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ABSTRACT
Programming wireless sensor networks is a major challenge, even
for experienced programmers. To alleviate this problem, prior work
has proposed a paradigm shift from node-level microprogramming
to macroprogramming, where the user specifies a distributed ap-
plication using a single macroprogram that is automatically trans-
lated into a set of node-level microprograms. This paper makes the
case that node-level microprogramming itself can be made much
easier by using the right set of programming abstractions. To sup-
port this claim, this paper presents µSETL, a programming abstrac-
tion for sensor networks based on set theory. Sets offer a power-
ful formalism and high expressiveness, yet are a natural way of
thinking about resource abstraction in sensor networks. In addi-
tion to the set abstraction, µSETL features programming constructs
that enable event-driven programming at a high level of abstrac-
tion, thereby significantly simplifying node-level microprogram-
ming. µSETL consists of a set-based programming language, a
compiler that translates µSETL programs into node-specific appli-
cation code, and a runtime environment that provides various ser-
vices to support the set-based programming abstraction. µSETL
has been implemented using the Contiki operating system and runs
on the Telos motes. Experimental results demonstrate that µSETL
enables programmers to write various sensor network applications
in a natural and highly compact manner with minimal overheads.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and Embedded Systems; D.1.3 [Programming Techniques]:
Concurrent Programming-Distributed programming

General Terms
Design, Languages, Performance

Keywords
Wireless Sensor Networks, Programming Abstractions

1. INTRODUCTION
Cyber-Physical Systems (CPSs) are poised to play a pivotal role

in engineering new solutions to a variety of societal-scale problems,
such as energy conservation, climate change, healthcare, trans-
portation, etc. Networked embedded systems, such as wireless sen-
sor networks (WSNs), form a crucial building block for realizing
large-scale CPSs and have received considerable research attention.
While this has resulted in numerous technological advances (e.g.,
a plethora of tiny, cheap, and low-power sensor platforms is now
available [1]), the problem of programming a distributed wireless
sensor network still remains a major challenge and a potential show

stopper to widespread adoption. This challenge is best exemplified
by the following quote from a recent EE Times article [2]:

"Programming the software that manages applications run-
ning on wireless sensor and control networks is currently so
technically intricate, complex and laborious that it can take
months of work by specialized programmers just to deploy the
simplest application. That process takes even longer for more
complex deployments..." [2]
Previous attempts at addressing the programmability problem in

WSNs (see [3] for a comprehensive survey) have yielded the notion
of macroprogramming, where the user specifies a distributed appli-
cation using a single macroprogram that is automatically translated
into a set of microprograms that execute on individual nodes. Such
macroprogramming systems, discussed further in Section 6, play
a key role in lowering the barrier to entry for application domain
experts who may be novice sensor network programmers.

This paper adopts a philosophically different approach to simpli-
fying sensor network programming, compared to macroprogram-
ming approaches. We contend that the main issue with existing mi-
croprogramming techniques is not that they adopt a node-level per-
spective, but rather that the abstractions used to specify the node-
level microprograms are not conducive to easy programming. Our
assertion is that node-level microprogramming can be made signif-
icantly easier if programmers are provided the right abstractions to
describe their applications and the corresponding runtime services
to support these abstractions. In addition to relieving programmers
of the burden of worrying about low-level system issues, these ab-
stractions should also be expressive enough to easily compose dis-
tributed applications from a node-level perspective. To support our
claim, this paper presents the µSETL programming abstraction for
wireless sensor networks1.

The cornerstone of µSETL is a new data structure, namely a set.
Our choice of this data structure was motivated by the fact that a
set is a natural way to think about resource abstraction in a wireless
sensor network (indeed, while conversing about sensor networks,
we often use phrases such as "a set of nodes", "a set of sensor val-
ues", etc.). Further, most people with a science, engineering, or
mathematics background have some familiarity with set theory. In
µSETL, although the set abstraction is used to hold network-level
information, the scope of a set is local to the node where the set
is defined, and each set is operated on from a node-level perspec-
tive. In addition to the set data structure, µSETL also features two
special programming constructs (a periodic block and a monitor
block) to support event-driven programming at a high level of ab-
straction2. The periodic and monitor constructs allow us to trigger

1The µSETL programming abstraction is inspired by the SETL [4]
programming language for computer systems.
2It is known that event-driven programming is well suited for reac-
tive systems such as wireless sensor networks [5, 6].
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execution of handler functions based on timer events and mutating
events (e.g., when the contents of a set change), respectively. The
µSETL system also features a compiler that translates µSETL pro-
grams into node-specific application code, and a run-time environ-
ment (RTE) that provides methods for µSETL programs to perform
various set operations such as union, intersection, iterating over the
members of a set, etc. The RTE is also responsible for populating
and updating the contents of sets defined by µSETL applications.
µSETL has been implemented using the Contiki [6] operating

system and runs on the Telos motes. We evaluate µSETL using
three representative WSN applications, namely (a) periodic data
collection, (b) defining user-level routing protocols, and (c) object
tracking. Experiments conducted using the Cooja [7] simulator as
well as Telos motes demonstrate that combining the expressiveness
of sets with high-level event-driven programming enables WSN ap-
plications to be easily written as highly compact, yet efficient node-
level microprograms. For example, we are able to express the Surge
data collection application using just 3 lines of µSETL code.

2. BACKGROUND
The most common approach to programming WSNs is node-

level programming or microprogramming. In this approach, pro-
grams are written for individual sensor nodes using a language
such as C, nesC [8], etc. These programs interact with hardware
and other node resources through low-level abstractions provided
by the operating system. However, programming at this level of
abstraction forces the application programmer to pay attention to
many low-level system issues such as interrupts, sensing, node-
to-node communication, etc. Further, it is difficult to express dis-
tributed applications and network-level functionality at such a low
level of abstraction. For example, to generate a list of nodes that are
a certain number of hops away from a given node, a programmer
has to specify all of the program logic detailing how the list will
be assembled and maintained. Virtual machines (e.g., Maté [9])
create higher levels of abstraction on top of the node’s operating
system, but mainly with the goal of making node reprogramming
easier. Macroprogramming languages [3], on the other hand, of-
fer a different perspective by adopting a global or network-centric
view. Programs written using these macroprogramming languages
specify the behavior of the entire network or a group of nodes, ei-
ther logical [10] or physical [11]. A compiler then decomposes a
macroprogram into a set of microprograms that run on individual
nodes. By creating different kinds of abstractions, macroprograms
allow programmers to write concise scripts that hide the complex-
ity of a lot of common operations. However, it is not possible to
express node-level interactions using most macroprogramming lan-
guages, making them unsuitable for certain types of applications.
For example, a mesh-routing protocol cannot be designed without
specifying node-level interactions.

Set theory is a well-established mathematical discipline. Sets
provide a concise yet natural syntax and have an inherent expres-
sive power. The compactness comes from the declarative nature of
set definitions. Thus, set-based abstractions can significantly en-
hance program compactness, clarity, and readability. As a result,
a number of programming languages (e.g., specification language
Z [12], functional language MIRANDA [13], and procedural lan-
guage SETL [4]) from different domains use sets as data abstrac-
tions and exploit the potential offered by set constructs. SETL is
an interpreted language with a syntax similar to the language of set
theory. For example, a set can be declared in the following manner:

A := {2, 3.5, 5,’Hi There!’};

SETL supports all the elementary set-operations commonly used in

set theory. For example:
print(’Set union = ’, A+B);
print(’Set intersection = ’, A*B);

However, the added expressive power comes at the cost of some
loss in efficiency. Set-based programming languages are known to
be slower than their low-level counterparts. Hence, these languages
are mostly seen as a tool for rapid experimentation with algorithms
and design, and not for production use [4].

As mentioned in Section 1, sets are a natural abstraction to rep-
resent various distributed resources available in WSNs. Examples
of such resources could be different types of sensors, storage, or
even a node itself. In addition to these physical resources, some-
times it is useful to define abstract resources, for example, a set of
nodes with temperature data above a threshold. Expressing these
types of abstract resources or groups has always been a difficult task
for programmers, especially in microprogramming models. We be-
lieve that this is where the set abstraction really shines. Hence, we
strongly believe that a programming abstraction based on the pow-
erful formalism of set theory will make sensor network program-
ming significantly easier. To the best of our knowledge, µSETL is
the first work to provide such a set-based abstraction for WSNs.

3. µSETL PROGRAMMING MODEL
Although µSETL is inspired by SETL [4], the scope of its ap-

plications is very different. µSETL programs are written for net-
worked embedded systems, which have their own unique require-
ments and characteristics compared to their desktop counterparts.
These systems are often limited in computing power and other re-
sources. Hence, efficiency is a major concern here. Also, embed-
ded systems such as WSNs are often used as data collection and
aggregation systems. They can be viewed as sets of distributed
resources that can generate these data as necessary. Any program-
ming language or abstraction designed for these environments has
to take these characteristics into account. While µSETL has syntac-
tic similarity with SETL, semantically it is quite different. It also
has new programming constructs tailored to the needs of WSN pro-
grams. This section provides a detailed description of the µSETL
programming model.

3.1 Overview of µSETL Programming Model
Unlike SETL, µSETL adopts an event-driven programming

model. Conceptually, a µSETL program is just a collection of
event handlers and, optionally, initialization code that is executed
at startup. Events can be triggered by timers or changes in state (in-
cluding the receipt of messages from other nodes, such as a com-
mand from a base station). Event handlers are written using two
new block constructs introduced in µSETL, the period block and
the monitor block, which govern timer-triggered events and state-
triggered events, respectively. These constructs make it natural to
write event-driven applications using high-level idioms, and we de-
scribe them in greater detail in Section 3.2.

Notably, a µSETL program is written from the point of view of a
particular node. This is in contrast to the network-centric view of-
fered by macroprogramming languages [3]. By providing a node-
centric programming model and a set-based abstraction, µSETL
naturally captures common idioms that are used in most WSN ap-
plications. Examples of such idioms include the set of neighbors
of a node, temperature data from all nodes, etc. The abstraction
provided by µSETL also makes it possible to easily express other,
more complex, idioms. For example, iterating over all the nodes
with certain capabilities (e.g., nodes having light sensors) can be
easily expressed using custom-defined sets. Table 1 shows a few
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Idiom µSETL expression
Nodes with even IDs {N(i) | i % 2 == 0}

Neighbors of the current
node {i | distance(i) == 1}

Two-hop neighbors of the
base station {i | distance(base_station, i) == 2}

Temperature data that are
greater than x {N(i).temp | i IN all, N(i).temp > x}

Nodes having a camera {N(i) | N(i).has(CAMERA)}

The latest 3 data values re-
ceived from the base sta-
tion by the current node

{x | receive(base_station, x)}:3

Table 1: Expressing common WSN idioms using µSETL.

examples of how such idioms can be expressed using µSETL.
Even though a µSETL program is written from a node-centric

view, it is possible to specify the behavior of a group of nodes. The
µSETL constructs allow programmers to write code blocks specific
to a set of nodes (Section 4.2.3). This encourages code reuse and
allows a single piece of code to be written that behaves differently
on different types of nodes (e.g., an event handler that triggers dif-
ferent behavior on light sensor-equipped nodes than on tempera-
ture sensor-equipped nodes). The µSETL compiler detects this and
generates node-specific code, thereby decreasing binary size and
improving run-time efficiency (discussed further in Section 4.2).

3.2 µSETL Language Specification
µSETL adopts many of the language constructs found in SETL.

However, to accommodate the needs of wireless sensor networks
and other networked embedded systems, µSETL provides new lan-
guage constructs to simplify the specification of event handling. In
this section, we describe the key features of the µSETL language.

3.2.1 An Example µSETL Program: Object Tracking
We use a representative application - simple object tracking with

actuation (henceforth referred to as Object Tracking) - to describe
the various features of µSETL. The goal of Object Tracking is to
track a light source in a WSN. The µSETL code for this application
is shown in Figure 1. Each sensor node that has a light sensor mea-
sures light intensity periodically (every 4 seconds) and compares
the measured value to a threshold. If the sensed value is above the
threshold, the node reports the value to a base station (lines 13 –
18). The base station periodically (every 5 seconds) checks all the
received data and selects the nodes that have the highest light in-
tensity value. It then sends a command to the selected nodes to
turn on their cameras (lines 4 – 10). The commands are executed
by the corresponding nodes once they are received (lines 19 – 22).
This program captures most of the key features of µSETL. In the
following sections, we expand upon these features in detail.

3.2.2 µSETL Grammar
The µSETL language is defined by a context-free grammar, G,

shown in Figure 2. Currently, G defines three types of commonly-
used sensors as resources (temperature, light, and magnetometer).
G can be easily modified to include other types of resources (e.g.,
flash storage, other sensors). µSETL also does not currently sup-
port user-defined functions; instead, we provide a set of common
function calls (Table 3). Resources and functions are simply hooks
into built-in capabilities of the RTE, and to extend either, both G
and the RTE must be modified accordingly.

3.2.3 Data Types, Sets, and Variables
There are six basic data types in µSETL. They are integer (both

@base_station@ #!
  received := {[x, y] | receive(x, y)};!
  previous_on := {}; !
  period 5000 do!
    targets_on := {i:u8 | [i, j] IN received, !
         j == max({k | k IN received.second})};!
    target_off := previous_on - target_on;!
    send(target_off, CAMERA_OFF);!
    send(target_on, CAMERA_ON);  !
    previous_on := target_on;!
  end!
#!
@{node | node  != base_station,!
         has(node, LIGHT_SENSOR)}@ #!
  period 4000 do!
    reading := N(node).light;!
    if (reading > 400) then!
      send(base_station, reading);!
    end!
  end!
  command := {x:u8 | receive(base_station, x)}:1;!
  monitor command do!
    execute(command);!
  end!
 #!

1!
2!
3!
4!
5!
!
6!
7!
8!
9!
10!
11!
12!
!
13!
14!
15!
16!
17!
18!
19!
20!
21!
22!
23!

Figure 1: µSETL code for Object Tracking.

Set Description
novolatile {2, 3, 4} (Non-volatile) set of integers
{N(2), N(5), N(7)} Set of nodes
{i | distance(i, x) == 1} One hop neighborhood of x
{N(i).light | i IN y} Light data of the nodes in set y

Table 2: Examples of sets in µSETL.

signed and unsigned), float, char, string, set, and node. All of the
data types except node are available in SETL. Node is a data type
in µSETL that represents a single node in the network and encapsu-
lates various properties of a node. Examples of such properties in-
clude location, identifier, etc. Node also encapsulates various types
of resources a node may have. These resources can be various types
of sensors (light, temperature, etc.) or computing elements (CPU,
memory, etc.). This makes the representation of a node and the ma-
nipulation of various information about it simple and intuitive. The
µSETL grammar reserves the letter N to denote a node, and N(i)
refers to a particular node i. Resources and different attributes of a
particular node are accessed using the dot operator (e.g., the light
sensor on the node with ID i can be accessed using N(i).light).
It should be noted that the dot operator cannot be used to access
any local variables of a node.

Variables (i.e., primitive data types and sets) in µSETL can be
volatile, which means that they can change over the course of exe-
cution without the direct knowledge of the programmer. The run-
time environment is responsible for monitoring the state of volatile
variables. The µSETL compiler performs an analysis to deter-
mine which data should be considered volatile by the RTE (Sec-
tion 4.2). Sets can be explicitly declared non-volatile by using
the novolatile declaration (line 15 of Figure 2). In µSETL, sets
are essentially multi-sets, since the same value can occur multiple
times within a set. However, for the sake of simplicity, we refer to
them as sets throughout the paper.

Table 2 shows a few examples of sets defined in µSETL. Sets
must be finite and nested set definitions are allowed. Note that el-
ements in volatile sets are implicitly associated with a time-stamp,
according to when the RTE placed the element in the set. In addi-
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1 <program> := <stmt-list> 

2 <stmt-list> := ! | <stmt> <stmt-list> 
3 <stmt> := <node-prefix> (<comment> | <stmt-nest> | <stmt-nonest> | # <stmt-list> #) 
4 <node-prefix> := ! | @ <expr> @ 
5 <stmt-nest> := <var> := <expr> ; | <expr> ; | <if-stmt> | <loop-stmt> | <set-stmt> |  break ; | continue ; 
6 <stmt-nonest> := <periodic-block> | <monitor-block> 
7 <periodic-block> := period <int-lit> {, <int-lit>} do <stmt-list-nest-body> end 
8 <stmt-list-nest-body> := ! | <stmt-list-nest> 
9 <stmt-list-nest> := <stmt-nest> | <stmt-nest> <stmt-list-nest> 
10 <monitor-block> := monitor <var-list> do <stmt-list-nest-body> end 
11 <loop-stmt> := <regular-loop> | <set-loop> 
12 <regular-loop> := for (<expr> | !) ; (<expr> | !) ; (<expr> | !) do <stmt-list-nest-body> end 
13 <set-loop> := for <var> in (<var> | <set-defn>) do <stmt-list-nest-body> end 
14 <if-stmt> := 

 
if <expr> then <stmt-list-nest-body> end 
| if <expr> then <stmt-list-nest-body> else <stmt-list-nest-body> end 

15 <set-stmt> := (! | novolatile) <var> := <set-defn> ; 
16 <set-defn> := ({ (! | <range> | <set-elem-list>) } | { (<expr> | <set-map>) <bar> <expr-list> }) (! | : <int-lit>) 
17 <range> := <int-lit> ... <int-lit> 
18 <set-map> := [ <expr> , <expr> ] (! | : <expr-list>) 
19 <set-elem-list> := <set-member> | <set-member> , <set-elem-list> 
20 <set-member> := <var> | <literal> | <set-defn> | <macro> 
21 <var-list> := <var> | <var> , <var-list> 
22 <simple-expr> := <var> | <literal> | <set-defn> | <macro> | <func-call> | <lparen> <expr> <rparen> | N <lparen> <expr> 

<rparen> (! | . (temp | light | magnet)) 
23 <expr> := <simple-expr> | <simple-expr> <operator> <simple-expr> | (! | - | ++ | --) <simple-expr> | <simple-

expr> (++ | --) 
24 <expr-list> := <expr> | <expr> , <expr-list> 
25 <literal> := <int-lit> | <char-lit> | <float-lit> | <string-lit> 
26 <operator> := + | - | * | / | % | in | IN | notin | NOTIN | subset | SUBSET | && | || | < | <= | > | >= | == | != 
27 <func-call> := (average | execute | max | min | has | distance | receive | send | print | set_param) <lparen> (! | 

<expr-list>) <rparen> 
28 <var> := <id> (! | : (i8 | i16 | u8 | u16 | c | f | s | str))  

29 <macro> := node_id | base_station | all   
30 <digit> := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
31 <char> := A | B | . . . | Z | a | b | . . . | z 
32 <id> := <char> <id-tail> 
33 <id-tail> := <char> | <digit> | (<char> | <digit>) <id-tail> 
34 <int-lit> := <digit> | <digit> <int-lit> 
35 <float-lit> := (<int-lit> | !) . <int-lit> 
36 <string-lit> := “ <Any character sequence without the quote> “ 
37 <comment> := // <Any character sequence in a single line> 
38 <lparen> := ( 
39 <rparen> := ) 
40 <bar> := | 

  

Figure 2: The language specification for µSETL.

tion to regular sets, µSETL allows us to define sets with an upper
limit on their cardinality. For example, consider the set command
defined in Object Tracking (line 19 in Figure 1). Here, the cardi-
nality of command is restricted to 1. By restricting the cardinality
of command to 1, the set contains the last command received from
the base station. For a volatile set, if the size of a set is restricted
to x, only the latest x members (determined by the time stamps of
the members) of that set will be available. For a non-volatile set,
only the first x members will be available according to the order in
which they are inserted into the set. This language construct allows
us to define singleton sets by restricting the cardinality to 1. It can
also be used for debugging purposes where the size of a set growing
beyond the specified size could indicate a possible bug.

3.2.4 New Syntactic Constructs
As mentioned in Section 3.1, a µSETL program is essentially a

set of event handlers. Events can be triggered by an expired timer,
the arrival of new sensor data, etc. To facilitate defining event han-
dlers, µSETL includes two new constructs, periodic block and mon-
itor block, described below.

Periodic Block: In WSNs, certain tasks often need to be executed
periodically. To express such tasks using µSETL, we introduce the
notion of periodic blocks. The body of a periodic block can be
considered as an event handler that is executed whenever a timer
expires. Note that the semantics of µSETL call for the timer to be
automatically rescheduled upon expiry. The auto-generated code
produced by the µSETL compiler contains the necessary timer code
to handle the execution of the block. For example, consider the

following code segment from Object Tracking (lines 4 – 10):

period 5000 do
......

end

Here, the periodic block is executed every 5,000 milliseconds. Op-
tionally, the maximum number of invocations of a periodic block
can also be specified in the block header (Figure 2). Periodic blocks
cannot be nested or enclosed in other blocks or loops.

Monitor Block: In WSNs, certain actions may need to be taken
when the state of the system changes. For example, if the neigh-
borhood of a node changes, the node’s routing table may need to
be updated. Monitor blocks make it easy to express such actions.

Recall that µSETL distinguishes between volatile and non-
volatile sets; the state of volatile variables and sets is maintained by
the RTE (Section 4.2.2). A monitor block is conditioned over such
volatile data, and is executed whenever that data changes. Consider
the following example:

monitor neighborhood, xyz do
// Do something

end

Here, the block is executed every time there is a change in either
neighborhood (a volatile set) or xyz (a volatile variable). In Sec-
tion 4.3, we describe how the RTE detects any changes in the vari-
ables that are being monitored and notifies the corresponding ap-
plication about the changes. Note that a monitor block can only
be conditioned on volatile variables, a constraint that is checked at
compile time. Similar to periodic blocks, monitor blocks are also
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non-nestable and can not be surrounded by other loops, blocks, or
conditional statements. In Object Tracking, we use a monitor loop
to check for, and execute, commands that are received from the
base station (lines 20 – 22).

4. µSETL IMPLEMENTATION
To efficiently implement the µSETL programming model, we de-

veloped a compiler that translates a µSETL program into C code,
and a run-time system that provides several of the key capabilities
necessary to support the µSETL model (such as set management,
timers, etc.). Section 4.1 provides an overview of the µSETL archi-
tecture, Section 4.2 discusses the µSETL compiler, and Section 4.3
describes the run-time environment we developed.

4.1 Overview of the Architecture
Figure 3 gives a high-level overview of the µSETL architecture

and shows the interactions between its different components. At
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Figure 3: An overview of the µSETL architecture.

the heart of the architecture is the µSETL compiler, which takes as
input a µSETL program (a .setl file) and a set of device profiles.
The language specification for writing a µSETL program was de-
scribed in Section 3. A device profile contains information about a
device, such as available sensors, type of the device, etc. This infor-
mation is used by the compiler to generate node-specific code (Sec-
tion 4.2.3), if possible. If a new device joins the network, a new de-
vice profile is created for it. Similarly, if a device is removed from
the network, its corresponding device profile is no longer used.

The µSETL compiler was implemented using lex and yacc,
two common Unix tools. The compiler generates C code written
for Contiki, a lightweight operating system for resource-limited,
networked embedded systems [6]. It provides a thread-like pro-
gramming style on top of an event-driven kernel through the use of
lightweight protothreads [14]. Contiki also comes with a simulator,
Cooja [7], which we used for simulating many of our experiments.
Cooja is highly extensible through the use of external plugins. It
can be used for network-level, OS-level, and instruction-level sim-
ulation of sensor nodes running Contiki.

The Contiki compiler suite takes the source files emitted by the
µSETL compiler and generates binaries for the targeted nodes in
the network. Every node that runs a µSETL program also has a
µSETL run-time environment (RTE) installed (Section 4.3). The
RTE provides the necessary communication and data collection
mechanisms to applications.
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Figure 4: Key components of the µSETL compiler.

4.2 µSETL Compiler
The µSETL compiler takes an input file (with .setl extension)

and emits node-specific source code. The µSETL compiler is a
source-to-source compiler, transforming µSETL programs into C
code (which, as shown in Figure 3, is then compiled with the Con-
tiki compiler tool suite). As part of this translation, the µSETL
compiler performs two key tasks: volatile data detection and node-
specific code generation. Figure 4 shows the key components of
the µSETL compiler, which are described below.

4.2.1 Type Inference
µSETL is a statically and weakly-typed language where the pro-

grammer specifies the types of the variables with basic types. For
variables that are of type set, types are automatically inferred by
the compiler. The other sources of type inference are predefined
macros and functions (Table 3). For example, if an untyped vari-
able v is assigned the value of base_station, the type of v is
inferred to be an unsigned integer. If the type of a variable cannot
be determined (e.g., the programmer did not specify the type and it
cannot be inferred) or has a conflicting type (e.g., a set is assigned
to a variable with integer type), the compiler reports an error.

4.2.2 Volatile Data Detection
In µSETL, it is possible to define a set whose members change

over time. For example, a set may be composed of sensor readings
(e.g., temperature) from other nodes, which may need to be period-
ically updated. Hence, evaluating the set membership only during
the definition of the set is not enough. Each time the set needs to be
used, there has to be a mechanism to ensure that the set’s contents
are up-to-date. We refer to such sets as volatile sets. Variables that
are of types other than set can also be volatile. For example, the
average of the temperature values in the aforementioned set is also
volatile. The µSETL compiler can detect such variables and the
run-time environment provides necessary support to ensure that the
volatile data remain up-to-date (Section 4.3).

To determine whether a variable X is volatile, we consider two
cases. In the first case, X is a set. We define a binary relation, ←,
between two sets a and b. a ← b means, the membership of a
depends on the membership of b. Examples of such dependencies
can be found in Section 5. We also define the dependency closure
of X, V∗(X), as follows:

S = The set of all sets defined or used in the program
V0(X) = {X}

Vi+1(X) = Vi(X) ∪ {y : x← y ∧ y ∈ S ∧ x ∈ Vi(X)}

V∗(X) =
⋃
i∈N

Vi(X)

X is volatile if any of the following is true:
1. Membership of X is defined in terms of any attributes of other

nodes that may change over time (e.g., distance).
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2. Members of X contain information about some resources that
may change over time (e.g., sensor reading).

3. X is a member of V∗(Y), where Y meets criteria 1 or 2 above.
In the second case, where X is a non-set variable, X is volatile if

either of the following is true:
1. X refers to some information that may change over time (e.g.,

distance of a node, sensor reading, etc.)
2. X is defined in terms of other volatile variables.
It is possible to force the µSETL compiler to ignore the volatility

of a variable explicitly by preceding the definition of that variable
with the keyword novolatile (Figure 2).

Types of Volatile Data: We categorize volatile data in µSETL into
three classes:

1. Distance information: A majority of WSN applications re-
quire inter-node distance information, such as finding the
closest node, defining a neighborhood, etc. For example, the
following code snippet defines the set of immediate neigh-
bors of a node:

neighbors := {i | distance(i) == 1}

2. Resource data: This type of data contains information about
various types of resources of a node, most notably, sensors
that are present (e.g., temperature, light). For example, the
following code snippet defines a set containing temperature
data from all the nodes in the network:

temp := {N(i).temp | i IN all}

3. Data received using receive(): A node can send vari-
ous types of information (other than resource or distance-
related data) to other nodes in the network using the send()
function (Table 3), which recipients can receive using the
receive() function. For example, the following code snip-
pet defines a set that contains all the integers received from
the base station:

received := {i:i8 | receive(base_station, i)}

More examples of using volatile data can be found in the code for
Object Tracking (e.g., received, targets_on, etc.).

4.2.3 Node-Specific Code Generation
The µSETL language constructs allow programmers to explicitly

name the target node(s) for a block of code. For example, in Object
Tracking, the µSETL code in lines 1 – 11 looks like the following:

@base_station@ #
......

#

The code between the hash signs is intended only for the base sta-
tion. The µSETL compiler can detect such code and include it in the
source code of the corresponding nodes. Node-specific code can
also be generated by analyzing expressions that are constant. Only
conditional statements (in our case, if-then-else) can create
code segments that are node-specific. Figure 5 shows an example
of node-specific code generation. As shown, the code segment B is
specific only to the node with ID 0, identifiable by the surrounding
if statement. The µSETL compiler retains this code segment only
in the source code targeted for node 0, while other nodes do not
have this segment. Complex conditional statements that have con-
stant expressions (e.g., node_id == 0 || average(temp) > 25)
can also be handled by the µSETL compiler.

There are other types of expressions that may create opportu-
nities for generating node-specific code. Such expressions are not
constants, but change less frequently over the lifetime of a network.
We refer to these expressions as quasi-constants. For example, a

// Code A!
if node_id == 0!
then!
  // Code B!
end!
// Code C!

// Code A!
// Code B!
// Code C!

// Code A!
// Code C!

μSETL	
  
Compiler	
  

µSETL file 

Code for node 0 

Code for other nodes 

Figure 5: Node-specific code generation in µSETL.

code segment may be conditioned on whether the node has a par-
ticular resource available (e.g., if N(node_id).has(CAMERA)).
That code segment should only be dispatched to nodes with the nec-
essary resource available. However, this resource availability may
change in the future, in which case an appropriate version of the
code needs to be re-dispatched. The µSETL compiler detects quasi-
constant expressions and generates node-specific code accordingly.
The device profiles (Figure 4) of the nodes are used to evaluate
quasi-constant expressions (e.g., to check whether has(CAMERA)
is true for a particular node).

4.2.4 Code Generation
After detecting volatile data and node-specific code, the µSETL

compiler generates C code that can then be compiled to generate
binaries for the Contiki operating system. In addition to translating
the µSETL code into C code, the code generator needs to perform
the following key tasks:
Code Optimization: Since the code is generated in C, many stan-
dard compiler optimization techniques are applied by the Contiki
compiler tool suite. Our code generator performs some optimiza-
tions that will not be performed by the C compiler. For example,
if there is an empty periodic block, there will still be a timer that
will keep triggering periodically. Our code generator will detect
and eliminate such empty loops.
Calculating a Variable: Due to the presence of sets and volatile
data, calculating the value of a variable is non trivial. For example,
a variable x may depend on a volatile variable v. So, before we use
x, we need to evaluate v and re-calculate x. Volatile data detection
makes it easier to identify these cases. However, a chain of such
dependencies may complicate the detection and lead to unneces-
sary overhead. To address this problem, we construct the volatile
variable dependency graph (VDG).

VDG = (V, E) is a directed acyclic graph where V is the set of
vertices and E is the set of edges. If there is an edge e ∈ E from a ∈
V to b ∈ V , then the definition of b is dependent upon the definition
of a. Hence, a needs to be evaluated before we can evaluate b.
For example, consider the code shown in Figure 6. The figure also
shows the VDG corresponding to the µSETL code. The VDG also
includes temporary sets that are derived from the set definitions.
These temporary sets are shown alongside the code.

To evaluate a volatile set or variable x, we construct a depth-first
tree, T , rooted at x from the graph (V, ET ). We topologically sort
the nodes V ′ in T such that if a ∈ V ′ precedes b ∈ V ′ in the sorted
order, then the definition of b is dependent on the definition of a.
Hence, a needs to be evaluated before b. The topological sort al-
lows us to ignore redundant relationships in the VDG (shown as
dotted edges in Figure 6). The VDG for a µSETL program is not
maintained during run time. It is used only for code generation
by the µSETL compiler. The VDG allows the compiler to gener-
ate code that evaluates variables in the proper order. Note that the
VDG only depicts the dependencies among volatile variables, as
non-volatile variables do not need to be recalculated on use.
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Sets defined in µSETL script 
Temporary sets defined by the compiler 

received	
   temp_1	
  

temp_2	
  

temp_3	
  

nearest	
  

y 

x 

received := {i | receive(i)}!
x := average({N(i).x | i IN received})!
y := average({N(i).y | i IN received})!
nearest := {i | i IN received,!
           distance(N(i), x, y) <=!
           min({distance(N(j), x, y) |!
           j IN received})}})}!

temp_1 := {N(i).x | i IN received}!
temp_2 := {N(i).y | i IN received}!
temp_3 := {distance(N(j), x, y) | !
           j IN received}!

Figure 6: Volatile Variable Dependency Graph generated from
µSETL code. The corresponding µSETL code and the tem-
porary sets are shown above the graph. The rectangles in the
graph represent the variables that are sets while the circles rep-
resent other types of variables.
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Figure 7: The run-time environment (RTE) in µSETL.

The code generator is also responsible for detecting and ini-
tializing timers based on the periodic loops present in the µSETL
program, proper data initialization, locking and unlocking volatile
variables in right places, adding Contiki specific code, etc.

4.3 Run-Time Environment
The µSETL run-time environment (RTE) is the component that

provides the necessary run-time support for executing a µSETL
program. For example, communication with another node, sens-
ing remote data, set operations, etc. are all performed with the help
of the RTE. The main components of the RTE and the interactions
among them are shown in Figure 7. The following sections describe
the key components of the RTE.

4.3.1 APIs Provided
The RTE provides a set of functions and macros that makes it

easy to write complex applications. For example, to find the hop
distance between the current node and a node with ID i, one can
simply write distance(i). The detailed mechanism for finding
the distance is transparent to the application. Table 3 provides the
list of macros and functions that are provided by the RTE. Note
that we only list the most common functions and the ones used
in our experiments. It is possible to extend this list with a minor

Name Description

M
ac

ro all The set of all node IDs in the network
node_id The current node ID
base_station The base station of the network

F
un

ct
io

n

distance(i)
Hop distance to the node with ID i from the
current node

distance(i, j)
Hop distance from the node with ID i to the
node with ID j

send(n, data)
Sends data to the node with ID n. n can be
a set of IDs as well, in which case, data is
sent to all members of n

average(s)
Calculates the average of the members of
the set s. Return type depends on the type
of the members of s

max(s) Returns the maximum element of the set s
min(s) Returns the minimum element of the set s

execute(c)
Executes the command c locally (e.g.,
CAMERA_ON, CAMERA_OFF). c can also be a
set of commands

has(n, r)
Returns 1 if node n has the resource r (e.g.,
CAMERA, TEMP_SENSOR), 0 otherwise

print(s)
Generates a printf statement that prints s.
Here, s can be a set

receive(n, d)
Gets the data d from the RTE sent by node
n using send()

set_param(p, v)
Sets the value of the RTE parameter p (e.g.,
TS_PERIOD to set Ts, TD_PERIOD to set
Td) to v

Table 3: Common functions and macros provided by the RTE.

A

21 B ’C’

3 "str"

Figure 8: Set representation in µSETL. The set represented
here is {1, 2, {3, "str"}, ’C’}. Circles represent a set
while rectangles represent atomic elements of a set.

modification of the RTE. The RTE also contains the set library that
provides necessary support to handle all set-related operations (e.g.,
set union, subtraction, etc.). Sets are represented using a tree-like
data structure as shown in Figure 8.

4.3.2 Communication Handler
All communication to and from a µSETL application is handled

by the RTE. Examples of such communication include sending a
packet to another node, querying another node for a sensor reading,
etc. Figure 7 shows how the communication handler coordinates all
the communication for a node. It buffers all outgoing communica-
tion packets to avoid conflicts due to simultaneous requests from
applications. Note that each node only has a single RTE, which is
used by all the applications on the node. Also, a µSETL application
cannot directly address another µSETL application.

4.3.3 Volatile Data Manager
The volatile data manager (VDM) in the RTE is responsible

for managing the volatile data used by applications. Even though
volatile data are stored by the applications themselves, the VDM
provides necessary mechanisms for updating them. This includes
notifying the application about an update, fetching a sensor reading
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from a remote node to update a variable, etc. A brief discussion of
how the VDM performs these tasks is given below.

Set Registration: Each set that is volatile is registered with the RTE
when an application is initialized. The RTE stores the set identifier
(an integer), source Contiki process identifier, and the type of de-
pendency it has. The type of dependency is determined by the type
of volatile data used to construct the set at compile time. A set may
have multiple types of dependencies. We do not register a primitive
type of volatile data (e.g., an integer). If such a variable is defined
in terms of another volatile set, that set is already registered with
the RTE. Upon exiting, an application de-registers all of its sets.

Data Update Procedure: In Section 4.2.2, we categorized volatile
data into three types: distance information, resource data, and re-
ceive data. Each type of data has an associated data expiration
timer (Figure 7) with it. We refer to the timers for these three types
of volatile data as Td, Ts, and Tr, respectively. To avoid any prob-
lems due to synchronized network access, a small random variation
is added to the periods. For example, for sensor data, the time pe-
riod of the corresponding data expiration timer is set to a random
value in the range [Ts(1 − α),Ts(1 + α)]. We used α = 0.3 for our
implementation. It should be noted that these timers determine the
duration for which the corresponding data is considered valid after
arriving at a node. Thus, it does not include the time between when
the data was generated at the source node and when it arrives at the
destination node. When a timer expires, the corresponding data is
marked as invalid. When distance information becomes invalid, a
ping request is sent to the corresponding source. If a node receives
a ping request, it sends a ping reply to the inquirer. Similarly, if
resource data expires, a resource request is sent to the source and a
resource reply is sent back as reply. If the resource is not available
(e.g., a node without a temperature sensor may receive a request for
temperature data), an error code is sent instead. For local resource
data, it is directly fetched from the current node. When receive
data expires, no request is sent to the source since this type of data
is only generated when the source invokes send().

Every time the RTE has new volatile data, it finds all registered
sets that are dependent on this type of data. Each application that
owns such a set is notified via a callback function about the update.
An application re-constructs a volatile set at its convenience (e.g.,
whenever it uses the set). Note that an update notification for a set
only means that new data of type similar to the type that the set is
dependent upon are available. If an application decides to evaluate
a volatile variable, it simply queries the RTE for the corresponding
data. If the data is already stored, it is returned to the application.
Otherwise, the RTE starts maintaining that data in an internal buffer
by starting the corresponding data expiration timer.

The data update procedure described above provides several ben-
efits over other update mechanisms. If data is updated by the RTE
on demand (i.e., only when an application needs the data), then
applications will need to wait for the data to arrive. In contrast,
the RTE caches and periodically updates remote data without the
knowledge of the applications. While the freshness of data is com-
promised in this approach, it avoids a lot of delay and synchroniza-
tion issues. However, there are certain types of applications (e.g.,
time synchronization) where this freshness may prove to be crucial.

Data Consistency: Since µSETL does not have any concept of
shared variables and volatile data is polled periodically rather than
being pushed, there is the possibility of inconsistent data. This is
true for any programming language that does not support shared
variables. Some macroprogramming languages allow shared vari-
ables and use synchronous methods [15] or other locking mecha-
nisms [16] to ensure consistency. The use of shared variables are

known to introduce significant overheads due to the extra message
passing needed to keep them consistent. There are different ways
in which inconsistencies may arise in a µSETL program. Consider
the following code snippet:

1 temp := {N(i).temp | i IN all};
2 for i:f IN temp do
3 // Do something
4 end

First, different nodes running this code segment may have different
values for the members of temp. Second, inconsistency can occur
when a loop is conditioned upon a volatile set. For example, in
the above code segment, the for loop in line 2 depends on the
size of the volatile set temp. The RTE notifies the application of
any changes in temp at run time. If temp is not updated carefully,
unexpected behavior (e.g., looping forever) may occur.

We previous discussed how volatile data can be dependent on
three types of information: distance, resource data, and receive()
data. Only the distance and resource data dependencies can cause
the first type of inconsistency mentioned above. Data received us-
ing receive() are local properties of a node and hence, are im-
mune to this problem. Let us consider two instances of a variable v
in node A and node B. Since Td and Ts are chosen randomly, they
may be different for the two nodes. Let us assume the period of
the data expiration timer for v to be T v

A and T v
B for nodes A and B,

respectively. We define the age of v in a node n as the difference
between the time when the value of v was created at the source
and the time when v was used by the application in n. We also
define Lv

n as the network latency to transfer a value of v from the
source to n. Assuming expired values are not used, the expected
maximum age difference between two used values of v in A and
B can be max(E(T v

A + Lv
A), E(T v

B + Lv
B)) + p.E(ε). Here, p is the

probability that v is changed after the update, which obviates the
need for recalculating any sets that have v as a member, and ε is
the time necessary to do the recalculation. For a set, S , used in
node, n, the maximum age difference between the members of S is
maxx∈X E(T x

n + Lx
n) + p.E(ε).

To avoid inconsistencies that may arise from loops that are con-
ditioned upon volatile variables, µSETL uses locks in appropri-
ate places to delay updates of such sets until the loop execution
is finished. The µSETL compiler automatically detects appropri-
ate places to put locking and unlocking mechanisms in the auto-
generated code. While calculating the age difference between two
instances of a variable on two different nodes, we also have to con-
sider the loop execution time in addition to the other components
discussed above. For example, consider the following code snippet:

1 a := {i | distance(i) == 1};
2 b := {N(i).temp | i IN a};
3 for i:i8 IN a do
4 ...
5 for j:i8 IN {0...10} do
6 // Use b here
7 end
8 end

Here, set a is locked before the first for loop (line 3). Set b cannot
cause any inconsistency and is, therefore, not locked. However, the
calculation of b may use an old snapshot of a. After the outermost
loop execution is finished (line 8), a is unlocked again.

5. EVALUATION
We evaluated µSETL using three applications developed in Con-

tiki [6] and tested them using the Cooja [7] simulator as well as on
real Telos motes. The three applications were a modified version of
Surge (Modified Surge) [17], an implementation of a user-defined
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Program Code size (Approximate # of lines)
Baseline Version µSETL Program

Modified Surge 195 6
Routing Table 201 3
Object Tracking 135 + 115 11 + 12

Table 4: Code size comparison for µSETL applications. The
code for Object Tracking shows the code size separately for the
base station and the follower nodes.

routing protocol (Routing Table), and tracking a light source with
actuation (Object Tracking). These experiments demonstrate how
µSETL can be used to develop simple and common sensor network
applications (e.g., Modified Surge) as well as more complex ones
(e.g., Object Tracking).
µSETL significantly reduces programmers’ effort in writing an

application. Table 4 shows how µSETL programs compare against
their baseline versions (versions that would have been written man-
ually in Contiki) in terms of lines of code. In many cases, the
µSETL program was less than 5% the size of the corresponding
baseline version. While number of lines may not always be the
best metric for judging the strength of a programming abstraction, it
does give an idea of relative conciseness and ease of programming.
Other works [18] have used metrics such as number of variables,
number of functions, etc., to analyze code complexity. Unfortu-
nately, such metrics are only useful when comparing programming
models that adopt the same general paradigm (e.g., comparing two
imperative programming models). When comparing programming
models that use different paradigms (e.g., declarative vs. impera-
tive), it is difficult to distinguish between advantages provided by
the abstraction (µSETL’s set and event abstractions) and those in-
herent to the programming paradigm (µSETL’s set definitions are
especially concise due to their declarative nature).

Table 5 shows the memory consumption (both ROM and RAM)
of the applications we used in our experiments, both for the µSETL
and the baseline versions. These statistics were collected from sim-
ulations running in Cooja for 2,000 seconds. If applicable, memory
footprint for the node with the maximum consumption is reported.
The table also lists the ROM size for the two key components of
the µSETL runtime system: the RTE and the set library. These two
modules are always included in a µSETL program. As a reference,
a simple Contiki program having only a single printf statement
uses 20,370 bytes of ROM when compiled using the default settings
for TelosB platform. In all cases except Routing Table, the µSETL
versions consumed less RAM than their baseline counterparts. The
reason is that Routing Table contained a number of explicit and im-
plicit set definitions which contributed towards the added overhead.
Overheads other than the memory consumption (e.g., number of
packets transmitted by the RTE) and performance metrics are dis-
cussed in later sections as we describe the applications used in the
experiments. All the programs used in our experiments were built
using the default compilation settings for the TelosB platform in
version 2.x of Contiki. All our experiments used the Rime [6] net-
working stack for communication. Unless otherwise specified, the
values of Td,Ts, and Tr were set to 60, 60, and 20 seconds respec-
tively. Experiments were repeated five times and results averaged.

5.1 Case Study #1: Modified Surge
Surge [17] is a data collection application where a base station

periodically gathers sensor data from a set of distributed follower
nodes. The level of abstraction offered by µSETL makes it very

Application / Memory Usage (bytes)

Module RAM ROM

Set library - 1,314
RTE - 3,568
Modified
Surge

Baseline 1,021 29,508
µSETL 981 34,592

Routing Baseline 1,475 26,262
Table µSETL 1,848 34,960

Object
Tracking

Baseline
Base Station 731 25,756

Sender 160 25,594

µSETL
Base Station 734 35,508

Sender 646 34,486

Table 5: Memory footprint for different applications.

easy to write Surge-like applications. Figure 9 shows how differ-
ent versions of Surge can be implemented using only a few lines
of µSETL code. In Distributed Surge (Figure 9(a)), each follower
node independently samples its temperature sensor every 4 seconds
and forwards the data to the base station. This simple version does
not use any set and the RTE does not have to manage any volatile
data. In the centralized version of Surge (Figure 9(b)), the base
station actively gathers the data from the followers. It stores the
collected data in a set (line 2) and whenever the set changes, the
collected data is printed to the serial port. The change is detected
by using a monitor block. To keep the data sampling rate consistent
with the distributed version, the centralized version overrides (line
1) the default value of Ts and sets it to 4 seconds. However, in this
experiment, we used a modified version of Surge, called Modified
Surge, where a node periodically (every 4 seconds) collects temper-
ature readings from its neighbors and forwards the average of the
collected data towards the base station. This new version uses a lot
of the services offered by the RTE and the set library. Therefore, it
was useful in micro-benchmarking the µSETL architecture.

The number of lines in the µSETL code for Modified Surge was
97% less than the corresponding baseline version (Table 4). We
successfully simulated this application in Cooja with a network
consisting of 30 nodes. However, to benchmark µSETL to analyze
packet loss, memory consumption (Table 5), energy consumption,
etc., we used a linear topology with a smaller number of nodes as
shown in Figure 10. Figure 11 shows the number of packets re-
ceived at the base station from each of the nodes in the network
in a 200 second time window. As shown in the figure, the packet
delivery numbers for the µSETL version were very similar to the
baseline version of Modified Surge. As expected, nodes that were
further from the base station experienced more packet loss than
nodes that were closer. This was true for both the µSETL and the
baseline versions of Modified Surge. Figure 12 shows the energy
consumed in a 200 second time window by each node other than
the base station (the base station in µSETL and baseline version
contained the same non µSETL program). As shown in the fig-
ure, the µSETL version consumed slightly more energy than the
baseline implementation. This was mostly due to the overhead in-
troduced by the additional communication performed (e.g., sending
ping packets to maintain connectivity information) by the RTE.

As mentioned in Section 4.3.2, the RTE is responsible for all
the communication in a µSETL program. In addition to exchang-
ing resource data (in this case, temperature) for the application, it
also maintains up-to-date connectivity information to other nodes.
Other than the packets sent by applications, the RTE itself sends
four different types of packets: ping request, ping reply, resource
request, and resource reply. Figure 13 shows a breakdown of the
number of these types of packets sent from the RTE while running
Modified Surge for 200 seconds.
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neighbors := {i | distance(i) == 1};!
temp := {N(i).temp | i IN neighbors};!
period 4000 do!
  avg:i8 := average(temp);!
  send(base_station, avg);!
end!

1!
2!
3!
4!
5!
6!

set_param(TS_PERIOD, 4000);!
temp := {N(i).temp | i IN all};!
monitor temp do!
  print(temp);!
end!

period 4000 do!
  send(base_station, N(node_id).temp);!
end!

(a) Distributed Surge (b)  Centralized Surge (c) Modified Surge 

Figure 9: µSETL code for different versions of Surge.
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Figure 10: Topology used for Modified Surge. Nodes had a
transmission range of 50m and an interference range of 100m.
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Figure 11: Total number of data packets received at the base
station for Modified Surge.
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Figure 12: Energy consumed by the nodes for Modified Surge.

Due to the overhead of set-related operations and volatile data
management (Section 4.3.3), it is possible that the temperature data
used in the µSETL program were older than the data used by the
baseline version. We compared the average age of the temperature
data used in both versions. Age is defined as the difference between
the time when a data sample was sensed at the source node and the
time when the data was used to calculate the average temperature.
As shown in Figure 14, data used in µSETL version was slightly
older than the baseline version.
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Figure 13: Number of non-data packets sent by the RTE on
each node for Modified Surge.

Td,Ts, and Tr are the three parameters used by the RTE to de-
cide the lifetime of various types of volatile data (Section 4.3.3).
Setting proper values for these parameters is crucial to achieve the
desired level of consistency for these types of data. We analyzed
the effect of Ts (the timeout for sensor data) on the age of tem-
perature data used in Modified Surge. Four different values were
used for Ts: 60, 30, 15, and 5 seconds. As shown in Figure 15,
reducing the value from 60 seconds to 30 seconds reduced the av-
erage age for the temperature data (i.e., fresher data is collected by
the base station). Interestingly, reducing Ts to 15 seconds increases
the average data age for some nodes. This counter intuitive result is
easily explained: quick expiration of the temperature data leads to
increased resource requests, increasing the network traffic, packet
collisions and therefore, resource retrieval time. Reducing Ts to 5
seconds greatly exacerbates this effect. This shows that Ts can only
be lowered up to a certain value due to the restrictions imposed by
the network. Similar conclusions can be drawn for Td. However,
changing Tr will not affect the consistency across the network since
receive data age is a node-local property (Section 4.3.3). Both the
above experiments related to data age ran for 500 seconds.

5.2 Case Study #2: Routing Table
Macroprogramming languages provide a global view of the net-

work instead of a node-centric view and hence typically can not
express node-level interactions. As a result, they can not be used
to perform certain types of tasks, for example, defining a routing
protocol, time synchronization, etc [15]. On the other hand, micro-
programming languages can design these applications, but at the
cost of more programmer effort. By raising the level of abstrac-
tion of microprogramming, µSETL can express these applications
naturally and concisely. In this experiment, we developed a simple
mesh routing protocol using µSETL. Our routing protocol was a
traditional minimum hop-count based routing protocol. Figure 16
shows the µSETL program that was used to generate the routing
table for this protocol. The routing table rtable was a set of maps.
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Figure 14: Comparison of the age of temperature data between
the µSETL and the baseline versions of Modified Surge.
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Figure 15: Effect of Ts on the age of temperature data for Mod-
ified Surge.

If [x, y] ∈ rtable, then y is the next hop on the minimum length path
towards x from the current node.

nodes := all - node_id;!
neighbors := {i:i8 | distance(i) == 1};!
rtable := {[x:i8, y:i8] | x IN nodes, y IN neighbors,!
            distance(y, x) == min({distance(i, x) !
            | i IN neighbors})};!

1!
2!
3!

Figure 16: µSETL code for Routing Table.

We used nine nodes as shown in Figure 17 and simulated the
routing table in Cooja for 500 seconds. Figure 18 shows the num-
ber of valid entries in the routing table for each node. After the ini-
tial phase (around 70 seconds), the number of valid entries in each
node largely stabilized. It should be noted that rtable is a volatile
set and hence, the routing table entries were periodically updated
by the RTE. Therefore, this program will work for an environment
where nodes are mobile. Instead of hop count, any other routing
metric could also be used for this program. Since this protocol op-
erates in the user space, it can be used to easily construct logical
subnets on top of the physical network. For example, the routing
metric could be based on the number of hops with the added re-
striction that the nodes on a route must have a light sensor. Thus,
the logical subnet will consist only of nodes with light sensors.

5.3 Case Study #3: Object Tracking
The goal of this experiment was to track a light source in a sen-

sor network, as we described in Section 3.2.1. We deployed eight
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Figure 17: Topology used in Routing Table. Nodes had a trans-
mission range of 35m and an interference range of 50m.
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Figure 18: Number of valid entries in each node’s routing table.

TelosB motes in a room with normal lighting conditions as shown
in Figure 19. We moved a flashlight along the dotted line shown
in the figure. Since our nodes were not equipped with cameras, we
only turned on or off LEDs to track the light source. The µSETL
code that implements this application is shown in Figure 1.

Figure 20 shows how the base station selected and de-selected
nodes as the closest ones to the light source. For this experiment,
the flashlight was held close to a node for 15 − 40 seconds before
it was moved to another node. This experiment demonstrated some
key features of µSETL. The first was node-specific code generation
(Section 4.2.3). As shown in Figure 1, the code for the base-station
was separate from that of the follower nodes. Also, the follower
nodes were required to have a light sensor (line 12). The µSETL
compiler provided separate binaries for the base station and the fol-
lowers, eliminating superfluous code. The other key µSETL feature
that was used in this experiment was the use of a monitor block. The
nodes were storing the command to control the camera (LED in our
experiment) in a singleton set called command (line 19). Instead of

Programming frame-
work

# of
lines

Application

MacroLab [15] 17 Object tracking without actuation
Pleiades [16] 50 Finding an empty spot for street parking
Abstract Regions [19] 30 Object tracking without actuation
Regiment [20] 10 Plume monitoring
EnviroSuite [21] 40 Object tracking without actuation

µSETL 23 Object tracking with actuation
7 Simple object tracking without actuation

Table 6: Approximate program size for Object tracking and sim-
ilar applications in different programming frameworks.
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Figure 19: Experimental setup for Object Tracking.
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Figure 20: Locating the light source in Object Tracking.

polling for new commands, we used a monitor block for command.
Whenever there was new data available for command, the RTE no-
tified the application to take proper action (in this case, to invoke
execute()), avoiding the overhead associated with polling.

Object tracking in macroprogramming languages requires 20 −
50 lines of code without any actuation (Table 6). A microprogram-
ming language (e.g., nesC [8]) would require substantially more
code; our baseline Contiki implementation took around 250 lines
of code (Table 4). However, using µSETL, we were able to write a
23 line script that could do both object tracking and actuation.

In principle, object tracking can be made even simpler in µSETL.
Figure 21 shows the µSETL program for simple object tracking
without using any base station or actuation. In this program, a node
turns on its camera if it has the highest light sensor reading in the
network. Otherwise, it turns off the camera. Although this variant
will have higher network traffic than the version shown in Figure 1,
it is much simpler. The increased traffic is because all nodes need
to know the light sensor readings of all other nodes in the network.

6. RELATED WORK
Depending on the intended application, high-level programming

languages (e.g., C, C++) offer different types of abstractions, such
as control abstraction, data abstraction etc. Since most node-level
programming languages for WSNs are variants of these general-
purpose high-level languages, they too provide similar abstractions.

 period 4000 do!
    if (N(node_id).light == max({N(i).light |!
                            i IN all})) then!
      execute(CAMERA_ON);!
    else!
      execute(CAMERA_OFF);!
    end!
  end!

1!
2!
!
3!
4!
5!
6!
7!

Figure 21: Simplified µSETL code for tracking a light source.

Detailed surveys on the state-of-the-art in programming approaches
for WSNs are provided in [3] and [22]. The choice of program-
ming language for WSNs is usually dictated by the particular oper-
ating system used. For example, nesC [8] is used with TinyOS [5],
and C with SOS [23] and Contiki [6]. These languages, combined
with operating system hooks, provide access to the nodes’ hard-
ware and flexible control of the nodes’ behavior. However, the
level of abstraction offered by these languages is seldom enough to
easily express complex applications and thus makes programming
WSNs difficult. Virtual machines (e.g., Maté [9], ASVM [24], VM-
Star [25]) offer a higher level of abstraction, but their main focus is
on ease of reprogramming wireless sensor networks.

To address this issue, a number of macroprogramming solu-
tions have been proposed. MacroLab [15] is a vector-based pro-
gramming abstraction with a global view of the network. Vec-
tors are stored in either a distributed, centralized, or reflected [15]
manner based on an analysis of the cost for each representation.
Kairos [26] is an imperative programming language where commu-
nication occurs by manipulating shared variables at specific nodes.
Pleiades [16] extends Kairos’ programming model by allowing a
program to be partitioned into independent execution units called
nodecuts. Different nodecuts may run on different nodes based
on a cost analysis. During run time, the flow of execution moves
from one node to another if the nodecuts are assigned to different
nodes. Pleiades also uses locking and deadlock detection and re-
covery to ensure serializability. Envirosuite [21] is an object-based
programming framework designed for monitoring and tracking ap-
plications. Some macroprogramming systems, such as Abstract
Regions [19] and Hood [11], are specifically targeted for applica-
tions exhibiting spatial locality (e.g., object tracking). Spidey [10]
offers an abstraction that allows programmers to create logical
neighborhoods based on certain logical properties of the nodes.
TinyDB [27] and Cougar [28] provide SQL-like interfaces and view
the sensor network as a relational database table. Other declarative
macroprogramming systems have been proposed including Regi-
ment [20], DSN [29], and Semantic Streams [30]. Section 2 briefly
described the advantages and disadvantages of different program-
ming paradigms for WSNs. µSETL is an attempt to bridge the gap
between these paradigms. While allowing a programmer to write
event-driven programs from a node-level viewpoint (similar to mi-
croprogramming), it also offers a high-level of abstraction (similar
to macroprogramming) based on concepts from set theory.

7. CONCLUSIONS AND FUTURE WORK
The key role that CPSs are envisioned to play in our day-to-day

lives has brought renewed attention to networked embedded sys-
tems such as WSNs. However, programming these systems still re-
mains a major barrier to their widespread adoption and deployment.
This paper introduced µSETL, a set-based abstraction for WSN mi-
croprogramming that exploits the powerful formalism and expres-
sive power of set theory to address the programmability challenge
in WSNs. Experimental results showed that programs written us-
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ing µSETL featured a significantly decreased source code size (by
more than 90%) compared to the corresponding baseline versions.

As part of future work, we plan to extend µSETL in three
ways. First, nodes that run a µSETL program currently contain
the same RTE. However, not all the components of the RTE are
used by all applications. In the future, we would like to generate
an application-specific RTE using the µSETL compiler. That will
result in a smaller RTE binary. Second, one of the major benefits
of µSETL is that programmers can write node-specific code. We
would like to deploy a node-specific code dissemination protocol
that will make reprogramming of nodes running µSETL applica-
tions more convenient. Finally, in the current implementation, the
RTE uses a pull model to retrieve data from other nodes to update
set contents. However, for some applications, a subscription-based
push model might be more suitable. In that model, nodes can sub-
scribe to other nodes for various kinds of data. Any update of the
subscribed data will be pushed to the subscribers by the source,
keeping the sets at the subscriber updated. In future versions of
µSETL, we plan to provide both the pull and push models of data
access as configurable options.
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