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Some Remarks on the Validity

of Aﬁgroximate Theories

Longitudinal Waves

* For longitudinal wave propagation in a circular bar the
elementary formula are valid if the ratio of the diameter of
the bar to the wavelength transmitted is small.

» An approximate equation to allow for transverse radial
motion of the elements is due to Love and Rayleigh.

« [f the axial strain in the bar is du/dx, the lateral strain is
—v ou/0x.

- If the time rate of change of the axial strain is 9%u/dxdt,
then the time rate of change of the lateral strain is
—v 0%u/oxot.

« Thus, at radius r, the radial speed of a particle is
vr d*u/oxot.




Longitudinal Waves

* Hence the kinetic energy in an element of radial thickness
6r and length 6x is

2 2
%(2%7’. or. dz)p. (Vr ou )

Ox Ot

* The total kinetic energy due to radial motion for a cylinder
of radius a, is,

“1 8%u \> ma 8%u \’
— . 27tr. dr. dz. p. 7 = — dz
/0 g oM AT AT (”amat) 4 (V8w8t>
* The energy contained in a length of shaft dx, is,

1, (0u\®  mwat 2u\’> 1_ ,[0u\’
— — - iy 5 —
g P 5”"(&) TP 5"”'(”893615 TP\ 5z ) 02
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Longitudinal Waves

The equation of motion is derived using Hamilton’s

principle,
0%u  via? 0%y _p 0%u
Ploer ™ 72 "az2ar )~ 7 Ba?
« An approximate solution due to Rayleigh yields,
C a 2
L =1-* 7% (—)
Co A
Where ¢, = /E/p and A is wavelength.

« According to this equation, the wave speed depends on
their frequency.

» Therefore, a pulse containing a mixture of frequencies will
be dispersed.




Longitudinal Waves

This approximate solution shows that the elementary

theory is reliable for waves whose length is several times

greater than the bar radius:

Conway and Jakubowsky
have given an analysis of
coaxial impact of bars and
compared the theoretical
results with the experiment.

0<a/1s<0.7.
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Longitudinal Waves

This figure shows the theoretical result given by the

authors.
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Flexural Waves

The elastic wave equation for a beam in flexure is shown
to be, 2w  EI 8w

o2~ pA Oz

« It is noted that no simple expression for the speed of
propagation of flexural waves could be derived as for a
longitudinal pulse.

» Considering a circular bar of radius a,
O’w __ — 2. a>  dlw
o2 0 4 Ox*
« Try as a solution,

w = Asin X (z — cpt)

Flexural Waves

 Where A denotes the wave amplitude, 1 the wavelength
and c, the phase speed. It is found to be a solution if,

Co
Cp = V7~

(A/ma)

« Clearly the wave speed is inversely proportional to the
wavelength and infinitely short waves should travel at infinite
speed; this is physically unacceptable, of course.

* This equation is only valid as long as the wavelength is
much greater than any lateral dimension of the beam.

* When this is not so, it is necessary to include in the
equation of motion a term allowing for the rotary motion
about the neutral axis of elements of the bar.
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Flexural Waves

The equation of motion of an element F+§§-3x
when the rotary inertia is included: D
2
(-F+ %L )de =1, -dzx- ¥ T N
M M
4 M+ 5% Bx
Since, oY Ox
909 _ 9 (dw 9% _ dw
o = w (%) and Gr = oo
So, by differentiation,
_OF _ M
 0r T oz + Iy 8t28:132

The equation of motion in lateral direction,

oty
11
Flexural Waves

From strength of materials, M/EI = 9?w/0x?, I = Ak*. So,

9’M 2 64
GU — FAK? -

For a circular section beam, with Iy = Apa?/4, and by
substituting all these,

2. a®> 0w _ a®  _dw —
Co" 7 " ozt T 502 T 8t2 =0

A solution to this is given by w = A sin 21 /4 (x — c,t) with,
Co

1+ (A2/n2a2)"2

For very short wavelengths a/A —» o, cp/cy = 0, not infinity; as
does the previous solution.

Cp —

12




Flexural Waves

» A feature still unaccounted for in the above analysis is the
distortion of cross-sections (or elements) due to the
presence of shear force.

* Inclusion of a term to accommodate this feature was first
made by Timoshenko and results in ‘exact’ expressions
for cp/cy versus a/A.

» There is very considerable discrepancy between (3.6),
(8.7iv) and Timoshenko’s results, when a/A > 0.1.

13

Columns Under Impact

* An infinite, straight, uniform, elastic column subject to a
compressive thrust P instantaneously applied and
maintained constant has an equation of motion,

Pw 0w 0 ow
’OA ot? __EI3x4 Oz (P(‘?x)

« The second term on the right hand side of the equation is
the net transverse force due to P,dw/dx being the local
slope of the column center line.

e Thus,

—|—pA32w =0

Erdw 4 po L

4 20
ox Ox?
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Columns Under Impact

Small disturbances may be represented by

w = a - exp [2mi(uz — vt)]

* where the wavelength 1 = 1/u

Substituting,

2 _ 4m?EIp* — Pu?
pA

* For sufficiently small values of A, disturbances are
propagated with speed v/u.

14

« A critical situation is reached when u? = P/(4m2EI) or
A. = 2w/ EI/P, which critical wavelength is not
propagated.

15

Columns Under Impact

« Perturbations where 4 > A, are not propagated and
amplitude is increased without limit.

« For a solid circular shaft of diameter d, A, = nd./E/20.

« This is the wave length of the most unstable wave so that at the
onset of instability, waves of length A, are to be expected.

» The impulsive compression end-on of two identical elastic
columns each moving with speed v, gives for the

instability wave length A, = nd,/c/2v.

16




Elastic Waves in an Isotropic
Extended Medium

Bodv Waves
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T G Xp=p
Eeyy = 0gp —V(0yy + 022) = (1 +0)0gg — V(0zz + Oy + 022)
Eey = oy — (0, + 022) = (L +v)oyy — v(0gp + 0y + 022)
Ee,, =0, — (04 +0yy) = (1 +0)0, — (022 + 0y + 022)




Bodvy Waves

Adding,  Ee = (g, + Oy + 022) (1 — 20)
Where

0 0 0
e =€z teyte,=75-+ aZ + %

 So, 5
—_— e.’l.’t o E R
Oze = Tio T 1—|—v -2y €

0.z = 2G - 8“ + e

« Aand u are Lame’ constants.

Shear stresses: =Gy =G (

(@)
&:JI% S |§>
N——

Qu |

Oy

0
Toz = G2z = G( 3w
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Bodv Waves

» Substituting,

0 0 o e, 0 0 0
%(2GTZ+A€)+G'@<3—Z+%>+G&( +8)+Xp=p- &

02
2G - G + A5 +G( +8y3:c>+G(8z6:c+6z2)+Xp P

G(ax2+6y3x+azax)+>\ +G-Viu+Xp=p%t

« Differentiating e with respect to x,

Oe 0%u 03v 02w

Oxr  Ox2 * Oz Oy * 0x0z
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Bodv Waves

* Hence,
O%u
Ot2

Similar expressions can be obtained for the y- and z-directions.

0
(G+)\)8—2+G-V2u+Xp:p

* For no body-forces and small strains:

De s 0%u

21

Equivoluminal Waves

« Assume that this equation involves deformation in which
there is no change of volume with x so that straining
therefore involves only distortion and rotation.

* Thus with de/dx = 0:

0%u G
= — . V2
ot? i “

* For an arbitrary plane wave to be propagated with a
speed c,

u = fi(le + my + nz — ct)
« where [,m and n are the direction cosines of the normal to the

plane. Then, 45, /. Pu __ 2 pn
a =i o =ch

22




Equivoluminal Waves

ou __ 1.pl O%u __ 12 e

ox
Ou _ __2.pen Pu 2 "
5 = M and 52 =n - f
« Adding,
V2’LL _ e _ P D _ P 2N

1 =G e — Gt

e Thusc¢; =./G/p.

* An equivoluminal body wave propagated with a speed of
Ct-

23

Irrotational Waves

» Consider the formal modification to equation (3.15) when
the straining propagated is irrotational, w, = w, = w, = 0.

W o ow oo dw

0r Oy "0y 0z 0z Oz
Oe 0 (Ou Ov Ow
a—m—a—m(a—ﬁa—y*E)

9% N 0%*v N 0%w
- 9z Oxzdy  0Ox0z

0 (0, 9 (0w
- 9z2 Oy \ Oz 0z \ Oz

9% N 0%u N *u 2y
C9x2 Oy? 922 .

0%u
2. _ 2

0%u A+2G )\ s
W—( ’ )V“
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Irrotational Waves

« This is a wave equations with speed c; = \/(A + 2G)/p.

* Thus only two types of body waves are propagated in an
isotropic elastic solid and any general disturbance is
evaluated by their superposition.

* In seismology, equivoluminal waves are referred to as S or
shake waves, and irrotational waves as P or push waves.

* For a fluid medium G = 0 and thus ¢, = 0, and c; = /1/p.

* Lord Kelvin in 1899 apparently first applied the terms
irrotational and equivoluminal to describe these kinds of
waves.

« Knowledge that two kinds of waves each moving with a
different speed dates back to Poisson.

Surface Waves: Ravleigh Waves

* Whilst the waves discussed immediately above are body
waves, there are well investigated surface waves; a simple
example is a surface sea wave.

* |t was shown by Rayleigh in 1887 that waves may
propagate along the surface of an unbounded or semi-
infinite solid at a speed, for v = 1/4 of 0.92¢,, or for
v =1/2 of 0.96¢;.

 The waves rapidly decrease, exponentially, in amplitude
with depth below the surface and their speed is always
slightly less than c;.




Surface Waves: Ravleigh Waves

« The amplitude of vibration increases and reaches a
maximum at a depth of 0.0764 and thereafter decreases; A
is the wave length.

« At a depth of 1 the amplitude is 0.19 of that at the surface.

« Rayleigh waves of high frequency are attenuated more
rapidly with depth than low frequency waves—a kind of
skin effect.

» The normal stress (perpendicular to the surface) is
greatest at a depth 0.32A. (for v = 0.29) whilst the normal
stress parallel to the surface changes sign at a depth z of
about 0.252A1.

Reflection and, Refraction of

Waves at an Interface
]




Fluid-Vacuum Interfaces

» The stress boundary or interfacial
condition to be fulfilled in this
circumstance is obviously that of
zero normal stress at all times.

VACUUM

- FLUID

* The incident wave initiates the A ¢, B
reflected wave and since it also has
a speed of ¢4, this implies that the »
angle of reflection must be the same £

INCIDENT

as that of incidence. WAlVE

« The amplitude or intensity of the A ¢ B

incident wave is reversed in sign on ~
reflection | ¢,
I REFLECTED
WAVE

| 29,

Fluid-Vacuum Interfaces

» Together the incident and reflected plane waves give the
propagated wavefront and an ‘interference’ or ‘standing’
wave pattern is found for the direction normal to the plane
of periodicity w/c, sec .

 Phase velocity: The phase speed at a boundary is the rate
at which a point of constant phase travels along the
interface.

* an analogy is that of sea waves striking a straight wall at an
angle.

* The rate at which the point of intersection of, say, a crest
of a wave and the wall, moves along the wall is the

boundary phase velocity, zc, = ¢4/ sina.

30




Solid-Vacuum Interfaces

A plane P-wave incident on a plane |
boundary produces both reflected
plane P-waves and plane S-waves.

INTERFACE

REFLECTED (a)
P.wave

* The angle of reflection of the NCibENT
reflected P-wave must equal that of "+ Swnve
the angle of incidence of the

incident P-wave.

 And because both of the reflected
waves, i.e. S and P, are initiated
concurrently from the surface,

Ct
BCp = Gna sin (3

31

Solid-Vacuum Interfaces

* |In general the energy of the incident wave is distributed
between the reflected S- and P-waves.

* Certainly if « = 0° there can obviously be no reflected S-
wave.




Interfaces between two semi-infinite solids

« We suppose A and B to be FEFRACTED
‘welded’ together at the interface
so that on either side of the :ﬂ Pt
boundary the following four :(:
conditions must be satisfied: B 1y

* (i) equality of normal displacements,

REFLECTED

- (i) identical tangential INCIDENT Pwave
displacements, P-wave
(o8 8-V wave) | REFLECTED
« (i) equality of (or continuity in) §-wave

normal stresses, and

* (iv) equality of (or continuity in)
shear or tangential stresses.

33

Incident P-Waves

» If the angle of incidence is a4, incident dilatational waves
give rise to reflected and refracted waves in both A and B,

sinoy _ sinas _ sinfy  sinag _ sinf3

ci,  Ci,  C,  Cin @ C

A A A B B

« Again the relations are clearly similar to those prevailing
for geometrical optics.

» Expressions can be found for the amplitudes of the
reflected and refracted waves in terms of the incident
dilatation wave amplitude.

34




Incident S-Wave

* The behavior of plane S-waves at

REFRACTED

I
a boundary can be resolved in } SH wave
terms of S-waves which are i
horizontally/vertically polarized B 1P ey
with respect to the plane A @ |
boundary. |
INCIDENT | REFLECIED
 The former are referred to as SH-, Ol wie = i e
and the latter as SV-waves. (=)
* For an SH-wave, particle motion
occurs parallel to Oy only; i.e. u=0
and w=0, and gives rise only to . i
two S-waves, in particular, Sinq; _ Sl Ps
CtA CtB

35

Incident S-Wave

» Since there is only motion parallel to Oy, there is thus no
particle motion normal to the interface and hence no P-
waves can result.

« Alternatively, in SV-waves, particle movement occurs
parallel to the Oxz plane only, i.e. v = 0.

* The same relation between the various angles and speeds
applies as before.

« Other cases such as behavior at a solid-liquid interface
can easily be deduced as special cases of the solid-solid
interface instance discussed above.

36




Wave Reflection:

Exact Solution
o

Exact Solution

We wish to study how an incident plane wave is reflected
by the boundary.

Reflected
Longitudinal

Reflected

Incident Transverse
Transverse X2




Exact Solution

Since x,=0 is a free boundary, the surface traction on the
plane is zero at all times.

Thus, the boundary will generate reflection waves in such
a way that when they are superposed on the incident
wave, the stress vector on the boundary vanishes at all
times.

The reason for superposing not only a reflected transverse
wave but also a longitudinal one is that if only one is
superposed, the stress-free condition on the boundary in
general cannot be met.

39

Exact Solution

Let u; denote the displacement components of the
superposition of the three waves;

u; = (cosoy)e sinp, + (cosay)e; sin p, + (sinog)e; sin g,
u, = (sinoy)e; sinp, — (sinay)é; sin g, + (cos o3 )es sin 5,
uz = 0,
21 ,
0 = T(xl sinoy — xp cosoy — et — 1),
1
21 ,
0y = A (1 sinoyp + xp cOS 0y — et — 15),
2
21

O3 = 5—3(x1 sinog + xp cosoy — et — 1;).

40




Exact Solution

* On the free boundary, n = —e,, the condition t = 0 yields,
T, =Ty =T =0.

- Using Hooke’s law and noting that u; = 0 and u, does not
depend on x5, we easily see that the condition T3, = 0 is
automatically satisfied. For the other two,

T/ = 0ui/0x; +0u/Ox; =0 on x; =0,

T, = (i + 2,[1)((9142/8)62) + /laul/@xl =0 on x,=0.

T o e s

—2;; = é cos ¢ (sin?ay — cos o) + é cos p, (cos >0y — sin’ay) +£ cos 3 sin 203 = 0,
T & ) £ ) &

122 __lusmzocl CoS | — —zus1n2oc2 COS ) +—3(/1 + 24108 *a3) cos 5 = 0.

271 l) 6 {3

41

Exact Solution

« These equations are to be valid at x, = 0 for whatever
values of x; and t; therefore, we must have,

COS (] = COS(, = COS (3 atxy = 0.

* Thus,
Y| = P, £ 2pn = 3 = 2gn, p and g are integers.
2 2 2
f—n(xl sinop — et — 1) = f—n(xl sinop — et — ;) = f_n(xl sinoy — cpt — 1),
1 2 3

where 1) =1, — (£pl>) and 1} = n; — (£qf3).

-« This equation can be satisfied for whatever values of x,
and t only if,

sino;  Sinop SN o cr ¢t CL mo MM

i %) 67 6 6 Gl 6 b
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Exact Solution

1/2
. Thus, with L= & _ (i T 2“) _we have
n cr H

tr =10, nl3 =1,

o =0, nsinoy = sinday,

ny =1, nn;=rn;.

+ The reflected transverse wave has the same wavelength
as that of the incident transverse wave and the angle of
reflection is the same as the incident angle,

« The longitudinal wave has a different wave length and a
different reflection angle depending on the so-called
refraction index n.

43

Exact Solution

* It can be shown that

1_a </1+2M>1/2: [Mr/z

n = _T u 1 —2v
- So the boundary conditions become
e1(—cos2ay) + & (cos2ay) + e3n(sin2o3) = 0,

g1 8in 20 + & sin 20 — &3 — cos 20y = 0.
n

« These two equations uniquely determine the amplitudes of
the reflected waves in terms of the incident amplitude

cos? 20y — n? sin 20 sin 203
& = : : €1
cos 220 + n?sin2o0 sin 203

nsin 4o

&3 = &1

cos 2 201 + n? sin 20 sin 203
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Vibrations in Cxlindrical Bars

Vibrations in Cvlindrical Bars

* Equations of motion in cylindrical coordinates:

0%y e 2G Ow, Owy
pw_(A—FZG)@r_ r 00 +2G.W

0%v 1 Oe Ow, Oow,

0w Oe 0 2G Ow,




Vibrations in Cvlindrical Bars

« The dilatation e in the cylindrical coordinates:

1 0 1 Ov ow
e = —-

r E(ru)+?80 + 0z

 And w,, wg and w, are rotation components:
11 Ow v
%—5(;7ﬁ—53
1 /0u Ow
2 ( 8z  Or )
1

B O(rv)  Ou
Wz = 2r or 00

Wy —
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Vibrations in Cvlindrical Bars

 On the surface of the bar:

Opp = Trg — Tpyz =— 0

* Using Hooke’s law,

O'TTZ)\G—I—ZG'%
or
1 Ou 0 /v
W‘??@*”Eﬁﬂ
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Vibrations in Cvlindrical Bars

* These equations can be satisfied by using displacement
equations due to Pochhammer (1876) and Chree (1889)
which represent an infinite train of waves:

2
u="U -exp i-Tﬁ(z%—cpt)
=, :
v=V-exp i-Tﬂ(z—l—cpt)

2
w=W -exp [i- Tw(z—l—cpt)]

A and cp denote wavelength and phase speed respectively, and
U,V,W, are functions of r and 6 only.

49

Longitudinal Waves

» |t is assumed that particles of the cylinder move in an rOz
plane only, i.e. V = 0, and also that functions U and W are
independent of 6.

* Introducing these conditions into the equations of the
previous section, a very complex equation for the
frequency of wave transmissions is arrived at; and is
written in terms of Bessel functions J, and J;.

* By expanding the latter for the case when the bar radius
to wavelength ratio is relatively small, Rayleigh arrived at,

1,72 E
f)\:(l—zl/zﬁ'az) ?:Cp

cp/cr =1 — v (a/N)?

50




Longitudinal Waves

* In a bar which propagates very long waves, a/A - 0 and

c, = ¢ =+ E/p.

p

» The second term shows that a band of waves propagated
in accordance with the assumptions chosen is, in fact,
dispersed.

« Short wavelength waves travel slower than long
wavelength waves and hence, as time passes, the extent
of a wave train is progressively increased.

* The results quoted only apply for a cylinder of infinite
length.

51

Torsional Waves

* To transmit torsional waves, longitudinal and lateral
displacements must be zero, i.e. u = w = 0, and motion
about the cylinder axis must be symmetrical so that IV
must be independent of 6.

* The principal result which transpires is that c, = /G /p as
arrived at by elementary theory.

* In this fundamental mode dispersion is absent.




Flexural Waves

» The displacement functions adapted for flexure, with the
axis of the cylinder having a purely lateral motion are,

u=U-cos@-exp [i- 2Tw(z—l—ft)]
v="V-sinf-exp [i- 2Tﬂ(z:—l—ft)]

w=W -cosf-exp [i- 2TW(z—I—ft)]

where U,V and W are functions of r only.

« Since any account of the treatment for this case is lengthy
we shall not pursue discussion but simply refer to Love's

treatment. 53

Propagation of a Short Pulse

Throufirh a Short Cxlinder




Short Cvlinder

» Kolsky has demonstrated that the propagation of a pulse
through a short solid cylinder is complex.

« A small explosive charge was used to produce a pulse at
the center of one end face of a short steel cylinder, the
pulse duration being about 2 psec.

« Both P- and S-waves were created by the explosive and
spread out spherically from it.

« Waves arriving at a detector at the center of the lower face
can travel by a number of paths of different length, so that
the detected signal has many components corresponding
to the different routes through the cylinder.

55

Short Cvlinder

» The first signal to arrive is a P-wave
following route 1 and then the same
P-wave is reflected from the sides of

STEEL

the cylinder, i.e. via route 2. BLOCK

EXPLOSIVE
ur

» only the first few pulses of the
explosive are clearly recognizable an
separate.

« A propagated pulse obviously is
difficult to interpret for there are then
many paths producing similar time PETECTOR
delays.

P wave

————S8.wave
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