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Preface

Life is about decisions. Decisions, no matter if made by a group or an individ-
ual, usually involve several conflicting objectives. The observation that real
world problems have to be solved optimally according to criteria, which pro-
hibit an “ideal” solution — optimal for each decision-maker under each of the
criteria considered — has led to the development of multicriteria optimization.

From its first roots, which where laid by Pareto at the end of the 19th cen-
tury the discipline has prospered and grown, especially during the last three
decades. Today, many decision support systems incorporate methods to deal
with conflicting objectives. The foundation for such systems is a mathematical
theory of optimization under multiple objectives.

Fully aware of the fact that there have been excellent textbooks on the
topic before, I do not claim that this is a better text, but it has a consider-
ably different focus. Some of the available books develop the mathematical
background in great depth, such as Sawaragi et al. (1985); Gopfert and Nehse
(1990); Jahn (1986). Others focus on a specific structure of the problems cov-
ered as Zeleny (1974); Steuer (1985); Miettinen (1999) or on methodology Yu
(1985); Chankong and Haimes (1983); Hwang and Masud (1979). Finally there
is the area of multicriteria decision aiding Roy (1996); Vincke (1992); Keeney
and Raiffa (1993), the main goal of which is to help decision makers find the
final solution (among many “optimal” ones) eventually to be implemented.

With this book, which is based on lectures I taught from winter semester
1998/99 to winter semester 1999/2000 at the University of Kaiserslautern, I
intend to give an introduction to and overview of this fascinating field of math-
ematics. I tried to present theoretical questions such as existence of solutions
as well as methodological issues and hope the reader finds the balance not too
heavily on one side. The text is accompanied by exercises, which hopefully
help to deepen students’ understanding of the topic.
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The decision to design these courses as an introduction to multicriteria
optimization lead to certain decisions concerning the contents and material
contained. The text covers optimization of real valued functions only. And
even with this restriction interesting topics such as duality or stability have
been excluded. However, other material, which has not been covered in earlier
textbooks has found its way into the text. Most of this material is based on
research of the last 15 years, that is after the publication of most of the books
mentioned above. This applies to the whole of Chapters 6 and 7, and some of
the material in earlier chapters.

As the book is based on my own lectures, it is well suitable for a mathe-
matically oriented course on multicriteria optimization. The material can be
covered in the order in which it is presented, which follows the structure of
my own courses. But it is equally possible to start with Chapter 1, the basic
results of Chapters 2 and 3, and emphasize the multicriteria linear program-
ming part. Another possibility might be to pick out Chapters 1, 6, and 7 for a
course on multicriteria combinatorial optimization. The exercises at the end
of each Chapter provide possibilities to practice as well as some outlooks to
more general settings, when appropriate.

Even as an introductory text I assume that the reader is somehow famil-
iar with results from some other fields of optimization. The required back-
ground on these can be found in Bazaraa et al. (1990); Dantzig (1998) for
linear programming, Mangasarian (1969); Bazaraa et al. (1993) for nonlinear
programming, Hiriart-Uruty and Lemaréchal (1993); Rockafellar (1970) for
convex analysis, Nemhauser and Wolsey (1999); Papadimitriou and Steiglitz
(1982) for combinatorial optimization. Some results from these fields will be
used throughout the text, most from the sources just mentioned. These are
generally stated without proof. Accepting these theorems as they are, the text
is self-contained.

I am indebted to the many researchers in the field, on whose work the
lectures and and this text are based. Also, I would like to thank the students
who followed my class, they contributed with their questions and comments,
and my colleagues at the University of Kaiserslautern and elsewhere for their
cooperation and support. Special thanks go to Horst W. Hamacher, Kathrin
Klamroth, Stefan Nickel, Anita Schébel, and Margaret M. Wiecek. Last but
not least my gratitude goes to Stefan Zimmermann, whose diligence and apti-
tude in preparing the manuscript was enormous. Without him the book would
not have come into existence by now.



Preface to the Second Edition

Much has happened in multicriteria optimization since the publication of the
first edition of this book. Too much in fact for all the contributions in the
field to be reflected in this new edition, which — after all — is intended to
be a textbook for a course on multicriteria optimization. Areas which have
seen particularly strong growth are multiobjective combinatorial optimization
and heuristics for multicriteria optimization problems. I have tried to give
an indication of these new developments by adding “Notes” sections to all
chapters but one. These sections contain many references to the literature
for the interested reader. As a consequence the bibliography has more than
doubled compared to the first edition. Still, heuristics feature only in the very
last section and metaheuristics are not even mentioned.

There are a number of other changes to the organization of the book.
Linear and combinatorial multicriteria optimization is now spread over five
chapters, which seems appropriate for material that covers roughly half the
pages. It also reflects the way in which I have usually taught multicriteria
optimization, namely a course on general topics, containing material of the
first five chapters, and a course on linear and combinatorial problems, i.e. the
second half of the book. I have therefore tried to make the second part self
contained by giving a brief revision of major definitions.

Some reorganization and rewriting has taken place within the chapters.
There is now a section on optimality conditions, previously distributed over
several chapters. Topics closely related to the weighted sum method have been
collected in Chapter 3. Chapter 4 has been extended to include several scalar-
ization techniques not mentioned in the first edition. Much of the material on
linear programming has been rewritten, and scalarization of multiobjective
integer programs has been added in Chapter 8.

Of course, I have done my best to eliminate errors contained in the first
edition. I am grateful to all students and colleagues who made me aware of
them, especially Dagmar Tenfelde-Podehl and Kathrin Klamroth, who used
the book for their own courses. There will still be mistakes in this text, and I
welcome any suggestions for improvement. Otherwise, I hope that you approve
of the changes and find the book useful.

Auckland, March 2005 Matthias Ehrgott



Notation

These are some guidlines concerning the notation I have used in the book.
In general, calligraphic capitals denote sets, latin capitals denote matrices (or
some combinatorial objects) and small latin or greek letters denote elements of
sets, variables, functions, parameters, or indices. Superscripts indicate entities
(such as particular vectors), subscripts indicate components of a vector or
matrix. Due to a limited supply of alphabetical symbols, I have reused some
for several purposes. Their usage should be clear form the context, nevertheless
I apologize for any confusion that may arise.
The following table summarizes the most commonly used symbols.
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Notation
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Introduction

In this book, we understand the solution of a decision problem as to choose
“good” or “best” among a set of “alternatives,” where we assume the exis-
tence of certain criteria, according to which the quality of the alternatives is
measured. In this introductory chapter, we shall first give some examples and
distinguish different types of decision problems. Informally, we shall under-
stand optimization problems as mathematical models of decision problems.
We introduce the concepts of decision (or variable) and criterion (or objec-
tive) space and mention different notions of optimality. Relations and cones
are used to formally define optimization problems, and a classification scheme
is introduced.

1.1 Optimization with Multiple Criteria

Let us consider the following three examples of decision problems.

Ezxample 1.1. We want to buy a new car and have identified four models we
like: a VW Golf, an Opel Astra, a Ford Focus and a Toyota Corolla. The
decision will be made according to price, petrol consumption, and power.
We prefer a cheap and powerful car with low petrol consumption. In this
case, we face a decision problem with four alternatives and three criteria. The
characteristics of the four cars are shown in Table 1.1 (data are invented).
How do we decide, which of the four cars is the “best” alternative, when
the most powerful car is also the one with the highest petrol consumption, so
that we cannot buy a car that is cheap as well as powerful and fuel efficient.
However, we observe that with any one of the three criteria alone the choice
is easy. 0O
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Table 1.1. Criteria and alternatives in Example 1.1.

Alternatives
\A% Opel Ford Toyota
Price (1,000 Euros) 16.2 14.9 14.0 15.2
Criteria Consumption (100lkm) 7.2 7.0 7.5 8.2
Power (kW) 66.0 62.0 55.0 71.0

Ezxample 1.2. For the construction of a water dam an electricity provider is
interested in maximizing storage capacity while at the same time minimizing
water loss due to evaporation and construction cost. A decision must be made
on man months used for construction as well as mean radius of the lake, and
also it must respect certain constraints such as minimal strength of the dam.
Here, the set of alternatives (possible dam designs) allows infinitely many
different choices. The criteria are functions of the decision variables to be
maximized or minimized. The criteria are clearly in conflict: A dam with big
storage capacity will certainly not involve small construction cost, for instance.

0

Ezample 1.8. As a third example, we consider a mathematical problem with
two criteria and one decision variable. The criteria or objective functions,
which we want to minimize simultaneously over the nonnegative real line, are

fl(ac):\/x—i—l and fg(x):w2—4;v+5:(gc—2)2+1, (1.1)
plotted in Figure 1.1. We want to solve the optimization problem

“min” (f1(2), fo(a)). (1.2)

z>0
The question is, what are the “minima” and the “minimizers” in this
problem? Note that again, for each function individually the corresponding
optimization problem is easy: z1 = 0 and z2 = 2 are the (unique) minimizers
of fy and fy on x € R: z > 0, respectively. a

The first two examples allow a first distinction of decision problems. Those
decision problems with a countable number of alternatives are called discrete,
others continuous. In this book, we will be concerned with both continuous
and discrete problems.

Comparing Examples 1.1 and 1.3, another distinguishing feature of deci-
sion problems becomes apparent: In Example 1.1 the alternatives are explicitly



1.1 Optimization with Multiple Criteria 3

o]

1 fo(z) =2® —4a+5

Fig. 1.1. Objective functions of Example 1.3.

given, whereas in 1.3 the alternatives are implicitly described by constraints
(x > 0). Thus, we may distinguish the following types of decision problems,
based on the description of the set of alternatives.

e Problems with finitely many alternatives that are explicitly known. The
goal is to select a most preferred one. Multicriteria decision aid deals with
such problems. We will only have one short section on such problems in
this book (Section 8.2).

e Discrete problems where the set of alternatives is described by constraints
in the form of mathematical functions. These problems will be covered in
Chapters 8 to 10.2.

e Continuous problems. The set of alternatives is generally given through
constraints. These are the objects of interest in Chapters 2.

Historically, the first reference to address such situations of conflicting
objectives is usually attributed to Pareto (1896) who wrote (the quote is from
the 1906 English edition of his book, emphasis added by the author):

We will say that the members of a collectivity enjoy maximum ophe-
limity in a certain position when it is impossible to find a way of mov-
ing from that position very slightly in such a manner that the ophe-
limity enjoyed by each of the individuals of that collectivity increases
or decreases. That is to say, any small displacement in departing from
that position necessarily has the effect of increasing the ophelimity



4 1 Introduction

which certain individuals enjoy, and decreasing that which others en-
joy, of being agreeable to some and disagreeable to others.

Applying this concept in our examples, we see that in Example 1.1 all
alternatives enjoy “maximum ophelimity,” in Example 1.3 all z in [0, 2], where
one of the functions is increasing, the other decreasing. In honor of Pareto,
these alternatives are today often called Pareto optimal solutions of multiple
criteria optimization problems. We will not use that notation, however, and
refer to efficient solutions instead (see 2.1 for a formal definition). Large parts
of this book are devoted to the discussion of the mathematics of efficiency.

1.2 Decision Space and Objective (Criterion) Space

In this section, we informally introduce the fundamental notions of decision
(or variable) and criterion (or objective) space, in which the alternatives and
their images under the objective function mappings are contained.

Let us consider Example 1.1 again, where — for the moment — we consider
price and petrol consumption only for the moment. We can illustrate the
criterion values in a two-dimensional coordinate system.

9 4\ Consumption (100lkm)

8 eoToyota
e Ford
7 o Opel VW
6 — Price (1,000 Euros)

13 14 15 16 17

Fig. 1.2. Criterion space in Example 1.1.

From Figure 1.2 it is easy to see that Opel and Ford are the efficient
choices. For both there is no alternative that is both cheaper and consumes
less petrol. In addition, both Toyota and VW are more expensive and consume
more petrol than Opel.

We call X = {VW, Opel, Ford, Toyota} the feasible set, or the set of
alternatives of the decision problem. The space, of which the feasible set X is
a subset, is called the decision space.
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If we denote price by f1 and petrol consumption by fs, then the mappings
fi + X — R are criteria or objective functions and the optimization problem
can be stated mathematically as in Example 1.3:

“min” (f1(2), f2(2))- (1.3)

The image of X under f = (f1, f2) is denoted by Y := f(X) := {y € R?:
y = f(z) for some x € X'} and referred to as the image of the feasible set, or
the feasible set in criterion space. The space from which the criterion values
are taken is called the criterion space.

In Example 1.3 the feasible set is

X={zxeR:z>0} (1.4)
and the objective functions are
filz) =V14+z and fo(x) = 2* — 4z + 5. (1.5)

The decision space is R because X C R. The criterion space is R?, as
f(X) C R2. To obtain the image of the feasible set in criterion space we
substitute y; for fi(x) and yo for fa(x) to get x = (y1)? — 1 (solving y; =
V1+z for x). Therefore we obtain yo = ((y1)? — 1)2 +4 —4(y1)> +5 =
(y1)* — 6(y1)? + 10. The graph of this function (shown in Figure 1.3) is the
analogue of Figure 1.2 for Example 1.1. Note that > 0 translates to y; > 1,
so that Y := f(X) is the part of the graph to the right of the vertical line
vy =1

Computing the minimum of y5 as a function of y;, we see that the efficient
solutions = € [0, 2] found before correspond to values of y; = fi(x) in [1, /3]
and y = fo(z) € [1,5]. These points on the graph of yo(y1) with 1 < < /3
(and 1 < yo < 5) will be called nondominated points.

In Figure 1.4 we can see how depicting the feasible set ) in criterion space
can help identify nondominated points and — taking inverse images — efficient
solutions. The right angle attached to the efficient point (g1, 92) illustrates
that there is no other point y € f(X), y # ¢ such that y; < g1 and y2 < go.
This is true for the image under f of any x € [0, 2]. This observation confirms
the definition of nondominated points as the image of the set of efficient points
under the objective function mapping.

In the examples, we have seen that we will often have many efficient solu-
tions of a multicriteria optimization problem. Can we consider these as “op-

timal decisions,”

in an application context such as, e.g. the dam construction
problem of Example 1.2. Or, in the car selection problem, do we have to buy

all four cars after all? Obviously, a final choice has to be made among efficient
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Fig. 1.4. Nondominated points in Example 1.3.

solutions. This aspect of decision making, the support of decision makers in
the selection of a final solution from a set of mathematically “equally optimal”
solutions, is often referred to as multicriteria decision aid (MCDA), see e.g.
the textbooks of Roy (1996), Vincke (1992), or Keeney and Raiffa (1993).
Although finding efficient solutions is the most common form of multicri-
teria optimization, the field is not limited to that concept. There are other
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possibilities to cope with multiple conflicting objectives, as we shall see in the
following section.

1.3 Notions of Optimality

Up to now we have written the minimization in multicriteria optimization
problems in quotation marks —

“min”(f1(z), ..., fp(2))

1.
subject to r € X (1.6)

— for good reason, since we can easily associate different interpretations with
the “min.” In this and the following sections we discuss what minimization
means.

The fundamental importance of efficiency (Pareto optimality) is based on
the observation that any z which is not efficient cannot represent a most
preferred alternative for a decision maker, because there exists at least one
other feasible solution ' € X such that fi(z') < fi(z) for all k = 1,...,p,
where strict inequality holds at least once, i.e., 2’ should clearly be preferred to
x. So for all definitions of optimality we deal with in this text, the relationship
with efficiency will always be a topic which needs to be and will be discussed.
Some other notions of optimality are informally presented now.

We can imagine situations in which there is a ranking among the objec-
tives. In Example 1.1, price might be more important than petrol consump-
tion, this in turn more important than power. This means that even an ex-
tremely good value for petrol consumption cannot compensate for a slightly
higher price. Then the criterion vectors (f1(z), f2(z), f3(x)) are compared
lexicographically (see Table 1.2 for a definition of the lexicographic order and
Section 5.1 for more on lexicographic optimization) and we would want to
solve

lexmin(f1 (), f2(x), f3(z)). (1.7)

rzeX

In Example 1.1 we should choose the Ford because for this ranking of
objectives it is the unique optimal solution (the cheapest).

Let us assume that in Example 1.3 the objective functions measure some
negative impacts of a decision (environmental pollution, etc.) to be minimized.
We might not want to accept a high value of one criterion for a low value of
the other. It is then appropriate to minimize the worst of both objectives.
Accordingly we would solve
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min max f;(x). (1.8)

This problem is illustrated in Figure 1.5, where the solid line shows the

maximum of f; and fs. The optimal solution of the problem is obtained for
x ~ 1.285, see Figure 1.5.

fal@) =a2% —4x+5

4
3
2
L e
i =
2 1 14\ 2 3 4 5 6 7 z
_1 J)*

Fig. 1.5. Min-max solution of Example 1.3.

In both examples, we got unique optimal solutions, and there are no in-
comparable values. And indeed, in the min-max example one could think of
this problem as a single objective optimization problem. However, both have
to be considered as multicriteria problems, because the multiple objectives
are in the formulation of the problems. Thus, in order to define the meaning
of “min,” we have to define how objective function vectors (fi(z),..., fp(x))
have to be compared for different alternatives x € X'. The different possibili-
ties to do that arise from the fact that for p > 2 there is no canonical order on
RP as there is on R. Therefore weaker definitions of orders have to be used.

1.4 Orders and Cones

In this section we will first introduce binary relations and some of their proper-
ties to define several classes of orders. The second main topic is cones, defining
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sets of nonnegative elements of RP. We will prove the equivalence of properties
of orders and geometrical properties of cones. An indication of the relation-
ship between orders and cones has already been shown in Figure 1.4, where we
used a cone (the negative orthant of R?) to confirm that § is nondominated.

Let S be any set. A binary relation on S is a subset R of S x S. We
introduce some properties of binary relations.

Definition 1.4. A binary relation R on S is called

reflexive if (s,s) € R for all s € S,

irreflexive if (s,s) ¢ R for all s € S,

symmetric if (s',s?) € R = (s2,s!) € R for all s*,s*> € S,

asymmetric if (s',s%) € R = (s2,5') ¢ R for all s',s*> € S,

antisymmetric if (s!,s%) € R and (s%,s') € R = s! = 52 for all s*,s% €

S,

e transitive if (s',s?) € R and (s?,5%) € R = (s',s®) € R for all
sl,s2,s3 ¢S,

e negatively transitive if (s!,s?) ¢ R and (s%,5%) ¢ R = (s!,s%) ¢ R for
all s*,52,53 € S,

e connected if (s1,s%) € R or (s%,s') € R for all s',s* € S with s' # s?,

e strongly connected (or total) if (s, s%) € R or (s%,s') € R for all s*,s* €

S.

Definition 1.5. A binary relation R on a set S is

e an equivalence relation if it is reflexive, symmetric, and transitive,
e q preorder (quasi-order) if it is reflexive and transitive.

Instead of (s!,s?) € R we shall also write s'Rs?. In the case of R being a
preorder the pair (S, R) is called a preordered set. In the context of (pre)orders
yet another notation for the relation R is convenient. We shall write st < g2
as shorthand for (s!,s?) € R and s' £ s? for (s!,s?) ¢ R and indiscrimi-
nately refer to the relation R or the relation <. This notation can be read as
“preferred to.”

Given any preorder =, two other relations are closely associated with <.
We define them as follows:

st < s = s' < 5% and 5% £ 5!, (1.9)

st~ 52 = 5! < 55 and $% < s1. (1.10)

Actually, < and ~ can be seen as the strict preference and equivalence (or
indifference) relation, respectively, associated with the preference defined by
preorder <.
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Proposition 1.6. Let < be a preorder on S. Then relation < defined in (1.9)
is irreflexive and transitive and relation ~ defined in (1.10) is an equivalence
relation.

Proof. We consider ~ first. This relation is reflexive because < is. Furthermore
~ is symmetric by definition. Now let s!, 52,5 € S be such that s' ~ s and
52 ~ s3. Then using transitivity of <

1 2 3 1 3

s s x5’ — s =<5

5 9 4 s 1 = st~ (1.11)
s°<s"<s — s’ =<s

For <, note that < is irreflexive by definition. Suppose there are s!, 52, s €
S such that s' < s? and s? < s3. Then s' < 5% < 53 and from transitivity
of <, st < s3. To show that s' < s, assume s3 < s!. But since s' < 52 we
get s3 < s? from transitivity of <. This contradiction implies s*> £ s', i.e.,
st < 3. O

Another easily seen result concerns asymmetry and irreflexivity of binary
relations.

Proposition 1.7. An asymmetric binary relation is irreflexive. A transitive,
irreflexive binary relation is asymmetric.

Proof. The proof is left to the reader, see Exercise 1.4 O

Definition 1.8. A binary relation =< on S is

a total preorder if it is reflexive, transitive and connected,
e ¢ total order if it is an antisymmetric total preorder,
a strict weak order if it is asymmetric and negatively transitive.

From total preorders, strict weak orders can be obtained and vice versa,
as Proposition 1.9 shows.

Proposition 1.9. If < is a total preorder on S, then the associated relation
< is a strict weak order. If < is a strict weak order on S, then = defined by

st =2 s% <= ecither s' < 5% or (s' A% and s* £ s') (1.12)
s a total preorder.

Proof. Let < be a total preorder on S. Then < is irreflexive and transitive
by Proposition 1.6 and hence asymmetric by Proposition 1.7. For negative
transitivity we show that s' £ s2, 52 £ s3 implies s! # s for all s!, 52,53 € S.
So let st, 52,83 € S such that s' £ s? and s? 4 5% and assume s' < s2. From
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st # s? we have s2 < s! or s < s! because =< is conected. In both cases it
follows that s < s3, contradicting the assumption.

Let < be a strict weak order on S. The relation < is reflexive by definition.
For transitivity consider the following cases for s', s, s € S with s' < 52 and
52 < s

1. st <52, 52 £ 5% and s3 £ s2. Then s! < s3, because otherwise s! £ s3
and s? £ s2 imply s' 4 s?, a contradiction.

2. st £ 52, 52 £ s! and s < s3. Then s' < s because otherwise s' £ s>
and s2 £ s! imply s2 #4 s3, again a contradiction.

3. st £ 52, 82 A st 5?2 £ 83 52 £ % Then st £ 5% and 53 £ s (from
negative transitivity) imply s! < s°.

4. s' < 5% and 5% < s3. We get s2 £ s! from asymmetry and from s! < s2.
Thus, if s' 4 s3, negative transitivity implies s £ s, a contradiction.

In all cases we can conclude s! < 53, as desired. Finally, for connectedness let
sl,s2 €S, st # 5% Then s < 5% or s2 < s! or (s! £ s? and s? £ s!) and
therefore s! < s2 or s2 < s!. O

The most important classes of relations in multicriteria optimization —
partial orders and strict partial orders — are introduced now.

Definition 1.10. A binary relation =< is called

partial order if it is reflexive, transitive and antisymmetric,
strict partial order if it is asymmetric and transitive (or, equivalently, if
it is irreflexive and transitive).

Throughout this book, we use several orders on the Euclidian space RP
which we define now. Please note that these notations are not unique in mul-
ticriteria optimization literature and always check definitions when consulting
another source. Let y',y? € RP, and if y' # y? let k* := min{k : y} # yi}.
We shall use the notations and names given in Table 1.2 for the most common
((strict) partial) orders on R? appearing in this text.

With the (weak, strict) componentwise orders, we define subsets of R as
follows:

e RY :={ycRP:y =0}, the nonnegative orthant of R?;
. R};::{yGRP:yzO}:Rg\{O};
e RY:={ycRP:y>0}=intRY, the positive orthant of R”.
Note that for p = 1 we have R> = R..
We can now proceed to show how the definition of a set of nonnegative

elements in R? (R? for purposes of illustration) can be used to derive a geo-
metric interpretation of properties of orders. These equivalent views on orders
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Notation

Table 1.2. Some orders on RP.

Definition

un<ui k=1,....p

uh <ur k=1,....p;y' #y?

uh<yr k=1,...,p

Yie <yir or yt =y°

1 2
max < max
k:l,m,pyk  k=1,... Yk

)

Name

weak componentwise order
componentwise order

strict componentwise order
lexicographic order

max-order

will be extremely useful in multicriteria optimization. But first we need the

definition of a cone.

Definition 1.11. A subset C C RP is called a cone, if ad € C for all d € C
and for all o € R, v > 0.

Ezample 1.12. The left drawing in Figure 1.6 shows the cone C = {d € R? :
dp, >0,k =1,2} = R;. This is the cone of nonnegative elements of the weak

componentwise order. The right drawing shows a smaller cone C C R:’Z.

C=RL:

—
N
9
o~
S
o
=

Fig. 1.6. Illustration of two cones.

0O

For the following discussion it will be useful to have the operations of the
multiplication of a set with a scalar and the sum of two sets. Let S, S1, Sy C RP
and a € R. We denote by
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a8 :={as:se S}, (1.13)

especially —S = {—s: s € §}. Furthermore, the (algebraic, Minkowski) sum
of §; and S is

S+ 8s = {81 + s2 st € 81,52 € 82} (1.14)

If S1 = {s} is a singleton, we also write s + S instead of {s} + S2. Note that
these are just simplified notations that do not involve any set arithmetic, e.g.
2§ # S + S in general.

This is also the appropriate place to introduce some further notation used
throughout the book. For S C R” or § C R?

int(S) is the interior of S,

ri(S) is the relative interior of S,

bd(S) is the boundary of S,

cl(S) = int(S) Ubd(S) is the closure of S,
conv(S) is the convex hull of S.

The parentheses might be omitted for simplification of expressions when the
argument is clear.

Definition 1.13. A cone C in RP is called

nontrivial or proper if C # () and C # R",
convex if ad* + (1 — a)d? € C for all d*,d* € C and for all 0 < a < 1,
e pointed if ford € C,d#0, —d ¢ C, i.e., CN(—C) C {0}.

Due to the definition of a cone, C is convex if for all d',d? € C we have
d' +d? € C, too: ad' € C and (1 — a)d? € C because C is a cone. Therefore,
closedness of C under addition is sufficient for convexity. Then, using the
algebraic sum, we can say that C C R? is a convex cone if aC C C for all
a>0and C+ C CC. We will only consider nontrivial cones throughout the
book.

Given an order relation R on RP, we can define a set
Cr = {y* —y' :y'Ry*}, (1.15)

which we would like to interpret as the set of nonnegative elements of RP
according to R. We will now prove some relationships between the properties
of R and Cx.

Proposition 1.14. Let R be compatible with scalar multiplication, i.e., for
all (y*,y?) € R and all o« € R+ it holds that (ay', ay?®) € R. Then Cr defined
in (1.15) is a cone.
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Proof. Let d € Cr. Then d = y? — y! for some y',y? € R? with (y!,y?) € R.
Thus (ay', ay?) € R for all a > 0. Hence ad = a(y? — y') = ay? — ay! € Cr
for all a > 0. O

Example 1.15. Let us consider the weak componentwise order on RP. Here
y' < y?if and only if y} < yf forall k = 1,...,p or y? —y; > 0 for all
k=1,...,p. Therefore C< = {d € R? : d}, > 0,k =1,...,p} = RE. O

It is interesting to consider the definition (1.15) with y* € RP fixed, i.e.,
Cr(y!) = {y? —y' : y!Ry?}. If R is an order relation, y! + Cr(y!) is the set
of elements of R? that y! is preferred to or that are dominated by y!.

A natural question to ask is: Under what conditions is Cg (y) the same for
all y € RP? In order to answer that question, we need another assumption on
order relation R. R is said to be compatible with addition if (y'+2,y?+2) € R
for all z € R? and all (y!,y?) € R.

Lemma 1.16. If R is compatible with addition and d € Cr then ORd.

Proof. Let d € Cr. Then there are y',y? € RP with y'Ry? such that d =
y? —y'. Using z = —y!, compatibility with addition implies (y* + 2)R(y? + 2)
or ORd. O

Lemma 1.16 means that if R is compatible with addition, the sets Cz(y),
y € RP, do not depend on y. In this book, we will be mainly concerned with
this case. For relations that are compatible with addition, we obtain further
results.

Theorem 1.17. Let R be a binary relation on RP which is compatible with
scalar multiplication and addition. Then the following statements hold.

1. 0 € Cr if and only if R is reflexive.
2. Cr 1is pointed if and only if R is antisymmetric.
3. Cr is convex if and only if R is transitive.

Proof. 1. Let R be reflexive and let y € RP. Then yRy and y —y =0 € Cgr.
Let 0 € Cr. Then there is some y € RP with yRy. Now let ¢y’ € RP. Then
y' = y+ z for some z € RP. Since yRy and R is compatible with addition
we get y'Ry’.

2. Let R be antisymmetric and let d € Cr such that —d € Cg, too. Then
there are y', y? € R? such that y'Ry? and d = y' —y' as well as 3%, y* € RP
such that y3Ry* and —d = y* —y3. Thus, 32 —y' = y>—y* and there must
be y € R? such that y2 = y> +y and y' = y* + y. Therefore compatibility
with addition implies y?Ry'. Antisymmetry of R now yields y? = y' and
therefore d = 0, i.e., Cg is pointed.
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Let y',9y? € RP with y'Ry? and y?*Ry'. Thus, d = y?> — y' € Cr and
—d = y' —y? € Cr. If Cr is pointed we know that {d, —d} C C implies
d = 0 and therefore y! = 32, i.e., R is antisymmetric.

3. Let R be transitive and let d',d? € Cr. Since R is compatible with scalar
multiplication, Cr is a cone and we only need to show d' + d? € Cx. By
Lemma 1.16 we have 0Rd' and 0Rd?. Compatibility with addition implies
d'R(d" + d?), transitivity yields OR(d! 4 d?), from which d' + d? € Cx.
Let Cr be convex and let 3!, 2, > € RP be such that y'Ry? and y?>Ry>.
Then d* = y? — y' € Cr and d? = y* — y? € Cr. Because Cr is convex,
d* + d?> = y3 — y* € Cr. By Lemma 1.16 we get 0R(y> — ') and by
compatibility with addition y'Ry>. O

Ezample 1.18. 1. The weak componentwise order < is compatible with ad-
dition and scalar multiplication. C< = RZ contains 0, is pointed, and
convex. - N

2. The max-order <0 is compatible with scalar multiplication, but not with
addition (e.g. (-3,2) <ps0 (3,1), but this relation is reversed when adding
(0,3)). Furthermore, <0 is reflexive, transitive, but not antisymmetric
(e'g' (170) <mo (171) and (171) <mo (170))

O

We have defined cone Cr given relation R. We can also use a cone to define
an order relation. Let C be a cone. Define R¢ by

Y Rey? = > —yl eC. (1.16)

Proposition 1.19. Let C be a cone. Then R¢ defined in (1.16) is compatible
with scalar multiplication and addition in RP.

Proof. Let y',y? € RP be such that y'R¢y?. Then d = 3% — y' € C. Because
C is a cone ad = a(y? — y') = ay? — ay! € C. Thus ay'Reay? for all a > 0.
Furthermore, (y?+2) — (y'+2) € C and (y' +2)Re(y?> +2) for all 2 € RP. O

Theorem 1.20. Let C be a cone and let R¢ be as defined in (1.16). Then the
following statements hold.

1. Re¢ is reflexive if and only if 0 € C.
2. Re¢ is antisymmetric if and only if C is pointed.
3. Re 1is transitive if and only if C is convex.

Proof. 1. Let 0 € C and y € RP. Thus, y —y € C and yRc¢y for all y € RP.
Let R¢ be reflexive. Then we have yRey for ally € RP ie.,y—y =0 €.
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2. Let d € C and —d € C. Thus 0R¢d and OR¢ —d. Adding d to the latter re-
lation, compatibility with addition yields dRc0. Then asymmetry implies
d=0.

Let y', y2 € R? be such that y'Rey? and y?Rey!. Thus, d = y? — y! and
—d =y' —y? € C. Since C is pointed, d = 0, i.e. y' = 32

3. Let y',y%,y> € RP such that y'Rey? and y*Rey?. Therefore d' = y? —
y' € C and d? = y® — y? € C. Because C is convex, d' +d?> =% —y' €C
and y'Reys.

If d', d? € C we have 0Rcd!' and 0R¢d?. Because R¢ is compatible with
addition, we get d*Rc(d* +d?). By transitivity 0R¢(d' +d?) and d* +d? €
C. O

Note that Theorem 1.20 does not need the assumption of compatibility
with addition since it is a consequence of the definition of R¢. The rela-
tionships between cones and binary relations are further investigated in the
exercises.

With Theorems 1.17 and 1.20 we have shown equivalence of some par-
tial orders and pointed convex cones containing 0. Since (partial) orders can
be used to define “minimization,” these results make it possible to analyze
multicriteria optimization problems geometrically.

1.5 Classification of Multicriteria Optimization Problems

By the choice of an order < on RP, we can finally define the meaning of “min”
in the problem formulation

“ M » — M 7
min” f(x) = “min” (fi(2), .., fo()) (117)

The different interpretations of “min” pertaining to different orders are
the foundation of a classification of multicriteria optimization problems. We
only briefly mention it here. A more detailed development can be found in
Ehrgott (1997) and Ehrgott (1998).

With the multiple objective functions we can evaluate objective value vec-
tors (f1(x),. .., fp(z)). However, we have seen that these vectors y = f(z), = €
X, are not always compared in objective space, i.e., RP, directly.

In Example 1.3 we have formulated the optimization problem

i (). 1.1
min max f;(x) (1.18)

That is, we have used a mapping @ : R> — R from objective space R? to

R, where the min in (1.18) is actually defined by the canonical order on R.
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In general, the objective function vectors are mapped from RP to an ordered
space, e.g. (RF, <), where comparisons are made using the order relation <.
This mapping is called the model map.

With the model map, we can now summarize the elements of a multicriteria
optimization problem (MOP). These are

the feasible set X,

the objective function vector f = (f1,..., fp) : X — RP,
the objective space RP?,

the ordered set (R, <),

the model map 6.

Feasible set, objective function vector f, and objective space are the data
of the MOP. The model map provides the link between objective space and
ordered set, in which, finally, the meaning of the minimization is defined. Thus
with the three main aspects data, model map, and ordered set the classifica-
tion (X, f,RP)/0/(R¥ <) completely describes a multicriteria optimization
problem.

Example 1.21. Let us look at a problem of finding efficient solutions,
m>il()1(\/x+ 1, 2% — 4z +1). (1.19)

Here X = {x : > 0} = Ry is the feasible set, f = (f1,f2) =
(Vx +1,2% — 42 + 1) is the objective function vector, and RP = R? is the
objective space defining the data. Because we compare objective function vec-
tors componentwise, the model map is given by 6(y) = y and denoted id, the
identity mapping, henceforth. The ordered set is then (R, <) = (R?, <). The
problem (1.19) is classified as

(R, f,R?)/id/(R?, <). (1.20)
O

Ezxample 1.22. If we have a ranking of objectives as described in the second
example in Section 1.3, we compare objective vectors lexicographically. Let
y,y? € RP. Then y' <oy y? if there is some k*,1 < k* < p such that y; =
yi k=1,...,k* —1land yj. <yi. or y' = y? In the car selection Example
1.1, X = {VW, Opel, Ford, Toyota} is the set of alternatives (feasible set),
f1 is price, fo is petrol consumption, and fs is power. We define 6(y) =
(y1, Y2, —y3) (note that more power is preferred to less). The problem is then
classified as

(X, f,R%)/0/(R?, <iex) (1.21)

O
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Lexicographic optimality is one of the concepts we cover in Chapter 5.
At the end of this chapter, we formally define optimal solutions and opti-
mal values of multicriteria optimization problems.

Definition 1.23. A feasible solution x* € X is called an optimal solution of a
multicriteria optimization problem (X, f,RP)/0/(RY <) if there is no x € X,
T # x* such that

0(f(x)) = 6(f(z)). (1.22)

For an optimal solution x*, 6(f(z*)) is called an optimal value of the MOP.
The set of optimal solutions is denoted by Opt((X, f,RP)/0/(RY, <)). The set
of optimal values is Val((X, f,R?)/0/(RF, <)).

Some comments on this definition are necessary. First, since we are often
dealing with orders which are not total, a positive definition of optimality,
like O(f(z*)) = 6(f(x)) for all x € X, is not possible in general. Second,
for specific choices of # and (R, <), specific names for optimal solutions
and values are commonly used, such as efficient solutions or lexicographically
optimal solutions.

In the following chapters we will introduce shorthand notations for optimal
sets, usually X with an index identifying the problem class, such as X := {x €
X ¢ there is no ¢/ € X with f(2') < f(x)} for the set of efficient solutions.

We now check the definition 1.23 with Examples 1.21 and 1.22.

Example 1.24. With the problem (R, f,R?)/id/(R?, <) the optimality def-
inition reads: There is no z € X,z # z*, such that f(z) < f(z*), ie.,
fe(x) < fr(z*) for all k = 1,...,p, and f(x) # f(z*). This is indeed effi-
ciency as we know it. 0O

Ezample 1.25. For (X, f,R3)/0/(R3, <jex) with 0(y) = (y1,y2, —y3), 2* € X
is an optimal solution if there is no z € X', x # =*, such that

(f1(x), fa(x), = f3(2)) <tex (f1(2), fo(z™), —f3(z")). (1.23)
O

Quite often, we will discuss multicriteria optimization problems in the
sense of efficiency or lexicographic optimality in general, not referring to spe-
cific problem data, and derive results which are independent of problem data.
For this purpose it is convenient to introduce classes of multicriteria optimiza-
tion problems.
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Definition 1.26. A multicriteria optimization class (MCO class) is the set of
all MOPs with the same model map and ordered set and is denoted by

o/6/(R,<). (1.24)

For instance, ¢/id/(RP, <) will denote the class of all MOPs, where opti-
mality is understood in the sense of efficiency.

1.6 Notes

Roy (1990) portrays multicriteria decision making and multicriteria decision
aid as complementary fundamental attitudes for addressing decision mak-
ing problems. Multicriteria decision making includes areas such as multiat-
tribute utility theory (Keeney and Raiffa, 1993) and multicriteria optimiza-
tion (Ehrgott and Gandibleux, 2002b). Multicriteria decision aid, on the other
hand, includes research on the elicitation of preferences from decision mak-
ers, structuring the decision process, and other more “subjective” aspects.
The reader is referred to Figueira et al. (2005) for a collection of up-to-date
surveys on both multicriteria decision making and aid.

Yu (1974) calls {Cr(y') : y' € Y} a structure of domination. Results
on structures of domination can also be found in Sawaragi et al. (1985). If
Cr(y') is independent of y!, the domination structure is called constant. A
cone therefore implies a constant domination structure.

In terms of the relationships between orders and cones, Noghin (1997)
performs a similar analysis to Theorems 1.17 and 1.20. He calls a relation R a
cone order, if there ezists a cone C such that y'Ry? if and only if y> —y* € C.
He proves that R is irreflexive, transitive, compatible with addition and scalar
multiplication if and only if R is a cone relation with a pointed convex cone
C not containing 0.
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Exercises

1.1. Consider the problem
“min”(f1(x), f2(x)) subject to x € [-1,1],

where
T

@) =Vb -2, folx) = -

Illustrate the problem in decision and objective space and determine the
the nondominated set Yy := {y € Y : there isno ¢y’ € Y with ¢ < y} and
the efficient set Xg :={z € X : f(x) € In}.

1.2. Consider the following binary relations on R? (see Table 1.2):

'Sy = gy <yik=1....p;
y' <y’ =yt Syt andy #£
yr<y? <= y. <yik=1,...,p

Which of the properties listed in Definition 1.4 do these relations have?

1.3. Solve the problem of Exercise 1.1 as max-ordering and lexicographic prob-
lems:

erE?»l] 2 fio),
lexminger—1,17 (fi(2), f2(x)),
lexminger—1,17 (f2(2), fi(z)) .

Compare the optimal solutions with efficient solutions. What do you observe?

1.4. Prove the following statements.

1. An asymmetric relation is irreflexive.

2. A transitive and irreflexive relation is asymmetric.

3. A negatively transitive and asymmetric relation is transitive.
4. A transitive and connected relation is negatively transitive.

1.5. This exercise is about cones and orders.

1. Determine the cones related to the (strict and weak) componentwise order
and the lexicographic order on R2.

2. Find and illustrate C<,,, (y) for y = 0,y = (2,1) and y = (-1, 3).

3. Give an example of a non-convex cone C and list the properties of the
related order Re¢.
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1.6. A cone C is called acute, if there exists an open halfspace H, = {x € R :
(x,a) > 0} such that cl(C) C H, U{0}. Is a pointed cone always acute? What
about a convex cone?

1.7. Consider the order relations <, <, <, <jey, and <370 on R? and determine
their relationships, i.e., statements of the form

y'Ray? = y' Ruy?,

where Rq, Ry € {£, <, <, <iex, <mo}. What do these statements imply for
the related cones Cr?

1.8. Let || || : R — R be a norm. Define ' <, v* <= [|y']| < ||y°]]. Is
<|| || a partial order? Is it connected? Determine C< | for some norm || || of
your choice.

1.9. A cone C in some vector space V is called generating if V = C —C (loosely
speaking, every v € V can be written as the difference of two nonnegative
elements).

Consider V = (0,1], the vector space of all continuous functions f :
[0,1] — R. Show that

C:={feC|0,1]: f(z) >0 for all z € [0,1]}

is a cone that defines a partial order R¢, and that C[0,1] = C —C, i.e., for
all f € C[0,1] there are f!, f2 € C such that f = f! — f2. Can you give an
example of a cone C C RP with C — C # RP and find a relationship between
the cone property “generating” and a property of the order R¢?

1.10. In this exercise, the relationships between cones and relations are further
developed.

1. Let R be a relation. Define Cg as in (1.15). Define Re,, as in (1.16) with
C = Cr. Under what conditions is Re, = R, i.e., Y Rery? <= y' Ry?>?
2. Let C be a cone. Define R¢ as in (1.16). Define Cg, as in (1.15) with

R =TRec. Is Cr, =C always, i.e., d € Cr, <= d € C?

1.11. Generalize the definition of R¢ for the case where C is an arbitrary set.
Derive relationships between properties of C and Re¢.



2

Efficiency and Nondominance

This chapter covers the fundamental concepts of efficiency and nondominance.
We first present some fundamental properties of nondominated points and
several existence results for nondominated points and efficient solutions in
Section 2.1. Section 2.2 introduces ideal and nadir points as bounds on the
set of nondominated solutions. Then we briefly review weakly and strictly
efficient solutions in Section 2.3. The same section also includes a geometric
characterization of the three optimality concepts, with some extensions for the
case of weakly efficient solutions. Finally, in Section 2.4 we introduce several
definitions of properly efficient solutions, important subsets of efficient solu-
tions from a computational point of view and in applications, and investigate
their relationships.

Most of the material in this chapter can be found in the two books Gopfert
and Nehse (1990) and Sawaragi et al. (1985), where the results are presented
in more generality. We will also refer to the original publications for the main
results.

2.1 Efficient Solutions and Nondominated Points

In this chapter we consider multicriteria optimization problems of the class
o/id/(RP, <) :

min (f1(x),..., fp(x)) (2.1)

subject to x € X.

The image of the feasible set X under the objective function mapping f
is denoted as Y := f(X). Let us formally repeat the definition of efficient
solutions and nondominated points. Definition 2.1 also introduces the notion
of dominance.
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Definition 2.1. A feasible solution & € X is called efficient or Pareto optimal,
if there is no other x € X such that f(x) < f(Z). If & is efficient, f(&) is called
nondominated point. If 2%, 2% € X and f(z') < f(2?) we say x' dominates
22 and f(z') dominates f(z2). The set of all efficient solutions & € X is
denoted Xg and called the efficient set. The set of all nondominated points
g = f(&) € Y, where & € Xg, is denoted Yy and called the nondominated
set—.

We have to remark that these notations are not unique in literature, un-
fortunately. Some authors use Pareto optimal for what we call efficient and
efficient for what we call nondominated (e.g. this notation was used in the
first edition of this book). The term noninferior solution has also been used.
We will use the terms of Definition 2.1, but whenever consulting literature,
the reader should check the definitions the respective author adopts.

Several other, equivalent, definitions of efficiency are frequently used, and
we shall often refer to the one which is best suited in a given context. In
particular, Z is efficient if

1. there is no & € X such that fy(z) < fp(2) for k = 1,...,p and f;(x) <
fi(&) for some i € {1,...,k};

there is no € X such that f(x) — f(2) € ng \ {0};

F(z) — f(z) € RP\ {_Rg \ {o}} for all z € X;

()0 (f(@) - RY) = {f(@));

there is no f(z) € f(X)\{f(2)} with f(x) € f(&) f]Rg;
f(z) £ f(2) for some x € X implies f(z) = f(Z).

S otk W N

With the exception of the last, these definitions can be illustrated graphi-
cally. Definition 2.1 and equivalent definitions 1., 4., and 5. consider f(Z) and
check for images of feasible solutions to the left and below (in direction of
—RY) of that point. See the left part of Figure 2.1. In equivalent definitions
2. and 3., through f(z) — f(2), the set Y = f(X) is translated so that the
origin coincides with f(Z), and the intersection of the translated set ) with
the negative orthant is checked. This intersection contains only f(Z) if & is
efficient. See the right part of Figure 2.1.

The first questions we discuss are the existence and the properties of the
efficient set Xr and the nondominated set V. It is convenient to consider
Y first, and then use properties of f to derive results on Xg. So let Y C RP
be a set. According to our definitions, § € ) is nondominated, if there is no
y € Y such that y < ¢.

First we show by means of an example that even for convex sets X and
Y the efficient set Xr and the nondominated set set Yy might be empty or
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,Rli

Definitions 1., 4., and 5. Definitions 2. and 3.

Fig. 2.1. Illustration of definitions of efficient solutions.

consist of isolated points. We will then proceed to prove some basic properties
of nondominated sets, before we present several existence theorems for efficient
solutions/nondominated points. Results on connectedness of Yy and Xg will
be given in Chapter 3.

Ezample 2.2 (Gdpfert and Nehse (1990)). Consider a bicriterion optimization
problem with feasible set

71§11?1§1,
X =S (z,22) €ER?|—\/—22 +1 <22 <0 if —1<2;<0, p (22)
f\/fx%+1§x2§0 if O0<x <1

and objective function

f(Il,IQ) = (1’1,582). (23)

The feasible sets X' in decision space and ) in criterion space (the latter
coincides with X" in this example) are depicted in Figure 2.2.

Clearly, there are no nondominated points, and therefore the bicriterion
problem given by (2.2) and (2.3)does not have any efficient solutions: Yy =
Xg =0, even though X and Y are convex and f is continuous.

If we modify the problem slightly by letting

-1<z <1,
LUQZO if .’Elz—l,
—\/—x%+1<x2§0 if —1<x< 0,
V23 +1<a <0 if 0<a < 1

X = (!El,.’L‘Q) €R2
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Fig. 2.2. Feasible set of the original problem in Example 2.2.

Yn = {(-1,0),(0,—1)} is no longer empty (Figure 2.3), but consists of only
two disconnected points, which are “far apart” from one another in Vy.

y2:x2_

Fig. 2.3. Feasible set of the modified problem in Example 2.2.

0O

Example 2.2 shows that conditions for existence of efficient solutions and
nondominated points must be our first concern in the study of multicriteria
optimization. In multicriteria optimization, the “trick” of Example 2.2, to use
y = f(x) = z is quite useful, as it allows to identify decision and criterion
space and enables the study of both Xr and Yy at the same time. We will
often apply it in the examples to come.
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The following properties of nondominated sets are mainly proved as tools
for the proofs of theorems later in the text. However, they may well enhance
an intuitive understanding of the concept of nondominance. First we show
that nondominated points are located in the “lower left part” of V: Adding
RY to Y does not change the nondominated set.

" Solet Y CRP. Let Yy = {y € Y : thereis noy’ € Y such that ¢/ < y}.
In particular Yy C ).

Proposition 2.3. Yy = ()J + Rg)N

Proof. The result is trivial if Y = 0, because ) + Rg = () and the nondomi-
nated subsets of both are empty, too.

So let Y # 0. First, assume y € (J +RY)n, but y ¢ V. There are two
possibilities. If y ¢ Y there is y' € Y and 0+4de RY such that y = y' +d .
Since y’ =y +0€ Y+ RE we get y ¢ (¥ +RY)w, a contradiction. If y € Y
there is 4/ € ) such that 4/ < y. Let d = y—v/, which is in RZ \ {0}. Therefore
y=vy +dandy ¢ (Y + Rg) N, again contradicting the assu;nption. Hence in
either case y € Vn.

Second, assume y € Yy but y ¢ (y+Rg)N. Then there is some ' € y+Rg

with y —y' = d’ € RE \ {0}. Le. ¢ = y' +d" with ¢’ € Y, d’ € RY and
therefore y = y'+d' = y"+(d'+d") = y" +d with d = d'+d" € R\ {0}. This
implies y ¢ Y, contradicting the assumption. Hence, y € (¥ + R;) N- a

Proposition 2.3 is illustrated in Figure 2.4.

JM—]R%

[e=}

Fig. 2.4. Nondominated points of Y and Y + R; are the same.
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A second result, which is intuitively clear, is that efficient points must
belong to the boundary of ).

Proposition 2.4. Yy C bd(Y).

Proof. Let y € Yn and suppose y ¢ bd(Y). Therefore y € intY and there
exists an e-neighbourhood B(y,¢) of y (with B(y,e) := y + B(0,e) C ),
B(0,¢) is an open ball with radius e centered at the origin). Let d # 0, d € RY.
Then we can choose some a € R, 0 < a < ¢ such that ad € B(0,¢). Now,
y—ad €)Y with Mdd € RZ \ {0}, i.e. y ¢ Y. O

From Propositions 2.3 and 2.4 we immediately get conditions for Yy being
empty.

Corollary 2.5. If ) is open or if Y + Rg is open Yy = 0.

The next results concern the nondominated set of the Minkowski sum of
two sets and of a set multiplied by a positive scalar.

Proposition 2.6. (V1 + Y2)y € V1)v + (V2)N-

Proof. Let y € (V1 + Y2)n. Then y = y' + 4?2 for some y' € YV1,y? € I».
Assuming y!' ¢ ()1)n it follows that there must be some ¢’ € Yy and d € RY
such that y! = ¢/ +d and thus y = v/ + y2 + d with ¥/ + y2 € Y1 + )» whence
y ¢ (1 + Vo) N, contradicting the assumption.

Analogously, y* € (V2)n, ie. y' + 4% € (V1)n + (Ve ) O

The inclusion (V1)n + (Qe)nv C (V1 + Yo)n is not satisfied in general,
Exercise 2.1 asks for a counterexample.

Proposition 2.7. (a))y = a(Yn), fora € R, a >0 .
Proof. The easy proof is left to the reader, see Exercise 2.4. O

With these propositions we have some tools to facilitate working with non-
dominated sets. In order to prove existence results for nondominated points
we have to introduce another fundamental statement, Zorn’s Lemma.

Definition 2.8. Let (S, =) be a preordered set, i.e. < is reflexive and tran-
sitive. (S, =) is inductively ordered, if every totally ordered subset of (S, =)
has a lower bound. A totally ordered subset of (S, <) is also called a chain.

Theorem 2.9 (Zorn’s lemma). Let the preordered set (S, =) be inductively
ordered. Then S contains a minimal element, i.e. there is § € S such that s < §
implies § < s.
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0 1 2 3 4 5

Fig. 2.5. )° is a compact section of Y.

Theorem 2.10 (Borwein (1983)). Let YV be a nonempty set and suppose
there is some y° € Y such that the section Y° = {y € Y 1y < y°} =
(y° —RE)NY is compact (we say “Y contains a compact section”). Then Yn
18 none;zpty.

Proof. The idea of the proof is as follows. We use the compactness of )°
to show that every chain in YO has a lower bound. Thus )° is inductively
ordered, and by Zorn’s Lemma contains a minimal element ¢. Showing that
1y is efficient in ) completes the proof.

Let ° be the compact section that exists by assumption and let Y =
{y* : i € I}, where T is some index set, be a chain in Y°. We prove that
{y* : i € I} has a lower bound. To that end let J := {J C Z: |J| < oo} be
the set of all finite subsets of index set Z. For all J € J finiteness of J and
V7T being a chain in Y imply that y’ := inf{y’ : i € J} exists and 3y’ € )°.
Consider all sets V' := (y* —RZ)NYP, where i € Z. Obviously Y* C Y° and Y*
is compact as a closed subset of the compact set Y°. Furthermore, if J € J,
i.e. J is finite, Nje ;)" # 0 because it contains y”. Finally, by compactness of
V0 it follows that N;ezY? # 0, which means there is some

y e (y - Rg) ny°. (2.5)
i€l

In terms of the componentwise order this means ¢y’ < y* for all ¢ € Z, or,
in other words, ¥’ € J° is a lower bound of {y® : i € T}, which is therefore
inductively ordered.
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We can now apply Zorn’s Lemma (Theorem 2.9) to conclude that )°
contains a minimal element §. It remains to be shown that § € Vy. Assume
the contrary. Then there would be some y” € Y with y” < ¢. For ¢y we have

y'e(p-R)nyc ((1*-RL)NY-RL)NY 06

= = = 2.6
c (1°-RL)NY-RL =) -RL.

The first inclusion holds because § € J°, the second is clear. Since 3" € Y

this implies y” € ), so that " < § contradicts minimality of  in J°. |

Note that we have used the following fact about compact sets: If ) is
compact and (Y?), i € T is a family of closed subsets of )} for some index
set Z such that NY_,Y;, # 0 for all finite subsets of {i1,...,i,} of Z then
NiezVi # 0.

Another existence result does not use a compact section but a condition
on Y which is similar to the finite subcover property of compact sets: the RZ -
semicompactness condition, which considers open covers with special sets. N

Definition 2.11. A set ) C RP is called Rg -semicompact if every open cover

of Y of the form {(yl — Rg)c yted,ice I} has a finite subcover. This means

that whenever Y C Ujez(y* — RL )¢ there exist m € N and {i1,...,im} CZ
such that B

m

yelU (v -re) 2.7)
k=1
Here (y* — RZ )¢ denotes the complement R? \ (y* — RZ) of y* — RZ. Note
that these sets are always open. N -
Based on Zorn’s Lemma again, we can prove that RY -semicompactness
guarantees existence of efficient points. -

Theorem 2.12 (Corley (1980)). If Y # 0 is RY -semicompact then Yy #
0. -

Proof. The main steps of the proof are the same as for Theorem 2.10. We show
that ) is inductively ordered and apply Zorn’s Lemma. First, we construct
an open cover of ) as in Definition 2.11 and derive a contradiction when we
assume that ) is not inductively ordered.

So assume ) is not inductively ordered. Then there is a totally ordered
subset (a chain) of Y, say V' = {y’ : i € I} which has no lower bound.

Therefore
N ((v-Rr2)nY) =0 (2.8)

i€l
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As seen in the proof of Theorem 2.10, any element in this intersection
would be a lower bound of ). Then for each y € Y there is some y* € )’ such
that y ¢ y* — RZ.

Since y* — RE is closed, {(y* — RZ)¢ : i € Z} defines an open cover of
V. Moreover, y* — R. < 3" — RZ if and only if ¥ < 3% and the sets of
the cover are totally ‘ordered by inclusion because )’ is a chain. Also, Y is
RY -semicompact and there is a finite subcover of {(y* — RZ)¢:i € T}.

- Combining the last two observations, it follows that there is a minimal
set (with respect to inclusion) in the finite subcover and hence there exists a
single y* € )’ such that Y C (y* — R2)¢. This implies y* < y' for alli € 7
and y* ¢ Y, which is not possible. Therefore ) is inductively ordered.

Knowing that, we proceed as in the proof of Theorem 2.10 to conclude

In #0. O

Fig. 2.6. Constructing a cover from a chain.

Although theoretically interesting, Theorem 2.12 gives a condition which
is usually not easy to check: Rg -semicompactness. A weaker result is obtained

if we use the stronger assumption of R’;-compactness.

Definition 2.13. A set Y C RP is called Rg—compact, if for all y € Y the
section (y —REY) N Y is compact.

Proposition 2.14. If Y is Rg—compact then Y is Rg -semicompact.
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Proof. Let {(y* — Rg)c :y* € ),i € I} be an open cover of ). For arbitrary
yi/ c Y take

{(yi—Rg)ciyiGy,iEI,i;éi’}. (2.9)

(2.9) defines an open cover of (yi/ - Rg) N Y, a compact set, since ) is
Rg-compact. But compactness implies that the cover in (2.9) contains a finite
subcover of (y" —RY)NY. This finite subcover together with (" —RY )¢ yields

a finite cover of ), of the structure required for RZ -semicompactness. O

Corollary 2.15 (Hartley (1978)). If ¥ C RP is nonempty and RY-
compact, then Yy # 0.

Proof. The result follows immediately from Theorem 2.12 and Proposition
2.14. O

So far, we focused on existence of nondominated points. Let us now con-
sider existence of efficient solutions, i.e. conditions that guarantee Xg # (),
which is an important issue when practical problems are considered. We can
use Theorem 2.12 and properties of f to get an existence result for Xg. The-
orem 2.19 below is a multicriteria analogon to the well known result that a
lower semicontinuous function attains its minimum over a compact set.

Definition 2.16. A function f : R" — RP is Rg -semicontinuous if

f! (y—Ri) :{xeR”:y—f(x)ERg} (2.10)

is closed for all y € RP, i.e. the preimage of the translated negative orthant is
always closed.

Lemma 2.17 below establishes Rg—semicontinuity as a proper generaliza-
tion of lower semicontinuity of scalar valued functions.

Lemma 2.17. A function f : R™ — RP is Rg—semz’continuous if and only

if the component functions fi, : R® — R are lower semicontinuous for all
k=1,...,p.

The proof is left to the reader.

Proposition 2.18. Let X C R™ be nonempty and compact, f : R™ — RP be
RY -semicontinuous. Then Y = f(X) is RE -semicompact.
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Proof. Let {(y* —RL)¢ : y* € Y,i € I} be an open cover of ). By RZ-
semicontinuity of f, fffl((yi —R2)¢) :y* € Y,i € I} is an open cover of X.
Because X is compact there is a finite subcover in this open cover. The image
of this subcover is a finite subcover of Y whence Y is RI; semicompact. O

Theorem 2.19. Let X C R™ be a nonempty and compact set. Let f be Rg-

semicontinuous. Then Xg # ().

Proof. The result follows directly from Theorem 2.12 and Proposition 2.18.
0

Given a set Y C R? with nonempty nondominated set Yy # 0, it is clear
that for any y € Y \ Yy there is some § € Y such that § < y. But is it
always guaranteed that a nondominated § dominating y exists? It turns out
that under existence conditions for nondominated points this is true.

Definition 2.20. The nondominated set Yy is said to be externally stable, if
for each y € Y\ YN there is § € Yy such that y € § +RE.

Theorem 2.21. Let Y C RY be nonempty and RE -compact. Then Yy is
externally stable, i.e. B B
YCYn+ R;.

Proof. Let y € Y. Define
Y= (y-R)ny,

i.e. all points in ) dominating y. We need to show that )’ N Yy # 0. To do
so it is enough to show that YV # 0 and that Yy C V.

V' is RE-compact since ) is (see Definition 2.13). Therefore V) # () ac-
cording to :Corollary 2.15.

Assume that ' is not in Yy, but ¢y’ € Y’ (otherwise 3’ is certainly not
contained in Y} ). Thus ' € ) and there is some y” € Y such that 3" < ¢/
Therefore y” <y’ <y and y” € )’. This implies ' & YV} . ]

2.2 Bounds on the Nondominated Set

In this section, we define the ideal and nadir points as lower and upper bounds
on nondominated points. These points give an indication of the range of the
values which nondominated points can attain. They are often used as reference
points in compromise programming (see Section 4.5) or in interactive methods
the aim of which is to find a most preferred solution for a decision maker.
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We assume that Xg and Yy are nonempty, and want to find real numbers
Yy Yio k=1,...,p with Y, <y <y for all y € Yy, as shown in Figure 2.7.
An obvious possibility is to choose

= i i 2.11
Yy = miny (2.11)

= max?y;. 2.12
Yk = maxy (2.12)

While the lower bound (2.11) is tight (there is always an efficient point
y € Yy with yp = yk), the upper bound (2.12) tends to be far away from
actual nondominated points. For this reason, the upper bound is defined as
the maximum over nondominated points only.

Definition 2.22. 1. The point y' = (yi,. .. 7y{,) given by

I . .
= = . 2. 13
Vi = min fi(2) = minyy (2.13)

1s called the ideal point of the multicriteria optimization problem mingc y

<f1<$)7’fp<$))
2. The point yN = (y{, ... ,yI])V) given by

N
= = 2. 14
Yi 1= 1ax fi(z) = max y; (2.14)

is called the nadir point of the multicriteria optimization problem.

The ideal and nadir points for a nonconvex problem are shown in Figure
2.7.

Obviously, we have y,ﬁ < yr and yi < y,]gv for any y € Vy. Furthermore
y! and yN are tight lower and upper bounds on the efficient set. Since the
ideal point is found by solving p single objective optimization problems its
computation can be considered easy (from a multicriteria point of view). On
the other hand, computation of ¥ involves optimization over the efficient set,
a very difficult problem. No efficient method to determine y~ for a general
MOP is known.

Due to the difficulty of computing 3", heuristics are often used. A basic
estimation of the nadir point uses pay-off tables. We describe the approach
now.

First, we solve p single objective problems mingecx fx(z). Let the optimal
solutions be z¥, k = 1,...,p, i.e. fr.(z¥) = mingex fix (7). Using these optimal
solutions compute the pay-off table shown in Table 2.1.

Finally, from the pay-off table, clearly yi = fix(z%),k =1,...,p. We define

N = max fi(z"), (2.15)
k=1,....,p
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Fig. 2.7. Efficient set, ideal, and nadir point.

Table 2.1. Pay-off table and ideal point.

2! z? Pt zP
fi i fi(z?) (P fi(z?)
fo fa(zh) fa(aP)
fp—1 fp—l(xl) fr—1(z")
Ip fp(ml) fp(332) fp(mpil) sz)

the largest element in row ¢, as an estimate for y;’v .

Although appealing at first glance, the problem with pay-off tables is
that "V may over- or under-estimate 3", when more than two objectives are
present, and when there are multiple optimal solutions of the single objective
problems mingex fx(z). The example below illustrates the phenomenon.

Ezample 2.23 (Korhonen et al. (1997)). Consider the multicriteria linear
programming problem
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min —11x2 —11 23 1224 —9 25 —9x¢ +9 z7

min —11 x, —11xs —9x24 1225 —9 26 +9 27

min —11 z1 —11 z2 —924 925 —12 26 —12 27
subject to 1 +r2 +wx3 +x4a +x5 +T6 +a7=1
z 20

The image of the feasible set Y = f(X) is illustrated in Figure 2.8.

fa(@) fa(x)

Fig. 2.8. Feasible set in Example 2.23.

To check the pay-off table approach, we proceed as follows. Solving the
single objective problems, we get the solutions shown in Table 2.2, where €
denotes the i-th unit vector.

The pay-off table is shown in Table 2.3, with two different choices of the
optimal solution of the third problem, namely z = €% and = = €”.

We shall now show that the nadir point cannot be obtained from the pay-
off table. By solving appropriate weighted sum problems with positive weights,
it can be seen that ' = e',i € {1,...,6} are (properly) efficient (cf. Chapter
3) The feasible solution 27 = €7 is obviously weakly efficient, as a minimizer
of one objective, but not efficient since 2% dominates z”.

For 7 = e! € X we have f(z) = (0,—11,—11). For z = ¢? € X we have
f(x) = (=11,0,—11) and for x = €*> € Xr we have f(z) = (—11,—-11,0).
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Table 2.2. Single objectives and minimizers in Example 2.23.

Problem

mingce/\{ f1 (ac)
mingex f2(x)

mingex f3(z)

fi
f2
f3

Therefore yfv >0, 1

All optimal solutions

. . 4
ra=1, 2;=0,1#4,ie.x=¢

. . 5
x5 =1, x; =0, i #5,i.e.x =¢”
rze=a, zr=1—qa, ©; =0, 1 #6,7,

where o € [0,1], i.e. 2 = ae’ + (1 — a)e”

Table 2.3. Pay-off table in Example 2.23.

4

65 66 67
-9 -9 9
-12 -9 9
-9 -12 -12

= 1,2,3. But because no efficient solution can have

positive objective values in this example, the Nadir point is y¥ = (0,0, 0).
For the values in the pay-off table, we observe that

o withzx =e
arbitrarily large), whereas
o withz =ce

we overestimate yI (arbitrarily far: replace +9 by M > 0

we underestimate yl¥ severely (arbitrarily far, if we modify

the cost coefficients appropriately).

0

The reason for overestimation in Example 2.23 is, that 23 is only weakly
efficient. If we choose efficient solutions to determine z?, overestimation is of

course impossible. The presence of weakly efficient solutions is caused by the

multiple optimal solutions of min,ex f3(z). In general, it is difficult to be sure
that the single objective optimizers are efficient.

The only case where yV can be determined is for p = 2. Here the worst
value for ys is attained when y; is minimal and vice versa, and by a two step

optimization process, we can eliminate weakly efficient choices in the pay-off

table.
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Algorithm 2.1 (Nadir point for p = 2.)
Input: Feasible set X and objective function f of an MOP.
Solve the single objective problems mingex f1(z) and mingey f2(x). De-
note the optimal objective values by yT,yL.
Solve mingex fa(x) with the additional constraint fi(z) < yi.
Solve mingey fi(z) with the additional constraint fo(z) < yt.
Denote the optimal objective values by y3 ,yY , respectively.
Output: yN = (y{,yd) is the nadir point, y* = (yf,yL) is the ideal point.

It is easy to see from the definition of "V that the procedure indeed finds
y™. The optimal solutions of the constrained problems in the second step are
efficient. Unfortunately, this approach cannot be generalized to more than two
objectives, because if p > 2 we do not know, which objectives to fix in the
second step. Indeed, the reader can check, that in Example 8.5 of Section 8.1,
the Nadir point is yV = (11,9, 11,8), where y& and 3} are determined by
efficient solutions, which are not optimal for any of the single objectives.

2.3 Weakly and Strictly Efficient Solutions

Nondominated points are defined by the componentwise order on RP. When
we use the the weak and strict componentwise order instead, we obtain defini-
tions of strictly and weakly nondominated points, respectively. In this section,
we prove an existence result for weakly nondominated points and weakly effi-
cient solutions. We then give a geometric characterization of all three types of
efficiency and some further results on the structure of weakly efficient solutions
of convex multicriteria optimization problems.

Definition 2.24. A feasible solution & € X is called weakly efficient (weakly
Pareto optimal) if there is no x € X such that f(z) < f(Z), i.e. fu(x) < fr(Z)
forallk=1,...,p. The point § = f(&) is then called weakly nondominated.

A feasible solution & € X is called strictly efficient (strictly Pareto optimal)
if there is no x € X, x # & such that f(z) < f(Z). The weakly (strictly)
efficient and nondominated sets are denoted Xwg(Xsg) and Yy i, respectively.

Some authors say that a weakly nondominated point is a nondominated
point with respect to int Rg = R%, a notation that is quite convenient in
the context of cone-efficiency and cone-nondominance. Because in this text
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we focus on the case of the nonnegative orthant we shall distinguish between
efficiency /nondominance and their weak counterparts.
From the definitions it is obvious that

and
Xsgp C Xg C XuE- (2.17)

As in the case of efficiency, weak efficiency has several equivalent defini-
tions. We mention only two. A feasible solution & € X is weakly efficient if
and only if

L. there is no z € X such that f(&) — f(z) € intRE =RY
2. (f(&) - RL)NY =0,
It is also of interest that there is no such concept as strict nondominance
for sets ) C RP. By definition, strict efficiency prohibits solutions x!, 2% with

flal) = f(2?), i.e. strict efficiency is the multicriteria analogon of unique
optimal solutions in scalar optimization:

TeXp<—= € Xgand |[{z: f(x)=f(@)} =1 (2.18)

It is obvious that all existence results for Yy imply existence of V,n as
well. However, we shall see that ),y can be nonempty, even if Yy is empty.
Therefore, independent conditions for ),y to be nonempty are interesting.
We give a rather weak one here, another one is in Exercise 2.6. Note that the
proof does not require Zorn’s Lemma.

Theorem 2.25. Let Y C RP be nonempty and compact. Then Y,y # 0.

Proof. Suppose Vyn = 0. Then for all y € Y there is some y’ € Y such that
y € ¥ + RE. Taking the union over all y € J we obtain

yclJw +Rr2). (2.19)

Because RY is open, (2.19) defines an open cover of ). By compactness of )
there exists a finite subcover, i.e.

k
yclJw +Re). (2.20)

i=1
Choosing 3 on the left hand side, this yields that for all i = 1,...,k there is
some 1 < j < k with y* € y/ +RZ. In other words, for all i there is some j such
that y/ < y'. By transitivity of the strict componentwise order < and because
there are only finitely many y® there exist i*, m, and a chain of inequalities
st.y’ <y <...<y'™ <y", which is impossible. O



40 2 Efficiency and Nondominance

The essential difference as compared to the proofs of Theorems 2.10 and
2.12 is that in those theorems we deal with sets y — RZ which are closed. Here,
we have sets y + RY which are open. Note that y ¢ Y+ RZ.

Theorem 2.25 and continuity of f can now be used to prove existence of
weakly efficient solutions.

Corollary 2.26. Let X C R™ be nonempty and compact. Assume that f :
R™ — RP is continuous. Then Xyg # 0.

Proof. The result follows from Theorem 2.19 and Xg C X, g or from Theorem
2.25 and the fact that f(X) is compact for compact X and continuous f. O

As indicated earlier, the inclusion Yy C Y,n is in general strict. The
following example shows that ),y can be nonempty, even if Vy is empty,
and also, of course, if ) is not compact. It also illustrates that YV,n \ Y
might be a rather large set.

Example 2.27. Consider the set
V={(y,y2) ER*: 0<y1 <1, 0<y, <1}. (2.21)

Then Yy = 0 but Yyny = (0,1)x{0} ={y € V: 0 <y < ya,y2 = 0} (Figure
2.9).

wa

Fig. 2.9. Yy is empty, Vi is not.

Let us now look at the closed square, i.e.
Y={(y1,92) €R*: 0<y; <1} (2.22)

We have Yy = {0} and YVun = {(y1,92) € ¥V : y1 = 0 or y2 = 0}. (Figure
2.10)
O
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Fig. 2.10. Nondominated and weakly nondominated points.

Xg, Xsg and X, g can be characterized geometrically. To derive this char-
acterization, we introduce level sets and level curves of functions.

Definition 2.28. Let Y CR", f: X - R, and & € X.

Lo(f(2) ={reX: f(z)< f(2)} (2.23)
is called the level set of f at T.
L_(f(2)) ={reX: f(z)=[f(2)} (2.24)

is called the level curve of f at 2.
Lo (f(@) = L<(f(@)\ L=(f(2))
={zeX: f(x)<f@)} (2.25)
is called the strict level set of f at &.
Obviously £_(f(#)) C L<(f(2)) and z € L_(f(2)).

Example 2.29. We use an example with X = R? for illustration purposes. Let
f(x1, 1) = 22 + 3. Let & = (3,4). Hence

(z1,22) €R?: 2} + 25 < 25}, (2.26)
(z1,72) € R?: 2} + 23 = 25}. (2.27)
The level set and level curve are illustrated in Figure 2.11, as disk and circle

in the z1-zs-plane, respectively.
0

For a multicriteria optimization problem we consider the level sets and
level curves of all objectives fi,..., f, at . The following observation shows
how level sets can be used to decide efficiency of z.
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Fig. 2.11. Level set and level curve in Example 2.29.

Let us consider a bicriterion problem, and assume that we have determined
L<(f1(2)) and L<(f2(&)) for feasible solution &, as shown in Figure 2.12. We

shall assume that the level curves are the boundaries of the level sets and the
strict level sets are the interiors of the level sets.

Fig. 2.12. Level sets and efficiency.

Can z be efficient? The answer is no: It is possible to move into the interior
of the intersection of both level sets and thus find feasible solutions, which are
better with respect to both f; and f>. In fact, & is not even weakly efficient.
Thus, & can only be (weakly) efficient if the intersection of strict level sets is
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empty or level sets intersect in level curves, respectively. We can now formulate
the characterization of (strict, weak) efficiency using level sets.

Theorem 2.30 (Ehrgott et al. (1997)). Let & € X be a feasible solution
and define gy, := fr(2), k=1,...,p. Then

1. T is strictly efficient if and only if

P
) L< () = {2}. (2.28)
k=1

2. & is efficient if and only if

() L<@w) = ) L=(k)- (2.29)
k=1

k=1

o
8

t is weakly efficient if and only if

P

() £<(ix) =0 (2.30)
k=1

Proof. 1. Z is strictly efficient
<= there is no ¢ € X,z # & such that f(z) < f(Z)
<= there is no ¢ € X,z # & such that fi(z) < fi(&) forallk=1,...,p
<= there is no v € X',z # & such that z € N_, L<(Jx)
= My L< (k) = {2}
2. ¢ is efficient
<= there is no € X such that both fi(x) < fr(Z) forall k =1,...,p
and f;(z) < f;(£) for some j
<= there is no € X such that both x € N}_,L<(,) and = € L(9;)
for some j
— mZ:lﬁﬁ (Uk) = ﬂizlﬁz(yk)
3. Z is weakly efficient
<= there is no z € X such that fi(x) < fi(&) forallk=1,...,p
<= there is no « € X such that x € N)_; L (7,)
= Moo L< () = 0. u

Clearly, Theorem 2.30 is most useful when the level sets are available
graphically, i.e. when n < 3. We illustrate the use of the geometric charac-
terization by means of an example with two variables. Exercises 2.8 — 2.11
show how the(strictly, weakly) efficient solutions can be described explicitly
for problems with one variable.
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Ezample 2.31. Consider three points in the Euclidean plane, z! = (1,1),2? =
(1,4), and 23 = (4,4). The [3-location problem is to find a point x = (21, x2) €
R? such that the sum of weighted squared distances from x to the three points
x4 = 1,2,3 is minimal. We consider a bicriterion [3-location problem, i.e.
two weights for each of the points 2’ are given through two weight vectors
wt = (1,1,1) and w? = (2,1,4).

The two objectives measuring weighted distances are given by

fr(x) = wa((xi —21)% + (25 — 22)°). (2.31)

Evaluating these functions we obtain

fl(l‘) = 2(1 — .’1}1)2 + (4 — .’1}1)2 + (1 — .7,‘2)2 + 2(4 — .’Eg)z
= (2% — 4y + 22 — 613) + 51
fa(x) =3(1 —21)® +4(4 — 21)* +2(1 — 22)? +5(4 — 29)?

44
=7 (a;f - 378;51 + 2 — - x2> +149.

We want to know if z = (2,2) is efficient. So we check the level sets and
level curves of f; and fo at (2,2). The objective values are f1(2,2) = 15 and
£2(2,2) = 41.

The level set £L_(f1(2,2)) = {x € R?: fi(z) = 15} is given by

fi(z) =15 <= 3(27 — 421 + 23 — 622) + 51 = 15
= (11 -2+ (12 -3)* =1,

ie. L_(f1(2,2)) ={z € R? : (z1 —2)?+ (22 — 3)? = 1}, a circle with center
(2,3) and radius 1. Analogously, for fo we have

38 44
fo(x) =41 — 7(1‘?— T —|—x§— 7;132) + 149 = 41

7

19\? 22\ 89
= <x1 7) +<x2 7) T a9
and £_(f2(2,2)) = {z € R? : (21 —19/7)% + (z2 — 22/7)? = 89/49}, a cir-
cle around (19/7,22/7) with radius v/89/7.
In Figure 2.13 we see that NZ_; L<(fi(2,2)) # N2, L=(fi(2,2)) because
the intersection of the discs has nonempty interior. Therefore, from Theorem
2.30 z = (2,2) is not efficient. Note that in this case the level sets are simply

the whole discs, the level curves are the circles and the strict level sets are the
interiors of the discs.
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Let us now check z = (2,3). We have f1(2,3) = 12 and f2(2,3) = 32.
Repeating the computations from above, we obtain

fi(x) =12 <= (x1 — 2)? + (z2 — 3)* =0,

whence £_(f1(2,3)) = {z € R?: (21 —2)2+ (22— 3)2 = 0} = {(2,3)}. For f»

2 2

f2(l’) =32 <— <£L‘1 — 179) + <.%‘2 — 272> = ig
and L£_(f2(2,3)) = {z € R?: (z1 — 19/7)? + (z2 — 22/7)% = 26/49}, a circle
around (19/7,22/7) with radius v/26/7.

We have to check if £_(f1(2,3))NL=(f2(2,3)) is the same as L<(f1(2,3))N
L<(f2(2,3)). But for z = (2,3) £=(f1(2,3)) = {(2,3)}, i.e. the level set
consists of only one point, which is on the boundary of £<(f2(2,3)). Thus
(2,3) is efficient. In fact, it is even strictly efficient.

L-(f1(2,2)) is the circle around (2, 3) with radius 1.
L=(f1(2,3)) is {(2,3)}-

L-(f2(2,2)) is the circle around (19/7,22/7) with radius v/89/7.
L-(f2(2,3)) is the circle around (19/7,22/7) with radius v/26/7.

Fig. 2.13. Location problem of Example 2.31.

O

Theorem 2.30 shows that sometimes not all the criteria are needed to see
if a feasible solution Z is weakly or strictly efficient: Once the intersection of
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some level sets contains only &, or the intersection of some strict level sets is
empty, it will remain so when intersected with more (strict) level sets. This
observation leads us to investigating the question of how many objectives
are actually needed to determine if a feasible solution # is (strictly, weakly)
efficient or not.

Let P C {1,...,p} and denote by f7 := (f; : j € P) the objective function
vector that only contains f;,j € P.

Corollary 2.32. Let P C {1,...,p} be nonempty and let & € X. Then the
following statements hold.

1. If & is a weakly efficient solution of (X, f7,RIP!)/id/(RIPI, <) it is also a
weakly efficient solution of (X, f,RP)/id/(RP, <).

2. If @ is a strictly efficient solution of (X, fP,RIP!)/id/(RIPI, <) it is also
a strictly efficient solution of (X, f,RP)/id/(RP, £).

Corollary 2.32 says that weak or strict efficiency of some solution & for a
problem with a subset of the p objectives implies weak (strict) efficiency for
the problem with all objectives. Let us now investigate whether it is possible
to find all weakly (strictly) efficient solutions by solving only problems with
less than p objectives. For weakly efficient solutions this is possible for convex
functions..

For the rest of this section we suppose that X C R" is a convex set and
that fr : R™ — R are convex functions. This implies that all level sets are con-
vex. Theorem 2.30 is then about intersections of convex sets. A fundamental
theorem on such intersections is known in convex analysis: Helly’s Theorem.

Theorem 2.33 (Helly (1923)). Let p > n and let Cy,...,C, C R™ be
convex sets. Then

P
(Ci#0

i=1
if and only if for all collections of n +1 sets Cy,,...,C;, .,
n+1
() Ci, #0.

Jj=1

Equivalently stated, we can say that

P
(Ci=0
=1

if and only if there is a subset of n + 1 sets Cy, {Cj,,...,Cj, ., } such that
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In the multicriteria optimization context we will choose strict level sets as
C;. Combining Theorem 2.30, Corollary 2.32 and Helly’s Theorem we imme-
diately obtain the following “reduction result” for weakly efficient solutions
of convex multicriteria optimization problems.

Proposition 2.34. Consider the multicriteria optimization problem (X, f,
RP)/id/(RP, <), where X C R™ is convez, fr, : R* — Rk = 1...,p are
convex and p > n. Then & € X is weakly efficient if and only if there is a sub-
set P C{1,...,p}, 0 <|P| <n+1 such that & is a weakly efficient solution
of (X, {7 RIP) /id/(RIP], <),

We shall adopt the notation X,z (f), Xwr(fF), and X&(f), Xe(f7) here
to refer to the (weakly) efficient sets of the problems with f and f*, to avoid
confusion. Proposition 2.34 is called a “reduction result”, because it shows
that the p-criteria problem (X, f,RP)/id/(R?, <) can be solved by solving
problems with at most n + 1 criteria (X, f7,RI7)/id/(RI"!, <) at a time.
Indeed, we observe that the structure of X, g(f) is described by

Xop(f)= |J e (7). (2.32)
PC{L,....,p}
|P|<n+1
Investing some more effort, it is even possible to describe X, g(f) in terms
of efficient solutions of subproblems with at most n+ 1 objectives. The follow-
ing results show that on the right hand side of (2.32), X,,g can be replaced
by XE

Proposition 2.35 (Malivert and Boissard (1994)). When the objective
functions fi. are convex functions and the feasible set X is convex we have

Xos()= U XeUP). (2.33)

Proof. We prove both set inclusions by showing the contrapositive.

“D” Choose x € X with z ¢ X,g(f). Consequently, there is some z’ € X
with fr(z') < fr(z) for all k = 1,...,p, which implies that z cannot be
in Xg(f%) for any choice of P C {1,...,p}.

“C” We prove, by induction, that for each [ = 1,...,p there is a subset
P, of {1,...,p} of cardinality p — | and a feasible solution x! such that
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fi(z') < fi(x) whenever i € P, and f;(z!) < fi(x) otherwise. For p = [
this implies that x is not weakly efficient.

Choose x € X with = ¢ Upcqi,..., p}XE(fP). In particular, x ¢ Xg(f).
Thus letting P = {1,...,p}, there is some i; € P and some z! € X
such that f;, (z') < fi,(z) and fi(z') < fi(z), i # i1. We now define
Pl =P \ {21}

Now for I > 1 suppose we found P; = {1,...,p}\ {i1,...,4} and 2! € X
such that fi(x!) < fi(x) for all i € {iy,...,i;} and fi(2') < fi(x) for
all i € P;. Since z ¢ Xg(f"') by assumption, there is some i, € P
and Z'1 € X such that f;,, (Z'') < fi,,(z) and f;(@F') < fi(x) for
all i € P,. However, &1 itself does not suffice to prove the condition
for objectives fi, i € {i1,...,i;}. We exploit convexity here. Let 2!t =
ar! + (1 — a)z*!, where A € (0,1). Then

fi(z!™) < fi(x) for all i € {iy,... 40}, (2.34)

whenever (1 — «) is sufficiently small, due to the continuity of f; and
applying f;(z') < fi(z) from the induction hypothesis. Furthermore,

fzz+1( l+1 < O‘fuﬂ(wl) ( )fu+1( l+1)
< aflz+1 ('T) ( - )fil+1< ) (235>
= fi1+1( )

by applying convexity for the first inequality and the induction hypothesis
as well as the choice of ! for the second. Finally,

fi(@™) < fi(z) foralli € Py = {1,...,p}\ {i1,...,iis1}  (2.36)

follows from convexity and the choice of #!*1
After p applications of this construction we have found zP such that
fi(@P) < filz) fori=1,...,p, e = ¢ Xpp(f). O

The preliminary result of Proposition 2.35 can now be combined with

Helly’s Theorem to obtain the structure result for weakly efficient solutions

of convex multicriteria problems.

Theorem 2.36 (Malivert and Boissard (1994)). Assume that X is a
nonempty convex set and that the objective functions fr,k = 1,...,p are
convex functions. Then

X = |J (7). (2.37)

PC{L,....,p}
1<[P|<nt1
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Proof. Of course we need only consider the case p > n + 1 and we only have
to prove “C”, because the other inclusion is an immediate consequence of
Proposition 2.35 and the fact that Xg(f7) C Xur(f7).

So, again, choose © € X, where x ¢ U1§|p|§n+1XE(fp) and let J C
{1,...,p}, T # 0, |J| < n+1 be any nonempty subset of at most n + 1
indices. By the assumption on 2 we know that x ¢ Urc 7Xg(f%). Then by
Proposition 2.35 = ¢ X,,g(f7) and there is some 7 € X such that

fi(@7) < fi(z) forall j € J. (2.38)
For all indices ¢ € {1,...,p} we define
Ci=conv{z? : JC{l,....p}, T#0, |T|<n+1,ieJ}. (2.39)

By (2.38) it follows that f;(z7) < fi(x) for each J C {1,...,p}, 1 < |J| <
n + 1 and each ¢ € J. Furthermore by convexity

fi(@') < fi(z) for all 2’ € C;. (2.40)

When we look at some 7, fixed for the moment, we know that N;c7C; D
{27}, i.e. Nie7C; # 0. Therefore we can apply Helly’s Theorem to conclude
that there is at least one 2 € NY_,C; and (2.40) tells us fi(2) < fi(z), thus
€z ¢ XwE(f) o

With a reduction result like (2.32) and a structure result like Theorem
2.36 for weakly efficient solutions, we may ask if similar results are possible
for (strictly) efficient solutions. We give a counterexample to see that

Xe()= U Xs(F)

PC{l,...p}
|P|<n+1

does not hold for strictly efficient solutions.

Ezxample 2.37 (Ehrgott and Nickel (2002)). Consider the MOP

min  (21,...,%p, —T1,... — Tp)

subject to z € [—1,1]".

& = 0 is a strictly efficient solution. Consider subsets P C {1,...,p}
with |P| < p = 2n. If P is such that |P| = 2k and i € P & 2i € P then
# € Xg(fT). However, for such subsets & is not strictly efficient, because all
vectors €/, j ¢ P have the same objective function values for objectives in P
(e denotes the i-th unit vector in R™).

In any other case there is some ¢ < n such that either i € P,2i ¢ P or
2i € P,i ¢ P. Thus either —e’ or e’ dominate Z. ]
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This shows that strict efficiency of & can only be confirmed using all p
objectives. Thus for a problem with n variables, a lower bound on the maximal
number of criteria needed to decide strict efficiency is 2n.

2.4 Proper Efficiency and Proper Nondominance

According to Definition 2.1, an efficient solution does not allow improvement
of one objective function while retaining the same values on the others. Im-
provement of some criterion can only be obtained at the expense of the deteri-
oration of at least one other criterion. These trade-offs among criteria can be
measured by computing the increase in objective f;, say, per unit decrease in
objective f;. In some situations such trade-offs can be unbounded. We give an
example below and introduce Geoffrion’s definition of efficient solutions with
bounded trade-offs, so called properly efficient solutions. Then some further
definitions of proper efficiency by Borwein, Benson, and Kuhn and Tucker are
presented. The results proved thereafter give an overview about the relation-
ships between the various types of proper efficiency.

Example 2.38. Let the feasible set in decision and objective space be given by
X ={(x1,12) €R?: (21 —1)* + (22— 1) <1, 0 < 2y, 20 < 1},

and )Y = X as shown in Figure 2.14.

0 0.5 1

Fig. 2.14. Properly nondominated point g.
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Clearly, Vv = {(y1,%2) €Y : (y1 — 1)?> + (y2 — 1)2 = 1}. We observe that
the closer ¢ is moved towards (1,0), the larger an increase of ' is necessary to
achieve a unit decrease in y5. In the limit, an infinite increase of y; is needed
to obtain a unit decrease in ys. 0O

Definition 2.39 (Geoffrion (1968)). A feasible solution & € X is called
properly efficient, if it is efficient and if there is a real number M > 0 such

that for all i and x € X satisfying fi(x) < fi(&) there exists an index j such
that f;(2) < f;(x) such that

fi(2) — fi(z)
fi(x) = fi(2)

The corresponding point § = f(Z) is called properly nondominated.

< M. (2.41)

According to Definition 2.39 properly efficient solutions therefore are those
efficient solutions that have bounded trade-offs between the objectives.

Ezample 2.40. In Example 2.38 consider the solution & = (1,0). We show that
I is not properly efficient. To do so, we have to prove that for all M > 0 there
is an index ¢ € {1,2} and some z € X with f;(x) < f;(Z) such that

fi(@) — fi(z)
fi(x) — fi(2)

for all j € {1,2} with f;(x) > f;(Z).

Let 4 = 1 and choose 2° with 2§ =1 —¢, 0 <e < land 25 =1 — /1 — 2,
i.e. 2° is efficient because (5 — 1) + (25 — 1)? = 1. Since 2° € X, 2§ < 33
and z§ > 22 we have ¢ =1, 7 = 2. Thus

fi@) = fi(a®) _ 1-(1-¢) € e—0

fi(@e) = f3(&)  1—V1—¢2 T /12 — 00. (2.42)

> M

O

The main results about properly efficient solutions show that they can be
obtained by minimizing a weighted sum of the objective functions where all
weights are positive. For convex problems optimality for the weighted sum
scalarization is a necessary and sufficient condition for proper efficiency. We
will prove these results in Section 3.2.

In the previous section we have given conditions for the existence of
nondominated points/efficient solutions. These imply, of course, existence of
weakly nondominated points/weakly efficient solutions. They do not guaran-
tee existence of properly nondominated points. This can be seen from the
following example.
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Ezample 2.41. Let Y = {y € R? : y; < 0,92 = 1/y1}. Then Yy = Y, but
YV,n = empty. To see this, take any § € Yy and a sequence y* with y§ > 7o
and yf — —oc or y¥ > ¢, and y§ — —oc0. a

As mentioned in the introduction of this section, Geoffrion is not the only
one to introduce properly efficient solutions. Before we can present the defini-
tions of Borwein and Benson, we have to introduce two cones related to sets
Y C RP.

Definition 2.42. Let Y C RP and y € ).

1. The tangent cone of Y aty € Y is

Ty(y) :=={d € R : I{tx} CR, (Y Cc Y sty =y, eyt —y) — d}.
(2.43)

2. The conical hull of Y is

cone(Y)={ay: a>0, ye YV} = U a). (2.44)

a>0

Note that the conditions y* — y and t,(y* — y) — d in the definition of
the tangent cone imply that ¢, — oco. One could equivalently require y* — y
and (1/(tx))(y* —y) — d, whence t; — 0. Both definitions can be found in
the literature. Examples of the conical hull of a set ) and the tangent cone
of YV at a point y are shown in Figure 2.15. The tangent cone is translated
from the origin to the point y to illustrate where its name comes from: It is
the cone of all directions tangential to ) in y.

Proposition 2.43 on properties of tangent cones and conical hulls will be
helpful later.

Proposition 2.43. 1. The tangent cone Ty(y) is a closed cone.
2. If Y is convex then Ty(y) = cl(cone(Y — y)), which is a closed convex
cone.

Proof. 1. Note first that 0 € Ty(y) (take y* = y for all k) and Ty(y) is

indeed a cone: For a > 0, d € Ty(y) we have ad € Ty(y). To see this,
just take aty instead of t; when constructing the sequence .
To see that it is closed take a sequence {d'} C Ty(y), y € Y, with d' — d,
for some d € RP. Since d; € Ty(y), for all | there are sequences {y"*},
{t1,x} as in the Definition 2.42. From the convergence we get that for fixed
[ there is some k; s.t.
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5 - 54

4 44

3 cone(Y) 3 y+Ty(y)

24 Yy 9 |
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Fig. 2.15. Conical hull and tangent cone.

1
[tk (0" =) = d| < (2.45)

for all k > k;. We fix the k; and observe that because of (2.45) if | — oo
the sequence t, i, (y"% —y) — d, i.e. d € Ty(y).

2. Let Y be convex, y € Y. By definition of closure and conical hull, it is
obvious that cl(cone(Y —y)) is a closed convex cone.
To see that Ty(y) C cl(cone(Y — y)) let d € Ty(y). Then there are se-
quences {3}, {y*} with tz(y* — y) — d. Since tx(y* —y) € a(Y — y) for
some « > Oclosedness implies d € cl(cone(Y — y)).
For cl(cone(Y —y)) C Ty(y) we know that Ty (y) is closed and only show
cone(Y —y) C Ty(y). Let d € cone(Y — y), i.e. d = a(y —y) with
a >0,y €Y. Now define y* := (1-1/k)y+(1/k)y’ € Y and t; = ak > 0.
Hence

tr(y* —y) = ak ((k; byt iz/) - y) = a((k—=1)y+y' —ky) = a(y' ~y).

So y* — y and tx(y* — y) — d implying d € Ty (y). a

Definition 2.44. 1. (Borwein (1977)) A solution & € X is called properly
efficient (in Borwein’s sense) if

Tyiee (f(2)) 0 (~RL) = {0}, (2.46)
2. (Benson (1979)) A solution & € X is called properly efficient if

o (cone (y +RE - f(fc))) N (ng) - {0}. (2.47)
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As we observed in Proposition 2.43 it is immediate from the definitions of
conical hulls and tangent cones that

Ty pe (f(#)) C (cone (y +RE — f(fc))) (2.48)
so that Benson’s definition is stronger than Borwein’s.

Theorem 2.45. 1. If & is properly efficient in Benson’s sense, it is also
properly efficient in Borwein’s sense.
2. If X is convex and f : R™ — R are convex then both definitions coincide.

Ezample 2.46. Consider X = {(z1,22) : z? + 22 < 1} and, as usual,
fi(x) = z1, fa(x) = z2. Then (—1,0) and (0, —1) are efficient, but not prop-
erly efficient in the sense of Borwein (and thus not in the sense of Benson).

—Cron(x)

L) LTy (- L.0) -

Fig. 2.16. Benson’s proper efficiency.

The tangent cone translated to the point y = (—1,0) contains all directions
in which ) extends from y, including the limits, i.e. the tangents. The tangent
to the circle at (—1,0) is a vertical line, and therefore

Ty(=1,0) = {(y1,92) € R*: y1 >0} (2.49)
The intersection with the nonpositive orthant is therefore not {0}:

Ty(=1,0) N (-RL) = {(y1,42) € R* : y1 =0, y» <0}, (2.50)
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indicated by the bold line in Figure 2.16. A similar interpretation applies to
(0,-1). |

That convexity is indeed needed for Borwein’s definition to imply Benson’s
can be seen in Exercise 2.13. Definition 2.44 does not require & to be efficient,
as does Definition 2.39. It is therefore legitimate to ask whether properly
efficient solutions in Benson’s or Borwein’s sense are always efficient.

Proposition 2.47. If & is properly efficient in Borwein’s sense, then I is
efficient.

Proof. The proof is left to the reader as Exercise 2.12. O

Benson’s and Borwein’s definitions of proper efficiency are not restricted to
the componentwise order. In fact, in these definitions RY can be replaced by
an arbitrary closed convex cone C. They are therefore agplicable in the more
general context of orders defined by cones. Geoffrion’s definition on the other
hand explicitly uses the componentwise order. Our next result shows that in
the case of C = R% the definitions of Geoffrion and Benson actually coincide,
so that Benson’s groper efficiency is a proper generalization of Geoffrion’s.

Theorem 2.48 (Benson (1979)). Feasible solution & € X is properly effi-
cient in Geoffrion’s sense (Definition 2.39) if and only if it is properly efficient
in Benson’s sense.

Proof. “=" Suppose z is efficient, but not properly efficient in Benson’s
sense. Then we know that a nonzero d € cl(cone(Y+RE — f(2))) N (-RY)
exists. Without loss of generality we may assume that dy < —1, d; <
0, i=2,...,p (otherwise we can reorder the components of f and rescale

d). Consequently there are sequences {t;} C Rs, {zF} C X, {r*} C RZ
such that tx(f(z*) +r* — f(2)) — d.

Choosing subsequences if necessary, we can assume that Q := {i €
{1,...,p}: fi(z®) > fi(#)} is the same for all k and nonempty (since 7 is
efficient). Now let M > 0. From convergence we get existence of ko such
that for all k& > kg

1

)~ @) < -, (251)

t

1
(2F) — fi(2) < i =2,... 2.52
and fi(@") = fi@) €, o i=20p (2.52)
because t; — oo. In particular, for ¢ € Q, we have
1

0< fi(z®) — fi(2) < V k> ko (2.53)

— 2 Mty
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and therefore, from (2.51) and (2.53)

1

f1(@) — fi1(z®) 2ty
k

F) - fi@) 7 = M. (2.54)

Because M was chosen arbitrarily chosen, & is not properly efficient in
Geoffrion’s sense.

“«<=" Suppose 7 is efficient, but not properly efficient in Geoffrion’s sense.
Let My, > 0 be an unbounded sequence of positive real numbers. Without
loss of generality we assume that for all M), there is an z* € X such that
fi(z*) < f1(#) and

fi(@) = fu(a®)

fi(ak) = f;(2)
Again, choosing a subsequence if necessary, we can assume Q = {i €
{1,...,p}: fi(®) > fi(2)} is constant for all & and nonempty. We con-
struct appropriate sequences {tx}, {r*} such that the limit of ¢ (f(z*) +
% — f(&)) converges to d € cl(cone(f(X) +RE — f(2))) N (—RL).
Define ¢, := (f1(#) — fi(z*))~! which means ¢, > 0 for all k. Define
rk € RZ through

> M, Yje{2,...,p} with fj(z%) > f;(2). (2.55)

0 1=1,1€Q
k._ ’ 2.
T {fl(:i’) — fi(a®) otherwise. (2:56)
With these sequences we compute
=-1 i=1
te(fi(2®) +rF — f:(2)) =0 i#1,i¢Q (2.57)

€(0,M;Yie€Q.
This sequence converges due to the choice of My — oo to some d €
RP, where d; = klim te(fi(@®) + ¥ — fi(2)) for i = 1,...,p. Thus, from
(257)dy =—-1,d; =0,71#1,i¢ Q, d =0, i € Q. Because d =

(=1,0,...,0) € cl(cone(f(X) +RE — f(&))) N (=RL), & is not properly
efficient in Benson’s sense. B B O

In multicriteria optimization, especially in applications, we will often en-
counter problems, where X is given implicitly by constraints, i.e.

X={zeR": (g1(z),...,gm(z)) <0} (2.58)

For such constrained multicriteria optimization problems yet another defi-
nition of proper efficiency can be given. Let us assume that the objective
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functions f;, i = 1,...,p as well as the constraint functions g;, j =1,...,m
are continuously differentiable. We consider the multiobjective programme

min f(x)

2.
subject to g(x) = 0, (2:59)

where f : R” — RP and g : R® — RP.

Definition 2.49 (Kuhn and Tucker (1951)). A feasible solution & € X
is called properly efficient (in Kuhn and Tucker’s sense) if it is efficient and
if there is no d € R™ satisfying

(Vie(2),d) <0 Vk=1,...,p (2.60)
(Vfi(z),d) <0 for someiec{l,...,p} (2.61)
(Vgij(#),d) <0 VjeJ@)={j=1...,m: gj(&) =0} (2.62)

The set J (&) is called the set of active indices. As for Geoffrion’s definition,
efficiency according to the componentwise order is implicitly assumed here,
and the definition is not applicable to orders derived from closed convex cones.
Intuitively, the existence of a vector d satisfying (2.60) — (2.62) means that
moving from & in direction d no objective function increases (2.60), one strictly
decreases (2.61), and the feasible set is not left (2.62). Thus d is a feasible
direction of descent. Note that a slight movement in all directions is always
possible without violating any inactive constraint.

We prove equivalence of Kuhn and Tucker’s and Geoffrion’s definitions
under some constraint qualification. This constraint qualification of Defini-
tion 2.50 below means that the feasible set X has a local description as a
differentiable curve (at a feasible solution &): Every feasible direction d can
be written as the gradient of a feasible curve starting at z.

Definition 2.50. A differentiable MOP (2.59) satisfies the KT constraint
qualification at & € X if for any d € R™ with (Vg;(&),h) <0 for all j € J(&)
there is a real number t > 0, a function 0 : [0,t] — R™, and « > 0 such that
0(0) = z,9(0(t)) <0 for all t € [0,t] and 6'(0) = ad.

Theorem 2.51 (Geoffrion (1968)). If a differentiable MOP satisfies the
KT constraint qualification at & and & is properly efficient in Geoffrion’s sense,
then it is properly efficient in Kuhn and Tucker’s sense.

Proof. Suppose z is efficient, but not properly efficient according to Definition
2.49. Then there is some d € R™ such that (without loss of generality, after
renumbering the objectives)
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(Vfi(2),d) <0 (2.63)
(Vfe(2),d) <0 Vk=2,...,p (2.64)
(Vgj(2),d) <0 VjeJ). (2.65)

Using the function 6 from the constraint qualification we take a sequence
tr — 0, and if necessary a subsequence such that

Q={i: fi(0(t)) > fi(2)} (2.66)

is the same for all k. Since for i € Q by the Taylor expansion of f; at 6(tx))
fi0(tr)) = fi(@) = te(V fi(2), ad) + o(ty) > 0 (2.67)
and (Vf;(Z),d) <0 it must be that
(Vfi(#),ad)y =0 VieQ. (2.68)
But since (V f1(Z),d) < 0 the latter implies

fi#) = AO(0) _ —VA@ed + 70 |
JO(t) = (@) (9 fi(@),ad) +

whenever ¢ € Q. Hence & is not properly efficient according to Geoffrion’s
definition. 0

The converse of Theorem 2.51 holds without the constraint qualification.
It turns out that this result is an immediate consequence of Theorem 3.25
(necessary conditions for Kuhn and Tucker’s proper efficiency) and Theorem
3.27 (sufficient conditions for Geoffrion’s proper efficiency). These results are
proved in Section 3.3. In Section 3.3 we shall also see that without constraint
qualification, Geoffrion’s proper efficiency does not necessarily imply proper
efficiency in Kuhn and Tucker’s sense.

Theorem 2.52. Let fi,g; : R” — R be convex, continuously differentiable
functions and suppose & is properly efficient in Kuhn and Tucker’s sense.
Then & is properly efficient in Geoffrion’s sense.

Let us conclude the section by a summary of the definitions of proper effi-
ciency and their relationships. Figure 2.17 illustrates these (see also Sawaragi
et al. (1985)). The arrows indicate implications. Corresponding results and
the conditions under which the implications hold are mentioned alongside the
arrows. On the right of the picture, the orders and problem types for which
the respective definition is applicable are given.
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C Borwein ) closed convex cone C
Theorem 2.44 Th 9 44 reX
eorem 2.
convexity

e N
w Benson P

,{I Theorem 2.47

C=RE
s : A >
w Geoffrion ) ex
Theorem 2.50 Th 951
eorem 2.
constraint .
lification convexity
qualificatio C=R"

( Kuhn-Tucker ) -
(_ Kuhn-Tucker ) zeX={zxecR": g(z) <0}

Fig. 2.17. Relationships among definitions of proper efficiency for the case
C=RZ.

In order to derive further results on proper efficiency and important prop-
erties of (weakly) efficient sets we have to investigate weighted sum scalariza-
tions in greater detail, i.e. the relationships between those types of solutions
and optimal solutions of single objective optimization problems

p
min » A fi (@),
k=1

reX

where A € RY is a vector of nonnegative weights of the objective functions.
This is the topic of Chapter 3.

2.5 Notes

As we have pointed out after the definition of efficient solutions and nondomi-
nated points (Definition 2.1) notation for efficient solutions and nondominated
points is not unique in the literature. Table 2.4 below gives an overview of
some of the notations used. Another term for efficient point is admissible
point (Arrow et al., 1953), but this is rarely used today. Although some au-
thors distinguish between the case that the decision space is R™ or a more
general vector space (Jahn) or the order is defined by RY or a more general

cone (Miettinen), most of these definitions use the same terms in decision and
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Table 2.4. Terminology for efficiency and nondominance.

Author

Sawaragi et al. (1985)

Chankong and Haimes (1983)

Yu (1985)

Miettinen (1999)

Deb (2001)

Jahn (2004)

Gopfert and Nehse (1990)

Steuer (1985)

Decision space

efficient
solution
noninferior
solution
Pareto optimal
point

N-point

Pareto optimal
decision vector
efficient
decision vector
Pareto optimal

solution

Edgeworth-Pareto

optimal point
minimal

solution
Pareto optimal

solution
efficient

point

Objective space

efficient
element
noninferior
solution
Pareto optimal
outcome
N-point

Pareto optimal
criterion vector
efficient
criterion vector
Pareto optimal
solution
minimal
element
minimal
element
efficient
element
nondominated

criterion vector

criterion space, which might cause confusion and does not help distinguish
two very different things.

The condition of RZ-compactness in Corollary 2.15 can be replaced by
R? -closedness and R’;—Boundedness, which are generalizations of closedness
and boundedness, see Exercises 2.4 and 2.5. For closed convex sets ) it can be
shown that the conditions of Theorem 2.10, Corollary 2.15 and R -closedness
and RY -boundedness coincide, see for example Sawaragi et al. (19§5, page 56).
Other existence results are known, which often use a more general setting
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than we adopt in this text. We refer, e.g.xs to Gopfert and Nehse (1990);
Sawaragi et al. (1985); Hazen and Morin (1983) or Henig (1986). A review of
existence results for nondominated and efficient sets is provided by Sonntag
and Zalinescu (2000).

We remark that all existence results presented in this Chapter are still
valid, if R is replaced by a convex, pointed, nontrivial, closed cone C with
the proofs:unchanged. Furthermore, the closedness assumption for C is not
required if (y — clC) is used instead of (y — C) everywhere. In Exercises 2.2
and 2.7 nondominance with respect to a cone is formally defined, and the
reader is asked to check some of the results about efficient sets in this more
general context.

Similarly, Theorem 2.21 is valid for any nonempty, closed, convex cone C.
In fact, C-compactness can be replaced by C-closedness and C-boundedness,
see Sawaragi et al. (1985) for more details. External stability of Yy has
been shown for closed convex ) by Luc (1989). More results can be found
in Hirschberger (2002). A counterpart to the external stability is internal sta-
bility of a set. A set ) is called internally stable with respect to C, if y—y’ &€ C
for all ,7" € ). Obviously, nondominated sets are always internally stable.

The computation of the nadir point is difficult, because it amounts to
solving an optimization problem over the efficient set of a multicriteria opti-
mization problem, see Yamamoto (2002) for a survey on that topic. Never-
theless, interactive methods often assume that the ideal and nadir point are
known (see Miettinen (1999)[Part II, Chapter 5] for an overview on interac-
tive methods). A discussion of heuristics and exact methods to compute nadir
points and implications for interactive methods can be found in Ehrgott and
Tenfelde-Podehl (2003).

For reduction results on the number of criteria to determine (strict, weak)
efficiency of a feasible solution &, we remark that the case of efficiency is
much more difficult than either strict or weak efficiency. Ehrgott and Nickel
(2002) show that a reduction result is true for strictly quasi-convex problems
with n = 2 variables. For the general case of n > 2 neither a proof nor a
counterexample is known.

In addition to the definitions of proper efficiency mentioned here, the fol-
lowing authors define properly efficient solutions Klinger (1967), Wierzbicki
(1980) and Henig (1982). Borwein and Zhuang (1991, 1993) define super effi-
cient solutions. Henig (1982) gives two definitions that generalize the defini-
tions of Borwein and Benson (Definition 2.44) but that coincide with these in
the case C = RY discussed in this book.
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Exercises

2.1. Give a counterexample to the converse inclusion in Proposition 2.6.

2.2. Given a cone C C RP and the induced order <¢, y € ) is said to be
C-nondominated if there is no y € Y,y # ¢ such that y € § — C. The set
of C-nondominated points is denoted Ven. Let Cq,Co be two cones in RP and
assume C; C Cs. Prove that if g is Co-nondominated it is also C;-nondominated.
Illustrate this “larger cone — fewer nondominated points” result graphically.

2.3. Prove that (a))n = a(Yg) where Y C RP is a nonempty set and « is a
positive real number.

2.4. Let Y C R? be a convex set. The recession cone (or asymptotic cone)
Voo of YV, is defined as

Voo i ={deR’:Jyst.y+ade)y Va>0},

i.e. the set of directions in which ) extends infinitely.

1. Show that Y is bounded if and only if Vs = {0}.
2. Let Y = {(y1,y2) € R? : yo > y?}. Determine V.

2.5. A set Y C RP is called Rg—closed, if ¥ + R% is closed and Rg—bounded,
YN (ng) = {0}. Give examples of sets Y C R? that are

1. R% -compact, Rgbounded, but not R2 -closed,

2. ]Rg—bounded7 R -closed, but not R%-compact.

2.6. Prove the following existence result for weakly nondominated points. Let
 #£Y C RP be R;—compact. Show that Y, n # 0. Do not use Corollary 2.15
nor the fact that Yny C Vun-

2.7. Recall the definition of C-nondominance from Exercise 2.2: § € ) is C-
nondominated if there is no y € ) such that § € y+C. Verify that Proposition
2.3 is still true if C is a pointed, convex cone. Give examples that the inclusion
Yen C (Y +C)en is not true when C is not pointed and when C is not convex.

2.8. Let [a,b] C R be a compact interval. Suppose that all f; : R — R are
= 1,

convex, k ..., p. Let

2 = min {:17 € [a,b]: fu(z) = min fk(x)}

z€Ja,b]

and
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z€[a,b]

x%-nmx{xe[mﬂzfﬁx)mm ﬁ«@}.

Using Theorem 2.30 show that

XE:{_min z  nax m?]u[ max ., k_min xfy]

k=1,...,p =1,...,p k=1,...,p =1,....p
Xyp=| min z{", max zM|.
k=1,....,p k=1,....,p

2.9. Use the result of Exercise 2.8 to give an example of a multicriteria opti-
mization problem with X C R where Xsp C Xg C X, g, with strict inclusions.
Use two or three objective functions.

2.10 (Hirschberger (2002)). Let Y = {y € R? : y; < 0,y2 = 1/y1}. Show
that yN = y but ypN = @

2.11.Let ¥ ={x € R: 2z >0} and fi(x) = €7,

! 0<z<5
— r+1 — —
fa() {(x—5)2+é3325.

Using the result of Exercise 2.8, determine Xr. Which of these solutions are
strictly efficient? Can you prove a sufficient condition on f for z € R to be
a strictly efficient solution of min,ecxcr f(x)? Derive a conjecture from the
example and try to prove it.

2.12. Show that if & is properly efficient in the sense of Borwein, then Z is
efficient.

2.13 (Benson (1979)). Consider the following example:

X = {<$1,$2) ERZ T+ X2 ZO} U {(.’L‘l,.’lﬁg) ERQ x> 1}
U {(I’l,l’g) ER?: 5 > 1}

with f1(z) = 1, f2(x) = 22. Show that x = 0 is properly efficient in the sense
of Borwein, but not in the sense of Benson.

2.14. Counsider an MOP min, ¢y f(x) with p objectives. Add a new objective
fp+1. Is the efficient set of the new problem bigger or smaller than that of the
original problem or does it remain unchanged?

2.15. The following definition of an ideal point was given by Balbés et al.
(1998). Let mingex (fi(x),..., fp(x)) be a multicriteria optimization problem.
A point y € RP is called an ideal point if there exists a closed, convex, pointed
cone C C RP such that Y C y + C. If in addition y € Y, y is a proper ideal
point.
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1. Show that the ideal point y! (Section 2.2) is ideal in Balbas’ sense. Which
cone C is used?
2. For the MOP with

X:{x€R2: x1+x2>1, —x1 + 22 >0, 21,29 > 0}

and f1(z) = 21, fa(z) = z2, determine Yy and the set of all ideal points.

3. Give an example of a problem where ideal points exist, but at most finitely
many of them are proper ideal points. Can you find an example with no
proper ideal points?

2.16. Prove formally that Algorithm 2.1 is correct, i.e. that it finds the nadir
point for bicriterion problems.



3

The Weighted Sum Method and Related Topics

In this chapter we will investigate to what extent an MOP
min(f1(z), .., fp(2)) (3.1)

of the Pareto class
(X, f,R?)/id/(RP, <)

can be solved (i.e. its efficient solutions be found) by solving single objective
problem problems of the type

min > Ag fr(2), (3.2)
k=1

zeX

which in terms of the classification of Section 1.5 is written as

(X, [,R?) /(A ) /(R, <), (3.3)

where (J, -) denotes the scalar product in RP. We call the single objective (or
scalar) optimization problem (3.2) a weighted sum scalarization of the MOP
(3.1).

As in the previous chapter, we will usually look at the objective space )
first and prove results on the relationships between (weakly, properly) non-
dominated points and values > 7_; A\gyx. From those, we can derive results
on the relationships between X{,, ,yr and optimal solutions of (3.2).

We use these results to prove Fritz-John and Kuhn-Tucker type optimality
conditions for (weakly, properly) efficient solutions (Section 3.3). Finally, we
investigate conditions that guarantee that nondominated and efficient sets are
connected (Section 3.4).

Let Y C RP. For a fixed A € RY we denote by
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S\Y) = {Q eyY: (Ng) = min(A,y)} (3.4)
yey
the set of optimal points of ) with respect to A.

Figure 3.1 gives an example of a set S(\,)) consisting of two points y!
and y?. These points are the intersection points of a line {y € R? : (\,y) = ¢.
Obviously, ' and 3? are nondominated. Considering ¢ as a parameter, and
the family of lines {y € R? : (\,y) = ¢}, we see that in Figure 3.1 ¢ is chosen
as the smallest value of ¢ such that the intersection of the line with ) is
nonempty.

Fig. 3.1. A set S(\,)).

Graphically, to find ¢ we can start with a large value of the parameter
c and translate the line in parallel towards the origin as much as possible
while keeping a nonempty intersection with ). Analytically, this means finding
elements of S(A,Y). The obvious questions are:

1. Does this process always yield nondominated points? (Is S(\,)) C Yn7?)
and

2. if so, can all nondominated points be detected this way? (Is Yy C
Unenz SO, D)?)

Note that due to the definition of nondominated points, we have to con-
sider nonnegative weighting vectors A € RZ only. However, the distinction
between nonnegative and positive weights turns out to be essential. Therefore
we distinguish optimal points of ) with respect to nonnegative and strictly
positive weights, and define
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sy=Uson= U s&y (3.5)

AERY {A>0:3°0 ) =1}
and So(V) == ) S\ Y) = U S\ ). (3.6)
A€RE {A>0:3F_ | Ap=1}

Clearly, the assumption > ¥_; A\x = 1 can always be made. It just normal-
izes the weights, but does not change S(\,)). It will thus be convenient to
have the notation

p
A:{)\GR’;: Z)\kl}
T =1
p
Aozzrm:{AeRg: Zxk=1}.
k=1

It is also evident that using A = 0 does not make sense, as S(0,)) = ).
We exclude this case henceforth. Finally,

S(Y) € So(Y) (3.7)

follows directly from the definition. The results in the following two sections
extend (3.7) by including links with efficient sets.

In many of the results of this chapter we will need some convexity as-
sumptions. However, requiring ) to be convex is usually too restrictive a
requirement. After all, we are looking for nondominated points, which, bear-
ing Proposition 2.3 in mind are located in the “south-west” of ). Hence, we
define RY -convexity.

Definition 3.1. A set J € R? is called RY -convez, if ¥ +RY is convex.

Every convex set ) is clearly RY -convex. The set ) of Figure 3.1 is neither
convex nor R?-convex. Figure 2.4 shows a nonconvex set ) which is RZ-
convex. B N

A fundamental result about convex sets is that nonintersecting convex sets
can be separated by a hyperplane.

Theorem 3.2. Let V1,)Y> C RP be nonempty convex sets. There exists some
y* € RP such that

inf (y,y*) > sup (y,y") (3-8)
YyEYV1 yEYs

and sup (y,y*) > inf (y,y™) (3.9)
yEVL SN2
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if and only if ri(Y1)Nri(Ya) = 0. In this case Y1 and Vs are said to be properly
separated by a hyperplane with normal y*.

Recall that ri()};) is the relative interior of ), i.e. the interior in the space
of appropriate dimension dim(Y;) < p. A proof of Theorem 3.2 can be found
in Rockafellar (1970, p. 97).

(y,y) =c
8%

Fig. 3.2. Properly separated sets )1 and )s.

We will also use the following separation theorem.

Theorem 3.3. Let ) C RP be a nonempty, closed, convexr set and let y° €
RP\ Y. Then there exists a y* € RP \ {0} and o € R such that

", y") <a<(y*,y)
forally e ).

We will derive results on efficient solutions z € X of a multicriteria opti-
mization problem from results on nondominated points y € ). This is done
as follows. For results that are valid for any set ) we obtain analogous results
simply by invoking the fact that efficient solutions are preimages of nondom-
inated points. For results that are only valid under some conditions on Y
(usually RZ -convexity) , appropriate assumptions on X and f are required.
To ensure I@g—convexity of Y the assumption of convexity of X and all objec-
tive functions fr.

3.1 Weighted Sum Scalarization and (Weak) Efficiency

In this section, we show that optimal solutions of the weighted sum problem
(3.2) with positive (nonnegative) weights are always (weakly) efficient and
that under convexity assumptions all (weakly) efficient solutions are optimal
solutions of scalarized problems with positive (nonnegative) weights.
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Theorem 3.4. For any set Y C RP we have Sy(Y) C Vun-
Proof. Let A € RZ and § € S(),Y). Then
P P
> Xk D Agyr forally € V.
k=1 k=1

Suppose that § ¢ YVi,n. Then there is some y' € Y with y;, < gx, k =

1,...,p. Thus,
P P
>NV <D M
k=1 k=1

because at least one of the weights Ay must be positive. This contradiction
implies the result. O

For Rg-convex sets we can prove the converse inclusion.
Theorem 3.5. If ) is R};—convex, then Yuyn = s(y).

Proof. Due to Theorem 3.4 we only have to show Y,y C S(y). We first
observe that Yiuyn C (¥ + RE)yn (The proof of this fact is the same as that
of Proposition 2.3, replacing RZ by RZ).

Therefore, if § € VN, We have

(Vun +RE —9) N (-RY) = 0.

This means that the intersection of the relative interiors of the two convex
sets Y+ RE — g and —RY is empty. By Theorem 3.2 there is some A € RP\ {0}
such that

Ny+d—9) >0>(\~d) (3.10)

forally € Y, d e RY,d e RY.

Since (A, —d’) <0 for all d' € RY we can choose d’ = e}, + ce — where ey,
is the k-th unit vector, e = (1,...,1) € R? is a vector of all ones, and € > 0
is arbitrarily small — to see that Ay > 0,k = 1,...,p. On the other hand,
choosing d = ce in (\,y +d — §) > 0 implies

Ay)+ehe) = (A9 (3.11)

for all y € Y and thus
Ay) > (A a). (3.12)
Therefore A € RE and g € S(\,Y) C §). O



70 3 The Weighted Sum Method and Related Topics

With Theorems 3.4 and 3.5 we have the first extension of inclusion (3.7),
namely

S(V) CSY) C Vun (3.13)

in general and

S(V) CSY) = Vun (3.14)

for Rg—convex sets.
Next we relate S()) and S)) to V.

Theorem 3.6. Let Y C RP. Then S()) C Vn-

Proof. Let § € S(¥). Then there is some A € RE satisfying > 7_; Mg <
oh 1 Akyy for all y € Y.

Suppose § ¢ YVn. Hence there must be 3’ € Y with ¢y < y. Multiplying
componentwise by the weights gives Ay, < Apgi forallk =1,..., p and strict
inequality for one k. This strict inequality together with the fact that all A
are positive implies Y 7_; Axys, < > neq AUk, contradicting § € S(). O

Corollary 3.7. Yn C SY) if Y is an Rg—convex set.

Proof. This result is an immediate consequence of Theorem 3.5 since Yy C

Yun = 8). ad
Theorem 3.6 and Corollary 3.7 yield

SV) CIn: SY) CVun (3.15)

in general and

SOV) C YN CSY) =Vun (3.16)

for RE -convex sets.
Theorem 3.6 can be extended by the following proposition.

Proposition 3.8. If § is the unique element of S(\,Y) for some A € Rg then
JEIN.

Proof. The easy proof is left to the reader, see Exercise 3.2.

In Exercise 3.3 the reader is asked for examples where the inclusions in
(3.15) and (3.16) are strict, demonstrating that these are the strongest rela-
tionship between weighted sum optimal points and (weakly) nondominated
points that can be proved for general and R -convex sets, without additional
assumptions, like the uniqueness of Proposit:ion 3.8

Let us now summarize the analogies of the results of this section in terms of
the decision space, i.e. (weakly) efficient solutions of multicriteria optimization
problems.
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Proposition 3.9. Suppose that & is an optimal solution of the weighted sum
optimization problem

iré%z/\kfk(x) (3.17)
k=1

with X € Rg. Then the following statements hold.

1IfAERY then i € Xyp.
2. If X € R then & € Xg.
3. If A € RY and & is a unique optimal solution of (3.17) then & € Xsp.

Proof. The assertions follow directly from Theorem 3.4, Theorem 3.6, and
Proposition 3.8 with the uniqueness of &, respectively. 0O

Proposition 3.10. Let X' be a conver set, and let fi be convexr functions,
k=1,...,p. If £ € Xy, there is some \ € Rg such that & is an optimal
solution of (3.17).

The proof follows from Theorem 3.5. Note that there is no distinction
between X, and Xg here, an observation that we shall regrettably have
to make for almost all methods to find efficient solutions. This problem is
caused by the (possibly) strict inclusions in (3.16). Therefore the examples
of Exercise 3.3 and the usual trick of identifying decision and objective space
should convince the reader that this problem cannot be avoided.

At the end of this section, we point out that Exercises 3.4 and 3.7 show
how to generalize the weighted sum scalarization for nondominated points
with respect to a convex and pointed cone C.

Remembering that Y,y C Yy, we continue our investigations by looking
at relationships between V,n and S(Y).

3.2 Weighted Sum Scalarization and Proper Efficiency

Here we will establish the relationships between properly nondominated points
(in Benson’s or Geoffrion’s sense) and optimal points of weighted sum scalar-
izations with positive weights. The main result shows that these points coin-
cide for convex sets. A deeper result shows that in this situation the difference
between nondominated and properly nondominated points is small: The set
of properly nondominated points is dense in the nondominated set.

From now on we denote the set of properly efficient points in Geoffrion’s
sense by Vpg.. Note that due to Theorem 2.48 Geoffrion’s and Benson’s defi-
nitions are equivalent for efficiency defined by RZ.
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Unless otherwise stated, X,y will denote the set of properly efficient so-
lutions of a multicriteria optimization problem in Geoffrion’s sense. Our first
result shows that an optimal solution of (3.2) is a properly efficient solution
of (3.1) if A > 0.

Theorem 3.11 (Geoffrion (1968)). Let Ay > 0, k = 1,....p with
Sh_i M = 1 be positive weights. If & is an optimal solution of (3.2) then
Z is a properly efficient solution of (3.1)

Proof. Let & be an optimal solution of (3.2). To show that & is efficient suppose
there exists some ¢’ € X with f(2’) < f(&). Positivity of the weights A, and
fi(a") < fi(&) for some i € {1,...,p} imply the contradiction

> Aefl@) <Y Mefr(®). (3.18)
k=1 k=1

To show that z is properly efficient, we choose an appropriately large
number M such that assuming there is a trade-off bigger than M yields a
contradiction to optimality of & for the weighted sum problem. Let

s
M = (p—1) max )\]. (3.19)
Wi A

Suppose that Z is not properly efficient. Then there exist i € {1,...,p}
and x € X such that f;(z) < fi(2) and fi(Z) — fi(z) > M(f;(z) — f;(2)) for
all j € {1,...,p} such that f;(2) < fj(z). Therefore

R p—1 R
fi@) = file) > 7 A (fi(2) = £3(2)) (3.20)
for all j # ¢ by the choice of M (note that the inequality is trivially true

if f;() > fj(x)). Multiplying each of these inequalities by A;/(p — 1) and
summing them over j # ¢ yields

A(fi(@) = fila) > D> N(fi(x) — f5(&))

J#i
= Nifi(®) = Nifilz) > DN fi(@) = YN f()
J#i J#i
= Nifi(@) + DN fi(@) > Nfi() + )N fi(x)
JFi VED)

= D Afil#) > Aifi(w)
i=1 i=1

contradicting optimality of & for (3.2). Thus Z is properly efficient. |
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Theorem 3.11 immediately yields S(Y) C Yk, strengthening the left part
of (3.15).

Corollary 3.12. Let Y C RP. Then S(Y) C Vpn.

Now that we have a sufficient condition for proper nondominance and
proper efficiency, the natural question is, whether this condition is also nec-
essary. In general it is not. We shall illustrate this graphically.

Y2
6 /I\ Ay1 + Aoy =c

Fig. 3.3. Properly nondominated § € Yn.

In Figure 3.3, the feasible set in objective space for a nonconvex problem is
shown () is not R>-convex). Since all objective vectors y = (f1(x), ..., fp(2)),
which attain the same value ¢ = Y h_1 Mefr(z) of the weighted sum objec-
tive, are located on a straight line, the minimization problem (3.4) amounts to
pushing this line towards the origin, until the intersects ) only on the bound-
ary of Y. In Figure 3.3 this is illustrated for two weighting vectors (A1, A2)
and (A}, \}), that lead to the nondominated points y and y'. It is obvious that
the third point g € Yy is properly nondominated, but none of its preimages x
under f can be an optimal solution of (3.2) for any choice of (A1, ..., ;) € RY.

The converse of Theorem 3.11 and Corollary 3.12 can be shown for RZ -
convex sets. We shall give a prove in objective space using Benson’s definition
and a proof in decision space that uses Geoffrion’s definition.
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Theorem 3.13. If Y is R’é—com}ex then YVpr C S(Y).
Proof. Let § € VpE, ie.

cl(cone(Y + R’é — 7)) N (-RY) = {0}. (3.21)

By definition, cl(cone(Y +R% — ¢)) is a closed convex cone.
The idea of the proof is that if there exists a A € RE such that

(A,d) >0 for all d € cl(cone(Y + R> —y*)) = K (3.22)
we get, in particular,
Ny—y*)y>0foralye), (3.23)

ie. (Ay) > (N g) for all y € Y and thus § € S(Y). This is true, because

Y — 9§ C cl(cone(Y +RE — §)). We now prove the existence of A € RZ with

property (3.22). - -
Assume no such \ exists. Both RY and

Ke:={peRP: (u,d) >0foraldeK} (3.24)

are convex sets and because of our assumption have nonintersecting relative
interiors. Therefore we can apply Theorem 3.2 to get some nonzero y* € RY
and 0 € R such that

(y*,p) < B for all p € RY (3.25)
(y*,p)y > B for all p e K°. (3.26)

Using p/ = ap for some arbitrary but fixed p € K° and letting o — oo in
(3.26) we get 8 = 0. Therefore

(y*,p)y <0 forall peRE. (3.27)

Selecting = ee + e, = (e,...,¢,1,6,...,¢) and letting ¢ — 0 in (3.27) we
obtain y; <Oforallk=1,...,p,ie.

y* € —RZ. (3.28)

Let
K :={yeRP: (y,pu) >0 for all ux € K°}. (3.29)

According to (3.27), y* € K°°. Once we have shown that X°° C cl K = K we
know that

y* e K. (3.30)
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Finally (3.28) and (3.30) imply that y* € £ N (—RZ) with y* # 0 contra-
dicting the proper nondominance conditions (3.21). Therefore the desired A
satisfying (3.22) exists.

To complete the proof, we have to show that K°° C ¢l = K. Let y €
RP| y ¢ K. Using Theorem 3.3 to separate {y} and K we get y* € RP, y* £ 0
and « € R with (d,y*) > « for all d € K and (y,y*) < a. Then 0 € K implies
a < 0 and therefore (y, y*) < 0. Taking d = ad’ for some arbitrary but fixed d’
and letting o — oo we get (d,y*) > 0 for all d € K, i.e y* € K°. So {y,y*) <0
implies y ¢ K°°. Hence K°° C K. o

The properties of and relationships among /C, £°, and K£°° we have used
here are true for cones K in general, not just for the one used above. See
Exercise 3.6 for more details. Let us now illustrate Theorem 3.13.

Example 3.14. Consider the set Y = {(y1,v2) : y7 + 3 < 1}. Here

Yn = {(y,y2) 97 +ys =1, y1 <0, y2 <O}, (3.31)
yPN :yN\{(f]wO)v(O,*l)}' (332)
y Yy
YN Vpn

Fig. 3.4. Sets Y~ and YV,n.

All properly nondominated points ¢ are optimal points of weighted sum
scalarizations (indeed, the weights correspond to the normals of the tangents
to the circle at §). The two boundary points of Yy are not properly nondom-
inated. But (—1,0) and (0, —1) are unique optimal solutions of

in \ A 3.33
Eﬂel;l 1Y1 + A2y2 ( )

for A = (1,0) and A = (0, 1), respectively, and therefore belong to the non-
dominated set Yy, see Proposition 3.8. O
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Theorem 3.15 (Geoffrion (1968)). Let X C R"™ be convexr and assume
fi : X = R are convex for k = 1,...,p. Then & € X is properly efficient
if and only if & is an optimal solution of (3.2), with strictly positive weights
M k=1,...,p

Proof. Due to Theorem 3.11 we only have to prove necessity of the condition.
Let & € X be properly efficient. Then, by definition, there exists a number
M > 0 such that for all i = 1,...,p the system

filz) < fi(#)
filx) + M fi(z) < fi(&) + M f;(2) for all j # i (3.34)

has no solution. To see that, simply rearrange the inequalities in (2.41).
A property of convex functions, which we state as Theorem 3.16 below
implies that for the ith such system there exist Ay > 0, k = 1,...,p with

b _1 A\l =1 such that for all z € X the following inequalities holds.

Aifi(@) + Y0 Nl fi(@) + M (@) 2 Nifi(@) + Y N(fi(@) + M f(@))

k#1 k#i
ki i ki ki
p . P
=) Nefi(@) + MY Nfe(@) > D NFil@) + MDY N fi(@
k=1 k#1 k=1 k#i
& fi(@)+ MY Nfw(@) > fi(@) + MY N fu(@)
k#1 k#1
We have such an inequality for each i =1, ..., p and now simply sum over

7 to obtain

CISD D IVICES SICERT) O TAC

i=1 i=1 k#1 k=1 k#1i
P P
:»Z LMY N fol@) =D [ 1+ MY N frlz™)
=1 ik k=1 ik
for all x € X.
We can now normalize the values (1 + M7, ; A¢), so that they sum up
to one to obtain positive A;,i = 1,...,p for which & is optimal in (3.2). |

The theorem, which we have used, is the following. For a proof we refer to
Mangasarian (1969, p. 65).
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Theorem 3.16. Let X C R" be a convex set, let hy : R — R be convex
functions, k = 1,...,p. Then, if the system hy(z) < 0, k = 1,...,p has no
solution x € X, there exist \y > 0, > 7_; N\ = 1 such that all x € X satisfy

Zp: Ahi(x) > 0. (3.35)
k=1

With these results on proper nondominance and proper efficiency we can
extend (3.15) and (3.16) as follows:

S(Y) C Ve C Vg and SY) C VuE (3.36)

holds for general sets, whereas for Rg—convex sets

S(V) = Vpe C V8 CVur =SJ). (3.37)

A closer inspection of the inclusions reveals that the gap between ), g and
Vg might be quite large, even in the convex cases (see Example 2.27 for an
illustration). This is not possible for the gap between YpE and Vg.

Theorem 3.17 (Hartley (1978)). If Y # () is R -closed and R -convez,
the following inclusions hold: - -

SV) CYn CcdSY) =clYpn. (3.38)

Proof. The only inclusion we have to show is Yy C clS(Y). Since Yy =
(Y +R2)x and S(Y) = S(Y + RE), we only prove it for a closed convex set
Y. Without loss of generality we shall also assume that y=0¢€ Yn.

The proof proceeds in two steps: First we show the result for compact ),
applying a minimax theorem to the scalar product on two compact convex
sets. We shall then prove the general case by reduction to the compact case.

Case 1: ) is compact and convex.
Choose d € RY and C(g) := ed + RY for 0 < e € R. If ¢ is sufficiently
small, C(¢) N B(0,1) is nonempty. Thus, both Y and C(¢) N B(0,1) are
nonempty, convex, and compact.
Applying the Sion-Kakutani minimax theorem (Theorem 3.18 below) to
¢ = () with C = C(e) N B(0,1) and D = ) we get the existence of
y(e) € Y and A(e) € C(e) N B(0,1) such that

(A y(e)) < (Ae),y(e))y < (A(e),y) for all y € Y, for all A € C(e) N B(0,1)

(3.39)
From (3.39) using 0 € ) we obtain (A, y(e)) < 0 for all A € C(e) N B(0,1).
Because ) is compact there exists a sequence ¥ — 0 such that y* :=
y(e*) -y € Y for k — oo,
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B(0,1)

Fig. 3.5. Illustration of the first case in the proof of Theorem 3.17.

Furthermore, for each A € RY N B(0,1) there is some ¢/ > 0 such that
A€ C(e)NB(0,1) for all ¢ < &’ and therefore (A, y*) < 0 when k is large
enough. The convergence y* — 3 then implies (), 9) < 0 for all A € RZ.
This implies ¥’ € —RZ. Thus, ¥’ < 0 but since § = 0 € Y we must have
y' =0. -

Next we show that 3/ = § = 0 € clS(Y). To this end let \*¥ :=
AER)/IIAER)] € RE N bdB(0,1), where A(eF) is the A\ associated with
e¥ and y(e*) to satisfy (3.39). Therefore we have

<)\k,y(5k)> < </\k,y> for all y € ), (3.40)

ie. y* =y(ek) c S(\*,Y) € S(Y). Since y’ = limy* this implies § = ¢’ €
clS(Y).

Case 2: )Y is closed and convex (but not necessarily compact).

Again let § =0 € Yy. YN B(0,1) is nonempty, convex, and compact and
0 € (YNB(0,1))y. Case 1 yields the existence of A¥ € RZ, [|\*|| = 1, and
y* € S(\*, YN B(0,1)) with y* — 0. We show that y* € S(\¥,)), which
completes the proof.

Note that for k large enough y* € int B (since y* — 0) and suppose
y' € Y exists with (\¥, /) < (\* yF). Then ay’ + (1 —a)y* € YN B(0,1)
for sufficiently small « (see Figure 3.6).

This implies

<)\k7ay/ + (1 - a)yk> = a<)\k7y/> + (1 - a)<)\k7yk> < <)\k7yk>? (341)
contradicting y* € S(A\*, ). O

The Sion-Kakutani minimax theorem that we used is stated for complete-

ness. For a proof we refer to Stoer and Witzgall (1970, p. 232).
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N

Fig. 3.6. Illustration of the second case in the proof of Theorem 3.17.

Theorem 3.18 (Sion-Kakutani minimax theorem). Let C,D C R? be
nonempty, compact, convez sets and @ : C x D — R be a continuous mapping
such that &(-,d) is convex for all d € D and D(c,-) is concave for all ¢ € C.
Then

max min (¢, d) = min max $(c, d). (3.42)
deD ceC c€C deD

Although Theorem 3.17 shows that Yy C clY,n, the inclusion clY,n C
Y is not always satisfied.

Ezample 3.19 (Arrow et al. (1953)).
Consider the set ' = {(y1,92,3) : (1 = 1)*+ (12— 1)* =1, y1 < 1, yo <
1, y3 = 1} and define

Y :=conv (Y’ U{(1,0,0)}), (3.43)

shown from different angles in Figure 3.7.

Y is closed and convex. Note that § = (1,0,1) ¢ Vn because (1,0,0) < g.
From Theorem 3.13 we know Y,y = S()). We show that all ¥ € Y’ with
yy < 1,y < 1 are properly efficient.

Let ¥ = (1 — cosf,1 —sinf,1) for 0 < 0 < 7/2 and A = (1 —
a)(cosf,sinf,0) + «(0,0,1) with 0 < @ < 1 so that A € RZ.

We compute (A, y —y’) for y = (1 —cos®',1 —sin@,1),0 < 0" < 7/2:

Ay —1y)=(1-a)[cosb(cosf — cosf') + sin O(sin § — sin §’)]
= (1 —a)(1 — (cosfcosf +sinfsind’)) (3.44)
=(1—a)1—cos(d—0"))>0.
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Y3 4 Y2 4 Y3 o

Yy
1
1 I I ) Ui
Fig. 3.7. The set Y in Example 3.19.
Furthermore, for y = (1,0,0) we get
(A, (1,0,0) —¢') = (1 — a) [cos® § — sin (1 — sin )] — &
=1-a)(l—sinf)—a >0 (3.45)

for small a. So by taking convex combinations of (3.44) and (3.45) we get
(A\y—y)>0for all y € Y and thus y’ € S(Y). In addition, for § — 0 we get
y’ — ¢ which is therefore in cl S(}). O

3.3 Optimality Conditions

In this section we prove necessary and sufficient conditions for weak and proper
efficiency of solutions of a multicriteria optimization problem. These results
follow along the lines of Karush-Kuhn-Tucker optimality conditions known
from single objective nonlinear programming. We use the results to prove the
yet missing link in Figure 2.17 and we give an example that shows that Kuhn
and Tucker’s and Geoffrion’s definitions of properly efficient solutions do not
always coincide.

We recall the Karush-Kuhn-Tucker necessary and sufficient optimality con-
ditions in single objective nonlinear programming, see e.g. Bazaraa et al.

(1993).

Theorem 3.20. Let f,g; : R" — R be continuously differentiable functions
and consider the single objective optimization problem

min{f(z) : g;(z) £0,j =1,...,m}. (3.46)

Denote X :={z € R" : g;(z) < 0,5 ={1,...,m}}.
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o If® € X is a (locally) optimal solution of (3.46) there is some i € RY
such that -

&) + Zﬂngj (@) =0, (3.47)

Z f1i9; () (3.48)

e If f,g; are convex and there are T € X and ji € RY such that (3.47) and
(3.48) hold then & is a locally, thus globally, optimal solution of (3.46).

We start with conditions for weak efficiency.

Theorem 3.21. Suppose that the KT constraint qualification (see Definition
2.50) is satisfied at & € X. If & is weakly efficient there exist A\ € RY and
fr € RY such that

p m
Z A6V fi(2) + Z [1;Vg;(2) = (3.49)
k=1 Jj=1
Z f1j9;(2) = (3.50)
A>0 (3.51)
A>0 (3.52)

Proof. Let & € X,,p. We first show that there can be no d € R™ such that

(Vfe(@),d) <Oforallk=1,...,p (3.53)
(Vgj(£),d) < 0forall jeJ(&):={j:g;(&) =0} (3.54)

We then apply Motzkin’s theorem of the alternative (Theorem 3.22) to obtain
the multipliers ;\k and fi;.

Suppose that such a d € R” exists. From the KT constraint qualification
there is a continuously differentiable function 6 : [0,¢] — R™ such that 6(0) =
Z, g(6(t)) <0 for all t € [0,¢], and #'(0) = ad with a > 0. Thus,

fu(0(1)) = fi(@) + 1(V fi(2), ad) + o(t) (3.55)

and using (V fi(2),d) < 0 it follows that f,(0(t)) < fr(2), k=1,...,pfor t
sufficiently small, which contradicts & € X, g.

It remains to show that (3.53) and (3.54) imply the conditions of (3.49)
~ (3.52). This is achieved by using matrices B = (Vfi(2))y—y  ,, C =
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(ng(:i))jej(i), D = 0 with [ = |J(2)| in Theorem 3.22. Then, since (3.53)
and (3.54) have no solution d € R™, according to Theorem 3.22 there must be
y! =: A\ y? =: 1, and 2 such that BTy! + CTy? = 0 with y' > 0 and y2 2> 0,
ie.
P R m

S NeVA@) + Y 1;Vg(@) =0.

k=1 =T (2)
We complete the proof by setting j1; =0 for j € {1,...,m}\ J(&). |

Theorem 3.22 (Motzkin’s theorem of the alternative). Let B,C, D be
pXxmn, I xXn and o X n matrices, respectively. Then either

Bx <0, Cx <0, Dr=0
has a solution x € R™ or
BTyt + cTy2+ DTy =0, y1 >0, 4220 (3.56)
has a solution y' € RP, 32 € R!, y* € R, but never both.

A proof of Theorem 3.22 can be found in (Mangasarian, 1969, p.28).
For convex functions, we also have a sufficient condition for weakly efficient
solutions.

Corollary 3.23. Under the assumptions of Theorem 3.21 and the additional
assumption that all functions fi and g; are convex (3.49) — (3.52) with A >0
and ji Z 0 in Theorem 3.21 are sufficient for & to be weakly efficient.

Proof. By the second part of Theorem 3.20 and Theorem 3.21, (3.49) — (3.52)
imply that Z is an optimal solution of the single objective optimization prob-
lem

P
min ; A fre ().

Since A € R> this implies that £ € X, g according to the first statement of
Proposition 3.9. O

Next, we prove similar conditions for properly efficient solutions in Kuhn
and Tucker’s sense and in Geoffrion’s sense.

Kuhn and Tucker’s definition of proper efficiency (Definition 2.49) is based
on the system of inequalities (3.57) — (3.59)

(V@) d) <0 YVhk=1,...,p (3.57)
(Vfi(%),d) <0 forsomeic€{l,...,p} (3.58)
(Vg;(2),d) <0 VjieJ@ ={j=1,...,m: g;(&) =0} (3.59)
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having no solution. We apply Tucker’s theorem of the alternative, given below,
to show that a dual system of inequalities then has a solution. This system
yields a necessary condition for proper efficiency in Kuhn and Tucker’s sense.

Theorem 3.24 (Tucker’s theorem of the alternative). Let B, C' and D
be p xn, Il xn and o X n matrices. Then either

Br<0, Cx =0, Dx=0 (3.60)
has a solution x € R™ or
BTyt + T2+ DTy =0, y' >0, 4220 (3.61)
has a solution y' € RP, y? € R!, y3 € R, but never both.
A proof of Theorem 3.24 can be found in Mangasarian (1969, p.29).

Theorem 3. 25 If & is properly efficient in Kuhn and Tucker’s sense there
exist \ € RP, i € R™ such that

p
Zka +ZWgJ (#) =0 (3.62)
=1 7j=1
Z fijg; (& (3.63)
=1
A>0 (3.64)
[0, (3.65)

Proof. Because % is properly efficient in Kuhn and Tucker’s sense there is no
d € R" satisfying (3.57) — (3.59).
We apply Theorem 3.24 to the matrices

(Vf
(Vg ( ))gej(l)
0

O aQ®
I

with | = |J(& )| Since (3.57) — (3 59) do not have a solution d € R™ we obtain
y' =\ y? = poand y? with A, > 0 for k =1,...,p, i; > 0 for j € J(2)
satisfying

M@

MV f(E) + > 1 Vg(@ (3.66)

k=1 JET ()

Letting f1; = 0 for all j € {1,...,m} \ J(&), the proof is complete. a
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With Theorem 3.25 providing necessary conditions for Kuhn-Tucker proper
efficiency and Theorem 2.51, which shows that Geoffrion’s proper efficiency
implies Kuhn and Tucker’s under the constraint qualification we obtain Corol-
lary 3.26 as an immediate consequence.

Corollary 3.26. If & is properly efficient in Geoffrion’s sense and the KT
constraint qualification is satisfied at & then (3.62) — (3.65) are satisfied.

For the missing link in the relationships of proper efficiency definitions we
use the single objective Karush-Kuhn-Tucker sufficient optimality conditions
of Theorem 3.20 and apply them to the weighted sum problem. We obtain
the following theorem.

Theorem 3.27. Assume that fr,g; : R® — R are convex, continuously dif-
ferentiable functions. Suppose that there are £ € X, A € RP and i € R™
satisfying (3.62) — (3.65). Then & is properly efficient in the sense of Geof-
frion.

Proof. Let f(x) :=>%_, AkV fi(2), which is a convex function. By the second
part of Theorem 3.20 # is an optimal solution of minge x >-7_, A fx(x). Since
Ae > 0 for k = 1,...,p Theorem 3.15 yields that & is properly efficient in the
sense of Geoffrion. O

We can derive two corollaries, the first one shows that for convex prob-
lems proper efficiency in Kuhn and Tucker’s sense implies proper efficiency in
Geoffrion’s sense.

Corollary 3.28. (See Theorem 2.52) Let fi, g; : R™ — R be convex, continu-
ously differentiable functions and suppose T is properly efficient in Kuhn and
Tucker’s sense. Then I is properly efficient in Geoffrion’s sense.

Proof. The result follows from Theorem 3.25 and Theorem 3.27. a

The second corollary provides sufficient conditions for proper efficiency
in Kuhn and Tucker’s sense. It follows immediately from Theorems 3.27 and
2.51.

Corollary 3.29. If, in addition to the assumptions of Theorem 3.27 the KT
constraint qualification is satisfied at &, (3.62) — (3.65) are sufficient for & to
be properly efficient in Kuhn and Tucker’s sense.

We close the section by examples showing that Geoffrion’s and Kuhn-
Tucker’s definitions are different in general.
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Ezample 3.30 (Geoffrion (1968)). In the following problem, & = 0 is prop-
erly efficient according to Kuhn and Tucker’s definition, but not according to
Geoffrion’s definition. Consider

min f(z) = (f1(2), fo(2)) = (=2*,2°)
subject tox € X = {x € R: z > 0}.

Figure 3.8 shows graphs of the objective functions and the feasible set in
objective space, Y = f(X) as graph of y2(y1) = (—y1)?. The only constraint
is given by g(z) = —z < 0.

fi fa Y2
14 4 4
]—Y_‘ 3‘ 3‘
-1 1 2 7
14 2+ 24
—2 14 1
-34 [ T T T [ T T T T Y1
] -1 1 2 -3 -2 -1 1
—4 - —1- —1-

Fig. 3.8. Objective functions in Example 3.30.

To see that Definition 2.49 is satisfied compute

Vi(z) = (—2x,32%) Vfi(z)=(0,0)
Vg(z) =-1 Vg(2)=-1

and choose A = (1,1), i = 0 which satisfies (3.62) — (3.65).
To see that Definition 2.39 is not satisfied, let ¢ > 0 and compute the
trade-off
fi(&) = f1(e) 0+e? L =0
= = —o00.
fale) = fo(2) -0 ¢
O

The reader is asked to come up with an example, where a feasible solution
Z is properly efficient in Geoffrion’s sense, but not in Kuhn and Tucker’s sense,
see Exercise 3.5.

We have shown necessary and sufficient conditions for weakly and strictly
efficient solutions. Why are there none for efficient solutions? The answer is
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that the ones that can be proved are included in the above results. Observe
that, because Xr C &g, the necessary condition of Theorem 3.21 holds for
efficient solutions, too. On the other hand, because S(Y) = Xp,g C Xg for
convex problems, the sufficient condition of Theorem 3.27 are sufficient for &
to be efficient, too. Note that the essential difference between the conditions
for weak and proper efficiency is A > 0 versus A > 0. We can therefore not
expect any further results of this type for efficient solutions. This is pretty
much the same situation we have encountered in Sections 3.1 and 3.2, where
for convex problems we have been able to characterize weakly nondominated
and properly nondominated points through weighted sum scalarization with
A >0 and A > 0, respectively.

3.4 Connectedness of Efficient and Nondominated Sets

We have discussed existence of nondominated points and efficient solutions
and we have seen how the different concepts of efficiency relate to weighted
sum scalarization. In this section, we use scalarizations to prove a topological
property of the efficient and nondominated sets, connectedness. Connected-
ness is an important property, when it comes to determining these sets. If
Yn or Xg is connected, the whole nondominated or efficient set can possibly
be explored starting from a single nondominated/efficient point using local
search ideas. Connectedness will also make the task of selecting a final com-
promise solution from among the set of efficient solutions Xg easier, as there
are no “gaps” in the efficient set.

In Figure 3.9 two sets ) are shown, one of which has a connected non-
dominated set and one of which has not.

Apparently, connectedness cannot be expected, when ) is not R -convex.

Definition 3.31. A set S C RP is called not connected if it can be written as
S =81US,, with 81,8, # 0, c1S1 NSy = S;Ncl Sy = 0. Equivalently, S is not
connected if there exist open sets Oy, Og such that S C O1 U Oy, SN O # 0,
SNO;#0, SNOLNOs = ). Otherwise, S is called connected.

In the proofs of the following theorems, we use some facts about connected
sets which we state without proof here.

Lemma 3.32. 1. IfS is connected and S CU C clS then U is connected.
2. If{S; : i €T} is a family of connected sets with N;czS; # O then U;ezS;
is connected.

We derive a preliminary result, considering S(A,Y) and S()). From The-
orem 3.17 we know S(Y) C Yn C clS(Y) for Rg—convex sets V. We prove
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Yy is not connected. Y is connected.

Fig. 3.9. Connectedness of V.

connectedness of §()) in the case that ) is compact, which implies the con-
nectedness of Yy with Lemma 3.32.

Proposition 3.33. If V) is compact and convex then S(Y) is connected.

Proof. Suppose S()) is not connected. Then we have open sets )1, Vs such
that Y, NS(YV) # 0 fori=1,2, V1NV NS(Y) =0, and S(Y) C Y1 UVs. Let

Li={AeRL :SAY)NY; £0}, i=1,2. (3.67)

Because S(\,)) is convex and every convex set is connected, we know that
S(A\,Y) is connected. Therefore

Li={ eRL:S\\,Y) CVi}, i=1,2 (3.68)

and £1 N Lo = (. But since V; N S(Y) # 0 we also have £, NRY # ( for
i =1,2. From S(Y) C Y1 U Ys it follows that RE C £4 U Ly (in fact, these
sets are equal). By Lemma 3.34 below the sets £; are open, which implies the
absurd statement that R is not connected. ad

Lemma 3.34. The sets L; = {\ € RE : S(Y) C i} in the proof of Proposi-
tion 3.33 are open.

Proof. We will show the Lemma for £;, which by symmetry is enough. If £,
is not open there must be € £y and {NF k> 1} CRZ\ L1 = L5 such that
pLIENSY

Let y* € S(AF,)), k > 1. Since ) is compact, we can assume (taking
a subsequence if necessary) that y* — § € Y and § € 8(5\,37). Note that
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otherwise there would be 3’ € ) such that <5\, Yy < (5\, 7) and by continuity
of the scalar product, we would have (\* y/) < (A\F y*) for sufficiently large
k, contradicting y* € S(\F,)).)

Now we have y* € S(A\*,Y) € 2 NS(Y)) and Y1 NV N S(Y) = 0 so
y* € )¢ for each k > 1. Since )§ is closed, § = limy* € )¢, ie. § ¢ Wy
contradicting Ae L. a

Theorem 3.35 (Naccache (1978)). If Y is closed, convex, and RY-
compact then Yy is connected. B

Proof. We will first construct compact and convex sets Y(«a), a € R, for which
Proposition 3.33 is applicable. We apply Theorem 3.17 to get that Y(a)ny C
clS(Y(a)) and apply Lemma 3.32 to see that sets J(a)n are connected. It is
then easy to derive the claim of the theorem by showing Yy = Ua>ad(a)n
for some & withNy>aY ()N # 0 and applying Lemma 3.32 again.

To construct Y(a) choose d € RY and define y(a) = ad, a € R. We claim
that for all y € RP there is a real number o > 0 such that y € y(a) — RP (see
Figure 3.10).

/‘y

{y—ad:a>0}

ytay —RE - Jyle) = ad

Fig. 3.10. The claim in the proof of Theorem 3.35.

To see this, observe that if it were not true there would be no d’ € Rg
such that y = ad — d’, or y — ad = —d’'. Thus, we would have two nonempty
convex sets {y —ad: a >0} and —R% which can be separated according to

Theorem 3.2. Doing so provides some y* € R? \ {0} with

(y*,y —ad) > 0 for all a > 0, (3.69)
(y*, —d') < 0 for all &’ € RY. (3.70)
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Hence (y*,d') > 0 for all ' € R, in particular (y*,d) > 0 because d € RY.

But then (\,y — ad) < 0 for « sgfﬁciently large, a contradiction to (3.69).
With the claim proved, we can choose y € Yy and appropriate & > 0 such
that y € y(&) — RY, which means that (y(&) —RZ) NYx # 0. We define

V(o) = [(y(a) - Rg) N y] . (3.71)
With this notation, the claim above implies in particular that
YN = U Y(a)n. (3.72)
a>&

Because Y(«) is convex and compact () is Rg—compact) we can apply
Theorem 3.17 to get -

S(V(@)) € Y(a)w C Yayn.

Thus, Proposition 3.33 and the first part of Lemma 3.32 imply that Y(«)y is
connected.

Observing that Y(a)n D V(&)n for a > @&, i.e. Ne>ad()nv = V(@)n # 0
we have expressed Yy as a union of a family of connected sets with nonempty
intersection (see Figure 3.11. The second part of Lemma 3.32 proves that Yy
is connected. O

Fig. 3.11. Finding the sets E(a) in the proof of Theorem 3.35.

With Theorem 3.35 we have a criterion for connectedness in the objective
space. What about the decision space? If we assume convexity of f, it is
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possible to show that X, g is connected. Let X C R™ be convex and compact
and fr : R" — R be convex. We will use Theorem 3.5 (Vyn = S())) and the
following fact:

Lemma 3.36. Let f : R” — R be convex on the closed convex X. Then the
set { € X: f(&)= 1161/fvf(m)} is closed and conver.
T

We also need a theorem providing a result on connectedness of preimages
of sets, taken from Warburton (1983), where a proof can be found.

Theorem 3.37. Let V C R™", W C RP, and assume that V is compact and
W is connected. Furthermore, let g : V x W — R be continuous. Denote by
X(w) = argmin{g(v,w) : v € V}. If X(w) is connected for all w € W then
UwewX (w) is connected.

Theorem 3.38. Let X be a compact convexr set and assume that fi : R" —
R,k=1,...,p are conver. Then X, is connected.

Proof. Since the objective functions fi are continuous and X is compact,
Y = f(X) is compact. Using Theorem 3.5 we have Yyn = S(). In terms of
f and X this means

Xwp = )\Lﬂj@ {&: 30 _ e fu(@) <S8y Mefr(z) for all z € X}
ER>

= U xW.

XERZ

(3.73)

Noting that (f(-), ) : X x R> — R is continuous, that RZ is connected,
that X is compact, and that by Lemma 3.36 X()\) is nonempty and convex
(hence connected) we can apply Theorem 3.37 to get that X, g is connected.

0

We remark that the proof works in the same way to see that &, is con-
nected under the same assumptions. This is true, because as in (3.73), we can
write

X = | XO). (3.74)
AeRY

and as we observed, X'()) is connected (convex), and of course RY is con-

nected.
To derive a connectedness result for Xg we need an additional Lemma.

Lemma 3.39. Let f : X C R® — RP be a continuous function and let
Y C RP? be such that f~(c1)) C X. Then

FHAY) = (D). (3.75)
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Theorem 3.40. Let X C R™ be a conver and compact set. Assume that all
objective functions fr are convex. Then Xg is connected.

Proof. Because X is compact and convex and fi are convex and continuous,
Y = f(X) is also compact and convex. Thus, from Theorem 3.17

S(V) € Yy C S (3.76)

Therefore, taking preimages and applying Theorem 3.13 and Corollary
3.12 (Vpn = S(Y)) we get

Xop C X C fH(dS(Y)). (3.77)

We apply Lemma 3.39to Y = S() to get £~ (c1S(Y)) = cl(f~(S(Y))) =
cl X, and obtain

XpE C Xg C ClXpE. (378)
The result now follows from Lemma 3.32. O

For once deriving results on Y from results on X', we note the consequences
of Theorem 3.38 and Theorem 3.40 for Vin, VN, and VpE.

Corollary 3.41. If X is a convex, compact set and fr, : R" - R k=1,...,p
are convezx functions then YN, YN, and Ypn are connected

Proof. The image of a connected set under a continuous mapping is connected.
0

That a relaxation of convexity, namely quasi-convexity, is not sufficient to
prove connectedness of X' can be seen from Exercise 3.11

3.5 Notes
Equations (3.37) and (3.38) imply
YpE C YN CclYpn

for RY -convex and RZ-closed sets. Results of this type are called Arrow-
Barankin-Blackwell thzorems, after the first theorem of this type for closed
convex sets, proved by Arrow et al. (1953). This has been generalized to orders
defined by closed cones C. Hirschberger (2002) shows that the convexity is not
essential and the result remains true if calY is closed and Y,y # 0.

The necessary and sufficient conditions for proper efficiency in Kuhn and
Tucker’s sense go back to Kuhn and Tucker (1951). Fritz-John type necessary
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conditions for efficiency have been proved in Da Cuhna and Polak (1967). All
of the conditions we have mentioned here are first order conditions. There is
of course also literature on second order necessary and sufficient conditions for
efficiency. For this type of conditions it is usually assumed that the objective
functions fi,k =1,...,p and the constraint functions g;,j = 1,...,m of the
MOP are twice continuously differentiable.

Several necessary and sufficient second-order conditions for the MOP are
developed by Wang (1991). Cambini et al. (1997) establish second order con-
ditions for MOPs with general convex cones while Cambini (1998) develops
second order conditions for MOPs with the componentwise order. Aghezzaf
(1999) and Aghezzaf and Hachimi (1999) develop second-order necessary con-
ditions. Recent works include Bolintinéanu and El Maghri (1998), Bigi and
Castellani (2000), Jimenez and Novo (2002).

There is some literature on the connectedness of nondominated sets. Bitran
and Magnanti (1979) show Yy and Ypn are connected if YV is compact and
convex. Luc (1989) proves connectedness results for calY ,,y if ) is C-compact
and convex. Danilidis et al. (1997) consider problems with three objectives,
and Hirschberger (2002) shows that the convexity is not essential: if calC and
Y are closed, Yy and YV,n are connected. V,,n is connected if in addition Yy
is nonempty.
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Exercises

3.1. Prove that if ) is closed then clS(Y) C So(Y). Hint: Choose sequences
Ak, ¥ such that y* € Opt(\g,)) and show that A\y — A and y* — ¢ with
7 € Opt(\, V), A > 0.

3.2. Prove Proposition 3.8, i.e. show that if § is the unique element of
Opt(A, V) for some A € RY then g € Y.

3.3. Give one example of a set ) € R? for each of the following situations:

1. So(Y) C Vwn with strict inclusion.
2. 8(Y) C Yn C So(Y) with both inclusions strict,
3. SV)USHY) =Y =8p(Y), where

Sp(Y) = {y’ € Y :y is the unique element of Opt(A, V), \ € Rg} .

3.4.Let Y = {(y1,52) : yi + 5 <1} and C = {(y1,52) = ¥2 < yu1 }-
1. Show that § = (—1,0) is properly nondominated in Benson’s sense, i.e.
(cl(cone(Y +C —3))) N (=C) = {0}

2. Show that § € Opt(),)) for some X\ ¢ RY and verify that this A € C*°,
where
C*°={peRP:{u,d)>0forall deC}.

This result shows that proper nondominance is related to weighted sum scalar-
ization with weighting vectors in C*°.

3.5 (Tamura and Arai (1982)). Let

X = {<$1,$2) ER?: —2; <0, —22 <0, (1 —1)* + 25 < 0}
fl(.’L') = —3x1 — 225+ 3
fQ(LE) = —T1 — 31’2 + 1.

Graph X and Y = f(X). Show that & = (1,0) is properly efficient in Ge-
offrion’s sense, but not in Kuhn-Tucker’s sense. (You may equivalently use
Benson’s instead of Geoffrion’s definition.)

3.6. Let C C R? be a cone. The polar cone C° of C is defined as follows:
C°:={yeRP:(y,d)>0foralldecC\{0}}.

Prove the following:
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1. C° is a closed convex cone containing 0.
2.CC(C°)° =:C°°.

3.C CCQ@CSCC?.

4.C° = (C°°)°.

3.7. This exercise is about comparing weighted sum scalarizations with weight-
ing vectors from polar cones and C-nondominance. Let C be a convex pointed
cone and A € C° and define

Opte(A.Y) = {y €Y (09) = min Ay} } .

1. Show that

Seo(Y) == U Opt(\,Y) C Yewn,
A€CO\{0}

where § € Vewn if (Y +intC—g)N(—intC) =0
2. Let C*° be as in Exercise 3.6. Show
Seso (V) 1= U Opt(\,Y) C Ven-
AeCso

Hint: Look at the proofs of Theorems 3.4 and 3.7, respectively.
3.8 (Wiecek (1995)). Consider the problem

min [(z1 —2)? + (z2 — 1)2, 2} + (22 — 3)?]
st. gi(z) =23 —23 <0

g2(x) =21 +22 —2<0

g3(z) = —21 <0

Use the conditions of Theorem 3.25 to find at least one candidate for a properly
efficient solution Z (in the sense of Kuhn and Tucker). Try to determine all
candidates.

3.9. Prove that £ € X is efficient if and only if the optimal value of the
optimization problem

p
miHka(l’)
k=1
subject to fx(z) < fi(2)
reX

is Zizl fk(xo)-
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3.10. Use Karush-Kuhn-Tucker conditions for single objective optimization
(see Theorem 3.20) and Exercise 3.9 to derive optimality conditions for effi-
cient solutions.

3.11. A function f : R® — R is called quasi-convex if f(az! + (1 — a)z?) <
max{ f(z1), f(z?)} for all a € (0,1). It is well known that f is quasi-convex if
and only if L<(f(z)) is convex for all z (this is a nice exercise on level sets).

Give an Example of a multicriteria optimization problem with X C R
convex, fr : R — R quasi-convex such that X'r is not connected. Hint: Mono-
tone increasing or decreasing functions are quasi-convex, in particular those
with horizontal parts in the graph.
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Scalarization Techniques

The traditional approach to solving multicriteria optimization problems of the
Pareto class is by scalarization, which involves formulating a single objective
optimization problem that is related to the MOP

min(fi(z),..., fp(x)) (4.1)

zeX

by means of a real-valued scalarizing function typically being a function of
the objective functions of the MOP (4.1), auxiliary scalar or vector variables,
and/or scalar or vector parameters. Sometimes the feasible set of the MOP
is additionally restricted by new constraint functions related to the objective
functions of the MOP and/or the new variables introduced.

In Chapter 3 we introduced the “simplest” method to solve multicriteria
problems, the weighted sum method, where we solve

P
gg; Ak fio(2). (4.2)

The weighted sum problem (4.2) uses the vector of weights A € RZ as a
parameter. We have seen that the method enables computation of the properly
efficient and weakly efficient solutions for convex problems by varying A. The
following Theorem summarizes the results.

Theorem 4.1. 1. Let & € X be an optimal solution of (4.2). The following
statements hold.
o IfA>0theni € XpE.
o IfA>0then & € Xyp.
e IfA>0 and & is a unique optimal solution of (4.2) then & € Xsg.
2. Let X be a convex set and fr,k =1,...,p be convex functions. Then the
following statements hold.
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o If% € X,g then there is some A > 0 such that & is an optimal solution
of (4.2).
o IfT € Xyp then there is some A > 0 such that T is an optimal solution

of (4.2).

For nonconvex problems, however, it may work poorly. Consider the fol-
lowing example.

Ezample 4.2. Let X = {x € RZ : 21 + 23 > 1} and f(z) = x. In this case

Xpg={re X :2?+2}= 1},_yet #! = (1,0) and 2% = (1,0) are the only
feasible solutions that are optimal solutions of (4.2) for any A > 0.

00 05 1.0 1.5

Fig. 4.1. The weighted sum method fails for nonconvex problems.

O

In this chapter we introduce some other scalarization methods, which are
also applicable when ) is not Rg-convex.

4.1 The e-Constraint Method

Besides the weighted sum approach, the e-constraint method is probably the
best known technique to solve multicriteria optimization problems. There is no
aggregation of criteria, instead only one of the original objectives is minimized,
while the others are transformed to constraints. It was introduced byHaimes
et al. (1971), and an extensive discussion can be found in Chankong and
Haimes (1983).

We substitute the multicriteria optimization problem (4.1) by the e-
constraint problem
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min f5() (4.3)

subject to fr(z) <er k=1,...,p k#j,

where ¢ € RP. The component ¢; is irrelevant for (4.3), but the convention to
include it will be convenient later.

Figure 4.2 illustrates a bicriterion problem, where an upper bound con-
straint is put on fi(z). The optimal values of (4.3) problem with j = 2 for
two values of €1 are indicated. These show that the constraints fx(x) < e
might or might not be active at an optimal solution of (4.3).

f2(z) |

Optimal solutiﬁl)n

of Py(c") | Optimal sblution
|

of PQ(E“):

lb la fl (SL‘)

€1 €1

Fig. 4.2. Optimal solutions of e-constraint problems (4.3).

To justify the approach we show that optimal solutions of (4.3) problems
are at least weakly efficient. A necessary and sufficient condition for efficiency
shows that this method works for general problems, no convexity assumption
is needed. We will also prove a result relating (4.3) to the weighted sum
problem (4.2).

Proposition 4.3. Let & be an optimal solution of (4.3) for some j. Then &
1s weakly efficient.

Proof. Assume & ¢ X,,g. Then there is an 2 € X such that fi(x) < fi(&) for
all k = 1,...,p. In particular, f;(z) < f;(&). Since fi(z) < fr(Z) < e for
k # j, the solution z is feasible for (4.3). This is a contradiction to & being an
optimal solution of (4.3). O
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In order to strengthen Proposition 4.3 to obtain efficiency we require the
optimal solution of (4.3) to be unique. Note the similarity to Theorem 3.4
and Proposition 3.8 for the weighted sum scalarization.

Proposition 4.4. Let & be a unique optimal solution of (4.3) for some j.
Then & € Xsg (and therefore & € Xg ).

Proof. Assume there is some © € X with fr(z) < fi(2) < e for all k # j. If
in addition f;(z) < f;(&) we must have f;(z) = f;(£) because & is an optimal
solution of (4.3). So z is an optimal solution of (4.3). Thus, uniqueness of the

optimal solution implies z = % and & € X;g. 0O

In general, efficiency of Z is related to & being an optimal solution of (4.3)
for all 7 =1,...,p with the same € used in all of these problems.

Theorem 4.5. The feasible solution & € X is efficient if and only if there
exists an € € RP such that  is an optimal solution of (4.3) forallj=1,...,p.

Proof. “=" Let € = f(&). Assume Z is not an optimal solution of (4.3)
for some j. Then there must be some z € X with f;(z) < f;(&) and
fi(x) <ép = fi(2) for all k # j, that is, & ¢ Xpg.

“«<—=” Suppose & ¢ Xg. Then there is an index j € {1,...,p} and a feasible
solution € X such that f;(z) < f;(Z) and fi(z) < fu(@) for k # j.
Therefore & cannot be an optimal solution of (4.3) for any e for which it
is feasible. Note that any such & must have fj(Z) < gj, for k # j. O

Theorem 4.5 shows that with appropriate choices of ¢ all efficient solu-
tions can be found. However, as the proof shows, these ¢; values are equal
to the actual objective values of the efficient solution one would like to find.
A confirmation or check of efficiency is obtained rather than the discovery of
efficient solutions.

We denote by

Ej={ceRP: {z € X: fy(x) <ex, k#j} #0}
the set of right hand sides for which (4.3) is feasible and by
X;j(e) :=={x € X : z is an optimal solution of (4.3)}
for € € &; the set of optimal solutions of (4.3). From Theorem 4.5 and Propo-

sition 4.3 we have that for each e € N,_,&;

ﬁ Xj(e) C Xg C Xj(e) C Xur (4.4)

j=1
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forall j =1,...,p (cf. (3.37) for weighted sum scalarization).
Our last result in this section provides a link between the weighted sum
method and the e-constraint method.

Theorem 4.6 (Chankong and Haimes (1983)).

1. Suppose & is an optimal solution of mingex Y h_y M fr(x). If Aj > 0 there
exists € such that & is an optimal solution of (4.3), too.

2. Suppose X is a convex set and fi : R™ — R are convex functions. If T is
an optimal solution of (4.3) for some j, there exists \e RY such that &

is optimal for mingex S20_ Ap fr(x).

Proof. 1. As in the previous proof we show that we can set € = f(&). From
optimality of & for a weighted sum problem we have

S el fix) — ful@) = 0
k=1

for all x € X. Suppose & is not optimal for (4.3) with right hand sides é.
The contradiction follows from the fact that for any @’ € X with f;(z’) <

fi(@) and fi(2) < fi(2) for k # j
M)~ @)+ Y Mlfela®) ~ @) <0 (45)
ke
because \; > 0.

2. Suppose & solves (4.3) optimally. Then there is no € X satistying f;(z) <
fi(&) and fr(x) < fr(&) < e for k # j. Using convexity of f; we apply
Theorem 3.16 to conclude that there must be some A € Rg such that
S A(fi(@) — fr(@) > 0 for all 2 € X. Since A € RY we get

D Mfr(@) =Y A fi(@) (4.6)
k=1 k=1

for all # € X. Therefore \ is the desired weighting vector. O

A further result in this regard, showing when an optimal solution of the
weighted sum problem is also an optimal solution of the (4.3) problem for all
j=1,...,pis given as Exercise 4.1.

4.2 The Hybrid Method

It is possible to combine the weighted sum method with the e-constraint
method. In that case, the scalarized problem to be solved has a weighted sum
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objective and constraints on all objectives. Let 2° be an arbitrary feasible
point for an MOP. Consider the following problem:

P
min Z i fr (l‘)
k=1

subject to fp(z) < fr(2®) k=1,...,p
re X

(4.7)

where \ € Rg.

Theorem 4.7. Guddat et al. (1985) Let A € RE. A feasible solution 2° € X
is an optimal solution of problem (4.7) if and only if 2° € Xg.

Proof. Let 2° € X be efficient. Then there is no x € X such that f(z) < f(z°).
Thus any feasible solution of (4.7) satisfies f(z) = f(z°) and is an optimal
solution.

Let 2° be an optimal solution of (4.7). If there were an z € X such that
f(x) < f(2°) the positive weights would imply

P P
D Awfilx) <D Afu(a®).
k=1 k=1

Thus z° is efficient. O

4.3 The Elastic Constraint Method

For the e-constraint method we have no results on properly efficient solutions.
In addition, the scalarized problem (4.3) may be hard to solve in practice due
to the added constraints fi(z) < eg. In order to address this problem we can
“relax” these constraints by allowing them to be violated and penalizing any
violation in the objective function. Ehrgott and Ryan (2002) used this idea
to develop the e;elastic constraint scalarization

min f;(z) + Z 1Sk
oy
subject to fr(z) — sk <erp k#j (4.8)
s >0 k#j
T e X,

where pp > 0,k # j. The feasible set of (4.8) in x variables is X, i.e. the
feasible set of the original multicriteria optimization problem (4.1).
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Fig. 4.3. Feasible set and objective function of Problem (4.8).

Note that if (£, §) is an optimal solution of (4.8), then we may without
loss of generality assume that §; = max{0,er — fi(2)}.

In Figure 4.3 (4.8) for j = 2 is illustrated for the bicriterion problem of
Example 4.2. The vertical dotted line marks the value £; = 0.5. The dotted
curve shows the objective function of (4.8) as a function of component y;
of nondominated points Vy. The idea of the method is that, by penalizing
violations of the constraint fi(z) < €1, a minimum is attained with the con-
straint active. As can be seen here, the minimum of (4.8) will be attained at
x = (0.5,0.5).

We obtain the following results:

Proposition 4.8. Let (&, 8) be an optimal solution of (4.8) with u = 0. Then
T € XpE.

Proof. Suppose & is not weakly efficient. Then there is some =z € X such that
fe(z) < fu(@),k =1,...,p. Then (z,§) is feasible for (4.8) with an objective
value that is smaller than that of (Z, §). O

Under additional assumptions we get stronger results.

Proposition 4.9. If % is unique in an optimal solution of (4.8), then & € Xsp
s a strictly efficient solution of the MOP.

Proof. Assume that © € X is such that fip(z) < fi(Z),k = 1,...,p. Then
(z, 8) is a feasible solution of (4.8). Since the objective function value of (z, §)
is not worse than that of (&, §), uniqueness of & implies that = = Z. a
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The following example shows that even if y > 0 an optimal solution of
(4.8) may be just weakly efficient.

Ezxample 4.10. Consider
X = 2 . 2 2 2
- {(xl,xz) ERY : (21— 1)° + (22 - 1)° < 1} +R2

and f(x) = x. Let e; > 1. Then (&1, 22, 81) = (£1,0,0) is an optimal solution
of (4.8) with j = 2 for all 1 < &7 < e;. If &3 > 1 this solution is weakly
efficient, but not efficient. This result is independent of the choice of p. O

The problem here is the possible existence of weakly efficient solutions that
satisfy the constraints fi(z) < e for all k # j. If, however, all ¢, are chosen in
such a way that no merely weakly efficient solution satisfies the e-constraints,
an optimal solution of (4.8) with x> 0 will yield an efficient solution.

We now turn to the problem of showing that (properly) efficient solutions
are optimal solutions of (4.8) for appropriate choices of k, e, and p. The fol-
lowing corollary follows immediately from Theorem 4.5 by choosing ¢ = f(%),
§=0and puy =occ forallk =1,...,p.

Corollary 4.11. Let & € Xg. Then there exist e, = 0 and § such that (&, §)
is an optimal solution of (4.8) for all j € {1,...,p}.

A more careful analysis shows that for properly efficient solutions, we can
do without the infinite penalties.

Theorem 4.12. Let Yy be externally stable. Let & € X,g be properly efficient.
Then, for every j € {1,...,p} there are &,8, ;7 with p), < oo for all k # j
such that (&, 8) is an optimal solution of (4.3) for all p € RP=Y, = pf.

Proof. We choose ¢ := fr(2),k = 1,...,p. Thus, we can choose § = 0. Let
j € {1,...,p}. Because Z is properly efficient there is M > 0 such that for

all z € X with f;(z) < f;(2) there is k # j such that fx(2) < fx(z) and
@I _
Tr(z)—fr(2) ’ .

We define p7 by g, := max(M,0) for all k # j.

Let + € X and s € R be such that s = max{0, fx(z) — ex} =
max{0, fx(z) — fr(Z)} for all k¥ # j, i.e. the smallest possible value it can

take. We need to show that

Fi@) + ) sk = fi(@) + ) pkde = fr(@). (4.9)
k#j k#j

First, we prove that we can assume z € Xg in (4.9). Otherwise there is
2’ € Xg with f(2') < f(z) (because Yy is externally stable, see Definition
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2.20) and s’ with s}, = max{0, fx(«’) —er}. Since s’ < s we get that f;(z’) +

Dot HSl < fe(@) + 3oz tesk for any p 2 0.
Now let z € Xg. We consider the case f;(x) > f;(2). Then

Fi() + 3 st > Ful@) 0= f5(2) + 5 ks
e Py

for any p > 0.

Now consider the case f;(z) < f;(2) and let Z(z) := {k # j : fu(z) >
f&(2)}. As both & and z are efficient, Z(z) # (). Furthermore, we can assume
sp=0forall k ¢ I(x),k # j. Let k' € I(x). Then

fi@) + Zuké’k > fi(z) + Zufﬁsk

k#j k#j

) 7i(@) — ()
ZHOE 2 i - ™

oy @ = fi@)
=L@ )~ @)™
ey B@ L@
- fJ( )+ fk’(x) *fk’(i) (fk ( ) fk ( ))
= fJ(‘/il) = fJ('%) + Z,Uk§k

Py

This follows from pj > ui, the definition of ,ui, nonnegativity of all terms,
sk = fr(zx) — fx(&) for k € Z(z) and § = 0. O

We can also see, that for x € X \ X, finite values of p are not sufficient.

Ezample 4.15. Let p=2 and X = {x € R? : (1 — 1)® + (22 — 1)? < 1} with
f(x) = z. Then (1,0) and (0,1) are efficient, but not properly efficient. The
scalarization

min xg + ps
subject to z1 —s <0
re X

is equivalent to (has the same optimal solution x as)
min{zy + pxy : (x1 — 1)% + (22 — 1)2 =11,

1

It is easy to see that the unique optimal solution is given by 1 = 1— \/1 — 1

and it is necessary that y — oo to get z; — 0.
Note, however, that in order to obtain (0,1), we can also consider
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minz; + ©s
subject to xo — s <1

T e X.

It is clear that 1 = 0,29 = 1, s = 0 is an optimal solution of this problem for
any p > 0. 0O

It is worth noting that in the elastic constraint method e-constraints of
(4.3) are relaxed in a manner similar to penalty function methods in nonlinear
programming. This may help solving the scalarized problem in practice.

4.4 Benson’s Method

The method and results described in this section are from Benson (1978). The
idea is to choose some initial feasible solution 20 € X and, if it is not itself
efficient, produce a dominating solution that is. To do so nonnegative deviation
variables Iy = fi(2°) — fi(z) are introduced, and their sum maximized. This
results in an 2 dominating z°, if one exists, and the objective ensures that it
is efficient, pushing x as far from 2 as possible.

The substitute problem (4.10) for given zV is

maxzp:lk
k=1
subject to fu(x?) —lx — fru(z) =0 k=1,...,p (4.10)
120
r e kX.

An illustration in objective space (Figure 4.4) demonstrates the idea. The
initial feasible, but dominated, point f(z") has values greater than the efficient
point f(Z). Maximizing the total deviation I + ZQ, the intention is to find a
dominating solution, which is efficient.

First of all, solving (4.10) is a check for efficiency of the initial solution x
itself. We will see this result again later, when we deal with linear problems
in Chapter 6.

0

Theorem 4.14. The feasible solution 2 € X is efficient if and only if the
optimal objective value of (4.10) is 0.

Proof. Let (x,1) be a feasible solution of (4.10). Because of the nonnegativity
constraint Iy > 0 for k = 1,...,p and the definition of I}, as fi(2°) — fr(z) we
have
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Fig. 4.4. Illustration of Benson’s problem (4.10).

p
D hh=0s=15=0 k=1,...p
k=1

<:>fk(x0):fk(x) k=1,...,p

Thus, if the optimal value is 0, and z € X is such that f(z) < f(z%) it
must hold that f(x) = f(2°), i.e. 20 is efficient. If, on the other hand, 2V is
efficient, the feasible set of (4.10) consists of those (z,!) for which z € X and
f(x) = f(2°) and thus [ = 0. ]

That the initial solution 2 is efficient cannot be expected in general. The
strength of the method lies in the fact that whenever problem (4.10) has a
finite optimal solution value, the optimal solution is efficient. Under convexity
assumptions, we can even show that when the objective function of (4.8) is
unbounded, no properly efficient solutions exist. From an application point
of view, this constitutes a pathological situation: all efficient solutions will
have unbounded trade-offs. However, this can only happen in situations where
existence of efficient solutions is not guaranteed in general.

Proposition 4.15. If problem (4.10) has an optimal solution (i,1) (and the
optimal objective value is finite) then & € Xg.

Proof. Suppose & ¢ Xg. Then there is some z’ € X such that fx(z') < fi(2)
for all k = 1,...,p and f;j(z') < f;(&) for at least one j. We define I’ :=
f(a%) — f(a’). Then (2/,1') is feasible for (4.10) because
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= fi(@®) — fu(@’) > fu(a®) — fu(@) = > 0. (4.11)

Furthermore, >°0_ I} > S°P_ [} as > I;. This is impossible because
(2,1) is an optimal solution of (4.10). O

The question of what happens if (4.10) is unbounded can be answered
under convexity assumptions.

Theorem 4.16 (Benson (1978)). Assume that the functions fr,k =
1,...,p are convex and that X C R™ is a convex set. If (4.10) has no fi-
nite optimal objective value then X,p = 0.

Proof. Since (4.10) is unbounded, for every real number M > 0 we can find
M ¢ X such that [ = f(z°) — f(z™) > 0 and

P P
Dole= (fula®) = filz™)) > M. (4.12)
k=1 k=1
Assume that & is properly efficient in Geoffrion’s sense. From Theorem
3.15 we know that there are weights A\ > 0 for £k = 1,...,p such that &
is an optimal solution of mingex Y r_; Ak fr(x). Therefore > -7 _ Ne(fir(z) —
fx(Z)) > 0 for all x € X, and in particular

P
> Ml fi(@®) = ful@)) > 0. (4.13)
k=1

We define A := min{Ay,...,A,} > 0 and for some arbitrary, but fixed

M’ >0 let M := M’/X. From (4.12) we know that for this M there is some
M ¢ X satisfying fr(z°) — fe(@™)>0forall k =1,...,p and

L . M.
(fe(z®) = fro@™)) >AM =", -A=M". (4.14)
k=1 A
This implies that
p p
<D A=) = fal@™) <D0 M(frl2®) = @) (4.15)
k=1 k=1

is true for all M’ > 0 because of the definition of X and because M’ was chosen
arbitrarily. We can therefore use M’ = Y7 _; Ae(fr(2%) — fu(2)) to get

> ON(Fr@®) = (@) <D M(fr(2®) = fr(@™)), (4.16)
k=1

k=1

fe. S0 Afr(@M) < S°V_ Mo fw (%), contradicting optimality of & for the
weighted sum problem. O
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Recalling that Yn C clY,n if in addition to convexity Y = f(X) is R;—

closed (Theorem 3.17) we can strengthen Theorem 4.16 to emptiness of Xp.

Corollary 4.17. Assume X C R" is convex, fr : R — R are convex for
k=1,...,p and f(X) is R -closed. If (4.10) is unbounded then Xg = 0.

Proof. From Theorem 3.17 we know that Yy C ¢l S(Y) = clYpn. From The-
orem 4.16 Ypn = 0 whence c1),g = 0 and Yn = 0. Thus X = 0. m]

Ezample 4.18 (Wiecek (1995)). Consider the multicriteria optimization prob-
lem with a single variable

min (1:2 —4,(z— 1)4)
subject to —ax — 100 < 0.

Benson’s problem (4.10) in this case is

max 1 + Io
subject to —ax — 100 <0
(29?2 —4—1;, -2 +4=0
(=1 =lh—(z-1)*=0
1=20.

We solve the problem for two choices of x°. First, consider z° = 0. We

obtain
max [y + s (4.17)
subject to —x — 100 <0 (4.18)
224+, =0 (4.19)
l—lh—(z—1)*=0 (4.20)
l1,1220 (4.21)

From (4.19) and (4.21) I; = 0 and « = 0. Then (4.20) and (4.21) imply
lo = 0. Therefore z = 0,1 = (0, 0) is the only feasible solution of (4.10) with
20 = 0 and Theorem 4.14 implies that 2z° =0 € Xg.

The (strictly, weakly) efficient sets for this problem here are all equal to
[0,1] (use the result in Exercise 2.8 to verify this). Therefore let us try (4.10)
with an initial solution 2° = 2, to see if 2° ¢ Xr can be confirmed, and to
find a dominating efficient solution.

The problem becomes
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maxly + o
subject to —x — 100 <0
2?2 +4-10;=0
I—(z—1D*=1y=0
l1,l2 2 0.

From the constraints we deduce 0 < I3 < 4 and 0 < [, < 1. Therefore
the optimal objective value is bounded, and according to Proposition 4.15 an
optimal solution of (4.10) with 20 = 2 is efficient. Because = = 0,11 = 4,13 = 0
is feasible for (4.10), the optimal objective value is nonzero. Theorem 4.14
implies that 2° = 2 is not efficient. The (unique) optimal solution of the
problem is & & 0.410.

Fig. 4.5. Objective functions in Example 4.18.
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4.5 Compromise Solutions — Approximation of the Ideal
Point

The best possible outcome of a multicriteria problem would be the ideal point
y! (see Definition 2.22). Yet when the objectives are conflicting the ideal values
are impossible to obtain. However, the ideal point can serve as a reference
point, with the goal to seek for solutions as close as possible to the ideal
point. This is the basic idea of compromise programming.

Given a distance measure

d:RP xRV — R>, (4.22)
the compromise programming problem is given by

min d(f(2), ") (4.23)

In this text, we will only consider metrics derived from norms as distance
measures, i.e. d(y',y?) = ||ly* — »?||. In particular for y*,y%,y3 € V: d is
symmetric d(y',y?) = d(y?,y'), satisfies the triangle inequality d(y!,y?) <
d(y',v?) + d(y?,y?), and d(y',y?) = 0 if and only if y! = y%.

The compromise programming problem (4.23) has a nice interpretation
in terms of the level sets {y € R? : ||y — y|| < c}. These sets contain all
points of distance ¢ or less to the ideal point y!. Therefore the goal of the
compromise programming problem is to find the smallest value ¢ such that the
intersection of the corresponding level set with ) = f(X) is nonempty. Figure
4.6 illustrates this perspective for the Iy distance ||y* —y?||1 := Y 7_, [yt —vil,
the I distance [|y' — y?|l = max}_, |y; — yi|, and a distance measure d
derived from a norm ~ with asymmetric level sets.

Whether an optimal solution of problem (4.23) is efficient depends on
properties of the distance measure d, and therefore on properties of norm ||- ||,
from which d is derived.

Definition 4.19. 1. A norm || - || : R? — R is called monotone, if [[y*|| <
Y|l holds for all y*,y* € RP with |y}| < |yi|, k= 1,...,p and moreover
Iy < Nyl if lyil < lyils & =1,....p.

2. A norm || - || is called strictly monotone, if ||y|| < ||y?|| holds whenever
lual < Wil k= 1,...,p and |yj| # 43| for some j.

With definition 4.19 we can prove the following basic results.

Theorem 4.20. 1. If||-| is monotone and & is an optimal solution of (4.23)
then I is weakly efficient. If & is a unique optimal solution of (4.23) then
T s efficient.
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Fig. 4.6. Level Sets {y : |ly — y'|| < ¢} for different norms.
If || - || is strictly monotone and & is an optimal solution of (4.23) then &
is efficient.

Proof. 1. Suppose & is an optimal solution of (4.23) and & ¢ X,,r. Then

there is some 2’ € X such that f(z') < f(#). Therefore 0 < fi(z') —yi <
(@) —y)fork=1,...,pand

1£ ") =o'l < 11£@) = 9°ll (4.24)

a contradiction.

Now assume that & is a unique optimal solution of (4.23) and that & ¢ Xg.
Then there is some 2’ € X such that f(z') < f(&). Therefore 0 < fy(x) —
yl < fr(2) — y} for k =1,...,p with one strict inequality, and

1 () =yl < 11£@) = oIl (4.25)

From optimality of & equality must hold, which contradicts the uniqueness
of z.

. Suppose & is an optimal solution of (4.23) and £ ¢ Xg. Then there are

' € X and j € {1,...,p} such that fr(a’) < fr(2) for k =1,...,p and
fi(z') < f;(2). Therefore 0 < fy(x) —yt < fr(2) —yf forallk=1,...,p
and 0 < fj(x) —yj < f;j(&) — yj. Again the contradiction

1f (@) =yl < (@) — 5] (4.26)

follows. O
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The most important class of norms is the class of lp-norms || - || = || - ||p,
ie.

lyll, = (Z yk") (4.27)

k=1

for 1 < p < co. The I, norm || ||, is strictly monotone for 1 < p < oo and
monotone for p = oo. The special cases p = 1 with [jy|| = >7_; |yx| and
p = oo with ||y|| = max}_; |yx| are of major importance.

As long as we just minimize the distance between a feasible point in objec-
tive space and the ideal point, we will find one (weakly) efficient solution for
each choice of a norm. The results can be strengthened if we allow weights in
the norms. From now on we only consider /,-norms. The weighted compromise
programming problems are

min (Z Ak (fr(z) — yzﬁ)") p (4.28)

k=1

for general p, and

. )\ o I
min, max k(fe() = i), (4.29)
for p = co.

Here we assume, as usual, that the vector of weights A\ € R% is nonnegative
and nonzero. Note that the functions [| - |} : R” — R> are not necessarily
norms if some of the weights A; are zero. It is also of interest to observe that

for p=1 (4.28) can be written as

2 , . P P ,
min k:1(>\kfk(x) —Yi) = min (1; Akfk(x)> - ; AkYp-

Hence weighted sum scalarization can be seen as a special case of weighted
compromise programming. We can therefore exclude this case from now on.
The emphasis on the distinction between 1 < p < co and p = oo is justified
for two reasons: The latter is the most interesting case, and the most widely
used, and the results are often different from those for p < co.

For (4.28) and (4.29) we can prove some basic statements analogous to
Theorem 4.20.

Theorem 4.21. An optimal solution & of (4.28) with p < oo is efficient if
one of the following conditions holds.

1. & is a unique optimal solution of (4.28).
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2.0 >0 forallk=1,...,p.

Proof. Assume & is a minimizer of (4.28) but & ¢ Xg. Then there is some
2’ € X dominating 7.

1. In this case, 2’ must also be an optimal solution of (4.28), which due to
T # & is impossible.

2. From A > 0 we have 0 < M\p(fx(2) — yf) < M\e(fu(2) — yf) for all k =
1,...,p with strict inequality for some k. Taking power p and summing up
preserves strict inequality, which contradicts Z being an optimal solution
of (4.28). a

Proposition 4.22. Let A > 0 be a strictly positive weight vector. Then the
following statements hold.

1. If & is an optimal solution of (4.29) then & € XyE.

2. If Y is externally stable (see Definition 2.20) and (4.29) has an optimal
solution then at least one of its optimal solutions is efficient.

3. If (4.29) has a unique optimal solution I, then & € Xg.

Proof. 1. The proof is standard and left out. See the proofs of Theorems 4.20
and 4.21.

2. Assume that (4.29) has optimal solutions, but none of them is is efficient.
Let & be an optimal solution of (4.29). Because Yy is externally stable
there must be an z € Xp with f(z) < f(2). Then \g(fr(z) — yf) <
Me(fe(2) — yf) for k= 1,...,p, which means z is optimal for (4.29), too.

3. This part can be shown as usual. If Yy is externally stable it follows
directly from the second statement. 0O

Actually, all the results we proved so far remain valid, if the ideal point
y! is replaced by any other reference point y?, as long as this reference point

is chosen to satisfy yf* < yl.

Definition 4.23. A point yV = y! — ¢, where ¢ € R has small positive
components is called a utopia point.

Note that not even minimizing the single objectives independently of one
another will yield the utopia values: fx(x) > yY for all feasible solutions x € X
and all k = 1,...,p. The advantage of using utopia points instead of ideal
points will become clear from the following theorems. The first complements
Proposition 4.22 by a necessary and sufficient condition for weak efficiency.

Theorem 4.24 (Choo and Atkins (1983)). A feasible solution & € X is
weakly efficient if and only if there is a weight vector A > 0 such that T is an
optimal solution of the problem
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min max Ae(fi(z) - ui)- (4.30)
Proof. “<=" The proof of sufficiency is the same standard proof as that of
the first part of Proposition 4.22.
“=—" We define appropriate weights and show that they do the job. Let
Mo == 1/(fx(2) — yY). These weights are positive and finite. Suppose Z is
not optimal for (4.30). Then there is a feasible x € X" such that

1
o Ml fi) = vi) < P fe(@) — oY (@) = wic) =1

and therefore
Me(fe(x) —yf) <lforallk=1,...,p.

Dividing by A\r, we get fx(z) —yY < fu(2) —y{ forall k =1,...,p and
thus f(x) < f(&), contradicting & € Xy, . O

With Theorem 4.24 we have a complete characterization of weakly efficient
solutions for general, nonconvex problems. However, as for the e-constraint
method, we have to accept the drawback that in practice the result will only
be useful as a check for weak efficiency, because f(&) is needed to define the
weights to prove optimality of . It should also be noted that if y¥ is replaced
by y! in Theorem 4.24 then not even

Yox < | {z):knqax Mol =kl < max Ay, =y for auyey}
=1,...p =1,....p
AERY

is true, see Exercise 4.8.

We are now able to prove the main result of this section. It is the formal
extension of the main result on the weighted sum scalarization in Chapter 3.
We have noted earlier that (4.28) contains the weighted sum problem as a
special case (setting p = 1). For this special case we have seen in Theorem
3.17 that for RZ -convex and R -bounded Y

S(V) CVpn C YN Ccl(S(V)).

For the general problem (4.28) we can therefore expect more general re-
sults, when convexity is relaxed. Theorem 4.25 is this generalization. Before
we can prove the theorem, we have to introduce some notation to enhance
readability of the proof.

Let
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p
A::{)\ERI;: Z)‘kzl}
"
p
Aozzrm:{AeRI;: ZAk=1}.
k=1

For A € A and y € Y we shall write

AOY = MY, A\pYp)-

Furthermore, in analogy to Opt(A,Y) and S(Y), the set of best approxi-
mations of y! for a certain weight A\ and norm || ||, is denoted by

AN p,Y) -

{iey:po -l =nigloe -y, | @

A=) U Axp»). (4.32)

A€A0 1<p<oo

From Theorem 4.21 and Theorem 4.24 we already know that

AY) CIn CVun = ] AN 0, Y). (4.33)

A€ A0

The main result will show that this can be strengthened to

AY) C Ve C Ve C cl(A(Y)) (4.34)

for Rg—closed sets ), a complete analogy to Theorem 3.17 for nonconvex sets.
In the proof of Theorem 4.25 some of the essential arguments are based
on the following properties of [,-norms:

(P1) Jlylloo < |lyllp for all 1 < p < oo and all y € R?,
(P2) Jlyllp — llylloc as p — oo holds for any y € RP,
(P3) | - ||p is strictly monotone for all 1 < p < oo.

Theorem 4.25 (Sawaragi et al. (1985)). If Y is RE -closed then

A(Y) C Yoy C YN Ccl(A(Y)).

Proof. The proof is divided into two main parts, corresponding to the two

inclusions A(Y) C Vpn and Yy C cl(A(Y)).

Part 1: A(Y) C Vpn. Let § € A(Y). By definition of A(Y) there is a positive
weight vector A € A% and some p € [1,00) such that

Ao @yl <lre -y, (4.35)
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for all y € Y. Let us assume that § ¢ Y,n, which according to Benson’s
definition 2.44 means that there are sequences {#} C R, {y*} C Y, and
{d*} c RE with 8 > 0 and

Bre(y® + d* — §) — —d for some d € Rg. (4.36)

We distinguish the two cases {8} bounded and {3} unbounded and use

(4.36) to construct a point g, respectively a sequence y*, which do not

satisfy (4.35).

{Br} bounded: In this case we can assume, without less of generality,
that [ converges to some number 5y > 0 (taking a subsequence, if
necessary). If 3y = 0 the fact y* + d¥ — § > Y — g implies

Br(y® +d* —9) > Bry¥ — 7). (4.37)

Because the left hand side term in (4.37) converges to —d, and the
right hand side term to 0, we get —d > 0, a contradiction.

If, on the other hand, By > 0 we have that y* + d* — § — (—d)/fo,
which is nonzero, and y* + d* — § — d/y. Since y* + d* € Y + RZ
and this set is closed, it must be that the limit § — d/By € Y + R’;
From this observation we conclude that there is some § € ) such that
9 > 4. Positive weights and strict monotonicity of the lp-norm finally
vield [|A @ (5 = )y > 1A © (G = 3"

{Br} unbounded: Taking subsequences if necessary, we can here assume
B — oo, which by the convergence in (4.36) gives y* + d* —§ — 0.
Because g, > yg for all £k = 1,...,p we can find a sufficiently large
3" > 0 so that

d
OSQfﬁ*yU<?*yU (4.38)
for all B > [3'. We use strict monotonicity of the norm and A > 0 to
obtain p
HA@(gj—ﬁ—yU) <Ppew-, @39
P

for all > (. Since B — oo we will have 8, > ' for all k > ko with
a sufficiently large ky. Therefore

A (y* +d* —y)|| = (y’“+d’“—:&+§k+ﬂ—§i—yU)H

p

(4.40)
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We know that the first term on the right hand side of the inequality
of (4.40) converges to 0. The sequence [ being unbounded implies
the second term converges to 0, too. Thus from (4.40) and (4.39)

; ko gk _ U : < d _ .U
Jim e+t =yl < i re (o= 4 =o)L
< H/\ O (g — yU)Hp.
But since y* + d* — yY = ¥ — yY > 0, applying monotonicity of the
norm once more, (4.41) implies klim AW =y lp < N (G—yY) |p-
—00

Part 2: Yn C cl(A(Y)). We prove this part by showing that for all § € Yy
and for all € > 0 there is some y* € A(Y) in an e-neighbourhood of g.
Then, taking the closure of A(}), the result follows. The e-neighbourhood
is defined according to the l,.-norm.

Le. let § € Yn and let € > 0. We show that there is some y* € A(Y) with
1y — Glloc = maxg=1,...p lyz — Tx| <e.

First we proof an auxiliary claim: For each € > 0 there is 3’ > ¢ such that
ly — 9lloc < € for all y in the section (y" — RL) N Y, see Figure 4.7. To
see this, assume that for some £ > 0 there is no such 3. Then there must
be a sequence {7*} C RP with §* > ¢, §* — ¢ such that for all k there is
yh € (§* —RY) N with [ly* — gl| > <.

{yeR”: ly =gl <e}

Fig. 4.7. e-neighbourhoods of nondominated points in the [o-norm.

Because y—l—R; is closed and Y C yU +R27 i.e. ) is bounded below we can

assume without loss of generality that y* — y”+d”, where y” € Y,d" = 0
and ||y”"+d” —g||cc > €. On the other hand 3" +d” € (Q—Rg)ﬂ(y-k]}@g) =
{9} (since g € Yn), a contradiction.
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For 7’ from the claim we know ¥ < § < 3’ and thus there is some A € A°,
and 8 > 0 such that 3y’ — yY = 3(1/A1,...,1/),). Hence

Ne(Gk = i) < My —yi) = B (4.42)
forallk=1,...,p and
IANE (§—y")leo < B- (4.43)

Choose y(p) € A(\, p,Y). Note that A(\, p,)) is nonempty because ) +
R is closed. We obtain

INO (w(P) =yl < IINE ((p) —y9)llp
<xo@—y9)e (4.44)
Ao @ =y < B,

where we have used (P1), the definition of A(X,p,Y), and (P2), respec-
tively.
This means we have ||A ® (y(p) — yY)|leo < B3, if p is sufficiently large. By
the definition of the [,,-norm
B
yk(p)—ygg L :y;ﬂ—yg forallk=1,...,p, (4.45)
ie. y(p) <y or y(p) € (¥ —RL)NY and therefore, using the auxiliary

claim, we can choose y° := y(p) for sufficiently large p. 0O

We know that if Y + RZ is convex, p = 1 will always work for y(p) €
A(\, p,Y) and that p = 0o can be chosen for arbitrary sets. The proof of
the second part of the theorem suggests that, if ) is not Rx-convex, p has
to be bigger than one. The value of p seems to be related to the degree of
nonconvexity of ). An Example, where 1 < p < oo can be chosen to generate
YN by solving (4.28) is given in Exercise 4.7.

At the end of this section we have two examples. The first one shows that
the inclusion ¢l A(Y) C Yy may not be true. In the second we solve the
problem from Example 4.18 by the compromise programming method.

Ezample 4.26. Let Y :={y € R? : yi + (y2—1)* < 1}U{y € R : y1 > 0, yo >
—1}. Here the efficient set is Yy = {y € YV :yf + (2 — 1)2 = 1,40 < 1391 >
—1} U {(0,—-1)}, see Figure 4.8.

Therefore 0 ¢ Yn but 0 € cl.A(Y). Note that the efficient points with
y2 < 1 and y; < 0 are all generated as optimal solutions of (4.28) with any
choice of y¥ < (—1,—1) for appropriate A and p. a
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Fig. 4.8. cl A(Y) may contain dominated points.

Ezxample 4.27. We apply the compromise programming method to the prob-
lem of Example 4.18:

min(z? — 4, (z — 1)*)
subject to —x — 100 < 0.
Let A = (0.5,0.5) and p = 2. The ideal point is y/ = (—4,0) and we
choose y¥ = (=5,—1). So (4.28) with p = 2 and yYU as reference point is

1 1
min\/Q(gc2 —4+45)2+ 2((95— 1)4+1)2
subject to —ax — 100 < 0.

(4.46)

Observing that the compromise programming objective is convex, that
the problem is in fact unconstrained, and that the derivative of the objective
function in (4.46) is zero if and only if the derivative of the term under the
root is zero we set

1 1
B@) = @ 17+ (e = 1)+ 1)
and compute

¢ (2) = (2> +1)2z + ((x — D)* + 1) - 4(x — 1)3
=203 + 20 +4(x — 1) 4+ 4(x —1)3

From ¢'(x) = 0 we obtain & ~ 0.40563 as unique minimizer. Theorem 4.21
confirms that z € Xg. 0
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4.6 The Achievement Function Method

A certain class of real-valued functions s, : RP — R, referred to as achievement
functions, can be used to scalarize the MOP (4.1). The scalarized problem is
given by

min sg(f(x))

(4.47)
subject to z € X.

Similar to distance functions discussed in Section 4.5 above, certain prop-
erties of achievement functions guarantee that problem (4.47) yields (weakly)
efficient solutions.

Definition 4.28. An achievement function sg : RP — R is said to be

1. increasing if for y*,y? € RP, y! < y? then sr(yt) < sr(y?),
2. strictly increasing if for y',y* € RP, y' < y? then sr(y') < sr(y?),
3. strongly increasing if for y',y? € R, y* < y? then sp(y') < sr(y?).

Theorem 4.29 (Wierzbicki (1986a,b)).

1. Let an achievement function sg be increasing. If & € X is a unique optimal
solution of problem (4.47) then & € Xsg.

2. Let an achievement function sr be strictly increasing. If & € X is an
optimal solution of problem (4.47) then & € XyE.

3. Let an achievement function sg be strongly increasing. If + € X is an
optimal solution of problem (4.47) then & € Xg.

We omit the proof, as it is very similar to the proofs of Theorems 4.20,
4.21 and Proposition 4.22, see Exercise 4.11.

Among many achievement functions satisfying the above properties we
mention the strictly increasing function

srly) =, max {Ax(ys — yi)}

.....

and the strongly increasing functions

P
sr(y) = kgaxp{)\k(yk )} + Z A (v — yi)
""" k=1

sr(y) = —lly = y"I* + p2ll(y — ™)+ %,
where yf' € RP is a reference point, A € RL is a vector of positive weights,

p1 > 0 and sufficiently small, po > 1 is a penalty parameter, and (y —y%), is
a vector with components max{0, yx — ri} (Wierzbicki, 1986a,b).
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4.7 Notes

In Guddat et al. (1985), Theorem 4.7 is also generalized for scalarizations in
the form of problem (4.7) with an objective function being strictly increasing
on R? (cf. Definition 4.28). See also Exercise 4.10.

The formulation of the scalarized problem of Benson’s method (4.10) has
been used by Ecker and Hegner (1978) and Ecker and Kouada (1975) in mul-
tiobjective linear programming earlier. In fact, already Charnes and Cooper
(1961) have formulated the problem and proved Theorem 4.14.

Some discussion of compromise programming that covers several aspects
we neglected here can be found in Yu (1985). Two further remarks on the
proof of Theorem 4.25 are in order. First, the statement remains true, if
y! is chosen as reference point. However, the proof needs modification (we
have used y > yY in both parts). We refer to Sawaragi et al. (1985) for
this extension. Second, we remark that the definition of the [,-norms has
never been used. Therefore the theorem is valid for any family of norms with
properties (P1) — (P3). This fact has been used by several researchers to justify
methods for generation of efficient solutions, e.g. Choo and Atkins (1983).
Other norms used for compromise programming are include the augmented
loo-norm in Steuer and Choo (1983); Steuer (1985) and the modified {,-norm
by Kaliszewski (1987).

There are many more scalarization methods available in the literature than
we can present here. They can roughly be classified as follows.

Weighting methods These include weighted sum method (Chapter 3), the
weighted ¢-th power method White (1988), and the weighted quadratic
method Tind and Wiecek (1999)

Constraint methods We have discussed the e-constraint method (Section 4.1),
the hybrid method (Section 4.2), the elastic constraint method (Section
4.3) and Benson’s method (Section 4.4). See also Exercises 4.1, 4.2 and
4.10 for more.

Reference point methods The most important in this category are the com-
promise programming method of Section 4.5 and the (more general)
achievement function method (Section 4.6). But goal programming (see
e.g. Tamiz and Jones (1996)) and the weighted geometric mean approach
of Lootsma et al. (1995) also fit in this category.

Direction based methods There is a wide variety of direction based meth-
ods, including the reference direction approach Korhonen and Wallenius
(1988), the Pascoletti-Serafini method Pascoletti and Serafini (1984) and
the gauge-based technique of Klamroth et al. (2002).
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Of course, some methods can be associated with several of these categories.
A survey with the most important results can be found in Ehrgott and Wiecek
(2005).
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Exercises

4.1. Suppose Z is the unique optimal solution of

zeX

P
min Z Aifi(z)

k=1
with A € RY. Then there exists some é € RP such that & is an optimal solution
of (4.3)forallj=1,...,p.

4.2 (Corley (1980)). Show that # € Xg if and only if there are A € RY
and € € RP such that & is an optimal solution of

P
min ; A fre ()

subject to f(z) <e.

(4.48)

4.3. Show, by choosing the parameters p and € in (4.8) appropriately, that
both the weighted sum problem (4.2) and the e-constraint problem (4.3) are
special cases of (4.8).

4.4. Consider the following bicriterion optimization problem.

min —6x1 — 4xo

min —x
s.t. 1+ T2 S 100
2$1 + Zo S 150
T1,x2 Z 0.

Use € = 0 and solve the e-constraint problem (4.3) with j = 1. Check if
the optimal solution & of P;(0) is efficient using Benson’s test (4.10).

4.5. Consider mig (fi(z),..., fp(z)) and assume 0 < mingecx fr(z) for all
zE

k=1,...,p. Prove that x € X, if and only if z is an optimal solution of

min max A fi(z)

for some A € RZ.

4.6. Find an efficient solution of the problem of Exercise 4.4 using the compro-
mise programming method. Use A = (1/2,1/2) and find an optimal solution
of (4.28) for p=1,2, cc.
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4.7. Consider finding a compromise solution by maximizing the distance to
the nadir point.

1.Let || - || be a norm. Show that an optimal solution of the problem

max || f(z) — y™||
vEX (4.49)
subject to fi(z) <wyp k=1,...,p

is weakly efficient. Give a condition under which an optimal solution of
(4.49) is efficient.
2. Another possibility is to solve

. N

max min (x) —

max | min |fr(z) — | (4.50)
subject tofi(z) < yp, k=1,...,p.

Prove that an optimal solution of (4.50) is weakly efficient.

4.8.Let Y={yeR?:y; +y2 > 1, 0 <y < 1}. Show that § = (0,1) € V,n
according to Benson’s definition, but that there is no A € AY such that ¢ €
A(X, 00,Y), if y is used as reference point in (4.28).

4.9. Let Y = {(yl,yg) eR: :yf+y3 > 1}. Verify that there is 1 < p < oo
such that

AEAO
Choose either y! or yV in the definition of A(A, p,)) and Ng‘.
4.10 (Soland (1979)). A function s : R? — R is called strongly increasing, if
for y!,y? € RP with y* < y? the inequality s(y') < s(y?) holds (see Definition
1.28).
Consider the following single objective optimization problem, where ¢ €

min s(f(z))
RP and f : R® — RP. subject to x € X
flz) <e.

(4.51)

Let s be strongly increasing. Prove that © € Xy if and only if there is
e € R? such that x is an optimal solution of (4.51) with finite objective value.

4.11. Prove Theorem 4.29.



126 4 Scalarization Techniques

4.12. An achievement function sg : R — R is called order representing if sp
is strictly increasing (Definition 4.28) for any y* € RP and in addition

{y € RP : sp(y) <0} =y —RY

holds for all y* € RP. Which of the functions

sr(y) = d(y, y™) = lly — y",

sr(y) = max {An(yx — ui},

.....

P
srly) = max (v = i)} + o1 3 el — o)
""" k=1

B2+ pall(y — y™) 4|1

sr(y) = —lly—y
is order representing?

4.13. Show that Benson’s problem (4.10), the weighted sum scalarization (4.2)
with A € RY, the compromise programming problem (4.28) with 1 < p < co
and A € RZ, and Corley’s problem (4.48) (see Exercise 4.2) can all be seen
as special cases of (4.51).
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Other Definitions of Optimality —
Nonscalarizing Methods

The concept of efficiency and its variants are by far the most important defi-
nitions of optimality in multicriteria optimization. Their extensive coverage in
Chapters 2 to 4 reflects this fact. But as we have seen in Chapter 1 with the dis-
cussion of orders and the classification of multicriteria problems this is not the
end of the story. Other choices of orders and model maps give rise to different
classes of multicriteria optimization problems. In this chapter we shall discuss
some of these. Specifically we address lexicographic optimality, max-ordering
optimality, and finally a combination of the two, lexicographic max-ordering
optimality. Lexicographic max-ordering defines a class of problems with many
interesting features. Of particular interest will be the relationships between
optimal solutions of these problems and efficient solutions. In this way they
can be seen as nonscalarizing methods for finding efficient solutions. We do
not study these problems out of curiosity about their theory, however.

Lexicographic optimization problems arise naturally when conflicting ob-
jectives exist in a decision problem but for reasons outside the control of the
decision maker the objectives have to be considered in a hierarchical manner.
Weber et al. (2002) describe the optimization of water resources planning
for Lake Verbano (Lago Maggiore) in northern Italy. The goal is to deter-
mine an optimal policy for the management of the water supply over some
planning horizon. The objectives are to maximize flood protection, minimize
supply shortage for irrigation, and maximization of electricity generation. This
order of objectives is prescribed by law, so that the problem indeed has a lex-
icographic nature. The actual formulation of the problem is via stochastic
dynamic programming, which is beyond the scope of this book, and we omit
it.

A common application of max-ordering problems is location planning.
Ehrgott (2002) describes the problem of locating rescue helicopters in South
Tyrol, Italy. The objective in this problem is to minimize the distance be-
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tween potential accident sites and the closest helicopter location. In order
to minimize worst case response times in an emergency, the problem can be
formulated as follows. Let " = (2, 2%),h € H denote variables that define
helicopter locations and (a¥,a%),k € 1,...,p the potential emergency sites.
Optimal helicopter locations are found by solving

min max T
ceR2IM| kEL,...,p ful@)

where f(z) is defined as
s h_ k
file) = minwlla® — >

Georgiadis et al. (2002) describe the problem of picking routes and asso-
ciated route bandwidth in a computer network so that bandwidth request is
satisfied and the network is in a balanced state, i.e. the bandwidth allocation
results in an even spreading of the load to various links of the network. They
formulate this problem as a lexicographic max-ordering network flow prob-
lem. Variables z;; denote the load on links ij. Let C;;(x;;)be a function that
describes the link cost and b(i) be the bandwidth demand at a node of the
network. Then the balanced bandwidth allocation problem is

min sort(Ci; (2i;))

subject to qu - iji =b(i), i€N
7 J

J
Lij > 0.

These examples should give an indication that the lexicographic, max-
ordering, and lexicographic max-ordering classes are very relevant for practical
applications.

Before we start our investigations, we state one general assumption.
Throughout this chapter we shall assume that the single objective optimiza-
tion problems min,¢cx fi(z) have optimal solutions for &k = 1,...,p and that
XEg # 0, unless stated otherwise.

5.1 Lexicographic Optimality

In lexicographic optimization we consider the lexicographic order when com-
paring objective vectors in criterion space. As for efficiency, the model map
is the identity map, so in terms of classification we deal with problems of
the class (o/id/(RP, <jex)). An optimal solution & of such a problem is called
lexicographically optimal and f(&) is a lexicographically minimal vector in

Y= f(X).
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We can also write the lexicographic optimization problem with a “lexmin”
operator as:

lexmin(fi(x),. .., fp(x)). (5.1)

zeX

Definition 5.1. A feasible solution & € X is lexicographically optimal or a
lexicographic solution if there is no x € X such that f(z) <iex f(&).

Recall that 3! < 92 if y; < yg where ¢ = min{k : y} # yi} and
that the lexicographic order is total. Therefore, in addition to Definition 5.1,
which is a “negative” definition of optimality, we can state that £ € X is
lexicographically optimal, if

f(&) <jex f(z) for all z € X.

First, we establish the relationship between lexicographically optimal so-
lutions and efficient solutions.

Lemma 5.2. Let & € X be such that f(2) <jex f(xz) for all z € X. Then
T e Xg.

Proof. Suppose that & is not efficient. Then there is an x € X such that
f(z) < f(&). So for some k € {1,...,p} we have fip(z) < fi(Z). Defining
g = min{k : fr(z) < fr(@)} we get that fr(z) = fr(&) for k =1,...,q¢ —
1 and fy(z) < fq(2). Therefore f(z) <iex f(&) contradicting lexicographic
optimality of Z. O

While the essential feature of efficiency is the existence of tradeoff between
objectives, lexicographic optimality implies a ranking of the objectives in the
sense that optimization of fj is only considered once optimality for objectives
{1,...,k — 1} has been established. That means objective 1 has the highest
priority, and only in the case of multiple optimal solutions objectives fs and
further objectives are considered. This priority ranking implies the absence
of tradeoffs between criteria. An improvement in an objective f; can never
compensate the deterioration of any f;,i < k.

The hierarchy among criteria allows us to solve lexicographic optimization
problems sequentially, minimizing one objective fj at a time and using optimal
objective values of f;,i < k as constraints, as shown in Algorithm 5.1.

Algorithm 5.1 (Lexicographic Optimization)
Input: Feasible set X and objective functions f.
Initialization: Define X1 := X and k := 1.
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Solve the single objective optimization problem

min fi(x). (5.2)

While k < p do

If (5.2) has a unique optimal solution &y, STOP, &y is the unique
optimal solution of the lexicographic optimization problem.

If (5.2) is unbounded, STOP, the lexicographic optimization problem is
unbounded.

If k = p, STOP, the set of optimal solutions of the lexicographic opti-
mization problem is

{eet,: 1) = iy o)}
Let Xyq1 :={x € Xy : fr(z) = mingex, fu(x)} and let k =k + 1.
End while.
Output: Set of lexicographically optimal solutions.

In applications of lexicographic optimization, it will often be reasonable
to assume that all objectives are bounded over the feasible set X'. However,
Algorithm 5.1 will also give a correct solution if f; is unbounded over X', but
bounded over &j. Note that, if a problem mingex, fr(z) is unbounded, it is
not possible to define Xj1.

We consider problem (5.2) to justify correctness of Algorithm 5.1.

Proposition 5.3. If & is a unique optimal solution of (5.2) with k < p, or
if & is an optimal solution of (5.2) with k = p then f(&) <iex f(x) for all
zeX.

Proof. Consider k < p in the first, and £ = p in the second case. Suppose
there is an @ € X with f(x) <jex f(Z). By definition of the problem (5.2) in
iteration ¢ and its feasible set X; as optimal solutions of (5.2) in iteration ¢ —1
we cannot have that f;(z) < fi(#) for any i < k — 1. Therefore f;(x) = f;(%)
for i =1,...,k — 1. Thus, f;(z) < f;(&) must hold for some k < j < p. If
k < p this means that either & is not optimal for (5.2) or has has at least two
optimal solutions in iteration k, contradicting the assumption. If & = p, we
must have f(z) = f(Z) contradicting f(z) <jex f(). O

Note also, that if & is a unique optimal solution of a problem (5.2) then
i € Xsg. To see this, consider € X such that fi(z) < fr(2) for all k =
1

thus by uniqueness of Z implies x = Z.

,...,p, which due to & being efficient can only hold with f(z) = f(&), and
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Proposition 5.4. If x is a unique optimal solution of (5.2) for some k €
{1,...,p}, then x € Xsg.

Up to now we have used the ranking of the objectives given by the in-
dices, i.e. f(x) = (fi(x), fa(x),..., fp(x)). There is no reason to stick with
that order. Indeed, we may well choose another ranking of the objectives and
apply lexicographic optimization. To deal with this, we look at all possible
permutations of the indices (1,...,p). Let w : {1,...,p} — {1,...,p} be a
permutation and consider the permutation (fr(1),. .., fr(p) of the objective
functions. We also use 7 to denote the model map

T:RP S RP, oy (Yr1ys o Yn(p)

that defines this permutation of components in the objective function vector.
We shall naturally use 7(y) and 7(f) to denote the permutation of y and f. As
in Lemma 5.2 we can show that optimal solutions of (X, f,RP)/7/(RP, <jex)
are efficient. We denote by IT the set of all permutations of {1,...,p} and by

X = | Opt (X, £,R?)/7/(RP, <iex)
well

the set of solutions which are lexicographically optimal for any problem
(X, f,RP) /7 /(RP, <jex) With 7 € II.

Definition 5.5. A feasible solution & € X is a global lexicographic solution
if there is a m € II such that m(f(2)) <jex 7(f(x)) for all x € X.

Then we have .
Proposition 5.6. X;; C Xfg.

Ezxample 5.7. Tt is quite obvious that the inclusion in Proposition 5.6 is strict
in general. Let X = [0,1] and fi(z) ==z, fa(z) =1—z.

Clearly Xg = X. The optimal solution of ([0, 1], f,R?)/id/(R?, <jex) is
# = 0, the optimal solution of ([0, 1], f,R?)/7/(R?, <jex), Where 7(y1,y2) =
(y2,y1) is & = 1. Therefore X = {0,1} # Xp.

Moreover, because of the uniqueness of both lexicographically optimal
solutions in this example Xy C Xsg, and again the inclusion is strict, as
Xg = XsE.- O

Note that finding X7 is usually computationally very expensive. It involves
solving |IT| = p! lexicographic problems, which, using Algorithm 5.1, amounts
to p - p! single objective problems. However, if X' is a finite set, finding Xz
can be done in time polynomial in |X| and p, as we shall see in Section 8.2.
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5.2 Max-Ordering Optimality

The second problem class we consider is o/ max /(R, <). Problems of this class
can be written as follows

min max Ji(), (5.3)
and are called max-ordering optimization problems. Let Xj;o denote the set
of optimal solutions of a max-ordering problem. We encountered such min-
max problems in Chapter 4, as special cases of compromise programming
problems, when the [,,-norm is used as distance measure. From these results
we easily establish the relationships with efficiency.

Definition 5.8. A feasible solution & € X is max-ordering optimal or a
max-ordering solution if there is no x € X such that maxg=1, . , fx(z) <

maxk:hwp fk(fc)

Proposition 5.9. An optimal solution of the maz-ordering problem (5.3) is
weakly efficient but not necessarily efficient.

Proof. The easy proof and example are left to the reader as Exercise (5.2) O

From Proposition 5.9 we know that X\io C X, E. By our general assump-
tion that mingcx fx(x) exists for all k = 1,...,p the max-ordering optimiza-
tion problem is bounded. Let y¥ < 3! be a utopian point. Observe that the
efficient set Xgp of the multicriteria optimization problems with objectives
(fiyeoon fp)and (f1 — oY, . fo — yg) is the same. This is true because the
subtraction of constants affects only ) — ) and Yy are translated by yU —
not X. The following result has already been shown as Theorem 4.24:

Proposition 5.10. A feasible solution & € X is weakly efficient if and only
if there is some X € RE such that & is an optimal solution of
i A —y).
min max Ap(fi(x) = yy)
Therefore X,g can be determined through the solution of max-ordering
problems. Obviously, results concerning efficiency optimality must be weaker.

Yet we can show that at least one optimal solution of the max-ordering prob-
lem is efficient.

Proposition 5.11. Suppose that Yy is externally stable, and that a maz-
ordering solution exists. Then Xyo N Xg # 0. If there is y € ) such that
f(x) =y for all x € Xyo then Xvo C Xk.
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Proof. Let & € Xm0 and suppose & ¢ Xg. Then, because of external stability
of Y, there is some z € Xg such that f(z) < f(Z). Thus maxg=1,. , fr(z) <
maxy=1,. p fx(£). Since & is max-ordering optimal, equality must hold, and
x € Xumo, too. The second part follows from uniqueness of f(x) for all z €
Anvo- O

We will come back to this result in Section 5.3, where we strengthen max-
ordering optimality by combining it with lexicographic optimality in a way
that guarantees that all optimal solutions are also efficient. We shall then see
how to find part of the intersection X0 N Xg.

Next, we show that the max-ordering problem (5.3) can be solved as a
single objective optimization problem, and that max-ordering solutions have
a geometric characterization similar to the one given for efficient solutions in
Theorem 2.30.

If we introduce a variable z to stand for maxg—1, ., fx(x) we can rewrite
(5.3) as

min z
subject to fy(z) <z k=1,...,p (5.4)
r e X.

Reformulation (5.4) indicates that max-ordering solutions can be charac-
terized through level sets ££(2) = {z € X : fr(z) < z}. This geometric
characterization is given in Proposition 5.12.

Proposition 5.12. A feasible solution & € X is mazx-ordering optimal, i.e.
T € Xmo, if and only if

]é £2 <,€£I}ﬁ_>_(,p fk(fi)> £ (5.5)

and for all z < kgaxpfk(i’) it holds that N_, L (2) = 0.

In the following we show a case for which the max-ordering problem can
be solved easily and give lower and upper bounds for the general case. Let 3!
be the ideal point of the multicriteria optimization problem defined by X and
fand let 2%, k=1,...,p be such that y = fi.(z*).

In the max-ordering problem only the worst objective value is considered
for each feasible point z. It may happen that there is an objective f; which
is worst for each x € X: fi(x) > fi(x) for all i # k. In this case the objec-
tive function fi is considerably worse than the others, and the max-ordering
problem is “easy” to solve, by simply minimizing that objective.
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More precisely, note that for each k = 1,...,p we have

yi = fu(a®) = min fi(w) < min max fi(r) < max fil@®).  (5.6)

Proposition 5.13. If for some z* with fi(x*) =yl it holds that that f;(x*) <
y,ﬁ for alli =1,...,p then z* € Xyo and the optimal objective value of the
maz-ordering problem is y,ﬁ

Proof. The assumption f;(z*) < yi for all i =1,...,p implies

max fz( )gy,ﬁ

i=1,....k
Therefore (5.6) holds with equalities, i.e.

k I __
fe(@™) = yp —gél;(llmafoz( ).

0O

If the condition of Proposition 5.13 does not apply inequality (5.6) can
be used to obtain lower and upper bounds on the optimal value of the max-
ordering problem. Taking the maximum over k on the left we obtain

kmax fk:( )<m1n max fz( )

=1 p reX i=1,...,

yeeey

Now taking first the minimum over all optimal solutions z* of the single
objective problem min,cx fx(z) and then the minimum over all k € {1,...,p}
on the right we get

< < i .
(ax iz ") min max fi(r) < min  min max fi(z ") (5.7)

where X% = {x € X : fr(x) = minger fr(z)}.
Another lower bound is derived from consideration of minimizing weighted
sums of the objectives. Let the set of weights A be defined as usual, namely

p
A{AER’;:Z)\kl}.
k=1

We obtain the following result.

Proposition 5.14.

max minz A ) < mln max .
AEA zeX kfk =1,..., p fk( )



5.3 Lexicographic Max-Ordering Optimization 135

Proof. For each x € X and each A € A it holds that

coP

p
Z/\kfk Z/\k max fz )< ‘max fi(z). (5.8)
=1

Taking minima over x € X on both sides yields that for each A € A

mmz Mefr(z) < mm max f;(x). (5.9)

Xi=1,....,p
Since the right hand side in (5.9) is independent of A the result follows. O

Note that by much the same argument, taking first a maximum over A € A
on the left and then the minimum over z € X on both sides of (5.8), it follows
also that

min max A ) < mln rnax 5.10
min AeAZ kfr( pfk( z), (5.10)
for a similar lower bound.

We will not go into any further detail of max-ordering optimization here,
and continue with a stronger version of it.

5.3 Lexicographic Max-Ordering Optimization

As we have seen, an optimal solution of a max-ordering optimization prob-
lem is not necessarily efficient, because the max-ordering optimality concept
considers only one of the p objective values at each x € X, namely the worst.
A straightforward idea is to extend this to consider the second worst objec-
tive, the third worst objective, etc. in the case that the max-ordering problem
has several optimal solutions. This approach is similar to lexicographic opti-
mization and considers a ranking of the objective values fi(z),..., fp(z). The
difference is that the ranking is from worst to best value and thus depends on
T.

We call the result lexicographic max-ordering optimality, because it is a
combination of max-ordering and lexicographic optimality, where the lexico-
graphic order is applied to a nonincreasingly ordered sequence of the objec-
tives.

Definition 5.15. 1. For y € R? let sort(y) := (sortq(y),...,sorty(y)) such
that sorti(y) > ... > sort,(y) be a function that reorders the components
of y in a nmonincreasing way.
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2. A feasible solution & € X is called a lexicographic max-ordering solution
(lex-MO solution) if

sort(f(2)) <iex sort(f(x)) for all z € X. (5.11)
A lexicographic max-ordering optimization problem can be written as

min sort(6(f(z))). (5.12)
zeX
According to this definition we apply a mapping sort : RP — RP to the
objective vectors f(x), which reorders the components, and apply the lexi-
cographic order to compare reordered objective vectors. In case of ties, i.e.
equal components of f(x), we assume that the order is given by the index of
objective functions.
This means that sort is used as model map and the lexicographic order
for comparison. Thus a lexicographic max-ordering problem is denoted, in the
classification of Section 1.5, by

(X, f,R?)/sort /(RP, <jex). (5.13)

The set of optimal solutions will be denoted by Xex.mo and its image in
objective space by Viezmo = f(Xex-M0). Because the lexicographic order is
total, it is clear that there is only one optimal value, i.e.

| sort(Vex-mo)| = [{sort(f(x)) : € Xex-mo }| = 1. (5.14)

This unique optimal value may, however, be attained for several x € X. There
might even be several y € Vex-Mm0, Which after resorting are equal to this
unique optimal value.

In this section we will show that lexicographic max-ordering can be used to
find the efficient set. We will see how lexicographic max-ordering problems can
be solved when X is convex and the objective functions are convex functions.
And finally we establish an axiomatic characterization of lexicographic max-
ordering, which identifies in which situations a multicriteria problem must be
considered as belonging to the lex-MO class.

That lexicographic max-ordering really extends max-ordering is shown
next.

Theorem 5.16. The following relationship between lex-MO solutions, effi-
cient solutions, and max-ordering solutions holds.

Xex-Mmo C X N XAvo (5.15)

and Xex-mo = Xg N Xuo if f(x) is the same for all x € Xyo.
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Proof. Let © € Xex-mo. First, assume that @ ¢ Xg. Then we can find 2’ €
X such that f(2') < f(x). Reordering the components of f(z') and f(x)
nonincreasingly it follows that sort(f(z')) <iex sort(f(z)) and sort(f(z')) #
sort(f(z)) because f(a’) # f(z). This is a contradiction to & € Xex-MO-

Second, assume that = ¢ Xyo. In this case we can find «’ € X such that
maxgp=1,. p fr(2') < maxg—1, . p frx(z). But with the definition of sort this is
the same as sorty (f(z')) < sorty(f(z)), which clearly implies sort(f(z")) <iex
sort(f(z)) and thus again contradicts € Xex-Mo-

The equality follows from (5.15) and from Proposition 5.11. O

Inclusion (5.15) in Theorem 5.16 indicates that the intersection of the effi-
cient set and X\;o does in general not only contain just the lex-MO solutions.
Example 5.17 shows that this is indeed the case.

Ezample 5.17. Consider problem data with feasible set X = {a,b,¢,d, e, f},
for which the objective function values are explicitly given as shown in Table
5.1.

Table 5.1. Feasible solutions and objective values in Example 5.17.

x f(x) sort f(x)
a (1,3,8,2,4) (8,4,3,2,1)
b (4,3,8,1,1) (8,4,3,1,1)
c (7,5,4,6,1) (7,6,5,4,1)
d (3,7,4,6,5) (7,6,5,4,3)
e (4,7,5,6,5) (7,6,5,5,4)
f (5,6,7,3,8) (8,7,6,5,3)

The sorted objective vectors are also shown for convenience. It is easily
seen that Xyvo = {¢,d, e}, that Xg = {a,b,¢,d, f}, and that Xexnmo = {c}.
Therefore Xex-m0 C Xnmo N Xpar, but the inclusion is strict. Note that lexico-
graphically optimal solutions with respect to all permutations are {a,b, ¢,d},
so that X7 C Xpar and Xexemo C X7 and both of these inclusions are strict.
The relationship between these sets is illustrated in Figure 5.1 a

It is important to note that lex-MO solutions are not necessarily lexico-
graphically optimal, because although sort defines a permutation of f(x), it
is one which depends on z, see Example 5.7, where Xex.mo = {0.5} and
X ={0,1}.
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Fig. 5.1. Relationships between optimal solutions according to different
MCO classes.

We have shown that lexicographic max-ordering solutions are efficient. If
the preimage of some y € Vex-Mo is a singleton, it follows that the lex-MO
solution is even strictly efficient.

Corollary 5.18. All & € Xex- M0 for which {z : f(x) = f(&)} is a singleton
are strictly efficient.

Next we show that Xex.mo is invariant under permutations and strictly
increasing mappings. Let 7 : R — R be a function. By abuse of notation let
7(f) denote (7o f1,...,70 fp).

Proposition 5.19. Let X C R™ and f : R" — RP.

1. Let ™ € II be a permutation. Then the Xex-mo Sets of the lex-MO problems
lexminge x sort(7(f(x))) and lexmingey sort(f(z)) are the same.

2. Let 7 : R — R be strictly increasing. Then the Xex-mo sets of the lex-
MO problems lexmingex sort(7(f(z))) and lexmingecx sort(f(z)) are the
same.

Proof. 1. The first statement is obvious because sort(fi(z),..., fp(z)) =

sort(fr(1)(2), ..., fr(p)(x)) for all m € II.
2. By the strict monotonicity of 7 we know that

file) < fi@') = 7(fi(®)) <7(fi(2"))

and therefore

sort(f(x)) <iex sort(f(z')) <= sort(7(f(z))) <iex sort(r(f(z'))).
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We will now prove that Xg can be identified by solving lex-MO problems
with positive weights A for the objective functions. Theorem 5.20 strengthens
the result of Proposition 5.10, and the corresponding results of Section 4.5,
which allow only a characterization of weakly efficient solutions. Here the lex-
icographic extension of max-ordering guarantees that only efficient solutions
will be found — and not just weakly efficient ones. Let 4V be a utopia point.

Theorem 5.20. A feasible solution & € X is efficient if and only if there
exists some A € RY such that & is an optimal solution of the lex-MO opti-
mization problem

lexmin sort(A © (f(z) — yY)).

rzeX

Proof. “<=" Let & € X be an optimal solution of the lex-MO optimization
problem
lexminsort(A ® (f(z) — yY))

rzeX

and assume that & ¢ Xg. For any z € X with f(x) < f(&) we also have

A0 (f(z) —yY) <A (f(@) —yY).
Note that all A\ are positive. Therefore

sort(A © (f(x) = y”)) <iex sort(A © (f(2) —y7)),

a contradiction.

“=" Let & € Xg. As in Theorem 4.24 define A\, := 1/(fx(2) — y¥). Thus,
Me(fe(2) —yd) =1 for all k = 1,...,p. Now let z € X be such that
f(z) # f(Z). Because & € X'r we must have fi(z) > fi(Z) for at least one
objective fi. This implies A (fx(7) —yY) > 1 and

sort(A @ (f(z) —yY)) >1ex (1,...,1) = sort(A © (f(&) — yY)).
O

Let us discuss the solution of lex-MO problems now. Could we apply a
procedure like the lexicographic method? First we would have to solve the
max-ordering problem. Then fix the value of the worst objective, solve the
max-ordering problem for the remaining p — 1 objectives and so on. Unfortu-
nately, we do not know which objective will be the worst, and there may be
several max-ordering solutions x with the worst value obtained for different
objectives. In Example 5.17 we have fi(c) =7, fa(d) = fa2(e) = 7 for the three
max-ordering solutions {c,d, e}, yet only ¢ is a lex-MO solution. Taking into
account all possible combinations would mean p! sequences of the objectives,
which would be computationally prohibitive in general.
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There are exceptions, however. In Chapter 8.2, we shall see that lex-MO
problems are easily solved, when X is a finite set. The other exception is
convexity. Under this additional assumption on X and f, we can show that
there is one objective fi such that

fi(@) = min max _f;(x) (5.16)
for all x € AXymo. We now present some results that have been proved by
Behringer (1977a).

Let X be a convex set and let fr : R® — R,k = 1,...,p be convex
functions. We use X0 to denote the set of all optimal solutions of the max-
ordering problem and Xjex.mo for the optimal solutions of the lex-MO prob-
lem, and some further notation to facilitate readability of proofs. Let

.....

L= {x € A; : fi(x) = min fi(a:)}.

TEA;

Example 5.21. In Figure 5.2 the maximum of three functions f1, fa, f3 of one
variable is shown as a bold line. The sets A; and A are indicated by bold
lines on the z-axis, Aj3 is in between A; and As.

In Figure 5.2 all three sets A; are nonempty. Minimizing f; over A;, we
get £1 = {3}, Lo ={1—+/3},and L3 =[1 —/3,1]. o

Note that maxg—1,...p fx(x) is a convex function and therefore continuous.
Hence if X is compact, Xyo # @ and compact again. Then, iteratively, we get
that Xex-mo # @ and compact.

Lemma 5.22. If all fi, are convex functions and X is a convex set then Xyo

1S convex.

Proof. Assume that Xyo # 0. Because all f are convex, the function
sort(z) := maxg=1,... p fx(z) is convex. Thus,

Xvo = {x € X :sort1(f(x)) = 2m0}
= {x € X :sort1(f(z)) < 2mo0}

— ﬂ{x eX: filz) < zmo}

k=1
p
= () ££ (2m0)
k=1

is convex as an intersection of p convex level sets. 0O
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f(=)

Fig. 5.2. The sets A; for three convex functions.

Theorem 5.23 (Behringer (1977a)). Let X C R™ be a conver set and
let fr, be convex functions. Furthermore, suppose Xxo # 0. Then there is an
index k € {1,...,p} such that fr(x) = zmo for all x € Xvo.

Proof. Let & € Xumo. Then for some j € {1,...,p}, f;(&) = 2mo0 and in
particular f;(&) > f;(&) foralli =1,...,p.

Suppose there is no k € {1,...,p} with fi(z) = f;(&) for all z € Xmo.
Then for each k € {1,...,p} we must have some z¥ € X0 such that fi.(z¥) <
f; (@) and f;(z*) < f;(2) for i = 1,...,p. Note that ¥ € X0 does not allow
Ji*) > ().

Let z* := >V _, aga® with ay > 0,>°7_, ax = 1 be a strict convex com-
bination of these z*. Then x* € X0, because of convexity of Xyo (Lemma
5.22) but

file) < Y anfilat) < f(@), (5.17)
k=1

because fi(z¥) < f;(#) holds for all fx. (5.17) contradicts & € Xyo. O
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Theorem 5.23 says that zyo is attained for all x € Ayo for at least one
objective. The index k in 5.23 is called a common index. Having established
the existence of a common index, we address the problem of finding one. The
answer is given by Theorems 5.24 and 5.25.

Theorem 5.24. Under the assumptions of Theorem 5.23, k is a common
indez if and only if Xvo = L.

Proof. “=" Let k be a common index. To show X0 = L, we prove both
inclusions. First let © € Xyio. Then fi(z) = 2m0, because k is a common
index. Thus x € L and consequently Xyvo C Ly.

Let x € Lj,. Then by definition of Ly

(@) > fr(z) for all 2’ € Ag. (5.18)

Assume that © ¢ Xvo. Then max;=1 _, fi(z) > 2m0. Since we assume
Xmo to be nonempty, there is some & € Xymo and since k is a common
index, fr(&) = max;=1,..p fi(£) = zmo and in particular & € A;. Because
x ¢ Xmo it must hold that max;=1, ., fi(z) > 2mo0 = fx(Z). Applying
(5.18) to 2’ = &, and using that £y C Ay, we get

f1(@) = fulw) = max filx) > fil@) (519)

.....

As this is impossible, we conclude z € X\io and therefore £, C Xvo.
“«=" Let © € L = Xmo. Then fi(z) = max;—i. _p fi(x) by definition of
Ly and max;—1,.., fi(z) = mingex max;=1___, fi(z) by definition of Xuo.

.....

Therefore k is a common index. 0

The following theorem gives criteria for k£ to be a common index. These
criteria use the sets L;. First observe that, if £; is empty, ¢ cannot be a
common index, as f; has no minimum over 4;. This happens in particular if
A; is empty, i.e. if there is no feasible solution x for which f;(z) > f;(z) for
all j # 4. Then, among all nonempty £; only those with the smallest value of
minge 4, need to be considered for common indices. The main part of Theorem
5.25 below shows how to identify the common indices among those.

Theorem 5.25 (Behringer (1977a)). Suppose the assumptions of Theo-
rem 5.23 are satisfied. Then the following statements hold.

1. If L; = 0 then i is not a common index.

2. Let J = {i € {1,...,p} : L; # 0} and m; := minge, fi(z). Define
m := min;e 7 m;. If m; > m then i is not a common indez.

3. Let J*:={i € J: m; =m}. Then Ly, = Ujes-L; if and only if k € J*

is a common index.
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Proof. 1. From Theorem 5.24 i is a common index if and only if X0 = £;.
But A1 is nonempty, whereas £; is empty.
2. Suppose that m; > m; and that 7 is a common index. Then £; = X\o # 0.
Let 2° € Xyo and 2 € £; # 0. Then
MO = l_nllaxp fi(@°) = fi(2°) =mi > my = f;(2) = i:HllaXp fi(@),
an impossibility.
3. We prove necessity and sufficiency of the condition separately.
“<=" Let kK € J* be a common index. Obviously L C Ujez=L;, so it
remains to show that U;GJEJ- C Ly.Solet x € Ujeg-L;. Then x € L;
for some j € J* and

fiw) = max fi(x) = min fj(x) =m;=m. (5.20)

From Theorem 5.24 £, = X0, i.e.
fe(@) =mp=m= HllaXp fi(&) = 2m0 (5.21)

for all £ € L. Putting (5.20) and (5.21) together, we see that f;(z) =
zmo and therefore z € Xyio and x € L.

“=—" Now suppose we have Ly = U;c7+L; for some k € J*. Since
Xumo # 0 we know that a common index k exists and that Xvo = El;.
From the first and second part of this Theorem, we know that k € J*.
Finally from necessity £; = Uje7+L;. Altogether we have

Xvio = E}% = U L; = Ly (5.22)
=NEY
and by Theorem 5.24 k is a common index. O

Part 3 actually says that common indices are defined by maximal sets
Ly, k € J. In Example 5.21, none of the sets £; is empty. But 1 is not a
common index, because of the second statement. While ms = mg the second
statement confirms that 3 is the only common index.

With Theorem 5.25 we have a method to find a common index, which will
be used as a subroutine in the algorithm to solve lexicographic max-ordering
problems for convex data.

Algorithm 5.2 (Finding a common index.)

Input: Feasible set X and objective function f.
Find J:={i€{1,...,p}: L; # 0} by subdividing the feasible set into sets
A;, and solving the single objective optimization problems mingec 4, fi(x).
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Choose one optimal solution x* € L; for each i € J and determine J* :=

{ie J: fia") < fi(a?) for all j € T}

J={ieJ*:L; CL; forall j € calJ"} is the set of all common indices.
Output: J.

The idea of solving lexicographic max-ordering problems that we outlined
above can now be formalized. It consists of repeatedly solving max-ordering
problems, identifying common indices, and reducing the set of objectives that
still have to be considered.

Algorithm 5.3 (Lexicographic max-ordering.)
Input: Feasible set X and objective function f.
Ingtialization: Set X' .= X, Q:={1,...,p}, and f':= f.
While |Q| > 1 do
Solve the max-ordering problem minge y» maxgeo f'(x) and find the set
Xo of all maz-ordering solutions.
Apply Algorithm 5.2 to find a common index k.
Let X' := X, Q := Q\ {k}, and ' := f\ f&.
End while.
If19] =1 let Mex-mo = X and STOP.
Output: Xlex—MO-

At the end of this chapter we study some properties of lex-MO solutions
in the framework of multicriteria optimization classes. Recall that a multicri-
teria optimization class is the set of all multicriteria optimization problems
with the same model map and ordered set. The properties are that, if only
one objective is present, the problem should reduce to a single objective op-
timization problem, that optimal solutions should be max-ordering optimal,
and a reduction property. The reduction property states that, if the values of
some objective functions at some optimal solution are known, then the set of
optimal solutions of the original problem which attain these values should be
equal to the set of optimal solutions of a problem with a restricted feasible set
where the known objective values are included as constraints. These results
are from Ehrgott (1997) and Ehrgott (1998).

Recall that we denote the set of optimal solutions of a multicriteria opti-
mization problem (X, f,R?)/0/(RY <) by

Opt((X, £,R”)/0/(R”, <)).
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Definition 5.26. 1. An MCO class ¢/0/(RY, <) satisfies the normalization
property if 0 = id and (RT, <) = (R, <) whenever f : R"R.
2. An MCO class /0/(RY | <) satisfies the regularity property if Opt((X, f,
RP)/0/(RF, <)) C Xuo for all X and f.

The normalization property means that for optimization problems with
a single objective function the optimal solutions according to MCO class
¢/0/(RP <) are exactly the optimal solutions of the single objective opti-
mization problem mingex f(z). All MCO classes discussed in this book have
this property.

The regularity property means that an optimal solution according to MCO
class o/6/(RF, <) must also be an optimal solution of the max-ordering prob-
lem mingex maxp—1,.. p fx(z).

The third property requires some more preparation. Let X C R™ be a
feasible set and f : R™ — RP be a vector valued objective function and let
Q c {1,...,p}. Furthermore, let {y1,...,yp} C R be such that there is at
least one z € Opt((X, f,R?)/0/(RP, <)) such that {fx(z) : k =1,...,p} =
{yr : k = 1,...,p} (these sets are understood as multisets and may contain
multiple copies of some elements). The reduced problem RP(Q)

(X2, f9,RI9N/0/(RT, =)
is defined by the feasible set
Xi={zeX:{fulz): ke{l,....,pI\Q} ={yr:ke{l,....p}\ Q}}.
and the objective function
fe=fr:keQ)
We denote the complement of Q by Q := {1,...,p}\ Q.

Definition 5.27. An MCO class satisfies the reduction property, if for all
data (X, f,RP), for all ¢ < p, and for all y as above

Opt (X2, £, RI9)/0/(R",=)) =
= {& € Opt (X, £, R")/0/(R?, %) : {fulw) : k € Q} = {y : k € Q}}.

Proposition 5.28. The lex-MO class satisfies the normalization, reqularity
and reduction properties.

Proof. 1. The normalization property is obvious because sort(f(z)) = f(z)
and <jex is < if p=1.
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2. The regularity property follows from Theorem 5.16 which states that
Xex-Mo C Amo-

3. We write Opt and Opt(RP(Q)) for the sets of lex-MO solutions of the
original and reduced problems, respectively. Let

Opt™ := {x € Opt : {fu(z) : k€ Q} = {yr : k € Q}}.

We have to show Opt(RP(Q)) = Opt*. By the choice of y,Opt* is
nonempty.
First note that for all 2 € Opt* and for all 2/ € X< we have

sort(f(z)) <iex sort(f(z")). (5.23)

since X< C X. Moreover, {fi(z) : k € Q} = {fu(2') : k € Q} by the
definition of X2 and Opt*, and therefore

sort(f2(z)) = sort(f2(z')) = sort(y<). (5.24)

Let z € Opt™ and assume that z is not optimal for RP(Q). Then there is
some & € X such that sort f2(2) <jex sort f(z). Together with (5.24)
this implies sort(f(#)) <iex sort(f(z)), a contradiction to (5.23).

Let 2/ € Opt(RP(Q)). Since Opt* C Opt(RP(Q)) and {sort(f<(z))} :
x € Opt(RP(Q)) is a singleton we must have that {fi(z') : k € Q} =
{yr : k € Q} and thus (5.24) implies sort(f(a’)) = sort(y) and therefore
z' € Opt*. O

It will be left to the reader as Exercise 5.5 to determine which of the other
MCO classes considered so far satisfy the regularity and reduction property.

5.4 Notes

Lexicographic optimization plays an important role in goal programming, see
e.g. Romero (2001). It is more often encountered in linear and combinatorial
optimization than in nonlinear programming.

Max-ordering optimization models can be found in many areas of opti-
mization. Usually (5.3) is reformulated as the single objective optimization
problem 5.4.

For lex-MO optimization we have seen that convexity is important to ob-
tain a reasonable algorithm to solve (5.12). In this context, we remark that for
Lemma 5.22 to Theorem 5.25 to be true it is sufficient that fj are lower semi-
continuous and strictly quasiconvex. Naturally, if further assumptions hold,
better results can be expected. An algorithm for the linear case is given in



5.4 Notes 147

Marchi and Oviedo (1992) and location problems in the plane (where X C R?)
are dealt with in Ehrgott et al. (1999).

Lex-MO optimality implies the absence of any preference between the
objectives: Behringer (1977b) calls it “optimality under complete ignorance”.
It is therefore an approach that treats all objectives in an equitable way,
and indeed if an efficient solution x exists such that fi(z) = --- = fp(x)
then such an z € Xlex.mo. This leads to the idea of equitable solutions of
multicriteria optimization problems, investigated in more detail in Kostreva
and Ogryczak (1999). Lex-MO optimality can be considered as an “extreme”
case of equitable optimality.

Galperin (1992) considers yet another multicriteria optimization class, in-
troducing the balance space approach. While Ehrgott et al. (1997) show that
it is in some sense equivalent to the efficiency approach because it has led to
some interesting research. The balance space approach is also closely related
to max-ordering optimality, see Ehrgott and Galperin (2002).
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Exercises

5.1. Solve the following lexicographic optimization problem with linear objec-
tives and linear constraints

min f; (l‘) = -1+ 2Ty — I3
min fo(z) = a9
min f3(z) = —x1 — 2x0x

subject to x1 + 22 < 1
1 — 22 +x3 <4

x1,%2,%3 2> 0.

What happens if you reverse the order of objective functions?
5.2. Prove that an optimal solution & of the max-ordering problem

min, max fi(x)

is weakly efficient. Give an example that shows that & is not necessarily effi-
cient.

5.3. Find an optimal solution of the max-ordering optimization problem

minmax (z1 + 22 + x3, —x1 + T2, —T2 + 223)
subject to x1 + x5 >1
21— T2+ x3 >4

x1,T2,23 > 0.

Is the optimal solution you found efficient?

5.4. Let Y C RP. Show that y' < y? implies y' <jex y?, maxy—1,. ,y; < i,
and sort(y') <iex sort(y?). What about the converse?

5.5. Find out which of the multicriteria optimization classes e/id /(RP, <),
o/A/(R,<), o/7/(RP, <jex), and o/ max /(R, <) satisfy the regularity and re-
duction property.

5.6. Construct an example of an MCO class that does not have the normaliza-
tion property. Le. define a model map € : R? — R¥ and an ordering such that
the problem of finding optimal solutions according to this MCO class is not
the same as solving the single objective optimization problem min,ex f(x).
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5.7. Find a lexicographic max-ordering solution of the optimization problems
in Exercises 6.2 and 6.7.

5.8. Show that if there exists an x € Xg with fi(x) = fa(x) = ... = fp(x)
then x € Xex-MmO-



6

Introdcution to Multicriteria Linear
Programming

This chapter commences the second part of this book, in which we focus on
multicriteria problems with linear and combinatorial structures, i.e. multiob-
jective linear programming and multiobjective combinatorial optimization.

We give an example from the design of radiotherapy treatment plans to
show that multiobjective linear programming has important applications. We
repeat the main definitions of multicriteria optimization and summarize the
main results from linear programming to make this part of the book self-
contained. We apply some of the general results proved in Chapters 2 and 3
and show how to use parametric linear programming to solve linear programs
with two objectives. We also prove the main theorem of linear programming,
which states that all efficient solutions are properly efficient. Adding the con-
vexity of linear problems this means that all efficient solutions can be charac-
terized by weighted sum scalarization.

Ezxample 6.1. The goal of radiation therapy in the treatment of cancer is to
destroy a tumour by damaging the DNA of cancerous cells, thereby rendering
them incapable of reproduction. This is done by focusing intensity modulated
beams on the patient from a number of beam directions. Intensity modulation
is achieved by a mechanical device called multileaf collimator. It essentially
allows subdividing beams into sub-beams in a rectangular grid pattern so that
intensity of each individual sub-beam can be decided separately. Given the
beam directions, an intensity map defines the intensity of radiation of each
sub-beam of all beam directions. The intensity map has to be determined
according to a treatment prescription, which can take the form of lower and
upper bounds on the radiation dose delivered to the tumour as well as upper
bounds on the radiation dose delivered to critical structures (such as healthy
organs) and normal tissue.
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Radiation dose distribution in the body depends on intensity of radiation
beams in a linear fashion. Let € R™ be a vector describing an intensity map,
where n is the total number of sub-beams. The patient body is discretized into
m dose points according to magnetic resonance imaging (MRI) or computed
tomography (CT) scans. The dose delivered to the dose points is then Az,
where A is a m X n matrix. Assuming that we have [ critical structures, we can
partition the rows of A according to the set of dose points in the tumour 7, in
a critical structure S;,7 = 1,. .., [, or in normal tissue N and form submatrices
Ar, As,, Ax accordingly. Let [ denote the prescribed tumouricidal dose, ur
be an upper bound on the dose in the tumour, us, be upper bounds on the
dose in critical structure ¢, and ua be an upper bound on the dose in normal
tissue. We assume that these bounds apply to every dose point in the tumour,
critical structure, and normal tissue, respectively.

Ideally, we would like to design a treatment that delivers a uniform dose
of l7 to the tumour and no dose at all to critical structures and normal tissue.
Since this is usually physically impossible we have to accept some underdosing
z7 in the tumour or overdosing z¢,,? = 1,...,l and zxr in critical structures
and normal tissue. Naturally, the values of 27, 2s,, ..., z¢, should be kept as
small as possible.

We can therefore describe the problem via the following multiobjective
optimization problem Holder (2004), where e is a vector of ones of appropriate

dimension.
min (27,2815 -+, 281, ZN)
subject to A7z + z7e 2 T
Arx < ur
As,x —zs,e <us, 1=1,...,1
Anz — zye < upn
zs5;, 2= —Us; i1=1, ,l
AN 2
z 2 0.

In this model, the goal is to find efficient solutions (=, z) € R"**2 such
that the maximal underdosing of any tumour dose point and the maximal
overdosing of any critical structure and any normal tissue dose point is simul-
taneously minimized. 0O

6.1 Notation and Definitions

A multiobjective linear program (MOLP) is a special case of the multiobjec-
tive program
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min (fr(@), ..., fu(z))
subject to gi(z) <0 j=1,....m

that arises if all objective functions and constraints are linear. Thus, the ob-
jective functions are

frl@)=clfz k=1,...,p,

where ¢ € R”. The constraints g;(z) < 0 are summarily written in matrix
form and as equality constraints

Ax =b.

As usual in linear programming we restrict the variables to the nonnegative
orthant of R™ : z 2 0. Recall that we use the notation

yl<y?ifyi<yi k=1,...,p
ytz Py <yp k=1,...p
yt>ytifyt 2yt gt Ay
and
RY :=={yeRP:y >0}
RY :={yeRP:y >0}
R :={yeRP:y = 0}.

A multiobjective linear program is then the following optimization problem

min Cx
subject to Az =b (6.1)
20

with a p X n objective or criteria matrix C consisting of the rows cg,k =
1,...,p. The feasible set in decision space is X = {z € R" : Az = b,z = 0}
defined by the m X n constraint matriz A and the right hand side vector
b € R™. The feasible set in decision space is X = {x € R" : Ax = b,z = 0}.
The feasible set in objective spaceis Y = CX = {Cx:x € X}.

In terms of the classification of Section 1.5 we can write the MOLP (6.1)
as (X,C,RP)/id/(RP, <). We shall make the following basic assumption. Let

Xk::{L%EX:cffcgcgazforallxeX}

be the set of optimal solutions of the LP with the k-th objective function. We
assume that
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ﬂﬁlek = 0. (6.2)

Assumption (6.2) guarantees that there is no feasible solution that minimizes
all p objectives at the same time, i.e. the MOLP (6.1) is a true multiobjective
problem. In other words 3’ ¢ ).

Definition 6.2. Let & € X be a feasible solution of the MOLP (6.1) and let
y=CzZ.
1. & is called weakly efficient if there is no x € X such that Cx < Cz;§ = Cz
is called weakly nondominated.
2. & 1is called efficient if there is no x € X such that Cx < Cz; §y = Cz s
called nondominated.
3. & is called properly efficient if it is efficient and if there exists a real
number M > 0 such that for all i and x with cf'x < cI'% there is an index
7 and M > 0 such that ch:L’ > cjrsk and

T~ T
qE—cle .
cTe—cTy —

j j

Let us consider an example to illustrate efficient solutions and nondomi-
nated points.

Example 6.3 (Steuer (1985)). This MOLP has two objectives, two con-
straints, and two variables so that we can graphically illustrate it in decision
and objective space. It is

min 3r1 + 2
min —T1 — 2$2
subject to To <3
3.’L‘1 — T2 S 6
z 2 0.

Figures 6.1 and 6.2 show the feasible sets X and ). The extreme points of
X and of Y are labeled.

In Figure 6.2, point y' is dominated: All points in (y' —RZ)NY), illustrated
by the right angle attached to y', dominate it. On the other hand, 72 is
nondominated, as the right angle attached to it does not contain any point of
Y except y? itself. O

Let us now summarize some consequences of results proved in Chapters 2
and 3.

Lemma 6.4. The feasible sets X in decision space and Y in objective space
of the MOLP 6.1 are convex and closed.
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— — — min—1x7 — 2x9

—————— min 3z + lao

—=

0 1 2 3 4 1

t

12 4 6 8 10 12 14
Cw >
\ Y1

Cz?

Fig. 6.2. Feasible set in objective space in Example 6.3.
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Theorem 6.5. 1. IfY # () and there is some y € RP such that Y C y + Ri

(i.e. Y is bounded from below) then Yy # 0.

2.8() = Yoy C In C clS(Y), where S(Y) = {§ € ¥V : There is A >

0 such that \Tj < X'y for all y € V}.

3. If there is some y € RP such that Y C y + R; then YN is connected.
4. If X is bounded then X,g and Xg are connected.

Proof. 1. This follows from Theorem 2.10. Boundedness of ) implies com-

pactness of all sections (yO — R;) ny, yO € Y, because ) is closed.
2. This follows from Theorem 3.17 and convexity of ).
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3. This follows from the first observation, noting that with convexity the
assumptions of Theorem 3.35 are satisfied.

4. Boundedness of X implies that X is compact. With convexity of X and
the objective functions, Theorems 3.38 and 3.40 apply. O

A strengthened version of the second statement is of fundamental impor-
tance for multiobjective linear programming and we shall prove it shortly.
To that end let us consider the solution of the weighted sum scalarization of
MOLP.

Let A € RZ. The weighted sum linear program, which we often refer to as
LP(\),is

min ATCx
subject to Ax =10
x 2 0.

Theorem 6.6. Let & € X be an optimal solution of the weighted sum LP
(6.3).

1. If A > 0 then & is weakly efficient.
2. If A > 0 then T is efficient.

Proof. 1. Suppose that x € X strictly dominates z, i.e.
cle<cle k=1,...,p. (6.3)

Thus,
Mectax < etz k=1,...,p (6.4)

with strict inequality holding at least once since A # 0. Summing over k
we have AT'Cz < A\TC#, a contradiction.

2. In this case we have “<” instead of “<” in (6.3), with one strict inequal-
ity. Then, because A > 0, (6.4) holds, too, and \T'Cx < ATC# gives a
contradiction once again. ]

Theorem 6.6 gives a way to find efficient solutions of (6.1). Graphically,
this is very similar to the graphic method of solving LPs with two variables,
we just apply it in criterion space of an MOLP with two objectives. In fact, we
find nondominated points graphically and the efficient solutions of the MOLP
are the preimages of Vx under the linear mapping C.

Example 6.7. Figure 6.3 shows the same set ) as Figure 6.2. Some level curves
of weighted sum objectives

{yERP:)\Ty:'y}
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{(MTC0z =}

Fig. 6.3. Level Sets of the objective of a weighted sum LP.

are shown. Nondominated points are identified by moving these lines in paral-
lel to the left and downward, as this decreases the level v in accordance with
minimizing AT Cz (note that y = Cxz).

Clearly, with A! all points on the line between Cz! and Cz? are identified
as nondominated, with A? all points on the line connecting Cx? and Cz?, and
with A3 the single point Cz3. The two line segments together constitute the
whole set Vn. O

The following observations about Example 6.7 turn out to be important.

e A single nondominated point can be identified by many different weighting
vectors A.
A single weighting vector A\ can identify many nondominated points.
The linearity of the constraints and objectives appears to make it possible
to find all nondominated points with (only a finite number of) weighting
vectors, because X and ) are polyhedra.

The reader should keep these in mind for what follows. We shall elaborate
on the last point now. In order to do so, we need duality of linear programming.
Let

min 'z
subject to Az =b (6.5)
20

be a single objective linear program (LP). For every LP (6.5) a dual linear
program is defined as
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bT

max u
subject to ATu < ¢ (6.6)
u € R™.

Let us denote by U := {u € R™ : ATu < ¢} the feasible set of the dual linear
program (6.6). The relationship between the primal and dual linear programs
are stated in Theorem 6.8, which can be found in every textbook on linear
programming, e.g. Dantzig and Thapa (2003).

Theorem 6.8 (Linear Programming Duality).

1. (Weak duality). Let v € X and w € U be feasible solutions of (6.5) and
(6.6), respectively. Then
blu <’

2. If (6.5) is unbounded then (6.6) is infeasible and vice versa.

. It is possible that both (6.5) and (6.6) are infeasible.

4. (Strong duality). If both (6.5) and (6.6) are feasible, i.e. X # (0 andU # 0,
then

o

min ¢’z = max bl u
rEX ueU

and bT'4 = cT'% for any optimal solution & € X of (6.5) and any optimal
solution 4 € U of (6.6).

We are now ready to prove the fundamental result of multiobjective linear
programming, which we do in several steps.

Lemma 6.9. A feasible solution x° € X is efficient if and only if the linear

program
T

max elz
subject to Ax =10
6.7
Cx+1z=Cal (6.7)
z,2 20,
where eT = (1,...,1) € R? and I is the p x p identity matriz, has an optimal
solution (&, 2) with zZ =

Proof. This is in fact Theorem 4.14 applied to the MOLP (6.1). Let (z,2) €
X x RZ be a feasible solution of (6.7). Then Cz + Iy = Cz° and therefore
z=Cz"—Cz = 0 by the nonnegativity of z. If # in an optimal solution (Z, 2)
is efficient there is no x € X such that Cx < C%, so we must have 2 = 0. On
the other hand, if 4 is not efficient there must be € X such that Cz < Cz°.
But then there is a z with z; > 0 for at least one k, contradicting optimality
of (Z,0). Note that (6.7) is always feasible. O
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Lemma 6.10. A feasible solution x° € X is efficient if and only if the linear
program

min ulh 4+ wT Cx?
: TA T >
subject to u' A4+ w' C ; 0 (6.8)
w2e
u € R™

has an optimal solution (1,w) with 4Tb+ wT Cx® = 0.

Proof. Note that (6.8) is the dual of (6.7). Therefore (&, %) is an optimal
solution of the LP (6.7) if and only if the LP (6.8) has an optimal solution
(ti,1) such that ez = aTb + w7 C2® = 0. O

With Lemma 6.10 we can now prove that all efficient solutions of an MOLP
(6.1) can be found by solving a weighted sum LP (6.3). In the proof, we
consider an efficient solution z° and construct an appropriate weight A € RZ
such that 2 is an efficient solution of the weighted sum LP()) (6.3).

Theorem 6.11 (Isermann (1974)). A feasible solution z° € X is an ef-
ficient solution of the MOLP (6.1) if and only if there exists a X € R such
that

MOz < TCx (6.9)

forallxz e X.

Proof. “<—=" We know from Theorem 6.6 that an optimal solution of a
weighted sum LP with positive weights is efficient.

“=" Let 2 € Xg. From Lemma 6.10 it follows that the LP (6.8) has an
optimal solution (i, w) such that

0'b = —wT Ca2P. (6.10)
It is easy to see that this same 4 is also an optimal solution of the LP
min {uTb cul'A> —ch} , (6.11)

which is just (6.8) with w = @ fixed. Therefore, an optimal solution of
the dual of (6.11)

max {—w' Cz: Az =b, x 2 0} (6.12)

exists. Since by weak duality u”b > —@” Cz for all feasible solutions u of
(6.11) and for all feasible solutions z of (6.12) and we already know that
0Thb = —TCx® from (6.10), it follows that 2° is an optimal solution of
(6.12). Finally, we note that (6.12) is equivalent to
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min {@TC:E Ax=b, v = 0}

and that, from the constraints in (6.8), 1w = e > 0. Therefore 2° is an

optimal solution of the weighted sum LP (6.3) with A = @ as weighting
vector. O

Applying the second statement of Theorem 6.5 we have just proved that
Xg = XpE

and

S)=In=VpnN

hold for multiobjective linear programs. Therefore, every efficient solution
is properly efficient and we can find all efficient solutions by weighted sum
scalarization.

Regarding the first statement of Theorem 6.5 we have the following condi-
tion for the existence of efficient solutions, respectively nondominated points.

Proposition 6.12. Let 2° € X. Then the LP (6.7) is feasible and the follow-
ing statements hold.

1. If (&, 2) is an optimal solution of (6.7) then & is an efficient solution of
the MOLP 6.1.
2. If (6.7) is unbounded then Xg = ().

The proof is left to the reader, see Exercise 6.3.

6.2 The Simplex Method and Biobjective Linear
Programs

The purpose of this section is to review the Simplex method for linear pro-
gramming and to extend it to the case of multiobjective linear programs with
two objective functions. For more details and proofs we refer once more to
textbooks on linear programming such as Dantzig and Thapa (2003), Dantzig
(1998), or Padberg (1999). We repeat the formulation of a linear program
from (6.5):

min {chc : Az =b,z 20}, (6.13)

where ¢ € R™ and A is an m x n matrix. We will always assume that rank A =
m and that b = 0.

A nonsingular m x m submatrix A of A is called basis matriz, where B
is the set of indices of the columns of A defining Apg. B is called a basis. Let



6.2 The Simplex Method and Biobjective Linear Programs 161

N :={1,...,n}\ B be the set of nonbasic column indices. A variable z; and
an index ¢ are called basic if i € B, nonbasic otherwise.

With the notion of a basis it is