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ABSTRACT
A list of the dynamically changing group membership of
a meeting supports a variety of meeting-related activities.
Effortless content sharing might be the most important ap-
plication, but we can also use it to provide business card
information for attendees, feed information into calendar ap-
plications to simplify scheduling of follow-up meetings, pop-
ulate the membership of collaborative editing applications,
mailing lists, and social networks, and perform many other
tasks.

We have developed a system that uses audio sensing to
maintain meeting membership automatically. We choose au-
dio since hearing the same conversation provides a human-
centric notion of attending the same gathering. It takes into
account walls and other sound barriers between otherwise
closely situated people. It can sense participants attending
remotely by teleconference. It does not require attendees to
perform any explicit action when participants leave a meet-
ing for which they should no longer have access to associ-
ated content. It works indoors and outdoors and does not
require pre-populating databases with mapping information.
For sensors, we require only the commonly available micro-
phones on mobile devices.

Our system exploits a new technique for matching sensed
patterns of relative audio silence, or silence signatures, from
mobile devices (mobile phones, tablets, laptops) to deter-
mine device co-location. A signature based on simple si-
lence patterns rather than a detailed audio characterization
reveals less information about the content of potentially
private conversations and is also more robustly compared
across devices that are not clock synchronized. We evaluate
our method in formal indoor meetings and teleconferences
and in ad hoc gatherings outdoors and in a noisy cafeteria.
Across all our tests so far, our approach determines audio
co-location with a worst-case accuracy of 96%, and recovery
from these errors takes only a few seconds. We also describe
a content sharing application supported by silence signature
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matching, the limitations of our approach, current status,
and future plans.
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1. INTRODUCTION
People meet with each other by necessity and by choice,

formally and informally, in person and remotely. These dif-
ferent kinds of meetings can have very different characteris-
tics. Sometimes there is a collaborative purpose that results
in a shared artifact, a recorded consensus, or a group ac-
tion. Sometimes there is no pre-planned purpose, but we
may still value the discussion and would like to refer back
to it and remember who was present. There are applica-
tions and tools to support many of these different kinds of
meetings, including collaborative document editors, content
sharing sites, teleconferencing systems, apps for exchanging
business card information, photo sharing tools, and so forth.

Despite the wide variety of these applications, one un-
derlying type of support seems generally useful: automati-
cally knowing the group membership of the meeting. With
a list of the dynamically changing group membership, we
can enable easier content sharing with all the attendees.
We can automatically exchange digital business card infor-
mation and record the context in which we met the other
participants. We can feed group membership information
into calendar applications to simplify scheduling of follow-
up meetings. We can automatically populate the member-
ship of collaborative editing applications, mailing lists, and
social networks. Half-way through a meeting, we can call
another person who can then join us seamlessly, without
painful interruptions for setup. With support from the in-
frastructure, we can effortlessly display content on ambient
projectors and screens, as well as allow meeting rooms to
determine when there are no longer people inside, enabling
just-in-time conference room scheduling.



We believe that comparing audio sensed by different de-
vices can help determine the group membership of a meet-
ing whose attendees bring their mobile devices. Almost all
mobile devices include audio sensors (microphones). Au-
dio takes into account walls and other sound barriers be-
tween otherwise closely situated people. Our approach of
comparing audio across devices gives us co-location infor-
mation, rather than physical location, but it means we can
use it anywhere without preparation – we do not need to
pre-populate databases of mapping information. Hearing
the same conversation provides a human-centric notion of
attending the same gathering and can sense participants at-
tending remotely by teleconference. It does not require at-
tendees to perform any explicit action when leaving a highly
sensitive meeting for which they should no longer have ac-
cess to associated content.

We further believe that a new approach to audio sensing
– comparing patterns of relative audio silence over time –
brings some privacy and robustness advantages. Relative
audio silence can be the space between voices, or it can be
the space between sounds that are significantly louder than
the ambient noise level. Currently, we capture these silence
signatures on the mobile devices and stream them to a cloud
service that matches them to form group membership lists
that the service then sends back to subscribing applications.
Because the cloud service receives only patterns of silence to
compare, rather than more detailed features of the audio sig-
nals, we reveal the identities of attendees to the service, but
not the content of their potentially sensitive conversations.
While it is perhaps counter-intuitive that capturing less in-
formation is more useful, we find that silence signatures are
easier to match than more detailed audio signatures, because
they need not be closely time synchronized. They can also
be more practical on some networks, since they require less
bandwidth.

In the rest of this paper we describe the motivation for
using silence signature matching and how it relates to other
location-sensing techniques (Section 2). We describe the un-
derlying algorithm(Section 3), and its current implementa-
tion and use in a mobile content-sharing application (Sec-
tion 4). We evaluate our method (Section 5) in formal meet-
ings in conference rooms and ad hoc gatherings outdoors
and in a noisy cafeteria. We also explicitly test the method
in difficult situations with phones in purses and pockets.
Across all these tests we have so far observed a worst-case
error rate of 4% which compares favorably with many other
location-sensing technologies, and the system usually recov-
ers in about two seconds from these errors. We also evaluate
the power consumption of our implementation and its po-
tential for scaling to large numbers of client devices, both of
which remain problematic depending on how our technique
is applied. Finally, we describe several known limitations of
our method and our future plans (Section 6).

2. MOTIVATION AND RELATED WORK
Questions such as where we are, what we are near, and

who is near us have long been important to people, so it is
no surprise that the technology community continues to re-
fine our location-sensing tools. In our current work, we are
content to sense mobile computing devices in our proximity
as proxies for the people who carry them, rather than the
presence of the actual people. This presents us with a poten-
tially easier problem than that solved by face recognition [41]

and other technologies required by security surveillance and
monitoring applications. Further, most of the applications
we want to support already require people to carry their mo-
bile devices with them. There are nonetheless many different
approaches to sensing location and co-location using mobile
devices. They have different strengths and weaknesses, and
so far none is ideal in all situations and for all intents.

For our purposes, we are interested in answering the ques-
tion “who are we with?” (co-location) rather than “exactly
where are we?” (physical location). The bulk of the re-
search in location sensing has gone into answering the latter
question which is more inclusive: if devices could obtain ac-
curate absolute locations and could map them accurately to
the environment and compare results, then we could also
determine who we are with.

Techniques to obtain sufficiently accurate location sens-
ing, however, suffer from at least one of two drawbacks with
respect to our goals. First, we want to sense co-location in
as many contexts as possible (for instance both indoors and
outdoors), while many location-sensing technologies work
in only a subset of the contexts we need to consider. The
Global Positioning System (GPS), for example, provides lo-
cation information anywhere there is an unobstructed line
of sight to four or more GPS satellites [29, 42], but it works
with spread-spectrum signals of very low power (below noise
floor) that are attenuated by building materials and thus
does not generally function indoors.

Second, we want to sense co-location without the need
for location-specific infrastructure or pre-populated map-
ping databases. Many absolute location-sensing technolo-
gies require support from local infrastructure or previously
collected databases to match signals to locations. Indoor
location sensing using WiFi [8, 10, 11, 16, 44] sometimes
combined with Bluetooth [46] has become increasingly prac-
tical and accurate, with systems such as PinLoc [37] us-
ing PHY-layer fingerprints to localize users to a 1-meter-
squared spot with almost 90% mean accuracy and fewer
than 6% false positives. These solutions require a database
that maps between location and network beacons or finger-
prints. This location database may be previously calibrated,
or it can be “crowdsourced” – developed over time by active
users – but accuracy depends on its correctness and com-
pleteness. Similar solutions require matching other kinds of
sensed information such as geo-magnetic fingerprints [14],
images [32], acoustic background spectrum [40], and com-
binations of multiple kinds of fingerprints including images
and the acoustic ambience of rooms [7]. One approach to
avoid these databases is to apply dead-reckoning – sensing
motion from compass, accelerometer, and gyroscope to chart
a path from a previously known absolute location [15]. How-
ever, this approach does not yet seem to provide results ac-
curate enough for us to determine co-location at the granu-
larity of a small conference room. Some solutions use infras-
tructure such as active acoustic signals emitted by devices in
the environment [35] or NFC tags [13] deployed in meeting
rooms and other locations. Our aim is to sense co-location
of devices regardless of whether we are indoors or outdoors,
whether we have access to a particular kind of local infras-
tructure, or whether there is an accessible, well-calibrated
database of sensed fingerprints against which to match our
sensor readings.

Some systems, such as Virtual Compass [9], use peer-to-
peer wireless communication to locate nearby devices and



thus answer the question “who are we near?” rather than
giving us an absolute position. Because walls do not always
significantly attenuate radio signals, these techniques may
include nearby devices and not just devices that are part of
the same conversational group or event. In Virtual Compass,
devices maintain neighbor graphs through a two-phase algo-
rithm in which they send messages to each other over both
Bluetooth and WiFi and use the received signal strength
of the messages to judge their respective distances. Because
the messages contain neighbor lists and distances, nodes that
are more than one hop away gain knowledge of each other.
Virtual Compass has the advantage over signature-matching
techniques of avoiding potential false positives, and by using
multiple radios and peer-to-peer communication of neighbor
lists it determines not just co-location but the relative place-
ment of devices with respect to each other. Our technique
does not determine relative placement, but it does not re-
quire direct communication between devices over multiple
types of radios. Instead, we require that each device have a
microphone and at least some mechanism for reaching our
cloud service. Virtual Compass devices also use a cloud ser-
vice that they access via GSM to help cut down on continual
radio scanning to maintain their neighbor graphs. The Vir-
tual Compass cloud service uses rough GSM localization to
help determine when a new device might have entered the
area and more scanning is required.

We believe that comparing sensed sound across devices,
rather than radio communications, is a promising method for
determining a human-centric notion of co-location. Sound
respects meeting room walls and other barriers designed to
keep separate groups of people from interfering with each
other. Almost all mobile devices include microphones. Sound
sensing is available almost everywhere and does not require
sensing support in the local infrastructure (although we can
happily make use of it, as we describe later in this paper).
Another advantage of comparing sound across devices is that
we can sense the virtual co-location of participants attend-
ing an event remotely through a teleconference, because all
the participants hear the same conversations (as long as they
are not on “mute” – a problem we also consider later in this
paper).

Neary [30] is the system closest to ours that attempts to
answer the same question ”who are we with?” using sensed
audio. Like our system, it is based on the idea that you
are with the people who hear the same thing you hear.
Participants use PCs equipped with microphones and net-
works. Every six seconds each device fills its six-second
sound buffer, scans that buffer for the longest period of
sound above a threshold, processes the sound with a Fast
Fourier Transform, time stamps it, and then sends the re-
sults to all Neary devices. Receiving devices get the times-
tamp and user names from the received data, process the
sound data with a Fast Fourier Transform and calculate
the similarity of that data to the data the receiving de-
vice recorded at the same time. If the value is above a
threshold, the devices are considered co-located. There are
two issues with the Neary approach. First, because Neary
uses Fast Fourier Transforms to characterize the sound bites,
the recorded signals must be very well time-synchronized,
or they will not compare. This is why Neary requires the
devices to execute a peer-to-peer Network Time Protocol
(NTP) for synchronization, which we do not require. Sec-
ond, the characteristics of a sound signal heard on one mi-

crophone can differ substantially from the same signal heard
on another microphone. This can be due to differences in
the microphones or in the proximity of the microphone to
the sound source. This manifests itself in Neary when two
users talk at the same time. Because each voice is loudest
at its nearest microphone, the two signals do not compare
well.

Work by Zhang and Trott [45] employs the same general
approach as Neary and exhibits the same issues because it
too uses relatively complex acoustic signatures that attempt
to represent rich information about the shape of the sound
waves. This work also divides sound signals into temporal
windows and computes the discrete Fourier transform of the
windowed signal. To further reduce the size of the acous-
tic signature, the technique discards amplitude information
in each frequency band and quantizes the phase informa-
tion into two bits and sends these signatures to a central
service for matching. This approach performs well when
tested with synchronized captured data, but in practice the
windows used to compute phase are not temporally aligned
across devices, since device audio capture is rarely so pre-
cisely clock synchronized. This means the technique does
not work well when confronted with network jitter, capture
and transmission delays, and unsynchronized devices.

Instead of comparing sound signatures, we compute si-
lence signatures. Our evaluations with a live system indicate
that the use of silence signatures is robust to differences in
loudness of the different devices and their placement rela-
tive to speakers. This means participants can talk over each
other and also that the technique is not sensitive to moder-
ate temporal misalignment of signals between devices. Com-
pared to sound signatures, our silence signatures are also one
seventh the size of those used by Zhang and Trott, and they
provide more privacy with regards to conversational content.
Wyatt et al. [43] also concern themselves with protecting the
privacy of conversational content in their technique for sep-
arating speakers and their speaking turns in a multi-person
conversation by “using only features from which intelligible
speech cannot be reconstructed.” We use a subset of just
one feature and believe this makes it harder for third par-
ties to reconstruct private audio content from silence signa-
tures. (Our technique does, however, transmit device owner
identities, since that is its purpose.) In work related to si-
lence signatures, we have also performed a simulation study
that focuses on the development of statistical models for the
computation of a likelihood ratio to support sequential hy-
pothesis testing to determine a variable-length window size
for the signatures [39].

Other systems use sound in a variety of intriguing ways.
BeepBeep [34] is a highly accurate range finding and local-
ization technique that works indoors and outdoors and uses a
clever mechanism to deal with uncertain latencies. For range
finding it is similar to our system in that it requires no pre-
vious infrastructure. For localization, however, it requires
anchors in known places against which it applies its Mul-
tiple BeepBeep Ranging scheme. SoundSense [27] scalably
models sound events detected by mobile phones and uses
supervised and unsupervised learning techniques to classify
the sound types and discover sound events that are specific
to individual users. It can then recognize these sound events
in the daily lives of its users. Some systems use sound as an
over-the-air modem for communicating content between de-
vices [25, 6]. These systems have the advantage compared to



our approach that they can share device-resident media even
if there are no other data networks available. Our approach
currently requires at least some data network to be available
for each of the mobile devices so they can communicate with
a service in the cloud (although the choice of networks can
differ across devices). Another sound-emitting method [19]
uses sentences automatically generated from public keys and
vocalized by a text-to-speech system to establish secure pair-
ing between devices with the aid of humans for manual au-
thentication. In contrast to these techniques, our method
uses the unmodified acoustic environment – we need only
sense the environment passively. Finally, speaker identifica-
tion [24, 26] uses voice models derived from training data
to map from voices to associated identities and would seem
to solve our problem except that it requires a database of
all potential speakers and would not sense the presence of
people who are quiet in meetings.

Beyond the technologies we describe above, there are more
active physical and virtual methods of associating devices
with each other [12]. These techniques require explicit ges-
tures such as bumping devices together [1, 20], shaking the
devices [28], or tagging in with a technology such as NFC or
foursquare [2]. These techniques can be difficult to scale to
large meetings and some of them require an active gesture of
disassociation rather than dynamically sensing when people
leave meetings.

Matching patterns of relative silence meets our require-
ments for sensing the changing membership of a meeting,
indoors or outdoors, without pre-existing local infrastruc-
ture or mapping databases. In this paper we further explore
the technique’s effectiveness and practicality.

3. ALGORITHM DESIGN
In this section we describe the signal processing techniques

we use to compare conversations and other sounds heard
on different devices to judge their similarity. The top two
graphs of Figure 1 show a portion of audio recorded by an
Apple iPad and a Samsung Galaxy S3. Due to different rel-
ative distances between the devices and the people who are
speaking, the relative amplitude of the audio signals can be
very different. This suggests that direct methods such as
simple correlation of audio signals are not reliable in deter-
mining similarity. The middle two plots of Figure 1 show
the energy of the sound signals over 10 ms intervals on a
logarithmic scale. We can compute a silence threshold (de-
scribed later and shown as a dashed line in these two plots)
to quantize the signals into silence and non-silence. By re-
moving natural but spurious silences of duration less than
100 ms, we obtain the silence signatures of the bottom two
plots of Figure 1, where we indicate relative silence with a 1
and non-silence with a 0. Visually, the two signatures appear
very similar, which is our goal. In the rest of this section,
we describe how we classify silence, how we compute simi-
larity between silence signatures, and how we choose various
design parameters.

3.1 Acoustic Activity Detection
To form our silence signatures, we want to extract the si-

lence that occurs in meetings. This task is related to Voice
Activity Detection (VAD) except that we do not restrict
ourselves to voice but consider general sounds. We call this
Acoustic Activity Detection (AAD). In this section we de-
scribe how we prepare the signals for AAD and our choice
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Figure 1: Sound signals versus silence signatures.
The top two graphs show audio recordings from the
same 20 seconds of a meeting on a Galaxy S3 (top)
and an iPad (bottom). The middle two recordings
show the energy of the sound over 10 ms intervals
on a logarithmic scale. The dashed line is the silence
threshold we compute. The bottom two plots show
the silence signatures for these two recordings: 1
means silence and 0 means non-silence.

of acoustic activity detector.
In our experiments with various laptops, tablets and cell

phones, we find some devices have low frequency electrical
noise in the audio channel that, while not audible, deteri-
orates the AAD performance. To compensate for this, we
filter the audio signals with a high pass filter to cut out this
potential low frequency noise. We designed a 51 tap Kaiser
window Finite Impulse Response filter [29] with a stop band
from 0 to 150 Hz, a pass band from 400 to 4000 Hz, and a
stop band attenuation of 30 dB. We sample audio signals at
8000 Hz. The top two plots of Figure 2 show the 15-second
audio signal of a meeting captured by two different devices.
The bottom plot shows the filtered output of the noisy sig-
nal in the middle. We find this improves AAD performance
across all the devices.

We determine co-location based on similarity of silence
patterns across devices. This means our choice of silence
signature can affect our results. As shown in Section 5.2, we
can make use of VAD signatures, but we prefer to use AAD.
AAD is better for our purposes because it works across more
environments by exploiting non-voice as well as voice cues,
and because it is simpler. There are many existing VAD al-
gorithms, but they are designed for other applications. For
example, many low-rate speech compression engines code
and transmit data only when VAD determines that there is
speech content [23]. VAD designed for speech codecs tends
to misclassify silence as speech. This is understandable for
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Figure 2: Filtering out low-frequency noise. The top
two plots show 15-second audio signals captured by
two devices. The bottom plot shows the results of
the noisy signal in the middle after filtering.

speech compression, since misclassifying speech as silence
causes drop-out that reduces intelligibility, while misclassi-
fying silence as speech only corresponds to a minor increase
in bit-rate. VAD uses a variety of features in its algorithm
whereas we use only the energy level of the signal. Our sim-
pler method appears to be more robust in some situations
as described in Section 5.2 where we further compare our
AAD against a popular VAD algorithm.

Generally VAD attempts to separate recorded audio into
segments corresponding to ambient noise and speech. The
algorithms usually learn ambient noise characteristics from
the signal itself over a certain period of time. For our pur-
poses, we find that it is not ideal to use a constant thresh-
old to determine silence even for a few seconds. Specifi-
cally, if we refer to the middle plots of Figure 1, we see that
both the “lows” and “highs” have significant variation over
time, making a continuously changing threshold more ap-
propriate. For AAD, we thus generate the silence threshold
(dashed line) in Figure 1 by starting with the log-energy se-
quence e computed over 10 ms frames. We first compute a
smoothed version ẽ using the moving average of 9 consec-
utive frames [31]. For every sample ei at each frame, we
compute the minimum value mi and the average value ai of
ẽ over a 2-second window Wi centered at the sample. We
then compute the local threshold τi as an intermediate value
between the local minimum and average.

τi = mi + max{2, 0.7× (ai −mi)} (1)

We expect in most useful conversations that a speaker will
speak loud enough over the ambient noise to reach the in-
tended audience, so we require the sound threshold to be at
least 2 dB over the local minimum. Note that this assumes
that over a 2-second interval, there is 10 ms of signal that is
close to the ambient noise level even in continuous speech,
which is generally the case given natural pauses even in the
middle of sentences.

3.2 Signature Matching Metric
Here we describe our approach to matching silence signa-

tures to determine co-location. Given silence signatures s0
and s1, we need a similarity measure that gives a value close
to 1 for co-located s0 and s1 and a value close to 0 for unre-
lated s0 and s1, so that we can readily determine similarity
by threshold. We can then use these similarity measures
independently each time, or we can use thresholds depen-
dent on past decisions. In this paper, we adopt the simpler
approach in which decision thresholds remain constant.

Parameter Value
Silence signature length 20 seconds
Interval to compute energy 10 milliseconds
Interval to characterize ambience 2 seconds
Significant sound threshold 2 dB
Signature upload frequency every 2 seconds
Server timeshift range 500 milliseconds

Table 1: Values for various parameters used in this
paper.

We use a similarity metric based on the cosine metric

C(s0, s1) =
(s0 − s̄0)

|s0 − s̄0|
· (s1 − s̄1)

|s1 − s̄1|
(2)

where we treat s0 and s1 as vectors with scalar means s̄0
and s̄1, respectively, and the dot represents the vector dot-
product. When s0 and s1 are unrelated, C(s0, s1) is close to
zero, but when s0 and s1 are from the same time and place,
C(s0, s1) is close to one. Geometrically, C is the cosine of
the angle between vectors s0− s̄0 and s1− s̄1 and has a range
of [-1 1].

3.3 System Parameters
Systems design often involves choosing design parameters.

Here we explain our choices for the more important param-
eters. Table 1 lists their values.

First, we compare silence signatures of length 20 seconds
to determine co-location. A longer signature gives higher ac-
curacy when there are no changes in co-location status, but
it also increases decision latency when co-location changes
occur. Generally, for dynamic audio content with signif-
icant alternations between loud and soft sound, a shorter
signature may suffice, but we find that 20 seconds is better
for common use. In the future we may further explore an
adaptive signature length based on the nature of the audio
content.

Next, we determine silence or sound values for 10 millisec-
ond intervals. Ten milliseconds is a common choice in audio
processing, since one can assume that the signal remains
largely stationary within each interval, and the intervals are
small enough to provide fine granularity for robust match-
ing. In Equation 1, we determine the minimum and average
energies using a 2 second window. Empirically, we have
found this choice sufficient to respond to changes in micro-
phone gain control in common mobile devices. Similarly, in
Equation 1, the decision threshold needs to be at least 2 dB
above the corresponding minimal energy to avoid instabili-
ties when the average energy is close to the minimum energy,
e.g., in a relatively noise-free room.

As we describe in the next section, a device transmits
every 2 seconds its newly generated silence signature to a
server for comparison. More frequent updates improve re-
sponsiveness at the expense of higher network overhead as-
sociated with transmitting more messages.

Finally, to address differences in network delay and jitter,
the signature matching server performs a timeshift of up
to +/- 500 milliseconds when comparing signatures from
two devices. This value is large enough to accommodate
large-delay networks such as 4G. Disadvantages of using a
large value are increased computation and a larger chance
of incurring false positive matches.
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Figure 3: A diagram of the content-sharing applica-
tion. The SigGen silence signature generator runs
on the mobile devices sending silence signatures to
the cloud for determining co-location. The cloud
service sends a list of co-located devices to all the
devices in the group. This information is used by
applications such as the EasyShare content-sharing
application that also uses a cloud service to share
content between devices.

4. SYSTEM AND APPLICATION
In this section we describe our implementation of the si-

lence signature co-location service and its use in a very sim-
ple content sharing application. Figure 3 illustrates our im-
plementation. The mobile clients perform audio capture and
generate silence signatures and also provide a user interface
(UI) that displays the current group of co-located devices
and a way to browse and share content with the other mem-
bers of the group. Ideally we would implement the client
components entirely in HTML5 since we are aiming for a
cross-platform solution. However, some mobile browsers do
not yet support audio capture without also capturing video.
As a result, we temporarily adopt a split approach and have
implemented a native audio capture and signature gener-
ating application for Android and Windows 8 and a con-
tent sharing UI in HTML5, both of which use websockets to
communicate with a server in the cloud. This enables the
clients to function behind firewalls, at home, at work, and
elsewhere.

The audio capture and signature-generating application,
called SigGen, captures 16-bit mono audio at 8000 Hz, and
computes a binary silence value every 10 milliseconds. This
corresponds to an unencoded rate of 100 bits per second.
Every 2 seconds, SigGen sends the 200-bit or 25-byte silence
signature to a server. The server compares the signatures
and sends back a list of group members to applications that
have registered with it (in this case the content-sharing app).

The sharing UI, shown in Figure 4, displays icons (cur-
rently just user names and device-type abbreviations) for
members of the co-located group. These icons come and go
as users join and leave the group. There are many ways to
gather the user information: enterprise directories, LDAP
servers, and online authenticated identity servers from var-
ious sites and vendors. The appropriate choice of identity
information depends on the application developers’ purpose.

The icons are draggable so that users can arrange them on
the screen to represent the actual positions of physically co-
located attendees if that is useful to them.

Below the user icons is a content browsing space where
users can put content to share and where shared content
appears. Content that has not yet been shared has green
borders, while shared content (both sent and received) has
red borders. To share content the user just drags it and
drops it in the user icon area (to share with the entire group)
or onto individual icons (to share with individual users).

HP’s cloud service [3] hosts both our signature co-location
service and support for our content-sharing application. The
signature co-location service (which is very parallelizable) re-
ceives silence signatures from each device every two seconds,
and keeps past signatures for a couple of minutes to support
matching with larger time windows. The server timestamps
the received data using its own clock and compares the sig-
natures pair-wise using the latest 20 seconds available from
the two devices. Network jitter can cause inaccuracies in
recorded time, so we time-shift computed silence signatures
by +/- 50 blocks (500ms) to account for the jitter. Currently
it takes about 10 seconds to drop a device from a group. This
helps smooth out audio drops, jitter, and longer-than usual
silences in conversations.

5. EVALUATION
We evaluate our solution in several ways. We first look at

the accuracy of our signature-matching technique using our
AAD. We do this by taking silence signatures from many
hours of actual meetings and using them as input to our
matching algorithm to see if this generates any false posi-
tives or false negatives. We then compare the results of the
matching algorithm on the same recordings using signatures
generated instead by a conventional G.729B voice activity
detector [22] that is popularly used for speech coding for mo-
bile telephony. We next look at the accuracy and behavior of
our overall system in a variety of challenging situations, in-
cluding a teleconference, scenarios when device microphones
are muffled by being stored in pockets and purses, and over a
network with significant jitter. We then examine the amount
of time it takes to react to a change in the co-location status
of a group member. We next measure the power consumed
by our implementation of silence signature generation (the
SigGen app) on mobile phones. Finally, we explore the po-
tential for our cloud-hosted co-location sensing service to
scale up to large numbers of devices.

5.1 Accuracy
We evaluate the accuracy of our silence signature match-

ing technique in isolation from the rest of the system by
comparing the technique’s results against ground truth us-
ing data collected by carrying our devices to eleven meetings,
each with 3 to 7 people. Using silence signatures generated
from these meetings we look for both false negatives (we fail
to show as co-located signatures from the same time and
place) and false positives (we show as co-located signatures
that are not from the same time and place). We summarize
the settings and other parameters of the meetings in Table 2.
For each device at each meeting we generate a 20-second si-
lence signature for each 30-second segment of audio.

Using these signatures, we first test to see if we correctly
identify all co-located segments. We do this by testing for
each participant the similarity of each 30-second segment



(a) Two phones are detected as co-located. On
the right phone a user has selected a photo to
share.

(b) The user drags the photo to share.

(c) The shared photo appears on both devices.

Figure 4: Content sharing application. The top half
of the display shows names of users in the co-located
group. The space below shows content for sharing,
and we show a user sharing a photo.

pairwise with the same segment recorded by each other par-
ticipant. We do this for every time segment except the first
and last, which gives us 4998 pairs of silence signatures that
we know should be sensed as matching.

We then test to find if we falsely match any segments that
should not be considered matching. To generate the same

id
no. of
people

length
(s)

no. of
pairs

description

1 3 2884 285 lunch in noisy cafeteria
2 3 100 6 teleconference 1
3 3 385 33 ad hoc discussion
4 5 1700 550 brainstorming: room 1
5 4 1210 234 brainstorming: room 2
6 4 2500 492 brainstorming: room 3
7 7 3488 2415 project meeting 1
8 4 3440 678 project meeting 2
9 3 1364 132 lunch outdoors
10 2 2970 98 teleconference 2
11 2 2280 75 4G & WiFi in cafeteria

Table 2: Duration and number of co-located record-
ings in various meetings. The column for number of
pairs is explained in the text.

number of pairs of signatures that should not match, we
use the same co-located pairs, but we compare signatures
shifted by one 30-second segment. Note that because our
“unrelated” pairs are time-offset versions of the same meet-
ing, they are more likely to have similar statistics and are in
general harder to distinguish than recordings from different
settings, making this a challenging test. (Table 2 also shows
the number of pairs contributed by each meeting. For ex-
ample, the first 285 pairs in Figure 5 are from meeting 1,
the next 6 pairs are from meeting 2, and so on.)

Figure 5 shows the results for our cosine similarity mea-
sure. Using our cosine measure, unrelated pairs should have
a score falling closer to 0, while matching pairs should have
scores closer to 1. We can see from the top plot in Figure 5
that this is indeed true: a decision threshold of 0.4 success-
fully classifies all true matches (shown in black) as matching,
except for one pair, and all unrelated pairs shown in gray as
non-matching, except for two pairs. This gives us a 99.97%
accuracy for our signature matching technique for the data
from this set of meetings.
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Figure 5: Score for 4998 pairs of co-located (black)
and 4998 pairs of non-matching (gray) silence signa-
tures using our cosine similarity measure.



The noisy cafeteria lunch scenarios are noteworthy be-
cause the false positives and negatives occurred during these
two meetings, giving only a 96% signature matching accu-
racy for that subset of data. We expected worse results,
since if an environment is noisy enough that there is no
relative silence, the signatures will not carry useful informa-
tion. However, the service worked well in practice because
people speak up to be heard over the ambient noise, and so
their voices are usually sufficiently above threshold to gen-
erate a useful signature. We also find that because people
tend to adjust their voices to be heard by their intended
audience only, a potential eavesdropper running our appli-
cation at the table next to ours was appropriately not sensed
as co-located. Nonetheless, sound can travel in odd ways,
bouncing off of surfaces and making it hard for people to
determine visually whether they will be heard by others. To
address this, we believe it will be helpful in these situations
if applications have a way to pick and choose which periph-
erally sensed people to consider co-located.

5.2 Comparison of AAD and VAD
How useful are our AAD silence signatures in comparison

with signatures generated by a typical voice activity detec-
tor? We chose AAD because it is simple and works with
general acoustic signals and not just voice, but it needs to
perform at least as well as VAD in meetings and conversa-
tions to be a good choice. In this section we provide some
comparisons.

Figure 6 shows plots of signatures from audio recordings
made in the same meetings in Table 2 using our AAD algo-
rithm and the conventional G.729B VAD [22] algorithm us-
ing a “hang-over” scheme that smooths out some voice/non-
voice transitions. For consistency, we flipped the usual out-
put of VAD to show instead a 0 for voice and a 1 for non-
voice to generate comparable silence signatures, except that
“silence” means no voice detected, while “non-silence” means
voice activity. We see that VAD generates many more tran-
sitions than AAD, despite the use of the hang-over scheme.
Consequently, the signatures generated by AAD in the top
two plots are more clearly similar than those of VAD in the
bottom two plots.

To compare AAD and VAD scores, we repeated the same
set of experiments in Section 5.1 with signatures generated
by the G.729B VAD [22]. We used the first nine meetings of
the recordings in Table 2 because we did not have raw audio
recordings saved for the last two meetings. For meetings 7
and 8 an HTC EVO 4G device joined the group. On that
device the G.729B VAD had trouble generating good signa-
tures, due to a non-linear affect on some of the features used
by VAD perhaps caused by the device’s implementation of
automatic gain control. Our AAD worked fine on this de-
vice, but VAD detected 100% and 99% speech for parts of
meetings 7 and 8 respectively, where the correct speech per-
centage was around 70%. We excluded the recordings from
this device since they tripped up VAD algorithm, making
the total number of pairs 3796 instead of 4998.

Figure 7 compares the results, where Figure 7(a) shows
the results generated with the silence signatures by our AAD.
A decision threshold of 0.45 successfully classifies all true
matches as matching (except for one false negative pair),
and all unrelated pairs shown in gray as non-matching (no
false positives). This gives a 99.9% accuracy on this data set
for our signature matching technique with AAD. Figure 7(b)
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Figure 6: Comparison of different signatures. The
top two graphs show the silence signatures gener-
ated by our AAD algorithm for the recordings in
Figure 1. The bottom two graphs show those gen-
erated by the G.729B VAD [22] algorithm.

shows the results using the silence signatures generated by
the G.729B VAD. A decision threshold of 0.33 gives a mini-
mum overall error of 17 pairs consisting of five false positives
and twelve false negatives. This is an accuracy of 99.8% for
this data set. While there are other VAD algorithms to ex-
plore, we believe these results indicate that silence signatures
are a robust signal for comparison whether they track acous-
tic or voice silence, that AAD is at least as viable for our
purposes as VAD, and that by considering only the energy
level of the signal, the simplicity of AAD may allow it to
generate usable signatures in circumstances where VAD has
more trouble. (Accuracy for the VAD algorithm including
the bad signatures was 89.2%.)

5.3 System Accuracy in Difficult Scenarios
We next explore the accuracy and behavior of our overall

system in three particularly difficult situations. For these
results we use the co-location decisions logged by our signa-
ture matching service. These results thus reflect any overall
system problems, including audio drops, delays sending sig-
natures, network jitter, and so forth.

5.3.1 Teleconferences
One of the novel advantages of our technique is its abil-

ity to sense as co-located users attending meetings over the
phone. Audio signals locally and over the phone are quite
different. This is why voices over the phone sound different
to the human ear from voices in the same room. For the
same reason, many approaches that compare a rich char-
acterization of the audio signals will not work well for our
purposes. In contrast, comparing only extracted patterns of
silence accomplishes our goal. Figure 8 shows the co-location
decisions made by our live system during a 25-minute tele-
conference for each of two local users in different parts of
a conference room with respect to a remote user attending
over the phone. For this test, the remote participant joined
the conference via a commodity speaker phone (on both ends
of his connection), and all participants ran our SigGen ser-
vice on their mobile phones, which they kept near them on
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(a) Score with our AAD.
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(b) Score with G.729B VAD.

Figure 7: Score for 3796 pairs of co-located (black)
and 3796 pairs of non-matching (gray) silence signa-
tures using our cosine similarity measure.

top of the desk or table at which they were sitting. For this
teleconference we see a worst-case accuracy of 99.5%. (Co-
location accuracy was 100% between the two local users in
the same conference room.)

5.3.2 Purses, Pockets, and Pants
Mobile devices are sometimes stuffed into purses and pock-

ets that may muffle their sound environment so that the
devices do not capture a representative silence signature.
In enterprise or formal group meetings where many people
bring laptops and tablets to the table, this may be less often
a problem than it is for ad hoc gatherings, say in front of
a Peet’s coffee shop. Using our live system, we explicitly
test the accuracy of our technique in three of these poten-
tially difficult situations. In the first scenario, one of the
users keeps his phone in his shirt pocket with the micro-
phone facing his chest so that it is most likely to be muffled
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(a) remote user and local user 1 (100% accuracy).
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(b) remote user and local user 2 (99.5% accuracy).

Figure 8: Co-location results for a teleconference
over a Polycom.

by his body. In the second scenario, one of the users keeps
his phone in his front pants pocket, with the microphone
turned outside facing the arm of the chair he is sitting in,
which squeaks. In the last scenario, one of the users keeps
her phone in a zipped-up purse, alongside her keys, but the
purse is near her during the meeting.

The most difficult situation for our service among these
tests is when the phone was in a user’s pants pocket. In this
particular situation, the phone was pressed up against the
arm of the chair which seems to have acted as an acoustic
reflector. The chair also squeaked as the user fidgeted, which
created enough of a separate acoustic environment that we
achieved only a 97.9% co-location accuracy. In practice, this
level of accuracy still allowed our application to work well,
although we did see the user’s icon flicker on the screen a
few times. The second hardest situation from these tests is
keeping the phone in a user’s shirt pocket, facing his body.
This not only muffled the microphone but picked up the
user’s heartbeat. Accuracy in this case was 98.4%. We were
surprised to find that putting the phone in a user’s zipped
purse had so little effect on accuracy (99.9%), since the purse
was quite thick.

These tests by no means cover all the possible ways to
muffle device microphones, and if the user sufficiently sep-
arates the device’s microphone from his own acoustic envi-
ronment, then our system will not work. Nonetheless, these
tests suggest that our technique can be practical in at least
some of the situations that occur if users put away their mo-
bile devices when they are not actively interacting with an
application that makes use of our service.

5.3.3 Dealing with Network Delay and Jitter
We can only usefully compare two silence signatures for

co-location if they are captured at the same time. Mobile
devices stream the silence signatures to our server, and there
are many possible sources of delay and timing variation be-
tween the device capturing the sound, generating a signa-
ture, and that signature’s reception at the server. In our
experience, the most noticeable source of delay is network
jitter. One of the advantages of a silence signature is that
it consists of a one-bit value (silence versus sound) for ev-
ery 10ms (in our implementation). This means it is easy on
the server to timeshift the signatures by 10ms increments
until we have compensated for the jitter. Figure 10 shows
how changing the allowable timeshift from 250ms to 500ms
improves accuracy for meetings where at least one of the
devices experiences significant jitter. For these results we
used traces at our server, including the logged signatures,
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(c) inside purse

Figure 9: Co-location results for three difficult sit-
uations. We recorded a 97.9% accuracy with the
phone in a pants pocket, a 98.4% accuracy with the
phone in a shirt pocket, and a 99.9% accuracy with
the phone in a purse. Note that these tests ran for
different lengths of time.

and replayed the traces with a 250ms available timeshift
to compare it to our usual 500ms timeshift. In this figure,
the devices all participated in a meeting in a noisy cafete-
ria, but two of the devices used a relatively jitter-free WiFi
network while one of the devices used a 4G network. At
the server, 3.2% of the signatures from the device using 4G
experience jitter larger than 100 ms, while 2.1% and 0.1%
experience jitter larger than 250 ms and 500 ms, respec-
tively. The top two graphs show that matching between the
WiFi-using devices improves from 99.7% accuracy to 100%
accuracy by using the longer comparison window. The bot-
tom two graphs show that matching between a WiFi-using
device and the 4G-using device improves from 99.1% accu-
racy to 99.8% accuracy with the longer comparison window.
It is still possible for large network jitter to cause match-
ing failure in true co-located signatures, but recovery occurs
whenever the next signature (sent every 2 seconds) arrives
within the temporal search range of the server. Thus recov-
ery usually occurs in about 2 seconds.

5.4 Co-location Sensing Latency
We next look at the latency for co-location decisions. Fig-

ure 11 shows how the cosine similarity score changes between
meeting participants as one leaves the room. User 2 and
User 3 are in one conference room having a teleconference
with User 1 who is attending remotely by phone. User 2
leaves the room at time 105 seconds and returns at time 310
seconds. Our similarity score correctly shows that User 1
and User 2 (the top graph) remain co-located. The bottom
graph, which plots the similarity score between User 2 and
User 3, indicates that User 2 leaves the room at time 114,
which is a 9-second decision latency. The similarity measure
senses that User 2 returns to the room at 320 seconds, which
is a 10-second decision latency. Across our tests, we find the
average latency to sense co-location changes is about 10 sec-
onds, or one-half the length of a silence signature. There
is a trade-off between signature matching accuracy and the
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(a) 250ms timeshift, WiFi network (99.7% accuracy)
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(b) 500ms timeshift, WiFi network (100% accuracy)
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(c) 250ms timeshift, 4G network (99.1% accuracy)
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(d) 500ms timeshift, 4G network (99.8% accuracy)

Figure 10: These graphs compare signature match-
ing accuracy for different server timeshift ranges. In
practice, we use 500ms because it is large enough to
accommodate most jitter on a wide-area network,
as seen here. With only 250ms we see errors even
on a WiFi network (top two graphs), and more
pronounced errors on a 4G network (bottom two
graphs).

time to detect co-location changes: increasing the length of
signatures will decrease the chance of false positives for our
signature matching service, but it will also increase the time
it takes to detect co-location changes.

5.5 Power Consumption and CPU Load
Managing battery lifetime is always a concern on mobile

devices, and any new sensing application that might run
frequently is especially worrisome. We test the power con-
sumption of SigGen – our client-side software that performs
audio capture, generates silence signatures, and sends them
to the server. SigGen sends a 200-bit silence signature to our
cloud service every two seconds. In this test, it does so over
a WiFi connection. We test SigGen as a whole in what we
believe is its worst-case scenario – running continuously as
a service in background rather than being triggered as nec-
essary by an application. Using a Monsoon power monitor
we recorded SigGen consuming an average power of 199mW
on a Samsung Google Nexus S running Android 4.1.2, and
191mW on a Samsung Galaxy S4 running Android 4.2.2, in-
cluding its use of WiFi, CPU, and audio recording pipeline.
We derived each average from 15 minutes each of readings
with and without the service running.

The CPU load of SigGen running continuously averages
4% on the Samsung Galaxy S3, 3% on the Samsung Google
Galaxy Nexus S, 7% on the Samsung Galaxy S4, and 8% on
the LG Optimus Elite, which is the cheapest Android phone
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Figure 11: Changes in similarity score between User
1 and User 3 (top) and User 2 and User 3 (bottom)
as User 2 leaves and re-enters the room.

we could purchase and which has a single core running at
800MHz (as reported by the Android app“OS Monitor”from
eolwral). Most of the computation is in the direct implemen-
tation of high-pass filtering, which we apply to captured au-
dio at 8000 Hz. Without the filter, our CPU load is 1% on
the Samsung Galaxy S3. Our current filter implementation
is not optimized; it uses a 51 tap Finite Impulse Response
filter implemented with floating point numbers. In future
work we may optimize this filter, but our experience is that
on most newer mobile devices the filter is no longer neces-
sary, and we may eliminate it entirely.

Power consumption remains a problem for our technique
if it is run continuously rather than being triggered when
needed by an application. For continuous use, the authors of
Virtual Compass [9] face a similar problem and demonstrate
the benefits of reducing WiFi activity, since it is particularly
power hungry. In SigGen we can do this by batching sig-
natures for less frequent transmission. The drawback is an
increase in latency for detecting membership changes, which
may be acceptable for many applications of the service. We
also hope that phones that apply low-power CPUs to partic-
ular sensors, such as Motorola’s Moto X, will prove useful in
the future for understanding when to activate services such
as ours.

5.6 Scaling Up to Many Devices
Aside from power consumption, one of the biggest con-

cerns about our silence signature matching service is how
large a set of devices it can manage. A global service might
have hundreds of millions of customers. A service deployed
inside a large enterprise might have hundreds of thousands.
How silence signature search scales with the user population
depends on the type of application, and some use models will
scale much better than others. As numbers grow, we believe
it will be necessary to apply a variety of means for reduc-
ing the search space, to reduce both search time and the
potential for false positives.

Exploiting an application’s particular needs or extra con-
text is likely to be the most helpful method for reducing
the search space. For instance, a content sharing applica-
tion manually invoked by users to share among people who
are physically co-located scales very well. Manual invocation
needs only a low cloud computing duty cycle, with the re-
sources needed only at the relevant time and only by those
triggering invocation in that time frame. In addition, lim-
iting groups to physically co-located people means that we
can make use of other information such as past GPS readings

taken while the device was outdoors or device IP addresses
to prune the search space.

On the other hand, large-scale applications that require
both dynamic monitoring of group membership and accom-
modation of remote group members joining from unpre-
dictable places have the most intense needs. Dynamic mon-
itoring requires matching a larger set of silence signatures at
any particular time. The accommodation of remote group
members, especially those who can join from arbitrary lo-
cations, means that other signal information such as a past
GPS reading or IP addresses might not be useful to prune
the search space.

Fortunately, the cosine similarity measure is easy to eval-
uate, especially for binary signatures. Furthermore, we be-
lieve that our problem is appropriate for applying known
techniques for efficient scaling of search such as locality-
sensitive hashing (LSH) [38] and multi-dimensional data struc-
tures [36]. In particular, LSH is capable of improving search
even with high dimensional data. In our application, LSH
is used to prune the set of candidates to be tested for co-
location. We discuss fast computation of cosine similarity
and using LSH for pruning in the next subsections.

5.6.1 Fast Computation of Cosine Similarity
Our cosine similarity measure may appear computation-

ally expensive at first, but it mostly involves counting and
addition operations that scale linearly with the number of
bits in the signature.

Given N -bit binary silence signatures s0 and s1 with n0

and n1 number of ones, respectively, we have

|s0 − s̄0|2 = (s0 − s̄0) · (s0 − s̄0)

= s0 · s0 +Ns̄0
2

= n0 + n2
0/N (3)

and similarly,

(s0 − s̄0) · (s1 − s̄1) = s0 · s1 +Ns̄0s̄1

= s0 · s1 + n0n1/N (4)

and combining, we can rewrite (2) as

C(s0, s1)2 =
(s0 · s1 + n0n1/N)2

(n0 + n2
0/N)(n1 + n2

1/N)
(5)

where we can obtain n0 and n1 by simply counting the num-
ber of ones in s0 and s1 respectively. We can compute s0 ·s1
using binary-and followed by summing. Thus the computa-
tional cost of evaluating (2) is low.

In the server after evaluating C(s0, s1), we typically shift
s1 by one sample and re-evaluate against s0. In that case, we
can realize further computational savings since n0 remains
the same, and n1 can be adjusted without going through the
new s1 to recount.

5.6.2 Using Location Sensitive Hashes
LSH techniques are useful for a variety of similarity mea-

sures [5, 17, 18, 33] but we focus on the cosine similarity
measure that seems to perform well for our application (Sec-
tion 3), and we provide preliminary evidence for improved
scaling based on a simple LSH algorithm. A typical LSH
proceedure for the cosine similarity measure starts by cal-
culating hashes of the form h(s) = sign(rT s), which output
the sign of the projection of the silence signature s onto
the random vector r with N (0, 1) independent, identically



distributed normal elements. To improve the search statis-
tics, we concatenate the outputs of K independent random
projections of the form h(s) to form multiple new hashes
gj(s) for j ∈ [1, L]. For efficient search, each hash gj(s) has
pointers to all the silence signatures that hash into it. A sub-
sequent verification phase for the signatures in the common
hash tables computes the cosine, as described in Section 3,
for all of the candidate signatures that are also pointed to
by the hashes gj(s).

Two tests determine the performance of the LSH. The
first test with a large set of co-located signatures determines
the percentage of missed co-located candidates – co-located
candidates that should fall into the same set of hashes but
do not. This test shows a good miss error performance of
about 1% while pruning the search space by about 63%.
The second test with a large set of non-co-located signa-
tures determines the efficiency of the pruning: how many
non-co-located signatures fall into the same set of hashes
when they should not. We conduct the tests by forming
hashes with K = 9 and L = 33 from silence signatures of
20-second duration (corresponding to vectors with 2000 time
samples). We use the same data as described in Section 5.1
to evaluate the hash. We process the 4998 pairs of co-located
silence signatures from which there are 49 false misses. A
miss in this case means that we fail to sense the co-location
of a signature. For our second test we use 24690 non-co-
located pairs of silence signatures and find 9183 or about
37% of these pairs hash into the same buckets. These do
not result in errors but rather fail to decrease the number of
candidates that unnecessarily require verification using the
cosine similarity measure because they were not pruned.

Determining co-location requires efficient real-time com-
putation of hashes and similarities, but it does not have
as high a demand for storage as traditional media database
search. Our preliminary effort indicates that LSH has poten-
tial to help scale the most demanding applications of silence
signatures.

6. LIMITATIONS AND FUTURE WORK
While we believe that sensing co-location by matching

patterns of relative audio silence on mobile devices is be-
coming practical, there are still issues for us to resolve and
much more work to be done.

6.1 Limitations
Here we list known limitations of our approach.

6.1.1 Audio Drops
A high load on the mobile device CPU can cause drops in

audio capture. When comparing a window of a silence signa-
ture, if the aggregate drop in the window is small compared
to the average silence period, our method will still perform
well. For significant drops however, a client’s co-location
cannot be re-established until half a window’s time after the
end of the period of audio dropping. Since the device is of-
ten unusable anyway during periods of such high CPU load,
this might not be the most important immediate problem.
We did not experience significant audio drops in our tests.

6.1.2 Participants on Mute
Employees of geographically distributed enterprises often

meet via teleconferences. If the meeting involves a large
enough group, some participants attending by phone will

mute their phone lines so that other attendees need not suffer
hearing their sneezing, snide comments, or chaotic side con-
versations. A participant on mute will thus only be consid-
ered co-located as long as he is quiet compared to the sounds
coming over his phone. As soon as there are audible con-
versations in his environment, he will be considered disasso-
ciated from the rest of the group. (This extends separately
to multiple different participants joining while muted.) If
the conversations local to the muted participant are short
and not too frequent, then the hysteresis of leaving a group
often naturally covers these episodes, and so the muted par-
ticipant does not flicker in and out. If the local conversations
are frequent or of long duration, then the application using
our silence signature matching will need another, probably
explicit mechanism for the remote attendee to maintain his
group membership. One possible solution to this problem is
to detect a silence signature as a subset of another silence
signature. We hope to work on this in the future.

6.1.3 Participants with Earphones
Another problem occurs if a participant is listening via

headphones that do not allow his mobile device to capture
the meeting conversations. In this situation, the silence sig-
nature his device generates will not represent the meeting to
which he is listening. To circumvent this problem, we would
need to provide an audio path from the device speaker to its
microphone. We have not yet worked on this problem.

6.1.4 Shhh – No Talking!
There are rare circumstances where people gather together

and there is no talking or significant other acoustic activ-
ity for long periods of time. These circumstances might
include old-fashioned quiet libraries, peculiarly disciplined
exam rooms, and monasteries for orders such as the Carthu-
sians for whom it is important to live a life of silence during
most times of the day [4]. If there are no sufficiently loud
acoustic events in the environment, and if we do not cre-
ate those acoustic events deliberately (see below), then our
method will not work.

6.2 Future Work
Here we list some of the many problems and features we

would like to tackle as part of this project.

6.2.1 Multi-modal Sensing
Like many other kinds of sensor data, we believe that si-

lence signatures may be useful combined with other modes
of sensing. For instance, Virtual Compass [9] provides posi-
tional information for nearby devices, and we have worked
on gathering this information visually [21]. We would like
to feed positional information to our current draggable peo-
ple icons so they automatically assume the correct positions
with respect to each other.

6.2.2 People at the Periphery
Our technique does not work based on set distances, but

instead works by sensing which devices hear the same thing.
In meetings in environments where attendees cannot easily
understand who else might hear them, there may be people
around who are not a part of the intended group but whose
audio may pick up enough of the conversation to sense them
as co-located. Applications can include facilities to allow
users to pick and choose which sensed people to consider



co-located. We hope to add this as a layer to the interface
to our service but have not done so yet.

6.2.3 Active Beaconing
Several of the technologies and applications mentioned in

Section 2 use actively generated sound or ultrasound to per-
form their tasks. We too can apply this idea, for instance in
silent situations such as the “no talking” environments de-
scribed above, where no other devices have been detected
for a long time. Devices could generate an ultrasound signal
that can be sensed by other nearby devices without interfer-
ing with human perception of silence (although some current
phones filter for human audible sounds).

6.2.4 Local Infrastructure
One of our future directions is embedding our approach

into the infrastructure of enterprise meeting rooms. To start
with, this can be as simple as a mobile phone connected
to power and network and attached with Velcro to a table.
This will allow the meeting rooms to determine when people
are meeting. We can feed this information into our internal
application for room scheduling, so it will be easier to find
empty meeting rooms quickly. We can also interface meeting
room displays and projectors to our service so that these
devices appear as part of the group of attendees. We would
then add the facilities to our content-sharing application to
display content on these resources with the drag of a finger.

6.2.5 Broadcast Events
Radio and TV organizations have expressed interest in

sensing when participants are attending the same broad-
cast event to form ad hoc social networks and provide other
services (doubtless including targeted advertising) for the
attendees. Our service is potentially one way to do this.

7. CONCLUSION
We have developed a technique for automatically sens-

ing the dynamically changing membership of a meeting by
using sound captured on attendees’ mobile devices. From
this sound, we generate a silence signature on each mobile
device. The devices send these signatures to a cloud ser-
vice that compares them. Those that match are considered
part of the group, and the service sends this list back to the
appropriate applications requesting the service. The tech-
nique performs robustly across a variety of real-world tests.
We look forward to making this service available for pur-
poses beyond our content sharing application and suspect
that combining it with other kinds of location sensing tech-
nologies may prove useful.
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[33] L. Paulevé, H. Jégou, and L. Amsaleg. Locality
sensitive hashing: A comparison of hash function

types and querying mechanisms. Pattern Recognition
Letters, 31(11):1348–1358, 2010.

[34] C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan.
Beepbeep: a high accuracy acoustic ranging system
using cots mobile devices. In Proceedings of the 5th
international conference on Embedded networked
sensor systems, 2007.

[35] N. Priyantha, A. Chakraborty, and H. Balakrishnan.
The cricket location-support system. In The 6th
Annual International Conference on Mobile
Computing and Networking, Mobicom 2000. ACM,
2000.

[36] H. Samet. Foundations of multidimensional and
metric data structures. Morgan Kaufmann, 2006.

[37] S. Sen, B. Radunovic, R. R. Choudhury, and
T. Minka. You are facing the mona lisa: Spot
localization using phy layer information. In The 10th
International Conference on Mobile Systems,
Applications and Services, MobiSys 2012. ACM, 2012.

[38] G. Shakhnarovich, T. Darrell, and P. Indyk.
Nearest-neighbor methods in learning and vision:
Theory and practice (neural information processing),
2006.

[39] W.-T. Tan, R. Samadani, B. Lee, and M. Baker.
Determining co-location using a sequential hypothesis
test on patterns of silence. In Proceedings of ICASSP
2013. IEEE, May 2013.

[40] S. Tarzia, P. Dinda, R. Dick, and G. Memik. Indoor
localization without infrastructure using the acoustic
background spectrum. In Proceedings of the 9th
international conference on Mobile systems,
applications, and services, 2011.

[41] A. Wagner, J. Wright, A. Ganesh, Z. Zhou,
H. Mobahi, and Y. Ma. Toward a practical face
recognition system: Robust alignment and
illumination by sparse representation. Pattern
Analysis and Machine Intelligence, IEEE Transactions
on, 34(2):372–386, 2012.

[42] William J. Hughes Technical Center WAAS Test
Team. Civil Report Card on GPS Performance:
September 2012.
www.nstb.tc.faa.gov/reports/ReportCards/2012%2009.pdf.

[43] D. Wyatt, T. Choudhury, J. Bilmes, and H. Kautz. A
privacy-sensitive approach to modeling multi-person
conversations. In Proceedings of the 20th international
joint conference on Artifical intelligence, 2007.

[44] M. Youssef and A. Agrawala. The horus wlan location
determination system. In The 3rd International
Conference on Mobile Systems, Applications and
Services, MobiSys 2005. USENIX,ACM, 2005.

[45] B. Zhang and M. Trott. Reference-free audio matching
for rendezvous. In ICASSP, pages 3570–3573, March
2010.

[46] J. Zhu, K. Zeng, K.-H. Kim, and P. Mhapatra.
Improving crowd-sourced wi-fi localization systems
using bluetooth beacons. In IEEE International
Conference on Sensor, Mesh, and Ad hoc
Communication Networks, SECON 2012. IEEE, 2012.


