
Akka
Concurrency

artima Derek Wyatt

Building reliable software in a multi-core world

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=i

Akka Concurrency
PrePrint™ Edition

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=ii

iii

Thank you for purchasing the PrePrint™ Edition of Akka Concurrency.

A PrePrint™ is a work-in-progress, a book that has not yet been fully
written, reviewed, edited, or formatted. We are publishing this book as a
PrePrint™ for two main reasons. First, even though this book is not quite
finished, the information contained in its pages can already provide value to
many readers. Second, we hope to get reports of errata and suggestions for
improvement from those readers while we still have time to incorporate them
into the first printing.

As a PrePrint™ customer, you’ll be able to download new PrePrint™
versions from Artima as the book evolves, as well as the final PDF of the
book once finished. You’ll have access to the book’s content prior to its
print publication, and can participate in its creation by submitting feedback.
Please submit by clicking on the Suggest link at the bottom of each page.

Thanks for your participation. We hope you find the book useful and
enjoyable.

Bill Venners
President, Artima, Inc.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=iii

Akka Concurrency
PrePrint™ Edition

Derek Wyatt

artima
ARTIMA PRESS

WALNUT CREEK, CALIFORNIA

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=iv

v

Akka Concurrency
First Edition PrePrint™ Edition Version October 14, 2012

Derek Wyatt is a Software Architect and Developer specializing in large-scale,
real-time applications for the World Wide Web.

Artima Press is an imprint of Artima, Inc.
P.O. Box 305, Walnut Creek, California 94597

Copyright © 2012 Derek Wyatt. All rights reserved.

First edition published as PrePrint™ eBook 2012
Build date of this impression October 14, 2012
Produced in the United States of America

No part of this publication may be reproduced, modified, distributed, stored in a
retrieval system, republished, displayed, or performed, for commercial or
noncommercial purposes or for compensation of any kind without prior written
permission from Artima, Inc.

This PDF eBook is prepared exclusively for its purchaser. The purchaser of this
PrePrint Edition may download, view on-screen, and print it for personal,
noncommercial use only, provided that all copies include the following notice in a
clearly visible position: “Copyright © 2012 Derek Wyatt. All rights reserved.” The
purchaser may store one electronic copy and one electronic backup, and may print
one copy, for personal, noncommercial use only.

All information and materials in this book are provided “as is” and without
warranty of any kind.

The term “Artima” and the Artima logo are trademarks or registered trademarks of
Artima, Inc. All other company and/or product names may be trademarks or
registered trademarks of their owners.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=v

Overview
Contents vii
List of Figures xiii
1. Preface 21
2. Concurrency and Parallelism 33
3. Set Up Akka 58
4. Akka Does Concurrency 61
5. Actors 90
6. Akka Testing 127
7. Systems, Contexts, Paths, and Locations 150
8. Supervision and DeathWatch 174
9. Being Stateful 220
10. Routing Messages 261
11. Dispatchers and Mailboxes 290
12. Coding in the Future 304
13. Networking with IO 343
14. Going Multi-Node with Remote Actors 352
15. Sharing Data with Agents 381
16. Granular Concurrency with Dataflow 395
17. Patterns for Akka Programming 405
18. Antipatterns for Akka Programming 443
19. Growing Your App with Add-On Modules 453
20. Using Akka from Java 461
21. Now that You’re an Akka Coder 478
About the Author 480

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=vi

Contents

Contents vii

List of Figures xiii

1 Preface 21
1.1 Concurrent Challenges 22
1.2 Akka Is Concurrency 24
1.3 Concurrency Methodologies 24
1.4 The Akka Concurrency Toolkit 26
1.5 Who You Are . 29
1.6 How to Read this Book 30
1.7 What You’re Going to Learn 30

2 Concurrency and Parallelism 33
2.1 Parallelism vs. Concurrency 33
2.2 A Critical Look at Shared-State Concurrency 34
2.3 Immutability . 44
2.4 Chapter Summary . 56

3 Set Up Akka 58
3.1 Scala Setup with SBT 58

4 Akka Does Concurrency 61
4.1 The Actor . 61
4.2 The Future . 79
4.3 The Other Stuff . 85
4.4 You Grabbed the Right Toolkit 89

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=vii

Contents viii

5 Actors 90
5.1 The Components of an Actor 92
5.2 Properties of an Actor 94
5.3 How to Talk to an Actor 98
5.4 Creating Actors . 102
5.5 Actors in the Clouds 103
5.6 Tying It Together . 117
5.7 How Message Sending Really Works 119
5.8 The ActorSystem Runs the Show 123
5.9 Chapter Summary . 125

6 Akka Testing 127
6.1 Making Changes to SBT 127
6.2 A Bit of Refactoring 128
6.3 Testing the EventSource 129
6.4 The Interaction Between ImplicitSender and testActor . 133
6.5 TestKit, ActorSystem, and ScalaTest 134
6.6 Testing the Altimeter 139
6.7 Akka’s Other Testing Facilities 145
6.8 About Test Probes and the testActor 146
6.9 Chapter Summary . 148

7 Systems, Contexts, Paths, and Locations 150
7.1 The ActorSystem . 150
7.2 Actor Paths . 152
7.3 Staffing the Plane . 154
7.4 The ActorContext . 163
7.5 Relating the Path, Context, and System 170
7.6 Chapter Summary . 172

8 Supervision and DeathWatch 174
8.1 What Makes Actors Fail? 174
8.2 The Actor Life Cycle 175
8.3 What Is a Supervisor? 178
8.4 Watching for Death 186
8.5 The Plane that Healed Itself 192
8.6 Dead Pilots . 211
8.7 Chapter Summary . 218

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=viii

Contents ix

9 Being Stateful 220
9.1 Changing Behaviour 220
9.2 The Stateful Flight Attendant 226
9.3 A Better Flyer . 231
9.4 The Naughty Pilot . 246
9.5 Some Challenges . 255
9.6 Testing FSMs . 256
9.7 Testing the Pilot . 258
9.8 Chapter Summary . 259

10 Routing Messages 261
10.1 Routers Are Not Actors 261
10.2 Akka’s Standard Routers 261
10.3 Routers and Children 265
10.4 Routers on a Plane . 267
10.5 Magically Appearing Flight Attendants 280
10.6 Sectioning off Flight Attendant Territory 282
10.7 More You Can Do with Routers 288
10.8 Chapter Summary . 288

11 Dispatchers and Mailboxes 290
11.1 Dispatchers . 290
11.2 Dispatcher Tweaking 294
11.3 Mailboxes . 296
11.4 When to Choose a Dispatching Method 301
11.5 Chapter Summary . 302

12 Coding in the Future 304
12.1 What Is the Future? 304
12.2 Don’t Wait for the Future 306
12.3 Promises and Futures 308
12.4 Side-Effecting . 326
12.5 Futures and Actors . 328
12.6 Plane Futures . 338
12.7 Chapter Summary . 341

13 Networking with IO 343
13.1 The Plane’s Telnet Server 343

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=ix

Contents x

13.2 Iteratees . 351
13.3 Chapter Summary . 351

14 Going Multi-Node with Remote Actors 352
14.1 Many Actors, Many Stages 352
14.2 Simple Build Tool (SBT) 353
14.3 Remote Airports . 354
14.4 Going Remote . 359
14.5 Flying to the Airport 362
14.6 Programmatic Remote Deployment 367
14.7 Configured Remote Deployment 370
14.8 Routers Across Multiple Nodes 371
14.9 Serialization . 372
14.10 Remote System Events 375
14.11 On the Subject of Lost Messages 378
14.12 Clustering . 379
14.13 Chapter Summary . 379

15 Sharing Data with Agents 381
15.1 SBT . 382
15.2 Agents as Counters . 382
15.3 Working with Agents 388
15.4 The API . 389
15.5 Transactional Agents 394
15.6 Chapter Summary . 394

16 Granular Concurrency with Dataflow 395
16.1 Caveats . 396
16.2 With That Said. 397
16.3 Getting Dataflow into the Build 397
16.4 Dataflow Values . 398
16.5 Flow . 399
16.6 Another Way to Get Instrument Status 403
16.7 When to Use Dataflow 404
16.8 Chapter Summary . 404

17 Patterns for Akka Programming 405
17.1 Behavioural Composition 405

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=x

Contents xi

17.2 Isolated and Parallel Testing 408
17.3 Strategies for Implementing Request/Response 411
17.4 Mechanisms for Handling Non-Deterministic Bootstrapping 418
17.5 The Circuit Breaker 422
17.6 Breaking Up a Long-Running Algorithm into Multiple Steps 422
17.7 Going Parallel . 425
17.8 An Actor EventBus 427
17.9 Message Transformation 428
17.10 Retry Behaviour . 429
17.11 Shutting Down When All Actors Complete 441
17.12 Chapter Summary . 442

18 Antipatterns for Akka Programming 443
18.1 Mutability in Messages 443
18.2 Loosely Typing Your Messages 444
18.3 Closing over Actor Data 445
18.4 Violating the Single-Responsibility Principle 447
18.5 Inappropriate Relationships 448
18.6 Too Much actorFor() 449
18.7 Not Enough Config 451
18.8 Needless Future Plumbing 452
18.9 Chapter Summary . 452

19 Growing Your App with Add-On Modules 453
19.1 Extensions . 453
19.2 Working with Software Transactional Memory 454
19.3 ZeroMQ . 455
19.4 Microkernel . 456
19.5 Camel . 456
19.6 Durable Mailboxes . 458
19.7 Clustering . 458
19.8 HTTP . 459
19.9 Monitoring . 460
19.10 Chapter Summary . 460

20 Using Akka from Java 461
20.1 Immutability . 461
20.2 Differences Overall 462

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=xi

Contents xii

20.3 Glue Classes . 462
20.4 akka.japi.Procedure 462
20.5 Messages . 465
20.6 The Untyped Actor . 466
20.7 Futures . 471
20.8 Manipulating Agents 477
20.9 Finite State Machines 477
20.10 Dataflow . 477
20.11 Chapter Summary . 477

21 Now that You’re an Akka Coder 478
21.1 Akka.io . 478
21.2 The Mailing List . 479
21.3 Have Fun! . 479

About the Author 480

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=xii

List of Figures

2.1 One way we’re used to writing our shared-state concurrency:
create a piece of the domain model, give access to it from a cou-
ple of different threads, and code with side effects, ensuring a
proper rendezvous with locks. 45

2.2 When making changes to our User object, we tend to code like
this: we make alterations using a pipeline of commands instead
of several modifications to the same object. 46

2.3 The same operations on the User object are done in parallel here.
We must recombine the state changes into a final object repre-
sentation, of course, but we can see that the input to the opera-
tions and the output of the operations remain exactly the same
as the linear version. 47

2.4 Here’s an attempt to get the same type of parallelism from a
mutable User object; in this case, the User object is protected by
locks now. Even though we’ve spread the work out to multiple
threads, we’re still linear in our speed simply because only one
thread can work at a time. Not only do we not get parallelism,
we are also wasting threads. 48

2.5 A good ol’ linked list: our symbol name list points to the head
of the list and it always ends in Nil. 49

2.6 The recursive nature of List coupled with its immutability lets
us quickly create a new list from a pre-existing one by simply
dropping elements from it. 49

List of Figures xiv

2.7 We can easily create new Lists from existing Lists by prepend-
ing new elements at various locations. Each List is truly its own
distinct List—it just happens to be that the implementation can
use the underlying storage because the underlying storage is im-
mutable. 51

2.8 The act of appending a 6 to the list results in an entirely new list
with a new pointer to the head of the new list. The old list, of
course, remains entirely unchanged. 52

2.9 A really bad representation of a map; we haven’t attached values
to this map just because it’s easier to see, but a tree tends to make
a pretty decent mant ap implementation. 52

2.10 After removing the E from the original map, we now have two
distinct maps. The original is represented by the purple squares
and the new one, without E, is represented by the blue ovals with
D’ at the root. 53

2.11 This shows an immutable calendar-like structure of meetings
and we want to add Fred as an attendee to the meeting from
2pm to 3pm on Wednesday. If the structure were mutable, then
this would be a piece of cake. Immutability makes this more
difficult. 56

4.1 Chances are you’ve either been the coding intern or you’ve been
the other guy. If you’ve ever been the coding intern, then you’ll
be the other guy eventually. It’s being the intern that makes the
other guy—nobody knows whether the chicken or the egg came
first. 62

4.2 Three interns can write three tests faster than one intern can write
three tests. 63

4.3 It’s quite possible that these interns have chosen different meth-
ods for implementing the tests. The second one seems to have
chosen a decent toolkit, or didn’t sleep, or is high on some sort
of amphetamine, or. . . who cares? He won. 64

4.4 So this intern is pretty smart, or at the very least, sneaky. There’s
nothing to say he can’t do exactly what you’re doing. Not only
has he done it, he’s hidden it by ensuring that his friends return
their results to him so that he can send them to you. You’re
clueless. 65

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=xiv

List of Figures xv

4.5 Poor Joe. The evil doers were just too much for him. But this
isn’t a problem for you—you’ve got Mary! Mary can get the job
done. 66

4.6 The message processing for Actors is not unlike the types of
message processing that you might be familiar with if you’ve had
any experience with message pumps inside GUI frameworks.
This is a simplified view of the Actor constructs in Akka and
it doesn’t give a very good indication of the power behind it, but
that’s a good thing for the moment. If I blew your mind now,
then you wouldn’t have the mental capacity to continue read-
ing. 68

4.7 When we’re processing a series of RSS feeds, we can carry the
full input and output in the messages themselves. The business
logic in charge of downloading the RSS feeds from the series of
tubes is held inside the Actor, but the information about what to
download and the results of the download travel in the messages
between the iterations of the algorithm. 71

4.8 One way of viewing the Actor/Message pair: Only as a full set of
Message, Message body, and Actor do we realize the full notion
of a function. When the Actor processes the message, it realizes
what behaviour it needs to invoke via the message, and uses the
message body to drive the behaviour. 73

4.9 The Actor is now an input/output function. . . mostly. 74
4.10 The simplest case where the initiating entity receives the even-

tual response from the Actor, thus completing the function anal-
ogy. 74

4.11 The Actor that’s getting the groceries isn’t under any contract
to send results back to the original guy making the request. In
this case, the original request passed a reference to Betty in the
message, which directs the Actor to deliver the groceries to her. 75

4.12 A simple pattern for replicating messages to go to multiple des-
tinations from the source. In this case, we’re just sending it to
where it was supposed to go originally, as well as streaming it to
disk. 76

4.13 A simple representation of 10,000,003 matrices that we want to
multiply together into a final result. 80

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=xv

List of Figures xvi

4.14 Grouping a set of matrices to be multiplied into two groups:
Group A can be multiplied together at the same time as group
B. Once both results have been obtained, we can multiply the
result into a final, single matrix. 80

4.15 When you give work to a set of Actors, they will complete it at
non-deterministic intervals. This means that response messages
will come back in what is effectively random order. 81

4.16 Akka’s Future implementation allows us to take a list of Futures
and convert them to a Future that contains a list of their results,
and it maintains the same sequence as the original Futures. . 82

4.17 Futures can tacitly bind themselves to Actors by representing
themselves as the “sender” of the request message. Assuming
the Actor responds to the sender, the response will go back to the
Future. This entire interplay between the Actor and the Future
is non-blocking. 85

4.18 The conceptual difference between Futures and dataflow: Fu-
tures are non-blocking and can execute full functions in par-
allel, whereas dataflow creates concurrency that’s more of an
intra-function type of concept. Each algorithm, represented by
the individual boxes, is either waiting for (while not blocking a
thread) or is populating a piece of data. Between any two points
of contention, things run concurrently, but they rendezvous on
the shared data. 87

5.1 Shows us the parts of the Actor that concern us as programmers.
All of these components together facilitate the execution of mes-
sage processing in your Actor’s code. Note that everything but
the ActorRef and the message is internal. Someone in the out-
side world constructs a message, and he can only send it to the
ActorRef. He can’t send it to the Actor directly. 93

5.2 Programming with Actors is more like hanging out with a bunch
of people at the office than it is about sequences and algorithms.
Jill’s not interested in who gets her coffee for her, just so long as
she gets it. 95

5.3 When an Actor has a lot to do, blocking on a response from it
can be more painful than you might otherwise be used to. . . 101

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=xvi

List of Figures xvii

5.4 This is what our Plane currently looks like, from the view of the
avionics-driving main, which we depict as the Outside World.
Solid lines indicate a physical binding—i.e., the ActorSystem
owns the Plane and the Plane owns the Altimeter and Control-
Surfaces, whereas the dotted lines indicate a reference relation-
ship for message sending. 118

5.5 Three different representations of how message sending works.
Every time a message is sent, the message gets a passenger—a
reference to the sender. If ! is called from within an Actor, then
that Actor becomes the sender, or it’s the Dead Letter Office if
you’re not inside an Actor. When forwarding, we propagate the
original sender with the message in order to implement standard
forwarding semantics. 123

6.1 When we test our Altimeter, we are technically testing every one
of its components. 128

6.2 Normally, the EventSource Actor is unavailable to our runtime
code because Akka hides it behind an ActorRef. The TestKit’s
TestActorRef gives us access to the Actor’s internals so we can
poke and prod it directly. 131

7.1 Here, we see the key players in the ActorSystem that interest us
most of the time, including three Actors (Dead Letter, System,
and User) as well as three other key entities (Scheduler, Event
Stream, and Settings). These ActorSystem elements, with the
exception of the System Guardian, regularly pop up in Actor
programming. 151

7.2 The Plane’s hierarchy, including the sub-hierarchy of the Flight
Attendants. Note that the path requirements are determined en-
tirely by the parent/child relationships between the Actors. . 162

7.3 The structure of the Plane after everyone’s in place 171
7.4 How we relate the Actor to its context, its ActorRef, and the

path. It’s the context that holds the relationships together, and
those point to the ActorRefs (not the Actors or the ActorCon-
texts). From the ActorRef, we can retrieve the ActorPath object,
which we can interrogate as we please. 172

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=xvii

List of Figures xviii

8.1 Actor supervision is a recursive definition. The Actor system’s
hierarchical nature provides a simple definition of supervision
such that the question of “what to do?” can be asked at any
level. 176

8.2 The Actor life cycle, including code examples that can get us
to each point as well as certain overrideable callbacks that are
available to hook into the life cycle. 177

8.3 Two hooks exist for restart processing in the Actor. It’s impor-
tant to understand that the preRestart() method is executed
on the Actor that processed the failing message, whereas the
postRestart() method is executed on the freshly instantiated
Actor. 182

8.4 We wouldn’t necessarily want to restart all of the children when
the Actor that failed is a great, great, great, great, great, great,
great grandfather to 5,000 descendants. 183

8.5 The Actor that restarts passes through the restart life cycle, but
its children are a different story. The children are specifically
stopped and re-created. With each Actor restart, the children are
stopped and a new generation replaces them. If the Actor has
DeathWatch on them, then it will get Terminated() messages
for each one on every restart. 188

8.6 Actor restarts are not visible to the outside world and thus all of
the guys that have an ActorRef to it are unaffected. However,
it’s a different story for those that might have references to that
Actor’s children. Since the children will by default stop and
then get re-created, those old references send all messages to the
Dead Letter Office. 191

8.7 The outline of the structure we’re going for when building our
Plane. Actor systems inevitably become a tree in the real world
and our Plane is starting to get that way. 193

8.8 The slice of the Plane’s hierarchy after startControls() com-
pletes. 199

8.9 The slice of the Plane’s hierarchy after startPeople() com-
pletes. 200

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=xviii

List of Figures xix

8.10 Risk is generally pushed down the tree. The higher up you go,
the less risk you’re willing to take on, and the lower you go,
the more risky you become. Guys that live at the bottom are
the ones you want to send on the brutal missions where they’re
not guaranteed to survive, but the guys at the top don’t get their
hands dirty at all. 208

8.11 The simple hierarchy we need in order to test the CoPilot . . 213
8.12 The AutoPilot’s test doesn’t need to have any special parenting.

Its parent can simply be the test ActorSystem’s User Guardian. 217

9.1 The state transitions are easily deduced from the code due to the
static usage of the become() method. 224

9.2 Our state stack’s condition after a whole load of become()s
without a single unbecome(). If you’re not careful in your own
(more complex) code, you could end up with a stack that even-
tually blows up. You just need to accumulate more pushes than
pops over a long enough period of time and you have the exact
same problem. 225

9.3 The FlightAttendant changes its behavioural state when certain
messages are received in certain states. One nice effect of know-
ing you are in a particular state is that you can simply hard-code
values rather than having to check what state you’re in with an if
statement. Here, we illustrate that the response to the Busy_?
message is determined by the state in which the FlightAttendant
finds itself. 228

9.4 The Pilot receives information about how he feels from the drink-
ing behaviour Actor, which allows him to alter his flying be-
haviour accordingly. 249

10.1 Messages are routed to the composed Actors in a round-robin
fashion. 262

10.2 In this case, the SmallestMailboxRouter will choose Actor 3 as
the recipient of Message 1, since its Mailbox is clearly the small-
est. 263

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=xix

List of Figures xx

10.3 The PassengerSupervisor’s structure houses an IsolatedStopSu-
pervisor to manage its Passengers and uses the default supervi-
sion strategy for its immediate children. The BroadcastRouter
will be created after the IsolatedStopSupervisor is completely
instantiated. 275

10.4 The non-blocking, asynchronous algorithm we use to obtain the
BroadcastRouter of the children of the PassengerSupervisor’s
embedded Stop Supervisor. 278

10.5 In this layout for the SectionSpecificAttendantRouter test, the
mocked pieces and messages are geared toward getting enough
information into the testActor so we can verify what we expect
to route where. 286

11.1 The conceptual view of the Event-Based Dispatcher with respect
to its Actors and the Mailboxes that contain their messages . 292

11.2 The conceptual view of the BalancingDispatcher with respect to
its Actors and the Mailbox that contains the messages for all of
them . 293

11.3 By changing the throughput value in the Dispatcher configura-
tion, we can alter how quickly these Mailboxes will drain. . 295

11.4 A simple diagram of the PressureQueue: The Actor holds the
“put” lock as long as the pressure algorithm demands. This
length of time is a factor of the current queue size. The “take”
lock releases immediately so that the queue’s consumer can empty
it as quickly as possible. 300

12.1 A simple depiction of using a Future to synchronize an asyn-
chronous API into pre-existing sequential code 305

12.2 Futures are fulfilled by a Promise, which is held by a servant
that gives the Future to the requester. This creates the conduit
through which the servant and requester communicate. . . . 308

12.3 There’s a pretty clear difference between flatMapping pre-existing
Futures and creating them on the fly. 312

13.1 The Telnet Server routes all incoming data to the appropriate
Sub-Server Actor that has been instantiated to handle a specific
client. It also instantiates that Sub-Server Actor when a new
client connects, and clears it out when it disconnects. 346

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=xx

List of Figures xxi

13.2 The alterations that have been made to the Altimeter, HeadingIndi-
cator, and Plane allow for the above message flow. The Plane
acts as a relay, forwarding the requests that are then fulfilled to
the original sender (the SubServer). 348

14.1 Two nodes in an Akka application. An ActorSystem can span
nodes and still maintain the parent/child relationships between
them, including Supervision. All ActorRefs appear as Actor-
Refs, no matter where the Actors may reside, so DeathWatch
and standard message passing still apply. 353

14.2 A message transformer converts one message type to another,
providing any data transform required during the transforma-
tion. 358

14.3 The words RemoteClientLifeCycleEvent and RemoteServerLife-
CycleEvent only have meaning when we bind them to a particu-
lar node context. A “client” event for the Plane Node is a corre-
sponding “server” event for the Airport Node and vice versa. 376

14.4 Sending the message to the Airport Server connects and starts
the Plane Client, while the shutdown of the Airport Server sub-
sequently disconnects and shuts down the Plane Client. . . . 377

15.1 To create more than one bathroom, we’ll use a Round Robin
Router and give each bathroom access to the counter Agents
(which will be housed inside the Plane). 386

17.1 The mutli-stage asynchronous algorithm is essentially the prop-
agation of evolving copies of a single message type. The mes-
sage has two member lists; the left list contains work to be done,
which decreases over time, while the results list on the right in-
creases over time. 423

18.1 Masters send events to Slaves, but it only does this after the
Slaves have advertised their existence to the Master. Don’t do
it the other way around. 449

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=xxi

Chapter 1

Preface

Somewhere around the year 2005, Herb Sutter1 told us that “The Free Lunch
Is Over.”2 Ever since then, we’ve been going to the deli counter with baseball
cards, a couple of nickels we earned from our lemonade stand, and whatever
else we could haul out of our piggy banks, if only we could get a sandwich.
It’s about time we got our hands on a real wad of cash.

I remember the days when it was all about the megahertz and nobody
was even thinking about the day when it would be all about the number of
cores. As I write this book, the tech heads are predicting that this is the year
when we’ll see quad-core smartphones.3 Even the mobile developer can no
longer hide from the multi-core world. Developers should not even consider
the idea of writing an application that can’t take advantage of the hardware
on which it’s running. But when you’re given a nice piece of hardware with
a ton of cores and huge potential for concurrency, what tools do you have to
go with it? Threads, locks, mutexes, critical sections, synchronized methods,
and all of their brothers, sisters, cousins, and pets. . . oh my. We’ve certainly
learned a lot about concurrency over the last decade or so, and one of the
things we’ve learned is that concurrency is still hard.

1http://herbsutter.com/
2http://www.gotw.ca/publications/concurrency-ddj.htm
3http://www.cnet.com/8301-17918_1-57364255-85/

quad-core-smartphones-this-is-their-year/

http://herbsutter.com/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.cnet.com/8301-17918_1-57364255-85/quad-core-smartphones-this-is-their-year/
http://www.cnet.com/8301-17918_1-57364255-85/quad-core-smartphones-this-is-their-year/
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=21

Section 1.1 Chapter 1 · Preface 22

1.1 Concurrent Challenges

What is it about getting our creations to do many things at once that’s so
difficult? Is it the processor architecture, the caches, the memory, the bus,
the OS constructs, language choice, programming paradigm? When you
really look at it, with all the complexity that exists in our field of study, it’s
amazing we get anything done at all. To survive it, we employ the same
trick time and time again: simplification and abstraction. We’ll continue that
tradition here by breaking down the challenges into two general categories:
conceptual and technological.

Modern hardware and software provide us with heaps of awesome that
help us solve the problems we face when writing our applications. Unfor-
tunately, that’s only half the story. The tools we’re given require that we
handle several technological challenges that generally come in the form of
synchronizing on data in order to tame the concurrency we’re writing in the
first place. These technological issues are well known and pretty well under-
stood, but what’s much less discussed are the cognitive challenges that the
tools present.

You and I deal with concurrency every single day. Let’s face it, your
entire life is a series of interrupts and a collection of requests and responses.
You send requests to people and expect responses (at some point), and people
are doing the same to you on a constant basis. It’s not rocket science, right?
You function pretty well, right? Your friends, coworkers, and loved ones
manage to get through their daily lives without running into dead locks and
memory corruption, right? How on earth do we manage to accomplish this
feat without an army of code inspectors checking our every decision before
we make it?

These cognitive challenges are subtle and not the easiest to grasp, but the
basic notion is pretty simple: the mental energy we expend on modern con-
currency models is rather unnatural. What you’ve learned as a concurrency
programmer these days doesn’t translate all that well to your daily life, and
the converse is also true.

But before we travel too far down that road, let’s make a quick summary
of what our challenges are.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=22

Section 1.1 Chapter 1 · Preface 23

Technological

• Optimizing the use of threads requires non-blocking APIs, which are
rare in the wild and are also historically cumbersome to write.

• Dealing with errors in an asynchronous system can be difficult to
manage. Traditional error-handling strategies (exceptions and return
codes) do not translate well when inside a concurrent application.

• Controlling access to your data requires constant vigilance. Ensuring
that race conditions and deadlocks are eliminated can verge on the
impossible.

• Setting up a signaling mechanism between two objects is required in
order to eliminate race conditions, and speed up wait times.

• The complexity of most common concurrent applications can increase
the cost of refactoring to a fairly high degree. This makes complex
concurrent applications accrue technical debt at a much faster rate than
their sequential counterparts.

Cognitive

• Organizing objects and functions into a concurrent model can be diffi-
cult to visualize.

• Segmenting data structures with respect to concurrent access can be
difficult to design.

• Designing application flow such that it minimizes bottlenecks may not
be obvious.

• What to do in the face of unexpected failure can generally heap on too
much mental load during design and coding. This tends to obscure the
purity of the model while, at the same time, compromising the error
handling of the application.

These reasons, and many others, have made using the concurrency tools
of our past rather challenging. This is not to say that they are bad; in fact,
several facilities provided by some libraries (java.util.concurrent, for

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=23

Section 1.2 Chapter 1 · Preface 24

example) are quite useful and will continue to be useful going forward. How-
ever, the challenges they present, both conceptual and technological, leave
room for improvement. And considering the low-level importance of con-
currency in our lives as software developers, eliminating some of the greater
pain points of concurrency development would be a welcome improvement
indeed!

1.2 Akka Is Concurrency

Akka is positioned to help solve many of the difficulties with concurrency
programming by bringing together a set of complimentary programming
styles, backed by a strong toolkit and core paradigm. With Akka, you are
armed with a collection of tools that address the technological concerns
while, at the same time, smoothing out the issues in the conceptual model.

1.3 Concurrency Methodologies

When you look at the topic of concurrency in the general sense, there really
are only two types: shared-state concurrency and message passing for con-
currency. Shared-state concurrency has dominated for a long time, but before
it did, the idea of using message passing was the mainstay. Multiprocessing
was used to carve up work between processes on a machine, and communi-
cation between those processes was accomplished using file descriptors on
which you could simply read and write. This was message-passing in its
most primitive form.

Today, both methods are prevalent in our world. Applications tend to
favor the use of shared-state concurrency with threads and locks, whereas
larger systems favor message passing at the macro level (unless, of course,
a database is being used as a rendezvous). The Internet itself is a massive
message passing system and web programmers are becoming much more
acquainted with this style of writing apps.

Shared-State Concurrency

To this day, the bulk of our tools rely on shared-state concurrency; i.e., the
dysfunctional family described earlier. We make all or most of our data mu-
table, provide access to it from anywhere (properly encapsulated, of course),

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=24

Section 1.3 Chapter 1 · Preface 25

and then spend the rest of our time trying to duct-tape our way into a safe
application.

Most successful applications that employ shared-state concurrency grow
in a manner that resembles something like:

• Create some object that carries some data.

• Create some functions to operate on that data.

• Realize it’s slow. Create threads (or an ExecutorService) and refac-
tor your code so it can run concurrently.

• Find out that you have a ton of race conditions. Protect the data with
synchronization primitives.

• Scratch your head about why only 10% of your cores are being uti-
lized. Eventually you blame the synchronization. Refactor again to
try and increase concurrency. And so on. . .

For the purposes of our discussion, shared-state concurrency is all about
using threads to make our code “go fast” and then using synchronization
primitives to make it “safe.”

It’s not all a doom-and-gloom story, of course. An incredible number
of successful applications take advantage of multi-core hardware; shared-
state concurrency has brought us a long way. But with all of the advantages
that we’ve gotten from employing these low-level concurrency tools comes a
large number of concurrency headaches. Deadlocks, race conditions, mem-
ory corruption, scalability bottlenecks, resource contention, and of course
my personal favorite, the good ol’ Heisenbug.4

Message Passing for Concurrency

With shared-state concurrency, we tend to create the problem first, and then
fix it up with synchronization primitives later. When a new crack in the wall
appears, we grab some sticky goo and shove it in there to fix it up. Message
passing looks at the problem from the other side: “What would it look like if
we didn’t create the problem in the first place?”

4Add a printf to see what’s going on, and the bug disappears...love that one.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=25

Section 1.4 Chapter 1 · Preface 26

For multiprocessing, this is absolutely clear. In an operating system,
there’s simply no way for one process to muck up another process’s internal
data, and the only way you’ll be able to get any two processes to communi-
cate with each other is via message passing (i.e., reading and writing some
sort of file descriptor). If those processes are single threaded, then they don’t
need any synchronization primitives at all. We are therefore saved from all of
the pain that can be caused by trying to control concurrent access to mutable
data simply because there is no concurrent access to that mutable data.

Message passing has become ubiquitous in our programming lives due
to the Internet itself. No service on the Web is going to survive these days
unless it provides a top-notch RESTful interface. And what’s REST if not a
message passing system?

But clearly this isn’t the end of the story since multiprocessing is cer-
tainly no golden hammer; we need to write concurrent software inside a
single process. Fortunately for us, a long time ago message passing became
perfectly viable in single process programming as well and more recently it
has become available on the JVM through Akka.

1.4 The Akka Concurrency Toolkit

If we’re going to remain productive as programmers and truly scale our pro-
grams to the hardware on which they run, while at the same time keeping
them reliable and understandable, then we need to stop coding our concur-
rency and just let our code run concurrently.

Enter Akka.
The dominant platform for enterprise (and cloud?) software development

is still the Java Virtual Machine but what’s been missing from Java is a truly
abstracted concurrency toolkit. There are some solid concurrency tools in
the Java library, and many of those tools are employed by Akka to deliver its
solution, but those tools aren’t what most of us would dream about when we
sit down in front of our favorite editor.5 We want to code at a higher level and
leave the pain of concurrency programming to someone else. Akka delivers
on that need.

The shared-state concurrency tools we have today certainly have at least
one thing right: they stay out of your way. Ultimately, the control of my
application still belongs to me, which is exactly where it should be. Attempts

5ı.e., Vim (http://www.vim.org)

http://www.vim.org
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=26

Section 1.4 Chapter 1 · Preface 27

have been made over the years to provide large frameworks that do all of the
heavy lifting for you, but these have largely failed to provide us with the
agility, speed, and flexibility that modern applications require. We don’t
need another framework; we need a toolkit full of powerful abstractions we
can go to when we’ve got a concurrency solution that needs modeling. Akka
delivers here as well.

A Short Note Regarding Akka and Scala

Akka was designed alongside Scala (and Java), which created some duplicity
between Akka and Scala on a conceptual level. Scala has always had Actors
and Futures, as has Akka. However, Akka’s design and implementation of
Actors and Futures has evolved far past that of Scala’s implementation.

Because Scala and Akka are so closely aligned, the code in Akka is mi-
grating to Scala. For Scala 2.10 and Akka 2.1, this migration includes the
Future implementation, so we’ll be talking about Futures in the context of the
Akka paradigm. However, from a packaging perspective, we’ll be importing
code from the scala name space.

Akka Tools

Akka brings together a solid set of tools into a new paradigm of concurrent
development:

Actors In 1973, Carl Hewitt defined the Actor6 and its most popular imple-
mentation to date has been in Erlang.7 Unfortunately, Erlang itself has
not seen the widespread adoption of a mainstream language like Java.

Futures We’ll see that the Actor, while a powerful mechanism for concur-
rency and resiliency, is not a silver bullet. In fact, some problems
are just downright wrong to be modeled with Actors. Where Actors
don’t apply, we often find that Futures work incredibly well, and this
is in no small part due to the fact that the Future implementation in
Akka8 is very powerful indeed. Using Futures allows you to create ro-
bust pipelines of concurrent code that can easily operate on immutable
data safely and without blocking.

6There’s some decent information at http://en.wikipedia.org/wiki/Carl_Hewitt
7http://www.erlang.se/
8Currently slated to become part of Scala 2.10.

http://en.wikipedia.org/wiki/Carl_Hewitt
http://www.erlang.se/
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=27

Section 1.4 Chapter 1 · Preface 28

Timers The timer has never ceased to serve us well and Akka doesn’t dis-
criminate. Timers play a significant role in Akka.

Callbacks/Closures Shared-state concurrency uses callbacks and closures
all the time, and there’s nothing wrong with them. However, syn-
chronizing them has always caused us pain. With respect to modeling
concurrency, these abstractions are fantastic.

There are some variations on these themes within Akka, but those con-
cepts cover the bulk of what it is that the Akka toolkit provides. And, yes,
Akka is providing it for you on the JVM, accessible even from Java itself.

Error Handling (a.k.a. Resiliency)

Developers tend to ignore any serious error handling (i.e., those errors that
fall outside of the usual ones that are found in unit tests) until after the nick-
of-time. This situation isn’t helped by the fact that most asynchronous toolk-
its (or frameworks) don’t consider error handling at all; it’s entirely your
problem. Can you throw an Exception? Can anything even catch it? Can
you return an error code? To whom? What are they expected to do with
it when they get? Retry? Abort? Resume? Ugh. . . Far too often, develop-
ers are left trying to poorly bolt on some sort of concurrent error-handling
mechanism all on their own.

The tools we are used to in imperative programming—Exceptions and
return codes—don’t help us when we’re developing complex concurrent sys-
tems. Akka doesn’t ignore the problem of error handling, or bolts it on as an
afterthought. One of Akka’s core philosophies is that errors and failures are
part of the design of any good application, not things to be avoided. Your
application will be affected by real life at some point.

When real life comes around and tries to kick you in the head, what do
you do? Often, people try to change real life into some sort of fantasy land
where things don’t go wrong, or simply ignore the problem in the hope that
it won’t happen. Akka’s different; real life won’t stop kicking you in the
head – that’s just what real life does—so if you can’t beat it, join it and just
“Let It Crash.”9. Some sort of scenario will happen where a small piece of

9One of the core philosophies of the Actor paradigm involves embracing failure to the
point where we let small parts of the application crash, and trust the Actor system to heal
itself. We’ll learn more about this later.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=28

Section 1.5 Chapter 1 · Preface 29

your app will take a hit to the family jewels, and that’s going to take it down
(who could stand up in the face of that?). Akka provides a mechanism where
that piece of the application can heal itself and keep on trucking. Welcome
to reliability.

Non-Blocking by Default

Threads are a precious (and very expensive) resource. When you start get-
ting into programs that have to handle thousands of concurrent operations
per second (we don’t even need to think about the ones that have to handle
millions to see this), blocking on a thread is a surefire way to ensure that your
app won’t scale. Any toolkit that claims to provide a new concurrency de-
velopment paradigm must provide a way to protect these precious resources.
Akka doesn’t disappoint, and you’ll become quite competent in ensuring that
your threads are working their butts off.

1.5 Who You Are

So, who are you? You’re passionate about software development, crazy
about concurrency, fed up with using the primitive tools of the day (or at
least a bit dissatisfied with them), and you’re looking for a new way to write
your awesome software on the JVM. It’s just that simple.

What You Already Need to Know

• You know Scala. While Akka is available with a Java API, which we’ll
be covering to a certain degree, the bulk of this book will be using
Scala. We won’t be using any of the really esoteric (and sometimes
ultra-cool) aspects of Scala so you don’t need to be an expert Scala
programmer. However, you should know your way around it pretty
well. If you’re familiar with Scala but not a Scala programmer, that’s
probably fine—just have a reference manual handy in case you get
lost.10

• Most real-world Scala applications use the Simple Build Tool (SBT),
which we’ll be using here. If you don’t know it, then a crash course is

10Of course, the standard Programming in Scala, 2nd Edition by Martin Odersky, et al.
would work just fine, but if another book works for you, then go for it.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=29

Section 1.6 Chapter 1 · Preface 30

available where SBT is distributed at https://github.com/harrah/
xsbt.

• You should know the ScalaTest testing framework11 or at least be fa-
miliar with standard unit testing frameworks and methodologies.

1.6 How to Read this Book

This book is designed to be a tutorial for those who want to learn Akka
and may or may not have previous experience writing concurrent code. It is
intended to be read from start to finish but for those of you who already have
some extensive experience writing concurrent code, you might want to skim
through the early sections of the book.

The beginning couple of chapters take you through a high-level tour of
Akka, as well as describe some of the foundational aspects on which Akka
is designed, from the perspective of concurrency. These sections help lay
the foundation for understanding the paradigm that Akka describes. So, if
you’re confident in these aspects, I encourage you to skim them, just to be
sure. Eventually, we get into the heavy nuts and bolts of Akka, and I hope
you’ll all join at that time.

This book is not intended to be a reference for the Akka toolkit; the
materials that the Akka team have put together already serve that purpose,
and serve it well. One hallmark of a solid project is its documentation, which
is a wonderful thing to see in the Akka project. They’ve done a marvelous
job of writing high-quality reference documentation as well as the ScalaDoc.
You can find all of this on the Akka website: http://akka.io/docs.

1.7 What You’re Going to Learn

In a nutshell, you’re going to learn how to competently write software in
the paradigm of Akka. But before we drive headlong into delivering on that
promise, I’m going to have to jump onto my soapbox for a second.

<soapbox>

11http://scalatest.org/

https://github.com/harrah/xsbt
https://github.com/harrah/xsbt
http://akka.io/docs
http://scalatest.org/
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=30

Section 1.7 Chapter 1 · Preface 31

Did you see the word paradigm up there? That’s not the first
time that’s been written in this book, and we aren’t even finished
with the first chapter yet. It’s a pretty serious word.

One of my passions in life is maximizing my own produc-
tivity as a programmer, and one of the ways I do this is to use an
editor you may have heard of called Vim.12 A couple of years
ago, I spent a short amount of time throwing together a series
of screencasts about Vim in order to convey my passion for this
particular tool and to hopefully help others become proficient in
it. One of the things I yell about in these screencasts is that you
should not use the mouse or the arrow keys.

Why? Some think it’s because I’m just another Vi nut-bar13

but that’s really not the reason. The reason is because the Vi
family of editors delivers a particular paradigm on text manipu-
lation. If you’re going to use the editor much like you use any
non-mode-based editor, then go and use those editors instead;
the learning curve won’t be as heavy. If you’re going to use a
Vi-style editor, then you have to recognize that it’s merely a tool.
The tool delivers the mechanics that you can use to manipulate
text in new and powerful ways. You’re not learning the tool so
much as you’re teaching your brain new ways of thinking. There
are tons of different flavors of Vi out there, and they all deliver
the tool to help you express your skills. You should be able to
use any of them to great effect, because your brain understands
how to forge code (or indeed any text) using the paradigm they
deliver.

It’s exactly the same when it comes to languages. If you’re
going to code in Python like you’d code in Java, then just code
in Java. Python presents you with more and different paradigms
than Java does, and if you’re going to use Python, you should be
using it because of what it allows you to express, not because it
has less syntax than Java.

Learning a language or toolkit is easy, learning a paradigm
is hard. But it’s learning new ways of thinking that makes us
great at what we do. Applying a new syntax to our old and often

12http://www.vim.org/
13There are many of us, of course.

http://www.vim.org/
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=31

Section 1.7 Chapter 1 · Preface 32

outdated methods is of little value.

</soapbox>

OK, I’m hoping that wasn’t too brutal. The point I’m trying to make with
that little speech is to impress upon you that it’s important to get more out
of this than simply knowing how to write code with Akka. What you really
should be getting out of this is much more important than that—if we both
do this right, then you’re going to learn how to think in ways that you may
not have been familiar with before, and that’s a very good thing.

Enough, already? I think so. Let’s get you set up and ready to go, so that
we can start learning all about this new paradigm.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=32

Chapter 2

Concurrency and Parallelism

If you could sum up the features of Akka in one word it would be concur-
rency. There are many aspects to concurrency, not least of which is how to
deal with the less-than-stellar aspects of real life. For now, let’s focus on the
main point: doing lots of stuff, doing it all at the same time, doing it safely
and quickly.

The first part of this chapter is written for those not battle-hardened from
years of writing concurrent code. If you already have a solid understand-
ing of concurrent programming and have chosen to read this book because
you merely want to move on to concurrent programming in Akka, then you
can skim past these opening bits of concurrency theory. For those of you
who haven’t suffered through dozens of late nights tracking down elusive
Heisenbugs, busting thread deadlocks, opening up synchronization bottle-
necks, and writing the odd thread-safe concurrent class, then you might want
to stick with me for this section. We’re not going to cover so much that you’ll
feel like a battle-hardened concurrency programmer—I mean, this book does
have to end at some point—but it should give you a decent grounding that
will make understanding and using Akka much clearer.

2.1 Parallelism vs. Concurrency

These two terms get thrown around a lot and people often use them to mean
the same thing. They’re not, or at least we’re not going to treat them the
same. For our purposes, we’re going to define them as:

Parallelism The act of modifying a seemingly sequential algorithm into a

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=33

Section 2.2 Chapter 2 · Concurrency and Parallelism 34

set of mutually independent parts that can be run simultaneously, ei-
ther on multiple cores or multiple machines. For example, you can
multiply thousands of matrices sequentially but you can also do this in
parallel if you break them up into a hierarchy of multiplications. Later
on, in the section on Futures, we’ll do exactly that and show how easy
it is to do such a thing with Akka.

Concurrency This is all that other stuff, also known as life. It’s the act of
an application, which has many dependent or independent algorithms,
running through multiple threads of execution simultaneously. The
easiest example is that of a web service, such as Twitter. Twitter is
highly event driven, taking in tweets from millions of concurrent users
as well as events from its own internal systems. All of this stuff hap-
pens concurrently.

These aren’t strict definitions and there are as many people that would
disagree with them as would agree with them. I define them here in order to
clarify what I mean when using the terms, but also to contrast the “purity” of
the two situations.

Parallelism is meant to be a highly controlled situation. We code an
algorithm with the intention that it runs in parallel (either through a specific
piece of code we write, or naturally via a particular language or library’s
core functionality). Concurrency is the result of stuff that happens. We have
no idea when clients will make their requests, what they’re going to ask, or
when they need responses. We just need to be able to deal with life as it
comes and whatever it may impact in our application.

For ease of language, we’ll assume that when we talk about concurrency,
we also include parallelism. However, when we say parallelism, we are
talking about parallelism plain and simple and do not include concurrency.

Akka has solid solutions for both parallelism and concurrency.

2.2 A Critical Look at Shared-State Concurrency

We’ve already said that shared-state concurrency can be the less-than-great
solution when it comes to writing concurrent software. What is it about
treating our data like a children’s ball pit and our algorithms like a gaggle
of sugar-infused toddlers that makes it hard to scale, debug, and understand?

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=34

Section 2.2 Chapter 2 · Concurrency and Parallelism 35

And why does a system that doesn’t look like that require so many lines of
code that it’s still difficult to debug and understand?

The Product

We’ll illustrate some ideas with something that’s a pretty common occur-
rence: the modeling of a User. We’ll also model something else that’s pretty
common: software evolution. When you start writing your app, the require-
ments are small and you, therefore, build small. As the requirements grow
and the audience increases, you pile on the code and the features. The day
you need to switch from sequential programming to concurrent program-
ming, all hell breaks loose.

In the Beginning

When you start out, you have a nice little User class that looks about the
same as any other User class you’d find in the “Hello World” of User classes:

public static class User {

private String first = "";

private String last = "";

public String getFirstName() {

return this.first;

}

public void setFirstName(String s) {

this.first = s;

}

public String getLastName() {

return this.last;

}

public void setLastName(String s) {

this.last = s;

}

}

A few months or a year goes by and you get to the point where you
have a few threads. Everything’s cool until you start to see some weird stuff
happening with your output. Every once in a while some names get messed
up. How hard could it be, right?

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=35

Section 2.2 Chapter 2 · Concurrency and Parallelism 36

The First Concurrency Round

What’s happening is that your concurrency isn’t allowing your changes to be
visible between threads at the right time, so you toss in some synchronized
versions of your methods.

public static class User {

private String first = "";

private String last = "";

synchronized public String getFirstName() {

return this.first;

}

synchronized public void setFirstName(String s) {

this.first = s;

}

synchronized public String getLastName() {

return this.last;

}

synchronized public void setLastName(String s) {

this.last = s;

}

}

This helps, but someone points out that using volatile would be better,
so you do that instead:

public static class User {

private volatile String first = "";

private volatile String last = "";

public String getFirstName() {

return this.first;

}

public void setFirstName(String s) {

this.first = s;

}

public String getLastName() {

return this.last;

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=36

Section 2.2 Chapter 2 · Concurrency and Parallelism 37

}

public void setLastName(String s) {

this.last = s;

}

}

That looks nicer. Now things are cooking!

The Real Problem Shows Up

The visibility of your changes is now awesome, but something new has
shown up, and this is the real problem. Every once in a while, in the tradi-
tion of the Heisenbug, you retrieve a name that doesn’t exist. You’ve tracked
down what you think is the offending line of code:

System.out.println(user.getFirstName() + " " + user.getLastName());

But every once in a while you see this:

Spider Lantern

You shake your head a bit and have a look through your database for a
“Spider Lantern” but you can’t find one. You find “Spider Man” and “Green
Lantern,” but not “Spider Lantern”.

You really hope that it’s just some weird interleaving of output on the
terminal, but it’s not. You’ve got a bigger problem.

You have code running on a thread that is trying to change someone’s
name from “Green Lantern” to “Spider Man,” but the method by which it
has to do it is pretty messed up:

user.setFirstName("Spider");

user.setLastName("Man");

In a concurrent system, there are many CPU cycles between those two
lines of code where something can sneak in and grab the user’s first name
and last name. It grabs the new first name, “Spider,” and the old last name,
“Lantern,” and spits them out. Damn.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=37

Section 2.2 Chapter 2 · Concurrency and Parallelism 38

The Problem’s Solution

There are many ways to solve this problem; the good ones involve changing
your API. However, you’d have to change so much code that it just doesn’t
seem worth it, so you try the cheap way out.

import java.util.concurrent.locks.ReentrantLock;

public static class User {

private ReentrantLock lock = new ReentrantLock();

private String first = "";

private String last = "";

public void lock() {

lock.lock();

}

public void unlock() {

lock.unlock();

}

public String getFirstName() {

return this.first;

}

public void setFirstName(String s) {

try {

lock();

this.first = s;

} finally {

unlock();

}

}

public String getLastName() {

return this.last;

}

public void setLastName(String s) {

try {

lock();

this.last = s;

} finally {

unlock();

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=38

Section 2.2 Chapter 2 · Concurrency and Parallelism 39

}

}

}

The ol’ stand-by revolves around locks. You toss some concurrency
locks around the problem and figure that if “getters” try to grab the lock
and someone else has it, then you’re golden. What you’ll do is change the
one line println to lock the whole guy first:

try {

user.lock();

System.out.println(user.getFirstName() + " " + user.getLastName());

} finally {

user.unlock();

}

And that totally works! Except that it doesn’t. It reduces the window of
the race condition but it doesn’t completely stop the following from happen-
ing:

// Thread 1

user.setFirstName("Green");

// Thread 2

try {

user.lock();

System.out.println(user.getFirstName() + " " + user.getLastName());

} finally {

user.unlock();

}

// Thread 1

user.setLastName("Lantern");

If that happens you have the same problem. In order to get around that,
you need to lock during setting as well.

BLURGH!

It’s just plain ridiculous. To fix this problem, you have to change the API, use
some sort of Database (DB) transaction, or something else that’s hideous.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=39

Section 2.2 Chapter 2 · Concurrency and Parallelism 40

And this is just this one issue; race conditions and concurrency issues can
show up in far more subtle ways than this. We didn’t even look at deadlocks,
which could have been quite interesting if we had chosen to use two sepa-
rate locks for this problem. And imagine if this were a library that you had
published to the world, and not just made as a convenience for yourself.

If you haven’t experienced this before, trust me, it’s not the sort of thing
you want to waste your time on.

Threads

Now that we’ve covered the main problem that programmers have had for so
long with shared-state concurrency, we can move forward and look at some
of the machinery that helps us run our stuff.

In our modern applications, threads are taking care of the heavy lifting
required to keep our code running concurrently. Some people seem to think
that threads are cheap. They’re really not. Threads are an incredibly ex-
pensive resource to just start spending like you’re dealing with Brewster’s
Millions.1 Some concurrency frameworks of the past even thought it was
reasonable to spin up a new thread for every incoming network request. The
rule of thumb with those was to make sure your app didn’t get too many
incoming network requests. That’s pretty silly.

I’ve also seen people make their apps go “faster” by spinning up mul-
tiple threads to do some work in parallel and then kill them when it’s time
to stop them. If there are 200 incoming requests, they’ll happily spin up
10,000 threads to do their work for them, and this can happen on-and-off
every couple of seconds! Threads are not meant to be used this way. Really.

This gets worse once those threads start blocking each other with locks,
synchronized blocks, or other concurrency mechanisms. The shared-state
concurrency model can turn your threading methods into spaghetti really
fast.

Thread Pools

If you don’t want to be spinning up threads manually, then what’s the better
option? Well, it’s thread pools. Thread pools are important in concurrent
programming, and are equally important when programming with Akka, al-
though we don’t often use them directly.

1Yeah, it was a pretty bad movie, but I was a kid when it came out, so it was awesome.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=40

Section 2.2 Chapter 2 · Concurrency and Parallelism 41

To get any concurrent work done within a single process, you need to
have threads. There are several drawbacks to using threads directly:

• They have a fixed life cycle. If you put a java.lang.Runnable on a
thread instance, then when that Runnable completes, the thread dies
right along with it and can’t be restarted.

• They take time to start up. Creating a thread certainly doesn’t have a
zero cost when it comes to creation.

• They’re certainly not free when it comes to memory usage.

• There are operating system limits on these things; you aren’t free to
create an infinite number of them.

• You pay a huge cost in the management of threads with respect to
context switching. A thread needs to run on a processor, and if it isn’t
currently allocated to one, then the OS needs to remove one from a
processor and put another one in its place. Moving all that data around
is also expensive.

To eliminate and/or hide all of these problems, we use thread pools. Java
has created a set of reusable thread pools for you that have many of the won-
derful aspects of thread pools, which developers have created for themselves
over the years.

The thread pool creates a managed layer on which your concurrent meth-
ods can execute. They ensure that the system is being used efficiently, so long
as you’re not specifying thread pools of an unreasonable size or amount. Us-
ing them helps you avoid creating and destroying threads by yourself all the
time, and it ensures that concurrent work gets throttled, to a certain degree.

The Thread Balance

One challenge of managing threads is to ensure that you have enough, but
you don’t have too many. If you have 2 cores and 10,000 threads, you’re
probably not doing yourself any favors. The reason for this is due to the
context switching that the OS must do on your behalf.

All of the threads you have must run at some point; otherwise, they’ll
starve for attention from the CPU, which is certainly something that must
be avoided. So the OS slices them off sometime. In order to do that, it must

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=41

Section 2.2 Chapter 2 · Concurrency and Parallelism 42

freeze the running state of a given thread, pull it off of the CPU, store it some-
where fun, and then put the new thread in its place for a few microseconds,
and then switch it out to make room for the next one.

Maximizing Processor Time

All of this context switching takes time and you want to avoid it as much
as possible. If you’re multiplying 200,000 matrices together on a machine
with 8 cores, then the right decision is definitely not to break the work up into
1,000 threads of 200 matrices each. In this situation, you want approximately
8 threads running approximately 25,000 matrix multiplications each. That
will minimize your context switching and maximize the amount of time that
your application spends on the processor. It’s not an exact science due to the
fact that a general-purpose computing OS will always be doing more than
just dealing with your application, but in this case, the approximation isn’t
too bad. A couple more threads here might help.

CPU vs. IO

There are really two kinds of work in most applications: that which requires
the CPU and that which performs synchronous IO. Asynchronous IO isn’t
much of a problem because you don’t have anything tying up threads while
the IO is taking place, so we only concern ourselves with synchronous IO.

Clearly, if you have an application that is 100% bound to the CPU (let’s
say it’s only calculating π), then you can keep the number of threads down
to a value that’s commensurate with the number of cores. But if you’re per-
forming a fair bit of synchronous IO, then what?

IO is a problem because it’s slow. While the IO is performing, your
application isn’t busy; it’s just waiting for the IO to complete. And while it’s
waiting, it’s tying up a thread in your application. If you’ve only allocated 8
threads, and they’re all doing IO, where’s your CPU work going to go?

It’s often a good idea to separate your IO from CPU work by creating
separate thread pools. The IO pool will be “large” in comparison to the CPU
pool since the threads on the IO pool spend most of their time avoiding the
CPU. You can then tune the IO pool independently from the CPU pool. In
general, this is a real pain, which is why the world is really starting to get
serious about asynchronous IO.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=42

Section 2.2 Chapter 2 · Concurrency and Parallelism 43

Blocking Calls

To make sure that you’re not making a ton of blocking calls, your language
or your toolkit needs to help you. Back in the days before C++11, we didn’t
have closures. As such, creating non-blocking code was a big problem. You
ended up doing things like this:

class MyBusinessLogic { public: // ... stuff ...

bool ourCallbackFunction(const SomeResult& results) { // do stuff return

results.ok(); }

// ... stuff ...

private: void someCode() { someObject.call(param1, param2,

bind(&MyBusinessLogic::ourCallbackFunction, this, _1)); } };

And that’s when it’s generally easy. MyBusinessLogic calls someObject,
which allows someObject to call back into MyBusinessLogic, but what if
that’s not the end of the story? What if we want more chaining, more deci-
sion making, and more delegates? It just gets worse and worse.

Java isn’t much better since everything is a noun (i.e., class or instance
thereof), even though you can instantiate anonymous classes. C++ at least
can have simple verbs (good ol’ functions) that we can pass around if needed.

This is why we have so many blocking calls in our code today—doing
anything else is just too damn hard.

NonBlocking APIs

A few years ago, NodeJS2 came on the scene with a single-threaded solution
to our blocking call problem. NodeJS’s bread and butter is the idea that if
all IO is asynchronous, then code in user-land is free to execute and react
to IO events. Your user-level code is on a single thread so you don’t need
any synchronization primitives to protect its data, and with the help of Java
Script’s closure mechanisms, we get the tools we need to write a ton of non-
blocking code (albeit, heavily nested at times).

NodeJS and Akka differ in many ways, but they both make no blocking
a huge goal. If you can swap out a Java library that blocks in its IO for one
that doesn’t, do it.

2http://www.nodejs.org/

http://www.nodejs.org/
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=43

Section 2.3 Chapter 2 · Concurrency and Parallelism 44

We won’t discuss NodeJS anymore; NodeJS and Akka are trying to solve
very different problems in the software world and it’s simply not reasonable
to compare them. I bring up NodeJS at this time since it’s gained quite a
following, and it may help ground you in the importance of non-blocking
IO.

2.3 Immutability

Why all this talk of mutability vs. immutability? When you get into conver-
sations about concurrency, especially with people who have a strong grasp of
functional programming, you’ll invariably hear about the value of immutable
data structures. By now it’s obvious, right? All of those synchronization
primitives that we’ve grown to love and hate are there because we need to
protect that valuable mutable data! If we didn’t have mutable data then we
wouldn’t have synchronization of operations on that data since the only op-
eration that can be performed is a simple read.

If you’re not comfortable with immutability, then you’re sitting there
right now saying that an application isn’t useful unless it can also write. You
probably won’t get any arguments from anyone on that, certainly not from
me. But just because a data structure is immutable doesn’t mean that your
program’s state can’t be altered. Those who have created our immutable data
structures are very clever indeed, and have ensured that most modifications
of those data structures are fast and deterministic.

Immutability Implies an Altered Programming Model

As far as I can surmise, what I’m about to tell you is some sort of secret.
Well, maybe secret is too strong of a word, but people don’t seem to be mak-
ing it all that clear either. The data structures that you use in imperative pro-
gramming tend to be mutable and thus when you start coding concurrency,
you tend to opt for shared-state concurrency with mutable data structures;
it’s just a natural extension to the programming you’ve always done. People
tend to initially agree when someone says, “immutable data structures are
better,” but then their brain starts to rebel. They imagine all of those data
access object (DAO)-like classes they’ve coded over the years and all of the
side-effect-based programming that has worked so well and they can’t see
how to fit that into an immutable world. There’s a reason for that: it doesn’t.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=44

Section 2.3 Chapter 2 · Concurrency and Parallelism 45

Figure 2.1 · One way we’re used to writing our shared-state concurrency:
create a piece of the domain model, give access to it from a couple of dif-
ferent threads, and code with side effects, ensuring a proper rendezvous with
locks.

Given what we see in Figure 2.1, how could we possibly take advan-
tage of immutability? The short answer is, you can’t. The longer answer is
that you could be clever, make the User immutable, and provide a protected
reference to it instead. The reference would be global and you could syn-
chronize that reference, so when you change the reference to a new, altered
User, everyone gets updated with the new reference atomically. But that’s
not what we mean when we talk about using immutable data structures.

It’s this minor confusion that’s concerning us at the moment. Coding
with immutable data structures isn’t just about swapping out the mutable
ones in your code for immutable ones and then grabbing a beer. It just
doesn’t work that way. Immutability is part of the design of your appli-
cation more than it is about the code of your application—your algorithms
are different.

If we make our User immutable, then we need to constantly work with
new copies of the object, which should ideally be stack-based as opposed to
objects we put on the heap and share references to. When we have immutable
objects such as this, then our code tends to process objects in the style of
Figure 2.2.

Immutable objects that create new versions of themselves directly from
mutation dovetail very well with the idea of FluentInterfaces,3 which ar-
guably already provide an interface that’s easier to understand. But there’s

3http://www.martinfowler.com/bliki/FluentInterface.html

http://www.martinfowler.com/bliki/FluentInterface.html
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=45

Section 2.3 Chapter 2 · Concurrency and Parallelism 46

Figure 2.2 · When making changes to our User object, we tend to code like
this: we make alterations using a pipeline of commands instead of several
modifications to the same object.

another benefit to working this way. Assuming that the pipelined operations
of 2.2 are independent, then it’s entirely reasonable to parallelize them, as
seen in Figure 2.3.

If we try to do the same kind of parallelism with a mutable object, pro-
tected by locks, then we get the type of situation we see in Figure 2.4. Even
though we’ve gone to the trouble of scheduling work to be done on multiple
threads, we’ll still perform this work, in effect, linearly. Not only are we not
getting the effect we want, we’re also wasting the threads we’re consuming
in the first place. What’s to blame? The User object.4

We can try to fix the problems with our shared-state User object in one
of two ways:

Lock Less Take the locks out. Doing so, of course, will probably give us all
the problems with race conditions and object corruption that the locks
were meant to avoid in the first place. So, probably a bad idea.

Lock More Yup. If we put more locks into the User class, then we can
be more selective about what gets locked when. In theory, we could
open this class up to full parallelism in this situation if we can lock
individual bits of data discretely. For example, lock the credit data
separately from the profile data.

4There’s another problem with the shared mutable object as well, which falls into the
realm of improper CPU cache use, but that’s beyond the scope of this book.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=46

Section 2.3 Chapter 2 · Concurrency and Parallelism 47

Figure 2.3 · The same operations on the User object are done in parallel
here. We must recombine the state changes into a final object representation,
of course, but we can see that the input to the operations and the output of
the operations remain exactly the same as the linear version.

Painful. This is what those guys mean when they say, “immutable is bet-
ter.” You can go parallel much more naturally with immutable data structures
than you can with mutable ones.

But most of those who say it is better are functional programmers not im-
perative programmers. While working with immutable data is certainly pos-
sible and not necessarily uncommon when it comes to imperative program-
ming, it’s not as natural and certainly not easy to wrap your head around.
The good news is that you don’t have to become a full-fledged functional
programmer to be able to take advantage of the power of immutable data
structures. Akka is fully capable of blending styles of imperative and func-
tional programming together, which allows you to take advantage of the best
of both worlds.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=47

Section 2.3 Chapter 2 · Concurrency and Parallelism 48

Figure 2.4 · Here’s an attempt to get the same type of parallelism from a
mutable User object; in this case, the User object is protected by locks now.
Even though we’ve spread the work out to multiple threads, we’re still linear
in our speed simply because only one thread can work at a time. Not only do
we not get parallelism, we are also wasting threads.

Immutable Data Structures

OK, so now that we have you more acquainted with the nature of working
immutably, we can start to look at some fundamental ideas with immutable
data structures to help you understand more of the programming model that
surrounds them. We’ll also bust a myth or two at the same time.

The Linked List

The quintessential data type for immutability is the Singly Linked List. It’s
simple to write, easy to work with, clear to understand, and extremely fast if
used appropriately.

val list = List(1, 2, 3, 4, 5)

If you give the value list to someone, then you don’t need to protect it.
There’s no way you can modify anything that list points to, either directly
or indirectly. However, you can give that reference to as many people as

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=48

Section 2.3 Chapter 2 · Concurrency and Parallelism 49

Figure 2.5 · A good ol’ linked list: our symbol name list points to the head
of the list and it always ends in Nil.

you like and not worry about it at all. No copies need to be made and no
synchronization is required.

What’s more is that you can give pieces of that list to other pieces of code
and they get the same nice deal:

Figure 2.6 · The recursive nature of List coupled with its immutability lets
us quickly create a new list from a pre-existing one by simply dropping ele-
ments from it.

val list = List(1, 2, 3, 4, 5)

Future { workWithEntireList(list) }

Future { workWithTheLastTwo(list drop 3) }

Here we spawn two separate pieces of work using Akka’s Future object.
You don’t need to know how it works, just be aware that we’re using it to cre-
ate parallel operations. So now we have two separate functions working in
parallel on the exact same immutable, unprotected data structure, but we’re
viewing it in different ways. Again, we don’t need to care what these func-
tions are doing with the shared data structure because there’s nothing that
they can do to it that will cause any harm.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=49

Section 2.3 Chapter 2 · Concurrency and Parallelism 50

Modification Can Be Fast

One major concern people have with immutable data structures is that, when
you do want to modify them, you have to take a big recursive copy of what-
ever the data structure represents and then modify your piece. As with most
things in life, general statements rarely apply. It’s true that often times, given
an immutable type, modification can require some copying, but copying the
whole thing is generally the exception to the rule. If you’re finding that
you’re making full copies a lot, then you’re probably using the wrong data
type—or you’re just doing it wrong.

We can see that the opposite is sometimes true with mutable data. If
we have a reference to something that someone else has a reference to, then
there are times when we must make a defensive copy of that data in order to
ensure that someone doesn’t change it under our feet. In fact, I’ve seen many
sections of code where people make defensive copies simply because they
are finding it difficult to reason what’s going on in their code. Maybe they
need a defensive copy, maybe they don’t, but they do it just to be sure that
everything’s going to work out alright. When you’re immutable, you don’t
have this problem; your code is always easy to reason about with regards to
concurrent access to data.

So, it’s certainly no slam dunk that mutable data is faster under modifi-
cation than its immutable counterpart; not when you take the full breadth of
the application space into account.

For instance, prepending to a list is a fast operation. We can grow this list
from any point we choose by simply prepending elements to various places.

val list = List(1, 2, 3, 4, 5)

Future {

6 :: 7 :: (list drop 2)

}

Future {

9 :: 8 :: (list drop 4)

}

The power of immutability in the list and the idiomatic usage of its most
performant modification operation (prepend) has saved us the cost of copy-
ing, both in CPU cycles and memory consumption. We can do this safely in
a concurrent environment because the list is immutable.

What about appending? Appending sucks. Here’s why.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=50

Section 2.3 Chapter 2 · Concurrency and Parallelism 51

Figure 2.7 · We can easily create new Lists from existing Lists by prepending
new elements at various locations. Each List is truly its own distinct List—it
just happens to be that the implementation can use the underlying storage
because the underlying storage is immutable.

• To append to a list, you need to modify the last element, but you can’t
because it’s immutable.

• So, you make a copy of that last element and modify the copy.

• But now your newly copied element has nobody pointing to it. You
need to get its old previous element to point to it, but you can’t because
it’s immutable.

• You need to create a new copy of the previous element in order to point
to the new element.

• And so on, all the way back to the head of the list.

• Appending to a List creates an entirely new list.

Programming with immutable data structures is different than program-
ming with mutable ones. If you find yourself appending to lists all the time,
then you’re using the wrong data type—use something else (e.g., a Vector).
But if you find yourself running a ton of recursive algorithms over sequences
and you want to run those algorithms concurrently over the same sequence,
then a list is probably your best friend.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=51

Section 2.3 Chapter 2 · Concurrency and Parallelism 52

Figure 2.8 · The act of appending a 6 to the list results in an entirely new list
with a new pointer to the head of the new list. The old list, of course, remains
entirely unchanged.

Immutable Maps

Lists are easy; what about maps? Without going into great detail, I can show
you that you can also quickly modify immutable maps. Granted they aren’t
quite as fast as their mutable counterparts or as easy as prepending on a list,
but they’re still pretty darn fast. And always remember that we never have to
make a defensive copy of an immutable map.

The basic notion revolves around cloning-affected data and reusing what
you can. Since maps are generally implemented as trees, we can illustrate
with a simple tree-like structure, avoiding the whole key/value pair thing
you have with maps since that doesn’t make much of a difference to the
illustration. Let’s keep it simple. Have a look at our basic map (tree) in
Figure 2.9.

Figure 2.9 · A really bad representation of a map; we haven’t attached values
to this map just because it’s easier to see, but a tree tends to make a pretty
decent mant ap implementation.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=52

Section 2.3 Chapter 2 · Concurrency and Parallelism 53

Figure 2.10 · After removing the E from the original map, we now have two
distinct maps. The original is represented by the purple squares and the new
one, without E, is represented by the blue ovals with D’ at the root.

If we want to remove E, then we need to have something that looks like
Figure 2.10. Anyone who has a reference to D won’t notice a thing. All
of the original nodes, indicated as purple boxes, still point at purple boxes
so nothing has changed. The person who asked for the modification would
have operated originally on D, but the return value from the modification
would have been D'. The act of removing E has caused the modification of F
and D only, indicated by the blue ovals.

The Speed of Immutability

Is making that map modification as fast as just deleting E from a mutable
map? No, it’s not. The time to remove E from a mutable collection is
O(log(n)) and the time required to remove E from an immutable collection
is around O(2log(n)). (Yes, I know that’s O(log(n)) but bear with me for a
second).

But what about in a concurrent environment? How much does it cost
then? Well, that’s an interesting question and it depends largely on how your
application is designed and how it’s working with the data, so we need to
speculate just a tad.

If you have one global mutable map and everyone’s got a reference to
it, then the cost of modifying that might be very high. Why? Synchroniza-
tion, that’s why.5 Everyone who wants to have a look at that map is going to

5Unless it’s a lock-free map, which is cheaper but still has its own costs associated with
it.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=53

Section 2.3 Chapter 2 · Concurrency and Parallelism 54

have to wait while the guy who wants to modify that map makes his modi-
fication. That means that threads are tied up, which is costly. Can we put a
quantifiable cost on it right now? No, but we know it’s there.

If the map is immutable, then clearly we may not have to pay any cost
at all. Now that 2 that I graciously stuck on the cost of the immutable map
modification is starting to look pretty good, right? The accepted cost of an
immutable map modification is really O(log(n)) anyway, since we ignore
the constant multipliers. However, since the non-quantifiable cost of waiting
threads in any given situation can actually be quite significant, I think we
can at least argue that the immutable map can be superior in a concurrent
situation.

But That’s Not Equivalent!

OK, so it’s not exactly an apples-to-apples comparison. The mutable version
had the virtue that everyone could see the modification. Well, assuming that
that’s what you want (and it’s not a given that it is what you want) then we
do have a bit of a problem.

We’re back to saying that coding with immutable types is different again.
Immutability doesn’t generally wash with traditional imperative or OO-style
programming because the data we work with tends to stay in a global-ish sort
of concept. All of our objects hold on to some piece of data, and references
to those objects ensure that they’re long lived. Since those objects are long
lived, their life cycles demand that their internal data be modified. If they
never changed, then people wouldn’t see them do much, and what’s the point
of that? While you don’t have to code this way in an OO or imperative style,
it does turn out that this is most often the case.

When you break out of that mindset, and put the immutable data outside
of an object context, then we find that the data gets passed around much
more to short-lived functions. A function takes the data, mutates it, and
then passes it off to someone else, who possibly mutates it again and returns
it to the caller, who returns it to his or her caller, and so on. When the
program behaves like this, then we can immediately see how functions can
run concurrently.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=54

Section 2.3 Chapter 2 · Concurrency and Parallelism 55

Memory Consumption

Another question that comes up with immutability is with respect to memory
consumption. Mutation implies copying and a lot of orphaned references that
eventually head to the reclamation department; i.e., the garbage collector.
Don’t concern yourself with it. At the very least, don’t concern yourself with
it until you can see that it’s a problem. We won’t go into modern garbage
collector design (mostly because I’m far from an expert), but the objects
that need to be reclaimed are usually in the first generation of the memory
manager and are handled very efficiently. There’s no pain involved here.

And, again, let’s not forget about the memory consumption that’s a factor
of all those defensive copies you need to make of your mutable data.

Advanced Immutability

Modification under immutability isn’t always easy. Sure, we have a map or
a vector or a list or some other standard library type that we can use and all
of that magical modification is simply done for us. But what about for our
own immutable types? For example, look at Figure 2.11.

We just want to add Fred to the meeting that’s happening on Wednesday.
But if we do that, then we’ll be modifying the list of attendees, which is
immutable. So, we’ll have to return a new list, and we’ll have to get the
meeting object to point to it, which means we’ll need a new meeting object.
If we do that, then we’ll need to modify the list of meetings to point to it,
and that means we’ll need to modify Wednesday so that it points to the new
list of meetings. Finally, we’ll have to modify the Week object to incorporate
the new version of Wednesday.

Whew! Fun stuff. . .
Is there a way to do it? Sure there is, but we’re not going to cover it

here.6 In Scala, you can use case classes with the helpfully generated copy
method that can ease your work a bit, but don’t stick with it for too long as
it’ll probably make your life rather hellish in the end. There’s a method for
doing this that has been encapsulated in Scalaz by implementing a version
of the Lens concept.

I highly encourage you to investigate the Lens when you come across
your next complex immutable type modification. You can find Scalaz at
https://github.com/scalaz/scalaz and several good tutorials on Scalaz

6Please insert mental smiley face with an evil grin. . .

https://github.com/scalaz/scalaz
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=55

Section 2.4 Chapter 2 · Concurrency and Parallelism 56

Figure 2.11 · This shows an immutable calendar-like structure of meetings
and we want to add Fred as an attendee to the meeting from 2pm to 3pm
on Wednesday. If the structure were mutable, then this would be a piece of
cake. Immutability makes this more difficult.

and the Lens by typing scalaz tutorial and scalaz lens tutorial
into Duck Duck Go.7 I’m also hoping to see several useful concepts such as
this covered in the yet-to-be-completed book, Functional Programming in
Scala written by Rúnar Bjarnason, Paul Chiusano, and Tony Morris (Man-
ning).

2.4 Chapter Summary

That was quite the whirlwind tour of concurrency, parallelism, the pains of
shared-state concurrency, and the wonders of immutability. We could have
gone on and on, but the goal of all of that is to lend some grounding to
much of the topics you’ll see in the rest of this book, not to discuss all of

7http://duckduckgo.com/

http://duckduckgo.com/
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=56

Section 2.4 Chapter 2 · Concurrency and Parallelism 57

the ins and outs of concurrency outside of the Akka context. We’ll see a lot
of asynchronous code and asynchronous design, which is all geared toward
attacking the problems we’ve discussed in this section.

The issues with threads and blocking vs. non-blocking calls (of your
own code), along with a whole host of other issues, will become easy in
comparison to what we’ve been doing thus far in our careers. On top of that,
it will open up a whole new world of possibilities that you may never have
thought of before.

So, let’s strap in and get going!

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=57

Chapter 3

Set Up Akka

Before we go any further, let’s set up so that you’re all ready to start coding
in Akka.

3.1 Scala Setup with SBT

The Simple Build Tool (SBT) has become a lot easier to work with over the
last year or so, and there’s a nifty little script that does for SBT, what SBT
does for code. I’ll show you how I work with SBT, and if you have your own
way of doing it, then go for it.

Download the SBT Bootstrapping Script

You can find the script on GitHub that front-ends SBT so that you don’t even
have to install SBT itself. The script is part of the sbt-extras project on
GitHub, so you can use git clone to pull down the project, but I’ll show you
a dead simple way. I highly recommend that you put the script somewhere
into your PATH and wherever that is, it should be writable directly by you;
(i.e., do not put it in /usr/bin). I choose to put it in $HOME/bin, since I’ve
already put that in my PATH and it’s certainly writable by me.

> curl https://raw.github.com/paulp/sbt-extras/master/sbt > ~/bin/sbt
> chmod 755 ~/bin/sbt

That’s all there is to it. I did say that this had become pretty easy, huh?

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=58

Section 3.1 Chapter 3 · Set Up Akka 59

Create an SBT Project

Next, we need to create the SBT project. Let’s put it into your home directory
in a subdirectory called code:

> mkdir -p ~/code/AkkaInvestigation
> cat <<EOH > ~/code/AkkaInvestigation/build.sbt
name := "AkkaInvestigation"

version := "0.1"

scalaVersion := "\scalaversion"

resolvers += "Typesafe Repository" at "http://repo.typesafe.com/typesafe/releases/"

libraryDependencies ++= Seq(

"com.typesafe.akka" % "akka-actor" % "\akkaversion"

)

EOH

Pull Akka Actors into SBT

Now we’ll run sbt update, so we can let SBT do its thing:

> cd ~/code/AkkaInvestigation
> sbt update

[info] Set current project to AkkaInvestigation

(in build file:/Users/quinn/code/AkkaInvestigation/)

[info] Updating {file:/Users/quinn/code/AkkaInvestigation/}default-6bd931...

[info] Resolving org.scala-lang\#scala-library;2.9.1 ...

[info] Resolving com.typesafe.akka\#akka-actor;2.0-RC1 ...

[info] downloading http://repo.typesafe.com/typesafe/releases/

com/typesafe/akka/akka-actor/2.0-RC1/akka-actor-2.0-RC1.jar ...

[info] [SUCCESSFUL] com.typesafe.akka\#akka-actor;2.0-RC1!akka-actor.jar (9583ms)

[info] Done updating.

[success] Total time: 14 s, completed Feb 16, 2012 5:23:32 AM

We’re now ready to go! Let’s test things out for real by creating simple
code that we can compile and run. We’ll use an Akka Future just to test and
make sure that everything can be compiled and run properly.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=59

Section 3.1 Chapter 3 · Set Up Akka 60

Take It for a Spin

Put the following into the src/main/scala/zzz/akka/investigation/MainAkka.scala:

package zzz.akka.investigation

import java.util.concurrent.Executors

import scala.concurrent.{Await, Future, ExecutionContext}

import scala.concurrent.util.duration._

object MainAkka {

val pool = Executors.newCachedThreadPool()

implicit val ec = ExecutionContext.fromExecutorService(pool)

def main(args: Array[String]) {

val future = Future { "Fibonacci Numbers" }

val result = Await.result(future, 1.second)

println(result)

pool.shutdown()

}

}

You don’t need to understand that code. What matters right now is that
it compiles and runs:

> sbt run

[info] Set current project to AkkaInvestigation

(in build file:/Users/quinn/Dropbox/book/AkkaInvestigation/)

[info] Compiling 1 Scala source to

/Users/quinn/Dropbox/book/AkkaInvestigation/target/scala-2.9.1/classes...

[info] Running zzz.akka.investigation.MainAkka

Fibonacci Numbers

[success] Total time: 3 s, completed Feb 16, 2012 6:46:38 AM

If you see the magic phrases, "Fibonacci Numbers" and [success],
then go grab a beer and let’s get moving.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=60

Chapter 4

Akka Does Concurrency

Akka is a domain-neutral concurrency toolkit designed for the purposes of
building scalable, fault-tolerant applications on the JVM. It provides many
tools to help you achieve your goals, and in this chapter we’ll start to un-
derstand how to work with those tools so you can start building your high-
quality, highly concurrent applications. At the end of this chapter, you should
be in a better position to begin thinking in the Akka paradigm.

4.1 The Actor

When we get past what Akka is and start looking at what it contains, it’s the
Actor that pops its head up first. The Actor does most of the heavy lifting in
our applications due to its flexibility, its location independence, and its fault-
tolerant behaviour. But even beyond these features, there’s an interesting
consequence of the Actor design—it helps make concurrency development
more intuitive.

Your day-to-day world is full of concurrency. You impose it on yourself
as well as the people around you, and they impose it on you. The real-world
equivalents of critical sections and locks as well as synchronized methods
and data are all naturally handled by yourself and the people in your world.
People manage this by literally doing only one thing at a time. We like to
pretend that we can multi-task, but it’s simply not true. Anything meaningful
that we do requires that we do just that one thing. We can pause that task
and resume it later, switch it out for something else to work on and then
return to it, but actually doing more than one thing at a time just isn’t in our
wheelhouse.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=61

Section 4.1 Chapter 4 · Akka Does Concurrency 62

So what if we want to do more than one thing at a time? The answer is
pretty obvious: we just use more than one person. There’s not much in the
world that we’ve benefited from that wasn’t created by a gaggle of talented
people.

This is why Actors make our application development more intuitive and
our application designs easier to reason about: they’re modeled after our day-
to-day lives.

Concurrency Through Messaging

If you want a coworker to do something for you (such as write a bunch
of tests for your code because you’re simply too busy playing NetHack1 to
engage in such trivialities), what do you do? You send the poor sod an email,
of course.

You Coding Intern

Write tests, curse,
make voodoo doll.

I'm trying to write up that
report for your supervisor, but
I just don't seem to have the
time due to all these tests I
have to write… if you get my
drift.

The tests are
complete, sir.

Figure 4.1 · Chances are you’ve either been the coding intern or you’ve been
the other guy. If you’ve ever been the coding intern, then you’ll be the
other guy eventually. It’s being the intern that makes the other guy—nobody
knows whether the chicken or the egg came first.

It’s just that simple. Get the right people in place, have a decent mech-
anism for shunting messages around (bonus points if they’re durable), and

1http://www.nethack.org/

http://www.nethack.org/
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=62

Section 4.1 Chapter 4 · Akka Does Concurrency 63

you’re good to go. Hell, if you could spawn enough interns you may be able
to play NetHack all day, every day, and even get paid to do it.

Actors follow this model. You send an Actor a message that tells it to
do something, which it does presumably quickly and well, and then it tells
you what it did. You can scale this model out to thousands or millions (or
billions?) of Actors and many orders of magnitude more messages and your
applications are still reasonable, not to mention huge and fast.

Concurrency Through Delegation

Given what happened in Figure 4.1, it would seem pretty obvious that we
can delegate work from one Actor to another, but you can take this simple
idea pretty far to achieve your goals. Since interns are just so wonderfully
cheap, there’s no reason we can’t have a ton of interns chained to desks in a
dark room somewhere churning out whatever it is they are supposed to churn
out.

You

Intern

Intern

Write a test

Write another
test

Write yet
another test

Intern

Figure 4.2 · Three interns can write three tests faster than one intern can write
three tests.

But Figure 4.2 is a pretty ineffective use of such a cheap resource. It
might even be better to have a single goal in mind and set a bunch of interns
to the task. They can each do it the exact same way, or they can all use a

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=63

Section 4.1 Chapter 4 · Akka Does Concurrency 64

different method for achieving the goal. You don’t need to care how they
get it done, just that someone gets it done before the rest. The intern who
wins gets a decent report to his or her supervisor, and maybe even a job offer
(although, seriously, you’re pretty mean) while the other interns get a rather
unfavorable letter sent to their supervisors.

You

Intern

Intern

Intern

Email system

Write the tests. The first
guy who finishes gets
my recommendation.
The rest… you're dead
to me.

Done!

Figure 4.3 · It’s quite possible that these interns have chosen different meth-
ods for implementing the tests. The second one seems to have chosen a
decent toolkit, or didn’t sleep, or is high on some sort of amphetamine,
or. . . who cares? He won.

Figure 4.3 gets a particular job done quicker by burning resources with
wild abandon. If you’ve got the people and they’re not doing anything else,
then why not give them some work to do? Sure, you might throw the results
of their efforts right in the trash, but who cares? OK, maybe they’ll care, but
who cares about that?2

So what if your interns realize what you’re doing and one of them decides
to learn from your example? If he’s got the resources available to him, then

2Jeez, you’re really mean.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=64

Section 4.1 Chapter 4 · Akka Does Concurrency 65

he’s probably going to win if he follows your tactics. There’s nothing to stop
him from doing something like what’s in Figure 4.4.

You
Intern

Intern

Intern

Email system

Write the tests. The first
guy who finishes gets
my recommendation.
The rest… you're dead
to me.

Done!

Friend

Friend

Write a test

Write another
test

FriendWrite yet
another test

Done

Done

Done

Figure 4.4 · So this intern is pretty smart, or at the very least, sneaky. There’s
nothing to say he can’t do exactly what you’re doing. Not only has he done
it, he’s hidden it by ensuring that his friends return their results to him so that
he can send them to you. You’re clueless.

Interestingly enough, the guy who won in Figure 4.4 would probably be
the guy who you hired, but he’d also be the guy that you fired because his
friends would eventually get tired of working for free, and he’d be exposed
as the lazy, slack-jawed worker he really is. Too bad for you.

Delegation for Safety

While we’re on the subject of delegation, we should probably talk about one
of the other advantages it provides: safety. When was the last time you heard
of a sitting U.S. president heading out on a mission with a Navy Seal team
to rescue one of his constituents from a group of terrorists? OK, maybe it’s
because the guy’s seriously out of shape, or couldn’t hit the broadside of a
barn with a bullet the size of a fist from 10 paces out, but let’s assume he’s

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=65

Section 4.1 Chapter 4 · Akka Does Concurrency 66

awesome. He still wouldn’t go on that mission. Why not? He’s just too
damn important. There are times when Actors are too important to go on
dangerous missions, and when that’s the case, we delegate the mission to
someone else.

You

Super Important stuff in
your brain. We wouldn't
want anything to happen
to it (your brain, that is).

We need to rescue
someone from the
clutches of evil-doers!

Joe

Mary

Joe can do it!

Joe didn't make it :(

Mary can do it!
Success!

Figure 4.5 · Poor Joe. The evil doers were just too much for him. But this
isn’t a problem for you—you’ve got Mary! Mary can get the job done.

You’re happy and safe in Figure 4.5 because you can delegate the dan-
gerous work to others. You may be mean, but you’re certainly no fool! All of
that cool information that you hold—the nuclear launch codes, the itinerary
for that policy summit, your spouse’s birthday, and all of that other important
stuff—is safely locked away in your brain. Unfortunately, Joe didn’t make it,
but truth be told, his brain was full of quotes from episodes of Family Guy.
Cool as that is, it’s just not vital stuff.

While We’re on the Subject of Death

We weren’t explicit with figure 4.5, but let’s be perfectly frank about it—Joe
died. It’s unfortunate, but it happens. An Actor’s life isn’t always an easy or
safe one but the point is that the Actor does have a life and along with it, a
life cycle. We’re going to see much more about the Actor life cycle later, and
find ways in which we can hook in to its life cycle, as well as the life cycles

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=66

Section 4.1 Chapter 4 · Akka Does Concurrency 67

of others. What’s interesting at the moment is that there is a life cycle and
that it (sort of) matches what we’re used to in real life. The people you work
with, the interns you are continuously beating on (metaphorically speaking,
of course) had to be born at some point, and there will come a day, sooner or
later, when they’re going to give up their ghost.

But the death of an Actor is nothing to get upset about. Actor death can
be a very good thing. In an Akka application, there’s always someone look-
ing out for Actors; someone’s always got their back. It’s not really the fact
that they die that is so great, it’s the fact that someone is (or many someones
are) there to watch it and do something about it that is. There is, at most, one
guy around to clean him up, resurrect him, ignore him, and let someone else
figure it out or just ignore him altogether. We can literally just pretend that
nothing bad actually happened.

When death occurs, there’s only one guy who manages to do something
with the deceased but there are many guys who can react to that death and
take action upon notification of it. Presumably that notification is something
along the lines of what we saw in Figure 4.5. The notification in that case was
the unfortunate message: Joe didn’t make it. You were able to understand
the implications of that message and send Mary to take care of it. If you had
sent her first, Joe would probably still be with us, but hey, you can’t always
make the solid decisions.

There’s nothing wrong with creating Actors for the sole purpose of putting
them in harm’s way. In fact, it’s a very good thing. So don’t be afraid of
giving birth to an Actor only to have him meet his ultimate demise micro-
seconds later. He’s more than happy to give his life in the service of his
parent’s good.

You also shouldn’t be afraid to use death to your advantage. Very often,
an Actor can self-terminate when its work is completed and that death can
be a signal to anyone watching that the time has come to move on to the next
operation.

Doing One Thing at a Time

Actors only do one thing at a time; that’s the model of concurrency. If you
want to have more than one thing happen simultaneously, then you need to
create more than one Actor to do that work. This makes pretty good sense,
right? We’ve been saying all along that Actor programming draws a lot on
your day-to-day life experiences. If you want work done faster, put more

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=67

Section 4.1 Chapter 4 · Akka Does Concurrency 68

people on the job.3

Message

Message

Message

Message

Someone Enqueue

Mailbox Queue

Actor

DispatcherDequeue

Non Blocking

Pr
oc

es
s

D
on

e

Non Blocking

Dequeue Next

Figure 4.6 · The message processing for Actors is not unlike the types of
message processing that you might be familiar with if you’ve had any ex-
perience with message pumps inside GUI frameworks. This is a simplified
view of the Actor constructs in Akka and it doesn’t give a very good indi-
cation of the power behind it, but that’s a good thing for the moment. If I
blew your mind now, then you wouldn’t have the mental capacity to continue
reading.

Figure 4.6 provides a taste of what the Actor structure looks like with
respect to processing things.

1. Messages come into a mailbox through (unless you want otherwise) a
non-blocking enqueue operation.

• This allows the caller to go about his business and doesn’t tie up
a waiting thread.

2. The enqueue operation wakes up the dispatcher who sees that there’s
a new message for the Actor to process.

3Those of you who are thinking of the Mythical Man Month have earned a cookie, but
forget about it. Actors are not bound by such trivialities.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=68

Section 4.1 Chapter 4 · Akka Does Concurrency 69

• In the case of Figure 4.6, we can see that the Actor is already pro-
cessing a message, so there’s really nothing for the dispatcher to
do in this case, but if it were not processing anything at the mo-
ment it would be scheduled for execution on a thread and given
the message to process.

3. The dispatcher sends the message to the Actor and the Actor processes
it on whatever thread it was put on to do the work.

• During the time when the Actor is processing the message, it’s
in its own little world.

• It can’t see other messages being queued and it can’t be affected
by anything else that’s happening elsewhere (unless you’ve done
something relatively silly, that is).

• The Actor is just head-down doing what it needs to do. If it takes
a long time, then it’s going to tie up that thread for a long time.
It’s just that simple.

4. Eventually, the Actor will finish processing the message.

• The mere fact that it’s complete will signal the dispatcher and it
can then pull the next message off the queue and give it to the
Actor to start the cycle all over again.

Details of the Akka implementation are subject to change, so that may
not be 100% accurate, of course, but the basic notion is correct. The whole
point is that it’s the messages that matter and the processing of those mes-
sages happens one at a time. The act of queueing them and dispatching
them is entirely non-blocking by default, which allows threads to be truly
dedicated to doing work. Akka does a good job of staying out of your way
so that when you have scalability problems or bottlenecks in performance,
it’s your fault. And that’s the great news: if it’s your fault, then you’re in
complete control of fixing it.

What’s more is that the processing of those messages happens in com-
plete isolation from other work. It’s simply not possible for anything to
happen that can screw with what the Actor is doing right now (again, unless
you do something really silly). You don’t need to lock the Actor’s private
data, you don’t have to synchronize a set of internal operations that must be
atomic, all you have to do is write your code.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=69

Section 4.1 Chapter 4 · Akka Does Concurrency 70

The Message is the Message

Have you ever heard the phrase, “The medium is the message?”4 I’m sure
it made great sense to Marshall McLuhan when he said it and I’m sure that
it resonates with a bunch of other people, but it always seemed pretty silly
to me. You know what really makes a good message? A message. Thank-
fully, Actor programming is really all about the message. It’s the message
that travels from place to place, and it’s the message that carries the really
interesting state. For our purposes, it’s also the message that carries the type.
A strongly typed message allows us to write code that makes sense to the
compiler, and if we can make the compiler happy then we’re probably going
to be pretty happy ourselves.

But let’s step back for a second. What does it mean to say that a message
carries the interesting state? Aren’t Actors the important mechanism here?
Isn’t it Actors that do things? Of course it is, but if you remember back to
Section 2.3 you might recall that objects that change can be a bit unwieldy. If
the entire state of a running algorithm is contained inside the messages used
to execute that algorithm, then we are free to give that work to any Actor with
code that can process that state. What’s more is that the Actor, which may
be processing the algorithm at any given moment, isn’t burdened by weird
internal data that it has to keep alive during complex message processing.

Aggregating RSS Feeds

To illustrate, let’s say you want to collect data from several RSS feeds, ag-
gregate them into one interesting content feed, and then send them off to
somewhere else. What’s more is that you want to make sure that you can
scale the problem to multiple threads when you become successful and have
to do this for a thousand users simultaneously. You don’t care about making
a single user’s requests go quickly, you care about increasing your capacity
for the number of users on a given machine and their given requests, so we’re
going to do an individual user’s set of requests sequentially.

Figure 4.7 shows us what an algorithm would look like that behaves this
way. Note that the messages that travel between different invocations of the
Actor have two separate sets of data in them: the list of sites to pull data
from, and the results of pulling that data. Initially, the list of sites is “full”
(ı.e., has N things in it) and the list of results is empty. As the algorithm

4http://en.wikipedia.org/wiki/The_medium_is_the_message

http://en.wikipedia.org/wiki/The_medium_is_the_message
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=70

Section 4.1 Chapter 4 · Akka Does Concurrency 71

Feeds = [site1, site2, … siteN]
Results = []

Feeds = [site2, … siteN]
Results = [results1]

Feeds = [… siteN]
Results = [results1, results2]

Feeds = []
Results = [results1, results2, …
resultsN]

Msg 1

Msg 2

Msg 3

Msg N

Actor
Series of tubes

that carry
information

Aggregated RSS Feed

Figure 4.7 · When we’re processing a series of RSS feeds, we can carry
the full input and output in the messages themselves. The business logic in
charge of downloading the RSS feeds from the series of tubes is held inside
the Actor, but the information about what to download and the results of the
download travel in the messages between the iterations of the algorithm.

progresses, the list of sites to visit becomes smaller and the list of results
becomes proportionally larger. Eventually the Actor gets a message where
there’s nothing to do; the list of sites to visit is empty. When it gets this
message, it triggers different behaviour that collects the results into a single
aggregated feed and then publishes that forward to someone else (which we
don’t illustrate).

The fact that we’ve broken the problem up into individual messages en-
sures that we give back the executing thread at semi-regular intervals. This
keeps the system responsive and lets it handle a greater capacity of users.
The Actor that’s doing the processing could even manage a bunch of dif-
ferent users for us if we want, because it’s clueless about what’s happening
between invocations; all of the state is held inside the messages themselves.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=71

Section 4.1 Chapter 4 · Akka Does Concurrency 72

Message Immutability

The messages that are used in the RSS aggregation algorithm from Figure 4.7
are immutable. This will keep coming up—it came up before in section 2.3
and it will come up again. In order for Akka to be able to do the cool things
that it does, and to work quickly and deterministically, it needs you to make
sure that your messages are immutable. It’s not just a good idea, it’s the
Akka law. Break it and you break yourself. Don’t break yourself.

Strongly Typed Messages, Loosely Typed Endpoints

The fact that the message is so important doesn’t diminish the Actor’s role,
but it does underscore the stark difference between the two. Messages are
key to the model of the Actor application but it’s the Actors that facilitate
messaging.

One of the things that really helps Actors deliver on power is the fact
that they’re loosely typed; every Actor looks like every other Actor. They
may behave differently or may accept a different set of messages, but until
someone sends those messages, you’ll never know the difference.

Now, before we extol the virtues of the untyped Actor, we’ve got to get
something out of the way: Akka has a typed Actor as well. We’re going
to ignore it in this book because, while the typed Actor has its purpose, it’s
the flexibility of the untyped Actor that drives a lot of power into an Actor
program. To further explore this idea, let’s look at how the Actor and the
messages interact.

An Actor Is Behaviour

One of the ways to view an Actor/Message pair is to see them together as
loosely equivalent to a function. Figure 4.8 shows one side of how you can
picture this; the Actor contains the behaviour that is driven forward by the
message. The message is the symbol we use to describe the particular be-
haviour that the Actor will execute (such as “Buy from the Grocery Store”),
and in order to execute that behaviour, the Actor will probably need some
data (although not necessarily). This data is held in the body of the message.

This decoupling of behaviour from the invocation definition is also not
unlike a polymorphic function call. An interface can declare the method sig-
nature but you can use any number of implementations of that interface to
implement the method signature in whatever manner is reasonable for those

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=72

Section 4.1 Chapter 4 · Akka Does Concurrency 73

Buy from
the Grocery

Store

Milk EggsButterFlour

"Function" name

"Function" Parameters

Actor

"Function" body / behaviour

Figure 4.8 · One way of viewing the Actor/Message pair: Only as a full
set of Message, Message body, and Actor do we realize the full notion of a
function. When the Actor processes the message, it realizes what behaviour
it needs to invoke via the message, and uses the message body to drive the
behaviour.

implementations. However, with an untyped Actor you have more flexibil-
ity due to the fact that the Actor does not need to implement the strongly
typed interface. The Actor must only be able to process a message and that
message is the strongly typed entity.

Now, as we said above, this is only part of the story. We can’t just throw
the word function around as though its meaning were so easy to tailor to
our needs. Functions, in most people’s definition, evaluate their input data to
output data. Actors almost by definition have side effects. To truly view them
as functions instead of void procedures, we need to complete the picture.
The next step is realizing that Actors can send messages as well. Figure 4.9
shows the obviousness of that idea.

We’re really stretching the analogy now. We can think of the Actor as
returning the new message, if that helps you wrap your head around some
of the concepts of Actors. However, we must recognize that it only really
works as an analogy when the entity that receives the returned message is
the same one that sent the request, as in Figure 4.10.

In truth, the Actor isn’t necessarily returning the message; it’s really
just sending the message to some other entity, which is probably another

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=73

Section 4.1 Chapter 4 · Akka Does Concurrency 74

Buy from
the Grocery

Store
Actor Car full of

groceries

Still just the behaviour

Input Output

Figure 4.9 · The Actor is now an input/output function. . . mostly.

Buy from
the Grocery

Store

Actor

Car full of
groceries

Some entity

Figure 4.10 · The simplest case where the initiating entity receives the even-
tual response from the Actor, thus completing the function analogy.

Actor. The entity to which he’s sending it may be the initial Actor that made
the request or it might be something else entirely. The Actor itself doesn’t
really need to know anything about who sent what or who he’s sending things
to. All of this plumbing can be set up on-the-fly by anyone who interacts
with the Actor. For example, let’s have someone tell an Actor to get some
groceries, but to deliver them to someone else, as depicted in Figure 4.11.

Because we’ve spent most of our programming lives writing functions,
it’s important to try and draw a parallel to them. To a certain extent, there
is a relationship there, but it breaks down fairly quickly, as you can see.
An Actor is behaviour and we can wire up that behaviour however we see
fit. This wiring can be simple, as in the case of Figure 4.9 or it can be far

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=74

Section 4.1 Chapter 4 · Akka Does Concurrency 75

Buy from the
Grocery Store

Deliver to Betty

Actor

Car full of
groceries

Some entity

Betty

Figure 4.11 · The Actor that’s getting the groceries isn’t under any contract
to send results back to the original guy making the request. In this case, the
original request passed a reference to Betty in the message, which directs the
Actor to deliver the groceries to her.

more complicated than anything we’ve seen thus far. Not only that, it can be
entirely determined at runtime. You can dynamically create new Actors to
handle work that wasn’t able to be statically constructed in your editor. This
is part of the Actor paradigm; we need to get your brain to move beyond the
analogy of the function and start thinking in terms of Actors. That’s part of
what this chapter’s all about.

Add Behaviour by Adding Actors

One of the excellent things you can do with Actors is to add behaviour to
an algorithm by inserting Actors into the message flow. For example, let’s
say you’ve got a system that distributes a bunch of events to Actors and you
want to start recording those events to disk. Rather than mixing behaviour
into a single class or inheriting functionality, in the style of OO, we have a
different alternative. With untyped Actors, you can get away with putting a
tee5 in between the source and destination Actor, as depicted in Figure 4.12.

This sort of thing happens all the time in Actor programming. When a
problem presents itself, you tend to solve it by way of creating more Actors

5As in the good ol’ Unix tee program.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=75

Section 4.1 Chapter 4 · Akka Does Concurrency 76

Source
Actor

Destination
ActorEvent

"Tee" Actor

Disk

Event

Event

Figure 4.12 · A simple pattern for replicating messages to go to multiple
destinations from the source. In this case, we’re just sending it to where it
was supposed to go originally, as well as streaming it to disk.

with discrete behaviour than by adding functionality to existing Actors. It’s
the fact that the Actors are untyped and that the real information is contained
within the messages that makes this sort of flexibility possible.

Rather than modifying N classes or functions by putting in a callout (e.g.,
to a logging function) or refactoring to a new and very specific class hierar-
chy, it may be quite natural to slide a new Actor into the message flow to let
it intercept certain messages, reroute them, duplicate them, transform them,
or whatever else is required by your situation.

The separation of typed-ness between the strongly typed message and
the loosely typed Actor brings power to your designs and your code.

Don’t Be Scared

You’re a type junky. I get it. I’m a type junky too. One of the major reasons
I write in Scala is because it gives me a strong type system, and that lets me
know that my programs are sane when the compiler spits them out. How can
type junkies live in the untyped world of Actors and still manage to sleep at
night?

Web servers are untyped as well, and when we write a web service we’re
sending messages to an untyped endpoint. This doesn’t make us cringe be-
cause there are so few of them. I only have a few URLs that I code against so

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=76

Section 4.1 Chapter 4 · Akka Does Concurrency 77

it’s easy to keep it straight in my head and I can be quite sure that messages
aren’t going to the wrong spots. But when you have an Actor system, you
don’t have a few endpoints, you have tens to thousands to millions. Millions
of untyped endpoints can give type junkies the shakes.

Don’t sweat it. I have no numbers or theory to convince you that no sweat
should be shed over this lack of type safety; all I can say is that I’ve never
sent the wrong message to an Actor. This is probably due to the fact that
Actor programs are so easy to reason about; when things are clear, confusion
doesn’t exist, and it’s confusion that makes us mess stuff up.

But, even if we do send the wrong message to an Actor from time to
time, it’s going to be worth it; so worth it, you won’t even think about it. If
you’re a type junkie, let it go. You’ll still use the type system for a ton of
stuff and it will be the sweet safety net that it’s always been. But when you
leave it behind for this one type of object, that will free you up to do some
incredible things.

Reactive Programming

Actor programming is reactive programming. Another way to say this is
that it’s event-driven programming. Event programming has been with us
for a long time, but it’s arguably never been epitomized as much as with
Actor programming. The reason for this is that Actors naturally sit there just
waiting for something to happen (ı.e., waiting for a message).6 It’s not the
act of sending a message that’s important; it’s the act of receiving one that
really matters.

There are two major reasons for this:

1. People like to think in terms of timing. They want to know how long
it takes for something to happen after a message is sent.

• This is a very natural expectation. But in Actor programming,
you have to put this into context.

• What does it mean for the message to be sent in the first place?

• Is it in the Actor’s mailbox? Is it on a queue ready to be sent to
the mailbox? Is it traversing a network, and is there a store-and-

6OK, they don’t “wait” in the traditional sense; that would tie up threads needlessly and
that would be downright dumb.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=77

Section 4.1 Chapter 4 · Akka Does Concurrency 78

forward system that it’s been handed off to? Is the queuing of a
message a synchronous or asynchronous function?

• Once it’s in the mailbox, what does that mean? Is it one of 20,000
other messages waiting to be processed, or would the mailbox be
empty otherwise? Is it in a priority mailbox and is it so low that
it’s going to be trumped for the next little while?

Clearly, the act of sending something isn’t really all that deterministic.
So when you start trying to put bounds or meaning on it with respect
to timing, things get very murky very quickly.

2. People also like to attach significance to the sending of the message
much like they would a function call.

• If we say Math.exp(-5.0), then the act of invoking that func-
tion has meaning. The code that underlies the exp function is
executed on the current thread. Dead simple.

• But, due to all of the reasons discussed above, we can’t say the
same about queueing a message in an Actor’s mailbox.

The act of sending a message is important, since without it nothing
would happen, but it’s the reception of that message that carries true
meaning in Actor programming. When the Actor pulls that message
out of its mailbox and begins processing it, then it has truly received
that message. It’s at this time when meaning is applied in the sense of
execution.

These reasons illustrate why reception is the important part of message
passing in an Actor system, but it doesn’t make the reactive programming
argument completely solid.

Well, you won’t get a completely solid argument for it, since nothing is
black and white in our complex world of software development, at least noth-
ing at this level of complexity. What’s important right now is that you start
thinking along those lines, especially if you’re not used to it. It’s perfectly
reasonable to code your Actors to react to events that occur in the system,
which is something that isn’t necessarily common in standard OO code (for
example). It can be as simple as the difference between these two statements:

• Turn the car left.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=78

Section 4.2 Chapter 4 · Akka Does Concurrency 79

• The steering wheel on the car has turned to the left.

In the first, someone issued a command or a directive that says to do
something. In the second, someone posted an event that indicates a change
to the state of the world. This change to the state of the world would result
in the car turning to the left (we hope), which may cause another change to
the state of the world, and so forth.

The difference between the two is subtle, but important. Actor program-
ming isn’t just about a set of tools, but about thinking differently about how
you design and write your software. While you aren’t going to spend all of
your time writing reactionary code, there is some great potential for improv-
ing your designs by thinking in a more reactionary style in many cases.

4.2 The Future

In the early days of Akka, the Actor was the true headliner of the production,
and the Future was mostly there to support the Actor. As time progressed, the
Akka team built out the Future concept more and more, and now in 2.x the
Future has come into its own. It has grown up into a full-fledged paradigm
of concurrent programming that helps you solve tons of interesting problems
with speed and grace.

Unlike the Actor, the Future should be much more familiar to most, so
we’ll be blasting past it a bit quicker than we did the Actor. But fear not,
these are the early stages only; we’ll be covering much more of the Future in
later chapters.

Contrasting with the Actor

The Actor is not a silver bullet. There are many times when the problem
with which you’re faced isn’t solved well with Actors. One of the easiest
examples I find is the idea of multiplying a bunch of matrices together. It
looks like what we’ve got in Figure 4.13.

We would like to parallelize this computation in order to saturate all of
our cores and/or all of our machines. To break the problem up, we can group
the multiplications, evaluate them in parallel, and then multiply the results
together to get one final matrix. Figure 4.14 shows us a specific case of two
groups of matrices, but we can generalize the idea to as many groups as we
need.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=79

Section 4.2 Chapter 4 · Akka Does Concurrency 80

1

1

1

2

2

2

3

3

3

1

2

3

1

2

3

1

2

3
X . . .

7

6

2

5

9

5

2

1

3

10 million more

Figure 4.13 · A simple representation of 10,000,003 matrices that we want
to multiply together into a final result.

Matrix Matrix Matrix Matrix

Group A Group B

Result A Result BX

x . . . xx . . . x

Final Matrix

Figure 4.14 · Grouping a set of matrices to be multiplied into two groups:
Group A can be multiplied together at the same time as group B. Once both
results have been obtained, we can multiply the result into a final, single
matrix.

There’s a subtlety to Figure 4.14 that might not be obvious to you if
you’ve never done this before. When multiplying matrices together, order
matters. It’s not the same as multiplying N numbers together, which you can
do in any order you’d like (5×2×7 is the same as 7×5×2). The dimensions
of the matrices have to line up properly, and if you start shuffling the order

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=80

Section 4.2 Chapter 4 · Akka Does Concurrency 81

around, then you’re going to find that the dimensions won’t line up anymore
or, if they do, you’re not going to get the right answer.

The challenge here isn’t the grouping and multiplying together of those
groups since their ordering is already set for us. What’s harder is taking
the results and keeping them in the right order. You must multiply Aresult ×
Bresult ×Cresult . . . and so on. If we model this problem with Actors, then
keeping the results in the right sequence is non-trivial. It’s not brutal, but it’s
a pain. Figure 4.15 shows the core of why it’s a problem.

Result
Actor

Group A
Multiplier

Group B
Multiplier

Final Group
Multiplier

Returns 12th

Returns 40th

Returns 1st

Figure 4.15 · When you give work to a set of Actors, they will complete it
at non-deterministic intervals. This means that response messages will come
back in what is effectively random order.

You can have a single Actor receive all of the matrices to be multiplied; it
can then group them and spawn new Actors to multiply the groups. As each
group completes, it can send the result back to the original Actor and it can
store that result while it waits for the rest. But it can’t just store it without
thinking about where it needs to go. So you end up having to pass a group to
an Actor and give it some sort of sequence number as well. When the result
comes back, it must return the same sequence number so that the original
Actor can slot it into the right spot. In addition, as each result comes in, the
Actor must check to see if the latest result is actually the last result and, if
so, it can then multiply the results together and then pass the final result off
to someone else.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=81

Section 4.2 Chapter 4 · Akka Does Concurrency 82

Whew! That’s a lot of work. It’s certainly doable, but it’s way more of a
bother than you’d like. Fortunately, the Akka Future implementation makes
this problem much easier for us.

Futures Are Great at Being Context-Free

One thing that Futures are great at is accelerating “raw computation,” which
is why we’ve started by looking at matrix multiplication. The information
required to multiply N matrices together is simply the matrices themselves
and their ordering. We don’t need anything from a disk, or the network
or a user or anything of that sort. All we have to do is just plow through
N matrices, multiplying them together. If you want to parallelize a very
deterministic algorithm, Futures are the way to go.

So, how would Futures help us solve the matrix multiplication problem
better than Actors? They solve the two biggest problems we have: maintain-
ing the sequence and knowing when everything’s done (see Figure 4.16).

Future
Group C

Future
Group B

Future
Group A

. . . Future
Last Group

Result CResult BResult A . . .Future Last Result

Sequence

Sequence

Figure 4.16 · Akka’s Future implementation allows us to take a list of Fu-
tures and convert them to a Future that contains a list of their results, and it
maintains the same sequence as the original Futures.

All we need to do is transform our list of matrices into a list of a groups
of matrices, and then transform that into a list of Futures that compute the
multiplications.

val list = ... list of matrices ...

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=82

Section 4.2 Chapter 4 · Akka Does Concurrency 83

val grouped = list.grouped(5000) // 5000, just for fun

val futures = grouped.map { m => Future { ... multiply them ... } }

We’ve obviously left out some details, which aren’t really important for
us right now. The bottom line is that we’ve converted our list of matrices
to a list of Futures and the only Akka-like thing in that code snippet is the
construction of the Future with a closure that multiplies the group.

Now we need to collect things, which was the same problem we had to
solve with the Actor-based approach. We don’t have the sequencing problem
since the list of Futures is in the same order as the groups, but how do we
know when all of the Futures complete? We’re not going to go into any detail
about what you’ll see because we’re not ready for it, but the simplicity of it
should get you thinking in the right mode.

val results = Future.sequence(futures)

// results is now a Future whose value is the list of resulting group

// multiplications.

val finalResult = ... multiply the last list of matrices together ...

Again, we’ve left some details out, but that’s the bulk of it. Not bad for
half a dozen lines of code, eh?

Futures Compose, Actors Don’t

Actors are great at many things, as we’ve seen, and what we’ve seen is
merely a glimpse into their potential. But one of the things that Actors don’t
do well is compose.

The fact that Actors don’t compose is rather significant, and if you’re
a devotee of functional programming, or you’ve worked with OO patterns
such as the Decorator7 or Chain of Responsibility,8 then you understand that
significance.9 Functional composition, in particular, gives us a level of ex-
pressiveness that brings a large amount of power and flexibility to our daily
coding. What if we could bring that level of expressiveness to our daily
coding while at the same time mixing in concurrency? If the picture of a

7http://en.wikipedia.org/wiki/Decorator_pattern
8http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
9I do apologize for lumping the OO composition in the same league as functional com-

position. While I’m quite aware that they don’t belong together, for the sake of establishing
familiarity I hope you’ll forgive me.

http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=83

Section 4.2 Chapter 4 · Akka Does Concurrency 84

Tyrannosaurus Rex slam-dunking a basketball during the final moments of
an inter-galactic game of hoops against the backdrop of 1.5 billion simulta-
neous supernovas just popped into your head, then you’re getting the idea.

The Futures implementation in Akka allows us to set up sequential pipelines
of code that run asynchronously to other pipelines, but also allows us to cre-
ate an awesome interplay of parallel and sequential pipelines that run to-
gether, are still very easy to reason about, are concise, and still very func-
tional.

Futures Work with Actors

Futures are designed to work with Actors. The converse isn’t really true, but
that’s simply because there’s no reason for it to be. A long time ago, Akka
used to have a whole bunch of ways to send a message to an Actor. The
Actor itself had three methods declared on it: !, !!, and !!!. No, that’s
not a stutter. The different methods signified that the call could be non-
blocking, blocking, or Future-based, respectively. This was a decent model
for learning how to write the API, and the Akka team learned a lot from
it; they learned that it wasn’t great. Since then things have been changed,
and only the non-blocking version is used. The Actor itself doesn’t know
anything about Futures.

The Actor and the Future bind together using an external pattern and
the Future is the one that understands what an Actor is (for all intents and
purposes). It’s really as simple as Figure 4.17.

One of the many things that this allows is the continuation of the pipelin-
ing concept. A Future can be used to coordinate responses, and then pipe
that response message to another Actor instance. And of course all of the
usual transformations you’d like to apply to the resulting message can be ap-
plied before piping it to that Actor. The amount of flexibility provided by the
Future-to-Actor relationship creates a partnership in the Akka toolkit that is
greater than the sum of its parts.

Thinking in the Future

As with everything else in Akka, using Futures isn’t just about tossing an-
other tool in the chest, it’s about allowing you to think about your code dif-
ferently. We don’t need to worry about “running this in parallel” or “waiting
for that to complete” or “putting that other thing on a thread.” We don’t need

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=84

Section 4.3 Chapter 4 · Akka Does Concurrency 85

Future Actor

"Request"
Message

"Response"
Message

Figure 4.17 · Futures can tacitly bind themselves to Actors by representing
themselves as the “sender” of the request message. Assuming the Actor
responds to the sender, the response will go back to the Future. This entire
interplay between the Actor and the Future is non-blocking.

to worry about building out the future by hand (ı.e., by creating work to go
on threads, or any of that nonsense). We simply construct our algorithms and
let the Future happen for itself.

For example, one thing we might do in our day-to-day may be to create
a couple of queues for different threads to use for communication. One side
may pull work out from their queue while the other side polls, or otherwise
waits, on their own queue for results. With Futures, we don’t need to think
in that manner anymore. We would create a Future to do the work, and
then compose another Future on top of it to process the results. Everything
can be done from the call site directly and we don’t concern ourselves with
queues, messages, protocols, or even threads. The Future just unfolds as
we’ve defined, without our having to construct any scaffolding to realize that
Future.

4.3 The Other Stuff

There are many other tools in the Akka tool chest but most of them dovetail
with either the Actor or the Future, so you’ve been introduced to the most
important concepts you need in order to understand the rest.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=85

Section 4.3 Chapter 4 · Akka Does Concurrency 86

So what’s the rest?

The EventBus

The EventBus is a nifty little Pub/Sub abstraction that evolved out from an
internal Akka implementation that the team thought the world might just
make some decent use out of. You’re going to find out that they were right.

As we work with messages and events, the idea of distributing certain
types of event classes to various types of endpoints just naturally becomes
desirable. This happens on a micro-level all the way up to a macro level.
You might want to have your Actor send certain messages to a few friends
that have an interest in what it has to say, or you might want to broadcast a
small amount of events across your entire super-computing cluster of Actors
that spans the entire Northern Hemisphere.

The Scheduler

Concurrent programming, especially coupled with the concepts of events,
has always needed timed or future-based events. Akka provides you with a
scheduler that executes functions at timed intervals or single operations at
some point in the future. It even provides a special construct for sending
messages to specific Actors in the future.

Not much is alien to us in the world of the scheduler so you should be
pretty familiar with the concept. We’ll see it and use it extensively so if
you’re not familiar with it now, you will be.

Dataflow Concurrency

Dataflow concurrency builds on Futures and allows you to look at your ap-
plication’s concurrency from the point of view of the data that it uses.

Instead of creating your application as a set of operations that happen
in parallel, you can think of it more as algorithms that operate on data. At
some point, a piece of data acquires a value, which allows other parts of the
application that are waiting on that data to move forward. It operates more
like an application that’s using locks and condition variables than one that’s
using Futures, except that it’s much more deterministic and it doesn’t block
threads. Figure 4.18 shows the difference.

With Futures, our goal is to run functions concurrently with other func-
tions and rendezvous on the results of those functions if we need to. When

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=86

Section 4.3 Chapter 4 · Akka Does Concurrency 87

Future 1

Future 2a

Future 3

(and so on…)

Algorithm 1

Algorithm 2

Algorithm 5

Algorithm 3

Algorithm 6

Waiting on X

Populate X

Populate A
Waiting on A

Waiting on Z

Populate Z

Waiting on H

Populate H

Populate M

Waiting on M

Future 2b

Futures Dataflow

Figure 4.18 · The conceptual difference between Futures and dataflow: Fu-
tures are non-blocking and can execute full functions in parallel, whereas
dataflow creates concurrency that’s more of an intra-function type of con-
cept. Each algorithm, represented by the individual boxes, is either waiting
for (while not blocking a thread) or is populating a piece of data. Between
any two points of contention, things run concurrently, but they rendezvous
on the shared data.

we employ dataflow, we’re getting concurrency more intrusively than that.
Pieces of our functions run in parallel with pieces of other functions and
they rendezvous on any shared data on which they might be working.

“So, they’re sharing mutable data? Isn’t that a bad thing?” Well, it’s not
actually mutable in the traditional sense, so the sharing isn’t quite the same
as we’re used to in shared-state concurrency. These aren’t variables but are
values and are thus immutable. The only difference between dataflow values
and standard values is that dataflow values exist in a future context, whereas
standard (non-lazy) values are, effectively, set at the time of access.

"But those (hidden) locks and condition variables are a bad thing, right?"
They would be if the data were more promiscuous than it is, but it isn’t.

0h
Y

K
6e

yF
2S

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=87

Section 4.3 Chapter 4 · Akka Does Concurrency 88

We’ll be getting into dataflow concurrency later, but any notions you
might have about it bringing back the paradigm of shared-state concurrency
that we’re (somewhat) trying to leave behind shouldn’t bother you. The
nice thing about dataflow concurrency is that, while things could go horribly
wrong (e.g., you could get a deadlock), they’re guaranteed to go wrong all
the time. So you’re not stuck looking for Heisenbugs in production because
the first time you run the code, it’s going to go bad on you.

Message Routing

Passing messages to untyped endpoints provides you with a ton of flexibility,
and one of those points of flexibility is embodied in the routing feature of
Akka. You can send messages anywhere you’d like, of course, but what
good is that? Well, if you think back to Figures 4.2, 4.3, and 4.4 you might
recall that sending the same message to multiple endpoints can get us greater
levels of concurrency and Figure 4.5 tells us that we can use routing to get
us some safety.

Akka provides routing right down to the configuration level of your ap-
plication. We can use routing to make our applications faster, more scalable,
more fault tolerant, and a lot more flexible. The fact that Actors can only do
one thing at a time will never be a problem for us.

Agents

Agents are inspired by the feature with the same name in Clojure10 and might
look a bit like the atomic classes that are part of the java.util.concurrent.atomic
package, but they’re much more than that. Agents are effectively Actors and
thus provide the same single-threaded guarantees that Actors provide, but
without the need to send messages to them in order to obtain their values.

You can use Agents to provide deterministic locations in memory that
are guaranteed to be safe places to store and read data that can change across
entities. Agents can be waited on, while other entities play with them and can
also participate in transactions, which make them much more interesting than
the atomic family of classes that exist in the java.util.concurrent.atomic
package.

10http://clojure.org/

http://clojure.org/
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=88

Section 4.4 Chapter 4 · Akka Does Concurrency 89

And Others. . .

You’ve become acquainted with the core philosophies and classes that Akka
provides. As you’ll see as you continue to read, Akka provides more tools
that we can use, including non-blocking IO, interaction with Akka deploy-
ments on remote hosts, distributed transactions, finite-state-machines, fault-
tolerance, performance tuning, and others.

4.4 You Grabbed the Right Toolkit

In summary, welcome aboard! You’ve just received a whirlwind tour of the
high points of Akka and should have some clue as to why it will be the
awesome toolkit that you’ve heard about. When it comes to building highly
concurrent and fault-tolerant applications on the JVM, Akka is a solid choice.

As we progress, you’ll learn how to apply the tools we’ve already dis-
cussed to your application design and development. You’ll also start seeing
a lot more code than we’ve seen thus far that will help establish a set of
patterns for coding in Akka. Later on, we’ll establish a set of anti-patterns,
because there certainly are a fair number of those. Like any decent power
tool, if you point it straight at your eye and then run forward, bad things will
happen. There are great ways to use Akka and there are also the power-tool-
to-the-eye ways, and we’re going to favor the former.

You’ve learned a ton so far, and you should feel pretty awesome about
that, but before you run out into the street naked declaring your superiority
over the mere machine that you sit in front of, let’s cover some more of the
nuts and bolts.

Flip the page and let’s go. . .

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=89

Chapter 5

Actors

It’s time to start concurrency programming with Actors. We’ll begin by ex-
ploring the most basic mechanics of Actor construction and operation, so
you can get a feel for things and how most of the work gets done. Using
that example, we’ll explore more about what Actors are and how they work,
building up use cases and understanding so that you’re armed with heaps
of awesomeness that you can employ when solving your coding and design
problems.

What follows is a single Actor definition of a terrible Shakespearean Ac-
tor and a poor sod who has to talk to him. The Shakespearean Actor is a true
Akka Actor and the poor sod is main. In these early stages, I’ll show you
some fairly atypical elements of Actor programming, but they’ll help keep
things familiar.

package zzz.akka.investigation

// All that's needed for now are three components from Akka

import akka.actor.{Actor, Props, ActorSystem}

// Our Actor

class BadShakespeareanActor extends Actor {

// The 'Business Logic'

def receive = {

case "Good Morning" =>

println("Him: Forsooth 'tis the 'morn, but mourneth for thou doest I do!")

case "You're terrible" =>

println("Him: Yup")

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=90

Chapter 5 · Actors 91

}

object BadShakespeareanMain {

val system = ActorSystem("BadShakespearean")

val actor = system.actorOf(Props[BadShakespeareanActor])

// We'll use this utility method to talk with our Actor

def send(msg: String) {

println("Me: " + msg)

actor ! msg

Thread.sleep(100)

}

// And our driver

def main(args: Array[String]) {

send("Good Morning")

send("You're terrible")

system.shutdown()

}

}

We’ve already set up all of the dependencies and build infrastructure us-
ing SBT, so you should be able to place this code and give it a go. Put the con-
tent into src/main/scala/zzz/akka/investigation/BadShakespeareanActor.scala,
type sbt run, and you should see this:

Me: Good Morning
Him: Forsooth ’tis the ’morn but, mourneth for thou doest I do!
Me: You’re terrible
Him: Yup

Just a couple of guys having a painful chat. I said earlier that we’d see
things that were atypical of Actor programming, and this example certainly
has some of them, but they tend to be items that we use all the time, so they
should be easy to spot. There are three main things:

• We generally don’t use raw Strings to communicate with Actors due
to the fact that it’s not type safe. No big surprise there.

• Our Actor doesn’t do anything and that’s pretty boring. A println
doesn’t count as something.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=91

Section 5.1 Chapter 5 · Actors 92

• Thread.sleep() is the big one. If your code has a sleep in it, then
you’re tying up an execution thread for some amount of time and we
don’t do that in Akka. In other words, we’re doing it wrong.

In this chapter, you’ll learn how to write code that’s agile, decoupled,
fast, non-blocking, type safe, and highly communicative. What we’ve seen
thus far falls somewhat short of those goals, but it is also quite illustrative of
some basic properties of Actors. Let’s explore the mechanics behind what
we’ve seen and start working on things that actually are typical of Actor
programming in Akka.

5.1 The Components of an Actor

An Actor isn’t just the Actor itself. Akka uses several components that work
together to deliver the Actor experience as well as decouple the Actor from
the other aspects of the code on which it relies. This componentization al-
lows for heaps of coolness that we’ll continue to discover, but some of it
should become clear immediately. First, let’s take a better look at what we
get when we instantiate an Actor. This won’t be a picture-perfect example
of the concrete Akka class diagram. If you want to see that, then feel free
to download the source from Github.1 What you’ll see here are the bits and
pieces that concern you as the developer, since these are the components that
you have the power to alter directly. You can reconfigure and/or modify cer-
tain components to suit the particular needs of your application at a whim.

Figure 5.1 shows us what we need to know about how Akka has imple-
mented Actors for us. The actual Akka components (as opposed to those that
it merely makes use of from other packages) are:

• Actor

• Mailbox

• Dispatcher

• ActorRef

1All the source is available at https://github.com/akka/akka inside the
akka-actor/src/main/scala/akka subtree.

https://github.com/akka/akka
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=92

Section 5.1 Chapter 5 · Actors 93

Actor
(Your Code)

Mailbox

Dispatcher

ActorRef

Message

Outside
World

Sends Messages to Proxies for

C
ontains

Delegates queueing to

Puts Mailbox on

Passes Message to

Thread

Figure 5.1 · Shows us the parts of the Actor that concern us as programmers.
All of these components together facilitate the execution of message pro-
cessing in your Actor’s code. Note that everything but the ActorRef and the
message is internal. Someone in the outside world constructs a message, and
he can only send it to the ActorRef. He can’t send it to the Actor directly.

When you send a message to an Actor, you’re only sending it to its Actor-
Ref; you never get to interact with the Actor in any direct way. The ActorRef
will then contact the Dispatcher and use it to queue the message onto the Ac-
tor’s Mailbox. Once that’s done, the Dispatcher will put the Mailbox onto a
thread and when the Mailbox executes, it will dequeue one or more messages
and send them to your Actor’s receive method for processing. But it’s im-
portant to remember that once the message has been put in the Mailbox, the
caller is free to do what it wishes. The only blocking that occurs from the
caller’s perspective is the act of enqueueing the message. After that, all of
the extra work and processing is done on a separate thread.

These components work together to provide the Actor experience. Each
component serves a particular purpose that you can leverage and alter de-
pending on the problem you’re currently trying to solve. All of the de-
coupling that these components provide enable a rich set of functionality
in Akka’s Actor implementation. We’ll explore this structure as we proceed,
so you might want to bookmark this page for reference.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=93

Section 5.2 Chapter 5 · Actors 94

5.2 Properties of an Actor

There are a few key properties of Actors that distinguish them in our designs.
We’ll cover a few of them now and continue to recognize them as we move
forward.

Actors Are Alive

There’s a reason we chose the BadShakespeareanActor as our first Actor.
Actors are live objects and thus they are best at modeling things that are
“active.” While you can use an Actor to model a block of wood, that may
not be the best way to do it, since wood doesn’t really do much on its own.
Perhaps the following Actor definition might be appropriate:

class Wood extends Actor {

def receive = {

case _ =>

throw new Exception("Wood can't hear you.")

}

}

If we don’t model wood with Actors, then what do we model? It wouldn’t
be appropriate to say “everything else,” but there are so many things that you
can model with Actors that we may as well say it anyway. Everything else.

Actor programming is less about steps in an algorithm than it is about
having a near infinite number of people to whom you can assign tasks.
Thinking about Actor programming in this way is extremely useful because
people are alive and active. I can send an email to Bob and he’ll react to that
email, perform some work, and eventually, if I need him to, either respond
to me personally or he’ll delegate that task to someone else.

With that analogy, we get a glimpse into the core benefit of eliminating
strong typing for the Actor itself. If I am coded to work with Bob, then Bob
will have to deal with me personally. However, if I’m happy to work with
anyone2, then I can get my results from anyone whom Bob sees fit to assign
the work.

Figure 5.2 makes this even more obvious than it may already be.

• All Jill wants is some coffee.
2And let’s face it, we all put that on our resumes, right?

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=94

Section 5.2 Chapter 5 · Actors 95

George Frank

Nancy

Bob

Jill
Coffee Please

Get Jill Coffee Get Jill Coffee
Get Jill Coffee

Piping Hot

BobJill

Coffee Please

Piping Hot

Figure 5.2 · Programming with Actors is more like hanging out with a bunch
of people at the office than it is about sequences and algorithms. Jill’s not
interested in who gets her coffee for her, just so long as she gets it.

– Or, all your Actor wants is a row from a database.

• She asks Bob to get her some and Bob delivers.

– Or, your Actor sends a message to the Database Actor, and that
Actor responds with the row.

Well, let’s say Bob would love to do it, but his appendix just burst and he
really needs to tend to that first. Should Jill just wait for her coffee? Jill’s a
very important person and Bob knows not to trouble her with trivialities, so
he decides to pass this work off to someone else while he tends to this other
business. It makes no difference to Jill.

It’s the same thing with Actor programming. Talking to a Database Ac-
tor yesterday is no guarantee that you’re talking to a Database Actor today.
The designer could have decided that the Database Actor was overloaded
and we could obtain better throughput if we balanced that load across a pool
of Database Actors. Here’s the cool thing: that Database Actor could be
swapped out for the load balancer without you having to know. What’s pos-
sibly even more cool is that the load balancer would have no idea what you’re
talking about, or what a Database is—all it knows is how to find the best Ac-
tor to service your request.

Now that’s a decoupled design.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=95

Section 5.2 Chapter 5 · Actors 96

One Thing at a Time

If you’ve ever watched M*A*S*H
3, you might recognize this quote:

“I do one thing at a time, I do it very well, and then I move on.”

That was Major Charles Emerson Winchester III describing his surgical
technique. Actors would say the same thing, except we might want to change
it just a tad:

“Actors do one thing at a time, they do it very well, and then
they quickly move on.”

There’s only one way to get an Actor to do anything—send it a message—
and there’s only one way it will do anything with that message—process it
in its receive method. If you put these two aspects together, you get an
Actor that works through its problems completely isolated from external in-
fluence. In other words, even though you’re working in a highly concurrent
environment, your Actor can’t be adversely affected by that concurrency.

Have you ever printed output to a terminal or log file, which worked great
when you had a single thread, but got all garbled when multiple threads
tried to do the same thing? Were you to do this with an Actor, you’d get
sequencing by default:

class PrintingActor extends Actor {

def receive = {

case msg => println msg

}

}

The PrintingActor can never print more than one message at a time,
so it can’t get garbled. There are, however, some caveats when it comes to
writing well-behaved Actors that do one thing at a time, and do it quickly.

1. It’s up to you to do things quickly. If you’re going to calculate π to
8 bazillion decimal places without ever leaving the receive method,
then don’t expect your Actor to be all that responsive.

3An awesome T.V. show from the 1970s.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=96

Section 5.2 Chapter 5 · Actors 97

2. You can always create weird ways of breaking out of this model (e.g.,
start modifying some global variables, sharing your state with the
world, and so on. . .). Don’t.

Actors Live in a Fortress

In case it’s not incredibly obvious from the last section, you can’t mess with
an Actor from the outside. Any behaviour and data inside of an Actor is
encased in a fortress made of 5-foot-thick Adamantium4. You can’t mess
with what’s inside that fortress. Sure, there’s a pretty responsible dude sitting
in the guard tower who will answer the phone when anyone calls, but there’s
no way you’re getting in there yourself.

There’s a very good reason for this, of course. The Actor paradigm pro-
tects your code from yourself on those days when your brain isn’t firing on
all cylinders, or you have someone hacking away at your masterpiece. If it
were possible for anyone and their grandmother to waltz inside the fortress
and start redecorating, then the paradigm would basically be shot to hell. The
fortress makes concurrency programming reasonable, and it’s the ability to
easily reason about our Actor applications that makes them so formidable.

The fortress will start to be a royal pain when we start to look at unit
testing your Actors, but the Akka team realized this and Akka 2.x has a
pretty solid answer to this problem. Under very controlled conditions, we
can enter the fortress and flip on the light switch directly in order to make
sure it works. You don’t have to rely on the dude in the guard tower when
you’re testing.

You Can Always Find Your Actors

With all of these living things running around your system (and if you’re a
cloud developer, you could easily have hundreds upon hundreds of millions
of them), how are you going to find them? Akka’s got you covered here. We
won’t go into depth with it at the moment, but rest assured that when you
create an Actor it has a globally unique identity and you can locate it.

You can get a single Actor by name, a group by type, or Actors within
a hierarchy of deployment. Akka is organized in a whole set of hierarchies
in a recursive structure, so essentially an Actor structure looks the same no

4http://en.wikipedia.org/wiki/Adamantium

http://en.wikipedia.org/wiki/Adamantium
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=97

Section 5.3 Chapter 5 · Actors 98

matter where you might find yourself within it. It’s almost turtles all the way
down.5

But again, this is pretty much the same as working with people. You can
find people by name, email address, geographical location, position in the
organization, etc.. . .

5.3 How to Talk to an Actor

Now, I’ve known a lot of actors in my life6 and I can tell you for a fact7 that
talking to actors is not easy.8 Fortunately, Akka Actors are incredibly easy
to talk to and will accept any kind of message you want to send their way.

Actor Messages

Actor messages derive from scala.Any, so they can be anything at all.
The magic of Scala’s pattern matching lets us concisely deal with messages
within Actors. Let’s look at some code:

package zzz.akka.investigation

import akka.actor.Actor

case class Gamma(g: String)

case class Beta(b: String, g: Gamma)

case class Alpha(b1: Beta, b2: Beta)

class MyActor extends Actor {

def receive = {

// Literal String match

case "Hello" =>

println("Hi")

// Literal Int match

case 42 =>

println("I don't know the question. Go ask the Earth Mark II.")

// Matches any string at all

5http://en.wikipedia.org/wiki/Turtles_all_the_way_down
6This is not true.
7This is not a fact.
8But I really wouldn’t know.

http://en.wikipedia.org/wiki/Turtles_all_the_way_down
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=98

Section 5.3 Chapter 5 · Actors 99

case s: String =>

println("You sent me a string: " + s)

// Match a more complex case class structure

case Alpha(Beta(beta1, Gamma(gamma1)), Beta(beta2, Gamma(gamma2))) =>

println("beta1: %s, beta2: %s, gamma1: %s, gamma2: %s".format(

beta1, beta2, gamma1, gamma2))

// Catch all. Matches any message type

case _ =>

println("Huh?")

}

}

That’s pretty flexible. You can simply use basic raw data types (e.g.,
String) or you can build up any type of complex data structure you like
either with case classes or with your own hand-rolled classes. When we
conversed with our BadShakespeareanActor, we used raw Strings, which
was not such a great idea. It isn’t in most situations when the best type of
message is usually a case class.

In the rest of this book, we’ll favor case classes and case objects over
most other alternatives, since they give us so much for free, are type-safe,
and are very easy to work with.

Sending Messages

Messages are one half of the equation; delivering them is the other half.
Sending a message to an Actor facilitates a mechanism of concurrency. For
example, let’s say we do this:

object MySequencedObject {

def doSomething(withThis: String) {

// ... do something ...

}

}

MySequencedObject.doSomething("With this")

println("Hi Jaime!")

We won’t see "Hi Jaime!" until doSomething() is finished doing what-
ever it is it will do with "With this". By sending a message to an Actor,

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=99

Section 5.3 Chapter 5 · Actors 100

we issue the request immediately, but the execution of that request is not
dependent on our current thread of execution.

case class DoSomething(withThis: String)

class MyConcurrentObject extends Actor {

def receive = {

case DoSomething(withThis) =>

// ... do something ...

}

}

system.actorOf(Props[MyConcurrentObject]) ! DoSomething("With this")

println("Hi Jaime!")

Now we’ve given more than one thread some work to do. "Hi Jaime"
may or may not be printed out before the Actor gets to work; it’s all non-
deterministic because it’s now concurrent.

Tell Syntax

This is all facilitated by the tell syntax, denoted by !. The ! method is an
asynchronous message pass that puts the message in the Actor’s Mailbox and
returns immediately, safe in the knowledge that the message is in the queue.
While you can get a reply to a message sent via tell, the tell syntax does not
concern itself with replies. Telling Actors what to do or telling them about
events that have occurred is the most scalable way to write code in Akka. If
nobody’s blocking a thread while waiting on the response to a message, then
the hardware resources are fully at the application’s disposal.

Ask Syntax

There’s another way to send messages to Actors and, while this is a great
way to do it, we won’t get into it yet. This relies on the other axis of Akka
concurrency: Futures, which we saw earlier but aren’t ready to start coding
with yet. The syntax for using the ask method, however, is quite natural:

// Required since the "?" method is not a direct

// method on Actors but is "pimped" on after the fact

import akka.pattern.ask

val question = actor ? 42

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=100

Section 5.3 Chapter 5 · Actors 101

The question will come back to us in the form of a Future on which we
can operate later. You don’t know a lot about Akka Futures at this point, but
it might be helpful to understand a bit about how it works. The Future that’s
returned has a counterpart called a Promise, which Akka abstracts away from
the Actor. When the Actor replies to the message, it actually completes the
Promise and the Future becomes satisfied.

You can block the calling thread with this Future, but you should never
block on an Actor request without some pretty serious thought first. Block-
ing a thread while waiting for an Actor to do something with your request is
generally much more painful than blocking a thread while you wait for some-
thing to happen on a traditional concurrent object (e.g., pushing a new value
into a concurrent queue). Figure 5.3 shows us what we saw in Figure 4.6,
but it’s much more explicit about a blocking request.

Thread with
Blocking Call Actor

1000
Messages

Message

Sends the response after it's
processed the first 1000
messages in the Mailbox

Figure 5.3 · When an Actor has a lot to do, blocking on a response from it
can be more painful than you might otherwise be used to.

As discussed, Actors do one thing at a time. It’s not like 50 guys holding
a read lock, all waiting for the guy holding the write lock to complete. Once
the guy with the write lock lets go, all 50 guys can go nuts reading the results
at the same time. With Actors, if you’ve got 1000 guys in the queue ahead
of you, then you have to wait until they get processed before it’s your turn.
The Actor model doesn’t have the same concept of readers vs. writers. Es-
sentially, it assumes everyone is a writer so everyone’s got to wait their turn.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=101

Section 5.4 Chapter 5 · Actors 102

Note
Making a blocking request/response call on an Actor has much more
serious implications than a standard blocking function call with a return
value. Use the ask syntax as liberally as you’d like, but be very wary of
blocking on the Future value.

By and large, this is a very good thing, but it has serious implications if
you want to do something silly, like block on a Future result. The cool thing
is that you very rarely (if ever) need to block on a Future result and writing
the non-blocking equivalent is quite easy most of the time.

Just to be clear, this doesn’t mean that using the ask syntax is a bad thing.
Far from it. Ask syntax provides you with a different binding context that
lets you operate on the logic in a manner that can apply much better to your
current situation if an Actor context doesn’t do the job very well. It does this
while still being entirely asynchronous.

5.4 Creating Actors

We’ve covered quite a bit about Actors to this point but before we move
on to using them in some real application development, we should touch on
Actor creation. Akka gives you a lot from behind the scenes when it comes
to Actors – stuff that you’ll be quite amazed by as we proceed—but doing
that requires that we give it a bit of control over life cycles. One of the most
important parts of any life cycle is the birth, so let’s see how to create Actors
with Akka:

import akka.actor.{Props, Actor, ActorSystem}

// Assume we've got 'MyActor'

class MyActor extends Actor { ... }

// We need a 'system' of Actors

val system = ActorSystem("MyActors")

// 'Props' gives us a way to modify certain

// aspects of an Actor's structure

val actorProperties = Props[MyActor]

// And finally we pass the properties to the

// actorOf factory method

val actor = system.actorOf(actorProperties)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=102

Section 5.5 Chapter 5 · Actors 103

We’ll be covering the ActorSystem later, but for the moment we can
simply think of it as the root of a collection of Actors. The Props class
lets us modify some of the structure that surrounds the Actor, such as its
execution context, which we’ll be seeing more of as the book progresses.
Once we have those things in place, we can pass the properties to the system
and get a reference to our Actor. Now the magical stuff in the Akka toolkit
has a proper hook that we can use to manipulate our Actor in all of the ways
that we want.

There’s a fair bit more to creating Actors that we’ll see, but we’ve had
enough dry theory for now. Let’s start building an Airplane.

5.5 Actors in the Clouds

For the bulk of this book, we’ll stick with a common theme so that we can
continually create and improve a single application. Since I don’t know any-
thing about Airplanes, I figured it would make a great thing to build. It also
doesn’t hurt to add the cheesy relationship between Airplanes and the fact
that Akka makes a great toolkit for Cloud Computing.9

We can build control surfaces, instruments, passengers, pilots, comput-
ers, flight attendants, weather. . . all kinds of different cases for Actors to con-
currently start messing around with each other.

Let’s start by building the Altimeter.

How High Are You?

The Altimeter will be a pretty important piece of gear in our Plane. It will
tell us how high we are, figure out if we’re stalling, help control how quickly
we can ascend, and inform any Actor that’s interested how high we are at
any given moment.

Now, what we’re building here isn’t exactly physics-approved, so I wouldn’t
recommend ripping it off to build your next video game. However, it will
certainly send and receive messages enough to keep our Plane flying.

Let’s start with the Altimeter’s companion object. The companion object
can, of course, be used for anything, but it tends to make a good spot for
construction code and messages that are bound to the Actor we’re defining.

package zzz.akka.avionics

9Please send groans to @derekwyatt on Twitter

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=103

Section 5.5 Chapter 5 · Actors 104

// Imports to help us create Actors, plus logging

import akka.actor.{Props, Actor, ActorSystem, ActorLogging}

// The duration package object extends Ints with some timing functionality

import scala.concurrent.util.duration._

// The Scheduler needs an execution context - we'll just use the global one

import scala.concurrent.ExecutionContext.Implicits.global

object Altimeter {

// Sent to the Altimeter to inform it about a rate-of-climb changes

case class RateChange(amount: Float)

}

The Altimeter doesn’t have a big interface at this point; it can only accept
messages that tell it when our rate of climb has changed. Up next is the
definition of our Actor:

class Altimeter extends Actor with ActorLogging {

import Altimeter._

// The maximum ceiling of our plane in 'feet'

val ceiling = 43000

// The maximum rate of climb for our plane in 'feet per minute'

val maxRateOfClimb = 5000

// The varying rate of climb depending on the movement of the stick

var rateOfClimb: Float = 0

// Our current altitude

var altitude: Double = 0

// As time passes, we need to change the altitude based on the time passed.

// The lastTick allows us to figure out how much time has passed

var lastTick = System.currentTimeMillis

// We need to periodically update our altitude. This scheduled message send

// will tell us when to do that

val ticker = context.system.scheduler.schedule(100.millis, 100.millis,

self, Tick)

// An internal message we send to ourselves to tell us to update our

// altitude

case object Tick

def receive = {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=104

Section 5.5 Chapter 5 · Actors 105

// Our rate of climb has changed

case RateChange(amount) =>

// Keep the value of rateOfClimb within [-1, 1]

rateOfClimb = amount.min(1.0f).max(-1.0f) * maxRateOfClimb

log.info(s"Altimeter changed rate of climb to $rateOfClimb.")

// Calculate a new altitude

case Tick =>

val tick = System.currentTimeMillis

altitude = altitude + ((tick - lastTick) / 60000.0) * rateOfClimb

lastTick = tick

}

// Kill our ticker when we stop

override def postStop(): Unit = ticker.cancel

}

The Altimeter Actor is definitely a live object because it does stuff. At
the moment, it really just reacts to changes in the rate of climb. Someone
(hopefully some sort of pilot) can change the rate of climb and the Altimeter
will start calculating altitude changes based on this new information.

We get some feedback about what has occurred through the use of the
logger, which we’ve mixed in via with ActorLogging. This logger is a
standard log4j-style logger and it can be configured through the configuration
system, which you’ll meet in due course. For the moment, we’ll use the INFO
level of logging since it is enabled by default.

You can see that there is some mutable data in there: rateOfClimb,
altitude, and lastTick. The altitude variable really represents why the
Altimeter exists, since its main purpose is to calculate altitude changes, and
the others are support variables. Due to the fact that the Actor works in iso-
lation, all of this mutable state can exist without any concurrency protection.

We also see an example of reactive programming. We could have coded
the Altimeter to accept a command, such as ChangeRateOfClimb to which it
would respond with some sort of success or failure message, perhaps. Rather
than do that, we’ve chosen to take it from the other direction; the rate change
has already happened. The pilot (presumably) has pulled back on the stick,
the elevator has responded, and the Plane has changed its pitch. What the
Altimeter needs to do is react to that event and modify the altitude accord-
ingly.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=105

Section 5.5 Chapter 5 · Actors 106

If you’re not used to thinking in a reactive style, then it might not seem all
that interesting. It’s subtle and sometimes its merely a semantic difference,
but it’s semantics that often make the difference between one algorithm and
another. When we design in a reactive style, we open up several possibilities
that allow pieces of code to be much more autonomous than they might be
otherwise. Various aspects of your application merely generate events and
other aspects of your application react to those events. The alternative is to
couple those aspects together such that they rely on each other to get work
done. And when a lot of your code relies on a lot of your other code to get
things done, your app becomes harder to reason about, scale, and evolve.

This isn’t to say that reactive programming is superior to imperative pro-
gramming. Our discipline is far too complex to say that any given style is
a silver bullet. What we’re saying is that reactive programming provides a
model of design that fits very well into places where the imperative style
does not.

Note
Keep all of your tools sharp. The golden hammer fallacy is even more
dangerous in concurrency programming than it is in sequential
programming.

The Scheduler

The Altimeter can receive messages from outside sources telling it that the
rate of climb has changed, but it also accepts a message from the Scheduler.
The Scheduler is technically an external source as well, but the reference we
have to the instance that the Altimeter created is inside the fortress, so it’s
very reasonable to think of it as an internal source. The Scheduler is a simple
and effective mechanism that Akka provides for doing stuff at some point (or
regular points) in the future. Here, we use it to send a message to self every
100 milliseconds.

Inside an Actor, we obtain the Scheduler from context.system. We’ll
cover context and system soon.

The Scheduler can execute arbitrary code in the future as well:

scheduler.schedule(100 millis, 100 millis) {

println("100 milliseconds has passed")

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=106

Section 5.5 Chapter 5 · Actors 107

However, we don’t really want to be running code like this when dealing
with an Actor’s internal guts. Imagine if instead of sending Tick to the
Altimeter, we just performed some work instead:

scheduler.schedule(100 millis, 100 millis) {

val tick = System.currentTimeMillis

altitude = altitude + ((tick - lastTick) / 60000.0) * rateOfClimb

lastTick = tick

}

With that block of code, we just broke into the fortress. Now, I know I
said that you simply can’t do that. . . I lied, sorta. We didn’t break into the
fortress directly—it was an inside job. Someone inside the fortress gave the
keys away to a nefarious evil-doer who later walked in and set the place on
fire. You can break into the fortress this way, and it’s actually not that hard
to do—it’s so easy, in fact, that you can do it by mistake. All you have to do
is create a closure that closes over the wrong thing, and then run that in some
sort of asynchronous context (e.g., a Future or a scheduled task).

If the Altimeter is processing a RateChange message at the same time
we’ve got this Scheduler running, what happens? The plane crashes, and
everyone aboard dies in a raging inferno. Do you really want that? Of
course you don’t. When this sort of fortress-breaking occurs, it’s pretty much
always a rookie mistake. In the early stages, you might find yourself making
this blunder, but with experience comes the natural coding habits that ensure
you never do this.

Note
Don’t subvert the Actor programming paradigm. Any mutable Actor data
must only be accessed (that means reading too) in the Actor’s receive
method.

This is precisely why we have the Scheduler send the Actor a Tick mes-
sage instead of having the Scheduler do the Actor’s work for it. By sending
a message, we’re using the standard Actor programming method and staying
within the paradigm. The message will be processed when its time comes.

Controlling the Plane

So who gets to send the Altimeter these RateChange messages? We’ll give
that responsibility to the control surfaces. For now, we’ll model the control

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=107

Section 5.5 Chapter 5 · Actors 108

yoke and only its forward and backward motions that change the rate of the
Plane’s climb.

package zzz.akka.avionics

import akka.actor.{Actor, ActorRef}

// The ControlSurfaces object carries messages for controlling the plane

object ControlSurfaces {

// amount is a value between -1 and 1. The altimeter ensures that any

// value outside that range is truncated to be within it.

case class StickBack(amount: Float)

case class StickForward(amount: Float)

}

// Pass in the Altimeter as an ActorRef so that we can send messages to it

class ControlSurfaces(altimeter: ActorRef) extends Actor {

import ControlSurfaces._

import Altimeter._

def receive = {

// Pilot pulled the stick back by a certain amount, and we inform

// the Altimeter that we're climbing

case StickBack(amount) =>

altimeter ! RateChange(amount)

// Pilot pushes the stick forward and we inform the Altimeter that

// we're descending

case StickForward(amount) =>

altimeter ! RateChange(-1 * amount)

}

}

Again, we’ve decided to make an Actor represent our entity. The Con-
trolSurfaces Actor is a live object that we can give to various other entities
and let them manipulate. We could imagine a pilot doing that sort of thing.

In order for the ControlSurfaces Actor to send changes to the Altimeter,
it needs to have a reference to that Altimeter, so we pass that in during the
construction of the ControlSurfaces Actor. We could theoretically look it
up, given Akka’s facilities for doing that, but it would be bad form to do
so. Substitutability and composability demand that we give the Altimeter
to the ControlSurfaces Actor. It should be no surprise at this point that the

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=108

Section 5.5 Chapter 5 · Actors 109

Altimeter is an ActorRef. Since the Altimeter is an Actor and we can’t send
messages to Actors, but only to ActorRefs, it would be pointless to give an
Altimeter or an Actor to the ControlSurfaces Actor.

In fact, Akka makes it impossible to even construct an Actor, or any
derivation thereof, so even if we declared that the ControlSurfaces object
should take an Altimeter or an Actor, we would never be able to actually pass
it one. Don’t believe me? Let’s look at what happens when you try to do this
with Akka:

scala> import akka.actor.Actor

import akka.actor.Actor

scala> class A extends Actor { def receive = { case _ => } }

defined class A

scala> new A

akka.actor.ActorInitializationException:

You cannot create an instance of [A] explicitly using the

constructor (new).

You have to use one of the factory methods to create a new

actor. Either use:

'val actor = context.actorOf(Props[MyActor])'

(to create a supervised child actor from within an actor), or

'val actor = system.actorOf(Props(new MyActor(..)))'

(to create a top level actor from the ActorSystem)

See? Actors have some smarts in their constructors that ensure you can’t
construct them outside of Akka’s control. So, not only would it be silly to
pass an Actor (or a derivation thereof) around, it’s actually not even possible.

The Plane

Now that we can tell how high we are and we can change how high we are,
we can build the thing that goes higher. The Plane will create the Altimeter
and the ControlSurfaces as well as provide access when needed.

Again, we’ll start with the companion object:

package zzz.akka.avionics

import akka.actor.{Props, Actor, ActorLogging}

object Plane {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=109

Section 5.5 Chapter 5 · Actors 110

// Returns the control surface to the Actor that asks for them

case object GiveMeControl

}

Since the Plane is the entity that holds the controls, someone will need
to ask the Plane to get those controls; hence, the GiveMeControl message.

// We want the Plane to own the Altimeter and we're going to do that

// by passing in a specific factory we can use to build the Altimeter

class Plane extends Actor with ActorLogging {

import Altimeter._

import Plane._

val altimeter = context.actorOf(Props[Altimeter])

val controls = context.actorOf(Props(new ControlSurfaces(altimeter)))

def receive = {

case GiveMeControl =>

log.info("Plane giving control.")

sender ! controls

}

}

By creating the Altimeter first, we get the ActorRef to it that we can
then pass to the ControlSurfaces constructor. Since we can’t just type
new Altimeter, we use a special version of the actorOf(), which is acces-
sible from inside an Actor. Using context.actorOf() creates the ActorRef
and ties it to the current Actor as a child. This hierarchical relationship is a
huge part of Actor programming in Akka and we’ll be covering it in great
depth later.

We also see our first real Actor message response. When asked for the
controls, the Plane returns a reference to the ControlSurfaces that it created
at construction time. Since we can send anything in a message, a reference
to an Actor is a perfectly reasonable message to send.

Alright, let’s try it out:

package zzz.akka.avionics

import akka.actor.{Props, Actor, ActorRef, ActorSystem}

import akka.pattern.ask

import scala.concurrent.Await

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=110

Section 5.5 Chapter 5 · Actors 111

import akka.util.Timeout

import scala.concurrent.util.duration._

import scala.concurrent.ExecutionContext.Implicits.global

object Avionics {

// needed for '?' below

implicit val timeout = Timeout(5.seconds)

val system = ActorSystem("PlaneSimulation")

val plane = system.actorOf(Props[Plane], "Plane")

def main(args: Array[String]) {

// Grab the controls

val control = Await.result(

(plane ? Plane.GiveMeControl).mapTo[ActorRef],

5.seconds)

// Takeoff!

system.scheduler.scheduleOnce(200.millis) {

control ! ControlSurfaces.StickBack(1f)

}

// Level out

system.scheduler.scheduleOnce(1.seconds) {

control ! ControlSurfaces.StickBack(0f)

}

// Climb

system.scheduler.scheduleOnce(3.seconds) {

control ! ControlSurfaces.StickBack(0.5f)

}

// Level out

system.scheduler.scheduleOnce(4.seconds) {

control ! ControlSurfaces.StickBack(0f)

}

// Shut down

system.scheduler.scheduleOnce(5.seconds) {

system.shutdown()

}

}

}

When we run this code, we end up seeing a decent amount of log output

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=111

Section 5.5 Chapter 5 · Actors 112

telling us about changes in the rate of climb.

[INFO] ... Plane giving control.

[INFO] ... Altimeter changed rate of climb to 5000.000000.

[INFO] ... Altimeter changed rate of climb to 0.000000.

[INFO] ... Altimeter changed rate of climb to 2500.000000.

[INFO] ... Altimeter changed rate of climb to 0.000000.

For brevity, some of the logging information has been removed and re-
placed with “...”. Akka will output much more interesting information
about which Actors are logging the information using some of the Actor
attributes that we have yet to encounter.

The main() method of the Avionics object actually completes very
quickly, as most of the work is scheduled immediately and then executed
later.

First, we use a facility of the Akka Futures implementation called Await.result
that will block on the response from the Plane to the GiveMeControl mes-
sage. I said earlier that when talking about the ask syntax, blocking on re-
sponses from Actors isn’t a great idea, but for this little test driver, it’s very
convenient.

We first ask the Plane for the controls, which returns a Future. Unfortu-
nately, the Future only knows about the type that is returned as an Any, due
to the fact that messages between Actors are of type Any. As a result of that
loss of typing, we must use the Future’s mapTo facility to coerce it down to
the type we’re expecting. Don’t worry; we’ll be covering all of this stuff in
detail later. If the Plane doesn’t give us that result within 5 seconds, then a
timeout exception will occur, but for us 5 seconds is way more than enough.

Once we have that control, we set up a whole bunch of commands for the
Scheduler to execute in the future. Akka keeps the system running until the
system is shut down, so if we didn’t shut it down manually 5 seconds after
the reception of the controls, then our app would never exit. Shutdown is the
purpose of the last scheduled command.

But this is somewhat incomplete at this stage, wouldn’t you say? The
pilot (for now, he’s main) gets control, can manipulate those controls, and the
Altimeter senses what’s happening, but shouldn’t the Altimeter tell someone
about it? I think so. Let’s implement a rudimentary event listener using
Actors on the Altimeter with which the Plane can register.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=112

Section 5.5 Chapter 5 · Actors 113

Getting Updates from the Altimeter

Since our Actor is untyped, it makes for a nice generalized endpoint to re-
ceive events. We can make a trait that encapsulates this notion and mix it
into the Altimeter.

package zzz.akka.avionics

import akka.actor.{Actor, ActorRef}

object EventSource {

// Messages used by listeners to register and unregister themselves

case class RegisterListener(listener: ActorRef)

case class UnregisterListener(listener: ActorRef)

}

trait EventSource { this: Actor =>

import EventSource._

// We're going to use a Vector but many structures would be adequate

var listeners = Vector.empty[ActorRef]

// Sends the event to all of our listeners

def sendEvent[T](event: T): Unit = listeners foreach { _ ! event }

// We create a specific partial function to handle the messages for

// our event listener. Anything that mixes in our trait will need to

// compose this receiver

def eventSourceReceive: Receive = {

case RegisterListener(listener) =>

listeners = listeners :+ listener

case UnregisterListener(listener) =>

listeners = listeners filter { _ != listener }

}

}

We’re pretty familiar with most of what’s here already. There’s some
Scala self-typing with this: Actor => and some type specification in the
sendEvent method, but the interesting part with respect to Akka is the
eventSourceReceivemethod. No Actor definition is valid without a receive
method, but it can also only have one. If an Actor mixes in traits that are also
Actor-like, then we probably need to compose the receive method from

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=113

Section 5.5 Chapter 5 · Actors 114

many different partial functions. We provide one of the pieces of the final
receive method here with eventSourceReceive.

Modifying the Altimeter

Now that we have the EventSource, we can mix it into the Altimeter. Let’s
look at the changes that need to be made to the Altimeter to make this hap-
pen.

First, add the message to the Altimeter object:

// Sent by the Altimeter at regular intervals

case class AltitudeUpdate(altitude: Double)

Then we need to change the definition of the Altimeter Actor:

class Altimeter extends Actor with ActorLogging with EventSource {

...

}

Now we need to compose the receive method, as already indicated. We
must take what we already have defined as receive and change its name so
that we can compose the final receive method out of the respective parts.

def altimeterReceive: Receive = {

... contents of old receive method ...

}

def receive = eventSourceReceive orElse altimeterReceive

Note that for eventSourceReceive and altimeterReceive we needed
to be specific about the return type. As a derivation of Actor, the receive
method is abstract and has a return type associated with it already. However,
our other methods don’t get that for free, so we use the convenience type
already defined on the Actor:

type Receive = PartialFunction[Any, Unit]

We’re almost done with the Altimeter. We’ve done all of our plumbing,
but we haven’t actually sent any events yet. Let’s modify the handler for the
Tick message:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=114

Section 5.5 Chapter 5 · Actors 115

case Tick =>

... as before ...

sendEvent(AltitudeUpdate(altitude))

Fantastic! Our Altimeter is now a solid source of altitude information for
anyone who wants it.

Modifying the Plane

We could build and run this as before and everything would still work, but
we haven’t traveled the final mile yet. The Plane wants to get updates about
the altitude. When the Plane starts up, we must register with the Altimeter;
the best place to do this is in a life-cycle hook that the Actor provides:

import EventSource._

override def preStart() {

altimeter ! RegisterListener(self)

}

Akka will call this method before the Plane starts up, which will ensure
that our Plane is appropriately hooked into the Altimeter to receive updates
about altitude.

The astute reader (yeah, I’m looking at you) might be wondering about
the UnregisterListener message, and why we aren’t worried about unreg-
istering the Plane from the Altimeter. This will become clear as we continue,
but there are several reasons why we don’t need to worry about it:

• Technically, we could do it. Akka provides another life-cycle hook
called postStop() that we could use to send the UnregisterListener
message to the Altimeter.

• There’s really no point. Since we went through the trouble of creating
the Altimeter inside the Plane, we’ve made the Altimeter’s life depen-
dent on the Plane’s life. When the Plane dies, so does the Altimeter, so
sending the message to unregister the Plane isn’t really all that useful.

• Even if the Altimeter lived beyond the Plane, and we didn’t clear the
registration with the Altimeter (and if you think that this would be bad
form, I’d agree with you), Akka still has us covered. Messages sent to

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=115

Section 5.5 Chapter 5 · Actors 116

recipients that no longer exist still have a deterministic destination: the
Dead Letter Office. We’ll be covering the Dead Letter Office soon—
for now, the usual definition should suffice. It’s simply where letters
go when the recipient can’t be found.

You don’t need to really understand this stuff yet; these concepts will
become as clear as a mud-free river pretty soon.

Lastly, we need to put in a message handler in the Plane’s receive
method:

def receive = {

case AltitudeUpdate(altitude) =>

log.info(s"Altitude is now: $altitude")

... and as before ...

}

And we’re done.

Flying the Plane

If we run it now, using our same driving main method, we will see the output
that follows:

[INFO] ... Plane giving control.

[INFO] ... Altitude is now: 0.000000

[INFO] ... Altimeter changed rate of climb to 5000.000000.

[INFO] ... Altitude is now: 16.666667

[INFO] ... Altitude is now: 33.333333

[INFO] ... Altitude is now: 50.000000

[INFO] ... Altitude is now: 66.583333

[INFO] ... Altimeter changed rate of climb to 0.000000.

[INFO] ... Altitude is now: 66.583333

[INFO] ... Altitude is now: 66.583333

[INFO] ... Altitude is now: 66.583333

[INFO] ... Altitude is now: 66.583333

[INFO] ... Altitude is now: 66.583333

[INFO] ... Altitude is now: 66.583333

[INFO] ... Altitude is now: 66.583333

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=116

Section 5.6 Chapter 5 · Actors 117

[INFO] ... Altitude is now: 66.583333

[INFO] ... Altitude is now: 66.583333

[INFO] ... Altitude is now: 66.583333

[INFO] ... Altimeter changed rate of climb to 2500.000000.

[INFO] ... Altitude is now: 74.916667

[INFO] ... Altitude is now: 83.208333

[INFO] ... Altitude is now: 91.583333

[INFO] ... Altitude is now: 99.875000

[INFO] ... Altitude is now: 108.208333

[INFO] ... Altimeter changed rate of climb to 0.000000.

[INFO] ... Altitude is now: 108.208333

[INFO] ... Altitude is now: 108.208333

[INFO] ... Altitude is now: 108.208333

[INFO] ... Altitude is now: 108.208333

[INFO] ... Altitude is now: 108.208333

Congratulations! You’ve got a Plane.

5.6 Tying It Together

At this point, you might have a lot of moving parts flying around in your head
that lack a bit of cohesion and it’s always helpful to pull it back together into
a clear picture.

Figure 5.4 shows us the important bits of our Plane simulation thus far.
That picture underscores one of the reasons why Actor programming is so
powerful. Often, we’ll draw diagrams like that on a grease board in order to
help others, and even ourselves understand the structure and behaviour of our
application designs, but they tend to be illustrative devices only; the actual
nuts and bolts of the software usually don’t have direct mappings from the
diagrams we draw.

In our case here, the entities we see have actual live counterparts in the
application and the messages written on those arrowed lines are real mes-
sages. In other words, we can draw direct parallels from the pictures we
see to the code we write, and when someone sees our pictures, they can
relate what they see to our code as well. By looking at Figure 5.4, you
know that there is an Actor called Plane and that that Actor will accept
AltitudeUpdate and GiveMeControl messages.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=117

Section 5.6 Chapter 5 · Actors 118

ActorSystem
(PlaneSimulation)

Plane

Control
SurfacesAltimeter

RateChange

Al
tit

ud
eU

pdate

Outside
World

Stick
 Bac

k /
 Forw

ard

Ti
ck

GiveMeControl

Controls (ActorRef)

Figure 5.4 · This is what our Plane currently looks like, from the view of
the avionics-driving main, which we depict as the Outside World. Solid
lines indicate a physical binding—i.e., the ActorSystem owns the Plane and
the Plane owns the Altimeter and ControlSurfaces, whereas the dotted lines
indicate a reference relationship for message sending.

We don’t need to hunt through the code in order to understand the appli-
cation to a fairly high degree because hunting through the code won’t reveal
much more to us. Sure, there will be some subtle nuances here and there,
some clever and not-so-clever tricks, just like any other mountain of code,
but those will be exceptional cases that you couldn’t draw a picture of any-
way.

Note
This is part of the power of the Actor programming paradigm—the power
to understand and convey your application’s design and implementation at
highly abstract levels, without being so abstract that they’re useless
descriptions.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=118

Section 5.7 Chapter 5 · Actors 119

5.7 How Message Sending Really Works

It’s time to pull the curtain back a little bit so that you have a better un-
derstanding of how the Actor model helps you send and route messages.
We’ve already covered the Actor’s basic entity layout back in Section 5.1,
but there’s more to it than that when we start working with more than one
Actor at a time.

One of the most illuminating things we can see is the true definition of the
method for the tell syntax, which we will pull from the Scala implementation
of the ActorRef, which is called ScalaActorRef:

def ! (message: Any)(implicit sender: ActorRef = null): Unit

What can we see from this declaration?

1. ! is a side-effect function. We know it does something, but it returns
Unit, so whatever it does is a side effect of its execution. This isn’t
a surprise. We know that Actors don’t compose and that tell syntax
enqueues messages.

2. As promised, a message can be anything we like since it can be a
subtype of Any.

3. Every time we call !, there is an implicit ActorRef added to the call,
if one exists.

That last point is the one in which we’re really interested. Through the
magic of Scala’s implicits, we get a nice clean syntax for sending messages
that lets us ignore the plumbing that sets up the reference to the message’s
sender. The receiving Actor will get a reference to the sender, provided that
the sender is actually an Actor (as opposed to main() in some of our previous
encounters with !).

If we were to look at the ScalaDoc for akka.actor.Actor, we would
see a nifty little member value there:

implicit val self: ActorRef

When you’re inside an Actor, you have an implicit in scope that can
satisfy the second curried parameter of the ! method, and this is how the
sender is populated when the message is sent. When you send your message,

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=119

Section 5.7 Chapter 5 · Actors 120

Akka puts your current Actor’s ActorRef and the message itself inside an
envelope and that’s what actually gets delivered to the target Actor.

You can also see from the declaration that a default value applies to the
implicit should nothing be in scope to satisfy it – null. There’s no big
surprise to this. . . if a value can’t be found for it then it’s presumed that no
such value exists and null is the only reasonable thing to put in there. null
is, effectively, a sentinel value that Akka uses to understand that the sender’s
context is outside of its influence. The message still gets there, but it’s truly
a one-way message since there’s nobody to receive any response.

So, if you’re inside an Actor and want to null out the sender, then you
can easily specify the sender explicitly:

someActorSomewhere.!("This is a message")(null)

But that’s pretty ugly. In this case, it’s much nicer to use the tell func-
tion, which is more generally defined on the ActorRef as opposed to the
ScalaActorRef:

// tell is defined as

def tell (msg: Any, sender: ActorRef): Unit

def tell (msg: Any): Unit

// so we can do this

someActorSomewhere tell "This is a message"

Accessing the Sender

Inside the receiving Actor, we can get the reference to the sender using an
aptly named method:

def sender: ActorRef

Look at that again. See it? That’s a method not a value. Not only that,
it’s a method that’s defined without parens. This might lead some to believe
that it’s equivalent to a value, but that’s not the case. If you really wanted to
be dogmatic about it, you could argue that it must be defined as sender()
since that would be a better indicator that its return value is dependent on
some sort of internal state, which can change from moment to moment. But
it’s much more pleasing without the parens, don’t ya think?

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=120

Section 5.7 Chapter 5 · Actors 121

This sender method gives access to the sender that hitched a ride on the
incoming message that the Actor is currently processing. But remember that
because it’s a method and one that can change its return value (conceivably
with every single incoming message), you have to treat it with care.

For example, something like this would be a bad idea:

case SomeMessage =>

context.system.scheduleOnce(5 seconds) {

sender ! DelayedResponse

}

It’s quite likely that the value returned from the call to sender 5 seconds
from now won’t be the value you were hoping for. To make this work out
the way you’d like, you need to freeze the value from sender in a val:

case SomeMessage =>

val requestor = sender

context.system.scheduleOnce(5 seconds) {

requestor ! DelayedResponse

}

Tip
Using sender inside of a closure is a textbook way of giving away the
keys to the fortress. It’s easy to do, and the only thing you can do to
prevent it is to not do it. In short order, you’re going to recognize this sort
of mistake very easily and you’ll avoid it without trouble.

Null Senders

So what happens when the sender is null? The quick answer is that we don’t
get a dreaded NullPointerException if we try to send a message to it.
Akka uses null only as a sentinel value to let the toolkit know that there’s no
hitchhiker to add to the message. When this situation occurs, Akka attaches a
default sender called the Dead Letter Office, which is a single Actor instance
per ActorSystem and can be accessed directly from the ActorSystem via the
deadLetters method.

This means that you can always use the result from the sender method
with confidence. It may be that the receiver of your response message is

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=121

Section 5.7 Chapter 5 · Actors 122

dead or never existed in the first place, but in either case the message goes to
a deterministic endpoint: the Dead Letter Office.

Forwarding

Message forwarding is another method of sending a message to an Actor. It
works such that the one doing the forwarding is invisible to the receiver. If
A sends to B and B forwards that message to C, then C sees the sender of
the message as A, not B. It should now be fairly obvious how forwarding
works. When an Actor forwards a message from itself to another ActorRef,
it’s really the sender that’s most important. For example, the equivalent of
a call to forward is most definitely not:

case msg @ SomeMessage =>

someOtherActor ! msg

When the receiving Actor, someOtherActor, accesses the sender in or-
der to know who to respond to, the value he’ll get is the one that made the
call to !, not the original sender, and that’s not the semantic of forwarding
a message. When you forward a message, you’re handing it off to some-
one else, and it’s supposed to look like you were never involved. This is the
same as forwarding a phone call. The caller is passed off to someone else,
and the guy who did the passing isn’t involved in the conversation anymore.
Therefore, that forward only needs to preserve the original sender in order
to make the forward a success.

def forward (message: Any)(implicit context: ActorContext): Unit

The implicit parameter here is a bit confusing. You would expect that
the implicit would be an ActorRef, but the implicit ActorRef in the Actor
is already known to be self, which won’t work here since it’s the reference
to self that we’re trying to avoid. It turns out that the ActorContext holds
enough information that we can extract the original sender and thus have a
nice interface (i.e., the implicit parameter) and deterministic behaviour.
The ActorContext will be covered in more detail in later chapters.

We aren’t giving too much away about Akka internals if we show the
implementation of forward because it’s only doing what we would guess
that it’s doing anyway:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=122

Section 5.8 Chapter 5 · Actors 123

def forward(message: Any)(implicit context: ActorContext) =

tell(message, context.sender)

These different ways of sending are summarized in Figure 5.5.

Receiving
Actor

Sending
Actor

Message

Hitchhiker ActorRef

Intermediary
Actor

Sending
Actor

Message

Hitchhiker ActorRef

Intermediary
Actor

Message

Hitchhiker ActorRef

Normal Message Send

Message Forwarding

Receiving
Actor

Message

Hitchhiker ActorRef

Sending without a Sender

Sending
Function

Dead Letters
Actor

Figure 5.5 · Three different representations of how message sending works.
Every time a message is sent, the message gets a passenger—a reference to
the sender. If ! is called from within an Actor, then that Actor becomes the
sender, or it’s the Dead Letter Office if you’re not inside an Actor. When
forwarding, we propagate the original sender with the message in order to
implement standard forwarding semantics.

5.8 The ActorSystem Runs the Show

It’s time to look at something we’ve seen several times now but we haven’t
really explained: the ActorSystem. We won’t cover all of it right now be-
cause there’s temporal relevancy10 that must be considered, but certain as-
pects of the ActorSystem are important to understand before we go much
further.

It’s absolutely impossible to create an Actor on its own; someone else
needs to “own” it. This requirement ensures that Actors form a hierarchical
structure – or a tree. There are some practical reasons why the tree should be

10I never thought I’d have a use for those two words in the same sentence. Keen.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=123

Section 5.8 Chapter 5 · Actors 124

“decently” formed, but theoretically there’s no reason why you can’t make
a tall, skinny tree or a fat, bushy tree. Now, while it would be cool to say
that it’s turtles all the way down again, the hierarchy terminates at the Ac-
torSystem. The ActorSystem is special because it is always the root of its
own hierarchy and it can never appear anywhere else in the tree but the root.

The ActorSystem is where the turtles stop because it’s not an Actor; it’s
a house for Actors. Not only do your Actors live in that house, so do many
other Actors that Akka uses for its own purposes. Beyond that, it provides
access to other facilities and functions such as:

• System configuration. When you need access to the configuration of
Akka, and of your own application, you can get it from the ActorSys-
tem.

• The default Scheduler, which we’ve seen earlier, is also available via
the ActorSystem.

• The entire event stream of your application is also available. You can
see everything from this access point.

• The Dead Letter Office is available, which means you can hook things
up to it directly, if you’d like.

• It’s the ActorSystem from which we can obtain references to cur-
rently running Actors in its hierarchy via a set of functions called
actorFor().

• You can get the uptime of your app from here as well.

• There are functions that let you shut the system down, as well as stop
individual Actors.

There are several other goodies in there, and we’ll look at most of them
as we proceed, but at this point a couple of things should be clear:

1. The ActorSystem is definitely not an Actor—it’s special.

2. While you can make more than one of them, there will be orders-
of-magnitude fewer ActorSystems than there will be Actors in your
application.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=124

Section 5.9 Chapter 5 · Actors 125

This second point has the most impact on your life, with respect to Ac-
tors. The ActorSystem will be the root of the hierarchy, and thus the hierar-
chy is real; you must compose your Actor application as a hierarchy of Actor
instances.

Note
The imposition of a hierarchy on your Actor application is the most
significant design requirement that Akka puts in front of you.

That requirement carries a naming consistency and uniqueness along
with it. ActorSystems must have a globally unique name in your applica-
tion, and the Actors that live within it must also have a unique name at any
given level of your hierarchy.

We’ll see an important practical impact of the ActorSystem on your code
when we start looking at tests.

5.9 Chapter Summary

We’ve covered a lot of ground in this chapter and we’ve learned a lot about
programming with Actors in Akka. Armed with the knowledge you now
have, you could conceivably go and write very simple, highly concurrent
applications with Akka. Of course, I don’t recommend you do that just yet,
but you can with what you know. Let’s summarize what we’ve learned:

• Actor creation from both inside and outside of an Actor with the actorOf
factory method and the Props class

• Types of messages that we can use and have a solid pattern for defining
and using those messages

• Sending messages in a non-blocking manner and how to program re-
actively

• Logging information by mixing in the ActorLogging trait

• Composing Actor behaviour through traits and partial functions

• Scheduling actions in the future using the Scheduler

• Futures, enough to be able to synchronize simple behaviours if need
be

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=125

Section 5.9 Chapter 5 · Actors 126

• How Actor references travel back and forth between Actors during
message passing

• The ActorSystem, from an introductory level

• What it means to write software in the new paradigm that Akka has
given us

Of course, this is just the beginning, but we’re well on our way to pro-
gramming with Akka. By now, you should be feeling more comfortable
about thinking in the Akka programming style, and that’s really what it’s
about. Akka provides you with state-of-the-art tools and techniques, but
perhaps the greatest benefit is how it enables you to think about concurrent
applications in a new way. Learning the tools and techniques is a vital step,
but getting comfortable thinking about concurrent programming in the way
that Akka provides is where the real benefit lies.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=126

Chapter 6

Akka Testing

No code is valid unless you can prove it to be and this is no less true of code
written in Akka. Unfortunately, Akka programs, just like all other programs,
will do exactly what you tell them to do rather than what you want them to
do. So, we test!

You can test Akka with any testing framework, but we’ll use ScalaTest.1

This is just a personal preference, so you can use whatever you like.

6.1 Making Changes to SBT

Along with ScalaTest, we’ll include Akka’s testkit module, which gives
us a load of nifty tools to help us test what we’ve written. We won’t be
covering all of the test variants here, but rest assured that Akka has you
covered for everything from surgically targeted unit testing to simulating
multi-node testing by spooling up any number of JVMs for you to launch
and deterministically run your tests.

Let’s modify our SBT dependencies so they now look like this:

libraryDependencies ++= Seq(

"org.scalatest" %% "scalatest" % "1.9-2.10.0-M6-B21" % "test",

"com.typesafe.akka" % "akka-testkit" % "2.1"

"com.typesafe.akka" % "akka-actor" % "2.1"

)

Now execute an sbt update and you’re good to go.

1http://www.scalatest.org/ by Bill Venners, et al.

http://www.scalatest.org/
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=127

Section 6.2 Chapter 6 · Akka Testing 128

6.2 A Bit of Refactoring

You may have noted that some of the code we wrote earlier isn’t quite as
testable as we might like. Figure 6.1 shows the subset of code we intend to
test. In particular, we’re talking about the relationship between the Altimeter
and the EventSource. Let’s refactor these pieces of code so that they’re a bit
more decoupled and easier to test.

Altimeter

Actor

EventSource

Actor
Logging

RegisterListener

UnregisterListener

Ex
te

nd
s

Mixes-In

Mixes-In

AltitudeUpdate

Accepts

Accepts

Emits

RateChange
Accepts

Figure 6.1 · When we test our Altimeter, we are technically testing every one
of its components.

The target line of code we’re interested in fixing is:

class Altimeter extends Actor with ActorLogging with EventSource {

We can see here that we’ve tightly coupled the Altimeter to the EventSource,
which isn’t ideal for the purposes of our testing. Our goal with this refac-
toring exercise is to remove this hard-wired dependency. Doing this sort of
thing is always a matter of choice and one could argue that this case doesn’t
warrant it, but if I didn’t do it, you wouldn’t see it.

Slicing Up the Altimeter

The first thing to do is to abstract the EventSource into a trait that we can
extend as needed.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=128

Section 6.3 Chapter 6 · Akka Testing 129

trait EventSource {

def sendEvent[T](event: T): Unit

def eventSourceReceive: Actor.Receive

}

trait ProductionEventSource extends EventSource { this: Actor =>

// Original contents of EventSource here

}

Next, we need to change the definition of the Altimeter so that it self-
types to the EventSource, and we need to alter the factory method so that we
construct the Altimeter with the ProductionEventSource.

class Altimeter extends Actor with ActorLogging { this: EventSource =>

// Original contents of Altimeter here

}

object Altimeter {

// Content as before. We're changing the factory method.

def apply() = new Altimeter with ProductionEventSource

}

Done. Now we have our class working exactly the way it was before, but
we’ve got a hook that we can use to change the dependencies for testing.

6.3 Testing the EventSource

Our EventSource trait was designed to be used to send stuff to those who
want it. Akka will give us several key components that help us make sure it
does what it’s supposed to do.

package zzz.akka.avionics

import akka.actor.{Props, Actor, ActorSystem}

import akka.testkit.{TestKit, TestActorRef, ImplicitSender}

import org.scalatest.{WordSpec, BeforeAndAfterAll}

import org.scalatest.matchers.MustMatchers

// We can't test a "trait" very easily, so we're going to create a specific

// EventSource derivation that conforms to the requirements of the trait so

// that we can test the production code.

class TestEventSource extends Actor with ProductionEventSource {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=129

Section 6.3 Chapter 6 · Akka Testing 130

def receive = eventSourceReceive

}

// "class"Spec is a decent convention we'll be following

class EventSourceSpec extends TestKit(ActorSystem("EventSourceSpec"))

with WordSpec

with MustMatchers

with BeforeAndAfterAll {

import EventSource._

override def afterAll() { system.shutdown() }

"EventSource" should {

"allow us to register a listener" in {

val real = TestActorRef[TestEventSource].underlyingActor

real.receive(RegisterListener(testActor))

real.listeners must contain (testActor)

}

"allow us to unregister a listener" in {

val real = TestActorRef[TestEventSource].underlyingActor

real.receive(RegisterListener(testActor))

real.receive(UnregisterListener(testActor))

real.listeners.size must be (0)

}

"send the event to our test actor" in {

val testA = TestActorRef[TestEventSource]

testA ! RegisterListener(testActor)

testA.underlyingActor.sendEvent("Fibonacci")

expectMsg("Fibonacci")

}

}

}

Akka Adds-On to Test Frameworks

This special import statement in our test is important:

import akka.testkit.{TestKit, TestActorRef, ImplicitSender}

Each of these components provides us with specific helpers that we can
use to write our tests:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=130

Section 6.3 Chapter 6 · Akka Testing 131

• TestKit: Gives us the basic framework we need to work with Actors;
this includes access to the ActorSystem as well as helper methods for
dealing with responses from Actors under test. There are also some
primitives for dealing with time in general. Note that at the end of all
of the tests we need to shutdown() the ActorSystem.

• TestActorRef: Gives us access to the underlying Actor we have writ-
ten. Everything that’s publicly accessible on our Actor is now avail-
able to our test. Don’t be a smart alec and think you should use this in
real life. Respect the Fortress.

• ImplicitSender: This nice part of the kit lets us receive responses
to messages that we may send to our Actor under test directly in our
test code. Functions, such as expectMsg() and expectMsgPF(), are
enabled by ImplicitSender.

Test Code

testActor (Actor)

Direct

EventSource

listeners: Vector

ActorRef

TestActorRef

Front Door

Back Door

Figure 6.2 · Normally, the EventSource Actor is unavailable to our runtime
code because Akka hides it behind an ActorRef. The TestKit’s TestActorRef
gives us access to the Actor’s internals so we can poke and prod it directly.

Figure 6.2 shows us the macro view of what’s happening in most of these
tests. Normally, Akka ensures that nothing can access your Actor’s internals
by hiding things behind a location-neutral, type-independent ActorRef. This

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=131

Section 6.3 Chapter 6 · Akka Testing 132

is a huge benefit to coding in the Actor paradigm and is key to helping you
deliver scalable and reliable applications, but when it comes to unit testing,
it can really get in your way.

To remove that barrier, Akka provides you with the TestActorRef that
gives you a magic key to the back door of the Fortress, so you can just waltz
inside and do pretty much anything you like. Now, we already know this is
a terrible idea, but Akka is pragmatic about testing and provides you with
what you need to get things done. It’s up to you to make sure that you use
this particular super power for good and not evil.

We can do this in a testing situation because we are entirely in control
of the environment. Rather than running in the real world, where any mis-
chievous monkey can come along at any moment and chew the socks right
off your feet, our Actor is running in an environment where the monkey is
our favorite pet. It still chews the socks right off your feet, but it only does it
when we say so.

The ImplicitSender is what allows your test code to react directly to mes-
sages that are sent from your code under test using the methods supplied in
the TestKit (expectMsg() and friends). But in order for the code under test
to be able to send messages to your testing code, the TestKit supplies the
testActor. When you need to inject an ActorRef into code that’s under
test, you can supply the testActor, which will route messages back to the
TestKit, enabling the use of methods like expectMsg().

The plumbing and functionality of the TestKit is really quite powerful.
And the beauty of the untyped Actor gives you the kind of flexibility that
you probably always wanted in your tests but never actually had; the un-
typed Actor provides a hook that makes it a very nice, and very natural mock
object.

The EventSource Tests

The EventSource is so wonderfully simple that we can really get down to the
unit level and test it directly using the facilities that Akka provides in the Tes-
tActorRef. Our first two tests can poke at the internals of our EventSource
directly, calling the receive method and poking at our list of listeners di-
rectly. This is as comfortable as any unit test we’re used to writing.

The last test is really the functional test of the EventSource and the
best way to test it is to use asynchronous concepts. We can poke at the
EventSource directly, but the internals of it will ensure that asynchronous

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=132

Section 6.4 Chapter 6 · Akka Testing 133

code is used (i.e., the sendEvent() method will bang on ActorRefs), so
we’re stuck with a small bit of non-determinism. Here, we use the expectMsg("Fibonacci")
method, which is part of TestKit to ensure that the EventSource sends us a
message within an appropriate amount of time.2

"send the event to our test actor" in {

val testA = TestActorRef[TestEventSource]

testA ! RegisterListener(testActor)

testA.underlyingActor.sendEvent("Fibonacci")

expectMsg("Fibonacci")

}

The code on the second line provides a test reference to our Actor so that
we can go through the front door and the back door to test our EventSource.
We then go through the front door to register our testActor (we could have
used the back door but this gives us some variety) and then through the back
door again to invoke the behaviour we want to test. The advantage here is
that we can go directly for the sendEvent() method right from the test. If
we didn’t have access to the back door, then we would have had to do more
work in our TestEventSource subclass in order to invoke the behaviour.
Yes, that’s right... Akka’s awesome.

The expectMsg assertion is really interesting, mostly in its simplicity.
It’s the fact that we have an ImplicitSender and TestKit mixed into our test
that allows us to have this simplicity. This one line of code will use our
testActor’s receive method to receive messages from our EventSource.
It will expect to receive a String with the value of "Fibonacci" within a
default timeout threshold. Failure to meet any of those conditions will fail
the test but, assuming that the EventSource does what it’s supposed to, the
test will pass as quickly as possible.

6.4 The Interaction Between ImplicitSender and
testActor

When we were writing our Actors, we learned about the interplay between
messages, Actors, and senders. When a message gets sent, the sending Actor

2We just let Akka use the default value for the timeout on expectMsg rather than speci-
fying our own.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=133

Section 6.5 Chapter 6 · Akka Testing 134

hitches a ride along with the message so that the receiver can know who sent
it and can then reply to it.

The TestKit defines a member called testActor, which is a full-fledged
ActorRef that we can send to various components any time they need an
ActorRef to talk to. This ensures that the testActor can easily be a primary
player in any test that requires separate Actors. But if someone’s going to
send messages to the testActor, then it’s reasonable to ask how the test
itself will see those messages.

Since our test specification class isn’t an Actor, there is no implicit sender
that Akka can stick on to the traveling message. This is where the Implicit-
Sender comes in; the definition of ImplicitSender is so simple we might as
well have a look at it:

trait ImplicitSender { this: TestKit =>

implicit def self = testActor

}

This is one of the places where the power of Scala’s implicits and the
elegance of Akka’s design really shines. The implicit is so flexible, and
Akka’s choice of where to use it is so appropriate, that we can now make
tests that naturally fit into the Akka paradigm with a simple trait mixin.

Now that we have all of this plumbing in place, calls like the following
become easy:

testA ! RegisterListener(testActor)

. . .

expectMsg("Fibonacci")

Not only do we have the testActor available to send to the EventSource,
we also have the testActor as the sender of the message, just in case there’s
a response that we’ll need to assert. The magic of the testActor and of the
TestKit class ensure that messages routed to the testActor are easily ac-
cessible from our tests and can be asserted in a variety of ways.

6.5 TestKit, ActorSystem, and ScalaTest

In the last chapter, we saw the ActorSystem and learned that, in order to write
an Actor application, we must have at least one instance of an ActorSystem.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=134

Section 6.5 Chapter 6 · Akka Testing 135

An Actor test specification is of course no different from any other Actor
application in this regard. In order for the TestKit to do what it does, it will
need to have an ActorSystem and we must supply that ActorSystem during
the TestKit’s construction, as we have already seen:

class EventSourceSpec extends TestKit(ActorSystem("EventSourceSpec"))

When we construct our test specification in this way, we create a single
instance of the ActorSystem for all of our specification’s tests. If the tests are
completely independent of one another (as is the case in our tests thus far),
then we have an ideal situation. The ActorSystem only needs to construct
once, and our tests run quickly and well. We may even be able to run them
in parallel and still have completely deterministic results.

However, there are times when the existence of a single ActorSystem
across all tests in a given specification can be a problem. That single context
may require that all of our tests run sequentially, since the single instance is
effectively “shared state” across all of our tests. For example, we discussed
that ActorSystems demand uniqueness in naming Actors. Knowing that, we
can see that running these tests in parallel would yield unreliable results:

class MyActorSpec extends TestKit(ActorSystem("MyActorSpec"))

with WordSpec

with MustMatchers

with BeforeAndAfterAll

with ParallelTestExecution {

override def afterAll() { system.shutdown() }

def makeActor(): ActorRef = system.actorOf(Props[MyActor], "MyActor")

"My Actor" should {

"throw an exception if it's constructed with the wrong name" {

evaluating {

val a = system.actorOf(Props[MyActor]) // use a generated name

} must produce [Exception]

}

"construct without exception" {

val a = makeActor()

// The throw will cause the test to fail

}

"respond with a Pong to a Ping" {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=135

Section 6.5 Chapter 6 · Akka Testing 136

val a = makeActor()

a ! Ping

expectMsg(Pong)

}

}

}

If we were to run these in parallel (using ScalaTest’s ParallelTestExecution
trait), then the presence of the second and third test would cause an InvalidActorNameException
to be thrown from one or the other test, causing it to fail.

We would have to run these tests sequentially in order to give them an
environment in which they can run safely. But this wouldn’t work either
because we aren’t shutting down the Actors that we create between tests. To
handle this problem, we can change the above code to the following:

// Add BeforeAndAfterEach as well as remove the parallelism

class MyActorSpec extends TestKit(ActorSystem("MyActorSpec"))

with WordSpec

with MustMatchers

with BeforeAndAfterAll

with BeforeAndAfterEach {

override def afterAll() { system.shutdown() }

def makeActor(): ActorRef = system.actorOf(Props[MyActor], "MyActor")

override def afterEach() {

system.stop(/* Actor reference here */)

}

. . .

}

In other words, between each test we could shut down the Actor that we
want to recreate. This doesn’t work though because the stop() function is
asynchronous; the next test will start way before the stop() has had time to
complete. Akka includes a helper function called gracefulStop() that you
might think to employ here. You can call gracefulStop(), which returns a
Future on which you can await completion. Without getting into too much
detail, it would look like this:

// Await on the result, giving timeouts for the gracefulStop as well as

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=136

Section 6.5 Chapter 6 · Akka Testing 137

// the timeout on the Future that's running

Await.result(gracefulStop(/* actor reference */, 5 seconds)(system),

6 seconds)

We don’t get into too much detail because this doesn’t work either. The
reason that it doesn’t do what we want is because it’s not intended to do
what we want. gracefulStop() only ensures that the Actor’s life-cycle
functions have run and thus its postStop() callback has executed, which
isn’t the same as saying that the ActorSystem has had a chance to reap the
identifier.

So what do you do when you need to isolate your tests from one another
and the ActorSystem’s causing the lack of isolation? When we run up against
these situations, ScalaTest provides us with a great solution: we push the
TestKit down.

Test Isolation

To get true isolation between our tests, we’ll create a helper class that will
handle the ActorSystem for us:

import akka.actor.ActorSystem

import akka.testkit.{TestKit, ImplicitSender}

import scala.util.Random

class ActorSys(name: String) extends TestKit(ActorSystem(name))

with ImplicitSender

with DelayedInit {

def this() = this(s"TestSystem${Random.nextInt(5)}")

def shutdown(): Unit = system.shutdown()

def delayedInit(f: => Unit): Unit = {

try {

f

} finally {

shutdown()

}

}

}

This helper gives us a few features that we need:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=137

Section 6.5 Chapter 6 · Akka Testing 138

• It mixes in all of the Akka behaviour we want in our tests: the TestKit
and the ImplicitSender.

• It hides the ActorSystem from us and gives us a simple constructor
that takes no parameters. The ActorSystem that we’ll create will have
a random name. This shouldn’t make it difficult to debug any test
errors, but if you don’t like it, then you can use the one-parameter
constructor.

• It moves our test code out of the constructor and into the delayedInit
function so that we can wrap it. We now no longer need to worry about
shutting down the ActorSystem after all of the tests are complete. In
this context, there’s only one test and we can shut the ActorSystem
down after that test completes.

To use it, we have to construct a new one in which our test will live. We
can alter the parallel execution example from before and get true isolated
parallelism:

class MyActorSpec extends WordSpec

with MustMatchers

with ParallelTestExecution {

def makeActor(): ActorRef = system.actorOf(Props[MyActor], "MyActor")

"My Actor" should {

"throw when made with the wrong name" in new ActorSys {

evaluating {

val a = system.actorOf(Props[MyActor]) // use a generated name

} must produce [Exception]

}

"construct without exception" in new ActorSys {

val a = makeActor()

// The throw will cause the test to fail

}

"respond with a Pong to a Ping" in new ActorSys {

val a = makeActor()

a ! Ping

expectMsg(Pong)

}

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=138

Section 6.6 Chapter 6 · Akka Testing 139

}

This has simplified our lives a fair bit! We don’t need to have the Be-
foreAndAfterEach or the BeforeAndAfterAll included, and our specification
itself is no longer a TestKit or an ImplicitSender. On top of that, we’ve gained
full isolation between tests and the ability to run our tests completely in par-
allel. Since the ActorSys is a class, it can be derived from and specialized
further. The ActorSys would make a perfectly fine spot for the definition of
a shared fixture, if it applies. For example, instead of having mutable data
at the spec level, you could put it in the ActorSys and let the constructor
initialize the data appropriately.

There couldn’t possibly be a down side to such awesomeness, right? Of
course there is. . . there always is. It’s speed. We’ve potentially gained some
speed by enabling parallelism, but this should only manifest when you have
individual tests that run long. The real overhead here is in the ActorSystem’s
construction. While we hardly ever notice this construction due to the fact
that it’s usually only done once or twice, it isn’t as trivial as creating an Actor.
Now we’re creating many of them all at the same time, so the visibility of
the expense increases. You’re going to notice it.

So, we need to make decisions about when it should apply. If you don’t
need to apply this high level of isolation, then you might not want to do so.
There’s nothing technically wrong with doing it when you don’t need to, but
you might see a slight speed decrease in your tests, and that isn’t something
we should just lightly ignore.

I will be using this isolation where appropriate and avoid it where we
don’t need it. You might want to do the same.

6.6 Testing the Altimeter

When we’re testing code, it’s almost as important to be fast as it is to be
correct. We need our tests to run as quickly as possible to ensure that our
edit-compile-test cycle is as short as it can be. This is tricky when it comes
to certain types of tests with Actors because those tests may require that you
go through the front door. Concurrency often means things like sleeps and
timeouts. Tests should succeed as quickly as possible, so if there’s a sleep
in the path of success then something’s wrong.

Akka provides several functions in the TestKit that help us keep the path
of success free of unwarranted sleeps. We’ve already seen the expectMsg()

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=139

Section 6.6 Chapter 6 · Akka Testing 140

method from the toolkit. Most of the other functions that it provides follow
the same concept as expectMsg(), but there are a couple of them that pro-
vide some extra nifty behaviour. We’ll take a look at another one, but also
look at a non-Akka-provided mechanism that makes it really easy to get these
tests running quickly.

package zzz.akka.avionics

import akka.actor.{Actor, ActorSystem, Props}

import akka.testkit.{TestKit, TestActorRef, ImplicitSender}

import scala.concurrent.util.duration._

import java.util.concurrent.{CountDownLatch, TimeUnit}

import org.scalatest.{WordSpec, BeforeAndAfterAll}

import org.scalatest.matchers.MustMatchers

object EventSourceSpy {

// The latch gives us fast feedback when something happens

val latch = new CountDownLatch(1)

}

// Our special derivation of EventSource gives us the hooks into concurrency

trait EventSourceSpy extends EventSource {

def sendEvent[T](event: T): Unit = EventSourceSpy.latch.countDown()

// We don't care about processing the messages that EventSource usually

// processes so we simply don't worry about them.

def eventSourceReceive = { case "" => }

}

class AltimeterSpec extends TestKit(ActorSystem("AltimeterSpec"))

with ImplicitSender

with WordSpec

with MustMatchers

with BeforeAndAfterAll {

import Altimeter._

override def afterAll() { system.shutdown() }

// The slicedAltimeter constructs our Altimeter with the EventSourceSpy

def slicedAltimeter = new Altimeter with EventSourceSpy

// This is a helper method that will give us an ActorRef and our plain

// ol' Altimeter that we can work with directly.

def actor() = {

val a = TestActorRef[Altimeter](Props(slicedAltimeter))

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=140

Section 6.6 Chapter 6 · Akka Testing 141

(a, a.underlyingActor)

}

"Altimeter" should {

"record rate of climb changes" in {

val (_, real) = actor()

real.receive(RateChange(1f))

real.rateOfClimb must be (real.maxRateOfClimb)

}

"keep rate of climb changes within bounds" in {

val (_, real) = actor()

real.receive(RateChange(2f))

real.rateOfClimb must be (real.maxRateOfClimb)

}

"calculate altitude changes" in {

val ref = system.actorOf(Props(Altimeter()))

ref ! EventSource.RegisterListener(testActor)

ref ! RateChange(1f)

fishForMessage() {

case AltitudeUpdate(altitude) if (altitude) == 0f => false

case AltitudeUpdate(altitude) => true

}

}

"send events" in {

val (ref, _) = actor()

EventSourceSpy.latch.await(1, TimeUnit.SECONDS) must be (true)

}

}

}

Fishing for Results

The "calculate altitude changes" test uses a cool method for succeed-
ing a test as long as a certain message shows up before the timeout, even
when other messages might show up first.

"calculate altitude changes" in {

val ref = system.actorOf(Props(Altimeter()))

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=141

Section 6.6 Chapter 6 · Akka Testing 142

ref ! EventSource.RegisterListener(testActor)

ref ! RateChange(1f)

fishForMessage() {

case AltitudeUpdate(altitude) if (altitude) == 0f => false

case AltitudeUpdate(altitude) => true

}

We have two ! asynchronous messages that go to the Altimeter and we’re
guaranteed that they’ll go in that natural order so we know that RegisterListener
is processed before RateChange, but that’s all we’re guaranteed. Do you re-
member what’s happening internally in the Altimeter? There’s a scheduler
that’s sending a Tick message to it at regular intervals, right? As a result of
that, either of these message sequences in the Actor’s mailbox is possible:

RegisterListener(testActor)
RateChange(1f)
Tick

... or ...

Tick
RegisterListener(testActor)
Tick
Tick
RateChange(1f)
Tick

The first example is easy. Were that to happen, then asserting that the
altitude was calculated (i.e., it’s no longer zero) would be a piece of cake,
but what if the second example occurs? It will look like the altitude hasn’t
changed! But that’s not our Actor’s fault; it hasn’t had the chance to try yet.

This is where the argument to fishForMessage() comes in. The fishForMessage()
call will run the passed in partial function repeatedly as long as it returns
false up until the (default) timeout. If it never returns true, then the test
ultimately fails, but if it ever returns true, then fishForMessage() suc-
ceeds and the test succeeds. This allows us to handle the second example
with grace and dignity. It also ensures that, assuming our test succeeds, that
it succeeds as quickly as it possibly can.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=142

Section 6.6 Chapter 6 · Akka Testing 143

Countdown to Success

Another common mechanism for locking down concurrency in our tests uses
something that Akka doesn’t provide at all: the standard java.util.concurrent.CountDownLatch
class. Using it means we generally need to be able to hook into the code
somehow. Either we’re injecting some client code that can bridge to our test
via the standard API (e.g., registering a standard event handler), or we derive
from the system under test and hook a latch in there, or some other variant.
Here, we take advantage of the refactoring we did earlier that lets us slide in
a new EventSource.

Since the EventSource is already tested, we don’t need to care that it
sends events; we do need to care whether or not our Altimeter publishes
events to the EventSource. So, we first create the EventSourceSpy and give
it a CountDownLatch we can hook to and then use that latch to solidify our
test.

Let’s first look at the content of the EventSourceSpy.

trait EventSourceSpy extends EventSource {

def sendEvent[T](event: T): Unit = EventSourceSpy.latch.countDown()

// We don't care about processing the messages that EventSource usually

// processes so we simply don't worry about them.

def eventSourceReceive = { case "" => }

}

In the sendEvent method we trigger the latch. The test code will sit on
the latch waiting for sendEvent() to open it. When the Altimeter’s Tick
happens, it will call sendEvent() and the latch will open, which will let
our test succeed. It’s not a really in-depth test, but it does assert that the
Altimeter does call the sendEvent() function, and since we know that the
EventSource works, we know that the act of calling sendEvent() should do
what we want in the end.

The next important bit to understand doesn’t have much to do with test-
ing. Remember the requirements that were put in place to use the EventSource?
Whoever mixed it in would have to compose the receive method by mixing
the eventSourceReceive with its own behaviour, and we did this in Sec-
tion 5.5. Were we not to define eventSourceReceive here, we would get a
compile error because the Altimeter requires it in order to compose receive.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=143

Section 6.6 Chapter 6 · Akka Testing 144

That’s all well and good, but what body should we give our mocked
eventSourceReceive? This brings us to an aside into receive composi-
tion. That actually depends on:

• If receive = altimeterReceive orElse eventSourceReceive, then
it doesn’t really matter what we do since we don’t plan on sending
anything but Altimeter messages to our Altimeter.

• If receive = eventSourceReceive orElse altimeterReceive, then
we need to make sure that whatever messages we send to the Altimeter
won’t be matched by eventSourceReceive.

This is why we defined eventSourceReceive to be case "" =>. We
know we won’t be sending an empty string to either the Altimeter or the
EventSource, so we can be sure that it will never matter. Had we defined it
as case _ =>, then it would have matched anything and the Altimeter would
never see a single message.

And Back to Our Countdown...

Now let’s take another look at "send events" so we can close this up:

"send events" in {

val (ref, _) = actor()

EventSourceSpy.latch.await(1, TimeUnit.SECONDS) must be (true)

}

We don’t need to register anything as a listener because our EventSource
isn’t a real event source anyway; it’s already hooked up and ready to trip our
latch. All we need to do is wait. It doesn’t matter what the altitude is; we
only care that the altitude is sent as an event, so we’ll await on the latch. If
the latch is tripped before we await, then it will return true; otherwise, we’ll
block the current thread until it opens or there is a timeout. If the timeout
trips, then the return value is false and our test fails. Otherwise, it returns
true and we have a successful result that finished quickly.

Now, we could have written more elaborate code that tests for certain al-
titudes and proper calculation, but that’s not what we’re focusing on in these
tests; we’re interested in proper messaging and communication between our
players. You might want to spend time writing a few more tests in order to
flex your new Akka testing muscles.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=144

Section 6.7 Chapter 6 · Akka Testing 145

6.7 Akka’s Other Testing Facilities

We’ve already seen the major aspects of Akka’s testing facilities:

• Back-door access to the Fortress

• Injection into the message flow via testActor and ImplicitSender

The second one is where we get to use the fancy stuff, like expectMsg()
and fishForMessage(). As stated earlier, there are many more functions
that fall into this category of assert functions and while you can read about
those in the Akka ScalaDoc, let’s list a few of the more practical ones:

• expectMsgPF(): This highly useful variant of expectMsg() allows
you to attach a partial function to the assertion. Effectively, this lets us
write a simple receive block for incoming messages. You can then
deconstruct the message and evaluate its constituent parts much like
we did with the fishForMessage() block in the AltimeterSpec.

• Other expectMsg*() functions: We won’t exhaustively describe all
of the other functions that look like expectMsg*(), but there are quite
a number of them. You can expect messages of a particular class or
type. You can assert that all of a given list of messages are received,
that any of a given set of messages is received, that a certain number
are received, that no messages are received, and more. See the TestKit
ScalaDoc for more information about these assertions.

• ignoreMsg(): If there are several messages that the Actor sends under
test and they don’t concern the body of the test (in fact, they are really
quite a pain to deal with), then you can use this function to ignore
them. Your tests will see any messages that match the partial function.
Note that this hook lives for the TestKit’s lifetime, so ignored messages
will remain ignored until you call ignoreNoMsg(), which will clear
out the partial function.

• receiveWhile(): The fishForMessage() function uses receiveWhile()
in order to do its business. With receiveWhile(), you can test for
messages and then exit the assertion when you’ve found what you are
(or aren’t) looking for. For example:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=145

Section 6.8 Chapter 6 · Akka Testing 146

val altitudes = receiveWhile() {

case AltitudeUpdate(alt) if alt > 0f => alt

}

altitudes.sum must be < (altitudes.size * maxCeiling)

This would keep receiving AltitudeUpdates as long as they’re greater
than 0, and then make a weak check to ensure that the altitude mes-
sages (generally) stayed below the maximum ceiling of the plane. If
the plane doesn’t stop climbing in the time that receiveWhile is run-
ning, then we consider that a failure as well.

• And don’t forget the facilities that ScalaTest already provides. We
used the evaluating ... must produce functionality earlier and there
are many other facilities that come in handy with Akka testing as much
as they do with non-Akka testing.

Other functions exist, but we won’t be covering them unless we need
them. I highly encourage you to rummage through the TestKit ScalaDoc and
learn all that you want about the facilities it provides.

6.8 About Test Probes and the testActor

Concurrency is a problem. With respect to Actors, and tests, it can manifest
between tests. For example, let’s say you have the following:

// An annoying Actor that just keeps screaming at us

class AnnoyingActor(snooper: ActorRef) extends Actor {

override def preStart() {

self ! 'send

}

def receive = {

case 'send =>

snooper ! "Hello!!!"

self ! 'send

}

}

// A nice Actor that just says Hi once

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=146

Section 6.8 Chapter 6 · Akka Testing 147

class NiceActor(snooper: ActorRef) extends Actor {

override def preStart() {

snooper ! "Hi"

}

def receive = {

case _ =>

}

}

...

"The AnnoyingActor" should {

"say Hello!!!" in {

val a = system.actorOf(Props(new AnnoyingActor(testActor)))

expectMsg("Hello!!!")

system.stop(a)

}

}

"The NiceActor" should {

"say Hi" in {

val a = system.actorOf(Props(new NiceActor(testActor)))

expectMsg("Hi")

system.stop(a)

}

}

There’s a problem here. That AnnoyingActor eventually stops but it
doesn’t necessarily stop before the call to expectMsg("Hi") in the second
test. This can cause the second test to fail because, while it’s expecting "Hi"
it may get "Hello!!!". This is simply because the testActor is the sole
entity that is receiving messages from tests. Most of the time this isn’t a
problem because you don’t have annoying Actors that you’re testing, but
once in a while it can be a problem.

You can solve the problem by using some test isolation, as described in
Section 6.5 but there’s another alternative.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=147

Section 6.9 Chapter 6 · Akka Testing 148

Test Probes

Test probes help solve this problem, as well as give you an infinite number of
unique test Actors that you can use in your test code. A TestProbe has most
of the functionality you need from the TestKit wrapped up in one object.
Using a TestProbe we could solve the earlier problem like this:

import akka.testkit.TestProbe

"The AnnoyingActor" should {

"say Hello!!!" in {

val p = TestProbe()

val a = system.actorOf(Props(new AnnoyingActor(p.ref)))

// We're expecting the message on the unique TestProbe,

// not the general testActor that the TestKit provides

p.expectMsg("Hello!!!")

system.stop(a)

}

}

Of course, that’s just a single use of a TestProbe. You can use them for
all sorts of interesting work whenever your code under test requires a number
of different Actors in its operation. By using the tell syntax, you can pass
references to TestProbes whenever you like.

someActor.tell("Message", probe.ref)

It’s just that easy. Remember that you’re not limited to the Implicit-
Sender and single testActor when you’re writing your tests, and try to
employ TestProbes whenever it simplifies your problem.

6.9 Chapter Summary

We’ve just put a very important topic under our belts. Testing closes the loop
on programming, ensuring that what we’ve written not only works but is also
usable. It also gives us a sense of comfort, knowing that we have the ability
to tie up any loose ends in our code that might have been nagging us, keeping
any cognitive debt to a minimum. As with any other code, you should have
your Akka programs tested thoroughly as you go.

Let’s summarize the skills we’ve acquired in this chapter:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=148

Section 6.9 Chapter 6 · Akka Testing 149

• Deterministic unit testing of Actors using the TestActorRef instantia-
tion

• Fast detection of success using facilities of TestKit, such as expectMsg()
and fishForMessage()

• Techniques for locking down non-determinism using facilities pro-
vided by Akka (mentioned above) and those not provided by Akka
(e.g., CountDownLatch)

• Coding for testability by factoring our code into pieces using standard
Scala techniques

• A powerful abstraction for isolating our tests from one another and
from the singular ActorSystem that would have otherwise been con-
tained within the entire test specification

Akka provides many more testing goodies for when your code becomes
more complex. Simply put, Akka’s testing framework scales to meet your
needs. As you code, you’ll need to consider how you’ll verify that code, and
the techniques you now understand will take you a long way before you have
to start looking at the richer aspects of Akka testing.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=149

Chapter 7

Systems, Contexts, Paths, and
Locations

One of the things that differentiates Actor programming from other types
of programming is structure. Of course, all programs must be structured
in some way, but the Actor’s “live” nature and the fact that it can spawn
new Actors on demand make its type of structuring rather unique. Not only
are the Actors “physically” built into a structure, the interaction between
the through messaging also provides a certain amount of structure to your
application, which you can leverage. In this chapter, we’ll go deeper into the
Actor paradigm, building out more structure as we describe the facilities in
Akka that make working within this structure natural and powerful.

7.1 The ActorSystem

We’ve seen the ActorSystem several times now; it plays a very important
and strong role in the Actor implementation as well as forms the root of the
Actor structure.

Figure 7.1 shows us the key parts of the ActorSystem that interest us for
the moment:

Dead Letter Office We’ve seen this already, but now it’s clear that the Dead
Letter Office is an Actor, structurally no different from any other Actor
we’ve seen. Any time a message is destined for an Actor that either
doesn’t exist or is not running, it goes to the Dead Letter Office.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=150

Section 7.1 Chapter 7 · Systems, Contexts, Paths, and Locations 151

ActorSystem

Dead Letter Office
Actor

(/deadLetters)

User Guardian
Actor

(/user)

System Guardian
Actor

(/system)

Event
Stream

Settings

Scheduler

Figure 7.1 · Here, we see the key players in the ActorSystem that interest
us most of the time, including three Actors (Dead Letter, System, and User)
as well as three other key entities (Scheduler, Event Stream, and Settings).
These ActorSystem elements, with the exception of the System Guardian,
regularly pop up in Actor programming.

User Guardian Actor We know that no Actor we create can exist without
a parent - something has to own it. The User Guardian Actor is the
parent of all Actors we create from the ActorSystem.

System Guardian Actor For internal Actors that Akka creates in order to
assist you, there is the System Guardian Actor, which serves the same
purpose as the User Guardian Actor, but for “system” Actors.

Scheduler We’ve met the Scheduler before and, while you could always
instantiate one for yourself, the default one lives as an ActorSystem
child.

Event Stream We’ve never seen the Event Stream in its bare form before,
but we use it every time we write a log message. The Event Stream
has more uses than just logging and we’ll look at it very soon.

Settings Akka uses a new configuration system that is useful for configuring
Akka and your application. You can access it from the ActorSystem.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=151

Section 7.2 Chapter 7 · Systems, Contexts, Paths, and Locations 152

The part of the ActorSystem with which we’ve interacted most has been
the User Guardian. The Guardian watches over its children (i.e., the Actors
we create from the ActorSystem) and takes care of them. This core responsi-
bility of the Guardian is pervasive across the entire Actor paradigm in Akka
and it will be the subject of a future chapter. The reason I mention it here
is because the restriction that Akka places on your Actor’s structure – that
of an imposed hierarchy—is significant. I want to assure you that, while the
imposition may be significant, you are definitely getting something for your
money—a key thing being resiliency. But before we cover that important
topic, we first need to lay more of a foundation on working with the Actor
paradigm.

Attaching to the User Guardian

When we create the Plane, we’re creating it as the User Guardian’s child. As
you might recall, we do this:

val system = ActorSystem("PlaneSimulation")

When we create the ActorSystem’s Plane, it becomes the User Guardian’s
child. The User Guardian is now watching over our Plane to ensure that noth-
ing bad happens to it (again, I’ll go into detail about what that really means
in a subsequent chapter). This parent-child relationship is reflected in the
Plane’s path. It looks like this:

/user/Plane

The path indicates the names of the Actors we would need to traverse
were we to walk from one Actor to the next. All we would have to do here
is start from the User Guardian and step onto the Plane, but obviously, as
we increase the size of our ActorSystem’s hierarchy we will have farther to
walk.

7.2 Actor Paths

The path is not actually as simple as a Unix-style path, but is really a standard
URL. The Akka team chose this format due to their Actor model’s enormous

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=152

Section 7.2 Chapter 7 · Systems, Contexts, Paths, and Locations 153

flexibility, for ease of definition, and for future growth of the toolkit.1 Given
that the path is a URL, we can expand the Plane path to be more correct:

akka://PlaneSimulation/user/Plane

Since this is a URL, we can also include more locating information
within it. Of course, since our Plane currently lives on only one machine
and we’re only dealing with a single ActorSystem, the location information
won’t be of any use to us, but this extra information will be a good thing
when we start working with remote machines.

akka://PlaneSimulation@{host}:{port}/user/Plane

Here, we can specify the ActorSystem, followed by a host and port and
then the path to the Actor in which we’re interested. Again, we won’t be
using this right now, but it will become important later.

That’s all I’ll say about paths for the moment. In the rest of this chapter,
we’ll create Actor hierarchies and rely on the path to help us find things
within the structure, so we’re not done yet. . . just done for now.

Accessing the Actor Path

The Actor’s path is a property of the ActorRef for that Actor. This means
that you can get the path for an Actor even though you can’t reference that
Actor directly. We’ll see more about how the path relates to various other
aspects of the Actor’s properties later. If you want to see the path of a given
ActorRef, you can access it like this:

val a = system.actorOf(Props(new Actor {

def receive = {

case _ =>

}

}), "AnonymousActor")

// prints "/user/AnonymousActor"

println(a.path)

1Akka is currently working on the Clustering feature, which will require you to use the
URL to specify Actors in a Cluster. The URL format will remain the same, but the content
will be different in order to accommodate the new feature.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=153

Section 7.3 Chapter 7 · Systems, Contexts, Paths, and Locations 154

// prints "AnonymousActor"

println(a.path.name)

7.3 Staffing the Plane

Without a crew, our Plane doesn’t have much purpose. We’ll rectify that by
adding some people to our Plane who know how to run things. There’ll be a
Pilot, CoPilot, and a set of flight attendants with a leader.

The Flight Attendants

Let’s start by creating some flight attendants in the form of a hierarchy, with
a lead flight attendant and a collection of subordinate flight attendants. All
of the people on our Plane will have names, including the flight attendants.
To add a twist, we’ll supply everyone’s name using the configuration system
that ships with Akka.

To play nice with SBT, we’ll put our configuration file inside of src/main/resources
and it will be called reference.conf. The content we need for the moment
will include pilots and flight attendants:

zzz {

akka {

avionics {

flightcrew {

pilotName = "Harry"

copilotName = "Joan"

leadAttendantName = "Gizelle"

attendantNames = [

"Sally",

"Jimmy",

"Mary",

"Wilhelm",

"Joseph",

"Danielle",

"Marcia",

"Stewart",

"Martin",

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=154

Section 7.3 Chapter 7 · Systems, Contexts, Paths, and Locations 155

"Michelle",

"Jaime"

]

}

}

}

}

Akka uses the HOCON2 configuration specification, which is a prag-
matic and simple-to-use configuration system; you’re gonna love it.

An Aside into Configuration

The configuration system may be unlike anything you’ve used before, since
it departs from some traditional wisdom when it comes to defaults. Config-
urations systems often allow you to specify defaults in your code, like this:

val myvalue = configuration.get("some.configuration.variable",

"defaultValue")

HOCON does not support this. Relax, it’s a good thing. Default values
don’t belong in code, especially the default values for “big” software. If
you have a solid configuration system, then it will be used for tuning your
software.3 Nine times out of nine point zero zero one, the software authors
have no idea what values are appropriate for defaults when it comes to tuning
and performance (among many other things). What tends to happen is a
developer ends up doing something like:

val myvalue = configuration.get("some.configuration.variable", 7)

// Sure, 7 seems good... I looked at my watch and it had a '7' on

// it, so I used it... it'll be just fine.

Later, once people actually understand the nature of the written program,
the default values start to take shape. More often than not, the people who
start to really understand what the default values are supposed to be are not
the programmers who are writing the code; they’re testers, performance en-
gineers, integrators, convenience store workers, and literally anyone else.

2https://github.com/typesafehub/config/blob/master/HOCON.md
3Right? RIGHT???

https://github.com/typesafehub/config/blob/master/HOCON.md
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=155

Section 7.3 Chapter 7 · Systems, Contexts, Paths, and Locations 156

So, if the default values are in the code, then one of two things ends up
happening:

1. Bug reports get filed against the code, programmers get their backs up
about it and insult the person who filed it, and eventually their man-
agers make them change it.

2. The bug reports don’t get filed, and the people who know what it
should be just provide a configuration override for nearly every con-
figuration parameter in the code.

Number 1 makes work where it need not be. Number 2 ensures that
the default values are irrelevant, and the programmers have no idea how the
product is really being used. By not supplying the functionality to put default
values in the code, HOCON eliminates the issue altogether. It doesn’t take
the power of the default away from the developer (she can still supply it in
the reference configuration file), it just puts the power of the default value in
the place where it has the most power, outside of the code.

The last argument I hear from people on this philosophy is, “But if the
value isn’t in the configuration file and I try to dereference it, my code will
crash!” There’s only one answer to that: “Yup.”

See, fantastic no?

Back to Our Flight Crew

The configuration file now contains several names for the employees in our
flight crew, which gives us the data we need to start creating some flight
attendants. In the spirit of starting simple, we’ll have some pretty boring
flight attendants; they’ll just respond to drink requests at some point in the
future that we can govern using an Akka Duration specifier.

The Flight Attendant

package zzz.akka.avionics

import akka.actor.Actor

import scala.concurrent.util.duration._

import scala.concurrent.ExecutionContext.Implicits.global

// This trait allows us to create different Flight Attendants with different

// levels of responsiveness.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=156

Section 7.3 Chapter 7 · Systems, Contexts, Paths, and Locations 157

trait AttendantResponsiveness {

val maxResponseTimeMS: Int

def responseDuration = scala.util.Random.nextInt(maxResponseTimeMS).millis

}

object FlightAttendant {

case class GetDrink(drinkname: String)

case class Drink(drinkname: String)

// By default we will make attendants that respond within 5 minutes

def apply() = new FlightAttendant with AttendantResponsiveness {

val maxResponseTimeMS = 300000

}

}

class FlightAttendant extends Actor { this: AttendantResponsiveness =>

import FlightAttendant._

def receive = {

case GetDrink(drinkname) =>

// We don't respond right away, but use the scheduler to ensure

// we do eventually

context.system.scheduler.scheduleOnce(responseDuration, sender,

Drink(drinkname))

}

}

When we were looking at Actors before, we saw that closing over the
sender is not something we want to do, simply because it’s a method that
returns the current value. If we close over it, then the value returned when
the closure executes will probably not be what it was when we made the
closure. Just to be clear, that’s not what’s happening when we schedule the
Drink response. The second parameter of scheduleOnce() takes a proper
ActorRef, not a by-name parameter, so the sender is frozen at the point of
scheduling.

By now, the contents of the FlightAttendant should be old news to you.
The interesting part is when we create the boss, because when hasn’t middle
management been incredibly interesting?

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=157

Section 7.3 Chapter 7 · Systems, Contexts, Paths, and Locations 158

Testing Our Flight Attendant

Did you happen to think about testing this beast at all? Sure you did! Every
time you look at our code, you’re thinking about how it gets tested—I know
you are.4

There’s a problem with testing our FlightAttendant at this point, or at
least there would have been if we hadn’t planned for it; the response time be-
tween a drink request and a drink response could be up to 5 minutes. One of
the reasons we created the AttendantResponsiveness trait was in order to
make the FlightAttendant easier to test. It’s really easy to create a derivation
of this trait so that we can define the maxResponseTimeMS to an incredibly
low value, say 1. Let’s do it:

package zzz.akka.avionics

import akka.actor.{Props, ActorSystem}

import akka.testkit.{TestKit, TestActorRef, ImplicitSender}

import org.scalatest.WordSpec

import org.scalatest.matchers.MustMatchers

object TestFlightAttendant {

def apply() = new FlightAttendant with AttendantResponsiveness {

val maxResponseTimeMS = 1

}

}

class FlightAttendantSpec extends TestKit(ActorSystem("FlightAttendantSpec"))

with ImplicitSender

with WordSpec

with MustMatchers {

import FlightAttendant._

"FlightAttendant" should {

"get a drink when asked" in {

val a = TestActorRef(Props(TestFlightAttendant()))

a ! GetDrink("Soda")

expectMsg(Drink("Soda"))

}

}

}

4What do you mean you’re not? We had a deal.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=158

Section 7.3 Chapter 7 · Systems, Contexts, Paths, and Locations 159

We’ve been able to slide in our “fast” implementation of the AttendantResponsiveness
trait using a standard factory method. But there’s a problem: if you tried that
out, you’d find that it’s not all that fast. It’s definitely not a one millisecond
test—far from it. In fact, it will run in 100 milliseconds, three orders of mag-
nitude slower than we’d like. Go ahead, give it a try and see. To really get
a decent illustration of this, you might want to create 10 or 20 variations of
the "get a drink when asked" tests in order to expand the delays.

So why does it run so slow? To answer this question, we need to learn
more about the Scheduler’s implementation choices.

The Scheduler and the HashedWheelTimer

The authors of Akka are really concerned about performance and scalabil-
ity, which is great because it means we’re allowed to focus on better things.
Worrying about the Scheduler is just standard operating procedure for these
guys. Everything in software is a trade-off and when it comes to timers, the
Akka team have opted to use a HashedWheelTimer in their Scheduler im-
plementation. It trades off timer resolution and microsecond accuracy for
low overhead. You can read up on the details of the HashedWheelTimer
at http://www.jboss.org/netty/. The bottom line for us, from a prac-
tical perspective, is that the Scheduler has a default resolution of only 100
milliseconds. This is why our test runs slow.

Now, before you freak out and say you must have millisecond (i.e., one
millisecond) resolution, just breathe. You have to ask yourself why you need
it. If your app will be busy doing a billion things per second, then you’ll want
a low overhead timer, which is why you should leave its default behaviour
just the way it is. Read up on the HashedWheelTimer very carefully before
you commit to trading off on something else.

So, are we screwed? Of course not. We can modify the configuration for
our test in order to ensure that we get a successful result incredibly fast.

We just have to change the ActorSystem’s construction within the test
spec:

import com.typesafe.config.ConfigFactory

class FlightAttendantSpec extends TestKit(ActorSystem("FlightAttendantSpec",

ConfigFactory.parseString("akka.scheduler.tick-duration = 1ms"))

And that’s it. We’ve used a different flavor of ActorSystem creation to
pass in a piece of configuration that we can mix into the overall configuration.

http://www.jboss.org/netty/
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=159

Section 7.3 Chapter 7 · Systems, Contexts, Paths, and Locations 160

We’re overriding the default value of the tick duration for the Scheduler so
that our test runs fast. There’s no need to care about the efficiency problem
with respect to what we’re trading off because we’re just running a simple
test.

Now we can run 100 tests in the same time it used to take to run one.
This keeps our development cycle efficient and that’s a very good thing.

The Lead Flight Attendant

The LeadFlightAttendant won’t do much more than simple management of
the flight attendants under its care. The subordinates themselves are the ones
who will do all the real work on this Plane. (This is not a comment on
middle-management in general, of course.)

package zzz.akka.avionics

import akka.actor.{Actor, ActorRef, Props}

// The Lead is going to construct its own subordinates.

// We'll have a policy to vary that

trait AttendantCreationPolicy {

val numberOfAttendants: Int = 8

def createAttendant: Actor = FlightAttendant()

}

// We'll also provide a mechanism for altering how we create the

// LeadFlightAttendant

trait LeadFlightAttendantProvider {

def newFlightAttendant: Actor = LeadFlightAttendant()

}

object LeadFlightAttendant {

case object GetFlightAttendant

case class Attendant(a: ActorRef)

def apply() = new LeadFlightAttendant with AttendantCreationPolicy

}

class LeadFlightAttendant extends Actor { this: AttendantCreationPolicy =>

import LeadFlightAttendant._

// After we've successfully spooled up the LeadFlightAttendant, we're

// going to have it create all of its subordinates

override def preStart() {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=160

Section 7.3 Chapter 7 · Systems, Contexts, Paths, and Locations 161

import scala.collection.JavaConverters._

val attendantNames = context.system.settings.config.getStringList(

"zzz.akka.avionics.flightcrew.attendantNames").asScala

attendantNames take numberOfAttendants foreach { i =>

// We create the actors within our context such that they are

// children of this Actor

context.actorOf(Props(createAttendant), i)

}

}

// 'children' is an Iterable. This method returns a random one

def randomAttendant(): ActorRef = {

context.children.take(

scala.util.Random.nextInt(numberOfAttendants) + 1).last

}

def receive = {

case GetFlightAttendant =>

sender ! Attendant(randomAttendant())

case m =>

randomAttendant() forward m

}

}

Figure 7.2 shows the layout of our hierarchy. You can verify the exis-
tence of this hierarchy by looking at Akka itself. Let’s write a short program
that will show what Akka has constructed for us by looking at the debug
output of the Actor life cycle.

object FlightAttendantPathChecker {

def main(args: Array[String]) {

val system = akka.actor.ActorSystem("PlaneSimulation")

val lead = system.actorOf(Props(

new LeadFlightAttendant with AttendantCreationPolicy),

"LeadFlightAttendant")

Thread.sleep(2000)

system.shutdown()

}

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=161

Section 7.3 Chapter 7 · Systems, Contexts, Paths, and Locations 162

User
Guardian

Plane

ActorSystem
(PlaneSimulation)

Lead Flight
Attendant

Flight
Attendant

Flight
Attendant

Flight
Attendant

/user

/user/Plane

/user/Plane/Gizelle

/user/Plane/Gizelle/Sally

/user/Plane/Gizelle/Jimmy

/user/Plane/Gizelle/Stewart

Flight
Attendant

/user/Plane/Gizelle/Mary

Figure 7.2 · The Plane’s hierarchy, including the sub-hierarchy of the Flight
Attendants. Note that the path requirements are determined entirely by the
parent/child relationships between the Actors.

If you put that code into the same source file as the one containing
the LeadFlightAttendant, then you can run it from SBT using sbt run.
However, before we do that, we’ll need to turn on some special debug-
ging in Akka, which will let us see the life-cycle output. If you modify
the application.conf file that we’re using to configure Akka by adding

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=162

Section 7.4 Chapter 7 · Systems, Contexts, Paths, and Locations 163

the following, then we’ll be able to see what we’re looking for:

akka {

loglevel = DEBUG

actor {

debug {

lifecycle = on

}

}

}

So when we run it, we get:

[akka://PlaneSimulation/user/LeadFlightAttendant] started
[akka://PlaneSimulation/user/LeadFlightAttendant/Jimmy] started
[akka://PlaneSimulation/user/LeadFlightAttendant/Sally] started
[akka://PlaneSimulation/user/LeadFlightAttendant/Wilhelm] started
[akka://PlaneSimulation/user/LeadFlightAttendant/Joseph] started
[akka://PlaneSimulation/user/LeadFlightAttendant/Mary] started
[akka://PlaneSimulation/user/LeadFlightAttendant/Marcia] started
[akka://PlaneSimulation/user/LeadFlightAttendant/Stewart] started
[akka://PlaneSimulation/user/LeadFlightAttendant/Danielle] started

When we turn on life-cycle debugging, Akka will log a lot of information
about what’s happening to our Actors’ lives. It’s not the kind of thing you’d
want to turn on regularly, but keep it in mind if you think you might be doing
something like killing off an Actor prematurely.

7.4 The ActorContext

Every Actor has a context member that helps it do a lot of its work. The
context is one of the things that decouples your internal Actor logic from the
rest of Akka that’s managing it. One thing it does is protect Akka from your
code, and the other packages that you might be using. When they go bad on
you and your Actor turns into a pile of scrambled bits, Akka is isolated from
it and can keep things running.

We’ve seen the ActorContext already, when we’ve been accessing its Ac-
torSystem and when we’ve been using its actorOf() method(s), but there’s

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=163

Section 7.4 Chapter 7 · Systems, Contexts, Paths, and Locations 164

a lot more to it. Let’s look at what it brings us, including some of the func-
tionality we’ve already seen:

Actor Creation Just like the actorOf()methods that exist on the ActorSys-
tem, we have the ability to create Actors from the context as well. The
difference here, of course, is that these newly created Actors are chil-
dren of the current Actor instead the User Guardian.

System Access The ActorSystem at the root of this Actor’s hierarchy is ac-
cessible as well, which lets us access goodies like the Scheduler and
the Settings that we’ve seen previously.

Relationship Access The context knows who our parent is, who all of our
children are, and gives us the ability to find other Actors in the Ac-
torSystem, including grandparents, brothers, sisters, cousins, uncles
to 5th degree, and so on.

State When accessing self or sender from the Actor, we’re actually get-
ting that information from the ActorContext; the Actor merely gives
us convenient access to them. There are other types of state as well,
which are carried in the context that holds information vital to our Ac-
tor. We’ll see these in future chapters, but they include things such as
the Actor’s current behavioural state, its Dispatcher, and a list of other
Actors whose life cycles the Actor is interested in.

Useful Functionality The ActorContext also provides some useful func-
tionality that we’ll be invoking a fair bit as Actor programmers. We
can stop Actors (including ourselves), change our internal behaviour
(i.e., change the implementation of the receive method), and insert
ourselves into the event flow of other Actors’ life cycles.

The ActorContext is aptly named. One of the major things that differ-
entiates one Actor from another is the context in which it lives. The Actor-
Context provides that context and keeps it fresh, so that our Actor has most
things it needs to do its job.

Let’s start putting more hierarchy into our Plane and see how we can get
some relationships going.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=164

Section 7.4 Chapter 7 · Systems, Contexts, Paths, and Locations 165

Pilots

It’s probably about time that we put some brains behind the controls of our
Plane. We have some names for them in our reference.conf configuration
file, so it makes sense to turn them into real live objects.

The relationships we’ll put together for our pilots will be a bit different
than we had for our flight attendants. The flight attendants are direct children
of the lead that created them, but the pilots will discover each other when
we’ve reached a stable point after creation.

To cement the pilot relationships, we’ll need to look them up using the
Actor paths that Akka creates for us. We can find Actors using the Ac-
torContext or the ActorSystem, but in the case of the pilots, we’ll use the
ActorContext.

Looking Up Actors

The ActorContext provides us with the actorFor() set of functions; there
are three of them:

actorFor(path: Iterable[String]): ActorRef Allows us to use an
iterable collection to look up our Actors. For example, List("/user", "/Plane", "/ControlSurfaces").

actorFor(path: String): ActorRef Allows us to look up Actors us-
ing a familiar string. For example, "/user/Plane/ControlSurfaces".

actorFor(path: ActorPath): ActorRef The ActorPath is a nice ab-
straction of the path concept, which provides some behaviour for com-
parison, extracting parts of the path, etc. Semantically, it’s not really
any different from the other two.

All of those versions of the function are essentially the same. What’s
interesting to note is the return type. If we ask the following. . .

val doesNotExist = context.actorFor("/user/this/actor/does/not/exist")

. . . then we’ll get an ActorRef back; it won’t throw an exception. Why
won’t it throw an exception? And if it won’t throw an exception, then what
on earth will it return to us?

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=165

Section 7.4 Chapter 7 · Systems, Contexts, Paths, and Locations 166

The Reality of Concurrency

Let’s tackle the first question by asking a question. If we ask for this. . .

val exists = context.actorFor("/user/this/actor/really/does/exist")

. . . then what will we get back? That’s a silly question. Of course, we’ll
get back a valid ActorRef for the existing Actor, right?

It turns out that it’s not a silly question. When we look up that Actor,
we’re doing it in a concurrent system, and concurrency changes the rules.
Concurrency presents us with a near infinite set of timelines for our applica-
tion, and in many of them the response from actorFor() can easily return
us a non-existent ActorRef for something that we think should be there.

Due to the real-life aspects of concurrency, Akka has made a conscious
decision to return an ActorRef for all actorFor() requests, regardless of
whether or not it can find the Actor instance for the request; it will never
throw an exception.

And now we can answer the second question: The returned ActorRef,
when its corresponding Actor cannot be found, is the Dead Letter Office.
We can now add on to the above code with a deterministic assertion:

val doesNotExist = context.actorFor("/user/this/actor/does/not/exist")

if (doesNotExist == context.system.deadLetters) {

println("Yup, it really doesn't exist")

} else {

println("Whoah. Someone created something that I thought didn't" +

"exist while I was checking to see if it didn't exist")

}

Optional ActorRefs

One other thing you could ask is, “Why not return Option[ActorRef]?”
Well, the answer to this question is exactly the same as the answer to why
an exception doesn’t get thrown: concurrency. To the point, the following
piece of code is entirely possible:

// Hypothetical, assuming that actorFor() returns an Option[ActorRef]

val exists: Option[ActorRef] =

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=166

Section 7.4 Chapter 7 · Systems, Contexts, Paths, and Locations 167

context.actorFor("/user/this/actor/really/does/exist")

if (exists.isEmpty)

println("Whoah. The thing I thought would exist, no longer does.")

The thing that you thought would exist might have died before actorFor()
could look it up; either it died of its own accord, someone killed it, or it never
existed in the first place. You can’t know which one.

Terminated ActorRefs

Another thing to understand is that, just because you have an ActorRef and
that ActorRef may actually point at the Actor you think it should, it still may
not be of any use to you because it’s been terminated. For example:

val exists = context.actorFor("/user/this/actor/really/does/exist")

if (exists.path.name == "exist" && exists.isTerminated)

println("Damn. The 'exist' Actor died before I could talk to it.")

actorFor() and Concurrency Conclusions

All of this discussion around actorFor() should have driven home the idea
that there are aspects of concurrency that you simply can’t avoid. Stuff hap-
pens outside of the current context in which you’re thinking and that’s real
life—you simply just have to deal with it.

However, it shouldn’t concern you that these things can happen; all of
this discussion has been meant to familiarize you with the API. Akka has sev-
eral facilities to make sure that, while these things might occur, they would
occur because you want them to. The Actor model, coupled with the model
of resiliency, ensures that your application is actually easy to reason about,
even in the face of concurrency that dictates your returned Actors may not
be running, or even exist.

The Pilot

Given that we now understand the issues surrounding the actorFor() we
can start using it a bit.

package zzz.akka.avionics

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=167

Section 7.4 Chapter 7 · Systems, Contexts, Paths, and Locations 168

import akka.actor.{Actor, ActorRef}

object Pilots {

case object ReadyToGo

case object RelinquishControl

}

class Pilot extends Actor {

import Pilots._

import Plane._

var controls: ActorRef = context.system.deadLetters

var copilot: ActorRef = context.system.deadLetters

var autopilot: ActorRef = context.system.deadLetters

val copilotName = context.system.settings.config.getString(

"zzz.akka.avionics.flightcrew.copilotName")

def receive = {

case ReadyToGo =>

context.parent ! Plane.GiveMeControl

copilot = context.actorFor("../" + copilotName)

autopilot = context.actorFor("../AutoPilot")

case Controls(controlSurfaces) =>

controls = controlSurfaces

}

}

The Pilot needs to be able to work with other Actors quite intimately. It
takes advantage of the fact that it knows it is the child of the Plane and can
thus ask the Plane directly for the controls (the context.parent call). We
also see that it can ask the Actor’s context for its siblings exactly as we
would look for sibling directories in our operating system’s file system (the
context.actorFor(...) calls).

The CoPilot

The CoPilot is very similar to the Pilot, except that he has no interest in
grabbing the Plane’s controls when it’s ready to go.

class CoPilot extends Actor {

import Pilots._

var controls: ActorRef = context.system.deadLetters

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=168

Section 7.4 Chapter 7 · Systems, Contexts, Paths, and Locations 169

var pilot: ActorRef = context.system.deadLetters

var autopilot: ActorRef = context.system.deadLetters

val pilotName = context.system.settings.config.getString(

"zzz.akka.avionics.flightcrew.pilotName")

def receive = {

case ReadyToGo =>

pilot = context.actorFor("../" + pilotName)

autopilot = context.actorFor("../AutoPilot")

}

}

There’s really not much new here. We have our members on lines 3-5
that, much like the Pilot, are set as Options. The only real difference is
that the controls will remain None much longer than they will for the Pilot.
We’re still using the configuration and the Actor hierarchy to know where
our respective pieces are, and the relationships are set up once the Plane tells
us that we’re ReadyToGo.

Creating Pilots

As we’ve already discovered, Actor programs depend highly on their struc-
ture and, as such, that structure can start to become rather complex. By and
large, this isn’t really a problem—in fact, it’s a very good thing—but testing
becomes more interesting. Aside from checking correctness, our tests should
be small, targeted, and fast. Small is the challenge when it comes to complex
Actor structures, because it means we have to start minimizing that structure
as much we can, as well as design our code such that it doesn’t care too much
about the full structure, if possible.

One thing we’ll see a fair bit of is the delegation of creation to mixable
traits; pilots are no exception here. We’ve already seen it with the LeadFligh-
tAttendant, so let’s continue this pattern by defining the PilotProvider to
give us a mixable delegation for creating pilots:

trait PilotProvider {

def pilot: Actor = new Pilot

def copilot: Actor = new CoPilot

def autopilot: Actor = new AutoPilot

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=169

Section 7.5 Chapter 7 · Systems, Contexts, Paths, and Locations 170

Putting Everyone in the Plane

Now that we have our flight crew, we need to get them instantiated properly,
which the Plane will do for us. Let’s add a couple of lines to the construction
of our Plane, right after the construction of the controls:

val controls = context.actorOf(Props(new ControlSurfaces(altimeter)))

val config = context.system.settings.config

val pilot = context.actorOf(Props[Pilot],

config.getString("zzz.akka.avionics.flightcrew.pilotName"))

val copilot = context.actorOf(Props[CoPilot],

config.getString("zzz.akka.avionics.flightcrew.copilotName"))

val autopilot = context.actorOf(Props[AutoPilot], "AutoPilot")

val flightAttendant = context.actorOf(Props(LeadFlightAttendant()),

config.getString("zzz.akka.avionics.flightcrew.leadAttendantName"))

override def preStart() {

// Register ourself with the Altimeter to receive updates on our altitude

altimeter ! EventSource.RegisterListener(self)

List(pilot, copilot) foreach { _ ! Pilots.ReadyToGo }

}

Not bad at all. Our Plane is starting to shape up now that it has people in
it who can actually do some stuff. We’ll start using these guys really soon;
for the moment, let’s just look at what we have. Figure 7.3 shows us the
structure of the Actors we just created, how they relate to one another, and
the paths associated with each of them.

7.5 Relating the Path, Context, and System

There’s a wonderful diagram in the Akka reference documentation that I’ve
almost entirely ripped off for the purposes of illustration, which you can see
in Figure 7.4.

The diagram shows:

• How the Actor relates to its ActorContext through the context mem-
ber

• That the ActorContext holds the understanding of the relationships be-
tween children and parents, and also holds the reference to self.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=170

Section 7.5 Chapter 7 · Systems, Contexts, Paths, and Locations 171

User
Guardian

Plane

ActorSystem
(PlaneSimulation)

Lead Flight
Attendant

Flight
Attendant

Flight
Attendant

Flight
Attendant

/user

/user/Plane

/user/Plane/Gizelle

/user/Plane/Gizelle/Sally

/user/Plane/Gizelle/Jimmy

/user/Plane/Gizelle/Stewart

Flight
Attendant

/user/Plane/Gizelle/Mary

Pilot

/user/Plane/Henry

CoPilot

/user/Plane/Joan

AutoPilot

/user/Plane/AutoPilot

Control
Surfaces

/user/Plane/ControlSurfaces

Figure 7.3 · The structure of the Plane after everyone’s in place

• That we use self to access our own ActorRef, which is what is actu-
ally visible to the outside world, and use it to see the ActorPath.

• That we use ActorPath to access the parental relationships, but only in
a “textual” manner.

The diagram should serve as a helpful reminder for knowing how you
can traverse the hierarchy at any given point, and how you can relate certain
parts of the Actor design to others. For example, if you have an ActorPath,
then you can get the ActorRef using the ActorSystem, and if you have an
ActorContext, you can get the children and parent ActorRef directly. How-

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=171

Section 7.6 Chapter 7 · Systems, Contexts, Paths, and Locations 172

ever, if you want the ActorPath of any of those, then you’ll need to get that
through the ActorRefs.

ActorSystem

akka://sys@host:2552/user/parent/child

akka://sys@host:2552/user/parent

akka://sys@host:2552/user ActorContextActorRef
"user"

Actor
(Guardian)

Actor
(Parent)

Actor
(Child)

ActorContext

ActorContext

ActorRef
"parent"

ActorRef
"child"

.context

.context

.context

.self

.self

.self

.parent

.ch
ild

ren

.path

.path

.path

.p
ar
en
t

.p
ar
en
t

ActorPath ActorRef ActorContext Actor

Figure 7.4 · How we relate the Actor to its context, its ActorRef, and the
path. It’s the context that holds the relationships together, and those point to
the ActorRefs (not the Actors or the ActorContexts). From the ActorRef, we
can retrieve the ActorPath object, which we can interrogate as we please.

7.6 Chapter Summary

This chapter gave us a pretty good view into how Akka organizes Actors.
You’ll find that Actor programs are very much defined by how they are phys-
ically structured, both to help define the algorithm you’re designing and to
create a degree of fault tolerance for which Actors are justly famous.

Specifically, you’ve increased your skills in the following areas:

• We learned a bit about the mechanics of the configuration system, in-
cluding how to add our own custom configurations to our application.

• We saw how Akka creates Actor hierarchies automatically for us by
creating Actors using the context.actorOf() factory method.

• We now understand the Guardian Actor and learned that its job is to
provide a safeguard for its children.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=172

Section 7.6 Chapter 7 · Systems, Contexts, Paths, and Locations 173

• We can look up Actors using relative paths just like we would in a file
system using context.actorFor().

• We learned a bit more technical information regarding the Scheduler
such that we can have some realistic expectations of it as well as tailor
it for our tests.

• There’s also a neat trick for specifying configuration parameters at
runtime that we saw while playing around with that Scheduler.

• We also learned how Akka deals with the real world in a pragmatic
sense. The Akka designers don’t pretend that they can give you stable
results to certain operations in a concurrent world. These are the issues
that come up regardless of any technology and/or toolkit; this is the
stuff that just happens.

What we now know will help us understand all of the neat aspects of how
Akka helps us create fault-tolerant systems. We’re going to need it too. This
Plane’s got some problems and in order to fix them, we’re going to let it heal
itself.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=173

Chapter 8

Supervision and DeathWatch

You’re 35,000 feet in the air, crammed into an aluminum tube full of highly
explosive fuel, with food that people in hospitals would reject and that guy
in seat 23C muttering to himself in some incoherent babble-speak with a
twitchy left eye. What could possibly go wrong?1

As you know, Actor programs contain anywhere from a few to a few
hundred million live objects running around doing what they do best. You
also know that they aren’t just running around like a bunch of crazy chickens;
they’re slotted into a very specific and very ordered hierarchy. And because
you’re a citizen of our planet, you know about this thing called real life and
are well aware that given enough time, enough code, and the fact that life is
generally a problem, you are guaranteed that things are going to go wrong.

This is where Akka and the Actor model come to your rescue. Failures
and just plain weird stuff are modeled into your application so that, even
under strange circumstances, your application still runs; you could even say
that it can heal itself when it gets injured.

In this chapter, we’ll start ensuring that our Plane is really solid. Not
only will we put the controls and instruments in our self-healing scheme, but
we’ll put the people in it under the same sort of rules. Although, we’ll make
sure that some of our people aren’t quite superhuman. . . before this chapter’s
out, somebody’s gonna have to die.

8.1 What Makes Actors Fail?

throw new Exception("Say hello to my little friend!")

1Seriously, I have to go on a plane next week and now I don’t want to.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=174

Section 8.2 Chapter 8 · Supervision and DeathWatch 175

In a nutshell, that’s it. Actors fail because something inside the receive
method throws an Exception. Either your own code has thrown something
(i.e., you specifically throw) or there’s a library you’re using somewhere that
throws; it doesn’t matter. Something throws and it causes your Actor to toss
his cookies.

We all know what an exception throw does to our usual notion of appli-
cation flow, but what does it mean to a living Actor?

Actor Paramedics

Every Actor has a parent and, as such, every Actor has a Supervisor. The
supervisor decides what should be done when it sees a child get injured due
to an Exception. The parent sees the Exception, matches it against a partial
function, and then decides what should be done to the affected Actor in order
to deal with the problem. The Actor system’s hierarchical nature makes this
decision-making recursive, so that at any point in the hierarchy we can ask
the same question and get a simple result. Figure 8.1 shows how the recursive
definition applies to supervision.

Because the Actor’s implementation is decoupled from Akka’s internal
logic, your code’s failure cannot adversely affect Akka itself. When your
code fails, that merely invokes logic in Akka that performs some sort of oper-
ation to deal with the Exception. Akka can deal with your quarantined code
in several ways, from the default-handling mechanisms to intricate fault-
handling strategies of your own devising.

8.2 The Actor Life Cycle

It’s hard to talk about supervision, death, and resurrection unless we under-
stand more about the Actor life cycle. We need to know what happens to an
Actor from birth to death and subsequent resurrection.

Figure 8.2 represents the states through which an Actor can go. These
are not the internal details of Akka’s implementation, although they certainly
have direct mappings to said implementation, but rather depict the points in
which we as programmers are interested. The code we write will influence
the life cycle by driving it to particular states. For example:

• We can explicitly create and start an Actor by constructing it using the
factory methods we’ve seen before; i.e., context.actorOf(...) and

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=175

Section 8.2 Chapter 8 · Supervision and DeathWatch 176

Exception

Ex
ce

pt
io

n

Exception!!!

Supervises its children
and decides what to
do when they have a
failure.
- Restart the Child
- Resume the Child
- Stop the Child
- Escalate to my parent

Answers the same
question as its child
would have, if the child
has Escalated the
decision to its parent

Figure 8.1 · Actor supervision is a recursive definition. The Actor system’s
hierarchical nature provides a simple definition of supervision such that the
question of “what to do?” can be asked at any level.

system.actorOf(...).

• We can explicitly stop the Actor in several different ways but one of the
most explicit ways is to call context.stop(...) or system.stop(...),
where the "..." is a placeholder for a valid ActorRef.

• If our code throws an Exception, then that immediately kicks in the
supervisory behaviour. Depending on what we decide to do, our Actor
could be restarted, resumed, or stopped.

In addition to influencing the states of the Actor’s life cycle on a macro
scale (i.e., start, stop, and restart), we can also get some hooks into that life
cycle, which we can use to perform certain activities at the right time.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=176

Section 8.2 Chapter 8 · Supervision and DeathWatch 177

Started Stopped

InujredRestarting

preStart() (stop)

throw new Exception(…)

(C
ho

os
e

to
 S

to
p)

preRestart() (postStop())

po
st
Re
st
ar
t(
)
(p
re
St
ar
t(
))

postStop()

Dead

void

(Choose to Resum
e)

Figure 8.2 · The Actor life cycle, including code examples that can get us to
each point as well as certain overrideable callbacks that are available to hook
into the life cycle.

We’ll be covering the restart cases in a moment, but let’s just have a quick
look at the start and stop hooks. They’re really quite simple:

class MyActor extends Actor {

override def preStart(): Unit = {

// Perform any initialization setup here

// Often this is a good spot to send yourself a message

// such as: self ! Initialize

}

override def postStop(): Unit = {

// Perform any cleanup here. The message pump is shut down

// so any message you send to yourself will only go to the

// dead letter office, but if you'd like to clean up any

// resources, such as Database sessions, now's the time to

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=177

Section 8.3 Chapter 8 · Supervision and DeathWatch 178

// do it.

}

def receive = {

// Do your usual processing here. For example:

case Initialize =>

// Call your own post start initialization function here

postStartInitialization()

}

}

8.3 What Is a Supervisor?

A Supervisor is the aspect of an Actor that takes care of its children. A
piece of code governs this aspect and specifies the decisions it needs to
make when children get injured. This code is created as a value called
supervisorStrategy, which you can override from the default to do what-
ever you’d like. The default implementation looks like this:

final val supervisorStrategy = OneForOneStrategy() {

case _: ActorInitializationException => Stop

case _: ActorKilledException => Stop

case _: Exception => Restart

case _ => Escalate

}

There are two key pieces of information in that strategy:

1. OneForOneStrategy() declares that children will be dealt with on
a one-for-one basis; the decision made regarding an Actor’s failure
will apply only to that one failed Actor. This is in contrast to the
AllForOneStrategy(), which applies the decision regarding a single
Actor’s failure to all children.

2. The code block. The specified block of code is known as the Decider.
The Decider is a PartialFunction[Throwable, Directive], where
Directive has four derivations: Stop, Restart, Resume, and Escalate. If
you specify Escalate, then you’re getting that recursive decision pass-
ing that we saw in Figure 8.1.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=178

Section 8.3 Chapter 8 · Supervision and DeathWatch 179

When you override the supervisorStrategy, you must make choices
about these two aspects in order to be complete. First, you must decide
whether or not you’ll apply the decision to one or all of your children and
you must then decide what you’ll do depending on the Exception that was
thrown.

Reasoning About Fault-Tolerance

Keeping an Actor application fault-tolerant and reliable involves a very in-
timate relationship between an Actor’s behaviour and its parent’s supervisor
strategy.

Note
The amount of application logic that an Actor can support is directly
proportional to the fault-handling strategy that you can employ when any
of that logic fails.

When you’re writing your Actor application, you’ll always have two
goals in mind:

• The application logic that gets the job done.

• What happens when that logic fails to do its job.

One of the key aspects to keeping these two forces in balance revolves
around complexity. If your Actor is doing too much and becomes too com-
plex, then reasoning about its fault-handling strategy becomes problematic.
When you reach this point, it’s time to refactor.

For example, let’s say your Actor has the following, where a failure when
handling Process(activity) requires an Actor restart, and a failure when
handling Evaluate(expression) requires the Actor to resume:

def receive = {

case Process(activity) =>

// May throw IllegalAccessException

someLibrary processActivity(activity)

case Evaluate(expression) =>

// May also throw IllegalAccessException

someOtherLibrary evaluate(expression)

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=179

Section 8.3 Chapter 8 · Supervision and DeathWatch 180

Now you have something difficult to reason about, because the tool you
have at your disposal looks like this:

override val supervisorStrategy = OneForOneStrategy() {

case _: IllegalAccessException => ???????

}

By the end of this chapter, you’ll understand what you should do in situ-
ations where your logic becomes difficult to reason about when faults could
occur. For now, keep in mind that there will come times when your applica-
tion logic tips the balance of reasonable fault-tolerance, which will require
you to rethink and refactor your Actor structure.

Decider Directives

The output of your Decider is a Directive that tells the supervisor logic what
it should do with your child or children, depending on whether or not you
chose a OneForOneStrategy or an AllForOneStrategy. You have four choices
available to you:

Stop You’ve decided to stop the Actor that threw the exception. For exam-
ple, if the Actor throws an OperationCompletedByAnotherActor
exception, then this might be an entirely reasonable thing to do. There
would be no point in getting the child to do anything but stop.

Resume In this case, you’ve decided that there’s nothing special to this
problem. The Actor can simply resume its operation as though nothing
bad had ever happened.

Escalate Your supervisor doesn’t have enough information to make a deci-
sion about what to do. It passes the buck to its parent, in the hopes that
its parent has a grander vision of the problem space and can decide
what should be done. Note that the parent isn’t deciding what to do
with its children’s children, but what to do with its own children. This
means that the Actor that passed the Escalate will potentially restart as
a consequence.

Restart This is the decision that is the most desirable, but is also the most
difficult to reason about for most of us. The idea of a restart is to con-
struct a fresh instance of the Actor and let it process the next message.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=180

Section 8.3 Chapter 8 · Supervision and DeathWatch 181

The reason for choosing this option is when you think that there’s some
inconsistent internal state of the Actor, which is causing the problem
and it can no longer be trusted. Since everything (presumably) worked
just fine before the Actor entered this unfortunate state, a fresh instance
should be much more trustworthy.

What Happens to the Current Message?

This is a very good and common question: What happens to the message
that was being processed when the Actor failed?

The simple answer is that, by default, it disappears. Since the message
was (most likely) the cause of the problem in the first place, and computers
being the rather deterministic machines that they are, then it’s reasonable to
assume that trying to process it again will cause the same problem to occur.
Because of this, the message is removed from the Mailbox and processing
begins at the next message.

The more complicated answer is that it depends.

• If you’re going to Stop the Actor, then it really doesn’t matter what
happened to the message, does it? The entire Mailbox is about to be
sent to the Dead Letter Office anyway, so what’s one more message?

• If you’re going to Resume the Actor, then again the message disap-
pears. You’ve chosen to resume the Actor’s operation, which means
you’re going to ignore what happened. Because you’re ignoring it, you
don’t get any access to deal with the thing that happened.

• If you’re going to Restart, then you have some life-cycle hooks.

Restarting provides the hooks you might want in order to participate in
the restart life cycle. Using preRestart() and postRestart(), you can
gain access to the exception that caused the failure and to the message that
was being processed during that failure. Look at Figure 8.3 and you’ll see
that in preRestart() we have access to the message and the exception, but
since the Actor is in its “failed” state, we also have access to any of the
internal state that existed at the time of the failure, including the sender of
the message.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=181

Section 8.3 Chapter 8 · Supervision and DeathWatch 182

preRestart(
 reason,
 message)

ExceptionpostRestart(
 reason)

Message during
Exception

Operates on the (old)
Actor as it exists
before any restarts

Operates on the (fresh)
Actor as it exists after
any restarts

Sender

Figure 8.3 · Two hooks exist for restart processing in the Actor. It’s impor-
tant to understand that the preRestart() method is executed on the Actor
that processed the failing message, whereas the postRestart() method is
executed on the freshly instantiated Actor.

Won’t Someone Please Think of the Children?

Restarting an Actor implies that the entire Actor restarts, which would cer-
tainly imply that the entire Actor hierarchy that it represents restarts. Some-
times this is good and sometimes it’s not so good.

It’s pretty simple to guess when restarting the children is generally a bad
thing to do; it’s depicted in Figure 8.4. If the Actor being restarted is high up
in the Actor hierarchy, and its children restart, then the restarts will propagate
all the way down the tree.

You can also imagine a scenario where restarting all of your children
might be just what the doctor ordered. For example, the Actor tree is rep-
resentative of the Unix file system, where each Actor holds the inode of a
particular file. If the restart of the root node implies the fail-over to a backup
file system, then you may need to refresh all of the known inodes.

However, I wouldn’t exactly call that the usual case. The usual case is
much more likely to be that the root Actor of a particular part of the hierarchy
will be important and simple enough that even in the face of a restart, its

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=182

Section 8.3 Chapter 8 · Supervision and DeathWatch 183

.

Figure 8.4 · We wouldn’t necessarily want to restart all of the children when
the Actor that failed is a great, great, great, great, great, great, great grandfa-
ther to 5,000 descendants.

children should not restart.
However (again), there’s something that needs to be understood about

children and restarts. Remember that the purpose of restarting an Actor is to
clear out any bad state it may have accumulated. Well, children are part of its
state, and it could be that the ultimate reason for the Actor having problems
is because of some problem child. You know, that kid in school who insists
on beating up that other kid who likes computers and comic books. . . oh,
never mind.

The point is that the default behaviour of restarting children is really a
proper default. It’s just a default behaviour that becomes less desirable the
higher up the hierarchy you travel.

What About that User Guardian?

If we create a child of the User Guardian via system.actorOf(), what su-
pervisor strategy gets instantiated? Well, by default, it’s the default, which
shouldn’t be much of a surprise. That means that if the User Guardian’s
children throw an Exception, they’re going to restart. If that’s not what you
want, then you can modify it by a change to the configuration.

If you set akka.actor.guardian-supervisor-strategy to the fully
qualified class name of an instance of akka.actor.SupervisorStrategyConfigurator,
then that configurator will be used to create the User Guardian’s supervisor

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=183

Section 8.3 Chapter 8 · Supervision and DeathWatch 184

strategy. Here’s how it’s done:

package zzz.akka

import akka.actor.SupervisorStrategyConfigurator

import akka.actor.SupervisorStrategy._

import akka.actor.OneForOneStrategy

class UserGuardianStrategyConfigurator

extends SupervisorStrategyConfigurator {

def create(): SupervisorStrategy = {

OneForOneStrategy() {

case _ => Resume

}

}

}

Now that we have that all defined, we can modify the configuration file
to point to it. When the User Guardian gets instantiated, it will use our new
configurator to create the OneForOneStrategy we’ve just defined.

akka {

actor {

guardian-supervisor-strategy = zzz.akka.UserGuardianStrategyConfigurator

}

}

We’ve now changed the User Guardian’s default strategy such that it
won’t restart children when they throw Exceptions; they’ll now be resumed.

The preRestart() and postRestart() Methods

The Actor’s preRestart() and postRestart() hooks are really quite im-
portant because a lot of the default behaviour that you get in the Actor life
cycle is governed by the default implementations of these methods. As a
result, overriding them can cause adverse affects if you effectively remove
the behaviour that they were giving you for free.

Let’s first look at what the default implementations of these methods look
like:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=184

Section 8.3 Chapter 8 · Supervision and DeathWatch 185

def preRestart(reason: Throwable, message: Option[Any]) {

context.children foreach context.stop

postStop()

}

def postRestart(reason: Throwable) {

preStart()

}

The reason that this is interesting is because under normal (non-restart)
circumstances there’s nothing we can or need to do in order to ensure that
preStart() and postStop() are invoked. With preRestart() and postRestart(),
we have control over these other life-cycle methods. In fact, it’s up to us to
ensure that preStart() and postStop() get called if that’s what we want.

What’s also important to note is that it’s the preRestart() method that
is in charge of stopping the children. So, if we don’t want our children to
stop, then it’s under our control to make sure that doesn’t happen.

The default implementation of Actor restart involves the following steps:

1. Suspend the Actor’s processing.

2. Suspend the processing of all of the Actor’s children.

3. Call preRestart() on the failed Actor instance.

• Terminates all children. This is not a blocking operation, but
Akka does guarantee that your Actor won’t start up again until
all its children have stopped.

• Calls postStop() on the failed Actor instance.

4. Constructs a new instance of the failed Actor using the originally pro-
vided factory method.

• Note that this is a standard construction of your Actor code.

• If you’re creating children in your preStart() or the construc-
tor, then they will get created at this time.

5. The postRestart() method will be called on this new instance.

6. The new Actor is then put back on the queue to process incoming
messages.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=185

Section 8.4 Chapter 8 · Supervision and DeathWatch 186

Restarting Forever

Of course, we need to consider something when we talk about restarting
Actors. What happens when restarting simply won’t work? For example,
assume we have the following Decider:

override val supervisorStrategy = OneForOneStrategy() {

case _: NoDatabaseConnectionException => Restart

case _ => Escalate

}

If the database is down for a day, then we’ll spin on this restart strategy
like it’s going out of style. It’s very easy to make the argument that a restart
strategy that does this is of little value; at some point, someone’s going to
need to know that the database is down.

To deal with this, the OneForOneStrategy and AllForOneStrategy accept
a restart threshold on its constructor that says just how many restarts, within
a specific range of time, it’s willing to tolerate. For example:

// For the Duration DSL import akka.util.duration._

override val supervisorStrategy = OneForOneStrategy(5, 1.minute)

Akka will keep track of how many restarts have been called within the
range of time specified, and as soon as it goes over the threshold the Actor
will stop and its postStop() method will be called.

This ensures that the Actor will not restart ad infinitum, but it doesn’t
really help us take corrective action when the Actor finally dies. At this
time, we come to DeathWatch.

8.4 Watching for Death

An Actor can restart as many times and as often as you dictate via the su-
pervision strategy. All of this restarting is completely invisible to the outside
world; this includes the Actor that’s doing the supervising; in fact, that’s ac-
tually the whole point. But there will probably come a time when the Actor
that’s restarting eventually has to give up its ghost and pass on to the ultimate
end. This is where DeathWatch comes in.

Any Actor can watch any other Actor for death using the ActorContext’s
watch() and unwatch() methods. When an Actor that you’re currently

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=186

Section 8.4 Chapter 8 · Supervision and DeathWatch 187

watching dies, you’ll get a message that tells you so. It’s almost as simple
as that. We’ll be putting this into practice soon, but let’s look at a simple
example now:

class MyActor extends Actor {

override val supervisionStrategy = OneForOneStrategy(5, 1 minute) {

case _ => Restart

}

override def preStart() {

context.watch(context.actorOf(Props[SomeOtherActor]))

}

def receive = {

case Terminated(deadActor) =>

println(deadActor.path.name + " has died")

}

}

If the child Actor (the instance of SomeOtherActor) finally terminates,
then the Terminated message will be processed, and the dead Actor’s Ac-
torRef will be included in the message. This enables you to take more inter-
esting corrective action than a restart; you can terminate the app, instantiate
a different type of Actor in the child’s place, back off on re-creating the child
Actor (for example, when trying to re-attach to a database server), and so on.

Restarts, Watches, Terminated(), and Children

Earlier we looked at the restart life cycle and learned that preRestart()
will stop children. When you re-create a fresh Actor, the children that you
spawn during creation will get created again. But what does that mean for the
children’s life cycle? It’s at this point where the life cycle of the Actor being
restarted and the life cycles of its children diverge. Figure 8.5 illustrates.

The restart life cycle is local to the Actor undergoing restart, and that
restart life cycle is not propagated to its children. If the Actor has Death-
Watch on its children, then the mere fact that it is specifically telling them to
stop() will cause a Terminated() message to go into its mailbox, which
will be processed once the fresh instance starts processing messages again.
However, it’s the old generation that stopped, not the current generation.

This leads to the following tricky code:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=187

Section 8.4 Chapter 8 · Supervision and DeathWatch 188

Actor

Continually Restarts

Child
Actor

(Gen 1)
sto

p()

Ter
min

ate
d()

Child
Actor

(Gen 2)

Watching
Actor

Never gets Terminated message

Supervising
Actor

Child
Actor

(Gen 2)

stop()

Terminated()

Figure 8.5 · The Actor that restarts passes through the restart life cycle, but
its children are a different story. The children are specifically stopped and
re-created. With each Actor restart, the children are stopped and a new gen-
eration replaces them. If the Actor has DeathWatch on them, then it will get
Terminated() messages for each one on every restart.

class MyActor extends Actor {

// Create the child when constructed, whether for the first time

// or for the 1,000th restart

context.watch(context.actorOf(Props[SomeChild]))

def receive = {

case Terminated(child) =>

// re-create the failed child <- BUG

}

}

The Terminated(child)message will come from one of two situations:

• The child finally gave up its ghost due to exceptions.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=188

Section 8.4 Chapter 8 · Supervision and DeathWatch 189

• The child was specifically stopped during this Actor’s restart.

The above code was written in the spirit of the first case, not the second.
When the second case presents itself to this piece of code, the terminated
child has already been replaced by MyActor’s constructor, so re-creating it
is a very bad idea. Every time we restart, we create yet another child.

Managing Your Children During Restarts

While you’re probably the author or are intimately involved with all of the
authors2 of your Actor application, you have to realize that your Actor’s su-
pervisor logic is not necessarily up to you, since its the parent that defines
that logic. If you exhibit this “Actor leakage” as part of your Actor’s imple-
mentation, it may never manifest so long as the supervisor never restarts it
(e.g., it could choose to stop or resume). The day it decides to start restarting
it, bad things will happen.

Assuming that. . .

1. Your Actor is involved in a restart scenario.

2. It has children.

3. It’s monitoring those children for death.

4. It restarts them manually when they finally terminate.

. . . then you need to be careful about the life cycle of those children by
effectively taking them out of your own restart piece of the life cycle.

class MyActor extends Actor {

def initialize() {

// Do your initialization here

}

override def preStart() {

initialize()

// Start your children here

}

override def preRestart(reason: Throwable,

2No, I don’t mean it like that. . . geez.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=189

Section 8.4 Chapter 8 · Supervision and DeathWatch 190

message: Option[Any]) {

// The default behaviour was to stop the children

// here but we don't want to do that

// We still want to postStop() however.

postStop()

}

override def postRestart(reason: Throwable) {

// The default behaviour was to call preStart()

// but we don't want to do that, since that's

// where children get started

initialize()

}

def receive = {

case Terminated(child) =>

// re-create the failed child. Now it's OK,

// since the only reason we can get this message

// is because the child really died without

// our help

}

}

We have now removed the children from this Actor’s restart life cycle.
The old behaviour of preRestart() was to stop the children, which we’ve
now removed. We’ve also ensured that when MyActor is truly started (i.e.,
not restarted) that its children get created, but when it is restarted that they
don’t. We’ve accomplished this by factoring the non-child logic out into its
own method.

Tip
When creating children for your Actor, ensure that you do so from inside
the preStart() override. You can defer other types of initialization to the
constructor or some sort of initialize() method, depending on your
needs, but do not create children from inside the constructor since this
gives you no opportunity to control their life cycles.

A consequence of this style of child management under this special case
is that the original intention of stopping children during restart is now out of
play. If the Actor’s children represent bad state, then they should be restarted,
but in this case they won’t be. Make sure you have a deep understanding of

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=190

Section 8.4 Chapter 8 · Supervision and DeathWatch 191

your hierarchies and potential situations under restart.

Beware of External References to Your Children!

There’s one last thing you need to understand regarding your children’s life-
cycle changes. If your restart stops children and re-creates them, then what
do you think happens to the ActorRef? Sure, it changes; the old ActorRef
will be heading straight to the Dead Letter Office. That’s just fine so long
as no code has references to those children, but what if you’ve got code that
holds on to those references? Figure 8.6 makes this clear.

Actor

Continually Restarts

Child
Actor

(Gen 1)
stop()

Terminated(
)

Child
Actor

(Gen 2)

Some
Actor

Has ActorRef For...

Ooops…. really for the
Dead Letter Office

Figure 8.6 · Actor restarts are not visible to the outside world and thus all of
the guys that have an ActorRef to it are unaffected. However, it’s a different
story for those that might have references to that Actor’s children. Since the
children will by default stop and then get re-created, those old references
send all messages to the Dead Letter Office.

So what do you do? DeathWatch, of course. If the Actor that holds
the reference to the child puts a DeathWatch on it, then it will be notified
when it dies. What it does at that point is dependent on what you decide
as a programmer, so we’re not going to cover it now. You’ll make whatever

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=191

Section 8.5 Chapter 8 · Supervision and DeathWatch 192

the right choice is for your application eventually, armed with the knowledge
we’ll accumulate as we go forward.

8.5 The Plane that Healed Itself

Armed with all of this knowledge about life cycles, supervision, and death
watch, it’s time to make our Plane into a mythical super machine that can
heal itself when things go wrong. To do this, we’ll reorganize things a little
and we’ll supply a bit of self-typing to allow our Plane to be constructed in a
more flexible manner. This will become more important as we drive toward
testing what we’ve written.

The Goal

In the last chapter, we learned about the hierarchical path structure of the Ac-
tor system and how we can use the actorFor() methods to look up Actors
within that system; we even used that mechanism for finding various Ac-
tors in our Plane. As we move forward, we’re also moving further into the
real world of Actor programming with Akka, and in the real world, things
change. That’s not just a metaphorical statement—we’re actually going to
change the structure of our Plane, and in doing so, we’re going to break
some of that hierarchy that we set up before.

Figure 8.7 shows the structure that we’re driving toward with our Plane
at this stage. Contrast this with Figure 7.3, which was rather shallow in
nature. With this new layout, we recognize that different Actors require
different types of supervision and we facilitate that by inserting dedicated
supervisory nodes into the structure. We do this because, as we know, any
given Actor can only implement a single supervision strategy and the power
of supervision comes from simplicity at any given level. If we have one
node in the tree doing too much, we’ll put our system’s resiliency at risk.
Our goal is to define small pockets of reason in the hierarchy that react well
under failure.

Our supervision strategy for the Plane as a whole will be:

• The Plane itself will be supervised by the User Guardian, which em-
ploys a OneForOneStrategy that restarts children (i.e., our Plane) when
a failure occurs.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=192

Section 8.5 Chapter 8 · Supervision and DeathWatch 193

/user
Guardian

Plane

Lead Flight
Attendant

Resume
Supervisor

Stop
Supervisor

Flight
Attendant 1

Flight
Attendant 8 CoPilotPilotAltimeter Control

Surfaces

OneForOne
Strategy

OneForOne
Strategy

OneForOne
Strategy

OneForOne
Strategy

Isolates children
from its own

Restarts

Isolates children
from its own

Restarts

Watches

References

Se
nd

s
Ev

en
ts

 T
o.

..

Uses
Uses

References
References

References References

OneForOne
Strategy

AutoPilot

Uses

Figure 8.7 · The outline of the structure we’re going for when building our
Plane. Actor systems inevitably become a tree in the real world and our
Plane is starting to get that way.

• The LeadFlightAttendant will be supervised by the Plane’s OneForOn-
eStrategy, which will Restart the LeadFlightAttendant on failure. The
LeadFlightAttendant will, in turn, stop all of its children (i.e., the
FlightAttendants) and recreate them.

• The Instruments and Controls will be treated differently; we don’t
want the Plane’s Restart handler to affect these Actors. To manage
this, we’ll put in a dedicated Resume Supervisor, which will isolate its
children from any effects of its own Restart from the Plane’s supervi-
sion strategy.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=193

Section 8.5 Chapter 8 · Supervision and DeathWatch 194

• The Pilots will be different than the rest. When a Pilot dies, he’s dead.
To facilitate that, we’ll create a dedicated Stop Supervisor, which will
also isolate its children from any effects of its own Restart from the
Plane’s supervision strategy.

We’ll need some help, and it will come in the form of a generalized
Supervisor Actor, whose sole job is to supervise its children. We’ll also
have this supervisor keep its children isolated from its own restart behaviour,
assuming its parent initiates such a restart.

An IsolatedLifeCycle Supervisor

The IsolatedLifeCycleSupervisor will provide us with a supervisor’s base
functionality that lets children survive the supervisor’s own restarts, as well
as provide some extra plumbing to make that happen.

object IsolatedLifeCycleSupervisor {

// Messages we use in case we want people to be able to wait for

// us to finish starting

case object WaitForStart

case object Started

}

trait IsolatedLifeCycleSupervisor extends Actor {

import IsolatedLifeCycleSupervisor._

def receive = {

// Signify that we've started

case WaitForStart =>

sender ! Started

// We don't handle anything else, but we give a decent

// error message stating the error

case m =>

throw new Exception(s"Don't call ${self.path.name} directly ($m).")

}

// To be implemented by subclass

def childStarter(): Unit

// Only start the children when we're started

final override def preStart() { childStarter() }

// Don't call preStart(), which would be the default behaviour

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=194

Section 8.5 Chapter 8 · Supervision and DeathWatch 195

final override def postRestart(reason: Throwable) { }

// Don't stop the children, which would be the default behaviour

final override def preRestart(reason: Throwable, message: Option[Any]) { }

}

There are some things to note here:

• The receive method is implemented for us. If any message comes
into our supervisor (other than a request to be told when it’s finished
starting), then we’ll throw an exception. The supervisor is fault-tolerance
plumbing and there’s no reason for anyone to talk to it. We assume that
if someone does talk to it directly, then that’s a bug.

• We’ve ensured that most existing life-cycle methods cannot be al-
tered by derived types. This ensures that our isolation remains intact.
The job of creating children is left to the derivations, but outside of
preStart() so that the isolator can control the life cycles on its own.

Given the IsolatedLifeCycleSupervisor, we have a class from which we
can derive simple supervisors tailored for the specific needs of the Actors
within our Plane.

Creating the Supervisors

We’ll go pretty deep here and create some types that will really help us gen-
erate supervisors quickly and easily. By defining some traits and some ab-
stract classes, we can simplify instantiation of the supervisors a fair bit, thus
making our code easier to read and understand.

trait SupervisionStrategyFactory {

def makeStrategy(maxNrRetries: Int,

withinTimeRange: Duration)(decider: Decider): SupervisorStrategy

}

trait OneForOneStrategyFactory extends SupervisionStrategyFactory {

def makeStrategy(maxNrRetries: Int,

withinTimeRange: Duration)(decider: Decider): SupervisorStrategy =

OneForOneStrategy(maxNrRetries, withinTimeRange)(decider)

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=195

Section 8.5 Chapter 8 · Supervision and DeathWatch 196

trait AllForOneStrategyFactory extends SupervisionStrategyFactory {

def makeStrategy(maxNrRetries: Int,

withinTimeRange: Duration)(decider: Decider): SupervisorStrategy =

AllForOneStrategy(maxNrRetries, withinTimeRange)(decider)

}

Above we have a factory declaration and two definitions that we can use
to abstract away the concrete concepts of the OneForOneStrategy and the
AllForOneStrategy, respectively. We will be mixing one of these factories
into our supervisors as needed.

Given these factories, we can now define the specific instances of the
IsolatedLifeCycleSupervisor that we declared earlier:

abstract class IsolatedResumeSupervisor(

maxNrRetries: Int = -1, withinTimeRange: Duration = Duration.Inf)

extends IsolatedLifeCycleSupervisor {

this: SupervisionStrategyFactory =>

override val supervisorStrategy = makeStrategy(maxNrRetries, withinTimeRange) {

case _: ActorInitializationException => Stop

case _: ActorKilledException => Stop

case _: Exception => Resume

case _ => Escalate

}

}

The Resume Supervisor declares the Decider to be one that resumes op-
eration of the children in the case of any Exception that is not ActorInitial-
izationException or ActorKilledException. It also does not know what type
of strategy will be in place, delegating this to a future trait mixin.

abstract class IsolatedStopSupervisor(

maxNrRetries: Int = -1, withinTimeRange: Duration = Duration.Inf)

extends IsolatedLifeCycleSupervisor {

this: SupervisionStrategyFactory =>

override val supervisorStrategy = makeStrategy(maxNrRetries, withinTimeRange) {

case _: ActorInitializationException => Stop

case _: ActorKilledException => Stop

case _: Exception => Stop

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=196

Section 8.5 Chapter 8 · Supervision and DeathWatch 197

case _ => Escalate

}

}

The Stop Supervisor is nearly identical to the Resume Supervisor, with
the obvious difference that it stops children instead of resumes them.

Now that we have these helpers in place, we can start refactoring our
Plane’s structure to fit the goal.

Our Healing Plane

Let’s break this down into pieces.

Construction Components

The Actor program’s hierarchical structure is a constant presence in your
design. It’s a powerful structure, to be sure, but it’s also an imposing structure
that can limit your options, if you use it inappropriately. We want to take
advantage of the hierarchy where it can help us, but we also want to ensure
that we don’t get so wrapped up in it that refactoring becomes more of a
challenge than we’d like down the road. This will be a recurring theme as
we move forward.

To begin, we need to apply a simple refactoring that allows us to provide
construction of Plane members using a variant of the Cake pattern. This
will allow us to escape the confines of the hierarchy that would otherwise be
hard-coded.

trait PilotProvider {

def newPilot: Actor = new Pilot

def newCoPilot: Actor = new CoPilot

def newAutopilot: Actor = new AutoPilot

}

Here, we see the trait that will provide us with different types of Pilots
when we need them. This trait can be overridden with derivations used in
testing, or other cases, which keeps our design flexible. The Plane can now
take advantage of this provider, along with similar refactorings that we’ve
applied to the LeadFlightAttendant and the Altimeter:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=197

Section 8.5 Chapter 8 · Supervision and DeathWatch 198

class Plane extends Actor with ActorLogging {

this: AltimeterProvider

with PilotProvider

with LeadFlightAttendantProvider =>

The refactorings to be applied to the LeadFlightAttendant and the Al-
timeter are left as exercises for you, should you choose to accept them.

Building the Basic Hierarchy

Now that we’ve decoupled the construction of the Plane’s elements from the
elements themselves, we can revisit the creation of them and the insertion of
Supervisors into the hierarchy.

def startControls() {

val controls = actorOf(Props(new IsolatedResumeSupervisor with OneForOneStrategyFactory {

def childStarter() {

val alt = context.actorOf(Props(newAltimeter), "Altimeter")

context.actorOf(Props(newAutopilot), "AutoPilot")

context.actorOf(Props(new ControlSurfaces(alt)), "ControlSurfaces")

}

}), "Controls")

Await.result(controls ? WaitForStart, 1.second)

}

The startControls()method is in charge of creating the IsolatedResume-
Supervisor, mixing in the OneForOneStrategyFactory and then defining the
required childStarter() method, demanded by the IsolatedLifeCycleSu-
pervisor we created at the start. Once this method completes, we have the
layout depicted in Figure 8.8.

And now the method that starts our People:

def startPeople() {

val people = actorOf(Props(new IsolatedStopSupervisor with OneForOneStrategyFactory {

def childStarter() {

context.actorOf(Props(newPilot), pilotName)

context.actorOf(Props(newCoPilot), copilotName)

}

}), "Pilots")

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=198

Section 8.5 Chapter 8 · Supervision and DeathWatch 199

Plane

Resume
Supervisor

Altimeter Control
SurfacesAutoPilot

Restarts its children

Resumes its children
Isolates its children from
any restarts imposed by its
supervisor (i.e. the Plane)

Never restart

Figure 8.8 · The slice of the Plane’s hierarchy after startControls() com-
pletes.

// Use the default strategy here, which restarts indefinitely

actorOf(Props(newFlightAttendant), attendantName)

Await.result(people ? WaitForStart, 1.second)

}

Note the slight difference here: we’re starting the IsolatedStopSupervisor
and adding the Pilots to it, but we want the LeadFlightAttendant supervised
directly by the Plane, so we simply add it to the Plane’s list of direct children
as we had before. Once this method completes, we have the layout depicted
in Figure 8.9.

There! You now have the hierarchy you’re interested in, which provides
us with a level of resiliency on which we can build.

But. . . there’s a problem.

Things Change

The introduction of our supervision nodes has broken some stuff. Look at
what the Pilot does when he receives the ReadyToGo message from the Plane:

case ReadyToGo =>

context.parent ! Plane.GiveMeControl

copilot = context.actorFor("../" + copilotName)

autopilot = context.actorFor("../AutoPilot")

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=199

Section 8.5 Chapter 8 · Supervision and DeathWatch 200

Plane

Lead Flight
Attendant

Stop
Supervisor

Flight
Attendant 1

Flight
Attendant 8 CoPilotPilot

Restarts its children

Restarts its children

Stops its children
Isolates its children from
any restarts imposed by its
supervisor (i.e. the Plane)

Restart indefinitely Stop on failure

Figure 8.9 · The slice of the Plane’s hierarchy after startPeople() com-
pletes.

There’s a fair bit there that depended on the original structure of the
Actor hierarchy, before we started inserting things and moving them around,
and most of that won’t work now. Who’s the parent of the Pilot? Of course,
it’s the IsolatedStopSupervisor not the Plane, and if we were to send it the
Plane.GiveMeControl message, it would throw an exception.

This is where the lack of typing on the Actor comes to bite us. The
context.parent and context.actorFor() return ActorRefs, not Planes
or CoPilots or any other specific class that we might define, so the compiler
won’t be able to catch this misstep. This is still a good thing in general, but
in situations like these we need to be vigilant about our structure.

Note
It’s best not to rely on an Actor’s hierarchical structure.

That’s not meant to be a hard-and-fast rule, but merely a guideline. Ac-
tor programming, just like any other kind of programming with a flexible
toolkit such as Akka, presents you with many varied situations. You may
find that relying on the Actor’s hierarchical structure is the most amazing
choice imaginable in some cases, and in other cases, it paints you into a
corner. However, as a general rule, we’ll find that keeping the hierarchy in-
visible leads to code that is more resilient in the face of change than it would
be otherwise.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=200

Section 8.5 Chapter 8 · Supervision and DeathWatch 201

Note
It’s more reasonable for an Actor to depend on the structure beneath it,
since it is more influential in that structure than it is in the structure above
it.

The structure above any Actor is completely outside of its control and it’s
more brittle for it to make any assumptions about it. The structure below is
something that it can generally depend on much better, as is the case with our
Plane. The Plane instantiates the IsolatedStopSupervisor and also specifies
its direct children. While the children of any given Actor could conceivably
alter that structure in a way that exposes brittleness in the Actors above it,
this is much less likely and much more in your control as the coder of the
Actor in question.

Bypassing the Structure

To reduce any ripple effect of changes to the Actor system’s structure, we
can employ a couple of facilities. The first is a comfortable friend, The De-
pendency Injector, and the other simply falls into the category of Message
Passing.

Dependency injection works well when we have one-way dependencies
and a uniform method of construction. For example, it’s easy to pass the
notion of the “parent” to a “child” on that child’s construction. It doesn’t
work so well when you’ve got a circular dependency between Actors or a
construction pattern that simply doesn’t lend itself well to a deterministic
assignment (for example, it’s the Actor itself that decides what it needs, not
someone on the outside).

With message passing, we can do things such as:

• Ask a known Actor to do something for us, which it will delegate to
an Actor that it already knows, such as the Plane delegating to the
LeadFlightAttendant. Essentially, we present the Plane as a facade
on top of the LeadFlightAttendant and hide the LeadFlightAttendant
from the world.

• Request a reference to an existing Actor, such as asking the Plane for
the ControlSurfaces.

• Get a reference to an Actor without asking. We don’t have an example
of this at the moment, so you might imagine the connection of a client

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=201

Section 8.5 Chapter 8 · Supervision and DeathWatch 202

to your application via WebSocket where that WebSocket is repre-
sented by an Actor. Thus, your Actor may receive a WebSocketConnected(webSocketActor)
message indicating the event has occurred.

Injecting into the Pilot

There are four elements of our Plane that we can specify nicely within the
Pilot’s constructor:

class Pilot(plane: ActorRef,

autopilot: ActorRef,

var controls: ActorRef,

altimeter: ActorRef) extends Actor {

This alteration to the Pilot constructor is simple dependency injection.
Dependency injection, a very common idiom, is easy to do, read, and under-
stand. Use it when you can.

• Passing in the Plane eliminates the need to access context.parent
directly, which frees up the Plane to impose any intermediaries be-
tween itself and the Pilot that it sees fit.

• The Altimeter and the AutoPilot won’t change during the Plane’s life
cycle and can thus be passed in as well.

• We keep the ControlSurfaces as a var, since the Pilot could give up
control of the Plane at a later time, but it’s the Pilot that’s in charge of
the Plane initially, so we let the Plane give him control at startup.

Given this, we can now make our changes to the Plane, which will now
construct the Pilot correctly:

// Helps us look up Actors within the "Controls" Supervisor

def actorForControls(name: String) = actorFor("Controls/" + name)

def startPeople() {

val plane = self

// Note how we depend on the Actor structure beneath

// us here by using actorFor(). This should be

// resilient to change, since we'll probably be the

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=202

Section 8.5 Chapter 8 · Supervision and DeathWatch 203

// ones making the changes

val controls = actorForControls("ControlSurfaces")

val autopilot = actorForControls("AutoPilot")

val altimeter = actorForControls("Altimeter")

val people = actorOf(Props(new IsolatedStopSupervisor

with OneForOneStrategyFactory {

def childStarter() {

context.actorOf(Props(newCoPilot(plane, autopilot, altimeter)),

copilotName)

context.actorOf(Props(newPilot(plane, autopilot,

controls, altimeter)),

pilotName)

}

}), "Pilots")

// Use the default strategy here, which

// restarts indefinitely

actorOf(Props(newFlightAttendant), attendantName)

Await.result(people ? WaitForStart, 1.second)

}

Of course, this requires changes to the definition of the PilotProvider that
provides the newPilot() method. It no longer takes zero arguments and we
need to compensate for that, but those changes are simple enough that we
won’t include them here.

Great! Now our Pilot is isolated from the Plane’s structure; except for
access to its sibling Actor, the CoPilot as can be seen by the code that still
remains in the ReadyToGo handler:

case ReadyToGo =>

copilot = context.actorFor("../" + copilotName)

We’ll leave this the way it is. Why? There are a few things to consider
here:

• The Plane could give the CoPilot to the Pilot at construction time,
but the CoPilot needs access to the Pilot as well; we have a circular
relationship here. So we can do it for the Pilot, but not the CoPilot.
You can make the argument that symmetry is better.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=203

Section 8.5 Chapter 8 · Supervision and DeathWatch 204

• We could have the Plane send the CoPilot to the Pilot in a later mes-
sage. For example, we could actually replace the ReadyToGo message
with a HereIsYourCoPilot(...) message. You could argue that
such a message creates a more brittle relationship between the Plane
and its Pilots, i.e., the Plane now knows that the Pilot wants this refer-
ence.

• The Pilot could ask the Plane for the reference to the CoPilot. This
would arguably be better, but it puts more work into the Pilot that
already exists in Akka itself. Akka already has a lookup facility, which
we’re using here, and while it’s more brittle to do it this way than to
use the “stable” Plane reference, this is still not bad.

• Is it really a huge problem that the Pilot expects its CoPilot to be a
sibling? This is a judgment call that you’ll have to make, which will
depend on your circumstances. In this case, we’ll say that it’s not a big
deal. If it proves to be a problem later, we can always refactor.

Starting the Plane

The last thing we have to do is start up the Plane. This will require some
fairly obvious changes to the preStart() method.

// Helps us look up Actors within the "Pilots" Supervisor

def actorForPilots(name: String) = actorFor("Pilots/" + name)

override def preStart() {

// Get our children going. Order is important here.

startControls()

startPeople()

// Bootstrap the system

actorForControls("Altimeter") ! EventSource.RegisterListener(self)

actorForPilots(pilotName) ! Pilots.ReadyToGo

actorForPilots(copilotName) ! Pilots.ReadyToGo

}

Our Plane is now complete. The structure is set and the children are
supervised the way we want them to be. Our refactorings have provided a
structure that is both resilient to failure and resilient to change. If you’re
accustomed to doing some sort of happy dance, now would be the time.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=204

Section 8.5 Chapter 8 · Supervision and DeathWatch 205

One Strategy

The existence of the IsolatedLifeCycleSupervisor and the two separate in-
stances we created in the Plane underscores the important point that there is
only one strategy that can be applied to a supervisor’s children. As usual,
there is a very solid reason for this.

Note
The key to a solid fault-tolerant system that naturally handles failure is
simplicity. You need to strive for simple Actors and simple supervisors.
Generally, if you have the former, you can make do with the defaults for
the latter.

What You Don’t Know

I’m sure you noticed that you’re not getting any information about the Actor
in the strategy assessment block, right? Akka only tells you what happened
not to whom it happened. So when you’re making your choices about what
to do, you have to do it without the knowledge of who threw the Exception.

Are you thinking clever things, dear reader? You are, aren’t you? I can
tell.3 You’re thinking back to the refactoring we did when we introduced
a level of supervision to our Plane and you’re remembering the power of
pattern matching. The flexibility of pattern matching and the coolness of the
supervisor strategy has you thinking along these lines:

“Hold on there! Why couldn’t I just keep all of the Actors
as direct children of the Plane and then use some clever pattern
matching to figure out what happened and to whom? Wouldn’t
that be simpler, not to mention cooler?”

In a word, “No.” In a few words, "Go stand in the corner." Such thinking
takes you away from the Akka paradigm and down that path where bugs lie.
Creepy, crawly bugs with hairy legs, fangs, and bad attitudes.

Clever (a.k.a. Bad) Pattern Matching

We could solve this problem by throwing specially worded exceptions for
the two scenarios:

3The natives of the village from which I hail believe that I’m a witch.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=205

Section 8.5 Chapter 8 · Supervision and DeathWatch 206

class Altimeter extends Actor {

...

def receive = {

...

case Tick =>

try {

// do some math

} catch {

case e: ArithmeticException =>

throw new ArithmeticException(

"Altimeter: " + e.getMessage)

}

}

}

class FlightAttendant extends Actor {

...

def receive = {

...

case GetDrink(...) =>

try {

// do some math

} catch {

case e: ArithmeticException =>

throw new ArithmeticException(

"FlightAttendant: " + e.getMessage)

}

}

}

There. We could have created specific exceptions for each case, but we’re
doing this “on the cheap” here; were we going the "expensive" route, we
would have been happy putting in the layer of Supervisors. So, we’ll just
create the exceptions again, but prefix with a string.

Now we can be clever.

class SomeActor extends Actor {

override val supervisorStrategy = OneForOneStrategy(

maxNrOfRetries = 3,

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=206

Section 8.5 Chapter 8 · Supervision and DeathWatch 207

withinTimeRange = 30 seconds) {

// Resume operation of the Actor when it can't do math

case e: ArithmeticException =>

if (a.getMessage.startsWith("Altimeter"))

Restart

else

Resume

}

...

}

Awesome, no? No, it’s not awesome. This sort of thing won’t scale as
you get more complex structures and hierarchies. First, we’ve had to toss
try/catch blocks in our Actors, which is exactly what we’d like to avoid.
As we modify our code and more possible exceptions exist, what happens
when we miss a try/catch? Yeah, bad things. The same can be said
for our if statement in the Decider; we have an else there, so what hap-
pens when we see an unexpected ArithmeticException that’s prefixed with
“RestartMe!!”?

But more than that, this becomes more more difficult to reason about,
and that’s a very bad thing. Akka’s design makes systems concurrent, re-
liable, and reasonable. The “one strategy” concept is a good one because
it ensures that your applications are reasonable and that people other than
yourself can reason about them too.4

The Error Kernel Pattern

We’re about to move on from Supervision, but we can’t do that without illus-
trating one of its most important patterns, The Error Kernel. When Actors
carry any private data, which is important to presenting the Actor to the out-
side world (e.g., it’s more than just an opportunistic cache variable), then that
data needs to be protected.

In a nutshell, this means that we don’t want that Actor to restart. The
Actor that holds the precious data is protected such that any risky operations
are relegated to a slave Actor who, if restarted, only causes good things to
happen.

4The road to incomprehensible code is paved with the pink slips of clever programmers.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=207

Section 8.5 Chapter 8 · Supervision and DeathWatch 208

The Error Kernel Pattern implies pushing levels of risk further down the
tree as illustrated in Figure 8.10.

. . .

Eats only wheat grass and soy

Eats the occasional candy bar

Eats steak three nights a week

Lives on a steady diet of
broken glass and balls of

pure fire

Figure 8.10 · Risk is generally pushed down the tree. The higher up you go,
the less risk you’re willing to take on, and the lower you go, the more risky
you become. Guys that live at the bottom are the ones you want to send on
the brutal missions where they’re not guaranteed to survive, but the guys at
the top don’t get their hands dirty at all.

The Plane is our ultimate Error Kernel. If the Plane were to restart, then
that would basically mean that the entire application would restart, which
would be pretty weird indeed! We need to avoid this.

The Risky Altimeter

One classic component in our Plane that we need to keep safe is the Altime-
ter; this is because it’s carrying mutable data that is critical to its behaviour.
If the Altimeter ever restarted from scratch, we’d see some very strange be-
haviour:

• The current altitude would suddenly be 0.

• The current rate of climb would also suddenly be 0.

• The tick timing would be somewhat out-of-sync with reality, but that
might not be all that visible.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=208

Section 8.5 Chapter 8 · Supervision and DeathWatch 209

• There would be no registered listeners. Nobody would get any altitude
events.

Now, we’ve protected ourselves from these problems in two ways:

1. We’ve put the Altimeter under a Resume Supervisor, so it can’t be
restarted anyway.

2. We’ve made sure that nothing weird will happen inside of its running
code by keeping things simple.

But what if we hadn’t done these things? What if we put the Altimeter
under the default supervision, which would restart it on failure? What if we
also made a pretty brutal error in the math, such that an ArithmeticException
would be thrown?

Right now we’re calculating the current altitude with:

altitude = altitude + ((tick - lastTick) / 60000.0) * rateOfClimb

The only risky value in there will be rateOfClimb, since it is the only
variable that the outside can specify. Let’s say we changed the calculation to
something irretrievably silly:

roc = (rateOfClimb * rateOfClimb) / rateOfClimb

altitude = altitude + ((tick - lastTick) / 60000.0) * roc

Now, every time someone levels the rate of climb (i.e., specifying 0.0f),
the calculation of roc will throw an ArithmeticException, which would cause
the Altimeter to restart when placed under a supervisor that performs restarts.
Not good.

One solution to this problem is to delegate the risky behaviour to another
child Actor, which is either devoid of any mutable data itself or whose mu-
table data is irrelevant. We could do this by providing a child Actor in the
Altimeter along with using some messages to talk to it:

case class CalculateAltitude(lastTick: Long, tick: Long, roc: Double)

case class AltitudeCalculated(altitude: Double)

val altitudeCalculator = context.actorOf(Props(new Actor {

def receive = {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=209

Section 8.5 Chapter 8 · Supervision and DeathWatch 210

case CalculateAltitude(lastTick, tick, roc) =>

if (roc == 0) throw new Exception("Divide by zero")

val alt = ((tick - lastTick) / 60000.0) * (roc * roc) / roc

sender ! AltitudeCalculated(alt)

}

}), "AltitudeCalculator")

We can then modify the Altimeter itself to delegate the work to the cal-
culator.

def receive = {

case CalculateAltitude(lastTick, tick, roc) =>

if (roc == 0) throw new Exception("Divide by zero")

val alt = ((tick - lastTick) / 60000.0) * (roc * roc) / roc

sender ! AltitudeCalculated(alt)

}

Note that we aren’t storing anything in the altitudeCalculator. The
data is still stored in the Altimeter as it always was; we’ve just moved the
actual calculation down to an Actor that can fail just fine.

Note
The Error Kernel Pattern keeps data closer to the root of the hierarchy,
moving behaviour (especially “risky” behaviour) down to the leaves.

It’s also quite subtle! The alterations made to receive’s partial function
are rather crucial. Note how the lastTick is updated; we assume success
and thus update it immediately after sending the request to the calculator.
Had we updated this after receiving the response, it may not get updated for
hours due to exceptions being thrown from the calculator. This means that
once the calculator could finally calculate something, it would be applied
over a period of those hours, not the last 100 milliseconds. We need to state
this again:

Note
Reliable and reasonable supervision strategies require simplicity. The
hierarchical nature of the Actor model allows you to create simple
structures at any level you need. If you need to simplify, then you have all
the power you need to do that at your fingertips.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=210

Section 8.6 Chapter 8 · Supervision and DeathWatch 211

Failure to keep your Actors simple and easy to reason about will eventu-
ally lead to pain and frustration when the use cases start piling up.

8.6 Dead Pilots

Hey, it happens. You’re having a great day, the sun is shining, and the wind
is whipping by at a few hundred miles an hour, and boom!, your pilot’s life
of drinking, smoking, and a high cholesterol diet catches up with him and he
ups and dies.

Assuming you’re a copilot, someone’s probably going to expect you to
do something about it, right? Our copilot certainly can doing something
about it, but she has to know when. Enter DeathWatch.

DeathWatch is distinct from supervision in that supervision has an active
effect on the Actor that it’s supervising. In DeathWatch, we’re interested in
knowing when an Actor ceases to be and becomes an ex-Actor. This is a
perfect mechanism for our copilot to use in order to be notified if/when her
superior croaks.

Let’s set this up when the copilot is given the signal that everything is
ReadyToGo:

case ReadyToGo =>

pilot = context.actorFor("../" + pilotName)

context.watch(pilot)

If the Pilot dies, we now know that the CoPilot will get a Terminated
message, which we can receive in the usual way. When the CoPilot sees the
Pilot die, she needs to take over control of the Plane:

case Terminated(_) =>

// Pilot died

plane ! GiveMeControl

In this case, we don’t care what the ActorRef is that was specified in the
Terminated message because we’re only watching one guy, but if we were
watching multiple Actors, then we’d need to deal with the parameter that the
Terminated message specified.

It’s really as simple as that. Akka allows any Actor to put a Death-
Watch on any other Actor, regardless of where it is in the hierarchy. This is

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=211

Section 8.6 Chapter 8 · Supervision and DeathWatch 212

clearly different from supervision, and it certainly needs to be. Many Actors
throughout the hierarchy may be interested in the life cycle of those Actors
on which it depends but they aren’t in charge of supervising their life cycles.

Testing DeathWatch

So, how do we test that the CoPilot does the right thing once the Pilot finally
kicks the bucket? Our Actor system’s hierarchical nature, coupled with the
fact that Actors are essentially untyped, lets us test the behaviour of our
CoPilot with relative ease.

There are two ways we could test this:

1. Go in through the back door and simply call coPilot.receive(Terminated(_))
and ensure that it emits the GiveMeControl message.

2. Go in through the front door; set up a hierarchy and run the CoPilot
through its paces from establishing DeathWatch to responding to the
Terminated event.

This is a choice that you’ll have to make for yourself, when it comes to
testing your own code. My personal choice would be to go through the front
door since I’m interested in the whole thing hanging together properly.

To do this, we need to set up a hierarchy that the CoPilot will be happy
with—namely, it needs a sibling Pilot—and then put the CoPilot into the
right state.

This is one of those times where our choice to let the Actors assume a
particular hierarchical relationship (that of siblings, in this case) affects how
our tests are built. Had we passed in the Pilot, or let the CoPilot ask the
Plane directly for the Pilot, we could structure our test differently. However,
we chose to use the Actor hierarchy directly, and thus we must satisfy the
CoPilot with that hierarchy. Figure 8.11 shows what we’re going to do.

We don’t need the Plane, instruments, or controls; we just need enough
to keep the CoPilot happy in what it needs to do for us.

To write this, we’ll need a fair bit of help from Akka and ScalaTest:

import akka.actor.{ActorSystem, Actor, ActorRef, Props}

import scala.concurrent.Await

import akka.pattern.ask

import akka.testkit.{TestKit, ImplicitSender}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=212

Section 8.6 Chapter 8 · Supervision and DeathWatch 213

Stop
Supervisor

"Fake"
Pilot CoPilot

Watches

Figure 8.11 · The simple hierarchy we need in order to test the CoPilot

import scala.concurrent.util.duration._

import akka.util.Timeout

import com.typesafe.config.ConfigFactory

import org.scalatest.WordSpec

import org.scalatest.matchers.MustMatchers

The “Fake” Pilot is what we’ll create to stand in for the real thing, and
it’s sole purpose will be to die. The fact that we’ll have the IsolatedStopSu-
pervisor as its parent ensures that its death will be immediate.

class FakePilot extends Actor {

override def receive = {

case _ =>

throw new Exception("This exception is expected.")

}

}

We’ll also need a couple of ActorRefs around to keep the CoPilot’s con-
structor happy (i.e., the AutoPilot and Altimeter instances). For this, we’ll
use a simple NilActor:

class NilActor extends Actor {

def receive = {

case _ =>

}

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=213

Section 8.6 Chapter 8 · Supervision and DeathWatch 214

Next, we’ll need a bit of configuration. The CoPilot uses the configu-
ration system to look up the name of the Pilot so that it can do its call to
actorFor(). To keep things isolated to the test environment, we’ll slide a
specific configuration into the test’s ActorSystem using this configuration.

object PilotsSpec {

val copilotName = "Mary"

val pilotName = "Mark"

val configStr = s"""

zzz.akka.avionics.flightcrew.copilotName = "$copilotName"

zzz.akka.avionics.flightcrew.pilotName = "$pilotName""""

}

We can now construct the test specification by including the appropriate
framework information and specifying our configuration.

class PilotsSpec extends TestKit(ActorSystem("PilotsSpec",

ConfigFactory.parseString(PilotsSpec.configStr)))

with ImplicitSender

with WordSpec

with MustMatchers {

import PilotsSpec._

import Plane._

...

It will make things clearer if we have a few simple helper methods and
values:

// Helper to make the NilActor easier to create

def nilActor = system.actorOf(Props[NilActor])

// These paths are going to prove useful

val pilotPath = s"/user/TestPilots/$pilotName"

val copilotPath = s"/user/TestPilots/$copilotName"

Now we need to construct the hierarchy of Figure 8.11 with the Supervi-
sor, the fake Pilot, and the CoPilot.

// Helper function to construct the hierarchy we need

// and ensure that the children are good to go by the

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=214

Section 8.6 Chapter 8 · Supervision and DeathWatch 215

// time we're done

def pilotsReadyToGo(): ActorRef = {

// The 'ask' below needs a timeout value

implicit val askTimeout = Timeout(4.seconds)

// Much like the creation we're using in the Plane

val a = system.actorOf(Props(new IsolatedStopSupervisor

with OneForOneStrategyFactory {

def childStarter() {

context.actorOf(Props[FakePilot], pilotName)

context.actorOf(Props(new CoPilot(testActor, nilActor,

nilActor)), copilotName)

}

}), "TestPilots")

// Wait for the mailboxes to be up and running for the children

Await.result(a ? IsolatedLifeCycleSupervisor.WaitForStart, 3.seconds)

// Tell the CoPilot that it's ready to go

system.actorFor(copilotPath) ! Pilots.ReadyToGo

a

}

Note that we’re using the IsolatedLifeCycleSupervisor’s WaitForStart
message here. The asynchronous startup of the Supervisor and its children
is too fast for us to start working with it immediately. We need to be sure
that the Mailboxes are ready to go before we start killing things off. Using
the Await.result() call allows us to block the current thread for a short
time until things are ready to go. It’s also important to note how we’ve con-
structed the CoPilot. The first parameter to its constructor is what it will use
as the Plane, and we want the test to be able to be that Plane, so we pass in
the testActor, which coupled with the declaration of the ImplicitSender en-
sures that we’ll see the GiveMeControl message. The other two parameters
are NilActors, since we don’t care about those.

We’re now ready to actually run the test, which includes making the call
to pilotsReadyToGo(), killing the fake Pilot, and ensuring that the CoPilot
asks the Plane for the controls:

// The Test code

"CoPilot" should {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=215

Section 8.6 Chapter 8 · Supervision and DeathWatch 216

"take control when the Pilot dies" in {

pilotsReadyToGo()

// Kill the Pilot

system.actorFor(pilotPath) ! "throw"

// Since the test class is the "Plane" we can

// expect to see this request

expectMsg(GiveMeControl)

// The girl who sent it had better be Mary

lastSender must be (system.actorFor(copilotPath))

}

}

And we’re done! If you run this test, you should see that the CoPilot
does indeed take control of the Plane when she sees the Pilot die, saving the
passengers from death by a blazing aluminum inferno. Sweet.

Extra Credit

What if the CoPilot dies? It would be nice if the AutoPilot had a heart mon-
itor attached to the CoPilot and would take over control of the Plane when it
happened to notice that the CoPilot was dead, wouldn’t it?

You have all the knowledge you need at this point to do exactly that, but
it’s not exactly as straightforward as we’ve seen to this point. To accomplish
this feat, you must:

• Refactor the AutoPilot’s constructor so that it accepts the Plane as a
parameter. This isolates it from knowing the structure above it, as
we’ve seen with the Pilot’s refactoring already.

– This will require altering the PilotProvider as well as the instan-
tiation call in the Plane itself.

• Obtaining the reference to the CoPilot in the AutoPilot itself. This is
more involved than we’ve seen already.

1. The AutoPilot is not a sibling of the CoPilot.

2. The CoPilot is also instantiated after the AutoPilot, so you can’t
pass it into the AutoPilot’s constructor.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=216

Section 8.6 Chapter 8 · Supervision and DeathWatch 217

3. You could use context.actorFor("../../Pilots/<copilot's name>"),
but that’s ill-advised due to the brittleness of the hierarchical
knowledge.

4. You could have the Plane give the CoPilot to the AutoPilot after
the CoPilot has been constructed, which might be just fine.

5. Or you can send the ReadyToGo message to the AutoPilot just as
you did with the Pilot’s, and then let the AutoPilot ask the Plane
for the CoPilot’s reference.

– Of course, this requires the Plane to expose a new request/response
message pair, such as RequestCoPilot(...) and CoPilotReference(...),
but this is arguably the most robust solution.

• Putting the DeathWatch on the CoPilot.

• Asking the Plane for the controls when it sees the CoPilot die.

"Fake"
CoPilot AutoPilot

Watches

"Plane"
(testActor)

User
Guardian

Test code stops this directly

Figure 8.12 · The AutoPilot’s test doesn’t need to have any special parenting.
Its parent can simply be the test ActorSystem’s User Guardian.

To ensure that you’ve done everything right, you’re definitely going to
want to test this beast. Assuming you’ve gone for option 5 above, you’ll
have to set up some sort of Actor structure, but the structure need not be as
restrictive as it was with the CoPilot’s test, due to the fact that the AutoPilot
doesn’t need the CoPilot to be a sibling. Figure 8.12 shows you the idea
behind what you could do here.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=217

Section 8.7 Chapter 8 · Supervision and DeathWatch 218

The AutoPilot simply needs to be constructed such that it thinks the
testActor is the Plane, and when the AutoPilot then asks for the reference
to the CoPilot, your test code can send it a fake CoPilot, which you will then
immediately stop (via system.stop(fakeCoPilot)). At that point, the rest
of the test should write itself, much like it was written to test the CoPilot.

8.7 Chapter Summary

Supervision and DeathWatch are core aspects of the Actor paradigm in Akka
and provide the foundation for building reliable, fault-tolerant applications.
These concepts seem simple initially, but certain nuances of hierarchy and
complexity require you to think through your strategy with care. We will
continue to explore these topics as we progress, so you’ll be getting more
experience with them and your comfort level will increase.

So far we’ve covered some pretty decent ground. You’ve learned the
basics of how to:

• Set up supervision hierarchies.

• View the existing hierarchies with respect to the ActorSystem and the
paths.

• Specify strategies for supervision.

• Understand the recursive nature of how supervision operates.

• Establish a DeathWatch on another Actor that is not a direct child or
parent of the Actor holding the watch.

• React to the termination of a watched Actor for the purposes of taking
corrective action in the application to help heal it.

• Use some important techniques for composing your Actor hierarchies
while planning for structural resiliency in the face of change.

These sorts of concepts form the foundation for applications that boast
incredible levels of availability. When your system incorporates unexpected
behaviour into its design, it then has a much more deterministic set of be-
haviours in the face of that aberrant behaviour. When this is stretched out

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=218

Section 8.7 Chapter 8 · Supervision and DeathWatch 219

across physical machines in an Actor network, your application’s fault toler-
ance as a whole becomes formidable.

From a design perspective, with respect to this new paradigm, the key
message you need to gain from this chapter is simplicity. Keep the complex-
ity level of your Actors to the absolute minimum, because it’s this simplicity
that enables a naturally fault-tolerant system; one that can heal itself under
many circumstances and can be reasoned about without having to understand
the whole world first. If you’ve grasped that idea and have recognized the
power behind the system’s hierarchical structure, then you’re well on your
way to becoming a solid Actor programmer.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=219

Chapter 9

Being Stateful

If you’re a coffee drinker, then it’s quite possible that you have a very per-
sonal understanding of behavioural state. I once dated a girl whose mother
was the most serious caffeine addict I’d ever seen. Every trip in the car re-
quired a set of scheduled stops to Canada’s staple coffee shop, so she could
load up on an extra-large double double. Failure to do so resulted in a state
that was. . . well, that girl and I didn’t go out for very long.

From an Actor perspective, if she didn’t get a Coffee(size, coffeeType)
message on a regular basis, she would become(intolerable). Akka lets
you change an Actor’s running behavioural state during message processing,
which can change the way it reacts to future messages in any way you see
fit.

In this chapter, we’ll explore the Actor features that provide us with this
ability and apply them to our Plane. We’ll explore the ins and outs of the
Actor’s internal become() and unbecome() methods as well as the special-
purpose Finite State Machine (FSM) Actor, both of which are geared toward
making your Actors stateful.

9.1 Changing Behaviour

When we talk about being stateful, we’re not talking about data. Our indus-
try (or at least Enterprise and Cloud industry) has muddled the term state
over the years and now it appears to simply mean data, depending on who
you talk to and how much coffee they’ve had. This isn’t too surprising since
the contextual data possessed by an entity and its behaviour tend to be tightly
coupled, but I’d like to ensure that our focus is on the behaviour side of state-

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=220

Section 9.1 Chapter 9 · Being Stateful 221

fulness, which is supported by data, if need be.
The primary way that Akka lets us modify our behaviour is by simply

using the ActorContext’s become() and unbecome() methods:

def expectHello: Receive = {

case Hello(greeting) =>

sender ! Hello(greeting + " to you too!")

context.become(expectGoodbye)

case Goodbye(_) =>

sender ! "Huh? Who are you?"

}

def expectGoodbye: Receive = {

case Hello(_) =>

sender ! "We've already done that."

case Goodbye(_) =>

sender ! Goodbye("So long, dood!")

context.become(expectHello)

}

def receive = expectHello

By exercising the code, we can see what it does:

// prints: Huh? Who are you?

println(Await.result(actor ? Goodbye("So long"), 1.second))

// prints: Hello(Hithere to you too!)

println(Await.result(actor ? Hello("Hithere"), 1.second))

// prints: We've already done that.

println(Await.result(actor ? Hello("Hithere again"), 1.second))

// prints: Goodbye(So long, dood!)

println(Await.result(actor ? Goodbye("So long"), 1.second))

Depending on the Actor’s current behavioural state, the Hello or Goodbye
message may trigger a state change, which we affect by replacing the in-
stance of the receive partial function using the ActorContext’s become()
method. Again, this is all very thread-safe because we’re all warm and cozy
inside the Actor’s single-threaded world. When the next message comes in
for the receive body to process, our new behaviour will be observed.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=221

Section 9.1 Chapter 9 · Being Stateful 222

Note
It doesn’t matter at what point in the message handler you invoke
become(), since all it does is replace the instance of receive. The
behaviour is realized when the next message is processed, not during the
processing of the current message. We simply use a convention where the
call to become() is at, or near, the end of the handler, but there are as
many reasons why you wouldn’t do it this way as why you would.

Stacking States

Every time we become(), we have the option of pushing our current be-
haviour onto the context stack. This is what allows us to unbecome() later.
By default, the become() method does not push your current state into the
stack, thus making a subsequent unbecome() impossible.

It turns out that the cases that require the use of unbecome() can actually
be quite rare, and we can bucket them into three general use cases:

• You’re just shifting back and forth between a couple of states; e.g.,
databaseOnline() and databaseOffline(). However, this can be
very problematic and better implemented without unbecome(), since
doing so requires that you understand what state you were in before.
For example, if you unbecome() from the databaseOffline() state,
then it’s presumed that there was a previous state; that is, databaseOnline().
What if that’s not the case? If you want the state to be databaseOnline(),
then just become() that.

• You have a decently complex system whereby the current state could
have been reached from several different previous states. You need
to move back to the previous state, but you don’t know what it is,
so moving “forward” to that previous state is very problematic. The
simplest thing to do here is to unbecome().

• You’ve added data to your states. In this case, the previous state has
data locked up in it and the only way to retrieve it is to move back to
that state, e.g., pendingCommit(commitData)moves to committing(commitData, transactionId).
Assuming the result of attempting to push the commit forward in the
committing state fails, the unbecome() can trigger a retry to a subse-
quent committing state with a fresh transactionId.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=222

Section 9.1 Chapter 9 · Being Stateful 223

The state stack can be very useful, especially in the latter two cases and
you should feel empowered to use it as liberally as you like. With that said,
using the state stack can make things more difficult to reason about in your
code because of the simple fact that become() can be a very static declara-
tion (although it need not be, of course), whereby unbecome() is entirely
dynamic in nature.

The static nature of become() is obvious in the following code:

def needsBootstrapping: Receive = {

case Bootstrap(...) =>

become(bootstrapped())

}

def bootstrapped: Receive = {

case PrepareForTransfer(metadata) =>

become(transferReady(metadata))

}

def transferReady(metadata: Map[String, String]): Receive = {

case Bytes(bytes) =>

become(transferInProgress(Vector(bytes)))

}

def transferInProgress(metadata: Map[String, String],

data: Vector[Vector[Byte]]): Receive = {

case Bytes(bytes) =>

become(transferInProgress(metadata, data :+ bytes)

case EOF =>

destination ! NewDataArrived(metadata, data)

become(bootstrapped)

}

Figure 9.1 depicts the nature of the state transitions from above. The
state transitions are clear and obvious because the code is written to statically
move between them. It would be less obvious were we to store the next state
in a variable and then become() that variable’s value. Generally speaking,
there’s never a reason to be this confusing in your code, so don’t do it.

When we use unbecome(), of course, there’s no such option. You can’t
statically “unbecome” to a specific state; you must “unbecome” to the state
that is currently on top of the stack, which is only known at runtime (assum-
ing there is such a state to which you can unbecome()).

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=223

Section 9.1 Chapter 9 · Being Stateful 224

needsBootstrapping

bootstrapped

transferReady

transferInProgress

Figure 9.1 · The state transitions are easily deduced from the code due to the
static usage of the become() method.

If we don’t need to use the state stack, then we can read our code as
constantly moving forward though its states. This is simple because the
next state is always visible when using become(next state). When we use
unbecome(), the code can’t tell us where it will go because that information
is deduced at runtime.

The fact that there’s a stack involved means that you also have another
data structure that you need to take care of. This means that you’re per-
forming a series of pushes, and if the number of pushes is greater than the
number of pops over a long period of time, then you have a problem. For
example, if we change the Hello/Goodbye code to:

def expectHello: Receive = {

case Hello(greeting) =>

// ...

context.become(expectGoodbye, discardOld = false)

}

def expectGoodbye: Receive = {

case Goodbye(_) =>

// ...

context.become(expectHello, discardOld = false)

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=224

Section 9.1 Chapter 9 · Being Stateful 225

def receive = expectHello

Then we get the problem depicted in Figure 9.2. This particular bug man-
ifestation is stupefyingly obvious, but the problem can crop up in much more
subtle ways as your code complexity increases. If you have several points
where you stack the old behaviour during a push and don’t have enough
paired unbecome()s, then you’ll slowly start filling up this stack, and that
will be a problem.

expectHello

...

expectHello

expectHello

expectGoodbye

expectHello

expectGoodbye

expectGoodbye

expectHello

be
co

me
()

become()

push

pus
h

State Stack

Figure 9.2 · Our state stack’s condition after a whole load of become()s with-
out a single unbecome(). If you’re not careful in your own (more complex)
code, you could end up with a stack that eventually blows up. You just need
to accumulate more pushes than pops over a long enough period of time and
you have the exact same problem.

None of this discussion should discourage you from using the state stack;
if the stack works for your situation then you should, by all means, use it.
But above all else, we want simplicity in our Actors and when using the stack
negates that simplicity, you might want to opt for some other mechanism, if
possible.

And thus, we return to our recurring theme: in general, our Akka code
should be easy to reason about. One way we can achieve this is by contin-
ually moving forward through our states by using become() and avoiding
the stack. When this method becomes unreasonable and using the stack in-
creases the code’s clarity and understandability, then you should definitely
employ it.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=225

Section 9.2 Chapter 9 · Being Stateful 226

9.2 The Stateful Flight Attendant

Our FlightAttendant has been pretty simple so far, and we’d like to change
that by giving it a few more messages to process and also give it some state
so that it’s doing something practical.

When the FlightAttendant is currently getting a drink for a passenger,
it doesn’t make much sense to get another one, considering that there are
more than a few FlightAttendants available. We’ll add a couple of different
behavioural message handlers to our FlightAttendant that facilitate this, as
well as provide a mechanism for dealing with passenger emergencies.

We begin by defining a few more messages in the FlightAttendant’s com-
panion object.

object FlightAttendant {

...

case class Assist(passenger: ActorRef)

case object Busy_?

case object Yes

case object No

...

}

We’ll be using these newly defined messages in the changes we’ll make
to the FlightAttendant’s message handling structure below.

class FlightAttendant extends Actor { this: AttendantResponsiveness =>

import FlightAttendant._

// An internal message we can use to signal that drink

// delivery can take place

case class DeliverDrink(drink: Drink)

// Stores our timer, which is an instance of 'Cancellable'

var pendingDelivery: Option[Cancellable] = None

// Just makes scheduling a delivery a bit simpler

def scheduleDelivery(drinkname: String): Cancellable = {

context.system.scheduler.scheduleOnce(responseDuration,

self,

DeliverDrink(Drink(drinkname)))

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=226

Section 9.2 Chapter 9 · Being Stateful 227

// If we have an injured passenger, then we need to immediately assist

// them, by giving them the 'secret' Magic Healing Potion that's

// available on all flights in and out of Xanadu

def assistInjuredPassenger: Receive = {

case Assist(passenger) =>

// It's an emergency... stop what we're doing and assist NOW

pendingDelivery foreach { _.cancel() }

pendingDelivery = None

passenger ! Drink("Magic Healing Potion")

}

// This general handler is responsible for servicing drink requests

// when we're not busy servicing an existing request

def handleDrinkRequests: Receive = {

case GetDrink(drinkname) =>

pendingDelivery = Some(scheduleDelivery(drinkname))

// Become something new

context.become(assistInjuredPassenger orElse

handleSpecificPerson(sender))

case Busy_? =>

sender ! No

}

// When we are already busy getting a drink for someone then we

// move to this state

def handleSpecificPerson(person: ActorRef): Receive = {

case GetDrink(drinkname) if sender == person =>

pendingDelivery foreach { _.cancel() }

pendingDelivery = Some(scheduleDelivery(drinkname))

// The only time we can get the DeliverDrink message is when we're in

// this state

case DeliverDrink(drink) =>

person ! drink

pendingDelivery = None

// Become something new

context.become(assistInjuredPassenger orElse handleDrinkRequests)

// If we get another drink request when we're already handling one

// then we punt that back to our parent (the LeadFlightAttendant)

case m: GetDrink =>

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=227

Section 9.2 Chapter 9 · Being Stateful 228

context.parent forward m

case Busy_? =>

sender ! Yes

}

// Set up the initial handler

def receive = assistInjuredPassenger orElse handleDrinkRequests

}

The goal of our new FlightAttendant is to be more stateful about its
current work. We use functional composition and become() to change the
FlightAttendant’s behaviour, depending on whether or not it’s currently serv-
ing someone.

assist
Injured

Passenger

handle
Drink

Requests

handle
Specific
Person

Person
Requesting

Drink

orElse assist
Injured

Passenger
orElse

become()s when GetDrink is received

Busy_?

No Yes

Busy_?

bec
ome(

)s when DeliverDrink is received

Figure 9.3 · The FlightAttendant changes its behavioural state when certain
messages are received in certain states. One nice effect of knowing you are in
a particular state is that you can simply hard-code values rather than having
to check what state you’re in with an if statement. Here, we illustrate that
the response to the Busy_? message is determined by the state in which the
FlightAttendant finds itself.

Figure 9.3 illustrates the transition that occurs between these states. When
it becomes the state on the right, the person with which the FlightAttendant

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=228

Section 9.2 Chapter 9 · Being Stateful 229

is currently working is bound to the receive partial that has been instantiated
(handleSpecificPerson).

The two states created are composed of the assistInjuredPassenger
partial and either the handleDrinkRequests partial or the handleSpecificPerson
partial using Scala’s orElse combinator. Whatever message isn’t handled by
the assistInjuredPassenger partial is passed on to the next partial. Be-
cause we intend to exercise the assistInjuredPassenger partial no matter
what, we compose it in both states and let the other vary.

An important thing to realize is the lack of if statements in this code. We
would often have some sort of variable data in our classes that we would use
to understand what state we’re in, but with Akka’s behavioural swapping, we
don’t need to do that. For example, we don’t need code like this:

var drinkPerson: Option[ActorRef] = None

...

case GetDrink(drinkname) =>

if (drinkPerson.isDefined)

// already handling someone

else {

drinkPerson = Some(sender)

// etc...

}

...

case DeliverDrink(drink) =>

drinkPerson foreach { _ ! drink }

drinkPerson = None

That kind of coding can get old really fast. The beautiful thing here is that
we don’t need to worry about it at all. The interesting event triggers a state
change and all of that state-specific code goes into that new state. It makes
writing stateful code easier than chewing gum on a Wednesday afternoon.1

On Composition

The fact that we’re using the orElse function combinator to combine our
behaviours is pretty standard practice, but it does come with some caveats
due to the ordering of message processing.

1Historically, this is the easiest day on which to chew gum.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=229

Section 9.2 Chapter 9 · Being Stateful 230

Watch Out for the Eclipse

When you’re combining your receivers, you need to make sure that it’s all
reachable.

def behaviourA: Receive = {

case m =>

println(m)

}

def behaviourB: Receive = {

case MessageForB(payload) =>

doSomethingAwesomeWith payload

}

// Oops!

def receive = behaviourA orElse behaviourB

Using orElse to combine your behaviours is a very powerful mecha-
nism, but in the above code, we’ve got a problem. Scala is great about
checking unreachable code in the following case, since it knows that the
first match will always succeed, resulting in the second never being reached:

def behaviour: Receive = {

case m =>

println(m)

case MessageForB(payload) =>

doSomethingAwesomeWith payload

}

// error: unreachable code

// case MessageForB(payload) =>

// doSomethingAwesomeWith payload

Scala cannot realize the same error in this case:

def receive = behaviourA orElse behaviourB

It will just silently let this construct, resulting in behaviourB never being
invoked. So, when you’re combining your message handlers with orElse,
ensure that you’re not eclipsing your own code.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=230

Section 9.3 Chapter 9 · Being Stateful 231

Watch the Complexity

There’s another practice that we also need to be aware of when we combine
behaviours in an Actor: keep it simple. It’s quite possible to lose your way
and start putting too much responsibility into an Actor and you wind up with
constructs, such as:

become(protocolBehaviourStart orElse

bluntHttpHandler orElse

databaseSelectionHandler orElse

fileSystemLocker)

// later

become(protocolBehaviourSecondStage orElse // changed

bluntHttpHandler orElse

databaseSelectionHandler orElse

fileSystemLocker)

// and later still...

become(protocolBehaviourThirdStage orElse // changed

activeHttpHandler orElse // changed

databaseSelected orElse // changed

fileSystemLocker)

// and so on...

The more behaviour you add to your Actor and the more aspects you have
for each behaviour, the more permutations you have and eventually it just
gets oogie. The single-responsibility principle applies to Actors just as much
as it applies to everything else. If things get to be too much of a problem, you
need to refactor your code by breaking out your responsibilities into multiple
Actors.

There are times, however, when the inclusion of multiple traits that
carry behaviour as well as certain behavioural states in the Actor itself re-
quire a requisite amount of complexity. Later, we’ll address this issue when
we introduce a collection of Akka coding patterns.

9.3 A Better Flyer

Up until now we haven’t had a great mechanism for actually flying this Plane.
The reason we’ve overlooked this is because we haven’t had the right tool

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=231

Section 9.3 Chapter 9 · Being Stateful 232

available. Akka’s Finite State Machine (FSM) is that tool, and we’ll employ
it in this section. It will involve some refactoring of our previous code, since
we’ll move what little behaviour we had for flying into a more robust class
that many aspects of our application can use, instead of the ad-hoc mecha-
nism we currently have in the Plane.

Enhancing the Controls

Most planes do more than just go up and down; they tend to be able to go
left and right as well. We’ll enhance our Plane with the ability to change
our heading using the stick so that we have both elevator as well as aileron
control. The rudder won’t be of any interest to us, but feel free to model it
on your own if you’d like.

A Heading Indicator

Just as the Altimeter provides us with our height, we’ll need something
that tells us into what direction we’re headed; we’ll model that with the
HeadingIndicator. There won’t be too much here that’s surprising, so let’s
just plunk it down, starting with the companion object:

object HeadingIndicator {

// Indicates that something has changed how fast

// we're changing direction

case class BankChange(amount: Float)

// The event published by the HeadingIndicator to

// listeners that want to know where we're headed

case class HeadingUpdate(heading: Float)

}

You might have noticed that we used the message name “BankChange”
instead of “RateChange,” as we have on the Altimeter. We did this for good
reason and it’s something that many might get tripped up by, so if you’re
getting weary at the moment, go grab a coffee. . . I’ll wait.

You’ll recall that the partial function definition for the receive method
is PartialFunction[Any, Unit], which should give you a pretty decent
hint as to the subtlety. Because the input to the receive method is of type
Any, all type checking is lost. Akka gives us the flexibility of sending any
message to an Actor, which is awesome, but it means we have to be a bit

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=232

Section 9.3 Chapter 9 · Being Stateful 233

more diligent about what we send. Neither Akka nor Scala will have any
problem with this code:

import Altimeter._

altimeter ! RateChange(0.5f)

headingIndicator ! RateChange(0.5f)

What you’ll find is that the HeadingIndicator fails to handle the Rate-
Change message, which will be indicated in the event stream and eventually
the log. It will all look really good to us because it’s a RateChange message;
we have it defined on the HeadingIndicator companion object, all is good!
The subtle bit we’ll miss, in the many more lines of code than the simple il-
lustration above, is that we failed to import HeadingIndicator._. If we do
that, then the compiler will give us an error about the conflicting RateChange
types, but it can’t give us that error if we don’t do the import.

To avoid this subtlety, I find it best practice to name things as uniquely
as I can, within reason. If I have any concern that some classes or message
handlers might intersect on some common messages, then I ensure that there
is reasonable uniqueness in those names. Often, due to imports and other
scoping issues, we can find these hidden land mines that would normally be
visible if they weren’t being passed to a function that accepts Any.

OK, got that? Alright, now that we have the basic messages we need, we
can create the corresponding Actor:

trait HeadingIndicator extends Actor with ActorLogging { this: EventSource =>

import HeadingIndicator._

import context._

// Internal message we use to recalculate our heading

case object Tick

// Maximum degrees-per-second that our plane can move

val maxDegPerSec = 5

// Our timer that schedules our updates

val ticker = system.scheduler.schedule(100.millis, 100.millis,

self, Tick)

// The last tick which we can use to calculate our changes

var lastTick: Long = System.currentTimeMillis

// The current rate of our bank

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=233

Section 9.3 Chapter 9 · Being Stateful 234

var rateOfBank = 0f

// Holds our current direction

var heading = 0f

def headingIndicatorReceive: Receive = {

// Keeps the rate of change within [-1, 1]

case BankChange(amount) =>

rateOfBank = amount.min(1.0f).max(-1.0f)

// Calculates our heading delta based on the current rate of change,

// the time delta from our last calculation, and the max degrees

// per second

case Tick =>

val tick = System.currentTimeMillis

val timeDelta = (tick - lastTick) / 1000f

val degs = rateOfBank * maxDegPerSec

heading = (heading + (360 + (timeDelta * degs))) % 360

lastTick = tick

// Send the HeadingUpdate event to our listeners

sendEvent(HeadingUpdate(heading))

}

// Remember that we're mixing in the EventSource and thus have to

// compose our receive partial function accordingly

def receive = eventSourceReceive orElse headingIndicatorReceive

// Don't forget to cancel our timer when we shut down

override def postStop(): Unit = ticker.cancel

}

As promised, there’s not a lot that’s special there. If you can code the
Altimeter, you can code the HeadingIndicator. Of course, we would need to
make changes to the Plane as well in order to get instantiated and supervised,
but I’m going to leave this exercise for you—you have all the skill you need
to hook that up.

Now that we can change our heading, we need the controls to make it
happen. This will involve a couple of simple changes to the ControlSurfaces
class.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=234

Section 9.3 Chapter 9 · Being Stateful 235

Adding Banking to the Controls

It really only makes sense for one guy to control the Plane at a time, right?
We’ve set the stage for this ability in the past by making people go to the
Plane in order to get control. It hasn’t been really well done yet, since there’s
nothing really stopping a bunch of people asking for control at the same time;
the Plane will happily give it to all of them. If we want to enforce this rule,
how do we do it?

One cool thing about having all of these live objects running around is
that they all have a unique identity. This unique identity comes in several
different forms:

• The local Actor path, e.g., /user/Plane/Controls/Altimeter

• The host-specific Actor path, e.g., akka://System@host:port/user/Plane/Controls/Altimeter

• The ActorRef. When you’re in a single JVM, the ActorRef will do just
fine. We can depend on it because the ActorRef won’t change during
Actor restarts; it’s a stable value.

We’re inside a single JVM for our Plane, so we can easily use the Ac-
torRef to identify our Actors and we’ll use the identifiers to ensure that only
one entity at a time can fly the Plane.

First, let’s make the requisite changes to the companion object, where
we’ll hold our message definitions:

object ControlSurfaces {

case class StickBack(amount: Float)

case class StickForward(amount: Float)

// Add these messages

case class StickLeft(amount: Float)

case class StickRight(amount: Float)

case class HasControl(somePilot: ActorRef)

}

The StickLeft and StickRight messages are obvious; the HasControl
message will become clear once we see the definition of the actual ControlSurfaces
class:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=235

Section 9.3 Chapter 9 · Being Stateful 236

class ControlSurfaces(plane: ActorRef,

altimeter: ActorRef,

heading: ActorRef) extends Actor {

import ControlSurfaces._

import Altimeter._

import HeadingIndicator._

// Instantiate the receive method by saying that the ControlSurfaces

// are controlled by the dead letter office. Effectively, this says

// that nothing's currently in control

def receive = controlledBy(context.system.deadLetters)

// As control is transferred between different entities, we will

// change the instantiated receive function with new variants. This

// closure ensures that only the assigned pilot can control the plane

def controlledBy(somePilot: ActorRef): Receive = {

case StickBack(amount) if sender == somePilot =>

altimeter ! RateChange(amount)

case StickForward(amount) if sender == somePilot =>

altimeter ! RateChange(-1 * amount)

case StickLeft(amount) if sender == somePilot =>

heading ! BankChange(-1 * amount)

case StickRight(amount) if sender == somePilot =>

heading ! BankChange(amount)

// Only the plane can tell us who's currently in control

case HasControl(entity) if sender == plane =>

// Become a new instance, where the entity, which the plane told

// us about, is now the entity that controls the plane

context.become(controlledBy(entity))

}

}

Here, we use the ActorRef as identity in two key places; we use it to
ensure that only the Plane can dictate who is currently in control, and also
to ensure that the entity in control is the only one sending control change
events.

We’ve also introduced a mechanism for passing state data to the be-
havioural state by creating an indirection on the receive function. Instead
of simply specifying everything in receive, we’ve created another method

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=236

Section 9.3 Chapter 9 · Being Stateful 237

that can become() the receive function. To instantiate it, we need to pass in
the ActorRef for the entity that takes control, which is closed over and used
in the body of the newly instantiated receive.

Why would we create a closure instead of just using a var in the class?
In this case, there’s not a huge reason to do so, but there are times when using
a closure is the better option:

• You really hate seeing the word var.

• You want to have many variants of a particular behaviour based on a
variable’s value, but you don’t want to have multiple different versions
of that variable.

• You want a subclass to have greater power of configurability over the
behaviour as defined in the parent.

It’s up to you how you want to handle the data that is tied to your be-
havioural state. Just remember that you always have the option of creating a
closure, which can easily be the best answer to your problem.

Flying Behaviour

The HeadingIndicator is in place, the ControlSurfaces have been updated to
ensure that we can actually turn left and right, so now it’s time to hook a
brain up to it that provides the actual flying behaviour. As stated, we’ll use
the FSM here.

The Companion Object

object FlyingBehaviour {

import ControlSurfaces._

// The states governing behavioural transitions

sealed trait State

case object Idle extends State

case object Flying extends State

case object PreparingToFly extends State

The above three states are defined through which our FSM can move.
Next, we’ll look at the data we can use.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=237

Section 9.3 Chapter 9 · Being Stateful 238

// Helper classes to hold course data

case class CourseTarget(altitude: Double, heading: Float,

byMillis: Long)

case class CourseStatus(altitude: Double, heading: Float,

headingSinceMS: Long, altitudeSinceMS: Long)

// We're going to allow the FSM to vary the behaviour that calculates the

// control changes using this function definition

type Calculator = (CourseTarget, CourseStatus) => Any

// The Data that our FlyingBehaviour can hold

sealed trait Data

case object Uninitialized extends Data

// This is the 'real' data. We're going to stay entirely immutable and,

// in doing so, we're going to encapsulate all of the changing state

// data inside this class

case class FlightData(controls: ActorRef,

elevCalc: Calculator,

bankCalc: Calculator,

target: CourseTarget,

status: CourseStatus) extends Data

It’s the FlightData that will be the most interesting. Note how we’ve
parameterized some behaviour in the data. The elevCalc and bankCalc are
functions that we’ll use to calculate the amount of control change to apply to
the ControlSurfaces. We’ll have some fun changing these later.

Note
If you’ll be sending function closures around, it’s best to do this inside a
single JVM. When you start to work with remote Actors (something we’ll
be getting into later), you’ll have to figure out how to serialize and
deserialize them. The way we’re structuring our system here, the
FlyingBehaviour FSM will be directly tied to the component making the
changes on the same JVM, so this is not our concern.

We also need to define a single external message that other Actors can
send to the FlyingBehaviour to make it fly the Plane.

// Someone can tell the FlyingBehaviour to fly

case class Fly(target: CourseTarget)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=238

Section 9.3 Chapter 9 · Being Stateful 239

The last thing we’ll put into the companion is some helper code that we’ll
use to make some calculations.

def currentMS = System.currentTimeMillis

// Calculates the amount of elevator change we need to make and returns it

def calcElevator(target: CourseTarget, status: CourseStatus): Any = {

val alt = (target.altitude - status.altitude).toFloat

val dur = target.byMillis - status.altitudeSinceMS

if (alt < 0) StickForward((alt / dur) * -1)

else StickBack(alt / dur)

}

// Calculates the amount of bank change we need to make and returns it

def calcAilerons(target: CourseTarget, status: CourseStatus): Any = {

import scala.math.{abs, signum}

val diff = target.heading - status.heading

val dur = target.byMillis - status.headingSinceMS

val amount = if (abs(diff) < 180) diff

else signum(diff) * (abs(diff) - 360f)

if (amount > 0) StickRight(amount / dur)

else StickLeft((amount / dur) * -1)

}

Being able to put these methods in the companion object is one of the
great aspects of having a system that has no internal data. These methods
don’t rely on any internal data inside the FlyingBehaviour class because there
is no internal data there. The FSM makes it very easy for us to write code
like this.

The FlyingBehaviour Class

The class itself is a fair bit more complex, so we’ll go a little slower on that
one, starting with the constructor.

class FlyingBehaviour(plane: ActorRef,

heading: ActorRef,

altimeter: ActorRef) extends Actor

with FSM[FlyingBehaviour.State, FlyingBehaviour.Data] {

import FSM._

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=239

Section 9.3 Chapter 9 · Being Stateful 240

import FlyingBehaviour._

import Pilots._

import Plane._

import Altimeter._

import HeadingIndicator._

import EventSource._

case object Adjust

Some things to note:

• The class mixes in the FSM, which requires type parameters for the
state and data parameters. Note that the FSM itself is not an Actor,
but its self-typing constraints require that you mix it into a class that
eventually extends Actor.

• It also requires the Altimeter and HeadingIndicator Actors to be passed
in as well, which is now our standard practice when it comes to speci-
fying static dependencies between Actors.

• We’ve also defined an internal message, Adjust, which we will use to
tell the FlyingBehaviour that we need to adjust the Plane’s altitude and
heading.

Starting State and Data

Given all of this set up, we can now start to implement the code that the FSM
needs to do its job. Everything we’re about to see is contained in the FSM
Domain Specific Language (DSL), invoked from the FlyingBehaviour’s con-
structor for the purposes of setting up the FSM at construction time.

// Sets up the initial values for state and data in the FSM

startWith(Idle, Uninitialized)

Initially, we are doing nothing (Idle) and have absolutely no data associ-
ated with that idleness (Uninitialized). Now, of course, Uninitialized is real
data, but we think of it as nothing in particular.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=240

Section 9.3 Chapter 9 · Being Stateful 241

Being Idle

The next step is to define some behaviours for particular states. These are a
series of when() calls that are essentially constructors for partial functions
that become receive blocks. Because the FSM is an Actor, our state def-
initions are easily used as receive partial functions, which is exactly what
they are.

when(Idle) {

case Event(Fly(target), _) =>

goto(PreparingToFly) using FlightData(context.system.deadLetters,

calcElevator,

calcAilerons,

target,

CourseStatus(-1, -1, 0, 0))

}

The DSL is really quite easy to read. When we’re Idle, we recognize
Fly messages, and when we get one we’ll simply go to the PreparingToFly
state, using the defined FlightData as our data. And that’s all we need to do
to specify what happens when we’re Idle.

Transitioning to Flying

Once we start flying, we’ll need something that is responsible for updating
our heading and altitude at periodic intervals. This is not really any different
than the timers we created for the Altimeter and the HeadingIndicator, except
that the FSM gives us a nicer framework surrounding those timers.

As we transition from PreparingToFly to Flying, we are going to turn
on a timer that sends us an Adjust message periodically, which will give
the FlyingBehaviour time slices for which it can recalculate and adjust the
controls of the Plane.

onTransition {

case PreparingToFly -> Flying =>

setTimer("Adjustment", Adjust, 200.milliseconds, repeat = true)

}

That’s it. As we transition from the PreparingToFly to Flying state, the
FSM will automatically instantiate this timer for us and we’ll start getting

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=241

Section 9.3 Chapter 9 · Being Stateful 242

the Adjust message in the Flying state. We never have to worry about getting
that message outside of that state.

The FSM lets you create as many timers as you’d like, which allows you
great flexibility in sending any number of interesting messages to either the
FSM you’ve implemented, or anyone else for that matter.

Transitioning from the Flying State

When we leave the Flying state, there needs to be some clean up. Here,
we need to cancel the existing Adjustment timer that we created when we
transitioned into the Flying state.

onTransition {

case Flying -> _ =>

cancelTimer("Adjustment")

}

Note that we don’t care what state we move to from Flying; we only care
that we’re moving out of Flying to something else.

Transitioning into the Idle State

When we transition back into the Idle state, we need to clear out the regis-
trations we made to the instruments that we created earlier.

onTransition {

case _ -> Idle =>

heading ! UnregisterListener(self)

altimeter ! UnregisterListener(self)

}

Handling the Unhandled

In every state, there’s the potential for a message to come in that the state is
not defined to handle. This literally can be anything, such as 5. The FSM
defines the special state definition, whenUnhandled, that allows us to define
a partial function that can catch these unhandled messages before they go
to the event stream (and the logger). One message that can come in at any

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=242

Section 9.3 Chapter 9 · Being Stateful 243

time is when the Plane tells us to RelinquishControl. Since this can happen
at any time and in any state, we will put the handler in the whenUnhandled
definition.

whenUnhandled {

case Event(RelinquishControl, _) =>

goto(Idle)

}

Initialization

The last thing we need to do in our class is initialize the FSM. This is just a
bit of housekeeping that the FSM trait imposes on us.

...

initialize

}

// Class complete

The Whole Thing

Let’s bring it all together into one place so you can see it in all its glory.

class FlyingBehaviour(plane: ActorRef,

heading: ActorRef,

altimeter: ActorRef) extends Actor

with FSM[FlyingBehaviour.State, FlyingBehaviour.Data] {

import FSM._

import FlyingBehaviour._

import Pilots._

import Plane._

import Altimeter._

import HeadingIndicator._

import EventSource._

case object Adjust

// Sets up the initial values for state and data in the FSM

startWith(Idle, Uninitialized)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=243

Section 9.3 Chapter 9 · Being Stateful 244

// Adjusts the plane's heading and altitude according to calculations

// It also returns the new FlightData to be passed to the next state

def adjust(flightData: FlightData): FlightData = {

val FlightData(c, elevCalc, bankCalc, t, s) = flightData

c ! elevCalc(t, s)

c ! bankCalc(t, s)

flightData

}

when(Idle) {

case Event(Fly(target), _) =>

goto(PreparingToFly) using FlightData(context.system.deadLetters,

calcElevator,

calcAilerons,

target,

CourseStatus(-1, -1, 0, 0))

}

onTransition {

case Idle -> PreparingToFly =>

plane ! GiveMeControl

heading ! RegisterListener(self)

altimeter ! RegisterListener(self)

}

def prepComplete(data: Data) = {

data match {

case FlightData(c, _, _, _, s) =>

if (c != context.system.deadLetters &&

s.heading != -1f && s.altitude != -1f)

true

else

false

case _ =>

false

}

}

when (PreparingToFly)(transform {

case Event(HeadingUpdate(head), d: FlightData) =>

stay using d.copy(status = d.status.copy(heading = head,

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=244

Section 9.3 Chapter 9 · Being Stateful 245

headingSinceMS = currentMS))

case Event(AltitudeUpdate(alt), d: FlightData) =>

stay using d.copy(status = d.status.copy(altitude = alt,

altitudeSinceMS = currentMS))

case Event(Controls(ctrls), d: FlightData) =>

stay using d.copy(controls = ctrls)

case Event(StateTimeout, _) =>

plane ! LostControl

goto (Idle)

} using {

case s if prepComplete(s.stateData) =>

s.copy(stateName = Flying)

})

when(Flying) {

case Event(Adjust, flightData: FlightData) =>

stay using adjust(flightData)

case Event(AltitudeUpdate(alt), d: FlightData) =>

stay using d.copy(status = d.status.copy(altitude = alt,

altitudeSinceMS = currentMS))

case Event(HeadingUpdate(head), d: FlightData) =>

stay using d.copy(status = d.status.copy(heading = head,

headingSinceMS = currentMS))

}

onTransition {

case PreparingToFly -> Flying =>

setTimer("Adjustment", Adjust, 200.milliseconds, repeat = true)

}

onTransition {

case Flying -> _ =>

cancelTimer("Adjustment")

}

onTransition {

case _ -> Idle =>

heading ! UnregisterListener(self)

altimeter ! UnregisterListener(self)

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=245

Section 9.4 Chapter 9 · Being Stateful 246

whenUnhandled {

case Event(RelinquishControl, _) =>

goto(Idle)

}

initialize

}

Now, let’s put it to use.

9.4 The Naughty Pilot

Here’s a nightmare scenario: your Pilot is a drinker. Unfortunately, our Pilot
has managed to sneak a flask of whiskey on board and whenever the CoPilot
isn’t looking, he takes a short pull from the container. Eventually, he starts
doing some pretty nasty stuff and puts everyone in danger.

The model for this will require three separate Actors, since there are three
separate bits of responsibility here:

• Flying the Plane: This is the job of our new FlyingBehaviour FSM.

• Being the Pilot: We’ll let the Pilot Actor continue doing this.

• Drinking: It’s really too cumbersome to put this behaviour into the
Pilot himself; it’s a lot easier to let some other Actor be in charge of
the drinking and let the Pilot react to the events coming from this other
Actor.

Let’s define the new DrinkingBehaviour, starting with the companion
object first.

object DrinkingBehaviour {

// Internal message that increase / decrease the blood alcohol level

case class LevelChanged(level: Float)

// Outbound messages to tell their person how we're feeling

case object FeelingSober

case object FeelingTipsy

case object FeelingLikeZaphod

// Factory method to instantiate it with the production timer resolution

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=246

Section 9.4 Chapter 9 · Being Stateful 247

def apply(drinker: ActorRef) = new DrinkingBehaviour(drinker)

with DrinkingResolution

}

You’ll note the factor method, which hides the fact that there’s a Drink-
ingResolution trait mixed into the DrinkingBehaviour. We’re including this
to ease testing, as usual. Our behaviour will have some timers in it, and the
resolution of those timers should be easily modifiable in order to make tests
run faster. Let’s look at the DrinkingResolution now:

trait DrinkingResolution {

import scala.util.Random

def initialSobering: Duration = 1.second

def soberingInterval: Duration = 1.second

def drinkInterval(): Duration = Random.nextInt(300).seconds

}

Not terribly exciting. It just gives us easy access to slide in new timer
resolutions when we need to; the Actor itself is a bit more interesting:

class DrinkingBehaviour(drinker: ActorRef) extends Actor {

this: DrinkingResolution =>

import DrinkingBehaviour._

// Stores the current blood alcohol level

var currentLevel = 0f

// Just provides shorter access to the scheduler

val scheduler = context.system.scheduler

// As time passes our Pilot sobers up. This scheduler keeps that happening

val sobering = scheduler.schedule(initialSobering,

soberingInterval,

self, LevelChanged(-0.0001f))

// Don't forget to stop your timer when the Actor shuts down

override def postStop() {

sobering.cancel()

}

// We've got to start the ball rolling with a single drink

override def preStart() {

drink()

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=247

Section 9.4 Chapter 9 · Being Stateful 248

}

// The call to drink() is going to schedule a single event to self that

// will increase the blood alcohol level by a small amount. It's OK if

// we don't cancel this one - only one message is going to the Dead

// Letter Office

def drink() = scheduler.scheduleOnce(drinkInterval(),

self, LevelChanged(0.005f))

def receive = {

case LevelChanged(amount) =>

currentLevel = (currentLevel + amount).max(0f)

// Tell our drinker how we're feeling. It gets more exciting when

// we start feeling like Zaphod himself, but at that point he stops

// drinking and lets the sobering timer make him feel better.

drinker ! (if (currentLevel <= 0.01) {

drink()

FeelingSober

} else if (currentLevel <= 0.03) {

drink()

FeelingTipsy

}

else FeelingLikeZaphod)

}

}

As time passes, the sobering timer will lower our Pilot’s blood alcohol
level, which will battle with his drinking behaviour. So long as he’s not too
drunk, he’ll take another pull from the flask and increase his blood alcohol
level again.

If anything bad happens to this Actor, it will restart and go back to its
original state (since that’s the default behaviour of the Pilot’s supervision
strategy, and we’re not going to change that), which means he’s going to be
sober.

Adding the Naughty Behaviour

We need to hook up the Pilot to its DrinkingBehaviour and its FlyingBe-
haviour so that we can realize what’s in Figure 9.4. The events that come

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=248

Section 9.4 Chapter 9 · Being Stateful 249

in from the DrinkingBehaviour need to be translated into new calculation
behaviours sent to the FlyingBehaviour Actor.

Drinking
Behaviour

Pilot

Flying
Behaviour

Feeling Tipsy
Calculate as Tipsy

Figure 9.4 · The Pilot receives information about how he feels from the drink-
ing behaviour Actor, which allows him to alter his flying behaviour accord-
ingly.

We don’t want to keep sending the same calculation functions to the Fly-
ingBehaviour every time we receive an event from the DrinkingBehaviour,
since it will send redundant messages to the Pilot (i.e., FeelingSober, Feel-
ingSober, FeelingSober, etc.). To keep with the theme of the chapter, we’ll
do this with behavioural state changes.

Let’s start by looking at the companion object, and the control calculation
functions it defines:

object Pilot {

import FlyingBehaviour._

import ControlSurfaces._

// Calculates the elevator changes when we're a bit tipsy

val tipsyCalcElevator: Calculator = { (target, status) =>

val msg = calcElevator(target, status)

msg match {

case StickForward(amt) => StickForward(amt * 1.03f)

case StickBack(amt) => StickBack(amt * 1.03f)

case m => m

}

}

// Calculates the aileron changes when we're a bit tipsy

val tipsyCalcAilerons: Calculator = { (target, status) =>

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=249

Section 9.4 Chapter 9 · Being Stateful 250

val msg = calcAilerons(target, status)

msg match {

case StickLeft(amt) => StickLeft(amt * 1.03f)

case StickRight(amt) => StickRight(amt * 1.03f)

case m => m

}

}

// Calculates the elevator changes when we're totally out of it

val zaphodCalcElevator: Calculator = { (target, status) =>

val msg = calcElevator(target, status)

msg match {

case StickForward(amt) => StickBack(1f)

case StickBack(amt) => StickForward(1f)

case m => m

}

}

// Calculates the aileron changes when we're totally out of it

val zaphodCalcAilerons: Calculator = { (target, status) =>

val msg = calcAilerons(target, status)

msg match {

case StickLeft(amt) => StickRight(1f)

case StickRight(amt) => StickLeft(1f)

case m => m

}

}

}

Pretty straightforward stuff; the functions use the calculation abilities al-
ready present in the FlyingBehaviour, and then modify the results in specific
ways.

Again, we should always be thinking about how we test our code, and
here we have two Actors (FlyingBehaviour and DrinkingBehaviour) that will
be the Pilot Actor’s children, which means we have some behaviours that we
can test in isolation and that also require mocking out in testing. To facilitate
this, we’ll provide some traits with factory methods, as usual.

trait DrinkingProvider {

def newDrinkingBehaviour(drinker: ActorRef): Props =

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=250

Section 9.4 Chapter 9 · Being Stateful 251

Props(DrinkingBehaviour(drinker))

}

trait FlyingProvider {

def newFlyingBehaviour(plane: ActorRef,

heading: ActorRef,

altimeter: ActorRef): Props =

Props(new FlyingBehaviour(plane, heading, altimeter))

}

We can now implement our Pilot’s changes, which are vast enough to
simply include the whole thing again.

class Pilot(plane: ActorRef,

autopilot: ActorRef,

heading: ActorRef,

altimeter: ActorRef) extends Actor {

this: DrinkingProvider with FlyingProvider =>

import Pilots._

import Pilot._

import Plane._

import context._

import Altimeter._

import ControlSurfaces._

import DrinkingBehaviour._

import FlyingBehaviour._

import FSM._

val copilotName = context.system.settings.config.getString(

"zzz.akka.avionics.flightcrew.copilotName")

override def preStart() {

actorOf(newDrinkingBehaviour(self), "DrinkingBehaviour")

actorOf(newFlyingBehaviour(plane, heading, altimeter), "FlyingBehaviour")

}

// We've pulled the bootstrapping code out into a separate receive

// method. We'll only ever be in this state once, so there's no point

// in having it around for long

def bootstrap: Receive = {

case ReadyToGo =>

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=251

Section 9.4 Chapter 9 · Being Stateful 252

val copilot = actorFor("../" + copilotName)

val flyer = actorFor("FlyingBehaviour")

flyer ! SubscribeTransitionCallBack(self)

flyer ! Fly(CourseTarget(20000, 250, System.currentTimeMillis + 30000))

become(sober(copilot, flyer))

}

// The 'sober' behaviour

def sober(copilot: ActorRef, flyer: ActorRef): Receive = {

case FeelingSober =>

// We're already sober

case FeelingTipsy =>

becomeTipsy(copilot, flyer)

case FeelingLikeZaphod =>

becomeZaphod(copilot, flyer)

}

// The 'tipsy' behaviour

def tipsy(copilot: ActorRef, flyer: ActorRef): Receive = {

case FeelingSober =>

becomeSober(copilot, flyer)

case FeelingTipsy =>

// We're already tipsy

case FeelingLikeZaphod =>

becomeZaphod(copilot, flyer)

}

// The 'zaphod' behaviour

def zaphod(copilot: ActorRef, flyer: ActorRef): Receive = {

case FeelingSober =>

becomeSober(copilot, flyer)

case FeelingTipsy =>

becomeTipsy(copilot, flyer)

case FeelingLikeZaphod =>

// We're already Zaphod

}

// The 'idle' state is merely the state where the Pilot does nothing at all

def idle: Receive = {

case _ =>

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=252

Section 9.4 Chapter 9 · Being Stateful 253

}

// Updates the FlyingBehaviour with sober calculations and then

// becomes the sober behaviour

def becomeSober(copilot: ActorRef, flyer: ActorRef) = {

flyer ! NewElevatorCalculator(calcElevator)

flyer ! NewBankCalculator(calcAilerons)

become(sober(copilot, flyer))

}

// Updates the FlyingBehaviour with tipsy calculations and then

// becomes the tipsy behaviour

def becomeTipsy(copilot: ActorRef, flyer: ActorRef) = {

flyer ! NewElevatorCalculator(tipsyCalcElevator)

flyer ! NewBankCalculator(tipsyCalcAilerons)

become(tipsy(copilot, flyer))

}

// Updates the FlyingBehaviour with zaphod calculations and then

// becomes the zaphod behaviour

def becomeZaphod(copilot: ActorRef, flyer: ActorRef) = {

flyer ! NewElevatorCalculator(zaphodCalcElevator)

flyer ! NewBankCalculator(zaphodCalcAilerons)

become(zaphod(copilot, flyer))

}

// At any time, the FlyingBehaviour could go back to an Idle state,

// which means that our behavioural changes don't matter any more

override def unhandled(msg: Any): Unit = {

msg match {

case Transition(_, _, Idle) =>

become(idle)

// Ignore these two messages from the FSM rather than have them

// go to the log

case Transition(_, _, _) =>

case CurrentState(_, _) =>

case m => super.unhandled(m)

}

}

// Initially we start in the bootstrap state

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=253

Section 9.4 Chapter 9 · Being Stateful 254

def receive = bootstrap

}

The behaviours have been decomposed out into several separate receive
functions, and start in the bootstrap behaviour. You’ll note how we’ve
changed the way we create a reference to our children. We’re still going
to create them in the preStart() method, but instead of assigning them to
vars, we’ll take advantage of the fact that we’re about to become() and pass
the values in from the bootstrap behaviour to the sober behaviour as closed-
over values. This is just another way to reference the data in your Actors,
and is facilitated by the state changes we’re implementing.

There’s also the addition of the following:

def bootstrap: Receive = {

case ReadyToGo =>

...

flyer ! SubscribeTransitionCallBack(self)

...

}

// At any time, the FlyingBehaviour could go back to an Idle state,

// which means that our behavioural changes don't matter any more

override def unhandled(msg: Any): Unit = {

msg match {

case Transition(_, _, Idle) =>

become(idle)

// Ignore these two messages from the FSM rather than have them

// go to the log

case Transition(_, _, _) =>

case CurrentState(_, _) =>

case m => super.unhandled(m)

}

}

The FSM allows external Actors to watch for state transitions in the same
way that the onTransition method lets the FSM watch its own transitions.
This allows the Pilot to see when the FlyingBehaviour moves from any state
to the Idle state. The only time it goes to the Idle state is when it’s no longer
flying the Plane, and when this occurs, there’s no reason for the Pilot to send

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=254

Section 9.5 Chapter 9 · Being Stateful 255

it anymore messages. The Pilot can also ignore any messages coming from
the DrinkingBehaviour at the same time, so we let the Pilot become(idle).

Note that we’re using a previously unseen method in the Actor’s defini-
tion: unhandled. This is the same as the FSM’s definition of whenUnhandled
that we saw when implementing the FlyingBehaviour earlier. Since this state
transition could occur in any of the previously defined states, we can put the
handlers in this catchall. We could also have done this with the orElse
function combinator as we did with the FlightAttendant earlier, but this is
less cumbersome. It’s also less explicit, since the function name is called
unhandled as opposed to flyingStateHandler, or something like that, but
this is still a nice mechanism.

And that’s it. The Pilot can now react to the events received from the
DrinkingBehaviour and translate those into new control calculations for the
FlyingBehaviour FSM.

9.5 Some Challenges

There are so many things you can do with behavioural states, messages, and
events that it’s impossible to even imagine them. If you’re looking for some
interesting challenges that you’d like to implement against what we have so
far, why not try:

• Implement a WeatherBehaviour Actor that randomly alters its state
and beats on the Plane a bit.

– For example, you could provide the Altimeter and HeadingIndi-
cator with the ability to receive “offset” messages.

– If the wind is blowing on the right side of the Plane, then you
could set a -10 degree offset on the HeadingIndicator.

– Varying the intensity of the wind will vary the offset.

– The FlyingBehaviour should easily compensate for this small
amount of offset naturally.

• Create a WayPoint Actor that distributes waypoints as time ticks by to
anyone who wants to listen.

– You can configure the waypoints in the Akka configuration sys-
tem.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=255

Section 9.6 Chapter 9 · Being Stateful 256

– The FlyingBehaviour Actor would certainly want to listen to this
and you could implement a CourseChange message that it could
use to alter the FlightData’s target member.

– The Pilot and CoPilot can also listen to this. If the CoPilot
watches, and it has access to the Heading and Altitude indica-
tors, then it has all the data it needs to wrestle control away from
the Pilot when he starts misbehaving.

9.6 Testing FSMs

Now that we have all this excellent stuff built, we should be able to test
it. Akka has provided us with the FSM analog to the TestActorRef called
TestFSMRef. The TestFSMRef gives us access to the internals of the FSM
and allows us to poke and prod its state and data. For example, if we define
the helper function to create FlyingBehaviours:

def fsm(plane: ActorRef = nilActor,

heading: ActorRef = nilActor,

altimeter: ActorRef = nilActor) = {

TestFSMRef(new FlyingBehaviour(plane, heading, altimeter))

}

Then we can test the FlyingBehaviour with some simple test functions.
For example, we can assert that the initially constructed state is correct with:

"FlyingBehaviour" should {

"start in the Idle state and with Uninitialized data" in {

val a = fsm()

a.stateName must be (Idle)

a.stateData must be (Uninitialized)

}

}

And by being able to inspect the internal data, as well as the state, we
can assert that the PreparingToFly behaviour works with the following:

"PreparingToFly state" should {

"stay in PreparingToFly state when only a HeadingUpdate is received" in {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=256

Section 9.6 Chapter 9 · Being Stateful 257

val a = fsm()

a ! Fly(target)

a ! HeadingUpdate(20)

a.stateName must be (PreparingToFly)

val sd = a.stateData.asInstanceOf[FlightData]

sd.status.altitude must be (-1)

sd.status.heading must be (20)

}

"move to Flying state when all parts are received" in {

val a = fsm()

a ! Fly(target)

a ! HeadingUpdate(20)

a ! AltitudeUpdate(20)

a ! Controls(testActor)

a.stateName must be (Flying)

val sd = a.stateData.asInstanceOf[FlightData]

sd.controls must be (testActor)

sd.status.altitude must be (20)

sd.status.heading must be (20)

}

}

And we can ensure that the state transition from PreparingToFly to Fly-
ing creates the “Adjustment” timer with:

"transitioning to Flying state" should {

"create the Adjustment timer" in {

val a = fsm()

a.setState(PreparingToFly)

a.setState(Flying)

a.timerActive_?("Adjustment") must be (true)

}

}

Testing FSMs is made much simpler by including the TestFSMRef. We
can inspect the internals just to ensure that the data and states are correct
when we need them to be without having to subclass, or put in spies, or any
other mechanism you might have to do otherwise.

Yeah, these guys know what they’re doing.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=257

Section 9.7 Chapter 9 · Being Stateful 258

9.7 Testing the Pilot

We won’t go too crazy here because you’ve met a lot of the TestKit up to this
point, but there’s an interesting couple of helper functions that you might
want to be acquainted with. When we transition into the tipsy behaviour, for
example, we send a couple of messages to the FlyingBehaviour in order to
change the elevator calculation and the bank calculation.

It’s rather brittle to test these in such a way that we assume an ordering. It
would be better to ensure that we test so that we receive them all independent
of their order. TestKit provides two mechanisms for this and we can use both
in different ways.2

"Pilot.becomeZaphod" should {

"send new zaphodCalcElevator and zaphodCalcAilerons to FlyingBehaviour" in {

val (ref, _) = makePilot()

ref ! FeelingLikeZaphod

expectMsgAllOf(NewElevatorCalculator(Pilot.zaphodCalcElevator),

NewBankCalculator(Pilot.zaphodCalcAilerons))

}

}

The expectMsgAllOf() will ensure that all of the given messages are re-
ceived and matched. This is a tad limiting though, depending on your needs.
If you want the equivalent of expectMsgPF(), which allows you to run a
partial function across the match, then we can use expectMsgAllClassOf()
with a subsequent match.

"Pilot.becomeTipsy" should {

"send new tipsyCalcElevator and tipsyCalcAilerons to FlyingBehaviour" in {

val (ref, _) = makePilot()

ref ! FeelingTipsy

expectMsgAllClassOf(classOf[NewElevatorCalculator],

classOf[NewBankCalculator]) foreach { m =>

m match {

case NewElevatorCalculator(f) =>

f must be (Pilot.tipsyCalcElevator)

2There are, in fact, many variations of these as there are many variations of the others,
but they’re variations that you can investigate on your own. The ScalaDoc is quite good.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=258

Section 9.8 Chapter 9 · Being Stateful 259

case NewBankCalculator(f) =>

f must be (Pilot.tipsyCalcAilerons)

}

}

}

}

The expectMsgAll*() clan returns a sequence of the matched mes-
sages. You can then perform further assertions on these matches as we have
above.

Just another tool to stick in your testing tool chest.

9.8 Chapter Summary

You should be feeling fairly awesome right about now. We’ve covered a
lot of cool functionality in this chapter that will allow you to express your
stateful systems with an elegance that isn’t easily achieved through the mech-
anisms we’ve been given in the past. Massive chains of if statements and
complex state data variables are not generally present in Akka’s stateful Ac-
tor applications.

You can now wield:

• The state facilities of the ActorContext through become() and unbecome()

• The Finite State Machine, its state definitions, its transitions, timers,
and handlers

• The FSM’s testing facilities

On top of that you’ve also picked up some necessary skills aimed at ap-
propriate behavioural decomposition by breaking behaviour out into separate
Actors, as we did with the Pilot, DrinkingBehaviour, and FlyingBehaviour.
The messages that travel between your decomposed functionality tie them
back together in powerful and flexible ways.

This chapter has also reminded you about the power of immutability. The
FlyingBehaviour FSM has been implemented as a stateful object, where all
of the state-specific data is carried in a single, immutable object of its own.
We can pass this through, filter it, and transform it as necessary.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=259

Section 9.8 Chapter 9 · Being Stateful 260

We also covered a very important topic that faces many non-blocking,
concurrent programmers: the multi-state algorithm with non-determinacy.
We wanted to get the Plane ready to fly by collecting information from var-
ious sources, without having to block the application while we waited. This
was done through a stateful transition as each piece was received in a com-
pletely non-blocking manner, without having to care about the order of the
incoming data.

One thing that should become even more clear at this point is the power
of the untyped Actor. All of the bits and pieces we have in the system can
now send any type of messages to each other. One of the places this really
shines is in testing. We can easily substitute the testActor for any of the
components that our System Under Test (SUT) needs. In production, we can
easily do the same thing.

You’ve also picked up more tools that help you implement Actor code,
such as passing data to behavioural functions during the become() call and
using the unhandled() message handler.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=260

Chapter 10

Routing Messages

Remember that whole “strongly typed messages” and "untyped endpoints"
stuff from a while back? Well, here’s another reason why that’s just awe-
some: routing. Akka’s routing feature lets you alter a message’s path from
sender to receiver. Rather than horrifically shoving irrelevant message-handling
behaviour into the sender and receiver, we can put that general handling logic
into an intermediary.

10.1 Routers Are Not Actors

If Routers were implemented using Actors, with the full Dispatcher/Mailbox/Queue
family of players, then you might expect that Routers would be bottlenecks
to performance. Well, you don’t need to worry about that. The methods of
the Router are invoked and routed entirely on the calling thread. This means
that the Router’s implementation needs to be specially designed for concur-
rency, since those methods will not be running all safe and warm inside the
Actor’s message receiver.

10.2 Akka’s Standard Routers

Akka provides a set of standard routers that implement routing patterns that
frequently show up in those everyday problems. The nice thing about Routers
is that, generally speaking, you can swap them for different implementations
whenever you want. The loosely typed endpoints, and the beauty of the mes-
sage handlers at the receiving end, make this a piece of cake.

Let’s look at what Akka provides for you out of the box.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=261

Section 10.2 Chapter 10 · Routing Messages 262

RoundRobinRouter

The RoundRobinRouter sends messages to the Actors for which it fronts in
a round-robin fashion. Figure 10.1 depicts this particular router.

Sender
Round
Robin
Router

Actor 1

Actor 2

Actor 3

Actor 4

Message 1 and 5

Message 2 and 6

Message 3

Message 4

Message 1
Message 2
Message 3
Message 4
Message 5
Message 6

Figure 10.1 · Messages are routed to the composed Actors in a round-robin
fashion.

Not much is surprising about the RoundRobinRouter. Here are some
places in which you might want to use it:

• You want some concurrency beyond what a single instance of the
working Actor would give you.

• All of the work that the Actors might be doing is fairly static. No
incoming message requires more work than any other incoming mes-
sage.

• Each instance of the Actor that lives under the Router is no different
than any other.

Obviously, since message distribution will be deterministic around the
ring of composed Actors, you have to be ready for the situation where a sin-
gle Actor could be bogged down with work. This would happen when certain

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=262

Section 10.2 Chapter 10 · Routing Messages 263

messages take longer to process than others and bad luck would dictate that
those longer-to-process messages always go to the same poor guy.

SmallestMailboxRouter

When it comes to load balancing, this is one of the niftiest ones. When a
message comes into the Router, it decides to route the message to the com-
posed Actor whose Mailbox is the smallest. There are further details to how
it makes that choice, but for our purposes the obvious notion is perfectly
reasonable. You should consult the documentation that ships with Akka if
you’re interested. Check Figure 10.2 to get a picture of it.

Sender
Smallest
Mailbox
Router

Actor 1

Actor 2

Actor 3

Actor 4

Message 1
Message 1

Msg
Msg
Msg

Msg
Msg

Msg

Msg
Msg

Msg

Msg

Mailbox

Mailbox

Mailbox

Mailbox

Figure 10.2 · In this case, the SmallestMailboxRouter will choose Actor 3 as
the recipient of Message 1, since its Mailbox is clearly the smallest.

The SmallestMailboxRouter is a pretty good choice when it comes to
balancing load among your composed Actors. The Mailbox size is generally
a good indicator of how heavily loaded the Actor is, from a practical per-
spective. You should note that if the composed Actor is actually remotely
deployed to another node, there’s no way for the SmallestMailboxRouter to
actually understand its Mailbox size. So, in these situations it might not be

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=263

Section 10.2 Chapter 10 · Routing Messages 264

the ideal choice of Router, but that clearly depends on the situation in which
you find yourself.

Configuring a Router

The configurations are specified in the akka.actor.deployment block. Be-
low is a simple configuration of a RoundRobinRouter, which would appear
in your application.conf file:

akka {

actor {

deployment {

/DatabaseConnectionRouter {

router = "round-robin"

nr-of-instances = 20

}

}

}

}

Clearly, this Router is intended to be used for Database connections.
Assuming you have an Actor that communicates with a Database, you can
now increase the parallel access to that Database using this Router. We would
invoke it in code like this:

import akka.routing.FromConfig

class DBConnection extends Actor { ... }

val dbRouter = system.actorOf(Props[DBConnection].withRouter(FromConfig(),

"DatabaseConnectionRouter"), "DBRouter")

The dbRouter will be an instance of a RoundRobinRouter that will rep-
resent the database connection, and it will also be the parent of 20 instances
of the DBConnection Actor. Assuming the DBConnection Actor and the
Database can handle it, this will improve throughput. However, what’s the
sweet spot? Is it 20 Actors? Is it 10, or 40? It’s hard to tell, and this is where
the tuning comes in. The configuration aspect of Routers allows other people
to help tune your application.

We’ll be coming back to configuration again as we explore more about
Routers. You choose whether or not to use configuration for your Routers;

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=264

Section 10.3 Chapter 10 · Routing Messages 265

you just need to be aware that if you choose to leave configuration out of your
application, then it will be entirely up to you and your other programmers to
tune your application and deliver a new build in order to effect those changes.

10.3 Routers and Children

Routers route to routees. You can create those routees dynamically by the
Router, or you can assign them to it from an already created set. These two
different methods of assigning routees have an impact on the relationship
and supervision of those routees.

Letting the Router Create the Routees

There are some advantages to having the Router create the routees:

1. The Router handles the Supervision. You don’t need to set up another
(possibly parallel) hierarchy simply to give the routees a “home” and
a supervisor.

2. It works well with configuration. If you want to allow the specification
of nr-of-instances in the configuration file, then the Router can
create those instances.

There are also some disadvantages:

1. You’ll have a difficult time constructing anything but a single type of
Actor. The Router uses the Props(...) object you supply as a factory
for creating Actor instances. As such, it’s quite difficult to have it cre-
ate different types of instances using that sole factory method. Indeed,
attempting to do otherwise is probably just a bad idea altogether; the
trickery you might have to employ would just make your code difficult
to understand.

2. You can’t name them the way you might like. You don’t have control
over the second parameter to the actorOf() call, so you’re stuck with
whatever name the Router automatically generates.

If the disadvantages outweigh the advantages for you in a particular sce-
nario, then you might want to opt for the other method of routee assignment,
which allows you to specify the pre-created Actors.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=265

Section 10.3 Chapter 10 · Routing Messages 266

Passing the Router Pre-Created Actors

The alternate assignment method has advantages that directly address the
disadvantages of the previous method:

1. You have full control over creating the Actors, which allows you to
specify anything from a different construction parameter value all the
way up to entirely different Actor types.

2. Supervision is much more flexible. Your Actors need not be the chil-
dren of any single parent, but each can have its own unique parent (or
anything in between), allowing customized supervision strategies.

3. You can name the Actors whatever you like. If naming is an important
consideration, then this method gives you that control.

And, of course, there are disadvantages as well:

1. You have to have parents for them. This is the yin to the advantage’s
yang. You have the power to assign whatever parentage you’d like,
but you also have to assign that parentage. The same can be said for
supervision.

2. It’s not as flexible from a configuration perspective. If the Router can’t
create, then it has less power to do things on your behalf. This becomes
more important when we recognize that Routers can dynamically re-
size their Actor pool, which we’ll learn about soon.

Each method has its advantages and disadvantages and you’ll need to
pick the one that works best for your situation. Don’t discount the power
and flexibility of a configured Router, however. If you can, try to go with a
configured Router, as it keeps the door open for possibilities you may not be
able to anticipate.

The Router and Its Children’s Life Cycles

When the Router creates the routees, they are its children, which means that
the Router must manage their life cycles. By default, the Router will assign a
supervisorStrategy that always escalates the decision to its parent. We’ve
learned that this can have a fairly drastic effect, in so much as the escalation

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=266

Section 10.4 Chapter 10 · Routing Messages 267

will result in the strategy being applied at the level of the Router, instead of
the single child. This means that a strategy of Stop, for example, will Stop
the entire hierarchy, not just the Actor that threw the exception.

This may be just fine for your situation, but if it’s not, you’ll need to
specify the strategy yourself, something like this:

val dbRouter = system.actorOf(Props.empty.withRouter(RoundRobinRouter(

nrOfInstances = 5,

supervisorStrategy = OneForOneStrategy {

// define your Decider here

}), "DBRouter")

If you’d rather use the standard default strategy, then you can assign that
easily enough:

val dbRouter = system.actorOf(Props.empty.withRouter(RoundRobinRouter(

nrOfInstances = 5,

supervisorStrategy = SupervisorStrategy.defaultStrategy

), "DBRouter")

10.4 Routers on a Plane

It’s time we put the Router to some use.1 A BroadcastRouter would make
the perfect component for allowing the passengers to receive important in-
formation, such as “Fasten Seat Belts,” don’t you think? Let’s build that into
the Plane now, but first we’ll need some passengers.

To do this, I created a bunch of passenger names using The Random
Name Generator2 and stuck them in the configuration file src/main/resources/application.conf.
Feel free to use any names you’d like. . . you know, friends, relatives, loved
ones, arch enemies, any personal nemesis you might have, whatever.

zzz.akka.avionics {

passengers = [

["Kelly Franqui", "01", "A"],

1It’s times like this that I really wish the Akka team came up with a component called
“Snake,” but in lieu of that, “Router” will have to do.

2http://www.kleimo.com/random/name.cfm

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=267

Section 10.4 Chapter 10 · Routing Messages 268

["Tyrone Dotts", "02", "B"],

["Malinda Class", "03", "C"],

["Kenya Jolicoeur", "04", "A"],

["Christian Piche", "10", "B"],

["Neva Delapena", "11", "C"],

["Alana Berrier", "12", "A"],

["Malinda Heister", "13", "B"],

["Carlene Heiney", "14", "C"],

["Erik Dannenberg", "15", "A"],

["Jamie Karlin", "20", "B"],

["Julianne Schroth", "21", "C"],

["Elinor Boris", "22", "A"],

["Louisa Mikels", "30", "B"],

["Jessie Pillar", "31", "C"],

["Darcy Goudreau", "32", "A"],

["Harriett Isenhour", "33", "B"],

["Odessa Maury", "34", "C"],

["Malinda Hiett", "40", "A"],

["Darcy Syed", "41", "B"],

["Julio Dismukes", "42", "C"],

["Jessie Altschuler", "43", "A"],

["Tyrone Ericsson", "44", "B"],

["Mallory Dedrick", "50", "C"],

["Javier Broder", "51", "A"],

["Alejandra Fritzler", "52", "B"],

["Rae Mcaleer", "53", "C"]

]

}

Given this, we can now build our Passenger Actor. As always, we’ll start
with our companion object that defines some public messages.

object Passenger {

// These are notifications that tell the Passenger

// to fasten or unfasten their seat belts

case object FastenSeatbelts

case object UnfastenSeatbelts

// Regular expression to extract Name-Row-Seat tuple

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=268

Section 10.4 Chapter 10 · Routing Messages 269

val SeatAssignment = """([\w\s_]+)-(\d+)-([A-Z])""".r

}

To ease our testing, we’ll add two traits that we can use to modify our
dependencies during testing.

// The DrinkRequestProbability trait defines some

// thresholds that we can modify in tests to

// speed things up.

trait DrinkRequestProbability {

// Limits the decision on whether the passenger

// actually asks for a drink

val askThreshold = 0.9f

// The minimum time between drink requests

val requestMin = 20.minutes

// Some portion of this (0 to 100 // to requestMin

val requestUpper = 30.minutes

// Gives us a 'random' time within the previous

// two bounds

def randomishTime(): Duration = {

requestMin + scala.util.Random.nextInt(

requestUpper.toMillis.toInt).millis

}

}

// The idea behind the PassengerProvider is old news at this point.

// We can use it in other classes to give us the ability to slide

// in different Actor types to ease testing.

trait PassengerProvider {

def newPassenger(callButton: ActorRef): Actor =

new Passenger(callButton) with DrinkRequestProbability

}

And now that we have the above, we can define the Passenger Actor.

class Passenger(callButton: ActorRef) extends Actor

with ActorLogging {

this: DrinkRequestProbability =>

import Passenger._

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=269

Section 10.4 Chapter 10 · Routing Messages 270

import FlightAttendant.{GetDrink, Drink}

import scala.collection.JavaConverters._

// We'll be adding some randomness to our Passenger,

// and this shortcut will make things a little more

// readable.

val r = scala.util.Random

// It's about time that someone actually asked for a

// drink since our Flight Attendants have been coded

// to serve them up

case object CallForDrink

// The name of the Passenger can't have spaces in it,

// since that's not a valid character in the URI

// spec. We know the name will have underscores in

// place of spaces, and we'll convert those back

// here.

val SeatAssignment(myname, _, _) =

self.path.name.replaceAllLiterally("_", " ")

// We'll be pulling some drink names from the

// configuration file as well

val drinks = context.system.settings.config.getStringList(

"zzz.akka.avionics.drinks").asScala.toIndexedSeq

// A shortcut for the scheduler to make things look

// nicer later

val scheduler = context.system.scheduler

// We've just sat down, so it's time to get a drink

override def preStart() {

self ! CallForDrink

}

// This method will decide whether or not we actually

// want to get a drink using some randomness to

// decide

def maybeSendDrinkRequest(): Unit = {

if (r.nextFloat() > askThreshold) {

val drinkname = drinks(r.nextInt(drinks.length))

callButton ! GetDrink(drinkname)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=270

Section 10.4 Chapter 10 · Routing Messages 271

}

scheduler.scheduleOnce(randomishTime(), self, CallForDrink)

}

// Standard message handler

def receive = {

case CallForDrink =>

maybeSendDrinkRequest()

case Drink(drinkname) =>

log.info("{} received a {} - Yum", myname, drinkname)

case FastenSeatbelts =>

log.info("{} fastening seatbelt", myname)

case UnfastenSeatbelts =>

log.info("{} UNfastening seatbelt", myname)

}

}

Note that we’ve included another bit of configuration in this class; we’ve
pulled in a collection of drinks. This configuration’s definition is not shown
for two simple reasons: 1) it would take up space in the book, and 2) you
have more than enough skill to know exactly what it looks like anyway, so
there’s no point in showing it.

Also note that we’re not really doing anything when we get the Drink,
FastenSeatbelts, and UnfastenSeatbelts messages, other than logging some-
thing at info level. There are two reasons we’re doing this as well: 1) it’s
easy to do this and there’s no value in doing anything more difficult for illus-
tration purposes and 2) we get to play with the Event Stream in a test.

We’ve also included a construction parameter in the Passenger: the callButton.
We’ll supply an ActorRef to this parameter that the Passenger can use to re-
quests drinks.

Testing and the Event Stream

We haven’t really covered too much of the Event Stream at this point, be-
cause we’re waiting until we cover the EventBus, so it qualifies as “new.”
Interestingly, the Logger publishes to the Event Stream, which means that
it’s not entirely useless to us at a programmatic level. Normally when you
“log” something (or, heaven forbid, println() something), it’s useless to
you at a programmatic level. Well, because the Logger is merely publishing

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=271

Section 10.4 Chapter 10 · Routing Messages 272

events to the Event Stream, and because the Event Stream is so awesome, we
can use it in a test.

We’ll test that the Passenger actually fastens his seat belt when the “Fas-
ten Seat Belt” light comes on. We’ll do this using two facilities that we
haven’t yet seen: a TestProbe and the ActorSystem’s Event Stream. Here’s
the test from the Passenger test spec:

trait TestDrinkRequestProbability extends DrinkRequestProbability {

override val askThreshold = 0f

override val requestMin = 0.milliseconds

override val requestUpper = 2.milliseconds

}

class PassengersSpec extends TestKit(ActorSystem())

with ImplicitSender {

import akka.event.Logging.Info

import akka.testkit.TestProbe

var seatNumber = 9

def newPassenger(): ActorRef = {

seatNumber += 1

system.actorOf(Props(new Passenger(testActor)

with TestDrinkRequestProbability),

s"Pat_Metheny-$seatNumber-B")

}

"Passengers" should {

"fasten seatbelts when asked" in {

val a = newPassenger()

val p = TestProbe()

system.eventStream.subscribe(p.ref, classOf[Info])

a ! FastenSeatbelts

p.expectMsgPF() {

case Info(_, _, m) =>

m.toString must include ("fastening seatbelt")

}

}

}

}

We’ve used a TestProbe instead of the ImplicitSender and testActor

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=272

Section 10.4 Chapter 10 · Routing Messages 273

that are present in our constructed tests. At times, you may need to isolate
the messages that are coming into your test. For example, we’ve passed the
testActor in for the callButton parameter in the Passenger. If the Passen-
ger sends a GetDrink message to the callButton, then a bare expectMsg()
call will see it, which makes our test difficult to verify. By using carefully
placed TestProbes, we can isolate these messages from each other, making
the tests easier to verify.

We use this TestProbe when we subscribe to the ActorSystem’s Event
Stream, as follows:

system.eventStream.subscribe(p.ref, classOf[Info])

This says that we want the TestProbe’s ActorRef (p.ref) to be the handle
to the subscribed Actor, and that we want it to receive events that match the
class akka.event.Logger.Info. We can then use the TestProbe’s expectMsgPF()
method to help us assess whether or not the Passenger did indeed fasten his
seat belt.

p.expectMsgPF() {

case Info(_, _, m) =>

m.toString must include ("fastening seatbelt")

}

Pretty nifty, no?

The Passenger Router

Now that we can create some Passengers, we can stick a BroadcastRouter in
front of them. What creation strategy do you think we’ll need for this? Well,
based on the pros and cons we talked about earlier, and the fact that we’ve
gone to so much trouble to name our passengers, then we’ll probably need
to go with the pre-creation route.

This will be more interesting than you might have originally thought. We
need to create a Supervisor for our Passengers, which will supervise them in
whatever way we see fit, and then allow a BroadcastRouter to be created that
will then route to them as routees.

But there’s a catch: you’ll need to wrestle the non-determinism of asyn-
chronous programming to the ground. You see, the problem is that creating

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=273

Section 10.4 Chapter 10 · Routing Messages 274

the Supervisor and its children will be asynchronous. You can’t give a col-
lection of routees to a BroadcastRouter until you have a coherent collection
of routees, and that can’t happen until the asynchronous creation of those
children is complete. Got it? OK, maybe not yet, but you will soon.

object PassengerSupervisor {

// Allows someone to request the BroadcastRouter

case object GetPassengerBroadcaster

// Returns the BroadcastRouter to the requestor

case class PassengerBroadcaster(broadcaster: ActorRef)

// Factory method for easy construction

def apply(callButton: ActorRef) = new PassengerSupervisor(callButton)

with PassengerProvider

}

You can see from the companion object that the PassengerSupervisor
will allow others to retrieve the BroadcastRouter. It will only return it once
it can coherently construct it. Actually doing so and handling all of the
concurrency is tricky, given the skills that we have thus far.

Figure 10.3 shows what we’re going to construct. We’ll have differ-
ent supervision strategies for the PassengerSupervisor components and full
construction will be integrated with the asynchronous nature of the Isolated-
StopSupervisor’s construction.

class PassengerSupervisor(callButton: ActorRef) extends Actor {

this: PassengerProvider =>

import PassengerSupervisor._

// We'll resume our immediate children instead of restarting them

// on an Exception

override val supervisorStrategy = OneForOneStrategy() {

case _: ActorKilledException => Escalate

case _: ActorInitializationException => Escalate

case _ => Resume

}

// Internal messages we use to communicate between this Actor

// and its subordinate IsolatedStopSupervisor

case class GetChildren(forSomeone: ActorRef)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=274

Section 10.4 Chapter 10 · Routing Messages 275

Passenger
Supervisor

Stop
Supervisor

Passenger Passenger

Broadcast
Router

References

References

Figure 10.3 · The PassengerSupervisor’s structure houses an IsolatedStopSu-
pervisor to manage its Passengers and uses the default supervision strategy
for its immediate children. The BroadcastRouter will be created after the
IsolatedStopSupervisor is completely instantiated.

case class Children(children: Iterable[ActorRef], childrenFor: ActorRef)

// We use preStart() to create our IsolatedStopSupervisor

override def preStart() {

context.actorOf(Props(new Actor {

val config = context.system.settings.config

override val supervisorStrategy = OneForOneStrategy() {

case _: ActorKilledException => Escalate

case _: ActorInitializationException => Escalate

case _ => Stop

}

override def preStart() {

import scala.collection.JavaConverters._

import com.typesafe.config.ConfigList

// Get our passenger names from the configuration

val passengers = config.getList("zzz.akka.avionics.passengers")

// Iterate through them to create the passenger children

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=275

Section 10.4 Chapter 10 · Routing Messages 276

passengers.asScala.foreach { nameWithSeat =>

val id = nameWithSeat.asInstanceOf[ConfigList].unwrapped(

).asScala.mkString("-").replaceAllLiterally(" ", "_")

// Convert spaces to underscores to comply with URI standard

context.actorOf(Props(newPassenger(callButton)), id)

}

}

// Override the IsolatedStopSupervisor's receive

// method so that our parent can ask us for our

// created children

override def receive = {

case GetChildren(forSomeone: ActorRef) =>

sender ! Children(context.children, forSomeone)

}

}), "PassengersSupervisor")

}

... receive method to be defined ...

}

Much of this should be pretty familiar by now, but let’s go through it
quickly just to shore up the edges of our understanding:

• We specify a supervisorStrategy that resumes when immediate
children fail.

• We create an anonymous internal child Actor to serve as the Supervi-
sor of our Passengers. This Supervisor institutes a Stop strategy. We’ll
be happy to let our Passengers stay dead when they die.

• We’ll let the Supervisor simply sit on the sidelines and do its job of
supervising the children. We want to access those children in order to
create a BroadcastRouter in front of them. As such, we’ve created a
message handler that will return those children when requested.

The important bit that we have yet to see is the message handler inside
the PassengerSupervisor itself. It’s this handler that processes messages from
the outside world, so it’s the one in which we’re most interested.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=276

Section 10.4 Chapter 10 · Routing Messages 277

// TODO: This noRouter method could be made simpler by using a Future.

// We'll have to refactor this later.

def noRouter: Receive = {

case GetPassengerBroadcaster =>

context.actorFor("PassengersSupervisor") ! GetChildren(sender)

case Children(passengers, destinedFor) =>

val router = context.actorOf(Props().withRouter(

BroadcastRouter(passengers.toSeq)), "Passengers")

destinedFor ! PassengerBroadcaster(router)

context.become(withRouter(router))

}

def withRouter(router: ActorRef): Receive = {

case GetPassengerBroadcaster =>

sender ! PassengerBroadcaster(router)

}

def receive = noRouter

(Ignore the TODO for the moment; you’ll get the full picture as to why it’s
there very soon.)

You can see that we’ve broken up our message handler into two separate
states. We start out in the state where we have no BroadcastRouter (i.e.,
the noRouter state). In this state, we accept the GetPassengerBroadcaster
message, which starts a dance between itself, the internal supervisor, and the
outside world. Figure 10.4 shows what we’re going to implement.

We’re doing this in a non-blocking, asynchronous manner. It’s certainly
possible to do this in a blocking manner as well, which is simpler, but far
less instructive. The power of Akka programming is that it allows us to code
safely and coherently without blocking.

When the outside world asks for the BroadcastRouter, the PassengerSu-
pervisor doesn’t yet have it. It also doesn’t have direct access to the Stop
Supervisor’s children, so it can’t just grab them and return them; it needs to
ask for them. We also need to ensure that the original requester (the Outside
World) is retained during this algorithm’s execution.

All of the data we need is passed in the messages. Imagine how cumber-
some it would be if we were to store the ActorRef for the Outside World as
a var in the PassengerSupervisor. It’s much easier to toss this information
inside the messages.

Now, back to that TODO we left behind earlier. I said that we don’t yet

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=277

Section 10.4 Chapter 10 · Routing Messages 278

Passenger
Supervisor

Stop
Supervisor

Passenger Passenger

Broadcast
Router

(4)
 C

rea
te

Outside
Actor

(1) GetPassengerBroadcaster

(2) GetChildren(3) Children

(5) PassengerBroadcaster

Children Iterable

Figure 10.4 · The non-blocking, asynchronous algorithm we use to obtain
the BroadcastRouter of the children of the PassengerSupervisor’s embedded
Stop Supervisor.

possess the skill to remedy the TODO and that’s quite true, since the proper
solution relies on the use of Futures. This would make it clear where the
communication’s request/response nature goes.

Using the Passenger Router

We’ll illustrate how to use the BroadcastRouter using a test. Let’s examine
the entire test file:

package zzz.akka.avionics

import akka.actor.{ActorSystem, Actor, ActorRef, Props}

import akka.testkit.{TestKit, ImplicitSender}

import scala.concurrent.util.duration._

import com.typesafe.config.ConfigFactory

import org.scalatest.{WordSpec, BeforeAndAfterAll}

import org.scalatest.matchers.MustMatchers

// A specialized configuration we'll inject into the

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=278

Section 10.4 Chapter 10 · Routing Messages 279

// ActorSystem so we have a known quantity we can test with

object PassengerSupervisorSpec {

val config = ConfigFactory.parseString("""

zzz.akka.avionics.passengers = [

["Kelly Franqui", "23", "A"],

["Tyrone Dotts", "23", "B"],

["Malinda Class", "23", "C"],

["Kenya Jolicoeur", "24", "A"],

["Christian Piche", "24", "B"]

]

""")

}

// We don't want to work with "real" passengers. This mock

// passenger will be much easier to verify things with

trait TestPassengerProvider extends PassengerProvider {

override def newPassenger(callButton: ActorRef): Actor =

new Actor {

def receive = {

case m => callButton ! m

}

}

}

// The Test class injects the configuration into the

// ActorSystem

class PassengerSupervisorSpec

extends TestKit(ActorSystem("PassengerSupervisorSpec",

PassengerSupervisorSpec.config))

with ImplicitSender

with WordSpec

with BeforeAndAfterAll

with MustMatchers {

import PassengerSupervisor._

// Clean up the system when all the tests are done

override def afterAll() {

system.shutdown()

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=279

Section 10.5 Chapter 10 · Routing Messages 280

"PassengerSupervisor" should {

"work" in {

// Get our SUT

val a = system.actorOf(Props(new PassengerSupervisor(testActor)

with TestPassengerProvider))

// Grab the BroadcastRouter

a ! GetPassengerBroadcaster

val broadcaster = expectMsgPF() {

case PassengerBroadcaster(b) =>

// Exercise the BroadcastRouter

b ! "Hithere"

// All 5 passengers should say "Hithere"

expectMsg("Hithere")

expectMsg("Hithere")

expectMsg("Hithere")

expectMsg("Hithere")

expectMsg("Hithere")

// And then nothing else!

expectNoMsg(100.milliseconds)

// Return the BroadcastRouter

b

}

// Ensure that the cache works

a ! GetPassengerBroadcaster

expectMsg(PassengerBroadcaster(`broadcaster`))

}

}

}

Technically speaking, this isn’t much of a unit test since it tests a lot of
stuff and has a fair number of moving parts, but it definitely gets the job
done.

10.5 Magically Appearing Flight Attendants

The LeadFlightAttendant is really nothing more than a homegrown Random-
Router, so why not reimplement it as such? While we’re at it, we’ll simplify
it and forgo the FlightAttendant names; just let the RandomRouter assign

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=280

Section 10.5 Chapter 10 · Routing Messages 281

them on its own. Further, let’s create the Router in configuration rather than
entirely in code. Let’s start with the configuration:

akka.actor.deployment {

/Plane/LeadFlightAttendant {

router = "random"

resizer {

lower-bound = 4

upper-bound = 10

}

}

}

The resizer section is new. Here’s another neat aspect of Routers: the
pool of Actors that it manages can grow as required! The resizer section
above starts with only four FlightAttendants, but will grow that pool to have
as many as ten, if required.

We can now modify the Plane to use this new Router configuration.

def startPeople() {

// Use the Router as defined in the configuration file

// under the name "LeadFlightAttendant"

val leadAttendant =

actorOf(Props(newFlightAttendant).withRouter(FromConfig()),

"LeadFlightAttendant")

val people =

actorOf(Props(new IsolatedStopSupervisor

with OneForOneStrategyFactory {

def childStarter() {

context.actorOf(Props(PassengerSupervisor(leadAttendant)),

"Passengers")

// ... as before

}

}

}

Here, we’ve wired the PassengerSupervisor’s callButton parameter up
to the LeadFlightAttendant, which we’ve created from the configuration file

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=281

Section 10.6 Chapter 10 · Routing Messages 282

that declares it to be a RandomRouter, which will resize itself from a mini-
mum of four FlightAttendants to a maximum of ten.

10.6 Sectioning off Flight Attendant Territory

What if the Flight Attendants had specific areas of the Plane in which they
were supposed to work? In other words, the Flight Attendant in charge of
rows 1-10 isn’t supposed to handle rows 21-30.

To handle this type of routing, we can create a custom Router in code.
The Router will statically allocate several FlightAttendants and then route
based on the row number contained in the incoming sender’s sender.path.name
attribute.

package zzz.akka.avionics

import akka.actor.{Props, SupervisorStrategy}

import akka.routing.{RouterConfig, RouteeProvider, Route, Destination}

import akka.dispatch.Dispatchers

class SectionSpecificAttendantRouter extends RouterConfig {

this: FlightAttendantProvider =>

// The RouterConfig requires us to fill out these two

// fields We know what the supervisorStrategy is but we're

// only slightly aware of the Dispatcher, which we will be

// meeting in detail later

def routerDispatcher: String = Dispatchers.DefaultDispatcherId

def supervisorStrategy: SupervisorStrategy =

SupervisorStrategy.defaultStrategy

// The createRoute method is what invokes the decision

// making code. We instantiate the Actors we need and then

// create the routing code

def createRoute(routeeProps: Props,

routeeProvider: RouteeProvider): Route = {

// Create 5 flight attendants

val attendants = (1 to 5) map { n =>

routeeProvider.context.actorOf(Props(newFlightAttendant),

"Attendant-" + n)

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=282

Section 10.6 Chapter 10 · Routing Messages 283

// Register them with the provider - This is important.

// If you forget to do this, nobody's really going to

// tell you about it :)

routeeProvider.registerRoutees(attendants)

// Now the partial function that calculates the route.

// We are going to route based on the name of the

// incoming sender. Of course, you would cache this or

// do something slicker.

{

case (sender, message) =>

val Passenger.SeatAssignment(_, row, _) = sender.path.name

List(Destination(sender,

attendants(math.floor(row.toInt / 11).toInt)))

}

}

}

Above is the definition of our new SectionSpecificAttendantRouter. You
should ignore all of the hard-coded numbers if they make you squeamish—
neither of us would do such horrific things in the real world.

The goal of our new Router is to produce an instance of Route, which is
defined as:

PartialFunction[(ActorRef, Any), Iterable[Destination]]

And the Destination is defined as:

case class Destination(sender: ActorRef, recipient: ActorRef)

You might note from the code, and from the definitions above, that the
createRoute() method can actually return a host of sender/recipient pairs
in the Iterable of Destinations, so while the world is essentially your oyster
here, we keep it simple.

Testing the SectionSpecificAttendantRouter

It turns out that a custom Router is more difficult to test than you’d think.
Based on what we’ve written in the SectionSpecificAttendantRouter, it would
be nice if we could simply test the resulting PartialFunction from the createRoute()

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=283

Section 10.6 Chapter 10 · Routing Messages 284

method directly, but in order to do that we’d have to construct a RouteeP-
rovider, which is non-trivial. So, we opt for testing the custom Router outside
of the “unit” realm and go for a full integration test.

package zzz.akka.avionics

import akka.actor.{Props, ActorSystem, Actor, ActorRef}

import akka.testkit.{TestKit, ImplicitSender, ExtractRoute}

import akka.routing.RouterConfig

import org.scalatest.{WordSpec, BeforeAndAfterAll}

import org.scalatest.matchers.MustMatchers

// This will be the Routee, which will be put in place

// instead of the FlightAttendant

class TestRoutee extends Actor {

def receive = {

case m => sender ! m

}

}

// The RouterRelay will tie the Router to the testActor so

// that we can see what's going on and verify it.

// Essentially, this will be our Passenger

class RouterRelay extends Actor {

def receive = {

case _ =>

}

}

class SectionSpecificAttendantRouterSpec

extends TestKit(ActorSystem("SectionSpecificAttendantRouterSpec"))

with ImplicitSender

with WordSpec

with BeforeAndAfterAll

with MustMatchers {

override def afterAll() {

system.shutdown()

}

// A simple method to create a new

// SectionSpecificAttendantRouter with the overridden

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=284

Section 10.6 Chapter 10 · Routing Messages 285

// FlightAttendantProvider that instantiates a TestRoutee

def newRouter(): RouterConfig = new SectionSpecificAttendantRouter

with FlightAttendantProvider {

override def newFlightAttendant() = new TestRoutee

}

def relayWithRow(row: Int) =

system.actorOf(Props[RouterRelay], s"Someone-$row-C")

val passengers = (1 to 25).map(relayWithRow)

"SectionSpecificAttendantRouter" should {

"route consistently" in {

val router = system.actorOf(Props[TestRoutee].withRouter(newRouter()))

val route = ExtractRoute(router)

val routeA = passengers.slice(0, 10).map { p => route(p, "Hi") }.flatten

routeA.tail.forall { _.recipient == routeA.head.recipient } must be (true)

val routeAB = passengers.slice(9, 11).map { p => route(p, "Hi") }.flatten

routeAB.head must not be (routeAB.tail.head)

val routeB = passengers.slice(10, 20).map { p => route(p, "Hi") }.flatten

routeB.tail.forall { _.recipient == routeB.head.recipient } must be (true)

}

}

}

You can see that we’ve set up a lot of plumbing to test this thing out,
and just to make what we’ve done clear you can see the resulting layout in
Figure 10.5.

The idea behind the test is to strategically create a few passengers (mocked
out with the Relay Actor) and have them send messages to the SectionSpec-
ificAttendantRouter. The logic we wrote in the createRoute() method
will then get invoked and the messages will route to the flight attendants
(mocked out with the TestRoutee). The TestRoutee will then echo those
messages back to their senders (i.e., the specific Relay in question) and the
Relay will send the sender’s ActorRef (i.e., the TestRoutee’s ActorRef) to the
testActor. Once the test function has collected the three ActorRefs from
the Relays, it can verify that they are what they should be.

// This will be the Routee, which will be put in place

// instead of the FlightAttendant

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=285

Section 10.6 Chapter 10 · Routing Messages 286

Section
Specific

Attendant
Router

Test
Routee (a)

Test
Routee (b)

Test
Routee (c)

Test
Routee (d)

Test
Routee (e)

Relay 1

Relay 10

Relay 15

testActor

(Step 1) Hi

(Step 1) Hi

(Step 1) Hi

(S
te

p 2
) (

Relay 1, "H
i")

(S
tep

 2)
 (R

elay 1
0, "H

i")

(Step 2) (Relay 15, "Hi")

(Step 3) Test Routee (a) ActorRef
(Step 3) Test Route (a) ActorRef

(Step 4) Test Routee (a) ActorRef

(Step 4) Test Routee (a) ActorRef

(Step 3) Test Routee (b) ActorRef

(Step 4) Test Routee(b) ActorRef

Figure 10.5 · In this layout for the SectionSpecificAttendantRouter test, the
mocked pieces and messages are geared toward getting enough information
into the testActor so we can verify what we expect to route where.

class TestRoutee extends Actor {

def receive = {

case m => sender ! m

}

}

// The RouterRelay will tie the Router to the testActor so

// that we can see what's going on and verify it.

// Essentially, this will be our Passenger

class RouterRelay extends Actor {

def receive = {

case _ =>

}

}

class SectionSpecificAttendantRouterSpec

extends TestKit(ActorSystem("SectionSpecificAttendantRouterSpec"))

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=286

Section 10.6 Chapter 10 · Routing Messages 287

with ImplicitSender

with WordSpec

with BeforeAndAfterAll

with MustMatchers {

override def afterAll() {

system.shutdown()

}

// A simple method to create a new

// SectionSpecificAttendantRouter with the overridden

// FlightAttendantProvider that instantiates a TestRoutee

def newRouter(): RouterConfig = new SectionSpecificAttendantRouter

with FlightAttendantProvider {

override def newFlightAttendant() = new TestRoutee

}

def relayWithRow(row: Int) =

system.actorOf(Props[RouterRelay], s"Someone-$row-C")

val passengers = (1 to 25).map(relayWithRow)

"SectionSpecificAttendantRouter" should {

"route consistently" in {

val router = system.actorOf(Props[TestRoutee].withRouter(newRouter()))

val route = ExtractRoute(router)

val routeA = passengers.slice(0, 10).map { p => route(p, "Hi") }.flatten

routeA.tail.forall { _.recipient == routeA.head.recipient } must be (true)

val routeAB = passengers.slice(9, 11).map { p => route(p, "Hi") }.flatten

routeAB.head must not be (routeAB.tail.head)

val routeB = passengers.slice(10, 20).map { p => route(p, "Hi") }.flatten

routeB.tail.forall { _.recipient == routeB.head.recipient } must be (true)

}

}

}

So the messages from both the first and second Relay should have gone
to the same TestRoutee, and the message from the third Relay should have
gone to a different TestRoutee than the first and second message.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=287

Section 10.7 Chapter 10 · Routing Messages 288

10.7 More You Can Do with Routers

Routers have many more possibilities, which you’ll start to recognize as we
explore more of what Akka has to offer. Here are some to consider:

• When we get into remote Actors, you can immediately see the poten-
tial of the ScatterGatherFirstCompletedRouter, as well as implement-
ing some rudimentary load balancing across machines, or even some
fault-tolerance.

• The business logic possibilities are pretty huge. Imagine an evolving
protocol, where the messages contain the version of the protocol. As
things evolve, you can put in a Router or even a family of cascading
Routers that find the right version of the business logic to handle that
protocol level. This helps eliminate the hideousness that often accom-
panies maintaining backward-compatibility in our code as protocols
change.

• The Akka documentation’s example of a custom Router involves the
counting of Votes for the Republican or Democratic party, respec-
tively. You can grow this solution while incorporating the same ideas
behind the protocol versioning earlier, and simply segment your appli-
cation in any manner you see fit. It’s a clear win for isolating parts of
your application logic from each other.

• You can also create a configurable Router, which we could have done
with the SectionSpecificAttendantRouterSpec, but didn’t. You follow
the same kind of pattern, but you have to have a constructor that ac-
cepts the com.typesafe.config.Config object, which allows it to
be dynamically configured. Consult the Akka documentation on Rout-
ing for more information.

• You can even code up your own configurable Resizers as well!

10.8 Chapter Summary

Remember a long time ago when I said that you’d be glad to leave the warmth
of the type system behind in favour of the untyped Actor? Well, routing is a
huge win for making that concession. Nice choice you made there.

You’ve gained more understanding about:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=288

Section 10.8 Chapter 10 · Routing Messages 289

• Akka’s Routing concepts and methodology and how easy it is to use
Akka’s pre-defined Routers, both from the configuration system and
from code.

• How to structure your application so as to divorce you, the program-
mer, from the administrators (which may also be you) with respect to
tuning your application’s performance.

• How to write your apps so that you can make some pretty drastic
changes to it “in the field” without requiring a rebuild and reship. Em-
powering the customer to be the master of his or her own destiny is a
very good and powerful thing.

• How to create your own Routers and you have some ideas as to why
you might want to do that.

• The foundational aspects of Actor programming; you’ve seen more
testing concepts and the power of substitutability when it comes to the
untyped ActorRef. These concepts, and the acrobatics we can now
perform when structuring our Actor applications, is absolutely vital to
powerful Actor programming.

• The TestProbe and how Akka logs using the ActorSystem’s Event
Stream.

You’re really starting to get a deep understanding of how the Akka pro-
gramming paradigm works and you should have a lot of confidence right
now. In fact, I would recommend that you take that high level of confidence
and put it to good use; if you’re not married or otherwise attached, head out
to your local singles bar and pick up. Everyone’s attracted to confidence at
this insane level!

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=289

Chapter 11

Dispatchers and Mailboxes

We’re getting ready to put Actors aside for the moment and move on to some
of Akka’s other features, but before we do that we need to learn a little bit
about what keeps Akka ticking.

Way back in Chapter 5, we discussed the Dispatcher and the Mailbox
without going too deeply into what they are, what purpose they really serve,
and what control you have over them. This chapter will help bring closure to
our understanding of Actors while, at the same time bridge us over into the
next topic of Futures. We’ll also reference Routing, where we describe the
“missing” Router.

11.1 Dispatchers

Up until now, we haven’t really cared how our code was executed, so long as
it worked. While you don’t really have to understand how Akka does what
it does, since the defaults work so well, it can certainly help you tune your
application’s execution to run ever so sweetly.

In case you hadn’t figured it out yet, the job of actually executing the
code you write, managing the threads, and all of that goodness is handled
by the Dispatcher. The Dispatcher hides all (well, most) of the complexity
from you, so that you can go about your business of writing code. You
can tune the Dispatcher in a few different ways as well as supply different
Dispatchers for different parts of your system. Let’s review the Dispatchers
that Akka provides.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=290

Section 11.1 Chapter 11 · Dispatchers and Mailboxes 291

The Dispatcher

The main Dispatcher, which is also the default Dispatcher, is simply called
Dispatcher. It might become unclear as to when we’re describing the con-
cept Dispatcher, and the concrete default implementation Dispatcher. As
such, I’ll adopt a new name for the latter; we’ll refer to the concrete default
implementation as the Event-Based Dispatcher, and the concept will simply
be Dispatcher.

There’s a reason that the Event-Based Dispatcher is the default: it’s awe-
some. It’s generic, can work with any type of Actor and any type of Mailbox,
and defaults to using the JSR166 Fork-Join Pool. This together means ulti-
mate flexibility and blazing speed.1 The Event-Based Dispatcher allows you
a great level of freedom when writing your concurrent code. As long as you
keep your message handlers short and sweet, the Event-Based Dispatcher
will treat you very well.

PinnedDispatcher

There are times when you might want to deviate from the default. For ex-
ample, you don’t want to share your threads with 10,000,000 other Actors.
Maybe you require an Actor to always be first in the queue for thread time,
or you want to ensure that it will simply never starve for CPU attention. This
is why the PinnedDispatcher was created; any Actor that you assign to the
PinnedDispatcher will have a dedicated thread pool of size 1. That Actor
will be the only Actor assigned to that thread pool and is therefore guaran-
teed thread time on that pool.

The PinnedDispatcher is good for solving the problems previously stated,
but it makes an absolutely horrific default. If you have 10,000,000 Ac-
tors, you can’t possibly use a PinnedDispatcher since you can’t allocate
10,000,000 dedicated threads. Even if the JVM would let you do this be-
fore it tossed its cookies all over your motherboard, you’d spend more of
your time context switching than doing anything else.

So, use these with care. The average program shouldn’t need to house
more than half a dozen Actors on a PinnedDispatcher. If you have a situation
where you’re doing more than that, either rethink your solution, rework your

1We won’t quote numbers in this book. Benchmarking is a black art, dripping with
Voodoo and rubber chickens. It’s fast, but if you want to really quantify it, grab some rubber
chickens and go hog-wild.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=291

Section 11.1 Chapter 11 · Dispatchers and Mailboxes 292

problem, or if you really have a legitimate case, please toss me an email; I’d
love to hear about it.

BalancingDispatcher

This one was “missing” when we talked about routing back in Chapter 10.
What came close was the SmallestMailboxRouter, which would find the Ac-
tor in its pool that had the smallest Mailbox and insert the message into that
Mailbox. But it couldn’t “steal” work from one Actor and give it to another
Actor that happens to be idle.

Actor

Event-Based
Dispatcher

Message
Message
Message

Mailbox

Actor
Message
Message
Message

Mailbox

Actor
Message
Message
Message

Mailbox

Figure 11.1 · The conceptual view of the Event-Based Dispatcher with re-
spect to its Actors and the Mailboxes that contain their messages

The BalancingDispatcher fills this need. However, it can only do so be-
cause it is far more limiting than the previous two Dispatchers with respect
to the Actors with which it can work. Whereas the Event-Based Dispatcher
looks something like Figure 11.1, the BalancingDispatcher looks more like
Figure 11.2. The fact that Akka decouples the Mailbox from the Actor and
the Dispatcher means that no “stealing” needs to happen. Since only one
Mailbox is shared between all of the Actors to which the BalancingDis-
patcher will dispatch, the BalancingDispatcher can pick any one it wishes
without disturbing the others.

However, as you probably have already guessed, the Actors that the Bal-
ancingDispatcher feeds need to have the same Actor implementation. Truth-

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=292

Section 11.1 Chapter 11 · Dispatchers and Mailboxes 293

Actor

Balancing
Dispatcher Actor

Message
Message
Message

Mailbox

Actor

Figure 11.2 · The conceptual view of the BalancingDispatcher with respect
to its Actors and the Mailbox that contains the messages for all of them

fully, nothing’s stopping you from having different implementations for each
Actor, but in practice you wouldn’t do this. From your code’s perspective,
the BalancingDispatcher simply sends messages to one of your Actors at ran-
dom. You can’t guarantee which implementation will be chosen at any given
time, so you’d simply make all of them identical to remove the complexity
of the perceived randomness.

It shouldn’t come as a surprise that a BalancingDispatcher’s job isn’t
“intelligent” routing of messages; that is more suited to a Router.

CallingThreadDispatcher

The last Dispatcher that ships with Akka is almost something we shouldn’t
even mention. . . really. OK, I’ll mentioned it, but for Ra’s sake don’t use it.
The CallingThreadDispatcher was created to write deterministic tests and is,
in fact, the dispatcher you use when you create an instance of the TestFSM-
Ref, as we saw in Chapter 9. This Dispatcher has no concurrency; it relies
on the calling thread for execution. This means that your tests don’t have
to worry about concurrency, which is great, but if you used it in production
code, you wouldn’t have concurrency.

I’ve spoken with some who think they could be “clever” in using this
Dispatcher in production code to serialize this, that, or the other thing for

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=293

Section 11.2 Chapter 11 · Dispatchers and Mailboxes 294

some reason or another. Don’t. Once you start taking a system that is de-
signed to be concurrent across multiple threads, and then start synchronizing
that across one thread, you’re going to open yourself up to a world of pain
and Akka isn’t going to be there to help you. If you need to synchronize
work across a number of algorithms, then Akka’s got you covered. Use mes-
sages to sequence work, use Futures (to be seen soon), Dataflow (to be seen
soon), etc. . . This is what Akka does! Don’t try to get it to do what it already
does in ways it’s not intended to do it.

11.2 Dispatcher Tweaking

The Dispatcher has many of its parameters defined in the configuration sys-
tem, which means you can tweak it. Actually anyone can tweak it in the
running system, allowing people other than you to tune your application for
performance. That’s nice.

We won’t go through all of the configuration options available to Dis-
patchers and their underlying thread choices—you can find that in the fan-
tastic Akka reference documentation—but we will look at some of the key
concepts. Let’s make a fictitious Dispatcher in configuration to look at the
possibilities.

zzz.akka.investigation {

"a-dispatcher" is the name with which we refer to it

a-dispatcher {

You could also use BalancingDispatcher, PinnedDispatcher or

your own derivation of MessageDispatcherConfigurator.

type = "Dispatcher"

You could also use thread-pool-executor

executor = "fork-join-executor"

By increasing this value, you can maximize thread usage, at

the cost of fairness.

throughput = 10

Since we've chosen the executor to be a fork-join-executor, we

need to configure it here

fork-join-executor {

The minimum number of threads to have

parallelism-min = 2

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=294

Section 11.2 Chapter 11 · Dispatchers and Mailboxes 295

The scaling factor for calculating the number of threads to

allocate based on the hardware capabilities. The formula

used is "ceil(number of processors * parallelism-factor)"

parallelism-factor = 2.0

The maximum number of threads to allocate

parallelism-max = 32

}

}

}

As stated, that’s not everything that you can do with a Dispatcher con-
figuration, but it hits some highlights. One of the most important properties
in the Dispatcher configuration is throughput. When the Dispatcher grabs
a thread and starts dispatching work on that thread, we can specify several
messages that it can process before moving on. As the comment states above,
you can maximize thread usage at the cost of “fairness.”

Actor 1

Event-Based
Dispatcher

Message
… 50 more ...

Message

Mailbox

Actor 2
Message

… 1,000 more ...

Message

Mailbox

Actor 3
Message

… 2 more ...
Message

Mailbox

Figure 11.3 · By changing the throughput value in the Dispatcher configu-
ration, we can alter how quickly these Mailboxes will drain.

In Figure 11.3, you can see that the sizes of the Mailboxes are different
between Actors 1, 2, and 3. If we set the value of throughput to 1, then
Actor 3’s Mailbox will clearly drain before either Actor 1 or 2’s Mailbox.
However, if we set the value of throughput to 100, then Actor 1’s Mailbox

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=295

Section 11.3 Chapter 11 · Dispatchers and Mailboxes 296

may completely drain before Actor 3’s, assuming that Actor 1’s Mailbox gets
thread time before Actor 3’s.

That’s the essence of the throughput property. It tells Akka to waste
less time switching between Mailboxes and more time dispatching work
from each Mailbox individually. However, this is less “fair” with respect
to getting thread time per Mailbox. From the example in Figure 11.3, we can
see that Actor 3 is potentially treated unfairly, since its tiny Mailbox can’t
get thread time until we’ve completely drained Actor 1.

Setting a high value for throughput will increase the raw speed of mes-
sage processing in some cases, but may also manifest certain latencies and
create the feeling of “burstiness” from time to time, where work visibly gets
done in chunks, with time gaps in between. If those aren’t factors, then you
may want to set throughput higher than you would otherwise.

Modifying the Default Dispatcher Configuration

The reference.conf that ships with the Akka Actor package holds the con-
figuration for the default Dispatcher. You can always change the values of
the default Dispatcher by overriding the configuration yourself. For example,
if you wanted to change the value of throughput for the default Dispatcher,
then you would put the following into your application.conf:

akka.actor.default-dispatcher.throughput = 20

You can do this for any parameter that you see for any configuration that
you see. This doesn’t merely apply to Dispatchers.

11.3 Mailboxes

Mailboxes are another one of those things we’ve been using for a long time,
but haven’t talked about much. They don’t have a ton of complexity, but they
do offer another component of which you can configure, modify, and even
create your own implementation.

As we’ve seen, the Mailbox contains messages that have yet to process.
The message that goes into the Mailbox is wrapped in an envelope that car-
ries the sender along with it. The sender comes from when the message
dispatches to your Actor.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=296

Section 11.3 Chapter 11 · Dispatchers and Mailboxes 297

In essence, the Mailbox is just a queue, or more accurately it has a queue,
but the distinction here is of little value. Akka allows you to change the
nature of the Mailbox in the Dispatcher’s configuration. As with the Dis-
patcher, there are several pre-existing implementations from which you can
choose.

UnboundedMailbox

This is the default. It’s backed by a java.util.concurrent.ConcurrentLinkedQueue,
does not block during the enqueue operation, and is not bounded by size.
This is the default Mailbox and should serve you very well. The only time it
should really be a problem is when it grows without bound and eats up all of
your memory.

However, if you have a situation where the UnboundedMailbox fills up
and causes an OutOfMemory Exception, then what you’re probably seeing
is a symptom of a problem, not the root cause and thus the fix lies elsewhere.

BoundedMailbox

The BoundedMailbox is an alternative to the UnboundedMailbox in that it
can only contain a maximum number of messages. When the Mailbox is
full, the next enqueue operation will block the calling thread for a specified
period of time (defaults are in the configuration, which you can override).

This helps solve the OutOfMemory Exception problem, but it introduces
another problem: false errors. Essentially, you can characterize the problem
with the question, “What maximum size should I allow for the Mailbox?”

That’s a tough question to answer most of the time. Perhaps situations
exist where the Actor relies on a service that is slow for a few minutes. This
may cause the Actor’s Mailbox to fill up, and thus throw an error at someone
eventually. But what happens when, two seconds after the error is thrown,
the service speeds up again and drains the Mailbox very quickly? In most
cases, that error is more of a pain than anything else.

You might want to have a BoundedMailbox when you have time limits
elsewhere in the application; the idea being that the message is of no value
if you can’t enqueue it in the next 5 seconds. In that case, you’d want the
error even though 500 milliseconds from now it could have worked, because
it would still be too late if it had worked.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=297

Section 11.3 Chapter 11 · Dispatchers and Mailboxes 298

UnboundedPriorityMailbox and BoundedPriorityMailbox

The UnboundedPriorityMailbox and BoundedPriorityMailbox are “priority
queue” versions of the previous two. When you create one of these, you
specify how Akka should prioritize different messages and they will route
properly to the Actor.

To create the logic that maps message types to priority levels, we use the
PriorityGenerator, which gives a convenient method for this definition:

package zzz.akka.investigation

import akka.dispatch.PriorityGenerator

case class HighPriority(work: String)

case class LowPriority(work: String)

val = myPrioComparator PriorityGenerator {

// Lower numbers mean higher priority

case HighPriority(_) => 0

case LowPriority(_) => 2

// Default to "medium" priority

case otherwise => 1

}

As you can see, the lower the number, the higher the priority. However,
just specifying the PriorityGenerator isn’t enough. We need to create a class
that holds the value created from the PriorityGenerator, so that we can spec-
ify it in the Dispatcher configuration.

package zzz.akka.investigation

import akka.actor.ActorSystem

import com.typesafe.config.Config

import akka.dispatch.UnboundedPriorityMailbox

class MyPriorityMailbox(settings: ActorSystem.Settings, config: Config)

extends UnboundedPriorityMailbox(myPrioComparator)

And now we can specify the Mailbox in the Dispatcher configuration:

zzz.akka.investigation {
my-priority-dispatcher {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=298

Section 11.3 Chapter 11 · Dispatchers and Mailboxes 299

executor = "fork-join-executor"
type = Dispatcher
mailbox-type = "zzz.akka.investigation.MyPriorityMailbox"

}
}

And that’s all there is to it. When you assign an Actor’s Dispatcher to
zzz.akka.investigation.my-priority-dispatcher, it will create the
MyPriorityMailbox under the covers and you’re good to go.

Creating Your Own Mailbox

You can actually create your own Mailbox as well, which gives you an im-
mense amount of control over how you want to handle your message queu-
ing. We could come up with a toy example here, but there’s more value in
a real world application of this. Unfortunately, it’s much too involved to go
into detail here, but we can talk about the idea and show how it’s hooked up.

You could say that the BoundedMailbox has a problem in that it’s almost
a blocking brick wall. At some point, you may find that enqueuing a mes-
sage takes two nanoseconds, and then immediately following that, it takes 10
seconds before it times out and throws an Exception. What if you wanted to
slow clients down instead of letting them run at full speed until the moment
of death when you slam them in the face with an Exception?

The concept is embodied in the notion of a PressureQueue.2 You can find
the code for it at https://github.com/derekwyatt/PressureQueue-Concept.
It’s a bit rough, but the idea seems to work out OK.

The idea is that it takes longer to enqueue a message as the queue size
increases. The size increases because the consumer of the queue’s elements
can’t process them as quickly as the clients that are enqueuing the data. The
consumer would be made happier if the clients would just slow down, so that
it can do its work without having to force an Exception on them.

Let’s say your database experiences a heavy load for a few minutes. If
the queue continues to accept data at an astronomical rate, this could create
a backlog of database activity that won’t reach a state of stability for hours

2I remember seeing a presentation that illustrated this concept a few years ago, but I can’t
remember what it was called or even who made it, so I can’t give credit to the idea. After
much searching, I’ve come up with nothing, so I can’t give credit where it’s due. Whoever
you are, my apologies.

https://github.com/derekwyatt/PressureQueue-Concept
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=299

Section 11.3 Chapter 11 · Dispatchers and Mailboxes 300

Message

Message
...

Message
Message
Message
Message
Message

ActorActor

"Put" lock takes
400ms to release

"Take" lock releases
immediately

Pressure Queue

Figure 11.4 · A simple diagram of the PressureQueue: The Actor holds the
“put” lock as long as the pressure algorithm demands. This length of time is
a factor of the current queue size. The “take” lock releases immediately so
that the queue’s consumer can empty it as quickly as possible.

(I’ve seen it happen). That’s a high price to pay for what is, essentially, only
a few minutes of real pain. If the queue that accepts the work simply slows
everyone down, and that slowdown is gracefully propagated back through
the chain as far as it needs to be, then the period of high load will smooth out
instead of creating an enormous spike of death.

Configuring the New Mailbox

Let’s say you have this PressureQueue. How do you stick it inside a Mailbox
implementation so that Akka can instantiate it inside a Dispatcher? It’s really
pretty simple actually, and we can show it in a short amount of code:

package zzz.akka.investigation

import akka.actor.{ActorContext, ActorSystem}

import akka.dispatch.{Envelope, MessageQueue, MailboxType,

QueueBasedMessageQueue,

UnboundedMessageQueueSemantics}

import com.typesafe.config.Config

// Our magical PressureQueue

import zzz.akka.investigation.PressureQueue

class PressureMailbox extends MailboxType {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=300

Section 11.4 Chapter 11 · Dispatchers and Mailboxes 301

// This constructor signature must exist, it will be

// called by Akka

def this(settings: ActorSystem.Settings, config: Config) = this()

// The create method is called to create the MessageQueue

final override def create(owner: Option[ActorContext]): MessageQueue =

new QueueBasedMessageQueue with UnboundedMessageQueueSemantics {

// Construct the PressureQueue such that the pressure

// algorithm kicks in after the queue reaches size 10,

// and the algorithm we use calculates the wait time

// using the squared size of the queue resolved the

// milliseconds

final val queue = new PressureQueue[Envelope](10,

PressureQueue.SQUARED_MILLISECONDS)

}

}

Note that the element type that the PressureQueue holds is an Envelope.
The Envelope contains your message and the sender, as described earlier.

And there you have it. We’ve created an entirely new type of Mailbox
that behaves differently than any other Mailbox that Akka currently ships
with and it really isn’t all that hard. It’s Unbounded and it has the block-
ing semantics that we’ve coded up. Used strategically, this could smooth
out those load spikes we may get due to bottlenecks that exist in whatever
components with which we have to work.

11.4 When to Choose a Dispatching Method

There’s no hard-and-fast rule about which dispatching method you should
choose for any particular problem, but there are some basic themes that might
point you in the right direction:

Low Latency You should use the PinnedDispatcher when you have some
requirements for low-latency in isolated parts of your app. For ex-
ample, if you’ve put a maintenance probe into your app as an HTTP
server, then you might want to pin that Actor to a dedicated PinnedDis-
patcher. This would ensure that you’re not fighting to use a common
event-based thread when performing some critical maintenance. How-
ever, you certainly can’t put everything on a PinnedDispatcher, since

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=301

Section 11.5 Chapter 11 · Dispatchers and Mailboxes 302

that would negate the whole idea of what Akka is helping you achieve.
Keep the number very small here.

A “Bulk-Heading” Dispatcher You can use Dispatchers (generally, an Event-
Based Dispatcher) for isolating different sections of your app from
other sections. This is most common when you’re stuck using syn-
chronous I/O in your app. Just as you would isolate the synchronous
I/O to a separate thread pool from your CPU work, you can dedicate
a Dispatcher for the same purpose. This will keep things responsive
throughout your app, and it also gives you some external tuning of the
I/O work vs. the CPU work via the configuration file.

Number Crunching When you have a bunch of pure CPU work to do, you
want to keep your Actors as busy as possible, and this is where you
want to employ the BalancingDispatcher.

Message Durability A feature of Akka’s Actors that we don’t discuss in
this book is where the messages in an Actor’s queue are backed by a
durable message store. If you have an Actor that uses this feature, then
you will want to isolate it from Actors that don’t have a durable mes-
sage store. The reason for this is the same reason for the I/O separation
mentioned earlier.

11.5 Chapter Summary

Well, that was a long time coming. We’ve been working with the Dispatcher
and the Mailbox since we thought about our first piece of Actor code, but
never had a decent understanding of what they really were until now. Hope-
fully, all of the previous groundwork that we laid down made this chapter
easier to consume.

There are some key takeaways here:

• The Dispatcher is the heart of the execution system in Akka. It’s where
your threads are and its what decides when and how things execute.

• You can configure the Dispatcher or change it entirely. That throughput
property is pretty important, so play with it and see what you get.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=302

Section 11.5 Chapter 11 · Dispatchers and Mailboxes 303

• The BalancingDispatcher helps you get that “work stealing” load bal-
ancer in your application if you need it. This will save you from having
to figure out how to balance things on your own.

• The Mailbox’s role should now be pretty clear; the fact that it is de-
coupled from your Actor and the Dispatcher allows you to specify
whatever you’d like.

• You can swap out all of the things we’ve seen for your own brilliant
ideas. If you have a requirement that simply isn’t met by what Akka
currently provides, it’s not at all difficult to slide your own implemen-
tations in place.

Above all, remember that the provided defaults are extremely good. You
shouldn’t find yourself trying to modify things all that often and if you do,
ask yourself why. The answer to that question had better be pretty darn good!

Remember that the path to many pink slips is paved with the intentions
of programmers to increase performance. Don’t get too clever too quickly.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=303

Chapter 12

Coding in the Future

We’ve come to the second great axis of Akka’s concurrency paradigm, the
Future. Futures have been around for a while now, but you’ve probably
never seen them like this. These are Futures on steroids; tiger steroids, laced
with the blood of Superman, dripping with the testosterone of Batman, and
infused with the power of Green Lantern’s Ring. If you’re not ready to have
your brain set on fire, close this book, curl up in the fetal position, and sing
Twinkle, Twinkle Little Star softly to yourself until you’re good to go.

The Future and the Actor share a certain number of similarities as well
as differences, but they are also designed to work together very well. In this
chapter, we’ll see these similarities and differences as well as explore some
patterns for tying the two components together.

12.1 What Is the Future?

One goal of the original Future design was geared toward bridging the gap
between synchronous and asynchronous code. Legacy synchronous code
that was forced to work with newer asynchronous APIs immediately had a
problem: How do you get a return value from a function call that won’t
return that value on the calling thread? Coders needed a way to have their
sequential code stay sequential in the face of an asynchronous function call,
and the Future turned out to be a decent general mechanism for making that
happen.

It’s not much more complicated than what you see in Figure 12.1. The
sequential code wraps an asynchronous call inside of a Future (or the API
call returns that Future), which allows the code to cross whatever threads it

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=304

Section 12.1 Chapter 12 · Coding in the Future 305

wishes. It then returns the value to the caller’s thread on which it is currently
blocked while waiting for the result. The call that does the blocking is usually
called get().

Future

def sequentially(someAPI: API) = {
 // do some work
 val result = Future {
 "Magic here"
 }.get()
 // do something with result
}

Back-end
System

Figure 12.1 · A simple depiction of using a Future to synchronize an asyn-
chronous API into pre-existing sequential code

Over the years, some enhancements have been made to create callbacks,
and more doo-dads here and there, but essentially the concept has remained
the same. The Future is a pocket of concurrency that executes independently
of the calling thread and ultimately represents the “return value” from that
code (which could obviously be void or Unit).

An Actor is a live object that can interact between itself and any num-
ber of other objects, functioning as long-lived message processors with po-
tentially changing state. The Future, on the other hand, is intended as a
one-shot, single-purpose entity that is only addressable by the chunk of code
waiting for the Future’s Promise, and the other chunk of code that fulfills
that Promise.

Akka Futures Are Composable and Functional

One of the latest concepts appearing in Futures1 has been the ability to com-
pose them within one another, which makes them much more functional.
This is where we see a lot of the power behind Akka’s Futures. Essentially,
they let you create pipelines of concurrent code that can weave into other
code with ease.

1Akka is not the first implementation to expose this type of feature set.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=305

Section 12.2 Chapter 12 · Coding in the Future 306

Futures Need an Execution Context

The Future doesn’t just happen all by itself; it needs somewhere to actually
execute, and that execution context is very much like the Dispatcher we met
in Chapter 11. In fact, if you happen to have a Dispatcher instance handy,
you can use it to execute a Future.

Listing 12.1 shows a bare-bones way to use a Future, outside of any
help from existing Dispatchers, ActorSystems, or Actors, so we can calculate
some Fibonacci numbers. It calculates the 100th Fibonacci number2 inside
of a Future, followed by a horrific thread-blocking wait and an assert.

The most important line of code for this example is. . .

val futureFib = Future { fibs.drop(99).head }(execContext)

. . . and do you know what’s ugly about that? The ExecutionContext,
that’s what.

We don’t want to pass that around all the time because that would be
annoying. Fortunately, the API is a bit slicker than that, and will accept an
implicit ExecutionContext, so we can change this to read:

val execService = Executors.newCachedThreadPool()

implicit val execContext =

ExecutionContext.fromExecutorService(execService)

val futureFib = Future { fibs.drop(99).head }

The fact that the ExecutionContext is implicit is fairly awesome be-
cause it means that, from a practical perspective, we never really need to
worry about it. Since Dispatchers are ExecutionContexts, we generally have
one in scope all of the time, but you can always specify one explicitly if you
need to, just like we have above.

12.2 Don’t Wait for the Future

You’ve seen a lot of calls to Await.result() so far in this book, and you’ll
probably see more, but you shouldn’t use them in anything but test code
because they’re evil. Await.result() does the same thing as the old get()
call on a Future—it blocks the calling thread.

20 is the first one, right?

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=306

Section 12.2 Chapter 12 · Coding in the Future 307

package zzz.akka.investigation

import org.scalatest.{WordSpec, BeforeAndAfterAll}

import org.scalatest.matchers.MustMatchers

class MultiExecContextSpec extends WordSpec with MustMatchers {

import scala.math.BigInt

lazy val fibs: Stream[BigInt] = BigInt(0) #:: BigInt(1) #::

fibs.zip(fibs.tail).map { n => n._1 + n._2 }

"Future" should {

"calculate fibonacci numbers" in {

import scala.concurrent.{ExecutionContext, Future, Await}

import scala.concurrent.util.duration._

import java.util.concurrent.Executors

// We need to create the ExecutionContext, which we can build from an

// existing ExecutorService from plain ol' java.util.concurrent

val execService = Executors.newCachedThreadPool()

val execContext = ExecutionContext.fromExecutorService(execService)

// We pass the ExecutionContext to the Future on which it will execute

val futureFib = Future { fibs.drop(99).head }(execContext)

// We then use the Await object's result() funtion to block the current

// thread until the result is available or 1 second has passed

val fib = Await.result(futureFib, 1.second)

// Just make sure it's cool

fib must be (BigInt("218922995834555169026"))

// Shut down the ExecutionContext or this thread will never die

execContext.shutdown()

}

}

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=307

Section 12.3 Chapter 12 · Coding in the Future 308

Akka provides so many ways for you to compose your functionality in-
side other Futures, as well as having other great concurrency constructs (such
as Actors), that you should never need to block a thread with anything but
someone else’s synchronous function call.

12.3 Promises and Futures

Technically speaking, the Future is only one half of a two-part relationship.
The two parts make up a conduit of sorts, where the requester holds the Fu-
ture and the servant holds the Promise; Figure 12.2 shows the directionality
of this relationship.

PromiseFuture

Ripples in the
Space / Time
Continuum

Requester
Servant

Figure 12.2 · Futures are fulfilled by a Promise, which is held by a servant
that gives the Future to the requester. This creates the conduit through which
the servant and requester communicate.

In terms of code, and ignoring the whole concurrency issue altogether,
we can see how this relationship works:

import scala.concurrent.Promise

// Create a Promise

val promise = Promise[String]()

// Get the associated Future from that Promise

val future = promise.future

// Successfully fulfill the Promise

promise.success("I always keep my promises!")

// Extract the value from the Future

println(future.value)

// Prints: Some(Right(I always keep my promises!))

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=308

Section 12.3 Chapter 12 · Coding in the Future 309

This code sample isn’t concerned with concurrency at all. We have a
single thread that creates a Promise, from which it extracts the Future, giving
it away to someone who wants it. At some point, the Promise is fulfilled and
the usual magic can now occur in the Future. Since we’re not concerned with
concurrency here, and we know that the Promise has been fulfilled, it’s pretty
easy to extract the resulting value directly.

It’s fairly rare for you to ever create Promises on your own, since these
are generally created for you without you even knowing about it. Still, it’s
useful to understand how it works, and certainly important to understand if
you ever need to create the Promise on your own.

Success and Failure

The resulting value in the Future is always an instance of Either. Indeed, we
can see from the previous code snippet that the result of a successful fulfill-
ment is a Right instance. This follows the convention of Either, where Right
is success and Left is failure (when Either is used to model such things).

Therefore, it’s not surprising that there are three main ways to complete
a Promise:

• success(result: T): As we’ve already seen, this completes the Promise
successfully.

• failure(exception: Throwable): The Throwable is the type used
to fail a Promise, which maps quite well into the code we generally
write.

• complete(value: Either[Throwable, T]): It shouldn’t be a big
shock to find out that the previous two mechanisms are merely sugar
for this more general method.

There is one other way to complete a Promise and that’s with another
Future. This is one of the things that lets us chain these asynchronous bits of
code together.

• completeWith(other: Future[T]): One of the ways to keep things
functional.

However, this is not a function you should use directly, under normal
circumstances. Akka uses it internally to combine Futures that are composed

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=309

Section 12.3 Chapter 12 · Coding in the Future 310

with the more usual functional methods. We only discuss it here because
you’ll see it when you’re looking at the API docs, and you should know that
it’s not something you’re expected to use directly.

That’s all we’ll cover on Promises, since you deal with them so rarely in
comparison to Futures. The Akka API documentation explains everything
else you might need in order to create and manipulate Promises, so don’t be
afraid to look at the Promise documentation when you need it.

Subtle Sequentialism

There’s something very important to understand when it comes using com-
binators to combine Futures with the for-comprehension sugar. The sequen-
tialism is pretty obvious when you see the following:

val result = Future {

5

} map { i => // has value 5

11

}

// 'i' is ignored, so the value of 'result' is Future(11)

. . . or . . .

val result = Future {

5

} flatMap { i => // has value 5

Future {

11

}

}

// 'i' is ignored, so the value of 'result' is Future(11)

The code in the call to flatMap doesn’t execute until the completion of
the Future on which it is called. Even though the second Future completely
ignores the return value of 5, it still runs after the 5 computes. Now let’s
rewrite the second version of the above code, using the much more pleasing
for-comprehension:

for {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=310

Section 12.3 Chapter 12 · Coding in the Future 311

i <- Future(5)

j <- Future(11)

} yield j

Here, the beauty of the for-comprehension sugar can work against us.
The for-comprehension hides all of that ugly nesting from us, making it look
like these are on the same level, but nesting is indeed happening here. What
might look concurrent, isn’t.

To get them to run concurrently, we need to pre-define them so that the
execution happens at the same level, but the binding of the results happens
inside the nested flatMap.

val fiveFuture = Future(5)

val elevenFuture = Future(11)

val result = for {

i <- fiveFuture

j <- elevenFuture

} yield j

Now the fiveFuture and the elevenFuture run concurrently. The for-
comprehension merely binds their return values together into a final Future
(which is, of course, what it always does), but because they are pre-created,
they can already be running. Effectively, we have this:

val result = fiveFuture.flatMap { i =>

elevenFuture map { j => j }

}

instead of:

val result = fiveFuture.flatMap { i =>

// Obviously won't be created until Future(5) is finished

Future(11) map { j => j }

}

The last thing to remember is that this can show up in very subtle ways.
For example, all we have to do is change the previous code to be defined as
defs instead of vals.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=311

Section 12.3 Chapter 12 · Coding in the Future 312

def fiveFuture = Future(5)

def elevenFuture = Future(11)

val result = for {

i <- fiveFuture

j <- elevenFuture

} yield j

Num Summer

FlatMapper

Main Thread

Time

Char Concat

Num Summer

FlatMapper

Char Concat

Main Thread

Time

val numSummer = Future { … }
val charConcat = Future { … }
for {
 numsum <- numSummer
 string <- charConcat
} yield (numsum, string)

for {
 numsum <- Future { … }
 string <- Future { … }
} yield (numsum, string)

Figure 12.3 · There’s a pretty clear difference between flatMapping pre-
existing Futures and creating them on the fly.

And now we’re back to sequential code. Again, keep your eyes open
when you’re writing this kind of code to make sure that you’re getting con-
currency where you need it. The difference should now be as clear as Fig-
ure 12.3.

Using filter

We left filter out of the usual map/flatMap/filter triad for a reason. . . it’s
weird. The most natural usage of filter is in collection-oriented program-
ming. Something like this is pretty ubiquitous:

val evens = (1 to 42) filter { _ % 2 == 0 }

// evens == Seq(2, 4, 6, 8, 10, ...)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=312

Section 12.3 Chapter 12 · Coding in the Future 313

Or even with something like Options, it’s pretty clear what should hap-
pen:

val number = Some(4)

// identity == Some(4)

val identity = number.filter { _ % 2 == 0 }

// none = None

val none = number.filter { _ % 3 == 0 }

Right? This makes sense because there’s something left when these filter
operations result in jack squat. If the predicate of the Option filter returns
false, then we can return None. If the predicate returns false for every
element of a collection, then we can return an empty collection.

But what about when the element contained is code? What is the result
of the contents of a Future on which a filter predicate evaluates to false?
What should the result be? With Option, it’s an instance of Option. With
Seq, it’s an instance of Seq. By contract, the result of filter() must be a
Future. But it can’t be the identity, since the result of predicate has returned
false; it has to be something else.

The only thing it can be is a failure. Failures are represented as excep-
tions that manifest when the Future is evaluated, so what we’ll see is:

// Nothing bad happens when we assign the Future to 'oops'

val oops = Future { 5 } filter { _ % 2 == 0 }

// It's when the value of the Future is realized where we

// have the problem

Await.result(oops, 1.second)

java.util.NoSuchElementException:

Future.filter predicate is not satisfied by: 5

Note that this is entirely different from filtering what the Future contains.
In this case, we’re filtering the Future, not its contents. For example, we
don’t use Future’s filter here:

val noOops = Future { 1 to 10 } map { seq =>

seq filter { _ % 2 == 0 }

}

Await.result(noOops, 1 second)

// evaluates to Vector(2, 4, 6, 8, 10)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=313

Section 12.3 Chapter 12 · Coding in the Future 314

In this case, we’re filtering the Future’s contents by mapping the Future
to transform its result using the filter on the value the Future contains.
That’s a totally different box of frogs.

So, the filter method’s purpose is to evaluate the Future’s result, and
either return that same Future or return an Exception. Got it? Good.

Using transform

The transform method offers another way to create Futures from Futures,
but it allows you to transform the successful result as well as the Throwable
at the same time. Assuming we have some cool function that retrieves some
String data from a given URL, we can try to transform the result into an Int,
and also provide a different Exception if things fail.

getRemoteString("http://somewhere/value.json").transform(

s => s.toInt,

t => new Exception("Couldn't get yer data: " + t))

The returned value from the transform call is a new Future that will re-
sult in either the transformed value or the transformed Exception, depending
on what ends up happening.

Handling Future Failures

Futures are encapsulated pockets of concurrency, and that always makes de-
tecting and processing failures interesting. The Future itself can’t just throw
an Exception; who would it throw it to? It’s running on some independent
thread somewhere, so the only person who can catch it is the guy who’s run-
ning it, and he has no clue what the Future’s real deal is. So throwing the
Exception is out of the question.

We’ve already seen that the ultimate value of a Future (i.e., the actual
value method on the Future) is an Option[Either[Throwable, T]], where
’T’ is the type returned by the code that the Future will execute. This defini-
tion prepares for any success or failure.

Several strategies deal with failures, starting with the obvious one:

val oops = Future(5) filter { _ % 2 == 0 }

val result = try {

Await.result(oops, 1.second)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=314

Section 12.3 Chapter 12 · Coding in the Future 315

} catch {

case e => 5

}

result must be (5)

That’s the good ol’ try/catch block, but it’s not of much use to us in
the real world because it requires the Future’s synchronous evaluation using
Await.result() and we don’t do that in the real world.

But Await.result() has shown us something interesting. Await.result()
is simply a blocking wrapper around the Future’s result() method. The
result()method returns an instance of type ’T’, not an Either[Throwable, T].
We know that the Future contains an Exception; the Exception was created
on another thread and stored as data in the Future for future extraction. The
only thing that result() can do is throw the Exception it holds, since it
clearly cannot return a value of type ’T’.

But using result() directly, isn’t really something we tend to do, which
means that the try/catch block is never really a good option. Instead, we
can use the Future’s functional nature to combine failure-handling code with
the Future itself. There are two ways to do this.

fallbackTo

The fallbackTo combinator lets us bind a secondary Future to the main
Future that will be substituted in the case of an Exception. It’s pretty simple:

val oops = Future(5) filter { _ % 2 == 0 } fallbackTo Future(5)

val result = Await.result(oops, 1.second)

result must be (5)

However, there are times when you either want more granularity on your
Exception handling, or you don’t need a full-fledged Future as your handler.

recover

The recover method lets you supply a partial function that handles possible
Exceptions and returns an immediate value instead of a Future value.

val oops = Future(5) filter { _ % 2 == 0 } recover {

case e: NoSuchElementException => 5

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=315

Section 12.3 Chapter 12 · Coding in the Future 316

}

val result = Await.result(oops, 1.second)

result must be (5)

Of course, if you fail to actually match and handle the Exception in the
recover block, you’ll still get an Exception when things finally evaluate:

val oops = Future(5) filter { _ % 2 == 0 } recover {

// This doesn't throw an ArithmeticException

case e: ArithmeticException => 5

}

// Test with an assertion

evaluating {

val result = Await.result(oops, 1.second)

} must produce[NoSuchElementException]

recoverWith

RecoverWith is a different beast, since it allows us to recover the failure
with a Future. It might not be immediately obvious how you can use it, but
it actually allows you to do a bit of speculative execution when you might
expect a failure.

For example, let’s say we have a cache server out there that can serve up
results to complicated questions really quickly, provided it’s not overloaded
with requests. There are times when the cache will time out, and the guy
asking the question will be out of luck. You want to give him an answer
regardless of the cache being available; you’re going for the speed of the
answer and nothing more. There’s nothing to stop you from trying a “long”
method and the cache method at the same time, and if the cache fails, then
you can return the computed value instead.

class CacheTimedOutException(msg: String) extends Exception(msg)

val longCalculation = Future {

// It takes a long time to calculate 5... really

5

}

val value = Future {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=316

Section 12.3 Chapter 12 · Coding in the Future 317

// Get the 5 from the cache, since it should be faster

// ...

// Except it's not

throw new CacheTimedOutException("That didn't work")

} recoverWith {

case _: CacheTimedOutException =>

longCalculation

}

Await.result(value, 1.second) must be (5)

The above code executes both the “long” calculation as well as the cache
retrieval simultaneously. All the resources on the machine are available, so
we don’t mind burning it up a bit, so long as we can get what we need. If
the cache retrieval fails, we still win because we prepared for it ahead of
time. The “long” calculation was kicked off before we even tried to get to
the cache.

Normally, speculative execution is performed in anticipation of slow re-
sponses – fire off the same calculation on 20 machines and the first one
back wins, much like the ScatterGatherFirstCompletedRouter. In this case,
we’re speculatively executing something as a back-stop to failure. In the end,
they’re the same concept applied to different situations.

Future.sequence

Do you remember way back to Chapter 4 when we described the complexity
involved with using Actors to multiply a whackload of matrices together?
The core of the problem revolved around the non-determinacy of responses
from Actors that were performing the multiplications. We had to remember
who got what in order to maintain the right order of the responses. In a word,
it’s icky.

Futures provide a much better solution to this problem. Multiplying the
matrices together isn’t all that big of a deal—you just gotta do the math—the
bookkeeping and maintenance of trying to parallelize the computation is the
real pain, and Futures have a free solution to it.

Let’s set the stage for multiplying matrices with a mock Matrix class that
multiplies things together and produces a resulting Some[Matrix] if things
work and a None if they don’t.3

3Matrix multiplication needs the dimensions of the two matrices to line up such that if

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=317

Section 12.3 Chapter 12 · Coding in the Future 318

First, our Matrix class:

case class Matrix(rows: Int, columns: Int) {

// "Multiply" the two matrices, ensuring that

// the dimensions line up

def mult(other: Matrix): Option[Matrix] = {

if (columns == other.rows) {

// multiply them...

Some(Matrix(rows, other.columns))

} else {

None

}

}

}

Next, we define a function that will multiply a sequence of matrices to-
gether using foldLeft:

def matrixMult(matrices: Seq[Matrix]): Option[Matrix] = {

matrices.tail.foldLeft(Option(matrices.head)) { (acc, m) =>

acc flatMap { a => a mult m }

}

}

Finally, we’ll create a bunch of matrices that we’ll multiply together:

// Generate some random indices

val randoms = (1 to 20000) map { _ =>

scala.util.Random.nextInt(500)

}

// Turn them into rows and columns in a way that

// ensures the dimensions all line up properly

val matrices = randoms zip randoms.tail map {

case (rows, columns) => Matrix(rows, columns)

}

the left side has dimensions m×n, then the right side must have n× p.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=318

Section 12.3 Chapter 12 · Coding in the Future 319

OK, the set up is finished. We have enough of a strawman in place that
we can start multiplying them together in parallel. Next, we need to break
up the matrices sequence into groups—groups of 500 should do. We’ll
then transform that sequence of groups into a sequence of Futures that are
performing the multiplications.

val futures = matrices.grouped(500).map { ms =>

Future(matrixMult(ms))

}.toSeq

The futures value now contains 40 Futures that are all multiplying their
sequence of matrices. If the ExecutionContext they’re running on happens
to have 40 available threads, then they’ll all go in parallel; if not, then they’ll
be executed in bits and pieces, but hopefully saturating your CPUs as much
as possible.4

Once they’re finished, we will have 40 resulting matrices (or, if there was
a dimensional problem somewhere, we’ll have one or more None values).
We still need to multiply those 40 together into one final matrix. This is the
part that was so damn tricky with the Actor-based solution. Questions arise:

1. How do we know when they’re all done?

2. In what order did the responses return?

3. How do we ensure that we’re multiplying the final 40 in the right or-
der?

None of those questions have any meaning anymore, now that we’re us-
ing Futures to do all of the bookkeeping for us. We just have to transform
the sequence of Futures into a single Future that holds a sequence of results.
When we have that single Future, we can easily transform the results using
the matrixMult() function we used to multiply all of the intermediates.

val multResultFuture = Future.sequence(futures) map { r =>

matrixMult(r.flatten)

}

4This is a very careful statement. There are a ton of factors that go into true CPU sat-
uration, involving CPU caches, RAM hits, and all kinds of muck that isn’t the focus of this
book. Chances are you won’t see your CPUs 100% busy due to the issues surrounding the
details of your particular processor architecture.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=319

Section 12.3 Chapter 12 · Coding in the Future 320

The only difference here is that the intermediate matrices aren’t of type
Matrix but of type Option[Matrix], so we need to flatten them before
sending them to matrixMult(). However, that has nothing to do with the
concurrency.

Now, multResultFuture holds a Future whose value is of type Option[Matrix],
which we can grab in our usual way:

val finished = Await.result(multiplyResults, 1.second)

// We can't actually test the rows and columns since

// they're random

finished must not be ('empty)

And we’re done! You understand, of course, that there was more code in
that example to simply set up the problem and evaluate it than there was to
actually perform the “complicated” parallelization, right? If we did that with
Actors, the reverse would most certainly have been true!

If you need to scrape a bit of your brain off the floor and shove it back
in through your ear due to the fact that your mind was just blown, I’ll under-
stand.

Future.traverse

The sequence method creates a Future with a sequence of values on which
we can operate with a map. In some cases, you can see this as an “inter-
mediate” sequence that you simply don’t need. When you have a situation
like this, you can use traverse to apply a mapping directly. We can illus-
trate by transforming a sequence of Future Ints into a sequence of Future Ints
squared.

val futures = (1 to 20) map { i => Future(i) }

// Grab the intermediate Future[Seq[Int]]

val sequenced = Future.sequence(futures)

// Transform to a Future[Seq[Int]] of squared values

val seqSquared = sequenced map { seq =>

seq map { i => i * i }

}

// Just square them directly

val trvSquared = Future.traverse(futures) { futurei =>

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=320

Section 12.3 Chapter 12 · Coding in the Future 321

futurei map { i => i * i }

}

val squaredFromSeq = Await.result(seqSquared, 1.second)

val squaredFromTrv = Await.result(trvSquared, 1.second)

squaredFromSeq must be (squaredFromTrv)

The traverse method merely eliminates the need for the intermediate
Future[Seq[T]] when you don’t need it. Use either one as you see fit.

Future.firstCompletedOf

Speaking of speculative execution: The firstCompletedOf method on the
Future object provides the ability to pull out the first completed Future on a
sequence of Futures.

If you want to run a bunch of tasks to grab the first winner’s results, then
this method makes perfect sense. Previously, we used speculative execution
to calculate a value, presuming that grabbing it from the cache would fail.
If the value actually was calculated before the cache timed out, then we still
wouldn’t have received it until the timeout occurred. With firstCompletedOf,
we can perform the calculation and the cache retrieval, grabbing the first win-
ner.

// Make them defs so that they aren't started

// until they go in the List

def longCalculation = Future {

Thread.sleep(scala.util.Random.nextInt(60))

"5 - From the calculation"

}

def cache = Future {

Thread.sleep(scala.util.Random.nextInt(50))

"5 - From the cache"

}

val futures = List(cache, longCalculation)

val result = Future.firstCompletedOf(futures) onSuccess {

case result => println(result)

}

// Printout depends on the random sleeps

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=321

Section 12.3 Chapter 12 · Coding in the Future 322

In the above code, the printout is either “5 - From the calculation” or “5
- From the cache,” depending on which one won.

You can also chain them together, which can be useful when you don’t
have a list of Futures available to you but you know you want to add an
optional optimization to a given Future, using either:

val result = cache either longCalculation

Things Are Still Running

Be aware that both of the above Futures will run. We just grab the first
completed one, and the second one continues to completion. Depending on
how you play with this functionality, you might see an interesting side effect.
Let’s say we did this:

val futures = List(cache, longCalculation)

Await.result(Future.firstCompletedOf(futures) onSuccess {

case result => println(result)

}, 1 second)

// Shut down the context, cuz we're done!

execContext.shutdown()

We’re not necessarily done by the time the execContext shuts down.
We’ve waited long enough for the “fast” Future to finish, but the “slow” one
is still going. There’s no problem with this, but it might look like there is.
Because there’s something still running when the ExecutionContext shuts
down, you might see an Exception on your terminal or in a log, for example.

Exception in thread "pool-291-thread-1"
java.util.concurrent.RejectedExecutionException

...

Or something along those lines. That’s the thread pool yelling at you,
basically saying that some thread is doing something when it’s not supposed
to, since there’s nothing on which it can do it.

These sorts of concurrency things pop up because, well, it’s concurrency.
It’s up to you to either make sure all your ducks are lined up before you take
that final shot, or if you know they’re not lined up, that you can ignore noise
like this.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=322

Section 12.3 Chapter 12 · Coding in the Future 323

Future.fold

Folding is another one of those cool aspects of working with Akka’s Futures.
Much like sequence and traverse, fold manages the annoying aspects of
keeping things in sequence as well as being invoked only when all of the
Futures have completed.

We’ll use fold to do something silly but illustrative. The following code
will add up the ASCII values of several words, and just to make things quite
clear, we’ll include some side-effecting printlns.

// Some of my favourite words

val words = Vector("Joker", "Batman", "Two Face", "Catwoman")

// Transform the words into Futures

val futures = words map { w =>

Future {

val sleepTime = scala.util.Random.nextInt(15)

Thread.sleep(sleepTime)

println(s"$w finished after $sleepTime milliseconds")

w

}

}

// Fold over them, adding up their ASCII values

val sum = Future.fold(futures)(0) { (acc, word) =>

word.foldLeft(acc) { (a, c) => a + c.toInt }

}

// Assert

println("Waiting for result")

Await.result(sum, 1.second) must be (2641)

// The last time I ran it, it printed:

//

// Waiting for result

// Batman finished after 9 milliseconds

// Joker finished after 9 milliseconds

// Catwoman finished after 10 milliseconds

// Two Face finished after 10 milliseconds

Nifty, no?

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=323

Section 12.3 Chapter 12 · Coding in the Future 324

Future.reduce

Reduce is the same variant of fold that we’re used to. The result value of
the first Future in the sequence is used as the “zero” value to the supplied
reducing function. The following illustrates the usage:

// Some of my favourite letters

val letters = Vector("B", "a", "t", "m", "a", "n")

// Transform the letters into Futures

val futures = letters map { l =>

Future {

val sleepTime = scala.util.Random.nextInt(15)

Thread.sleep(sleepTime)

println(s"$l finished after $sleepTime milliseconds")

Thread.sleep(sleepTime)

l

}

}

// Reduce the letters down to a single word

val wordFuture = Future.reduce(futures) { (word, letter) =>

word + letter

}

// Assert

println("Waiting for result")

Await.result(wordFuture, 1.second) must be ("Batman")

// The last time I ran it, it printed:

//

// Waiting for result

// n finished after 2 milliseconds

// t finished after 2 milliseconds

// a finished after 9 milliseconds

// m finished after 11 milliseconds

// B finished after 12 milliseconds

// a finished after 13 milliseconds

Again, it doesn’t matter when things finish, reduce works across the se-
quence, independent of the relative times in which the various Futures com-
plete.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=324

Section 12.3 Chapter 12 · Coding in the Future 325

Future.find

If you want to locate a value in a set of Future results, you could conceiv-
ably filter those Futures, looking for anything that isn’t a Left instance.
However, you don’t need to do that since Akka provides the find method.

The interesting difference about find from some of our previous meth-
ods is that it doesn’t need the entire sequence of results in order to perform
its duties. Let’s illustrate this with another variation on our superhero code:

// He's just so awesome

val letters = Vector('B', 'a', 't', 'm', 'a', 'n')

// Transform the letters into Futures

val futures = letters map { l =>

Future {

Thread.sleep(scala.util.Random.nextInt(15))

l

}

}

// find anything less than or equal to 'm'

val foundFuture = Future.find(futures) { l => l <= 'm' }

val found = Await.result(foundFuture, 1.second)

println("Found " + found)

// The last five times I ran it, it printed:

//

// Found Some(a)

// Found Some(B)

// Found Some(a)

// Found Some(m)

// Found Some(a)

The randomness in the Future completion times ensures that the found
letter varies from run to run. Although the original sequence is always the
same, the concurrency breaks it up into random completions that manifest in
the results of the call to find.

Concurrency. . . it’s just plain interesting stuff.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=325

Section 12.4 Chapter 12 · Coding in the Future 326

12.4 Side-Effecting

Up until now, we’ve only seen the Future’s functional aspects. Akka has a
mechanism for acting on results in a side-effecting manner as well, which
can be useful depending on your needs.

Each callback takes a PartialFunction that has a different type, depending
on the callback on which it is defined. Let’s look at each one in turn.

onSuccess

The onSuccess method adds a callback to the Future that is executed when
the Future completes and is successful (that is, the result is a Right[T] in-
stead of a Left[Throwable]). Let’s use the stuff we’ve seen to create an
onSuccess that’s a bit weird:

Future { 13 } filter {

_ % 2 == 0

} fallbackTo Future {

"That didn't work."

} onSuccess {

case i: Int => println("Disco!")

case m => println("Boogers! " + m)

}

// Prints: Boogers! That didn't work.

The Future will be successful no matter what because we have a fallbackTo,
but (just for fun) we’re using it to indicate to the callback that things didn’t
actually work. Due to the mixed types of Int and String from the combined
Futures, the subsequent callback has type PartialFunction[Any, Unit],
which is just fine for us since we can pattern-match on the result quite easily.

onFailure

Of course, looking at failures with onSuccess is a bit strange. Normally, you
would use onSuccess to do something when it’s actually successful, and for
failures, you’d use onFailure. For example, we can alter the previous code
to do the obvious thing on failure with:

Future { 13 } filter {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=326

Section 12.4 Chapter 12 · Coding in the Future 327

_ % 2 == 0

} onFailure {

case _ => println("Boogers! That didn't work.")

}

// Prints: Boogers! That didn't work.

onComplete

The previous two callback definitions are actually special cases of the onComplete
callback, and if you find yourself actually caring about both success and fail-
ure, you may find it better to use the onComplete callback instead of the
onFailure and onSuccess callbacks together.

Future { scala.util.Random.nextInt(100) } filter {

_ % 2 == 0

} onComplete {

case Right(num) => println("Disco! Got a " + num)

case Left(_) => println("Boogers! That didn't work.")

}

// Prints: Well... it depends on the value that comes

// out of Random.nextInt(100)

Side-Effects Order

You can actually add as many side-effects as you’d like. You can’t chain
them together since the results of these side-effecting callbacks is Unit, but
if you have your Future available to you, you can do it without too much
trouble.

val f = Future { 12 } filter {

// Don't want to finish too soon

Thread.sleep(50)

_ % 2 == 0

}

f.onFailure {

case _ => println("Boogers! That didn't work.")

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=327

Section 12.5 Chapter 12 · Coding in the Future 328

}

f.onSuccess {

case i: Int => println(i)

}

f.onSuccess {

case i: Int => println(i + " is keen!")

}

f.onSuccess {

case i: Int => println(i + " is WICKED keen!")

}

f.onComplete {

case Left(t: Throwable) => println("Nuts! " + t)

case Right(v: Int) => println("Yeah baby! " + v)

}

Don’t expect these to be called in any deterministic order though. Akka
doesn’t like wasting time, and if it wanted to guarantee that these went in
some sort of order, then it would have to play a lot of games that slowed it
down all the time. . . not worth it!

You should be avoiding side-effects anyway, since they’re generally just
a pain in the butt.5

12.5 Futures and Actors

You have a solid understanding of Actors, and you now have a pretty decent
understanding of what Futures bring to the party. The keen thing is that they
also work together really well.

sender ! response

When you’re inside an Actor’s message handler, and you’re going to send a
message to the sender of the current message, you use !. That works great if
the sender is an Actor, but what if the sender is a Future?

Let’s look and see how it’s done:

5Actors notwithstanding. Yes, Actor programming is inherently side-effect based, but I
expect you to hold this in your head at the same time as what you’ve just read and not have
any cognitive dissonance, somehow.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=328

Section 12.5 Chapter 12 · Coding in the Future 329

// Specific imports to enable the features we're

// going to use

import akka.pattern.ask

import scala.concurrent.util.duration._

import akka.util.Timeout

// All 'asks' (a.k.a '?') need a timeout value

// after which the ask is considered failed.

implicit val askTimeout = Timeout(1.second)

// Create our Actor

val a = system.actorOf(Props[EchoActor])

// Make the Ask

val f = a ? "Echo this back"

// Verify the result

Await.result(f, 1.second) must be ("Echo this back")

Pretty simple stuff. . . you just simply make the ask, which we’ve seen
before. The Actor definition that makes this work is:

class EchoActor extends Actor {

def receive = {

case m => sender ! m

}

}

Yup. There’s no difference between an Actor that sends messages to
Actors and one that sends messages to Futures. The abstractions that Akka
provides allow all Actors to be ignorant of both who and what the sender
actually is. It can be the Dead Letter Office, a Future, a local Actor, a remote
Actor, a router. . . it just doesn’t matter.

The Details of ’?’

Although not terribly complicated, there are some important concepts that
surround ’ask’ that you need to understand. Let’s start by looking at how it
gets imported.

• import akka.pattern.ask imports two methods named ’ask’.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=329

Section 12.5 Chapter 12 · Coding in the Future 330

• The first is an implicit conversion that converts an ActorRef to an Ask-
ableActorRef. The AskableActorRef contains the ’?’ method, giving
us that nice DSL.

• The second is the actual ’ask’ method we can use to communicate
with the Actor itself. The ’?’ extension uses this method to perform
the ask.

The usage method has the following signature:

def ask(ref: ActorRef, msg: Any)(implicit timeout: Timeout): Future[Any]

The ref and msg are pretty obvious; we’re interested in the timeout and
return type.

• timeout specifies the amount of time you’re willing to wait for the
ask to be fulfilled. This is different than the timeouts we’ve seen when
performing an Await.result() call.

• The return type is Future[Any]. Up until this point, all of our Fu-
tures have been more strongly typed; we would have Future[Int] or
Future[List[String]] or whatever. But in this case, we’re talking
to an Actor, and Actors exchange messages way up at the level of Any;
thus, we can’t expect anything lower down on the result type.

Chains of Timeouts

If you specify the timeout explicitly, instead of using the implicit, and you
wait for the result, then you’ll have something that looks like this:

val f = Await.result(a.ask("Echo this back")(Timeout(1 second)),

1 second)

That’s a mouthful, and at first glance those with glasses tend to take them
off, give them a little clean, pop them back on, and have another look. Those
without glasses immediately get a sense of déjà vu.

Both timeouts are necessary because we’re performing two asynchronous,
time-based functions. The first one is the argument to the ’ask’ telling it to
throw a TimeoutException if the Actor doesn’t respond within 1 second. The

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=330

Section 12.5 Chapter 12 · Coding in the Future 331

latter, of course, throws a TimeoutException if the Future itself doesn’t com-
plete within 1 second. The timers that are governed by these timeouts are
running concurrently, so you don’t have a total of 2 seconds. Therefore,
if you change the definition to the following, chances are that you’ll get a
failure.

val f = Await.result(a.ask("Echo this back")(Timeout(1.second)),

1.microsecond)

The Await.result() will only wait a microsecond for the Future to
complete and the Actor probably can’t get back that fast.

Note
It’s very important to understand that the failure here is not one such that
the Future’s value is a Left(TimeoutException(...)). This failure’s
manifestation will be a literal thrown Exception from the
Await.result().

You also have to think about what it looks like when you have a sequence
of Futures created from asks, all with timeouts. To illustrate, let’s create
another echoing Actor that has a parameterized delay in it.

case class DelayedEcho(msg: String, millis: Long)

class DelayingActor extends Actor {

def receive = {

case DelayedEcho(msg, millis) =>

blocking {

Thread.sleep(millis)

sender ! msg

}

}

}

Now we can write a test that deals with a series of asks against this De-
layingActor, with different delays for each one.

// Create our delaying Actor

val a = system.actorOf(Props[DelayingActor])

// Create some asks, increasing the delays as we go

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=331

Section 12.5 Chapter 12 · Coding in the Future 332

val futures = (1 to 10) map { i =>

val delay = 10 + i * 2

val str = s"Delayed for $delay milliseconds"

// Put a timeout on them that's a little longer than the delays

a.ask(DelayedEcho(str, delay))(Timeout((delay * 1.2).toInt)) andThen {

case Left(e) => println(str + " - failed")

case Right(m) => println(m + " - succeeded")

}

}

// Wait for them all to be ready, whether or not they succeed or failed.

Await.ready(Future.sequence(futures), 1.second)

// Find out how many failed

val failed = futures filter { f =>

f.value.isEmpty || f.value.get.isLeft

}

// Just print them out

println(failed.size + " failed")

// The last time I ran this, it printed:

//

// Delayed for 12 milliseconds - succeeded

// Delayed for 14 milliseconds - succeeded

// Delayed for 16 milliseconds - succeeded

// Delayed for 18 milliseconds - succeeded

// Delayed for 20 milliseconds - failed

// Delayed for 22 milliseconds - failed

// Delayed for 24 milliseconds - failed

// Delayed for 26 milliseconds - failed

// Delayed for 28 milliseconds - failed

// Delayed for 30 milliseconds - failed

// Delayed for 32 milliseconds - failed

// 6 failed

The machine I’m running this test on has only two cores,6 so the default
settings almost ensure that there will eventually be some failed timeouts.

6It’s a little 11-inch i5 dual core notebook, and I love it, so don’t make fun of it.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=332

Section 12.5 Chapter 12 · Coding in the Future 333

Note that we used Await.ready() instead of Await.result(). We
know for a fact that there will be some Exceptions in here, and if we try to
go for evaluation, the Future will have no choice but to throw the Exception.
It will also throw the first one it finds, which will make the rest of the code
pretty tough to execute. Await.ready() ensures that the Futures are ready
to be evaluated, but won’t be evaluated until we try to extract the result,
which of course we don’t do. We just need to peek at it and see if it’s either
None (which it won’t be, since ready() has already told us it’s not, but we
put it in there for good measure) or is a Left instance of Either.

Coercing from Any

Since Actor messages ensure that the Future type that an ask creates will be
Future[Any], you would expect that there’s some support for coercing that
type back down to something usable. You would be correct in that assump-
tion.

But why not just use asInstanceOf? The reason is the same old rea-
son we keep running up against: concurrency. When do you apply the
asInstanceOf? You could apply it after you’ve received the result, but that’s
not terribly robust since it limits what you can do with the message. If it will
travel through a bunch of intermediaries, you might now be depending on
someone to cast it down who really doesn’t know what’s going on.

The right time do it is when it can be safely done, but you have to do it in
a Future context since, in general, the thing you’re casting down to doesn’t
yet exist. This is why we have the mapTo method on the Future. For example:

for {

dbConn <- (systemActor ? GetDBConnection).mapTo[DBConn]

result <- (dbActor ? Query(dbConn, query).mapTo[ResultSet]

} yield result.sortByKey

Get the idea? If we didn’t coerce the result from the first ask, then we
wouldn’t have the right type for the second ask. However, you can’t cast the
result from the first ask down to a DBConn until the ask completes, which is
why we use mapTo. It creates a new Future with the strongly typed result, or
a ClassCastException if the cast fails.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=333

Section 12.5 Chapter 12 · Coding in the Future 334

Futures Do Request/Response

The ask syntax clearly implements a request/response paradigm. You could
do the same thing with an anonymous Actor, such as this:

class MyActor extends Actor {

def receive = {

case GetSomeDataFrom(someActor) =>

// An anonymous Actor to provide a Request / Response

// context to communication with 'someActor'

context.actorOf(new Actor {

override def preStart() {

someActor ! GiveMeStuff

}

def receive = {

case SomeStuff(stuff) =>

doSomethingWithStuff(stuff)

}

}

}

The challenge with the request/response paradigm in asynchronous mes-
sage systems is the act of assigning the appropriate context7 to the response,
and that’s a challenge that Futures meet head on and quite well.

But just to elaborate for a second, assume you have the following Actor:

class DiscoActor extends Actor {

def receive = {

case Go =>

(1 to 10) zip someListOfTenActors foreach {

case (num, actor) =>

actor ! DoSomethingWithThisNumber(num)

}

case SomethingDone(result) =>

// Hmm... I wonder which request this response belongs to

}

}

7Sorry about the overloaded word with the ActorContext, but the word context is just too
important in concurrent programming.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=334

Section 12.5 Chapter 12 · Coding in the Future 335

There are three obvious ways to solve this problem, and probably a whole
host of others that aren’t so obvious.

1. Provide the ability to stash as much information as you want into the
request message.

2. Keep some sort of mutable data structure lying around that can be
indexed by some value, and let that store the intermediate state. The
index can be a tag that you put on the message, or the ActorRef of the
Actor to whom you’re sending the request.

3. Create a closure.

OK, so number 1 is just silly. How much data are you going to stash?
What if it has to travel over a network? Are we going to trust people to put
it in the response properly? Do they have to understand it? Silly is a very
polite word for it.

Number 2 is better since it keeps things local to the guy doing the re-
quests, but seriously? The suggestion is to use a ’tag’ or the ActorRef of the
Actor we’re making the request of. If you said that the ActorRef is a good
idea, then you failed the test; go back several chapters and read them again;
especially the one on Routing.

Tip
Using the ActorRef as an index key is a horrible idea. The Actor you’re
sending to may never be the guy who’s responding to you, so you’d have a
dangler there. Bad idea.

Using a ’tag’ instead is a much better idea and it has its merits in some
situations,8 but it’s not remotely ideal. It’s cruft that is carried along with
your message that Actors that see it still have to manage.

Number 3 is a fairly awesome solution most of the time. It keeps every-
thing out of your messages, which makes them more flexible and reusable
in many different contexts, and it keeps the intermediaries ignorant of the
request/response nature of what you’re doing. What’s more is that a closure
does not limit you to any amount of information that you want to close over.

That’s why Futures handle the request/response problem—they allow
you to create that closed over context with supreme ease.

8Performance is one. It’s a lot cheaper to tag a message than it is to instantiate an Actor,
put it on a thread, etc. But do not prematurely optimize.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=335

Section 12.5 Chapter 12 · Coding in the Future 336

Futures Are Not Your Actor

In the heat of coding, when your hair is on fire, you’ve pounded your fifth
energy drink in the last 20 minutes and you’ve got Led Zeppelin turning your
ears into a puddle of sublime oozing liquid, you might make a slight error;
you accidentally walk into the Actor’s fortress and start remodelling the first
floor bathroom in a tacky leopard print.

It’s easy to do, but once you see it, it’s also easy to avoid. The problem
comes from using a Future inside an Actor that modifies state directly. We
saw this problem back when we looked properly using the Scheduler inside
an Actor, and the problem here is exactly the same.

class MutableActor extends Actor {

var currentState = InitialState

def receive = {

case Go =>

(someOtherActor ? GetData) onSuccess {

case data =>

// I'll just dislodge that Strawberry from the running

// blender with my right index finger. It'll be fine.

currentState = DataReceivedState(data)

}

case WebRequestReady(req) =>

currentState = WebReadyState(req)

}

}

Yuck. . . you just lost your right index finger. Well done.9 You need to be
careful of the behaviour you have inside your Future. This applies, of course,
to every closure you create inside the fortress, whether it be inside a Future,
another Actor, a Scheduler, or any other piece of code that leaves the warm,
fuzzy innards of your Actor.

9Funny story. I know this girl who had to go to the emergency room with a blade from a
food blender lodged in her index finger. The doctor was sympathetic, but also kinda laughed
until he passed out.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=336

Section 12.5 Chapter 12 · Coding in the Future 337

Actor Message Piping

The ask pattern allows Actors to talk to Futures, and we’ve also seen the hor-
rific way that you can mutate fortress-protected data inside an Actor. There’s
clearly something missing—how to talk to an Actor from a Future.

One way to do this is to use a side-effecting callback, since sending a
message to an Actor is, effectively, a side-effecting operation. However,
doing so just replicates the same code over and over again:

val future = someActor ? AskQuestion

future onSuccess {

case m => anotherActor ! SuccessHappened(m)

} onFailure {

case m => anotherActor ! FailureHappened(m)

}

The pipe pattern pulls this common code together into something that’s
reusable. So, we just have to:

// We need to import it in order for it to work

import akka.pattern.pipe

val future = someActor ? AskQuestion

future pipeTo anotherActor

It must be noted, however, that if the Future is in a failed state, then the
message that gets sent to anotherActor is akka.actor.Status.Failure(exception).
So either the recipient Actor is ready to handle that message or it will get
logged as something that’s unhandled.

Piping is a fairly elegant way to bridge two Actors together while apply-
ing intermediate transforms to the message structure. For example:

import akka.pattern.pipe

// Get the value for the desired heading from

// actor1, which returns a String. Convert this

// value to an Int, pack it in a command message

// and pipe it to the Auto Pilot

(actor1 ? GetValue("Heading")).mapTo[String] map {

headingString =>

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=337

Section 12.6 Chapter 12 · Coding in the Future 338

AlterHeading(headingString.toInt)

} pipeTo autoPilotActor

12.6 Plane Futures

Remember the TODO we left behind in Chapter 10? It looked like this:

def noRouter: Receive = {

case GetPassengerBroadcaster =>

context.actorFor("PassengersSupervisor") ! GetChildren(sender)

case Children(passengers, destinedFor) =>

val router = context.actorOf(Props().withRouter(

BroadcastRouter(passengers.toSeq)), "Passengers")

destinedFor ! PassengerBroadcaster(router)

context.become(withRouter(router))

}

This chunk of code is a classic request/response-style scenario and we
can rewrite it using a Future.

implicit val askTimeout = Timeout(5.seconds)

def noRouter: Receive = {

case GetPassengerBroadcaster =>

val destinedFor = sender

val actor = context.actorFor("PassengersSupervisor")

(actor ? GetChildren).mapTo[Seq[ActorRef]] map { passengers =>

(Props().withRouter(BroadcastRouter(passengers)), destinedFor)

} pipeTo self

case (props: Props, destinedFor: ActorRef) =>

val router = context.actorOf(props, "Passengers")

destinedFor ! PassengerBroadcaster(router)

context.become(withRouter(router))

}

Does that look better? Well, it all depends on what you want out of
it. The biggest key to this change is that the interaction’s request/response
nature is clear and codified. Before, if the Actor didn’t receive the chil-
dren response, nothing dealt with that problem. Now there is a timeout on

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=338

Section 12.6 Chapter 12 · Coding in the Future 339

which we can play any of the tricks we now know, such as recover and
recoverWith. We’ve also removed the silly notion of having to pass the
equivalent of destinedFor to the underlying Actor. It merely has to return
the children that it has, without having to walk around with this extra pay-
load of the Actor to eventually respond to, which is something it doesn’t
really even want to know.

The simplifications we’ve made to the embedded supervisor’s receive
method make this more clear. We moved from this:

// Override the IsolatedStopSupervisor's receive

// method so that our parent can ask us for our

// created children

override def receive = {

case GetChildren(forSomeone: ActorRef) =>

sender ! Children(context.children, forSomeone)

}

to this:

// Override the IsolatedStopSupervisor's receive

// method so that our parent can ask us for our

// created children

override def receive = {

case GetChildren =>

sender ! context.children.toSeq

}

Instrument Status

Really cool planes have lots of dials and switches as well as flashing lights. If
you wanted to put an “Everything is Hunky Dory” light on your plane, which
lit up green when all of the instruments were operating correctly, you’d need
to ask them all how they were feeling.

Let’s create a trait that we can mix into any instrument we create, which
will report on the instrument’s status. As usual, we start with the companion
object.

object StatusReporter {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=339

Section 12.6 Chapter 12 · Coding in the Future 340

// The message indicating that status should be reported

case object ReportStatus

// The different types of status that can be reported

sealed trait Status

case object StatusOK extends Status

case object StatusNotGreat extends Status

case object StatusBAD extends Status

}

And now the trait, which will be self-typed to an Actor. It will provide
a receive handler to be composed into the ultimate receive handler and a
required method to be implemented that reports status. Eventually, we’ll be
composing this inside whatever Actor we choose, that wishes to report its
status.

trait StatusReporter { this: Actor =>

import StatusReporter._

// Abstract - implementers need to define this

def currentStatus: Status

// This must be combined with orElse into the

// ultimate receive method

def statusReceive: Receive = {

case ReportStatus =>

sender ! currentStatus

}

}

Now let’s inject it into the HeadingIndicator:

trait HeadingIndicator extends Actor

with ActorLogging

with StatusReporter { this: EventSource =>

import StatusReporter._

// The HeadingIndicator is always happy

def currentStatus = StatusOK

...

// Compose our receive method from the EventSource,

// the StatusReporter and our own functionality

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=340

Section 12.7 Chapter 12 · Coding in the Future 341

def receive = statusReceive orElse

eventSourceReceive orElse

headingIndicatorReceive

...

}

Assuming you have all of this done for the HeadingIndicator, and the
Altimeter, as well as for other Instruments you’d create (such as a Fuel-Level
Indicator, Airspeed Indicator, and a whole host of other things), then you can
get an indication of the status of all Instruments with:

val instruments = Vector(actorFor("Altimeter"),

actorFor("HeadingIndicator"),

actorFor("AirSpeed"),

actorFor("FuelSupply"))

def receive = {

case GetAllInstrumentStatus =>

Future.sequence(instruments map { i =>

(i ? ReportStatus).mapTo[Status]

}) map { results =>

if (results.contains(StatusBAD)) StatusBAD

else if (results.contains(StatusNotGreat)) StatusNotGreat

else StatusOK

} pipeTo sender

}

12.7 Chapter Summary

OK! We’ve just covered some pretty awesome stuff. Futures make up a very
important axis of the Akka concurrency paradigm. If all you know about are
Actors and Futures, you have enough information to do some pretty serious
Akka programming. Of course, there’s more to Akka and it continues to
grow, but these two main concepts embody the entire Akka design. Let’s
summarize what we’ve covered:

• You should now understand that Actors are not a golden hammer.
Sure, you can solve a ton of problems with them, but there are def-

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=341

Section 12.7 Chapter 12 · Coding in the Future 342

initely a class of problems that cannot be solved with them nearly as
easily as with Futures.

• You’ve learned to compose Futures, which is probably the single biggest
win you have with them.

• You’ve learned to deal with failures in a very graceful way.

• You have a firm grasp on the nature of concurrency and timeouts.

• The request/response paradigm has been evaluated and while there’s
not necessarily a “right” answer to it under all circumstances, we now
know that Futures provide a solid answer most of the time.

• The relationship between Actors and Futures is now also well under-
stood. You’re not mashing together Future functionality with Actor
functionality because no mashing is required; they fit together like
hand and glove.

Pat yourself on the back, grab a beer, eat that piece of cake you’ve been
eyeing for the last few hours—you’ve earned it. You’ve assimilated some
valuable information thus far and that should make you feel pretty great.
Personally, I just slipped on my Green Lantern power ring in order to write
this summary because, well, why not?

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=342

Chapter 13

Networking with IO

Whenever you need some non-blocking asynchronous network IO, Akka has
your back. The IO package, which is already included the Actor module (so
you don’t need to go mucking about with SBT to set it up), provides two
main mechanisms for achieving the kind of networking that will make your
app stay reactive: Actor integration and Iteratees. We will briefly look at
Iteratees once we’ve gone through the Actor integration, but it won’t be an
exhaustive investigation.

While we could build something cool for our Plane, such as landing gear
or a really cool entertainment system, we have much more important things
to worry about. How cool would it be if you could telnet into your Plane and
ask it some questions? Yeah, way cooler than landing safely!

13.1 The Plane’s Telnet Server

Telnet is one of those really cool apps that will survive until the end of the
Internet, which will happen right around the same time you have to duck for
flying pigs. We’ll use this nifty little client by using it to attach to our Plane
so that we can get some information about it.

For simplicity’s sake, we’ll build something that will help us grab the
current heading and altitude from the Plane by typing in a couple of obvious
commands. It’ll look something like this:

-> telnet localhost 31733

Trying ::1...

Connected to localhost.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=343

Section 13.1 Chapter 13 · Networking with IO 344

Escape character is 'ˆ]'.

Welcome to the Airplane!

Valid commands are: 'heading' and 'altitude'

> heading

current heading is: 359.92 degrees

> altitude

current altitude is: 345.25 feet

> Hiya there Dave!

What?

Pretty awesome looking, no?1 We’ll implement this with a standard Ac-
tor; therefore, it will be as reactive as we’re already used to and interact
perfectly with everything else we have.

import akka.actor.{Actor, ActorRef, IO, IOManager, ActorLogging, Props}

import akka.util.ByteString

import scala.collection.mutable.Map

class TelnetServer(plane: ActorRef) extends Actor with ActorLogging {

import TelnetServer._

// The 'subservers' stores the map of Actors-to-clients that we need

// in order to route future communications

val subservers = Map.empty[IO.Handle, ActorRef]

// Opens the server's socket and starts listening for incoming stuff

val serverSocket = IOManager(context.system).listen("0.0.0.0", 31733)

def receive = {

// This message is sent by IO when our server officially starts

case IO.Listening(server, address) =>

log.info("Telnet Server listeninig on port {}", address)

// When a client connects (e.g. telnet) we get this message

case IO.NewClient(server) =>

log.info("New incoming client connection on server")

// You must accept the socket, which can pass to the sub server

1There’s nothing more beautiful than a solid text-mode interface and anyone who claims
otherwise deserves the evil eye.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=344

Section 13.1 Chapter 13 · Networking with IO 345

// as well as used as a 'key' into our map to know where future

// communications come from

val socket = server.accept()

socket.write(ByteString(welcome))

subservers += (socket ->

context.actorOf(Props(new SubServer(socket, plane))))

// Every time we get a message it comes in as a ByteString on

// this message

case IO.Read(socket, bytes) =>

// Convert from ByteString to ascii (helper from companion)

val cmd = ascii(bytes)

// Send the message to the subserver, looked up by socket

subservers(socket) ! NewMessage(cmd)

// Client closed connection, kill the sub server

case IO.Closed(socket, cause) =>

context.stop(subservers(socket))

subservers -= socket

}

}

Simple, no? This class is the first of two; it’s the main server that handles
incoming client connections as well as future socket handling. Every single
byte of incoming data comes through the TelnetServer, even those bytes that
are from client connections that have already been made. Therefore, our
TelnetServer must ensure that future incoming bytes are routed to the right
Actor that’s servicing that client, which Figure 13.1 shows.

The IOManager will send our Actor (specified to the IOManager’s listen
method by the implicitly defined self) several messages. We’re interested
in the ones here that are IO.Listening, IO.Read, and IO.Closed. These
three simple messages will give us everything we need in order to manage
the incoming clients and make our server do what we want.2

The business logic belongs inside the Sub-Server, which we define as
part of the TelnetServer’s companion object (along with some helper stuff).
Let’s have a look:

object TelnetServer {

2I remember when writing a Telnet Server was hard, and something that made people
think you were a god of some sort. Damn.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=345

Section 13.1 Chapter 13 · Networking with IO 346

Telnet
Client A

Telnet
Server
Actor

Telent Sub
Server
Actor A

Telent Sub
Server
Actor B

Telnet
Client B

"heading"
"h

ea

ding"

"current heading is…"

Connect

Spawn

Figure 13.1 · The Telnet Server routes all incoming data to the appropriate
Sub-Server Actor that has been instantiated to handle a specific client. It also
instantiates that Sub-Server Actor when a new client connects, and clears it
out when it disconnects.

// For the upcoming ask calls

implicit val askTimeout = Timeout(1.second)

// The welcome message was sent on connection

val welcome =

"""|Welcome to the Airplane!

|----------------

|

|Valid commands are: 'heading' and 'altitude'

|

|> """.stripMargin

// Simple method to convert from ByteString messages to

// the Strings we know we're going to get

def ascii(bytes: ByteString): String = {

bytes.decodeString("UTF-8").trim

}

// To ease the SubServer's implementation we will send it Strings

// instead of ByteStrings that it would need to decode anyway

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=346

Section 13.1 Chapter 13 · Networking with IO 347

case class NewMessage(msg: String)

// The SubServer. We give it the socket that it can use for giving

// replies back to the telnet client and the plane to which it will

// ask questions to get status

class SubServer(socket: IO.SocketHandle,

plane: ActorRef) extends Actor {

import HeadingIndicator._

import Altimeter._

// Helpers just to make it easier to format for the book :)

def headStr(head: Float): ByteString =

ByteString(f"current heading is: $head%3.2f degrees\n\n> ")

def altStr(alt: Double): ByteString =

ByteString(f"current altitude is: $alt%5.2f feet\n\n> ")

def unknown(str: String): ByteString =

ByteString(f"current $str is: unknown\n\n> ")

// Ask the Plane for the CurrentHeading and send it to the client

def handleHeading() = {

(plane ? GetCurrentHeading).mapTo[CurrentHeading] onComplete {

case Success(CurrentHeading(heading)) =>

socket.write(headStr(heading))

case Failure(_) =>

socket.write(unknown("heading"))

}

}

// Ask the Plane for the CurrentAltitude and send it to the client

def handleAltitude() = {

(plane ? GetCurrentAltitude).mapTo[CurrentAltitude] onComplete {

case Success(CurrentAltitude(altitude)) =>

socket.write(altStr(altitude))

case Failure(_) =>

socket.write(unknown("altitude"))

}

}

// Receive NewMessages and deal with them

def receive = {

case NewMessage(msg) =>

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=347

Section 13.1 Chapter 13 · Networking with IO 348

msg match {

case "heading" =>

handleHeading()

case "altitude" =>

handleAltitude()

case m =>

socket.write(ByteString("What?\n\n"))

}

}

}

}

In terms of IO, there’s really not much to it, but you can see that we’ve
created a bit of plumbing in the Plane. We can now ask it for the CurrentAlti-
tude and the CurrentHeading, which we tie inside of a Future and side-effect
the result back to the socket. We don’t need to examine these changes be-
cause they’re so obvious to you now, but while a picture is probably overkill
at this point, let’s look at Figure 13.2.

Plane

Altimeter

Heading
Indicator

Sub
Server

GetCurrentAltitude

forward

CurrentAltitude

GetCurrentHeading

forward
CurrentHeading

Figure 13.2 · The alterations that have been made to the Altimeter,
HeadingIndicator, and Plane allow for the above message flow. The Plane
acts as a relay, forwarding the requests that are then fulfilled to the original
sender (the SubServer).

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=348

Section 13.1 Chapter 13 · Networking with IO 349

To get it running, we just have to hook the Plane up to it. The following
implementation of the Avionics main method will do nicely.

import akka.actor.{Props, ActorSystem}

object Avionics {

val system = ActorSystem.create("PlaneSimulation")

def main(args: Array[String]) {

val plane = system.actorOf(Props(Plane()), "Plane")

val server = system.actorOf(Props(new TelnetServer(plane)), "Telnet")

}

}

Testing IO

Testing our TelnetServer is pretty darn simple. Since the TestKit and Implic-
itSender turn our test class into what is effectively an Actor all by itself, we
can use the IO system to test the IO system. Let’s first create a simple Plane
that we can inject into the TelnetServer to make it easy to test:

class PlaneForTelnet extends Actor {

import HeadingIndicator._

import Altimeter._

def receive = {

case GetCurrentAltitude =>

sender ! CurrentAltitude(52500f)

case GetCurrentHeading =>

sender ! CurrentHeading(233.4f)

}

}

That gives us a deterministic result that we can verify when we write to
the socket. Now let’s write the test that uses the socket and goes the full way
around the network to verify the results.

val p = system.actorOf(Props[PlaneForTelnet])

val s = system.actorOf(Props(new TelnetServer(p)))

// The 'test' is now implicitly the Actor that the IOManager talks to

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=349

Section 13.1 Chapter 13 · Networking with IO 350

val socket = IOManager(system).connect("localhost", 31733)

// We expect the IOManager to send us IO.Connected

expectMsgType[IO.Connected]

// Skip the welcome message

expectMsgType[IO.Read]

// Verify the "heading" command

socket.write(ByteString("heading"))

expectMsgPF() {

case IO.Read(_, bytes) =>

TelnetServer.ascii(bytes) must include ("233.40 degrees")

}

// Verify the "altitude" command

socket.write(ByteString("altitude"))

expectMsgPF() {

case IO.Read(_, bytes) =>

TelnetServer.ascii(bytes) must include ("52500.00 feet")

}

// Close it up

socket.close()

That’s it. We’ve tested the TelnetServer by using IO—definitely not a
“unit” test, but quite awesome! It’s so easy, why wouldn’t you write this
test?

IO Actor Integration

That’s all we’ll cover on the IO package’s Actor integration. There’s a bit
more to it, but not a ton. The bottom line is that it just fits. Network pro-
gramming with the IO package and Actors is almost like coding anything
else with Actors; it’s easy. If you want to make sure you have all the nuts
and bolts nicely handled, head over to the Akka reference documentation and
the ScalaDoc.

I will say that most, probably, wouldn’t really write a Telnet-style of
server for interrogating (or even manipulating) Actors inside a running appli-
cation; they would go for an HTTP implementation instead. Now, while you
could whip up your own HTTP server with Akka IO, you wouldn’t. There
are other fantastic HTTP servers that you can easily integrate with Akka and
we talk about those later in the section discussing add-ons.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=350

Section 13.2 Chapter 13 · Networking with IO 351

13.2 Iteratees

Iteratees have really come into their own lately—perhaps most prominently
inside the Play framework.3 As stated earlier, we won’t go into a lot of
detail about them because while they are quite useful, they represent a fairly
“new” concept to many and would require an amount of explanation that is
out of this book’s scope. The Iteratee is a concept that belongs to functional
programming and there are several useful tutorials on it. If you’re going to
use the Play framework, you should definitely consult the tutorial they have
provided for their Iteratees.

If you’re looking for a functional solution to working with Akka’s IO
module, then you should have a look at Iteratees. There’s absolutely no
requirement to use them in order to have great success with IO, as we’ve
seen. There’s also no need to even use the Akka implementation of Iteratees
if you don’t want to; you should be able to use others out there with relative
ease.

13.3 Chapter Summary

With respect to Actors, the IO module is pretty simple and eminently clear.
Integrating IO into your Actor application should be a piece of cake, like one
of those slices of cherry cheesecake you get for $12 at some fancy restaurant
where the cheese was hand-delivered by a Tibetan monk. . . on foot. . . through
snow-covered mountains, hunted by furious goats.4

In fact, it might actually be considered an anti-pattern to not include
some sort of network-accessible hookup for your app, considering how easy
it is. With Akka, you have many choices available to you, including anything
you can hook up through Camel5 or with the HTTP options you have, but if
you just need something cheap and simple, IO is your very good friend.

3http://www.playframework.org
4If you’re lactose intolerant, just pretend you’re not for a moment. That’s a seriously

good piece of cheesecake.
5http://camel.apache.org

http://www.playframework.org
http://camel.apache.org
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=351

Chapter 14

Going Multi-Node with Remote Actors

There are many different strategies for achieving a multi-node, interdepen-
dent application structure, involving everything from using the database as a
communication mechanism to a “stateless” multi-node web tier. When we
reach the scale of “big” applications, the devil is in the details; a relational
database, for example, may be the cornerstone of a solution to a particular
problem, and it may be violent screaming death for another problem’s solu-
tion. However, one aspect of large-scale programming continues to be a win
in a large set of problem spaces: messaging. More than most development
paradigms, messaging has the potential to tear into complexity and eat it for
lunch. Inside the Akka toolkit, as you’ve seen, lies a ravenous beast from the
likes of Greek mythology, and all it’s looking for is its next lunch.

Because you’ve been working with Akka, you’ve been coding in a really
solid messaging system. Up until now, those messages have been sent intra-
VM, but sending them out to a different VM, possibly on a different machine,
is effectively the same thing. Of course, the potential for lost messages in-
creases, but the mechanics of sending, receiving, and processing those mes-
sages doesn’t change.

14.1 Many Actors, Many Stages

We know that Actors have ActorRefs. They are part of an ActorSystem, and
have a single parent and many children, supervise each other, and can watch
any other Actor for death. How does all this fit into a world with multiple
nodes?

Figure 14.1 provides some insight into how things work for everything

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=352

Section 14.2 Chapter 14 · Going Multi-Node with Remote Actors 353

A

A A

A A A A

A

B

A A

B B

B B

Node 1 Node 2

Child

Parent

DeathWatch

Receives Events From

Figure 14.1 · Two nodes in an Akka application. An ActorSystem can span
nodes and still maintain the parent/child relationships between them, includ-
ing Supervision. All ActorRefs appear as ActorRefs, no matter where the
Actors may reside, so DeathWatch and standard message passing still apply.

we’ve already learned about Actors. In many respects (but, of course, not
all), the fact that multiple nodes are involved does not affect the Actor model.
The ActorSystem isn’t concerned about the fact that some of its Actors may
be on separate nodes and DeathWatch works no matter where the Actors are
running.

14.2 Simple Build Tool (SBT)

To use the Remote module, you’ll need to make the requisite modifications
to the SBT build file. Not a big deal, but it must be done.

libraryDependencies ++= Seq(

// as before

"com.typesafe.akka" % "akka-remote" % "2.1"

)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=353

Section 14.3 Chapter 14 · Going Multi-Node with Remote Actors 354

14.3 Remote Airports

We’ll start our investigation into remote Actors by introducing a new concept
to our simulation: an Airport. It seems reasonable to have one of these on a
remote system since airports and planes aren’t generally co-located; at least
none that I’ve personally seen.

Our Airport’s function will be pretty simple; it will just send directional
information to our FlyingBehaviour to help it fly the Plane to the Airport. In
the process of creating our Airport, we’ll see some cool configuration tricks
as well as a simple way to bridge two Actors with incompatible message
content.

The Beacon

An Airport will send out a beacon message at regular intervals, so planes
can use it to calculate a course. This usually takes the form of an “I’m at
these coordinates” message so that the plane can figure out in what direction
it should head, but we’ll simplify that. Our Airport will have a beacon that
says, “Change your heading to ...”. This is clearly silly, since it presumes
the beacon knows where the plane is, but it’ll do for our example.

We always need to think about testability of our code, which leads us to
the following traits:

trait BeaconResolution {

// Allows us to change the interval for testing purposes

lazy val beaconInterval = 1.second

}

trait BeaconProvider {

// factory method for creating a beacon

def newBeacon(heading: Float) = Beacon(heading)

}

Let’s also abstract away the idea we’ve been using for “publishing” of
events into a common set of messages, which will help us bind a couple of
Actors together more generally.

object GenericPublisher {

// These messages are used by any 'event' publisher

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=354

Section 14.3 Chapter 14 · Going Multi-Node with Remote Actors 355

case class RegisterListener(actor: ActorRef)

case class UnregisterListener(actor: ActorRef)

}

The Beacon will be quite simple; just something that continually sends a
BeaconHeading message to anyone who wants it. It’s just the same message
over and over and over again.

object Beacon {

// The BeaconHeading is the message that is sent from the Beacon to

// its listener

case class BeaconHeading(heading: Float)

// Factory method to hide the 'ugliness' of the BeaconResolution from

// everyone else

def apply(heading: Float) = new Beacon(heading) with BeaconResolution

}

// The Beacon will continually emit the BeaconHeading message with the

// given heading constructor parameter

class Beacon(heading: Float) extends Actor { this: BeaconResolution =>

import Beacon._

import GenericPublisher._

// Our usual timer message

case object Tick

// We use a specialized event bus for handling the pub/sub

val bus = new EventBusForActors[BeaconHeading, Boolean]({

_: BeaconHeading => true

})

// Our ticker to send out periodic beacon headings

val ticker = context.system.scheduler.schedule(beaconInterval,

beaconInterval, self, Tick)

def receive = {

// Subscribe for the Beacon

case RegisterListener(actor) =>

bus.subscribe(actor, true)

// Unsubscribe for the Beacon

case UnregisterListener(actor) =>

bus.unsubscribe(actor)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=355

Section 14.3 Chapter 14 · Going Multi-Node with Remote Actors 356

// Publish the BeaconHeading

case Tick =>

bus.publish(BeaconHeading(heading))

}

}

Nearly everything here should be pretty familiar by now, so we don’t
need to discuss it. The one thing that’s unfamiliar is the EventBusForActors
val. This is a special class, which is not part of Akka, and we discuss it in
chapter 17.

The Airport

To create Airports, we’ll need to specify some details; for example, the alti-
tude at which incoming planes should stay and the heading that they should
use in order to reach it. We’ll also need messages and a bit of a helper to
instantiate a specific airport.

trait AirportSpecifics {

lazy val headingTo: Float = 0.0f

lazy val altitude: Double = 0

}

object Airport {

// Messages consumed by the Airport

case class HeadTo(flyingBehaviour: ActorRef)

case class Ignore(flyingBehaviour: ActorRef)

// Factory method to instantiate the Toronto International Airport

def toronto(): Actor = new Airport with BeaconProvider

with AirportSpecifics {

override lazy val headingTo: Float = 314.3f

override lazy val altitude: Double = 26000

}

}

If your plane wants to head to Toronto (and why wouldn’t it?), then this
airport will do you just fine. Let’s define the class, so we can move some
messages around.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=356

Section 14.3 Chapter 14 · Going Multi-Node with Remote Actors 357

class Airport extends Actor { this: AirportSpecifics with BeaconProvider =>

import Airport._

import Beacon._

import FlyingBehaviour._

import GenericPublisher._

// Our beacon, which periodically sends out our airport's heading

val beacon = context.actorOf(Props(newBeacon(headingTo)), "Beacon")

def receive = {

// FlyingBehaviour instances subscribe to this Airport in order to

// be told where they should be flying

case HeadTo(flyingBehaviour) =>

val when = (1 hour fromNow).time.toMillis

// But, we can't let them get BeaconHeading messages, since those

// are not understood by FlyingBehaviour instances. We need to

// transform those messages into appropriate 'Fly' messages

context.actorOf(Props(new MessageTransformer(from = beacon,

to = flyingBehaviour, {

case BeaconHeading(heading) =>

Fly(CourseTarget(altitude, heading, when))

})))

// Go simple. Realistically only one FlyingBehaviour instance is

// going to be heading here, so we can just terminate all of the

// children MessageTransformers (of which there's only one)

case Ignore(_) =>

context.children.foreach { context.stop }

}

}

The new bit in here is the MessageTransformer. This is a very common
pattern in message-oriented programming and the fact that these Actors are
untyped enables it. We don’t need to change the Beacon or the FlyingBe-
haviour in order to get them to work together. Figure 14.2 pretty much says
it all.

The code is really simple. We add on a specific registration piece in
order to hide that aspect from the Airport, but it doesn’t need to be so in the
general case. You can pass the endpoints in through constructor arguments or
the sender can be acquired through the sender() method, while the receiver

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=357

Section 14.3 Chapter 14 · Going Multi-Node with Remote Actors 358

Beacon Flying
Behaviour

Message
Transformer

BeaconHeading

Fly(C
ourse

Target(…
))

case BeaconHeading(heading) =>
 Fly(CourseTarget(altitude, heading, when)

Figure 14.2 · A message transformer converts one message type to another,
providing any data transform required during the transformation.

can be an argument in the message. It’s all up to you.

class MessageTransformer(from: ActorRef, to: ActorRef,

transformer: PartialFunction[Any, Any]) extends Actor {

import GenericPublisher._

// Automatically register ourself for messages 'from'

override def preStart() {

from ! RegisterListener(self)

}

// Automatically deregister ourself for messages 'from'

override def postStop() {

from ! UnregisterListener(self)

}

// Take the incoming, transform, and send outgoing.

// Note how we keep the original sender as 'from', hiding the

// transformer from the ultimate receiver

def receive = {

case m => to forward transformer(m)

}

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=358

Section 14.4 Chapter 14 · Going Multi-Node with Remote Actors 359

14.4 Going Remote

We’ll run the Airport on another instance of the JVM soon, but before we
do, let’s cover what’s required in order for that to succeed.

1. The jar files for the application must be present on the Airport node.
People often think that Akka will magically distribute code to remote
nodes, but imagining it to be so does not make it so. At this point, you
must have your code on the remote nodes.

2. The node must be configured. There are requirements that Akka im-
poses on the person managing the node with respect to configuration,
and this means you’re on the hook for that.

We’ll take the code-deployment question and just assume it’s cool. We
all know how to install Java, Scala, drop in jar files in the right places, and
get our apps to run, so let’s mark that as golden.

Configuration is a bit more interesting. You can set or tweak a lot of pa-
rameters in the configuration to manipulate the remote system. We’ll cover
some of them, but not all. You can always refer to the Akka reference docu-
mentation for more information.

akka {
actor {
provider = "akka.remote.RemoteActorRefProvider"

}
remote {
transport = "akka.remote.netty.NettyRemoteTransport"
netty {
hostname = "127.0.0.1"
port = 2552

}
}

}

The required setting is akka.actor.provider =
"akka.remote.RemoteActorRefProvider". It’s essentially Akka magic
that tells it that it can use a different implementation of its underlying guts
when providing references to Actors. Everything else is optional. You can

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=359

Section 14.4 Chapter 14 · Going Multi-Node with Remote Actors 360

manipulate many settings to mess with Netty (the underlying transport im-
plementation), such as:

• Requiring a secure cookie between endpoints

• Deciding whether or not to reuse an incoming connection for outbound
messages

• Changing the host name that the server sends in its messages

• Changing the port on which the server listens

• Determining how much memory to consume

• Deciding how to configure SSL

You can also configure aspects of the Akka-specific settings as well:

• Deciding whether or not to use “untrusted mode.” The messages that
Akka uses to communicate with itself (known as “System Messages”)
can be either ignored between nodes, or accepted. If they are ignored,
then you’re in “untrusted mode” and if they are accepted you are in
“trusted mode.”

• Logging of particular events. You can log received messages, sent
messages, as well as remote life-cycle events.

For our purposes, we’re only concerned with the host name and the port
of the configured instance.

Airport and Plane Configurations

We’ll have two configurations: one for the Airport(s) and one for the Plane.
Once we have these configurations, we can run two Akka instances that com-
municate with one another.

To make testing easier, we’ll have two JVM instances on one machine
rather than two JVM instances on two machines. Deploying to two different
machines really doesn’t change what we’re doing, other than the configura-
tion file changes that would occur (i.e., change the akka.remote.netty.hostname
value).

We’ll also put these settings in the same configuration file, but scope
them such that we can isolate the configurations from one another.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=360

Section 14.4 Chapter 14 · Going Multi-Node with Remote Actors 361

The Airport Configuration

The Airport configuration is pretty simple, since it looks almost identical
to what we’ve already seen. It exists in the application.conf file as the
following:

airport-remote {
akka {
actor {
provider = "akka.remote.RemoteActorRefProvider"

}
remote {
transport = "akka.remote.netty.NettyRemoteTransport"
netty {
hostname = "127.0.0.1"
port = 2552

}
}

}
}

The Plane Configuration

The Plane is slightly different, since we’ll have the Plane’s JVM connect
to the Airport’s JVM. Thus, the Plane needs to understand the Airport and
not the other way around. We’ll configure the information about the remote
Airport rather than hard-code that information into the Plane’s source code.

plane-remote {
zzz {
akka {
avionics {
The system, host and port of the Airport we want to use
Alternatively you might want to have a list of these:
e.g. airports = {
["Airport1", "host1", 2552],
["Airport2", "host2", 2552],
["Airport3", "host3", 2552]
}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=361

Section 14.5 Chapter 14 · Going Multi-Node with Remote Actors 362

airport-system = "Airport"
airport-host = "127.0.0.1"
airport-port = 2552

}
}

}
akka {
actor {
provider = "akka.remote.RemoteActorRefProvider"

}
remote {
transport = "akka.remote.netty.NettyRemoteTransport"
netty {
hostname = "127.0.0.1"
port = 2553

}
}

}
}

Note that the Plane’s instance will be running on the local host, but on a
different port than the Airport’s instance (2553 vs. 2552 respectively).

14.5 Flying to the Airport

Not surprising, most of what’s involved to make this work doesn’t have much
to do with Akka; it’s just monkey work to run the two apps and make sure
they’re in good shape.

Currently, there isn’t a ready-for-market solution that makes this work
any easier, but it’s close. Eventually, both a multi-jvm and multi-node SBT
plugin will become available that makes running these sorts of tests incredi-
bly easy.1

1I’ve tried it myself by compiling the required Akka source and publishing it locally on
my own, and it works well. It’s just not the sort of procedure you can reliably write about in
a book.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=362

Section 14.5 Chapter 14 · Going Multi-Node with Remote Actors 363

The Execution Script

We’re going to need something to help us run our code. With the help of SBT
and a bit of shell scripting, we can make this pretty easily. This will only
work on Mac OS X or Linux (or some other unix-like OS). On Windows,
you’ll have to do it the way you have to do everything else. . . with more
difficulty2.

#!/bin/bash

Get the classpath with SBT's help

echo "Getting classpath..."

jars=$(sbt "show test:managed-classpath" 2>&1 | grep 'List' | \

tr ',' '\n' | sed -e 's/.*(\([ˆ)]*\))*.*$/\1/' | tr '\n' ':')

You need to be in the root directory of the project for this

If you're compiling against many versions of scala, this will take

the "last one listed", whatever that is

echo "Expanding classpath..."

classes=$(ls -d target/scala*/classes | tail -1)

testclasses=$(ls -d target/scala*/test-classes | tail -1)

cp=$jars:$classes:$testclasses

Create a run function to make things easier

function run {

scala -cp $cp org.scalatest.tools.Runner -o -s "$@"

}

Run the first N-1 in the background

c=1

while [[$c -lt $#]]

do

eval echo Running $$c...

eval run $$c &

((c=c+1))

done

Run the last one as a blocking process

eval echo Running $$#...

eval run $$#

2Sorry, there’s a reason I never use Windows ¨̂

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=363

Section 14.5 Chapter 14 · Going Multi-Node with Remote Actors 364

If you don’t know what that does, don’t sweat it. The trickiest bit is the
stuff that calculates cp (i.e., the class path), and if it looks like magic to you,
then just accept the magic and move on.

Using this script, we’ll execute two separate runtimes, which will talk to
each other across your machine’s loopback network.

AirportRemoteSpec

While we could just create a main function, instantiate our separate classes,
and check the basic functionality, it’s much nicer to use the facilities of Scala-
Test and the TestKit. The AirportRemoteSpec isn’t really much of a test
class, but it will suffice to help us test the overall communication.

class AirportRemoteSpec

extends TestKit(ActorSystem("Airport", RemoteConfig.config))

with ImplicitSender

with WordSpec

with BeforeAndAfterAll

with MustMatchers {

// Breathes life into the test actor. If we don't do this then there won't

// be any testActor for the other side to communicate with.

val t = testActor

override def afterAll() {

system.shutdown()

}

"AirportRemote" should {

"start up" in {

if (RemoteConfig.runningRemote) {

val toronto = system.actorOf(Props(Airport.toronto()), "toronto")

// We're going to let the other side tell us when to shut down

expectMsg("stopAirport")

}

}

}

}

Pretty simple stuff here. We start up the system and just wait for the
other side to tell us to shut down. The expectMsg() will time out after 3

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=364

Section 14.5 Chapter 14 · Going Multi-Node with Remote Actors 365

seconds, by default, which is more than enough time to complete the test.
The expectMsg() method allows you to increase that time if necessary.

Note how we’re creating the ActorSystem. The airport-remote sub-
config that we created earlier can be loaded dynamically as a configuration
all on its own. This allows us to inject that configuration directly into the
ActorSystem irrespective of any other sub-configs that might be present.

PlaneRemoteSpec

The setup for the PlaneRemoteSpec does much the same as the AirportRemote-
Spec. The internals of the PlaneRemoteSpec are more interesting since it
actually executes the test.

class PlaneRemoteSpec

extends TestKit(ActorSystem("Plane", RemoteConfig.config))

with ImplicitSender

with WordSpec

with BeforeAndAfterAll

with MustMatchers {

import Airport._

import FlyingBehaviour._

import RemoteConfig._

override def afterAll() {

system.shutdown()

}

// Get an ActorRef for the remote system's testActor

def remoteTA(): ActorRef = system.actorFor(

s"akka://$asys@$host:$port/system/testActor1")

// Get an ActorRef for the remote system's toronto airport

def toronto(): ActorRef = system.actorFor(

s"akka://$asys@$host:$port/user/toronto")

// Tells us whether or not the toronto airport has actually been found

def actorForAirport: Boolean = toronto() != system.deadLetters

"PlaneRemote" should {

"get flying instructions from toronto" in {

if (runningRemote) {

// Wait for the toronto airport to come online

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=365

Section 14.5 Chapter 14 · Going Multi-Node with Remote Actors 366

awaitCond(actorForAirport, 3.seconds)

val to = toronto()

// Fly there

to ! HeadTo(testActor)

// We should be getting Fly directives

expectMsgPF() {

case Fly(CourseTarget(altitude, heading, when)) =>

altitude must be > (1000.0)

heading must be (314.3f)

when must be > (0L)

}

// We got it. Shut down.

remoteTA() ! "stopAirport"

}

}

}

}

Note that we are pulling the ActorRef for the Toronto Airport and the
remote testActor (we know it will be called testActor1 and is a child of the
/system guardian).

There’s an invocation of TestKit’s awaitCond() to ensure that we ac-
tually get the reference. We have to handle the race conditions imposed by
starting up independent systems, so we’ll use the awaitCond() to help us
here. Akka’s upcoming facilities give us “barriers” that solve this problem
much better.

To run this, we use the script we created:

run_remote_tests.sh zzz.akka.avionics.AirportRemoteSpec \
zzz.akka.avionics.PlaneRemoteSpec

This test should succeed just fine, even though it does the following next-
level (and pretty awesome) stuff:

• Launches the remote Airport and instantiates the Toronto instance.

• Retrieves that instance, using the remote address; however, the ob-
tained reference looks just like any other ActorRef we’ve seen before.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=366

Section 14.6 Chapter 14 · Going Multi-Node with Remote Actors 367

• Registers a new ActorRef to the Toronto airport to receive events. The
local ActorRef (i.e., the PlaneRemoteSpec’s testAcor) gets properly
serialized and sent over the “wire” such that messages sent are routed
back to the right spot—yes, that’s awesome.

• Transforms the Beacon message into a Fly message, magically serial-
izes that across the “wire,” drops it into the testActor’s Mailbox in a
deserialized format, and processes it as normal.

Our code, aside from the need to look up the Toronto airport using a
fully specified URI, is entirely ignorant of the complexity that is occurring,
which is as it should be from any toolkit as advanced as Akka.

Take a minute and let that sink in. Now go tell a loved one that you may
have just discovered the multi-node concurrency equivalent of the Hammer
of Thor.

14.6 Programmatic Remote Deployment

One neat thing that you can do with the Akka remoting subsystem is to dy-
namically deploy an Actor to a remote node from inside another running
Actor on the local node.

For Akka to perform the deployment, you need to specify a “scope” for
that deployment. Much like before, we can have some test code, but this
time it will deploy the Airport instead of connecting to it.

// Tells us when the Airport spec's testActor comes online

def actorForAirportTA: Boolean = remoteTA() != system.deadLetters

"PlaneRemoteDeployClientSpec" should {

"deploy the Airport remotely" in {

if (runningRemote) {

// These are some new imports we haven't seen before

import akka.actor.{Deploy, Address, AddressFromURIString}

import akka.remote.RemoteScope

// Wait for the Airport test system to come online

awaitCond(actorForAirportTA, 3.seconds)

// Another way to get an Address of a remote system

val addr = Address("akka", asys, host, port.toInt)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=367

Section 14.6 Chapter 14 · Going Multi-Node with Remote Actors 368

// Deploy the Airport

val toronto = system.actorOf(Props(Airport.toronto()).withDeploy(

Deploy(scope = RemoteScope(addr))), "toronto")

// Just verify that it looks like we expect

toronto.path.name must be ("toronto")

toronto.path.address must be (addr)

// Tell the Airport spec to validate the test

remoteTA() ! "goodToGo"

}

}

}

Notice how the Props usage states that it should have a specific mode
of deployment. We use the Deploy class to specify how/where a particular
Actor path should be created. Of particular interest here is how we’re using
the scope parameter to specify a new deployment scope for the Airport.
The deployment scope directs Akka to deploy the Actor in a LocalScope or
a RemoteScope. Generally speaking, there’s no reason to use LocalScope
and thus we’re only interested in the RemoteScope here. The RemoteScope
requires an Address in its construction, which defines the remote node on
which the deployment is to take place.

The verifications we make in the test merely indicate what the particular
aspects of the ActorRef’s path become. These will contrast with the resulting
path of the created Actor on the remote node. Let’s look at that aspect of the
test now.

// Breathes life into the test actor. If we don't do this then there won't

// be any testActor for the other side to communicate with.

val t = testActor

def actorForAirport: Boolean =

system.actorFor("/user/toronto") != system.deadLetters

"AirportRemoteDeployServer" should {

"let the Plane deploy an Airport over here" in {

if (RemoteConfig.runningRemote) {

expectMsg("goodToGo")

// Wait for the toronto airport to come online

awaitCond(actorForAirport, 3.seconds)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=368

Section 14.6 Chapter 14 · Going Multi-Node with Remote Actors 369

val toronto = system.actorFor("/user/toronto")

// Verify that it looks as we expect

toronto.path.name must be ("toronto")

toronto.path.address.system must be ("Airport")

toronto.path.address.port must be (None)

toronto.path.address.host must be (None)

}

}

}

Our “server” here simply spools up and waits to be told to verify the
test. When the testActor receives the message "goodToGo", it awaits the
creation of the Toronto Airport and then validates the aspects of the created
path.

Note how the path is entirely ignorant of the “remoteness” aspect of
things. Akka is managing this for us.

It’s time to discuss the Hammer of Thor again. This Props class is some-
thing we’ve been using for quite a while, but its importance has never really
been all that clear. The deployment aspect of it, and the fact that it’s en-
capsulating these construction-dependent details for us, makes it largely an
awesome abstraction. The factory method (i.e., Airport.toronto()) gets
transmitted across to the remote node. It’s not that we construct the object
on the local node and then send it over; we’re sending the construction com-
mand instead. The Props class hides all of this stuff from us, allowing Akka
to do the awesome work of constructing the Actor remotely and stitching its
existence back across the wire so that we can communicate with it.

Relativity Effects

Performing a deployment like this is different than what we did previously,
where we looked up a pre-existing Actor instance on a remote machine.

With the lookup strategy, our Plane system’s test simply had an ActorRef
to an Actor running inside a remote node, but when we deploy from another
system, the relationships are different. The relationship isn’t different than
anything we’ve seen before, however; it’s a parent/child relationship.

To be more specific, let’s say we created the deployed Actor from within
another Actor, like this:

context.actorOf(Props(Airport.toronto()).withDeploy(

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=369

Section 14.7 Chapter 14 · Going Multi-Node with Remote Actors 370

Deploy(scope = RemoteScope(addr))), "toronto")

Then "toronto" becomes a child of that current Actor, subject to all of
the usual aspects therein. It’s now easy to see how you can couple Actor
hierarchies together on remote nodes, if that’s a strategy you need, or just as
easily decouple them for whatever purposes you deem necessary. Flexibility
is one of the design drivers for Akka, and it shows.

14.7 Configured Remote Deployment

We can also take the programmatic approach we just used via configuration.
You should certainly consider this approach for particular aspects of your
application that you want Administrators to have some control over.

The details of remote deployment are now well understood, so learning
how to do it with configuration is a snap. In fact, in code, it looks even easier
than it does without configuration; it actually doesn’t look like we’re doing
anything at all!

We can create a configuration for our Actor that hooks on to the Actor’s
create path, and Akka will then intercept that creation attempt based on the
specified creation path and forward that creation to the remote node.

akka.actor.deployment {

/toronto {

remote = "akka://Airport@airportHost:2552"

}

}

Now in the code, we just need to create the Actor in a way that looks like
we’re creating it locally; we don’t need to know what’s going on since the
Administrator will take on that burden.

// "Magically" gets created on the remote node!

val toronto = context.actorOf(Props(Airport.toronto()), "toronto")

Hammer of Thor, dear reader, Hammer of Thor.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=370

Section 14.8 Chapter 14 · Going Multi-Node with Remote Actors 371

14.8 Routers Across Multiple Nodes

Remember that somewhat enigmatic ScatterGatherFirstCompletedRouter we
saw earlier? Up until now, it probably seemed like a bit of an odd duck. Why
spawn a bunch of the same jobs on the local machine, sucking all kinds of
CPU, and then ignore most of that work? Well, yeah, that’s pretty odd in-
deed. But, when you can magically deploy routees to remote nodes, things
become a bit more impressive.

Just as Routers can be configured to do what they do, and remote de-
ployment can be configured to do what it does, so can remote Router de-
ployment. You understand Routing, and you understand Remoting, so now
you just need to understand the configuration glue that sticks them together.

Assume you have an Actor that calculates Fibonacci numbers for you. . . big
ones. You don’t know how busy the machines in your network are, or how
powerful they are, and you’re an evil genius that has no problem sucking
down CPU on tons of machines, so you define this:

akka.actor.deployment {

/evil/fibonacci {

router = "scatter-gather"

nr-of-instances = 20

target {

nodes = [

"akka://system@10.0.0.1:2552",

"akka://system@10.0.0.2:2552",

"akka://system@10.0.0.3:2552",

...

"akka://system@10.0.0.20:2552"

]

}

}

}

Now when you send your request to calculate the 200,000,000th Fi-
bonacci number to the /evil/fibonacci router, it will beat up 20 different
machines and make them weep. The first one that finishes will return results
to you, and the others will just continue chugging along until their hearts
explode.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=371

Section 14.9 Chapter 14 · Going Multi-Node with Remote Actors 372

14.9 Serialization

Up to this point, serialization has been a no-brainer. We’ve been using data
types that are all easily serialized by default, so there’s literally no work for
us to do. This is absolutely ideal, and if you can stay in this world, stay in it.
Why write serializers and deserializers when you don’t have to?

However, there are entities out there that cannot be serialized out of the
box. They may be things that you create or things that someone else creates,
but in either case if you want to send them to a remote Actor, you have to
provide a serializer and deserializer.

When You Need Custom Serialization

There’s a difference between implementing a class such that it is serializ-
able and implementing your own serializer. If you merely want to make a
certain class serializable, then you just need to implement the appropriate
interface or trait, depending on which serialization method you need.

Another thing to note is that case classes are immediately serializable
(assuming they aren’t composed of something that isn’t serializable). So if
all you use are types that are serializable (e.g., String, Int, Boolean, ActorRef,
etc.) and you compose these types inside case classes, then there’s literally
nothing you need to do.

However, if you really do have a need to implement a serializer of your
own, you’ll find that doing so isn’t all that difficult. Let’s assume you have
this wonderful class that isn’t a case class and you need to create a serial-
izer for it.

class SerializeMe(val message: String) {

// When we don't use a case class, there's a lot we don't get for free,

// and this is one of them. At a minimum we need to implement equals()

// in order to test that serialization works.

override def equals(a: Any): Boolean = {

if (!a.isInstanceOf[SerializeMe]) false

else a.asInstanceOf[SerializeMe].message == message

}

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=372

Section 14.9 Chapter 14 · Going Multi-Node with Remote Actors 373

Creating the Serializer

We can create a serializer for SerializeMe by implementing what’s required
by Akka’s Serializer trait.

class SerializeMeSerializer extends akka.serialization.Serializer {

// We don't need to inspect the type of this thing. We know what it is.

// If we wanted to be more general, Akka would ship the manifest to us

// and let us inspect what it is that we should be deserializing

def includeManifest: Boolean = false

// We need a unique identifier here. Make one up... intelligently

def identifier = 28591953

// Convert the object to a binary representation

def toBinary(obj: AnyRef): Array[Byte] = {

if (!obj.isInstanceOf[SerializeMe]) {

throw new java.io.NotSerializableException(

s"SerializeMeSerializer can't serialize ${obj.getClass.getName}%s")

}

val m = obj.asInstanceOf[SerializeMe]

m.message.getBytes("UTF-8")

}

// Convert the binary representation back to an object

def fromBinary(bytes: Array[Byte], clazz: Option[Class[_]]): AnyRef = {

new SerializeMe(new String(bytes, "UTF-8"))

}

}

Wiring Up the Serializer

Next, we need to wire up the serializer to the class that it works with by
modifying the configuration file. You would make these changes in the
application.conf as usual.

akka.actor {
serializers {
special = "zzz.akka.investigation.SerializeMeSerializer"

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=373

Section 14.9 Chapter 14 · Going Multi-Node with Remote Actors 374

serialization-bindings {
"zzz.akka.investigation.SerializeMe" = special

}
}

Verifying the Serializer

And we can verify that it works by performing a manual serialization/deserialization
operation:

import akka.actor.ActorSystem

import akka.serialization._

val system = ActorSystem("SerializationSpec")

val serialization = SerializationExtension(system)

"Serializer" should {

"serialize custom stuff" in {

val original = new SerializeMe("Hithere")

val serializer = serialization.findSerializerFor(original)

val bytes = serializer.toBinary(original)

val copied = serializer.fromBinary(bytes, manifest = None)

original must be (copied)

}

}

Serialization Options

There are other options for serialization that make certain claims that you
might find interesting—most notably, speed. The Akka reference topic on
Serialization may be more current than this book, so you should consult the
reference for the real answer. But at the time of writing, the alternatives are:

• Protocol Buffers: a serializer for serializing using the Google Protocol
Buffer format.

• Quickser: a serialization library that claims to be “quick” (hence the
name).

• Kryo: another serialization library that has some pretty good traction.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=374

Section 14.10 Chapter 14 · Going Multi-Node with Remote Actors 375

We won’t look at or review them here; just be aware that you have options
if you want.

Serialization Tips

Let’s clarify a few things regarding serialization:

• The serializer we created isn’t exactly ideal; you wouldn’t want to de-
clare a separate serializer in the configuration file for every class that
you create. What you might do instead is implement serialization of
the standard Java Serializer (i.e., implements java.io.serializable)
and not need to do anything else. You could, of course, do this for any
of the other serialization options.

• Watch out for any accidental closures. If you’re trying to get a default
serializer to serialize something that you’ve defined as an inner class
of something else, you may find that the “accidental” closure you’ve
created fails to serialize.

• If you really do need to create your own serializer, you’d do so us-
ing a trait or an interface. The binding you would then create
would declare that the interface is what is bound to the serializer. This
is exactly how Akka handles Java Serialization, for example. The
akka.serialization.JavaSerializer is bound to classes of type
java.io.Serializable. In other words, we introduce a layer of in-
direction, and thus solve every known problem of the human race.

14.10 Remote System Events

An Aside into Language

Akka Remote Nodes operate in a “peer” sense; they’re both clients and
servers to each other. This is probably what you’d expect, and it makes per-
fect sense. . . until you start talking about it. The terminology we use to de-
scribe systems such as these hasn’t quite evolved as well as the code has, and
as such these discussions tend to become rather convoluted rather quickly.

The only clear way I’ve found to discuss these sorts of systems, in gen-
eral, is to speak in terms of “client” and “server,” but to bind those words to
a particular node context. To ensure that your friends and co-workers don’t

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=375

Section 14.10 Chapter 14 · Going Multi-Node with Remote Actors 376

Plane Node Airport Node

(Outbound) RemoteClientLifeCycleEvent

(Inbound) RemoteServerLifeCycleEvent

Plane Node Airport Node

(Outbound) RemoteClientLifeCycleEvent

(Inbound) RemoteServerLifeCycleEvent

Figure 14.3 · The words RemoteClientLifeCycleEvent and RemoteServer-
LifeCycleEvent only have meaning when we bind them to a particular node
context. A “client” event for the Plane Node is a corresponding “server”
event for the Airport Node and vice versa.

sock you in the mouth during a heated Akka Remote discussion, you should
be diligent about saying things like “Plane Server” and “Airport Client” in-
stead of just “Server” and “Client.” The latter misstep will probably be some-
thing you eventually regret. The image of Figure 14.3 should be ever-present
in your mind.

Remote Life-Cycle Events

Clearly Akka is doing some work for us behind the scenes that lies in the
realm of the ultra-neato. If you need to snoop in on these events, for the
purposes of reacting to them, you just need to look to the Event Stream.

To illustrate the events, how to use them and what to expect, we’ll im-
plement the code for what you see in Figure 14.4. We’ll put this code into
similar test specs that we’ve had before, for our Plane and our Airport, and
they can be run using the same script we created earlier.

The Airport spec is wonderfully simple; we just need to wait for the
Plane to tell it to shut down.

// Breathes life into the test actor. If we don't do this then there won't

// be any testActor for the other side to communicate with.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=376

Section 14.10 Chapter 14 · Going Multi-Node with Remote Actors 377

Plane Node

Talk to the Airport Spec's TestActor

Airport Node

Plane Node Airport Node
(Shutdown)

3. RemoteClientDisconnected
4. RemoteClientShutdown

1. RemoteClientConnected
2. RemoteClientStarted

Figure 14.4 · Sending the message to the Airport Server connects and starts
the Plane Client, while the shutdown of the Airport Server subsequently dis-
connects and shuts down the Plane Client.

val t = testActor

"AirportShutdownSpec" should {

"shutdown when told to" in {

if (RemoteConfig.runningRemote)

expectMsg("stopAirport")

}

}

We’ll examine the Events in the Plane’s spec. Note that these are simply
Plane Client events that we’re examining.

"PlaneShutdownSpec" should {

"deploy the Airport remotely" in {

if (RemoteConfig.runningRemote) {

// Specifically, we're interested in the following events

import akka.remote.{RemoteClientLifeCycleEvent,

RemoteClientConnected,

RemoteClientDisconnected,

RemoteClientStarted,

RemoteClientShutdown}

import akka.actor.Address

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=377

Section 14.11 Chapter 14 · Going Multi-Node with Remote Actors 378

// Subscribe to all events that pertain to the Plane Client

system.eventStream.subscribe(testActor, classOf[RemoteClientLifeCycleEvent])

// Wait for the Airport test system to come online

awaitCond(actorForAirportTA, 3.seconds)

// Tell the Airport to shut down

remoteTA() ! "stopAirport"

// Sending that message initiates all of the following events

expectMsgClass(classOf[RemoteClientConnected])

expectMsgClass(classOf[RemoteClientStarted])

expectMsgClass(classOf[RemoteClientDisconnected])

expectMsgClass(classOf[RemoteClientShutdown])

}

}

}

There are more events that you can look at, and you should consult
the Akka reference documentation to see them. The mechanism by which
you register for them and examine them doesn’t change; the different events
merely tell you different things.

14.11 On the Subject of Lost Messages

One thing that comes up a lot on the Akka Mailing list revolves around the
notion of “guaranteed delivery.” Akka makes a very clear and concise state-
ment on this subject: Akka does not provide guaranteed delivery. And, of
course, this is often met with a WTF?3

A system that provides guaranteed delivery can be very expensive and
complicated, and generally speaking you don’t need it. There are a whole
host of applications that work just fine without it and the Actor model, which
provides deterministic behaviour in the case of failure, helps you handle
these situations with a fair bit of grace.

With that said, we will cover a pattern (later in the book) that helps you
handle these situations before they fail. For now, just hang tough. Guaran-
teed delivery isn’t always the absolute-necessary-must-have-or-my-world-is-

3I’m pretty sure this stands for Wallabies Taste Fruity, but I’m not sure why people keep
using it in this context.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=378

Section 14.12 Chapter 14 · Going Multi-Node with Remote Actors 379

going-to-be-sucked-into-a-black-whole thing that people often imagine it to
be.

14.12 Clustering

At the time of this writing, the Akka team is designing and building a clus-
tering feature. The details haven’t been fully worked out yet and the feature
itself is a bit of a moving target, so it’s not settled enough to talk about in any
great detail. But. . .

The clustering feature will fill in several needs in the “large computing”
space. It will provide things such as load-balancing, redundancy, and no
single-point-of-failure fault-tolerance. This is the kind of stuff that helps you
handle the problems of trying to run your software for millions or hundreds
of millions of concurrent users across oceans of time and space.

In this chapter, we didn’t cover things like what to do when a node fails,
for example. At the present time, you would have to code these solutions
on your own. You can certainly do it, but the plan is to have the clustering
feature solve these types of problems much better than you or I could solve
them.

So, rest assured that the Akka team has your back if you’re a large-scale
shop. By the time you’ve read this book, and have become a proficient Akka
developer, the clustering feature will be out or will be on the cusp.

14.13 Chapter Summary

That was quite the whirlwind tour of remoting in Akka. The bottom line is
that the Akka team has done a magnificent job of keeping your application
mostly ignorant of all of the complexity that revolves around the remoting
system. Your skills have increased too; if this were an online multi-player
game, then by now you’d be a Level 7 Akka Mage with the power to trans-
mute squirrels into demons in charge of the undead.

Let’s take a minute to sum up:

• ActorRefs are ActorRefs, no matter where the Actor is deployed. Your
application doesn’t need to understand where things are, and even
sending an ActorRef in a message to an Actor on a remote machine
works as expected.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=379

Section 14.13 Chapter 14 · Going Multi-Node with Remote Actors 380

• Message serialization is basically automatic. It’s only when you do
something special (like using a class that’s not automatically serializ-
able) that you need to do something “special” (like writing a serializer
for it).

• When you want to deploy to remote nodes, you have the power to
do so programmatically or via configuration. The configuration route
allows you to put more power into the hands of your Administrators,
and create less work for yourself.

• Routers and Remoting both start with “R”, and they work very well
together. Coincidence? Don’t kid yourself.

• You’ve gained insight into the event model that surrounds the remoting
module and can hook into the client and server life cycles of the nodes
in question.

• You’re more than ready for discussions around servers and clients in
context.

• The subject of “guaranteed delivery” is firmly cemented in your neo-
cortex4 and you’re ready to write your applications with that in mind.

We’ve even talked about the yet-to-be-released clustering feature. Clus-
tering isn’t required for many things but it certainly is nice to have in your
toolkit (well, it’s a must have) when you want to go really big. The lack of
clustering doesn’t really stop you from going big at all, it just means you
have a bit more work to do, and you have a lot of the skills to make this
happen now, if necessary.

Before moving on to the next chapter, if you want to take some time
transmuting a few squirrels into some undead demon masters, I’ll totally
understand. Just keep them away from the puppies.

4Actually, that’s not where it went, but it sounds good.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=380

Chapter 15

Sharing Data with Agents

Actors hide their data in a secure fortress, ensuring that access from the
outside world is controlled and safe. When you want to get a value from an
Actor, you send it a message and the result comes back at some point later.
For reactive-based programming, this is great, but when all you want to do
is modify and/or access some sort of data that is effectively shared, it can be
a little less than optimal. Agents are designed for this sort of situation.

Agents invert a concept that you normally would write on your own. For
example, if you want an Actor to represent some sort of counter, you might
write this:

object CounterActor {

case class AlterBy(value: Int)

case object GetValue

}

class CounterActor extends Actor {

import CounterActor._

var counter = 0

def receive = {

case AlterBy(value) =>

counter += value

case GetValue =>

sender ! counter

}

}

implicit val askTimeout = Timeout(1.second)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=381

Section 15.1 Chapter 15 · Sharing Data with Agents 382

val counter = system.actorOf(Props[CounterActor])

counter ! AlterBy(1)

Await.result(counter ? GetValue, 1.second) must be (1)

We code the logic for knowing what to do to the internal state into the
Actor itself; the outside world sends a message to the Actor that invokes the
logic within it. Agents invert this by being more general. An Agent accepts
logic that operates on the internal data and modifies the value using that
logic. From a practical perspective, the following is identical to the previous
example’s functionality:

implicit val awaitTimeout = Timeout(1.second)

val counter = Agent(0)

counter send { _ + 1 }

counter.await must be (1)

At this point in your understanding, it’s not hard to guess what the Agent
is doing. Agents are helpful wrappers around Actors. While they invert the
paradigm that we would normally write (i.e., moving the logic outside the
Actor instead of inside), they also provide a non-message-based interface to
them, which can give us more convenient access to their functionality. But
the heart of the Agent is, most definitely, an Actor.

15.1 SBT

Agents are a separate module in Akka, which means that we need to include
them in the SBT build in order to use them.

libraryDependencies ++= Seq(

// as before

"com.typesafe.akka" % "akka-agent" % "2.1"

)

15.2 Agents as Counters

One of the most common uses for Agents is to implement counters. A
counter in this context denotes something that is used to collect statistics

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=382

Section 15.2 Chapter 15 · Sharing Data with Agents 383

about a running application. You can have your Actors publish stats to an
Agent, or set of Agents, that you can then interrogate as often as you see fit.
You can also log them regularly on a timer, if you wish.

We can add a whole host of counters to our Plane, such as the number of
drinks served, the number of course changes, how many times the auto pilot
was engaged, the mean time between control changes, and even the number
of times people used the bathroom.

In the spirit of continuing to learn by example, let’s build the bathrooms
on the Plane and add a couple of counters to it.

The Most Important Part of the Plane

I don’t know what you think the most important part of the plane is, but I
used to fly from Canada to Switzerland regularly and, while I’m sure there
are all kinds of useful doo-dads and whatcha-hoozits that “flying people”
will tell you are really important, when you’re flying for 10 hours non-stop
with two meals and a lot of drinks, the lack of a solid lavatory would be
noticed.

So, let’s build some Lavatories using the skills we have attained thus far.
Since only one person can use it at once, and it can be put into a state of
Vacant or Occupied, we’ll model this with a state machine.

// GenderAndTime will be what's stored in two Agents, one for Male and

// one for Female passengers

sealed abstract class Gender

case object Male extends Gender

case object Female extends Gender

case class GenderAndTime(gender: Gender, peakDuration: Duration, count: Int)

object Bathroom {

// The States for our FSM

sealed trait State

case object Vacant extends State

case object Occupied extends State

// The Data‘ for our FSM

sealed trait Data

case class InUse(by: ActorRef, atTimeMillis: Long,

queue: Queue[ActorRef]) extends Data

case object NotInUse extends Data

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=383

Section 15.2 Chapter 15 · Sharing Data with Agents 384

// Messages to and from the FSM

case object IWannaUseTheBathroom

case object YouCanUseTheBathroomNow

case class Finished(gender: Gender)

// Helper function to update one of the counters

private def updateCounter(male: Agent[GenderAndTime],

female: Agent[GenderAndTime],

gender: Gender, dur: Duration) {

gender match {

case Male => male send { c =>

GenderAndTime(Male, dur.max(c.peakDuration), c.count + 1)

}

case Female => female send { c =>

GenderAndTime(Female, dur.max(c.peakDuration), c.count + 1)

}

}

}

}

class Bathroom(femaleCounter: Agent[GenderAndTime],

maleCounter: Agent[GenderAndTime]) extends Actor

with FSM[Bathroom.State, Bathroom.Data] {

import Bathroom._

startWith(Vacant, NotInUse)

when(Vacant) {

case Event(IWannaUseTheBathroom, _) =>

sender ! YouCanUseTheBathroomNow

goto(Occupied) using InUse(by = sender,

atTimeMillis = System.currentTimeMillis,

queue = Queue())

}

when(Occupied) {

// Can't use the bathroom now... queue up

case Event(IWannaUseTheBathroom, data: InUse) =>

stay using data.copy(queue = data.queue.enqueue(sender))

// Note that we guard the case by the identity of the sender

case Event(Finished(gender), data: InUse) if sender == data.by =>

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=384

Section 15.2 Chapter 15 · Sharing Data with Agents 385

// Update the appropriate counter

updateCounter(maleCounter, femaleCounter, gender,

Duration(System.currentTimeMillis - data.atTimeMillis,

TimeUnit.MILLISECONDS))

// Move on to the next state

if (data.queue.isEmpty)

goto(Vacant) using NotInUse

else {

val (next, q) = data.queue.dequeue

next ! YouCanUseTheBathroomNow

stay using InUse(next, System.currentTimeMillis, q)

}

}

initialize

}

Our bathrooms in all their glory are now ready for use. We can see that
the counters get updated properly in the bathrooms themselves, but we still
have to supply those counters. In general, the best place to do this is at the
application level, which in our case is the Plane. The modifications to it are
fairly straightforward and our goal is to produce something like Figure 15.1.

class Plane extends Actor with ActorLogging {

...

val maleBathroomCounter = Agent(GenderAndTime(Male, 0.seconds, 0))

val femaleBathroomCounter = Agent(GenderAndTime(Female, 0.seconds, 0))

// Start up the bathrooms behind a 4-instance router

def startUtilities() {

context.actorOf(Props(new Bathroom(femaleBathroomCounter,

maleBathroomCounter)).withRouter(

// Use a one-for-one strategy and simply resume on error

RoundRobinRouter(nrOfInstances = 4,

supervisorStrategy = OneForOneStrategy() {

case _ => Resume

})), "Bathrooms")

}

def startPeople() {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=385

Section 15.2 Chapter 15 · Sharing Data with Agents 386

Male
Counter

Female
Counter

Bathroom
Router

Bathroom 1 Bathroom 2 Bathroom 3 Bathroom 4

Concurrent
Modifications

Figure 15.1 · To create more than one bathroom, we’ll use a Round Robin
Router and give each bathroom access to the counter Agents (which will be
housed inside the Plane).

...

val bathrooms = actorForControls("Bathrooms")

...

val people = actorOf(Props(new IsolatedStopSupervisor with OneForOneStrategyFactory {

def childStarter() {

context.actorOf(Props(PassengerSupervisor(leadAttendant, bathrooms)),

"Passengers")

...

}

override def preStart() {

// Get our children going. Order is important here.

startControls()

startUtilities()

startPeople()

...

}

override def postStop() {

// Await the values. If the plane is shutting down then, most likely,

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=386

Section 15.2 Chapter 15 · Sharing Data with Agents 387

// the whole system is going down. If we get a Future result to the values

// then we may not get them until the system has disappeared. Bad news

val male = maleBathroomCounter.await

val female = femaleBathroomCounter.await

// Explicitly close them so they can be reaped

maleBathroomCounter.close()

femaleBathroomCounter.close()

log.info(s"${male.count} men used the bathroom")

log.info(s"${female.count} women used the bathroom")

log.info(s"peak bathroom usage time for men was ${male.peakDuration}")

log.info(s"peak bathroom usage time for women was ${female.peakDuration}")

}

These are the interesting parts of the modifications we need to make; we
won’t belabour the point by going through all the changes required to get the
bathrooms router instance sent down to the passengers since it’s essentially
monkey work and you know how to do all that.

What’s important to understand here is that the counters themselves are
held at the Plane level. The Plane is the granddaddy of the application life
cycle and thus it’s a good spot to store things like this. It’s also a convenient
spot to report the Plane’s shutdown time. When we’re reporting, there are
more interesting things to note:

• We block on the results from the Agents. Normally, in Akka program-
ming, we never block since blocking a thread is pretty evil; however,
in this case, blocking is important.

• We want to log our statistics at the time the Plane shuts down.

• If we just get the current value instead of awaiting the final value, then
our statistics wouldn’t be as accurate as we’d like.

• If we use a Future to get the value, then by the time the Future exe-
cutes, the system may be entirely shut down, which would make the
Future fail.

• We explicitly close the Agents. This allows them to be reaped by the
garbage collector. We know that until we stop an Actor the Actor is
alive and can’t be collected—this is the exact same thing.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=387

Section 15.3 Chapter 15 · Sharing Data with Agents 388

We haven’t covered some aspects of the Agent’s API yet, though we’ve
hinted at them above. Now that you have a pretty solid understanding of the
Agent’s design aspects, we’ll cover the API in some more detail.

15.3 Working with Agents

Agents are a little more involved than we’ve seen thus far. Note that they’re
not complicated, just more involved. This is actually a pretty common thing
that I tend to say about Akka—it’s not complicated; in fact, it’s really quite
simple. If you could call anything complicated, it would be the concurrency
that Akka helps you implement. In this case, the Agent interface has more
methods than we’ve seen thus far that ease the real-life aspects of concur-
rency, which follows the theme of Akka as a whole.

There’s Always a Value, But. . .

An Agent has some aspects that match Actor and Future, but they aren’t
identical to them. For example, if you try to get the value from a Future when
there’s no value yet available, you’ll get an Exception. An Agent differs
because it always has a value. That value may change, but at any given point
in time it always has a value. This is obvious from the fact that constructing
an Agent requires an initial value:

val secretAgent = Agent(007)

So, no matter what happens concurrently with anything in your app any-
where, anytime, you can always get a value from this Agent, even it’s only
007. But of course, this is about concurrency, which means that you need to
be realistic about what “current” really means. Before we start dissecting the
API, remember that concurrency makes determining the following assertion
impossible:

val secretAgent = Agent(007)

secretAgent send { _ + 1 }

secretAgent send { _ + 1 }

secretAgent send { _ + 1 }

secretAgent send { _ + 1 }

// secretAgent.get() must be ... what?

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=388

Section 15.4 Chapter 15 · Sharing Data with Agents 389

At the time when we evaluate get(), the secretAgent could be any
one of five values. This is because get() is being evaluated on the main
thread while the other operations are being evaluated on a separate thread.
This happens through the magic of Scala’s Software Transactional Memory
(STM) implementation, and doesn’t concern us. It’s nifty and awesome, and
the fact that we can ignore it right now is probably its greatest aspect.

15.4 The API

Let’s look deeper at the API, so you can see how to manipulate the awesome-
ness in your own apps.

Setting and Getting Values

We’ve already seen this, so there’s not a ton to say. We initialize an Agent
at construction time, so there’s never a moment where the value can’t be
obtained.

val secretAgent = Agent(007)

If we want to get the value out of this Agent, we have two options; we
can either use the get() method or the apply() method:

val sevenByGet = secretAgent.get()

val sevenByApply = secretAgent()

sevenByGet must be (sevenByApply)

It’s up to you which you want to use. Personally, I prefer get() just
because it makes it obvious that the object you’re calling it on isn’t just your
ordinary object. It’s not like getting an integer out of an integer box—you’re
crossing boundaries of space and time into Scala’s STM module to grab this
particular integer.

There’s another way to get a value out of an Agent, which we’ve already
seen, by awaiting the result. Normally, of course, we try to avoid awaiting
on anything in a concurrent application, but there are times when you need
to do it. This helps us solve the non-determinacy we saw before.

// Timeout is needed for await below

implicit val agentTimeout = Timeout(1.second)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=389

Section 15.4 Chapter 15 · Sharing Data with Agents 390

val secretAgent = Agent(007)

secretAgent send { _ + 1 }

secretAgent send { _ + 1 }

secretAgent send { _ + 1 }

secretAgent send { _ + 1 }

secretAgent.await must be (11)

When we call await, we’re queuing a message in the Agent’s Mailbox.
It will ensure that we get the value that exists some time after the last { _ +
1 } call. We’re not actually guaranteed the value will be 11, since someone
else could conceivably make one or more calls to send in between one of the
ones we made (assuming they had access to it, of course), but we do know
that the value will be as it existed sometime after our last call to send.

Instead of blocking with await, we can use the corollary method, future.
This will give us a Future to the same result that await would deliver, except
that it’s now non-blocking and functional. We know all about Futures now,
so it’s easy enough to guess what you can do with them.

// Timeout is needed for await below

implicit val agentTimeout = Timeout(1.second)

val secretAgent = Agent(007)

secretAgent send { _ + 1 }

secretAgent send { _ + 1 }

Await.result(secretAgent.future, 1.second) must be (9)

Modifying Agent Values

It’s the modification of Agents that really makes them shine. The inversion
of control, coupled with the asynchronous execution and the now-standard
messaging semantics of the Actor model, give us a solid and flexible scheme
for modification.

send

We’ve already seen send, but what isn’t absolutely clear is that the function
that send puts into the Agent’s Mailbox executes on the thread pool on which
the Agent’s Actor is running. In other words, it looks a bit like this:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=390

Section 15.4 Chapter 15 · Sharing Data with Agents 391

class NotARealAgent[T](init: T) extends Actor {

var t: T = init

def receive = {

case ApplyThisFunction(f) =>

t = f(t)

}

}

Clearly, that’s not a real Agent, but from an execution semantic point of
view, it’s basically the same as what send does.

sendOff

Agents can also execute your code off in another thread. This prevents it
from executing on the same reactive thread pool on which the Agent nor-
mally executes (generally the default Dispatcher’s thread pool for the entire
Actor System). The sendOff method allows this to happen and you use it
when you’re sending a function to the Agent that will be “long running.”

Normally in an Actor, we break logic up that might be long running,
or give it to a Future to complete, or give it to another Actor, or. . . . In
an Agent’s case, we don’t have these possibilities. The Agent will run our
code synchronously, and modify the variable based on the result. It can’t run
different operations in parallel because that would ruin the modifications’
sequential nature. And, since the Agent has no idea what’s going on because
you’re the one specifying the logic, you also have to specify the length of
that operation using either send or sendOff.

// Timeout is needed for await below

implicit val agentTimeout = Timeout(1.second)

val secretAgent = Agent(007)

secretAgent sendOff { i => Thread.sleep(200); 5 }

secretAgent send { 10 }

secretAgent.await must be (10)

In the above code, the call to sendOff will delegate that work to another
thread, but will suspend the normal Agent operations so that the send won’t
get processed until the sendOff completes. This keeps things ordered, but
ensures that the standard thread pool won’t get swamped with long-running
operations and, thus, starve everyone else.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=391

Section 15.4 Chapter 15 · Sharing Data with Agents 392

alter and alterOff

send and sendOff have return values of Unit. In contrast, alter and
alterOff have return values of Future[T], which allow you to operate on
the result of your function’s application to the Agent’s internal value. This
might not be much use when you simply provide a value to Agent, but it’s
useful when you’ve given it a real computation to perform.

Note
The url http://www.assembla.com/spaces/akka/tickets/2344
states that the Agent needs some love. This means, for one, that the
curried timeout parameter needs to be implicit. You need to fix this section
once that happens.

// Timeout is needed for await below

implicit val alterTimeout = Timeout(1.second)

val secretAgent = Agent(007)

val f1 = secretAgent.alter({ i => i + 1 })(alterTimeout)

val f2 = secretAgent.alter({ i => i + 1 })(alterTimeout)

Await.result(f2, 1.second) must be (9)

Await.result(f1, 1.second) must be (8)

alterOff works analogously to sendOff with no real surprises. If you
have a long computation for an Agent and you want to get a Future to the
result, use alterOff.

update

The last method you have for modifying an Agent’s value is to use update.
This is fundamentally the same as using send with a value instead of a func-
tion; in fact, the current implementation of update in the Akka source does
exactly that.

implicit val agentTimeout = Timeout(1.second)

val secretAgent = Agent(007)

secretAgent update 12

secretAgent.await must be (12)

Note that, of course, update is meant to take only values of type T, not
single parameter functions of type T => T.

http://www.assembla.com/spaces/akka/tickets/2344
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=392

Section 15.4 Chapter 15 · Sharing Data with Agents 393

Functional Agents

Agents are also functional, in that they implement map, flatMap, and foreach.
However, the semantics of these functional operations differ from what we’ve
seen thus far. Agents are, by definition, side-effect beings; we continually
change what they represent. While the values they represent are immutable
(or at least, should be), their representations constantly change. Functional
programming works when side-effects aren’t present and so we can’t have
the same semantics with the functional side of Agents as we do with the
Actor-based system we’ve seen thus far. This doesn’t make them more or
less useful in the functional paradigm; it simply is a different paradigm with
which we can work in order to get the job done.

For example, we can use map directly, transforming one Agent into an-
other Agent, leaving the first untouched and compare both directly.

// Type annotations added for affect

val secretAgent: Agent[Int] = Agent(007)

val secretAgent2: Agent[Int] = secretAgent map { _ + 1 }

secretAgent2.await must be (secretAgent.await + 1)

Or we can use for-comprehensions to abstract the map and flatMap calls
away while we operate on the Agents’ contents:

val result = for {

first <- Agent(7)

second <- Agent(8)

intermediate = first + 1

} yield first + second + intermediate

result.await must be (23)

It’s pretty standard stuff, but you have to be realistic about things with
respect to concurrency. For example, map will work just fine, but you’re not
guaranteed what value you’ll map over (I mean, how could you?). The value
that you’ll map over is whatever value is obtained from calling get() at that
nanosecond. If you have something more deterministic (e.g., the value after
you’ve done a send), then the Agent’s functional aspects won’t work out in
that situation.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=393

Section 15.5 Chapter 15 · Sharing Data with Agents 394

A Note about Suspend and Resume

Agent has two methods on it called suspend and resume. “Clever”1 pro-
grammers might want to use these functions to do “interesting” things. Don’t.

Akka uses suspend and resume internally to assist in the operation of
sendOff and alterOff. While either of these is executing, the Agent’s
standard operation must be suspended in order to ensure that modifications
remain sequential. You’re not intended to use them.

15.5 Transactional Agents

As far as I can tell right now. . . these don’t work.

15.6 Chapter Summary

Agents are another tool in the Akka toolshed that ease the creation, manipu-
lation, and management of shared data. They’re really great for implement-
ing statistics counters, since any entity can update them at any time, safely
and deterministically. Access to the data they represent is fast when you
don’t care whether modifications are pending, and can be done more deter-
ministically using a message-based approach of retrieval.

You can use Agents to represent other types of data as well, but counters
are by far the most obvious and easy to reason about. In complex systems,
data without state can become quite complex and difficult to reason about.
For example, were you to implement the idea of a bank account with an
Agent, it would be very difficult to represent when the account becomes
overdrawn. In these situations, you might want to model that piece of data
with a Finite State Machine instead.

When it comes to Agents, it might be best to keep things simple. It’s
a lot easier to reason about small pieces of data that require no “context”
in order to be easily understood, and are relevant at any moment in time.
Concurrency, in general, just makes this problematic, and the other Akka
facilities that we’ve seen thus far, which allow us to mix behavioural state
with values as they progress through time, can make these more complex
problems much simpler to solve.

1Yup, I’m being sarcastic.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=394

Chapter 16

Granular Concurrency with Dataflow

Up to this point, we’ve been working with a concurrency that has been
coarse; that is, a function must execute entirely before control returns to
the thread on which it is currently executing. By taking advantage of Scala’s
Continuations feature, along with the power of Futures, Akka has developed
a feature implementation known as Dataflow, along the same lines as the
feature of the same name implemented1 in the Oz programming language.2

Dataflow concurrency lets you write a function so that it appears as a se-
quential method, but is actually broken up into discrete functions that enable
the “sequential” function to execute concurrently with other parts of its own
implementation. For example, here’s a mind-bending piece of code that you
can implement with Dataflow (written in pseudo code):

function() {

// Assign value1 with value2, which doesn't yet exist

value1 = value2 + 10

// Give value2 a value

value2 = 7

return value1

}

result = function()

1http://www.mozart-oz.org/documentation/tutorial/node8.html#chapter.
concurrency

2You can learn more about Oz and the Mozart Programming System at http://www.
mozart-oz.org/

http://www.mozart-oz.org/documentation/tutorial/node8.html#chapter.concurrency
http://www.mozart-oz.org/documentation/tutorial/node8.html#chapter.concurrency
http://www.mozart-oz.org/
http://www.mozart-oz.org/
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=395

Section 16.1 Chapter 16 · Granular Concurrency with Dataflow 396

In that chunk of code, value2 gets used before it gets assigned, which
doesn’t make any sense in a sequential function definition. However, what if
we rewrote it to look more like this:

// Declare value2 as a Promise

value2 = Promise[Int]()

anonymousFunction() {

// Assign value1 with value2, which doesn't yet exist

// We're going to pretend that 'get()' is a blocking call

value1 = value2.future.get() + 10

return value1

}

anonymousProcedure() {

// Fulfill the Promise of value2

value2 complete 7

}

// Run the anonymousProcedure asynchronously

Future { anonymousProcedure() }

// Run the function and get the result

result = anonymousFunction()

Now it looks much more plausible, right? Given that the anonymousProcedure()
runs concurrently with the anonymousFunction() and a Future helps bridge
their separate dimensions, this code now makes sense. Of course, Akka
won’t do something as silly as create a blocking call like the value2.future.get()
we have above, but the goal of the illustration was to introduce Futures and
asynchrony to you.

16.1 Caveats

Before we go hog wild and re-envision everything we’ve seen so far as solv-
able via Dataflow, we have to understand that Dataflow is meant to work with
pure functions. A pure function has no side effects, which means:

1. It is defined solely as a function that operates on its input parameters
and nothing else.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=396

Section 16.2 Chapter 16 · Granular Concurrency with Dataflow 397

2. It will always return the exact same result given the exact same input
parameters, regardless of which planet or in which spatial dimension
it operates.

3. You can’t use things like scala.util.Random.

4. You can’t read from or write to disk.

5. You can’t make calls out to the network or send messages to Actors
that are equally non-pure (which, in general, they’re not).

This does limit the number of things you can solve with Dataflow, but
that limitation is quite small. For example, if you need data from disk, simply
obtain it before you enter Dataflow. Once you have the data, you can pass
it it pure functions inside Dataflow and get the asynchronous operations that
you’re looking for.

16.2 With That Said. . .

The aspect of purity is core to an aspect of Dataflow in which you have the
power to accept or reject as you see fit. Concurrency is complex and has the
potential to cause pernicious bugs, but Dataflow, with the acceptance of and
adherence to the caveats, has the power to put a lot more determinism into
your concurrent code. If a deadlock is going to happen, for example, it will
happen all the time; it is no longer a Heisenbug.

However, if you find the caveats too limiting, then you can choose to
reject them and code with whatever side effects you want. In doing so, you
trade off that determinism and re-introduce the potential to create data races
or other types of concurrency problems. Software development is always
about making intelligent trade-offs. If the trade-off is an intelligent one, then
go for it.

16.3 Getting Dataflow into the Build

At the present time, getting Dataflow into the build isn’t as easy as we’ve
become accustomed to thus far. We need to use the more sophisticated type
of SBT configuration, which is implemented via .scala files instead of .sbt
files. The following example will pull in Dataflow, along with defining the
right bits that get everything working together.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=397

Section 16.4 Chapter 16 · Granular Concurrency with Dataflow 398

import sbt._

import Keys._

object MyBuild extends Build {

lazy val dataflow = Project (

"dataflow",

file("."),

settings = Defaults.defaultSettings ++ Seq(

autoCompilerPlugins := true,

version := "0.1",

scalaVersion := "2.10",

libraryDependencies +=

"com.typesafe.akka" % "akka-dataflow" % "2.1" cross CrossVersion.full,

libraryDependencies <+= scalaVersion { v =>

compilerPlugin("org.scala-lang.plugins" % "continuations" % "2.10")

},

scalacOptions += "-P:continuations:enable"

)

)

}

16.4 Dataflow Values

The difference between a value and a variable is that values can’t vary, but
variables can – cute, huh? As we learned back in Section 2.3, immutability
is a lot easier to reason about, with respect to concurrency, than mutability
is. Dataflow depends on and revolves around the idea of values in order to
achieve its goals.

A Dataflow value can be written to once but read from an infinite number
of times. The key to a Dataflow value is that we implement it as a Future and
can therefore compose it with anything that wants to use it. It also means that
there’s nothing new here for us; a Dataflow value is just an Akka Promise.
We’re about to see how they work inside flow.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=398

Section 16.5 Chapter 16 · Granular Concurrency with Dataflow 399

16.5 Flow

If Dataflow were just Futures, then Futures would also be Dataflow, but the
difference between them is flow. Much like a for-comprehension, flow lets
us compose Futures together in a way that’s convenient and easy to read.

import akka.dataflow._

import scala.concurrent.Await

import scala.concurrent.Future

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.util.Duration

import scala.concurrent.util.duration._

import scala.math.BigDecimal

// Calculate pi to 'n' places

def calculatePiTo(places: Int): Future[BigDecimal] = ???

// calculate the first 'n' Fibonacci numbers

def fibonaccis(n: Int): Future[Seq[BigDecimal]] = ???

// The flow block will return a Future

val perfect = flow {

// 'pie' is now a Dataflow value, which is pi to

// 3,000,000 decimal places returned in a Future

val pie = calculatePiTo(3000000)

// So is 'fibs', which is the first 31,402nd

// Fibonacci numbers returned in a Future

val fibs = fibonaccis(31402)

// The 'perfect' area

val lastFibs = fibs().last

pie() * lastFibs * lastFibs

}

println(Await.result(perfect, 1.second))

Both pie and fibs will calculate asynchronously and then be used con-
currently inside the flow block. In addition, the value of lastFibs and
perfect are not blocking operations; they will be dependent on the results
of the Future Dataflow values, pie and fibs. In other words, the flow block
will return immediately and it will return a Future.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=399

Section 16.5 Chapter 16 · Granular Concurrency with Dataflow 400

Akka handles all of the work involved in splitting up your code into
composable bits and reorganizing it so that it can execute in a non-blocking
manner.

Accessing Values in Flow

You probably noticed pie() and fibs(), and you also might have noticed
that they look a bit weird. We know that pie and fibs are Futures, but we’ve
never seen them used in this way before. That is because a Future doesn’t
have an apply() method on it; i.e., you wouldn’t be able to call pie() if it
were just a plain ol’ Future.

Akka enhances the Future object into something that defines the apply()
method, which holds the hooks that the Continuations feature needs in order
to recompose your code into the appropriate structure. It also provides you
with the type you’re interested in, which makes your code more natural than
it would be if you were just using Futures directly.

val fibs = fibonaccis(31402)

// Won't work - fibs is a Future and doesn't have a "last" method

val lastFibs = fibs.last // <- ERROR

// Works just fine. The apply method resolves the Future into the

// Seq[BigDecimal] in which we're interested

val lastFibs = fibs().last

Sure the first representation looks more natural (i.e., it doesn’t have the
()), but it doesn’t work; Dataflow needs a hook that will help it recompose
your code, and that hook is the apply method.

Creating Values in Flow

There are times when you might want to create a Dataflow value directly,
rather than working with the result of a Future, which you obtained from
some other source. When we want to create a value in a flow block, we
need to create the Future’s Promise, with a Promise instance. Have a look
back to Section 12.3 to refresh your memory on the relationship between
Promises and Futures, if you’re a little fuzzy on that.

To properly create a Dataflow value, we just need to create a Promise
and then assign to it once we have a concrete value we can stick in it.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=400

Section 16.5 Chapter 16 · Granular Concurrency with Dataflow 401

def calculatePiTo(places: Int): Future[BigDecimal] = ???

val perfect = flow {

// Create our Promises

val pie = Promise[BigDecimal]()

val fibs = Promise[Seq[BigDecimal]]()

// Assign to the first with the results from the Future

pie << calculatePiTo(3000000)

// Assign this one directly with the 31402nd Fibonacci number

fibs << BigDecimal("11787086955526126 ... 133457816720073973026")

// Use them just like we always have

val lastFibs = fibs().last

pie() * lastFibs * lastFibs

}

Both Promise and Future have had the apply method added on to them
so that we can use either one in the same way in our code – just another way
the Akka team has made our lives easier.

Note that we can assign a future value to a Promise or we can assign an
immediate value to that Promise, depending on whatever happens to be most
convenient at the time. This is yet another makes-life-easier addition to the
API.

In either case, all we have to do is shift3 the value into the Promise in
order to complete it.

Assigning More Than Once

You can’t assign more than once. So don’t. The compiler will happily let
you do the following:

pie << calculatePiTo(3000000)

if (someInterestingConditionHappened)

pie << BigDecimal(3.1415926535)

3This is not standard Akka terminology; I’m appropriating the word for Dataflow be-
cause I think it really fits nicely. Not only is << historically known as a “shift operator,” but
it also makes a nice picture in my head. In asynchronous code, the idea of immediate as-
signment is often inaccurate, and the notion of shifting an eventual value into an object after
we’ve already moved on seems to speak to the issue much better than “assignment” does.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=401

Section 16.5 Chapter 16 · Granular Concurrency with Dataflow 402

However, this will fail at runtime. At some point, that promise will al-
ready be completed, and Akka will throw an error that states precisely that.
It’ll look something like this:

java.lang.IllegalStateException: problem in scala.concurrent internal callback

... stack trace stuff ...

Caused by: java.lang.IllegalStateException: Promise already completed.

... more stack trace stuff ...

Dataflow guarantees that you’ll get this error anytime you hit the if
block. This is fantastic, since we’re looking to reduce the effects of Heisen-
bugs, but it is a runtime effect. Just be aware that the compiler will happily
let you shift into Dataflow value more than once, but you’re not going to
get away with it at runtime. If you think about and treat Dataflow values as
standard Scala vals, then you’ll have no problem understanding how to use
them.

Multiple Flows

Just to be clear, there’s nothing to stop you from declaring multiple flow
blocks, inside one another or external to one another, all of which might be
working with multiple Promises or Futures defined throughout your applica-
tion. We can play with our previous code to illustrate:

// Calculate pi to 'n' places

def calculatePiTo(places: Int): Future[BigDecimal] = ???

// calculate the first 'n' Fibonacci numbers

def fibonaccis(n: Int): Future[Seq[BigDecimal]] = ???

// Get some Future values

val pie = calculatePiTo(500)

val fib = flow { fibonaccis(31402)().last }

// Get the perfect area

val perfect = flow {

pie() * fib() * fib()

}

// Get an imperfect area

val imperfect = flow {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=402

Section 16.6 Chapter 16 · Granular Concurrency with Dataflow 403

BigDecimal(3.14) * fib() * fib()

}

// Calculate the ratio of the two

val ratio = flow { perfect() / imperfect() }

// Print out that ratio

println(Await.result(ratio, 1.second))

See? We have a lot of flows here, mixed in with some basic Futures and
it all hangs together quite nicely. You can see how perfect and imperfect
both work in parallel, depending on the eventual value of fib. The fact that
fib is defined outside of flows allows different flows to access it, as well
as ensures that it will execute in parallel. This is no different than how we
avoid “Subtle Sequentialism,” which we covered in Section 12.3.

16.6 Another Way to Get Instrument Status

Back in Section 12.6, we used Futures to collect the status of our instruments.
There was nothing wrong with what we did and there’s no reason to change
it. But rather than aggregate status, what if we wanted to simply display it on
the screen? Using Dataflow, we can accomplish that goal in a manner that
might feel more natural to you.

flow {

val altStatus = actorFor("Altimeter") ? ReportStatus

val headStatus = actorFor("HeadingIndicator") ? ReportStatus

val airStatus = actorFor("AirSpeed") ? ReportStatus

val fuelStatus = actorFor("FuelSupply") ? ReportStatus

val status = s"""|Altimeter : ${altStatus()}

|HeadingIndicator : ${headStatus()}

|AirSpeed : ${airStatus()}

|FuelSupply : ${fuelStatus()}"""

status.stripMargin

} onComplete println

Again, there’s nothing stopping you from doing this with standard Future
combinators or using a for-comprehension; it’s totally up to you.

One thing we must note about the above code, however, is that it’s not
pure. Because we interact with Actors, there are aspects of real life that can

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=403

Section 16.7 Chapter 16 · Granular Concurrency with Dataflow 404

come to bite us on the butt; we can get timeouts or network failures, for
example. The lesson here is that just because the flow works the first time
doesn’t mean it will work every time. We sacrificed the caveat discussed
earlier regarding pure functions for Dataflow’s ease of use. If we had done
this with a for-comprehension, then it wouldn’t have been any different; real
life could still bite us in the butts.

16.7 When to Use Dataflow

You can apply Dataflow in a bunch of situations and its lack of obtrusiveness
makes its application quite nice in many cases. Whenever you might use a
for-comprehension, you may choose to use Dataflow instead. It’s really up
to you and how you want your code to look.

Remember that Dataflow is really just Futures under the hood, so any-
thing you can do with Dataflow you can do with Futures, plain and simple.
The Scala compiler and the Akka toolkit are helping you keep the plumbing
mechanisms of Futures out of your way, which is fantastic, but this doesn’t
lend any capabilities to your code that weren’t already available to you.

You also have to remember that not all of the Future’s facilities are
part of Dataflow. There’s nothing magical in Dataflow that will change the
way that you might use Future.sequence or Future.either, for exam-
ple. Dataflow helps you compose your Futures by hiding the syntax as-
sociated with flatMap (see Section 12.3) and other combinators, such as
completeWith, and side-effecting code, such as onFailure.

16.8 Chapter Summary

That’s Dataflow! There’s really not a lot to it, and in fact the implementation
inside Akka to realize it is quite small. Dataflow provides us with a syntactic
variation on the work we’ve done with Futures up to this point, but provides
us with a less coarse implementation that looks much more like imperative
code than we’ve seen to date. It can be a very powerful mechanism that
makes you code easier to reason about and clearer to others, as well as your
future self.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=404

Chapter 17

Patterns for Akka Programming

When a toolkit presents you with as many possibilities as Akka, it can be
very helpful to have a set of “go to” patterns that you can employ to solve
your design issues. In this chapter, we’ll summarize some of the things we’ve
learned and distill them down into a set of patterns you can use.

This won’t be a rigorous definition as you might find in Design Patterns:
Elements of Reusable Object Oriented Software by Erich Gamma, et al. (Ad-
dison Wesley, 1994). We’ll be much less formal here; you should take these
examples, improve upon them, and tailor them to whatever your particular
needs might be. This section aims to help you simplify the way you ap-
proach your Akka application development, so that you can focus on your
application logic.

17.1 Behavioural Composition

We know that you can break up your Actor’s behaviour into multiple meth-
ods that return receive partial functions. We also know that you can com-
bine these together using Scala’s orElse function combinator, which can
make things interesting.

As the number of behavioural functions increase, the number of permu-
tations increases as well. Keeping everything straight can be a real problem,
and constructing the new receive method at each point in the code can also
be quite problematic. To handle this problem, we create a new derivation
of the Actor that allows us to compose the receive partial function with-
out having to know about every component that goes into its construction.
It eliminates the ability to implement receive and replaces it with a new

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=405

Section 17.1 Chapter 17 · Patterns for Akka Programming 406

concept; we add partial functions to a map on construction instead, and let
the composer create the receive method for us.

trait ReceiveCompositingActor extends Actor {

import scala.collection.mutable.Map

// This map will hold the bits and pieces of our ultimate 'receive'

lazy val receivePartials = Map.empty[Int, Receive]

// A couple of constants you can use if you'd like. They indicate that

// the start is a low number and the end is a high number

val StartOfReceiveChain = 0

val EndOfReceiveChain = 10000

// Convenience wrapper around the 'become' operation

def becomeNew(key: Int, behaviour: Receive) {

receivePartials += (key -> behaviour)

context.become(composeReceive)

}

// Composes the ultimate 'receive' partial function by combining the

// partials in sorted order using 'orElse'

def composeReceive: Receive = {

receivePartials.toSeq.sortBy {

case (key, _) => key

}.map {

case (_, value) => value

}.reduceLeft { (a, b) => a orElse b }

}

// Immediately becomes the composed entity

override def preStart() {

super.preStart()

context.become(composeReceive)

}

// Pointless now. We're going to become something new immediately

final def receive: Receive = { case _ => }

}

To illustrate its use, let’s create a few traits that self-type to the Receive-
CompositingActor and thus mix in various bits of behaviour.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=406

Section 17.1 Chapter 17 · Patterns for Akka Programming 407

trait HelloHandler { this: ReceiveCompositingActor =>

val HelloReceiver = 10

def helloHandler: Receive = {

case "Hello" => sender ! "Hithere"

}

// Hello belongs in slot '10' in the chain of receivers

receivePartials += (HelloReceiver -> helloHandler)

}

trait MiddleHandler { this: ReceiveCompositingActor =>

val SmallTalkReceiver1 = 15

val SmallTalkReceiver2 = 16

def smallTalkHandler1: Receive = {

case "So How's the Weather?" => sender ! "Rainy, and lousy..."

}

def smallTalkHandler2: Receive = {

case "How about the Kids? Good?" => sender ! "Sure"

}

// The small talk belongs in the "middle" of the chain

receivePartials += (SmallTalkReceiver1 -> smallTalkHandler1)

receivePartials += (SmallTalkReceiver2 -> smallTalkHandler2)

}

trait GoodbyeHandler { this: ReceiveCompositingActor =>

val GoodbyeReceiver = 20

def goodbyeHandler: Receive = {

case "Goodbye" => sender ! "So Long"

}

// Goodbye belongs in slot '20' in the chain of receivers

receivePartials += (GoodbyeReceiver -> goodbyeHandler)

}

class ComposedActor extends ReceiveCompositingActor

with HelloHandler

with GoodbyeHandler

with MiddleHandler {

val MoodReceiver = 50

def alternateSmallTalk1: Receive = {

case "So How's the Weather?" => sender ! "Sunny! Amazing!"

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=407

Section 17.2 Chapter 17 · Patterns for Akka Programming 408

}

def alternateSmallTalk2: Receive = {

case "How about the Kids? Good?" => sender ! "Funny! Smart! Awesome!"

}

def moodHandler: Receive = {

// Change the small talk from grumpy to happy

case "Happy" =>

becomeNew(SmallTalkReceiver1, alternateSmallTalk1)

becomeNew(SmallTalkReceiver2, alternateSmallTalk2)

// Change it back to grumpy

case "Grumpy" =>

becomeNew(SmallTalkReceiver1, smallTalkHandler1)

becomeNew(SmallTalkReceiver2, smallTalkHandler2)

}

// We'll put the messages that change the mood at the end of the chain

receivePartials += (MoodReceiver -> moodHandler)

}

You can use more sophisticated mechanisms for choosing your keys, if
you like, but this is a pretty simple approach. You could imagine using types
that solidify the knowledge at compile time instead of runtime. You could
also be more sophisticated than that and create a class that orders itself irre-
spective of its “key.” This would separate the ordering from the key and thus
be a little safer. If you need to, go for it.

The bottom line is that now we can change the behaviour of a piece of
the functionality without having to specify unrelated pieces of that function-
ality. When we make the call to becomeNew(key, value), we don’t need to
worry about all of the other unrelated pieces, and that’s the goal of the entire
ReceiveCompositingActor.

17.2 Isolated and Parallel Testing

The ScalaTest framework is quite flexible and gives you a fair amount of
leeway into how you structure your tests. When you implement the simple
test with Akka, there are some drawbacks depending on what you’re doing.
Let’s recap the simple test:

import akka.actor.ActorSystem

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=408

Section 17.2 Chapter 17 · Patterns for Akka Programming 409

import akka.testkit.{TestKit, ImplicitSender}

import org.scalatest.{WordSpec, BeforeAndAfterAll}

import org.scalatest.matchers.MustMatchers

class SimpleSpec extends TestKit(ActorSystem("SimpleSpec"))

with ImplicitSender

with WordSpec

with BeforeAndAfterAll

with MustMatchers {

override def afterAll() = system.shutdown()

"Simple" should {

"do something" in {

// And it works

"Akka" must be ("Akka")

}

}

}

Nine times out of ten this works just fine. We have our ActorSystem, our
TestKit, our ImplicitSender, and everything works great. However, it fails to
work well under certain situations:

• We have an Actor name that conflicts between tests (i.e., you get an
InvalidActorNameException due to the fact that another one already
exists).

• Things become a bit slow and you’d like to run things in parallel.

• You’d like to have each test hold its own testActor, but you’d rather
not use a bunch of different test probes.

• You’re modeling some other interesting behaviour that gets messed up
between tests because it’s inside the same ActorSystem.

In these cases, you’re better off isolating the ActorSystems from each
other. This involves creating Fixtures that contain the ActorSystem, the
TestKit, and the ImplicitSender rather than the Suite. We start by defining
the “Base” test spec from which we can derive a couple of specializations:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=409

Section 17.2 Chapter 17 · Patterns for Akka Programming 410

// Helps us generate unique names for ActorSystems

object TestSystemCounter {

val sysId = new AtomicInteger()

}

trait BaseSpec extends fixture.WordSpec with MustMatchers {

import TestSystemCounter._

type Fixture <: AkkaFixture

val specType: String

// ScalaTest needs to know what our Fixture parameter type is

type FixtureParam = Fixture

// Our basic Fixture. You would derive from this if you want to

// specialize it with more fields, methods, etc...

class AkkaFixture extends TestKit(

ActorSystem(s"$specType-${sysId.incrementAndGet()}"))

with ImplicitSender

// Abstract. Derivations must implement this

def createAkkaFixture(): Fixture

// This is how our tests get run

override def withFixture(test: OneArgTest) {

val sys = createAkkaFixture()

try {

test(sys)

} finally {

sys.system.shutdown()

}

}

}

Given that, we can now derive a specialization that runs tests in isolation
but still sequentially, and another that runs them in isolation but in parallel.

// Runs each test sequentially but provides fixture isolation

trait SequentialAkkaSpecWithIsolatedFixture extends BaseSpec {

val specType = "Seq"

}

// Runs each individual test in parallel

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=410

Section 17.3 Chapter 17 · Patterns for Akka Programming 411

trait ParallelAkkaSpec extends BaseSpec with ParallelTestExecution {

val specType = "Par"

}

These new derivations can be used quite simply. We’ll use the Paralle-
lAkkaSpec as an example, since it’s the most fun.

class TestInParallelSpec extends ParallelAkkaSpec {

type Fixture = AkkaFixture

def createAkkaFixture(): Fixture = new AkkaFixture

"TestInParallel" should {

"work 1" in { f => import f._

val a = system.actorOf(Props[Echo], "Echo")

a ! "Ping"

expectMsg("Ping")

}

"work 2" in { f => import f._

val a = system.actorOf(Props[Echo], "Echo")

a ! "Ping"

expectMsg("Ping")

}

}

}

Note how the tests take a Fixture parameter that is bound to f. By im-
porting f._, we get the convenience of using the TestKit facilities just as
though we included TestKit at the Suite level.

If we didn’t use the Fixture approach for these tests, the second one
would fail with an Exception, due to the fact that the Actor named “Echo” al-
ready exists. So not only do these tests run in parallel, they also run correctly,
which they wouldn’t if the TestKit was included at the Suite level.

17.3 Strategies for Implementing Request/Response

As we’ve already learned, the problem with the request/response idiom is
establishing a context in which to understand the eventual response. For
example, let’s say we have an Actor that makes the plane go up and down.
To any control amount that comes in, we want to tack on some sort of random

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=411

Section 17.3 Chapter 17 · Patterns for Akka Programming 412

“deflection” amount, which an external Actor calculates. Here’s the bad way
to do it:

class BadIdea extends Actor {

val deflection = context.actorOf(Props[DeflectionCalculator])

def receive = {

case GoUp(amount) =>

deflection ! GetDeflectionAmount

case GoDown(amount) =>

deflection ! GetDeflectionAmount

case DeflectionAmount(amount) =>

// Hmm... was I going up or down?

}

}

When we get the response from the deflection calculator, we don’t know
whether we wanted to go up or down (i.e., we’ve lost our context). We can
solve this in a few different ways.

The Future

Using a Future lets us close over the data we might need and also provides
a fairly natural contextual reference for our operation. We can take the Ba-
dIdea above and convert it to a FutureIdea like this:

class FutureIdea(controlSurfaces: ActorRef) extends Actor {

val deflection = context.actorOf(Props[DeflectionCalculator])

def receive = {

case GoUp(amount) =>

// Ask for the deflection amount, transform it to a StickBack message

// and pipe that to the Control Surfaces

(deflection ? GetDeflectionAmount).mapTo[DeflectionAmount].map { amt =>

val DeflectionAmount(deflection) = amt

StickBack(amount + deflection)

} pipeTo controlSurfaces

case GoDown(amount) =>

// Ask for the deflection amount, transform it to a StickForward message

// and pipe that to the Control Surfaces

(deflection ? GetDeflectionAmount).mapTo[DeflectionAmount].map { amt =>

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=412

Section 17.3 Chapter 17 · Patterns for Akka Programming 413

val DeflectionAmount(deflection) = amt

StickForward(amount + deflection)

} pipeTo controlSurfaces

}

}

A really nice thing about the Future is that we can put a timeout on the
request. If the responder fails to respond in a timely manner, the Future will
throw an exception that we can deal with however we like. And it will throw
that exception in a context-sensitive manner, so we can know that request
“B” failed due to a timeout, but request "D" succeeded just fine.

The Actor

Sometimes a Future won’t work out for you all that well. There may be
many messages you want to handle, many states you want to transition, or
just have complex logic that you want to employ. Even when they may be
possible inside of a Future, an Actor may be a clearer representation of what
you want to do. You can either cook up an Actor to handle the problem
for you, or you can do it anonymously. We’ll show the anonymous Actor
method here:

class ActorIdea(controlSurfaces: ActorRef) extends Actor {

val deflection = context.actorOf(Props[DeflectionCalculator])

def receive = {

case GoUp(amount) =>

// Spin up an anonymous Actor to send the StickBack message to the

// Control Surfaces based on the deflection amount

context.actorOf(Props(new Actor {

override def preStart() = deflection ! GetDeflectionAmount

def receive = {

case DeflectionAmount(deflection) =>

controlSurfaces ! StickBack(amount + deflection)

// Remember to stop yourself!

context.stop(self)

}

}))

case GoDown(amount) =>

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=413

Section 17.3 Chapter 17 · Patterns for Akka Programming 414

// Spin up an anonymous Actor to send the StickForward message to the

// Control Surfaces based on the deflection amount

context.actorOf(Props(new Actor {

override def preStart() = deflection ! GetDeflectionAmount

def receive = {

case DeflectionAmount(deflection) =>

controlSurfaces ! StickForward(amount + deflection)

// Remember to stop yourself!

context.stop(self)

}

}))

}

}

This is much like the Future example, but it’s not so easy to put the
timeout on the responses. You’d have to use the ReceiveTimeout message
to indicate that something failed to be received. If you have more than one
thing happening here, though, that can get tricky as the receive timeout resets
when it gets any message at all.

Internal Actor Data

We can use mutable data inside the Actor to help the operational context
survive between message processing.

class VarIdea(controlSurfaces: ActorRef) extends Actor {

val deflection = context.actorOf(Props[DeflectionCalculator])

var lastRequestWas = ""

var lastAmount = 0f

def receive = {

case GoUp(amount) =>

lastRequestWas = "GoUp"

lastAmount = amount

deflection ! GetDeflectionAmount

case GoDown(amount) =>

lastRequestWas = "GoDown"

lastAmount = amount

deflection ! GetDeflectionAmount

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=414

Section 17.3 Chapter 17 · Patterns for Akka Programming 415

case DeflectionAmount(deflection) if lastRequestWas == "GoUp" =>

controlSurfaces ! StickBack(deflection + lastAmount)

case DeflectionAmount(deflection) if lastRequestWas == "GoDown" =>

controlSurfaces ! StickForward(deflection + lastAmount)

}

}

This is pretty hideous, in the general sense, but in certain specific cases
it may serve you well. There are several pitfalls to it:

1. It relies on the fact that you get requests and responses in a particular
order; i.e., GoUp, DeflectionAmount, GoDown, DeflectionAmount,
GoDown, DeflectionAmount, etc. If you get GoDown, GoDown, GoUp,
DeflectionAmount, then it won’t work all that well.

2. It doesn’t survive a restart very well, due to the fact that it resets the
variable data to their initialized states.

3. It’s not very resilient to change. If your Actor becomes more complex,
this varying state of the data may become entirely unwieldy. The state
of the request is not localized to the request, but is now global to the
Actor. It really can only be doing one thing, as opposed to processing
several different things between requests and their paired responses.

4. You have to deal with timeouts. If the responder doesn’t respond by
the time you’d like, you need to figure out how to deal with that.

Message Data

You can also use the message to store this data, which gives you the low
overhead of machine usage (don’t have to spin up a Future or Actor), at the
price of muddying up the protocol a bit.

class MsgIdea(controlSurfaces: ActorRef) extends Actor {

val deflection = context.actorOf(Props[DeflectionCalculator2])

def receive = {

case GoUp(amount) =>

deflection ! GetDeflectionAmount("GoUp", amount)

case GoDown(amount) =>

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=415

Section 17.3 Chapter 17 · Patterns for Akka Programming 416

deflection ! GetDeflectionAmount("GoDown", amount)

case DeflectionAmount(op, amount, deflection) if op == "GoUp" =>

controlSurfaces ! StickBack(deflection + amount)

case DeflectionAmount(op, amount, deflection) if op == "GoDown" =>

controlSurfaces ! StickForward(deflection + amount)

}

}

The price paid here is that the DeflectionCalculator2 must package up
the context data in its responses. There are pitfalls here as well:

1. It opens the door to runtime errors should the data’s repackaging get
screwed up somehow.

2. It increases the coupling between requester and responder.

3. It decreases code flexibility as you wish to add or remove fields.

• This can be mitigated by providing a single case class member
that holds all of the fields, so that the responder remains some-
what ignorant of the issue.

4. It increases payloads that have to go across the network should you
want to send these messages to remote nodes.

5. You have to deal with timeouts. If the responder doesn’t respond by
the time you’d like, you need to figure out how to deal with that.

Internal/Message Data Hybrid

You can hit a middle ground between the internal data and the message data
approaches that solves some of the issues. You put a minimal context into
the message, which we call a tag, and then use that tag as an index into some
internal data to the Actor.

class TagIdea(controlSurfaces: ActorRef) extends Actor {

import scala.collection.mutable.Map

val deflection = context.actorOf(Props[DeflectionCalculator3])

// The map of tags to context

val tagMap = Map.empty[Int, Tuple2[String, Float]]

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=416

Section 17.3 Chapter 17 · Patterns for Akka Programming 417

// Our 'tags' will be integers

var tagNum = 1

def receive = {

case GoUp(amount) =>

// Add the req / rsp context to the map

tagMap += (tagNum -> ("GoUp", amount))

deflection ! GetDeflectionAmount(tagNum)

tagNum += 1

case GoDown(amount) =>

// Add the req / rsp context to the map

tagMap += (tagNum -> ("GoDown", amount))

deflection ! GetDeflectionAmount(tagNum)

tagNum += 1

case DeflectionAmount(tag, deflection) =>

// Get the req / rsp context from the map

val (op, amount) = tagMap(tag)

val amt = amount + deflection

// Remove the context from the map

tagMap -= tag

if (op == "GoUp") controlSurfaces ! StickBack(amt)

else controlSurfaces ! StickForward(amt)

}

}

We can now have multiple things going on at once, which is great, but of
course there are still pitfalls here:

1. The message protocol is still a bit messy. What if they send back the
wrong tag? Yeah, that could be serious death.

2. We still have response timeouts to worry about. You might have to
have something that stores the request timestamp in the map so that
you can sweep through it occasionally to see if anything has timed
out.

3. You’d have to decide how you behave if you restart.

4. We still have that pesky timeout problem.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=417

Section 17.4 Chapter 17 · Patterns for Akka Programming 418

Roundup

OK? There are several different ways to handle the request/response issue
and there are really two major things that seem to sway the decisions on how
you might want to do it:

1. Ease of implementation. Future wins here. . . big time. You can easily
close over what you’d like, naturally create the response context you
need, and everything is hunky dory.

2. Speed. Spinning up a Future to do the work for you may be costly
so you might need to avoid it. That said, don’t prematurely optimize.
If you’re trying to do millions of request/responses per second, that
may or may not be costly. If a profiler tells you that it is, and your
users are experiencing a latency that you can blame on the Future
request/response, then you might consider changing it for those rare
cases where you need to. At that point, you need to pick one of the
other methods that works in your situation.

17.4 Mechanisms for Handling Non-Deterministic
Bootstrapping

There are times when an Actor’s initialization takes time. You can argue that
an Actor should be initialized on construction, and as such cannot be in a
state of limbo. This is a fine goal to achieve but it’s not always possible or,
if it is, the solution can be worse than the original problem. For example, if
you Actor restarts, it may need to read fresh information from the database;
however, if it was constructed with the information from the database, then it
won’t receive fresh data. To do that, you’d have to add a layer of indirection
to the hierarchy, and let the parent read the new information and then recon-
struct the child, but really, what’s the difference? It’s just a more complex
way of doing the same thing.

We saw a flavour of this when we created the FlyingBehaviour FSM;
it had to acquire the controls as well as seed a heading indication and an
altitude indication before it could move on to actually flying the plane.

Things get more interesting when the Actor is visible to the outside world
and is expected to handle requests. If the Actor isn’t initialized to the point
where it actually can handle those requests, then what do you do? Unfor-

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=418

Section 17.4 Chapter 17 · Patterns for Akka Programming 419

tunately, the answer to that question is rather dependent on your problem
domain, but we’ll cover some solutions here.

However, I must make a key point clear: the bootstrapping algorithm
takes place at the same time when other entities are making requests. That’s
just the nature of concurrency. During this time, it is very important to ensure
that the incoming requests have a deterministic outcome. If the bootstrapping
fails, these messages shouldn’t just go to the Dead Letter Office, unless the
client is happy to have that happen (and generally it we would expect that
clients wouldn’t be happy having their requests be silently ignored). It’s this
deterministic client interaction that is the focus of this pattern.

Denial

Denial is the simplest mechanism to deal with this problem. Your server is
unable to handle the request right now, so you give an error back to the client
and tell it to try again later. For example, let’s say that the Actor in question
implements a web service, but during its initialization, it must suck up some
data from an external data store. Until its initialization is complete, it will
send clients a 500 HTTP error.

class WaitForInit extends Actor {

def uninitialized: Receive = {

case DBResults(results) =>

context.become(initialized(results))

case HTTPRequest(req) =>

req.INTERNAL_ERROR("System not ready. Try again soon.")

}

def initialized(data: Map[String, String]): Receive = {

case HTTPRequest(req) =>

// dispatch request and fulfill

}

def receive = uninitialized

}

We simply start in the uninitialized state, which sends errors to all HTTP
requests. Once the database information is in, it can become the initialized
state and handle requests properly.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=419

Section 17.4 Chapter 17 · Patterns for Akka Programming 420

Stashing

Akka ships a trait that you can mix into your Actors and lets you stash
messages away so that you can process them later. We can use this function-
ality to save messages while the Actor is being bootstrapped.

class StashingActor extends Actor with Stash {

def uninitialized: Receive = {

case DBResults(results) =>

// Unstash everything since the behaviour we're about to 'become'

// will be able to handle whatever was stashed away

unstashAll()

context.become(initialized(results))

case HTTPRequest(_) =>

// Can't handle it now. Stash it away.

stash()

}

def initialized(data: Map[String, String]): Receive = {

case HTTPRequest(req) =>

// dispatch request and fulfill

req.OK("Here you go")

}

def receive = uninitialized

}

When we switch to the initialized behaviour, the messages that we
stashed away will be processed.

Now, with that said, there are timeouts to consider. You probably can’t
just keep messages stashed forever—people will eventually want a result,
and you can’t just suck up an infinite amount of memory either. These are
things you need to consider when you’re stashing messages.

Caveats

You can’t use the Stash trait without a particular type of Mailbox. This
means you need to create a configuration for a dispatcher that specifies the
UnboundedDequeBasedMailbox for its mailbox-type, like this:

zzz.akka.investigation.stash-dispatcher {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=420

Section 17.4 Chapter 17 · Patterns for Akka Programming 421

mailbox-type = "akka.dispatch.UnboundedDequeBasedMailbox"
}

Then you need to construct the Actor using the appropriate method on
the Props class:

val a = system.actorOf(Props[StashingActor].withDispatcher(

"zzz.akka.investigation.stash-dispatcher"))

You need to use this specific type of Mailbox because the unstashed
messages are prepended to the Mailbox, which is an expensive operation if
you’ve only got a Queue to work with. A Deque provides very fast prepend
functionality.

Override of preRestart()

The Stash trait overrides preRestart(), which makes it sensitive to where
you mix it in; it must be mixed in before anything else that overrides preRestart().
For example:

class SomeMix { this: Actor =>

override def preRestart() {

...

}

// You can do this:

class WithStashed extends Actor with Stash with SomeMix

// But you CANNOT do this:

class WithStashed extends Actor with SomeMix with Stash

Regarding Restarts

The stashed messages do not survive an Actor restart. Generally speaking,
this should be perfectly fine for most cases where you might want to stash,
but you need to be aware that a restart of your Actor is going to empty your
stash. You may need to put some try/catch blocks in your code to ensure
that the Actor doesn’t restart when you don’t want it to.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=421

Section 17.5 Chapter 17 · Patterns for Akka Programming 422

17.5 The Circuit Breaker

You might remember the days of the Twitter “Fail Whale.” Every once in a
while you’d see this picture pop up when you went to Twitter of an enormous
smiling whale, hopelessly being lifted by a bunch of tiny birds, indicating
that they were under high load and simply couldn’t service your request.1

The Fail Whale showed up in order to protect the server from load spikes
as a last-resort measure. Twitter simply can’t do what you want because the
load on the system is too high, and if they were to try to help you out, it
would only make things worse. So they tell you to get lost for a while until
things calm down. This type of behaviour is nicely implemented using what
is known as a Circuit Breaker.

We won’t go into great detail about this here, since Akka already ships
this pattern and the Akka reference documentation does a perfectly fine job
of explaining it to you.

Put simply, the Circuit Breaker works by watching timeouts and failures.
You wrap calls to certain operations inside an instantiated Circuit Breaker
and drop in a handler that is called when the Circuit Opens (an open circuit
is bad, a closed circuit is good). This gives you a chance to change your
Actor’s behaviour to one that fails immediately and sends the user a Fail
Whale right away, which eliminates the load on your machine (much like we
did when denying access during initialization in the previous section).

17.6 Breaking Up a Long-Running Algorithm into
Multiple Steps

You know that whole thing about “state” being held inside the messages in-
stead of inside the Actor? Well, this pattern is classic for really underscoring
that idea. You employ it when you have to do a stack of work, and you’re
not finished until you’ve done it all.

For example, let’s say you want to get a bunch of information about a
particular user’s installed applications. You first need to pull up his applica-
tion list from some external data store, and then you need to iterate through
each one, grabbing various bits of data. Essentially, this algorithm iterates
N + 1 times—once for the initial application list, and then once for each
found application. But you need to do it asynchronously, and that’s the big

1This was back in the day before Twitter converted their backend to Scala, of course.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=422

Section 17.6 Chapter 17 · Patterns for Akka Programming 423

fly in the ointment. Most of the time, you’d quite happily tie up a thread
doing it all synchronously, but in a large application, this will be death, so
you need to do it asynchronously instead.

AkkaJack

AkkaMack
AkkaPlaque

AkkaSack
AkkaFlack

(empty)

CollectData

Algorithm Start

AkkaMack
AkkaPlaque

AkkaSack
AkkaFlack AkkaJack

CollectData

AkkaMack
AkkaPlaque

AkkaSack AkkaJack
AkkaFlack

CollectData

AkkaPlaque AkkaJack
AkkaFlack
AkkaSack
AkkaMack

CollectData

AkkaMack
AkkaPlaque

AkkaJack
AkkaFlack
AkkaSack

Algorithm End

AkkaJack

AkkaMack
AkkaPlaque

AkkaSack
AkkaFlack

Nil

Future 1

Future 2

Future 3

Future 4

Future 5

CollectData

CollectData

Figure 17.1 · The mutli-stage asynchronous algorithm is essentially the prop-
agation of evolving copies of a single message type. The message has two
member lists; the left list contains work to be done, which decreases over
time, while the results list on the right increases over time.

The idea here is to break the problem up into multiple stages and to
process those stages using messages, where the messages contain all of the
data, including the data that indicates the work to do, as well as the data
containing the completed work. We shrink the list of work to do as the list
of results grows, as Figure 17.1 depicts. Now let’s look at the code:

object MultiStageAlgorithm {

// Successful result

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=423

Section 17.6 Chapter 17 · Patterns for Akka Programming 424

case class UserAppData(username: String,

appData: List[Map[String, String]])

// Failed result

case class CollectionFailed(error: String)

}

class MultiStageAlgorithm(username: String,

dataStore: ActorRef,

returnTo: ActorRef) extends Actor {

import MultiStageAlgorithm._

implicit val askTimeout = Timeout(5.seconds)

// This is the internal message we use to continue

// collecting the app information from the data store.

// The appList contains the list of apps to collect

// information for, and the appDetails contains the list

// of collected information

case class CollectData(appList: List[String],

appDetails: List[Map[String, String]])

override def preStart() {

// Start by asking for the list of applications

dataStore ! GetAppList(username)

}

def receive = {

// The data store has returned the list of applications

case AppList(appList) =>

// Start our work with a full list of work to be done

// and no results

self ! CollectData(appList, List.empty)

// When the work to be done is Nil, we're finished.

// Send the results and die.

case CollectData(Nil, appData) =>

returnTo ! UserAppData(username, appData)

context.stop(self)

// When there's more to be done, we pull the head off of

// the app list and retrieve its information. Once the

// results are in, we can remove the head from the list

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=424

Section 17.7 Chapter 17 · Patterns for Akka Programming 425

// of work to be done, prepend the results to the

// results list and pipe the transformed message back to

// 'self'.

case CollectData(leftToCheck, appData) =>

dataStore ? GetAppData(leftToCheck.head) map { msg =>

msg match {

case AppData(propertyMap) =>

CollectData(leftToCheck.tail, propertyMap :: appData)

}

} recover {

case e => CollectionFailed(e.toString)

} pipeTo self

// If things failed then we need to state as such and die

case m: CollectionFailed =>

returnTo ! m

context.stop(self)

}

}

There are many different ways to implement this pattern. You could, for
example, use a Finite State Machine and have the data travel through the
states instead of using messages. Alternatively you could use become() to
carry the state as well or you could also do this with a series of Futures.

One other thing to note about this pattern is that it’s asynchronous-sequential,
not asynchronous-parallel. You apply this pattern when you need to do things
sequentially, but you spend the bulk of the time doing the work largely out-
side of your code (e.g., it’s IO bound).

17.7 Going Parallel

When you want to fire off a bunch of parallel work, this is generally best
done using Futures. We can rewrite the example we used to collect the ap-
plication data using Actors and Messages from before, but this time we will
use Futures and run the algorithm in parallel.

implicit val askTimeout = Timeout(5.seconds)

// Instantiate our "data store"

val ds = system.actorOf(Props[AppDataStore])

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=425

Section 17.7 Chapter 17 · Patterns for Akka Programming 426

// Get a future to the initial list of applications

val results = (ds ? GetAppList("me")).mapTo[AppList].flatMap { applist =>

// Extract the list

val AppList(list) = applist

// Create a Future on a list of (future) results from obtaining all of

// the particular application information in parallel

Future.sequence(list.map { appname =>

(ds ? GetAppData(appname)).mapTo[AppData].map { data =>

val AppData(propertyMap) = data

propertyMap

}

})

}

// Now do whatever you'd like with the (Future) results

Before we leave this pattern, I should note that the non-Akka side of
Scala can do something along these lines. It’s not quite as asynchronous as
the Akka version, but it still may work for you in certain situations. Scala’s
parallel collections let you create simple blocks of fork-join code, like this:

val applist = Await.result((ds ? GetAppList("me")).mapTo[AppList], 5.seconds)

// Extract the list

val AppList(list) = applist

val results = list.par.map { appname =>

// We're converting the list of app strings into a list of app properties

// so we need to resolve the Future right now.

val data = Await.result((ds ? GetAppData(appname)).mapTo[AppData],

1.second)

val AppData(propertyMap) = data

propertyMap

}

Here, we use Akka’s Future merely to synchronize work to the current
thread (i.e., the ask syntax), so that we can then run the rest in parallel using
a parallel sequence from Scala’s collections library.

The main difference with this structure is that synchronizing to the main
thread happens at different points. Before we can turn the list of applications
into a parallel sequence (i.e., list.par), we must have that list. We could

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=426

Section 17.8 Chapter 17 · Patterns for Akka Programming 427

have done that inside of the Future, but it’s a little clearer to take that out of
the equation.

The key difference is on lines 7 and 8. Since the parallel sequence is
helping us implement fork-join, we need to eventually perform the join. So,
rather than have everything happen “in the future” as in the previous exam-
ple, eventually our work happens in “the present.” The advantage here is that
it happens in parallel, but it does tie up our current thread while we wait for
everything to join up.

Scala’s parallel collections are extremely powerful and can provide a
syntactically terse method of parallelization when all you need is a simple
fork-join pattern, so don’t forget that it’s available to you.

17.8 An Actor EventBus

Akka’s EventBus concept is an excellent one; however, you don’t always
require the generality of it. Often, you just want to create a bus where the
subscribers are Actors. This pattern helps us achieve a reusable Actor Event-
Bus.

// This is a phantom type implementation of a concept that supplies default

// values to type parameters - something lacking in Scala. Solution is not

// my own. This is provided by Aaron Novstrup from the Stack Overflow post

// http://stackoverflow.com/a/6629984/230401

sealed class DefaultsTo[A, B]

trait LowPriorityDefaultsTo {

implicit def overrideDefault[A, B] = new DefaultsTo[A, B]

}

object DefaultsTo extends LowPriorityDefaultsTo {

implicit def default[B] = new DefaultsTo[B, B]

}

import akka.event.{ActorEventBus, LookupClassification}

object EventBusForActors {

val classify: Any => Class[_] = { event => event.getClass }

}

class EventBusForActors[EventType, ClassifierType](

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=427

Section 17.9 Chapter 17 · Patterns for Akka Programming 428

classifier: EventType => ClassifierType = EventBusForActors.classify)

(implicit e: EventType DefaultsTo Any,

c: ClassifierType DefaultsTo Class[_]) extends ActorEventBus

with LookupClassification {

// Declares that this bus can publish events of any type

type Event = EventType

// We're going to classify our events by the class type

type Classifier = ClassifierType

// These next three methods are abstract in the LookupClassification that

// we've mixed in. The LookupClassification fills in the methods that the

// EventBus requires so that it can expose more specific requirements on

// us that present less of a burden than what it's managing for us.

protected def classify(event: Event): Classifier = classifier(event)

protected def mapSize(): Int = 32

protected def publish(event: Event, subscriber: Subscriber): Unit =

subscriber ! event

}

The DefaultsTo helper lets us define the EventBusForActors in a way that
just makes it easier to instantiate with some defaults, since you often want an
Event type of Any and a Classifier of Class[_]. We implement the methods
that are required by the LookupClassification, declare the types we need (the
Subscriber type is supplied by the ActorEventBus mixin), and we’re off to
the races.

17.9 Message Transformation

The MessageTransformer we saw before is an incredibly powerful tool in
your patterns arsenal. A transformer’s general implementation is:

class MessageTransformer(from: ActorRef, to: ActorRef,

transformer: PartialFunction[Any, Any]) extends Actor {

// Take the incoming, transform, and send outgoing. Note how we

// keep the original sender as 'from', hiding the transformer

// from the ultimate receiver.

//

// This may not work for your situation. If you need this transformer

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=428

Section 17.10 Chapter 17 · Patterns for Akka Programming 429

// to transform responses back in the other direction, then you'd want

// to change the 'forward' to a 'tell'

def receive = {

case m => to forward transformer(m)

}

}

17.10 Retry Behaviour

Akka does not guarantee message delivery, as we know. The reasoning for
this is quite sound, but that doesn’t really matter to most people that are
contemplating using remote Actors. When you send a message to a remote
Actor, you want to know that it processed. Before we dive into this, we need
to cover off some expectations.

The Dirt on Retry

Networks are unreliable; messages do get lost, both requests and responses.
These are rare, but they do happen. At the moment, you need to focus on
the fact that they are rare, not that they happen. While it may be quite nec-
essary that you account for these problems, remember that you’ll be writing
a fair amount of code and running an algorithm 100% of the time to han-
dle 0.00000001% of the cases. You need to assess whether eliminating the
problem is better than gracefully handling the failure.

Timeouts will come into play here, big time. It’s not the networks that
tend to be the problem, your application’s generally the bigger problem, or
it’s what your application works with that’s the problem (e.g., a database
server that’s under high load).

Idempotency

Idempotency is the biggest factor in this exercise. A message retry involves
potentially duplicating that message, and thus duplicating the processing on
the backend. If your backend cannot handle a second (or third, or fourth) in-
vocation of the logic surrounding that message, you cannot implement retry
behaviour.

We can drive the idempotency problem home with a deadly example:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=429

Section 17.10 Chapter 17 · Patterns for Akka Programming 430

class NuclearWeaponSilo extends Actor {

import NuclearWeaponSilo._

def live: Receive = {

case Launch =>

sender ! LAUNCHED_!!!!

case ToggleLiveliness =>

throw new Exception("Ooops")

}

def stubbed: Receive = {

case Launch =>

sender ! NoLaunch

case ToggleLiveliness =>

context.become(live)

sender ! Toggled

}

def receive = stubbed

}

Now let’s drive the problem home with a quick test. We’ll toggle it from
’stubbed’ to ’live’ and back again, putting a toggle retry in place when we
time out on the toggle response.

// Go to 'live' state

a ! ToggleLiveliness

expectMsg(Toggled)

// Go back to 'stubbed' state

a ! ToggleLiveliness

expectNoMsg(100.milliseconds)

// Hmm... didn't get a response... retry the toggle

a ! ToggleLiveliness

// Awesome, it worked!

expectMsg(Toggled)

// Run a test fire

a ! Launch

expectMsgPF() {

case LAUNCHED_!!!! =>

println("WHAT?! Nooooo!!!!!")

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=430

Section 17.10 Chapter 17 · Patterns for Akka Programming 431

Idempotency is a tricky thing to handle, and potentially deadly if you
screw it up. You’ll need to ensure that you have a really solid handle on it
with respect to your particular domain. We’ll present a simple strategy here
and you can tailor it to fit your needs if possible.

Using a High Watermark

This is a simple strategy for handling retries; we use a high watermark. When
a client makes a request of a server, it specifies a numerical value that indi-
cates which message, in an overall sequence, this message represents. The
server will compare that to what it thinks is the appropriate next message
number and act accordingly.

This pattern implementation is quite complex and limited. This is due to
the solution’s generality; thus, it is possibly best as an illustration rather than
a true implementation.

Caveats

To implement this solution, we’ll simplify the problem. The relationship
between our client and server will be limited to the following:

• It will only be request/response from client to server. The client can-
not make a one-way communication to the server; to ensure the water-
marks match up, the server must respond to all messages and the client
must receive and process those responses.

• This is a one-to-one relationship. The server does not accept messages
from other clients and the client does not accept responses from other
servers.

– Both client and server can accept non-watermarked messages
from other Actors, but if they are watermarked, things will go
badly.

Common Abstractions

We implement this pattern in two parts: the server and the client. We do it in
such a way as to attempt to abstract the idempotency protection away from
the implementations. As such, both aspects of the client and server share
some common properties, which we will investigate now.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=431

Section 17.10 Chapter 17 · Patterns for Akka Programming 432

object HighWaterMark {

// The HWM data type will help us coerce some of the ugliness to the side

// with the use of implicits.

object HWM {

import language.implicitConversions

def apply(i: Int) = new HWM(i)

implicit def int2HWM(i: Int): HWM = HWM(i)

implicit def HWM2Int(hwm: HWM): Int = hwm.hwm

}

class HWM(val hwm: Int) {

def +(i: Int): HWM = HWM(hwm + i)

override def toString() = hwm.toString()

}

// Used by the client to mark a message

case class WaterMarkedMessage(num: Int, msg: Any)

// Responses from the server to the client that indicate the state

// of particular message processing issues

case class MessageAlreadyProcessed(msgNum: Int, hwm: Int, msg: Any)

case class MessageHasBeenMissed(msgNum: Int, hwm: Int, msg: Any)

}

The MessageAlreadyProcessed message indicates the given msgNum has
already been processed, and that the server’s high watermark is hwm. The
MessageHasBeenMissed indicates that the server has missed a message some-
where. The message that the client sent is in msgNum and the server’s high
watermark (i.e., the next message number it’s expecting) is in hwm.

The Server Side

The server side implements a higher message abstraction on top of the Any
that we normally use. The only message type that’s reasonable for input to
the server is a WaterMarkedMessage type. The internal values inside the
WaterMarkedMessage are extracted and processed independently from the
wrapped message. If the watermark information is fine, then the base server
code sends the message down to the derivation; otherwise the client side is
notified of any interesting issues.

object HighWaterMarkServer {

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=432

Section 17.10 Chapter 17 · Patterns for Akka Programming 433

import HighWaterMark.HWM

class HWMHolder(var hwm: HWM)

class ClientWrapper(client: ActorRef) {

def !(message: Any)(implicit sender: ActorRef,

hwmHolder: HWMHolder): Unit = {

client ! message

hwmHolder.hwm += 1

}

}

}

trait HighWaterMarkServer extends Actor {

import HighWaterMark._

import HighWaterMarkServer._

// The current high water mark

implicit val watermark = new HWMHolder(HWM(0))

// The 'client' is what the server implementation can use to

// send responses to the Client. This will keep the

// watermark in check

var client = new ClientWrapper(context.system.deadLetters)

// Derivations must implement this in order to process messages that

// are deemed as valid (i.e. not already processed or missed)

def messageProcessor: Receive

// The main business end of the server. Processes the incoming messages

// checking them for validity and passing them on to the implementation

final def receive = {

case WaterMarkedMessage(num, msg) =>

if (num < watermark.hwm)

sender ! MessageAlreadyProcessed(num, watermark.hwm, msg)

else if (num > watermark.hwm)

sender ! MessageHasBeenMissed(num, watermark.hwm, msg)

else {

client = new ClientWrapper(sender)

messageProcessor(msg)

}

case msg =>

client = new ClientWrapper(sender)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=433

Section 17.10 Chapter 17 · Patterns for Akka Programming 434

messageProcessor(msg)

}

}

Implementations must use client in order to send responses to the client.
Using the client ensures that the watermark is updated properly, and can
be used from outside of the current running context (i.e., you can send back
to the client from a Future).

The Client Side

The client side is a bit more complicated. We need to increment the water-
mark when the server responds to the client, and we also need to wrap client
messages in a WaterMarkedMessage for the server to parse. The problem is
complicated enough that we use a Finite State Machine to solve the problem,
since it provides a clear implementation that isn’t available in other methods.

object HighWaterMarkClientFSM {

sealed trait State

case object WaitingForRequest extends State

case object WaitingForResponse extends State

sealed trait Data

case object Init extends Data

case class NoPendingRequest(hwm: Int) extends Data

case class PendingRequest(hwm: Int, msg: Any, retries: Int) extends Data

// Messages that can be sent back to the true client

case class FailureToSend(msg: Any)

case class OneRequestAtATime(pendingMsg: Any, yourMsg: Any)

}

class HighWaterMarkClientFSM(client: ActorRef,

server: ActorRef,

retryInterval: Duration = 5.seconds,

retryLimit: Int = 5)

extends Actor with FSM[HighWaterMarkClientFSM.State,

HighWaterMarkClientFSM.Data] {

import HighWaterMarkClientFSM._

import HighWaterMark._

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=434

Section 17.10 Chapter 17 · Patterns for Akka Programming 435

case object RetrySend

startWith(WaitingForRequest, NoPendingRequest(0))

when(WaitingForRequest) {

// This can happen if retries are piling up in the

// server. When it finally does respond, we move to

// this state but it's going to send a number of

// MessageAlreadyProcessed messages due to the retries

case Event(m: MessageAlreadyProcessed, _) =>

stay

// The client makes a request

case Event(request, NoPendingRequest(hwm)) if sender == client =>

server ! WaterMarkedMessage(hwm, request)

goto(WaitingForResponse) using PendingRequest(hwm, request, 0)

}

onTransition {

// Create the retry timer

case WaitingForRequest -> WaitingForResponse =>

setTimer("retry", RetrySend, retryInterval, repeat = true)

// Clear the retry timer

case WaitingForResponse -> WaitingForRequest =>

cancelTimer("retry")

}

when(WaitingForResponse) {

// The number of retries has been exhausted

// We terminate here.

case Event(RetrySend, PendingRequest(_, msg, `retryLimit`)) =>

client ! FailureToSend(msg)

stop()

// We can retry again

case Event(RetrySend, PendingRequest(hwm, msg, retries)) =>

server ! WaterMarkedMessage(hwm, msg)

stay using PendingRequest(hwm, msg, retries + 1)

// The request has already been fulfilled

case Event(m @ MessageAlreadyProcessed(num, hwm, _), _) =>

client ! m

goto(WaitingForRequest) using NoPendingRequest(hwm)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=435

Section 17.10 Chapter 17 · Patterns for Akka Programming 436

// A message has been missed. We consider this death.

case Event(m @ MessageHasBeenMissed(num, hwm, _), _) =>

client ! m

stop()

// The response has come in from the server, so we can change states

// and send it back to the client

case Event(response, PendingRequest(hwm, _, _)) if sender == server =>

client ! response

goto(WaitingForRequest) using NoPendingRequest(hwm + 1)

// The client has tried to make another request while we have one

// outstanding. This isn't allowed.

case Event(request, PendingRequest(_, msg, _)) if sender == client =>

client ! OneRequestAtATime(msg, request)

stay

}

}

Now that we have the FSM, we can use it with the client. The client will
embed the FSM and provide access to it in the implementation as though it
were the server.

object HighWaterMarkClient {

import HighWaterMark.{HWM, WaterMarkedMessage}

// This is a bit of jiggery-pogery that we use to wrap the calls to '!'

// The client derivation can still use '!' to contact the server but we'll

// intercept it and wrap it in a WaterMarkedMessage

class ServerWrapper(server: ActorRef) {

def !(message: Any)(implicit sender: ActorRef, hwm: HWM): Unit = {

server ! WaterMarkedMessage(hwm, message)

}

}

}

abstract class NewHighWaterMarkClient(serverActor: ActorRef,

retryInterval: Duration = 5.seconds,

retryLimit: Int = 5)

extends Actor with ActorLogging {

import HighWaterMarkClientFSM._

import HighWaterMark._

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=436

Section 17.10 Chapter 17 · Patterns for Akka Programming 437

val server =

context.actorOf(Props(

new HighWaterMarkClientFSM(self, serverActor,

retryInterval, retryLimit)))

def messageProcessor: Receive

def handleAlreadyProcessed(num: Int, hwm: Int, msg: Any): Unit =

log.info("Dumping response to message already processed ({}, {}, {})",

num, hwm, msg)

def handleMissedMessage(num: Int, hwm: Int, msg: Any): Unit = {

log.info("Dumping response to message skipped ({}, {}, {})",

num, hwm, msg)

context.stop(self)

}

final def receive = {

case MessageAlreadyProcessed(num, hwm, msg) =>

handleAlreadyProcessed(num, hwm, msg)

case MessageHasBeenMissed(num, hwm, msg) =>

handleMissedMessage(num, hwm, msg)

case m =>

messageProcessor(m)

}

}

abstract class HighWaterMarkClient(serverActor: ActorRef)

extends Actor with ActorLogging {

import HighWaterMark._

import HighWaterMarkClient._

import language.implicitConversions

// Made implicit so that the ServerWrapper has easy access to it

implicit var watermark = HWM(0)

// We create 'server' as a specific instance to make it natural

// for the client

val server = new ServerWrapper(serverActor)

// Required to be implemented by the derivation so it can process

// messages as normal

def messageProcessor: Receive

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=437

Section 17.10 Chapter 17 · Patterns for Akka Programming 438

// overridable callback that does something when a message is

// reported as already processed by the server

def handleAlreadyProcessed(num: Int, hwm: Int, msg: Any): Unit = {

log.info("Dumping response to message already processed ({}, {}, {})",

num, hwm, msg)

watermark = hwm

}

// overridable callback that does something when the server says

// that "some" message (or messages) has been missed

def handleMissedMessage(num: Int, hwm: Int, msg: Any): Unit = {

log.info("Dumping response to message skipped ({}, {}, {})",

num, hwm, msg)

// Things are probably completely screwed here...

// The only reasonable default is to toss our cookies

context.stop(self)

}

// The watermark's main business end. Distributes messages from the server

// to the callbacks as well as increments the watermark when the server

// responds. It also allows for other Actors to send messages without

// mucking with the watermark.

final def receive = {

case MessageAlreadyProcessed(num, hwm, msg) =>

handleAlreadyProcessed(num, hwm, msg)

case MessageHasBeenMissed(num, hwm, msg) =>

handleMissedMessage(num, hwm, msg)

case m if sender == serverActor =>

messageProcessor(m)

watermark += 1

case m =>

messageProcessor(m)

}

}

Usage

With that massive amount of work, we can now implement simple clients
and servers. An example of a simple Ping-Pong server might be:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=438

Section 17.10 Chapter 17 · Patterns for Akka Programming 439

class Server extends HighWaterMarkServer {

def messageProcessor = {

case "Ping" =>

client ! "Pong"

}

}

Note the use of client instead of sender for sending responses to the
client. This is critical to ensure that we manage the watermark properly. The
corresponding client is also pretty simple, but it has to manage the possible
failure to send to the server.

class Client(svrActor: ActorRef) extends HighWaterMarkClient(svrActor) {

import HighWaterMarkClientFSM.FailureToSend

// We're going to send 3 pings, and we'll keep track of them here

var pingSends = 0

// Send the first ping

override def preStart() = server ! "Ping"

def sendPing(): Unit = {

pingSends += 1

if (pingSends < 3) server ! "Ping"

}

def messageProcessor = {

case "Pong" =>

sendPing()

// This can happen, and if it does, we've lost our "server" so

// we're going to kill ourselves as well

case FailureToSend(msg) =>

println("Ping send failed. Gotta die.")

context.stop(self)

}

override def handleAlreadyProcessed(num: Int,

hwm: Int,

msg: Any): Unit = {

// OK, our Ping was already handled but we lost the result somewhere

// No problem, we didn't need the result, we'll just Ping again if

// we need to

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=439

Section 17.10 Chapter 17 · Patterns for Akka Programming 440

sendPing()

}

}

We’re using server to talk to the server instead of svrActor, which is
as critical as using client in the server to talk to the client. If the client’s
internal FSM happened to do a retry, then the server would possibly respond
stating that the message was already handled.

In our simple Ping Pong case, the business logic dictates that we just op-
tionally send another Ping. Real business logic might dictate that we retrieve
some value from the server instead. For example, the lost response was from
a request that was meant to create some sort of backend data, which would
have been returned in that response, then we still need to get that data. The
server should expose a mechanism for retrieving the data that was in that lost
response.

Conclusion

This is hard stuff. There are messaging platforms that can give you delivery
semantics at any of the levels you’d like; At Least Once, At Most Once, or
Once and Only Once2. However, Akka only guarantees At Most Once, and
in request/response, there are two opportunities for this to be zero. There are
solid reasons for this that include notions of complexity and throughput, but
the core concept of embracing failure in the design is also key.

We’ve presented here a limited but still quite complex At Least Once
system, but with idempotency protection for the server. The server doesn’t
need to be concerned about processing messages with side effects more than
once, which might otherwise be terribly dangerous.

Now that we’ve covered the pattern, you should take a sober look at the
problem to which you think you need to apply it. The alternative approach
is:

• Put a timeout on the request/response pair (e.g., with a Future) and
propagate that failure as far back to the original caller as you can.
Embrace that failure at the most knowledgeable level of the business
logic and let it take whatever action it feels is necessary (which may
be to retry through Actor Supervision).

2An AMQP (Advanced Message Queuing Protocol) implementation, such as RabbitMQ,
for example.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=440

Section 17.11 Chapter 17 · Patterns for Akka Programming 441

• Handle the idempotency problem.

– Make the Server operations idempotent. If this is possible, then
you’re good to go.

– Handle the idempotency at the client side. For example, instead
of making the request to create a resource, wrap it in an if; for
example, “If the server says the resource isn’t yet created, tell the
server to create it.”

17.11 Shutting Down When All Actors Complete

Developers seem to have a desire to have a bunch of Actors do some work
and then shut the system down when they complete. Akka doesn’t have any
direct support for this because it’s not easy to say when an Actor is finished,
in a general sense. Still, the desire is common, so let’s look at an approach
for dealing with it.

To give a bit of concrete understanding, assume we have an Actor that
adds numbers together, from which we can retrieve the result. We’ll send
a whole bunch of Add commands to a group of these Actors and then grab
the results. All of this will be happening asynchronously, so by the time we
reach the point of shutting down the system, the processing will not have
completed.

We want to block the mainline thread before calling shutdown() on the
system, so that we can allow the Adder Actors to drain their queues and
respond with values before the app terminates.

// Create ten Adder actors

val actors = (1 to 10).map { _ =>

sys.actorOf(Props[Adder])

}

actors.foreach { a =>

// Add a couple of thousand numbers

(1 to 2000).foreach { i => a ! Add(i) }

}

// print out the results of the additions

actors.foreach { a =>

(a ? Get) onSuccess {

case result => println(result)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=441

Section 17.12 Chapter 17 · Patterns for Akka Programming 442

}

}

// Shut them down gracefully

val stopped = actors.map { a => gracefulStop(a, 5.seconds) }

// Wait for the graceful stop to complete

Await.result(Future.sequence(stopped), 5.seconds)

// Shut down the system

sys.shutdown()

By sending all of the Actors a gracefulStop() command, we place a
message in their Mailboxes that exists behind the request to get the value.
By waiting on the result from the gracefulStop(), we block the main
thread until both get messages have been received and the Actors have sub-
sequently stopped. We can then deterministically shut down the ActorSys-
tem.

17.12 Chapter Summary

You’ve learned an absolute ton about Akka to this point. The patterns you’ve
just read through provide you with a set of intellectual tools you can turn
to when you’re presented with a particular problem. They’re not solutions;
they’re meant to frame a particular situation into an implementable pattern
that you can then mold into the final shape you need. Perhaps the Message-
Transformer almost works, except that you need it to be a constant man-in-
the-middle rather than a forwarder. You now have the skills to make that
happen. Add that new pattern to your arsenal and spread the love.

It’s a good idea to understand these patterns at a high-level of compe-
tency, not necessarily because they’re so valuable as patterns but more be-
cause some of them try to provide reusable Akka components where it’s rea-
sonable. Understanding these helps you to understand how to build reusable
components in your own code, which increases your own library of tools that
you can employ to build applications faster and more reliably.

Patterns are good things to help understanding and to create a vocabulary
in your own teams and working environments. But as with any pattern-based
design approach (usually, of course, with a much more rigorous pattern defi-
nition), don’t get bogged down in them. Occasionally, adhering to previously
used patterns can blind you to the much simpler solution that might be star-
ing you right in the face.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=442

Chapter 18

Antipatterns for Akka Programming

Akka is a flexible and powerful toolkit that tames the razor-toothed beasts of
both concurrency and parallelism. As comforting as that may be, it doesn’t
make dangling your favourite personal appendage into the gaping maw of
one of those beasts a really great idea. Akka gives you enough rope to hang
yourself with, just like anything else worth using in the world of software
development.

In this chapter, I’ll shed a little light on some of the traps you really don’t
want to step into. Some of them are painted neon pink and are easy to see,
while others are covered in leaves just waiting for you to make that wrong
move. Fortunately, there aren’t a ton of these, so we should be able to blast
past them without a lot of thought.

18.1 Mutability in Messages

You can’t do this. Akka states clearly that you must use immutable mes-
sages between Actors and they aren’t kidding. I even got slammed by this
one recently; in fact, it was while writing this book. I tried to be “clever”1

when implementing the Retry pattern. Maintaining that pesky watermark
was pretty tricky, and in a previous version I tried making it a mutable object
in the client side. However, I failed to realize that it was being passed as part
of the message, which made my watermarks go all wonky because I didn’t
make a defensive copy of it.

So, did I make a defensive copy? No. I realized the pure evil that comes
up to bite you in rear when you least expect it merely because you have (even

1Yup. It’s the root of a ton of evils.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=443

Section 18.2 Chapter 18 · Antipatterns for Akka Programming 444

inadvertently) used something mutable in a message.
What exactly are we talking about here? Well, if you see things like this

in your code, be scared:

// var... var is bad

class SomeMessage(var some: Int, var msg: String)

// Fine and dandy outside of a message

class HighWaterMarkHolder(var hwm: Int)

// Which makes its use here a terrible idea

case class WaterMarkMessage(hwm: HighWaterMarkHolder)

It was that last one that bit me in my special place. At the point of usage,
it doesn’t look bad—we right case classes all the time that look like that—
but the fact that the object being composed inside the case class is ultimately
mutable causes us pain.

The good news is that this is absolutely the first time I’ve ever been bitten
by it, and it was because I was being foolishly clever.

18.2 Loosely Typing Your Messages

This one’s pretty simple. Don’t use values for messages. Sure, we’ve seen a
lot of stuff like this in the book:

def receive = {

case "Hello" =>

sender ! "Hi"

}

But that doesn’t mean it’s a good idea. Basically, don’t use numbers or
Strings for messages. Use the type system; it’s there to catch you when you
fat-finger or miss your morning coffee, or when you refactor. If you use
values, the type system laughs at you when get that bug report back from the
Fortune 500 company stating that they lost 200 million dollars because you
pattern matched on 5 instead of 6.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=444

Section 18.3 Chapter 18 · Antipatterns for Akka Programming 445

18.3 Closing over Actor Data

This one is a little less obvious and can creep up on you at the wrong moment.
It shows up mostly when you spawn a Future or child Actor from within an
Actor. If you close over some mutable state or a non-referentially transparent
method in your Future or child Actor, then you’ve committed a great evil.

As a reminder, let’s look at an easy way to commit great evil inside an
Actor:

class SomeActor extends Actor {

def receive = {

case Request =>

(Server ? DoSomething) map { _ =>

sender ! RequestComplete

}

}

}

See it? The Future, which is created from the ?, has closed over sender.
This is a bad idea because sender is a method, not a val. You haven’t closed
over the ActorRef that sender returns, which is what you wanted to do.

To handle this particular case, Akka has added the pipeTo pattern that
we discussed earlier. You would alter the above to the following:

class SomeActor extends Actor {

def receive = {

case Request =>

(Server ? DoSomething) map { _ => RequestComplete } pipeTo sender

}

}

Now sender is outside the Future’s scope and back in the Actor’s scope,
which is immediately evaluated to the ActorRef that it returns.

That’s the nasty version because it looks like sender is a val. It’s quite
possible for you to create the same problems in your own code, so watch out
for it.

The less nasty and more obvious version shows up as private mutable
data in your Actors, which is a direct consequence of data that you create in
your Actor.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=445

Section 18.3 Chapter 18 · Antipatterns for Akka Programming 446

class SomeActor extends Actar {

var counter = 0

def receive = {

case Request =>

(Server ? DoSomething) map { _ =>

// Nope. Don't do it.

counter += 1

RequestComplete

} pipeTo sender

}

}

The counter is being accessed outside of the Actor’s private fortress and
is thus being accessed across multiple threads. There are memory barriers
involved in this, concurrent access violations, and the like. Don’t do it.

If there’s some side-effect work you need to perform as part of your
spawned concurrency, you need to join that behaviour back to your Actor.
For example, we might do the following:

class SomeActor extends Actar {

var counter = 0

def receive = {

case Request =>

val requester = sender

(Server ? DoSomething) map { _ =>

(requester, RequestComplete)

} pipeTo self

case (relayTo: ActorRef, message) =>

counter += 1

relayTo ! message

}

}

There are lots of ways to do it, but the key here is that we’ve moved the
alteration of the Actor’s mutable data to where it belongs—inside the Actor’s
receive method. We’ve closed over a frozen instance of the sender, frozen
as requester, and piped the intermediate result back to self in order to
operate on it further inside the Actor’s private receive method.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=446

Section 18.4 Chapter 18 · Antipatterns for Akka Programming 447

Another thing you can’t close over is the ActorContext. The ActorCon-
text carries some of the Actor’s most intimate details. It should live as long
as the Actor lives and no longer, and it should never be accessed from outside
of the Actor itself.

18.4 Violating the Single-Responsibility Principle

Akka programming doesn’t let you violate this principle—it’s generally a
good principle across the spectrum of software development and that makes
it a good rule of thumb. The principle exists to ensure that your classes
or functions are easily understood, easily reused, and are loosely coupled.
In Akka, the definition includes another dimension: your Actors are more
naturally resilient.

The Supervisor of a given Actor has a simple Decider that it employs in
order to help your application heal itself. But the Decider isn’t exactly all
that psychic; if you have very complex logic in your Actor and it can fail
for any one of a dozen reasons, the Decider will have a tough time knowing
what to do.

The more complex your Actor becomes, the more difficult it is to under-
stand what you should do when it throws an Exception. To illustrate, we will
take a simple and obvious example.

class ComplexActor(initial: Double) extends Actor {

import ComplexActor._

var interestDivisor = initial

def receive = {

case Divide(dividend, divisor) =>

sender ! Quotient(dividend / divisor)

case CalculateIntrest(amount) =>

sender ! Interest(amount / interestDivisor)

case AlterInterest(by) =>

interestDivisor += by

}

}

What is this Actor’s Supervisor strategy? Clearly, there can be a Divide
by Zero Exception, but it comes in two possible cases: Either the safe Di-

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=447

Section 18.5 Chapter 18 · Antipatterns for Akka Programming 448

vide message or the not-so-safe CalculateIntrest message. What should the
Decider do?

Well, in the case of a Divide error, we could Restart or Resume. Compu-
tationally, it’s safer to Resume of course, since there’s no value in Restarting.
But, in the case of CalculateIntrest, there’s a worse problem: the state of the
Actor is messed up. If the business is happy to put the interestDivisor
back to its initial state (and let’s pretend that it is), then we must Restart
this Actor since every calculation from here on out will throw a Divide by
Zero Exception. So if you choose to Restart, then the Actor will Restart even
when the Exception comes from the Divide message, which is a bad thing as
well.

The Supervisor is in no position to decide what to do. This Actor does
more than it should and needs to be broken up into two separate pieces of
functionality. The beauty of doing that is that the problems completely go
away and are now properly managed by the default strategy in both cases.
Restarts are no big deal for the Divide case, and they are now appropriately
applied to the CalculateIntrest case.

Keeping things simple makes the problems recursively solvable, which
makes the hierarchies simple, which is a good thing. The only other major
place that this shows up is when you have to apply the same Decider to
multiple children. Just as we have the same Exception meaning two different
things in the Actor above, we can have the same Exception meaning two
different things for two different Actors that are both supervised by the same
Supervisor. Don’t do this. Keep it simple.

18.5 Inappropriate Relationships

Actors present the developer with a bunch of “live stuff” which, for the unini-
tiated, presents them with relationship problems2. When you have a Master-
Slave relationship between Actors, sometimes the knee-jerk reaction is to
have Masters know about Slaves. It is perfectly reasonable if the Master
creates the Slaves as children. If you’re in a multi-node, non-parent-child
relationship, it’s backwards.

If you have to reconfigure the Master node in order to ensure that it can
talk to newly running Slaves, then you have it backwards. It’s very hard to
keep the Master “knowledgeable” about all of the Slaves, where they are and

2My wife still isn’t happy about all these Actors I’m seeing on the side

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=448

Section 18.6 Chapter 18 · Antipatterns for Akka Programming 449

Master
Node

Slave
Node

Slave
Node

Sends Events to...

Sends Events to...

Advertises to...

Advertises to...

Figure 18.1 · Masters send events to Slaves, but it only does this after the
Slaves have advertised their existence to the Master. Don’t do it the other
way around.

who they are. On the other hand, it’s very easy to tell Slaves where the one
Master is. This is more resilient to failures and restarts, and scales much
better (as new Slaves are added dynamically).

This sort of thing shows up once in a while when you’re pulling your
relationships together in Actor-based programs. Make sure that they point in
the right direction to keep things flexible.

18.6 Too Much actorFor()

We looked at this in some detail when we were learning about Supervision,
and it’s really quite an important point. While actorFor() is a very useful
utility, it creates a coupling between Actors that can be very brittle over time.

From the Actor’s point of view, there are really only two major reasons
for using actorFor():

1. Looking up your dependencies

2. Looking up your descendants

As a general rule of thumb, looking up your descendants is pretty re-
silient. In general, you’re in charge of creating those descendants so the path
to them and their names is reasonably stable. In fact, using actorFor() to
look up descendants is usually a heck of a lot better than anything else you
might want to do. Remember our Plane? It needed to start its “children”

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=449

Section 18.6 Chapter 18 · Antipatterns for Akka Programming 450

as children of supervisors (i.e., grandchildren). This means that the Plane
itself is not making direct context.actorOf() calls on them, which means
it doesn’t get the ActorRefs directly, which means it has to get them some
other way. The easiest way to do it is to use actorFor().

def actorForControls(name: String) = actorFor("Controls/" + name)

...

val controls = actorForControls("ControlSurfaces")

val autopilot = actorForControls("AutoPilot")

val altimeter = actorForControls("Altimeter")

val heading = actorForControls("HeadingIndicator")

val bathrooms = actorForControls("Bathrooms")

val leadAttendant = actorOf(Props(newFlightAttendant).withRouter(

FromConfig()), "LeadFlightAttendant")

val people = actorOf(Props(new IsolatedStopSupervisor

with OneForOneStrategyFactory {

def childStarter() {

context.actorOf(Props(PassengerSupervisor(leadAttendant, bathrooms)),

"Passengers")

context.actorOf(Props(newCoPilot(plane, autopilot, altimeter)),

copilotName)

context.actorOf(Props(newPilot(plane, autopilot,

heading, altimeter)), pilotName)

}

}), "People")

Await.result(people ? WaitForStart, 1.second)

However, looking up your dependencies is more problematic. Depen-
dencies are usually outside your list of descendants and hard-coding knowl-
edge of their location outside your own subtree will create brittle coupling
between you and them.

• It makes them more difficult to test. This alone is a pretty big indicator
that something’s wrong. If you have to set up a dozen mock Actors in
a specific tree outside your Actor under test, then it’ll be brutal to test
the Actor.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=450

Section 18.7 Chapter 18 · Antipatterns for Akka Programming 451

• It limits the ability for another developer to re-jig the supervisor of
those dependencies, since their paths will change and the lookups will
change.

• actorFor() returns the Dead Letter Office when it can’t find what it’s
looking for. So, unless you’re diligent about checking what you have,
you could happily be sending messages right down to /dev/null.

Inject dependencies as you normally would in any OO-style program. It
will make for more flexible systems in the end.

18.7 Not Enough Config

Every time you have a parameter that you use in an Akka program, and it
isn’t a reflected configuration value, you need to ask “why?”. Developers
(yeah, you) can never fully predict or understand how their systems will be
used in the real world, and users have a very keen insight into how they want
to use your software that you may never have envisioned.

The bottom line is that doing the following is easy, the moment you truly
realize that the parameter is one you want to keep in your code:

application.conf
com {

mycompany {
rocks {
cutoff = 7.0

}
}

}

class ResonanceActor extends Actor {

val config = context.system.settings.config

val cutoff = config.getDouble("com.mycompany.rocks.cutoff")

...

}

You know what’s not easy? Doing it after you release the product and
the customer has a huge problem that would be fixed by letting them tune
that parameter.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=451

Section 18.8 Chapter 18 · Antipatterns for Akka Programming 452

If you have magic values in your code, then they should be in your con-
figuration.

18.8 Needless Future Plumbing

When you spend a lot of time with one Akka feature, you can start to forget
about the other features. At one point, I wrote a piece of code inside of an
Actor that looked like this:

case GetSomeInformation =>

(otherActor ? GetSomeInformation) pipeTo sender

There’s nothing technically wrong with that; the Future is there to bridge
between the original sender and the reply from the otherActor. It’s subop-
timal though, because it’s functionally equivalent to:

case m @ GetSomeInformation =>

otherActor forward m

The moral of the story is a bit more general than the title would suggest;
keep your eyes on the whole system. Akka is a pretty involved toolkit with
lots of options and provides you with several ways to solve a problem. Try
to remember what you have available to you and pick the best one.

18.9 Chapter Summary

The Akka toolkit certainly makes writing resilient, asynchronous programs
a lot easier than anything that has come before it, but yes. . . there are some
potential pitfalls. These are things that you’ll see in your early stages, but
they’ll disappear very quickly. Just be aware that there are some anti-patterns
out there, which have tripped people up in the past. Some of them aren’t
death, such as violating the single-responsibility principle, but if they stick
around too long and get buried too deep in your application, they can really
start to sting.

You have your patterns, your anti-patterns, and a lot of understanding on
how to code in the new world. You’re almost at the plateau, and it’s time to
look at what else Akka provides for you to develop your apps with speed,
and a hell of a lot of style.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=452

Chapter 19

Growing Your App with Add-On
Modules

Akka is a pretty big, pretty involved toolkit, but it’s also very modular. As a
result of the modularity, it’s continually growing, which is a good thing for
you because it means that you can grow with it.

Akka’s foundation is so flexible and so reusable that you can implement
a ton of stuff in the paradigm it enables. Not only that, Akka allows you
to extend beyond its basic core right inside of the ActorSystem itself. The
toolkit isn’t a framework, like we’ve already seen, but it gives you the power
to create any framework you might need to make implementing your appli-
cations easier and faster.

In this chapter, I won’t go into great detail about how to use or implement
these extra aspects of Akka; I’ll just give an overview of them so you know
they’re there, and why you might use them. By the time we’re done, you
should have a good sense of what’s available so you don’t do something silly
like write it yourself.

19.1 Extensions

Extensions come in the form of add-ons to the ActorSystem. Akka itself has
several extensions that have been instantiated for you already. Some of the
others we have yet to see, but they are also included in the Akka distribution.
For example:

Serialization Serialization is implemented as an Extension in order to put
some globally required methods and information right into the Ac-

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=453

Section 19.2 Chapter 19 · Growing Your App with Add-On Modules 454

torSystem for you. You would use it when you want to serialize some-
thing manually:

val system = ActorSystem()

val original = "woohoo"

// Here we extract the extension from the system we just instantiated

val serialization = SerializationExtension(system)

// Now we can use it to obtain the serializer for the appropriate type

val serializer = serialization.findSerializerFor(original)

// Serialize it

val bytes = serializer.toBinary(original)

// Deserialize it

val back = serializer.fromBinary(bytes, manifest = None)

TestKit The TestKit stores some of its core settings in an Extension. It
makes for a pretty nice place to keep this stuff when it’s not relevant to
any particular instantiated instance of something (e.g., the instantiated
TestKit).

ZeroMQ To incorporate the ZeroMQ library into Akka, you need several
support methods, along with configuration and a special guardian Ac-
tor. An Extension is the perfect place to house these bits and pieces.

Transactors Actors themselves can participate in transactions, which re-
quire a bit of configuration, which is stored in an Extension.

If you ever get to the point where you think you need to create a new
“module” for Akka, you might be in a position to create an Extension. If
there are global configurations, helper functions, external players you need
to hook into, counters you need to set, barriers you want to activate on, or
whatever else you might need, the Extension might just be the right avenue
on which to grow your app.

19.2 Working with Software Transactional Memory

Scala ships with the Software Transactional Memory (STM), but Akka has
support for working with it.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=454

Section 19.3 Chapter 19 · Growing Your App with Add-On Modules 455

1. The Agents that we’ve already seen support interacting with the STM
by being able to add themselves to a transaction’s successful commit.
When the transaction successfully commits, the Agent can execute the
appropriate send to update itself.

2. Actors can participate in transactions through the Transactor module.

Agent-send-on-successful-commit is fairly straightforward, so we won’t
go into much detail about it, but a “transactor” merits a bit more explanation.

Transactors

You can use the STM without any help from Akka. You can use it privately
inside a given Actor just to ensure that a heap of modifications either suc-
cessfully completes or does not, atomically. You can also expose a shared
transactional data structure across many different Actors and let STM ensure
consistency between the shared accesses.

Transactors come into play when you want to coordinate operations
amongst a group of interrelated Actors. For example, imagine you have Ac-
tors that represent a group of friends. These friends are playing a game that
requires that they choose a destination in which to travel, and they then vote
on a proposal. The votes can be cast in a transactional nature, completing
successfully upon full agreement or rolling back to the proposal stage.

The Transactor provides a DSL-like API and a set of Messages and ob-
jects that you can use to work with the STM. It can take a little while to wrap
your head around, but it is certainly possible. You can consult the Akka
documentation for more information.

19.3 ZeroMQ

A while back, ZeroMQ1 came on the scene with some nifty claims regarding
speed. And speed being what it is to developers—you know, like catnip is
to a cat that’s already high on some designer pharmaceutical drug—it has
become pretty well known. Akka provides hooks into ZeroMQ that allow
you to use it as an intermachine transport layer.

10MQ at http://www.zeromq.org

http://www.zeromq.org
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=455

Section 19.4 Chapter 19 · Growing Your App with Add-On Modules 456

If you’re a devotee to the 0MQ or you need to integrate with it, or you
just want to test out the catnip for yourself, Akka has you covered. You can
use the ZeroMQ module to get what you need.

19.4 Microkernel

We haven’t covered how you would actually package, distribute, and run an
Akka application. There are a couple of reasons for this:

• You gotta leave some stuff out of the book (that’s a rule).

• There are many options available to you.

Because Akka is a toolkit, you can run it inside your application server
just fine. You can also roll your own application with a main function, launch
it with scripts, distribute it in a .jar or .tar file, or you can use a web
framework that’s already designed to work with Akka (more on this later).

The Microkernel helps when you’re looking to build a “pure” Akka ap-
plication from scratch—you have no web container, or Java app server of any
kind, or something that pre-exists to which you’ll add some Akka goodness.

The Microkernel handles the problem of building, packaging, distribut-
ing, and executing these standalone apps for you. If you find yourself in this
situation, look at the reference documentation for more information on the
Microkernel, use it, and then collect your profits.

19.5 Camel

Ah, Camel.2 Camel is one of the most impressive integration systems to
grace the Enterprise and the Cloud. . . well, ever. If you are a Java Enterprise
developer or Java Cloud developer and don’t know what Camel is, you need
to do two things: 1) Go stand in the corner for 20 minutes and feel bad about
yourself and 2) go read about Camel right now, or promise to do it no more
than 8 milliseconds after you finished reading this book.

Camel provides an integration mechanism between systems that speak
any number of protocols and APIs, such as HTTP, SOAP, TCP, FTP, JMS,
the Filesystem, or pretty much anything else you might encounter. It’s the

2http://camel.apache.org

http://camel.apache.org
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=456

Section 19.5 Chapter 19 · Growing Your App with Add-On Modules 457

greased plumbing that binds your apps together, especially those you didn’t
get right in the first place (you know, the ones that are just plain wrong).

Akka integrates extremely well with Camel. Since Camel essentially
provides message-based plumbing and Akka is a message-based pile of awe-
someness, you get a wonderful integration between Camel and the internals
of the application that you’ve wisely written in Akka.

Just to give you a quick taste, we’ll write a file consumer. This Actor will
use Camel’s file-system producer that will listen to files in a given directory
(creating that directory if need be) and convert those file system events into
messages for an Actor.

class FileConsumer extends Consumer {

def endpointUri = "file:/tmp/actor"

case class PrintThis(m: String)

def receive = {

case msg: CamelMessage =>

self ! PrintThis(msg.bodyAs[String])

case PrintThis(msg) =>

println(s"""

|Hey I got a message!

|I got it from Camel but this handler doesn't

|really know that. The message is:

|

|$msg""".stripMargin)

}

}

Now to use it is pretty simply. We can just echo some text into a file in
the appropriate directory and they are sent to our Actor.

% echo "Hi there Mr. Camel, Dood!" > /tmp/actor/file

And this produces the right thing, of course:

Hey I got a message!
I got it from Camel but this handler doesn’t
really know that. The message is:

Hi there Mr. Camel, Dood!

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=457

Section 19.6 Chapter 19 · Growing Your App with Add-On Modules 458

We can keep echoing into that file all day long and it will keep sending
those messages to our FileConsumer. Normally, you just have to stick one of
these guys in front of another Actor that’s expecting the PrintThis message,
but for simplicity we stuck the Consumer Actor and the “business” Actor
into the same thing.

The beauty of the untyped Actor means that you can swap things out
without having to worry about upstream guys. I once converted the messag-
ing conduit in my application from a homegrown WebSocket connection to
one that spoke JMS to an upstream system in 60 lines of code in less than 2
hours of work. It’s that powerful and that easy.

19.6 Durable Mailboxes

Durable Mailboxes let you specify a Mailbox for the Actor that can survive
machine-death. The Mailbox itself is backed by some sort of durable storage;
the default Akka implementation being a journaled file on the file system.
Advanced Message Queuing Protocol (AMQP) does have an implementation
available, but it isn’t distributed with Akka.

Beyond the basic file system durability, Akka provides a mechanism by
which you can write your own durability solution. It’s not terribly difficult
to implement, assuming you have a solid piece of kit that can reliably store
your messages for you (e.g., a database server, a memory-backed distributed
key-value storage system, etc.).

There are systems that require some sort of durability, history, or constant
consistency, and in these cases, the durability module might be exactly what
the doctor ordered. In real-time systems, durability may not be the solution
you need if all you’re looking to do is record events for later mining or post-
event processing.

19.7 Clustering

Clustering is the big feature of Akka 2.x (x ≥ 1) and it’s the feature that
will bring Akka into the center stage for those really huge applications that
want to have load-balancing and fault-tolerance across dozens to thousands
of nodes.

Unfortunately, it’s not complete at the current time, which makes it diffi-

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=458

Section 19.8 Chapter 19 · Growing Your App with Add-On Modules 459

cult to write about.3 As with most things, the authoritative source for infor-
mation on Clustering will be the Akka reference documentation and website.

The Clustering feature’s main thrust is to provide an even more gen-
eral remote experience, to help load balance Actors, migrate them between
nodes, detect failure and institute automatic recovery, and many more things
while doing it without having a single point of failure. It’s not clear at
this time how this will all be realized, but the architecture’s bones look like
they’re well placed to make it happen.

19.8 HTTP

As far as the general public is concerned and, let’s face it, for most devel-
opers, the Internet is synonymous with the Web.4 And the Web is HTTP.
Fortunately, there are some pretty awesome HTTP solutions for Akka, the
chief one being Play.5

The Play framework is a fully loaded, fully asynchronous powerhouse
web framework that helps you build truly awesome and highly interactive
websites using either Java or Scala with Akka. It is actually built on top of
Akka and uses it to power the asynchronous, non-blocking engine.

The only complaint that some people have had is that Play has been
a framework for those who want the full-course dinner and are looking to
build huge websites with it with page templates and rendering engines and
all kinds of cool stuff. For those whose applications only need connectivity
and a bit of HTTP routing, Play is just too much to swallow. For those peo-
ple, Akka recommends Play Mini, which provides a small footprint with few
dependencies that makes it very easy to write small HTTP-enabled applica-
tions.

Play and Play Mini have gained a pretty happy following because they
solve a set of core problems that developers of large-scale websites (or, at
least, HTTP enabled applications) need. Play has managed to implement the
reactive, asynchronous model in a very clear and manageable way so your
applications are easy to understand, and that’s a good thing.

3. . . and even if it were, it wouldn’t fit in this book anyway.
4I apologize to all the Gopher devotees in the audience.
5http://www.playframework.org

http://www.playframework.org
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=459

Section 19.9 Chapter 19 · Growing Your App with Add-On Modules 460

19.9 Monitoring

Typesafe owns Akka as well as Scala and is the company responsible for
bringing you all of this goodness. A business has to make money somehow
and this is one of the ways they plan to do it: Large applications tend to need
some sort of monitoring tool as well as support from the key players in their
implementation; Typesafe provides both of these at a cost, which helps fuel
their business.

The Typesafe Console is a web-enabled application written with the
Typesafe Stack (Scala, Akka, and Play) that gives you really detailed in-
formation about your running application, across your nodes, your Actors,
your JVMs, and many other bits of information you need to know. There’s
also a programmatic interface to it that you can access from JMX or REST.

You can check it out at http://typesafe.com/products/console.

19.10 Chapter Summary

Akka is a modular system, which works in your favour because you can
interact with it and create your own modules with relative ease. The mod-
ules that Akka has already provided, which we now have the briefest insight
into, allow you to expand your applications in various ways, sometimes non-
intrusively. The ability to add durability by tossing in a new type of Mailbox
is a great example of this—the Actor(s) that gain durability are completely
ignorant of that fact, and what could be better than ignorance?

You don’t really know how to use these modules or the sweet spots where
they might be valuable, or have any real experience with them right now, but
that isn’t the point. You do know that they exist, that they solve particular
problems, and that they’re available to you to assist in your application devel-
opment. You probably don’t need to invent these particular wheels because
they’re already done.

http://typesafe.com/products/console
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=460

Chapter 20

Using Akka from Java

I’m not going to lie to you, the absolute shining API for Akka is the Scala
API. While the Akka team has done a great job with the Java API, Scala is a
more expressive language and the team has been amazing at exploiting that
expressiveness. If you can use the Scala API, you’d be doing yourself a great
amount of good by using it exclusively. However, you’ll find that the Java
API is entirely usable and pleasant.

There are differences between the two, of course. It’s not reasonable
to cover all of the differences, since the Akka reference documentation and
the API do a fine job of handling the details, but for those who need to
understand how things work in Java, this chapter is for you. I’ll assume
that you know Java well enough to recognize the more verbose typing, the
different import styles, and the other Java-isms the we haven’t seen thus far.

20.1 Immutability

We’ve covered immutability a ton, but it’s more important in Java because
the convention is opposite to that of Scala. For example, the case class in
Scala is immutable by default, and considering that’s our bread-and-butter
message class we generally get immutability “for free.” In Java, the opposite
is true; you have to specify immutability all over the place.

So, don’t forget those finals! Akka can’t check them for you so you’re
on your own here. The final keyword should be ubiquitous in your code.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=461

Section 20.2 Chapter 20 · Using Akka from Java 462

20.2 Differences Overall

The differences you’ll encounter fall into two main buckets: Java’s lack of
support for implicits and functions as first class members of the language.
Java also lacks pattern matching, which makes things a bit more cumber-
some, but it does so only in the Actor receive() method.

This simply means you have “more stuff” in your code than you would
with Scala. But if you’re a Java programmer, you’re already used to more
stuff, in general anyway, so this shouldn’t be a huge problem.

20.3 Glue Classes

Where Scala is an FP/OO-hybrid language, Java is only OO, which means
that we need to augment a bit of the FP stuff with classes. As such, there are
a few classes in the Java API that you need to understand.

20.4 akka.japi.Procedure

The Procedure class embodies the notion of void function on one parame-
ter. It allows Java to express Scala’s equivalent of (T) => Unit. Essentially,
it looks like:

interface Procedure<T> {

public void apply(T param);

}

If you want to define a Procedure, you can simply implement an anony-
mous Procedure interface, like this:

Procedure<Integer> p = new Procedure<Integer>() {

public void apply(Integer i) {

System.out.println(i);

}

};

p.apply(9);

// Prints '9'

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=462

Section 20.4 Chapter 20 · Using Akka from Java 463

akka.japi.Function

Beyond the Procedure, we generally need functions—those that return values—
and this is why we have the Function interface.

interface Function<T, R> {

public R apply(T param);

}

Now we have an interface for a function on one parameter. We can define
a simple function that will convert an integer to its string equivalent as:

Function<Integer, String> f = new Function<Integer, String>() {

public String apply(Integer i) {

return i.toString();

}

};

String s = f.apply(9);

assertEquals("9", s);

akka.japi.Function2

Much like Function we have c{Function2, which gives us a function on
two parameters. If we want to define a function that takes two integers and
returns a string representing the sum, we could write:

Function2<Integer, Integer, String> f =

new Function2<Integer, Integer, String>() {

public String apply(Integer i, Integer j) {

return new Integer(i + j).toString();

}

};

String s = f.apply(9, 10);

assertEquals("19", s);

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=463

Section 20.4 Chapter 20 · Using Akka from Java 464

akka.japi.Option

A lot of Scala code takes advantage of the concept of a value that may or
may not be defined, which is embodied in the Option. In Scala, the Option
has several fine operations defined on it; however, these aren’t necessarily
required for Java, so there’s a slightly stripped down version in this imple-
mentation.

Assuming you get an Option from Akka, there are some simple ways
you can use it:

// When the Option has something

Option<String> opt = new Option.Some<String>("Something");

assertTrue(opt.isDefined());

assertFalse(opt.isEmpty());

assertEquals("Something", opt.get());

assertTrue(opt.iterator().hasNext());

assertEquals("Something", opt.iterator().next());

// When the Option has nothing

Option<String> none = Option.none();

// Or equivalently: Option.option(null);

assertFalse(none.isDefined());

assertTrue(none.isEmpty());

try {

none.get();

fail();

} catch(Exception e) {

// yup... it threw

}

assertFalse(none.iterator().hasNext());

akka.dispatch.Mapper

The Mapper class provides us with a bit more than the Function interface
does and is generally used in situations where we’re mapping from one object
type to another (of possibly the same type). Generally speaking, you simply
have to provide an instance to the appropriate function (e.g., map) and let
Akka do the rest.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=464

Section 20.5 Chapter 20 · Using Akka from Java 465

Mapper<Integer, String> f = new Mapper<Integer, String>() {

public String apply(Integer i) {

return i.toString();

}

};

assertEquals("9", f.apply(9));

20.5 Messages

We’ve basically standardized on the case class when we’re implementing
messages due to all of the magnificent benefits we get from them. In Java,
we need to do more work. At a minimum, a message’s Java form should
look something like this:

public class JavaMessage {

// FINAL - Make it FINAL - gotta be FINAL.

public final String msg;

// Value-style constructor

public JavaMessage(String msg) {

this.msg = msg;

}

// If you don't do this it's going to make things a real pain

public boolean equals(Object that) {

if (that instanceof JavaMessage)

return ((JavaMessage)that).msg.equals(this.msg);

else

return false;

}

// Ditto here

public int hashCode() {

return this.msg.hashCode();

}

// Makes diagnostics and the like a lot nicer

public String toString() {

return "JavaMessage(" + this.msg + ")";

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=465

Section 20.6 Chapter 20 · Using Akka from Java 466

}

Because of this extra verbosity, it might be tempting to eliminate the
usage of a message “class” altogether and just go for the primitive type (a
String, in this case). Please avoid that temptation. Using specific classes to
embody your protocol will pay off in type safety and extensibility later. If
the verbosity annoys you, take a good look at your editor to see if it can help
out in any way. (For example, I use a Vim plugin that helps me avoid all of
this boilerplate by generating it for me.)

20.6 The Untyped Actor

Creating a Java version of the untyped Actor is pretty simple. It gets a bit
more complex as you want to go beyond the basics, but it’s still not a big
deal.

import akka.actor.UntypedActor;

public class JavaActor extends UntypedActor {

// The main 'receive' method for the Actor

public void onReceive(Object message) throws Exception {

// We don't have pattern matching so we just use 'if' blocks,

// and a whole lot of 'instanceof' invocations

if (message instanceof JavaMessage) {

final JavaMessage m = (JavaMessage)message;

if (m.msg.equals("Hi there"))

// If we don't specifically send ourself as the second parameter

// to 'tell' then the Dead Letter Office will get put in its place

getSender().tell(new JavaMessage("Hi back"), getSelf());

else if (m.msg.equals("Bye"))

getSender().tell(new JavaMessage("So long"), getSelf());

} else {

// We've got to call this by hand otherwise any unhandled message

// will be silently discarded

unhandled(message);

}

}

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=466

Section 20.6 Chapter 20 · Using Akka from Java 467

Creation

You can create this Actor using the usual mechanism of Props passed to an
ActorSystem, which will create the Actor using Java Reflection.

ActorSystem system = ActorSystem.create("JavaActorSystem");

final Props props = new Props(JavaActor.class);

final ActorRef actor = system.actorOf(props);

If we want to create an Actor that doesn’t use the default constructor, then
we have to supply a factory object that will create it for us. For example, if
we have a class with no default constructor, then we have to specify a factory
that passes in the required arguments (in this case, a single string value):

import akka.actor.UntypedActorFactory;

final Props props = new Props(new UntypedActorFactory() {

public UntypedActor create() {

return new JavaActorNoDefault("Start Value");

}

});

final ActorRef actor = system.actorOf(props);

Of course, you should never return a reference to a static, or otherwise
pre-existing Actor that might be referenced elsewhere, or have gone through
a standard Actor life cycle. This would just be the worst idea ever; don’t do
it.

Members and Methods

The members of the UntypedActor are basically all there, but some look
slightly different than they do in the Scala version:

getSelf() Equivalent to Scala’s self value

getSender() Equivalent to Scala’s sender method

onReceive() Equivalent to Scala’s receive method

supervisorStrategy() Equivalent to Scala’s receive method

unhandled() Equivalent to Scala’s unhandled method

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=467

Section 20.6 Chapter 20 · Using Akka from Java 468

getContext() Equivalent to Scala’s context value. And within the con-
text, we have the following:

actorOf() Create children as usual.

become() Change running states.

getChildren() Get the Iterable to the children.

parent() The guy who owns you.

watch() / unwatch() Throw a DeathWatch onto an ActorRef.

system() Access the Actor System.

Life-cycle methods These do what you would expect:

• preStart()

• preRestart()

• postRestart()

• postStop()

These all do the equivalent of what you’d expect from the Scala API. The
main difference is that the become() functionality is limited to what some
rudimentary Java definitions can provide. No real effort has been made to
implement the power of the Scala PartialFunction in Java—that would just
be silly. As a result, you’re limited to what you can do with basic Java. For
example:

// Create what will be an initial onReceive implementation

Procedure<Object> receiveA = new Procedure<Object>() {

@Override

public void apply(Object message) {

if (message instanceof String)

getSender().tell("You gave me a String.", getSelf());

else {

getSender().tell("You gave me something else.", getSelf());

getContext().become(receiveB);

}

}

};

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=468

Section 20.6 Chapter 20 · Using Akka from Java 469

// Create a second flavour of the 'onReceive' procedure

Procedure<Object> receiveB = new Procedure<Object>() {

@Override

public void apply(Object message) {

if (message instanceof Integer)

getSender().tell("You gave me an Integer.", getSelf());

else {

getSender().tell("You gave me something else.", getSelf());

getContext().become(receiveA);

}

}

};

// It needs to be implemented but we're going to swap it out

// before it can get used, so we'll throw an exception just

// for fun.

public void onReceive(Object message) throws Exception {

throw new Exception("This shouldn't have happened");

}

// Override the 'preStart' to instantiate the 'receiveA' as the

// initial 'onReceive' implementation.

@Override

public void preStart() {

getContext().become(receiveA);

}

TestKit

The Java API comes with a TestKit variant that we’ve made so much exten-
sive use of in the Scala implementation. The implementation is pretty slick
and has a lot of the cool stuff we’re used to.

The basic pattern you use to hook it up is the following (using JUnit4 as
our example test framework). We start with a bunch of imports, part for our
test framework and part for Akka.

import static org.junit.Assert.*;

import org.junit.Test;

import org.junit.AfterClass;

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=469

Section 20.6 Chapter 20 · Using Akka from Java 470

import org.junit.BeforeClass;

import akka.actor.ActorSystem;

import akka.actor.Props;

import akka.actor.ActorRef;

import akka.testkit.JavaTestKit;

Now we can implement our JUnit 4 test that looks a lot like the Scala
version. The JavaTestKit is a pretty good representation of what we would
have in Scala.

public class JavaActorSpec {

// We'll store it as static and assign it later

static ActorSystem system;

@BeforeClass

public static void setup() {

// Create the ActorSystem

system = ActorSystem.create();

}

@AfterClass

public static void teardown() {

// Shutdown the ActorSystem

system.shutdown();

}

@Test

public void testMethod() {

// We write our code inside a new JavaTestKit instance

new JavaTestKit(system) {{

// Create your actor

final Props props = new Props(JavaActor.class);

final ActorRef actor = system.actorOf(props);

// Send it a message - getRef() is the our test actor

actor.tell(new JavaMessage("Hi there"), getRef());

// Uses our JavaMessage.equals() and error messages will

// use JavaMessage.toString()

expectMsgEquals(duration("1 second"), new JavaMessage("Hi back"));

}};

}

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=470

Section 20.7 Chapter 20 · Using Akka from Java 471

}

That’s the basic idea. When you need to know more, the API reference
can help you out, but you’ll find that it’s very close to what we’ve already
seen; you’re just going to do it from Java instead of Scala, which will just
make it a bit clunkier.

20.7 Futures

There’s nothing really surprising about the Futures implementation for Java
beyond what we already expect, but we’ll go over a bit of it here to give you
an idea of how it works.

Imports

You need to do a fair bit of importing to get things to work out. Generally,
you can find what you need in akka.dispatch.*, scala.concurrent.*
and java.util.concurrent.*. If you can’t see what you need immedi-
ately, it’s probably in one of these key places. In the examples that follow,
we’re pulling in our imports as follows:

// Basic Akka Imports

import akka.dispatch.ExecutionContexts;

import akka.dispatch.Futures;

import akka.dispatch.Mapper;

import akka.dispatch.Recover;

import akka.dispatch.OnSuccess;

import akka.dispatch.OnFailure;

import akka.dispatch.OnComplete;

import akka.util.Timeout;

import static akka.dispatch.Futures.future;

// Things we need from Scala

import scala.concurrent.ExecutionContext;

import scala.concurrent.Future;

import scala.concurrent.Await;

import scala.concurrent.util.Duration;

// Help we get from Java itself

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=471

Section 20.7 Chapter 20 · Using Akka from Java 472

import java.util.ArrayList;

import java.util.concurrent.Callable;

import java.util.concurrent.Executors;

import java.util.concurrent.ExecutorService;

Testing Futures

We’ll be driving some aspects of the Java Futures through some JUnit tests,
which will be set up in the following framework:

public class JavaFutureSpec {

// The Future needs somewhere to execute, which exists as the

// ExecutionContext (we can use a Dispatcher as well, but we're going

// to do this a little lower down).

static ExecutorService es;

static ExecutionContext ec;

// We're going to need a timeout later, so we'll use it from here

static Timeout timeout = new Timeout(Duration.parse("2 seconds"));

// Sets up the ExecutionContext

@BeforeClass

public static void setup() {

es = Executors.newFixedThreadPool(2);

ec = ExecutionContexts.fromExecutorService(es);

}

// Shuts down our thread pool

@AfterClass

public static void teardown() {

es.shutdown();

}

// ...

}

Around the API

Now we’ll look at how we can manipulate Futures through Java to achieve
the same things we’ve seen in the past with the Scala API.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=472

Section 20.7 Chapter 20 · Using Akka from Java 473

A Vanilla Future

Creating a simple Future requires that we instantiate a Callable that can ex-
ecute the business logic inside the Future. We pass in the ExecutionContext
on which the Future will execute:

// Use the 'future' factory method to construct the Future

Future<String> f = future(new Callable<String>() {

public String call() {

return "Fibonacci";

}

}, ec);

assertEquals("Fibonacci", (String)Await.result(f, timeout.duration()));

Using Map

We can use a Future’s functional aspects as well, which are great for build-
ing up delayed executions without having to block any threads. Doing so
requires that we change from using a Callable to a Mapper:

// Create a Future that computes a String

Future<Integer> f = future(new Callable<String>() {

public String call() {

return "Fibonacci";

}

// And then map that string into an Integer

}, ec).map(new Mapper<String, Integer>() {

public Integer apply(String s) {

return s.length();

}

}, ec);

assertEquals(new Integer(9), Await.result(f, timeout.duration()));

Using flatMap

As with map, we can flatMap over a Future as well. The indirection that we
need merely creates a Mapper that returns a Future with a result instead of
the result directly:

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=473

Section 20.7 Chapter 20 · Using Akka from Java 474

// Ultimately we're going to get back a Future<Integer>

Future<Integer> f = future(new Callable<String>() {

// But we start with a String

public String call() {

return "Fibonacci";

}

// flatMap it to a Future<Integer> (i.e. not an Integer as before)

}, ec).flatMap(new Mapper<String, Future<Integer>>() {

public Future<Integer> apply(final String s) {

// Construct a new Future to an eventual Integer

return future(new Callable<Integer>() {

public Integer call() {

return s.length();

}

}, ec);

}

}, ec);

assertEquals(new Integer(9), Await.result(f, timeout.duration()));

Sequencing

We can also sequence a list of Futures with Java as we would with Scala.
Let’s sum up a bunch of Integers to see how you do this:

// Create an ArrayList of 200 Future Integers

ArrayList<Future<Integer>> v = new ArrayList<>();

for (int i = 0; i < 200; i++) {

final int num = i;

v.add(future(new Callable<Integer>() {

public Integer call() throws Exception {

return new Integer(num);

}

}, ec));

}

// Compose that list of Future Integers into a Future of a

// List of Integers

Future<Iterable<Integer>> futureListOfInts = Futures.sequence(v, ec);

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=474

Section 20.7 Chapter 20 · Using Akka from Java 475

// Map over the results and sum them up

Future<Long> f = futureListOfInts.map(

new Mapper<Iterable<Integer>, Long>() {

public Long apply(Iterable<Integer> ints) {

long sum = 0;

for (Integer i : ints) sum += i;

return sum;

}

}, ec);

assertEquals(new Long(19900), Await.result(f, timeout.duration()));

Callbacks

Callbacks probably have the most obvious need for implementation with
classes, so the following should be fairly self-explanatory:

Future<Integer> f = future(new Callable<Integer>() {

public Integer call() {

return new Integer(42);

}

}, ec);

// Add the onSuccess callback

f.onSuccess(new OnSuccess<Integer>() {

public void onSuccess(Integer result) {

System.out.println("Awesome! I got a number: " + result);

}

}, ec);

// Add the onFailure callback

f.onFailure(new OnFailure() {

public void onFailure(Throwable failure) {

System.out.println("Aw, poo! It didn't work: " + failure);

}

}, ec);

// Add the onComplete callback

f.onComplete(new OnComplete<Integer>() {

public void onComplete(Throwable failure, Integer result) {

if (failure != null)

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=475

Section 20.7 Chapter 20 · Using Akka from Java 476

System.out.println("Aw, poo! It didn't work: " + failure);

else

System.out.println("Awesome! I got a number: " + result);

}

}, ec);

Failures

We can create a failure with a simple Exception, as usual:

Future<String> f = future(new Callable<String>() {

// We need to declare that the main Callable method can throw

public String call() throws Exception {

throw new Exception("Boo!");

}

}, ec);

Await.result(f, timeout.duration());

Recovering

Recovering from failures is essentially the same in Java Futures as it is in
Scala with the now common alteration that the function be represented as an
instance of a class.

Future<Integer> f = future(new Callable<Integer>() {

public Integer call() throws Exception {

throw new Exception("You ain't gettin' no Integer from me.");

}

}, ec).recover(new Recover<Integer>() {

public Integer recover(Throwable t) throws Throwable {

return new Integer(0);

}

}, ec);

assertEquals(new Integer(0), Await.result(f, timeout.duration()));

Using recoverWith() is equivalent, but for the extra Future level of in-
direction, as with flatMap(). In other words, you recover with a Recover<Future<Integer>>
instead of just a Recover<Integer>.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=476

Section 20.8 Chapter 20 · Using Akka from Java 477

20.8 Manipulating Agents

Agents are another point of difference that’s worth describing—not because
it’s a huge problem, it’s just different. The bottom line here is due to the
fact that Java has no support for functions as first class members of the lan-
guage, which means that in order to alter the value inside an Agent, you must
compose the function inside of a class.

20.9 Finite State Machines

Roll your own! Unfortunately, the FSM that ships with Akka relies heav-
ily on Scala. So heavily, in fact, that porting it to Java just isn’t possible.
Check the Akka reference documentation for some pointers on how to make
something that’s equivalent for Java.1

20.10 Dataflow

Dataflow uses a specific feature of Scala called Continuations that has no
analogue in Java. Sorry, folks, but if Dataflow is the killer feature for you,
then you’ll have to move to Scala. But if you do that, then you’ll probably
just get Dataflow as well as every other amazing thing you’ve ever wanted in
life, so what the heck are you waiting for?!

20.11 Chapter Summary

Akka is very accessible from Java,2 so there’s no reason why you shouldn’t
adopt the Akka paradigm to help you accomplish your concurrent needs
whether you’re in Scala or Java. Of course, Akka was written in Scala and
it doesn’t confine itself unnecessarily to being 100% compatible with Java
(since that would just punish us Scala guys). This means you don’t get to
use all of the features that you might get in Scala, but that doesn’t mean
you’re having to go without, either. The Java API is very rich, and should
provide you with everything you need.

1Or just switch to Scala, already!
2In fact, I’m using it in my day job and it works great.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=477

Chapter 21

Now that You’re an Akka Coder

Congratulations! You’ve achieved a great deal in digesting these pages.
You haven’t just learned the core parts of the greatest concurrency toolkit
to grace the JVM to date, you’ve opened up your mind to one of the most
important programming paradigms of the decade. Non-blocking, fully asyn-
chronous application design and development—which helps you create ap-
plications that are resilient in the face of failure and scales both vertically to
the hardware available on your machine and horizontally across a farm of
machines—is the must-have development paradigm in our multi-core world.

This book can’t possibly hope to make you an expert Akka programmer,
and certainly not an expert in the field of this new paradigm, but you’ve
climbed over that all-too-difficult hump of a learning curve that puts you in
a position to learn much faster. So where do you go from here?

21.1 Akka.io

The Akka website (http://akka.io) is clearly the definitive source for in-
formation on the toolkit. The reference documentation is some of the best
on the web and you should head there right after you chew on this for a
while. The reference documentation helps you with the “what” and a de-
cent amount of the “how,” but it’s a lot easier to understand and to put into
the right context when you have a solid grasp of the “why,” which you now
possess.

If you’re interested in some of the modules that we didn’t cover, head
over there and eat them up. The Scaladoc API is also a very useful resource
that you should be able to sail through now, using it for the simple reference

http://akka.io
http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=478

Section 21.2 Chapter 21 · Now that You’re an Akka Coder 479

tool that it’s intended to be.

21.2 The Mailing List

If you look at the Akka website, you’ll see a link for the Mailing List. There
are a ton of helpful people on there and now is the right time to sign up;
you’ve reached the point where you have a solid foundation, you know where
the reference documentation is, and you can even talk the talk. It’s at this
point where you can start asking some good questions that people will enjoy
answering. I know I really like it when I see a question on the mailing list
that’s actually fun to answer—a design question that presents an interesting
use case or one that lets you expand the user’s knowledge to a higher level
of Akka knowledge.

21.3 Have Fun!

There’s a lot of joy in writing software that we can be proud of. I don’t know
about you, but when I can write a system that scales well and handles a ton
of concurrent incoming events with grace and speed, while at the same time
being resilient and responsive, that makes me feel like a proud papa!

If you’re diligent about applying the paradigm, and grow your appli-
cations within it, and even stretch it from time to time, you’ll find that your
applications are in that first-class tier of reliability and usability. And if look-
ing like the god of concurrent programming doesn’t make you feel awesome
and if you don’t find the process fun, then you’ve probably made the wrong
career choice. But if you’ve read this book, then you’re not that person.

Akka is powerful, expressive, and fun. Use it and be awesome.
Cheers!

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=479

About the Author

Derek Wyatt is a Software Architect and Developer specializing in large-
scale, real-time applications for the World Wide Web. He’s been working
with Akka since the early days of 1.0 and has used it to implement a number
of applications both large and small. After spending many years writing large
concurrent systems in C++ using traditional concurrency mechansims, Derek
now embraces the sophisticated, and beautiful simplicity of the paradigm
presented in the Akka Toolkit. He also harbours a love of the Vim text editor
and the Unix command line that borders on the unhealthy.

http://www.artima.com/forums/forum.jsp?forum=289
http://www.artima.com/backtalk/talkback?b=akka_concurrency&v=2012_10_14&n=480

	Contents
	List of Figures
	Preface
	Concurrent Challenges
	Akka Is Concurrency
	Concurrency Methodologies
	The Akka Concurrency Toolkit
	Who You Are
	How to Read this Book
	What You're Going to Learn

	Concurrency and Parallelism
	Parallelism vs. Concurrency
	A Critical Look at Shared-State Concurrency
	Immutability
	Chapter Summary

	Set Up Akka
	Scala Setup with SBT

	Akka Does Concurrency
	The Actor
	The Future
	The Other Stuff
	You Grabbed the Right Toolkit

	Actors
	The Components of an Actor
	Properties of an Actor
	How to Talk to an Actor
	Creating Actors
	Actors in the Clouds
	Tying It Together
	How Message Sending Really Works
	The ActorSystem Runs the Show
	Chapter Summary

	Akka Testing
	Making Changes to SBT
	A Bit of Refactoring
	Testing the EventSource
	The Interaction Between ImplicitSender and testActor
	TestKit, ActorSystem, and ScalaTest
	Testing the Altimeter
	Akka's Other Testing Facilities
	About Test Probes and the testActor
	Chapter Summary

	Systems, Contexts, Paths, and Locations
	The ActorSystem
	Actor Paths
	Staffing the Plane
	The ActorContext
	Relating the Path, Context, and System
	Chapter Summary

	Supervision and DeathWatch
	What Makes Actors Fail?
	The Actor Life Cycle
	What Is a Supervisor?
	Watching for Death
	The Plane that Healed Itself
	Dead Pilots
	Chapter Summary

	Being Stateful
	Changing Behaviour
	The Stateful Flight Attendant
	A Better Flyer
	The Naughty Pilot
	Some Challenges
	Testing FSMs
	Testing the Pilot
	Chapter Summary

	Routing Messages
	Routers Are Not Actors
	Akka's Standard Routers
	Routers and Children
	Routers on a Plane
	Magically Appearing Flight Attendants
	Sectioning off Flight Attendant Territory
	More You Can Do with Routers
	Chapter Summary

	Dispatchers and Mailboxes
	Dispatchers
	Dispatcher Tweaking
	Mailboxes
	When to Choose a Dispatching Method
	Chapter Summary

	Coding in the Future
	What Is the Future?
	Don't Wait for the Future
	Promises and Futures
	Side-Effecting
	Futures and Actors
	Plane Futures
	Chapter Summary

	Networking with IO
	The Plane's Telnet Server
	Iteratees
	Chapter Summary

	Going Multi-Node with Remote Actors
	Many Actors, Many Stages
	Simple Build Tool (SBT)
	Remote Airports
	Going Remote
	Flying to the Airport
	Programmatic Remote Deployment
	Configured Remote Deployment
	Routers Across Multiple Nodes
	Serialization
	Remote System Events
	On the Subject of Lost Messages
	Clustering
	Chapter Summary

	Sharing Data with Agents
	SBT
	Agents as Counters
	Working with Agents
	The API
	Transactional Agents
	Chapter Summary

	Granular Concurrency with Dataflow
	Caveats
	With That Said…
	Getting Dataflow into the Build
	Dataflow Values
	Flow
	Another Way to Get Instrument Status
	When to Use Dataflow
	Chapter Summary

	Patterns for Akka Programming
	Behavioural Composition
	Isolated and Parallel Testing
	Strategies for Implementing Request/Response
	Mechanisms for Handling Non-Deterministic Bootstrapping
	The Circuit Breaker
	Breaking Up a Long-Running Algorithm into Multiple Steps
	Going Parallel
	An Actor EventBus
	Message Transformation
	Retry Behaviour
	Shutting Down When All Actors Complete
	Chapter Summary

	Antipatterns for Akka Programming
	Mutability in Messages
	Loosely Typing Your Messages
	Closing over Actor Data
	Violating the Single-Responsibility Principle
	Inappropriate Relationships
	Too Much actorFor()
	Not Enough Config
	Needless Future Plumbing
	Chapter Summary

	Growing Your App with Add-On Modules
	Extensions
	Working with Software Transactional Memory
	ZeroMQ
	Microkernel
	Camel
	Durable Mailboxes
	Clustering
	HTTP
	Monitoring
	Chapter Summary

	Using Akka from Java
	Immutability
	Differences Overall
	Glue Classes
	akka.japi.Procedure
	Messages
	The Untyped Actor
	Futures
	Manipulating Agents
	Finite State Machines
	Dataflow
	Chapter Summary

	Now that You're an Akka Coder
	Akka.io
	The Mailing List
	Have Fun!

	About the Author

