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Some Remarks on the Validity 
of Approximate Theories
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Longitudinal Waves
• For longitudinal wave propagation in a circular bar the 

elementary formula are valid if the ratio of the diameter of 
the bar to the wavelength transmitted is small.

• An approximate equation to allow for transverse radial 
motion of the elements is due to Love and Rayleigh.

• If the axial strain in the bar is ⁄"# "$, the lateral strain is 
⁄−& "# "$.

• If the time rate of change of the axial strain is ⁄"!# "$"', 
then the time rate of change of the lateral strain is 

⁄−& "!# "$"'.

• Thus, at radius (, the radial speed of a particle is 
⁄& ( "!# "$"'.
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Longitudinal Waves
• Hence the kinetic energy in an element of radial thickness 
)( and length )$ is 

• The total kinetic energy due to radial motion for a cylinder 
of radius *, is,

• The energy contained in a length of shaft )$, is,
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Longitudinal Waves
• The equation of motion is derived using Hamilton’s 

principle,

• An approximate solution due to Rayleigh yields,

• Where !! = #/% and & is wavelength.

• According to this equation, the wave speed depends on 
their frequency. 

• Therefore, a pulse containing a mixture of frequencies will 
be dispersed. 
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Longitudinal Waves
• This approximate solution shows that the elementary 

theory is reliable for waves whose length is several times 
greater than the bar radius: 0 ≲ ⁄* - ≲ 0.7.

• Conway and Jakubowsky
have given an analysis of
coaxial impact of bars and
compared the theoretical 
results with the experiment. 
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Longitudinal Waves
• This figure shows the theoretical result given by the 

authors.
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Flexural Waves
• The elastic wave equation for a beam in flexure is shown 

to be,

• It is noted that no simple expression for the speed of 
propagation of flexural waves could be derived as for a 
longitudinal pulse.

• Considering a circular bar of radius *,

• Try as a solution,
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Flexural Waves
• Where 0 denotes the wave amplitude, - the wavelength 

and 1" the phase speed. It is found to be a solution if,

• Clearly the wave speed is inversely proportional to the 
wavelength and infinitely short waves should travel at infinite 
speed; this is physically unacceptable, of course.

• This equation is only valid as long as the wavelength is 
much greater than any lateral dimension of the beam.

• When this is not so, it is necessary to include in the 
equation of motion a term allowing for the rotary motion 
about the neutral axis of elements of the bar.
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Flexural Waves
• The equation of motion of an element

when the rotary inertia is included:

• Since, 

• So, by differentiation,  

• The equation of motion in lateral direction,
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Flexural Waves
• From strength of materials, ⁄2 34 = ⁄"!6 "$!, 4 = 07!. So,

• For a circular section beam, with 4# = 08*!/4, and by 
substituting all these,

• A solution to this is given by 6 = 0 sin ⁄2? - ($ − 1"') with,

• For very short wavelengths '/& → ∞ , !"/!! → 0, not infinity; as 
does the previous solution. 
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Flexural Waves
• A feature still unaccounted for in the above analysis is the 

distortion of cross-sections (or elements) due to the 
presence of shear force.

• Inclusion of a term to accommodate this feature was first 
made by Timoshenko and results in ‘exact’ expressions 
for ⁄1$ 1% versus ⁄* -.

• There is very considerable discrepancy between (3.6), 
(3.7iv) and Timoshenko’s results, when ⁄* - > 0.1.
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Columns Under Impact
• An infinite, straight, uniform, elastic column subject to a 

compressive thrust D instantaneously applied and 
maintained constant has an equation of motion,

• The second term on the right hand side of the equation is 
the net transverse force due to D, ⁄"6 "$ being the local 
slope of the column center line.

• Thus,
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Columns Under Impact
• Small disturbances may be represented by

• where the wavelength & = 1/,

• Substituting, 

• For sufficiently small values of -, disturbances are 
propagated with speed &/F.

• A critical situation is reached when F&! = P/(4?!34) or 
-& = 2? 34/D, which critical wavelength is not 
propagated.
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Columns Under Impact
• Perturbations where - > -& are not propagated and 

amplitude is increased without limit.

• For a solid circular shaft of diameter H, -& = ?H 3/2I.

• This is the wave length of the most unstable wave so that at the 
onset of instability, waves of length &# are to be expected.

• The impulsive compression end-on of two identical elastic 
columns each moving with speed J, gives for the 
instability wave length -& = ?H 1/2J.



Elastic Waves in an Isotropic 
Extended Medium
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Body Waves

• Equations of motion:



19

Body Waves
• Adding, 

• Where

• So,

• & and , are Lame’ constants. 

• Shear stresses: 

20

Body Waves
• Substituting,

• Differentiating K with respect to $,
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Body Waves
• Hence,

• Similar expressions can be obtained for the y- and z-directions.

• For no body-forces and small strains:
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Equivoluminal Waves
• Assume that this equation involves deformation in which 

there is no change of volume with $ so that straining 
therefore involves only distortion and rotation. 

• Thus with "K/"$ = 0:

• For an arbitrary plane wave to be propagated with a 
speed 1,

• where -, / and 0 are the direction cosines of the normal to the 
plane. Then,
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Equivoluminal Waves

• Adding,

• Thus 1' = L/8. 

• An equivoluminal body wave propagated with a speed of 
1'.
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Irrotational Waves
• Consider the formal modification to equation (3.15) when 

the straining propagated is irrotational, M( = M# = M) = 0.
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Irrotational Waves
• This is a wave equations with speed 1* = (- + 2L)/8.

• Thus only two types of body waves are propagated in an 
isotropic elastic solid and any general disturbance is 
evaluated by their superposition.

• In seismology, equivoluminal waves are referred to as O or 
shake waves, and irrotational waves as D or push waves.

• For a fluid medium L = 0 and thus 1' = 0, and 1* = ⁄- 8.

• Lord Kelvin in 1899 apparently first applied the terms 
irrotational and equivoluminal to describe these kinds of 
waves.

• Knowledge that two kinds of waves each moving with a 
different speed dates back to Poisson.
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Surface Waves: Rayleigh Waves
• Whilst the waves discussed immediately above are body 

waves, there are well investigated surface waves; a simple 
example is a surface sea wave.

• It was shown by Rayleigh in 1887 that waves may 
propagate along the surface of an unbounded or semi-
infinite solid at a speed, for & = ⁄1 4 of 0.921', or for
& = ⁄1 2 of 0.961'.

• The waves rapidly decrease, exponentially, in amplitude 
with depth below the surface and their speed is always 
slightly less than 1'.
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Surface Waves: Rayleigh Waves
• The amplitude of vibration increases and reaches a 

maximum at a depth of 0.076- and thereafter decreases; -
is the wave length.

• At a depth of - the amplitude is 0.19 of that at the surface.

• Rayleigh waves of high frequency are attenuated more 
rapidly with depth than low frequency waves—a kind of 
skin effect.

• The normal stress (perpendicular to the surface) is 
greatest at a depth 0.32-. (for & = 0.29) whilst the normal 
stress parallel to the surface changes sign at a depth R of 
about 0.252-.

Reflection and, Refraction of 
Waves at an Interface
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Fluid-Vacuum Interfaces
• The stress boundary or interfacial 

condition to be fulfilled in this 
circumstance is obviously that of 
zero normal stress at all times.

• The incident wave initiates the 
reflected wave and since it also has 
a speed of 1*, this implies that the 
angle of reflection must be the same 
as that of incidence.

• The amplitude or intensity of the 
incident wave is reversed in sign on 
reflection 

30

Fluid-Vacuum Interfaces
• Together the incident and reflected plane waves give the 

propagated wavefront and an ‘interference’ or ‘standing’ 
wave pattern is found for the direction normal to the plane 
of periodicity ⁄M 1* sec U.

• Phase velocity: The phase speed at a boundary is the rate 
at which a point of constant phase travels along the 
interface.

• an analogy is that of sea waves striking a straight wall at an 
angle.

• The rate at which the point of intersection of, say, a crest 
of a wave and the wall, moves along the wall is the 
boundary phase velocity, +1" = 1*/ sin U.
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Solid-Vacuum Interfaces
• A plane P-wave incident on a plane 

boundary produces both reflected 
plane P-waves and plane S-waves.

• The angle of reflection of the 
reflected P-wave must equal that of 
the angle of incidence of the 
incident P-wave.

• And because both of the reflected 
waves, i.e. S and P, are initiated 
concurrently from the surface,
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Solid-Vacuum Interfaces
• In general the energy of the incident wave is distributed 

between the reflected S- and P-waves.

• Certainly if U = 0° there can obviously be no reflected S-
wave.
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Interfaces between two semi-infinite solids
• We suppose A and B to be 

‘welded’ together at the interface 
so that on either side of the 
boundary the following four 
conditions must be satisfied:

• (i) equality of normal displacements,

• (ii) identical tangential 
displacements,

• (iii) equality of (or continuity in) 
normal stresses, and

• (iv) equality of (or continuity in) 
shear or tangential stresses.
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Incident P-Waves
• If the angle of incidence is U,, incident dilatational waves 

give rise to reflected and refracted waves in both A and B,

• Again the relations are clearly similar to those prevailing 
for geometrical optics.

• Expressions can be found for the amplitudes of the 
reflected and refracted waves in terms of the incident 
dilatation wave amplitude.
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Incident S-Wave
• The behavior of plane S-waves at 

a boundary can be resolved in 
terms of S-waves which are 
horizontally/vertically polarized 
with respect to the plane 
boundary.

• The former are referred to as SH-, 
and the latter as SV-waves.

• For an SH-wave, particle motion 
occurs parallel to Oy only; i.e. u=0 
and w=0, and gives rise only to 
two S-waves, in particular,
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Incident S-Wave
• Since there is only motion parallel to Oy, there is thus no 

particle motion normal to the interface and hence no P-
waves can result.

• Alternatively, in SV-waves, particle movement occurs 
parallel to the Oxz plane only, i.e. J = 0.

• The same relation between the various angles and speeds 
applies as before.

• Other cases such as behavior at a solid-liquid interface 
can easily be deduced as special cases of the solid-solid 
interface instance discussed above.



Wave Reflection: 
Exact Solution
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Exact Solution
• We wish to study how an incident plane wave is reflected 

by the boundary.
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Exact Solution
• Since x2=0 is a free boundary, the surface traction on the 

plane is zero at all times.

• Thus, the boundary will generate reflection waves in such 
a way that when they are superposed on the incident 
wave, the stress vector on the boundary vanishes at all 
times.

• The reason for superposing not only a reflected transverse 
wave but also a longitudinal one is that if only one is 
superposed, the stress-free condition on the boundary in 
general cannot be met.
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Exact Solution
• Let ui denote the displacement components of the 

superposition of the three waves;
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Exact Solution
• On the free boundary, W = −X!, the condition Y = Z yields,

• Using Hooke’s law and noting that #3 = 0 and #2 does not 
depend on $3, we easily see that the condition [32 = 0 is 
automatically satisfied. For the other two,
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Exact Solution
• These equations are to be valid at $2 = 0 for whatever 

values of $1 and '; therefore, we must have,

• Thus,

• This equation can be satisfied for whatever values of $1
and ' only if,
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Exact Solution
• Thus, with                                    we have 

• The reflected transverse wave has the same wavelength 
as that of the incident transverse wave and the angle of 
reflection is the same as the incident angle,

• The longitudinal wave has a different wave length and a 
different reflection angle depending on the so-called 
refraction index \.
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Exact Solution

• It can be shown that

• So the boundary conditions become

• These two equations uniquely determine the amplitudes of 
the reflected waves in terms of the incident amplitude



Vibrations in Cylindrical Bars
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Vibrations in Cylindrical Bars

• Equations of motion in cylindrical coordinates:
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Vibrations in Cylindrical Bars
• The dilatation K in the cylindrical coordinates: 

• And M- , M. and M) are rotation components: 
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Vibrations in Cylindrical Bars
• On the surface of the bar:

• Using Hooke’s law,  
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Vibrations in Cylindrical Bars
• These equations can be satisfied by using displacement 

equations due to Pochhammer (1876) and Chree (1889) 
which represent an infinite train of waves:

• & and !" denote wavelength and phase speed respectively, and 
1, 2,3, are functions of 4 and 5 only.
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Longitudinal Waves
• It is assumed that particles of the cylinder move in an rOz

plane only, i.e. ] = 0, and also that functions ^ and _ are 
independent of `.

• Introducing these conditions into the equations of the 
previous section, a very complex equation for the 
frequency of wave transmissions is arrived at; and is 
written in terms of Bessel functions a% and a,. 

• By expanding the latter for the case when the bar radius 
to wavelength ratio is relatively small, Rayleigh arrived at,
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Longitudinal Waves
• In a bar which propagates very long waves, */- → 0 and 
1" → 1/ = 3/8.

• The second term shows that a band of waves propagated 
in accordance with the assumptions chosen is, in fact, 
dispersed.

• Short wavelength waves travel slower than long 
wavelength waves and hence, as time passes, the extent 
of a wave train is progressively increased.

• The results quoted only apply for a cylinder of infinite 
length.
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Torsional Waves
• To transmit torsional waves, longitudinal and lateral 

displacements must be zero, i.e. # = 6 = 0, and motion 
about the cylinder axis must be symmetrical so that ]
must be independent of `.

• The principal result which transpires is that 1" = L/8 as 
arrived at by elementary theory.

• In this fundamental mode dispersion is absent.
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Flexural Waves
• The displacement functions adapted for flexure, with the 

axis of the cylinder having a purely lateral motion are,

• where 1, 2 and 3 are functions of 4 only.

• Since any account of the treatment for this case is lengthy 
we shall not pursue discussion but simply refer to Love's 
treatment.

Propagation of a Short Pulse 
Through a Short Cylinder
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Short Cylinder
• Kolsky has demonstrated that the propagation of a pulse 

through a short solid cylinder is complex. 

• A small explosive charge was used to produce a pulse at 
the center of one end face of a short steel cylinder, the 
pulse duration being about 2 µsec.

• Both P- and S-waves were created by the explosive and 
spread out spherically from it.

• Waves arriving at a detector at the center of the lower face 
can travel by a number of paths of different length, so that 
the detected signal has many components corresponding 
to the different routes through the cylinder.
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Short Cylinder
• The first signal to arrive is a P-wave 

following route 1 and then the same 
P-wave is reflected from the sides of 
the cylinder, i.e. via route 2.

• only the first few pulses of the 
explosive are clearly recognizable and 
separate.

• A propagated pulse obviously is 
difficult to interpret for there are then 
many paths producing similar time 
delays.


