy. 
7.24 Assume our data, X1, X2, …, Xn is uniform on the interval [0,θ] (θ is an unknown 

parameter). Set max(X) to the be maximum value in the data set. Then the quantity 
max(X)/θ is pivotal with distribution 

 
  

Thus P(max(X)/x<θ)=xn. As θ is always bigger than max(X), we can solve for xn=α and 
get that θ is in the interval [max(X),max(X)/x] with probability 1−α. 

Use this fact to find a 90% confidence interval for the number of entries in the 2002 
New York City Marathon. The place variable from the data set nyc. 2002 (UsingR) 
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contains the place of the runner in the sample and is randomly sampled from all the 
possible places. 

7.5 Confidence intervals for differences 

When we have two samples, we might ask whether the two came from the same 
population. For example, Figure 7.5 shows results for several polls on presidential 
approval rating from early 2001 to early 2004.* The rating varies over time, but for any 
given time period the polls are all pretty much in agreement. This is to be expected, as the 
polls are tracking the same population proportion for a given time period. However, how 
can we tell if the differences between polls for different time periods are due to a change 
in the underlying population proportion or merely an artifact of sampling variation? 

7.5.1 Difference of proportions 

We compare two proportions when assessing the results of surveys, as with the approval 
ratings, but we could do the same to compare other proportions, such as market shares. 

To see if a difference in the proportions is explainable by sampling error, we look at 
and find a confidence interval for p1−p2. This can be done, as  

*A similar figure appeared in a February 9, 2004, edition of Salon (http://www.salon.com/). The 
data is in the data set BushApproval (UsingR), and the graphic can be produced by running 
example(BushApproval). 

 

Figure 7.5 Presidential approval 
rating in United States from spring 
2001 to spring 2004 

the statistic 
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is a pivotal quantity with standard normal distribution when n1 and n2 are large enough. 
The standard error is 

 

  

Z has an asymptotic normal distribution, as it may be viewed as a sample average minus 
its expectation divided by its standard error. The central limit theorem then applies. 

The function prop.test() can do the calculations for us. We use it as 
prop.test(x,n, conf.level=0.95   

The data is specified in terms of counts, x, and sample sizes, n, using data vectors 
containing two entries. The results will differ slightly from the above description, as prop. 
test () uses a continuity correction. 

■ Example 7.8: Comparing poll results In a span of two weeks the same poll is 
taken. The first time, 1,000 people are interviewed, and 560 agree; the second time, 1,200 
are interviewed, and 570 agree. Find a 95% confidence interval for the difference of 
proportions.  

Rather than do the work by hand, we let prop.test() find a confidence interval. 

> prop.test(x=c(560,570), n=c(1000,1200), 
conf.level=0.95) 
        2-sample test for equality of proportions with 
        continuity correction 
data: c(560, 570) out of c(1000, 1200) 
X−squ ared=15.44, df=1, p-value=8.53e−05 
alternati v e hypothe s is: two.si d ed 
95 percent confidence interval: 
0.04231 0.12769 
sample estimates: 
prop 1 prop 2 
0.560 0.475 

We see that a 95% confidence interval is (0.04231, 0.12769), which just misses including 
a. We conclude that there appears to be a real difference in the population parameters. 

7.5.2 Difference of means 

Many problems involve comparing independent samples to see whether they come from 
identical parent populations. A teacher could compare two sections of the same class to 
look for differences; a pharmaceutical company could compare the effects of two drugs; 
or a manufacturer could compare two samples taken at different times to monitor quality 
control. 

Let and be the two samples with sample means 

and sample variances and Assume the populations for each sample are normally 
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distributed. The sampling distribution of is asymptotically normal, as each is 
asymptotically normal. Consequently, the standardized statistic 

 (7.2) 

will have an approximately normal distribution, with mean a and variance 1 for large nx 
and ny. For small nx and ny, T will have the t-distribution. 

The standard error of is computed differently depending on the assumptions. 
For independent random variables, the variance of a sum is the sum of a variance. This is 

used to show that the variance of  
When the two population variances are equal, the data can be pooled to give an 

estimate of the common variance σ2. Let be the pooled estimate. It is defined by 

 
(7.3) 

When the population variances are not equal, the sample standard deviations are used to 
estimate the respective population standard deviations. 

The standard error is then 

 
(7.4) 

The statistic T will have a sampling distribution given by the t-distribution. When the 
variances are equal, the sampling variation of sp is smaller, as all the data is used to 
estimate σ. This is reflected in a larger value of the degrees of freedom. The values used 
are 

(7.5) 

(The latter value is the Welch approximation.) 
Given this, the T statistic is pivotal, allowing for the following confidence intervals. 

Confidence intervals for difference of means for two independent samples 
Let be two independent samples with distribution 
Normal(µi, σi), i=x or y. A (1−α)· 100% confidence interval of the form 

   

can be found where t* is given by the t-distribution. This is based on the sampling 
distribution of T given in Equation 7.2. 
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This distribution is the t-distribution. The standard error and degrees of freedom differ 
depending on whether or not the variances are equal. The standard error is given by 
Equation 7.4 and the degrees of freedom by Equation 7.5. 

If the unsummarized data is available, the t.test() function can be used to compute the 
confidence interval for the difference of means. It is used as 

t.test (x, y, var.equal=FALSE, conf.level=0.95)   

The data is contained in two data vectors, x and y. The assumption on the equality of 
variances is specified by the argument var. equal= with default of FALSE. 

■ Example 7.9: Comparing independent samples In a clinical trial, a weightloss drug 
is tested against a placebo to see whether the drug is effective. The amount of weight lost 
for each group is given by the stem-and-leaf plot in Table 3.6. Find a 90% confidence 
interval for the difference in mean weight loss. 

From inspection of the boxplots of the data in Figure 7.6, the assumption of equal 
variances is reasonable, prompting the use of t.test() with the argument var.equal=TRUE. 

 

Figure 7.6 Boxplots used to 
investigate assumption of equal 
variances 

> x = c(0,0,0,2,4,5,13,14,14,14,15,17,17) 
> y = c(0,6,7,8,11,13,16,16,16,17,18) 
> boxplot(list(drug=x,placebo=y), col="gray") # compare 
spreads 
> t.test(x,y, var.equal=TRUE) 
        Two Sample t-test 
data: x and y 
t = −1.054, df = 22, p-value = 0.3032 
alternative hypothesis: true difference in means is not 
equal to a  
95 percent confidence interval: 
−8.279  2.699 
sample estimates: 
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mean of x mean of y 
8.846 11.636 

By comparison, if we do not assume equal variances, 

> t.test(x,y) 
t=−1.072, df=21.99, p-value=0.2953 

When we assume var. equal=TRUE, we have 13+11−2=22 degrees of freedom. In this 
example, the approximate degrees of freedom in the unequal variance case is found to be 
21.99: essentially identical. The default 95% confidence interval is (−8.279, 2.699), so 
the difference of 0 is still in the confidence interval, even though the sample means differ 
quite a bit at first glance (8.846 versus 11.636). 

7.5.3 Matched samples 

Sometimes we have two samples that are not independent. They may be paired or 
matched up in some way. A classic example in statistics involves the measurement of 
shoe wear. If we wish to measure shoe wear, we might give five kids one type of sneaker 
and five others another type and let them play for a while. Afterward, we could measure 
shoe wear and compare. The only problem is that variation in the way the kids play could 
mask small variations in the wear due to shoe differences. One way around this is to put 
mismatched pairs of shoes on all ten kids and let them play. Then, for each kid, the 
amount of wear on each shoe is related, but the difference should be solely attributable to 
the differences in the shoes. 

If the two samples are X1, X2, …, Xn and Y1, Y2, …, Yn, then the statistic 

 
  

is pivotal with a t-distribution. What is the standard error? As the samples are not 
independent, the standard error for the two-sample T statistic is not applicable. Rather, it 
is just the standard error for the single sample Xi−Yi. 

Comparison of means for paired samples 
Let X1, X2, …, Xn and Y1, Y2, …,Yn be two samples. If the sequence of differences, Xi−Yi, is 
an i.i.d. sample from a Normal(µ, σ) distribution, 

then a(1−α)·100% confidence interval for the difference of means, µx−µy, is given by 

   

where s is the sample standard deviation of the Xi−Yi and t* is found from the t-
distribution with n−1 degrees of freedom. 

The t.test() function can compute the confidence interval. If x and y store the data, the 
function may be called as either 

t.test(x,y, paired=TRUE) or t.test(x−y)   
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We use the argument conf . level=… to specify the confidence level. 

■ Example 7.10: Comparing shoes The shoes (MASS) data set contains shoe wear for 
ten children each wearing two different shoes. By comparing the differences, we can tell 
whether the two types of shoes have different mean wear amounts. 

> library(MASS)                 # load data set 
> names(shoes) 
[1] "A" "B" 
> with(shoes, t.test(A-B,conf.level = 0.9)) 
        One Sample t-test 
data: A − B 
t = −3.349, df = 9, p-value = 0.008539 
alternative hypothesis: true mean is not equal to a 
90 percent confidence interval: 
−0.6344 −0.1856 
sample estimates: 
mean of x 
    −0.41 
### Alternately: 
> with(shoes, t.test(A,B,conf.level = 0.9,paired=TRUE)) 
... 

Both approaches produce the same 90% confidence interval. In this case, it does not 
include a, indicating that there may be a difference in the means. 

7.5.4 Problems 

7.25 Two different AIDS-treatment “cocktails” are compared. For each, the time it takes 
(in years) to fail is measured for seven randomly assigned patients. The data is in Table 
7.1. Find an 80% confidence interval for the difference of means. What assumptions are 
you making on the data? 

Table 7.1 Time to fail for AIDS cocktails, in 
years 

Type 1 2 3 4 5 6 7 s
Cocktail 1: 3.1 3.3 1.7 1.2 0.7 2.3 2.9 2.24 0.99
Cocktail 2: 1.8 2.3 2.2 3.5 1.7 1.6 1.4 2.13 0.69

7.26 In determining the recommended dosage of AZT for AIDS patients, tests were done 
comparing efficacy for various dosages. If a low dosage is effective, then that would be 
recommended, as it would be less expensive and would have fewer potential side effects. 

A test to decide whether a dosage of 1,200 mg is similar to one of 400 mg is 
performed on two random samples of AIDS patients. A numeric measurement of a 
patient’s health is made, and the before-and-after differences are recorded after treatment 
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in Table 7.2. Find a 90% confidence interval for the differences of the means. What do 
you assume about the data? 

Table 7.2 Health measurements after AZT 
treatment 

400 mg group 7 0 8 1 10 12 2 9 5 2
1200 mg group 2 1 5 1 5 7−1 8 7 3

7.27 The data in Table 7.3 is from IQ tests for pairs of twins that were separated at birth. 
One twin was raised by the biological parents, the other by adoptive parents. Find a 90% 
confidence interval for the differences of mean. What do you assume about the data? In 
particular, are the two samples independent? 

Table 7.3 IQ scores for identical twins 
Foster 80 88 75 113 95 82 97 94 132 108
Biological 90 91 79 97 97 82 87 94 131 115

7.28 For the babies (UsingR) data set, the variable age contains the mother’s age and the 
variable dage contains the father’s age for several babies. Find a 95% confidence interval 
for the difference in mean age. Does it contain a? What do you assume about the data? 

7.6 Confidence intervals for the median 

The confidence intervals for the mean are based on the fact that the distribution of the 
statistic 

 
  

is known. This is true when the sample is an i.i.d. sample from a normal population or 
one close to normal. However, many data sets, especially long-tailed skewed ones, are 
not like this. For these situations, nonparametric methods are preferred. That is, no 
parametric assumptions on the population distribution for the sample are made, although 
assumptions on its shape may apply. 

7.6.1 Confidence intervals based on the binomial 

The binomial distribution can be used to find a confidence interval for the median for any 
continuous parent population. The key is to look at whether a data point is more or less 
than the median. As the median splits the area in half, the probability that a data point is 
more than the median is exactly 1/2. (We need a continuous distribution with positive 
density over its range to say “exactly” here.) Let T count the number of data points more 
than the median in a sample of size n. T is a Binomial (n, 1/2) random variable. 

Let X(1), X(2), …, X(n) be the sample after sorting from smallest to largest. A (1−α) M 
100% confidence interval is constructed by finding the largest j≥1 so that 

Confidence intervals     201



P(X(j)≤M≤X(n+1−j))≥1−α. In terms of T, this becomes the largest j so that P(j≤T≤n−j)>1−α, 
which in turn becomes a search for the largest j with P(T<j)<α/2. We can find this in the 
data after sorting. 

A concrete example can clarify. 
■ Example 7.11: CEO compensation in 2000 The following data is compensation in 

$ 10,000s of a random sampling from the top 200 CEOs in America for the year 2000:† 

110 12 2.5 98 1017 540 54 4.3 150 432 

Find a 90% confidence interval for the median based on the sign test.  

† See http://www.aflcio.org/corporateamerica/paywatch/ceou/database.cfm for such data. 

We enter in the data and then look at the binomial probabilities for this size sample: 

> x = c(110, 12, 2.5, 98, 1017, 540, 54, 4.3, 150, 432) 
> n = length(x) 
> pbinom(0:n,n,1/2)               # P(T <= k) not P(T < 
k) 
  [1] 0.0009766 0.0107422 0.0546875 0.1718750 0.3769531 
0.6230469 
  [7] 0.8281250 0.9453125 0.9892578 0.9990234 1.0000000 

For a 90% confidence interval, α/2=0.05. Thus, j is 2, as P(T<2)= 0.0107422, but 
P(T<3)=0.0546875. Sorting the data we get 

> sort(x) 
[1]    2.5    4.3   12.0   54.0   98.0   110.0   150.0 
  432.0 
[9]  540.0 1017.0 

Our 90% confidence interval is then [4.3, 540.0]. 
The α/2-quantile for the binomial returns the smallest k with P(X≤k)> α/2. This is just 

our j in a different context. So we could automate the above with 

> j = qbinom(0.05, n, 1/2) 
> sort(x)[c(j,n+1−j)] 
[1] 4.3 540.0 

7.6.2 Confidence intervals based on signed-rank statistic 

The Wilcoxon signed-rank statistic allows for an improvement on the confidence interval 
given by counting the number of data points above the median. Its usage is valid when 
the Xi are assumed to be symmetric about their median. If this is so, then a data point is 
equally likely to be on the left or right of the median, and the distance from the median is 
independent of what side of the median the data point is on. If we know the median then 
we can rank the data by distance to the median. Add up the ranks for the values where the 
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data is more than the median. The distribution of this statistic, under the assumption, can 
be computed and used to give confidence intervals. It is available in R under the family 
name signrank. In particular, qsignrank() will return the quantiles. 

This procedure is implemented in the wilcox.test() function. Unlike with prop.test() 
and t.test(), to return a confidence interval when using wilcox.test () we need to specify 
that a confidence interval is desired with the argument conf . int=TRUE. 

■ Example 7.12: CEO confidence interval The data on CEOs is too skewed to apply 
this test, but after taking a log transform we will see a symmetric data set (Figure 7.7). 

> 
boxplot(scale(x),scale(log(x)),names=c("CEO","log.CEO")
) 
> title("Boxplot of CEO data and its logarithm”) 

Using scale() makes a data set have mean a and variance 1, so the shape is all that is seen 
and comparisons of shapes are possible. 

 

Figure 7.7 Comparison of CEO data 
and its logarithm on the same scale 

Thus we can apply the Wilocoxon method to the log-transformed data, and then 
transform back. 

> wilcox.test(log(x), conf.int=TRUE, conf.level=0.9) 
        Wilcoxon signed rank test 
data: log(x) 
V = 55, p-value = 0.001953 
alternative hypothesis: true mu is not equal to a 
90 percent confidence interval: 
2.963 5.540 
sample estimates: 
(pseudo)median 
         4.345 
> exp(c(2.863,5.540))    # inverse of log. 
[1] 17.51 254.68 
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Compare the interval (17.51, 254.68) to that found previously: (4.3, 540.0). 

7.6.3 Confidence intervals based on the rank-sum statistic 

The t-test to compare samples is robust to nonnormality in the parent distribution but is 
still not appropriate when the underlying distributions are decidedly nonnormal. 
However, if the two distributions are the same up to a possible shift of center, then a 
confidence interval based on a nonparametric statistic can be given. 

Let f(x) be a density for a mean-zero distribution, and suppose we have two 
independent random samples: the first, from a population with density 
f(x−µx), and the second, from a population with density f(x−µy). The basic 
statistic, called the rank-sum statistic, looks at all possible pairs of the data and counts 
the number of times the X value is greater than or equal to the Y value. If the population 
mean for the X values is larger than the population mean for the Y values, this statistic 
will likely be large. If the mean is smaller, then the statistic will likely be small. The 
distribution of this statistic is given by R with the wilcox family and is used to give a 
confidence interval for the difference of the means. 

The command wilcox. test (x, y, conf . int=TRUE). function will find a confidence 
interval for the difference in medians of the two data sets. 

■ Example 7.13: CEO pay in 2002 In Example 7.12, the compensation for a 
sampling of the top 200 CEOs in the year 2000 was given. For the year 2002, a similar 
sampling was performed and gave this data: 

312 316 175 200 92 201 428 51 289 1126 822 

From these two samples, can we tell if there is a difference in the center of the 
distribution of CEO pay? 

Figure 7.8 shows two data sets that are quite skewed, so confidence intervals based on 
the T statistic would be inappropriate. Rather, as the two data sets have a similar shape, 
we find the confidence interval returned by wilcox.test (). As before, we need to specify 
that a confidence interval is desired. To answer our question, we’ll look at a 90% 
confidence interval and see if it contains a. 

> pay.02 = c(312, 316, 175, 200, 92, 201, 428, 51, 289, 
1126, 822) 
> pay.00 = c(110, 12, 2.5, 98, 1017, 540, 54, 4.3, 150, 
432) 
> plot(density(pay.02),main="densities of y2000, 
y2002") 
> lines(density(pay.00),lty=2) 
> wilcox.test(pay.02, pay.00, conf.int=TRUE, 
conf,level=0.9) 
        Wilcoxon rank sum test 
data: pay.02 and pay.00 
W = 75,p-value = 0.1734 
alternative hypothesis: true mu is not equal to a 
90 percent confidence interval: 
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−18 282 
sample estimates: 
difference in location 
                   
146.5 

The 90% confidence interval, [−18,282], contains a value of (). 
This example would be improved if we had matched or paired data—that is, the 

salaries for the same set of CEOs in the year 2000 and 2002—as then  

 

Figure 7.8 Densities of 2000 and 
2002 CEO compensations indicating 
similarly shaped distributions with 
possible shift 

differences in the sampling would be minimized. If that case is appropriate, then adding 
the argument paired=TRUE to wilcox. test() computes a confidence interval based on the 
signed-rank statistic. 

7.6.4 Problems 

7.29 The commuter revisited: the commuter records 20 commute times to gauge her 
median travel time. The data has a sample median of 24 and is summarized in this stem-
and-leaf diagram: 

> stem(commutes) 
2 | 1112233444444 
2 | 5569 
3 | 113 
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If the data is appropriate for t.test(), use that to give a 90% confidence interval for the 
mean. Otherwise use wilcox.test() (perhaps after a transform) to give a confidence 
interval for the median. 

7.30 The data set cabinet (UsingR) contains information on the amount of money each 
member of President Bush’s cabinet saved due to the passing of a 2003 tax bill. This is 
stored in the variable named est .tax. savings. Find a confidence interval for the median 
amount. 

7.31 The data set u2 (UsingR) contains song lengths for several albums by the band 
U2. How might you interpret the lengths as a sample from a larger population? Use 
wilcox.test() to construct a 95% confidence interval for the difference of population 
means between the album October and the album The Joshua Tree. 

7.32 The data set cfb (UsingR) contains a sampling of the data contained in the Survey 
of Consumer Finances. For the variables AGE and INCOME find 95% confidence 
intervals for the median. 

7.33 We can simulate the signed-rank distribution and see that it applies for any 
symmetric distribution regardless of tail length. The following will simulate the 
distribution for n=20 using normal data. 

> n = 20;m=250                  # 250 samples 
> res = c()                     # the results 
> for(i in 1:m) { 
+ x = rnorm(n) 
+ res[i]=sum(rank(abs(x))[x>0]) # only add positive 
values 
+ } 

This can be plotted with 

> hist(res,prob=TRUE) 
> x = 40:140 
> lines(x,dsignrank(x,n))       # density-like, but 
discrete. 

If you change the line x=rnorm (x) to x=rt (n, df=2), the underlying distribution will be 
long tailed, and short tailed if you change it to x=runif (n, −1,1) Do both, and then 
compare all three samples. Are they different or the same? What happens if you use 
skewed data, such as x=rexp (n)−1? 
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Chapter 8  
Significance tests 

Finding a confidence interval for a parameter is one form of statistical inference. A 
significance test, or test of hypothesis, is another. Rather than specify a range of values 
for a population parameter, a significance test assumes a value for the population 
parameter and then computes a probability based on a sample given that assumption. 

■ Example 8.1: A criminal trial The ideas behind a significance test can be 
illustrated by analogy to a criminal trial in the United States—as seen on TV. Imagine the 
following simplified scenario: a defendant is charged with a crime and must stand trial. 
During the trial, a prosecutor and defense lawyer respectively try to convince the jury that 
the defendant is either guilty or innocent. The jury is supposed to be unbiased. When 
deciding the defendant’s fate, the jurors are instructed to assume that the defendant is 
innocent unless proven guilty beyond a shadow of a doubt. At the end of the trial the 
jurors decide the guilt or innocence of the defendant based on the strength of their belief 
in the assumption of his innocence given the evidence. If the jurors believe it very 
unlikely that an innocent person could have evidence to the contrary, they will find the 
defendant “guilty.” If it is not so unlikely, they will rule “not guilty.” 

The system is not foolproof. A guilty man can go free if he is found not guilty, and an 
innocent man can be erroneously convicted. The frequency with which these errors occur 
depends on the threshold used to find guilt. In a criminal trial, to decrease the chance of a 
erroneous guilty verdict, the stringent shadow of a doubt criterion is used. In a civil trial, 
this phrasing is relaxed to a preponderance of the evidence. The latter makes it easier to 
err with a truly innocent person but harder to err with a truly guilty one. null 

Let’s rephrase the above example in terms of significance tests. The assumption of 
innocence is replaced with the null hypothesis, H0. This stands in contrast  

Table 8.1 Level of significance for range of p-
values 

p-value range significance stars common description
[0, .001] *** extremely significant 

(.001, .01] ** highly significant 
(.01, .05] * statistically significant
(.05, .!] · could be significant 
(.1, 1]   not significant 

to the alternative hypothesis, HA. This would be an assumption of guilt in the trial 
analogy. In a trial, this alternative is not used as an assumption; it only gives a direction 
to the interpretation of the evidence. The determination of guilt by a jury is not proof of 
the alternative, only a failure of the assumption of innocence to explain the evidence well 



enough. A guilty verdict is more accurately called a verdict of “not innocent.” The 
performer of a significance test seeks to determine whether the null hypothesis is 
reasonable given the available data. The evidence is replaced by an experiment that 
produces a test statistic. The probability that the test statistic is the observed value or is 
more extreme as implied by the alternative hypothesis is calculated using the assumptions 
of the null hypothesis. This is called the p-value. This is like the weighing of the 
evidence—the jury calculating the likelihood that the evidence agrees with the 
assumption of innocence. 

The calculation of the p-value is called a significance test. The p-value is based on 
both the sampling distribution of the test statistic under H0 and the single observed value 
of it during the trial. In words, we have 

p-value=P(test statistic is the observed value or is more extreme|H0). 

The p-value helps us decide whether differences in the test statistic from the null 
hypothesis are attributable to chance or sampling variation, or to a failure of the null 
hypothesis. If a p-value is small, the test is called statistically significant, as it indicates 
that the null hypothesis is unlikely to produce more extreme values than the observed 
one. Small p-values cast doubt on the null hypothesis; large ones do not. 

What is “large” or “small” depends on the area of application, but there are some 
standard levels that are used. Some R functions will mark p-values with significance 
stars, as described in Table 8.1. Although these are useful for quickly identifying 
significance, the cutoffs are arbitrary, settled on more for ease of calculation than actual 
relevance. 

In some instances, as with a criminal trial, a decision is made based on the pvalue. A 
juror is instructed that a defendant, to be found guilty, must be thought guilty beyond a 
shadow of a doubt. A significance test is less vague, as a significance level is specified 
that the p-value is measured against. A typical signifi-cance level is 0.05. If the p-value is 
less than the significance level, then the null hypothesis is said to be rejected, or viewed 
as false. If the p-value is larger than the significance level, then the null hypothesis is 
accepted. 

The words “reject” and “accept” are perhaps more absolute than they should be. When 
rejecting the null, we don’t actually prove the null to be false or the alternative to be true. 
All that is shown is that the null hypothesis is unlikely to produce values more extreme 
than the observed value. When accepting the null we don’t prove it is true, we just find 
that the evidence is not too unlikely if the null hypothesis is true. 

By specifying a significance level, we indirectly find values of the test statistic that 
will lead to rejection. This allows us to specify a rejection region consisting of all values 
for the observed test statistic that produce p-values smaller than the significance level. 
The boundaries between the acceptance and rejection regions are called critical values. 
The use of a rejection region avoids the computation of a p-value: reject if the observed 
value is in the rejection region and accept otherwise. We prefer, though, to find and 
report the p-value rather than issue a simple verdict of “accept” or “reject.” 

This decision framework has been used historically in scientific endeavors. 
Researchers may be investigating whether a specific treatment has an effect. They might 
construct a significance test with a null hypothesis of the treatment having no effect, 
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against the alternative hypothesis of some effect. (In this case, the alternative hypothesis 
is known as the research hypothesis.) The significance test then determines the 
reasonableness of the assumption of no effect. If this is rejected, there has been no proof 
of the research hypothesis, only that the null hypothesis is not supported by the data. 

As with a juried trial, the system is not foolproof. When a decision is made based on 
the p-value, mistakes can happen. If the null hypothesis is falsely rejected, it is a type-I 
error (innocent man is found guilty). If the null hypothesis is false, it may be falsely 
accepted (guilty man found not guilty). This is a typeII error. 

A simple example can illustrate the process. 

■ Example 8.2: Which mean? Imagine we have a widget-producing machine that 
sometimes goes out of calibration. The calibration is measured in terms of a mean for the 
widgets. How can we tell if the machine is out of calibration by looking at the output of a 
single widget? 

Assume, for simplicity, that the widgets produced are random numbers that usually 
come from a normal distribution with mean a and variance 1. When the machine slips out 
of calibration, the random numbers come from normal distribution with mean 1 and 
variance 1. Based on the value of a single one of these random numbers, how can we 
decide whether the machine is in calibration or not?  

This question can be approached as a significance test. We might assume that the 
machine is in calibration (has mean 0), unless we see otherwise based on the value of the 
observed number. 

Let X be the random number. The hypotheses become 
H0:X is Normal(0,1), HA:X is Normal(1, 1).   

We usually write this as 
H0:µ=0, HA:µ=1,   

where the assumption on the normal distribution and a variance of 1 are implicit. 
Suppose we observe a value 0.7 from the machine. Is this evidence that the machine is 

out of calibration? 
The p-value in this case is the probability that a Normal(0, 1) random variable 

produces a 0.7 or more. This is 1−pnorm(0.7, 0,1), or 0.2420. Why this probability? The 
calculation is done under the null hypothesis, so a normal distribution with mean a and 
variance 1 is used. The observed value of the test statistic is 0.7. Larger values than this 
are more extreme, given the alternative hypothesis. This p-value is not very small, and 
there is no evidence that the null hypothesis is false. It may be, if the alternative were 
true, that a value of 0.7 or less is pnorm(.7, 1, 1), or 0.3821, so it, too, is not unlikely. 
(See Figure 8.1.) 
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Figure 8.1 The p-value of 0.2420 is 
the probability of 0.7 or more for the 
Normal(0, 1) distribution 

Even though 0.7 is closer to the mean of 1 than the mean of a, it is really not conclusive 
evidence that the null hypothesis (the assumption of calibration) is incorrect. The 
problem is that the two distributions are so “close” together. It would be much easier to 
decide between the two if the means were 10 units apart instead of just 1 (with the same 
variance). Alternatively, if the standard deviations were smaller, the same would be true. 
This can be achieved by taking averages, as we know that the standard deviation of an 
average is or smaller than the population standard deviation by the divisor  

With this in mind, suppose our test statistic is now the sample mean of a random 
sample of ten widgets. How does our thinking change if the sample mean is now 0.7? 

The p-value looks similar, but when we compute, we use the sampling 
distribution of under H0, which is The p-value is 0.0134, as found 
by 1−pnorm(0.7,0, 1/sqrt(10)). This is illustrated in Figure 8.2. Now the evidence is more 
convincing that the machine is out of calibration. 

 

Figure 8.2 p-value calculated for 
n=10 when observed value of is 0.7 

The above example illustrates the steps involved in finding the p-value: 
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1. Identify H0 and HA, the null and alternative hypotheses. 
2. Specify a test statistic that discriminates between the two hypotheses, collect data, then 

find the observed value of the test statistic. 
3. Using HA, specify values of the test statistic that are “extreme” under H0 in the 

direction of HA. The p-value will be the probability of the event that the test statistic is 
the observed value or more extreme. 

4. Calculate the p-value under the null hypothesis. The smaller the p-value, the stronger 
the evidence is against the null hypothesis. 

8.1 Significance test for a population proportion 

A researcher may wish to know whether a politician’s approval ratings are falling, or 
whether unemployment rate is rising, or whether the poverty rate is changing. In many 
cases, a known proportion exists. What is asked for is a comparison against this known 
proportion. A test of proportion can be used to help answer these questions. 

Assume p0 reflects the historically true proportion of some variable of interest. A 
researcher may wish to test whether the current unknown proportion, p, is different from 
p0. A test of proportion would check the null hypothesis, 

H0:P=P0,   

versus an alternative hypothesis on p. Possible alternatives are 
HA :p>P0, HA:p<p0, or HA:p≠p0.   

If the survey is a random sample from the target population, the number of successes, x, 
is binomially distributed, and will be approximately normal for large enough 
values of n. We might use directly as a test statistic, but it is more common to 
standardize yielding the following test statistic: 

 

  

We use the notation to remind ourselves that we use the null hypothesis when 
calculating this expected value. In this case, under H0, p0 is the expected value of and is 
assumed to be known. Thus, we can use in our test 
statistic, in contrast to use of when we found confidence intervals for p.  
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Figure 8.3 Illustration of the three 
alternative hypotheses. In R, less is 
HA:P<P0, greater is HA:p>p0, 
two.sided is HA:p≠p0. 

The p-value varies based on the alternative hypothesis. This is because what is meant by 
“more extreme” for the value of the test statistic depends on HA. In this instance there are 
three cases: 

(8.1) 

The first two cases are “one-sided” or “one-tailed,” the last “two-sided” or “twotailed.” 
The absolute values in the third case can be confusing but are there to say that large 
differences in either direction of p0 are “more extreme.” Figure 8.3 illustrates the areas. 

Significance test for a population proportion 
A significance test for an unknown proportion between 

H0:p=p0, HA:p<p0, p>p0, or p≠p0   

can be performed with test statistic 

 

  

If is based on a simple random sample and n is large enough, Z has a standard 
normal distribution under the null hypothesis. The p-values can be computed from (8.1). 

In R the function prop.test() will perform this significance test. 

■ Example 8.3: Poverty-rate increase In the United States, the poverty rate rose from 
11.3 percent in 2000 to 11.7 percent in 2001 to 12.1 percent in 2002, as reported by the 
United States Census Bureau. A national census takes place every decade. The year-2000 
number comes from a census. For the Census Bureau to decide the 2001 and 2002 
figures, a random sampling scheme is employed. Assume that the numbers come from a 
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simple random sample (they don’t), so that we can use the binomial model for the 
problem, and that the sample sizes are 50,000 for 2001 and 60,000 for 2002. 

We investigate whether the 11.7% figure for the year 2001 shows an increase from the 
year-2000 figure. The null hypothesis is that it is the same as the 11.3% amount of 2000; 
the alternative is that the new figure is greater than the old: 

H0:p=0.113, HA:p>0.113.   

A test statistic is based on the proportion living in poverty of a random sample of size 
50,000. In the sample, 5,850, or a proportion of. 117, were found to be in poverty. Is this 
difference significant? 

The direction of the alternative would be that the rate is .117 or higher, as larger 
values support this one-sided alternative. The p-value is which is found 
in R with 

> p0 = .113; n = 50000; SD = sqrt(p0*(1-p0)/n) 
> pnorm(.117,mean=p0, sd=SD, lower.tail=FALSE) 
[1] 0.002363 

Thus the p-value is 0.002363 and is “very significant.” This data casts much doubt on the 
null hypothesis of no change. We would think sampling variation alone does not explain 
the difference. 

8.1.1 Using prop.test () to compute p-values 

The calculation above is done by hand. The pre-loaded stats package in R has many built-
in functions to do significance tests more directly. The R function for the above test of 
proportion is prop.test(). This was also used to find confidence intervals under the same 
assumptions. 

The prop.test () function needs a few arguments. A template for usage to perform a 
significance test is 

prop.test(x, n, p=…, alternative=“two.sided”)   

The value for x is the sample frequency; in our case, 5,850=0.117·50,000. The value of n 
is the sample size 50,000. These are the same as when we used this function to find 
confidence intervals. 

To perform a significance test, the null and alternative hypotheses must be specified. 
The null is done with the p= argument; for our example p=.113. The alternative 
hypothesis is specified with the argument alternative=, which we abbreviate to alt=. This 
argument has one of these values: “less”, “greater”, or “two.sided”. The default is 
two.sided. As HA:p>0.11, we will use “greater”. This argument is common to many of the 
functions in R that perform significance tests. 

To illustrate, the above calculation is done with 

> prop.test(x=5850, n=50000, p=.113, alt="greater") 
       1-sample proportions test with continuity 
correction 
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data:  5850 out of 50000, null probability 0.113 
X-squared = 7.942, df = 1, p-value = 0.002415  
alternative hypothesis: true p is greater than 0.113 
95 percent confidence interval: 
0.1146 1.0000 
sample estimates: 
     P 
0.117 

The p-value, 0.002415, and the null and alternative hypotheses are repeated in the output. 
In addition, a confidence interval is given, as is a sample estimate that we term The p-
value is slightly different from above, as a continuity correction is used by R. 

It isn’t any more difficult to test the alternative hypothesis, that the rate has changed, 
or HA:p≠p0. This is done by specifying the alternative as two. sided (just the differences 
showm): 

> prop.test(x=5850, n=50000, p=.113, alt="two.sided") 
... 
X-squared=7.942, df=1, p-value=0.004831 
... 

The p-value is different—it is twice as big—as we would guess by looking at the 
symmetry in Figure 8.3. 

8.1.2 Problems 

8.1 United States federal law on dietary supplements requires that the Food and Drug 
Administration (FDA) prove a supplement harmful in order to ban its sale. In contrast, for 
a new prescription drug, a pharmaceutical company must prove the product is safe. 

Write null and alternative hypotheses for a hypothetical significance test by the FDA 
when testing a dietary supplement. Do you think the same standard should be used for 
both dietary supplement and new prescription drugs? 

8.2 The samhda (UsingR) data set contains information on marijuana usage among 
children as collected at the the Substance Abuse and Mental Health Data Archive. The 
variable marijuana indicates whether the individual has ever tried marijuana. A 1 means 
yes, a 2 no. If it used to be that 50% of the target population had tried marijuana, does 
this data indicate an increase in marijuana usage? Do a significance test of proportions to 
decide. 

8.3 A new drug therapy is tested. Of 50 patients in the study, 40 had no recurrence in 
their illness after 18 months. With no drug therapy, the expected percentage of no 
recurrence would have been 75%. Does the data support the hypothesis that this 
percentage has increased? What is the p-value? 

8.4 In the United States in 1998, the proportion of adults age 21–24 who had no 
medical insurance was 34.4 percent, according to the Employee Benefit Research 
Institute. A survey of 75 recent college graduates in this age range finds that 40 are 
without insurance. Does this support a difference from the nationwide proportion? 
Perform a test of significance and report the p-value. Is it significant? 
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8.5 On a number of highways a toll is collected for permission to travel on the 
roadway. To lessen the burden on drivers, electronic toll-collection systems are often 
used. An engineer wishes to check the validity of one such system. She arranges to 
survey a collection unit for single day, finding that of 5,760 transactions, the system 
accurately read 5,731. Perform a one-sided significance test to see if this is consistent 
with a 99.9% accuracy rating at the 0.05 significance level. (Do you have any doubts that 
the normal approximation to the binomial distribution should apply here?) 

8.6 In Example 8.3 a count of 5,850 in the survey produced a p-value of 0.002363. 
What range of counts would have produced a p-value less than 0.05? (Start by asking 
what observed proportions in the survey would have such a p-value.) 

8.7 Historically, a car from a given company has a 10% chance of having a significant 
mechanical problem during its warranty period. A new model of the car is being sold. Of 
the first 25,000 sold, 2,700 have had an issue. Perform a test of significance to see 
whether the proportion of these new cars that will have a problem is more than 10%. 
What is the p-value? 

8.8 A poll taken in 2003 of 200 Europeans found that only 16% favored the policies of 
the United States. Do a test of significance to see whether this is significantly different 
from the 50% proportion of Americans in favor of these policies. 

8.2 Significance test for the mean (t-tests) 

Significance tests can also be constructed for the unknown mean of a parent population. 
The hypotheses take the form 

H0:µ=µ0, HA:µ<µ0, µ>µ0, or µ≠µ0.   

For many populations, a useful test statistic is 

 
  

T takes the form of “observed” minus “expected,” divided by the standard error, where 
the expected value and the standard error are found under the null hypothesis.  

In the case of normally distributed initial data, the sampling distribution of T under the 
null hypothesis is known to be the t-distribution with n−1 degrees of freedom. If n is 
large enough, the sampling distribution of T is a standard normal by the central limit 
theorem. As both the t distribution and normal distribution are similar for large n, the 
following applies to both assumptions. 

Test of significance for the population mean 
If the data X1, X2, …, Xn is an i.i.d. sequence from a Normal (µ, σ) distribution, or n is 
large enough for the central limit theorem to apply, a test of significance for 

H0:µ=µ0, HA:µ<µ0, µ>µ0, or µ≠µ0   

can be performed with test statistic 
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For a normally distributed population, T has the t-distribution with n−1 degrees of 
freedom under H0. For large n, T has the standard normal distribution. Let 

be the observed value of the test statistic. The p-value is computed 
by 

 

  

In R, the function t.test () can be used to compute the p-value with unsummarized 
data, as in 

t.test (x, mu=…, alt=“two.sided”)   

The null hypothesis is specified by a value for the argument mu=. The alternative is 
specified as appropriate by alt=“less”, alt=“greater”, or alt=“two. sided” (the default). 

■ Example 8.4: SUV gas mileage A consumer group wishes to see whether the actual 
mileage of a new SUV matches the advertised 17 miles per gallon. The group suspects it 
is lower. To test the claim, the group fills the SUV’s tank  

Table 8.2 SUV gas mileage 
stem leaf 

11 4 
12   
13 1 
14 77 
15 0569 
16 08 

and records the mileage. This is repeated ten times. The results are presented in a stem-
and-leaf diagram in Table 8.2. 

Does this data support the null hypothesis that the mileage is 17 or the alternative, that 
it is less? 

The data is assumed to be normal, and the stem-and-leaf plot shows no reason to doubt 
this. The null and alternative hypotheses are 

H0:µ=17, HA:µ<17.   

This is a one-sided test. The p-value will be computed from those values of the test 
statistic less than the observed value, as these are more extreme given the alternative 
hypothesis. 
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> mpg = 
c(11.4,13.1,14.7,14.7,15.0,15.5,15.6,15.9,16.0,16.8) 
> xbar = mean(mpg) 
> s = sd(mpg) 
> n = length(mpg) 
> c(xbar, s, n) 
[1] 14.870 1.572 10.000 
> SE = s/sqrt(n) 
> (xbar − 17)/SE 
[1] −4.285 
> pt(−4.285, df = 9, lower.tail = T) 
[1] 0.001017 

The p-value is very small and discredits the claim of 17 miles per gallon, as the 
difference of from 17 is not well explained by sampling variation. 

The above calculations could be done using t.test () as follows: 

> t.test(mpg, mu = 17, alt="less") 
One Sample t-test 
data: mpg 
t = −4.285, df = 9, p-value = 0.001018 
alternative hypothesis: true mean is less than 17 
95 percent confidence interval: 
−Inf 15.78  
sample estimates: 
mean of x 
    14.87 

The output contains the same p-value (up to rounding), plus a bit more information, 
including the observed value of the test statistic, a one-sided confidence interval, and 
(the estimate for µ). ■ 

It is easy to overlook the entire null hypothesis. We assume not only that µ=µ0, but 
also that the random sample comes from a normally distributed population with 
unspecified variance. With these assumptions, the test statistic has a known sampling 
distribution. The t-statistic is robust to small differences in the assumed normality of the 
population, but a really skewed population distribution would still be a poor candidate for 
this significance test unless n is large. It is recommended that you plot the data prior to 
doing any analysis, to ensure that it is appropriate. 

■ Example 8.5: Rising textbook costs? A college bookstore claims that, on average, 
a college student will pay $101.75 per class for textbooks. A student group investigates 
this claim by randomly selecting ten courses from the course catalog and finding the 
textbook costs for each. The data collected is 

140 125 150 124 143 170 125 94 127 53 

Do a test of significance of H0:µ=101.75 against the alternative hypothesis HA:µ>101.75. 
We assume independence and normality of the data. Once the data is entered, we can 

use t.test(), with “greater” for the alternative. This gives 
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> x = c(140, 125, 150, 124, 143, 170, 125, 94, 127, 53) 
> qqnorm(x)                   # check normality, OK 
> t.test(x, mu = 101.75, alt="greater") 
         One Sample t-test 
data: x 
t = 2.291, df = 9, p-value = 0.02385 
alternative hypothesis: true mean is greater than 101.8 
95 percent confidence interval: 
  106.4 Inf 
sample estimates: 
mean of x 
     125.1 

The p-value is small, indicating that the true amount per class may be more than that 
indicated under the null hypothesis. 

8.2.1 Problems 

8.9 A study of the average salaries of New York City residents was conducted for 770 
different jobs. It was found that massage therapists average $58,260 in yearly income. 
Suppose the study surveyed 25 massage therapists and had a standard deviation of 
$3,250. Perform a significance test of the null hypothesis that the average massage 
therapist makes $55,000 per year against the one-sided alternative that it is more. Assume 
the data is normally distributed. 

8.10 The United States Department of Energy conducts weekly phone surveys on the 
price of gasoline sold in the United Stat es. Suppose one week the sample average was 
$2.03, the sample standard deviation was $0.22, and the sample size was 800. Perform a 
one-sided significance test of H0:µ=2.00 against the alternative HA:µ>2.00. 

8.11 The variable sat .m in the data set stud. recs (UsingR) contains math SAT scores 
for a group of students. Test the null hypothesis that the mean score is 500 against a two-
sided alternative. Would you accept or reject at a 0.05 significance level? 

8.12 In the babies (UsingR) data set, the variable dht contains the father’s height. Do a 
significance test of the null hypothesis that the mean height is 68 inches against an 
alternative that it is taller. Remove the values of 99 from the data, as these indicate 
missing data. 

8.13 A consumer-reports group is testing whether a gasoline additive changes a car’s 
gas mileage. A test of seven cars finds an average improvement of 0.5 miles per gallon 
with a standard deviation of 3.77. Is this difference significantly greater than a? Assume 
the values are normally distributed. 

8.14 The data set OBP (UsingR) contains on-base percentages for the 2002 major 
league baseball season. Do a significance test to see whether the mean onbase percentage 
is 0.330 against a two-sided alternative. 

8.15 The data set normtemp (UsingR) contains measurements of 130 healthy, 
randomly selected individuals. The variable temperature contains normal body 
temperature. Does the data appear to come from a normal distribution? If so, perform a /-
test to see if the commonly assumed value of 98.6 °F is correct. (A recent study suggests 
that 98.2 degrees is actually correct.) 
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8.16 We can perform simulations to see how robust the t-test is to changes in the 
parent distribution. For a normal population we can run a simulation with the commands: 

> m = 250; n = 10 # m simulations with sample size n 
> res = c(); # store values here 
> for(i in 1:m) res [i] = t.test(rnorm(n), mu = a, df = 
n−1)$p.value 
> sum(res < 0.05)/length(res) # proportion of 
"rejections"  
[1] 0.052 

(The $p. value after t .test extracts just the p-value from the output.) This example shows 
that 5.2% of the time we rejected at the α=0.05 significance level, as expected. Repeat 
with exponential data (rexp(n), and mu=1), uniform data (runif (n) and mu=1/2), and t-
distributed data (rt (n, df=4) and mu=0). 

8.3 Significance tests and confidence intervals 

You may have noticed that the R functions for performing a significance test for a 
population proportion or mean are the same functions used to compute confidence 
intervals. This is no coincidence, as performing a significance test and constructing a 
confidence interval both make use of the same test statistic, although in different ways. 

Suppose we have a random sample from a normally distributed population with mean 
µ and variance σ2. We can use the sample to find a confidence interval for µ, or we could 
use the sample to do a significance test of 

H0:µ=µ0, HA:µ≠µ0.   

In either case, the T statistic 

 
  

is used to make the statistical inference. The two approaches are related by the following: 
a significance test with significance level α will be rejected if and only if the (1−α)·100% 
confidence interval around does not contain µ0. 

To see why, suppose α is given. The confidence interval uses t* found from 
P(−t*≤T≤t*)=1−α.   

From this, the confidence interval will not contain µ0 if the value of T is more than t* or 
less than −t*. This same relationship is used to find the critical values defining the 
boundaries of the rejection region. If the observed value of T is more than t* or less than 
−t*, then the observed value is in the rejection region, and the null hypothesis is rejected. 
This is illustrated in Figure 8.4. 

Many people prefer the confidence interval to the p-value of the significance test for 
good reasons. If the null hypothesis is that the mean is 16, but the true mean is just a bit 
different, then the probability that a significance test will fail can be made arbitrarily 
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close to 1 just by making n large enough. The confidence interval, on the other hand, 
would show much better that the value of the mean is likely close to 16. The language of 
significance tests, however, is more flexible  

 

Figure 8.4 If is in the two-sided 
rejection region, then a confidence 
interval around does not contain µ 

and allows us to consider more types of problems. Both approaches are useful to have. 
R is agnostic: it can return both the confidence interval and the p-value when asked, 

although the defaults for the functions usually return just the confidence interval. 

8.4 Significance tests for the median 

The significance test for the mean relies on a large sample, or on an assumption that the 
parent distribution is normally (or nearly normally) distributed. In the situation where this 
isn’t the case, we can use test statistics similar to the ones used to find confidence 
intervals for the median. Significance tests based on these test statistics are nonparametric 
tests, as they do not make assumptions about the population parameters to calculate the 
test statistic (though there may be assumptions about the shape of the distribution). 

8.4.1 The sign test 

The sign test is a simple test for the median of a distribution that has no assump¬ tions on 
the parent distribution except that it is continuous with positive density. Let H0 suppose 
that the median is m. If we count the number of data points higher than the median, we 
get a number that will have a Binomial(n, 1/2) distribution, as under H0, a data point is 
equally likely to be more or less than the median.  

This leads to the following test. 
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Sign test for the median 
Assume X1, X2, …, Xn are from a continuous distribution with positive density. A 
significance test of the hypotheses 

H0:median=m, HA:median<m, median>m, or median≠m, 
can be performed with test statistic 
T=the number of Xi with Xi>m.   

If the data has values equal to m, then delete those values from the data set. Under H0, 
T has a Binomial(n, 1/2) distribution. Large values of T support the alternative that the 
median is greater than M; small values of T support the alternative that the median is 
smaller than M. For two-sided alternatives, large or small values of T support HA. The p-
value is calculated by 

 

  

In R, the test statistic can be computed using sum(). The p-values are found using 
pbinom(k). However, as P(T≥k)=1−P(T≤k−1), the p-value is is found with 
1−pbinom(k−1, n, 1/2). 

■ Example 8.6: Length of cell-phone calls Suppose a cell-phone bill contains this data 
for the number of minutes per call: 

2 1 3 3 3 3 1 3 16 2 2 12 20 31 

Is this consistent with an assumption that the median call length is 5 minutes, or does it 
indicate that the median length is less than 5? 

The hypothesis test is 
H0:the median =5, HA:the median < 5.   

The data is clearly nonnormal, so a t-test is inappropriate. A sign test can be used. Here, 
small values of T support the alternative.  

> calls = c(2, 1, 3, 3, 3, 3, 1, 3, 16, 2, 2, 12, 20, 
3, 1) 
> obs = sum(calls > 5)        # find observed value of 
T 
> n = length(calls) 
> n − obs 
[1] 12 
> 1 − pbinom(11,n,1/2)        # we want P(T >= 12) 
[1] 0.01758  

We get a p-value of 0.0176, which leads us to believe that the median is less than 5. 
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For illustration, the p-value for the two-sided alternative can be computed as follows: 

> k = max(obs, n − obs) 
> k 
[1] 12 
> 2*(1 − pbinom(k−1 , n, 1/2)) 
[1] 0.03516 

8.4.2 The signed-rank test 

The signed-rank test is an improvement to the sign test when the population is symmetric, 
but not close enough to normal to use a t-test. Assume H0: median =m. If Xi are from a 
continuous distribution with density f() that is symmetric about m, then not only is Xi 
equally likely to be on either side of m, but the distance from m is independent of the 
side. Thus, if we rank all the data by its distance to m, the sum corresponding to the 
values larger than m may be viewed as a random sample of a certain size from the 
numbers 1 through n. The distribution of this sum can be characterized, so the sum of the 
ranks can be an effective test statistic. 

The Wilcoxon signed-rank test for the median 
If the data, X1, X2, …, Xn, is an i.i.d. sample from a continuous, symmetric distribution, 
then a significance test of the hypotheses 

H0: the median=m, HA: median<m, median>m, or median≠m 
can be performed with test statistic 

 
  

Under H0, the distribution of T can be calculated. Large values of T support the 
alternative hypothsis HA: median>m. 

In R, the function wilcox.test() performs the test as 

wilcox.text(x, mu=..., alt="two.sided”) 

The data is contained in x, the null hypothesis is specified by the argument mu=, and 
the alternative is specified with the argument alt=. This argument takes a value of “less”, 
“greater”, or “two. sided” (the default value). If desired, the distribution of T is given by 
the function psignrank().  

A typical application of the signed-rank test is to use it after transforming the data to 
make it look like the parent distribution is symmetric. 

■ Example 8.7: Number of recruits In salmon populations, there is a relationship 
between the number of spawners and the subsequent number of “recruits” that they 
produce. A common model involves two parameters, which describe how many recruits 
there are when there are few spawners and how many there are when there are many 
spawners. The data set salmon. rate (UsingR) contains simulated data on one of the 
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parameters. A plot of the data shows that a normal population assumption is not correct; 
rather, the population appears to be lognormal. 

Perform a significance test of 
H0: median=.005, HA: median>.005.   

After taking logs, we can see that the data is symmetric, so the signed-rank test can apply 
to the log-transformed data. The significance test of this data is 

H0: median=log(.005), HA: median>log(.005).   

> 
wilcox.test(log(salmon.rate),mu=log(.005),alt="greater”
) 
         Wilcoxon signed rank test with continuity 
correction 
data:  log(salmon.rate) 
V = 2077, p-value = 0.065 
alternative hypothesis: true mu is greater than −5.298 

A small p-value is found. 
To contrast, the p-value for the sign test is found with these commands: 

> T = sum(salmon.rate > .005); n = length(salmon.rate) 
> 1 − pbinom(T − 1, n, 1/2) 
[1] 0.1361 

8.4.3 Problems 

8.17 The exec. pay (UsingR) data set contains data on the salaries of CEOs at 199 top 
companies in the United States. The amounts are in $ 10,000s. The data is not symmetric. 
Do a sign test to determine whether the median pay is more than $220,000. 

8.18 Repeat the previous exercise, using the signed-rank test on the log-transformed 
data. Do you reach the same conclusion? 

8.19 The babies (UsingR) data set contains data covering many births. Information 
included is the gestation period, and a factor indicating whether the mother was a smoker. 
Extracting the gestation times for mothers who smoked during pregnancy can be done 
with these commands: 

> attach(babies) 
> smokers=gestation[smoke == 1 & gestation != 999] 
> detach(babies) 

Perform a significance test of the null hypothesis that the average gestation period is 40 
weeks against a two-sided alternative. Explain what test you used, and why you chose 
that one. 

8.20 If the sign test has fewer assumptions on the population, why wouldn’t we always 
use that instead of a t-test? The answer lies in the power of the sign test to detect when 
the null hypothesis is false. The sign test will not reject a false null as often as the t-test. 
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The following commands will perform a simulation comparing the two tests on data that 
has a Normal(1,2) distribution. The significance tests performed are both 

H0:µ=0, HA:µ>0   

Run the simulation. Is there a big difference between the two tests? 

> m = 200; n = 10 
> res.t = rep(0,m);res.sign = rep(0,m) 
> ford in 1:m) { 
+  x=rnorm(n, mean=1, sd=2) 
+  if(t.test(x,mu=0,alt = “greater")$p.value < 0.05) 
+   res.t[i]=1 
+  T = sum(x>0) 
+  if (1−pbinom(T−1,n,1/2) < .05) 
+   res.sign[i]=1 
+} 
> sum(res.t)/m                     # proportion 
rejected by t-test 
> sum(res.sign)/m                  # proportion 
rejected by sign-test 

(The notation $p. value appended to the output of t.test() retrieves just the p-value from 
the test results.)  

8.5 Two-sample tests of proportion 

In the previous sections our tests of significance compared a sample to some assumed 
value of the population and determined whether the sample supported the null hypothesis. 
This assumes some specific knowledge about the population parameters. In many 
situations, we’d like to compare two parameters. 

In this section we consider how to compare two population proportions. This can be 
useful in many different contexts: comparing polling results taken over different periods 
of time, surveying results after an intervention such as an advertising campaign, or 
comparing attitudes among different ethnic groups. 

In Example 8.3, we compared the 2001 poverty rate, which was found by a sample, 
with the 2000 poverty rate which was known from a census. To compare the 2002 rate to 
the 2001 rate, we would compare two samples. How do we handle this with a 
significance test? 

Let be the estimated 2001 poverty rate and be the estimated 2002 poverty rate. 
We wish to perform a significance test of 

H0: p1=P2, HA :p1<p2   

using the values of and in the test statistic. If we think of the test as one of 
differences, we can rephrase it as 

H0:p1−p2=0, HA :p1−p2<0.   
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A natural test statistic would be 

 
  

We assume that the surveys were a simple random sample from the population, so that 
the number responding favorably, xi, has a binomial distribution with n=ni and p=pi for 
i=1, 2. (So Thus, the expectation in Z is simply p1−p2=0 under the null 
hypothesis. The standard error is found from the standard deviation under the null 
hypothesis 

 

  

where p=p1=p2 under the null hypothesis. The value of p is not assumed in H0, so we 
estimate it and use the standard error instead. To estimate p it makes sense to use the 
entire sample:  

 
  

This leaves 

 
(8.2) 

Two-sample test of proportions 
If we have sample proportions for two random samples, a significance test of 

H0:p1=p2, HA:p1<p2, p1>p2, or p1≠p2   

can be carried out with test statistic Z given by (8.2). Under H0, Z has a standard 
normal distribution if n1 and n2 are sufficiently large. Large values of Z support the 
alternative p1>p2; small values support p1<p2. 

In R, the function prop. test () will perform a two-sample test of proportions: 
prop.test(x, n, alt=“two.sided”)   

The data is specified by a vector of values with x storing the counts and n the sample 
size. There is no need to specify a null hypothesis, as it is always the same. The 
alternative hypothesis is specified by one of alt=“less”, alt=“greater”, or alt=“two. sided” 
(the default). 

■ Example 8.8: Poverty rate, continued Assume the 2001 poverty rate of 11.7% was 
derived from a random sample of 50,000 people, and the 2002 poverty rate of 12.1% was 
derived from a simple random sample of 60,000. Is the difference between the 
proportions statistically significant? 
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Let and be the given sample proportions. Our null and 
alternative hypotheses are 

H0:p1=p2, HA:p1<P2.   

We can use prop.test() using to give the frequencies of those in the sample 

> phat = c(.121, .117)     # the sample proportions 
> n = c(50000, 60000)      # the sample sizes 
> n*phat                   # the counts 
[1] 5850 7260  
> prop.test(n*phat,n,alt="less") 
        2-sample test for equality of proportions with 
        continuity correction 
data: n * phat out of n 
X-squared = 4.119, df = 1, p-value = 0.02121 
alternative hypothesis: less 
95 percent confidence interval: 
−1.0000000 −0.0007589 
sample estimates: 
prop 1 prop 2 
0.117   0.121 

The small p-value of 0.02107 indicates an increase in the rate. 
If we were to do this by hand, rather than by using prop.test(), we would find: 

> p=sum(n*phat)/sum(n)           # 
(n_1p_1+n_2p_2)/(n_1+n_2) 
> obs=(phat[1]−phat[2])/sqrt(p*(1−p)*sum(1/n)) 
> obs 
[1] −2.039 
> pnorm(obs) 
[1] 0.02073 

This also gives a small p-value. The difference is due to a continuity correction used by 
prop.test(). 

8.5.1 Problems 

8.21 A cell-phone store has sold 150 phones of Brand A and had 14 returned as defective. 
Additionally, it has sold 125 phones of Brand B and had 15 phones returned as defective. 
Is there statistical evidence that Brand A has a smaller chance of being returned than 
Brand B? 

8.22 In the year 2001, a poll of 600 people found that 250 supported gay marriage. A 
2003 poll of 500 found 250 in support. Do a test of significance to see whether the 
difference in proportions is statistically significant. 

8.23 There were two advance screenings of a new movie. The first audience was 
composed of a classical-music radio station’s listeners, the second a rock-androll music 
station’s listeners. Suppose the audience size was 350 for each screening. If 82% of the 
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audience at the first screening rated the movie favorably, but only 70% of second 
audience did, is this difference statistically significant? Can you assume that each 
audience is a random sample from the population of the respective radio station listeners?  

8.24 The HIP mammography study was one of the first and largest studies of the value 
of mammograms. The study began in New York in the 1960s and involved 60,000 
women randomly assigned to two groups—one that received mammograms, and one that 
did not. The women were then observed for the next 18 years. Of the 30,000 who had 
mammograms, 153 died of breast cancer; of the 30,000 who did not, 196 died of breast 
cancer. Compare the two sample proportions to see whether there is a statistically 
significant difference between the death rates of the two groups. (There is debate about 
the validity of the experimental protocol.) 

8.25 Ginkgo biloba extract is widely touted as a miracle cure for several ailments, 
including acute mountain sickness (AMS), which is common in mountaineering. A 
randomized study took 44 healthy subjects to the Himalayas; half received the extract (80 
mg twice/day) and half received placebos. Each group was measured for AMS. The 
results of the study are given in Table 8.3. Compute a p-value for a significance test for 
the null hypothesis of equivalence of proportions against a two-sided alternative. 

Table 8.3 Data on acute mountain sickness 
Group n Number who suffered AMS 
placebo 22 18 
ginkgo biloba 22 3 
source: Aviation, space, and Environmental Medicine 67, 445–452, 1996

8.26 Immediately after a ban on using of hand-held cell phones while driving was 
implemented, compliance with the law was measured. A random sample of 1,250 found 
that 98.9% were in compliance. A year after the implementation, compliance was again 
measured. A sample of 1,100 drivers found 96.9% in compliance. Is the difference in 
proportions statistically significant? 

8.27 The start of a May 5, 2004 New York Times article reads 

In the wake of huge tobacco tax increases and a ban on smoking in bars, 
the number of adult smokers in New York City fell 11 percent from 2002 
to 2003, one of the steepest short-term declines ever measured, according 
to surveys commissioned by the city. 

The article continues, saying that the surveys were conducted using method the questions 
and a random dialing approach—identical to those done annually by the federal Centers 
for Disease Control and Prevention. Each survey used a large sample of 10,000 people, 
giving a stated margin of error of 1 percentage point. 

The estimated portion of the population that smoked in 2002 was 21.6% the estimated 
proportion in 2003 was 19.3%. Are these differences significant at the 0.01 level? 
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8.6 Two-sample tests of center 

A physician may be interested in knowing whether the time to recover for one surgery is 
shorter than that for another surgery. A taxicab driver might wish to know whether the 
time to travel one route is faster than the time to travel another. A consumer group might 
wish to know whether gasoline prices are similar in two different cities. Or a government 
agency might want to know whether consumer spending is similar in two different states. 
All of these questions could be approached by taking random samples from the respective 
populations and comparing. We consider the situation when the question of issue can be 
boiled down to a comparison of the centers of the two populations. We can use a 
significance test to compare centers in the same manner as we compare two population 
proportions. However, as there are more possibilities for types of populations considered, 
there are more test statistics to consider. 

Suppose Xi,i=1,…,nx and Yj, j=1,…,ny are random samples from the two populations 
of interest. A significance test to compare the centers of their parent distributions would 
use the hypotheses 

H0:µx=µy, HA:µx<µy, µx>µy, or µx≠µy. 
(8.3) 

A reasonable test statistic depends on the assumptions placed on the parent populations. 
If the populations are normally distributed or nearly so, and the samples are independent 
of each other, then a t-test can be used. If the populations are not normally distributed, 
then a nonparametric Wilcoxon test may be appropriate. If the samples are not 
independent but paired off in some way, then a paired test might be called for. 

8.6.1 Two sample tests of center with normal populations 

Suppose the two samples are independent with normally distributed populations. As 
and estimate µx and µy respectively, the value of should be a good estimate for 
µx−µy. We can use this to form a test statistic. Both sample means have normally 
distributed sampling distributions. A natural test statistic is then  

 
  

Under H0, the expected value of the difference is a. The standard error is found from the 
formula for the standard deviation, which is based on the independence of the samples: 

 

  

As with confidence intervals, the estimate used for the population variances depends on 
an assumption of equal variances. 
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If the two variances are assumed equal, the all the data is pooled to estimate σ=σx=σy 
using 

 
(8.4) 

The standard error used is 

 
(8.5) 

With this, T has a t-distribution with n−2 degrees of freedom. 
If the population variances are not assumed to be equal, then we estimate σx with sx 

and σy with sy to get 

 
(8.6) 

Additionally, we use the Welch approximation for the degrees of freedom as described in 
Chapter 7. This again yields a test statistic that is described by the t-distribution under the 
null hypothesis. 

t-tests for comparison of means of independent samples 

Assume are independent random samples from 
Normal(µi, σi) distributions, where i=x or y. A significance test of 

H0:µx=µy, HA:µx<µy, µx>µy, or µx≠µy   

can be done with test statistic T. T will have the t-distribution with a specified number 
of degrees of freedom under H0. Larger values of T 

support HA:µx>µy. 

If we assume that then T has nx+ny−2 degrees of freedom, and the standard 
error is given by (8.5). 

If we assume that then T has degrees of freedom given by the Welch 
approximation in Equation 7.5 and standard error given by (8.6). 

In each case, the function t.test() will perform the significance test. It is used with the 
arguments 

t.test(x, y, alt=“two.sided”, var.equal=FALSE)   

The data is specified in two data vectors, x and y. There is no need to specify the null 
hypothesis, as it is always the same. The alternative is specified by “less”, “greater”, or 
“two.sided” (the default). The argument var. equal=TRUE is given to specify the equal-
variance case. The default is to assume unequal variances. 
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■ Example 8.9: Differing dosages of AZT 
AZT was the first FDA-approved antiretroviral drug used in the care of HIVinfected 
individuals. The common dosage is 300 mg twice daily. Higher dosages cause more side 
effects. But are they more effective? A study done in 1990 compared dosages of 300 mg, 
600 mg, and 1,500 mg (source http://www.aids.org/). The study found higher toxicity 
with greater dosages, and, more importantly, that the lower dosage may be equally 
effective. 

The p24 antigen can stimulate immune responses. The measurement of p24 levels for 
the 300 mg and 600 mg groups is given by the simulated data in Table 8.4. Perform a t-
test to determine whether there is a difference in means. 

Table 8.4 Levels of p24 in mg for two treatment 
groups 

Amount p24 level 
300 mg 284 279 289 292 287 295 285 279 306 298
600 mg 298 307 297 279 291 335 299 300 306 291

Let µx be the mean of the 300 mg group, and µy the mean of the 600 mg group. We can 
test the hypotheses  

H0:µx=µy, HA:µx≠µy   

with a t-test. First, we check to see whether the assumption of a common variance and 
normality seems appropriate by looking at two densityplots: 

> x = c(284, 279, 289, 292, 287, 295, 285, 279, 306, 
298) 
> y = c(298, 307, 297, 279, 291, 335, 299, 300, 306, 
291) 
> plot(density(x)) 
> lines(density(y), lty=2) 

The graph (Figure 8.5) shows two density estimates that indicate normally distributed 
populations with similar spreads. As such, the t-test looks appropriate. 
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Figure 8.5 Densityplots to compare 
variances and shapes of the 300 mg 
dosage (solid) and the 600 mg dosage 
(dashed) 

> t.test(x,y,var.equal=TRUE) 
        Two Sample t-test 
data:  x and y 
t = −2.034, df = 18, p-value = 0.05696 
alternative hypothesis: true difference in means is not 
equal to 0 
... 

The p-value is 0.05696 for the two-sided test. This suggests a difference in the mean 
values, but it is not statistically significant at the 0.05 significance level. A look at the 
reported confidence interval for the difference of the means shows a wide range of 
possible value for µx−µy. We conclude that this data is consistent with the assumption of 
no mean difference. 

How would this change if we did not assume equal variances? 

> t.test(x,y) 
        Welch Two Sample t-test  
data:  x and y 
t = −2.034, df = 14.51, p-value = 0.06065 
alternative hypothesis: true difference in means is not 
equal to 0 
95 percent confidence interval: 
−22.3557   0.5557 
sample estimates: 
mean of x mean of y 
   289.4      300.3 

In this example, the same observed value of the test statistic (marked t) is found as in the 
equal-variance case, as (8.5) and (8.6) yield identical standard errors when the two 

Significance tests     231



sample sizes are the same. We get a larger p-value, though, as the degrees of freedom 
decrease. 

8.6.2 Matched samples 

There are times when two samples depend on each other in some way, for example, 
samples from twin studies, where identical or fraternal twins are used as pairs, so that 
genetic or environmental factors can be controlled. For this, the usual two-sample t-test is 
not applicable. We mention two examples. 

■ Example 8.10: Twin studies An industry-sponsored clinical trial 
(http://www.hairtoday.com/html/propeciatwins.cfm) demonstrates that Finasteride 
inhibits male-pattern hair loss. How did the researchers show this? They used two 
treatment groups: one received a Finasteride treatment, the other a placebo. A 
randomized, double-blind study was performed. Hair loss was measured by photographs, 
hair counts, and questionnaires. 

What was different about this study was the use of identical twins for the treatment 
groups. For each pair of twins, one was randomly assigned to the treatment group and the 
other to the control group. This allowed the researchers to “control” for genetic 
differences—differences that might be so great that the true effect of the Finasteride 
treatment could be hidden. The researchers stated 

As identical twins share the same genetic makeup, comparison between 
the responses of each subject in a twin pair, when one receives drug and 
the other receives placebo, allows for rigorous examination of the effects 
due to drug treatment in a limited number of subjects. 

■ Example 8.11: Pre- and post-tests Outcomes assessment is an attempt to measure 
whether a certain action actually does what it is intended to do. For example, does a 
statistics book actually work for teaching R? Or, does a statistics class make you 
understand the difference between mere sampling variation and a true effect? One way to 
assess the effectiveness of something is with a pre-test and a post-test. If the scores are 
markedly better on the post-test, then we may be able to attribute the change to the 
teaching. 

Imagine a class takes a pre-test and a post-test. Each student has two test scores, Xi for 
the first test and the matching Yi for the second. How can we test whether there is a 
difference in the means? We might be tempted to use the t-test, but we should be careful, 
as the two samples are not independent. This assumption of independence was used 
implicitly when computing the standard error in the test statistic. Besides, what is really 
important is the change in the scores Xi−Yi. 

For paired data, even if there are large variations within the samples, we can still test a 
difference in the means by using a one-sample test applied to the data, Xi−Yi. 

Significance tests for paired samples 
If the two sample X1, X2, …, Xn and Y1, Y2, …, Yn are matched so that the differences 
Xi−Yi are an i.i.d. sample, then the significance test of hypotheses 
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H0:µx=µy, HA:µx<µy, µx≠µy, or µx>µy   

becomes a significance test of 
H0:µ=0, HA:µ<0, µ>0, or µ≠0.   

If the differences have a normally distributed population, a t-test can be used. If the 
differences are from a symmetric distribution, the Wilcoxon signed-rank test can be used. 
Otherwise, the sign test can be used, where µ is interpreted as the difference of medians. 

In R, both the t.test() and wilcox.test() functions have an argument paired=TRUE that 
will perform the paired tests. 

■ Example 8.12: Twin studies continued For the Finasteride study, photographs are 
taken of each head. They are assessed using a standard methodology. This results in a 
score between 1 and 7:1 indicating greatly decreased hair growth and 7 greatly increased. 
Simulated data, presented as pairs, is in Table 8.5. 

We can assess the differences with a paired t-test as follows: 

> Finasteride = c(5,3,5,6,4,4,7,4,3) 
> placebo = c(2,3,2,4,2,2,3,4,2) 

Table 8.5 Assessment for hair loss on 1–7 scale 
for twin study 

Group score 
Finasteride treatment 5 3 5 7 4 4 7 4 3
placebo 2 3 2 4 2 2 3 4 2

> t.test(Finasteride, placebo, paired=TRUE, 
alt="two.sided") 
         Paired t-test 
data: Finasteride and placebo 
t=4.154, df=8, p-value=0.003192 
alternative hypothesis: true difference in means is not 
equal to a 
95 percent confidence interval: 
0.8403 2.9375 
sample estimates: 
mean of the differences 
                1.889 

We see a very small p-value, indicating that the result is significant. The null hypothesis 
of no effect is in doubt. 

■ Example 8.13: Pre- and post-tests, continued To test whether a college course is 
working, a pre- and post-test is arranged for the students. The results are given in Table 
8.6. Compare the scores with a t-test. First, assume that the scores are randomly selected 
from the two tests. Next, assume that they are pairs of scores for ten students. 
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Table 8.6 Pre- and post-test scores 
Test score 
Pre-test 77 56 64 60 57 53 72 62 65 66
Post-test 88 74 83 68 58 50 67 64 74 60

For each, we test the hypotheses that 
H0:µ1=µ2, HA:µ1<µ2,   

and we assume that the data is normally distributed. 
If we assume that the scores are random samples from the two test populations, then 

the usual t-test is used. We first make a boxplot, to decide whether the variances are equal 
(not shown), and then we apply the test.  

> pre = c(77, 56, 64, 60, 57, 53, 72, 62, 65, 66) 
> post = c(88, 74, 83, 68, 58, 50, 67, 64, 74, 60) 
> boxplot(pre,post) 
> t.test(pre, post,var.equal=TRUE, alt="less") 
... 
t = −1.248, df = 18, p-value = 0.1139 

The p-value is small but not significant. 
If we assume these scores are paired off, then we focus on the differences. This gives a 

much smaller p-value 

> t.test(pre,post, paired=TRUE, alt="less") 
... 
t = −1.890, df = 9, p-value = 0.04564 
... 

This time, the difference is significant at the 0.05 level. 
If small samples are to be used, it can often be advantageous to use paired samples, 

rather than independent samples. 

8.6.3 The Wilcoxon rank-sum test for equality of center 

The two-sample t-test tests whether two independent samples have the same center when 
both samples are drawn from a normal distribution. However, there are many situations 
in which the parent populations may be heavily skewed or have heavy tails. Then the t-
test is not appropriate. However, if it is assumed that our two samples come from two 
distributions that are identical up a shift of center, then the Wilcoxon rank-sum test can 
be used to perform a significance test to test whether the centers are identical. 
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Figure 8.6 Two random samples 
from similar distributions indicated 
by points with different shades. The 
lower ranked ones come primarily 
from the distribution shifted to the 
left. 

To be precise, suppose f(x) is a density of a continuous distribution with mean a. Further, 
assume that the Xi are a random sample from a population with density f(x−µ1) (so it has 
mean µ1), and that the Yj are a random sample from a population with density f(x−µ2). 
Figure 8.6 shows two samples where the µ’s are different. The darker distribution is 
shifted to the left, and its sample, indicated with darker dots, has most of its values to the 
left of the other sample. This would not be expected if the two populations were identical. 
The rank-sum statistic quantifies this, allowing for a significance test. 

Wilcoxon rank-sum test for two independent samples 
Assume that the random sample, comes from a distribution with density 
f(·−µx), and that from a distribution with density f(·−µy) (same shaped 
density, but perhaps different centers). A test of significance of the hypotheses 

H0:µ1=µ2, HA:µ1<µ2, µ1>µ2, or µ1≠µ2 
can be performed with the rank-sum statistic. 
To perform the significance test in R, the wilcox.test() function is used as 

wilcox.test(x, y, alt=“two.sided”) 
The variables x and y store the two data sets, and the alternative is specified as usual 

with one of “less”, “greater”, or “two.sided” (the default). The wilcox.test() function will 
also work in the case when there are ties in the data. 

■ Example 8.14: Comparing grocery checkers A grocery store’s management wishes 
to compare checkout personnel to see if there is a difference in their checkout times. A 
small sample of data comparing two checkers’ times (in minutes) is given in Table 8.7. 
Compare the mean checkout times. 

We use the wilcox.test() function after verifying that the assumptions are met. 
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> A = c(5.8, 1.0, 1.1, 2.1, 2.5, 1.1, 1.0, 1.2, 3.2, 
2.7) 
> B = c(1.5, 2.7, 6.6, 4.6, 1.1, 1.2, 5.7, 3.2, 1.2, 
1.3) 
> plot(density(A)) 
> lines(density(B)) 

The graph (not shown) suggests that the populations are skewed with long tails. As such, 
the t-test assumptions are not met. However, we also see that the sam- 

Table 8.7 Ten checkout times for two grocery 
checkers 

Checker Times 
checker A 5.8 1.0 1.1 2.1 2.5 1.1 1.0 1.2 3.2 2.7
checker B 1.5 2.7 6.6 4.6 1.1 1.2 5.7 3.2 1.2 1.3

ples appear to have densities with the same shape, so the rank-sum test is available. A 
two-sided test can be done with 

> wilcox.test(A,B) 
        Wilcoxon rank sum test with continuity 
correction 
data: A and B 
W = 34, p-value = 0.2394 
alternative hypothesis: true mu is not equal to a 

The p-value is not significant. babies 

8.6.4 Problems 

8.28 A 2003 study at the Cleveland Clinic compared the effects of two cholesterol drugs, 
atorvastatin and pravastatin, on middle-aged heart-disease patients. It was found that the 
atorvastatin treatment group had an average LDL level of 79 after treatment, whereas the 
pravastatin group had an average LDL level of 110. Suppose the two groups contained 
250 patients each, and the sample standard deviations were 25 for the atorvastatin group 
and 20 for the pravastatin. If the populations are assumed to be normally distributed, 
perform a two-sample test to compare whether the mean LDL levels for atorvastatin are 
lower than those for pravastatin, or whether the differences are explainable by chance 
variation. 

8.29 A test to determine whether echinacea is beneficial in treating the common cold 
was set up as follows. If a child reported cold symptoms, then he was randomly assigned 
to be given either echinacea or a placebo. Recovery time was measured and is 
summarized in Table 8.8. Is this statistical evidence that children in the echinacea group 
had a quicker recovery?  

Table 8.8 Recovery time for different treatment 
groups 
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group n  s
echinacea 200 5.3 2.5
placebo 207 5.4 2.5

8.30 For the babies (UsingR) data set, the variable age contains the mom’s age and 
dage contains the dad’s age for several babies. Do a significance test of the null 
hypothesis of equal ages against a one-sided alternative that the dads are older. 

8.31 The data set normtemp (UsingR) contains body measurements for 130 healthy, 
randomly selected individuals. The variable temperature contains normal body 
temperature data and the variable gender contains gender information, with male coded 
as 1 and female as 2. First split the data by gender, and then perform a two-sample test to 
see whether the population means are equivalent. Is the difference statistically 
significant? 

8.32 Students wishing to graduate must achieve a specific score on a standardized test. 
Those failing must take a course and then attempt the test again. Suppose 12 students are 
enrolled in the extra course and their two test scores are given in Table 8.9. Do a t-test to 
see if there was any improvement in the students’ mean scores following the class. If you 
assume equal variances or a paired test, explain why. 

Table 8.9 Student scores on pre- and post-test 
Student scores 
Pre-test 17 12 20 12 20 21 23 10 15 17 18 18
Post-test 19 25 18 18 26 19 27 14 20 22 16 18

The p-value indicates that the null hypothesis of “no improvement” is not consistent with 
the data. 

8.33 Water-quality researchers wish to measure biomass/chlorophyll ratio for 
phytoplankton (in milligrams per liter of water). There are two possible tests, one less 
expensive than the other. To see whether the two tests give the same results, ten water 
samples were taken and each was measured both ways, providing the data in Table 8.10. 
Do a t-test to see if there is a difference in the means of the measured amounts. If you 
assume equal variances or a paired test, explain why. 

8.34 The shoes data set in the MASS package contains a famous data set on shoe 
wear. Ten boys wore two different shoes each, then measurements were taken on shoe 
wear. The wear amounts are stored in variables A and B. First make a scatterplot of the 
data, then compare the mean wear for the two types of shoes using the appropriate t-test.  

Table 8.10 Measurements of 
biomass/chlorophyll in mg/L 
Method measurement 
method 1 45.9 57.6 54.9 38.7 35.7 39.2 45.9 43.2 45.4 54.8
method 2 48.2 64.2 56.8 47.2 43.7 45.7 53.0 52.0 45.1 57.5

8.35 The galton on (UsingR) data set contains data collected by Francis Gallon in 1885. 
Each data point contains a child’s height and an average of his or her parents’ heights. Do 
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a t-test to see if there is a difference in the mean height. Assume the paired t-test is 
appropriate. What problems are there with this assumption? 

8.36 The question of equal variances comes up when we perform a two sample ttest. 
We’ve answered this based on a graphical exploration. The F-test for equal variances of 
two normal populations can be used to test formally for equality. The test statistic is the 
ratio of the sample variances, which under the null hypothesis of equal variances has an 
F-distribution. This test is carried out by the function var. test(). A two-sided test 

is done with the command var.test(x, y). 
Do a two-sided test for equality of variance on the data in Example 8.9. 
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Chapter 9  
Goodness of fit 

In this chapter we return to problems involving categorical data. We previously 
summarized such data using tables. Here we discuss a significance test for the 
distribution of the values in a table. The test statistic will be based on how well the actual 
counts for each category fit the expected counts. 

Such tests are called goodness-of-fit tests, as they measure how well the distribution of 
the data fits a probability model. In this chapter we will also discuss goodness-of-fit tests 
for continuous data. For example, we will learn a significance test for investigating 
whether a data set is normally distributed. 

9.1 The chi-squared goodness-of-fit test 

In a public-opinion poll, there are often more than two possible opinions. For example, 
suppose a survey of registered voters is taken to see which candidate is likely to be 
elected in an upcoming election. For simplicity, we assume there are two candidates, a 
Republican and a Democrat. A prospective voter may choose one of these or may be 
undecided. If 100 people are surveyed, and the results are 35 for the Republican, 40 for 
the Democrat, and 25 undecided, is the difference between the Republican and 
Democratic candidate significant? 

9.1.1 The multinomial distribution 

Before answering a question about significance, we need a probability model, so that 
calculations can be made. The above example is a bit different from the familiar polling 
model. When there are just two categories to choose from we use the binomial model as 
our probability model; in this case, with more categories, we generalize and use the 
multinomial model. 

Assume we have k categories to choose from, labeled 1 through k. We pick one of the 
categories at random, with probabilities specified by p1, p2, …, Pk; Pi gives the probability 
of selecting category i. We must have p1+p2+Pk=1. If all the pi equal 1/k, then each 
category is equally likely (like rolling a die). Picking a category with these probabilities 
produces a single random value; repeat this selection n times, with each pick being 
independent, to get n values. A table of values will report the frequencies. Call these table 
entries Y1, Y2, …, Yk. These k numbers sum to n. The joint distribution of these random 
variables is called the multinomial distribution. 

We can create multinomial data in R with the sample() function. For example, an 
M&Ms bag is filled using colors drawn from a fixed ratio. A bag of 30 can be filled as 
follows: 



> cols = 
c("blue","brown","green","orange","red","yellow","purpl
e") 
> prob = c(1,1,1,1,2,2,2)       # ratio of colors 
> bagfull.mms=sample(cols,30,replace=TRUE, prob=prob) 
> table(bagfull.mms) 
bagfull.mms 
blue brown green orange purple      red yellow 
   2     3     1      3      6       10      5 

A formula for the multinomial distribution is similar to that for the binomial distribution 
except that more factors are involved, as there are more categories to choose from. The 
distribution can be specified as follows: 

 
  

As an example, consider the voter survey. Suppose we expected the percentages to be 
35% Republican, 35% Democrat, and 30% undecided. What is the probability in a survey 
of 100 that we see 35, 40, and 25 respectively? It is 

 
  

This is found with 

> choose(100,30)*choose(70,40) * .35^35 * .35^40 * 
.30^25 
[1] 0.008794 

(We skip the last coefficient, as for any j.) This small value is the probability of 
the observed value, but it is not a p-value. A p-value also includes the probability of 
seeing more extreme values than the observed one. We still need to specify what that 
means. 

9.1.2 Pearson’s χ2 statistic 

Trying to use the multinomial distribution directly to answer a problem about the p-value 
is difficult, as the variables Yi are correlated. If one is large the others are more likely to 
be small, so the meaning of “extreme” in calculating a pvalue is not immediately clear. 
As an alternative, the problem of testing whether a given set of probabilities could have 
produced the data is done as before: by comparing the observed value with the expected 
value and then normalizing to get something with a known distribution. 

Each Yi is a random variable telling us how many of the n choices were in category i. 
If we focus on a single i, then Yi is seen to be Binomial(n, pi). Again, the Yi are not 
independent but correlated, as one large one implies that the others are more likely 
smaller. However, we know that the expected number of Yi is npi. Based on this, a good 
statistic might be 
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This gives the total discrepancy between the observed and the expected. We use the 
square as ∑Yi−npi=0. This sum gets larger when a category is larger or smaller than 
expected. So a larger-than-expected value contributes, and any correlated smaller-than-
expected values do, too. As usual, we scale this by the right amount to yield a test statistic 
with a known distribution. In this case, each term is divided by the expected amount, 
producing Pearson’s chi-squared statistic (written using the Greek letter chi): 

 
(9.1) 

 

Figure 9.1 Simulation of χ2 statistic 
with n=20 and probabilities 3/12, 
4/12, and 5/12. The chi-squared 
density with 2 degrees of freedom is 
added. 

If the multinomial model is correct, then the asymptotic distribution of Yi is known to be 
the chi-squared distribution with k−1 degrees of freedom. The number of degrees of 
freedom coincides with the number of free ways we can specify the values for pi in the 
null hypothesis. We are free to choose k−1 of the values but not k, as the values must sum 
to 1. 

The chi-squared distribution is a good fit if the expected cell counts are all five or 
more. Figure 9.1 shows a simulation and a histogram of the corresponding χ2 statistic, 
along with a theoretical density. 

Using this statistic as a test statistic allows us to construct a significance test. Larger 
values are now considered more extreme, as they imply more discrepancy from the 
predicted amount. 
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The chi-squared significance test for goodness of fit 
Let Y1, Y2, …, Yk be the observed cell counts in a table that arise from random sampling. 
Suppose their joint distribution is described by the multinomial model with probabilities 
p1, p2, …, pk. A significance test of 

H0:p1=π1, …, pk=πk, HA:pi≠πi for at least i   

can be performed with the χ2 statistic. The πi are specified probabilities. Under H0 the 
sampling distribution is asymptotically the chi-squared distribution with k−1 degrees of 
freedom. This is a good approximation, provided that the expected cell counts are all five 
or more. Large values of the statistic support the alternative. 

This test is implemented by the chisq.test() function. The function is called with 
chisq.test(x, p=…)   

The data is given in tabulated form in x; the null hypothesis is specified with the 
argument p= as a vector of probabilities. The default is a uniform probability assumption. 
This should be given as a named argument, as it is not the second position in the list of 
arguments. The alternative hypothesis is not specified, as it does not change. A warning 
message will be returned if any category has fewer than five expected counts. 

For example, suppose we wanted to know whether the voter data was generated 
according to the probabilities p1=.35, p2=.35, and p3=.30. To investigate, we can perform 
a significance test. This can be done directly with the chisq.test() function or “by hand.” 
We illustrate both approaches, as we’ll see soon that knowing how to do it the long way 
allows us to do more problems. 

To do this by hand, we specify the counts in y and the probabilities in p, then form the 
test statistic:  

> y = c(35,40,25) 
> p = c(35,35,30)            # ratios 
> p = p/sum(p)               # proportions 
> n = sum(y) 
> chi2 = sum( (y−n*p)^2 / (n*p)) 
> chi2 
[1] 1.548 
> pchisq(chi2, df=3–1, lower.tail=F) 
[1] 0.4613 

In contrast, the above could have been done with 

> chisq.test(y, p=p) 
Chi-squared test for given probabilities 
data:  y 
X-squared = 1.548, df = 2, p-value = 0.4613 
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The function returns the value of the test statistic (after X-squared), the degrees of 
freedom, and the p-value. 

■ Example 9.1: Teen smoking The samhda (UsingR) data set contains information 
about health behavior for school-age children. For example, the variable amt. smoke 
measures how often a child smoked in the previous month. 

There are seven levels: a 1 means he smoked every day and a 7 means not at all. 
Values 98 and 99 indicate missing data. See ?samhda for a description. We investigate 
whether the sample proportions agree with the probabilities: 

p1=.15, p2=.05, p3=.05, p4=.05, p5=.10, p6=.20, p7=.40   

A test of significance can be constructed as follows: 

> library(UsingR) 
> attach(samhda) 
> y = table(amt.smoke[amt.smoke < 98]) 
> y 
  1 2  3  4  5  6   7 
32 7 13 10 14 43 105 
> p=c(.15,.05,.05,.05,.10,.20,.40) 
> chisq.test(y,p=p) 
        Chi-squared test for given probabilities 
data: y 
X-squared=7.938, df=6, p-value=0.2427 
> detach(samhda)             # clean up 

The p-value of 0.2427 is not significant.  

Partially specified null hypotheses 
In the example with voting data, we might be interested in knowing whether the 
Republican candidate is significantly trailing the Democrat or whether the differences are 
due to sampling variation. That is, we would want to test the hypotheses 

H0:p1=p2 HA:p1≠p2.   

These, too, can be tested with the χ2 statistic, but we need to specify what we mean by 
“expected,” as under H0 this is not fully specified. 

To do so, we use any values completely specified by the null hypothesis; for those 
values that aren’t, we estimate using the null hypothesis to pool our data as appropriate. 
For this problem, none of the pi values are fully specified. To estimate we use 
both of the cell counts through (Y1+Y2)/(2n). This leaves Then 
the χ2 statistic in this case becomes 

 

  

Again, if all the expected counts are large enough, this will have an approximately chi-
squared distribution. There is only one degree of freedom in this problem, as only one 
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thing is left to estimate, namely the value p=p1=P2. Once we specify a value of p, then, 
by the assumptions in the null hypothesis, all the pi are decided. 

We get the p-value in our example as follows: 

> y = c(35,40,25) 
> phat = c(75/200,75/200,25/100) 
> n = sum(y) 
> sum( (y−n*phat)^2/(n*phat)) 
[1] 0.3333 
> pchisq(.3333, df =1 , lower.tail=FALSE) 
[1] 0.5637 

The difference is not statistically significant. 
In general, the χ2 statistic can be used in significance tests where the null specifies 

some relationship among the multinomial probabilities. The asymptotic distribution of 
the test statistic under the null hypothesis will be chi-squared. The degrees of freedom 
will depend on the number of values that we are free to specify. 

9.1.3 Problems 

9.1 A die is rolled 100 times and yields the frequencies in Table 9.1. Is this a fair die? 
Answer using a significance test with H0:pi=1/6 for each i and  

Table 9.1 100 rolls of a die 
  value 
  1 2 3 4 5 6
count 13 17 9 17 18 26

HA:Pi≠1/6 for at least one i. 
9.2 Table 9.2 contains the results of a poll of 787 registered voters and the actual race 

results (in percentages of total votes) in the 2003 gubernatorial recall election in 
California. 

Table 9.2 California gubernatorial recall election 
Candidate party poll amount actual
Schwarzenegger Republican 315 48.6 
Bustamante Democrat 197 31.5 
McClintock Republican 141 12.5 
Camejo Green 39 2.8 
Huffington Independent 16 0.6 
other – 79 4.0 
a Source http://www.cnn.com/ 

Is the sample data consistent with the actual results? Answer this using a test of 
significance. 
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9.3 A package of M&M candies is filled from batches that contain a specified 
percentage of each of six colors. These percentages are given in the mandms (UsingR) 
data set. Assume a package of candies contains the following color distribution: 15 blue, 
34 brown, 7 green, 19 orange, 29 red, and 24 yellow. Perform a chi-squared test with the 
null hypothesis that the candies are from a milk chocolate package. Repeat assuming the 
candies are from a Peanut package. Based on the p-values, which would you suspect is 
the true source of the candies? 

9.4 The pi2000 (UsingR) data set contains the first 2,000 digits of π. Perform a chi-
squared significance test to see if the digits appear with equal probability. 

9.5 A simple trick for determining what language a document is written in is to 
compare the letter distributions (e.g., the number of z’s) to the known proportions for a 
language. For these proportions, we use the familiar letter frequencies given in the 
frequencies variable of the scrabble (UsingR) data set. These are an okay approximation 
to those in the English language. 

For simplicity (see ?scrabble for more details), we focus on the vowel distribution of a 
paragraph from R’s webpage appearing below. The counts and Scrabble frequencies are 
given in Table 9.3. 

R is a language and environment for statistical computing and graphics. It 
is a GNU project which is similar to the S language and environment 
which was developed at Bell Laboratories (formerly AT&T, now Lucent 
Technologies) by John Chambers and colleagues. R can be considered as 
a different implementation of S. There are some important differences, but 
much code written for S runs unaltered under R. 

Table 9.3 Vowel distribution and Scrabble 
frequency 

  a e i o u
count 28 39 23 22 11
Scrabble frequency 9 12 9 8 4

Perform a chi-squared goodness-of-fit test to see whether the distribution of vowels 
appears to be from English. 

9.6 The names of common stars are typically Greek or Arab in derivation. The bright. 
stars (UsingR) data set contains 96 names of common stars. Perform a significance test 
on the letter distribution to see whether they could be mistaken for English words. 

The letter distribution can be found with: 

> all.names = paste(bright.stars$name, sep="", 
collapse="") 
> x = unlist(strsplit(tolower(all.names), "")) 
> letter.dist = sapply(letters, function(i) sum(x == 
i)) 

The English-letter frequency is found using the scrabble (UsingR) data set with: 

Goodness of fit     245



> p=scrabble$frequency[1:26];p=p/sum(p) # skip the 
blank 

9.7 The number of murders by day of week in New Jersey during 2003 is shown in Table 
9.4. 

1. Perform a significance test to test the null hypothesis that a murder is equally likely to 
occur on any given day.  

Table 9.4 Number of murders by day of week in 
New Jersey during 2003 

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
53 42 51 45 36 37 65 
aSource: New Jersey State Police Uniform Crime Report http://www.njsp.org/

2. Perform a significance test of the null hypothesis that murders happen on each 
weekday with equal probability; similarly on the weekends, but not necessarily with 
the same probability. For each test, write down explicitly the null and alternative 
hypotheses. 

9.8 A large bag of M&Ms is opened and some of the colors are counted: 41 brown, 48 
orange, 105 yellow, and 58 green. Test the partially specified null hypothesis that the 
probability of brown is equal to the probability of orange. What do you conclude? 

9.9 The data for Figure 9.1 was simulated using the following commands: 

> n = 20; m = 250; k = 3 
> f = factor(letters[1:k]) 
> p = c(3,4,5); p = p/sum(p) 
> res = c() 
> ford in 1:m) { 
+ x = sample(f,n,replace=TRUE,prob=p) 
+ y = table(x) 
+ res[i] = sum((y − n*p)^2/(n*p)) 
+ > 
> hist(res,prob=T,col=gray(.8), ylim=c(0,.5)) # extend 
y limit 
> curve(dchisq(x,df=k-l), add=TRUE) 

The sampling distribution of χ2 is well approximated by the chi-squared distribution, with 
k−1 degrees if the expected cell counts are all five or more. Do a simulation like the 
above, only with n=5. Does the fit seem right? Repeat with n=20 using the different 
probabilities p=c (1,19,20) /40. 

9.10 When k=2 you can algebraically simplify the χ2 statistic. Show that it simplifies 
to 
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This is the square of the statistic used in the one-sample test of proportion and is 
asymptotically a single-squared normal or a chi-squared random variable with 1 degree of 
freedom. Thus, in this case, the chi-squared test is equivalent to the test of proportions.  

9.2 The chi-squared test of independence 

In a two-way contingency table we are interested in the relationship between the 
variables. In particular, we ask whether the levels of one variable affect the distribution of 
the other variable. That is, are they independent random variables in the same sense that 
we defined an independent sequence of random variables? 

For example, in the seat-belt-usage data from Table 3.1 (reprinted in Table 9.5), does 
the fact that a parent has her seat belt buckled affect the chance that the child’s seat belt 
will be buckled? 

Table 9.5 Seat-belt usage in California 
  Child 
Parent buckled unbuckled
buckled 56 8 
unbuckled 2 16 

The differences appear so dramatic that the answer seems to be obvious. We can set up a 
significance test to help decide, with a method that can be used when the data does not 
tell such a clear story. 

To approach this question with a significance test, we need to state the null and 
alternative hypotheses, a test statistic, and a probability model. 

First, our model for the sampling is that each observed car follows some specified 
probability that is recorded in any given cell. These probabilities don’t change from 
observation to observation, and the outcome of one does not effect the distribution of 
another. That is, we have an i.i.d. sequence. Then a multinomial model applies. Fix some 
notation. Let nr be the number of rows in the table (the number of levels of the row 
variable), nc be the number of columns, and Yij be a random variable recording the 
frequency of the (i, j) cell. Let pij be the cell probability for the ith row and jth column. 
The marginal probabilities are denoted and where, for example, 

 
Our null hypothesis is that the column variable should be independent of the row 

variable. When stated in terms of the cell probabilities, pij, this says that This 
is consistent with the notion that independence means multiply. 

Thus our hypotheses can be stated verbally as 
H0: the variables are independent, HA: the variables are not independent. 

In terms of our notation, we can rewrite the null hypothesis as  
The χ2 statistic, 
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can still be used as a test statistic after we have estimated each pij in order to compute the 
“expected” counts. Again we use the data and the assumptions to estimate the pij. 
Basically, the data is used to estimate the marginal probabilities, and the assumption of 
independence allows us to estimate the pij from there. 

Table 9.6 Seat-belt usage in California with 
marginal distributions 

  Child   
Parent buckled unbuckled marginal
buckled 56 8 64 
unbuckled 2 16 18 
marginal 58 24 82 

The marginal probabilities are estimated by the marginal distributions of the data. For our 
example these are given in Table 9.6. The estimate for is 

and for it is Similarly, for we have and 
As usual, we’ve used a “hat” for estimated values. With these estimates, we 

can use the relationship to find the estimate For our seat-belt data 
we have the estimates in Table 9.7. In order to show where the values comes from, the 
values have not been simplified.  

Table 9.7 Seat-belt usage in California with 
estimates for the corresponding pij 

  Child   
Parent buckled unbuckled marginal
buckled 

   
unbuckled

   
marginal 

  
1 

With this table we can compute the expected amounts in the ijth cell with This is 
often written RiCj/n, where Ri is the row sum and Ci the column sum, as this simplifies 
computations by hand. 

With the expected amounts now known, we form the χ2 statistic as: 

 
(92) 

Under the hypothesis of multinomial data and the independence of the variables, the 
sampling distribution of χ2 will be the chi-squared distribution with (nr−1)·(nc−1) degrees 
of freedom. Why this many? For the row variable we have nr−1 unspecified values that 
the marginal probabilities can take (not nr, as they sum to 1) and similarly for the column 
variable. Thus there are (nr−1)·(nc−1) unspecified values. 
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We now have all the pieces to formulate the problem in the language of a significance 
test. 

The chi-squared test for independence of two categorical variables 
Let Yij,i=1, …, nr, j=1, …, nc be the cell frequencies in a two-way contingency table for 
which the multinomial model applies. A significance test of 

H0: the two variables are independent 
HA: the two variables are not independent 
can be performed using the chi-squared test statistic (9.2). Under the null hypothesis, 

this statistic has sampling distribution that is approximated by the chi-squared 
distribution with (nr−1)(nc−1) degrees of freedom. The p-value is computed using 
P(χ2≥observed value|H0). 

In R this test is performed by the chisq.test() function. If the data is summarized in a 
table or a matrix in the variable x the usage is 

chisq.test(x)   

If the data is unsummarized and is stored in two variables x and y where the ith entries 
match up, then the function can be used as 

chisq.test(x,y).   

Alternatively, the data could be summarized first using table(), as in 
chisq.test(table(x,y)). 

For each usage, the null and alternative hypotheses are not specified, as they are the same 
each time the test is used. 

The argument simulate.p.value=TRUE will return a p-value estimated using a Monte 
Carlo simulation. This is used if the expected counts in some cells are too small to use the 
chi-squared distribution to approximate the sampling distribution of χ2. 

To illustrate, the following will do the chi-squared test on the seat-belt data. This data is 
summarized, so we first need to make a table. We use rbind() to combine rows. 

> seatbelt = rbind(c(56,8),c(2,16)) 
> seatbelt 
    [,1] [,2] 
[1,] 56     8 
[2,]  2    16 
> chisq.test(seatbelt) 
        Pearson’s Chi-squared test with Yates’ 
continuity 
        correction 
data:   seatbelt 
X-squared = 36.00, df = 1, p-value = 1.978e-09 

The small p-value is consistent with our observation that the two variables are not 
independent. 
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Example 9.2: Teen smoking and gender The samhda (UsingR) data set contains 
survey data on 590 children. The variables gender and amt. smoke contain information 
about the gender of the participant and how often the participant smoked in the last 
month. Are the two variables independent? Is smoking dependent on gender? 

We compute a p-value for the hypotheses 
H0: the two variables are independent 
HA : the two variables are not independent using the χ2 statistic. 
In this example we use xtabs() to make a table, then apply chisq.test(). The xtabs() 

function allows us to use the convenient subset= argument to eliminate the data for which 
the values are not applicable. 

> tbl = xtabs( ~ gender + amt.smoke,      # no left 
side in formula 
+ subset = amt.smoke < 98 & gender !=7, 
+ data=samhda)  
> tbl 
      amt.smoke 
gender 1 2 3 4 5  6  7 
     1 16 3 5 6 7 24 64 
     2 16 4 8 4 7 19 40 
> chisq.test(tbl) 
        Pearson’s Chi-squared test 
data:  tbl 
X-squared=4.147, df=6, p-value=0.6568 
Warning message: 
Chi-squared approximation may be incorrect in: 
chisq.test(tbl) 

The significance test shows no reason to doubt the hypothesis that the two variables are 
independent. 

The warning message is due to some expected counts being small. Could this 
significantly change the p-value reported? A p-value based on a simulation may be 
computed. 

> chisq.test(tbl,simulate.p.value=TRUE) 
        Pearson’s Chi-squared test with simulated p-
value (based 
        on 2000 replicates) 
data:  tbl 
X-squared = 4.147, df = NA, p-value = 0.6612 

The p-value is not changed significantly. 

9.2.1 The chi-squared test of homogeneity 

How can we assess the effectiveness of a drug treatment? Typically, there is a clinical 
trial, with each participant randomly allocated to either a treatment group or a placebo 
group. If the results are measured numerically, a t-test may be appropriate to investigate 
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whether any differences in means are significant. When the results are categorical, we see 
next how to use the χ2 statistic to test whether the distributions of the results are the same. 

Stanford University Medical Center conducted a study to determine whether the 
antidepressant Celexa can help stop compulsive shopping. Twenty-four compulsive 
shoppers participated in the study: twelve were given a placebo and twelve a dosage of 
Celexa daily for seven weeks. After this time the individuals were surveyed to determine 
whether their desires to shop had been curtailed. Data simulated from a preliminary 
report is given in Table 9.8. 

Does this indicate that the two samples have different distributions?  

Table 9.8 Does Celexa treatment cut down on 
compulsive shopping? 

  much worse worse same much improved very much improved
Celexa 0 2 3 5 2 
placebo 0 2 8 2 0 

We formulate this as a significance test using hypotheses: 
H0: the two distributions are the same 
HA: the two distributions are different. 
We use the χ2 statistic. Again we need to determine the expected amounts, as they are 

not fully specified by H0. 
Let the random variable be the column variable, and the category that breaks up the 

data be the row variable in our table of data. For row i of the table, let pij be the 
probability that the random variable (the survey result) will be in the jth level of the 
random variable. We can rephrase the hypotheses as 

H0:pij=pj for all rows i, HA: pij≠pj for some i, j.   

If we let ni be the number of counts in each row (Ri before), then the expected amount in 
the (i, j) cell under H0 should be nipj. We don’t specify the value of pj in the null 
hypothesis, so it is estimated. Under H0 all the data in the jth column of our table is 
binomial with n and pj, so an estimator for pj would be the column sum divided by n: 
Cj/n. Based on this, the expected number in the (i, j)-cell would be 

 
  

This is the same formula as the chi-squared test of independence. 
As the test statistic and its sampling distribution under H0 are the same as with the test 

of independence, the chi-squared significance tests of homogeneity and independence are 
identical in implementation despite the differences in the hypotheses. 

Before proceeding, let’s combine the data so that there are three outcomes: “worse,” 
“same,” and “better.” 

> celexa = c(2,3,7); placebo=c(2,8,2) 
> x = rbind(celexa,placebo) 
> colnames(x) = c("worse","same","better”) 
> x  
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       worse same better 
celexa     2    3      7 
placebo    2    8      2 
> chisq.test(x) 
       Pearson’s Chi-squared test 
data: x 
X-squared = 5.05, df = 2, p-value = 0.08004 
Warning message: 
Chi-squared approximation may be incorrect in: 
chisq.test(x) 

The warning notes that one or more of the expected cell counts is less than five, 
indicating a possible discrepancy with the asymptotic distribution used to find the p-
value. We can use a simulation to find the p-value, instead of using the chi-squared 
distribution approximation, as follows: 

> chisq.test(x, simulate.p.value=TRUE) 
      Pearson’s Chi-squared test with simulated p-value 
(based 
      on 2000 replicates) 
data: x 
X-squared = 5.05, df = NA, p-value = 0.1025 

In both cases, the p-value is small but not tiny. 

9.2.2 Problems 

9.11 A number of drivers were surveyed to see whether they had been in an accident 
during the previous year, and, if so, whether it was a minor or major accident. The results 
are tabulated by age group in Table 9.9. Do a chi-squared hypothesis test of independence 
for the two variables. 

Table 9.9 Type of accident by age 
Accident type 

Age none minor major
under 18 67 10 5 
18–25 42 6 5 
26–40 75 8 4 
40–65 56 4 6 
over 65 57 15 1 

9.12 Table 9.10 contains data on the severity of injuries sustained during car crashes. The 
data is tabulated by whether or not the passenger wore a seat belt. Are the two variables 
independent? 
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Table 9.10 Accidents by injury level and seat-
belt usage 

Injury level 
    none minimal minor major
Seat belt yes 12,813 647 359 42
  no 65,963 4,000 2,642 303

9.13 The air quality data set contains measurements of air quality in New York City. We 
wish to see if ozone levels are independent of temperature. First we gather the data, using 
complete. cases () to remove missing data from our data set. 

> aq = airquality[complete.cases(airquality),] 
> attach(aq) 
> te = cut(Temp, quantile(Temp)) 
> oz = cut(Ozone,quantile(Ozone)) 

Perform a chi-squared test of independence on the two variables te and oz. Does the data 
support an assumption of independence? 

9.14 In an effort to increase student retention, many colleges have tried block 
programs. Assume that 100 students are broken into two groups of 50 at random. Fifty 
are in a block program; the others are not. The number of years each student attends the 
college is then measured. We wish to test whether the block program makes a difference 
in retention. The data is recorded in Table 9.11. Perform a chi-squared test of significance 
to investigate whether the distributions are homogeneous. 

Table 9.11 Retention data by year and program 
Program 1 year 2 year 3 year 4year 5+ years
nonblock 18 15 5 8 4 
block 10 5 7 18 10 

9.15 The data set oral.lesion (UsingR) contains data on location of an oral lesion for three 
geographic locations. This data set appears in an article by Mehta and Patel about 
differences in p-values in tests for independence when the exact or asymptotic 
distributions are used. Compare the p-values found by chisq.test() when the asymptotic 
distribution of the sampling distribution is used to find the p-value and when a simulated 
value is used. Are the p-values similar? If not, which do you think is more accurate? 
Why? 

9.3 Goodness-of-fit tests for continuous distributions 

When finding confidence intervals for a sample we were concerned about whether or not 
the data was sampled from a normal distribution. To investigate, we made a quantile plot 
or histogram and eyeballed the result. In this section, we see how to compare a 
continuous distribution with a theoretical one using a significance test. 
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The chi-squared test is used for categorical data. We can try to make it work for 
continuous data by “binning.” That is, as in a construction of a histogram, we can choose 
some bins and count the number of data points in each. Now the data can be thought of as 
categorical and the test can be used for goodness of fit. 

This is fine in theory but works poorly in practice. The Kolmogorov-Smirnov test will 
be a better alternative in the continuous distribution case. 

9.3.1 Kolmogorov-Smirnov test 

Suppose we have a random sample X1, X2, …, Xn from some continuous distribution. 
(There should be no ties in the data.) Let f(x) be the density and X some other random 
variable with this density. The cumulative distribution function for X is F(x)=P(X≤x), or 
the area to the left of x under the density of X. 

The c.d.f. can be defined the same way when X is discrete. In that case it is computed 
from the p.d.f. by summing: P(X≤x)=∑y≤xf(y). 

For a sample, X1, X2,…Xn, the empirical distribution is the distribution generated by 
sampling from the data points. The probability that a number randomly picked from a 
sample is less than or equal to x is the number of data points in the sample less than or 
equal to x divided by n. We use the notation Fn(x) for this: 

 
  

Fn(x) is referred to as the empirical cumulative distribution function, or e.c.d.f. 
The function Fn (x) can easily be plotted in R using the ecdf() function in the stats 

package.* This function is used in a manner similar to the density() function: the return 
value is plotted in a new figure using plot() or may be  

*The ecdf() function from the useful Hmisc package can also be used to create these graphs. The 
Hmisc package needs to be installed separately. Use the menu bar or install. packages (“Hmisc”). 

 

Figure 9.2 For a sample of size 20 
from a normally distributed 
population, both sample and 
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theoretical densities and cumulative 
distribution functions are drawn 

added to the existing plot using lines(). The following commands produced Figure 9.2: 

> y = rnorm(20) 
> plot(density(y), main="Densities”) # densities 
> curve(dnorm(x), add=TRUE, lty=2) 
> plot(ecdf(y), main="C.d.f.s”)      # c.d.f.s 
> curve(pnorm(x), add=TRUE, lty=2) 

If the data is from the population with c.d.f. F, then we would expect that Fn is close to F 
is some way. But what does “close” mean? In this context, we have two different 
functions of x. Define the distance between them as the largest difference they have: 

D=maximum in x of |Fn(x)-F(x)|.   

The surprising thing is that with only the assumption that F is continuous, D has a known 
sampling distribution called the Kolmogorov-Smirnov distribution. This is illustrated in 
Figure 9.3, where the sampling distribution of the statistic for n=25 is simulated for 
several families of random data. In each case, we see the same distribution. This fact 
allows us to construct a significance test using the test statistic D. In addition, a similar 
test can be done to compare two independent samples. 

The Kolmogorov-Smirnov goodness-of-fit test 
Assume X1, X2, …, Xn is an i.i.d. sample from a continuous distribution with c.d.f. F(x). 
Let Fn(x) be the empirical c.d.f. A significance test of  

H0: F(x)=F0(x), HA:F(x)≠F0(x)    

 

Figure 9.3 Density estimates for sampling 
distribution of the Kolmogorov-Smirnov statistic
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with n=25 for normal, uniform, t, and 
exponential data 

can be constructed with test statistic D. Large values of D support the alternative 
hypothesis. 

In R, this test is implemented in the function ks.test(). Its usage follows this pattern: 
ks.test(x, y=“name”, …)Z   

The variable x stores the data. The argument y= is used to set the family name of the 
distribution in H0. It has a character value of “name” containing the “p” function that 
returns the c.d.f. for the family (e.g., “pnorm” or “pt”). The…argument allows the 
specification of the assumed parameter values. These depend on the family name and are 
specified as named arguments, as in mean= 1, sd= 1. The parameter values should not be 
estimated from the data, as this affects the sampling distribution of D. 

If we have two i.i.d. independent samples X1, …, Xn and Y1, …, Ym, from two 
continuous distributions FX and FY, then a significance test of 

H0:FX=FY, HA:FX≠FY   

can be constructed with a similar test statistic: 

   

In this case, the ks.test() can be used as 

ks.test(x,y)   

where x and y store the data. 
We illustrate with some simulated data. 

> x = rnorm(100,mean=5, sd=2) 
> ks.test(x,"pnorm",mean=0,sd=2) # "wrong" parameters 
One-sample Kolmogorov-Smirnov test 
data: x 
D = 0.7578, p-value = < 2.2e-16 
alternative hypothesis: two.sided 
> ks.test(x,"pnorm",mean=5,sd=2) # correct population 
parameters 
... 
D = 0.1102, p-value = 0.1759 
... 
> x = runif(100, min=0, max=5) 
> ks.test(x,"punif",min=0,max=6) # "wrong" parameters 
... 
D = 0.1669, p-value = 0.007588 
... 
> ks.test(x,"punif",min=0,max=5) # correct population 
parameters 
... 
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D = 0.0745, p-value = 0.6363 
... 

The p-values are significant only when the parameters do not match the known 
population ones. 

■ Example 9.3: Difference in SAT scores The data set stud. recs (UsingR) contains 
math and verbal SAT scores for some students (sat.m and sat.v). Assume naively that the 
two samples are independent, are the samples from the same population of scores? 

First, we make a q-q plot, a side-by-side boxplot, and a plot of the e.c.d.f.’s for the 
data, to see whether there is any merit to the question. 

> data(stud.recs,package="UsingR") # or library(UsingR) 
> attach(stud.recs) 
> boxplot(list(math=sat.m,verbal=sat.v), main="SAT 
scores") 
> qqplot(sat.m,sat.v, main="Math and verbal SAT 
scores") 
> plot(ecdf(sat.m), main="Math and verbal SAT scores") 
> lines(ecdf(sat.v), lty=2) 

The graphics are in Figure 9.4. The q-q plot shows similarly shaped distributions, but 
boxplots show that the centers appear to be different. Consequently, the cumulative 
distribution functions do not look that similar. The KolmogorovSmirnov test detects this 
and returns a small p-value.  

 

Figure 9.4 Three plots comparing 
the distribution of math and verbal 
SAT scores in the stud.recs (UsingR) 
data set. 

> ks.test(sat.m,sat.v) 
       Two-sample Kolmogorov-Smirnov test 
data: sat.m and sat.v 
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D = 0.2125, p-value = 0.001456 
alternative hypothesis: two.sided 

9.3.2 The Shapiro-Wilk test for normality 

The Kolmogorov-Smirnov test for a univariate data set works when the distribution in the 
null hypothesis is fully specified prior to our looking at the data. In particular, any 
assumptions on the values for the parameters should not depend on the data, as this can 
change the sampling distribution. Figure 9.5 shows the sampling distribution of the 
Kolmogorov-Smirnov statistic for Normal(0, 1) data and the sampling distribution of the 
Kolmogorov-Smirnov statistic for the same data when the sample values of and s are 
used for the parameters of the normal distribution (instead of 0 and 1). The figure was 
generated with this simulation:  

> res.1 res.2 = c() 
> for(i in 1:500) { 
+ x = rnorm(25) 
+ res.1[i] = ks.test(x,pnorm)$statistic 
+ res.2[i] = ks.test(x,pnorm,mean(x),sd(x))$statistic 
+} 
> plot(density(res.1),main="K-S sampling distribution”) 
> lines(density(res.2),lty=2) 

(To retrieve just the value of the test statistic from the output of ks.test() we take 
advantage of the fact that its return value is a list with one component named statistic 
containing the desired value. This is why the syntax ks. test (…) $statistic is used.) 

 

Figure 9.5 The sampling distribution 
for the Kolmogorov-Smirnov 
statistic when the parameters are 
estimated (dashed line) and when 
not 
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A consequence is that we can’t use the Kolmogorov-Smirnov test to test for normality of 
a data set unless we know the parameters of the underlying distribution.† The Shapiro-
Wilk test allows us to do this. This test statistic is based on the ideas behind the quantile-
quantile plot, which we’ve used to gauge normality. Its definition is a bit involved, but its 
usage in R is straightforward. 

The Shapiro-Wilk test for normality 
If X1, X2, …, Xn is an i.i.d. sample from a continuous distribution, a significance test of 

H0: parent distribution is normal, 
HA: the parent distribution is not normal 

†The Lilliefors test, implemented by lillie.test() in the contributed package nortest, will make the 
necessary adjustments to use this test statistic. As well, the nortest package implements other tests 
of normality. In many installations of R, nortest may be installed from a menubar or with the 
command install, packages (“nortest”). See Chapter 1 for further information about package 
installation. 

can be carried out with the Shapiro-Wilk test statistic. 
In R, the function shapiro. test() will perform the test. The usage is simply 
shapiro.test(x)   

where the data vector x contains the sample data. 

■ Example 9.4: Normality of SAT scores For the SAT data in the stud. recs (UsingR) 
data set, we saw in Example 9.3 that the two distributions are different. Are they 
normally distributed? We can answer with the Shapiro-Wilk test: 

> attach(stud.recs) 
> shapiro.test(sat.m) 
         Shapiro-Wilk normality test 
data: sat.m 
W = 0.9898, p-value = 0.3056 
> shapiro.test(sat.v) 
... 
W=0.994, p-value=0.752 
> detach(stud.recs) 

In each case, the p-value is not statistically significant. There is no evidence that the data 
is not normally distributed. ■ 

■ Example 9.5: Is on-base percentage normally distributed? In Example 2.8 the 
distribution of the on-base percentage from the 2002 major league baseball season was 
shown. It appears bell shaped except for one outlier. Does the data come from a normally 
distributed population? 

Using the Shapiro-Wilk test gives us 
> shapiro.test(OBP) 
         Shapiro-Wilk normality test 
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data: OBP 
W = 0.9709, p-value = 1.206e-07 

So it is unlikely. Perhaps this is due to the one outlier. We eliminate this and try again 

> shapiro.test(OBP[OBP<.5]) 
        Shapiro-Wilk normality test 
data: OBP[OBP < 0.5] 
W = 0.9905, p-value = 0.006404 

The conclusion is the same: the data is not normally distributed. Also, note the dramatic 
difference in the p-value that just one outlier makes. The statistic is not very resistant. 
(UsingR) 

In defining the t-test, it was assumed that the data is sampled from a normal 
population. This is because the sampling distribution of the t-statistic is known under this 
assumption. However, this would not preclude us from using the t-test to perform 
statistical inference on data that has failed a formal test for normality. For small samples 
the t-test may apply, as the distribution of the t-statistic is robust to small changes in the 
assumptions on the parent distribution. If the parent distribution is not normal but also not 
too skewed, then a t-test can be appropriate. For large samples, the central limit theorem 
may apply, making a t-test valid. 

9.3.3 Finding parameter values using fitdistr() 

If we know a data set comes from a known distribution and would like to estimate the 
parameter values, we can use the convenient fitdistr() function from the MASS library. 
This function estimates the parameters for a wide family of distributions. The function is 
called with these arguments: 

fitdistr(x, densfun=family.name, start=list(…))   

We specify the data as a data vector, x; the family is specified by its full name, unlike that 
used in ks.test); and, for many of the distributions, reasonable starting values are 
specified using a named list. The fitdistr() function fits the parameters by a method called 
maximum-likelihood. Often this coincides with using the sample mean or standard 
deviation to estimate the parameters, but in general it allows for a uniform approach to 
this estimation problem and associated inferential problems. 

■ Example 9.6: Exploring fitdistr() The data set baby boom (UsingR) contains data 
on the births of 44 children in a one-day period at a hospital in Brisbane, Australia. The 
variable wt records the weights of each newborn. A histogram suggests that the data 
comes from a normally distributed population. We can use fitdistr() to find estimates for 
the parameters µ and σ, which for the normal distribution are the population mean and 
standard deviation. 

> data(babyboom, package="UsingR") # or library(UsingR) 
> fitdistr(babyboom$wt,"normal") 
   mean       sd 
3275.95     522.00 
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( 78.69)   ( 55.65) 

These estimates include standard errors in parentheses, using a normal approximation. 
These can be used to give confidence intervals for the estimates. 

This estimate for the mean and standard deviation could also be done directly, as it 
coincides with the sample mean and sample standard deviation. However,  

 

Figure 9.6 Both figures illustrate the 
inter-arrival times of the babyboom 
data set. Figure on left shows 
empirical density and the fit of the 
gamma distribution given by 
fitdistr(). Figure on right shows same 
relationship using cumulative 
distribution functions. 

the standard errors are new. To give a different usage, we look at the variable running, 
time, which records the time of day of each birth. The time differences between 
successive births are called the inter-arrival times. To make a densityplot (Figure 9.6), we 
first find the inter-arrival times using diff(): 

> inter = diff(babyboom$running.time) 
> plot(density(inter), ylim=c(0,0.025),     # adjust 
ylim for next plot 
+ main="Compare estimated densities", xlab="inter") 

We fit the gamma distribution to the data. The gamma distribution generalizes the 
exponential distribution. It has two parameters, a shape and a rate. A value of 1 for the 
shape coincides with the exponential distribution. The fitdistr () function does not need 
starting values for the gamma distribution. 

> fitdistr(inter,"gamma") 
    shape       rate 
1.208593   0.036350 
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(0.233040) (0.008625) 
Warning messages: 
1: NaNs produced in: dgamma(x, shape, scale, log) 
2: NaNs produced in: dgamma(x, shape, scale, log) 
> curve(dgamma(x,shape=1.208593, rate=0.036350), add=T, 
lty=2) 
> 
legend(100,.020,legend=c("density()","fitdistr()"),lty=
1:2) 

The warning message informs us that the fitting encounted some difficulties. 
Finally, we compare the cumulative distribution functions with the following 

commands (the graphic on the right in Figure 9.6): 

> plot(ecdf(inter), 
+ main="Compare ecdf with estimated cdf", xlab="inter") 
> curve(pgamma(x,shape=1.208593, rate=0.036350), add=T) 
> legend(70,.8,legend=c("ecdf","estimated 
cdf"),lty=1:2) 

9.3.4 Problems 

9.16 In two examples in Chapter 7, data on CEOs is compared. The data is repeated in 
Table 9.12. Are the parent distributions the same? Answer this using a test of 
significance. 

Table 9.12 CEO pay data for 2000 and 2002 
Year Compensation in $10,000s 
2001 110 12 2.5 98 1017 540 54 4.3 150 432   
2002 312 316 175 200 92 201 428 51 289 1126 822

9.17 Carry out a Shapiro-Wilk test for the mother’s height, ht, and weight, wt, in the 
babies (UsingR) data set. Remember to exclude the cases when ht==99 and wt==999. 
Are the data sets normally distributed? 

9.18 The brightness (UsingR) data set contains brightness measurements for 966 stars 
from the Hipparcos catalog. Is the data normal? Compare the result with a significance 
test to the graphical investigation done by 

> hist(brightness, prob=TRUE) 
> lines(density(brightness)) 
> curve(dnorm(x, mean(brightness), sd(brightness)), 
add=TRUE) 

9.19 The variable temperature in the data set normtemp (UsingR) contains normal body 
temperature measurements for 130 healthy, randomly selected in¬ dividuals. Is normal 
body temperature normally distributed? 
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9.20 The rivers data set contains the length of 141 major rivers in North America. Fit 
this distribution using the gamma distribution and f itdistr(). How well does the gamma 
distribution fit the data? 

9.21 Find parameter estimates for µ and σ for the variables sat. m and sat. v in the 
stud.recs (UsingR) data set. Assume the respective populations are normally distributed. 

9.22 How good is the Kolmogorov-Smirnov test at rejecting the null when it is false? 
The following command will do 100 simulations of the test when the data is not normal, 
but long-tailed and symmetric. 

> res = sapply(1:100, 
+ function(x) ks.test(rt(25,df=3),"pnorm")$p.value) 

(The syntax above is using the fact that ks.test() returns a list of values with one 
component named p.value.) What percentage of the trials have a p-value less than 0.05? 

Try this with the exponential distribution (that is, replace rt (25, df=3) with rexp 
(25)−1). Is it better when the data is skewed? 

9.23 A key to understanding why the Kolmogorov-Smirnov statistic has a sampling 
distribution that does not depend on the underlying parent population (as long as it is 
continuous) is the fact that if F(x) is the c.d.f. for a random variable X, then F(X) is 
uniformly distributed on [0, 1]. 

This can be proved algebraically using inverse functions, but instead we see how to 
simulate the problem to gain insight. The following line will illustrate this for the normal 
distribution: 

> qqplot(pnorm(rnorm(100)),runif(100)) 

The qqplot() should be nearly straight if the distribution is uniform. Change the 
distribution to some others and see that you get a nearly straight line in each case. For 
example, the t-distribution with 5 degrees of freedom would be done with 

> qqplot(pt(rt(100,df=5),df=5),runif(100)) 

Try the uniform distribution, the exponential distribution, and the lognormal distribution 
(lnorm). 

9.24 Is the Shapiro-Wilk test resistant to outliers? Run the following commands and 
decide whether the presence of a single large outlier changes the ability of the test to 
detect normality. 

> Shapiro.test(c(rnorm(100),5)) 
> Shapiro.test(c(rnorm(1000),5)) 
> shapiro.test(c(rnorm(4000),5)) 
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Chapter 10  
Linear regression 

In Chapter 3 we looked at the simple linear regression model, 
yi=β0β1xi+εi,   

as a way to summarize a linear relationship between pairs of data (xi, yi). In this chapter 
we return to this model. We begin with a review and then further the discussion using the 
tools of statistical inference. Additionally, we will see that the methods developed for this 
model extend readily to the multiple linear regression model where there is more than one 
predictor. 

10.1 The simple linear regression model 

Many times we assume that an increase in the predictor variable will correspond to an 
increase (or decrease) in the response variable. A basic model for this is a simple linear 
regression model: 

Yi=β0+β1xi+εi.   

The Y variable is called the response variable and the x variable the predictor variable, 
covariate, or regressor. 

As a statistical model, this says that the value of Yi depends on three things: that of xi, 
the function β0+ β1x, and the value of the random variable εi. The model says that for a 
given value o f x, the corresponding value of Y is found by first using the function on x 
and then adding the random error term εi. 

To be able to make statistical inference, we assume that the error terms, εi, are i.i.d. 
and have a Normal (0, σ) distribution. This assumption can be rephrased as an assumption 
on the randomness of the response variable. If the x values are fixed, then the distribution 
of Yi is normal with mean µy|x=β0+β1Xi and variance σ2. This can be expressed as Yi has a 
Normal(β0+β1xi, σ) distribution. If the x values are random, the model assumes that, 
conditionally on knowing these random values, the same is true about the distribution of 
the Yi. 

10.1.1 Model formulas for linear models 

Before using R to find estimates, we need to learn how R represents statistical models. 
Linear models are fit using R’s model formulas, of which we have already seen a few 
examples. 

The basic format for a formula is 



response ~ predictor   

The ~ (tilde) is read “is modeled by” and is used to separate the response from the 
predictor(s). The response variable can have regular mathematical expressions applied to 
it, but for the predictor variables the regular notations +, −, *, /, and ^ have different 
meanings. A+means to add another term to the model, − means to drop a term, more or 
less coinciding with the symbols’ common usage. But *, /, and ^ are used differently. If 
we want to use regular mathematical notation for the predictor we must insulate the 
symbols’ usage with the I () function, as in I (x^2). 

10.1.2 Examples of the linear model 

At first, the simple linear regression model appears to be solely about a straightline 
relationship between pairs of data. We’ll see that this isn’t so, by looking at how the 
model accommodates many of the ideas previously mentioned. 

Simple linear regression If (xi, yi) are related by the linear model 
yi=β0+β1xi+εi   

as above, then the model is represented in R by the formula y ~ x. The intercept term, β0, 
is implicitly defined. 

If for some reason the intercept term is not desired, it can be dropped from the model 
by including the term −1, as in y ~ x−1. 

The mean of an i.i.d. sample In finding confidence intervals or performing a 
significance test for the mean of an i.i.d. sample, Y1, Y2,…,Yn, we often assumed 
normality of the population. In terms of a statistical model this could be viewed as  

Yi=µ+εi,   

where the εi are Normal(0, σ). 
The model for this in R is y ~ 1. As there is no predictor variable, the intercept term is 

explicitly presen t. 
The paired t-test In Chapter 8, we considered the paired t-test. This test applies when 

two samples are somehow related and the differences between the two samples is 
random. That is, Yi−Xi, is the quantity of interest. This corresponds to the statistical 
model 

yi=xi+εi.   

If we assume εi has mean 0, then we can model the mean difference between Y and X by 
µ, and our model becomes 

Yi=µ+Xi+εi.   

Our significance test with H0: µ1=µ2 turns into a test of µ=0. 
The model formula to fit this in R uses an offset, which we won’t discuss again, but 

for reference it would look like y ~ offset(x). 
In Chapter 11 we will see that this model can be used for a two-sample t-test. Later in 

this chapter we will extend the model to describe relationships that are not straight lines 
and relationships involving multiple predictors. 
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10.1.3 Estimating the parameters in simple linear regression 

One goal when modeling is to “fit” the model by estimating the parameters based on the 
sample. For the regression model the method of least squares is used. With an eye toward 
a more general usage, suppose we have several predictors, x1,x2,…,xk; several parameters, 
β0, β1,…,βp; and some function, f, which gives the mean for the variables Yi. That is, the 
statistical model 

Yi=f(x1i,x2i,…,xki|β1,β2,…,βp)+εi.   

The method of least squares finds values for the β’s that minimize the squared difference 
between the actual values, yi, and those predicted by the function f. That is, the following 
sum is minimized: 

 
  

For the simple linear regression model, the formulas are not difficult to write (they are 
given below). For the more general model, even if explicit formulas are known, we don’t 
present them.  

The simple linear regression model for Yi has three parameters, β0, β1, and σ2. The 
least-squares estimators for these are 

 (10.1) 

 (10.2) 

 (10.3) 

We call the prediction line; a value the predicted value for 
xi; and the difference between the actual and predicted values, the residual. 
The residual sum of squares is denoted RSS and is equal to See Figure 3.10 for a 
picture. 

Quickly put, the regression line is chosen to minimize the RSS; it has slope 

intercept and goes through the point Furthermore, the estimate for σ2 is 

 
Figure 10.1 shows a data set simulated from the equation Yi=1+2xi+εi, where β0=1, 

β1=2, and σ2=3. Both the line y=1+2x and the regression line 
predicted by the data, are drawn. They are different, of course, as one of them depends on 
the random sample. Keep in mind that the data is related by the true model, but if all we 
have is the data, the estimated model is given by the regression line. Our task of inference 
is to decide how much the regression line can tell us about the underlying true model. 

 

Using R for introductory statistics     266



10.1.4 Using lm() to find the estimates 

In Chapter 3 we learned how to fit the simple linear regression model using 1m (). The 
basic usage is of the form 

lm(formula, data=…, subset=…)   

As is usual with functions using model formulas, the data= argument allows the variable 
names to reference those in the specified data frame, and the subset= argument can be 
used to restrict the indices of the variables used by the modeling function. 

By default, the lm () function will print out the estimates for the coefficients. Much 
more is returned, but needs to be explicitly asked for. Usually, we store the results of the 
model in a variable, so that it can subsequently be queried for more  

 

Figure 10.1 Simulation of model 
Yi=1+2xi+εi. The regression line 
based on the data is drawn with 
dashes. The big square marks the 
value  

information. 
■ Example 10.1: Maximum heart rate Many people use heart-rate monitors when 

exercising in order to achieve target heart rates for optimal training. The maximum safe 
heart rate is generally thought to be 220 minus one’s age in years. A 25-year-old would 
have a maximum heart rate of 195 beats per minute. 

This formula is said to have been devised in the 1970s by Sam Fox and William 
Haskell while en route to a conference. Fox and Haskell had plotted a graph of some data, 
and had drawn by hand a line through the data, guessing the slope and intercept.* Their 
formula is easy to compute and comprehend and has found widespread acceptance. 

It may be wrong, though. In 2001, Tanaka, Monahan, and Seals found that 209–0.7 
times one’s age is a better fit. 

The following data is simulated to illustrate: 

> age = rep(seq(20,60,by=5), 3) 
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> mhr = 209–0.7*age + rnorm(length(age),sd=4) 
> plot(mhr ~ age, main=“Age versus maximum heart rate”) 

The scatterplot (Figure 10.2) shows that the data lends itself to the linear model. The 
regression coefficients are found using the 1m () function. 

> res.mhr = lm(mhr ~ age) 
> res.mhr 
Call: 
lm(formula = mhr ~ age) 
Coefficients:  

* source http: //www.drmirkin.com. 

(Intercept)   age 
     208.36 −0.76 

The lm () function, by default, displays the formula and the estimates for the  

 

Figure 10.2 Age versus maximum 
heart rate 

These estimates can be used with the abline () function to add the regression line, as in 
Figure 10.2. 

> abline(res.mhr)                 # add regression line 

A predicted value can be made directly using the estimates. For example, the predicted 
maximum heart rate for a 39-year-old would be 

> 208.36 − 0.76 * 39 
[1] 178.7 
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Extractor functions for lm() 
The lm () function is reticent, but we can coax out more information as needed. This is 
done using extractor functions. Useful ones are summarized in Table 10.1. 

These functions are called with the result of a modeling function, such as lm(). There 
are other types of modeling functions in R; these so-called “generic functions” may be 
used with them to return similar information. 

To illustrate, the estimate for σ2 can be found using the resid() function to retrieve the 
residuals from the model fitting: 

> sum( resid(res.mhr)^2 ) / (length(age) − 2) # 
RSS/(n−2) 
[1] 14.15 

Or, the RSS part can be found directly with deviance ():  

Table 10.1 Extractor functions for the result of 
1m () 

summary () returns summary information about the regression
plot () makes diagnostic plots 
coef() returns the coefficients 
residuals () returns the residuals (can be abbreviated resid()) 
fitted () returns the residuals  
deviance() returns RSS 
predict () performs predictions 
anova () finds various sums of squares 
AIC () is used for model selection 

> deviance(res.mhr)/ (length(age) −2) 
[1] 14.15 

10.1.5 Problems 

10.1 For the Cars93 (MASS) data set, answer the following: 

1. For MPG. highway modeled by Horsepower, find the simple regression 
coefficients. What is the predicted mileage for a car with 225 horsepower? 

2. Fit the linear model with MPG. highway modeled by Weight. Find the predicted 
highway mileage of a 6,400 pound HUMMER H2 and a 2,524 pound MINI Cooper. 

3. Fit the linear model Max .Price modeled by Min .Price. Why might you expect the 
slope to be around 1 ? 

Can you think of any other linear relationships among the variables? 
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10.2 For the data set MLBattend (UsingR) concerning major league baseball 
attendance, fit a linear model of attendance modeled by wins. What is the predicted 
increase in attendance if a team that won 80 games last year wins 90 this year? 

10.3 People often predict children’s future height by using their 2-year-old height. A 
common rule is to double the height. Table 10.2 contains data for eight people’s heights 
as 2-year-olds and as adults. Using the data, what is the predicted adult height for a 2-
year-old who is 33 inches tall?  

Table 10.2 Height as two-year old and as an 
adult 

Age 2 (in.) 39 30 32 34 35 36 36 30
Adult (in.) 71 63 63 67 68 68 70 64

10.4 The galton on (UsingR) data set contains data collected by Francis Galton in 
1885 concerning the influence a parent’s height has on a child’s height. Fit a linear model 
for a child’s height modeled by his parent’s height. Make a scatterplot with a regression 

line. (Is this dataset a good candidate for using jitter () ?) What is the value of and 
why is this of interest? 

10.5 Formulas (10.1), (10.2), and the prediction line equation can be rewritten in terms 
of the correlation coefficient, r, as 

 
  

Thus the five summary numbers: the two means, the standard deviations, and the 
correlation coefficient are fundamental for regression analysis. 

This is interpreted as follows. Scaled differences of from the mean are less than 
the scaled differences of xi from as |r|≤1. That is, “regression” toward the mean, as 
unusually large differences from the mean are lessened in their prediction for y. 

For the data set galton on (UsingR) use scale () on the variables parent and child, and 
then model the height of the child by the height of the parent. What are the estimates for r 
and β1? 

10.2 Statistical inference for simple linear regression 

If we are convinced that the simple regression model is appropriate for our data, then 
statistical inferences can be made about the unknown parameters. To assess whether the 
simple regression model is appropriate for the data we use a graphical approach. 

10.2.1 Testing the model assumptions 

The simple linear regression model places assumptions on the data set that we should 
verify before proceeding with any statistical inference. In particular, the linear model 
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should be appropriate for the mean value of the yi, and the error distribution should be 
normally distributed and independent. 

Just as we looked at graphical evidence when investigating assumptions about 
normally distributed populations when performing a t-test, we will consider graphical 
evidence to assess the appropriateness of a regression model for the data. Four of the 
graphs we consider are produced by using the plot () function as an extractor function for 
lm () function. Others we can produce as desired. 

The biggest key to the aptness of the model is found in the residuals. The residuals are 
not an i.i.d. sample, as they sum to a and they do not have the same variance. The 
standardized residuals rescale the residuals to have unit variance. These appear in some 
of the diagnostic plots provided by plot (). 

 

Figure 10.3 Four graphs showing 
problematic linear models. 
Scatterplot in upper left shows 
linear model is incorrect. Fitted 
versus residual plot in upper right 
shows a nonlinear trend. Fitted 
versus residual plot in lower left 
shows nonconstant variance. Lag 
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plot in lower right shows 
correlations in error terms. 

Assessing the linear model for the mean 
A scatterplot of the data with the regression line can show quickly whether the linear 
model seems appropriate for the data. If the general trend is not linear, either a 
transformation or a different model is called for. An example of a cyclical trend (which 
calls for a transformation of the data) is the upper-left plot in Figure 10.3 and is made 
with these commands: 

x = rep(1:10,4) 
y = rnorm(40, mean=5*sin(x), sd=1) 
plot(y ~ x); abline(lm(y~x)) 

When there is more than one predictor variable, a scatterplot will not be as useful. 
A residual plot can also show whether the linear model is appropriate and can be made 

with more than one predictor. As well, it can detect small deviations from the model that 
may not show up in a scatterplot. The upper-right plot in Figure 10.3 shows a residual 
plot that finds a sinusoidal trend that will not show up in a scatterplot. It was simulated 
with these commands: 

> x = rep(1:10,4) 
> y = rnorm(40,mean = x + .05*sin(x),sd=.01) # small 
trend 
> res = lm(y~x) 
> plot(fitted(res),resid(res)) 

The residual plot is one of the four diagnostic plots produced by plot (). 

Assessing normality of the residuals 
The residuals are used to assess whether the error terms in the model are normally 
distributed. Although a histogram can be used to investigate normality, we’ve seen that 
the quantile-normal plot is better at visualizing differences from normality. Deviations 
from a straight line indicate nonnormality. Quantile-normal plots are made with qqnorm 
(). One of the diagnostic plots produced by plot () is a quantile-normal plot of the 
standardized residuals. 

In addition to normality, an assumption of the model is also that the error terms have a 
common variance. A residual plot can show whether this is the case. When it is, the 
residuals show scatter about a horizontal line. In many data sets, the variance increases 
for larger values of the predictor. The commands below create a simulation of this. The 
graph showing the effect is in the lower-left of Figure 10.3. 

> x = rep(1:10,4) 
> y = rnorm(40, mean = 1 + 1/2*x, sd = x/10) 
> res = lm(y ~ x) 
> plot(fitted(res),resid(res)) 
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The scale-location plot is one of the four diagnostic plots produced by plot () It also 
shows the residuals, but in terms of the square root of the absolute value of the 
standardized residuals. The graph should show points scattered along the y-axis, as we 
scan across the x-axis, but the spread of the scattered points should not get larger or 
smaller. 

In some data sets, there is a lack of independence in the residuals. For example, the 
errors may accumulate. A lag plot may be able to show this. For an independent 
sequence, the lag plot should be scattered, whereas many dependent sequences will show 
some pattern. This is illustrated in the lower-right plot in Figure 10.3, which was made as 
follows: 

> x = rep(1:10,4) 
> epsilon = rnorm(40,mean=0,sd=l) 
> y = 1 + 2*x + cumsum(epsilon) # cumsum() correlates 
errors 
> res = lm(y ~ x) 
> tmp = resid(res)  
> n = length(tmp) 
> plot(tmp[-n],tmp[−1])              # lag plot 

 

Figure 10.4 Bubble plot of CO2 
emissions by per capita GDP with 
area of points proportional to 
Cook’s distance 

Influential points 
As we observed in Chapter 3, the regression line can be greatly influenced by a single 
observation that is far from the trend set by the data. The difference in slopes between the 
regression line with all the data and the regression line with the ith point missing will 
mostly be small, except for influential points. The Cook’s distance is based on the 
difference of the predicted values of yi for a given xi when the point (xi, yi) is and isn’t 
included in the calculation of the regression coefficients. The predicted amounts are used 
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for comparison, as comparing slopes isn’t applicable for multivariate models. The Cook’s 
distance is computed by the extractor function cooks. distance (). 

One of the diagnostic plots produced by plot () will show the Cook’s distance for the 
data points plotted using spikes. Another way to display this information graphically is to 
make the size of the points in the scatterplot depend on this distance using the cex= 
argument. This type of plot is referred to as a bubble plot and is illustrated using the 
emissions (UsingR) data set in Figure 10.4. The graphic is made with the following 
commands: 

> res = lm(C02 ~ perCapita, emissions) 
> plot(C02 ~ perCapita, emissions, 
+      cex = 10*sqrt(cooks.distance(res)), 
+      main = expression(       # make subscript on C02 
in title 
+        paste("bubble plot of ",CO[2], 
+              ” emissions by per capita GDP") 
+        )) 

The square root of the distances is used, so the area of the points is proportional to the 
Cook’s distance rather than to the radius. (The argument to main= illustrates how to use 
mathematical notation in the title of a graphic. See the help page ?plotmath for details.) 

For the maximum-heart-rate data, the four diagnostic plots produced by R with the 
command plot (res. mhr) are in Figure 10.5. The par (mf row=c (2,2)) command was used 
to make the four graphs appear in one figure. This command sets the number of rows and 
columns in a multi-graphic figure. 
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Figure 10.5 Four diagnostic plots for 
the maximum-heart-rate data 
produced by the extractor function 
plot () 

10.2.2 Statistical inferences 

If the linear model seems appropriate for the data, statistical inference is possible. What is 
needed is an understanding of the sampling distribution of the estimators. 

To investigate these sampling distributions, we performed simulations of the model 
Yi=xi+εi, using x=rep(1:10,10) and y=rnorm(100,x,5). Figure 10.6 shows the resulting 
regression lines for the different simulations. For reference, a single result of the 
simulation is plotted using a scatterplot. There is wide variation among the regression 

lines. In addition, histograms of the simulated values of and are shown. 

We see from the figure that the estimators are random but not arbitrary. Both and 

are normally distributed, with respective means β0 and β1. Furthermore, 
has a χ2-distribution with n−2 degrees of freedom. 

We will use the fact that the following statistics have a t-distribution with n−2 degrees 
of freedom: 
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(10.4) 

The standard errors are found from the known formulas for the variances of the  

(10.5) 

(Recall that,  

Marginal t-tests 
We can find confidence intervals and construct significance tests from the statistics in 
(10.4) and (10.5). For example, a significance test for 

H0:β1=b, HA:β1≠b   

is carried out with the test statistic 

 

  

Under H0, T has the t-distribution with n−2 degrees of freedom. 

A similar test for β0 would use the test statistic  
When the null hypothesis is β1=0 or β0=0 we call these marginal t-tests, as they test 

whether the parameter is necessary for the model. 

The F-test 
An alternate test for the null hypothesis β1=0 can be done using a different but related 
approach that generalizes to the multiple-regression problem.  

 

Figure 10.6 The plot on the left 
shows regression lines for 100 
simulations from the model Yi=xi+εi. 
The plotted points show a single 
realization of the paired data during 
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the simulation. The center and right 
plots are histograms of and  

The total variation in the y values about the mean is 

   

Algebraically, this can be shown to be the sum of two easily interpreted terms: 

 (10.6) 

The first term is the residual sum of squares, or RSS. The second is the total variation for 
the fitted model about the mean and is called the regression sum of squares, SSReg. 
Equation 10.6 becomes 

SST=RSS+SSReg.   

For each term, a number—called the degrees of freedom—is assigned that depends on the 
sample size and the number of estimated values in the term. For the SST there are n data 
points and one estimated value, leaving n−1 degrees of freedom. For RSS there are 

again n data points but two estimated values, and so n−2 degrees of freedom. This 
leaves 1 degree of freedom for the SSReg, as the degrees of freedom are additive in this 
case. When a sum of squares is divided by its degrees of freedom it is referred to as a 
mean sum of squares. 

We rewrite the form of the prediction line: 

   

If is close to 0, and are similar in size, so we would have SST ≈ RSS. In this case 

SSReg would be small. Whereas, if is not close to 0, then SSReg is not small. So, 
SSReg would be a reasonable test statistic for the hypothesis  

H0: β1=0. What do small and big mean? As usual, we need to scale the value by the 
appropriate factor. The F statistic is the ratio of the mean regression sum of squares 
divided by the mean residual sum of squares. 

 (10.7) 

Under the null hypothesis H0: β1=0, the sampling distribution of F is known to be the F-
distribution with 1 and n−2 degrees of freedom. 

This allows us to make the following significance test. 
F-test for β1=0   

A significance test for the hypotheses 
H0: β1=0, HA: β1≠0   
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can be made with the the test statistic 

 
  

Under the null hypothesis, F has F-distribution with 1 and n−2 degrees 
of freedom. Larger values of F are more extreme, so the p-value is given 
by P(F≥observed value |H0). 

The F-statistic can be rewritten as 

 

  

Under the assumption β1=0, this is the square of one of the t-distributed random variables 
of Equation 10.4. For simple linear regression the two tests of H0:β1= 0, the marginal t-
test and the F-test, are equivalent. However, we will see that with more predictors, the 
two tests are different. 

R2—the coefficient of determination 
The decomposition of the total sum of squares into the residual sum of squares and the 
regression sum of squares in Equation 10.6 allows us to interpret how well the regression 
line fits the data. If the regression line fits the data well, then the residual sum of squares, 

will be small. If there is a lot of scatter about the regression line, then RSS 
will be big. To quantify this, we can divide by the total sum of squares, leading to the 
definition of the coefficient of determination: 

 (10.8) 

This is close to 1 when the linear regression fit is good and close to a when it is not. 
When the simple linear regression model is appropriate this value is interpreted as the 

proportion of the total response variation explained by the regression. That is, R2·100% of 
the variation is explained by the regression line. When R2 is close to 1, most of the 
variation is explained by the regression line, and when R2 is close to 0, not much is. 

This interpretation is similar to that given for the Pearson correlation coefficient, r, in 
Chapter 3. This is no coincidence: for the simple linear regression model r2=R2. 

The adjusted R2 divides the sums of squares by their degrees of freedom. For the 
simple regression model, these are n−2 for RSS and n−1 for SST. This is done to penalize 
models that get better values of R2 by using more predictors. This is of interest when 
multiple predictors are used. 

10.2.3 Using lm() to find values for a regression model 

R can be used in different ways to do the above calculations. 
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Confidence intervals 
We can find a 95% confidence interval for β0 with 

   

In our example, this could be found with 
> n = length(age) 
> betahat0 = coef(res)[1]       # first coefficient 
> sigmahat = sqrt( sum(resid(res)^2) / (n −2)) 
> SE = sigmahat * sqrt(sum(age^2) / (n* sum( (age − 
mean(age))^2))) 
> tstar = qt(1 − 0.05/2,df= n − 2) 
> c(betahat0 − tstar*SE, betahat0 + tstar*SE) 
(Intercept) (Intercept) 
        
203.5       213.2 

Standard error 
The standard error above  

> SE 
[1] 2.357 

is given as part of the summary () function applied to the output of lm(). Find it in the 
Coefficients: part of the output under the column labeled Std. Error. 

> summary(res) 
Call: 
1m(formula = mhr ~ age) 
Residuals: 
   Min     1Q Median      3Q    Max 
−9.21   −2.47   1.13    2.65   7.79 
Coefficients: 
            Estimate Std.  Error t value Pr(>|t|) 
(Intercept) 208.3613      2.3571    88.4  < 2e−16 *** 
age          −0.7595      0.0561   −13.5  5.2e−13 *** 
… 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 
Residual standard error: 3.76 on 25 degrees of freedom 
Multiple R-Squared: 0.88,       Adjusted R-squared: 
0.875 
F-statistic: 183 on 1 and 25 DF, p-value: 5.15e-13 

By reading the standard error from this output, a 95% confidence interval for β1 may be 
more easily found than the one for β0 above: 

> betahatl=−0.7595    # read from summary 
> SE=0.0561           # read from summary 
> tstar=qt(1–0.05/2,df= n−2) 
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> c(betahatl—tstar*SE, betahatl+tstar*SE) 
[1] −0.875 −0.644 

Significance tests 
The summary () function returns more than the standard errors. For each coefficient a 
marginal t-test is performed. This is a two-sided hypothesis test of the null hypothesis 
that βi=0 against the alternative that βi≠0. We see in this case that both are rejected with 
very low p-values. These small p-values are flagged in the output of summary () with 
significance stars. 

Other t-tests are possible. For example, we can test the null hypothesis that the slope is 
−1 with the commands 

> T.obs=(betahatl—(−1))/SE 
> T.obs 
[1] 4.287 
> 2*pt(−4.287,df=n−2)              # or use 
lower.tail=F with 4.287 
[1] 0.0002364 

This is a small p-value, indicating that the model with slope −1 is unlikely to have 
produced this data or anything more extreme than it. 

Finding R2 
The estimate for is marked Residual standard error and is labeled with 25=21−2 
degrees of freedom. The value of R2=cor (age ,mhr) ^2 is given along with an adjusted 
value. 

F-test for β1=0. 

Finally, the F-statistic is calculated. As this is given by it can be found 
directly with 

> (−0.7595 / 0.0561)^2 
[1] 183.3 

The significance test H0: β1=0 with two-sided alternative is performed and again returns a 
tiny p-value. 

The sum of squares to compute F are also given as the output of the ano va () extractor 
function. 

> anova(res) 
Analysis of Variance Table 
Response: mhr 
          Df Sum Sq Mean Sq F value Pr(>F) 
age        1   2596    2596     183 5.2e-13 *** 
Residuals 25    354      14 
-- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 
0.1 ‘ ’ 1 

These values in the column headed Sum Sq are SSReg and RSS. The total sum of 
squares, SST, would be the sum of the two. Although the ratio of the mean sums of 
squares, 2596/14, is not exactly 183, 183 is the correct value, as numbers have been 
rounded to integers. 

Predicting the response with predict () 
The function predict () is used to make different types of predictions. 

A template for our usage is 
predict (res, newdata=…, interval=…, level =…)   

The value of res is the output of a modeling function, such as 1m (). We call this res 
below, but we can use any valid name. Any changes to the values of the predictor are 
given to the argument newdata= in the form of a data frame with names that match those 
used in the model formula. The arguments interval= and level= are set when prediction or 
confidence intervals are desired. 

The simplest usage, predict (res), returns the predicted values (the for the data. 
Predictions for other values of the predictor are specified using a data frame, as this 
example illustrates: 

> predict(res, newdata=data.frame(age=42)) 
[1] 176.5 

This finds the predicted maximum heart rate for a 42-year-old. The age= part of the data 
frame call is important. Variable names in the data frame supplied to the newdata= 
argument must exactly match the variable names used when the model object was 
produced. 

Prediction intervals 
The value of can be used to predict two different things: the value of a single estimate 
of y for a given x or the average value of many values of y for a given x. If we think of a 
model with replication (repeated /s for a given x, such as in Figure 10.6), then the 
difference is clear: one is a prediction for a given point, the other a prediction for the 
average of the points. 

Statistical inference about the predicted value of y based on the sample is done with a 
prediction interval. As y is not a parameter, we don’t call this a confidence interval. The 
form of the prediction interval is similar to that of a confidence interval: 

   

For the prediction interval, the standard error is 

 
(10.9) 
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The value of t* comes from the t-distribution with n−2 degrees of freedom. 
The prediction interval holds for all x simultaneously. It is often plotted using two 

lines on the scatterplot to show the upper and lower limits. 
The predict () function will return the lower and upper endpoints for each value of the 

predictor. We specify interval="prediction" (which can be shortened) and a confidence 
level with level=. (The default is 0.95.) 

For the heart-rate example we have: 

> pred.res = predict(res, int = "pred") 
> pred.res 
fit   lwr   upr 
1  193.2 185.0 201.4 
2  189.4 181.3 197.5 
... 

A matrix is returned with columns giving the data we want. We cannot access these with 
the data frame notation pred. res$lwr, as the return value is not a data frame. Rather we 
can access the columns by name, like pred. res [, ’lwr’ ] or by column number, as in  

> pred.res[,2]                  # the ’lwr’ column 
    1     2     3     4     5     6     7     8     9  
  10 
185.0 181.3 177.6 173.9 170.1 166.3 162.4 158.5 154.6 
185.0 
... 

We want to plot both the lower and upper limits. In our example, we have the predicted 
values for the given values of age. As the age variable is not sorted, simply plotting will 
make a real mess. To remedy this, we specify the values of the age variable for which we 
make a prediction. We use the values sort (unique (age)), which gives just the x values in 
increasing order. 

> age.sort = sort(unique(age)) 
> pred.res = predict(res.mhr, newdata = data.frame(age 
= age.sort), 
+ int="pred") 
> pred.res[,2] 
    1     2     3     4     5     6     7     8     9 
185.0 181.3 177.6 173.9 170.1 166.3 162.4 158.5 154.6 

Now we can add the prediction intervals to the scatterplot with the lines() function 
(matlines () offers a one-step alternative). The result is Figure 10.7. 

> plot(mhr ~ age); abline(res) 
> lines(age.sort,pred.res[,2] , lty=2) # lower curve 
> lines(age.sort,pred.res[,3], lty=2)  # upper curve 
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Figure 10.7 Regression line with 
95% prediction intervals drawn for 
age versus maximum heart rate 

There is a slight curve in the lines drawn, which is hinted at in equation 10.9. This 
implies that estimates near the value have a smaller variance. This is expected: there 
is generally more data near this value, so the variances should be smaller.  

Confidence intervals for µy|x 
A confidence interval for the mean value of y for a given x is given by 

   

Again, t* is from the t-distribution with n−2 degrees of freedom. The standard error used 
is now 

 

  

The standard error for the prediction interval differs by an extra term of plus 1 inside the 
square root. This may appear minor, but is not. If we had so much data (large n) that the 
estimates for the β’s have small variance, we would not have much uncertainty in 
predicting the mean amount, but we would still have uncertainty in predicting a single 
deviation from the mean due to the error term in the model. 

The values for this confidence interval are also returned by predict (). In this case, we 
use the argument interval="confidence". 

10.2.4 Problems 

10.6 The cost of a home is related to the number of bedrooms it has. Suppose Table 10.3 
contains data recorded for homes in a given town. Make a scatterplot, and fit the data 
with a regression line. On the same graph, test the hypothesis that an extra bedroom is 
worth $60,000 versus the alternative that it is worth more. 
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Table 10.3 Number of bedrooms and sale price 
of a home in thousands 

price $300 $250 $400 $550 $317 $389 $425 $289 $389
bedrooms 3 3 4 5 4 3 6 3 4 

10.7 The more beer you drink, the more your blood alcohol level (BAL) rises. Table 10.4 
contains a data set on beer consumption. Make a scatterplot with a regression line and 
95% prediction intervals drawn. Test the hypothesis that one beer raises your BAL by 
0.02% against the alternative that it raises it less. 

10.8 For the same blood-alcohol data, do a significance test that the intercept is 0 with 
a two-sided alternative.  

Table 10.4 Beer consumption and blood alcohol 
level 
beers 5 2 9 8 3 7 3 5 3 ~ 
BAL 0.10 0.03 0.19 0.12 0.04 0.095 0.07 0.06 0.02 0.05

10.9 The lapse rate is the rate at which temperature drops as you increase elevation. Some 
hardy students were interested in checking empirically whether the lapse rate of 9.8 
°C/km was accurate. To investigate, they grabbed their thermometers and their Suunto 
wrist altimeters and recorded the data in Table 10.5 on their hike. Draw a scatterplot with 
regression line and investigate whether the lapse rate is 9.8 °C/km/km. (It helps to 
convert to the rate of change °F per feet, which is 5.34 degrees per 1,000 feet.) Test the 
hypothesis that the lapse rate is 5.34 degrees per 1,000 feet against a two-sided 
alternative. 

Table 10.5 Elevation and temperature 
measurements 

elevation (ft) 600 1000 1250 1600 1800 2100 2500 2900
temperature (°F) 56 54 56 50 47 49 47 45 

10.10 A seal population is counted over a ten-year period. The counts are reported in 
Table 10.6. Make a scatterplot and find the regression line. What is the predicted value 
for 1963? Would you use this to predict the population in 2004? Why or why not? 

Table 10.6 Seal population from 1952 to 1962 
year pop. year pop. year pop year pop 
1952 724 1955 1,392 1958 1,212 1961 1,980
1953 176 1956 1,392 1959 1,672 1962 2,116
1954 920 1957 1,448 1960 2,068     

10.11 For the homedata (UsingR) data set, find the regression equation to predict the 
year-2000 value of a home from its year-1970 value. Make a prediction for an $80,000 

Using R for introductory statistics     284



home in 1970. Comment on the appropriateness of the regression model by investigating 
the residuals. 

10.12 The deflection (UsingR) data set contains deflection measurements for various 
loads. Fit a linear model to Deflection as a function of load. Plot the data and the 
regression line. How well does the line fit? Investigate with a residual plot. 

10.13 The alaska.pipeline (UsingR) data set contains measurements of defects on the 
Alaska pipeline that are taken first in the field and then in the laboratory. The 
measurements are done in six batches. Fit a linear model for the lab-defect size as 
modeled by the field-defect size. Find the coefficients. Discuss the appropriateness of the 
model. 

10.14 In athletic events in which people of various ages participate, performance is 
sometimes related to age. Multiplying factors are used to compare the performance of a 
person of a given age to another person of a different age. The data set best .times 
(UsingR) features world records by age and distance in track and field. 

We split the records by distance, allowing us to compare the factors for several 
distances. 

> attach(best.times) 
> by.dist=split(best.times,as.factor(Dist)) 
> detach(best.times) 

This returns a list of data frames, one for each distance. We can plot the times in the 800-
meter run: 

| > plot(Time ~ age, by.dist[['800']]) 

It is actually better to apply scale () first, so that we can compare times. 
Through age 70, a linear regression model seems to fit. It can be found with 

> lm(scale(Time) ~ age, by.dist[['800']], subset=age < 
70) 
Call: 
lm(formula=scale(Time) ~ age, data=by.dist[["800"]], 
subset=age < 70) 
Coefficients: 
(Intercept)   age 
−1.2933    0.0136 

Using the above technique, compare the data for the 100-meter dash, the 400meter dash, 
and the 10,000-meter run. Are the slopes similar? 

10.15 The galton on (UsingR) data set contains data collected by Francis Galton in 
1885 concerning the influence a parent’s height has on a child’s height. Fit a linear model 
modeling a child’s height by his parents’. Do a test of significance to see whether β1 
equals 1 against a two-sided alternative. 

10.16 Find and plot both the prediction and the confidence intervals for the heart-rate 
example. Simulate your own data.  
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10.17 The alaska.pipeline (UsingR) data set appears appropriate for a linear model, but 
the assumption of equal variances does not seem appropriate. A log-transformation of 
each variable does seem to have equal variances. Fit the model 

log(lab.defect)=β0+β1·log(field.defect)+ε.   

Investigate the residuals and determine whether the assumption of equal variance seems 
appropriate. 

10.18 The following commands will simulate the regression model Yi=1+ 2xi+εi: 

> res = matrix(0,nrow=200,ncol=2) 
> ford in 1:200) { 
+ x = rep(1:10,4); y = rnorm(40,l + 2*x,3) 
+ res[i,] = coef(lm(y ~ x)) 
+ } 
> plot (res [,1] ,res[,2]) 

(We first create res as a matrix to store the two values for the coefficients. Alternately, 
you can create two different vectors for this.) 

Run the simulation and comment on the shape of the scatterplot. What does it say 

about the correlation between  
10.19 In a simple linear regression, confidence intervals for β0 and β1 are given 

separately in terms of the t-distribution as They can also be found jointly, 
giving a confidence ellipse for the parameters as a pair. This can be found easily in R 
with the ellipse package.† If res is the result of the 1m () function, then plot (ellipse (res) 
,type="1") will draw the confidence ellipse. 

For the deflection (UsingR) data set, find the confidence ellipse for Deflection 
modeled by Load. 

10.3 Multiple linear regression 

Multiple linear regression allows for more than one regressor to predict the value of Y. 
Lots of possibilities exist. These regressors may be separate variables, products of 
separate variables, powers of the same variable, or functions of the same variable. In the 
next chapter, we will consider regressors that are not numeric but categorical. They all fit 
together in the same model, but there are additional details. We see, though, that much of 
the background for the simple linear regression model carries over to the multiple 
regression model.  

† The ellipse package is not part of the standard R installation, but it is on CRAN. You can install it 
with the command install, packages (“ellipse”). See Appendix A for details. 

10.3.1 Types of models 
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Let Y be a response variable and let x1, x2,…,xp be p variables that we will use for 
predictors. For each variable we have n values recorded. The multiple regression model 
we discuss here is 

Yi=β0+β1x1i+…+ βpXpi+εi.   

There are p+1 parameters in the model labeled β0, β1,…,βp. They appear in a linear 
manner, just like a slope or intercept in the equation of a line. The xi’s are predictor 
variables, or covariates. They may be random; they may be related, such as powers of 
each other; or they may be correlated. As before, it is assumed that the εi values are an 
i.i.d. sample from a normal distribution with mean 0 and unknown variance σ2. In terms 
of the Y variable, the values Yi are an independent sample from a normal distribution with 
mean β0+β1x1i+…+ βpxpi and common variance σ2. If the x variables are random, this is 
true after conditioning on their values. 

■ Example 10.2: What influences a baby’s birth weight? A child’s birth weight 
depends on many things; among them the parents’ genetic makeup, gestation period, and 
mother’s activities during pregnancy. The babies (UsingR) data set lets us investigate 
some of these relationships. 

This data set contains many variables to consider. We first look at the quantitative 
variables as predictors. These are gestation period; mother’s age, height, and weight; and 
father’s age, height, and weight.  

A first linear model might incorporate all of these at once: 
wt=β0+β1·gestation+β2·mother’s age+…+ β7·father’s weight+εi.   

Why should this have a linear model? It seems intuitive that birth weight would vary 
monotonically with the variables, so a linear model might be a fairly good approximation. 
We’ll want to look at some plots to make sure our model seems appropriate. 

■ Example 10.3: Polynomial regression In 1609, Galileo proved mathematically that 
the horizontal distance traveled by an object with an initial horizontal velocity is a 
parabola. He based his insight on an experimental setup consisting of a ball placed at a 
certain height on a ramp and then released. The distance traveled was then measured. 
This experiment was chosen to reduce the effects of friction. (This example appears in 
Ramsey and Schafer’s The Statistical Sleuth, Duxbury 1997, where a schematic of the 
experimental apparatus is drawn.) The data consists of two variables. Let’s call them y 
for distance traveled and x for  

initial height. Galileo may have considered any of these polynomial models: 

 

  

The εi would cover error terms that are presumably independent and normally distributed. 
The quadratic model (the second model) is correct under perfect conditions, as Galileo 
demonstrated, but the data may suggest a different model if the conditions are not perfect. 
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■ Example 10.4: Predicting classroom performance College admissions offices are 
faced with the problem of predicting future performance based on a collection of 
measures, such as grade-point average and standardized test scores. These values may be 
correlated. There may also be other variables that describe why a student does well, such 
as type of high school attended or student’s work ethic. 

Initial student placement is also a big issue. If a student does not place into the right 
class, he may become bored and leave the school. Successful placement is key to 
retention. For New York City high school graduates, available at time of placement are 
SAT scores and Regents Exam scores. High school grade-point average may be 
unreliable or unavailable. 

The data set stud. recs (UsingR) contains test scores and initial grades in a math class 
for several randomly selected students. What can we predict about the initial grade based 
on the standardized scores? 

An initial model might be to fit a linear model for grade with all the other terms 
included. Other restricted models might be appropriate. For example, are the verbal SAT 
scores useful in predicting grade performance in a future math class? 

10.3.2 Fitting the multiple regression model using lm() 

As seen previously, the method of least squares is used to estimate the parameters in the 

multiple regression model. We don’t give formulas for computing the but note that, 
since there are p+1 estimated parameters, the estimate for the variance changes to  

 
  

To find these estimates in R, again the lm () function is used. The syntax for the model 
formula varies depending on the type of terms in the model. For these problems, we 
use+to add terms to a model,—to drop terms, and I () to insulate terms so that the usual 
math notations apply. 

For example, if x, y, and z are variables, then the following statistical models have the 
given R counterparts: 

 

  

Once the model is given, the lm () function follows the same format as before: 
lm(formula, data=…, subset=…)   

To illustrate with an artificial example, we simulate the relationship zi=β0+ β1xi+β2yi+εi 
and then find the estimated coefficients: 

> x = 1:10; y = rchisq(10,3); z = 1 + x + y + rnorm(10) 
> lm(z ~ x + y) 
Call: 
lm(formula = z ~ x + y) 
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Coefficients: 
(Intercept)            x            y 
        
1.684        0.881        1.076 

The output of lm() stores much more than is seen initially (which is just the formula and 
the estimates for the coefficients). It is recommended that the return value be stored. 
Afterward, the different extractor functions can be used to view the results. 

■ Example 10.5: Finding the regression estimates for baby’s birth weight 
Fitting the birth-weight model is straightforward. The basic model formula is 
wt ~ gestation+age+ht+wt1+dage+dht+dwt   

We’ve seen with this data set that the variables have some missing values that are coded 
not with NA but with very large values that are obvious when plotted, but not when we 
blindly use the functions. In particular, gestation should be less than 350 days, mother’s 
age and height less than 99, and weight less than 999, etc. We can avoid these cases by 
using the subset= argument as illustrated. Recall that we combine logical expressions 
with & for “and” and | for “or.” 

> res.lm = lm(wt ~ gestation + age + ht + wt1 + dage + 
dht + dwt , 
+ data = babies, 
+ subset= gestation < 350 & age < 99 & ht < 99 & wt1 < 
999 &  
+ dage < 99 & dht < 99 & dwt < 999) 
> res.lm 
Call: 
… 
Coefficients: 
(Intercept)    gestation    age     ht    wt1 
    
−105.4576       0.4625 0.1384 1.2161 0.0289 
       dage          dht    dwt 
     0.0590      −0.0663 0.0782 

A residual plot (not shown) shows nothing too unusual: 

> plot(fitted(res.lm), resid(res.lm)) 

The diagnostic plots found with plot (res. lm) indicate that observation 261 might be a 
problem. Looking at babies [261,], it appears that this case is an outlier, as it has a very 
short gestation period. It could be handled separately. 

The subset= argument is very useful, though repeated uses may make us wish that we 
could use it just once prior to modeling. In this case the subset () function is available. 

Using update() with model formulas 
When comparing models, we may be interested in adding or subtracting a term and 
refitting. Rather than typing in the entire model formula again, R provides a way to add 
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or drop terms from a model and have the new model fit. This process is called updating 
and is done with the update () function. The usage is 

update(model.object, formula=. ~ .+new.terms)   

The model. object is the output of some modeling command, such as lm(). The formula= 
argument uses a . to represent the previous value. In the template above, the . to the left of 
the ~ indicates that the previous left side of the model formula should be reused. The 
right-hand-side . refers to the previous right-hand side. In the template, the+new. terms 
means to add terms. Use- old. terms to drop terms. 

■ Example 10.6: Discovery of the parabolic trajectory The data set galileo 
(UsingR) contains two variables measured by Galileo (described previously). One is the 
initial height and one the horizontal distance traveled. 

A plot of the data illustrates why Galileo may have thought to prove that the correct 
shape is described by a parabola. Clearly a straight line does not fit the data well. 
However, with modern computers, we can investigate whether a cubic term is warranted 
for this data. 

To do so we fit three polynomial models. The update () function is used to add terms 
to the previous model to give the next model. To avoid a different interpretation of ~, the 
powers are insulated with I (). 

> init.h = c(600,700,800,950,1100,1300,1500) 
> h.d = c(253, 337, 395, 451, 495, 534, 573)  
> res.1m=lm(h.d ~ init.h) 
> res.lm2=update(res.1m, . ~ .+I(init .h^2)) 
> res.lm3=update(res.lm2, . ~ .+I(init .ITS)) 

To plot these, we will use curve (), but first we define a simple function to help us plot 
polynomials when we know their coefficients. The result is in Figure 10.8. The linear 
model is a poor fit, but both the quadratic and cubic fits seem good.  

 

Figure 10.8 Three polynomial 
models fit to the Galileo data 

> polynomial=function(x,coefs) { 
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+ tot=a 
+ for(in 1:length(coefs)) tot=tot+coefs[i]*x^{i-1} 
+ tot 
+} 
> plot(h.d ~ init.h) 
> curve(polynomial(x,coef(res.1m)), add=TRUE, lty=1) 
> curve(polynomial(x,coef(res.lm2)), add=TRUE, lty=2) 
> curve(polynomial(x,coef(res.lm3)), add=TRUE, lty=3) 
> 
legend(1200,400,legend=c("linear","quadratic","cubic"),
lty=l:3) 

10.3.3 Interpreting the regression parameters 

In many cases, interpretation in simple regression is straightforward. Changes in the 
predictor variable correspond to changes in the response variable in a linear manner: a 

unit change in the predictor corresponds to a change in the response. 
However, in multiple regression this picture may not be applicable, as we may not be 

able to change just a single variable. As well, when more variables are added to a model, 
if the variables are correlated then the sign of the coefficients can change, leading to a 
different interpretation.  

The language often used is that we "control" the other variables while seeking a 
primary predictor variable. 

■ Example 10.7: Does taller mean higher paid? A University of Florida press 
release from October 16, 2003, reads: 

“Height matters for career success,” said Timothy Judge, a UF 
management professor…. 

Judge’s study, which controlled for gender, weight, and age, found that 
mere inches cost thousands of dollars. Each inch in height amounted to 
about $789 more a year in pay, the study found. 

The mathematical model mentioned would be 
pay = β0 + β1 height + β2 gender + β3 weight + β4 age + ε.   

(In the next chapter we see how to interpret the term involving the categorical variable 

gender.) The data gives rise to the estimate The authors interpret this to mean 
that each extra inch of height corresponds to a $789 increase in expected pay. So 
someone who is 4 inches taller, say 6 feet versus 5 feet 8 inches, would be expected to 
earn $3,156 more annually. is used to predict expected values.) The word “controlled” 
means that we included these variables in the model. 

Unlike in a science experiment, where we may be able to specify the value of a 
variable, a person cannot simply grow an inch to see if his salary goes up. This is an 
observational study, so causal interpretations are not necessarily valid. 
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10.3.4 Statistical inferences 

As in the simple linear regression case, if the model is correct, statistical inference can be 
made about the coefficients. In general, the estimators for a linear model are unbiased and 
normally distributed; from this, t-tests and confidence intervals can be constructed for the 
estimators, once we learn the standard errors. As before, these are output by the summary 
() function. 

■ Example 10.8: Galileo, continued For the Galileo data example, the summary () of 
the quadratic fit contains 

> summary(res.lm2) 
... 
Coefficients: 
               
Estimate Std. Error t value Pr(>|t|) 
(Intercept) −2.40e+02   6.90e+01   −3.48   0.0253 * 
init.h       1.05e+00   1.41e-01    7.48   0.0017 ** 
I(init.h^2) −3.44e-04   6.68e-05   −5.15   0.0068 ** 
--- 
Signif. codes: a ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’1 
… 

For each the standard errors are given, as is the marginal t-test, which tests for the null 

hypothesis that the is 0. All three have small p-values and are flagged as such with 
significance stars. 

Finding a confidence interval for the parameters is straightforward, as the values 

have a t-distribution with n−(p+1) degrees of freedom if the linear model 
applies. 

For example, a 95% confidence interval for β1 would be 

> alpha =0.05 
> tstar=qt(1−alpha/2, df=4) # n=7; p=2; df=n−(p+1) 
> c(1.05−tstar*0.141, 1.05+tstar*0.141) 
[1] 0.6585 1.4415 

10.3.5 Model selection 

If there is more than one possible model for a relationship, how do we know which to 
prefer? There are many criteria for selecting a model. We mention two here that are 
easily used within R. 

Partial F-test 
Consider these two nested models for Yi: 

Yi=β0+β1x1i+…+βkxki+εi 
(10.10) 
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Yi=β0+β1x1i+…+βkxki+βk+1x(k+1)i+…+βpXpi+εi.   

The first model has k+1 parameters, and the second has p+1 with p>k (not counting σ). 
Recall that the residual sum of squares, RSS, measures the variation between the data and 
the model. For the model with p predictors, RSS(p) can only be less than RSS(k) for the 
model with k predictors. Call the difference the extra sum of squares. 

If the new parameters are not really important, then there should be little difference 
between the sums of squares when computed with or without the new parameters. If they 
are important, then there should be a big difference. To measure big or small, we can 
divide by the residual sum of squares for the full model. That is,  

 
  

should measure the influence of the extra parameters. If we divide the extra sum of 
squares by p−k and the residual sum of squares by n−(p+1) (the respective degrees of 
freedom), then the statistic becomes 

(10.11) 

This statistic is actually a more general example of that in equation 10.7 and has a similar 
sampling distribution. Under the null hypothesis that the extra β’s are 0 (βk+1=…=βp=0), 
and the εi are i.i.d. with a Normal (0, σ2) distribution, F will have the F-distribution with 
p−k and n−(p+1) degrees of freedom. 

This leads to the following significance test. 

Partial F-test for null hypothesis of no effect 
For the nested models of Equation 10.10, a significance test for the hypotheses 

H0: βk+1=βk+2=…=βp=0 and HA: at least one βj≠0 for j>k   

can be performed with the test statistic (10.11): 

 
  

Under H0, F has the F-distribution with p−k and n−(p+1) degrees of freedom. Large 
values of F are in the direction of the alternative. This test is called the partial F-test. 

The anova() function will perform the partial F-test. If res.1m1 and res. lm2 are the 
return values of two nested models, then 

anova(res.lm1, res.lm2)   

will perform the test and produce an analysis of variance table. 

■ Example 10.9: Discovery of the parabolic trajectory revisited In Example 10.6 we 
fitted the data with three polynomials and graphed them. Referring to Figure 10.8, we see 
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that the parabola and cubic clearly fit better than the linear. But which of those two fits 
better? We use the partial F-test to determine whether the extra cubic term is significant. 

To do this, we use the anova() function on the two results res. lm2 and res. lm3. This 
yields  

> anova(res.lm2,res. lm3) 
Analysis of Variance Table 
Model 1: h.d ~ init.h+I(init.h^2) 
Model 2: h.d ~ init.h+I(init.h^2)+I(init.h^3) 
Res.Df RSS Df Sum of Sq F Pr(>F) 
1 4 744 
2 3 48 1 696 43.3 0.0072 ** 
-- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’1 

The F-test is significant (p=0.0072), indicating that the null hypothesis (β3=0) does not 
describe the data well. This suggests that the underlying relationship from Galileo’s data 
is cubic and not quadratic. Perhaps the apparatus introduced drag. 

The Akaike information criterion 
In the partial F-test, the trade-off between adding more parameters to improve the model 
fit and making a more complex model appears in the n−(p+1) divisor. Another common 
criterion with this trade-off is Akaike’s information criterion (AIC). The AIC is 
computed in R with the AIC () extractor function. The details of the statistic involve the 
likelihood function, a more advanced concept, but the usage is straightforward: models 
with lower AICs are preferred. An advantage to the AIC is that it can be used to compare 
models that are not nested. This is a restriction of the partial F-test. 

The extractor function AIC() will compute the value for a given model, but the 
convenient stepAIC () function from the MASS library will step through the submodels 
and do the comparisons for us. 

■ Example 10.10: Predicting grades based on standardized tests 
The data set stud.recs (UsingR) contains five standardized test scores and a numeric value 
for the initial grade in a subsequent math course. The goal is to use the test-score data to 
predict the grade that a student will get. If the grade is predicted to be low, perhaps an 
easier class should be recommended. 

First, we view the data using paired scatterplots 

> pairs(stud.recs) 

The figure (not shown) indicates strong correlations among the variables. 
We begin by fitting the entire model. In this case, the convenient . syntax on the right-

hand side is used to indicate all the remaining variables. 

> res.lm=1m(num.grade ~ ., data=stud.recs) 
> res.lm 
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Call: 
lm(formula=num.grade ~ ., data=stud.recs)  
Coefficients: 
(Intercept)         seq.1        seq.2        seq.3    
    sat.v 
     
−0.73953      −0.00394     −0.00272      0.01565 
−   0.00125 
      sat .m 
    0.00590 

Some terms are negative, which seems odd. Looking at the summary of the regression 
model we have 

> summary(res.1m) 
... 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|) 
(Intercept)  −0.73953    1.21128      −0.61 0.543 
seq.1        −0.00394    0.01457      −0.27 0.787 
seq.2        −0.00272    0.01503      −0.18 0.857 
seq.3         0.01565    0.00941       1.66 0.099 . 
sat.v        −0.00125    0.00163      −0.77 0.443 
sat.m         0.00590    0.00267       2.21 0.029 * 
... 

The marginal t-tests for whether the given parameter is a or not are “rejected” only for the 
seq. 3 (sequential 3 is the last high school test taken) and sat .m (the math SAT score). It 
is important to remember that these are tests concerning whether the value is a given the 
other predictors. They can change if predictors are removed. 

The stepAIC() function can step through the various submodels and rank them by 
AIC. This gives 

> library(MASS)       # load in MASS package for 
stepAIC 
> stepAIC(res.lm) 
Start: AIC= 101.2 
... lots skipped ... 
Coefficients: 
(Intercept)      seq.3      sat.m 
−1.14078       0.01371    0.00479 

The submodel with just two predictors is selected. As expected, the verbal scores on the 
SAT are not a good indicator of performance. 

10.3.6 Problems 

10.20 Do Example 10.5 and fit the full model to the data. For which variables is the t-test 
for βi=0 flagged? What model is selected by AIC? 
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10.21 Following Example 10.9, fit a fourth-degree polynomial to the galileo (UsingR) 
data and compare to the cubic polynomial using a partial F-test. Is the new coefficient 
significant?  

10.22 For the data set trees, model the Volume by the Girth and Height variables. 
Does the model fit the data well? 

10.23 The data set MLBattend (UsingR) contains attendance data for major league 
baseball for the years 1969 to 2000. Fit a linear model of attendance modeled by year, 
runs. scored, wins, and games. behind. Which variables are flagged as significant? Look 
at the diagnostic plots and comment on the validity of the model. 

10.24 For the deflection (UsingR) data set, fit the quadratic model 
Deflection=β0+β1Load+β2Load2+ε.   

How well does this model fit the data? Compare to the linear model. 
10.25 The data set kid.weights contains age, weight, and height measurements for 

several children. Fit the linear model 
weight=β0+β1age+β2height+β3height2+β4height3+β5height4   

Use the partial F-test to select between this model and the nested models found by using 
only first-, second-, and third-degree polynomials for height. 

10.26 The data set f at (Us ingR) contains several body measurements that can be done 
using a scale and a tape measure. These can be used to predict the bodyfat percentage 
(body. fat). Measuring body fat requires a special apparatus; if our resulting model fits 
well, we have a low-cost alternative. 

Fit the variable body. fat using each of the variables age, weight, height, BMI, neck, 
chest, abdomen, hip, thigh, knee, ankle, bicep, forearm, and wrist. Use the stepAIC() 
function to select a submodel. For this submodel, what is the adjusted R2? 

10.27 The data set Cars93 (MASS) contains data on cars sold in the United States in 
the year 1993. Fit a regression model with MPG. city modeled by the numeric variables 
EngineSize, Weight, Passengers, and price. Which variables are marked as statistically 
significant by the marginal t-tests? Which model is selected by the AIC? 

10.28 We can simulate the data to see how often the partial F-test or AIC works. For 
example, a single simulation can be done with the commands 

> x = 1:10;y = rnorm(10,1+2*x+3*x^2,4) 
> stepAIC(lm(y~x+I(x^2)))       # needs library(MASS) 
at first 

Do a few simulations to see how often the correct model is selected.  
10.29 The data set bay check (UsingR) contains estimated populations for a variety of 

Bay checkerspot butterflies near California. A common model for population dynamics is 
the Ricker model, for which t is time in years: 

   

where a and b are parameters and Wt is a lognormal multiplicative error. This can be 
turned into a regression model by dividing by Nt and then taking logs of both sides to 
give 
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Let yt be the left-hand side. This may be written as 

 
  

because r can be interpreted as an unconstrained growth rate and K as a carrying capacity. 
Fit the model to the bay check (UsingR) data set and find values for r and K. To find yt 

you can do the following: 

> attach(baycheck) 
> n = length(year) 
> yt = log(Nt[−1]/Nt[−n]) 
> nt = Nt[−n] 

Recall that a negative index means all but that index. 
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Chapter 11  
Analysis of variance 

Analysis of variance, ANOVA, is a method of comparing means based on variations 
from the mean. We begin by doing ANOVA the traditional way, but we will see that it is 
a special form of the linear model discussed in the previous chapter. As such, it can be 
approached in a unified way, with much of the previous work being applicable. 

11.1 One-way ANOVA 

A one-way analysis of variance is a generalization of the t-test for two independent 
samples, allowing us to compare means for several independent samples. Suppose we 
have k populations of interest. From each we take a random sample. These samples are 
independent if the knowledge of one sample does not effect the distribution of another. 
Notationally, for the ith sample, let designate the sample values. 

The one-way analysis of variance applies to normally distributed populations. Suppose 
the mean of the ith population is µi and its standard deviation is σi. We use a σ if these are 
all equivalent. A statistical model for the data with common standard deviation is 

Xij=µi+εij,   

where the error terms, εij, are independent with Normal(0, σ) distribution. 
■ Example 11.1: Number of calories consumed by month Consider 15 subjects split 

at random into three groups. Each group is assigned a month. For each group we record 
the number of calories consumed on a randomly chosen day. Figure 11.1 shows the data. 
We assume that the amounts consumed are normally distributed with common variance 
but perhaps different means. From the figure, we see that there appears to be more 
clustering around the means for each month than around the grand mean or mean for all 
the data. This would indicate that the means may be different. Perhaps more calories are 
consumed in the winter? 

The goal of one-way analysis of variance is to decide whether the difference in the 
sample means is indicative of a difference in the population means of each sample or is 
attributable to sampling variation. 



 

Figure 11.1 Amount of calories 
consumed by subjects for different 
months. Sample means are marked, 
as is the grand mean. 

This problem is approached as a significance test. Let the hypotheses be 
H0: µ1=µ2=…=µk, HA: µi≠µj for at least one pair i and j. 
A test statistic is formulated that compares the variations within a single group to 

those among the groups. 
Let be the grand mean, or mean of all the data, and the mean for the ith sample. 

Then the total sum of squares is given by 

 
  

This measures the amount of variation from the center of all the data. 
An analysis of variance breaks this up into two sums: 

 (11.1) 

The first sum is called the error sum of squares, or SSE. The interior sum, 

measures the variation within the ith group. The SSE is then a measure of 
the within-group variability. The second term in (11.1) is called the treatment sum of 
squares (SSTr). The word treatment comes from medical experiments where the 
population mean models the effect of some treatment. The SSTr compares the means for 
each group, with the grand mean, It measures the variability among the means of the 
samples. We can reexpress Equation 11.1 as 

SST=SSE+SSTr.   

From looking at the data in Figure 11.1 we expect that the SSE is smaller than the SSTr, 
as there appears to be more variation among groups than within groups. If the data came 
from a common mean, then we would expect SSE and SSTr to be roughly the same. If 
SSE and SSTr are much different, it would be evidence against the null hypothesis. How 
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can we tell whether the differences are due to the null hypothesis being false or merely to 
sampling variation? As usual, we tell by finding a test statistic that can discriminate. 

Based on our observation, a natural test statistic to test whether µ1=µ2= …=µk would 
be to compare the two values SSTr and SSE. The F statistic, 

 (11.2) 

does so by a ratio. Large values would be consistent with a difference in the means. To 
get the proper scale, each term is divided by its respective degrees of freedom, yielding 
the mean sum of squares. The degrees of freedom for the total sum of squares is n−1, as 
only the grand mean is estimated. For the SSE the degrees of freedom are n−k, so the 
degrees of freedom for SSTr is k−1. 

Under the assumption that the data is normally distributed with common mean and 
variance, this statistic will have a known distribution: the F-distribution with k−1 and 
n−k degrees of freedom. This is a consequence of the partial Ftest discussed in Chapter 
10.* 

The one-way analysis-of-variance significance test 
Suppose we have k independent, i.i.d. samples from populations with Normal(µi, σ) 
distributions, i=1, …k. A significance test of 

H0:µ1=µ2=…=µk, HA:µi≠µj for at least one pair i and j,    

*This can be shown by identifying RSS(k) with the total sum of squares and RSS(p) with SSE in 
(10.11) and simplifying. 

can be performed with test statistic 

 
  

Under H0, F has the F-distribution with k−1 and n−k degrees of freedom. The p-value 
is calculated from P(F≥observed value |H0). 

The R function oneway. test () will perform this significance test. 

■ Example 11.2: Number of calories consumed by month, continued The one-way 
test can be applied to the example on caloric intake. The two sums can be calculated 
directly as follows: 

> may=c(2166, 1568, 2233, 1882, 2019) 
> sep=c(2279, 2075, 2131, 2009, 1793) 
> dec=c(2226, 2154, 2583, 2010, 2190) 
> xbar=mean(c(may,sep,dec)) 
> SST=5*((mean(may)-xbar)^2+(mean(sep)-
xbar)^2+(mean(dec)-xbar)^2) 
> SST 
[1] 174664 
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> SSE=(5–1)*var(may)+(5–1)*var(sep)+(5–1)*var(dec) 
> SSE 
[1] 586720 
> F.obs=(SST/(3–1)) / (SSE/(15–3)) 
> pf(F.obs,3–1,15–3,lower.tail=FALSE) 
[1] 0.2094 

We get a p-value that is not significant. Despite the graphical evidence, the differences 
can be explained by sampling variation. ■ 

11.1.1 Using R’s model formulas to specify ANOVA models 

The calculations for analysis of variance need not be so complicated, as R has functions 
to compute the values desired. These functions use model formulas. If x stores all the 
data and f is a factor indicating which group the data value belongs to, then 

x~f   

represents the statistical model 
Xij=µi+εij.   

In Chapter 4 we remarked that the default behavior for plot() of the model formula x ~ f 
was to make a boxplot. This is because this graphic easily allows for comparison of 
centers for multiple samples. The strip chart in Figure 11.1 is good for a small data set, 
but the boxplot is preferred when there are larger data sets. 

11.1.2 Using oneway.test() to perform ANOVA 

The function oneway. test() is used as 
oneway test(x~f, data=…, var.equal=FALSE)   

As with the t.test function, the argument var. equal=is set to TRUE if appropriate. By 
default it is FALSE. 

Before using oneway. test() with our example of caloric intake, we put the data into 
the appropriate form: a data vector containing the values and a factor indicating the 
sample the corresponding value is from. This can be done using stack(). 

> d = stack(list(may=may,sep=sep,dec=dec)) # need names 
for list 
> names(d)                       # stack returns two 
variables 
[1] "values" "ind" 
> oneway.test(values ~ ind, data=d, var.equal=TRUE) 
        One-way analysis of means 
data: values and ind 
F = 1.786, num df = 2, denom df = 12, p-value = 0.2094 

We get the same p-value as in our previous calculation, but with much less effort. 
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11.1.3 Using aov() for ANOVA 

The alternative aov() function will also perform an analysis of variance. It returns a 
model object similar to lm() but has different-looking outputs for the print() and 
summary() extractor functions. These are analysis-of-variance tables that are typical of 
other computer software and statistics books. 

Again, it is called with a model formula, but with no specification of equal variances: 

> res = aov(values ~ ind, data = d) 
> res                          # uses print() 
Call: 
   aov(formula = values ~ ind, data = d) 
Terms: 
                  ind Residuals 
Sum of Squares 174664    586720 
Deg. of Freedom     2        12 
Residual standard error: 221.1 
Estimated effects may be unbalanced 

It returns the two sums of squares calculated in Example 11.2 with their degrees of 
freedom. The Residual standard error, is found by the square root of RSS/(n−A;), 
which in this example is 

> sqrt(586720/12) 
[1] 221.1 

The result of aov() has more information than shown, just as the result of lm() does. For 
example, the summary() function returns 

> summary(res) 
          Df Sum Sq Mean Sq F value Pr(>F) 
ind        2 174664   87332    1.79   0.21 
Residuals 12 586720   48893 

These are the values needed to perform the one-way test. This tabular layout is typical of 
an analysis of variance. 

■ Example 11.3: Effect of grip on cross-country skiing Researchers at Montana 
State University performed a study on how various ski-pole grips affect cross-country 
skiing performance. There are three basic grip types: classic, modern, and integrated. For 
each of the grip types, a skier has upper-body power output measured three times. The 
data is summarized in Table 11.1. 

Table 11.1 Upper-body power output (watts) by 
ski-pole grip type 

Grip type classic integrated modern
  168.2 166.7 160.1 
  161.4 173.0 161.2 

Using R for introductory statistics     302



  163.2 173.3 166.8 
asimulated from study values 

Does there appear to be a difference in power output due to grip type? 
We can investigate the null hypothesis that the three grips will produce equal means 

with an analysis of variance. We assume that the errors are all independent and that the 
data is sampled from normally distributed populations with common variance but perhaps 
different means. 

First we enter in the data. Instead of using stack(), we enter in all the data at once and 
create a factor using rep() to indicate grip type. 

> 
UBP=c(168.2,161.4,163.2,166.7,173.0,173.3,160.1,161.2,1
66.8) 
> 
grip.type=rep(c("classic","integrated","modern"),c(3,3,
3)) 
> grip.type=factor(grip.type) 
> boxplot(UBP ~ grip.type, ylab="Power (watts)", 
+ main="Effect of cross country grip”) 

(We use rep() repeatedly. In particular, if u and v are data vectors of the same length, then 
rep (u, v) repeats u[i]—the ith value of u−v [i] times.) 

The boxplot in Figure 11.2 indicates that the integrated grip has a significant 
advantage. But is this due to sampling error? We use aov() to carry out the analysis of 
variance. 

> res=aov(UBP ~ grip.type) 
> summary(res) 
          Df Sum Sq Mean Sq F value Pr(>F) 
grip.type  2  116.7  58.3 4.46 0.065 . 
Residuals  6   78.4  13.1 
-- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’1 

We see that there is a small p-value that is significant at the 10% level. (Although, in 
most cases, samples with only three observations will fail to pick up on actual 
differences.)  
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Figure 11.2 Effect of cross-country 
ski pole grip on measured power 
output 

11.1.4 The nonparametric Kruskal-Wallis test 

The Wilcoxon rank-sum test was discussed as a nonparametric alternative to the two-
sample t-test for independent samples. Although the populations had no parametric 
assumption, they were assumed to have densities with a common shape but perhaps 
different centers. 

The Kruskal-Wallis test, a nonparametric test, is analogous to the rank-sum test for 
comparing the population means of k independent samples. 

In particular, if f(x) is a density of a continuous random variable with mean a, the 
assumption on the data is that Xij is drawn independently of the others from a population 
with density f(x−µi). The hypotheses tested are 

H0:µ1=µ2=…=µk, HA:µi≠µj for at least one pair i and j.   

The test statistic involves the ranks of all the data. Let rij be the respective rank of a data 
point when all the data is ranked from smallest to largest, be the mean of the ranks for 
each group, the grand mean. The test statistic is: 

 (11.3) 

Statistical inference is based on the fact that T has an asymptotic χ2-distribution with k−1 
degrees of freedom. 

Kruskal-Wallis test for equivalence of means 
Assume k populations, the ith one with density f(x−µi). Let Xij,i= 1, …, k, j=1, …, ni 
denote k independent, i.i.d. random samples from these populations. A significance test 
of 

H0:µ1=µ2=…=µk, HA: µi≠µ for at least one pair i and j,   
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can be performed with the test statistic T given by (11.3). The asymptotic distribution 
of T under H0 is the χ2-distribution with k−1 degrees. This is used as the approximate 
distribution for T when there are at least five observations in each category. Large values 
of T support the alternative hypothesis. 

The kruskal. test() function will perform the test. The syntax is 
Kruskal.test (x~f, data=…, subset=…)    

■ Example 11.4: Multiple tests An instructor wishing to cut down on cheating makes 
three different exams and distributes them randomly to her students. After collecting the 
exams, she grades them. The instructor would like to know whether the three exams are 
equally difficult. She will decide this by investigating whether the scores have equal 
population means. That is, if she could give each exam to the entire class, would the 
means be similar? The test scores are in Table 11.2. Is there a difference in the means? 

We enter the data and then use stack() to put it in the proper format: 

> x = c(63, 64, 95, 64, 60, 85) 
> y = c(58, 56, 51, 84, 77) 

Table 11.2 Test scores for three separate exams 
test 1 63 64 95 64 60 85   
test 2 58 56 51 84 77     
test 3 85 79 59 89 80 71 43

> z = c(85, 79, 59, 89, 80, 71, 43) 
> d = stack(list("test 1"=x,"test 2"=y,"test 3"=z)) 
> plot(values ~ ind, data=d, xlab=“test”, ylab="grade”) 

The boxplots in Figure 11.3 show that the assumption of independent samples from a 
common population, which perhaps is shifted, is appropriate. 
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Figure 11.3 Boxplots comparing 
grades for three separate exams 

The Kruskal-Wallis test returns 

> kruskal.test(values ~ ind, data=d) 
Kruskal-Wallis rank sum test 
data: values by ind 
Kruskal-Wallis chi-squared=1.775, df=2, p-value 
0.4116 

This large p-value indicates no reason to doubt the null hypothesis of equally difficult 
exams.  

11.1.5 Problems 

11.1 The morley data set contains speed-of-light measurements by Michaelson and 
Morley. There were five experiments, each consisting of multiple runs. Perform a one-
way analysis of variance to see if each of the five experiments has the same population 
mean. 

11.2 For the data set Cars93 (MASS) perform a one-way analysis of variance of MPG. 
highway for each level of DriveTrain. Does the data support the null hypothesis of equal 
population means? 

11.3 The data set female. inc (UsingR) contains income data for females age 15 or 
over in the United States for the year 2001, broken down by race. Perform a one-way 
analysis of variance of income by race. Is there a difference in the mean amount earned? 
What is the p-value? What test did you use and why? 

11.4 The data set car safety (UsingR) contains car-crash data. For several makes of car 
the number of drivers killed per million is recorded in Drivers. deaths. The number of 
drivers of other cars killed in accidents with these cars, per million, is recorded in Other. 
deaths. The variable type is a factor indicating the type of car. 

Perform a one-way analysis of variance of the model Drivers. deaths ~ type. Is there a 
difference in population means? Did you assume equal variances? Normally distributed 
populations? 
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Repeat with an analysis of variance of the model Other. deaths ~ type. Is there a 
difference in population means? 

11.5 The data set hall. fame (UsingR) contains statistics for several major league 
baseball players. Perform a one-way test to see whether the mean batting average, BA, is 
the same for Hall of Fame members (Hall. Fame. Membership) as for other players. 

Table 11.3 Production of a chemical 
Lab 1 4.13 4.07 4.04 4.07 4.05
Lab 2 3.86 3.85 4.08 4.11 4.08
Lab 3 4.00 4.02 4.01 4.01 4.04
Lab 4 3.88 3.89 3.91 3.96 3.92

11.6 A manufacturer needs to outsource the production of a chemical. Before deciding on 
a laboratory, the manufacturer asks four laboratories to manufacture five batches each. A 
numeric measurement is assigned to each batch. The data is given in Table 11.3. Perform 
a one-way analysis of variance to see if there is a difference in the population means. Is 
the data appropriate for oneway.test()? kruskal.test()? 

11.7 A manufacturer of point-of-sale merchandise tests three types of ENTERbutton 
markings. They wish to minimize wear, as customers get annoyed when the markings on 
this button wear off. They construct a test of the three types, and conduct several trials for 
each. The results, in unspecified units, are recorded in Table 11.4. Is there a difference in 
wear time among the three types? Answer this using a one-way ANOVA. 

Table 11.4 Wear times for point-of-sale test 
Type 1 303 293 296 299 298   
Type 2 322 326 315 318 320 320
Type 3 309 327 317 315     

11.8 Perform a Kruskal-Wallis test on the data in the data set Plant Growth, where weight 
is modeled by the factor group. Is there a significant difference in the means? 

11.9 Perform a one-way analysis of variance on the data in Example 11.4. Is there a 
different conclusion from the example? 

11.2 Using lm() for ANOVA 

The mathematics behind analysis of variance is the same as that behind linear regression. 
Namely, it uses least-squares estimates based on a linear model. As such, it makes sense 
to unify the approaches. To do so requires a new idea in the linear model. 

To illustrate, we begin with an example comprising just two samples, to see how t-
tests are handled with the lm() function. 

■ Example 11.5: ANOVA for two independent samples 
Suppose we have two independent samples from normally distributed populations. Let 
X11, X12,…,X1n record the first and X21, X22, …, X2n the second. Assume the population 
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means are µ1 and µ2 and the two samples have a com-mon variance. We may perform a 
two-sided significance test of µ1=µ2 with a t-test. 

We illustrate with simulated data: 

> mu1=0; mu2=1 
> x=rnorm(15,mu1); y=rnorm(15,mu2) 
> t.test(x,y, var.equal=TRUE) 
        Two Sample t-test 
data: x and y 
t=−2.858, df=28, p-value=0.007961 
alternative hypothesis: true difference in means is not 
equal to a 
95 percent confidence interval: 
  −2.0520 −0.3386 
sample estimates: 
mean of x mean of y 
   0.0157    1.211 

We see that the p-value is small, as expected. 
We can approach this test differently, in a manner that generalizes to the case when 

there are more than two independent samples. Combine the data into a single data vector, 
Y, and a factor keeping track of which sample, 1 or 2, the data is from. This presumes 
some ordering on the data after it is stored in Y. For example, we can let the first n1 
values be from the first sample and the second n2 from the last. This is what stack() does. 
Using this order, let 11(i) be an indicator function that is 1 if the level of the factor for the 
ith data value is 1. Similarly, define 12(i). Then we can rewrite our model as 

Yi=µ1l1(i)+µ212(i)+εi.   

When the data for the first sample is considered, 12(i)=0, and this model is simply 
Yi=µ1+εi. When the second sample is considered, the other dummy variable is 0, and the 
model considered is Yi=µ2+εi. 

We can rewrite the model to use just the second indicator variable. We use different 
names for the coefficients: 

Yi=β1+β2l2(i)+εi.   

Now when the data for the first sample is considered the model is Yi=β1+εi, so β1 is still 
µ1. However, when the second sample is considered, we have Yi= β1+β2+εi, so µ2=β1+β2. 
That is, β2=µ2−µ1. We say that level 1 is a reference level, as the mean of the second level 
is represented in reference to the first. 

It turns out that statistical inference is a little more natural when we pick one of the 
means to serve as a reference. The resulting model looks just like a linear-regression 
model where xi is 12(i). We can fit it that way and interpret the coefficients accordingly. 
The model is specified the same way, as with oneway.test(), y ~ f, where y holds the data 
and f is a factor indicating which group the data is for. 

To model, first we stack, then we fit with lm(). 

> d=stack(list(x=x,y=y))   # need named list. 

Using R for introductory statistics     308



> d 
     values ind 
1    −0.5263  x 
2    −0.9709  x 
… 
> res=1m(values ~ ind, data=d) 
> summary(res) 
… 
Coefficients: 
           Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.157        0.261    0.60    0.553 
indy        1.054        0.369    2.86    0.008 ** 
-- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 
Residual standard error: 1.01 on 28 degrees of freedom 
Multiple R-Squared: 0.226, Adjusted R-squared: 0.198 
F-statistic: 8.17 on 1 and 28 DF, p-value: 0.00796 

Look at the variable indy, which means the y part of ind. The marginal ttest tests the null 
hypothesis that β2=0, which is equivalent to the test that µ1=µ2. This is why the t-value of 
2.86 coincides (up to a sign and rounding) with t=−2.858 from the output of t.test (x, y). 

The F-statistic also tests the hypothesis that β2=0. In this example, it is identical to the 
marginal t-test, as there are only two samples. 

Alternatively, we can try to fit the model using two indicator functions, Yi= 
µ111(i)+µ212(i)+εi. 

This model is specified in R by dropping the implicit intercept term with a—1 in the 
model formula. 

> res=lm(values ~ ind − 1, data=d) 
> summary(res) 
… 
Coefficients: 
    Estimate Std. Error t value Pr(>|t|) 
indx   0.157      0.261    0.60     0.55 
indy   1.211      0.261    4.64  7.4e-05 *** 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’1 
Residual standard error: 1.01 on 28 degrees of freedom 
Multiple R-Squared: 0.439,     Adjusted R-squared: 
0.399 
F-statistic: 11 on 2 and 28 DF, p-value: 0.000306 

Now the estimates have a clear interpretation in terms of the means, but the marginal t-
tests are less useful, as they are testing simply whether the respective means are a, rather 
than whether their difference is a. The F-statistic in this case is testing whether both β’s 
are 0. 
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11.2.1 Treatment coding for analysis of variance 

The point of the above example is to use indicator variables to represent different levels 
of a factor in the linear model. When there are k levels, k−1 indicator variables are used. 
For example, if the model is 

Xij=µi+εij, i,…,k, 
(11.4) 

then this can be fit using 
Yi=β1+β212+…+βk1k(i)+εi. 

(11.5) 

The mean of the reference level, µ1, is coded by β1, and the other β’s are differences from 
that. That is, βi=µi−µ1 for i=2,…,k. 

This method of coding is called treatment coding and is used by default in R with 
unordered factors. It is not the only type of coding, but it is the only one we will discuss.† 

Treatment coding uses a reference level to make comparisons. This is chosen to be the 
first level of the factor coding the group. To change the reference level we can use the 
relevel() function in the following manner: 

f=relevel(f, ref=…)   

The argument ref=specifies the level we wish to be the reference level. 

■ Example 11.6: Child’s birth weight and mother’s smoking history 
The babies (UsingR) data set contains information on birth weight of a child and whether 
the mother smoked. The birth weight, wt, is coded in ounces, and smoke is a numeric 
value: a for never, 1 for smokes now, 2 for smoked until current pregnancy, 3 for smoked 
previously but not now, and 9 if unknown. 

To do an analysis of variance on this data set, we use subset() to grab just the desired 
data and then work as before, only we use factor() to ensure that smoking is treated as a 
factor. First, we see whether there appears to be a difference in the means with a boxplot 
(Figure 11.4). 

> library(UsingR) 
> df=subset(babies,select=c("wt","smoke")) 
> plot(wt ~ factor(smoke), data=df, # notice factor() 
for boxplot 
+ main="Birthweight by smoking level”) 

† For more detail see ?contrasts and the section on contrasts in the manual An Introduction to R that 
accompanies R. 

Using R for introductory statistics     310



 

Figure 11.4 Birth weight by smoking 
history 

Perhaps the assumption of normality isn’t correct, but we ignore that. If the test is valid, it 
looks like level 1 (smokes now) has a smaller mean. Is this due to sampling? We fit the 
model as follows: 

> res=1m(wt factor(smoke), data=df) 
> summary(res) 
… 
Coefficients: 
Estimate Std. Error t value Pr(>|t|) 
(Intercept) 122.778 0.760 161.60 < 2e−16 *** 
factor (smoke) 1 -8.668 1.107 −7.83 1.1e-14 *** 
factor (smoke) 2 0.307 1.970 0.16 0.88 
factor (smoke) 3 1.659 1.904 0.87 0.38 
factor (smoke) 9 3.922 5.655 0.69 0.49 
-- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘’ 
Residual standard error: 17.7 on 1231 degrees of 
freedom 
Multiple R-Squared: 0.0588,      Adjusted R-squared: 
0.0557 
F-statistic: 19.2 on 4 and 1231 DF,   p-value: 2.36e-15 

The marginal t-tests indicate that the level 1 of the smoke factor is important, whereas the 
others may not contribute. That is, this is strong evidence that a mother’s smoking during 
pregnancy decreases a baby’s birth weight. The treatment coding quantifies this in terms 
of differences from the reference level of never smoked. The estimate, −8.668, says that 
the birth weight of a baby whose mother smoked during her pregnancy is predicted to be 
8.688 grams less than that of a baby whose mother never smoked.  
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11.2.2 Comparing multiple differences 

When analysis of variance is performed with lm(), the output contains numerous 
statistical tests. The F-test that is performed uses for the null hypothesis that β2=β3=…= 
βk=0 against an alternative that one or more differ from 0. That is, that one or more of the 
treatments has an effect compared to the reference level. The marginal t-tests that are 
performed are two-sided tests with a null hypothesis that βi=β1. One each is done for i=2, 
…, k. These test whether any of the additional treatments have a different effect from the 
reference one when controlled by the other variables. However, we may wish to ask other 
questions about the various parameters. For example, comparisons not covered by the 
standard output are “Do the β2 and β3 differ?” and “Are β1 and β2 half of β3?” We show 
next how to handle simultaneous pairwise comparisons of the parameters, such as the 
first comparison. 

If we know ahead of time that we are looking for a pairwise difference, then a simple 
t-test is appropriate (as in the case where we are considering just two independent 
samples). However, if we look at the data and then decide to test whether the second and 
third parameters differ, then our t-test is shaky. Why? Remember that any test is correct 
only with some probability—even if the models are correct. This means that sometimes 
they fail, and the more tests we perform, the more likely one or more will fail. When we 
look at the data, we are essentially performing lots of tests, so there is more chance of 
failing. 

In this case, to be certain that our t-test has the correct significance level, we adjust it 
to include all the tests we can possibly consider. This adjustment can be done by hand 
with the simple, yet often overly conservative Bonferroni adjustment. This method uses a 
simple probability bound to ensure the proper significance level. 

However, with R it is straightforward to perform Tukey’s generally more useful and 
powerful “honest significant difference” test. This test covers all pairwise comparisons at 
one time by simultaneously constructing confidence intervals of the type 

 
(11.6) 

The values are the sample means for the i-th level and q* is the quantile for a 
distribution known as the studentized range distribution. This choice of q* means that all 
these confidence intervals hold simultaneously with probability 1−α. 

This procedure is implemented in the TukeyHSD() function as illustrated in the next 
example. 

■ Example 11.7: Difference in takeoff times at the airport 
We investigate the takeoff times for various airlines at Newark Liberty airport. As with 
other busy airports, Newark’s is characterized by long delays on the runway due to 
requirements that plane departures be staggered. Does this affect all the airlines equally? 
Without suspecting that any one airline is favored, we can perform a simultaneous pair-
wise comparison to investigate. 

First, we massage the data in ewr (UsingR) so that we have two variables: one to keep 
track of the time and the other a factor indicating the airline. 
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> ewr.out=subset(ewr, subset=inorout=="out”, 
select=3:10) 
> out=stack(ewr.out) 
> names(out)=c("time","airline”) 
> levels(out$airline) 
[1] “AA" “CO" “DL" “HP" “NW" “TW" “UA" “US" 

In modeling, the reference level comes from the first level reported by the levels() 
function. This is AA, or American Airlines. 

 

Figure 11.5 Boxplots and plots of 
confidence intervals given by the 
Tukey procedure for time it takes to 
takeoff at Newark Liberty airport 
by airline 

Now plot (the boxplots in Figure 11.5) and fit the linear model as follows: 

> plot(time ~ airline, data=out) 
> res=lm(time ~ airline, data=out) 
> summary(res) 
Call: 
1m(formula=time ~ airline, data=out) 
… 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept) 27.0565      0.7204   37.56 < 2e−16 *** 
airlineCO    3.8348      1.0188    3.76 0.00023 *** 
airlineDL   −2.0522      1.0188   −2.01 0.04550 * 
airlineHP    1.5261      1.0188    1.50 0.13595 
airlineNW   −4.0609      1.0188   −3.99 9.8e−05 *** 
airlineTW   −1.6522      1.0188   −1.62 0.10667  
airlineUA -0.0391 1.0188 -0 04 0.96941 
airlineUS -3.8304 1.0188 -3 76 0.00023 *** 
-- 
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 
Residual standard error: 3.45 on 176 degrees of freedom 
Multiple R-Squared: 0.355, Adjusted R-squared: 0.329 
F-statistic: 13.8 on 7 and 176 DF, p-value: 3.27e-14 

The boxplots show many differences. Are they statistically significant? We assume for 
now that the data is actually a collection of independent samples (rather than monthly 
averages of varying sizes) and proceed using the TukeyHSD() function. 

> TukeyHSD(res) 
Error in TukeyHSD(res) : no applicable method for 
“TukeyHSD" 

Oops, the TukeyHSD() function wants aov() to fit the linear model, not 
lm(). The commands are the same. 

> res.aov=aov(time ~ airline, data=out) 
> TukeyHSD(res.aov) 
Tukey multiple comparisons of means 
95% family-wise confidence level 
Fit: aov(formula=time ~ airline, data=out) 
$airline 
         diff    lwr     upr 
CO-AA  3.83478  0.7093 6.96025 
DL-AA −2.05217 −5.1776 1.07330 
… 
US-TW −2.17826 −5.3037 0.94721 
US-UA −3.79130 −6.9168 −0.66583 
> plot(TukeyHSD(res.aov), las=2) 

The output of TukeyHSD() is best viewed with the plot of the confidence intervals 
(Figure 11.5). This is created by calling plot() on the output. The argument las=2 turns 
the tick-mark labels perpendicular to the axes. 

Recall the duality between confidence intervals and tests of hypothesis discussed in 
Chapter 8. For a given confidence level and sample, if the confidence interval excludes a 
population parameter, then the two-sided significance test of the same parameter will be 
rejected. Applying this to the Newark airport example, we see several statistically 
significant differences at the α=.05 level, the first few being CO-AA and NW-AA (just 
visible on the graph shown). 

11.2.3 Problems 

11.10 The data set MLB At tend (UsingR) contains attendance data for major league 
baseball between the years 1969 and 2000. Use 1m () to perform a t-test on attendance 
for the two levels of league. Is the difference in mean attendance significant? Compare 
your results to those provided by t. test (). 
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11.11 The Traffic (MASS) data set contains data on road deaths in Sweden during 
1961 and 1962. An investigation into the effect of an enforced speed limit on the number 
of traffic fatalities was conducted. The y variable contains the number of deaths for a 
given day, the year variable is the year of the data, and limit is a factor indicating when 
the speed limit was enforced. 

Use lm () to perform a t-test to investigate whether the year has an effect on the 
number of deaths. Repeat to test whether the variable limit has an effect. 

11.12 For the data in Table 11.4, perform the one-way ANOVA using lm(). Compare 
to the results of oneway.test(). 

11.13 For the mt cars data set, perform a one-way analysis of variance of the response 
variable mpg modeled by cyl, the number of cylinders. Use factor(), as cyl is stored as a 
numeric variable. 

11.14 The data set npdb (UsingR) contains malpractice award information. The 
variable amount contains the amount of a settlement, and the variable year contains the 
year of the award. We wish to investigate whether the dollar amount awarded was steady 
during the years 2000, 2001, and 2002. 

1. Make boxplots of amount broken up by year. Why is the data not suitable for a one-
way analysis of variance? 

2. Make boxplots of log (amount) broken up by year. Is this data suitable for a one-
way analysis of variance? 

3. Perform an analysis of variance of log (amount) by factor (year) for the years 2000, 
2001, and 2002. Is the null hypothesis of no difference in mean award amount reasonable 
given this data? 

11.15 For the mtcars data set, perform a one-way analysis of variance of the response 
variable mpg modeled by am, which is a for automatic and 1 for manual. Use factor(), as 
am is stored as a numeric variable. 

11.16 Perform the Tukey procedure on the data set morley after modeling Speed by 
expt. Which differences are significant? Do they include all the ones flagged by the 
marginal t-tests returned by lm() on the same model? 

11.17 The car safety (UsingR) data set shows a difference in means through an 
analysis of variance when the variable Other. deaths is modeled by type. Perform the 
Tukey HSD method to see what pairwise differences are flagged at a 95% confidence 
level. What do you conclude?  

11.18 The InsectSprays data set contains a variable count, which counts the number of 
insects and a factor spray, which indicates the treatment given. 

First perform an analysis of variance to see whether the treatments make a difference. 
If so, perform the Tukey HSD procedure to see which pairwise treatments differ. 
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11.3 ANCOVA 

An analysis of covariance (ANCOVA) is the term given to models where both 
categorical and numeric variables are used as predictors. Performing an ANCOVA in R is 
also done using lm(). 

■ Example 11.8: Birth weight by mother’s weight and smoking history 
In Example 11.6 we performed an analysis of variance of a baby’s birth weight 

modeled by whether the mother smoked. In this example, we also regress on the numeric 
measurement of the mother’s weight. First we make a plot, marking the points with 
different characters depending on the value of smoke. As smoke is stored as a numeric 
variable, the different plot symbols for those numbers are used. 

> plot(wt ~ wt1, data=babies, pch=smoke, subset=wt1 < 
800) 

The graph in Figure 11.6 indicates a possible linear relationship. The analysis of 
covariance model, fit next, is essentially the model 

birth weight=β1+β2mom’s weight+β31mom smokes now   

This model is a parallel-lines model. For those mothers who don’t smoke, the intercept is 
given by β1; for those who do, the intercept is β1+β3. The slope is given by β2. The actual 
model we fit is different, as there are four levels to the smoke variable, so there would be 
three indicator variables, each indicating a difference in the intercept. 

In R, we fit the model as follows, using factor() to coerce smoke to be a factor: 

> res=lm(wt ~ wt1+factor(smoke), data=babies, 
+ subset=wt1 < 800) 
> summary(res) 
Call: 
lm(formula=wt ~ wt1+factor(smoke), data=babies, 
subset=wt1 < 
     800) 
Residuals: 
    Min      1Q Median     3Q    Max 
−68.928 −10.901  0.437 11.014 52.685  
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Figure 11.6 Parallel-lines model 
showing reference slope and slope 
for smokers (dashed line) 

Coefficients: 
                 Estimate Std. Error t value Pr(>|t|) 
(Intercept)      107.0674    3.2642    32.80 < 2e-16 
*** 
wt1                0.1204    0.0245     4.93 9.6e-07 
*** 
factor(smoke)1 −8.3971 1.1246 −7.47 1.6e−13 *** 
f act or(smoke) 2 0.7944 1.9974 0.40 0.69 
factor(smoke)3  1.2550 1.9112 0.66 0.51 
factor(smoke)9  2.8683 5.6452 0.51 0.61 
-- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 
Residual standard error: 17.7 on 1194 degrees of 
freedom 
Multiple R-Squared: 0.0775, Adjusted R-squared: 0.0736 
F-statistic: 20.1 on 5 and 1194 DF, p-value: <2e−16 

We read this output the same way we read the output of any linear regression. For each 
coefficient, the marginal t-test of βi=0 against a two-sided alternative is performed. Three 
variables are flagged as highly significant. The third one for the variable factor (smoke) 1 
says that the value of this coefficient, −8.3971, is statistically different from 0. This value 
is an estimate of the difference between the intercept for the data of nonsmoking mothers 
(level 0) and the data of mothers who answered “smokes now” (level 1). 

We plot the data with two different but parallel regression lines in Figure 11.6. 

> plot(wt ~ wt1, pch=smoke, data=babies, subset=wt1 < 
800) 
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> abline(107.0674, 0.1204)  
| > abline(107.0674–8.3971, 0.1204, lty=2) 

The last line of the output of summary (res) shows that the F-test is rejected. This is a test 
of whether all the coefficients except the intercept are 0. A better test would be to see 
whether the additional smoke variable is significant once we control for the mother’s 
weight. This is done using anova() to compare the two models. 

> res.1=lm(wt ~ wt1, data=babies, subset=wt1 < 800) 
> anova(res.1,res) 
Analysis of Variance Table 
Model 1: wt ~ wt1 
Model 2: wt ~ wt1+factor(smoke) 
Res.Df RSS Df Sum of Sq F Pr(>F) 
1 1198 394572 
2 1194 372847 4 21725 17.4 7e-14 *** 
-- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 

The small p-value indicates that the additional term is warranted. ■ 

11.3.1 Problems 

11.19 The nym. 2002 (UsingR) data set contains data on the finishers of the 2002 New 
York City Marathon. Do an ANCOVA of time on the numeric variable age and the factor 
gender. How much difference is there between the genders? 

11.20 For the mtcars data set, perform an ANCOVA of mpg on the weight, wt, and the 
transmission type, am. You should use factor (am) in your model to ensure that this 
variable is treated as a factor. Is the transmission type significant? 

11.21 Perform an ANCOVA for the babies (UsingR) data set modeling birth weight 
(wt) by gestation (gestation), mother’s weight (wt1), mother’s height (ht), and mother’s 
smoking status (smoke). 

11.22 From the kid. weights (UsingR) data set, the body mass index (BMI) can be 
computed by dividing the weight by the height squared in metric units. 

The following will add a BMI variable: 
> kid.weights$BMI=(kid.weights$weight/2.54)/ 
+ (kid.weights$height*2.54/100)^2 

Model the BMI by the age and gender variables. This is a parallel-lines model. Which 
variables are significant? Use the partial F-test to find the preferred model. Does this 
agree with the output of stepAIC()?  

11.23 The cf b (UsingR) data set contains information on consumer expenses. In 
particular, INCOME contains income figures, EDUC is the number of years of education, 
and AGE is the age of the participant. Perform an ANCOVA modeling log (INCOME+1) 
by AGE and EDUC. You need to force EDUC to be a factor. Are both variables 
significant? 
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11.24 The data set normtemp (UsingR) contains body temperature and heart rate (hr) 
for 65 randomly chosen males and 65 randomly chosen females (marked by gender with 
1 for males and 2 for females). Perform an ANCOVA modeling temperature by heart rate 
with gender treated as a factor. 

11.4 Two-way ANOVA 

“Two-way analysis of variance” is the term given when a numeric response variable is 
modeled by two categorical predictors. After we fit the model into the regression 
framework, the t-tests and partial F test will be available for analysis. 

Let Y be the response variable and x1 and x2 be two categorical predictors, with n1 and 
n2 levels respectively. The simplest generalization of the one-way ANOVA model (11.4) 
is the two-way additive model: 

Yijk=µ+αi+δj+εijk. 
(11.7) 

The grand mean is µ, αi the mean for the ith level of x1, δj is the mean for the ith level of 
x2, and the error terms, εijk, are an i.i.d. sequence with a Normal(0,σ) distribution. 

Two common significance tests investigate whether the different levels of x1 and x2 
have an effect on the mean of Y. For the first variable, x1, the hypotheses are 

   

The equivalent one for x2 replaces the α’s above with δ’s. 
■ Example 11.9: Driver differences in evaluating gas mileage An automotive web 

site wishes to test the miles-per-gallon rating of a car. It has three drivers and two cars of 
the same type. Each driver is asked to drive each car three times and record the miles per 
gallon. Table 11.5 records the data. Ideally, there should be little variation. But is this the 
case with the data?  

Table 11.5 Does the driver or car make a 
difference in mileage? 

Driver Driver 
Car a b c Car a b c 
A 33.3 34.5 37.4 B 32.6 33.4 36.6
  33.4 34.8 36.8   32.5 33.7 37.0
  32.9 33.8 37.6   33.0 33.9 36.7

11.4.1 Treatment coding for additive two-way ANOVA 

Before analyzing this model, we incorporate it into our linear-model picture using 
dummy variables. We follow the same coding (treatment coding) in terms of indicators as 

the one-way case. Relabel the observations 1 through 18. Let be the indicator 
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that the observation is for driver b, (similarly and the indicator that the car 
is B. Then the additive model becomes 

   

Again, the εi are i.i.d. Normal(0, σ). 
Recall that with treatment coding we interpret the parameters in terms of differences. 

For this model, β1=µ+αA+δa, or the sum of the grand mean, the mean of the first level of 
the first variable, and the mean of the first level of the second variable. As β1+β2 is the 
mean for car A, driver b, this would be µ+αA+δb or β2=δb−δa. Similarly, the β3 and β4 can 
be interpreted in terms of differences, as β3=δc−δa and β4=αB−αA. 

11.4.2 Testing for row or column effects 

To perform the significance test that the row variable has constant mean we can use the 
partial F-test. In our example, this is the same as saying β4=0. The partial F-test fits the 
model with and without β4 and uses the ratio of the residual sum of squares to make a test 
statistic. The details are implemented in the anova() function. 

First we enter the data: 

> x = c(33.3, 33.4, 32.9, 32.6, 32.5, 33.0, 34.5, 34.8, 
33.8, 
+ 33.4, 33.7, 33.9, 37.4, 36.9, 37.6, 36.6, 37.0, 36.7) 
> car = factor(rep(rep(l:2,c(3,3)) , 3)) 
> levels(car) = c("A","B") 
> driver = factor(rep(1:3,c(6,6,6))) 
> levels(driver) = letters[1:3] # make letters not 
numbers 

The additive model is fit with 

> res.add = lm(x ~ car + driver) 

We want to compare this to the model when β4=0. 

> res.nocar=lm(x ~ driver) 

We compare nested models with anova(): 

> anova(res.add,res.nocar) 
Analysis of Variance Table 
Model 1: x ~ car+driver 
Model 2: x ~ driver 
  Res.Df  RSS Df Sum of Sq F Pr(>F) 
1     14 1.31 
2     15 2.82 −1   −1.50 16 0.0013 ** 
-- 
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 

We see that the difference is significant, leading us to rule out the simpler model. 
What about the effect of the car? The two cars should have been identical. Is there a 

difference? The null hypothesis is now H0: δa=δb=δc, which can be rewritten as β2=β3=0. 
As such, we fit the model without the β2 and β3 terms and compare to the full model as 
above. 

> res.nodriver = 1m(x ~ car) 
> anova(res.add,res.nodriver) 
Analysis of Variance Table 
Model 1: x car + driver 
Model 2: x ~ car 
Res.Df  RSS Df Sum of Sq F Pr(>F) 
1   14  1.3 
2   16 55.1 −2   −53.8 287 4.4e−12 *** 
-- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 

This too is flagged as significant. 

11.4.3 Testing for interactions 

The extra factor in two-way ANOVA introduces another possibility: interaction. For 
example, as there seems to be a difference in the two cars, perhaps one is sportier, which 
makes one of the drivers drive faster. That is, there is an interaction when the two factors 
combine. A statistical model for interactions in the two-way analysis of variance model is 

Yijk=µ+αi+δj+γij+εijk, 1≤i≤n1,1≤j≤n2. 
(11.8) 

The γij terms add to the grand mean and group means when both levels are present.  
We again rewrite this in terms of dummy variables. We get extra variables 

corresponding to all possible combinations of the two factors: 

   

Although (11.8) has 1+n1+n2+n1·n2 parameters, this is more than can be identified. 
Instead, (11.9) has only n1·n2=1+(n1−1)+(n2–1)+(n1− 1)(n2−1) parameters needed for the 
modeling. 

A significance test to see if the extra terms from the interaction are necessary can be 
done with the partial F-test. Before doing so, we introduce a diagnostic plot to see if the 
extra terms are warranted. 

Interaction plots 
An interaction plot is a plot that checks to see whether there is any indication of 
interactions. For two-way analysis of variance there are three variables. To squeeze all 
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three onto one graphic, one of the factors is selected as the trace factor. Different lines 
will be drawn for each level of this factor. Fix a level, for now, of the trace factor. For 
each level of the main factor, the mean of the data where both levels occur is plotted as a 
point. These points are then connected with a line segment. Repeat for the other levels of 
the trace factor. If the line segments for each level of the trace factor are roughly parallel, 
then no interaction is indicated. If the lines differ dramatically, then an interaction is 
indicated. 

This graphic is made with the function interaction.plot(). The template is 
interaction.plot(f, trace.factor, y, legend=TRUE)   

The response variable is stored in y, the f holds the main factor, and the other is in trace. 
factor. By default, a legend will be drawn indicating the levels of the trace factor. 

For our example, Figure 11.7 is made with the following commands. The line 
segments are nearly parallel, indicating that no interaction is present. 

> interaction.plot(driver,car,x) 

Significance test for presence of interactions 
To test the hypothesis of no interaction formally we can use the partial F-test. The null 
hypothesis can be expressed as γij=0 in (11.8) or, for our car-and-driver example, as 
β5=β6=0 from Equation (11.9). For our car-and-driver example, this is done by comparing 
the models with and without interaction. 

Specifying an interaction in a model formula An interaction can be specified in 
different ways in the model formula. The symbol :, used as f1:f2, will introduce the 
interaction terms for the two factors. Whereas *, as in f1*f2, will  

 

Figure 11.7 Interaction plot for car-
and-driver data. The lines are nearly 
parallel, indicating no interaction. 

introduce not only an interaction, but the main effects, f1+f2, as well. Finally, the power 
notation, ^, as in (f1+f 2) ^2, will do the main effects and all possible interactions up to 
order 2. This generalizes with higher powers and more terms. For our example with two 
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factors, all three of these model formulas are equivalent:fl+f2+f1:f2, f1*f2, and 
(f1+f2)^2. 

To proceed, we save the model with an interaction and then use anova () to compare 
nested models. 

> Im.int=1m(x ~ car * driver) 
> 1m.add=1m(x ~ car + driver) 
> anova(lm.add,1m.int) 
Analysis of Variance Table 
Model 1: x ~ car + driver 
Model 2: x ~ car * driver 
  Res.Df   RSS Df Sum of Sq F Pr(>F) 
1     14 1.314 
2     12 1.280  2    0.034 0.16 0.85 

The large p-value is consistent with Figure 11.7, indicating no interaction. 
■ Example 11.10: Factors in movie enjoyment The proprietors of a movie house 

want to maximize their customers’ movie-going experience. In particular, they want to 
know whether either eating popcorn or sitting in more comfortable seats makes a 
difference in customer enjoyment. They randomly assign 16 people equally to the four 
possible combinations and then ask them to rate the same movie on a 0–100 scale. The 
data is in Table 11.6. 

The data is entered in with 

> x = scan() 
1:92 80 80 78 63 65 65 69 60 59 57 51 60 58 52 65 
17: 
Read 16 items 

Table 11.6 Factors affecting movie enjoyment 
seat type   good bad 
popcorn yes 92 80 80 78 60 59 57 51 
  no 63 65 65 69 60 58 52 65 

> Seat=factor(rep(c("Good","Bad"),c(8,8))) 
> Popcorn=factor(rep(rep(c("Y","N"),c(4,4)), 2)) 

We can check our numbers using xtabs() and ftable(). First we add a variable to keep the 
data from being summed.‡ 

> replicate = rep(1:4,4) 
> ftable(xtabs(x ~ Popcorn + Seat + replicate)) 
             replicate  1  2  3  4 
Popcorn Seat 
N       Bad            60 58 52 65 
        Good           63 65 65 69 
Y       Bad            60 59 57 51 
        Good           92 80 80 78 
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It matches up, although we didn’t fuss with the order. 
Now to see if an interaction term is warranted: 

> interaction.plot(Seat, Popcorn, x) 

 

Figure 11.8 Interaction plot 
indicating presence of an 
interaction, as lines are not parallel 

‡See ?xtabs for a similar example. 

Figure 11.8 seems to show an interaction, as the slopes are not parallel. We can do a 
formal test with anova(). 

> res.int=1m(x ~ Seat * Popcorn) 
> res.add=lm(x ~ Seat + Popcorn) 
> anova(res.int,res.add) 
Analysis of Variance Table 
Model 1: x ~ Seat * Popcorn 
Model 2: x ~ Seat + Popcorn 
   Res.Df RSS Df Sum of Sq    F Pr(>F) 
1      12 277 
2      13 638 −1      −361 15.6 0.0019 ** 

The small p-value casts doubt on the null hypothesis model of no interaction. The 
summary() function gives more detailed information about the interaction model. 

> summary(res.int) 
Call: 
1m(formula = x ~ Seat * Popcorn) 
-- 
Coefficients:   
                  Estimate Std. Error t value Pr(>|t|) 
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(Intercept)         58.75        2.40   24.43  1.3e−11 
*** 
SeatGood             6.75        3.40    1.99  0.0705 . 
PopcornY            −2.00        3.40   −0.59  0.5673 
SeatGood:PopcornY   19.00        4.81    3.95  0.0019 
** 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 
Residual standard error: 4.81 on 12 degrees of freedom 
Multiple R-Squared: 0.855,    Adjusted R-squared: 0.819 
F-statistic: 23.7 on 3 and 12   DF, p-value: 2.50e-05 

It appears that a good seat and popcorn can go a long way toward a moviegoer’s 
satisfaction (at least from this fabricated data). Perhaps new seats and less expensive 
popcorn will keep the customers coming back. 

11.4.4 Problems 

11.25 A politician’s campaign manager is interested in the effects of television and 
internet advertising. She surveys 18 people and records changes in likability after a small 
advertising campaign. Additionally, she records the amount of exposure her subjects have 
to the ad campaigns. The data is in Table 11.7. Use an analysis of variance to investigate 
the following questions: 

1. Is there any indication that web advertising alone is effective? 

2. After controlling for television exposure, is there any indication that web 
advertising is effective? 

Table 11.7 Change in likahility of politician 
TV ad exposure (viewings) 0 1-2 3+
Web exposure N −1−4 0−1 4 1 6 2 7
  Y 1 2 2 7 5 2 3 6 1

11.26 The grip (UsingR) data set contains more data than is used in Example 11.3. The 
data is from four skiers instead of one. You can view the data in a convenient manner 
with the command 

> ftable(xtabs(UBP ~ person + replicate + grip.type, 
data=grip)) 

Perform a two-way analysis of variance on the data. Check first to see whether there are 
any interactions, then see whether the difference in skier or grip has an effect. 

11.27 In the data set mtcars the variables mpg, cyl, and am indicate the miles per 
gallon, the number of cylinders, and the type of transmission respectively. Perform a two-
way ANOVA modeling mpg by the cyl and am, each treated as categorical data. 
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Is there an indication of an interaction? Do both the number of cylinders and the type 
of transmission make a difference? 

11.28 The data set ToothGrowth has measurements of tooth growth (len) of guinea 
pigs for different dosages of Vitamin C (dose) and two different delivery methods (supp). 

Perform a two-way analysis of variance of tooth growth modeled by dosage and 
delivery method. First, fit the full model including interactions and use the F-test to 
compare this with the additive model. 

11.29 The data set OrchardSprays contains measurements on the effectiveness of 
various sprays on repelling honeybees. The variable decrease measures effectiveness of 
the spray, treatment records the type of treatment, and rowpos records the row in the field 
the measurement comes from. 

Make an interaction plot of the mean of decrease with treatment as a trace factor. Then 
fit the additive analysis-of-variance model and the model with interaction. Compare the 
two models using anova(). Is the interaction model suggested by the results of the 
modeling? 
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Chapter 12  
Two extensions of the linear model 

The linear-regression ideas are building blocks for many other statistical models. The R 
project’s archive (CRAN, http://cran.r-project.org/) warehouses over 300 add-on 
packages to R, many of which implement extensions to the linear-regression model 
covered in the last two chapters. In this chapter, we look at two extensions: logistic-
regression models and nonlinear models. Our goal is to illustrate that most of the 
techniques used for linear models carry over to these (and other) models. 

The logistic-regression model covers the situation where the response variable is a 
binary variable. Logistic regression, which is a particular case of a generalized linear 
model, arises in several areas, including, for example, analyzing survey data. The 
nonlinear models we discuss use a function to describe the mean response that is not 
linear in the parameters. 

12.1 Logistic regression 

A binary variable is one that can have only two values, “success” or “failure,” often 
coded as 1 or 0. In the ANOVA model we saw that we can use binary variables as 
predictors in a linear-regression model by using factors. But what if we want to use a 
binary variable as a response variable? 

■ Example 12.1: Spam Junk e-mail, or spam, is a real nuisance, but it must make 
some business sense, as the internet is flooded with it. Let’s look at the situation from the 
spammer’s perspective. 

The spammer’s problem is that very few people will open spam. How to entice 
someone to do so? Is it worth the expense of buying an e-mail list that includes names? 
Does the subject line make a difference? Imagine a test is done in which 5,000 e-mails 
are sent out in four different ways. The subject heading on some includes a first name, on 
some an offer, on some both, and on some neither. The number that are opened by the 
recipient is measured by an embedded image in the e-mail body that can be tracked via a 
web server.  

Table 12.1 Number of spam e-mails opened 
Offer in subject 

    yes no 
First name yes 20 of 1,250 15 of 1,250
in subject no 17 of 1,250 8 of 1,250 



If Table 12.1 contains data on the number of e-mails opened for each possible 
combination, what can we say about the importance of including a name or an offer in the 
subject heading? 

For simplicity, assume that we have two variables, X and Y, where Y is a binary 
variable coded as a 0 or 1. For example, 1 could mean a spam message was opened. If we 
try to model the response with Yi=β0+εi or Yi=β0+β1xi+ εi, then, as Yi is either 0 or 1, the 
εi can’t be an i.i.d. sample from a normal population. Consequently, the linear model 
won’t apply. As having only two answers puts a severe restriction on the error term, 
instead the probability of success is modeled. 

Let πi=P(Yi=1). Then πi is in the range 0 to 1. We might try to fit the model 
πi=β0+β1xi+εi, but again the range on the left side is limited, whereas that on the right 
isn’t. Even if we restrict our values of the xi, the variation of the εi can lead to 
probabilities outside of [0,1]. 

Let’s change tack. For a binary random variable, the probability is also an expected 
value. That is, after conditioning on the value of xi, we have E(Yi/xi)= πi. In the simple 
linear model we called this µy/x, and we had the model Yi= µy|x+εi. Interpreting this 
differently will let us continue. We mentioned that the assumption on the error can be 
viewed two ways. Either assuming the error terms, the εi values, are a random sample 
from a mean a normally distributed population, or, equivalently that each data point Yi is 
randomly selected from a Normal (µy|x,σ) distribution independently of the others. Thus, 
we have the following ingredients in simple linear regression: 

■ The predictors enter in a linear manner through β0+β1x1 
■ The distribution of each Yi is determined by the mean, µy/x, and some scale parameter σ  
■ There is a relationship between the mean and the linear predictors (µy|x= β0+β1x1) 

The last point needs to be changed to continue with the binary regression model. Let 
η=β0+β1x1. Then the change is to assume that η can be transformed to give the mean by 
some function m() via µy|x=W(η), which can be inverted to yield back η=m−1(µy|x). The 
function m() is called a link function, as it links the predictor with the mean. 

The logistic function m(x)=ex/(1+ex) is often used (see Figure 12.1), and the 
corresponding model is called logistic regression. For this, we have 

 
  

The logistic function turns values between −∞ and ∞ into values between 0 and 1, so the 
numbers specifying the probabilities will be between 0 and 1. When m() is inverted we 
have 

 (12.1) 
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Figure 12.1 Graph of logistic 
function, m(x)=ex/(1+ex). The 
inflection point is marked with a 
square. 

This log term is called the log-odds ratio. The odds associated to some probability are 
p/(1−p), which is evident if we understand that an event having odds a to b means that in 
a+b i.i.d. trials we expect a wins. Thus the probability of success should be a/(a+b). 
Reversing, if the probability of success is a/(a+b), then the ratio becomes 
(a/(a+b))/(1−a/(a+b)) or a/b, which is the ratio of the odds. 

To finish the model, we need to specify the distribution of Yi. It is Bernoulli with 
success probability πi, so that no extra parameters, such as a standard deviation, are 
needed. 

12.1.1 Generalized linear models 

Logistic regression is an example of a generalized linear model. The key ingredients are 
as above: a response variable Y and some predictor variables x1, x2,…,xp. The predictors 
enter into the model via a single linear function: 
η=β0+β1x1+ …+βpxp.   

The mean of Y given the x values is related to η by an invertible link function m() as 
µ=m(η) or m−1(µ)=η. Finally, the distribution of Y is given in terms of its mean and, 
perhaps, a scale parameter such as σ. 

Thus, the model is specified by the coefficients βi, a link function m(), and a 
probability distribution that may have an additional scale parameter. 

12.1.2 Fitting the model using glm() 

Generalized linear models are fit in R using the glm() function. Its usage is similar to that 
of lm(), except that we need to specify the probability distribution and the link function. 
A template for usage is 
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res=glm(formula, family=…, data=…)   

The formula is specified as though it were a linear model. The argument family=allows 
us to specify the distribution and the link. Details are in the help page ? family and in the 
section “Generalized linear models” in the manual An Introduction to R accompanying R. 
We will use only two: the one for logistic regression and one to compare the results with 
simple linear regression. 

For logistic regression the argument is specified by f amily=binomial, as the default 
link function is what we want. For comparison to simple linear regression, the link 
function is just an identity, and the family is specified as family=gaussian.* 

As an illustration, let’s compare using glm() and 1m () to analyze a linear model. We 
will use simulated data so we already “know” the answer. 

■ Example 12.2: Comparing glm () and 1m () We first simulate data from the model 
that Yi has a Normal(x1i+2x2i, σ) distribution. 

> x1 = rep(1:10,2) 
> x2 = rchisq(20,df=2) 
> y = rnorm(20,mean=xl + 2*x2, sd=2) 

*Gaussian is a mathematical term named for Carl Gauss that describes the normal distribution. 

We fit this using 1m () as follows: 

> res.lm=lm(y ~ x1+x2) 
> summary(res.1m) 
… 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)   −0.574      1.086   -0.53      0.6 
x1             1.125      0.143    7.89  4.4e-07 *** 
x2             1.971      0.254    7.75  5.6e-07 *** 
… 
Signif. codes:  0 ‘***’  0.001 ‘**’0.01 ‘*’ 0.05 ‘.’ 
0.1 ‘ ’ 1 
… 

Both the coefficients for x1 and x2 are flagged as significantly different from a in the 
marginal t-tests. 

The above can all be done using glm (). The only difference is that the modeling 
involves specifying the family=argument. We show all the output below. 

> res.glm=glm(y ~ x1+x2, family=gaussian) 
> summary(res.glm) 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|) 
(Intercept)   −0.574      1.086   −0.53      0.6 
x1             1.125      0.143    7.89  4.4e-07 *** 
x2             1.971      0.254    7.75  5.6e-07 *** 
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-- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 
(Dispersion parameter for gaussian family taken to be 
3.239) 
    Null deviance: 387.747 on 19 degrees of freedom 
Residual deviance:  55.057 on 17 degrees of freedom 
AIC: 85.01 
Number of Fisher Scoring iterations: 2 

The same coefficients are found. This is not surprising, but technically a different method 
is used. For each coefficient, a two-sided significance test is done with null hypothesis 
that the value is a. For this model, the results are identical, as with lm(). No information 
about the F statistic is given, as the theory does not apply here in general. Rather, the AIC 
is given. Recall that this could be used for model selection. Lower values are preferred. 

Now we fit a logistic model. 

■ Example 12.3: Premature babies According to the web site 
http://www.keepkidshealthy.com/, risk factors associated with premature births include 
smoking and maternal malnutrition. Do we find this to be the case with the data in the 
babies (UsingR) data set? 

We’ll need to manipulate the data first. First we extract just the variables of interest, 
using the subset= argument to eliminate the missing values. 

> babies.prem = subset(babies, 
+ subset= gestation < 999 & wt1 < 999 & ht < 99 & smoke 
< 9, 
+ select=c("gestation","smoke","wtl","ht")) 

A birth is considered premature if the gestation period is less than 37 full weeks. 

> babies.prem$preemie=as.numeric(babies.prem$gestation 
< 7*37) 
> table(babies.prem$preemie) 
   0    1 
1079   96 

For glm () and binomial models the response variable can be numeric, as just defined, or 
a factor (the first level is “failure,” the others are “success”). 

We will use the body mass index (BMI) as a measure of malnutrition. The BMI is the 
weight in kilograms divided by the height in meters squared. If there is some dependence, 
we will investigate further. 

> babies.prem$BMI=with(babies.prem,(wt1 / 2.2) / 
(ht*2.54/100)^2) 
> hist(babies.prem$BMI)                   # looks okay 
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We can now model the variable preemie by the levels of smoke and the variable BMI. 
This is similar to an ANCOVA, except that the response variable is binary. 

> res=glm(preemie ~ factor(smoke)+BMI, family=binomial, 
+ data=babies.prem) 
> summary(res) 
… 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|) 
(Intercept)   −3.4246     0.7113   −4.81 1.5e-06 *** 
factor(smoke)1 0.1935     0.2355    0.82    0.41 
factor(smoke)2 0.3137     0.3888    0.81    0.42 
factor(smoke)3 0.1011     0.4047    0.25    0.80 
BMI            0.0401     0.0304    1.32    0.19 
-- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 
… 

None of the variables are flagged as significant. This indicates that the model with no 
effects is, perhaps, preferred. (The sampling distribution under the null hypothesis is 
different from the previous example, so the column gets marked with “z value” as 
opposed to “t value”) We check which model is preferred by the AIC using stepAIC () 
from the MASS package. 

> library(MASS) 
> stepAIC(res) 
Start:  AIC= 672.3 
… 
Step:  AIC= 666.8 
preemie ~ 1 
Call: 
glm(formula=preemie ~ 1, family=binomial, 
data=babies.prem) 
Coefficients: 
(Intercept) 
      −2.42 
… 

The model of constant mean is chosen by this criteria, indicating that these risk factors do 
not show up in this data set. 

■ Example 12.4: The spam data Let’s apply logistic regression to the data on spam 
in Table 12.1. Set Yi to be 1 if the e-mail is opened, and a otherwise. Likewise, let x1i be 1 
if the e-mail has a name in the subject, and X2i be 1 if the e-mail has an offer in the 
subject. Then we want to model Yi by x1i and X2i. To use logistic regression, we first turn 
the summarized data into 5,000 samples. We use rep () repeatedly to do so. 

> first.name = rep(1:0,c(2500,2500)) 
> offer = rep(c(1,0,1,0),rep(1250,4)) 
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> opened = c(rep(1:0,c(20,1250–20)), rep(1:0,c(15,1250–
15)), 
+ rep(1:0,c(17,1250–17)), rep(1:0,c(8,1250–8))) 
> xtabs(opened ~ first.name+offer) 
          offer 
first.name 0   1 
         0  8 17 
         1 15 20 

This matches Table 12.1, but the default ordering is different, as a or, “no,” is first. 
We remark that the value of opened could have been defined a bit more quickly using 

a function and sapply() to repeat the typing. (See below for furthur savings in work.) 

> f = function(x) rep(1:0,c(x,1250-x)) 
> opened = c(sapply(c(20,15,17,8),f)) 

Now to fit the logistic regression model. We use factor() around each predictor; otherwise 
they are treated as numeric values. 

> res.glm = glm(opened ~ factor(first.name) + 
factor(offer), 
+ family = binomial) 
> summary(res.glm) 
Call: 
glm(formula = opened ~ 
factor(first.name)+factor(offer), 
    family = binomial) 
Deviance Residuals: 
   Min      1Q  Median   3Q       Max 
−0.187 −0.158 −0.147 −0.124 3.121 
Coefficients: 
                  Estimate Std. Error z value Pr(>|z|) 
(Intercept)         −4.864       0.259  −18.81 <2e-16 
*** 
factor(first.name)1 0.341       0.263    1.30  0.195 
factor(offer)1      0.481       0.266    1.81  0.071 . 
-- 
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 
‘ ’ 1 
(Dispersion parameter for binomial family taken to be 
1) 
    Null deviance: 650.02 on 4999 degrees of freedom 
Residual deviance: 644.99 on 4997 degrees of freedom 
AIC: 651 
Number of Fisher Scoring iterations: 6 

Although only the intercept is flagged as significant at the 0.05 level, suppose the 
estimates are correct. How can we interpret them? The coding is such that when no first 
name or offer is included, the log-odds ratio is −4.864. When the first name is included 
but not the offer, the log-odds ratio is −4.864+0.341. When both are included, it’s 
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−4.864+0.341+0.481. Let o0 be the odds ratio when neither a name nor an offer is 
included: 

 
  

If we include the first name, the odds ratio goes up to e−4.864+0.341=o0.e0.341, which is an 
additional factor of e0.341=1.406. So, if the original odds were 2 to 100, they go up to 
2(1.406) to 100. 

Avoiding replication In the previous example the data was replicated to produce 
variables first .name, offer, and opened with 5,000 values, so that all the recorded data 
was present. The interface for glm () conveniently allows for tabulated data when the 
binomial family is used. Not only is tabulated data easier to type in, we can save memory 
as we don’t store large vectors of data. 

A two-column matrix is used, with its first column recording the number of successes 
and its second column the number of failures. In our example, we can construct this 
matrix using cbind as follows: 

> opened=c(8,15,17,20) 
> not.opened=1250—opened 
> opened.mat=cbind(opened=opened, 
not.opened=not.opened) 
> opened.mat 
opened not.opened 
[1,] 8 1242 
[2,] 15 1235  
[3,] 17 1233 
[4,] 20 1230 

The predictor variables match the levels for the rows. For example, for the values of 8 
and 15 for opened, offer was a and first. name was a then 1. Continuing gives these 
values: 

> offer = c(0,0,1,1) 
> first.name = c(0,1,0,1) 

Finally, the model is fit as before, using opened. mat in place of opened. 

> glm(opened.mat ~ first.name+offer, family=binomial) 
Call: glm(formula=opened.mat ~ first.name+offer, 
           family=binomial) 
Coefficients: 
(Intercept) first.name offer 
    −4.864       0.341 0.481 
Degrees of Freedom: 3 Total (i.e. Null); 1 Residual 
Null Deviance:      5.77 
Residual Deviance: 0.736        AIC: 24.7 
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12.2 Nonlinear models 

The linear model is called “linear” because of the way the coefficients βi enter into the 
formula for the mean. These coefficients simply multiply some term. A nonlinear model 
allows for more complicated relationships. For example, an exponential model might 
have the response modeled as 

   

Here, is not linear in the parameters due to the β1. It does not appear as an 
additive term like β1xi. 

Variations on the exponential model are 

   

The exponential model, with β1>0, may be used when the response variable decays as the 
predictor increases. The second model has a growth-then-decay phase, and the third a 
decay, not to a but to some threshold amount β0·β2. 

In general, a single-covariate, nonlinear model can be written as follows: 
Yi=f(xi|β0,β1,…,βr)+εi.   

We have r+1 parameters and only one predictor with an additive error. More general 
models could have more predictors and other types of errors, such as multiplicative. 

The possibilities seem endless but in fact are constrained by the problem we are 
modeling. When using nonlinear models we typically have some idea of which types of 
models are appropriate for the data and then fit just those. If the model has i.i.d. errors 
that are normally distributed, then using the method of least squares allows us to find 
parameter estimates and use AIC to compare models. 

12.2.1 Fitting nonlinear models with nls() 

Nonlinear models can be fit in R using nls(). The nls() function computes nonlinear least 
squares. Its usage is similar to, but different from lm(). A basic template is 

res=nls(formula, data=…, start=c(…), trace=FALSE)   

The model formula is different for nonlinear models. The formula again looks like 
response ~ mean, but the mean is specified using ordinary math notations. For example, 
the exponential model for the mean could be written y ~ N * exp (−r* (t−t0)), where N, r, 
and t0 are parameters. It is often convenient to use a function to return the mean, such as 
y ~ f (x, beta0, beta1,…). That is, a function that specifies the parameter values by name. 

The method of nonlinear least squares uses an algorithm that usually needs to start 
with parameter values that are close to the actual ones. The argument start=c (…) is 
where we put the initial guesses for the parameters. This can be a vector or list using 
named values, such as start=c (beta0=1 ,betal=2). Finally, the optional argument 
trace=TRUE can be used if we want to see what is happening during the execution of the 
algorithm. This can be useful information if the algorithm does not converge. By default 
it is FALSE. 
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The initial parameter guesses are often found by doing some experimental plots. These 
can be done quickly using the curve () function with the argument add=TRUE, as 
illustrated in the examples. When we model with a given function, it helps to have a 
general understanding of how the parameters change the graph of the function. For 

example, the parameters in the exponential model, written may 
be interpreted by t0 being the place where we want time to begin counting, N the initial 
amount at this time, and r the rate of decay. For this model, the mean of the data decays 
by 1/e, or roughly 1/3 in 1/r units of time. 

Some models have self-starting functions programmed for them. These typically start 
with SS. A list can be found with the command apropos("SS"). These functions do not 
need starting values.  

■ Example 12.5: Yellowfin tuna catch rate The data set yellowf in (UsingR) 
contains data on the average number of yellowfin tuna caught per 100 hooks in the 
tropical Indian Ocean for various years. This data comes from a paper by Myers and 
Worm (see ?yellowf in) that uses such numbers to estimate the decline of fish stocks 
(biomass) since the advent of large-scale commercial fishing. The authors fit the 
exponential decay model with some threshold to the data. 

We can repeat the analysis using R. First, we plot (Figure 12.2). 

> plot(count ~ year, data=yellowfin) 

A scatterplot is made, as the data frame contains two numeric variables. The count 
variable does seem to decline exponentially to some threshold. We try to fit the model 

Y=N(e−r(t−1952)(1−d)+d)+ε.   

(Instead of βi we give the parameters letter names.) 
To fit this in R, we define a function for the mean 

> f = function(t, N, r, d) N*(exp(-r*(t-1952))*(l-d) 
+d) 

We need to find some good starting points for nls (). The value of N=7 seems about right, 
as this is the starting value when t=1952. The value r is a decay rate. It can be estimated 
by how long it takes for the data to decay by roughly 1/3. We guess about 10, so we start 
with r=1/10. Finally, d is the percent of decay, which seems to be .6/6 = .10. 

We plot the function with these values to see how well they fit. 

> curve(f(x, N=6, r=1/10, d=0.1), add=TRUE) 

The fit is good (the solid line in Figure 12.2), so we expect nls() to converge with these 
starting values. 

> res.yf = nls(count ~ f(year, N, r, d), 
start=c(N=6,r=1/10, d=.1), 
+ data=yellowfin) 
> res.yf 
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Nonlinear regression model 
  model:  count ~ f(year, N, r, d) 
   data:  yellowfin 
      N       r         d 
6.02019 0.09380 0.05359 
residual sum-of-squares: 15.48 

The numbers below the coefficients are the estimates. Using these, we add the estimated 
line using curve () again. This time it is drawn with dashes, and it visually seems to fit all 
the data a little better. 

> curve(f(x,N=6.02,r=.0939,d=.0539), add=TRUE, 
lty=2,lwd=2) 
> 
legend(1980,6,legend=c("exploratory","exponential"),lty
=l:2) 

The value for d estimates that only 5.3% of the initial amount remains. ■ 
Using predict() to plot the prediction line The output of nls () has many of the same 

extractor functions as lm(). In particular, the predict () function can be used to make 
predictions for the model. You can use this in place of  

 

Figure 12.2 Mean catch per 100 
hooks of yellowfin tuna in the 
tropical Indian Ocean. An 
exponential decay model with 
threshold is given by the dashed line. 

curve () to draw the predicted line for the mean response. For example, to draw the line 
for the yellowfin tuna data, we create a range of values for the year variable, and then call 
predict () with a named data frame. 

> tmp = 1952:2000 
> lines(tmp, predict(res.yf, data.frame(year = tmp))) 
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■ Example 12.6: Sea urchin growth The urchin. growth (UsingR) data set is derived 
from thesis work by P.Grosjean. It contains growth data of reared sea urchins over time. 
Typical growth starts at a and progresses to some limiting size. Some models for growth 
include logistic growth 

   

and a Richards growth model 

   

The logistic-growth function is identical to that used in logistic regression, although it is 
written differently. Our goal here is to fit both of these models to the data, assuming i.i.d., 
additive error terms, and decide between the two based on AIC. As the Richards model 
has more parameters, its fit should be much better to be considered a superior model for 
the data. 

We follow the same outline as the previous example: define functions, find initial 
guesses by plotting some candidates, and then use nlm() to get the estimates. 

We define two functions and plot the jittered scatterplot (Figure 12.3).  

> g=function(t, Y, k, t0) Y*(1+exp(-k*(t-t0)))^(−1) 
> f=function(t, Y, k, t0, m) Y*(1−exp(-k*(t−t0)))^m 
> plot(jitter(size) ~ jitter(age,3), 
data=urchin.growth, 
+ xlab="age",ylab="size",main="Urchin growth by age”) 

Next, we try to fit g. The parameters can be interpreted from the scatterplot of the data. 
The value of Y corresponds to the maximum growth of the urchins, which appears to be 
around 60. The value of t0 is where the inflection point of the graph occurs. The 
inflection point is when the curve stops growing faster. A guess is that it happens around 
2 for the data. Finally, k is a growth rate around this point. It should correspond to 
roughly 1 over the time it takes to grow onethird again after the value at t0. We guess 1 
from the data. With these guesses, we do an exploratory graph with curve () (not shown 
but looks okay). 

> curve(g(x, Y=60, k=1, t0=2), add=TRUE) 

We fit the model with nls () 

> res.g=nls(size ~ g(age,Y,k,t0), start=c(Y=60, k=1, 
t0=2), 
+ data=urchin.growth) 
> res.g 
Nonlinear regression model 
  model: size ~ g(age, Y, k, t0) 
   data: urchin.growth 
     Y      k     t0 
53.903  1.393  1.958 
residual sum-of-squares: 7299 
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> curve(g(x, Y=53.903, k=1.393, t0=1.958), add=TRUE) 

Finally, so we can compare, we find the AIC: 

> AIC(res.g) 
[1] 1559 

Next, we fit the Richards model. First, we try to use the same values, to see if that will 
work (not shown). 

> curve(f(x, Y=53.903, k=1.393, t0=1.958, m=1), 
add=TRUE) 
> legend(4,20, legend=c("logistic 
growth","Richards"),lty=l:2) 

It is not a great fit, but we try these as starting points for the algorithm anyway: 

> res.f=nls(size ~ f(age, Y, k, t0, m), 
data=urchin.growth, 
+ start=c(Y=53, k=1.393, t0=1.958, m=1)) 
Error in numericDeriv(form[[3]], names(ind), env) : 
        Missing value or an Infinity produced when 
evaluating the model 

This is one of the error messages that can occur when the initial guess isn’t good or the 
model doesn’t fit well. 

Using a little hindsight, we think that the problem might be to and k. For this model, a 
few exploratory graphs indicate that we should have t≥t0 for a growth model, as the 
graphs decay until t0. So,we should start with t0<0. As well, we slow the rate of growth. 

> res.f=nls(size ~ f(age, Y, k, t0, m), 
+ start=c(Y=53, k=.5, t0=0, m=1), data=urchin.growth) 
> res.f  
Nonlinear regression model 
  model: size ~ f(age, Y, k, t0, m) 
   data: urchin.growth 
      Y      k      t0  m 
57.2649 0.7843 −0.8587 6.0636 
residual sum-of-squares: 6922 
> curve(f(x, Y=57.26, k=0.78, t0=-0.8587, m = 6.0636), 
add=TRUE, lty=2) 

Now we have convergence. The residual sum-of-squares, 6,922, is less than the 7,922 for 
the logistic model. This is a good thing, but if we add parameters this is often the case.† 
We compare models here with AIC. 

> AlC(res.f) 
[1] 1548 
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This is a reduction from the other model. As such, we would select the Richards model as 
a better fit by this criteria. 

 

Figure 12.3 Sea urchin growth data, 
with logistic model fit in solid and 
Richards model fit in dashed line 

Problems 

12.1 The data set tastesgreat (UsingR) is data from a taste test for New Goo, a fictional 
sports-enhancement product. Perform a logistic regression to investigate whether the two 
covariates, age and gender, have a significant effect on the enjoyment variable, enjoyed 
oyed.  

†We do not have nested models, for which this would always be the case. 

12.2 The data set healthy (UsingR) contains information on whether a person is 
healthy or not (healthy uses a for healthy and 1 for not healthy) and measurements for 
two unspecified covariates, p and g. 

Use stepAIC() to determine which submodel is preferred for the logistic model of 
healthy, modeled by the two covariates p and g. 

12.3 The data set birthwt (MASS) contains data on risk factors associated with low 
infant birth weight. The variable low is coded as a or 1 to indicate whether the birth 
weight is low (less than 250 grams). Perform a logistic regression modeling low by the 
variables age, Iwt (mother’s weight), smoke (smoking status), ht (hypertension), and ui 
(uterine irritability). Which variables are flagged as significant? Run stepAIC(). Which 
model is selected? 

12.4 The data set hall. fame (UsingR) contains statistics for several major league 
baseball players over the years. We wish to see which factors contribute to acceptance 
into the Hall of Fame. To do so, we will look at a logistic regression model for 
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acceptance modeled by the batting average (BA), the number of lifetime home runs (HR), 
the number of hits (hits), and the number of games played (games). 

First, we make binary variable for Hall of Fame 
membership. 
> hfm=hall.fame$Hall.Fame.Membership != "not a member" 

Now, fit a logistic regression model of hfm modeled by the variables above. Which are 
chosen by stepAIC () ? 

12.5 The esoph data set contains data from a study on esophageal cancer. The data 
records the number of patients with cancer in ncases and the number of patients in the 
control group with ncontrols. The higher the ratio of these two variables the worse the 
cancer risk. Three factors are recorded: the age of the patient (agegp), alcohol 
consumption (alcgp), and tobacco consumption (tobgp). 

We can fit an age-adjusted model of the effects of alcohol and tobacco consumption 
with an interaction as follows: 

> res.full <− glm(cbind(ncases, ncontrols) ~ 
agegp+tobgp * alcgp, 
+ data=esoph, family=binomial()) 

A model without interaction is fit with 

> res.add <− glm(cbind(ncases, ncontrols) ~ 
agegp+tobgp+alcgp, 
+ data=esoph, family=binomial()) 

Use AIC () to compare the two models to determine whether an interaction term between 
alcohol and tobacco is hinted at by the data. 

12.6 The data set Orange contains circumference measurements for several trees 
(Tree) based on their age. Use a logistic growth model to fit the data for tree 1. What are 
the estimates?  

12.7 The data set ChickWeight contains measurements of weight and age (Time) for 
several different chicks (coded with Chick). For chick number 1, fit a logistic model for 
weight modeled by Time. What are the coefficients? 

12.8 The data set wtloss (MASS) contains weight measurements of an obese patient 
recorded during a weight-rehabilitation program. The variable Weight records the 
patient’s weight in kilograms, and the variable Days records the number of days since the 
start of the program. A linear model is not a good model for the data, as it becomes 
increasing harder to lose the same amount of weight each week. A more realistic goal is 
to lose a certain percentage of weight each week. Fit the nonlinear model 

   

The estimated value of c would be the time it takes to lose b times half the excess weight. 
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What is the estimated weight for the patient if he stays on this program for the long 
run? Suppose the model held for 365 days. How much would the patient be expected to 
weigh? 

12.9 The reddrum (UsingR) data set contains length-at-age data for the red drum fish. 
Try to fit both the models 

   

(These are the von Bertalanffy and “linear” von Bertalanffy curves.) Use the AIC to 
determine which is preferred. 

Good starting values for the “linear” curve are 32, 1/4, 1/2, and 0. 
12.10 The data set midsize (UsingR) contains values of three popular midsize cars for 

the years 1990 to 2004. The 2004 price is the new-car price, the others values of used 
cars. For each car, fit the exponential model with decay. Compare the decay rates to see 
which car depreciates faster. (Use the variable year=2004-Year and the model for the 
mean µy|x=Ne−rt.) 
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Appendix A 
Getting, installing, and running R 

R is being developed for the Unix, Windows (Windows 95, 98, ME, NT4, 2000, or XP), 
and Mac OS X platforms. For each operating system the installation of R is similar to that 
of other software programs. This appendix covers the basics of installation. It also 
includes information about extending the base functionality of R by adding external 
packages to the system. Once R is installed, more information of this type is available in 
the R Administrators Manual that accompanies the R program. This document can be 
accessed via the html-based help system started by the function help. start (). 

A.1 Installing and starting R 

R is available through source code, allowing users to compile the program to their liking. 
However, for most purposes, a convenient binary package is available for installation. 

The files for R are available at the Comprehensive R Archive Network, or CRAN, 
http://cran.r-project.org/. There is a series of mirror sites to lessen the load on any one 
server. Choose one close to you. A list is found at http://cran.r-project.org/mirrors.html. 

What follows are brief instructions, to give you an idea of what is involved in 
installing R. For each operating system mentioned, more complete instructions are 
available with the accompanying files.  

A.1.1 Binary installation under Windows 

R’s version for Windows has its own installer. To begin, download R from the 
/bin/windows/base directory of a CRAN mirror.* The file to download is large, over 20 
megabytes. It is titled rwXXXX. exe, where XXXX contains the current version 
information, such as 2000 for version 2.0.0. This is a self-extracting file, which contains 
the necessary installation program. After being downloaded to the desktop, R will be 
installed when you double-click on the icon for the downloaded file. The directory for 
installation can be adjusted during installation. 

Once installed, R can be started with its GUI when you double-click the desktop icon, 
or from the R submenu under the start menu. 

A.1.2 Binary installation under Linux 

The Linux operating system is packaged into many different distributions. Familiar ones 
are Debian, RedHat, and Gentoo. Installation for each follows its usual installation 
procedure. The /bin/linux directory of a CRAN mirror contains several different binary 
builds of R. 



There is an up-to-date Debian package for R that can be installed with the apt-get 
command. You just need to add the CRAN directory to a configuration file. (Look under 
/bin/linux/debian) for details.) The main files are contained in r-base and r-base-core. In 
addition, several contributed CRAN packages can be installed this way, rather than 
through the installation methods described later in this appendix. This makes updating R 
even easier. 

The Debian distribution has proved popular for making bootable CD-ROMs that 
contain the Linux operating system. In particular, the Quantian Scientific Computing 
Environment (http://dirk.eddelbuettel.com/quantian.html) contains R and many other pre-
configured, open-source scientific software packages. To use Quantian, you need to 
download the ISO image, burn it to a CDROM, and then boot your computer from this 
CD-ROM. This boots to the KDE desktop environment, from which R may be run from a 
shell or from within an ESS session. 

The RedHat Linux distribution has binary files distributed in rpm format. These files 
can be found on a CRAN mirror under the /bin/limix/redhat directory. Installation can be 
done from the shell with the following command: 

rpm −i filename.rpm 

This also applies to SuSE Linux and other rpm-based distributions. The help files for the 
rpm mention issues people have with external libraries. If this installation fails, the help 
files are the first place to look for solutions. 

The Gentoo Linux installation is a single command at the shell:  

*For example, if the mirror is the main CRAN site, the url is http://cran.r-
project.org/bin/windows/base. 

  emerge R 

Technically, this isn’t a binary installation, as R is compiled from source, but it is just as 
straightforward. 

On a UNIX machine, once R is installed you can start it from the shell with the 
command “R.” 

A.1.3 Binary installation under Mac OS X 

The /bin/macosx directory of a CRAN site contains a disk image R. dmg that should be 
downloaded. Once that’s done, the Finder application should open to the image. The file 
R.pkg is double-clicked to begin the installation process. This places an R application in 
your Applications directory. Starting R with its Aqua GUI is done by double-clicking on 
this icon. R can also be run from within the terminal application or by using ESS to run R 
within Emacs. The appropriate symbolic link may need to be made prior to this so that 
the correct file is on the path. 
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A.1.4 Installing from the source code 

R can be installed from the source code. First the source code is downloaded, and then 
uncompressed. For a UNIX machine, the following commands are issued from the UNIX 
command line. First unpack the source and change directory (using gnu tar): 

tar zxvf R-x.y.z.tgz 
cd R-x.y.z 

Then the most basic compilation can be done with the commands 

./configure 
make 

The configure command automatically figures out dependencies for your machine. Many 
options can be set to override the defaults. They are listed if you type the command ./conf 
igure—help. If the compilation is successful, then the program can be installed by the 
command make install. 

A.1.5 Startup files 

R’s startup process allows you to load in desired commands and previous R sessions. 
When R starts it looks for the file . Rprofile in the current directory and then in the 

user’s home directory. If this file is found, the R commands in the file are sourced into 
the new R session. This allows you to make permanent adjustments to the settings for opt 
ions () or par(), load frequently used libraries, and define helpful functions that can be 
used in every session.  

After this, R then loads a saved image of the user workspace (if there is one) from the 
file .RData. If you save your session when quitting, then R will load it back in. This 
preserves any function definitions and data sets that you may have been working on. 

See ? Startup for more information, including site-wide configuration files. 

A.2 Extending R using additional packages 

R has a number of additional packages that extend its base functionality. Some of these 
are recommended and are already part of most installations; others need to be installed. 
Many, but not all, of these packages reside on CRAN. 

Installing a package can be done from the main GUIs, from the command line within 
R, or from the shell that R will run under. 

The Windows and Mac OS X GUIs have menu items that query the available 
packages at CRAN and allow you to install them using your mouse. If you have the 
proper administrative authority, this method is very straightforward. As many external 
packages require a compiler, and most Windows installations don’t have one, the 
Windows installation looks for binary versions of a package. 

If a GUI option is not available, additional packages can be installed from within R. 
The key functions for package management are: install. packages () to install a package; 
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update. packages () to update all your packages (such as when you upgrade R); and 
library () to load a package. 

The basic usage of install.packages() and library() is to call the function with a valid 
package name. For example, if your computer is connected to the internet and you have 
the necessary permissions, the following commands will install the Rcmdr package by 
downloading it from CRAN and then load the package. 

> install.packages(“Rcmdr”, dependencies=TRUE) 
> library(Rcmdr)                # load the package 

In this example, the argument dependencies=TRUE is used to specify that packages that 
the Rcmdr package relies on should also be installed. 

If a package is not on CRAN, you may be able to install it in this manner by 
specifying the extra argument contriburl= to install.packages(). For example, these 
commands will install the package that accompanies this book: 

> where=“http://www.math.csi.cuny.edu/UsingR” 
> install.packages(“UsingR”,contriburl=where) 

If these methods fail, a package can be downloaded to the local machine and installed 
from there. Under Windows this last step can be initiated from the menu bar. For UNIX 
installations, a package can be installed from the command line with a command like: 

R CMD INSTALL aPackage_0.1.tar.gz 

The actual package name would replace aPackage_0.1. tar. gz.  
If you do not have administrative privileges on the machine, you can install packages 

to a directory where you do have write permissions. When installing packages you can 
specify this directory with the argument lib=. When loading this package with library() 
you specify the directory with the argument lib. loc=. This argument is also used with 
update .packages (). For example, these commands will install and load the ellipse 
package into a session, keeping the files in a subdirectory of the user’s home directory 
(the tilde, ~, expands to the home directory in UNIX). 

> install.packages(“ellipse”,lib=“~/R/”) 
> library(“ellipse”,lib.loc=“~/R/”) 

A.2.1 Upgrading an existing installation 

About every six months the latest and greatest version of R is released. At this point, it is 
recommended that you upgrade. When you do this, you may need to reinstall your 
packages or update the existing packages. The update. packages () command will allow 
you to perform the upgrade. 
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Appendix B  
Graphical user interfaces and R 

R, unlike many commercial offerings, lacks a common graphical user interface (GUI). 
The reasons for this are many, but primarily, the multi-platform nature of R make 
development difficult, as does the fact that most “power users” of R (the likely 
developers of a GUI) prefer the flexibility and power of typing-centric methods. 

However, there are a number of GUI components available. We try only to cover the 
GUIs for Windows and Mac OS X, and the GUI provided by the addon package RCmdr. 
For details about additional GUI components, including the promising SciViews-R and 
JGR projects, consult the RGui page linked to on the home page of R (http://www.r-
project.org/). 

B.1 The Windows GUI 

There are two ways to run R under Windows: from the shell or from within its GUI. The 
Rgui . exe provides the GUI and is the one that is associated with the R icon on the 
desktop. When the icon is double-clicked, the Windows GUI starts. It consists of a few 
basic elements: a window with a menu bar and a container to hold windows for the 
console (the command line), help pages, and figures. (This describes the default multi-
document interface (MDI). An option for a singledocument interface (SDI) may be set 
under the File: : Options…menu.) 

The initial RGui window looks something like Figure B.1. The window after making a 
plot and consulting the help pages looks like Figure B.2. 

The workings of the GUI are similar to many other Windows applications. We 
selectively describe a few of them.  

 
 
 
 



 

Figure B.1 Initial RGui window for 
Windows 

The menu bar changes depending on which window has the focus. The console has the 
most extensive menu bar. A few useful commands are: 

■ File: : source…: Opens a directory-browsing dialog to find a file to be “sourced.” This 
is useful when working with files containing R code that may be edited with an 
external editor. 

■ File: : Load Workspace…: Will load an . Rdata file, which stores R sessions. Storage is 
done at the end of a session or can be initiated by the menu item File: : Save 
Workspace… 

■ File: : Quit: Will quit the program after querying to save the session. 
■ Edit: : copy and paste: Will paste the currently selected text into the console. This 

avoids the tediousness of copying and pasting. 
■ Edit: : data editor: This is a dialog for the edit () command. It is used with existing data 

sets. 
■ Misc: :List Objects: Will list all the objects in the current workspace. Equivalent to Is 

(). 
■ Misc: : Stop current output: This will stop the current output. This is useful if 

something is taking too long. 
■ Packages: : load package: This will open a dialog to allow us to load a package by 

clicking on its name. This replaces commands such as library (MASS). 
■ Packages: : Install Package (s) from CRAN: This will show a list of packages on 

CRAN that will install into Windows and allow us to install one by selecting it (see? 
install. packages). The Packages: : Update packages from CRAN will update an 
existing package (see the help page? update. packages). 

■ Window: The submenu allows us to manipulate the R windows for the console, help 
pages, and graphics device. 

■ Help: : Console: A description of useful console shortcuts. 
■ Workspace Help: : FAQ on R for Windows: File of frequently asked questions. 

The plot window has its own menu. An important item is the History fea- 
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Figure B.2 Multi-document window 
showing console, plot window, and 
help page 

ture, which allows us to record the graphs that are made and play them back using the PG 
UP and PG DOWN keys. In addition, the plot window has a binding for left mouse 
clicks, allowing us to save and print the current graphic. 

B.2 The Mac OS X GUI 

Users of Mac OS X can use R as a native application or as an X11 application. As of R 
version 2.0.0, when running R as a native application, a Cocoa GUI is available. This 
consists of a console window (Figure B.3); a menu bar; a graphical device, quartz (); and 
a workspace browser. The interface is being actively developed, and may be improved 
upon in the future. The screenshots are from a pre-alpha version of a new GUI design for 
R 2.0.0. 

The console has icons for a few common tasks, such as halting R during its execution, 
sourcing a file, opening the graph window, showing the error logs, showing the history, 
etc. 

The menu bar contains many of the same items as the Windows menu bar. In 
particular, you can load and install packages (Figure B.4), browse your workspace 
(Figure B.5, change directories, source files, and access the help system. 

The quartz () plot device uses anti-aliasing, which gives nice-looking plots and 
images. The device also uses the native pdf format of Mac OS X graphics. Bitmap copies 
of a graphic can be produced by copying the graphic into the clipboard. Consult the FAQ 
for more details. The FAQ can be found under the help menu. The quartz () device can be 
used interactively with identify () and locator (). Use the Esc key to break, as there is no 
guarantee of a second mouse button. New quartz devices can be opened, and switching 
between open devices is available using the Window menu.  
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Figure B.3 The R console in the 
Cocoa GUI for Mac OS X 

 

Figure B.4 Package manager for 
Cocoa GUI in Mac OS X 

B.3 Rcdmr 

The tcltk package can be loaded into R, which allows R to use the GUI elements 
provided by the tcltk widget collection. This set of widgets is available for the platforms 
R supports. 

The Rcmdr package by John Fox uses these bindings to provide an easy to learn and 
useful interface to many common functions used in data analysis. It is designed for new 
and casual users of R, like the target audience of this book. 

Rcmdr is installed easily, as it resides on CRAN, though it requires many other 
packages for functionality such as that provided by the car package. Installing these 
packages can be done automatically with the command: 

> install.packages("Rcmdr", dependencies=TRUE) 
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If you forget to install all the dependencies, the first thing Rcmdr will do when run is ask 
if you want them to be installed. 

Rcmdr is started by loading the package with the command  

 

Figure B.5 Workspace browser for 
Cocoa GUI in Mac OS X 

> library(Rcmdr) 

This opens the main window, as in Figure B.6, with a menu bar and a log window. If you 
are using the Windows GUI, Rcmdr works better in the single-document interface (SDI). 
The default setting for the GUI is to use the multiple-document interface (MDI). To make 
the change is done by setting the option for SDI, not MDI, using the File: : Options menu 
item. 

Once running, the R session may be interacted with by means of the menu bar and the 
subsequent selection of commands.  

 

Figure B.6 Main Rcmdr window 

In particular, first the user defines the active data set. This is done either with the Data: 
:Data in Packages…menu item or the Data: : Active Data Set…one. Once a data set is 
selected, Rcmdr ensures that the variable names become available to the other functions. 

For example, creating a histogram of a univariate variable in the active data set is done 
from the Graphs: : Histogram…menu (Figure B.7). 
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The desired variable is selected, as are some options, then OK is clicked to make the 
plot. In the console part of the Rcmdr window a command like the  

 

Figure B.7 Rcmdr dialog for a 
histogram 

following is issued: 

> Hist(Cars93$MPG.city, scale=“density”, 
breaks=‘Sturges’, col=“darkgray”) 

There are interfaces to many other graphical displays of data, as well as other common 
data-analysis features. For example, under the Statistics menu are dialogs to make 
summaries, to perform significance tests, and to fit statistical models. 
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Appendix C  
Teaching with R 

Using R in the classroom is not unlike using other software packages, but there are some 
features that are useful to know about that make things easier. 

Getting students a copy of R for home use One of the great benefits of R is that it is 
free and it works on many different computing platforms. As such, students can be 
expected to use it for their homework without much concern about accessibility. 
Installing R on a computer is usually as easy as downloading the binary file by following 
the CRAN link at http://www.r-project.org/. 

However, R is a big download, around 20 megabytes. It may be better to have students 
burn R to CDs on campus, where a high-speed internet connection is likely available. 

An alternative to installing R on a computer is running it from a CD. The Quantian 
distribution (http://dirk.eddelbuettel.com/quantian.html) is a version of Debian Linux on 
a single CD that includes R and a whole suite of other free software packages that are 
useful for scientific computing. Quantian is used by booting from the CD-ROM. R can be 
started from a terminal by the command R or from within an ESS session in XEmacs, a 
text editor that allows for interaction with the R process. This is done by starting XEmacs 
and then issuing the command ALT-x R. 

Getting data to students Entering data can be a chore. One way to make data sets 
available to students is through an R package such as the one that accompanies this book. 
On CRAN, the packages car, DAAG, Devore5, Devore6, ISwR, and MPV contain many 
data sets that may be of interest to students of this book. 

More informally, you can put data files or functions into a single file on a web site and 
then have the students source () these files in. 

If the file is stored at the url http://www.somewhere.com/rdata.txt, then these 
commands will source it into the R session as though it were a local file: 

> f =“http://www.somewhere.com/rdata.txt” 
> source(url(f)) 

To make a file for reading in, use the dump () command. The syntax is 
dump(list=…, file=…)   

The list= argument should be a vector of names for the desired objects (data sets, 
functions, etc.) in the file. For example, c(“data. 1”, “function. 2”). The file= argument 
should be a quoted file name. Typically, this is written to the current directory and then 
moved to a web site. 

Making reports A report or handout in R that includes R commands and graphics can 
be made using a word processor or the system. Using a word processor to present R 



materials is no different from creating other documents, except, perhaps, the inclusion of 
graphics. 

Many newer word processors can import encapsulated PostScript files for figures. 
These are output by the dev. copy2eps () function. If your word processor imports pdf 
files, these can be made using the pdf driver with a command such as 

> dev.print(file=filename, device=pdf) 

To save a graphic in a format suitable for inclusion in a word processor in Windows, use 
the right mouse button to pop up the “Save as metafile…” dialog. The graphic can then 
be included in a document by inserting it as a figure. 

The text-processing system is freely available typesetting software that is well 
suited for technical writing. The Sweave() function of the utils package integrates with 

to produce documents that automatically insert R commands and output into a 
document. One especially nice feature is the automatic inclusion of figures. For more 
information on see http: //www. latex-pro j ect. org/. More information on Sweave 
() is available in its help page: ?Sweave. 

Some projects for teaching with R At the time of writing, there are at least two 
projects under way that are producing materials for using R in a classroom setting. 

The StatDocs project, by Deborah Nolan and coworkers, aims to create a framework 
for presenting statistics materials using R and some add-on packages from the Omegahat 
project, http://www.omegahat.org/. 

The Stem and Tendril project, http://www.math.csi.cuny.edu/st, by this author and 
colleagues, is producing freely available projects for statistics computer labs that can be 
used at various levels in the statistics curriculum.  
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Appendix D  
More on graphics with R 

This appendix revisits many of the plotting techniques presented in the text offering more 
detail and organization. In addition, functions are provided for two new graphics: a 
squareplot and an enhanced scatterplot. 

This appendix provides a good deal of extra information but is by no means inclusive. 
More facts are available in the manual An Introduction to R that accompanies R, and in 
the help pages ?plot and ?par. The organization of this appendix was inspired by some 
excellent notes by R pioneer Ross Ihaka, which were found at 
http://www.stat.auckland.ac.nz/~ihaka/120/. 

D.1 Low- and high-level graphic functions 

Consider what the command plot (x, y) does when making a scatterplot. First it sets up a 
plot device if one isn’t already present. Then areas for the figure and the margins are 
assigned, the limits on the x- and y-axes are calculated, the axes are drawn and labeled, a 
box is drawn around the graphic, and, finally, the points are plotted. 

If we issue the command plot (x,y,type="n") instead of the command plot (x, y), all 
but the last step of plotting the points is done. We refer to this as setting up the plot 
figure. High-level graphic functions will do this; low-level graphic functions add to the 
existing figure. The plot() function allows for many arguments to adjust this process. For 
example, we can plot connected line segments instead of points; we can add colors, 
labels, and titles; and we can adjust the axes. More details are in the help page ?plot. 
What we focus on next is how to set up a figure step-by-step so that we can gain full 
control over the details. This is useful when we are designing our own graphics, or when 
we are not satisfied with the defaults.  

D.1.1 Setting up a plot figure 

The following steps are for the creation of any graphic, not just a scatterplot. 

A plot device 
A graphic is drawn to a plot device. Generally speaking, a default plot device is used. If 
we want, though, we can create a new device that allows us to control the type of device 
and the size of the figure. How we do so varies according to our system and our 
intentions. In Windows, the function windows () will create a device; on a UNIX 
machine running X Windows, the function X11 () will create a device; and on Mac OS X, 
the function quartz () will make a new device using the default windowing system. The 
arguments width= and height= set the size of the graphic figure. An argument point size= 



will set the default size of any text. Other devices are available to make various graphic 
formats, such as PDF. 

More than one device can be opened in this way. Each device is assigned a number. 
This is returned by dev. list (). Only one device is the “active” device. To switch between 
devices, use dev. set (), with the device number as the argument. 

Once a device is set up, the plot .new() function tells the device to finish any current 
plot and prepare for a new plot. 

The margins of a figure 
A plot figure has space for the main graphic, and space in the margins for drawing axes 
and labels. Graphical parameters are consulted to allocate this space. We use par () to 
work with the parameters. 

The par() function Graphical parameters are stored internally. To access and set them 
we use the par() function. All the current parameters are returned by calling par() without 
arguments. To retrieve a single value, use the name as the argument. Values can be set 
using the name=value style of R functions. For example, par("mai") returns information 
about the parameter mai=,* which controls the plot margins, and the value of mf row= is 
set with par(mfrow=c(2,2)). The help page, ?par, contains information about the 
numerous options. 

Many of the graphical parameters may also be set as arguments to a highlevel plot 
function. This can temporarily set the value for the graphic. Using par () will set them for 
the device. 

Before changing the graphical parameters, we should save the current setup,  

*We typeset graphical parameters with an extra=to emphasize that they are arguments to par(). This 
is not typed when the value of the argument is retrieved by par (). 

in case we wish to return to the original choice. We can save the values to a list op with 

> op=par(no.readonly=TRUE) 

(Some of the arguments are read only and can’t be changed. This command saves only 
those that are not read only.) Restoring the old parameters is done with 

> par(op) 

When changing values inside a function, 

> on.exit(par(op)) 

will issue the command when the function exits, so the user doesn’t have to worry about 
doing so. 

Several parameters can be set by par (). For now we mention those used to make 
allocations in a figure for the graphic and the margins. 
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A device is set up with a certain size given by din=. A figure’s size is given by the 
graphical parameter fin=. The figure is made up of its margins and the plot region. These 
are stored under mai= and pin=. 

For example, 

> par("din","fin","pin","mai”) 
$din                     # device size 
[1] 6.995 6.996 
$fin                     # figure size 
[1] 6.995 6.996 
$pin                     # plot size 
[1] 6.133 5.717 
$mai                     # margin sizes 
[1] 0.7088 0.5698 0.5698 0.2919 

The first three specify the sizes in inches for width and height. As margins may be 
nonsymmetric, there are four values specified: the bottom, left, top, and right. 

The values add up as shown by 
> .5698+.2919 +6.133   # widths 
[1] 6.995 
> .7088+.5698 +5.717   # heights 
[1] 6.996 

The margins can also be specified by the number of lines of text that can be printed using 
mar=. The actual size is relative to the current point size of the text. The argument plt= 
can specify the plot region in terms of the device size. 

These areas are usually set up for us when the plot device is. At this point, the overall 
width and height are given, and R makes the necessary computations for the margins. If 
we are unsatisfied with the defaults, we can override the calculated values. If the margins 
or space for the main graphic are made too small, an error message will be given.  

Multi-graphic figures 
In a few examples in this text, more than one graphic is plotted on the same figure. For 
example, when we plotted the diagnostic plots after fitting a linear model, four graphics 
were returned. These can be seen one after another, or can be forced to show up all four 
at once if the graphic parameter mfrow= is set to c(2,2). 

The parameter mfrow= stores two values as a vector. A value of c(3,2) says to split the 
figure into six equal pieces, with three rows and two columns. The default is c (1,1). 
Figures are filled in row by row. Use mf col= to fill in column by column. To advance to 
the next area to draw a graphic, we can use a high-level plot command or the function 
plot. new (). 

The f ig= graphical parameter controls the amount of the current figure the next 
graphic will use. By default, this is set to c (0,1,0,1), indicating the whole figure. The first 
two numbers are the x value, and the second two are y. They refer to the lower left of the 
figure. For example, a value like c(0,1/2,1/2,1) will use the upper-left part of the figure. 
The parameter new= should be set to TRUE to add to the existing figure with a high-level 
plot command. 
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In the example at the end of this appendix, the layout () function is used to break the 
figure into four regions of varying sizes. This function uses a matrix to set up a grid and 
an order to fill in the plots. The size of the grid is controlled with the arguments widths= 
and heights=. In the example, the function call is 

layout(matrix(c(1,0,   # which order to place graphs 
3,2), 
2,2,byrow=TRUE), 
widths=c(3,1),         # 3/4 wide for col. 1 
heights=c(1,3),        # 3/4 wide for row 2 
respect=TRUE)          # make square 

The matrix specifies how the figure is filled. In this case upper left, lower right, lower 
left. The value of widths= says to make the first column three times as wide as the 
second; for heights= the top row is one-quarter the height of the bottom one. 

When there are multiple plot figures per overall figure, there is an outer margin that is 
controlled by omi=. Values are specified in inches. The arguments oma= and omd= allow 
you to specify values in lines of text and fractions of a whole respectively. 

Setting up the coordinate system and axes of a graphic 
When creating a plot figure, the x-and y-limits are specified, allowing locations to be 
specified in a Cartesian manner. This is done with plot. window(), using the arguments 
xlim= and ylim=. Values contain the minimum and maximum values of the desired 
range. Additionally, the parameter asp= can be set to give the aspect ratio in terms of 
width/height.  

Once the coordinates are chosen, axes for a figure can be added with the axis () 
function. The common arguments are 

axis(side=…, at=…, labels=…)   

The value of side= is specified with 1, 2, 3, or 4, with 1 being the bottom of the figure 
and other values moving around clockwise. The value of at= allows us to override the 
default placement of the tick marks. The labels= argument can adjust the labels on the 
tick marks. 

The axis () function can be used with high-level plotting functions to create custom 
axes if you explicitly ask for the axes not to be drawn when first plotting. This is done by 
specifying the arguments xaxt="n" and yaxt="n" to the highlevel plot function. 

Adding titles and labels to a figure 
The title () function adds titles and labels the axes. The main arguments are 

title(main=…, sub=…, xlab=…, ylab=…)   

The value of main= is written in the top margin of the figure. The value of sub= is written 
in the bottom margin below the x-label, which is specified with xlab=. The y-label is 
specified with ylab=. 

If more control is needed, the mtext () function will add text to the margins of a figure. 
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Adding a box around the graphic 
Most of the high-level plot functions in R surround the main graphic with a box. This can 
be produced using the box () function. The argument bty= can be set to describe the type 
of box to draw. The default is a four-sided box. Many graphics in this book were 
produced with the value bty="l" to draw only two sides, like an “L”. Other possible 
values are "o", "7", "x", "u", and "]". 

The value of bty= can be set globally using par (). If this is done, then just calling box 
() or a high-level plot command will draw the box the desired way. 

■ Example D.1: Setting up a plot window To illustrate: if x and y are to be plotted in 
a scatterplot, we can mimic the work of plot (x, y, type="n") using the following 
sequence of commands: 

> plot.new() 
> plot.window(xlim=range(x), ylim = range(y)) 
> axis(1); axis(2) 
> box() 
> title(xlab="x",ylab="y") 

D.1.2 Adding to a figure 

Several functions were mentioned in the text to create or add to a figure. Examples would 
be plot () and the similar function points (). 

For the plotting functions in R, several parameters can be set to change the defaults. 
When plotting points, some arguments refer to each point plotted, such as col=or pch=. 
This type of argument can be a single number or a vector of numbers. Usually the vector 
would be the same size as the data vectors we are plotting; if not, recycling will be done. 

Adding points to a graphic 
Both plot() and points () plot points by default. Points have several attributes that can be 
changed. The plot character is changed with the argument pch=. As of R version 1.9.0, 
the numbers a through 25 represent special characters to use for different styles of points. 
These are shown in Figure D.1. As well, we can use one-character strings, such as letters, 
or punctuation marks like “.” and “+”. To print no character, use a value of NA or a space 
character. 

The size of the point is controlled by the cex=argument. This is a scale factor, with 1 
being the current scale. Changing cex=using par() will apply the scale factor to the entire 
graphic. 

The color of a point is adjusted with the col= argument. Again, trying to change this 
globally using par () will result in more than just the points having the specified color. 

Specifying colors in R Though the default color for objects in a graphic is black, other 
colors are available. They are specified by name (e.g., “red”,“white”, or “blue”), by 
number using red-green-blue values (RGB) through rgb(), or by a number referring to the 
current palette. Over 600 names are available. See the output of the function colors () for 
the list. The value “transparent” is used when no color is implied. This is useful for 
producing graphic images that allow the background to come through. 
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The function gray () was used often (without comment) in the text to create gray 
scales. The argument is a vector of values between 0 and 1, with 0 being black and 1 
white. 

Some useful functions produce palettes of colors: for example, rainbow (), heat. colors 
(), terrain. colors (), topo. colors (), and cm. colors (). These functions have an argument 
n= that specifies the number of colors desired from the palette. 

Additionally, the brewer .pal () function in the RColorBrewer package (not part of the 
base installation) will create nice-looking color palettes. Once the package is installed, 
running example (brewer .pal) will display several such palettes. 

R stores a current palette that allows for reference of colors by a single number. This 
palette is returned and set by the function palette(). The default palette is: 

> palette(“default”)               # clear out any 
changes 
> palette() 
[1] 
“black”   “red”       “green3”   “blue”    “cyan”    “m
agenta” 
[7] “yellow”  “gray” 

With this palette, asking for color 7 returns yellow. 
The palette may be customized by specifying a vector of colors using their names or 

RGB values (or a function that returns such a vector). For example, a gray-scale palette 
can be made as follows: 

> palette(gray((0:10)/10)) 
> palette() 
[1]  “black”    “gray10"   “gray20”   “#4C4C4C”  “gray4
0”  “#808080” 
[7]  “gray60”   “#B2B2B2”  “gray80”   “#E6E6E6”  “white
” 

With this palette the color 7 is a shade of gray given the name gray60. 

Adding lines to a graphic 
The plot () and points () functions have an argument type=“1” that will connect the points 
with lines instead of plotting each point separately. The lines () function is convenient for 
adding lines (really connected line segments) to a graph. If paired data is given in the 
vectors x and y, then lines(x, y) will connect the points with lines. Alternatively, a model 
formula may be used. 

For these three functions, the values of x and y are connected with lines in the order in 
which they appear. If any of the values of x or y is NA, that line segment is not drawn. 
This can be used to break up the line segments. 

It should be noted that although these functions draw straight lines between points, 
they are used to plot curves. This is done by taking the x values very close together, so 
that their straightness is smoothed out. For example, these commands will plot the 
function f(x)=x2 over the interval (−2, 2): 
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> x = seq(−2, 2, length=200)   # 200 points 
> y = x^2 
> plot(x,y,type="1") 

If we did this with length=5 when defining x, the graph would look very clunky. 
The abline () function is used to draw a single line across the figure. 
The characteristics of the lines drawn can be varied. The color of the line segments are 

set with the col= argument. The line width is set with lwd=. Values bigger than 1 widen 
the line. The line type is set with lty=. A value of 1 through 6 produces some predefined 
types. These are shown in Figure D.1. If more control is sought, consult the lty= portion 
of the help page ?par. 

The changes can be made each time a line is drawn. Issuing the command par(lty=2) 
will cause all subsequent lines on the device to be drawn with style 2 (dashed) by default.  

Adding a region to a graphic 
The rect () function will plot rectangles on a figure, as is done with a histogram. A 
rectangle is specified by four numbers: the x- and y-coordinates of the lower-left corner 
and the upper-right corner. More general regions can be drawn using the polygon () 
function. This will plot a polygon specified by its x-and y-coordinates. For polygon(), 
unlike lines (), the first and last points are connected. This creates a figure containing an 
area. 

The col= argument specifies the interior color of the regions; the line (or border) color 
is set using border=. An alternative to filling with color is filling with angled lines. These 
are specified by the arguments angle= (default is 45°) and density= (larger values 
produce more lines). 

Adding text to a graphic 
Adding text to a graphic can be done with text () or, in the special case of adding a 
legend, with legend(). The main arguments for legend () are the position, which can be 
specified interactively with locator (); the text to be added with legend=; and any of pch=, 
col=, and lty= as desired. These are usually vectors of the same length as the number of 
legend items we wish to add. 

The text () function will add labels to a graph, with the option to format the text. The 
positions are specified with (x,y) values (or locator ()). Text is centered at the (x,y) point, 
although the at= argument allows for adjustments. The text to add is given to the labels= 
argument. 

Basic formatting can be done using the f ont= argument. A value of 1 will produce the 
default text, 2 bold text, 3 italic text, and 4 bold-italic text. 

Math expressions can be printed as well. The full details are in the help page 
?plotmath. The basic idea is that R expressions are turned into mathematical expressions 
and then printed. For example, expression(x==3) will print as “x=3.” (The expression() 
function makes “expressions” that can subsequently be evaluated.) 

■ Example D.2: Showing values for pch= and lty= The following commands 
produce Figure D.1, which illustrates the various plot characters and line types. 

X11(width=5,height=2,pointsize=12)      # new UNIX 
device 
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par(mar=c(0,4,1,1))                     # small margins 
plot.new()                              # new plot 
plot.window(xlim=c(−.5,26.5),ylim=c(0,8), asp=1) # set 
up limits 
k = 0:25                                # pch values to 
plot 
zero = 0*k                              # same length 
as k 
text(k, 8 + zero, labels=k)             # add numbers 
points(k,7 + zero, pch=k, cex=2)        # add plot 
characters 
i=6:1                                   # which line 
types 
abline(h=7−i,lty=i)                     # where to plot 
line 
axis(2,at=l:8,                          # at= for where  
labels=c(paste("lty =",i),"pch","k"), # labels for what 
las=2)                             # las=2 gives 
orientation 

 

Figure D.1 Example of pch= and lty= 
values 

D.1.3 Printing or saving a figure 

R prints its graphics to a device. Usually this device is the plot window we see, but it 
need not be. It can also print to a file and store the output in different formats. For 
example, R can store the current graphic in Adobe’s PDF format. This can be done by 
printing the current screen device to a pdf device: 

## .. create a plot, and then… 
> dev.print(file="test.pdf",device=pdf) 

Adobe’s PDF format is great for sharing graphs, but it isn’t always the desired format for 
inserting into documents. By changing the argument device= to png or jpeg those file 
types will be saved. For some, PostScript is a convenient format. Encapsulated PostScript 
can be created with the function dev. copy2eps () For Windows GUI users, the plot 
window has menus for saving the graphic in png, jpeg, bmp, postscript, PDF, and 
metafile formats. The Mac OS X GUI allows the user to save graphics in its native PDF 
format. 
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D.2 Creating new graphics in R 

In this section we illustrate some of the aforementioned techniques by creating graphics 
for a squareplot and a scatterplot with additional information in the margins.  

■ Example D.3: A squareplot alternative to barplots and pie charts 
The New York Times does an excellent job with its statistical graphics. Its staff is both 

careful to use graphics in an appropriate manner and creative in making new graphics to 
showcase details. A case in point is a graphic the Times uses in place of a barplot, dotplot 
or pie chart that we will call a squareplot.  

 

Figure D.2 Squareplot of c (21, 7, 6) 

The squareplot shows counts of categorical data. Unlike the barplot, the squareplot makes 
it easy to see the exact counts. Unlike the dotplot, it is can be read without consulting the 
scales. Unlike the pie chart, the squareplot’s relative areas are easy to discern. 

The basic idea is to use squares of different colors to represent each count. The 
squares and colors are laid out in a way that facilitates counting values and comparing 
different plots. Figure D.2 shows an example, from which we can count that the 
categories have counts 21, 7, and 6. 

The UsingR package contains the function squareplot (), which is reproduced below. 
Creating the graphic is pretty simple. A helper function to draw a square using polygon () 
is defined. Then the larger square is defined and laid out. An empty plot is made. Then a 
new vector, cols, is created to match the colors with the counts. This is done with rep () to 
repeat the colors. Finally, the squares are made and colored one-by-one using a for loop. 
The functions floor for the integer portion of a number and %% for the remainder after 
division are employed. 

squareplot <− function(x, 
                       col=gray(seq(.5,1,length=length(
x))), 
                       border=NULL, 
                       nrows=ceiling(sqrt(sum(x))), 
                       ncols=ceiling(sum(x)/nrows), 
                       xlab=deparse(substitute(x)), 
                      main = NULL, 
                      ... 
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                      ) { 
## create a squareplot ala the New York Times. Used as 
an 
## alternative to a segmented barplot when the actual 
## count is of interest. 
## helper function 
draw.square <- function(x,y,w=1,...) { 
   ## draw a square with lower left corner at (x,y) 
   polygon(x+c(0,0,w,w,0),y+c(0,w,w,0,0),...) 
} 
## size of big square 
square.size = max(nrows,ncols) 
## setup window with plot.new() and plot.window() 
## arguments to ... are passed along here 
plot.new() 
plot.window(xlim=c(0,square.size),ylim=c(-
square.size,0), 
       ...) 
title(main=main, xlab=xlab) 
## vector with colors 
cols = rep(col,x) 
for(i in 1:sum(x)) { 
   x.pos = floor((i−1)/nrows)          # adjust by 1 
   y.pos = (i−1) %% nrows 
   draw.square(x.pos,−y.pos −1,col=cols[i]) 
} 
} 

■ Example D.4: A scatterplot with histograms 
The scatterplot is excellent at showing relationships between two variables. However, the 
distributions of the individual variables are hard to see. If we add histograms along the 
axes of the scatterplot, the individual distributions become clearer. This example comes 
from the help page ? lay out. A similar graphic using boxplots is found using the 
scatterplot () function in the car package. 

An example is illustrated in Figure D.3. This shows the per-capita gross domestic 
product (GDP) of several countries versus their CO2 emissions. Notice the outlier that 
appears in the regression analysis, and the CO2 variable. It does not appear as an outlier 
for per-capita GDP. It’s a simple analysis but leaves us wondering which country this is 
and why. 

> attach(emissions) 
> names(emissions) 
[1] "GDP"       "perCapita" "C02" 
> scatter.with.hist(perCapita,C02) 

A listing of the scatter. with. hist () function is given below. First, the  
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Figure D.3 Per-capita GDP versus 
emissions by country 

old par () settings are saved. As these will be changed during the function, it's nice to 
return them as we found them. Then the layout of the graph is specified with the layout () 
function. 

Then the histograms are drawn. Care is taken to get a similar number of breaks and a 
similar size. As well, the line par (mar=c (0, 3, 1, 1)) sets up the margins so that not too 
much white space appears. 

Finally, the scatterplot is drawn. The expression deparse (substitute (x)) finds the 
name of the variable that we called the function with for the label. We use switch() to add 
one of several trend lines: the regression line given by 1m(), the fit given by lowess (), 
and the Friedman super-smoother fit given by supsmu() from the stats package. This 
logic could have been implemented with if-then-else lines, but that approach is more 
cluttered. The invisible () function is used to return quietly. 

This function could be improved by adding an interface to the model formula notation. 
The techniques to do that are discussed in Appendix E. 

scatter.with.hist < 
function(x,y,hist.col=gray(.95),trend.line= ="lm" 
## Make a scatterplot with trendline and 
## histograms of each distribution. 
on.par <- par(no.readonly = TRUE) 
on.exit(par(on.par))                # see ?par for 
details 
nf <- layout(matrix(c(1,0,          # which order to 
place graphs 
                      3,2), 
                    2,2,byrow=TRUE) 
             widths=c(3,1),         # 3/4 wide for col. 
1 
             heights=c(1,3),        # 3/4 wide for row 
2 
             respect=TRUE)          # make square  
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layout.show(nf) 
n<-length(x) 
no.breaks = max(nclass.scott(x),nclass.scott(y)) 
xhist <- hist(x,breaks=no.breaks, plot=FALSE) 
yhist <- hist(y,breaks=no.breaks, plot=FALSE) 
top <- max(c(xhist$counts, yhist$counts)) 
## adjust margins for better look 
par(mar=c(0,3,1,1)) 
barplot(xhist$counts, axes=FALSE, ylim=c(0, top) 
         space=0,col=hist.col) 
par(mar=c(3,0,1,1)) 
barplot(yhist$counts, axes=FALSE, xlim=c(0, top) 
         space=0,col=hist.col, horiz=TRUE) 
par(mar=c(4,4,1,1)) 
x.name = deparse(substitute(x)) 
y.name = deparse(substitute(y)) 
plot(x,y,xlab=x.name,ylab=y.name,...) 
if(!is.null(trend.line) && lis.na(trend.line)){ 
   switch(trend.line, 
          “lm”=abline(lm(y~x)), 
          “supsmu”=lines(supsmu(x,y)), 
          “lowess”=lines(lowess(x,y)), 
          NULL 
          ) 
} 
  invisible()                       # restores par 
settings 
} 
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Appendix E  
Programming in R 

One of R’s advantages over many other statistical software packages is that at its core is a 
programming language with a consistent and relatively modern syntax. This allows us to 
write functions that simplify our work and extend the functionality of R to our problems 
at hand. The goal of this appendix is to introduce some of the key programming concepts 
and give enough examples of simpler stuff. The curious reader can find much more 
information in either An Introduction to R or R Language Definition, manuals 
accompanying R, or in the books S Programming by Venables and Ripley and 
Programming with Data: A Guide to the S Language by Chambers. 

E.1 Editing functions 

Programming can be repetitive: we write a function, test it, find errors, fix them, and 
repeat until we are happy with the result. Knowing how to make this process as painless 
as possible alleviates some of the tedium and lets us focus on what is important. A 
recommended approach is to use text files and an external editor (such as Notepad in 
Windows) to edit files. The edit() function can also manipulate functions from the 
command line. 

E.1.1 Using edit() 

Let’s begin with the most studied of examples from computer programming: the “hello 
world” function. We can define such a function on the command line with 

> hello = function() {cat("hello world\n")} 
> hello() 
[1] "hello world" 

This is a basic function that prints (using cat()) the response “hello world” no matter what 
the input is. The “\n” tells R to print a new line. If we wanted to make a change to this 
function we could retype the definition with our desired changes. This is facilitated by 
using the arrow keys. However, using the edit() function will let us use an editor to make 
the changes, thereby providing more control over the editing process. We call edit() like 
this: 

> hello = edit (hello)    # assign results of edit() 
back to hello 



This command opens a text editor* to the function and allows us to edit. Make these 
changes, save, and exit. 

function(x) { 
  cat("hello",x,"\n") 
} 

(No prompts are given, as we are doing this in the editor and not on the command line.) 
Now our function can take an argument, such as: 

> hello("kitty") 
hello kitty 

The function fix() is an alternative interface to edit(), which does not require us to assign 
the value back. 

E.2 Using functions 

A function in R is defined by the following pieces: 
function (arguments) body   

The body term is a block of commands. If there is more than one command in the body, 
they are put into a block using braces. A function declaration returns an object with class 
attribute “function.” A class attribute allows R to organize objects by type. The result of a 
function declaration is usually assigned to a variable or function name, although 
sometimes, such as with sapply(), functions are used anonymously. In the example above, 

hello = function(x) { 
  cat("hello",x,"\n") 
} 

the keyword function is used. The argument is simply the variable denoted x, and the 
body is the single command cat ("hello",x,"\n"). In this simple case, where the body is a 
single command, the function could be written without the braces, as in 

hello = function(x) cat("hello",x,"\n") 

*The default editor varies depending on the operating system used. The editor can be changed using 
the options () function, as in options(editor=“jedit”). 

E.2.1 Function arguments 

When we use a function, we typically pass it arguments, so that we can get different 
outputs. The arguments to a function are specified as a list of variable names separated by 
commas, such as 
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arg1, arg2, arg3   

When a function is defined, default values may be specified using the name=value 
syntax, as in 

arg1=default1, arg2=default2, arg3=default3   

Arguments need not have defaults, but defaults are generally a good idea. The defaults 
can depend on other argument values, as R performs lazy evaluation. This will be 
illustrated in the upcoming example. A catch-all argument, …, can be used to pass 
unspecified, named arguments along to function calls made inside the body of the 
function. Once a function is defined, the args () function will return the argument list. 

Since there can be many arguments to a function, there needs to be a convention for 
how arguments are handled when a function is called. R functions can be called with 
either named arguments or positional arguments. The named arguments are matched first. 
They appear in the function call as name=value. The name should match one of the 
function’s arguments, or they will be passed along if a…argument is used. Named 
arguments may be truncated, as long as the truncated form uniquely identifies the 
argument. This will not work, though, if the argument appears in the function definition 
after a…argument. The use of named arguments is encouraged. 

When a function is defined, the arguments have a natural position. If a function is 
called without named arguments, R will try to match the arguments in the function call by 
their position. This can make for less typing, but it is harder to debug. 

Finally, if a function call does not include one of the function’s arguments but a 
default is given, this default value will be used. If no default is specified, an error will 
occur. 

We illustrate how R handles function arguments by an example. 
■ Example E.1: Our histogram function (how R handles function arguments) The 

default hist () function in R is a bit lacking. First, as a histogram reminds us of the 
underlying density, it should look like a density. That is, it should be normalized so the 
area is 1. For similar reasons, it is nice to estimate the density and add it to the graphic. 
Finally, following the truehist () function of the MASS library, we use the “Scott” rule to 
select the bins. 

Here is a first attempt at what we want: 

ourhist = function(x) { 
   hist(x,breaks="Scott",probability=TRUE) 
   lines(density(x)) 
} 

We can type this in on the command line, or define a function stub and then use edit (), as 
in 

> ourhist = function(x) {} 
> ourhist = edit(ourhist)         # now edit 

Try it out. 
> x = rnorm(100) 
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> ourhist(x) 

It works fine. But what if we wanted to use a different rule for breaks=? It would be nice 
to be able to override our settings. One way would be to define a breaks= argument: 

ourhist = function(x,breaks) { 
   hist(x,breaks = breaks, probability = TRUE) 
   lines(density(x)) 
} 

A typical usage yields 

> ourhist(x) 
Error in hist.default(x, breaks = breaks, probability = 
TRUE) : 
           Argument "breaks" is missing, with no 
default 

Oops, we haven’t set a default value for breaks and we didn’t directly specify one, such 
as ourhist (x,"Scott"). Immediately after we list the argument for the function, we can 
supply a default value in the pattern name=value. Try this: 

ourhist = function(x,breaks="Scott") { 
   hist(x,breaks=breaks,probability=TRUE) 
   lines(density(x)) 
} 

Bothourhist(x) and ourhist (x,breaks="Sturges") will now work. The two commands 
show a difference in the number of bins, the second using the Sturges rule to compute the 
number instead of the default. 

Still, the histogram drawn looks bland. Let’s add some color to it—the color purple. 
The hist () function has a col= argument to set the color of the boxes. We can make the 
color be purple by default with this modification: 

ourhist = function(x,breaks="Scott",col="purple”) { 
   hist(x,breaks=breaks,probability=TRUE,col=col) 
   lines(density(x)) 
} 

Trying it out gives 

> ourhist(x) 
> ourhist(x,"Sturges")         # use different bin rule 
> ourhist(x,"Sturges","green") # green before purple 
> ourhist(x,"green")           # Oops 
Error in match.arg(tolower(breaks), c("sturges", "fd", 
"freedman-diaconis", : ARG should be one of sturges, 
fd, 
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freedman-diaconis, scott 

We see that we can make changes to the defaults quite easily. The third line uses the 
Sturges rule and green as the color. 

However, we also see that we can make an error. Look closely at the last line. We 
want to change the color to green but keep the default for the breaks rule. This didn’t 
work. That is because R was expecting a breaks rule as the second argument to the 
function. To override this positional matching of arguments we use named arguments. 
That is, 

> ourhist(x,col="green") 

will work. Why? First R matches by named arguments, such as col=“green”. 
Then it tries to match by partial matching of names. For example, 

> ourhist(x,c="green") 

will work, as no other arguments begin with the letter c. Finally R tries to match by 
position. 

Default values can be written to depend on arguments given during the function call. 
The use of lazy evaluation of arguments allows this to happen. For example, it is 
common to have graphic labels depend on the name of the variable passed into a 
function. To supply a default title for the histogram can be done as follows 

ourhist = function(x,breaks="Scott",col="purple", 
                    main=deparse(substitute(x)) 
                    ) { 
  hist(x,breaks=breaks,probability=TRUE,col=col,main=ma
in) 
  lines(density(x)) 
} 

Now the default value for the main title is found by applying substitute () and deparse() to 
the argument x. This has the effect of making a character string out of an R expression. 
The term “lazy” refers to the fact that the value for main= isn’t determined until it needs 
to be—when the function is called, not when the function is first defined. 

There are many other things we might want to modify about our histogram function, 
but mostly these are already there in the hist function. For example, changing the x-axis 
label. It would be nice to be able to pass along arguments to our function ourhist () to the 
underlying hist function. R does so with the …argument. When our function contains 
three periods in a row,…, in the argument and in the body of the function, all extra 
arguments to our function are passed along. You may notice if you read the help page for 
hist () that it too has a…in its argument list. 

Again, modify the function, this time to 

ourhist=function(x,breaks="Scott",col="purple",...) { 
  hist(x,breaks=breaks,probability=TRUE,col=col,...) 
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  lines(density(x)) 
} 

Then we can do these things 

> ourhist(x,xlab="histogram of x") # change the x label 
> ourhist(x,xlab="histogram of x",col="green") # change 
both 

E.2.2 Function body and return values 

The function body is contained in braces if there is more than one command. The body 
consists of a collection of commands that are executed in the order given, although 
control statements can change this. The last command executed is the return value of the 
function. This can be forced by the return () function. If the return value should not print 
out, the invisible () function can be used for the return. This is used with many plotting 
functions. 

Inside a block of commands, the print () or cat () functions are used to force printout to 
the console. Just evaluating the variable name will not force it to print as it does on the 
command line. In the Windows GUI, the printing may be buffered. The function 
flush.console () will print any buffered output. 

Inside a function body, variable names are resolved by seeing if the name has been 
assigned inside the body or matches a variable name. If not, then values in the 
environment in which the function was called are used. If the variable name still can’t be 
found an error will occur. Assignment inside a function body will not affect values 
outside the function body unless it’s done with the <<– assignment operator or assign(). 

This next example involves both return values and conditional evaluation. 
■ Example E.2: An EDA function (return values) The summary () command is 

used to give textual summaries of a given data object. However, in many cases a 
graphical summary is also appreciated. We write a function that returns the summary but 
that also presents a graphical summary. 

We name the function eda(). This first attempt will make a few plots and then return 
the summary command. 

eda = function(x) { 
  old.par = par(no.readonly = TRUE)   # See par 
examples 
  on.exit(par(old.par)) 
  par(mfrow=c(1,3))                    # 3 graphs 
  hist(x,breaks="Scott",probability=TRUE,col="purple") 
  lines(density(x)) 
  boxplot(x,horizontal=TRUE)            # boxplot with 
points 
  rug(x)                                # marked by 
rug() 
  qqnorm(x)                             # normal 
probability plot 
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  return(summary(x))                    # return 
summary 
} 

Looking at the body of the eda () function we see that the par () settings are saved into 
old.par. The on.exit () function executes commands when the function exits. In this case, 
it returns the original settings for par (). This usage is illustrated in the help page for par 
(). As this function changes the plot device by setting mf row=c (1, 3) to create three 
graphs on one screen, it is nice to return to the old settings when we leave. The three 
graphs are straightforward. Finally, the last line uses return () to return the value of the 
summary () function. In general, the last line evaluated is returned, but specifying the 
return value eliminates surprises. 

Try it out a few times. For example, look at the output of eda (rnorm (100)). Functions 
like this are pretty handy. It would be nice to improve it a bit. In particular, the function 
as written is good only for univariate, numeric data. What about eda for bivariate data? 
Categorical data? If we have categorical data, we might want to plot a barplot and return 
a summary. 

E.2.3 Conditional evaluation 

R has some standard ways to deal with conditional evaluation. Depending on a value of 
some condition, one of many things can be done. 

if () 
The if () function allows us to do something based on a condition. It takes two forms: 

an “if-then” form 

if (condition) { 
  statement(s) if condition is TRUE 
} 

and an “if-then-else” form 

if (condition) { 
  statement(s) if condition is TRUE 
} else { 
  statements(s) if condition is FALSE 
} 

The condition is a logical expression, such as x > a or x == y. For example, the following 
is a really bad way of defining an absolute-value function: 

abs=function(x) { 
  if (x < a) { 
    return(−x) 
  } else { 
    return(x) 
  } 
} 
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The logic should be clear. If the value of x is less than 0, the return value is −x. Otherwise 
it is just x. This example will not work for a vector of numbers with more than one 
element as the built-in abs () function will. 

Suppose we wanted to improve our eda() function defined previously by making it 
aware of different types of x. For example, if x is a factor, we want to present our 
summary differently. One simple way to do this is to have a conditional statement in the 
function, such as 

if(is.factor(x)) { 
  ## do factor summary 
} else if(is.numeric(x)) { 
  ## do numeric summary 
} else { 
  ## do a default summary 
} 

We could write such conditions for all the different types of data objects we have in 
mind. Sometimes the switch() function can help simplify the coding.  

There are problems with this example. If we want to add a new type of variable, then 
the original eda() function needs to be available. This is fine for functions we write, but 
what about functions written by others for the system? We wouldn’t want to modify 
those. Fortunately, there are styles in R for writing functions that eliminate this concern 
that are described in the section on object-oriented programming. 

E.2.4 Looping 

Computers, unlike humans, are very happy to do things again and again and again. 
Repeating something is called looping. There are three functions for looping: for(), 
while(), and repeat (). The latter is least common and will be skipped here. 

for() loops 
The standard f or () loop has this basic structure: 

for (varname in seq) { 
  statement(s) 
} 

The varname is the name of a variable, the seq can be any vector or list, and the 
statements get executed for each value of seq. When seq is a vector, varname loops over 
each value. The statements are evaluated with the given value for varname. When seq is a 
list, varname refers to each successive component in the list (the values seq [[i]], not seq 
[i]). 

A simple example is a countdown program: 

> for(i in 10:1) print(i)              # say blastoff 
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In this example varname is the variable i, and the vector is the set of numbers 10 through 
1. We didn’t use braces, as only one statement is called. 

To illustrate further, let’s consider a primitive way to compute a factorial. The 
definition of the factorial of a positive integer is n!=n·(n−1)·····2·1. 

fact=function(x) { 
  ret=1 
  for(i in 1:x) { 
    ret=ret*i 
  } 
  return(ret) 
} 

The loop runs over the values of the vector 1: x. At each stage the running result is 
multiplied by the new value. We can verify that fact (5) returns 120. (This function is 
already implemented in the f actor ial() function. Even so, it would be better written using 
the prod() function to avoid the loop.) 

The statements next and break (no parentheses) can be used to skip to the next value in 
the loop (next) or to break out of the loop (break).  

Using while() 
The for () loop above is great to use when we know ahead of time what values we want to 
loop over. Sometimes we don’t. We want to repeat something as long as a condition is 
met. For example, as long as a number is positive, or a number is larger than some 
tolerance. The function while () does just this. Its template is 

while (condition) { 
  statement(s) 
} 

Here is a simple example that counts how many tails there are before the first heads. 

tosscoin = function() { 
  coin = "tails"         # initialize condition 
  count = −1             # get counting right this way 
  while(coin == "tails") { 
    coin = sample(c("heads","tails"),1) 
    count = count+1 
  } 
  cat("There were",count,"tails before the first 
heads\n") 
} 

The usage of the functions while () and for () can often be interchanged. For example, we 
can rewrite the factorial example above with the while () function as follows: 

fact 1 = function(x) { 
  ret = 1 
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  while(x > 0) { 
    ret = ret*x 
    x = x−1 
  } 
  return(ret) 
} 

There is no real savings here. In fact, neither function is a very good way to perform this 
task. 

E.3 Using files and a better editor 

If you plan on doing any significant programming in R, then it is worthwhile to 
familiarize yourself with using external files to store your work (rather than the default 
workspace) and using a different editor to facilitate interaction between the external files 
and an R process. 

E.3.1 Using an external editor 

The edit () function makes small changes easy, but the changes are not saved in a 
convenient way for future reference. They can be saved in the workspace, but this can 
become quite cumbersome. It is often better to keep functions in files in the working 
directory. Many functions can be kept in a single file, or each one in its own file. 
Commands can also be stored in a file for subsequent editing. 

The basic idea is to edit the file and then have its contents parsed and evaluated in R 
line by line. This last step is done with the function source (). This process is repeated 
until you are satisfied. 

For example, you can save the hello function in a file called “hello.R" using a text 
editor of your choice (e.g., Notepad) and then read the contents in using the source() 
function, as in 

> source("hello.R") 

Specifying the file name can be done conveniently with the file. choose () function. More 
details on specifying a file are given in Chapter 1. 

Better text editors 
If you are going to be programming a lot in R, it makes sense to use an editor well suited 
to the job. The default editor in Windows, Notepad, is quite primitive; the default editor 
(often vi) in UNIX may be too cryptic. The editor can be changed using options (), but to 
which one? Good editors should do some work for you. For writing programs in R what 
is desired are features such as on-the-fly code formatting, syntax highlighting, integration 
with an R process, and debugging help. 

There are several choices. The most advanced and powerful is a combination of 
Emacs (either XEmacs, http://www.xemacs.org/, or GNU Emacs, http://www.gnu.org/); 
and ESS, (http://www.analytics.Washington.edu/statcomp/projects/ess/). Emacs is a text 
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editor and ESS extends the editor so that it can interface with many statistical software 
packages. This setup works under Windows, Linux, and Mac OS X. This working 
environment, or integrated development environment (IDE), provides an interactive shell 
with TAB completion of command names and parentheses matching; a history 
mechanism; and integrated help pages. Additionally, functions and script files can be 
edited and evaluated in an R session with a simple command that can be typed or 
controlled by the mouse. The editing has built-in indenting, which allows you to identify 
quickly the block of a program being edited. The only real drawback is the complexity of 
learning Emacs. 

Many people prefer other tools for editing. A list of editors that integrate with R 
appears on the R GUI web page at http://www.r-project.org/ under the “IDE/Script 
Editors” link. 

E.4 Object-oriented programming with R 

Object-oriented programming (OOP) is a more advanced topic than those covered in the 
rest of this book. This section is included here as the freely available materials on OOP 
are not that accessible even for those with an understanding of OOP principles. The goal 
is to give a brief introduction to R’s implementation(s) for those who have some previous 
experience with OOP. 

OOP is especially useful for large programming projects. It became popular in the 
1990s and is now ubiquitous. Most languages taught (e.g., Java, C++) have an OOP 
component. OOP requires an initial investment in time to structure the data and methods, 
but this pays off in the long run. Often, for statistical exploration, it is programming 
overkill, but it should be considered when you are programming any larger projects. 

The nature of object-oriented programming in R has changed with the introduction of 
the base methods package and the add-on OOP package. At the time of writing there are 
four types of OOP for R: the original S3 methods; the R. oo package, 
http://www.maths.1th.se/help/R/; the newer S4 methods; and the OOP package. The OOP 
package extends the S4 style; the R. oo package extends the S3 style. 

The notion of a class and associated methods are integral to OOP, and their 
implementation will be discussed below. But first, for OOP in R, an understanding of 
method dispatch is helpful. 

E.4.1 Method dispatch 

Method dispatch comes in when R decides which function to call. For example, when the 
R print() function is invoked, say with the command print (x), what happens? If the 
function invoked is a generic function, R first looks at what x (the first argument) is and 
then, based on this, uses an appropriate idea of “print.” To determine what x is, R 
considers its class attribute. Many R objects have a class attribute; others have an implicit 
class attribute, such as data vectors. Their implicit class attribute is inherited from their 
mode: for example, “character” or “numeric.” The class () function determines the class 
of an object. Once the class is determined, say it is “classname,” R looks for the 
appropriate function to call, depending on the type of function. As print() is an S3 generic 
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function, R looks first for the function print. classname. If it finds it, it uses that function. 
If not, it goes again to the next value of the class of x (it can have more than one) and 
tries again. Finally, if everything fails, it will use the function print. def ault (). This 
process of resolution is called method dispatch. 

Users of R rely on this all the time. For example, we’ve seen that many different plots 
are produced by the workhorse function plot (): plot (x, y) will produce a scatterplot, plot 
(y ~ x) will also, plot (y ~ f) will produce boxplots (for a factor f), and plot (lm(y~x)) will 
plot four diagnostic plots. There are many other usages we didn’t show, such as plot (sin), 
which will plot the sine function over [0, 1]. All use the function name plot (a “generic” 
function). This generic function uses the class of the first argument to call the appropriate 
idea of plot. The end result for the user is far fewer function names to remember. The end 
result for the programmer is that it is much easier to add new types of data objects. 

To illustrate the notion of method dispatch, we create a simple function that tells us 
how “large” a data variable is. 

■ Example E.3: Defining a size() function (an example of method dispatch) When 
exploring the built-in data sets that R provides or that are otherwise available to us, we 
may not know the size of the data set. If the data set is really large and undocumented, 
then just typing the variable name can be very annoying. Fortunately, there are functions 
to help us know the size of a variable. For example, length () will tell us the length of a 
vector or list and dim () will tell us the dimension of an array or data frame. If we want a 
single command to tell us the size, we can define one. Let’s call it size (). 

We want size () to adapt itself to the various types of variables it sees—just like the 
summary () function. In order for R to do this, we first need to define size () to be a 
generic function as follows: 

> size = function(x,…) UseMethod("size") 

This says that, when encountering the function size(), use the method based on the class 
of x (the first argument). 

Now we need to define some methods. First we define a default method (called size. 
def ault ()) and some others for different classes: 

> size.default = function(x) length(x) 
> size.data.frame = function(x) dim(x) 
> size.list = function(x) lapply(x,size) 

The default for size() is the length () of the object. This works well for vectors. For data 
frames the number of rows and columns are returned. For lists we define the size to be 
the dimension, or the size of each entry in the list. We could also define functions to be 
dispatched for matrices and arrays if desired. 

Let’s see what it does: 

> size(1:5)             # for integers 
[1] 5 
> size(letters)         # for characters 
[1] 26 
> size(factor(letters)) # for factors 
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[1] 26 
> size(data.frame(a=1:5,b=letters[1:5])) # for data 
frames 
[1] 5 2 
> size(list(a=1:5,b=letters,c=list(d=1:4,e=letters))) # 
for lists 
$a 
[1] 5 
$b 
[1] 26 
$c 
$c$d 
[1] 4 
$c$e 
[1] 26 

We see that the list example recursively uses size ().  

E.4.2 S3 methods, S4 methods, and the OOP package 

In the previous example, we defined methods for lots of classes. Now we give an 
example of defining a class, methods for this new class, and creating a new instance of 
the class. For a concrete example, we will create a “string” class using S3 methods, S4 
methods, and the OOP package. 

R has many built-in functions for handling strings, but their syntax can be confusing. 
This example (influenced by the xtable package) defines a class for strings and gives it 
some syntax similar to the String class in the Ruby programming language 
(http://www.ruby-lang.org/). 

This example covers the following: creating a new class, creating new instances of the 
class, and defining methods for instances of the class. Inheritance, another important part 
of OOP, is briefly mentioned. The code is available in the accompanying UsingR 
package. 

Extending the usual syntax by overloading In the upcoming example, it makes good 
sense to define “slicing” and “adding” of strings. When doing these things with a data 
vector, the operators [and+are used. By overloading these operators, the same natural 
syntax can be used with strings. 

When overloading an operator, we must take care with S4 methods. This is because 
the default arguments (the signature) of the new function must match those of the current 
implementation. For example, the [operator has this signature: i, j,…,drop. (See ?"[" for 
details.) Any overloading of "[" must contain this same set of arguments. 

S3 methods 
Creating a new class using S3 style is very simple. The “class” is an attribute of an object 
that can be set with the class() function, as in class(x) = "String". 

We make a function, string (), to create new instances of our String class and a 
function, is. String (), to inform us if an object is in our String class. 

string=function(x)   { 
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  if (!is.String(x)) { 
    x = as.character(x) 
    class(x) = "String" 
  } 
  return(x) 
} 
is.String=function(x) return(class(x) == "String") 

(We write these functions as though they are “sourced” in from a file. The good way to 
organize this would be to include all these new functions in a single file, as they are in a 
file in the UsingR package.) 

Now when a generic function is called on an instance of this class, the function for the 
String class, if present, is used. For example, the String class should have some basic 
functions, such as length (), summary (), and print () 

length.String = function(x,…) return(nchar(x))  
summary.String = function(x,…) 
return(table(strsplit(x,""))) 
print.String   = function(x,…) cat(x,"\n") 

At this point we can see if it works as expected. For example: 

> bart=string("I will not skateboard in the halls") 
> bart 
I will not skateboard in the halls 
> length(bart) 
[1] 34 
> summary(bart) 
  I a b d e h i k l n o r s t w 
6 1 3 1 1 2 2 2 1 4 2 2 1 2 3 1 

The summary () function splits the string into characters and then makes a table. By 
modifying the summary. string () function other summaries could be given. 

It would be nice to be able to access the letters in a String object as we do the elements 
in a vector. First, let’s define a function slice() and then use this to define access via "[". 
To do so, slice () is made a “generic” function in order for method dispatch to work, and 
then defined as desired: 

slice = function(x,index) UseMethod("slice") 
slice.String = function(x,index){ 
  tmp = unlist(strsplit(x,""))[index] 
  return(string(paste(tmp,sep="",collapse=""))) 
} 

To make slice () generic, we used UseMethod(). The definition of slice () uses strsplit () 
to split the string into characters. 

To make the vector notation work on the String class, we overload the square-bracket 
meaning by defining a function as follows: 
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"[.String" = function(x,index) slice(x,index) 

The quotation marks are necessary with this function definition as they prevent [from 
being interpolated. The "["function is already a generic function, so we don’t need to use 
the UseMethod() call. 

If we knew we didn’t want to use slice () in any other context, we needn’t have made 
it generic. For example, we might want to concatenate strings using the (overloaded) "+" 
symbol: 

concat.String = function(x,y,sep="") { 
   x = string(paste(x,string(y),sep=sep)) 
   return(x) 
} 
"+.String" = function(x,y) concat.String(x,y) 

We imagine using just the+notation to add strings, not concat (). This is why we didn’t 
bother making concat () a generic function. Due to this, the definition of "+.String" must 
use concat .String(), and not simply concat (). 

To see this in action, we have 

> Simpsons=string("Homer, Marge") 
> Simpsons[1:5] 
Homer 
> Simpsons + ", " + " Bart, Lisa, Maggie" 
Homer, Marge, Bart, Lisa, Maggie 

S4 methods 
We now create the String class using S4 methods. S4 methods are well documented in the 
help pages (see ?Methods). They are, unfortunately, a little difficult to read through. We 
will see in our simple example that certain aspects of S4 methods are much stricter than 
S3 methods, thereby forcing good programming habits. 

This example defines the class and methods incrementally. Alternatively, these can be 
defined all at once. 

First, we define a new class using the setClass() function. An S4 object has slots for 
storing the data that need to be specified. A slot stores a component, like a list element, 
allowing one to set and access the data. 

For the simple String class, the one slot stores the value of the string using the class 
character. 

setClass("String".representation(string = "character")) 

The second argument to setClass() uses the representation() function to define what type 
of data will be stored in the slots. The name and class of each slot is specified, forcing the 
proper type of data in that slot. Only character data, or data that can be coerced to 
character data, can be stored in the string slot. The example shows only one slot being 
created; more than one can be created by separating the definitions by commas. 
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Creating an instance of a class is done with the new () function, as illustrated in this 
helper function: 

string = function(x) { 
   new("String",string=as.character(x)) 
} 

The slot holding string is set with the value of as. character (x). Only slots that are 
already defined for the class can be filled (defined by setClass() or through inheritance). 
Otherwise an error message, “Invalid names for slots,” will be returned. 

Trying this out we have 
> string("I will not eat things for money") 
An object of class "String" 
Slot "string": 
[1] "I will not eat things for money" 

The string() function works, but the printout is not as desired. Instead of print (), when 
the methods package is used, S4 methods use show() for their default print call. We can 
make a show() function tailored for our class using setMethod(). The setMethod() 
function needs a name, a class, and a function defining the method. 

setMethod("show", "String", 
         function(object) { 
           cat(object@string,"\n") 
         }) 

Now objects of our String class will use this method, instead of the method showDefault 
(), to print. The function definition must have the proper formal arguments, or an error 
will be thrown. This enforces a uniformity among methods that share a name. That isn’t 
the case with S3 methods. The new syntax, object@string illustrates how we access a slot 
in an object. The argument to show() is called object and is an instance of the String 
class. The slot string is desired, which is accessed using the @ syntax, as in 
object@string. 

Now the default printing is more suited for a string. 

> string("I will not waste chalk") 
I will not waste chalk 

The show () function is an S4 standard generic function, meaning for us that method 
dispatch will work. The setMethod() function will also work with S3 methods, such as 
summary (), and “primitives,” such as length(). For example, we can create such methods 
for the String class as follows: 

setMethod(length","String",function(x) nchar(x@string) 
setMethod(summary","String", 
         function(object,…) { 
           return (table(strsplit(object@string,"")) 

Appendix E    384



        }) 

We need to use the argument x in length() and object in summary() to match their formal 
arguments (signature). The signature of a function can be found from its help page (e.g., 
?summary), or with the function args() (e.g., args (summary)). 

New methods can be created as well. For example, to create a slice () method and the 
"[" syntax, we first create a generic function slice (), adapt it to the String class, and then 
link "[" to this. 

setGeneric("slice", function(object,index) 
standardGeneric("slice")) 

This sets up slice () as a generic function for which method dispatch will apply. The 
definition of the function sets up the signature of the slice () function, namely an object 
and an index. The definition of slice() for the String class is 

setMethod("slice","String", 
         function(object,index) { 
          tmp = 
paste(unlist(strsplit(object@string,"")[index], 
            sep="",collapse="") 
          return(string(tmp)) 
        }) 

To define the "[" method, we again use setMethod(). It does not need to be made generic, 
but the signature must match. 

setMethod("[","String".function(x,i,j,…,drop) 
slice(x,i)) 

There is a long list of formal arguments. The "[" method works for vectors, data frames, 
arrays, and now strings, so it needs to have lots of flexibility in how it is called. We have 
little flexibility in how a new method is defined, though: at the minimum, we must 
include all the arguments given. 

We can try this out: 

> pets=string("Snowball, Santa’s little helper") 
> pets[−1] 
nowball, Santa’s little helper 
> pets[length(pets)] 
r 

The OOP package 
For those used to programming in an OOP language, the S3 and S4 methods might be 
called “object oriented,” but they don’t look object oriented. Usually, the syntax for 
calling a method is object-separator-methodname, such as $object->print () in PERL or 
object .print () in Ruby, C++, and Java. The separators -> and . are not well suited for R, 
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as -> is reserved for assignment and . is used for punctuation. Rather, the natural $ is 
used. 

This object-method style forces the attention on the object and not the function. In 
addition, many methods can change the value of the object in place, meaning that to 
change the object, instead of requiring an assignment statement such as object=object 
.method(newValue), a command such as object .method(newValue) can be used. Using 
S3 and S4 methods, this is not available. The add-on package OOP from 
http://www.omegahat.org/ allows for such programming style. This package is still in 
development and is not merged into the main R distribution. It may not even work with 
newer versions of R (it missed the 1.8.x series). What follows works with R version 1.9.1 
and OOP version 0.5–1. 

First, we must load the library with the command library (OOP). It takes a bit of time 
to load. 

To define a new class using OOP, the def ineClass () function is used, as in 

defineClass("String") 

The “slots” are now called “fields.” To set up the fields, the def ineFields method is used 
on the String class. 

String$defineFields(string = "character") 

We have only a single field of type character. The def ineFields () method is placed after 
the separator $, and the object here is String. 

The new() function is called to make a new instance of a class. There is a default call, 
but we can override it by defining a method called initialize. 

String$defineMethod("initialize", 
                    function(val){ 
                      set.string(as.character(val)) 
                    }) 

The set. string() function assigns to the string field. For each field, an assignment method 
set. fieldname () is created, as well as a variable fieldname containing the values. The 
initialize () method is called by the new () method. In this case, it sets the field value of 
string to the value of the argument after coercion to a character. 

Now we can create objects or instances of the String class using new as follows: 

> bart=String$new("I will not drive the principal’s 
car") 
> bart 
Object of class "String": 
Field "string": 
[1] "I will not drive the principal’s car" 

Our printout needs work, but we can see that we have an object of class “String” and that 
the string field is as expected. 
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For our String class we want the length (), summary (), and show () methods as before. 

String$defineMethod("length",function() 
return(nchar(string))) 
String$defineMethod("summary",function() { 
  return(table(strsplit(string,""))) 
}) 
String$defineMethod("show", function() cat 
(string,"\n")) 

The formal arguments needed for S4 methods are not necessary here. 
We can try these out now: 

> barfriends=String$new("Moe, Barney, Lenny, Carl") 
> length(barfriends) 
[1] 1 
> barfriends$length() 
[1] 24 
> barfriends$summary() 
   , B C L M a e l n o r y 
3 3 1 1 1 1 2 3 1 3 1 2 2 
> barfriends 
Object of class "String": 
Field "string": 
[1] "Moe, Barney, Lenny, Carl" 
> barfriends$show() 
Moe, Barney, Lenny, Carl 

The function length () must be called as barfriends$length() and not as length (barf 
riends). The latter dispatches the wrong function. This also causes show() to work now as 
it did with S4 functions. A workaround is to define a print () method using either S4 or 
S3 methods, 

setMethod("print","String", function(x,…) x$show()) #S4 
style 

or 

print.String = function(self) self$show() # S3 style 

Now the show () method will be called when the object is “printed.” 

> barfriends 
Moe, Barney, Lenny, Carl 

The same thing can be done to use the "[", "+", etc., syntax. For example, defining a 
method to split the string by a pattern and use "/" for a shortcut can be done as follows: 
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String$defineMethod("split".function(by="") { 
   unlist(strsplit(string,by)) 
}) 
setMethod("/","String",function(e1,e2) el$split(e2)) 

Again strsplit () does the hard work. We defined a new method, split, but didn’t have to 
worry about matching the formal arguments of the previously defined split () function (an 
S3 generic method). However, when we use the S4 style to use the "/" syntax, we need 
our function to match the formal arguments it uses (e1,e2). 

We can now “divide” our strings as follows:  

> flanders=String$new("Ned, Maude, Todd, Rod") 
> flanders$split()              # into character by 
default 
  [1] "N" "e" "d" "," " " "M" "a" "u" "d" "e" "," " " 
"T" "o" "d" 
[16] "d" "," " " "R" "o" "d" 
> flanders/" " 
[1] "Ned," "Maude," "Todd," "Rod" 

As mentioned, when using OOP we can modify the object in place. For example, we 
might want to make the string uppercase. This can be done by defining an up case 
method as follows: 

String$defineMethod("upcase",function() { 
   set.string(toupper(string)) 
}) 

Applying the function gives 

> flanders$upcase() 
> flanders 
NED, MAUDE, TODD, ROD 

The upcase () method uses both the string variable and the set. str ing () function, which 
are created from the field names. Simple assignment to string will not work, although the 
<<- assignment operator will. 

Inheritance 
In OOP, inheritance allows us to define fields and methods for a class and have them 
available to all subclasses. Subclasses are used to extend a class by adding functionality 
that is desired in the specific case, keeping the core functionality in the parent class for 
other subclasses to share. 

The OOP package allows for the fields and methods to be inherited in a simple 
manner. For example, to create a Sentence class to extend the String class is easy. When 
defining the class we need only say it “extends” the String class as follows: 

defineClass("Sentence", extends = "String") 
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Now, instances of the Sentence class inherit all the methods of the String class. 

> flanders = Sentence$new("the Flanders are Ned, Maude, 
Todd, and Rod") 
> flanders 
the Flanders are Ned, Maude, Todd, and Rod 

This shows that the print () method was inherited. We can add more methods to the 
Sentence class that are specific to that class. For example, we might want to ensure that 
our sentences are punctuated with a capital letter for the first letter, and a period for the 
last character. 

Sentence$defineMethod("punctuate",function() { 
## add a period, and capitalize the first letter 
chars = split("") 
chars[1] = toupper(chars[1]) 
if(chars[(length)(chars)] != ".") 
   chars[(length)(chars)+1]="." 
set.string(paste(chars,sep="",collapse="")) 
}) 

We define punctuate () using def ineMethod(). The split () method uses the method 
defined for the String class, whereas the length () functions are for the length of a 
character vector. OOP would try to use the length () method we defined, so we need to 
place the function in parentheses to use the one we want. Warning messages will remind 
us if we get this wrong. 

We can now punctuate our sentences: 

> flanders$punctuate() 
> flanders 
The Flanders are Ned, Maude, Todd, and Rod. 

Inheritance with S4 methods is very similar. Again, the classes that the new class extends 
(the superclasses) are specified at the time a new class is made. For example: 

setClass("Sentence",contains=c("String")) 

The argument is contains= and not extends=. 
New instances are made with new() as before: 

sentence = function(x) { 
  new("Sentence",string=x) 
} 

Methods for the new class are added in a similar manner: 

setGeneric("punctuate", function(object) 
standardGeneric("punctuate")) 
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setMethod("punctuate","Sentence",function(object) { 
  ## add a period, and capitalize the first letter 
  chars = split(object,"") 
  chars[1] = toupper(chars[1]) 
  if(chars[length(chars)] != ".") 
   chars[length(chars)+1] = "." 
  return(sentence(paste(chars,sep="",collapse=""))) 
}) 

In this case, the object is not modified. Rather, a new sentence is returned. Again split is 
used from the definition in String. Here the function length() is correctly dispatched, and 
there is no need to include it in parentheses. 

For more information on S4 classes, the help page ?Methods gives pointers and links 
to other help pages. There is an informative article on S4 classes in Volume 3/1 (June 
2003) of R News (http://www.r-project.org/). For the OOP package the help page ?def 
ineClass provides useful information and links to the rest of the documentation. An out-
of-date, but still informative description by the OOP authors is contained in the Volume 
1/3 (September 2001) of R News. 

Problems 

E.1 Write your own sample standard deviation function, std, using the sample variance 
formula 

 
  

E.2 Write two functions push () and pop (). The first should take a vector and an 
argument and add the argument to the vector to make it the last value of the vector. The 
function pop () should return the last value. How might you modify pop to return the 
value and the shortened vector? How might you change pop and push when x is an empty 
vector? 

E.3 Write a short function to plot a simple lag plot (cf. ?lag.plot in the ts package). 
That is, for a vector x of length n, make a scatterplot of x [-n] against x[−1]. Apply the 
function to random data (rnorm(100)) and regular data (sin(1:100)). 

E.4 Write a function to find a confidence interval based on the t-statistic for 
summarized data. That is, the input should be S, n, and a confidence level; the output 
should be an interval. 

E.5 Newton’s method is a simple algorithm to find the zeroes of a function. For 
example, to find the zeroes of f(x)=x2

−sin(x), we need to iterate the equation 

 
  

until the difference between xn and xn+1 is small. In pseudo-code this would be 

while(delta > .00001) { 
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old.x=x 
x=x—(x^2—sin(x))/(2*x—cos(x)) 
delta=| x—old.x | 
} 

The answer you get depends on your starting value of x. This should be passed in as an 
argument. Implement this in R and find both roots of f(x). 

E.6 Type in the size () example above. Try the following: 

> x=rnorm(100) 
> size(x<0) 

Does it work? If not, write a new method to handle this case. (Use typeof () to find the 
type of x<0.) 

E.7 Add a new S3 method to the String class. We want to “divide” strings by breaking 
the string up into pieces based on the numerator. For example, dividing “now is the time” 
by “ ” (a blank) would return a vector of words split up by the blank spaces. This can be 
done with the function strsplit () as illustrated here: 

> x="now is the time for all good men" 
> y=" "  
> unlist(strsplit(x,y))           # unlist to get a 
vector 
[1] "now" "is" "the" "time" "for" "all" "good" "men" 

Write an S3 method so that this could be done as 

> x=string("now is the time for all good men") 
> x/y 
[1] "now" "is" "the" "time" "for" "all" "good" "men" 

E.8 Define an S3 “subtract” method for our String class that extracts all instances of the 
string y from x. Such as 

> x=string("now is the time for all good men") 
> y=stringC" ") 
> x−y # remove the blanks 
nowisthetimeforallgoodmen 

(You might want to use the “divide method” and then paste ().) 
E.9 Write S4 methods upcase () and downcase () for the String class which interface 

with toupper () and tolower (). 
E.10 Write an OOP method strip() that removes unnecessary spaces in the string. For 

example,” this has too many spaces “would become “this has too many spaces”. 
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