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Preface
This book is intended as an introduction to an exciting growth area in social
science methodology--the use of multiple-latent-variable models. Psychologists
and other social scientists have long been familiar with one subvariety of such
modeling, factor analysis-more properly, exploratory factor analysis. In recent
decades, confirmatory factor analysis, path analysis, and structural equation
modeling have come out of specialized niches and are making their bid to
become basic tools in the research repertoire of the social scientist, particularly
the one who is forced to deal with complex real-life phenomena in the round:
the sociologist, the political scientist, the social, educational, clinical, industrial,
personality or developmental psychologist, the marketing researcher, and the
like.

All these methods are at heart one, as I have tried to emphasize in the
chapters to follow. I have used earlier versions of this book in teaching
graduate students from psychology and related disciplines, and have found the
particular approach used-via path diagrams-to be effective in helping not-too-
mathematical students grasp underlying relationships, as opposed to merely
going through the motions of running computer programs. In some sections of
the book a certain amount of elementary matrix algebra is employed; an
appendix on the topic is provided for those who may need help here.

In the interests of accessibility, I have tried to maintain a relatively
informal style, and to keep the main text fairly uncluttered with references. The
notes at the end of each chapter are intended to provide the serious student
with a path into the technical literature, as well as to draw his or her attention to
some issues beyond the scope of the basic treatment.

The book is not closely tied to a particular computer program or
package, although there is some special attention paid to LISREL, EQS, AMOS,
and MX. I assume that most users will have access to a latent-variable model-
fitting program on the order of LISREL, EQS, CALIS, AMOS, Mplus, MX,
RAMONA, or SEPATH, and an exploratory factor analysis package such as
those in SPSS or SAS. In some places, a matrix manipulation facility such as
that in MINITAB, SAS, or SPSS would be helpful. I have provided some
introductory material but have not tried to tell students all they need to know to
run actual programs-such information is often local, ephemeral, or both. The

IX
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instructor should expect to provide some handouts and perhaps a bit of hands-
on assistance in getting students started. The reader going it on his or her own
will require access to current manuals for the computer programs to be used.

Finally, it gives me great pleasure to acknowledge the help and
encouragement that others have provided. Perhaps first credit should go to the
students who endured early versions of the manuscript and cheerfully pointed
out various errors and obscurities. These brave pioneers included Mike Bailey,
Cheryl Beauvais, Alan Bergman, Beth Geer, Steve Gregorich, Priscilla Griffith,
Jean Hart, Pam Henderson, Wes Hoover, Vivian Jenkins, Tock Lim, Scott Liu,
Jacqueline Lovette, Frank Mulhern, Steve Predmore, Naftali Raz, and Lori
Roggman. Among other colleagues who have been kind enough to read and
comment on various parts of the manuscript are Carole Holahan, Phil Gough,
Maria Pennock-Roman, Peter Bentler, and several anonymous reviewers. I am
especially grateful to Jack McArdle for extensive comments on the manuscript
as a whole, and to Jack Cohen for his persuasive voice with the publishers. Of
course, these persons should not be blamed for any defects that may remain.
For one thing, I didn't always take everybody's advice.

I am grateful to the University of Chicago Press, to Multivariate
Behavioral Research, and to the Hafner Publishing Co. for permission to reprint
or adapt published materials, and to the many previous researchers and writers
cited in the book--or, for that matter, not cited-whose contributions have defined
this rapidly developing and exciting field.

Finally, I owe a special debt to the members of my family: Jennifer and
James, who worked their term papers in around my sessions at the Macintosh,
and Marj, who provided unfailing support throughout.

J. C. L

Note to the second edition: Much of the first edition is still here, but a
certain amount of new material has been added, some exercises changed, and
one topic (multidimensional scaling) dropped to make room. Also, I've tried to
make the book more helpful to those who are using programs other than
LISREL. I still appreciate the contributions of the people I thanked before. In
addition, I am grateful to Peter Bentler, Robert Cudeck, and Jeff Tanaka for their
helpful comments on draft material for the present edition, and to the American
Mathematical Society for permission to adapt the table in Appendix H.

Note to the third edition: It is still the case that more remains than has
been changed. What's gone: IPSOL, BMDP, EzPATH, and a few other items
supplanted by the march of events in our field. What's new: more SEM
programs, more fit indices, many new references, connections to the Internet,
more on means, more on power, and, maybe as important as anything,
emphasis on the RMSEA and its use in rejecting null hypotheses of poor fit.

I remain grateful to all those I thanked in the first and second editions,
and have a good many names to add-people who gave me advice or
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encouragement, sent me reprints or preprints or programs, spotted errors,
answered queries. These helpful persons include: Jim Arbuckle, Kenneth
Bollen, Michael Browne, David Burns, Hsin-Yi Chen, Mike Coovert, Stan
Gaines, Steve Gregorich, Greg Hancock, David Kaplan, Timothy Keith, Robert
MacCallum, Herbert Marsh, Tor Neilands, Frank Norman, Eddie Oczkowski, Ed
Rigdon, Doris Rubio, Bill Shipley, Jim Steiger, Bob Thorndike, and Niels Waller.
And if I've left anybody out—well, them, too.

Note to the fourth edition: The basic approach of the fourth edition remains the
same as that of previous editions, and, mostly, so do the contents of the book, with
some mild reorganization. Chapters 3 and 4 are now divided slightly differently, so
that Chapter 3 covers single-group, single-occasion models, and Chapter 4 deals
just with models involving multiple groups or multiple occasions. Chapters 5 and 6,
exploratory factor analysis, have also been rearranged, so that Chapter 5 covers a
few basic factor extraction and rotation methods, for the benefit of instructors who
prefer a briefer brush with EFA, and Chapter 6 treats more advanced matters.
Chapter 7 has become less of a grab bag of specialized topics, with some of these
(e.g., models with means, nonlinear models, and higher-order factors) being
promoted to appropriate earlier chapters, and others (e.g., phantom variables)
moving to an appendix. The detailed description of most goodness-of-fit indices is
now in an appendix for reference rather than encumbering the main text. A few
items, such as the centroid method and multivariate path models, have disappeared
from the book altogether, and a few items have been added, such as sections on
missing data, nonnormality, mediation, factorial invariance, and automating the
construction of path diagrams. To save students labor in typing, a CD is supplied
containing the various correlation and covariance matrices used in the exercises
(details are given at the end of Chapter 2). A few new easy exercises have been
added in the early chapters, and a number of the existing exercises have moved or
changed in conformity with the text shifts. Overall, there has been a substantial
expansion and updating of the reference list and the end-of-chapter notes.

I continue to be grateful to the people mentioned previously, as well as to
several additional anonymous referees, and to the folks at Erlbaum: Debra Riegert
has been very helpful as editor, Art Lizza continues as an invaluable resource on
the production side, and of course Larry Erlbaum beams benevolently upon us all.

If you happen to notice any errors that have slipped by, I would be
grateful if you would call them to my attention: loehlin@psy.utexas.edu. Enjoy
the book.

XI
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Chapter One:
Path Models in Factor, Path, and Structural
Equation Analysis

Scientists dealing with behavior, especially those who observe it occurring in its
natural settings, rarely have the luxury of the simple bivariate experiment, in
which a single independent variable is manipulated and the consequences
observed for a single dependent variable. Even those scientists who think they
do are often mistaken: The variables they directly manipulate and observe are
typically not the ones of real theoretical interest but are merely some convenient
variables acting as proxies or indexes for them. A full experimental analysis
would again turn out to be multivariate, with a number of alternative
experimental manipulations on the one side, and a number of alternative
response measures on the other.

Over many years, numerous statistical techniques have been developed
for dealing with situations in which multiple variables, some unobserved, are
involved. Such techniques often involve large amounts of computation. Until
the advent of powerful digital computers and associated software, the use of
these methods tended to be restricted to the dedicated few. But in the last few
decades it has been feasible for any interested behavioral scientist to take a
multivariate approach to his or her data. Many have done so. The explosive
growth in the use of computer software packages such as SPSS and SAS is
one evidence of this.

The common features of the methods discussed in this book are that
(a) multiple variables-three or more-are involved, and that (b) one or more of
these variables is unobserved, or latent. Neither of these criteria provides a
decisive boundary. Bivariate methods may often be regarded as special cases
of multivariate methods. Some of the methods we discuss can be-and often
are-applied in situations where all the variables are in fact observed.
Nevertheless, the main focus of our interest is on what we call, following
Bentler (1980), latent variable analysis, a term encompassing such specific
methods as factor analysis, path analysis, and structural equation modeling
(SEM), all of which share these defining features.
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Path Diagrams

An easy and convenient representation of the relationships among a number of
variables is the path diagram. In such a diagram we use capital letters, A, B, X,
Y, and so on, to represent variables. The connections among variables are
represented in path diagrams by two kinds of arrows: a straight, one-headed
arrow represents a causal relationship between two variables, and a curved
two-headed arrow represents a simple correlation between them.

Fig. 1.1 Example of a simple path diagram.

Figure 1.1 shows an example of a path diagram. Variables A, B, and X
all are assumed to have causal effects on variable C. Variables A and B are
assumed to be correlated with each other. Variable X is assumed to affect C but
to be uncorrelated with either A or B. Variable C might (for example) represent
young children's intelligence. Variables A and B could represent father's and
mother's intelligence, assumed to have a causal influence on their child's
intelligence. (The diagram is silent as to whether this influence is
environmental, genetic, or both.) The curved arrow between A and B allows for
the likely possibility that father's and mother's intelligence will be correlated.
Arrow X represents the fact that there are other variables, independent of
mother's and father's intelligence, that can affect a child's intelligence.

Figure 1.2 shows another example of a path diagram. T is assumed to
affect both A and B, and each of the latter variables is also affected by an
additional variable; these are labeled U and V, respectively. This path diagram
could represent the reliability of a test, as described in classical psychometric
test theory. A and B would stand (say) for scores on two alternate forms of a
test. T would represent the unobserved true score on the trait being measured,
which is assumed to affect the observed scores on both forms of the test. U and
V would represent factors specific to each form of the test or to the occasions on
which it was administered, which would affect any given performance but be
unrelated to the true trait. (In classical psychometric test theory, the variance in
A and B resulting from the influence of T would be called true score variance,
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Fig. 1.2 Another path diagram: test reliability.

and that caused by U or V would be called error variance. The proportion of the
variance of A or B due to T would be called the reliability of the test.)

Figure 1.3 shows a path representation of events over time. In this case,
the capital letters A and B are used to designate two variables, with subscripts
to identify the occasions on which they are measured: Both A and B are
measured at time 1, A is measured again at time 2, and B at time 3. In this case,
the diagram indicates that both A-1 and B1 are assumed to affect A2, but that the
effect of A1 on B at time 3 is wholly via A2--there is no direct arrow drawn
leading from A1 to B3. It is assumed that A1 and B1 are correlated, and that A2

and B3 are subject to additional influences independent of A and B, here
represented by short, unlabeled arrows. These additional influences could have
been labeled, say, X and Y, but are often left unlabeled in path diagrams, as
here, to indicate that they refer to other, unspecified influences on the variable
to which they point. Such arrows are called residual arrows to indicate that they
represent causes residual to those explicitly identified in the diagram.

Fig. 1.3 A path diagram involving events over time.
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The meaning of "cause" in a path diagram

Straight arrows in path diagrams are said to represent causal relationships--but
in what sense of the sometimes slippery word "cause"? In fact, we do not need
to adopt any strict or narrow definition of cause in this book, because path
diagrams can be--and are-used to represent causes of various kinds, as the
examples we have considered suggest. The essential feature for the use of a
causal arrow in a path diagram is the assumption that a change in the variable
at the tail of the arrow will result in a change in the variable at the head of the
arrow, all else being equal (i.e., with all other variables in the diagram held
constant). Note the one-way nature of this process- -imposing a change on the
variable at the head of the arrow does not bring about a change in the tail
variable. A variety of common uses of the word "cause" can be expressed in
these terms, and hence can legitimately be represented by a causal arrow in a
path diagram.

Completeness of a path diagram

Variables in a path diagram may be grouped in two classes: those that do not
receive causal inputs from any other variable in the path diagram, and those
that receive one or more such causal inputs. Variables in the first of these two
classes are referred to as exogenous, independent, or source variables.
Variables in the second class are called endogenous, dependent, or
downstream variables. Exogenous variables (Greek: "of external origin") are so
called because their causal sources lie external to the path diagram; they are
causally independent with respect to other variables in the diagram-straight
arrows may lead away from them but never toward them. These variables
represent causal sources in the diagram. Examples of such source variables in
Fig. 1.3 are A1, B-1, and the two unlabeled residual variables. Endogenous
variables ("of internal origin") have at least some causal sources that lie within
the path diagram; these variables are causally dependent on other variables--
one or more straight arrows lead into them. Such variables lie causally
downstream from source variables. Examples of downstream variables in
Fig. 1.3 are A2 and B3. In Fig. 1.2, U, T, and V are source variables, and A and
B are downstream variables. Look back at Fig. 1.1. Which are the source and
downstream variables in this path diagram? (I hope you identified A, B, and X
as source variables, and C as downstream.)

In a proper and complete path diagram, all the source variables are
interconnected by curved arrows, to indicate that they may be intercorrelated-
unless it is explicitly assumed that their correlation is zero, in which case the
curved arrow is omitted. Thus the absence of a curved arrow between two
source variables in a path diagram, as between X and A in Fig. 1.1, or T and U
in Fig. 1.2, is not an expression of ignorance but an explicit statement about
assumptions underlying the diagram.
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Downstream variables, on the other hand, are never connected by
curved arrows in path diagrams. (Actually, some authors use downstream
curved arrows as a shorthand to indicate correlations among downstream
variables caused by other variables than those included in the diagram: We
use correlations between residual arrows for this purpose, which is consistent
with our convention because the latter are source variables.) Residual arrows
point at downstream variables, never at source variables. Completeness of a
path diagram requires that a residual arrow be attached to every downstream
variable unless it is explicitly assumed that all the causes of variation of that
variable are included among the variables upstream from it in the diagram.
(This convention is also not universally adhered to: Occasionally, path
diagrams are published with the notation "residual arrows omitted." This is an
unfortunate practice because it leads to ambiguity in interpreting the diagram:
Does the author intend that all the variation in a downstream variable is
accounted for within the diagram, or not?)

Fig. 1.4 Path diagrams illustrating the implication of an omitted residual arrow.

Figure 1.4 shows an example in which the presence or absence of a
residual arrow makes a difference. The source variables G and E refer to the
genetic and environmental influences on a trait T. The downstream variable T
in Fig. 1.4(a) has no residual arrow. That represents the assumption that the
variation of T is completely explained by the genetic and environmental
influences upon it. This is a theoretical assumption that one might sometimes
wish to make. Fig. 1.4(b), however, represents the assumption that genetic and
environmental influences are not sufficient to explain the variation of T-some
additional factor or factors, perhaps measurement error or gene-environment
interaction-may need to be taken into account in explaining T. Obviously, the
assumptions in Figures 1.4(a) and 1.4(b) are quite different, and one would not
want it assumed that (a) was the case when in fact (b) was intended.

Finally, all significant direct causal connections between source and
downstream variables, or between one downstream variable and another,
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should be included as straight arrows in the diagram. Omission of an arrow
between A1 and B3 in Fig. 1.3 is a positive statement: that A1 is assumed to
affect B3 only by way of A2.

The notion of completeness in path diagrams should not be taken to
mean that the ideal path diagram is one containing as many variables as
possible connected by as many arrows as possible. Exactly the opposite is
true. The smallest number of variables connected by the smallest number of
arrows that can do the job is the path diagram to be sought for, because it
represents the most parsimonious explanation of the phenomenon under
consideration. Big, messy path diagrams are likely to give trouble in many
ways. Nevertheless, often the simplest explanation of an interesting behavioral
or biological phenomenon does involve causal relationships among a number
of variables, not all observable. A path diagram provides a way of representing
in a clear and straightforward fashion what is assumed to be going on in such a
case.

Notice that most path diagrams could in principle be extended
indefinitely back past their source variables: These could be taken as
downstream variables in an extended path diagram, and the correlations
among them explained by the linkages among their own causes. Thus, the
parents in Fig. 1.1 could be taken as children in their own families, and the
correlation between them explained by a model of the psychological and
sociological mechanisms that result in mates having similar IQs. Or in Fig. 1.3,
one could have measured A and B at a preceding time zero, resulting in a
diagram in which the correlation between A1 and B1 is replaced by a
superstructure of causal arrows from Arj and B0, themselves probably
correlated. There is no hard-and-fast rule in such cases, other than the general
maxim that simpler is better, which usually means that if going back entails
multiplying variables, do not do it unless you have to. Sometimes, of course,
you have to, when some key variable lies back upstream.

Other assumptions in path diagrams

It is assumed in path diagrams that causes are unitary, that is, in a case such as
Fig. 1.2, that it is meaningful to think of a single variable T that is the cause of A
and B, and not (say) two separate and distinct aspects of a phenomenon T, one
of which causes A and one B. In the latter case, a better representation would
be to replace T by two different (possibly correlated) variables.

An exception to the rule of unitary causes is residual variables, which
typically represent multiple causes of a variable that are external to the path
diagram. Perhaps for this reason, path analysts do not always solve for the path
coefficients associated with the residual arrows in their diagrams. It is, however,
good practice to solve at least for the proportion of variance associated with
such residual causes (more on this later). It is nearly always useful to know
what proportion of the variation of each downstream variable is accounted for
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by the causes explicitly included within the path diagram, and what proportion is
not.

Another assumption made in path diagrams is that the causal
relationships represented by straight arrows are linear. This is usually not
terribly restricting--mild departures from linearity are often reasonably
approximated by linear relationships, and if not, it may be possible to transform
variables so as to linearize their relationships with other variables. The use of
log income, rather than income, or reciprocals of latency measures, or arcsine
transformations of proportions would be examples of transformations often used
by behavioral scientists for this purpose. In drawing a path diagram, one
ordinarily does not have to worry about such details-one can always make the
blanket assumption that one's variables are measured on scales for which
relationships are reasonably linear. But in evaluating the strength of causal
effects with real data, the issue of nonlinearity may arise. If variable A has a
positive effect on variable B in part of its range and a negative effect in another,
it is hard to assign a single number to represent the effect of A on B. However, if
A is suitably redefined, perhaps as an absolute deviation from some optimum
value, this may be possible. In Chapter 3 we consider some approaches to
dealing with nonlinear relationships of latent variables.

Feedbacks and mutual influences

In our examples so far we have restricted ourselves to path diagrams in which,
after the source variables, there was a simple downstream flow of causation-no
paths that loop back on themselves or the like. Most of the cases we consider in
this book have this one-way causal flow, but path representations can be used
to deal with more complex situations involving causal loops, as we see in a later
chapter. Examples of two such non-one-way cases are shown in Fig. 1.5. In
Fig. 1.5(a) there is a mutual causal influence between variables C and D: each
affects the other. A causal sequence could go from A to C to D to C to D again

Fig. 1.5 Path diagrams with (a) mutual influences and (b) a feedback loop.
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and so on. In Fig. 1.5(b) there is an extended feedback loop: A affects B which
affects C which in turn affects A.

Direct and indirect causal paths

Sometimes it is useful to distinguish between direct and indirect causal effects
in path diagrams. A direct effect is represented by a single causal arrow
between the two variables concerned. In Fig. 1.5(b) variable B has a direct
effect on variable C. There is a causal arrow leading from B to C. If B is
changed we expect to observe a change in C. Variable A, however, has only
an indirect effect on C because there is no direct arrow from A to C. There is,
however, an indirect causal effect transmitted via variable B. If A changes, B will
change, and B's change will affect C, other things being equal. Thus, A can be
said to have a causal effect on C, although an indirect one. In Fig. 1.5(a)
variable B has a direct effect on variable D, an indirect effect on variable C, and
no causal effect at all on variable A.

Path Analysis

Path diagrams are useful enough as simple descriptive devices, but they can be
much more than that. Starting from empirical data, one can solve for a
numerical value of each curved and straight arrow in a diagram to indicate the
relative strength of that correlation or causal influence. Numerical values, of
course, imply scales on which they are measured. For most of this chapter we
assume that all variables in the path diagram are expressed in standard score
form, that is, with a mean of zero and a standard deviation of one. Covariances
and correlations are thus identical. This simplifies matters of presentation, and
is a useful way of proceeding in many practical situations. Later, we see how
the procedures can be applied to data in original raw score units, and consider
some of the situations in which this approach is preferred. We also assume for
the present that we are dealing with unlooped path diagrams.

The steps of constructing and solving path diagrams are referred to
collectively as path analysis, a method originally developed by the American
geneticist Sewall Wright as early as 1920, but only extensively applied in the
social and behavioral sciences during the last few decades.

Wright's rules

Briefly, Wright showed that if a situation can be presented as a proper path
diagram, then the correlation between any two variables in the diagram can be
expressed as the sum of the compound paths connecting these two points,
where a compound path is a path along arrows that follows three rules:
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Fig. 1.6 Illustrations of Wright's rules.

(a) no loops;
(b) no going forward then backward;
(c) a maximum of one curved arrow per path.

The first rule means that a compound path must not go twice through the same
variable. In Fig. 1.6(a) the compound path ACF would be a legitimate path
between A and F, but the path ACDECF would not be because it involves going
twice through variable C.

The second rule means that on a particular path, after one has once
gone forward along one or more arrows, it is not legitimate to proceed
backwards along others. (Going backward first and then forward is, however,
quite proper.) In Fig. 1.6(b) the compound path BAG is a legitimate way to go
from B to C; the path BDC is not. In the former, one goes backward along an
arrow (B to A) and then forward (A to C), which is allowable, but path BDC
would require going forward then backward, which is not. This asymmetry may
seem a bit less arbitrary if one realizes that it serves to permit events in the
diagram to be connected by common causes (A), but not by common
consequences (D). The third rule is illustrated in Fig. 1.6(c). DACF is a
legitimate compound path between D and F; DABCF is not, because it would
require traversing two curved arrows. Likewise, DABE is a legitimate path
between D and E, but DACBE is not.

Figure 1.7 serves to provide examples of tracing paths in a path diagram
according to Wright's rules. This figure incorporates three source variables, A,
B, and C, and three downstream variables, D, E, and F. We have designated
each arrow by a lower case letter for convenience in representing compound
paths. Each lower case letter stands for the value or magnitude of the particular
causal effect or correlation. A simple rule indicates how these values are
combined: The numerical value of a compound path is equal to the product of
the values of its constituent arrows. Therefore, simply writing the lower case
letters of a path in sequence is at the same time writing an expression for the
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numerical value of that path. 
For example, what is the correlation between variables A and D in Fig. 

1.7? Two paths are legal: a and fb. A path like hgb would be excluded by the 
rule about only one curved arrow, and paths going further down the diagram 
like adcgb would violate both the rules about no forward then backward and no 
loops. So the numerical value of rAD can be expressed as a + fb. I hope that 
the reader can see that rBD = b + fa, and that rCD = gb + ha. 

What about rAB? Just f. Path hg would violate the third rule, and paths 
like ab or adcg would violate the second. It is, of course, quite reasonable that 
rAB should equal f because that is just what the curved arrow between A and B 
means. Likewise, rBC = g and rAc = h. 

Let us consider a slightly more complicated case: rAE. There are three 
paths: ad, fbd, and hc. Note that although variable D is passed through twice, 
this is perfectly legal, because it is only passed through once on any given path. 
You might wish to pause at this point to work out rBE and rCE for yourself. 

( I  hope you got bd + fad + gc and c + gbd + had.) 
Now you might try your hand at some or all of the six remaining 

correlations in Fig.l.7: rDE, rEF, rgF, rcF, rDF, and rAF. (The answers are not 
given until later in the chapter, to minimize the temptation of peeking at them 
first.) 

Numerical solution of a path diagram 

Given that we can express each of the correlations among a set of observed 
variables in a path diagram as a sum of compound paths, can we reverse this 
process and solve for the values of the causal paths given the correlations? 
The answer is that often we can. 

Consider the example of Fig. 1.1, redrawn as Fig. 1.8. Recall that 

10 



Chapter 1: Path Models

Fig. 1.8 Example of Fig. 1.1, with observed intercorrelations of A, B, and C.

variables A and B were fathers' and mothers' intelligence, and C was children's
intelligence. X is a residual variable, representing other unmeasured
influences on child's intelligence that are independent of the parents'
intelligence.

Suppose that in some suitable population of families we were to observe
the correlations shown on the right in Fig. 1 .8. We can now, using our
newfound knowledge of path analysis (and ignoring X for the moment), write the
following three equations:

Because we know the observed values rAB,rAC- and rBC we have three
simultaneous equations in three unknowns:

c =.50
a + cb = .65
b + ca = .70.

Substitution for c in the second and third equations yields two equations in two
unknowns:

a + .506 = .65
.50a + b = .70.

These equations are readily solved to yield a = .40 and b = .50. Thus, if we
were to observe the set of intercorrelations given in Fig. 1 .8, and if our causal
model is correct, we could conclude that the causal influences of fathers' and
mothers' intelligence on child's intelligence could be represented by values of
.40 and .50, respectively, for the causal paths a and b.

11



Chapter 1: Path Models

What do these numbers mean? They are, in fact, standardized partial
regression coefficients-we call them path coefficients for short. Because they
are regression coefficients, they tell us to what extent a change on the variable
at the tail of the arrow is transmitted to the variable at the head of the arrow.
Because they are partial regression coefficients, this is the change that occurs
with all other variables in the diagram held constant. Because they are
standardized partial regression coefficients, we are talking about changes
measured in standard deviation units. Specifically, the value of .40 for a means
that if we were to select fathers who were one standard deviation above the
mean for intelligence-but keeping mothers at the mean--their offspring would
average four tenths of a standard deviation above the population mean. (Unless
otherwise specified, we are assuming in this chapter that the numbers we deal
with are population values, so that issues of statistical inference do not
complicate the picture.)

Because paths a and b are standardized partial regression coefficients,
also known in multiple regression problems as beta weights, one might wonder
if we can solve for them as such, by treating the path analysis as a sort of
multiple regression problem. The answer is: Yes we can, at least in cases
where all variables are measured. In the present example, A, B, and C are
assumed known, so we can solve for a and b by considering this as a multiple
regression problem in predicting C from A and B.

Using standard formulas (e.g., McNemar, 1969, p. 192):

p-l = (.65 - .70 x .50)7(1 - .SO2) = .40

P2 = (-70 - .65 x .50)7(1 - .502) = .50,

or exactly the same results as before.
Viewing the problem in this way, we can also interpret the squared

multiple correlation between C and A and B as the proportion of the variance of
C that is accounted for by A and B jointly. In this case R2c-AB = Pi rAC + P2rBC
= .40 x .65 + .50 x .70 = .61. Another way in which we can arrive at the same
figure from the path diagram is by following a path-tracing procedure. We can
think of the predicted variance of C as that part of its correlation with itself that
occurs via the predictors. In this case, this would be the sum of the compound
paths from C to itself via A or B or both. There is the path to A and back, with
value a 2, the path to B and back, with value b 2, and the two paths acb and bca :
.402 + .502 + 2 x .40 x .50 x .50 = .16 + .25 + .20 = .61.

We can then easily solve for the value of the path d which leads from the
unmeasured residual X. The variance that A and B jointly account for is R2, or
.61. The variance that X accounts for is thus 1 - R2, that is, 1 - .61, or .39. The
correlation of C with itself via X is the variance accounted for by X, and this is
just dd. So the value of d is V.39, or .62.

So long as all variables are measured one can proceed to solve for the

12



Chapter 1: Path Models

Fig. 1.9 The example of Fig. 1.2, with observed correlation of .80 between
alternate forms A and B of a test.

causal paths in a path diagram as beta weights in a series of multiple
regression analyses. Thus, in Fig. 1.7 one could solve for a and b from the
correlations among A, B, and D; for of and cfrom the correlations among D, C,
and E; and for e as the simple correlation between E and F. The residuals /', j,
and /ccan then be obtained as V(1 - R2) in the various multiple regressions.

In general, however, we must deal with path diagrams involving
unmeasured, latent variables. We cannot directly calculate the correlations of
these with observed variables, so a simple multiple regression approach does
not work. We need, instead, to carry out some variant of the first approach-that
is, to solve a set of simultaneous equations with at least as many equations as
there are unknown values to be obtained.

Consider the example of Fig. 1.2, test reliability, repeated for
convenience as Fig. 1.9. Because this diagram involves both latent variables
and observed variables, we have followed a common practice of latent variable
modelers by putting the letters representing observed variables in squares (or
rectangles), and variables representing latent variables in circles (or ovals).

We wish to solve for the values of the causal paths between the true
score T and the observed scores A and B. But T is an unobserved, latent
variable; all we have is the observed correlation .80 between forms A and B of
the test. How can we proceed? If we are willing to assume that A and B have
the same relation to T, which they should have if they are really parallel
alternate forms of a test, we can write from the path diagram the equation

rAB = t2 = .80,

from which it follows that t = V.80 = .89. It further follows that t2 or 80% of the
variance of each of the alternate test forms is attributable to the true score on the
trait, that 20% is therefore due to error, and that the values of the residual paths
from U and V are V.20 or .45.

Figure 1.10 (next page) presents another case of a path diagram
containing a latent variable. It is assumed that A, C, and D are measured, as
shown by the squares. Their intercorrelations are given to the right of the
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Fig. 1.10 Another simple path diagram with a latent variable.

figure. B, as indicated by the circle, is not measured, so we do not know its
correlations with A, C, and D. We can, however, write equations for the three
known correlations in terms of the three paths a, b, and c, and (as it turns out)
these three equations can be solved for the values of the three causal paths.

The equations are:
rAC = ab

TAD = ac
= be.

A solution is:
rAC rCD/rAD = abxbc/ac =b2 = .20 x .307.24 = .25; b = .50

a = TAG/** = -20/.50 = .40
c = r/a = .247.40 = .60.

Note that another possible solution would be numerically the same, but with all
paths negative, because b2 also has a negative square root. This would
amount to a model in which B, the latent variable, is scored in the opposite
direction, thus reversing its relationships with the manifest variables.

(By the way, to keep the reader in suspense no longer about the
correlations in Fig. 1 .7: TDE = d+ ahc + bgc, n=p = e, rgp = bde + fade + gee,

= ce + Qbde + hade, njp = de + ahce + bgce, and TAF =ade +fbde +hce.)

Underdetermined, overdeter mined, and just-determined path
diagrams

Figure 1.1 1 (a) shows another simple path diagram. It is somewhat like Fig. 1.10
upside down: Instead of one cause of the latent variable and two effects, there
are now two causes and one effect.

However, this change has made a critical difference. There are still just
three intercorrelations among the three observed variables A, B, and D, yielding
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(a)

Fig. 1.11 Examples of under- and overdetermined path diagrams.

three equations. But now there are four unknown values to be estimated: a, b,
c, and d. One observed correlation, TAB. estimates of directly. But that leaves
only two equations, TAD = ac + dbc and rgp = bc+ dac, to estimate the three
unknowns, a, b, and c, and no unique solution is possible. The path diagram is
said to be underdetermined (or unidentified).

In the preceding problem of Fig. 1.10, there were three equations in three
unknowns, and an exact solution was possible. Such a case is described as
just determined (or just identified). Fig. 1.11 (b) shows a third case, of an
overdetermined (or overidentified) path diagram. As in the left-hand diagram, C
is a latent variable and A and B are source variables, but an additional
measured downstream variable E has been added. Now there are six
observed intercorrelations among the observed variables A, B, D, and E,
yielding six equations, whereas we have only added one unknown, giving five
unknowns to be solved for. More equations than unknowns does not guarantee
overdetermination, but in this case for most observed sets of correlations there
will be no single solution for the unknowns that will satisfy all six equations
simultaneously. What is ordinarily done in such cases is to seek values for the
unknowns that come as close as possible to accounting for the observed
intercorrelations (we defer until the next chapter a consideration of what "as
close as possible" means).

It might be thought that just-determined path diagrams, because they
permit exact solutions, would be the ideal to be sought for. But in fact, for the
behavioral scientist, overdetermined path diagrams are usually much to be
preferred. The reason is that the data of the behavioral scientist typically
contain sampling and measurement error, and an exact fit to these data is an
exact fit to the error as well as to the truth they contain. Whereas-if we assume
that errors occur at random~a best overall fit to the redundant data of an
overdetermined path diagram will usually provide a better approximation to the
underlying true population values. Moreover, as we see later, overdetermined
path diagrams permit statistical tests of goodness of fit, which just-determined
diagrams do not.
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Fig. 1.12 The path model of Fig. 1.10 (left) shown in RAM symbolism (right).

A computer-oriented symbolism for path diagrams-RAM

A way of drawing path diagrams which has advantages for translating them into
computer representations has been developed by J. J. McArdle. He calls his
general approach to path modeling "Reticular Action Modeling"--RAM for short.

Figure 1.12 shows on the left a path model presented earlier in this
chapter, and on the right the same model in a RAM representation. The
following points may be noted: (1) Latent variables are designated by placing
them in circles, observed variables by placing them in squares, as usual in
latent variable modeling. In addition to squares and circles for variables, RAM
uses triangles to designate constants-these are important in models involving
means, discussed later in this book. (2) Residual variables are represented
explicitly as latent variables (X, Y, Z). (3) Two-headed curved arrows leaving
and re-entering the same variable are used to represent the variance of source
variables. When they are unlabeled, as here, they are assumed to have a value
of 1 .CMhus these are standardized variables. Curved arrows connecting two
different source variables represent their covariance or correlation, in the usual
manner of path diagrams.

Although a little cumbersome in some respects, which is why we will not
be using it routinely in this book, RAM symbolism, by rendering explicitly a
number of things often left implicit in path diagrams, facilitates a direct
translation into computer representations. We will see examples in Chapter 2.

Factor Models

An important subdivision of latent variable analysis is traditionally known as
factor analysis. In recent discussions of factor analysis, a distinction is often
drawn between exploratory and confirmatory varieties. In exploratory factor
analysis, which is what is usually thought of as "factor analysis" if no
qualification is attached, one seeks under rather general assumptions for a
simple latent variable structure, one with no causal arrows from one latent
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variable to another, that could account for the intercorrelations of an observed
set of variables. In confirmatory factor analysis, on the other hand, one takes a
specific hypothesized structure of this kind and sees how well it accounts for the
observed relationships in the data.

Traditionally, textbooks on factor analysis discuss the topic of exploratory
factor analysis at length and in detail, and then they put in something about
confirmatory factor analysis in the later chapters. We, however, find it instructive
to proceed in the opposite direction, to consider first confirmatory factor analysis
and structural equation modeling more broadly, and to defer an extended
treatment of exploratory factor analysis until later (Chapters 5 and 6).

From this perspective, exploratory factor analysis is a preliminary step
that one might sometimes wish to take to locate latent variables to be studied via
structural modeling. It is by no means a necessary step. Theory and hypothesis
may lead directly to confirmatory factor analysis or other forms of structural
models, and path diagrams provide a natural and convenient way of
representing the hypothesized structures of latent and manifest variables that
the analyst wishes to compare to real-world data.

The origins of factor analysis: Charles Spearman and the two-
factor theory of intelligence

As it happens, the original form of factor analysis, invented by the British
psychologist Charles Spearman shortly after 1900, was more confirmatory than
exploratory, in the sense that Spearman had an explicit theory of intellectual
performance that he wished to test against data. Spearman did not use a path
representation, Wright not yet having invented it, but Fig. 1.13 represents the
essentials of Spearman's theory in the form of a path diagram.

Spearman hypothesized that performance on each of a number of
intellectual tasks shared something in common with performance on all other
intellectual tasks, a factor of general intellectual ability that Spearman called "g."
Performance on each task also involved a factor of skills specific to that task,
hence the designation "two-factor theory." In Spearman's words: "All branches
of intellectual activity have in common one fundamental function (or group of
functions), whereas the remaining or specific elements of the activity seem in

Fig. 1.13 Path representation of Spearman's two-factor theory.
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every case to be wholly different from that in all the others" (1904, p. 284).
Spearman obtained several measures on a small group of boys at an

English preparatory school: a measure of pitch discrimination, a ranking of
musical talent, and examination grades in several academic areas-Classics,
French, English studies, and Mathematics. Fig. 1.13 applies his two-factor
theory to these data. The letter G at the top of the figure represents the latent
variable of general intellectual ability, C, F, E, and M at the bottom represent
observed performances in the academic subjects, P stands for pitch
discrimination and T for musical talent. General intellectual ability is assumed
to contribute to all these performances. Each also involves specific abilities,
represented by the residual arrows.

If Spearman's theory provides an adequate explanation of these data,
the path diagram implies that the correlation between any two tasks should be
equal to the product of the paths connecting them to the general factor: the
correlation between Classics and Mathematics should be cm, that between
English and French should be ef, between French and musical talent ft, and so
on. Because we are attempting to explain 6 x 5/2 = 15 different observed
correlations by means of 6 inferred values-the path coefficients c, f, e, m, p, and
t--a good fit to the data is by no means guaranteed. If one is obtained, it is
evidence that the theory under consideration has some explanatory power.

Fig. 1.14 gives the correlations for part of Spearman's data: Classics,
English, Mathematics, and pitch discrimination.

If the single general-factor model fit the data exactly, we could take the
intercorrelations among any three variables and solve for the values of the three
respective path coefficients, since they would provide three equations in three
unknowns. For example:

rCE x rCM/rEM = cecm I em = c2 = .78 x .70/.64 = .853; c =.92
rEM x rCE/rCM = emce/cm = e2 = .64 x. 78/.70 = .713; e =.84
rCM x rEM/rCE = cmem Ice - rr£= .70 x .647.78 = .574; m =.76.

This procedure has been given a name; it is called the method of triads. If the
data, as here, only approximately fit a model with a single general factor, one

Fig. 1.14 Data to illustrate the method of triads.
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will get slightly different values for a particular path coefficient depending on
which triads one uses. For example, we may solve for m in two other ways from
these data:

rCM x rMP/rCP = cmmp/cp = rr£= .70 x .457.66 = .477; m =.69
rEM x rMP/rEP = emmplep = m2= .64 x .457.54 = .533; m =73.

These three values of m are not very different. One might consider simply
averaging them to obtain a compromise value. A slightly preferable method,
because it is less vulnerable to individual aberrant values, adds together the
numerators and denominators of the preceding expressions, and then divides:

m2 = .70 x .64 + .70 x .45 + .64 x .45 =.531; m=.73
.78 + .66 + .54

You may wish to check your understanding of the method by confirming that it
yields .97 for c, .84 for e, and .65 for p, for the data of Fig. 1.14. We may get
some sense of how accurately our solution can account for the observed
intercorrelations among the four variables, by producing the intercorrelation
matrix implied by the paths: i.e., ce, cm, cp, etc.

.81 .71 .63
.61 .55

.47

As is evident, the implied correlations under the model do not differ much from
the observed correlations-the maximum absolute difference is .03. The
assumption of a single general factor plus a residual factor for each measure
does a reasonable job of accounting for the data.

We may as well go on and estimate the variance accounted for by each
of the residual factors. Following the path model, the proportion of the variance
of each test accounted for by a factor equals the correlation of that test with itself
by way of the factor (the sum of the paths to itself via the factor). In this case
these have the value c2, e2, etc. The variances due to the general factor are
thus .93, .70, .53, and .42 for Classics, English, Mathematics, and pitch
discrimination, respectively, and the corresponding residual variances due to
specific factors are .07, .30, .47, and .58. In traditional factor analytic
terminology, the variance a test shares with other tests in the battery is called its
communality, symbolized h2, and the variance not so shared is called its
uniqueness, symbolized u2. The /^s of the four measures are thus .93, .70, .53,
and .42, and their uniquenesses .07, .30, .47, and .58. Pitch discrimination has
the least in common with the other three measures; Classics has the most.

The observant reader will notice that the communality and uniqueness of
a variable are just expressions in the factor analytic domain of the general
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notion of the predicted (R2) and residual variance of a downstream variable in a
path diagram, as discussed earlier in the chapter.

The path coefficients c, e, m, etc. are in factor-analytic writing called the
factor pattern coefficients (or more simply, the factor loadings). The correlations
between the tests and the factors, here numerically the same as the pattern
coefficients, are collectively known as the factor structure.

More than one common factor

As soon became evident to Spearman's followers and critics, not all observed
sets of intercorrelations are well explained by a model containing only one
general factor; factor analysts soon moved to models in which more than one
latent variable was postulated to account for the observed intercorrelations
among measures. Such latent variables came to be called common factors,
rather than general factors because, although they were common to several of
the variables under consideration, they were not general to all. There
remained, of course, specific factors unique to each measure.

Figure 1.15 gives an example of a path diagram in which there are two
latent variables, E and F, and four observed variables, A, B, C, and D. E is
hypothesized as influencing A and B, and F as influencing C and D. In the path
diagram there are five unknowns, the paths a, b, c, and d, and the correlation e
between the two latent variables. There are six equations, shown to the right of
the diagram, based on the six intercorrelations between pairs of observed
variables. Hypothetical values of the observed correlations are given-.60 for
rAB' f°r example. Because there are more equations than unknowns, one
might expect that a single exact solution would not be available, and indeed this
is the case. An iterative least squares solution, carried out in a way discussed
in the next chapter, yielded the values shown to the far right of Fig. 1.15.

Fig. 1.15 A simple factor model with two correlated factors (E and F).
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Table 1-1 Factor solution for the two-factor problem of Fig. 1.15

Variable Factor pattern Factor structure h2

E F E F
A .66 .00 .66 .18 .43
B .91 .00 .91 .24 .83
C .00 .83 .22 .83 .69
D .00 .60 .16 .60 .36

Factor intercorrelations
E F

E 1.00 .27
F .27 1.00

Reproduced and residual correlations
A B C D

A .600 .146 .105
B .000 .203 .146
C .004 -.003 .500
D -.005 .004 .000

Table 1-1 reports a typical factor analysis solution based on Fig. 1.15.
The factor pattern represents the values of the paths from factors to variables;
i.e., the paths a and b and two zero paths from E to A, B, C, and D, and the
corresponding paths from F. The factor structure presents the correlations of the
variables with the factors: for factor E these have the values a, b, ec, and ed,
respectively, and for factor F, ea, eb, c, and d. The communalities (h2) are in this
case simply a2, t^.c2, and d2, because each variable is influenced by only one
factor. Finally, the correlation between E and F is just e.

The reproduced correlations (those implied by the path values) and the
residual correlations (the differences between observed and implied
correlations) are shown at the bottom of Table 1-1. The reproduced correlations
are obtained by inserting the solved values of a, b, c, etc. into the equations of
Fig. 1.15: TAB = -658 x .912, r/\c = -658 x .267 x .833, and so on. The residual
correlations are obtained by subtracting the reproduced correlations from the
observed ones. Thus the residual TAG is .15 - .146, or .004.
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Fig. 1.16 A more complex three-factor model.

A more complex model with three factors is shown in Fig. 1.16. Because
this model has 10 unknowns and only 6 equations, it is underdetermined and
cannot be solved as it stands. However, if one were to fix sufficient values by a
priori knowledge or assumption, one could solve for the remaining values.

The factor solution in symbolic form is given in Table 1 -2. By inserting
the known and solved-for values in place of the unknowns, one could obtain
numerical values for the factor pattern, the factor structure, the communalities,
and the factor intercorrelations. Also, one could use the path equations of
Fig. 1.16 to obtain the implied correlations and thence the residuals. Notice that
the factor pattern is quite simple in terms of the paths, but that the factor
structure (the correlations of factors with variables) and the communalities are
more complex functions of the paths and factor intercorrelations.

Table 1-2 Factor solution of Fig. 1.16, in symbolic form

Factor pattern Factor structure

Variable
A
B
C

D

E
a
b
c

0

F
0
d
\e

0

G
0
0
f

g

E
a
b+hd
c+he
+jf

jg

F
ha
d+hb
e+hc

+if
'g

G
ja
id+jb
f+ie
+jc
g

a2

b2+d2+2bhd
c2+e2+f2+2che

+2eif+2cjf
g2

Factor intercorrelations
E F

E 1.0 h
F h 1.0
G j i 1.0

22



Chapter 1: Path Models

Structural Equations

An alternative way of representing a path diagram is as a set of structural
equations. Each equation expresses a downstream variable as a function of
the causal paths leading into it. There will be as many equations as there are
downstream variables.

Fig. 1.17 A structural equation based on a path diagram.

Figure 1.17 shows one of the path diagrams considered earlier. It has
one downstream variable, hence one structural equation: The score of a
person on variable C is an additive function of his scores on A, B, and X. If the
variables are obtained in standard-score form for a set of subjects, the values of
the weights a, b, and d required to give a best fit to the data in a least squares
sense turn out to be just the standardized partial regression coefficients, or path
coefficients, discussed earlier.

Figure 1.18 gives a slightly more complex example, based on the earlier
Fig. 1.3. Now there are two downstream variables, A2 and B3. A2 can be
expressed as a weighted additive function of the three source variables A1, B1,
and X, as shown in the first equation, whereas B3 can be expressed in terms of
A2, B1, and Y. Note that to construct a structural equation one simply includes a
term for every straight arrow leading into the downstream variable. The term

Fig. 1.18 Structural equations based on the path diagram of Fig. 1.3.
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consists of the variable at the tail of the arrow times the path coefficient
associated with it.

For a final example, consider the factor analysis model of Fig. 1.16 in the
preceding section. The structural equations are as follows (XA, XB, etc.
represent the terms involving the residual arrows):

A = aE + XA
B = bE + dF + XB
C = cE + eF + fG + XC
D = gG + XD

Notice that the equations are closely related to the rows of the factor pattern
matrix (Table 1-2) with residual terms added. The solution of the set of
structural equations corresponds essentially to the solution for the paths in the
path diagram and would be similarly underdetermined in this instance. Again,
by previously defining a sufficient number of the unknowns, the equations could
be solved for those remaining.

The structural equation approach to causal models originated in
Economics, and the path approach in biology. For many purposes the two may
be regarded simply as alternative representations. Note, however, one
difference. Path diagrams explicitly represent the correlations among source
variables, whereas structural equations do not. If using the latter,
supplementary specifications or assumptions must be made concerning the
variances and covariances of the source variables in the model.

Original and Standardized Variables

So far, we have assumed we were dealing with standardized variables. This
has simplified the presentation, but is not a necessary restriction. Path, factor,
and structural equation analyses can be carried out with variables in their
original scale units as well as with standardized variables. In practice, structural
equation analysis is usually done in rawscore units, path analysis is done both
ways, and factor analysis is usually done with standardized variables. But this
is often simply a matter of tradition or (what amounts to much the same thing) of
the particular computer program used. There are occasions on which the
standardized and rawscore approach each has definite advantages, so it is
important to know that one can convert the results of one to the other form and
be able to do so when the occasion arises.

Another way of making the distinction between analyses based on
standardized and raw units is to say that in the first case one is analyzing
correlations, and in the second, covariances. In the first case one decomposes
a correlation matrix among observed variables into additive components; in the
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second case one so decomposes a variance-covariance matrix. The curved
arrows in a path diagram are correlations in the first case, covariances in the
second. In the first case a straight arrow in a path diagram stands for a
standardized partial regression coefficient, in the second case for a rawscore
partial regression coefficient. In the first case a .5 beside a straight arrow
leading from years of education to annual income means that, other things
equal, people in this particular population who are one standard deviation
above the mean in education tend to be half a standard deviation above the
mean in income. In the second case, if education is measured in years and
income in dollars, a 5000 alongside the straight arrow between them means
that, other things equal, an increase of 1 year in education represents an
increase of $5000 in annual income (in this case, .5 would mean 50 cents!). In
each case the arrow between A and B refers to how much change in B results
from a given change in A, but in the first case change is measured in standard
deviation units of the two variables, and in the second case, in the ratio of their
rawscore units (dollars of income per year of education).

Standardized regression coefficients are particularly useful when
comparisons are to be made across different variables, unstandardized
regression coefficients when comparisons are to be made across different
populations.

When comparing across variables, it is difficult to judge the relative
importance of education and occupational status in influencing income if the
respective rawscore coefficients are 5000 and 300, based on income in dollars,
education in years, and occupational status on a 100-point scale. But if the
standardized regression coefficients are .5 and .7, respectively, the greater
relative influence of occupational status is more evident.

In comparing across populations, rawscore regression coefficients have
the merit of independence of the particular ranges of the two variables involved
in any particular study. If one study happens to have sampled twice as great a
range of education as another, a difference in years of education that is, say,
one-half a standard deviation in the first study would be a full standard deviation
in the second. A standardized regression coefficient of .3 in one study would
then describe exactly the same effect of education on income as a standardized
regression coefficient of .6 in the other. This is a confusing state of affairs at
best and could be seriously misleading if the reader is unaware of the sampling
difference between the studies. A rawscore regression coefficient of $2000
income per added year of education would, however, have the same meaning
across the two studies. If the relevant standard deviations are known, a
correlation can readily be transformed into a covariance, or vice versa, or a
rawscore into a standardized regression coefficient and back, allowing one
freely to report results in either or both ways, or to carry out calculations in one
mode and report them in the other, if desired. (We qualify this statement later--
model fitting may be sensitive to the scale on which variables are expressed,
especially if different paths or variances are constrained to be numerically
equal-but it will do for now.)
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The algebraic relationships between covariances and correlations are
simple:

where cov-j2 stands for the covariance between variables 1 and 2, r-|2 f°r their
correlation, and s-j and 82 for their respective standard deviations.

The relationships between rawscore and standardized path coefficients
are equally simple. To convert a standardized path coefficient to its rawscore
form, multiply it by the ratio of the standard deviations of its head to its tail
variable. To convert a rawscore path coefficient to standardized form, invert the
process: Multiply by the ratio of the standard deviations of its tail to its head
variable.

These rules generalize to a series of path coefficients, as illustrated by
Fig. 1.19 and Table 1-3.

The first line in the table shows, via a process of substituting definitions
and canceling, that the series of rawscore path coefficients a*b*c* is equal to
the series abc of standardized path coefficients multiplied by the ratio of
standard deviations of its head and tail variables. The second line
demonstrates the converse transformation from rawscore to standardized
coefficients.

Fig. 1.19 Path diagram to illustrate rawscore and standardized path
coefficients.

Table 1-3 Transformation of a sequence of paths from rawscore to
standardized form (example of Fig. 1.19)

a* b* c* = a(se/SA) b(sc/se) C(SD/SC) = abc(so/SA)
abc = a*(SA/se) b*(se/sc) C*(SC/SD) = a*b*c*

Note: Asterisks designate rawscore path coefficients.
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The rule for expressing the value of a compound path between two
variables in terms of concrete path coefficents (stated for a vertically oriented
path diagram) is: The value of a compound path between two variables is equal
to the product of the rawscore path coefficients and the topmost variance or
covariance in the path.

The tracing of compound paths according to Wright's rules, and adding
compound paths together to yield the overall covariance, proceed in just the
same way with rawscore as with standardized coefficients. The covariance
between two variables in the diagram is equal to the sum of the compound
paths between them. If there is just a single path between two variables, the
covariance is equal to the value of that path. The two path diagrams in Fig. 1.20
illustrate the rule for compound paths headed by a variance and a covariance,
respectively. A few examples are given in Table 1 -4.

Notice that the rule for evaluating compound paths when using rawscore
path coefficients is different from that for standardized coefficients only by the
inclusion of one variance or covariance in each path product. Indeed, one can
think of the standardized rule as a special case of the rawscore rule, because

Fig. 1.20 Rawscore paths with (a) a variance and (b) a covariance.
(Paths a*, b*, c*, etc. represent rawscore coefficients.)

Table 1-4 Illustrations of rawscore compound path rules, for path diagrams of
Fig. 1.20

(a) (b)
COVAE = a* D* SC2 c* d* COVAF = a* D* COVQD d* e*
COVBD = k* sc2 c* COVCF= COVCD d* e*

COVCE = SC2 c* d* COVDF= SD2 d* e*
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the variance of a standardized variable is 1, and the covariance between
standardized variables is just the correlation coefficient.

If we are starting from raw data, standard deviations can always be
calculated for observed variables, allowing us to express them in either raw
score or standard score units, as we choose. What about the scales of latent
variables, for which raw scores do not exist? There are two common options.
One is simply to solve for them in standard score form and leave them that way.
An alternative approach, fairly common among those who prefer to work with
covariances and rawscore coefficients, is to assign an arbitrary value, usually
1.0, to a path linking the latent variable to an observed variable, thereby
implicitly expressing the latent variable in units based on the observed variable.
Several examples of this procedure appear in later chapters.

Differences From Some Related Topics

We need also to be clear about what this book does not cover. In this section
some related topics, which might easily be confused with latent variable
analysis as we discuss it, are distinguished from it.

Manifest versus latent variable models

Many multivariate statistical methods, including some of those most familiar to
social and behavioral scientists, do not involve latent variables. Instead, they
deal solely with linear composites of observed variables. In ordinary multiple
regression, for example, one seeks for an optimally weighted composite of
measured independent variables to predict an observed dependent or criterion
variable. In discriminant analysis, one seeks composites of measured variables
that will optimally distinguish among members of specified groups. In canonical
analysis one seeks composites that will maximize correlation across two sets of
measured variables.

Path and structural equation analysis come in both forms: all variables
measured or some not. Many of the earlier applications of such methods in
economics and sociology were confined to manifest variables. The effort was to
fit causal models in situations where all the variables involved were observed.
Biology and psychology, dealing with events within the organism, tended to
place an earlier emphasis on the latent variable versions of path analysis. As
researchers in all the social sciences become increasingly aware of the
distorting effects of measurement errors on causal inferences, latent variable
methods have increased in popularity, especially in theoretical contexts. In
applied situations, where the practitioner must work with existing measures,
errors and all, the manifest variable methods retain much of their preeminence.

Factor analysis is usually defined as a latent variable method-the factors
are unobserved hypothetical variables that underlie and explain the observed
correlations. The corresponding manifest variable method is called component
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analysis-or, in its most common form, the method of principal components.
Principal components are linear composites of observed variables; the factors
of factor analysis are always inferred entities, whose nature is at best consistent
with a given set of observations, never entirely determined by them.

Item response theory

A good deal of interest among psychometricians has centered on item response
theory, sometimes called latent trait theory, in which a latent variable is fit to
responses to a series of test items. We do not discuss these methods in this
book. They typically focus on fitting a single latent variable (the underlying trait
being measured) to the responses of subjects to a set of test items, often
dichotomous (e.g., right or wrong, true or false), whereas our principal concern
is with fitting models involving several latent variables and continuously
measured manifest variables. Moreover, the relationships dealt with in item
response theory are typically nonlinear: Two- or three-parameter latent curves
are fitted, such as the logistic, and this book is primarily concerned with
methods that assume linear relationships.

Multilevel models

A number of kinds of multilevel, or hierarchical, models will be discussed in this
book, including higher-order factor analysis and latent growth curve modeling.
However, the procedures commonly described under the label multilevel
modeling will not be. This term describes models that are hierarchical in their
sampling design, not merely their structure. For example, a random sample of
U.S. elementary schools might be drawn; within each school a random sample
of classrooms; and within each classroom a random sample of students.
Variables might be measured at each level-school facilities or principal's
attitude at the school level, teacher's experience or class size at the classroom
level, student motivation or achievement at the student level. One could then
use these data to address effects of higher level variables on lower level
outcomes. For example, to what extent do individual students' achievements
depend on student-level variables, such as the student's own motivation; to
what extent on class-level variables, such as class size, and to what extent on
school-level variables, such as budget?

In principle, models of this kind can be analyzed via SEM methods and
programs, but in practice specialized software is typically used, and most
multilevel modeling research has involved measured rather than latent
variables. For these reasons we will not be covering this topic as such in this
book, although, as noted, we will discuss some models with a hierarchical
structure.
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Latent classes versus latent dimensions

Another substantial topic that this book does not attempt to cover is the
modeling of latent classes or categories underlying observed relationships.
This topic is often called, for historical reasons, latent structure analysis
(Lazarsfeld, 1950), although the more restrictive designation latent class
analysis better avoids confusion with the latent variable methods described in
this book. The methods we discuss also are concerned with "latent structure,"
but it is structure based on relations among continuous variables rather than on
the existence of discrete underlying categories.

Chapter 1 Notes

Latent variables. Bollen (2002) discusses a number of ways in which
latent variables have been defined and distinguished from observed variables.

Cause. Mulaik (1987), Sobel (1995), and Bullock et al. (1994) discuss
how this concept is used in causal modeling. A recent effort to put the notion of
cause in SEM on a well-defined and scientifically intelligible basis is
represented by the work of Judea Pearl (1998, 2000), discussed in Chapter 7.
See also Spirtes et al. (1993, 1998) and Shipley (2000).

Path analysis. An introductory account, somewhat oriented toward
genetics, is Li (1975). The statement of Wright's rules in this chapter is adapted
from Li's. Kenny (1979) provides another introductory presentation with a
slightly different version of the path-tracing rules: A single rule~a variable
entered via an arrowhead cannot be left via an arrowhead-covers rules 2 and
3. The sociologist O. D. Duncan (1966) is usually credited with rediscovering
path analysis for social scientists; Werts and Linn (1970) wrote a paper calling
psychologists' attention to the method. For an annotated bibliography on the
history of path analysis, see Wolfle (2003).

Factor analysis. Maxwell (1977) has a brief account of some of the
early history. Mulaik (1986) updates it; see also Hagglund (2001). See notes to
Chapter 5 for books on factor analysis and Cudeck (2000) for a recent overview.
For an explicit distinction between the exploratory and confirmatory varieties,
see Joreskog and Lawley (1968), and for a discussion of some of the
differences, Nesselroade and Baltes (1984), and McArdle (1996).

Structural equations. These come from econometrics--for some
relationships between econometrics and psychometrics, see Goldberger (1971)
and a special issue of the journal Econometrics edited by de Leeuw et al.
(1983). A historical perspective is given by Bentler (1986).

Direct and indirect effects. For a discussion of such effects, and the
development of matrix methods for their systematic calculation, see Fox (1980,
1985). See also Sobel (1988). Finch et al. (1997) discuss how sample size
and nonnormality affect the estimation of indirect effects.
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Under and overdetermination in path diagrams. Often discussed
in the structural equation literature as "identification." More in Chapter 2.

"Recursive" and "nonrecursive." In the technical literature, path
models with loops are described as "nonrecursive," and path models without
loops as "recursive." Beginning students find this terminology confusing, to say
the least. It may help to know that "recursive" refers to the corresponding sets of
equations and how they can be solved, rather than describing path diagrams.

Original and standardized variables. Their relative merits are
debated by Tukey (1954) and Wright (1960), also see Kim and Ferree (1981)
and Alwin (1988). See Bielby (1986), Williams and Thomson (1986), and
several commentators for a discussion of some of the hazards involved in
scaling latent variables. Yuan and Bentler (2000a) discuss the use of
correlation versus covariance matrices in exploratory factor analysis. Again,
more on this topic in Chapter 2.

Related topics. Several examples of manifest-variable path and
structural analysis may be found in Marsden (1981), especially Part II. Principal
component analysis is treated in most factor analysis texts (see Chapter 5); for
discussions of relationships between factor analysis and principal component
analysis, see an issue of Multivariate Behavioral Research (Vol. 25, No. 1,
1990), and Widaman (1993). For item response theory, see van der Linden and
Hambleton (Eds.) (1997). Reise et al. (1993) discuss relationships between IRT
and SEM. For multilevel models (also known as hierarchical linear models) see
Goldstein (1995), Bryk and Raudenbush (1992), and Heck (2001). Recent
books on the topic include Hox (2002) and Reise and Duan (2003). The
relationship between multilevel models and SEM is discussed in McArdle and
Hamagami (1996) and Kaplan and Elliott (1997). The basic treatment of latent
class analysis is Lazarsfeld and Henry (1968); Clogg (1995) reviews the topic.
For a broad treatment of structural models that covers both quantitative and
qualitative variables see Kiiveri and Speed (1982); for related discussions see
Bartholomew (1987, 2002) and Molenaar and von Eye (1994).

Journal sources. Some journals that frequently publish articles on
developments in the area of latent variable models include Structural Equation
Modeling, Psychometrika, Sociological Methods and Research, Multivariate
Behavioral Research, The British Journal of Mathematical and Statistical
Psychology, Journal of Marketing Research, and Psychological Methodology.
See also the annual series Sociological Methodology.

Books. Some books dealing with path and structural equation modeling
include those written or edited by Duncan (1975), Heise (1975), Kenny (1979),
James et al. (1982), Asher (1983), Long (1983a,b, 1988), Everitt (1984), Saris
and Stronkhorst (1984), Bartholomew (1987), Cuttance and Ecob (1987),
Hayduk (1987, 1996), Bollen (1989b), Bollen and Long (1993), Byrne (1994,
1998, 2001), von Eye and Clogg (1994), Arminger et al. (1995), Hoyle (1995),
Schumacker and Lomax (1996), Marcoulides and Schumacker (1996, 2001),
Mueller (1996), Berkane (1997), Maruyama (1998), Kline (1998a), Kaplan
(2000), Raykov and Marcoulides (2000), Cudeck et al. (2001), Marcoulides and
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Moustaki (2002), and Pugasek et al. (2003).
Annotated bibliography. An extensive annotated bibliography of

books, chapters, and articles in the area of structural equation modeling, by J. T.
Austin and R. F. Calderon, appeared in the journal Structural Equation
Modeling (1996, Vol. 3, No. 2, pp. 105-175).

Internet resources. There are many. One good place to start is with a
web page called SEMFAQ (Structural Equation Modeling: Frequently Asked
Questions). It contains brief discussions of SEM issues that often give students
difficulty, as well as lists of books and journals, plus links to a variety of other
relevant web pages. SEM FAQ's address (at the time of writing) is
http://www.gsu.edu/~mkteer/semfaq.html. Another useful listing of internet
resources for SEM can be found at http://www.smallwaters.com. A bibliography
on SEM is at http://www.upa.pdx.edu/IOA/newsom/semrefs.htm.

There is an SEM discussion network called SEMNET available to those
with e-mail facilities. Information on how to join this network is given by E. E.
Rigdon in the journal Structural Equation Modeling (1994, Vol. 1, No. 2, pp.
190-192), or may be obtained via the SEMFAQ page mentioned above.
Searchable archives of SEMNET discussions exist. A Europe-based working
group on SEM may be found at http://www.uni-muenster.de/SoWi/struktur.

Chapter 1 Exercises

Note: Answers to most exercises are given at the back of the book, preceding
the References. Correlation or covariance matrices required for computer-
based exercises are included on the compact disk supplied with the text. There
are none in this chapter.

1. Draw a path diagram of the relationships among impulsivity and
hostility at one time and delinquency at a later time, assuming that the first two
influence the third but not vice versa.

2. Draw a path diagram of the relationships among ability, motivation,
and performance, each measured on two occasions.

3. Consider the path diagram of Fig. 1.10 (on page 14). Think of some
actual variables A, B, C, and D that might be related in the same way as the
hypothetical variables in that figure. (Don't worry about the exact sizes of the
correlations.)
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Fig. 1.21 Path diagram for problems 4 to 10 (all variables standardized
unless otherwise specified).

4. Identify the source and downstream variables in Fig 1.21.

5. What assumption is made about the causation of variable D?

6. Write path equations for the correlations rAF, rDQ, rCE. and rp-

7. Write path equations for the variances of C, D, and F.

8. If variables A, B, F, and G are measured, and the others latent, would
you expect the path diagram to be solvable? (Explain why or why not.)

9. Now, assume that the variables in Fig. 1.21 are not standardized.
Write path equations, using rawscore coefficients, for the covariances CQD,
CAG anc'tne variances SQ2 and sp2-

10. Write structural equations for the variables D, E, and F in Fig. 1.21.

Fig.1.22 Path diagram for problem 11.

11. Redraw Fig. 1.22 as a RAM path diagram. (E and F are latent
variables, A through D are observed.)
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Fig. 1.23 Path diagram for problem 12.

12. Given the path diagram shown in Fig. 1.23 and the observed
correlations given to the right, solve for a, b, c, d, and e.

13. The following intercorrelations among three variables are observed:

A B C
A 1.00 .42 .12
B 1.00 .14
C 1.00

Solve for the loadings on a single common factor, using the method of triads.
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Chapter Two:
Fitting Path Models

In this chapter we consider the processes used in actually fitting path models to
data on a realistic scale, and evaluating their goodness of fit. This implies
computer-oriented methods. This chapter is somewhat more technical than
Chapter 1. Some readers on a first pass through the book might prefer to read
carefully only the section on hierarchical x2 tests (pp. 61-66), glance at the
section on the RMSEA (pp. 68-69), and then go on to Chapters 3 and 4, coming
back to Chapter 2 afterwards. (You will need additional Chapter 2 material to
do the exercises in Chapters 3 and 4.)

Iterative Solution of Path Equations

In simple path diagrams like those we have considered so far, direct algebraic
solution of the set of implied equations is often quite practicable. But as the
number of observed variables goes up, the number of intercorrelations among
them, and hence the number of equations to be solved, increases rapidly.
There are n(n -1)/2 equations, where n is the number of observed variables, or
n(n + 1)/2 equations, if variances are solved for as well. Furthermore, path
equations by their nature involve product terms, because a compound path is
the product of its component arrows. Product terms make the equations
recalcitrant to straightforward matrix procedures that can be used to solve sets
of linear simultaneous equations. As a result of this, large sets of path
equations are in practice usually solved by iterative (= repetitive) trial-and-error
procedures, carried out by computers.

The general idea is simple. An arbitrary set of initial values of the paths
serves as a starting point. The correlations or covariances implied by these
values are calculated and compared to the observed values. Because the
initial values are arbitrary, the fit is likely to be poor. So one or more of the initial
trial values is changed in a direction that improves the fit, and the process is
repeated with this new set of trial values. This cycle is repeated again and
again, each time modifying the set of trial values to improve the agreement
between the implied and the observed correlations. Eventually, a set of values
is reached that cannot be improved on-the process, as the numerical
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Fig. 2.1 A simple path diagram illustrating an iterative solution.

analysts say, has "converged" on a solution. If all has gone well, this will be the
optimum solution that is sought.

Let us illustrate this procedure with the example shown in Fig. 2.1. A
simple case like this one might be solved in more direct ways, but we use it to
demonstrate an iterative solution, as shown in Table 2-1.

We begin in cycle 1 by setting arbitrary trial values of a and b~for the
example we have set each to .5. Then we calculate the values of the
correlations r/\g, r/\c. and TBC that are implied by these path values: they are
.50, .50, and .25, respectively. We choose some reasonable criterion of the
discrepancy between these and the observed correlations-say, the sum of the
squared differences between the corresponding values. In this case this sum is
.112 + (-.08)2 + (-.02)2, or .0189.

Next, in steps 1a and 1b, we change each trial value by some small
amount (we have used an increase of .001) to see what effect this has on the
criterion. Increasing a makes things better and increasing b makes things
worse, suggesting that either an increase in a or a decrease in b should
improve the fit. Because the change 1 a makes a bigger difference than the
change 1b does, suggesting that the criterion will improve faster with a change
in a, we increase the trial value by 1 in the first decimal place to obtain the new
set of trial values in cycle 2. Repeating the process, in 2a and 2b, we find that a
change in b now has the greater effect; the desirable change is a decrease.

Decreasing b by 1 in the first decimal place gives the cycle 3 trial values
.6 and .4. In steps 3a and 3b we find that increasing either would be beneficial,
b more so. But increasing b in the first decimal place would just undo our last
step, yielding no improvement, so we shift to making changes in the second
place. (This is not necessarily the numerically most efficient way to proceed, but
it will get us there.) In cycle 4, the value of the criterion confirms that the new
trial values of .6 and .41 do constitute an improvement. Testing these values in
steps 4a and 4b, we find that an increase in a is suggested. We try increasing a
in the second decimal place, but this is not an improvement, so we shift to an
increase in the third decimal place (cycle 5). The tests in steps 5a and 5b
suggest that a further increase to .602 would be justified, so we use that in cycle
6. Now it appears that decreasing b might be the best thing to do, cycle 7, but it
isn't an improvement. Rather than go on to still smaller changes, we elect to
quit at this point, reasonably confident of at least two-place precision in our
answer of .602 and .410 in cycle 6 (or, slightly better, the .603 and .410 in 6a).
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Table 2-1 An iterative solution of the path diagram of Fig. 2.1

Trial values

Observed

Cycle 1
1a
1b
2
2a
2b
3
3a
3b
4
4a
4b
(5)
5
5a
5b
6
6a
6b
(7)

a

.5

.501

.5

.6

.601

.6

.6

.601

.6

.6

.601

.6

.61

.601

.602

.601

.602

.603

.602

.603

b

.5

.5

.501

.5

.5

.501

.4

.4

.401

.41

.41

.411

.41

.41

.41

.411

.41

.41

.411

.409

Correlations
"*AB
.61

.50

.501

.50

.60

.601

.60

.60

.601

.60

.60

.601

.60

.61

.601

.602

.601

.602

.603

.602

.603

TAG
.42

.50

.50

.501

.50

.50

.501

.40

.40

.401

.41

.41

.411

.41

.41

.41

.411

.41

.41

.411

.409

""BC
.23

.25

.2505

.2505

.30

.3005

.3006

.24

.2404

.2406

.246

.2464

.2466

.2501

.2464

.2468

.2470

.2468

.2472

.2474

.2462

Criterion
IcP

.018900

.018701*

.019081

.011400

.011451

.011645*

.000600

.000589

.000573*

.000456

.000450*

.000457

.000504

.0004503

.0004469*

.0004514

.0004469

.0004459

.0004485*

.0004480

'greater change

Now, doing this by hand for even two unknowns is fairly tedious, but it is
just the kind of repetitious, mechanical process that computers are good at, and
many general and special-purpose computer programs exist that can carry out
such minimizations. If you were using a typical general-purpose minimization
program, you would be expected to supply it with an initial set of trial values of
the unknowns, and a subroutine that calculates the function to be minimized,
given a set of trial values. That is, you would program a subroutine that will
calculate the implied correlations, subtract them from the observed correlations,
and sum the squares of the differences between the two. The minimization
program will then proceed to adjust the trial values iteratively, in some such
fashion as that portrayed in Table 2-1, until an unimprovable minimum value is
reached.
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Geographies of search

Fig. 2.2 Graphical representation of search space for Fig. 2.1 problem, for
values 0 to 1 of both variables. The coordinates a and b refer to the two paths,
and the vertical dimension to the value of the criterion.

For the simple two-variable case of Fig. 2.1 and Table 2-1 we can visualize the
solution process as a search of a geographical terrain for its lowest point.
Values of a and b represent spatial coordinates such as latitude and longitude,
and values of the criterion £d2 represent altitudes above sea level. Figure 2.2
is a pictorial representation of the situation. A set of starting trial values
represents the coordinates of a starting point in the figure. The tests in steps a
and b in each cycle represent tests of how the ground slopes each way from the
present location, which govern the choice of a promising direction in which to
move. In each instance we make the move that takes us downhill most rapidly.
Eventually, we reach the low point in the valley, marked by the arrow, from
which a step in any direction would lead upward. Then we quit and report our
location as the solution.

Note that in simple geographies, such as that represented in this
example, it doesn't matter what set of starting values we use--we would reach
the same final low point regardless of where we start from--at worst it will take
longer from some places than from others. Not all geographies, however, are
this benign. Figure 2.3 shows a cross-section of a more treacherous terrain. A
starting point at A on the left of the ridge will lead away from, not towards, the
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Fig. 2.3 Cross section of a less hospitable search terrain.

solution-the searcher will wind up against the boundary at B. From a starting
point at C, on the right, one will see initial rapid improvement but will be trapped
at an apparent solution at D, well short of the optimum at E. Or one might strike
a level area, such as F, from which no direction of initial step leads to
improvement. Other starting points, such as G and H, will, however, lead
satisfactorily to E.

It is ordinarily prudent, particularly when just beginning to explore the
landscape implicit in a particular path model, to try at least two or three widely
dispersed starting points from which to seek a minimum. If all the solutions
converge on the same point and it represents a reasonably good fit to the data,
it is probably safe to conclude that it is the optimum solution. If some solutions
wander off or stop short of the best achieved so far, it is well to suspect that one
may be dealing with a less regular landscape and try additional sets of starting
values until several converge on the same minimum solution.

It is easy to draw pictures for landscapes in one or two unknowns, as in
Fig. 2.3 or 2.2. In the general case of n unknowns, the landscape would be an
n-dimensional space with an n + 1st dimension for the criterion. Although such
spaces are not easily visualizable, they work essentially like the simple ones,
with n-dimensional analogues of the valleys, ridges, and hollows of a three-
dimensional geography. The iterative procedure of Table 2-1 is easily
extended to more dimensions (= more unknowns), although the amount of
computation required escalates markedly as the number of unknowns goes up.

Many fine points of iterative minimization programs have been skipped
over in this brief account. Some programs allow the user to place constraints
on the trial values (and hence on the ultimate possible solutions), such as
specifying that they always be positive, or that they lie between +1 and -1 or
other defined limits. Programs differ in how they adjust their step sizes during
their search, and in their ability to recover from untoward events. Some are
extremely fast and efficient on friendly terrain but are not well adapted
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elsewhere. Others are robust, but painfully slow even on easy ground. Some
programs allow the user a good deal of control over aspects of the search
process and provide a good deal of information on how it proceeds. Others
require a minimum of specification from the user and just print out a final
answer.

Matrix Formulation of Path Models

Simple path diagrams are readily transformed into sets of simultaneous
equations by the use of Wright's rules. We have seen in the preceding sections
how such sets of equations can be solved iteratively by computer programs. To
use such a program one must give it a subroutine containing the path
equations, so that it can calculate the implied values and compare them with the
observed values. With three observed values, as in our example, this is simple
enough, but with 30 or 40 the preparation of a new subroutine for each problem
can get tedious. Furthermore, in tracing paths in more complex diagrams to
reduce them to sets of equations, it is easy to make errors-for example, to
overlook some indirect path that connects point A and point B, or to include a
path twice. Is there any way of mechanizing the construction of path equations,
as well as their solution?

In fact, there are such procedures, which allow the expression of the
equations of a path diagram as the product of several matrices. Not only does
such an approach allow one to turn a path diagram into a set of path equations
with less risk of error, but in fact one need not explicitly write down the path
equations at all-one can carry out the calculation of implied correlations directly
via operations on the matrices. This does not save effort at the level of actual
computation, but it constitutes a major strategic simplification.

The particular procedure we use to illustrate this is one based on a
formulation by McArdle and McDonald (1984); an equivalent although more
complex matrix procedure is carried out within the computer program LISREL
(of which more later), and still others have been proposed (e.g., Bentler &
Weeks, 1980; McArdle, 1980; McDonald, 1978). It is assumed that the reader is
familiar with elementary matrix operations; if your skills in this area are rusty or
nonexistent, you may wish to consult Appendix A or an introductory textbook in
matrix algebra before proceeding.

McArdle and McDonald define three matrices, A, S, and F:

A (for "asymmetric" relations) contains paths.
S (for "symmetric" relations) contains correlations (or covariances) and

residual variances.
F (for "filter" matrix) selects out the observed variables from the total set

of variables.
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If there are t variables (excluding residuals), m of which are measured,
the dimensions of these matrices are: A = t x t ; S = t x t ; F = mxt . The implied
correlation (or covariance) matrix C among the measured variables is obtained
by the matrix equation:

I stands for the identity matrix, and -1 and ' refer to the matrix operations of
inversion and transposition, respectively.

This is not a very transparent equation. You may wish just to take it on
faith, but if you want to get some sense of why it looks like it does, you can turn
to Appendix B, where it is shown how this matrix equation can be derived from
the structural equation representation of a path diagram. The fact that the
equation can do what it claims to do is shown in the examples below.

An example with correlations

Figure 2.4 and Tables 2-2 and 2-3 provide an example of the use of the
McArdle-McDonald matrix equation. The path diagram in Fig. 2.4 is that of Fig.
1 .23, from the exercises of the preceding chapter.

Fig. 2.4 A path diagram for the matrix example of Tables 2-2 and 2-3.

Variables B, C, and D are assumed to be observed; variable A to be
latent, as shown by the squares and the circle. All variables are assumed to be
standardized--!.e., we are dealing with a correlation matrix. Expressions for the
correlations and variances, based on path rules, are given to the right in the
figure. In Table 2-2 (next page), Matrix A contains the three straight arrows
(paths) in the diagram, the two as and the c. Each is placed at the intersection
of the variable from which it originates (top) and the variable to which it points
(side). For example, path c, which goes from B to C, is specified in row C of
column B. It is helpful (though not algebraically necessary) to group together
source variables and downstream variables-the source variables A and B are
given first in the Table 2-2 matrices, and the downstream variables C and D last.

Curved arrows and variances are represented in matrix S. The top left-
hand part contains the correlation matrix among the source variables, A and B.
The diagonal in the lower right-hand part contains the residual variances of the
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Table 2-2 Matrix formulation of a path diagram by the McArdle-McDonald
procedure

A
B
C
D

A
0
0
a
a

B
0
0
c
0

C
0
0
0
0

D
0
0
0
0

A
B
C
D

A
1
b
0
0

B
b
1
0
0

C
0
0
e2

0

D
0
0
0
d2

B
C
D

A
0
0
0

B
1
0
0

C
0
1
0

D
0
0
1

downstream variables C and D, as given by the squares of the residual paths
e and d. (If there were any covariances among residuals, they would be
shown by off-diagonal elements in this part of the matrix.)

Finally, matrix F, which selects out the observed variables from all the
variables, has observed variables listed down the side and all variables along
the top. It simply contains a 1 at the row and column corresponding to each
observed variable--in this case, B, C, and D.

Table 2-3 demonstrates that multiplying out the matrix equation yields the
path equations. First, A is subtracted from the identity matrix I, and the result
inverted, yielding (I-A)-1. You can verify that this is the required inverse by the
matrix multiplication (I-A)-1 (I-A) = I. (If you want to leam a convenient way of
obtaining this inverse, see Appendix B.) Pre- and postmultiplying S by (I-A)-1

and its transpose is done in this and the next row of the table.
The matrix to the right in the second row, (I-A)-1S (I-A)-1', contains the

correlations among all the variables, both latent and observed. The first row and
column contain the correlations involving the latent variable. The remainder of
the matrix contains the intercorrelations among the observed variables. As you
should verify, all these are consistent with those obtainable via path tracing on
the diagram in Fig. 2.4 (page 41).

The final pre- and postmultiplication by F merely selects out the lower
right-hand portion of the preceding matrix, namely, the correlations among the
observed variables. This is given in the last part of the table, and as you can
see, agrees with the results of applying Wright's rules to the path diagram.

Thus, with particular values of a, b, c, etc. inserted in the matrices, the
matrix operations of the McArdle-McDonald equation result in exactly the same
implied values for the intercorrelations as would putting these same values into
expressions derived from the path diagram via Wright's rules.

42



Chapter 2: Fitting Path Models

Table 2-3 Solution of the McArdle-McDonald equation, for the matrices of
Table 2-2

(\-A

A
B
C
D

A
1
0
a
a

B
0
1
c
0

C
0
0
1
0

D
0
0
0
1

A
B
C
D

A
1
b
a+bc
a

B
b
1
ab+c
ab

C
0
0
e2

0

D
0
0
0
d2

(l-A)-i' (I-A)-1S(I-A)-1'

A
B
C
D

A
1
0
0
0

B
0
1
0
0

C
a
c
1
0

D
a
0
0
1

A
B
C

A
1
b
a+bc

B
b
1
ab+c

D

F(I-A)1S(I-A)-1'F'=C

ab

C D
a+bc a
ab+c ab
a2+c2+ a2+abc
2abc+e2

a2+abc a2+d2

B
C
D

B
1
ab+c
ab

C
ab+c
a2+c2+2abc+e2

a2+abc

D
ab
a2+abc
a2+d2

An example with covariances

The only modification to the procedure that is needed in order to use it with a
variance-covariance matrix is to insert variances instead of 1s in the upper
diagonal of S. The equation will then yield an implied variance-covariance
matrix of the observed variables, instead of a correlation matrix, with the path
coefficients a and c in rawscore form.

The procedure is illustrated in Table 2-4 (next page). The example is the
same as that in Table 2-3, except that variables A, B, C, and D are now
assumed to be unstandardized. The table shows the S matrix (the A and F
matrices are as in Table 2-2), and the final result. Notice that these expressions
conform to the rawscore path rules, by the inclusion of one variance or
covariance in each path, involving the variable or variables at its highest point.
(The bs are now covariances, and the as and cs unstandardized path
coefficients.) You may wish to check out some of this in detail to make sure you
understand the process.
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Table 2-4 Solution for covariance matrix, corresponding to Table 2-3

A

B

C
D

A

SA2

b

0
0

B
b

SB2

0
0

C
0

0

e2

0

D
0

0

0
d2

B C D
B sg2 ab+c SB2 ab

C ab+c SB2 a2 s^2 +c2 ss2 +2abc+e2 a2s/\2+abc
D ab a2SA2+abc

Full-Fledged Model-Fitting Programs

Suppose you were to take a general-purpose minimization program and
provide it with a matrix formulation, such as the McArdle-McDonald equation, to
calculate the implied correlation or covariance matrices at each step in its
search. By describing the matrices A, S, and F in the input to the program, you
would avoid the necessity of writing fresh path equations for each new problem.

One might well dress up such a program with a few additional frills: For
example, one could offer additional options in the way of criteria for evaluating
goodness of fit. In our example, we minimized the sum of squared differences
between observed and implied correlations. This least squares criterion is one
that is easily computed and widely used in statistics, but there are others, such
as maximum likelihood, that might be used and that could be provided as
alternatives. (Some of the relative advantages and disadvantages of different
criteria are discussed in a later section of this chapter.) While you are at it, you
might as well provide various options for inputting data to the program (raw
data; existing correlation or covariance matrices), and for printing out various
informative results.

In the process, you would have invented a typical structural equation
modeling (SEM) program. By now, a number of programs along these general
lines exist and can be used for solving path diagrams. They go by such names
as AMOS, CALIS, COSAN, EOS, LISREL, MECOSA, Mplus, MX, RAMONA, and
SEPATH. Some are associated with general statistical packages, others are
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self-contained. The ways of describing the model to the program differ~for
some programs this is done via paths, for some via structural equations, for
some via matrices. Some programs provide more than one of these options.
The styles of output also vary. We need not be concerned here with the details
of implementation, but will briefly describe a few representative programs, and
illustrate how one might carry out a couple of simple analyses with each. We
begin with the best-known member of the group, LISREL, and then describe
EQS, MX, and AMOS, and then others more briefly.

LISREL

This is the father of all SEM programs. LISREL stands for Linear Structural
RELations. The program was devised by the Swedish psychometrician Karl
Joreskog, and has developed through a series of versions. The current version
is LISREL 8 (Joreskog & Sorbom, 1993). LISREL is based on a more elaborate
matrix formulation of path diagrams than the McArdle-McDonald equation,
although one that works on similar principles and leads to the same end result.
The LISREL formulation is more complicated because it subdivides the process,
keeping in eight separate matrices various elements that are combined in the
three McArdle-McDonald matrices.

We need not go into the details of this matrix formulation, since most
beginners will be running LISREL via a command language called SIMPLIS,
which allows one to describe the problem in terms of a path diagram or a set of
structural equations, which the program automatically translates into the
matrices required for LISREL. Readers of articles based on earlier versions of
LISREL will, however, encounter references to various matrices named LX, TD,
GA, BE and so on, and advanced users who wish to go beyond the limitations of
SIMPLIS will need to understand their use. Appendix C describes the LISREL
matrices briefly.

In the following sections, examples are given of how models may be
described in inputs to typical SEM programs. The SIMPLIS example illustrates
an input based on the description of paths; EQS illustrates a structural equation
representation; MX illustrates matrix input. Other SEM programs will typically
follow one or more of these three modes. A recent trend, led by AMOS, is to
enter problems by building a path diagram directly on the computer screen.

An example of input via paths-SIMPLIS/LISREL

An example of SIMPLIS input will be given to solve the path diagram of Fig. 2.5
(next page). This is a simple two-factor model, with two correlated factors, F1
and F2, and four observed variables X1, X2, X3, and X4. We will assume the
factors to be standardized (variance = 1.0). Note that the values w, x, y, and z
are placed in the diagram at the ends of their respective arrows rather than
beside them. We will use this convention to signify that they represent
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Fig. 2.5 Path diagram for example of Table 2-6.

residual variances rather than path values; this is the form in which LISREL
reports them.

Table 2-5 shows the SIMPLIS program. The first line is a title. The next
line lists the four observed variables (labels more descriptive than these would
normally be used in practice). The third line indicates that the correlation matrix
follows, and lines 4 to 7 supply it, in lower triangular form. The next two lines
identify the latent variables and specify the sample size. Then come the paths:
from F1 to X1 and X2; from F2 to X3 and X4. End of problem. The simplicity of
this program illustrates a philosophy of LISREL and SIMPLIS-that things are
assumed to be in a typical form by default unless otherwise specified. Thus
SIMPLIS assumes that all source latent variables will be standardized and
intercorrelated, that there will be residuals on all downstream variables, and
that these residuals will be uncorrelated~it is not necessary to say anything
about these matters in the program unless some other arrangement is desired.
Likewise, it is assumed that LISREL is to calculate its own starting values, and
that the default fitting criterion, which is maximum likelihood, is to be used.

Table 2-5 An example of SIMPLIS input for solving the path diagram of
Fig. 2.5

INPUT FOR FIG. 2.5 PROBLEM
OBSERVED VARIABLES XI X2 X3 X4
CORRELATION MATRIX

1.00
.50 1.00
.10 .10 1.00
.20 .30 .20 1.00

LATENT VARIABLES Fl F2
SAMPLE SIZE 100
PATHS
Fl -> XI X2
F2 -> X3 X4

END OF PROBLEM
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W

Fig. 2.6 A different model for the data of Fig. 2.5.

Figure 2.6 shows a different model that might be fit to the same data. In
this model, we assume again that there are four observed variables, X1 to X4,
and two latent variable, F1 and F2, but now there is a causal path, labeled e,
rather than a simple correlation, between the two latent variables. Thus we
have a structural equation model in the full sense, rather than a simple factor
analysis model. This leads to two further changes. F2 is now a downstream
variable rather than a source variable, so it acquires a residual arrow. This
complicates fixing the variance of F2 to a given value (such as 1.0) during an
iterative solution, so SEM programs often require users to scale each
downstream latent variable via a fixed path to an observed variable, as shown
for F2 and X3 (SIMPLIS allows but does not require this). Source latent
variables may be scaled in either way--we will continue to assume that the
variance of F1 is fixed to 1.0. Note that the total number of unknowns remains
the same as in Fig 2.5--the residual variance v is solved for instead of the path
c, and there is an e to be solved for in either case, although they play different
roles in the model. There are now three paths from F1--to X1, X2, and F2--and
as there is now only one source latent variable, there is no correlation between
such variables to be dealt with.

In the example in Table 2-6, we have assumed that we wish to provide
our own starting values for each path to be solved (the parenthesized .5s,
followed by the asterisks). The fixed path of 1 from F2 to X3 is represented by a
1 not placed in parentheses. We have also assumed that we want to obtain an

Table 2-6 Example of SIMPLIS input for Fig. 2.6 problem

INPUT FOR FIG. 2.6 PROBLEM

[lines 2-9 same as for previous example]

PATHS
Fl -> (.5)*X1 (.5)*X2 (.5)*F2
F2 -> 1*X3 (.5)*X4

OPTIONS UL ND=3
END OF PROBLEM
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ordinary least squares solution (UL, for "unweighted least squares," in the
options line), and want to have results given to three decimal places (ND=3).

Many further options are available. For example, one could specify that
paths a and b were to be equated by adding the line Let F1 -> X1 = F1 -> X2.
As noted, an alternative form of input based on structural equations may be
used. The user will need to consult the relevant manuals for further details;
these illustrations are merely intended to convey something of the flavor of
SIMPLIS/LISREL's style, and to provide models for working simple problems.
A number of examples of the use of LISREL in actual research are found in the
next two chapters.

An example of input via structural equations—EQS

A rival program along the same general lines as LISREL is EQS by Peter
Bentler (1995). Path models are specified to EQS in the form of structural
equations. Structural equations were described in Chapter 1. Recall that there
is one structural equation for each downstream latent or observed variable in a
path model, and that variances and covariances of source variables need also
to be specified.

Four kinds of variables are distinguished in EQS: V for observed
variables, F for latent variables, E for residuals of observed variables, and D for
residuals of downstream latent variables. Each variable is designated by a
letter followed by numbers. A typical structural equation for a V variable will
include Fs and an E; one for an F variable will include other Fs and a D.

Table 2-7 shows on the left an EQS equivalent of the LISREL program in
Table 2-5. In the EQUATIONS section, a structural equation is given for each
downstream variable. V1 to V4 stand for the observed variables X1 to X4, F1
and F2 for the two latent source variables, and E1 to E4 for the four residuals.
The asterisks designate free variables to be estimated. In the VARIANCES and
COVARIANCES sections, the variances of F1 and F2 are fixed at 1 (no asterisk),
and E1 to E4 and the covariance of F1 and F2 are to be estimated.

In example (b), corresponding to Table 2-6, the structural relationship of
Fig 2.6 is specified between the two latent variables. A structural equation for
F2 is added to the list of equations, with a residual D2; the covariance involving
the latent variables is dropped; and the path from F2 to V3 is fixed implicitly to 1.
Starting values of .5 precede the asterisks. Finally, in the SPEC section, the
least squares method is specified by ME = LS (as in the case of LISREL,
maximum likelihood is the default method).

Again, many variations are possible in EQS, as in LISREL. A
CONSTRAINTS section can impose equality constraints. For example, to
require paths a and b in Fig 2.6 to be equal, one would specify /CONSTRAINTS
and(V1,F1) = (V2,F1).
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Table 2-7 Examples of EOS input for fitting the models in Figs. 2.5 and 2.6

(a) (b)

/TITLE
INPUT FOR FIG 2.5 PROBLEM

/SPECIFICATIONS
VAR=4; CAS=100; MA=COR;
ANAL=COR;

/EQUATIONS
VI = *F1 +
V2 - *F1 +
V3 = *F2 +
V4 = *F2 +

/VARIANCES
Fl, F2 = 1;
/COVARIANCES
F1,F2 = *;

/MATRIX
1.00
.50 1.00
.10 .10
.20 .30

/END

El;
E2;
E3;
E4;

El TO E4 = *;

1.00
.20 1.00

/TITLE
INPUT FOR FIG 2 . 6 PROBLEM

/SPEC
VAR=4; CAS=100; MA=COR;
ANAL=COR; ME=LS;

/EQU
VI =
V2 =
V3 =
V4 =
F2 =

/VAR
Fl = l
D2 =

/MAT
1.00
.50
.10
.20

/END

.5*F1

.5*F1
F2 +

.5*F2

.5*F1

; El TO
.5*;

1.00
.10 1.
.30 .

+ El;
+ E2;
E3;
+ E4;
+ D2;

E4 = .5*;

.00

.20 1.00

An example of input via matrices-Mx

A flexible and powerful SEM program by Michael Neale based on matrix input
is called MX (Neale, 1995). Table 2-8 (next page) gives examples of how one
might set up the problems of Fig 2.5 and 2.6 in MX. Use of the McArdle-
McDonald matrix equation is illustrated-recall that any path model can be
expressed in this way. (Other matrix formulations can be used in MX if desired.)

The first line of input is a title. The next provides general specifications:
number of groups (NG), number of input variables (Nl), sample size (NO for
number of observations). Then comes the observed correlation or covariance
matrix. In the next few lines the dimensions of the matrices A, S, and F are
specified. Then we have the McArdle-McDonald equation (~ means inverse,
and the slash at the end is required). Finally, the knowns and unknowns in A,
S, and F are indicated, as described earlier in the chapter. Zeroes are fixed
values, integers represent different values to be solved for (if some of these are
to be equated, the same number would be used for both). The VALUE lines at
the end put fixed values into various locations: the first such line puts fixed
values of 1 into S 1 1 and S 2 2; the others set up the 1s in F.

The righthand part of the table (b) shows the modifications necessary for
the Fig. 2.6 problem.
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Table 2-8 Example of MX input for Fig. 2.5 and Fig. 2.6 problems

(a)

INPUT FOR FIG. 2.5 PROBLEM
DATA NG=1 NI=4 N0=100
CMATRIX

1.00
.50 1.00
.10 .10 1.00
.20 .30 .20 1.00

MATRICES
A FULL 6 6
S SYMM 6 6
F FULL 4 6
I IDENT 6 6

COVARIANCES F * ( I - A ) ~ * S * ( ( I - A )
SPECIFICATION A
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
0 3 0 0 0 0
0 4 0 0 0 0
SPECIFICATION S
0
5 0
0 0 6
0 0 0 7
0 0 0 0 8
0 0 0 0 0 9
VALUE 1 S 1 1 S 2 2
VALUE 1 F 1 3 F 2 4 F 3 5
VALUE 1 F 4 6
END

(b)

INPUT FOR FIG. 2.6 PROBLEM

[same as (a) through
COVARIANCES line]

~ ) ' * F ' /
SPECIFICATION A
0 0 0 0 0 0
5 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 4 0 0 0 0
SPECIFICATION S
0
0 3
0 0 6
0 0 0 7
0 0 0 0 8
0 0 0 0 0 9
VALUE 1 S 1 1 A 5 2
VALUE 1 F 1 3 F 2 4 F 3 5
VALUE 1 F 4 6
END

Note: MX may give a warning on this problem, but should yield correct results: path a = .59,
path b = .85, etc.

An example of path diagram input-AMOS

As mentioned earlier, the program AMOS, designed by James Arbuckle,
pioneered a different method for the input of SEM problems: namely, to enter
the path model directly. Using AMOS's array of drawing tools, one simply
produces the equivalent of Fig. 2.5 or 2.6 on the computer screen, connects it to
the correlation matrix or the raw data resident in a data file, and executes the
problem. AMOS will supply you with output in the form of a copy of the input
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diagram with the solved-for path values placed alongside the arrows, or with
more extensive tabulated output similar to that of typical SEM programs. The
current version is 4.0 (Arbuckle & Wothke, 1999). AMOS can handle most
standard SEM problems, and has a reputation for being user-friendly. It and MX
were the first structural modeling programs to utilize the Full Information
Maximum Likelihood approach to handling missing data-to be discussed later
in this chapter.

Some other programs for latent variable modeling

There is a growing list of programs that can do latent variable modeling. James
Steiger's SEPATH (descended from an earlier EzPATH) features a simple path-
based input and a number of attractive features. It is associated with the
Statistica statistical package. A second program, Wolfgang Hartmann's CALIS,
is part of the SAS statistical package. At the time of writing, it does not handle
models in multiple groups; otherwise, it is a competent SEM program, and SAS
users should find it convenient. It has an unusually broad range of forms in
which it will accept input-including the specification of a RAM-type path
diagram, matrices, and a structural equation mode similar to EQS's. A third
program, Browne and Mel's RAMONA, is associated with the SYSTAT statistical
package. It is based on the RAM model discussed earlier, and uses a simple
path-based input. It does not yet handle models with means or models in
multiple groups, but these are promised for the future.

Other SEM programs, perhaps less likely to be used by beginners in
SEM, include Mplus, MECOSA, and COSAN. Bengt Muthen's versatile Mplus
has several resemblances to LISREL, although it does not have a SIMPLIS-
type input. One notable strength of Mplus is its versatility in handling
categorical, ordinal, and truncated variables. (Some other SEM programs can
do this to a degree-LISREL by means of a preliminary program called PRELIS.)
In addition, Mplus has facilities for analyzing hierarchical models. Gerhard
Arminger's MECOSA also covers a very broad range of models. It is based on
the GAUSS programming language. An early, flexible program for structural
equation modeling is Roderick McDonald's COSAN, which is available in a
FORTRAN version (Fraser & McDonald, 1988). This is a matrix-based program,
although the matrices are different from LISREL's. They are more akin to the
McArdle-McDonald matrices described earlier. Logically, COSAN can be
considered as an elaboration and specialization of the McArdle-McDonald
model.

Any of these programs should be able to fit most of the latent variable
models described in Chapters 2, 3, and 4 of this book, except that not all of them
handle model fitting in multiple samples or to means.
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Fit Functions

A variety of criteria have been used to indicate how closely the correlation or
covariance matrix implied by a particular set of trial values conforms to the
observed data, and thus to guide searches for best-fitting models. Four are
fairly standard in SEM programs: ordinary least squares (OLS), generalized
least squares (GLS), maximum likelihood (ML), and a version of Browne's
asymptotically distribution-free criterion (ADF)--the last is called generally
weighted least squares in LISREL and arbitrary distribution generalized least
squares in EQS. Almost any SEM program will provide at least three of these
criteria as options, and many provide all four.

Why four criteria? The presence of more than one places the user in the
situation described in the proverb: A man with one watch always knows what
time it is; a man with two watches never does. The answer is that the different
criteria have different advantages and disadvantages, as we see shortly.

The various criteria, also known as discrepancy functions, can be
considered as different ways of weighting the differences between
corresponding elements of the observed and implied covariance matrices. In
matrix terms, this may be expressed as:

( s - c ) 'W (s-c) ,

where s and c refer to the nonduplicated elements of the observed and implied
covariance matrices S and C arranged as vectors. That is, the lower triangular

a
elements be of a 3 x 3 covariance matrix would become the 6-element

def
vector (a b c d e /)', and (s - c)' would contain the differences between such
elements of the observed and implied covariance matrices. W is a weight
matrix, and different versions of it yield different criteria. If W is an identity
matrix, the above expression reduces to (s - c)'(s - c). This is just the sum of
the squared differences between corresponding elements of the observed and
implied matrices, an ordinary least squares criterion. If the matrices S and C
are identical, the value of this expression will be zero. As S and C become
more different, the squared differences between their elements will increase.
The sum of these, call it F, is a discrepancy function--the larger F is, the worse
the fit. An iterative model-fitting program will try to minimize F by seeking values
for the unknowns which make the implied matrix C as much like the observed
matrix S as possible. In general, an ordinary least squares criterion is most
meaningful when the variables are measured on comparable scales.
Otherwise, arbitrary differences in the scales of variables can markedly affect
their contributions to F.

For ADF, the matrix W is based on the variances and covariances among
the elements in s. If s were the 6-element vector of the previous example, W
would be derived from the inverse of the 6x6 matrix of covariances among all
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possible pairs aa, ab, ac, etc., from s. The elements of the matrix to be inverted
are obtained via the calculation m-^M - S^SM , where m-^M is a fourth-order
moment, the mean product of the deviation scores of variables /, j, k and /, and
Sy and sw are the two covariances in question. This calculation is
straightforward; however, as the original covariance matrix S gets larger, the
vector s of its nonduplicated elements increases rapidly in length, and W,
whose size is the square of that, can become a very large matrix whose storage,
inversion, and application to calculations in an iterative procedure are quite
demanding of computer resources. In addition, ADF requires very large
samples for accuracy in estimating the fourth moments (say 5000 or more), and
it tends to behave rather badly in more moderate-sized samples. Since there
are other ways of addressing nonnormality, to be discussed shortly, we will not
deal with ADF further in this chapter, although in working with very large
samples one might still sometimes want to consider its use.

If the observed variables have a distribution that is multivariate normal,
the general expression given above can be simplified to:

1/2tr[(S-C)V]2,

where Prefers to the trace of a matrix (i.e., the sum of its diagonal elements),
and V is another weight matrix. This expression involves matrices the size of
the original covariance matrix, and hence is computationally more attractive.
The choice of weight matrix V defines:

V = I OLS, ordinary least squares
V = S'1 GLS, generalized least squares
V = C'1 ML, maximum likelihood

(The maximum likelihood criterion is typically defined in a different way, as ML =
InlCI - InlSI + trSC'1- m, which involves the natural logarithms of the
determinants of the C and S matrices, the trace of the product of S and C-1, and
the number of variables, m. The two definitions are not identical, but it has been
shown that when the model is correct the estimates that minimize the one also
tend to minimize the other.)

In the case of ordinary least squares--as with the general version given
earlier--the simplified expression above reduces to a function of the sum of
squared differences between corresponding elements of the S and C matrices.
The other criteria, GLS and ML, require successively more computation. GLS
uses the inverse of the observed covariance matrix S as a weight matrix. This
only needs to be obtained once, at the start of the iterative process, because the
observed matrix doesn't change. However, the implied matrix C changes with
each change in trial values, so C'1 needs to be recalculated many times during
an iterative ML solution, making ML more computationally costly than GLS.
However, with fast modern computers this difference will hardly be noticed on
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typical small to moderate SEM problems.
If the null hypothesis is true, the assumption of multivariate normality

holds, and sample size is reasonably large, both GLS and ML criteria will yield
an approximate chi square by the multiplication (N -1 )Fmin, where Fmin is the
value of the discrepancy function at the point of best fit and N is the sample size.
All these criteria have a minimum value of zero when the observed and implied
matrices are the same (i.e., when S = C), and all become increasingly large as
the difference between S and C becomes greater.

Table 2-9 illustrates the calculation of OLS, GLS, and ML criteria for two
C matrices departing slightly from S in opposite directions. Note that all the
goodness-of-fit criteria are small, reflecting the closeness of C to S, and that
they are positive for either direction of departure from S. (OLS is on a different
scale from the other two, so its size cannot be directly compared to theirs.)

Table 2-9 Sample calculation of OLS, GLS, and ML criteria for the departure
of covariance matrices C-) and C2 from S

2.00
1.00

1.00
4.00

.5714286

.1428571
.1428571
.2857143

C

S - C

2.00
1.00

.00

.00

1.00
4.01

.00
-.01

C2
2.00 1.00
1.00 3.99

.00

.00
.00
.01

C-1 .5712251 -.1424501
-.1424501 .2849003

(S - C)S'1 .0000000 .0000000
.0014286 -.0028571

(S - C)C'1 .0000000 .0000000
.0014245 -.0028490

OLS .00005000
GLS .00000408
ML .00000406

.5716332 -.1432665

.1432665 .2865330

.0000000

.0014286

.0000000

.0014327

.0000000

.0028571

.0000000

.0028653

.00005000

.00000408

.00000411

54



Chapter 2: Fitting Path Models

In this example, the ML and GLS criteria are very close in numerical value to
each other; as we see later, this is by no means always the case.

Another message of Table 2-9 is that considerable numerical accuracy is
required for calculations such as these--one more reason for letting computers
do them. In this problem, a difference between C and S matrices in the second
decimal place requires going to the sixth decimal place in the GLS and ML
criteria in order to detect its effect. With only, say, 4- or 5-place accuracy in
obtaining the inverses, quite misleading results would have been obtained.

Fit criteria serve two purposes in iterative model fitting. First, they guide
the search for a best fitting solution. Second, they evaluate the solution when it
is obtained. The criteria being considered have somewhat different relative
merits for these two tasks.

For the first purpose, guiding a search, a criterion should ideally be
cheap to compute, because the function is evaluated repeatedly at each step of
a trial-and-error search. Furthermore, the criterion should be a dependable
guide to relative distances in the search space, especially at points distant from
a perfect fit. For the second purpose, evaluating a best fit solution, the statistical
properties of the criterion are a very important consideration, computational cost
is a minor issue, and the behavior of the function in remote regions of the
search space is not in question.

In computational cost, ordinary least squares is the cheapest, GLS
comes next, and then then ML. As we have seen, the latter two criteria have the
advantage that when they are multiplied by N -1 at the point of best fit they can
yield a quantity that is approximately distributed as chi square, permitting
statistical tests of goodness of fit in the manner described later in the chapter.
These statistical properties depend on large samples. It is hard to say how
large "large" is, because, as usual, things are not all-or-nothing-approximations
gradually get worse as sample size decreases; there is no single value
marking a sharp boundary between smooth sailing and disaster. As a rough
rule of thumb, one would probably do well to be very modest in one's statistical
claims if N is less than 100, and 200 is better.

Finally, the criteria differ in their ability to provide dependable distance
measures, especially at points remote from the point of perfect fit. Let us
consider an example of a case where ML gives an anomalous solution. The
data are from Dwyer (1983, p. 258), and they represent the variance-covariance
matrix for three versions of an item on a scale measuring authoritarian attitudes.
The question Dwyer asked is whether the items satisfy a particular psychometric
condition known as "tau-equivalence," which implies that they measure a single
common factor for which they have equal weights, but possibly different residual
variances, as shown in the path diagram of Fig. 2.7 (next page). It is thus a
problem in four unknowns, a, b, c, and d. Such a model implies that the off-
diagonal elements in C must all be equal, and so a should be assigned a
compromise value to give a reasonable fit to the three covariances. The
unknowns b, c, and dean then be given values to insure a perfect fit to the three
observed values in the diagonal.
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Fig. 2.7 Model of single common factor with equal loadings, plus different
specifics ("tau-equivalent" tests).

hThis is just what an iterative search program using an OLS criterion does,
as shown in the lefthand column of Table 2-10 (Dwyer's observed covariance
matrix is at the top of the table, designated S). A value of V5.58 is found for a,
and values of V.55, V2.71, and V1.77 for b, c, and d, respectively, yielding the
implied matrix CQLS- Dwyer used an ML criterion (with LISREL) and obtained a
solution giving the implied matrix on the right in Table 2-10, labeled CML.
Notice that this matrix has equal off-diagonal values, as it must, but that the
diagonal values are not at all good fits to the variances in S, as shown by the
matrix S-C. The values of the ML criterion for the fit of the two C matrices to S
are given at the bottom of the table. It is clear that the ML goodness-of-frt

Table 2-10 OLS and ML solutions for Fig. 2.7

6.13 6.12 4.78
6.12 8.29 5.85
4.78 5.85 7.35

S - C

6.13 5.58 5.58
5.58 8.29 5.58
5.58 5.58 7.35

.00 .54 -.80

.54 .00 .27
-.80 .27 .00

6.46 5.66 5.66
5.66 7.11 5.66
5.66 5.66 8.46

-.33 .46 -.88
.46 1.18 .19

-.88 .19-1.11

ML
OLS

.32
1.00

.10
2.39
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criterion for CML is substantially less than that for the solution on the left, which
the eye and OLS judge to be superior.

Table 2-11 gives some further examples to illustrate that the criteria do
not always agree on the extent to which one covariance matrix resembles
another, and that ML and GLS can sometimes be rather erratic judges of
distance when distances are not small. In each row of the table, two different C
matrices are compared to the S matrix shown at the left. In each case, which C
matrix would you judge to be most different from S? The OLS criterion (and
most people's intuition) judges C2 to be much further away from S than matrix
C1 is in all three examples. GLS agrees for the first two, but ML does not. The
third example shows that the shoe is sometimes on the other foot. Here it is ML
that agrees with OLS that C2 is much more different, and it is GLS that does not.

This is not to say that GLS or ML will not give accurate assessments of fit
when the fit is good, that is, when C and S are close to each other. Recall that
in Table 2-9 (page 54) the OLS and GLS criteria agreed very well for Cs
differing only very slightly from the S of the first Table 2-11 example. But in the
early stages of a search when C is still remote from S, or for problems like that
of Table 2-10 where the best fit is not a very good fit, eccentric distance
judgments can give trouble. After all, if a fitting program were to propose C-| as
an alternative to C2 in the first row in Table 2-11, OLS and GLS would accept it
as a dramatic improvement, but ML would reject it and stay with C2.

None of this is meant to imply that searches using the ML or GLS
criterion are bound to run into difficulties-in fact, studies reviewed in the next
section suggest that ML in practice usually works quite well. I do, however,
want to emphasize that uncritical acceptance of any solution a computer
program happens to produce can be hazardous to one's scientific health. If in

Table 2-11 How different criteria evaluate the distance of two Cs from S

GLS says
S C-) C2 C-| C2

ML says
Ci C2

2 1 1 2 1 0 9
14 25 910 .45 10.29 34.00 .86

5 0 5 3 10-7
05 34 -710 .38 2.96 3.00 .47

6 5 6 0 2 - 1
5 6 0 7 - 1 1 5.80 . 7 3 . 5 9 404.00
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doubt, one should try solutions from several starting points with two or three
different criteria--if all converge on similar answers, one can then use the ML
solution for its favorable statistical properties. If one has markedly non-normal
data, one might consider one of the strategies to be described later in the
chapter.

Monte Carlo studies of SEM

There have been many studies in which Monte Carlo evaluations have been
made of the behavior of SEM programs, studies based on repeated random
sampling from artificial populations with known characteristics. Studies by
Boomsma (1982, 1985) and Anderson and Gerbing (1984; Gerbing &
Anderson, 1985) are representative. These studies manipulated model
characteristics and sample sizes and studied the effects on accuracy of
estimation and the frequency of improper or nonconvergent solutions.

Anderson and Gerbing worked solely with confirmatory factor analysis
models, and Boomsma largely did, so the results apply most directly to models
of this kind. Both studies sampled from multivariate normal populations, so
questions of the robustness of maximum likelihood to departures from
multivariate normality were not addressed. For the most part, both studies used
optimum starting values for the iteration, namely, the true population values;
thus, the behavior of the maximum likelihood criterion in regions distant from the
solution is not at issue. (In one part of Boomsma's study, alternative starting
points were compared.)

Within these limitations, a variety of models and sample sizes were used
in the two studies combined. The number of latent variables (factors) ranged
from 2 to 4, and the correlations between them were .0, .3, or .5. The number of
observed indicators per latent variable ranged from 2 to 4, and the sizes of
nonzero factor pattern coefficients from .4 to .9, in various combinations.
Sample sizes of 25, 50, 75, 100, 150, 200, 300, and 400 were employed.

The main tendencies of the results can be briefly summarized, although
there were some complexities of detail for which the reader may wish to consult
the original articles.

First, convergence failures. These occurred quite frequently with small
samples and few indicators per factor. In fact, with samples of less than 100
cases and only two indicators per factor, such failures occurred on almost half
the trials under some conditions (moderate loadings and low interfactor
correlations). With three or more indicators per factor and 150 or more cases,
failures of convergence rarely occurred.

Second, improper solutions (negative estimates of residual variance--
so-called "Heywood cases"). Again, with samples of less than 100 and only two
indicators per factor, these cases were very common. With three or more
indicators per factor and sample sizes of 200 or more, they were pretty much
eliminated.

Third, accuracy. With smaller samples, naturally, estimates of the
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population values were less precise-that is, there was more sample-to-sample
variation in repeated sampling under a given condition. However, with some
exceptions for the very smallest sample sizes (25 and 50 cases), the standard
error estimates provided by the SEM program (LISREL) appeared to be
dependable-that is, a 95% confidence interval included the population value
somewhere near 95% of the time.

Finally, starting points. As mentioned, in part of Boomsma's study the
effect of using alternative starting values was investigated. This aspect of the
study was confined to otherwise favorable conditions-samples of 100 or more
cases with three or more indicators per factor--and the departures from the ideal
starting values were not very drastic. Under these circumstances, the solutions
usually converged, and when they did it was nearly always to essentially
identical final values; differences were mostly in the third decimal place or
beyond.

Many studies of a similar nature have been carried out. Hoogland and
Boomsma (1998) review 34 Monte Carlo studies investigating the effects of
sample size, departures from normality, and model characteristics on the results
of structural equation modeling. Most, but not all of the studies involved simple
confirmatory factor analysis models; a few included structural models as well.
Most studies employed a maximum likelihood criterion, but a generalized least
squares criterion often gave fairly similar results.

If distributions were in fact close to multivariate normal, sample sizes of
100 were sufficient to yield reasonably accurate model rejection, although
larger samples, say 200 or more, were often required for accurate parameter
estimates and standard errors. This varied with the size and characteristics of
the model: samples of 400 or larger were sometimes needed for accurate
results, and in general, larger samples yielded more precision.

With variables that were categorical rather than continuous, or with
skewed or kurtotic distributions, larger sample sizes were needed for
comparable accuracy. As a rough rule of thumb, one might wish to double the
figures given in the preceding paragraph if several of one's variables are
expressed in terms of a small number of discrete categories or otherwise depart
from normality. Some alternative strategies for dealing with nonnormal
distributions are discussed in the next section. In any event, structural equation
modeling should not be considered a small-sample technique.

Dealing with nonnormal distributions

If one appears to have distinctly nonnormal data, there are several strategies
available. First, and most obviously, one should check for outliers-extreme
cases that represent errors of recording or entering data, or individuals that
clearly don't belong in the population sampled. Someone whose age is listed
as 210 years is probably a misrecorded 21-year-old. Outliers often have an
inordinate influence on correlations, and on measures of skewness or kurtosis.
Several SEM programs, as well as the standard regression programs in
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statistical packages such as SAS or SPSS, contain diagnostic aids that can be
useful in detecting multivariate outliers, i.e., cases that have unusual
combinations of values. In a population of women, sixty-year-old women or
pregnant women may not be unusual, but sixty-year-old pregnant women
should be nonexistent.

A second option, if one has some variables that are individually skewed,
is to transform them to a scale that is more nearly normal, such as logarithms or
square roots of the original scores. This is not guaranteed to produce
multivariate normality, but it often helps, and may serve to linearize
relationships between variables as well. One should always think about the
interpretive implications of such a transformation before undertaking it. Log
number of criminal acts is likely to be more nearly normally distributed than raw
number of criminal acts, but numerically it will be less intelligible. However, if
one believes that the difference between 2 and 4 criminal acts is in some sense
comparable to the difference between 10 and 20 such acts in its psychological
or sociological implications, then a logarithmic transformation may be sensible.

A third option is to make use of a bootstrap procedure. A number of SEM
programs include facilities for doing this. The bootstrap is based on a simple
and ingenious idea: to take repeated samples from one's own data, taken as
representative of the population distribution, to see how much empirical
variation there is in the results. Instead of calculating (say) the standard error of
a given path value based on assumed multivariate normality, one simply has
the computer fit the model several hundred times in different samples derived
from the observations. One then takes the standard deviation of these
estimates as an empirical standard error-one that reflects the actual distribution
of the observations, not the possibly hazardous assumption that the true
distribution is multivariate normal. In practice, if one's data contains n cases,
one selects samples of size n from them without ever actually removing any
cases. Thus each bootstrap sample will contain a different selection from the
original cases, some appearing more than once, and others not at all. It may be
helpful to look at this as if one were drawing repeated samples in the ordinary
way from a population that consists of the original sample repeated an
indefinitely large number of times. Because it is assumed that the sample
distribution, whatever it is, is a reasonably good indicator of the population
distribution, bootstrapping of this kind should not be undertaken with very small
samples, whose distribution may depart by chance quite drastically from that of
the population. With fair-sized samples, however, bootstrapping can provide an
attractive way of dealing with nonnormal distributions.

Still other approaches to nonnormality, via several rescaled and robust
statistics, show promise and are available in some SEM programs. (See the
Notes to this chapter.)
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Hierarchical x2 Tests

As noted earlier, for GLS or ML one can multiply the criterion at the point of best
fit by N - 1 to obtain an approximate x2 in large samples. (Some programs
provide a x2 for OLS as well, but it is obtained by a different method.) The x2

can be used to test the fit of the implied C to S. The degrees of freedom for the
comparison are the number of independent values in S less the number of
unknowns used in generating C.

For example, in the problem of tau-equivalence discussed earlier in the
chapter (Fig. 2.7 on page 56), there were m (m + 1)/2 = 6 independent values in
S (the three variances in the diagonal and the three covariances on one side of
it). There were four unknowns being estimated, a, b, c, and d. So there are two
degrees of freedom for a %2test. The minimum value of the ML criterion was .10
(Table 2-10). As it happens, the data were gathered from 109 subjects, so x2 =
108 x .10 = 10.8. From a x2 table (see Appendix G), the x2 with 2 df required to
reject the null hypothesis at the .05 level is 5.99. The obtained x2 of 10.8 is
larger than this, so we would reject the null hypothesis and conclude that the
model of tau-equivalence did not fit these data; that is, that the difference
between C and S is too great to be likely to result from sampling error.

Notice that the x2 test is used to conclude that a particular model does not
fit the data. Suppose that x2 in the preceding example had been less than 5.99;
what could we then have concluded? We could not conclude that the model is
correct, but merely that our test had not shown it to be incorrect. How
impressive this statement is depends very much on how powerful a test we
have applied. By using a sufficiently small sample, for instance, we could fail to
reject models that are grossly discrepant from the data. On the other hand, if
our sample is extremely large, a failure to reject the model would imply a near-
exact fit between C and S. Indeed, with very large samples we run into the
opposite embarrassment, in that we may obtain highly significant x2s and hence
reject models in cases where the discrepancies between model and data,
although presumably real, are not large enough to be of any practical concern.
It is prudent always to examine the residuals S - C, in addition to carrying out a
X2 test, before coming to a conclusion about the fit of a model.

It is also prudent to look at alternative models. The fact that one model
fits the data reasonably well does not mean that there could not be other,
different models that fit better. At best, a given model represents a tentative
explanation of the data. The confidence with which one accepts such an
explanation depends, in part, on whether other, rival explanations have been
tested and found wanting.

61



Chapter 2: Fitting Path Models

Fig. 2.8 Path models for the x2 comparisons of Table 2-12.

Figure 2.8 and Table 2-12 provide an example of testing two models for
fit to an observed set of intercorrelations among four observed variables A, B, C,
and D. Model (a) is a Spearmanian model with a single general factor, G.
Model (b) has two correlated common factors, E and F. In both models, each
observed variable has a residual, as indicated by the short unlabeled arrows.

A hypothetical matrix of observed correlations is given as S at the top of
Table 2-12. Fits to the data, using an iterative solution with a maximum
likelihood criterion, are shown for each of the Fig. 2.8 models. If we assume that
the correlations in S are based on 120 subjects, what do we conclude? As the
individual x2s for the two models indicate, we can reject neither. The correlation
matrix S could represent the kind of chance fluctuation to be expected in
random samples of 120 cases drawn from populations where the true
underlying situation was that described by either model (a) or model (b).

Suppose that the correlations had instead been based on 240 subjects.
Now what conclusions would be drawn? In this case, we could reject model (a)
because its x2 exceeds the 5.99 required to reject the null hypothesis at the .05
level with 2 df. Model (b), however, remains a plausible fit to the data.

Does this mean that we can conclude that model (b) fits significantly
better than model (a)? Not as such--the fact that one result is significant and
another is nonsignificant is not the same as demonstrating that there is a
significant difference between the two, although, regrettably, one sees this error
made fairly often. (If you have any lingering doubts about this, consider the
case where one result is just a hairsbreadth below the .05 level and the other
just a hairsbreadth above-one result is nominally significant and the other not,
but the difference between the two is of a sort that could very easily have arisen
by chance.) There is, however, a direct comparison that can be made in the
case of Table 2-12 because the two models stand in a nested, or hierarchical,
relationship. That is, the model with the smaller number of free variables can be
obtained from the model with the larger number of free variables by fixing one
or more of the latter. In this case, model (a) can be obtained from model (b) by
fixing the value of the interfactor correlation e at 1.00--if E and F are
standardized and perfectly correlated, they can be replaced by a single G. Two
such nested models can be compared by a x2 test: The x2 for this test is just the
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Table 2-12 Comparing two models with %2

1.00 .30 .20 .10
.30 1.00 .20 .20
.20 .20 1.00 .30
.10 .20 .30 1.00

model
(a) (b) difference

X2, N = 120
X2, N = 240
df

X2.05

4.64

9.31
2
5.99

.75

1.51
1
3.84

3.89

7.80
1
3.84

difference between the separate x2 s of the two models, and the df is just the
difference between their dfs (which is equivalent to the number of parameters
fixed in going from the one to the other).

In the example of Table 2-12, the difference between the two models
turns out in fact to be statistically significant, as shown in the rightmost column at
the bottom of the table. Interestingly, this is true for either sample size. In this
case, with N = 120 either model represents an acceptable explanation of the
data, but model (b) provides a significantly better one than does model (a).

Chi-square difference tests between nested models play a very important
role in structural equation modeling. In later chapters we will encounter a
number of cases like that of Table 2-12, in which two models each fit acceptably
to the data, but one fits significantly better than the other. Moreover, where two
nested models differ by the addition or removal of just one path, the chi-square
difference test becomes a test of the significance of that path. In some ways, a
chi-square difference test is more informative than an overall chi-square test of
a model because it is better focused. If a model fails an overall chi-square test, it
is usually not immediately obvious where the difficulty lies. If a chi-square
difference test involving one or two paths is significant, the source of the
problem is much more clearly localized.
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Fig. 2.9 Hierarchical series of path models (x2s hypothetical).

Figure 2.9 further illustrates the notion of nested models. Models 1, 2, 3,
and 4 represent such a hierarchical series because 2 can be obtained from 1 by
setting path c to the fixed value of zero, 3 from 2 by similarly fixing d, and
4 from 3 by fixing a and e to zero. Obviously, in such a series any lower model
can be obtained from any higher one by fixing paths--e.g., model 4 can be
obtained from model 1 by setting paths a, c, d, and e to zero. Thus tests based
on differences in x2 can be used to compare the fit of any two models in such a
nested series. In the last described case such a test would have four degrees of
freedom, corresponding to the four paths fixed in going from model 1 to
model 4.

However, models 5, 6, and 7 in Fig. 2.9, while hierarchically related to
model 1 and each other, are not in the same series as 2, 3, and 4. Thus, model
6 could not be compared with model 3 by taking the difference in their
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respective x2s. Although model 6 has fewer paths than model 3, they are not
included within those of model 3--model 6 has path c as an unknown to be
solved for, whereas model 3 does not. Assuming that the four variables A, B, C,
and D are all measured, model 1 is a case with m (m - 1 )/2 = 6 observed
correlations and 6 unknowns to be solved for. A perfect fit will in general be
achievable, x2 will be 0, and there will be 0 df. Obviously, such a model can
never be rejected, but then, because it can be guaranteed to fit perfectly, its fit
provides no special indication of its merit. The other models in Fig. 2.9 do have
degrees of freedom and hence can potentially be rejected. Notice that the
direct x2 tests of these models can be considered as special cases of the %2 test
of differences between nested models because they are equivalent to the test of
differences between these models and model 1.

Table 2-13 gives some examples of nested x2 tests based on the models
of Fig. 2.9. The test in the first line of the table, comparing models 2 and 1, can
be considered to be a test of the significance of path c. Does constraining path
c to be zero significantly worsen the fit to the data? The answer, based on
%2 = 4.13 with 1 df, is yes. Path c makes a difference; the model fits
significantly better with it included. Another test of the significance of a single
path is provided in line 6 of the table, model 5 versus model 1. Here it is a test
of the path d. In this case, the data do not demonstrate that path d makes a
significant contribution: x2 = .57 with 1 df, not significant. A comparison of model
3 with model 1 (line 2) is an interesting case. Model 2, remember, did differ
significantly from model 1. But model 3, with one less unknown, cannot be
judged significantly worse than model 1 (x2 = 4.42, 2df, NS). This mildly
paradoxical situation arises occasionally in such x2 comparisons. It occurs
because the increase in x2 in going from model 2 to model 3 is more than offset

Table 2-13 Some x2 tests for hierarchical model comparisons of Fig. 2.9

Model X2 df
comparison 1st 2nd 1st 2nd x2diff dfdiff P

1.
2.
3.
4.
5.
6.
7.
8.

2vs 1
3vs 1
3vs2
4 vs3
4 vs 1
5vs1
6vs 1
7vs6

4.13
4.42
4.42

10.80
10.80

.57
1.21
8.25

0
0
4.13
4.42
0
0
0
1.21

1
2
2
4
4
1
3
5

0
0
1
2
0
0
0
3

4.13
4.42

.29
6.38

10.80
.57

1.21
7.04

1
2
1
2
4
1
3
2

<.05
NS
NS
<.05
<.05
NS
NS
<.05

65



Chapter 2: Fitting Path Models

by the increase in degrees of freedom. Thus whereas the additional restriction
on model 3 caused by setting path dto zero makes it fit worse than model 2 in
an absolute sense, relative to the degrees of freedom one is less confident that
the difference from model 1 is real.

Eliminating paths a and e in addition to d and c (model 4) is clearly going
too far, whether the comparison is made with the full model (line 5), or with a
model with c and d removed (line 4). However, if c is present a and e can be
dispensed with--or at any rate, they cannot be demonstrated to be essential
(line 7). Nevertheless, as line 8 indicates, c alone cannot do the job-deleting b
and /leads to a significant worsening of fit (x2 = 7.04, 2 df, p < .05).

Figure 2.9 also illustrates that the fact that a given model cannot be
rejected does not mean that one should conclude that it represents the truth.
Consider model 3. One cannot reject it as a plausible explanation of the data
(X2 = 4.42, 2 df, p > .10-line 2). But this does not mean that other models might
not do at least as well. Indeed, we have one in model 6 that with fewer
parameters actually achieves a smaller x2- To be sure, we cannot carry out a
direct statistical test of the relative goodness of fit of models 3 and 6 because
they are not nested, but one would hardly wish to cheer very loudly about model
3 if one were aware that model 6 was lurking in the wings. The moral is that it
pays to do some exploring of alternative models before going too far out on a
limb on the basis of a significance test of any one. Otherwise, one risks the
embarrassment of an unsuspected model 6 turning up.

This is not an empty threat. As we see later, in SEM analyses it is very
frequently the case that there are alternative models out there, often many of
them, that fit the data as well as does the particular model under consideration.

Standard errors

Model-fitting programs usually provide approximate standard errors for path
and variance estimates, either routinely or on request. This saves having to
carry out x2 difference tests to assess the significance of individual paths, a fact
that is particularly helpful if one is scanning a large model with a view to
dropping a number of possibly superfluous paths. A single x2 difference test
can then be carried out to see if the selected paths are jointly dispensible. (In
EOS, a test called the Wald test is available for this.)

If one is revising models one is in an exploratory mode; therefore the
reported standard errors should be treated as guidelines, not as a serious basis
for the assignment of probability values. If many tests are being made, some
may well be "significant" merely by chance. Nor should one feel compelled to
drop every path that is nonsignificant, especially when the sample size is small.
With small samples, a path that is numerically appreciable may not exceed
twice its standard error; yet its removal may materially affect the solution. If the
path was theoretically justified in the first place, it is often wiser to leave it in the
model until cross-validation confirms that it is trivial and can safely be dropped.
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Descriptive Criteria of Model Fits

A x2test provides a useful basis for making decisions about the fit of a model, or
the relative fits of different models. Moreover, for reasonable sample sizes, a %2

roughly equal to its degrees of freedom is an instant definition of satisfactory fit.
A glance at Appendix G will show that x2 ~ df means p ~ .50, for df not too small
(and even for small df, p > .30). Nevertheless, %2 has limitations as a descriptive
index of model fit.

For one thing, x2 is sensitive to sample size. With large enough samples,
substantively trivial discrepancies can lead to rejection of an otherwise highly
satisfactory model; with small enough samples, %2 can be nonsignificant even
in the face of gross misfits. As a consequence, a variety of proposals have been
made as to how one might derive an index, perhaps on a scale of 0 to 1, that
would describe how well, in a metric rather than in a null-hypothesis sense, a
given model fits the data.

The various overall fit indices that have been proposed tend to fall into
two categories: those that simply describe goodness of fit, and those that
involve considerations of parsimony--i.e., that take into account the number of
unknowns used to achieve that fit. A model reaching a particular level of fit
while solving for fewer free parameters would show as superior on an index of
the latter kind.

Fit indices differ in other ways as well. Some are normedto fall in the
range 0 to 1, others are not. Some describe fit directly, and others describe fit
relative to a baseline model (sometimes called a null model)--\.e., some simple
model that any reasonable model should be able to improve on. These indices
are often referred to as incremental fit indices, because they assess
improvements in fit. A typical baseline against which improvement is assessed
is that the observed variables are uncorrelated. A perennial problem with fit
indices using baseline models is that a mediocre fit can be made to appear a
good one by choosing a baseline that is bad enough. For example, if many
high correlations are built into a measurement model by using a large number
of nearly-synonymous indicators of its latent variables, the model will fit vastly
better than a null model which assumes zero correlations among the indicators
-almost irrespective of the fit of its structural part.

A more recent distinction is between sample-based and population-
based fit indices. The former describes how well the model fits in the present
sample. The latter estimates how well it would fit in the population. The latter
approach recognizes that no model should be expected to fit exactly in the
population-that all models represent simplifications of reality. This means that
the lack of fit of any particular model to sample data can conceptually be broken
into two parts-that due to the error of approximation of the population data by
the model, and that due to the error of estimation in sampling. The former is
independent of sample size, the latter is not, decreasing as sample size
increases. Population-based indices are based on estimates of the error of
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approximation. Normally, an estimate of how well the model can account for
variation in the population is of more interest than how well it fits in the sample.
Population-based indices make use of a distribution called "noncentral x2,M

which is the distribution that the minimized fitting function follows when a model
fits only approximately in the population. This distribution is characterized by a
quantity called the noncentrality parameter, which depends on the degree of
misfit. The noncentrality parameter can be estimated by the best-fit x2 minus its
degrees of freedom. If x2 is less than df, as can happen by chance with close
model fits or in small samples, the noncentrality parameter is taken as zero-that
is, the noncentral x2 distribution becomes the ordinary x2 distribution.

The fact that different investigators have considered the various factors
mentioned to be of different importance has led to a large number of proposed
goodness-of-fit indices, even though virtually all of them are derived in one way
or another from the value of the fitting function F at the point of best fit--or N -1
times that value, x2- Remember that F is the quantity that the model-fitting
program works to minimize, the value that describes how close the implied
covariance or correlation matrix is to the observed matrix. A fit index based on F
(or, equivalently, x2) represents an estimate of how well the program has
succeeded in this effort. A number of these indices are described and
compared briefly in Appendix D. We focus here on one, a population index
based on noncentral x2 that has a number of virtues and is coming into
increasingly widespread use among latent variable modelers. This is the Root
Mean Square Error of Approximation, or RMSEA.

A population-based index of fit: RMSEA

The Root Mean Square Error of Approximation (RMSEA) is a population-based
index, which means that it is relatively insensitive to sample size. It has an
explicit parsimony adjustment, does not require specification of a baseline
model, and one can obtain confidence intervals for it or use it to carry out
statistical tests.

If we rescale the noncentrality parameter, x2 - df, by dividing it by N -1,
we obtain a quantity d which we can use to define RMSEA:

RMSEA = V (d/df).

Thus if a x2 of 15.00 were obtained with 8 df in a sample of 201 cases, the
rescaled noncentrality parameter d would be (15 - 8)/200, or .035, and RMSEA
would be V(.035/8), or .066.

Thus RMSEA is based on the ratio of the rescaled noncentrality
parameter to the model's degrees of freedom. It is zero when the noncentrality
parameter is zero, and for a given positive value is lower if the model involves
fewer free parameters (i.e., has more df). Browne and Cudeck have suggested
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the following guidelines for interpreting RMSEAs: "Practical experience has
made us feel that a value of the RMSEA of about .05 or less would indicate a
close fit of the model in relation to the degrees of freedom . . . . We are also of
the opinion that a value of .08 or less for the RMSEA would indicate a
reasonable error of approximation and would not want to employ a model with a
RMSEA greater than .1" (1993, p. 144). Its originator, Steiger, considers values
below .10 "good" and below .05 "very good" (1989, p. 81).

It is possible to obtain confidence limits for RMSEA via the noncentral %2

distribution, and typical SEM programs will provide these. The 90% confidence
interval in the preceding example goes from .00 to .11. Thus, although the best
estimate from our data is that the fit of this model is reasonably good in the
population, this is an estimate subject to a fair amount of uncertainty--the actual
fit in the population might plausibly be anywhere from perfect to less-than-
acceptable.

Later in the chapter, we consider the use of RMSEA in evaluating the
power of a test in SEM.

Finally, the confidence interval of RMSEA can be used to test a null
hypothesis of poor fit. If the upper limit of the 90% confidence interval lies below
whatever cutoff one has selected as marking unacceptable fit-say .10--one can
reject the hypothesis that the fit of the model in the population is that or worse.
In other words, one can conclude at the specified level of confidence that the
present model fits acceptably in the population. Clearly, this is a more
meaningful conclusion for most applications of SEM than the one from the usual
X2 test of fit, which is that an exact fit can't be ruled out. Moreover, this approach
has the advantage of not tempting the user to draw positive conclusions from a
failure to reject a null hypothesis (or, worse yet, to hold down the sample size to
encourage this result). By stating the null hypothesis in terms of poor fit, so that
its rejection leads to the positive substantive conclusion, the use of large
samples and other good scientific behavior is encouraged.

Thus RMSEA is a goodness-of-fit index with a number of scientific merits.
However, neither RMSEA nor any of the other similar indices is immune to
statistical problems stemming from nonnormality, too-small samples, or the like.
The presence of conditions such as these should lead any goodness-of-fit index
to be interpreted with caution. If data are decidedly not normal, approaches
such as the normalizing transformations or bootstrap evaluations mentioned
earlier in this chapter may be worth considering.

Examination of residuals

Goodness-of-fit indices should not blind us to a way of evaluating the fit of a
model that can always be employed, and nearly always should be--the direct
inspection of the residuals S - C. Not only does the smallness of these
residuals give an absolute sense of the goodness of the fit, but the location of
the larger residuals can suggest which aspects of the data are least well
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captured by the model. Model-fitting programs typically provide such residual
matrices either routinely or on request. Residuals from analyzing correlation
matrices are relatively easy to evaluate, since all variables are on comparable
scales. Those from analyzing covariance matrices, especially if the variables
are on quite different scales, can be harder to interpret, but most programs can
provide some form of standardized residuals to facilitate comparisons across
variables on different scales. Most can also supply an overall average of the
size of residuals, such as the SRMR (standardized root mean residual). Hu and
Bentler (1999) suggest using a double criterion to evaluate goodness of fit: first,
that a goodness-of-fit index, such as RMSEA, indicates a satisfactory fit, and
second, that an average of the residuals, such as SRMR, is small. (A
combination of RMSEA of .06 with SRMR of .08 worked well in their study.)

In addition, an informed user will not stop with evaluating overall model
fit. Any goodness-of-fit index is a kind of average for the model as a whole, and
a moderately good overall fit might result from an excellent fit for relatively
unimportant parts of the model offsetting a serious misfit at one or more
theoretically crucial points. Examination of the residuals may be helpful here. In
addition, the parameter estimates themselves should always be scrutinized to
be sure they all make sense~an excellent fit that requires bizarre parameter
values to produce it is hardly cause for much rejoicing, although it may
sometimes provide clues toward a better model.

The Power to Reject an Incorrect Model

When fitting models using a chi-square criterion, large samples are desirable
for statistical accuracy. Perhaps an even more important reason for using large
samples is statistical power-to have a good chance of rejecting a model if it is
wrong. If the acceptance of a model is to have any real meaning, there must
have been a reasonable chance of rejecting it if it were false. The sample size
one needs in order to reject an incorrect model depends on several things,
including the nature of the misspecification involved and how confident one
wants to be of detecting it.

Generally speaking, the power of a test of a hypothesis is the probability
that one will reject it if it is false. To determine the power of a test in model fitting
requires four things:

1. A model.
2. An alternative to the model that one would want to be able to

discriminate from it.
3. The desired level of significance.
4. The sample size, N.

We will consider two situations in which we might wish to evaluate
power, one in which the alternative to the model is specified in terms of some
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Fig 2.10 Simple factor analysis model for power example. Dashed arrow--
additional path to be detected.

particular variation on the model, such as an extra path, that we would like to
have a good probability of detecting, the other in which the alternative is
expressed as a given level of the root mean square error of approximation
(RMSEA) discussed in the preceding section. In the first situation, we will
distinguish two cases. In both we will assume that a particular extra path is
present. However, in one we will assess our chances of detecting that path
when we are testing specifically for it, and in the other our chances of detecting
it when fitting an overall model.

Power to detect an added path

Consider the simple factor analysis model shown in Fig. 2.10. What is our
power to reject the basic model in favor of one with an added path indicated by
the dashed line, assuming a .05 significance level and a sample size N = 500?

To begin with, we need to assume a specific value for the added path-its
detection will be relatively easy if it is large, because then it will have a
substantial effect on the correlations, and difficult if it is small, because then it
will not. We can estimate the power for any specified value of the path: let us
use .30 as an example. Now the procedure requires three steps (Satorra &
Saris, 1985):

1. Obtain the implied covariance or correlation matrix under the
alternative hypothesis, i.e., with the extra path included. This matrix is shown
below the diagonal in Table 2-14 (next page). It can be obtained either directly
from Fig. 2.10 via the path rules, or by specifying the model to the model-fitting
program with all paths fixed to the desired values.

2. Use this obtained matrix as input to a model-fitting run using the
original model, i.e., without the added path, and obtain the value of chi square.
This will be an approximation to a noncentral chi square. In the example, this
comes out to be 14.93, with 8 degrees of freedom.
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Table 2-14. Implied correlations under alternative models in power example

A
B
C
D
E
F

A
1.000
.490
.490
.504
.294
.294

B
.490

1.000
.490
.504
.294
.294

C
.490
.490

1.000
.504
.294
.294

D
.364
.364
.364

1.000
.616
.616

E
.294
.294
.294
.532

1.000
.490

F
.294
.294
.294
.532
.490

1.000

Note: The implied correlations for the model of Fig. 2.10 with extra path of .30 are shown below
the diagonal; with path of .10, above the diagonal.

3. Consult a table of noncentral chi square to obtain the desired
estimate of power. A condensed version of such a table is given as Appendix
H, which gives for various dfs the noncentral chi square required for various
levels of power. The df to be used in this step depends on the particular case
being considered. If we are asking what our chance is of detecting this
particular path when we are testing specifically for it, a difference chi square
with a single df is involved, and we look across the first row of the table.

Our power in this case turns out to be excellent--we have somewhere
between a 90% and a 99% probability of rejecting the original model at the .05
level if the path is present.

Suppose, however, that we are in the situation where we would like to be
able to detect the effect produced by such an extra path, but without knowing in
advance exactly which path it will be. Now the overall df for a test of the model
is the appropriate one to use. This is the df provided by the program in step 2
above.

Looking across the row df = 8 in the power table for a value close to
14.93, we find that the power is approximately .80. That is, there is about an
80% chance that if the true model contains the dotted path with a value of .30,
we would reject the originally proposed model.

Suppose that in this situation we had wished to detect a smaller
departure from the original model, say an added path of .10 instead of .30. The
implied matrix for this case is shown above the diagonal in Table 2-14. Step 2
now yields a chi square of 1.95, still with 8 df, and consultation of the noncentral
chi square table shows that the power is well below .50-that is, the odds would
be against our being able to detect a misspecification of this magnitude, using
an N of 500. How large a sample would be needed to raise our power to .80, a
level which has been suggested as a desirable minimum (Cohen, 1977)? The
chi square in step 2 increases roughly proportionately with N--it is N - 1 times
the minimum value of the fitting function, which is constant for a given model
and covariance matrix. Dividing the chi square of 15.03 required for a power of
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.80 by the obtained 1.95 yields a factor of 7.7--that is, we would need a sample
size of about 7.7 x 500 or 3850 to do the job. For the test of a single path known
a priori, the required chi square for a power of .80 is 7.85, and the sample size
needed is approximately (7.85/1.95) x 500 = 2013.

How does one obtain values for the paths to include in the original and
alternative models? In planning a study, one simply chooses plausible values
based on one's knowledge of prior research in the area--if in doubt, several
possibilities may be tried. In evaluating an existing study, the path values from
the original study can be used, along with an additional path or paths, to obtain
the implied matrix.

Overall power to reject a model

By the preceding approach, one assesses the power of a model by evaluating
effects for a few typical or theoretically critical paths. Alternatively, an overall
assessment of power may be made via RMSEA and the test of poor fit
described earlier. Again one must specify a null and an alternate hypothesis--
let us take .10 as the lower boundary of the "poor fit" range, and .05 as the
upper boundary of "good fit." Then the question is: If the fit is actually good in
the population (RMSEA < .05), do we have a high probability with our sample
size of being able to reject the hypothesis that it is bad (RMSEA > .10)?

A table of power values and required sample sizes for this situation is
given in Appendix I. The lefthand part of the table contains power values for
various combinations of sample size and degrees of freedom; the righthand
columns give the minimum sample sizes required to achieve powers of .80 and
.90. It is evident from the table that with a sample of 100 cases and few df one
doesn't have much power--with 20 df or less and N = 100 the odds are worse
than 50-50 that the data will rule out a poor fit (RMSEA of .10) even if the model
fits adequately in the population (RMSEA of .05). With 1 or 2 df, sample sizes in
the thousands are required for 80% power. With 20 or more df, samples in the
200-100 range have acceptable power. With large numbers of degrees of
freedom, even samples below 100 may provide adequate power; however,
with samples under 100 one begins to worry about other statistical difficulties.

Power calculations with latent variable models, as in other research
designs, are frequently sobering. Nevertheless, as with other research designs,
the estimation of power should routinely be a part of the planning of an SEM
study. Power calculations may also be useful in evaluating the claims of
existing studies in the literature. If a given study had very little chance of
rejecting substantively important departures from the accepted model, this
should be taken into account in assessing the author's conclusions.
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Identification

In Chapter 1 we encountered the distinction between underdetermined, just-
determined, and overdetermined models, and indicated that underdetermined
models have no unique solution, and overdetermined models are generally
desirable. How does one determine in practice that a model is not
underdetermined--or in the language of structural modelers, that it is identified?

The simplest test is to count the unknown parameters to be solved for,
to make sure that they do not exceed the number of observed values to be fitted.
The latter is the number of unduplicated variances and covariances in the
covariance matrix, which is p(p + 1)/2, for p observed variables. Thus if one is
fitting a five-variable covariance matrix (= 15 data points) and a count of the
model yields 16 parameters to be solved, one need go no further-the solution
will be underdetermined.

The converse is not true, unfortunately--a model can pass this test and
still be unidentified. For one thing, a complex model may be overdetermined in
one part and underdetermined somewhere else, which means, of course, that
the model as a whole is not identified. For another, even a model that appears
to be adequately identified may not be so for certain values of its unknown
parameters-this is referred to as empirical underidentification. To take a simple
example, the two-factor model from Fig. 2.5, repeated for convenience as
Fig. 2.11, has 10 observations and 9 unknowns and is in general solvable--
but it will not be if the correlation e between latent variables turns out to be zero,
because then the model will in effect break apart into two two-variable single-
factor problems, neither with a unique solution (any product of a and b that
equals TAB will fit the data, and similarly for c and d).

How can we be sure that neither of these sorts of things has happened
to us? One fairly simple test is to run the model with two different sets of start
values. If it arrives at two solutions that are identical in chi square, but have
different values for one or more parameters, you are quite likely dealing with an
underidentified model. Another test is to take the final implied matrix and input it

W X y
Fig. 2.11 Two-factor model illustrating empirical underidentification.
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to the program as an observed matrix, and see if you get the same parameter
estimates again. In addition, a number of SEM programs provide warnings of
possible underidentification based on the behavior of a matrix used in the fitting
process.

As is often true in life, prevention is better than cure. The most common
sources of identification problems are (1) too few indicators for one or more of
the latent variables in the model, (2) the presence of such features as reciprocal
paths, feedback loops, and correlated residuals, and (3) mistakes-such as
neglecting to fix the scale of a latent variable. As to (1), if you always have four
or more indicators per latent variable, which is a good idea anyway, you should
rarely be in trouble. A case to watch out for is a latent variable measured by a
single indicator. Sometimes, for example with a variable like sex or age, this is
a perfectly reasonable thing to do, but in most such cases it is necessary to
assign the error variance of such a variable a fixed value-zero if perfect
reliability is assumed, or one minus the reliability if it is not (multiplied by the
variance of the variable, if unstandardized). As to (2), features like these are
sometimes of central theoretical interest, and if so, they should be included in
the model. But modelers who toss them in with too much abandon can expect
pretty often to have to deal with identification problems. Finally, (3), mistakes.
Well, they will get made. One thing always to check if it appears that you may
have a problem with identification is that the model you have actually specified
is the model you intended to run. Another is to check that each latent variable
has its scale determined by fixing either its variance or a path to an observed
variable (if your SEM program doesn't handle this automatically).

Matters concerning model identification have received a good deal of
attention from SEM specialists, and the discussions can sometimes get quite
technical. For most SEM practitioners, most of the time, identification problems,
if they arise at all, can be dealt with fairly readily. However, if your modeling
frequently involves the kinds of features described under (2) above, you may
find helpful an article by Rigdon (1995), which describes how to break down
SEM models to locate the sources of identification difficulties due to feedback
loops, correlated residuals, and the like. Although correlated errors are often a
source of identification problems, they aren't always. Brito and Pearl (2002)
provide a simple rule that holds for path diagrams without loops: So long as the
correlated errors do not involve variables at the head and tail of a single causal
arrow, they will not prevent identification. Thus error correlations involving
indirect effects should not present a problem.

Missing Data

A perennial problem arising in latent variable modeling, particularly of data
gathered in natural settings, is that of missing data. Participants omit items in
questionnaires, either because they are invited to skip items they don't wish to
respond to, or by error, or for other reasons. In studies involving repeated
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measurement, not everyone shows up for every testing. Longitudinal studies, in
which the same individuals are measured on repeated occasions, perhaps
years apart, may wind up with only a small fraction of the sample with which
they began. The unhappy prospect is a covariance matrix based on small
numbers or different numbers of cases. What's a modeler to do?

There has been a lot of attention paid to this issue by statisticians over
the years. The short answer is that there are several ways of dealing with
missing data, some are more effective than others, and none can work magic.

Listwise and pairwise deletion

Most statistical packages offer at least two simple options. In listwise deletion,
also called complete-case analysis, the covariance (or correlation) matrix is
calculated using only those cases for which the data are complete. In pairwise
deletion, also called available-case analysis, each covariance is calculated on
all cases having data for both variables-this means that different covariances
may reflect different subsamples of the data, and have different Ns. Basing
different covariances on different cases leads to the possibility of
mathematically inconsistent--or even impossible-covariance matrices.
Moreover, if the model-fitting program asks for a single N, what should that N
be? The smallest of those present? The largest? Some average, such as the
mean or the median?

Listwise deletion escapes these difficulties, providing an internally
consistent covariance matrix and a single N, but often at a terrible price. If there
are many items of missing data and they are scattered about in a data set, there
may only be a few subjects with complete data, and the result is that one winds
up using only a tiny subset of the data that actually exist-and a biased subset,
at that. Suppose that the relevant variables for your study include a trait such as
conscientiousness. Is it plausible to believe that the subjects that fill out every
item or who return for every session represent a random selection on this trait?

If samples are large and there are only a few items of data missing more
or less at random, it won't make much practical difference whether listwise or
pairwise deletion is used. However, if there are many subjects who have
missing data, pairwise deletion will usually be preferable. The issue of what N
to use with pairwise deletion has not been extensively investigated, but one
recent study (Marsh, 1998) slightly favored the use of mean N.

However, although listwise or pairwise deletion often work tolerably well
in practice, better methods exist, and they are becoming increasingly accessible
to latent variable modelers. We consider three: multiple-group approaches, full
information maximum likelihood, and multiple imputation.

Multiple-group approaches

These are useful in situations where only a small number of patterns of missing
data occur. For example, missingness may be planned: all participants may

76



Chapter 2: Fitting Path Models

receive part A of the questionnaire, but only subsets receive parts B, C, and D.
Or it may be unplanned, but occur in only a few ways: In a study done over
three sessions, participants may fall into three groups--those who were present
at all three sessions, those who showed up only for the first two, and those who
dropped out after one. In such cases, we can treat the participants with each
missing-data pattern as a separate group, and equate the parameters we are
solving for across these groups. Most model-fitting programs allow
simultaneous model fitting in several groups. The usual use of this facility is to
allow comparisons across existing groups such as males and females, or
different social classes--we will consider a number of examples of this sort in
Chapter 4--but it can be used for missing data patterns as well, provided there
are only a few such patterns and each occurs reasonably often, so that the
subgroups which they define are not too small.

Much more common, however, are situations in which many different
missing data patterns occur. For these, we can use either of our remaining two
alternatives, full information maximum likelihood or multiple imputation.

Full information maximum likelihood

Full information maximum likelihood, FIML for short, is available in some SEM
programs-AMOS, MX, and Mplus are examples. Essentially, with FIML the
model is fit to the raw data rather than to the covariance matrix, using a
maximum likelihood criterion. This allows fitting to all the data that are present--
thus the "full information" part of the name. The requirement for iteratively
returning to the full data set rather than just to the covariance matrix makes FIML
computationally more intensive than the simpler methods, but with powerful
modern computers this is seldom a bar, except perhaps in very large problems.

Multiple imputation

The strategy here is a little different. Missing scores in the data matrix are filled
in or "imputed" by a method that randomly selects values from the scores that
other cases like this case have. This is done several times (say, 3 to 10 times),
and the SEM analysis is carried out on each of the resulting complete data
matrices. At the end, the results for all of the solutions are averaged to give a
final estimate of each parameter that is solved for. The variance of the separate
estimates gives an idea of how robust the final estimate is--i.e., how much it
varies as a result of the imputation process. "Other cases like this" may be
defined in various ways--for example, as a member of a specified subgroup, or
in terms of scores on other variables that are predictive of the variable on which
the data are missing.
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Are data missing at random?

Discussions of the preceding methods often use a terminology of "missing at
random" (MAR) and "missing completely at random" (MCAR). MCAR means
roughly what its name suggests--that the fact that an item is missing is
completely unrelated to the value that item would have if we knew it. This is a
fairly strong assumption. It means, for example, that if income is omitted on a
questionnaire this will have nothing to do with whether the income is large or
small. For some kinds of data we may be willing to make such an assumption,
and if so, we can use any of the five methods we have described, including the
two simpler ones, without fear of introducing systematic bias. The methods will
still differ in precision, from listwise deletion (least) to the three complex
methods (most).

The other term, MAR, is perhaps a little misleading-it might be better
described as MARC, "missing at random, conditionally." It means that once we
have taken into account other information in the data matrix, the missingness
may be considered random. This could be the case, for example, if we have
measured social class, and within a given social class the unreported incomes
do not differ systematically from the ones that are reported. Listwise and
pairwise deletion may be biased for data that are MAR but not MCAR, the other
three methods are unbiased for data that are MAR or better.

What about data which we cannot confidently assume to be either MAR
or MCAR--that is, most data? Sometimes information about the mechanisms by
which data become missing can be helpful, although solutions here tend to be
somewhat specialized and ad hoc. It may be useful to compare cases having
missing data to cases without, as a check. Sometimes it is possible to leam
something about why data are missing by intensive follow-up of a few cases.
But often we wind up using one or more of the available methods, cross-
checking our results against those from other data obtained under different
conditions, and hoping for the best. We may take comfort in the opinion of some
experts that the more sophisticated methods often do reasonably well even in
the face of moderate departures from MAR assumptions. But in any case, when
there is a good deal of missing data, and a strong possibility of bias in its
missingness, one does well to be modest in one's statistical claims whatever
one's strategy has been.

Correlations Versus Covariances in Model Fitting

Earlier, in discussing the use of standardized versus unstandardized variables
in path models, it was noted that one often had a choice as to which scaling was
used. What are some of the considerations in making such a choice, apart from
the greater familiarity of correlations to many readers, and the relative ease of
comparison of effects across standardized variables?

A fairly obvious point is that if one is comparing different groups, different
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times, etc., and one wants to take variance differences into account, one should
analyze a covariance matrix; on the other hand, if one wishes to ignore
variance differences, one might elect to analyze standardized variables, i.e., a
correlation matrix.

In making such a decision, one should always consider the inadvertent
changes in scale that the calculation of correlations may bring about. Suppose
that the effect of education in years on income in dollars is being compared in
two populations for which one or both of these variables differs in variance. If
an added year of education is worth $5000 in income in both populations, the
unstandardized regression coefficients obtained in an analysis using
covariances will be equal, but the standardized regression coefficients obtained
in an analysis of correlations will not be. If one specifies parameters in a model
to be equal across groups or across time, the automatic changes of scale
involved in the calculation of correlations separately in the different groups or
for the different times will defeat one's purpose. One should specify the equality
on the scale for which it is expected to hold-in this case the rawscore scale-
and thus one should analyze covariances. If one elects to standardize
variables for other reasons, the standardization should be across the combined
groups or occasions to preserve the uniformity of scale.

This may not always be the case. If one's theory indicates that equality
should be defined relative to the variability in each population-that an extra
year of education has more effect on income in a group where education tends
not to vary much-then standard score regressions may be more nearly constant
than raw score regressions, and correlation matrices calculated within groups a
better choice for analysis. Or if one desires to equate factor loadings or residual
variances across variables within a sample, standardization may often make
sense. The important thing is that one think about which scale the equality is
expected on, and make sure that one's constraints are imposed as intended.

In addition, there are statistical issues. The statistical theory underlying
maximum likelihood and generalized least squares solutions has mostly been
developed for the case of covariance matrices rather than correlation matrices.
Since correlation matrices are covariance matrices-of standardized variables-
one might wonder why a problem arises. One answer is that statistical
constraints are introduced when the same sample is used both to standardize
the variables and calculate the covariances. However, if one is dealing with
large samples, as is highly desirable on other grounds, the slight bias involved
in using the sample standard deviation to determine the reseating of a variable
will probably not have serious consequences (assuming that such rescaling is
substantively appropriate).

A more problematic issue of degrees of freedom arises when fitting
correlation matrices in multiple groups, since the variances are inherently
constrained to be equal across groups (because all are 1.0). Neale and
Cardon (1992, p. 256) propose a simple df adjustment, which amounts, in
typical cases, to not counting the diagonal elements in groups after the first.
However, some simulations (unpublished) suggest that this procedure tends to
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overcorrect in practice.
A different kind of statistical constraint arises if one requires that values of

parameters be restricted to those that yield a proper correlation matrix, i.e., one
with exact unities in the diagonal. A few SEM programs are equipped to do
statistical inference with correlation matrices as such-RAMONA and SEPATH
are examples. The more typical practice, however, is not to do this, but simply
to analyze correlation matrices as covariance matrices which have been
calculated using standardized variables. This is what usually happens by
default when one inputs a correlation matrix to a model-fitting program.

To summarize: Model fitting to covariance matrices is statistically the
standard procedure, but the substitution of correlation matrices (i.e., the prior
standardization of variables) is often feasible, and in some cases may have
advantages. However, in instances where one is equating parameters across
groups or over time one should not use correlation matrices without very careful
thought about the implications of doing so.

"Standardized" solutions

Most SEM programs, after fitting to a covariance matrix, will provide a
standardized solution on request, as a convenience in interpreting the results. It
should be kept in mind that this will not always give the same results as
standardizing the variables beforehand (i.e., analyzing a correlation matrix).
This is particularly true for models that contain equality constraints. Paths
constrained to be equal will be equal in the original raw-score metrics in which
the solution was carried out, not in the standardized metric in which the results
are reported. Inferential aspects of the solution-standard errors, fit indices, chi
squares--also are appropriate to the original, not the standardized, metric.

A caution

In using any of the methods described in this chapter, we encounter the usual
dilemma confronting the individual who would like to be both statistical purist
and practical researcher. Few, if any, users of chi square tests or standard error
estimates are in a position to fully justify the probability values they report.
Nearly always, the strongest appropriate claim would be something like: "To
the extent that the underlying assumptions hold, we can conclude that. . . . " Or,
perhaps more frankly: "The statistical tests and probability values in this paper
are reported in a mainly descriptive spirit, to help orient the reader among the
various models we present."

Some such statement should be taken as appended to every substantive
study described in this book. I have not ordinarily made it explicitly. To do it
only on occasion would be invidious. To do it every time would be an
unkindness to the reader.
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Chapter 2 Notes

Search methods. Various procedures go by such names as steepest
descent, Fletcher-Powell, Gauss-Newton, Newton-Raphson, Levenberg-
Marquardt, the Fisher scoring method, the EM algorithm, etc. LISREL uses a
Fletcher-Powell variant, but offers other options; EQS uses a Gauss-Newton
algorithm. Schoenberg and Richtand (1984) discuss the use of the EM method
for estimating factor analysis and measurement models.

Matrix formulations. McArdle and McDonald (1984) discuss some
relationships among such formulations; Bentler and Weeks (1985) comment.

SEM programs. An article in which the authors of seven SEM
programs describe their programs is Kano (1997). Earlier comparative reviews,
some dated in some respects but still useful, include comparisons of seven
programs by Waller (1993), three programs by Hox (1995), and two programs
by Howell (1996). For two recent comparisons of three of the four programs
featured in this chapter-AMOS, EQS, and LISREL-see Kline (1998b) and von
Eye and Fuller (2003). Both conclude that all three are fine programs. For
those for whom cost is a major consideration, the excellent-and free-program
MX should also prove attractive-find it at http://www.vcu.edu/mx.

Reviews of SEM software are a regular feature of the journal Structural
Equation Modeling. Current information on SEM programs is accessible via the
internet—e.g., via the SEMFAQ home page described in the notes to Chapter 1;
it is also possible to search the SEMNET archives for comments by users (both
happy and disgruntled) of particular programs. SEM software is a fluid market--
changes in distribution arrangements, program features, and prices are
frequent. As noted, one of the programs described in this chapter, MX, is
available free via the internet. For some of the others, free demonstration
versions are available which can be used for small problems. If you need to fit
nonstandard SEM models, you might want to consider AUFIT (Browne & du
Toit, 1992), which provides a central model-fitting core to which the user adds
specialized subroutines. Software designed for RAM-type path modeling rather
than model-fitting is McArdle and Boker's RAMpath (1990).

Fitting criteria. Bollen (2001) describes a 2-stage least squares
alternative to ML or GLS that can be used with nonnormal distributions, and
which is also relatively robust to misspecification, in that the effects of errors in
the model tend to remain localized. Olsson et al. (1999) compare ML and GLS
criteria in SEM. See also ADF, below.

ADF. See Browne (1984). For examples of applications see Huba and
Harlow (1983), Tanaka and Huba (1987), and Windle et al. (1989). For its poor
performance at any but very large sample sizes, see Hu, Bentler, and Kano
(1992) and Boomsma and Hoogland (2001).

Start values. Work by Hendricks and Boomsma (see Boomsma &
Hoogland, 2001) suggests that when models are misspecified, convergence
problems may result, but that these can often be dealt with by the use of
different start values.
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Assumptions. For a general discussion of statistical assumptions in
SEM, see Bentler and Dudgeon (1996); for reviews of Monte Carlo studies see
Hoogland and Boomsma (1998) and Powell and Schafer (2001). For a
discussion of the statistical impact of sample size, see Tanaka (1987) and
Boomsma and Hoogland (2001); for outliers, Yuan and Bentler (2001 b) and
Bollen (1987); for categorical and ordinal data, Babakus et al. (1987) and
Muthen (1984, 1993; Muthen & Kaplan, 1985). The effects of selection are
considered by Muthen and Joreskog (1983), Muthen (1989a,b), and Meredith
(1993), among others.

The robustness of model-fitting methods to departures from multivariate
normality are considered by Browne (1987), Huba and Harlow (1987), Berkane
and Bentler (1987), Sharma et al. (1989), Satorra (1990), Benson and
Fleishman (1994), Chou and Bentler (1995), West et al. (1995), Wang et al.
(1996), Olsson et al. (2000), and Boomsma and Hoogland (2001). There seems
to be some consensus that parameter estimates can often be robust in the face
of departures from assumptions that have severe consequences for chi squares
and standard errors. Satorra and Bentler have proposed a scaled statistic for
dealing with nonnormality which has shown promise in simulation studies by
Chou et al. (1991), Hu et al. (1992), Anderson (1996), and Fouladi (2000); see
also Satorra (2001). It is provided in EQS; matrix methods for calculating it for
use with other programs are also available (Bentler & Dudgeon, 1996). Several
additional statistics for dealing with nonnormal distributions are proposed by
Yuan and Bentler (1997, 1998). Another idea: Yuan et al. (2000) suggest
applying a multivariate normalizing transformation to the covariance matrix prior
to carrying out SEM. This can minimize the effects of outliers, as well as other
sources of nonnormality.

Bootstrap. Stine (1989) provides a general introduction to bootstrap
methods. Discussions of bootstrapping in SEM include Bollen and Stine (1993),
Yung and Bentler (1996), and Nevitt and Hancock (2001); all note its promise,
but warn of potential pitfalls (such as its use with too-small samples). An
application of bootstrap-based corrections to ADF is provided by Yung and
Bentler (1994), and Raykov (2001) applies the bootstrap to obtaining
confidence intervals for the difference in fit between two structural equation
models. Many SEM programs, including LISREL, EQS, MX, SEPATH, and
AMOS, provide bootstrapping or other Monte Carlo facilities.

Non-nested models. For methods of comparing the fits of models that
are not nested, see Rust et al. (1995) and McAleer (1995). The latter reviews the
topic broadly, not just with respect to SEM. See also Oczkowski (2002).

Descriptive fit indices. For trends in goodness-of-fit indices, see
Tucker and Lewis (1973), Bentler and Bonett (1980), Tanaka and Huba
(1985,1989), Akaike (1987), Bozdogan (1987), Bollen and Liang (1988), Marsh
et al. (1988), Bollen (1989a), McDonald (1989), Mulaik et al. (1989), Steiger
(1989, 1990), La Du and Tanaka (1989, 1995), Bentler (1990), McDonald and
Marsh (1990), Maiti and Mukherjee (1990), Cudeck and Henly (1991), Browne
and Cudeck (1993), Bandalos (1993), Gerbing and Anderson (1993), Goffin
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(1993), Sugawara and MacCallum (1993), Tanaka (1993), Williams and
Holahan (1994), Ding et al. (1995), Hu and Bentler (1995, 1998, 1999), Marsh
et al. (1996), Rigdon (1996), Anderson (1996), Weng and Cheng (1997), Fan et
al. (1999), Breivik and Olsson (2001), and Tanguma (2001).

The value of consulting residuals in addition to using fit indices is
underscored by Browne et al. (2002), who describe situations in which fit
indices and residuals can give very different indications of goodness of fit.
Widaman and Thompson (2003) argue that many SEM programs use an
inappropriate null model to calculate incremental fit indices when models
involve constraints.

RMSEA. A criticism of RMSEA, and a reply to it, may be found in
Hayduk and Glaser (2000) and Steiger (2000). For a discussion of potential
biases in the estimation of the noncentrality parameter used in RMSEA (and an
argument that its confidence intervals may be less problematic), see Raykov
(2000). Nevitt and Hancock (2000) evaluate two ways of adjusting RMSEA for
nonnormality, and Hancock and Freeman (2001) examine its power in a test of
not-close fit. In a Monte Carlo study, Curran et al. (2002) found RMSEA to be
accurate for moderately misspecified models when sample sizes were
reasonably large (i.e., 200 or more), and MacCallum and Hong (1997) found
RMSEA to be more satisfactory than GFI or AGFI for power analysis and model
evaluation. However, RMSEA may be more vulnerable than GFI to the effects of
model size (Breivik & Olsson, 2001), with large models appearing to yield better
fits than otherwise comparable small ones. Steiger (1998) discusses the
extension of RMSEA to multiple samples.

Power. The classic treatment of power in SEM is Satorra and Saris
(1985)--see also Saris and Satorra (1993). A review of power evaluation in
SEM, focusing on single-df tests, is Kaplan (1995). The reasons why power
may be different for discrepancies in different parts of a model are discussed by
Kaplan and Wenger (1993). Muthen and Muthen (2002) describe how to use a
Monte Carlo study to decide on sample size and estimate power.

Power in connection with the RMSEA is discussed in an important paper
by MacCallum, Browne, and Sugawara (1996). In the text, I suggest a test of
poor fit, contrasting null and alternate RMSEAs of .10 and .05, whereas
MacCallum et al. focus on a test of not-close fit, based on RMSEAs of .05 and
.01. The test of poor fit advocated here was inspired by MacCallum et al.'s
approach, and the values for Table I were calculated using their program. It is
my belief that rejecting a hypothesis of poor fit will be more useful to typical
SEM users, and easier for their readers to understand, than rejecting a
hypothesis of not-close fit, as proposed by MacCallum et al.

A facility for calculating values of the noncentral chi-square distribution
(and other probability distributions) is available on the internet at
http://calculators.stat.ucla.edu/cdf.

Identification. Some of the issues are discussed in Rindskopf
(1984a), Bollen and Joreskog (1985), Bollen (1989b), Seidel and Eicheler
(1990), and Rigdon (1995). An extensive, rather technical treatment is given by
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Bekker et al. (1994). The choice of identifying the scale of latent variables by
setting a path to 1.0 or the variance to 1.0 is often an arbitrary one, but not
always, especially when equality constraints are present-O'Brien and Reilly
(1995) discuss the matter. For examples of cases in which the placement of
constraints makes a difference, see Millsap (2001).

Missing data. The standard treatment is Little and Rubin's (1987) book
Statistical analysis with missing data. Other recent books include Allison (2002)
and Schafer (1997). Rovine (1994), Arbuckle (1996), Graham and Hofer
(2000), Little and Schenker (1995), and Wothke (2000) have chapters on the
treatment of missing data in SEM; Enders (2001) also provides an overview of
the topic. See also empirical comparisons of several methods by Brown (1994),
Allison (2000), Enders and Bandalos (2001), Wiggins and Sacker (2002), and
Gold and Bentler (2000). Schafer's website (http://www.stat.psu.edu/~jls)
contains a (free) program called NORM for doing multiple imputation; it is
available in an S-Plus version and as a stand-alone Windows program.
Release 8.2 of SAS contains a multiple imputation procedure, PROC Ml (for
details, see http://support.sas.com/md/app/papers/multipleimputation.pdf.) The
methods discussed in the present chapter generally assume multivariate
normality. For dealing with missing data when variables are nonnormal, see
Yuan and Bentler (2000b), and Gold et al. (2003), and for a statistical test of
whether missing data are in fact MCAR, see Kim and Bentler (2002).

Correlations and covariances. See Cudeck (1989) and Browne
and Arminger (1995) for some of the relevant theory.

Chapter 2 Exercises

Note: The correlation matrices required for problems 5 and 9 (and similar
problems in subsequent chapters) are on the compact disk supplied with this
book. They are in simple text format, with one row per line, no tabs, and one or
more spaces between entries, and each is in the form of a full symmetric matrix.
A title line and variable labels are also supplied. The file on the CD can be read
into a word processor and the matrices copied as necessary into your SEM
program or into a file readable by it.

1. Apply the iterative procedure of Table 2-1 to the path model of
Fig. 2.12, for the correlations shown to its right (see pages 36-37). Begin with
trial values of .5, .5, .5, and carry out 4 cycles of the search.
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Fig. 2.12 Path model and correlations for Problem 1.

2. Solve directly for the paths a, b, and c in Fig. 2.12, using the methods
of the previous chapter (page 14). How do the results of problem 1 compare
with these?

3. Draw a cross-section of a perverse terrain in which very good
solutions exist but a simple iterative search program would have a poor chance
of finding them.

4. Set up the three McArdle-McDonald matrices for the path diagram of
problem 1.

5. (See Note at beginning of exercises.) An investigator believes that
ambition, of which he has three measures, is a cause of achievement, for which
he has two measures. In a sample of 100 subjects, the following correlations
were observed. Use an SEM program to solve for the (standardized) path
values, using a maximum likelihood criterion. Interpret the results.

Ach1 Ach2
Ach1 1.00
Ach2
Amb1
Amb2
Amb3

.60

.30

.20

.20

1.00
.20
.30
.10

Amb1

1.00
.70
.60

Amb2

1.00
.50

Amb3

1.00

6. Four nested models based on a 4 x 4 variance-covariance matrix
have 3, 5, 6, and 9 unknowns and yield x2s of 16.21, 8.12, 2.50, and 1.28,
respectively. What conclusions about models or the differences between
models could you draw at the .05 level of significance?

7. Compute RMSEA for the data of problem 6, assuming a sample size
of 100 and a baseline model with no free parameters and X2 = 25.00. What
interpretations would you make?
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Fig. 2.13 Path model for problem 8.

8. You want to decide if G and H, in Fig. 2.13, are correlated. If N = 50,
what would be your power to detect a correlation of .5 between G and H (as
against a correlation of zero)? What N would give you 80% power to detect a
correlation of .5?

9. (See Note at beginning of exercises.) Four measures of creativity,
tests W, X, Y, and Z, were given to 500 high school students. The
intercorrelations among the tests were:

W X Y Z
W 1.00 .40 .50 .30
X 1.00 .55 .35
Y 1.00 .40
Z 1.00

Solve for the loadings of the measures on a single factor, using an SEM
program and a least squares criterion. Fix one path to 1.0 and free the variance
of the latent variable. Obtain a standardized as well as the unstandardized
solution (if your program permits).

10. Convert the unstandardized solution of problem 9 by hand to a
standardized solution, using the rules for standardized and unstandardized
path coefficients from Chapter 1. Compare the results to those obtained in
problem 9.

11. Suppose that you were fitting the model in problem 9 using a
maximum likelihood criterion. Use the Appendix I table to determine what your
power would be to reject a hypothesis of poor fit if the approximation is actually
good in the population. What sample size would you need in order to have a
power of .80 in this situation?
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Chapter Three:
Fitting Path and Structural Models to Data from
a Single Group on a Single Occasion

In this chapter and the next we consider a number of different applications of
path and structural models. This serves two purposes. First, it gives some
sense of various ways in which these methods can be employed, as well as
practice in applying and interpreting them. Second, it introduces additional
concepts and techniques useful in dealing with path and structural models, both
in general and in some important special cases. One caution: Several of the
examples in this and the following chapters are classics from the SEM literature
that are included for their pedagogical clarity rather than as ideal exemplars of
power, sample size, or measurement technique. You might find it instructive to
apply the power calculations of the preceding chapter to a few of them.

Structural and Measurement Models

Most structural modelers, following Joreskog, distinguish between two
conceptually distinct parts of path models, namely, a structural part and a
measurement part. The structural part of a model specifies the relationships
among the latent variables, and the measurement part specifies the relationship
of the latent to the observed variables.

An example from a desegregation study

Figure 3.1 (next page) gives an example. This is a path diagram of part of a
study of school desegregation. The diagram follows the convention of
representing latent variables by circles or ovals, and observed variables by
squares or rectangles. This is helpful in keeping things straight in complicated
models.

There are five latent variables, listed beside the diagram. Each is
indexed by two or three observed variables, identified below the diagram.
Collectively, these constitute the measurement model, shown in the top part of
Fig. 3.2 (page 89). The structural model consists of the relationships among the
five latent variables, shown at the bottom of that figure.
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Fig. 3.1
1980).

Path model used in a desegregation study (Maruyama & McGarvey,

Note that the structural and measurement models play rather distinct
roles in the overall path model. One could very easily alter either without
changing the other. Thus, one might maintain the same structural model of
relationships among the latent variables but change the measurement model by
using different tests or measurements to index the latent variables.
Alternatively, one could keep the same measures but change the structural
model by making different assumptions about the relationships among the
latent variables-one could assume, say, that the child's academic achievement
influences peer approval but not vice versa, or that acceptance by adults is
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Fig. 3.2 Measurement and structural components of path model of Fig. 3.1.

affected by the child's academic achievement.
The measurement model is a variant of confirmatory factor analysis. One

could consider the top part of Fig. 3.2 to consist of five small Spearman general-
factor problems: In each case the latent variable can be seen as a factor
general to the tests that measure it, with the residual arrows-shown here below
the squares-representing influences specific to the tests. This would not,
however, be an altogether satisfactory way to proceed, because it is not only the
correlations of, say, SEI, EDHH, and R/P among themselves that provide
information concerning the paths between them and SES; such information is
also supplied in the relative correlations of these variables with others in the
model. In fact, a direct Spearman approach would not work at all for the latent
variables with only two indicators, which require at least some additional
correlations in order to obtain a unique solution. It is more appropriate,
therefore, to think of the measurement model as a single, multiple-factor
confirmatory factor analysis. So far as the measurement model is concerned,
the relationships among the factors are unanalyzed correlations. It is the
structural model that interprets these correlations as resulting from a particular
set of causal relationships among the latent variables.

In practice, the usual procedure is to solve the measurement and
structural models simultaneously because, in so doing, one brings to bear all
information available about each path. In Chapter 7 we discuss situations in
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which one might wish to solve them separately.

A solution of the model

Maruyama and McGarvey present correlations among the 13 observed
variables for a sample of 249 children--the correlations given in Table 3-1. One
could in principle write path expressions for each of these 78 correlations in
terms of the unknown paths and solve them for the path values, but Maruyama
and McGarvey preferred to set up the appropriate LISREL matrices and let the
program handle the details.

The results are shown in Figure 3.3, in which all latent variables are
standardized, so that these numbers are ordinary path coefficients and
correlations. Residual variances are shown at the ends of the residual arrows.

The x2 for testing the goodness of fit of the model is 140.30, based on 59
degrees of freedom. A x2 of 140.30 based on 59 df is unlikely (p < .001) to
occur with a sample of this size if the model of Fig. 3.1 holds exactly in the
population. Thus, we may conclude that it does not. But is it a reasonable
approximation? The root mean square error of approximation (RMSEA;
discussed in the last chapter) is .074; this may be interpreted as constituting a
marginally acceptable, but not an outstanding, level of fit. Further exploration
might, of course, yield a better fitting version of the model. However, Maruyama
and McGarvey did not pursue matters further at this point.

One feature of this model, the reciprocal paths between ACH and APR,
represents a step beyond the models that we have so far considered. We look
further at such looped models later in the chapter; for the moment we need

Table 3-1 Correlations among observed variables in desegregation study
(data from Maruyama & McGarvey, 1980), N = 249

SEI
EDHH
R/P
VACH
VGR
RAV
PEA
FEV
MEV
TEV
SPOP
PPOP
WPOP

SEI
1.00
.56
.17
.17
.16
.06
.16
.01

-.07
-.02
.05
.10
.10

EDH

1.00.
.10
.30
.21
.15
.21

-.04
-.05
-.01
.04
.10
.17

R/P VACH VGR RAV PEA FEV MEV TEV SP PP WP

1.00
.191.00

-.04 .501.00
-.00
.28

-.04
.00
.04
.02

-.04
-.03

.29

.40

.01

.13

.21

.28

.23

.32

.281

.19

.12

.27

.27

.24

.18

.40

LOO
.32
.10
.16
.14
.08
.09
.14

1.00
-.06
-.07
.08
.13
.17
.17

1.00
.421
.18
.07
.02
.08

.00

.31 1

.15

.08

.17

.00

.251

.08

.33

.00

.591.00

.55 .491.00
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.57 .28 .97

Fig. 3.3 Standardized solution to path diagram of Fig. 3.1 from correlations of
Table 3-1.

merely note that in the present example the solution in LISREL presented no
special problems.

We need not go into all the details of Maruyama and McGarvey's solution
procedure, but a few points may be helpful. First, as is usual with LISREL, the
correlation matrix was treated as if it were a variance-covariance matrix, with
n(n + 1)/2 = 91 distinct observed values--the 13 variances plus the 78
covariances on one side of the diagonal. Maruyama and McGarvey employed
a mixed technique for scaling the latent variables. On the source variable side
they specified standardized latent variables, leaving 16 unknowns to be solved
for in the measurement model: the 3 + 2 + 3 = 8 paths from the latent variables
SES, ABL, and ASA to the eight manifest variables measuring them, plus the
corresponding 8 residual paths. On the downstream variable side of the
measurement model, they fixed one path from each of the latent variables to
1.0, leaving only 1+2 = 3 paths to be solved, plus the 5 residual paths, or 8
unknowns. Altogether, then, there are a total of 16 + 8 = 24 unknown paths to
be solved for in the measurement model.

In the structural model there are a total of 8 unknowns: one correlation
among source latent variables, three paths from source to downstream latent
variables, two reciprocal paths between the latter, and two residuals for the
downstream latent variables. Thus, there are altogether 24 + 8 = 32 unknowns
to be solved for; and 91 observed values minus 32 unknowns yields the 59 df.

The initial solution provided by LISREL (using a maximum likelihood
criterion) was thus standardized on the source variable side but not on the
downstream variable side; however, one can also request a fully standardized
solution, and it is that which is reported in Fig. 3.3.
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Confirmatory Factor Analysis

Traditionally, a latent variable analysis that is called a factor analysis is one in
which a model containing latent variables is fit to a correlation matrix, the model
being mainly a measurement model with the structural model confined to simple
correlations among the latent variables. The use of correlation matrices, though
common, is not essential-covariance matrices can be factor analyzed, and
sometimes are, especially in that class of factor analyses called confirmatory
factor analyses, in which a specifically hypothesized set of latent variables is fit
to a covariance or correlation matrix (the latter, of course, being a covariance
matrix among standardized variables).

The main result of any factor analysis, as noted in Chapter 1, is a table
showing the factor pattern, or values of the paths between the latent and
observed variables. If the latent variables are correlated, there will also be a
table of their intercorrelations (factor intercorrelation matrix). In the case of
correlated factors, there may also be reported a table of the correlations
between observed and latent variables (factor structure matrix).

A study of attitudes toward police

In Chapter 1 we considered some simple artificial examples of confirmatory
factor analysis. Here we look at a case (Mclver, Carmines & Zeller, 1980) in
which several hypotheses were fit to correlations based on a large real-life data
set.

The correlations, from a study of attitudes toward police, are given in
Table 3-2. They are based on telephone interviews with a total of some 11,000
respondents in 60 neighborhoods in three U.S. metropolitan areas. Included in
the table are the intercorrelations among six items reflecting attitudes toward the

Table 3-2 Correlations among nine items in police survey (data from Mclver,
Carmines, & Zeller, 1980)

1 2 3 4 5 6 7 8 9

1. Police service 1.00 .50 .41 .33 .28 .30 -.24 -.23 -.20
2. Responsiveness .021.00 .35 .29 .26 .27 -.19 -.19 -.18
3. Response time -.01 -.021.00 .30 .27 .29 -.17 -.16 -.14
4. Honesty -.01 -.01 .041.00 .52 .48 -.13 -.11 -.15
5. Courtesy -.03 -.02 .03 .01 1.00 .44 -.11 -.09 -.10
6. Equal treatment .01 .01 .06 -.01 .00 1.00 -.15 -.13 -.13
7. Burglary .00 .02 .01 .01 .02 -.031.00 .58 .47
8. Vandalism -.01 .00 .01 .02 .03 -.02 .001.00 .42
9. Robbery -.02 -.02 .00 -.04 .00 -.04 .00 -.01 1.00

Note: Original correlations are above diagonal; residuals from 3-factor solution are below it.

92



Chapter 3: One Group, One Occasion

Fig. 3.4 Simple three-factor model for data of Table 3-2 from survey on
attitudes toward police (Mclver et al., 1980).

quality of police services, plus three items having to do with the likelihood of
burglary, vandalism, and robbery in the neighborhood.

The authors had originally surmised that the six attitude items might form
a single general dimension of attitude toward police, and indeed they are all
mutually positively intercorrelated in Table 3-2. But inspection of the table
suggested that there might be two distinct subclasses of attitude items, judging
from somewhat higher correlations within than across item subsets. The first
three items, having to do with the general quality of police services, their
responsiveness to citizen needs, and the rapidity with which the police
answered a call, seemed to go together, as did the second three, having to do
with the personal qualities of the police-their honesty, courtesy, and fairness.
The three items concerning likelihood of various kinds of crime also seemed to
group together and to be mildly negatively correlated with the first six items
having to do with the perceived quality of the police service.

Consequently, a hypothesis of three correlated factors was fit to the data.
(The fact that this hypothesis was arrived at on the basis of preliminary
inspection of the data means that the chi-square tests should not be regarded
as yielding strict probabilities, but rather as more informal indices of goodness
of fit.)

Table 3-3 (next page) gives the results of fitting the hypothetical three-
factor model shown in Fig. 3.4. Each item has a substantial loading on its
corresponding factor. The first two factors of police attitudes are substantially
correlated (r= .62), and the third, crime factor, is negatively correlated with both,
somewhat more highly with the first factor (police service) than with the second
(personal qualities of the police). The communalities (h 2)--which in this case
are simply equal to the squares of the individual paths a, b, c, etc., because
each item reflects only one factor-suggest that only around half the item
variances are being accounted for by the common factors, with the rest
presumably due to specific factors and error.
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Table 3-3 Factor pattern and factor intercorrelations for model of Fig. 3.4
(Mclveretal., 1980)

Factor pattern
Item F-j F2 F3 h2

1. Police service .74 .00 .00 .55
2. Responsiveness .65 .00 .00 .43
3. Response time .56 .00 .00 .32
4. Honesty .00 .75 .00 .56
5. Courtesy .00 .68 .00 .46
6. Equal treatment .00 .65 .00 .42
7. Burglary .00 .00 .80 .63
8. Vandalism .00 .00 .72 .52
9. Robbery .00 .00 .59 .35

Factor intercorrelations
F1 F2 F3

F-\ 1.00 .62 -.41

F2 1.00 -.24

F3 1.00

X2 = 226.21, 24 df, p < .001

The three common factors were assumed to be in standard-score form.
Forty-five observed variances and covariances (9 x 10/2) were fit using 21
unknowns (a through /, in Fig. 3.4, plus the 9 residuals), leaving 24 df for the x2

test. The obtained x2, with this huge sample, is a highly significant 226.21.
Nevertheless, the solution does a fairly good job of accounting for the data. The
RMSEA of .028, with a 90% confidence interval of .024 to .031, suggests that
the factor model represents an excellent approximation. The narrow confidence
interval reflects the large sample, and means that we can confidently reject
either a null hypothesis of perfect fit or one of poor fit. The residuals, the
differences between the observed correlations and the correlations implied by
the solution of Table 3-3, are shown in Table 3-2 below the principal diagonal.
(An example of the calculation: the implied correlation between item 1, Police
service, and item 2, Responsiveness, is ab in Fig. 3.4, or .74 x .65 = .48, using
the path values from the Table 3-3 solution. The observed correlation is .50;
.50 - .48 = .02.) The residuals are small. The largest absolute discrepancy
between observed and expected correlations is .06, and the majority are .02 or
less. For many purposes one might be perfectly content with this good a fit.
However, the discrepancies of .04, .03, and .06 of item 3 (police response time)
with items 4 through 6 (personal qualities) suggest that the fit might be improved
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a little if F2 as well as F-| were allowed to influence item 3. Such a solution

yielded a reduction of %2 from 226.21 to 127.31, at the cost of one degree of
freedom--a highly significant improvement. Substantively, however, the change
makes little difference except in the paths to item 3 (the path from F-| drops from
.57 to .45 as that from F£ rises from 0 to .15; the estimated correlation of F-j and
F2 also drops slightly, from .62 to .58).

The authors went on to test models allowing the residuals to be
correlated for a couple of pairs of variables, 4 and 9, and 2 and 7, further
reducing the %2 to 83.60. This is still a highly significant improvement, if one
takes the x2s seriously, but as this amounts to introducing new factors to explain
the discrepancies of single correlations, it is not very helpful from the point of
view of parsimony.

The overall x2 is still highly significant with 21 df, despite the fact that at
this stage the data are being fit very much ad hoc. With very large samples one
needs to be careful not to confuse statistical with practical significance. Some
of the small deviations of the data from the model may indeed not be due to
chance, but to introduce a hypothetical variable to account for each one of them
is unlikely to be of much value for either science or practice.

Some Psychometric Applications of Path
and Structural Models

A number of problems in psychometrics lend themselves to latent variable
methods. We considered an example involving test reliability in Chapter 1. In
the present section, we look at examples involving parallel and congeneric
tests, and the separation of trait and method variance.

Parallel and congeneric tests

First, some definitions: Two tests are said by psychometricians to be parallel if
they share equal amounts of a common factor, and each also has the same
amount of specific variance. Consider Fig. 3.5 (next page). If tests A and B are
parallel, a and b would be equal, and so would cand d. V would represent the
common factor the two tests share.

Tests are said to be congeneric if they share a common factor, but not
necessarily to the same degree. Tests A and B would still be congeneric--
because they share V--even though a were not equal to b, nor c to d. (We
encountered also in Chapter 2 a third, intermediate condition, tau-equivalence,
in which a = b, but c* d; however, this will not be involved in the present
example.)
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Fig. 3.5 Parallel or congeneric tests.

Joreskog provides a structural analysis of some data gathered by F. M.
Lord on four vocabulary tests. Tests A and B were short tests given under
leisurely conditions, whereas C and D were longer tests given under time
pressure. The variance-covariance matrix of the four tests is given in Table 3-4.

Joreskog carried out tests of four hypotheses, which can be expressed in
terms of Fig. 3.6 by imposing the conditions noted in parentheses:

H1: Tests A and B are parallel, as are C and D, and all four tests are
congeneric, (a = b, e = f; c = d, g = h; the correlation / =1.0--that is, V-j and \/2
are identical except possibly for scale.)

H2: Both test pairs are parallel, as in H1, but the two pairs are not
necessarily congeneric, (a = b, e = f; c = d, g = h.)

H3: All four tests are congeneric but are not necessarily parallel. (/= 1.0.)
H4: A and B are congeneric, as are C and D, but the two pairs need not

be congeneric with each other. (Fig. 3.6 as it stands.)

Note that these hypotheses form two nested series, H1, H2, H4, and H1,
H3, H4, within which x2 comparisons may be made.

Table 3-4 Covariance matrix for four vocabulary tests (data from Lord;
Joreskog & Sorbom, 1979, p. 55), N = 649

Test
A
B
C
D

A
86.40
57.78
56.87
58.90

B

86.26
59.32
59.67

C

97.28
73.82

D

97.82
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;ig. 3.6 Hypotheses about parallel and congeneric tests.Fig

Table 3-5 shows the results of several %2 tests. In the upper part of the
table the models representing the four hypotheses are tested individually. By
%2 test, the hypothesis of perfect fit can be rejected for models H1 and H3 but
not for models H2 and H4. H1 and H3 also have mediocre to poor RMSEAs,
with upper confidence limits above .10. H2 and H4 have chi squares less than
their degrees of freedom, and hence RMSEA estimates of zero. More to the
point, the substantial sample allows us to reject the hypothesis of poor fit in both
cases (the upper limits of the 90% Cl for RMSEA fall below .10-they are .029
and .097, respectively).

The unacceptable models H1 and H3 contain the assumption that all four
tests are congeneric, whereas the acceptable models H2 and H4 do not contain

Table 3-5 Hypothesis tests for problem of Fig. 3.5 with data of Table 3-4
(after Joreskog & Sorbom, 1979, p. 55)

Model

H1
H2
H3
H4

X*

37.34
1.93

36.22
.70

df

6
5
2
1

P

<.01
.86

<.01
.70

RMSEA

.090

.000

.162

.000

LCL

.063

.000

.119

.000

UCL

.118

.029

.211

.097

Model comparison X2diff df

H2 vs H1
H4 vs H3
H3 vs H1
H4 vs H2

35.41
35.52

1.12
1.23

1
1
4
4

<.01
<.01
>.80
>.80

Note: LCL, UCL = lower and upper limits of 90% confidence interval for RMSEA
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this assumption.
The specific comparisons of H2 versus H1 and H4 versus H3 (bottom

part of Table 3-5) represent pairs of models that are equivalent except for the
assumption that tests A and B are congeneric with tests C and D. Both
comparisons show that this assumption is not tenable. The other two
comparisons shown, H3 versus H1, and H4 versus H2, test whether A is parallel
to B and C is parallel to D. These assumptions remain quite tenable.

Note that the sample size is fairly large (N = 649). Although A and B
have been shown to be noncongeneric with C and D, the two pairs of tests are
not in fact very different. The correlation / was estimated in the solution to model
H2 as approximately .90, suggesting that although the speeded and unspeeded
vocabulary tests are not measuring quite the same thing, what they measure
does not differ much for practical purposes.

Fitting one of these psychometric models is equivalent to carrying out a
confirmatory factor analysis. Another psychometric model that shares this
character is the multitrait-multimethod model, to which we now turn.

Multitrait-multimethod models

The multitrait-multimethod model (Campbell & Fiske, 1959) is an approach to
psychological measurement that attempts to separate out true variance on
psychological traits from variance due to measurement methods. The basic
strategy is to measure each of several traits by each of several methods.
Correlations among these measurements are arranged in a multitrait-
multimethod matrix that enables one to assess convergent validity, the tendency
for different measurement operations to converge on the same underlying trait,
and discriminant validity, the ability to discriminate among different traits.

Table 3-6 is an example of a multitrait-multimethod correlation matrix. It
is based on part of a study by Bentler and McClain (1976) in which 68 fifth-
grade girls were measured in each of three ways on four personality variables:
impulsivity, extraversion, academic achievement motivation, and test anxiety.

For the self-rating measure, each of the girls filled out four standard
personality questionnaires, one for each trait. For the teacher ratings, teachers
were asked to rank the children in their class on each of the four variables
under consideration. Their ratings were converted to scores using a
normalizing transformation. The peer ratings were obtained by a sociometric
procedure, in which children in the class were asked to write the names of
children who fit various descriptions. Four to eight items were used per trait. An
example of an item for extraversion was: "Which children like to be with other
children a lot?"

The off-diagonal elements in a multitrait-multimethod matrix such as
Table 3-6 can be classified into three groups. In the triangles adjacent to the
main diagonal are within-method, cross-trait correlations. They are underlined
in Table 3-6. An example would be the .42 at the start of the third row, the
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correlation between extraversion and impulsivity, both measured by peer
ratings. In the diagonals of the square blocks in the rest of the table, given in
boldface type, are the within-trait, cross-method correlations, also known as the
validity diagonals. An example would be the .64 at the start of the fifth row, the
correlation between peer and teacher assessments of extraversion. The
remaining, unmarked off-diagonal elements are the cross-trait, cross-method
correlations. High correlations in the validity diagonals are evidence of
convergent validity, the agreement of different methods of measuring the same
trait. Low correlations elsewhere provide evidence of discriminant validity, that
the putatively different traits really are distinct. Within-method, cross-trait
correlations in excess of cross-method, cross-trait correlations are evidence of
the presence of method variance, associations among measures stemming
from properties of the measurement methods used.

In Table 3-6 the correlations in the validity diagonals are generally
positive and appreciable in size (.30 to .66, with a mean of .51), suggesting
reasonable convergent validity. They tend to be decidedly higher than the
cross-method, cross-trait correlations (mean absolute value of .20), indicating
some degree of discriminant validity. However, the latter correlations are by no
means always negligible (they range up to about .50), suggesting some overlap

Table 3-6 Multitrait-multimethod correlation matrix for four traits measured by
peer, teacher, and self-ratings (data from Bentler & Lee, 1979), N = 68

Trait and method of measurement

Ep Ap Ip Mp Et At It Mt Es As Is Ms
Ep 1.00
Ap -.381.00
Ip -42 -.21J.OO
Mp -.25 .54 -.54 1.00

Et
At
It
Mt

Es
As
Is
Ms

.64
-.29
.38

-.22

.45

.04

.33
-.21

-.15
.66

-.09
.51

-.05
.38

-.13
.37

.26 -.
-.19 .
.56-

-.33 ,

.12 .
-.03 .
.35-

-.44 .

.05

.44
,19
66

,10
,14
,18
58

1.00
-.251.00
.59
.06

.50

.08

.41
-.01

-.14
.62

-.05
.30

-.14
.41

1.00
-.051,

.36 ,

.09 ,

.45-
-.10 ,

.00

,17
.16
.13
.62

1.00
.02
.43
.06

1.00
.16 1 .00
.04 -.37 1.00

Note: Trait: E = extraversion, A = test anxiety, I = impulsivity, M = academic achievement
motivation. Rater: p = peer, t = teacher, s = self. Correlations: underlined = within-method, cross-
trait; boldface = within-trait, cross-method.
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Fig. 3.7 Path model of multitrait-multimethod matrix of Table 3-6.

among the traits. The within-method, cross-trait correlations (mean absolute
value of .28) are slightly higher than the cross-method, cross-trait correlations;
thus there appears to be some method variance.

Such a multitrait-multimethod matrix can be represented by a path model
in the manner shown in Fig. 3.7. The 12 observed variables are shown in the
center row of the figure. Four latent variables representing true scores on the
four traits are shown in the circles at the top of the diagram. Three latent
variables representing the effects of the three methods are shown in the circles
at the bottom. Each observed measurement is determined by a trait and a
method (e.g., arrows a and cfor Ep), plus a residual. The traits may be
intercorrelated--for example, extraversion and impulsivity might be related
(arrow /). So might the methods--for example, peer and teacher ratings (arrow
/). However, it is assumed in this particular diagram that the design of the
experiment has insured that there will be no systematic correlations between
methods and traits (no curved arrows connecting the top and bottom circles).

Within-trait, cross-method correlations are produced by direct paths via
the trait in question, and possibly by indirect paths via the correlations among
methods. For example, the correlation between peer and teacher ratings of
extraversion may be expressed as:

rEpEt = ab + cjf.

Within-method, cross-trait correlations are the other way around-direct
paths via methods and indirect paths via possible correlations among traits. For
example, the correlation between peer ratings of extraversion and impulsivity
may be expressed as:
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rEplp = cd + aie.

Cross-method, cross-trait correlations are produced only via indirect
paths of both kinds. For example:

= eib +djf.

The model of Fig. 3.7 involves 12 paths from traits to measures, 12 paths
from methods to measures, 12 residuals, 6 intercorrelations among traits, and 3
intercorrelations among measures, a total of 45 unknowns to be estimated from
78 observed variances and covariances (12 x 13/2), leaving 33 degrees of
freedom for a x2 goodness-of-fit test. (Or one could set 1 path per factor to 1 .0,
and solve instead for the 7 factor variances, leaving the number of df still 33.)

A solution of the path model by Bentler and Lee (1979) is in Table 3-7.
The values of the 12 paths from the trait factors to the measurements are
shown in the first subtable. Obviously, the measurements are substantially
determined by the traits-somewhat more so for the peer and teacher ratings
than for the self-ratings.

Determination of the measurements by the methods is shown in the
second subtable. On the whole, these numbers are a bit lower than those in the
first part of the table, but they are by no means all low-measurements of
impulsivity, for example, seem to be about as much determined by methods
(third column of second table) as by the trait (third row of first table).

Table 3-7 Solution to model of Fig. 3.7 for data of Table 3-6 (data from
Bentler & Lee, 1979, Table 7)

1 . Trait factors
Extraversion
Anxiety
Impulsivity
Motivation

Peer
.98
.77
.78
.72

Ratings
Teacher

.62

.91

.64

.89

Self
.42
.35
.42
.66

2. Method factors E
Peer ratings .15
Teacher ratings .74
Self ratings .34

Traits
A

-.25
-.19
.17

.32

.49

.89

M
-.68
.13

-.22
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Table 3-7 (cont.)

3. Trait factor intercorrelations
E A I M

Extraversion 1.00 -.35 .52 -.24
Anxiety 1.00 -.26 .74
Impulsivity 1.00 -.48
Motivation 1.00

4. Method factor intercorrelations
P T S

Peer ratings 1.00 .08 .04
Teacher ratings 1.00 .32
Self ratings 1.00

The trait factors are substantially interrelated (third subtable). Test
anxiety and academic achievement motivation tend to go together, as do
extraversion and impulsivity, with the two pairs negatively related to each other.
The method factors (fourth subtable) are fairly independent of one another,
except for a modest correlation between teacher and self-ratings.

Bentler and Lee fit their model using a maximum likelihood criterion,
obtaining a x2 of 43.88 with 35 df, indicating a tolerable fit (p > .10, RMSEA =
.062). They had 35 df rather than 33 because they additionally set the unique
variances of two variables, Mp and Is, to zero. (This was done to forestall a
tendency for these variances to go negative during the solution, an awkward
event known in factor analytic circles as a "Heywood case.") Negative
variances of any kind are, of course, not possible in the real world. Empirical
measures with no unique variance are also implausible, because this implies,
among other things, the absence of errors of measurement. Fortunately, fixing
the parameters in question to plausible values (error variances of .10) does not
lead to a significant worsening of fit. (Bentler and Lee also fit several other
models to these data-the interested reader can consult their article for details.)

Structural Models-Controlling Extraneous Variables

The technique of partial correlation, and the related method of analysis of
covariance, are often used by social scientists to examine relationships
between certain variables when other, potentially distorting variables are held
statistically constant. Users of these methods sometimes do not realize that the
partialed variable or covariate is assumed to be measured without error, and
that if this is not the case, very misleading conclusions may be drawn.

Figure 3.8 provides a simple example. A correlation between latent
variables A and B is assumed in the model to be due wholly to a third variable C
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Fig. 3.8 Example of misleading partial correlation when partialed variable C
is imperfectly measured by Z.

that influences them both; removing the effect of this third variable should,
therefore, result in a partial correlation r^B-C = 0- But see what happens when
C is measured with considerable error, and one applies the traditional formula
for partial correlation. An observed correlation of .52 between X and Y is
reduced only to .35, perhaps leading an unsuspecting reader to believe that A
and B are connected in other ways than through C. A structural analysis based
on an appropriate path model, even with quite rough estimates of the
reliabilities of measurement of A, B, and C, should provide a much less
misleading picture.

Mediation

The role of an intermediate variable in transmitting effects from one variable to
another is often discussed in the literature under the heading of "mediation"--
e.g., Judd and Kenny (1981). Mediation is a variant of the situation in Fig. 3.8,
with the arrow between A and C reversed in direction so that the causal path
runs from A to C to B, with C acting as mediator between A and B. The
correlations among the observed variables are not affected by this change, so
the analysis to the right in Fig. 3.8 still applies. A study based on the observed
variables X, Y, and Z would conclude that mediation by C was only partial,
although complete mediation in fact occurs among the latent variables.

Analyzing a quasi-experiment-the effect of Head Start

Table 3-8 (next page) presents some data from a study on the effects of a Head
Start program on children's cognitive skills. Two measures of the latter were
used-the Illinois Test of Psycholinguistic Abilities and the Metropolitan
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Table 3-8 Correlations among variables in Head Start evaluation (data from
Bentler & Woodward, 1978), N = 303

MEd FEd FOc Inc HS ITPA MRT
Mother's education 1.00 .47 .24 .30 -.12 .26 .28
Father's education .00 1.00 .28 .21 -.08 .25 .22
Father's occupation -.03 .04 1.00 .41 -.22 .22 .26
Income .01 -.02 .00 1.00 -.18 .12 .19
Head Start participation -.02 .03 -.01 .00 1.00 -.10 -.09
ITPA score .00 .01 -.03 -.03 .00 1.00 .65
MRT score .02 -.02 .01 .04 -.01 .00 1.00

Note: ITPA = Illinois Test of Psycholinguistic Abilities, MRT = Metropolitan Readiness Test.
Original correlations are above diagonal, residuals from fitted model are below it.

Readiness Test, both taken after completion of the Head Start program, as well
as being given to a control group of nonparticipants.

As you can see from Table 3-8, the correlations between participating in
Head Start and scores on the two tests assessing cognitive ability are, on the
face of it, a little embarrassing to proponents of Head Start-although they are
small, they are in the wrong direction: Participants in the program did a little
worse than members of the control group. But there were also negative
correlations between Head Start participation and various parental educational
and economic measures-apparently the control group members were selected
from families somewhat better off than those from which the Head Start children
came. Could this account for the results?

Figure 3.9 represents a path model proposed by Bentler and Woodward
(1978). (It is actually only one of several considered in their article, but we
confine ourselves to this one.) The model involves five latent variables. The
four main source variables include the independent variable, Head Start
participation, and three variables describing family background~a general
socioeconomic status variable (SES) common to all four of the observed
socioeconomic indicators, and two variables capturing specific aspects of
education and economic circumstances. (As the diagram indicates, Bentler and
Woodward assumed that these latter two might be correlated with each other,
and that all three might be correlated with Head Start participation.) Other
assumptions made in the diagram were that general SES and Head Start
participation were the avenues of any influence of the source variables on
cognitive skills, that cognitive skills were equally well measured by the two tests,
and that Head Start participation and family income were measured without
error. (One could certainly argue with some of these assumptions, but we
proceed with the example. You might find it instructive to try fitting some other
variations of the model to the data.)

104



Chapter 3: One Group, One Occasion

Fig. 3.9 Path diagram of a Head Start evaluation, x = path showing effect of
Head Start participation on cognitive skills.

The latent variables were taken as standardized except for Cog, which
was assigned arbitrary paths of 1.0 to the observed variables (themselves
standardized).

The crucial path, marked x in Fig. 3.9, describes the direct influence of
Head Start on cognitive skills when the other variables are held constant. Is it
positive (Head Start helps) or negative (Head Start hinders), and--in either
case-does it differ significantly from zero?

Figure 3.10 shows the values of the paths and the variance of the latent
variable Cognitive Skills that were obtained in a solution using LISREL with the

hFig. 3.10 Path diagram of Fig. 3.9 with values from solution including Hea
Start effect.
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data of Table 3-8. Observe that when the socioeconomic statuses of the
participants and the controls are taken into account, the estimate of the effect of
Head Start participation on cognitive skills is slightly positive (.14).

The obtained x2 of 8.08 with 9 degrees of freedom represents a
reasonably good fit to the data for the model as a whole, a fact that is also
indicated by an estimated RMSEA of zero and the small residual correlations,
which are shown below the diagonal in Table 3-8. Bentler and Woodward
therefore went on to test whether the particular path representing Head Start
effects differed significantly from zero, by comparing a model with this path free
to one with it set to zero. The obtained x2 for the latter model is 9.93. The
difference between the two x2s, 1.85, when tested as a x2 with 1 df, is well short
of conventional levels of statistical significance (p > .10). Bentler and
Woodward concluded, accordingly, that these data could not be said to
demonstrate any effect of Head Start, positive or negative.

A note on degrees of freedom may be helpful. The model was treated as
a covariance model with standardized latent independent variables. Twenty-
eight (7 x 8/2) observed variances and covariances were fitted. Nineteen
unknowns were solved for: 4 correlations among the source variables; 2 paths
from source variables to Cog and 8 to the observed variables; the residual to
Cog; and 4 different residuals to observed variables (those to ITPA and MRT are
forced by the model to be the same). Twenty-eight data points minus 19
unknowns equals 9 degrees of freedom. In the second model, with one less
path to be solved for, there are 10 df. Note also that one of the variables, Head
Start participation, is dichotomous, so that the normality assumptions would
come into question.

Models With Reciprocal Influences and Correlated Errors

Most of the models considered so far have been unlooped, that is, they have no
causal sequences that loop back on themselves either remotely (A causes B
causes C causes A) or immediately (A causes B causes A). The latter are
usually described as models with reciprocal influences, because A influences B
and B influences A. Also, most of the models considered so far have
uncorrelated residuals; that is, the miscellaneous unspecified residual causes
that influence a given variable are assumed uncorrelated with any other specific
or residual causes in the diagram.

Violations of either of these conditions create problems for Wright's rules
and for path analyses carried out by ordinary regression methods, although it is
possible to deal with them by various special techniques, such as two-stage
least squares (e.g., James & Singh, 1978). However, these conditions do not
present any special difficulties for the general iterative model-fitting procedures
described in this book, provided that the latent variables in the models are
sufficiently well rooted in data to yield definite solutions. In practice, such
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models often do give trouble-assuring identification is sometimes not easy
when loops or correlated errors are present, and convergence on a solution
may be more difficult to attain-but, typically, one simply specifies the model in
the normal way and presents it to the iterative program. It will solve it or it won't.
As an extra precaution, however, one might want to obtain solutions from
different sets of starting values as a clue to possible identification problems.

A study of career aspirations

Table 3-9 presents a set of data from a classic and much analyzed study by
Duncan, Haller, and Portes (1968), in which both reciprocal influences and
correlated residuals are involved. The original data were gathered in a study of
career aspirations (Haller & Butterworth, 1960) in which 442 seventeen-year-
old boys in a southern Michigan county were given tests and questionnaires.
There were 329 boys in the sample naming at least one other boy also in the
sample as one of their best friends. Thus, there were 329 instances of a boy
and a close friend, on both of whom similar data on abilities, background, and
career aspirations were available. (There are some subtle statistical issues
raised by taking both boys and friends from the same sample, but we ignore
them here.)

Five variables were measured for each boy: (1) his perception of what
his parents' aspirations were for his further education and occupational status;
(2) his intelligence (measured by his score on a nonverbal IQ test); (3) his
family's socioeconomic status (as measured by parental income and material

Table 3-9 Correlations among variables related to career aspirations of boys
and their friends (data from Duncan, Haller, & Portes, 1968), N = 329

Respondent Friend
PA IQ SES EA OA PA IQ SES EA OA

Respondent
Parent aspiration 1.00 .18 .05 .27 .21 .11 .08 .02 .11 .08
Intelligence 1.00 .22 .40 .41 .10 .34 .19 .29 .26
Family SES 1.00 .40 .32 .09 .23 .27 .31 .28
Educ. aspiration 1.00 .62 .07 .29 .24 .37 .33
Occup. aspiration 1.00 .08 .30 .29 .33 .42

Friend
Parent aspiration 1.00 .21 -.04 .28 .20
Intelligence 1.00 .30 .52 .50
Family SES 1.00 .41 .36
Educ. aspiration 1.00 .64
Occup. aspiration 1.00
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possessions); (4) the amount of further education that he expected to obtain;
and (5) the level of occupation to which he aspired. Figure 3.11 shows a
version of one model proposed by Duncan, Haller and Portes. In the left-hand
part of the diagram are six source variables. Three represent the respondent's
intelligence, his family's socioeconomic status, and his perception of his
parents' aspirations for him; the other three represent the same measures for
the respondent's friend. To the right in the diagram are two downstream latent
variables representing the level of ambition of the respondent and his friend. It
is assumed that an individual's ambition for educational and economic success
will be influenced by his parents' aspirations for him, by his intelligence, and by
his family's socioeconomic status. It is also assumed (path marked w) that his
friend's family's socioeconomic status might affect the level of education and
occupation to which he himself aspires, but that his friend's intelligence and
parental aspirations will not, except by way of the effect they might have on the
friend's own ambition.

The latent variable of ambition is indexed by the two observed variables
of educational aspiration and occupational aspiration, for both the respondent
and his friend.

Additional possibilities are considered, as shown on the path diagram:

1. Reciprocal influence, as indicated in Fig. 3.11 by the paths marked x.
Does one's boy's ambition regarding educational and occupational
achievement influence the ambition of his friend?

2. Correlated residual influences on the two friends' ambition, as
indicated by the path marked y. It is possible that factors not included in the
diagram that are shared in common by the two friends might influence their
levels of ambition (in addition to whatever direct influence the boys have on
each other). These might include, for example, the effect of teachers, or of other
peers.

3. Correlated errors of measurement, as indicated by the paths marked z.
There might be shared effects on the specifics of a particular measurement
instrument, in addition to the true correlations of the common factors being
measured. For example, two friends might have discussed particular colleges
and jobs, in addition to whatever general resemblance there was in their overall
levels of ambition.

Previous analyses of these data have usually omitted the extreme left-
hand part of the path diagram, i.e., the paths from the latent variables
intelligence, SES, etc. to the observed measures of them. This is equivalent to
assuming that these variables are perfectly measured--an unlikely assumption.
If the reliabilities of the measurements were known, the square roots of these
reliabilities could be entered as the values of the paths from the latent variables
representing the true scores to the fallible observed scores (compare the
example of Fig. 1.9, Chapter 1). For the purpose of illustration, we will arbitrarily
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Fig. 3.11 Path model for study of career aspirations. R = respondent, F =
friend; PA = parental aspirations; IQ = intelligence; SES = socioeconomic
status; AMB = ambition; EA = educational aspirations; OA = occupational
aspirations; w, x, y, z = paths tested. Path values fixed by assumption are
shown.

assume that the reliabilities of measurement of parental aspiration, intelligence,
and socioeconomic status are .7, .8, and .9, respectively, in this population, and
hence that the square roots of these numbers, .837, .894, and .949, are the
values of the corresponding paths in the measurement model.

A preliminary question we may ask is whether we need to maintain a
distinction between corresponding paths for respondents and their friends.
After all, these are drawn from the same population, and it would not be at all
surprising if they would agree within sampling error. If so, we need only solve
for a single unknown value for each such set of paired paths, increasing the
number of degrees of freedom and the general robustness of the analysis.

The first x2 test shown in Table 3-10 (next page) investigates this
possibility. The first row of the table shows a x2 of 11.60, with 13 degrees of
freedom, for the full model of Fig. 3.11. The second shows the results of
assuming 15 equalities between respondent and friend: 3 in the correlations
among the source variables for each individual (e.g., rppA.RiQ =i"FPA,FIQ); 3 'n

the correlations across pairs (e.g., rpp/\ FIQ = rFPA,RIQ)l 4 in the paths from
source variables to Ambition (e.g., RPA to RAMB = FPA to FAME); 1 in the
reciprocal paths (RAMB to FAMB = FAMB to RAMB); 1 in the paths from the
latent to the observed variables (RAMB to ROA = FAMB to FOA); and 3 in the
residuals from occupational and educational aspirations and ambition.

The difference in x2 between the model with and without these equality
constraints is 7.29; with 15 degrees of freedom this does not come even close
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Table 3-10. Tests of hypotheses for the Duncan-Haller-Portes career
aspiration model (Fig. 3.11)

X2di« df,diff

1.
2.
3.
4.
5.
6.
7.

Unconstrained model
Equality constraints only
No SES path (w)
No reciprocal influence (x)
No AMB residual correlation (y)
Both 4 and 5 (no x or y)
No correlated errors (z)

11
18
23
20
18
25,
32,

.60

.89

.07

.81

.89

.67

.21

13
28
29
29
29
30
30

7
4.
1.

6.
13.

.29

.18
,92
,00
,78
32

15
1
1
1
2
2

>.90
<.05
>.10
>.95
<.05
<.01

Note: line 2 tested against 1, and lines 3-7 against 2.

to statistical significance. Thus, we might as well simplify matters by making the
symmetry assumptions, which we do in the remainder of the analysis.

Line 3 asks whether we really need a path iv. Is it necessary to postulate
a direct influence of his friend's family's status on a boy's ambition? The result
of the test is that the model fits significantly better with such a path than without it
(X2 = 4.18, 1 df, p < .05). However, the estimated value of the path (.09--see
Table 3-12, model 2) suggests that it is not a major contributor to ambition.
Line 4 asks the same question about reciprocal influences, the paths x in the
figure. The model is judged not to fit significantly worse when they are omitted
(X2 = 1.92, 1 df, p > .10). The same conclusion can be drawn in line 5 about a
possible correlation y between the residual factors lying back of the two latent
dependent variables (x2 = .00, 1 df, p > .95). Thus we cannot show that either of
these features of the model-the influence of one friend's ambition on the other,
or shared influences among the unmeasured variables affecting each--is
necessary to explain the data. If, however, we exclude both of these at once
(the analysis of line 6) we do get a significant x2 (6.78, 2 df, p < .05), suggesting
that the two may represent alternative ways of interpreting the similarity
between friends' aspirations which our design is not sufficiently powerful to
distinguish. As can be seen in Table 3-12, when both are fit, the residual
correlation y is negligible (model 2), but when the reciprocal paths are set to
zero (model 4), the correlation y becomes appreciable (.25). Setting y to zero
(model 5) has little effect, as one would expect from its trivial value in model 2.

Finally, the analysis in line 7 of Table 3-10 asks if the specific measures
of educational and occupational aspirations might have errors that are
correlated for the two friends. The substantial x2 (13.32, 2 df, p < .01) suggests
that it is indeed a plausible assumption that such correlated errors exist.

This example, then, illustrates the application of a path diagram with
somewhat more complex features than most of those we have considered
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Table 3-11 Estimated values of the paths and correlations for three models
from Table 3-10

Model 2 Model 4 Model 5
Paths

PA to AMB
IQ to AMB
SES to AMB
FSEStoAMB(w)
AMB to AMB (x)
AMB to OA

Correlations
AMB residuals (y )
OA residuals (z 1 )

EA residuals (Z2 )

.19

.35

.24

.09

.12

.91

-.00
.26
.07

.19

.38

.26

.12

.00

.91

.25

.26

.07

.19

.35

.24

.09

.12

.91

.00

.26

.07

Note: Paths are unstandardized, but covariances have been standardized to correlations. Models
correspond to the lines in Table 3-10.

previously. It is clear that further testable hypotheses could be stated for this
model: For just one example, the diagram assumes that the respondent's own
aspiration level and his estimate of his parents' aspirations for him are not
subject to correlated errors. (Is this a reasonable assumption? How would you
test it?) This case also suggests that tests of different hypotheses may not be
independent of one another (x and y). In addition, if many hypotheses are
tested, particularly if some are suggested by inspection of the data, one should
remember that the nominal probability levels can no longer be taken literally,
though the differential %2s may still serve as a general guide to the relative
merits of competing hypotheses.

Another point worth noting about this example is that none of the overall
models tested in Table 3-10 can be rejected; that is, if one had begun with any
one of them and tested only it, the conclusion would have been that it
represented a tolerable fit to the data. It is only in the comparisons among the
models that one begins to learn something of their relative merits.

Nonlinear Effects Among Latent Variables

The relationships expressed in path models are linear. Path models are, after
all, a special application of linear regression. However, it is well known that in
linear regression one can express nonlinear and interactive relationships by the
device of introducing squares, products, etc. of the original variables. Thus, to
deal with a curvilinear prediction of Y from X we might use the prediction
equation:
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Y = aX + bX2 + Z .

Or we could deal with an interactive effect of X and Z on Y with an equation
such as:

Y = aX + bZ + cXZ + W .

These equations represent nonlinear relationships among observed variables
by the use of linear regressions involving higher order or product terms. Can
the same thing be done with latent variables? Kenny and Judd (1984) explore
this question and conclude that the answer is: Yes. We follow their strategy.

Suppose we wish to represent the first nonlinear relationship above, but
X is an unobserved, latent variable, indexed by two observed variables, call
them A and B. In structural equation form:

A = aX + U
B = bX + V
Y = cX + dX2 + Z.

The first two equations constitute the measurement model, the third the
structural model. (For simplicity we are treating Y as an observed variable, but it
could be a latent variable as well, with its own indexing measures.)

But how is X2 to be linked to the data? Kenny and Judd point out that the
preceding equations imply relationships of X2 to A2, B2 and the product AB. For
example, by squaring the equations for A and B we obtain the first two of the
following equations, and by taking the product of the equations for A and B we
obtain the third:

A2 = a2X2 + 2aXU + U2

B2 = b2X2 + 2bXV + V2

AB = abX2 + aXV + bXU + UV.

Figure 3.12 represents these various relationships in the form of a path
diagram. Notice that X, X2, XU, and XV are shown as uncorrelated. This will be
the case if X, U, and V are normally distributed and expressed in deviation
score form. Kenny and Judd also show that given these assumptions,
expressions can be derived for the variances of the square and product terms.
Under these conditions the following relations hold:

VX2 = 2(VX)2; Vxu = VxVu.

The first of these expressions means that the variance of X2 equals two times
the square of the variance of X. The second, that the variance of the product XU
equals the product of the variances of X and U. Similar relationships hold for
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Fig. 3.12 Path diagram for nonlinear effect of X on Z.

Vy2, Vuv, etc. This means that we can write equations for the observed
variances and covariances of A, B, A2, B2, AB, and Y in terms of a moderate
number of parameters. If we set to 1.0 one of the paths from X to an observed
variable, say a, we have left as unknowns the paths b, c, d, the variance of X,
and the variances of the residuals U, V, and Z. The remaining values can be
obtained from these. The equivalences are given in Table 3-12.

Table 3-12 Equivalence constraints for Kenny-Judd solution

Variances: Paths:

VX2 = 2(VX)2 X2 -> A2 = 1

VXU = VxVij -> B2 = b2

VXv = VXVV -> AB = b

V(j2 = 2(V(j)2 XU-> A2 = 2

VV2 = 2(VV)2 -> AB = b

Vyv = VyVv XV -> B2 = 2b
->AB = 1

Note: Path a is set to 1.0 throughout.

Kenny and Judd present illustrative variances and covariances for
simulated data from a sample of 500 subjects. These are given in Table 3-13
(next page). There are 6 x 7/2 = 21 observed variances and covariances and 7
parameters, so there are 14 degrees of freedom for the solution.

There are a couple of difficulties in fitting this model with standard SEM
programs. We wish to fix paths and variances in such relations as b and b2, or b
and 2b, and some programs do not provide for other than equality constraints.

113



Chapter 3: One Group, One Occasion

Table 3-13 Covariance matrix of observed values (Kenny & Judd simulated
data, N = 500)

A
B
A2
B2
AB
Y

A
1.150
.617

-.068
.075
.063
.256

B

.981
-.025
.159
.065
.166

A2

2.708
.729

1.459
-1.017

B2 AB

1.717
1.142 1.484
-.340 -.610

Y

.763

In a pinch, one might circumvent this by a creative use of what are called
"phantom variables" (see Appendix E) but a more generally satisfactory solution
would usually be to seek out a program that allows one to impose such
constraints directly. A second difficulty concerns the use of a fitting criterion such
as maximum likelihood, because some of our variables are not normally
distributed. We have assumed, for example, that X is normal, but that means
that X2 will not be.

Kenny and Judd fit their model with the program COSAN mentioned in
Chapter 2 that is extremely flexible in allowing the user to specify relationships
among paths. They also used a generalized least squares fitting criterion that
they believed to be less vulnerable to multivariate nonnormality than is
maximum likelihood.

Their solution is shown in Table 3-14, along with the values used to
generate the simulated data. It is clear that their procedure has essentially
recovered these values.

Table 3-14 Solutions of Fig. 3.12 model for data of Table 3-13

Parameter
b
c
d
X

u
V

z

Original
.60
.25

-.50
1.00

.15

.55

.20

COSAN
.62
.25

-.50
.99
.16
.54
.20

LISREL 8
.63
.25

-.50
1.00
.16
.55
.20

Note: COSAN solution from Kenny and Judd (1984).
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Fig. 3.13 Path diagram for interactive effect of X and Z on Y. Unlabeled paths
set to 1.0.

A study by Jaccard and Wan (1995) has suggested that solutions of
nonlinear models of this sort may be fairly robust to the lack of multivariate
normality in derived variables, provided the original variables are normal.
Indeed, in their study the violations of multivariate normality had much less
adverse consequences than an attempt to use the distribution-free criterion,
ADF, with moderate-sized samples. A solution to the Kenny-Judd data using
LISREL 8 with a maximum likelihood criterion is also shown in Table 3-14. It is
evident that the COSAN and LISREL solutions have done about equally well in
recovering the values used to generate the data.

Kenny and Judd went on to carry out a similar analysis for the case of an
interactive relationship between two variables, as represented in the second
equation given at the beginning of this section. The general principles involved
are the same. A path diagram for an example is shown in Fig. 3.13; as you can
see, each of the latent variables X and Z is indexed by two observed variables,
and there are a number of additional product and residual terms. The 9
observed variables provide 45 variances and covariances, and there are 13
parameters to be solved for (the variances of X and Z, their covariance /', the
paths g, h, c, d, and e, and the residual variances S, T, U, V, and W).
Again, Kenny and Judd were reasonably successful in recovering the values
used to generate their simulated data.

Obviously, the possibility of constructing and solving path models of
nonlinear and interactive relationships broadens considerably the range of
latent variable problems that can be dealt with. It may be expected, however,
that models involving such relationships will tend to be fairly demanding in the
quantity and quality of data that are required in order to arrive at dependable
solutions.

This is an active area of investigation, and quite a few different strategies
have been suggested for modeling nonlinear and interactive relationships
among latent variables-see the Notes to this chapter.
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Chapter 3 Notes

Structural equation modeling has been applied to a diverse array of topics: for
example, health problems in early infancy (Baker et al. 1984), political
alienation (Mason et al. 1985), university teaching evaluations (Marsh &
Hocevar, 1983), attitudes toward natural foods (Homer & Kahle, 1988), the
female orgasmic experience (Newcomb & Bentler, 1983), Machiavellian beliefs
(Hunter et al. 1982), rat neural systems (Mclntosh & Gonzalez-Lima, 1991), and
the effect of special promotions on supermarket sales (Walters & MacKenzie,
1988). A list of 72 structural modeling studies in personality and social
psychology appearing between 1977 and 1987 is given in Breckler (1990).

Caution: Numerical results given in this and the following chapter
sometimes differ slightly from those reported in the original sources, presumably
because of differences in rounding, slight convergence discrepancies, minor
misprints in correlation tables, or the like. I have not recomputed everything, but
if a study forms the basis of an exercise, I have tried to provide consistent
figures. RMSEAs were generally not reported in the original studies, most of
which predate the widespread use of this index.

Maruyama-McGarvey study. There is some inconsistency in the
labeling of variables in the original paper. I have followed the identifications in
their Table 2, which according to Maruyama (personal communication) are the
correct ones.

Multitrait-multimethod models. K. F. Widaman (1985) discusses
hierarchically nested models for MTMM data, and Schmitt and Stults (1986)
look at different methods of analyzing MTMM matrices. General reviews include
chapters by Marsh and Grayson (1995) and by Wothke (1996). MTMM models
that multiply the effects of traits and methods instead of adding them have been
discussed by a number of authors, including Cudeck (1988), Wothke and
Browne (1990), and Verhees and Wansbeek (1990). Wothke and Browne show
how multiplicative models can be fit using standard SEM programs such as
LISREL. There is mixed evidence concerning the relative merits of additive and
multiplicative models in practical application. Some reviews have reported
additive ones to be more often successful (Bagozzi & Yi, 1990), but other
authors have disagreed (Goffin & Jackson, 1992; Coovert et al., 1997), or found
the evidence to be mixed (Byrne & Goffin, 1993). A recent study involving 79
data sets found the additive model to work better for 71 of them (Corten et al.,
2002). Saris and Aalberts (2003) look at different interpretations of correlated
disturbance terms in MTMM studies. Differences in how convergent and
discriminant validity are manifested in the two kinds of models are pointed out
by Reichardt and Coleman (1995). The fitting of MTMM models within and
across groups is discussed by Marsh and Byrne (1993).

Mediation. Shrout and Bolger (2002) recommend bootstrap methods
for the evaluation of direct and indirect effects in mediation studies in SEM.
Hoyle and Kenny (1999) stress the value of using a latent variable in mediation
research when variables are imperfectly measured.
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Models with loops. Heise (1975) provides a good introduction to this
topic, including the modifications of path rules required to deal with looped
models.

Nonlinear relationships. See also Busemeyer and Jones (1983) on
handling multiplicative effects. Joreskog and Yang (1996) argue that for correct
inference means must be included in such models. Other recent suggestions
for dealing with quadratic and interaction effects include a two-step strategy
suggested by Ping (1966) and a simple two-stage least squares method
proposed by Bollen (1995), in which various empirical square and product
terms are treated as instrumental variables. Applied to the data of Table 3-13,
Bollen's method yields estimates for cand of of .25 and -.49, respectively, as
accurately recovering the underlying values as the COSAN and LISREL 8
solutions in Table 3-14. Interest in such effects continues. Moulder and Algina
(2002) present a Monte Carlo comparison of several methods, and Schumacker
(2002) suggests a simple strategy based on first estimating latent variable
scores and then multiplying these. Computational issues in the estimation of
nonlinear structural equation models are addressed by Lee and Zhu (2000,
2002). Neale (1998) shows how to implement the Kenny-Judd models in MX.
Li et al. (2000) extend Joreskog and Yang's method to deal with interactions in
latent curve models, but Wen et al. (2002) suggest that they may not have got it
quite right yet. Yang-Wallentin (2001) compares Bollen's 2SLS with Kenny-
Judd solved via maximum likelihood, and concludes that both have merits but
require samples of 400+. Contributions from a number of workers in this area
may be found in a volume edited by Schumacker and Marcoulides (1998),
which contains useful summaries by Rigdon et al. and Joreskog, and new
strategies by Laplante et al. and Schermelleh-Engel et al. For yet another
approach, see Blom and Christoffersson (2001).

Chapter 3 Exercises

1. Can you conclude that tests T1 to T3, whose covariance matrix is given
below, are not parallel tests? (N = 35) How about tau-equivalent?

T1 T2 T3
T1 54.85
T2 60.21 99.24
T3 48.42 67.00 63.81

2. In Mclver et al.'s police survey model (Fig. 3.4), can we conclude that
the paths from F2 to its three indicators are really different from one another?
(State and test an appropriate null hypothesis).
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3. Part of Campbell and Fiske's original multitrait-multimethod matrix is
given in Table 3-15. These are ratings of clinical psychology trainees by staff
members, fellow trainees, and themselves. Tabulate and compare the
correlations in the three principal categories (within trait, across method;
within method, across trait; and across both method and trait).

Table 3-15 Multitrait-multimethod matrix (data from Campbell & Fiske, 1959),
N = 124

Trait and method

StA StC StT TrA TrC TrS SeA SeC SeS
Ratings:

Staff
Assertive 1 .00
Cheerful .37
Serious -.24

Trainee
Assertive
Cheerful
Serious

Self
Assertive
Cheerful
Serious

.71

.39
-.27

.48

.17
-.04

1.00
-.14

.35

.53
-.31

.31

.42
-.13

1.00

-.18
-.15
.43

-.22
-.10
.22

1.00
.37

-.15

.46

.09
-.04

1.00
-.19

.36

.24
-.11

1.00

-.15
-.25
.31

1.00
.23 1.00

-.05 -.12 1.00

4. Estimate a multitrait-multimethod model for the data of Table 3-15,
using an SEM program (if using LISREL you may need to set AD=OFF to obtain
a solution). Assume that the methods are uncorrelated, and that the traits are
uncorrelated with the methods. Compare to the results of models using trait
factors only and method factors only.

5. Calculate the original and partial correlations rxy and rXY-Z see
Fig. 3.8-for the following additional values of the path from C to Z: .9, 1.0, .5, .0.
Comment on the results.

6. Keep the measurement model from Maruyama and McGarvey's
desegregation study but make one or more plausible changes in the structural
model. Fit your model, using an SEM program, and compare the results to
those in Fig. 3.3.
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7. Construct a different path model for the Head Start evaluation data
(Table 3-8), with different latent variables and hypothesized relations among
them. Retain in your model the dependent latent variable of cognitive skills and
a path xto it from Head Start participation. Fit your model and make a x2 test for
the significance of path x.

8. Repeat the test of the basic Duncan-Haller-Portes model of Fig. 3.11
(use the version with equality constraints-line 2 of Table 3-10). Then test to
determine if each of the paths z-\ and Z2 makes a separate significant
contribution to the goodness of fit of the model. (Note: Fitting this model has
caused difficulties for some SEM programs. If yours acts up, try fixing the
residual variances to .3, .2, .1, etc., and leaving the paths between latent and
observed RPA, RIQ, etc., free. Also, some programs may not permit specifying
all the 15 equalities in the example. Specify as many as you can~the results
should be similar and the conclusion the same.)

9. In the text, a question was raised about assuming uncorrelated errors
between a boy's own educational and occupational aspirations and his
estimate of his parents' aspiration for him. How might this assumption be
tested?

10. Write the path equations for V/\, CBAC> CAC,AD> and VY

Fig. 3.13.
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Chapter Four:
Fitting Models Involving Repeated Measures or
Multiple Groups

In this chapter we continue our survey of a variety of applications of path and
structural models. The models considered introduce some additional features
over those discussed in Chapter 3. We begin by considering several models
dealing with the covariances among measures that are repeated over time.
Then we look at models fitted simultaneously in two or more groups. Finally, we
consider models that compare means as well as covariances, either for different
groups or over time.

Models of Events Over Time

Latent variable causal models are often used to analyze situations in which
variables are measured over a period of time. Such situations have the
advantage of permitting a fairly unambiguous direction of causal arrows: If
event A precedes event B and there is a direct causal connection between
them, it is A that causes B and not vice versa. If, on the other hand, A and B
were measured more or less contemporaneously, a distinction between the
hypotheses "A causes B" and "B causes A" must be made on other grounds-not
always a simple matter.

This is not to say that variables sequenced in time never give trouble in
assigning cause. Even though B follows A, it is always possible that B might
reflect some third variable C that precedes and is a cause of A, and therefore
one might be less wrong in calling B a cause of A than the reverse. Of course,
one would be still better off with C in the model as a cause of both A and B, with
no causal arrow between A and B at all. Nonetheless, the presence of temporal
ordering often lends itself naturally to causal modeling, and we examine some
examples in the next few sections.

A minitheory of love

Tesser and Paulhus (1976) carried out a study in which 202 college students
filled out a 10-minute questionnaire on attitudes toward dating. The
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Table 4-1 Correlations among four measures of "love" on two occasions
(data from lesser & Paulhus, 1976), N = 202

T1 L1 C1 D1 T2 L2 C2 D2
Occasion 1

Thought 1.000 .728 .129 .430 .741 .612 -.027 .464
Love 1.000 .224 .451 .748 .830 .094 .495
Confirmation 1.000 .086 .154 .279 .242 .104
Dating 1.000 .414 .404 .108 .806

Occasion 2
Thought 1.000 .764 .161 .503
Love 1.000 .103 .505
Confirmation 1.000 .070
Dating 1.000

SD 3.59 19.49 1.80 2.87 3.75 20.67 1.72 3.16
Mean 9.83 50.66 5.08 3.07 9.20 49.27 4.98 2.95

questionnaire contained several subscales having to do with attitudes and
behavior toward a particular member of the opposite sex "where there is some
romantic interest involved on somebody's part." Four measures were obtained:
(T) how much the respondent thought about the other person during the last
2 weeks; (L) a 9-item love scale; (C) to what extent were the respondent's
expectations concerning the other person confirmed by new information during
the past 2 weeks; and (D) number of dates with the other person during the
same 2-week period.

Two weeks later the subjects filled out the questionnaire again, with
respect to the same person, for events during the 2 weeks between the two
questionnaire administrations. Table 4-1 presents Tesser and Paulhus' basic
results, which they subjected to a simple path analysis and which were later
reanalyzed by Bentler and Huba (1979) using several different latent variable
models.

Figure 4.1 (next page) shows a slightly modified version of one of Bentler
and Huba's models. Basically, the four scales are shown as reflecting a
common factor of attraction at each time period; attraction at the second period
is explainable by a persistence of attraction from the first (path m) plus possible
new events (path n). It is assumed that the measurement model (a, b, c, d; e, f,
g, h) is the same on both occasions of measurement. It is also assumed that the
specifics of a particular behavior or attitude may show correlation across the two
occasions. For example, an individual's frequency of dating a particular person
is influenced by a variety of factors other than general attraction, and these
might well be similar at both times-as might also be various measurement
artifacts, such as the tendency of a person to define "dates" more or less
broadly, or to brag when filling out questionnaires.
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Fig. 4.1 A model for the "love" data of lesser and Paulhus (Table 4-1). A =
general attraction; T, L, C, D = four measures of specific attitudes and behavior
(see text); 1,2 = two occasions.

Table 4-2 shows the results of fitting the model of Fig. 4.1 to the
correlations in Table 4-1. The paths reported are from an unstandardized
solution (using LISREL); however, the measured variables are implicitly
standardized by the use of correlations, the variance of the latent variable A1 is
set to 1.0, and that of A2 does not differ much from 1.0, so the results in the table
can pretty much be interpreted as though they were from a standardized path
model. Thinking about a person and the love questionnaire are strong
measures of the general attraction variable, dating is a moderate one, and
confirmation of expectations is a very weak one. The residual variances reflect
these inversely~the love score is least affected by other things, and the
confirmation score is nearly all due to other factors. The general factor of
attraction toward a particular person shows a strong persistence over the 2
weeks (m = .94, standardized, .92).

The residual covariances suggest that for thought and love the
correlation between the two occasions of measurement is mostly determined by
the persistence of the general factor, whereas for dating there is a large cross-
occasion correlation produced by specific factors. On the whole, the measure of
confirmation of expectations does not relate to much of anything else within
occasions, and only quite moderately to itself across occasions. It was based
on only one item; one might speculate that it may not be a very reliable
measure. The measure of dating frequency may suffer from some psychometric
problems as well-it appears to be markedly skewed (SD = mean in Table 4-1).
One might wish in such a case to consider preliminary transformation of the
scale (say to logarithms) before embarking on an analysis that assumes
multivariate normality. Or one should hedge on one's probability statements.
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Table 4-2 Solution of path model of Fig. 4.1 for data of Table 4-1: Tesser and
Paulhus study

Variable
Thought
Love
Confirmation
Dating
Attraction

Paths
a
b
c
d
m

.83

.88

.17

.53

.94

Residual
variances
e2 .31
f2 .20
g2 .97
h2 .70
n2 .15

Residual
covariances

i .11
j .09
k .21
I .53

Note: Paths unstandardized; variance of A1 set at 1.0, variance of A2 = 1.043. x2 = 45.87,
22 df, p < .01. Residual variances are squares of path values e, f, g, etc.

As a matter of fact, based on the obtained x2 of 45.87 with 22 degrees of
freedom, if one takes the statistics seriously one would conclude that the
present model does not fit exactly in the population (a conclusion that Bentler
and Huba also arrived at from an analysis based on covariances using a similar
model). Judged by the RMSEA, the approximation is acceptable, but somewhat
marginal (RMSEA = .074), and one cannot reject the hypothesis of poor fit
(upper limit of interval = .103). If one calculates the correlations implied by the
solution of Table 4-2 and compares them to the observed correlations, the
largest discrepancies are for the correlation between T1 and C2, which the
model predicts to be about .13 but which was observed as -.03, and for the
correlation between C1 and L2, which was predicted as .14 but observed as
.28. If one includes ad hoc paths for these in the model, the fit becomes
statistically acceptable (x2 = 26.34, 20 df, p > .15)--Bentler and Huba obtained a
similar result in their analysis. Because in doing this one is likely to be at least
in part fitting the model to the idiosyncrasies of the present data set, the revised
probability value should be taken even less seriously than the original one. The
prudent stance is that paths between T1 and C2 and C1 and L2 represent
hypotheses that might be worth exploring in future studies but should not be
regarded as established in this one.

Should one analyze correlations or covariances? As we have seen, in
the present example, the results come out pretty much the same whether
correlations were analyzed, as described, or whether covariances were, as in
Bentler and Huba's analysis of these data. Both methods have their
advantages. It is easier to see from the .83 and .88 in Table 4-2 that paths a
and b are roughly comparable, than to make the same judgment from the
values of 3.18 and 16.16 in Bentler and Huba's Table 1. On the other hand, the
statistical theory underlying maximum likelihood and generalized least squares
model fitting is based on covariance matrices, and application of these methods
to correlation matrices, although widely practiced, means that the resulting %2s
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will contain one step more of approximation than they already do.
One further consideration, of minor concern in the present study, will

sometimes prove decisive. If the variances of variables are changing markedly
over time, one should be wary of analyzing correlations because this in effect
restandardizes all variables at each time period. If one does not want to do this,
but does wish to retain the advantages of standardization for comparing
different variables, one should standardize the variables once, either for the
initial period or across all time periods combined, and compute and analyze the
covariance matrix of these standardized variables.

The simplex—growth over time

Suppose you have a variable on which growth tends to occur over time, such as
height or vocabulary size among schoolchildren. You take measurements of
this variable once a year, say, for a large sample of children. Then you can
calculate a covariance or correlation matrix of these measurements across time:
Grade 1 versus Grade 2, Grade 1 versus Grade 3, Grade 2 versus Grade 3, and
so on.

In general, you might expect that measurements made closer together in
time would be more highly correlated--that a person's relative standing on, say,
vocabulary size would tend to be less different on measures taken in Grades 4
and 5 than in Grades 1 and 8. Such a tendency will result in a correlation
matrix that has its highest values close to the principal diagonal and tapers off to
its lowest values in the upper right and lower left comers. A matrix of this
pattern is called a simplex (Guttman, 1954).

Table 4-3 Correlations and standard deviations across grades 1-7 for
academic achievement (Bracht & Hopkins, 1972), Ns = 300 to 1240

Grade 1 2
Correlations

3 4 5 6 7

1 1.00
2
3
4
5
6
7

SD .51 .69 .89 1.01 1.20 1.26 1.38
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.73
1.00

.74

.86
1.00

.72

.79

.87
1.00

.68

.78

.86

.93
1.00

.68

.76

.84

.91

.93
1.00

.66

.74

.81

.87

.90

.94
1.00
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Table 4-3 provides illustrative data from a study by Bracht and Hopkins (1972).
They obtained scores on standardized tests of academic achievement
at each grade from 1 to 7. As you can see in the table, the correlations tend to
show the simplex pattern by decreasing from the main diagonal toward the
upper right-hand corner of the matrix. The correlations tend to decrease as one
moves to the right along any row, or upwards along any column. The standard
deviations at the bottom of Table 4-3 show another feature often found with
growth data: The variance increases over time.

Figure 4.2 represents a path diagram of a model fit by Werts, Linn, and
Joreskog (1977) to these data. Such a model represents one possible way of
interpreting growth. It supposes that the achievement test score (T) at each
grade level is a fallible measure of a latent variable, academic achievement (A).
Achievement at any grade level is partly a function of achievement at the
previous grade, via a path w, and partly determined by other factors, z. Test
score partly reflects actual achievement, via path x, and partly random errors, u.
Because variance is changing, it is appropriate to analyze a covariance rather
than a correlation matrix. Covariances may be obtained by multiplying each
correlation by the standard deviations of the two variables involved.

Figure 4.2 has 7 xs, 7 us, 6 ws, 6 zs, and an initial variance of A for a total
of 27 unknowns. There are 7 x 8/2 = 28 variances and covariances to fit.
However, as Werts et al. point out, not all 27 unknowns can be solved for:
There is a dependency at each end of the chain so that two unknowns-e.g., two
us--must be fixed by assumption. Also, they defined the scale of the latent
variables by setting the xs to 1.0, reducing the number of unknowns to 18-5 us,
6 ws, 6 zs, and an A--leaving 10 degrees of freedom.

Fig. 4.2 Path model of growth over time. A = academic achievement; T = test
score; 1 -7 = grades.
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Table 4-4 Solution of path diagram of Fig. 4.2 for data of Table 4-3 (growth
over time)

Grade w z A u

1
2 1 .398
3 1.318
4 1 .054
5 1.172
6 1.026
7 1.056

.041

.049

.137

.051

.104

.138

.184

.400

.743

.962
1.372
1.548
1.864

.076a

.076

.049

.058

.068

.040

.040a

Note: w, z, A, u as in Fig. 4.2. Values ua set equal to adjacent value of u. A, z, u expressed as
variances, w as an unstandardized path coefficient. An = Vn - un, where Vn is the variance of test
at Grade n.

Table 4-4 shows estimates of the unknown values. The simplex model
provides a reasonable fit to the data, if N is taken equal to its median value,
which is 795. It is not an exact fit (x2 = 28.57, 10 df, p < .01), but it is a decent
one (RMSEA = .048). The hypothesis of poor fit can be rejected (upper limit of
confidence interval for RMSEA = .069, which is < .10). The variance of
academic achievement, A, increases steadily and substantially over the grades,
whereas trends for w, z, and u are much less marked, especially if one
discounts the first 2 or 3 years.

A point of mild interest in this solution is that the w parameters, which
represent the effect of academic achievement in one grade on that in the next,
are slightly greater than 1.0. Does this mean that academic skill persists without
loss from one year to the next, indeed with enhancement? Are students who
think they forget things over the summer really mistaken? Alas, more likely it
means that what happens to a student between one year's measurement and
the next is correlated with his or her standing the preceding year, so that the
academically rich get richer and the poor lag further behind them. A suitable
latent variable analysis taking additional variables into account would provide a
way to clarify this issue.

Finally, could we fit an even simpler model to these data, one that has w,
z, and u constant, and only A varying? The answer can be obtained by fitting a
model with just four unknowns A, z, w, and u. The resulting x2 with 24 df is
200.91. The x2 difference of 172.34 with 14 degrees of freedom says: No, we
cannot. The grade-to-grade differences in these parameters are too large to be
attributable merely to chance.
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Liberal-conservative attitudes at three time periods

Judd and Milburn (1980) used a latent variable analysis to examine attitudes in
a nationwide sample of individuals who were surveyed on three occasions, in
1972, 1974, and 1976. Table 4-5 shows a portion of their data, based on three
topics related to a liberal-conservative dimension of attitude (actually, Judd and
Milburn studied five such topics). These particular data are from a subsample of
143 respondents who had attended 4 or more years of college. The numbers in
the table mean, for example, that these respondents' attitudes toward busing in
the 1972 and 1974 surveys were correlated .79, and their attitude toward
busing in 1972 was correlated .39 with their attitude toward criminal rights in
1974.

The authors postulated that the interrelationships among these attitude
measurements would largely be accounted for by a general factor of liberalism-
conservatism, to which all three of the attitudes would be related at each of the
three time periods, plus a specific factor for each attitude that would persist
across time. (Actually, the main focus of Judd and Milburn's interest was to
compare these features of attitude in a relatively elite group, the present
sample, with those in a non-elite group, consisting of respondents who had not
attended college. We look at this aspect of the study later in this chapter, in the
context of cross-group comparisons.)

Table 4-5 Correlations among attitudes at three time periods (Judd & Milburn,
1980), N = 143, 4 years college

B72 C72 J72 B74 £74 ^74 B76 C76 ^76

1972 Busing 1.00 .43 .47 .79 .39 .50 .71 .27 .47
Criminals 1.00 .29 .43 .54 .28 .37 .53 .29
Jobs 1.00 .48 .38 .56 .49 .18 .49

1974 Busing 1.00 .46 .56 .78 .35 .48
Criminals 1.00 .35 .44 .60 .32
Jobs 1.00 .59 .20 .61

1976 Busing 1.00 .34 .53
Criminals 1.00 .28
Jobs 1.00

SD 2.031.841.67 1.761.681.48 1.741.831.54

Note: Busing = bus to achieve school integration; Criminals = protect legal rights of those
accused of crimes; Jobs = government should guarantee jobs and standard of living.
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Fig. 4.3 Path model for attitudes measured in 1972, 1974, and 1976.
L = general factor; B, C, J = specific attitudes; 72, 74, 76 = years.

Figure 4.3 represents their hypothesis. Liberalism in 1974 is partly
predictable from liberalism in 1972, and partly by unrelated events; and
similarly for 1976. The general degree of a person's liberalism in any year is
reflected in his or her specific attitudes toward busing, the rights of criminals,
and guaranteed jobs. A person's attitudes on one of these specific topics in one
survey is related to his or her attitude on this same topic in another survey, but
not with specific attitudes on other subjects, except by way of the common
liberalism-conservatism factor. (Actually, Judd and Milbum worked with a
slightly different, but essentially equivalent, model.)

Table 4-6 presents an analysis of the Judd and Milbum data using
LISREL and a covariance matrix based on Table 4-5. On the whole, the model
fits very well (x2 = 11.65, 16 df, p > .70; RMSEA = 0). Liberalism is most strongly
defined by attitudes toward busing, with attitudes toward guaranteed jobs
ranking slightly ahead of attitudes toward justice for accused criminals. Not
surprisingly, the three attitudes tend to fall in the reverse order with respect to
unexplained variance, as well as the amount of specific association with the
same attitude in other years.

A question one might ask is whether liberal-conservative attitudes in
1972 would have any effect on those in 1976 except via 1974; i.e., could there
be a delayed effect of earlier on later attitudes? This can be tested by fitting a
model with an additional direct path from L/2 to LJQ. This yields a x2 of 11.56

for 15 df. The difference, a %2 of .09 with 1 df, is far short of statistical
significance. There is thus no evidence of such a delayed effect on attitudes,
sometimes called a "sleeper effect," in these data.
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Table 4-6 Solution of path model of Fig. 4.4 representing liberal-conservative
attitudes at three time periods

1972 Busing
Criminals
Jobs

1974 Busing
Criminals
Jobs

1976 Busing
Criminals
Jobs

Path
from L

1.00a

.58

.63

1.00a

.62

.68

1.00a

.49

.61

Residual
variance

1.51
2.52
1.74

.92
2.00
1.18

.72
2.82
1.49

Specific Specific
covariance covariance
with 1974 with 1976

.58 .29

.88 1.21

.41 .37

.23
1.22

.48

Note: Unstandardized coefficients. Paths marked3 arbitrarily set at 1.00. x2 =11 -65,16 df,
p > .70. Additional paths in structural model: 172 to 174 = .86, 174 to 175 = .99; 172 variance =
2.60; residual variances, 174 = .24,175 = .18.

Models Comparing Different Groups

The general approaches described in this and the preceding chapter are
readily extended to the case of model fitting in several independent groups of
subjects. In the fitting process, one combines the fit functions from the separate
groups and minimizes the total. For statistical tests, one obtains an overall x2

for the combined groups, with an appropriate df which is the difference between
the number of empirical values being fitted and the number of unknowns being
solved for, taking into account any constraints being imposed within or across
groups.

Again, differences in x2s for different nested solutions can be compared,
using the differences between the associated degrees of freedom. Thus, for
example, if one were solving for five unknowns in each of three groups, one
could compare a solution that allowed them all to differ in each group with one
that required them all to be constant across groups. There would be 15
unknowns to be solved for in the first case, and only 5 in the second, so the
increase in %2 between the two would be tested as a %2 with 15 - 5 = 10 df.
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Attitudes in elite and non-elite groups

Earlier we discussed a set of data by Judd and Milbum involving the structuring
of attitudes with respect to a dimension of liberalism-conservatism. These
attitudes were measured in three different years for a sample of 143 college-
educated respondents. Responses were also available from the same
nationwide surveys for a group of 203 individuals who had not attended
college. Table 4-7 shows the data for the noncollege group, corresponding to
Table 4-5 for the college group. (An intermediate group who had attended
college, but for less than 4 years, was excluded to sharpen the contrast
between the "elite" and "non-elite" groups.)

As we have seen, a model of a general attitude at each time period and
specific attitudes correlated across time periods fits the data for college
graduates quite well. Would it do as well for a less elite group? If it did, would
there be differences between the groups in the parameters of the model?

One can fit the model of Fig. 4.3 (page 128) simultaneously to the data
from both groups. If the same model fits in both but with different values for the
paths, one can conclude that the same general sort of explanation is applicable
in both groups, although with quantitative differences. Or one can go further
and ask if the same model with the same values will fit both sets of data. And, of
course, one can take intermediate positions and constrain the values of certain
paths to be the same in both groups, but allow others to vary.

Table 4-7 Correlations among attitudes at three time periods (Judd & Milbum,
1980), N = 203, no college

B72 C72 J72 B74 C74 J74 B76 C7e J76

1972 Busing 1.00 .24 .39 .44 .20 .31 .54 .14 .30
Criminals 1.00 .25 .22 .53 .21 .21 .40 .25
Jobs 1.00 .22 .16 .52 .22 .13 .48

1974 Busing 1.00 .25 .30 .58 .13 .33
Criminals 1.00 .21 .25 .44 .16
Jobs 1.00 .21 .23 .41

1976 Busing 1.00 .17 .28
Criminals 1.00 .14
Jobs 1.00

SD 1.252.111.90 1.311.971.82 1.342.001.79

Note: Busing = bus to achieve school integration; Criminals = protect legal rights of those
accused of crimes; Jobs = government should guarantee jobs and standard of living.
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If one fits the path model of Fig. 4.3 to the data of both the college and
noncollege groups, without additional cross-group constraints, one obtains a x2

of 24.56 with 32 df, representing an excellent fit to the data (p > .80;
RMSEA = 0). This in effect represents a separate solution for the same model in
each group, and one can indeed do the solutions separately and add the x2s
and dfs: fitting the model in the noncollege group alone gives a x2 of 12.91 with
16 df; taken together, 11.65 + 12.91 = 24.56 and 16 + 16 = 32. (Such simple
additivity will not hold if there are cross-group constraints.)

If one goes to the opposite extreme and requires that both the model and
quantitative values be the same in both groups, one obtains a x2 of 153.98 with
61 df, p < .001--thus, one can confidently reject the hypothesis of no quantitative
differences between the samples.

One particular intermediate hypothesis, that quantities in the structural
model are the same in both groups but the measurement models may be
different, leads to a x2 of 26.65 with 34 degrees of freedom. This does not
represent a significant worsening of fit from the original solution in which both
structural and measurement models are allowed to differ (x2diff = 2-09. 2 df,
p > .30). Thus, the difference between the two groups appears to lie in the

measurement rather than the structural model.
Table 4-8 compares the solutions for the college and noncollege groups.

Table 4-8 Solution for the paths from liberalism to specific attitudes, for
college and noncollege groups

Unstandardized Standardized
College Noncollege College Noncollege

1972 Busing
Criminals
Jobs

1974 Busing
Criminals
Jobs

1976 Busing
Criminals
Jobs

1.00a
.58
.63

1.00a

.62

.68

1.00*
.49
.61

1.00a
1.12
1.40

1.00a
.96

1.44

1.00*
.90

1.65

.80

.51

.61

.84

.54

.68

.87

.41

.60

.63

.42

.58

.55

.35

.58

.47

.28

.58

Note: Paths marked3 fixed at 1.0. Standard deviation for latent variable of liberalism from fitted
solution: College--72 = 1.614, 74 = 1.475, 76 = 1.519; Noncollege--72 = .789, 74 = .727,
76 = .633.
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The absolute values of paths from the latent variables to the observed variables
are different for the two samples, but this is primarily a matter of the arbitrary
scaling: attitude toward busing happens to be a relatively strong indicator of
liberalism for the college group and a relatively weak one for the noncollege
group, so that scalings based on this attitude will look quite different in the two
cases. The standardized paths in the right-hand part of Table 4-8, obtained by
multiplying the unstandardized paths by the ratio of standard deviations of their
tail to their head variables (see Chapter 1) provide a better comparison. Since
the two samples are not very different in the overall level of variance of the
observed variables (median SD across the 9 scales is 1.74 for college and 1.82
for noncollege), these values suggest a lesser relative contribution of the
general liberalism-conservatism factor in the noncollege group.

Table 4-9 compares the paths between the latent variables across time.
For both groups the analysis suggests a relatively high degree of persistence of
liberal-conservative position, particularly between the 1974 and 1976 surveys.
Again, the greater ease of interpretation of the standardized variables is
evident.

Table 4-9 Solution for the paths connecting liberalism across years, for
college and noncollege groups

Unstandardized Standardized
College Noncollege College Noncollege

1972 to 1974
1974 to 1976

.86

.99
.77
.86

.94

.96
.84
.99

The genetics of numerical ability

Some problems in behavior genetics can be treated as straightforward
intercorrelation or covariance problems involving multiple groups, and solved
with SEM programs, although sometimes explicit models are written and solved
with general fitting programs. We consider an example of each approach.

Table 4-10 gives correlations for three subscales of the Number factor in
Thurstone's Primary Mental Abilities battery, in male and female identical and
fraternal twin pairs. Correlations for male twins are shown above the diagonal
in each matrix, and those for female twins are shown below. The data are from
studies by S. G. Vandenberg and his colleagues in Ann Arbor, Michigan, and
Louisville, Kentucky; the studies and samples are described briefly in Loehlin
and Vandenberg (1968).
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Table 4-10 Within-individual and cross-pair correlations for three subtests of
numerical ability, in male and female identical and fraternal twin pairs (numbers
of pairs: Identicals 63, 59; Fraternals 29, 46)

Ad1 Mu1 3H1 Ad2 Mu2 3H2
Identical twins

Addition 1 1.000 .670 .489 .598 .627 .456
Multiplication 1 .611 1.000 .555 .499 .697 .567
3-Higher 1 .754 .676 1.000 .526 .560 .725
Addition 2 .673 .464 .521 1.000 .784 .576
Multiplication 2 .622 .786 .635 .599 1.000 .540
3-Higher 2 .614 .636 .650 .574 .634 1.000

Fraternal twins
Addition 1 1.000 .664 .673 .073 .194 .379
Multiplication 1 .779 1.000 .766 .313 .380 .361
3-Higher 1 .674 .679 1.000 .239 .347 .545
Addition 2 .462 .412 .500 1.000 .739 .645
Multiplication 2 .562 .537 .636 .620 1.000 .751
3-Higher 2 .392 .359 .565 .745 .603 1.000

Standard deviations
Identicals, male
Identicals, female
Fraternals, male
Fraternals, female

7,
8
9.
8,

.37

.00
,12
.99

13
12
16
15

.81

.37

.51

.44

16
15
17
16

.93

.19

.20

.98

8.17
6.85
7.70
7.65

13
11
14
14

.33

.78

.52

.59

17.
14,
14.
18.

.56

.76
,74
,56

Note: In the correlation tables, males are shown above and females below the diagonal. 1 and 2
refer to scores of the first and second twin of a pair.

Figure 4.4 (next page) gives a path model for genetic influences on the
correlations or covariances within and across twins. The latent variable N refers
to a general genetic predisposition to do well on numerical tests. It is assumed
to affect performance on all three tests, but perhaps to different degrees, as
represented by paths a, b, c. These are assumed to be the same for both twins
of a pair (designated 1 and 2). The genetic predispositions N are assumed to be
perfectly correlated for identical twins, who have identical genotypes, but to be
correlated .5 for fraternal twins, who are genetically ordinary siblings.

The bottom part of Fig. 4.4 allows for nongenetic sources of correlation
among abilities within individuals and across pairs. Again, corresponding
covariances are assumed to be equal-not all these are marked on the figure,
but two examples are given. The residual covariance d between the addition
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Fig. 4.4 Twin correlations on three subscales of numerical ability. MZ, DZ =
identical and fraternal twins; N = genetic component of numerical ability; Ad,
Mu, 3H = subscales; 1,2 = first and second twin of a pair.

and multiplication scales is assumed to be the same in those individuals
designated "twin 2" as it is in those individuals designated "twin 1," and a
covariance such as e between twin 1 's score on "3-Higher" and twin 2's score
on "Addition" is assumed to be the same as that between twin 2's "3-Higher"
score and twin 1's "Addition."

Altogether, there are 15 unknowns to be solved for: the 3 paths a, b, c,
3 residual variances, 3 within-person covariances across traits (dis an
example), 3 different across-person covariances across traits (e is an example),
and 3 across-person covariances for the same trait. There are 4 x 6 x 7/2 = 84
data points , leaving 84 -15 = 69 df for testing the fit of the model to the data
from the four groups at once.

The obtained value of x2 is 92.12 (p = .03; RMSEA = .083), indicating that
the model doesn't hold exactly in the population, and provides a somewhat
marginal approximation. With these sample sizes, neither a fairly good
approximation nor a fairly poor one can be ruled out (90% Cl for RMSEA = .025
to .125).

Could we improve matters by fitting the model for the males and females
separately? This would involve 30 unknowns and 84 - 30 = 54 df. The
obtained x2 is 73.28, so the difference in x2 is 18.84 for 15 df, which does not
represent a statistically significant improvement in fit (p > .10). We may as well
go with the same result for both sexes, keeping in mind that the marginal fit
suggests that our model may not be correct in all respects.

Table 4-11 shows the estimates (from a standardized solution). The
genetic paths have values from .61 to .82; the squares of these represent the
proportion of variance attributable to the common genetic factor (if the model is
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Table 4-11 Solution of model of Fig. 4.4 with data of Table 4-10 for genetics
of numerical ability

Genetic Residual Residual same-trait
path variance cross-person covariance

Addition .664 .559 .147
Multiplication .821 .326 .093
3-Higher .610 .628 .345

Other residual covariances
Within-person Cross-person

Ad-Mu .146 .059
Ad-3H .233 .153
Mu-3H .136 .136

correct), namely, from 37% to 67% for these three measures. The rest, the
residual variances, are attributable to non-genetic factors, including errors of
measurement, or to genetic factors specific to each skill. Whereas the trait
variances include a component due to errors of measurement, the trait
covariances do not. Here the genes show up more strongly, although the
environmental contributions are still evident. The genetic contributions to the
within-person correlations among the tests are .55, .41, and .50 (calculated from
the path diagram as, for example, .664 x .821 = .55). The environmental
contributions are .15, .23, and .14 (bottom left of Table 4-11). The genetic plus
the environmental covariance is approximately equal to the phenotypic
correlation: for the addition-multiplication correlation this sum is .55 + .15 = .70;
the mean of the 8 within-person Ad-Mu correlations in Table 4-10 is .68.
Looked at another way, about 79% of the correlation between addition and
multiplication skills in this population is estimated to be due to the shared effects
of genes.

Heredity, environment, and sociability

In the previous section we discussed fitting a model of genetic and
environmental influences on numerical ability, treated as an SEM problem
involving multiple groups-namely, male and female identical and fraternal
twins. In this section we consider a model-fitting problem in which data from two
twin samples and a study of adoptive families are fit using a general-purpose
model-fitting program. It may serve as a reminder that latent variable models
are a broader category than "problems solved by LISREL and EQS."

The data to be used for illustration are correlations on the scale
"Sociable" of the Thurstone Temperament Schedule. The correlations,
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Table 4-12 Correlations for the trait Sociable from the Thurstone
Temperament Schedule in two twin studies and an adoption study

Pairing Correlation Number of pairs

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

MZ twins: Michigan
DZ twins: Michigan
MZ twins: Veterans
DZ twins: Veterans
Father-adopted child
Mother-adopted child
Father-natural child
Mother-natural child
Adopted-natural child
Two adopted children

.47

.00

.45

.08

.07
-.03
.22
.13

-.05
-.21

45
34

102
119
257
271

56
54
48
80

Note: Michigan twin study described in Vandenberg (1962), and Veterans twin study in Rahe,
Hervig, and Rosenman (1978); correlations recomputed from original data. Adoption data from
Loehlin, Willerman, and Horn (1985).

in Table 4-12, are between pairs of individuals in the specified relationships.
The first four pairings are for identical (MZ) and like-sexed fraternal (DZ) twins
from two twin studies. The first study, done at the University of Michigan,
involved highschool-age pairs, both males and females (see Vandenberg,
1962, for details). The second study was of adult pairs, all males, who had
served in the U.S. armed forces during World War II and were located through
Veterans Administration records (Rahe, Hervig, & Rosenman, 1978). The
remaining pairings in the table are from a study of adoptive families in Texas
(Loehlin, Willerman, & Horn, 1985).

Figure 4.5 shows a generalized path diagram of the causal paths that
might underlie correlations such as those in Table 4-12. A trait S is measured
in each of two individuals 1 and 2 by a test T. Correlation on the trait is
presumed to be due to three independent sources: additive effects of the
genes, G; nonadditive effects of the genes, D; and the environment common to
pair members, C. A residual arrow allows for effects of the environment unique
to each individual and-in all but the MZ pairs-for genetic differences as well.

Table 4-13 shows equations for the correlation 17172 between the test
scores of members of various kinds of pairs. The equations are derived from
the path model of Fig. 4.5. The assumptions inherent in the genetic correlations
at the top of Fig. 4.5 are that mating is random with respect to the trait; that all
nonadditive genetic variance is due to genetic dominance; and that there is no
selective placement for the trait in adoptions. Doubtless none of these is exactly
true (for example, the spouse correlation in the adoptive families for sociability
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Fig. 4.5 Path model of genetic and environmental sources of correlation
between two individuals. G = additive genes; D = nonadditive genetic effect;
C = shared environment; S = sociability; T = test score; 1,2 = two individuals.

was .16, which is significantly different from zero with 192 pairs but is certainly
not very large). However, minor departures from the assumptions should not
seriously compromise the model. The Table 4-13 equations allow (via c-j, 02,
03 ) for differentiating among the degrees of shared environment in the cases of
identical twins, ordinary siblings, and parents and their children. The equations
do not attempt to discriminate between the environmental relationships of
parents and adopted or natural children, or of DZ twins and other siblings;
obviously, one might construct models that do, and even-with suitable data--
solve them.

The path t in Fig. 4.5 is taken as the square root of the reliability of test T
(the residual represents error variance). The reliability (Cronbach's alpha) of

Table 4-13 Equations for correlations between pairs of individuals in different
relationships

Relationship

MZ twins
DZ twins
Parent, adopted child
Parent, natural child
Adoptive siblings

Table 4- 12
pairings

1,3
2,4
5,6
7,8

9,10

Equation for

(h2+d2 + Cl2;

(.5h2 + .25d2

(c3
2)t2

(.5h2 + c3
2)t2

(C2
2)t2

correlation

)t2

+ c2
2)t2

Note: h, c, d, t as in Fig. 4.5.
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the TTS scale Sociable in the Veterans sample, .76, was assumed to hold for all
samples. Thus, t was taken as V.76 = .87 in solving the equations. A general-
purpose iterative program was used to solve the set of path equations in
Table 4-13 for the unknown parameters.

There are 10 observed correlations in Table 4-12; models with 1 to 4
unknowns were tested, allowing 6 to 9 df for the x2 tests. Table 4-14 gives x2s
from several models based on the Table 4-13 equations. The first row contains
a "null model"~that all correlations are equal. It can be rejected with confidence
(p < .001). The models in the remaining lines of the table all constitute
acceptable fits to the data (x2 = df, or less, p > .30). We may still, however,
compare them to see if some might be better than others. Adding a single
environmental or nonadditive genetic parameter to h (lines 3 or 4) does not
yield a significant improvement in fit; nor does breaking down the environmental
parameter into MZ twins versus others (line 5). A three-way breakdown of
environment (line 6), into that for parent and child, siblings and MZ twins, does
somewhat better, although the improvement is not statistically significant (x2<jiff
of 6.49 from line 2, 5.87 from line 3, and 3.58 from line 5, all p > .05). Although
with larger samples a model like that of line 6 might be defensible, for the
moment we may as well stay with the parsimonious one-parameter model of
line 2. This model estimates that approximately half of the variance of
sociability (h2 = 52%) is genetic in origin. The rest is presumably attributable to
environment; this is not, however, the environment common to family members,
but that unique to the individual. A result of this kind is fairly typical in behavior
genetic studies of personality traits (Bouchard & Loehlin, 2001).

Table 4-14 Solutions of Table 4-13 equations for various combinations of
parameters

Model x2 df x2™ dfd

1.
2.
3.
4.
5.
6.

all rs equal (null)
h only
h + c
h + d
h + a, + c2

h + ct + c2 +c3

36.02
9.09
8.47
7.60
6.18
2.60

9
9
8
8
7
6

.62
1.49
2.91
6.49

1
1
2
3

Note: Model comparisons are with line 2 model.
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Fitting Models to Means as well as Covariances

The models we have discussed so far in this chapter have been fitted to
correlation or covariance matrices. However, in comparisons involving different
groups or different occasions, means are likely to be of at least as much interest
to an investigator as covariances. Fortunately, latent variable models, with fairly
minor elaboration, can be fitted to means as well as covariance matrices from
multiple groups or multiple occasions. Does the mean score on some latent
variable differ between men and women? Before and after some treatment?
Fitting latent variable models that incorporate means will let us address such
questions-even though the theoretical variables of principal interest remain
themselves unobserved, as in other latent variable models.

A simple example

Figure 4.6 provides a simple, hypothetical, exactly-fitting example to illustrate
the principles involved. There are two groups, Group 1 and Group 2, each
measured on manifest variables X, Y, and Z--the means on these variables are
shown at the bottom of the figure. Just to keep things as simple as possible,
assume that both groups have identical covariance matrices of standardized
variables with off-diagonal elements of .48, .42, and .56, leading in the usual
way to the values of the paths and residual variances shown in the figure.

This is all familiar ground. What's new is the triangle at the top of the
figure with a "1" in it, and the paths a through e leading from it to the latent and

Fig. 4.6 A two-group path model incorporating means.
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manifest variables. The triangle represents a constant, in this case 1.0.
Because it is a constant, its variance is zero, and according to the path rules of
Chapter 1, the paths a, b, c, d, and e leading from it will contribute nothing to the
variances and covariances of the Ls or the Xs, Ys, and Zs. But they do affect the
means of the variables to which they point, and this allows us to make
inferences from the observed means concerning the latent ones.

We proceed as follows. We select one group as a reference group: let's
say Group 1. We fix to zero the path from the constant to the latent variable(s) in
this group (i.e., path d in the figure). This means that paths a, b, and c must
account for the means in the left-hand group, since with d= 0 there is no

contribution to them via L-j. That implies, in this exactly-fitting example, that a =
4.0, b = 5.0, and c = 6.0. The paths a, b, and c are specified to be equal in both
groups. Thus they provide the same initial values 4.0, 5.0, and 6.0; the higher

observed values of 4.3, 5.4, and 6.35 must come via e and L^ That is, e must
equal .5 so that .5 x .6 will equal the .3 to be added to 4.0 to give 4.3, and so on.
Of course, in the real world it won't all be so exact, and we will use a model-
fitting program to get estimates of a, b, c, and e and the paths in the original
model-estimates that will come as close as possible to fitting the observations,
given the model.

The values of a, b, and c are baseline values for the manifest variable
means. What is e? It represents the difference between the means of the latent

variables in the two groups: that is, in this example, l_2 is .5 higher than L-| in
standard-score units. To test if this constitutes a significant difference, we could
set e to zero also, and test the worsening of fit as a x2 with 1 df.

Stress, resources, and depression

Let us look at a more realistic example involving a comparison of group means.
Holahan and Moos (1991) carried out a study of life stressors, personal and
social resources, and depression, in adults from the San Francisco Bay Area.
Participants were asked to indicate which, if any, of 15 relatively serious
negative life events had happened to them during the last 12 months. The list
included such things as problems with supervisors at work, conflicts with friends
and neighbors, and unemployment or financial troubles. On the basis of these
responses, subjects were divided into two groups: 128 persons who reported
two or more such events during the past year were classified as the "high-
stressor" group, and 126 persons who reported none were classified as the
"low-stressor" group. (Persons reporting just one negative life event were
excluded, to sharpen the contrast between the high and low stressor groups.)

The participants also responded to a questionnaire containing scales to
measure five variables: depressed mood, depressive features, self-confidence,
easygoingness, and family support. The first two of these were taken to be
indicators of a latent variable Depression, and the second three to be indicators
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Fig. 4.7 Path diagram for the high-stressor group, initial testing. (The diagram
for the low-stressor group is the same, except that the paths /and g from the
constant to D and R are fixed to zero.) Latent variables: D = Depression and R =
Resources. Observed variables: DM = depressed mood, DF = depressive
features, SC = self-confidence, EG = easygoingness, FS = family support.

of a latent variable Resources. Holahan and Moos followed up their subjects
four years later, and fitted models involving coping styles and changes in
depression in the two groups over time, but we will ask a simpler question of
just the first-occasion data: How do the high-stressor and the low-stressor
groups compare on the two latent variables? Figure 4.7 gives the path diagram
for the high-stressor group; the diagram for the low-stressor group, taken as the
reference group, would be the same, except that the two paths from the constant
to the latent variables are fixed to zero.

Table 4-15 (next page) contains the correlations, means, and standard
deviations for the five measured variables; those for the high-stressor group are
shown above the diagonal, and those for the low-stressor group below. The
results of the model fitting are shown in Table 4-16. As indicated in the footnote
to Table 4-16, the model fits reasonably well to the data from the two groups:
the chi-square is nonsignificant, and the RMSEA of .059 falls in the acceptable
range. However, the sample sizes are not quite large enough to rule out the
possibility of a poor fit in the population (the upper 90% confidence limit of
RMSEA is .105).
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Table 4-15 Correlations, standard deviations, and means for high-stressor
group (above diagonal) and low-stressor group (below diagonal) at initial
testing. (Data from Holahan and Moos, 1991)

DM DF SC EG FS SD M

Depressed mood 1.00 .84 -.36 -.45 -.51
Depressive features .71 1 .00 -.32 -.41 -.50
Self-confidence -.35 -.16 1.00 .26 .47
Easygoingness -.35 -.21 .11 1.00 .34
Family support -.38 -.26 .30 .28 1.00

Standard deviation 4.84 6.33 3.84 2.14 4.43
Mean 6.15 9.96 15.14 8.80 20.43

5.97 8.82
7.98 13.87
3.97 15.24
2.27 7.92
4.91 19.03

N 128
126

Of primary interest are the means and standard deviations of the two latent
variables in the high-stressor group. Depression is higher in this group,
and Resources lower; the variability is higher for both, to about the same
degree. The difference in means is estimated as slightly larger for Depression
than for Resources, but not significantly so: refitting the model with the two
means required to be numerically equal does not lead to a significant increase
in chi-square (x2diff = -571, 1 df, p > .30 ). Not surprisingly, the two latent
variables are negatively correlated, -.72 and -.78 in the two groups.

As expected, the baseline means h through / roughly follow the observed
means in the low-stressor reference group. The differences in the latent
variables predict that the means for the indicator variables for Depression
should be higher in the high-stressor group and those for Resources should be
lower. The observed means in Table 4-15 show this pattern with one
interesting exception: Self-confidence isn't lower in the high-stressor group as
the model predicts--in fact, there is a slight difference in the other direction.
Clearly, the model doesn't explain everything.

Note that it was possible to equate the measurement models across the
two groups. If it had not been possible to equate at least the factor loadings
(paths a through e), this would have presented a problem for interpreting the
group differences on the latent variables: Are they the same variables in the
two groups, or not? To argue that they are the same variables, one would have
to go beyond the model fitting and provide a theoretical argument that the same
latent variables should be differently related in the appropriate way to their
indicators in the high- and low-stressor groups.
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Table 4-16 Solution of the path model of Fig. 4.7

Measurement model
Latent variables Residual Baseline

Paths variances means
Low stressor group

mean, Depression f. [0.00] a. 4.44 m. 2.94 h. 6.08
mean, Resources g. [0.00] b. 5.25 n. 16.17 i. 10.26
SD, Depression [1.00] c 1.56 o. 11.85 j 15.58
SD, Resources [1.00] d. 1.01 p 3.64 k. 8.61
Correlation r. -.72 e. 2.68 q 12.35 I. 20.40

High stressor group
mean, Depression
mean, Resources
SD, Depression
SD, Resources
Correlation

f.
g.

r.

.63
-.50
1.30
1.29
-.78

[same as low-stressor group]

Note: i2 = 26.965, 19df, p = .10-5. RMSEA = .059; 90%CI = .00 to .105. Values in square
brackets fixed.

Changes in means across time—latent curve models

Changes in behaviors and attitudes across time are often of interest to social
scientists. Means may be directly incorporated into some of the temporal
models discussed earlier in the chapter-for example, simplexes. Here we
discuss a different approach, the fitting of latent curve models (Meredith & Tisak,
1990). Basically, these models assume that changes in any individual's
behavior over time may be described by some simple underlying function, plus
error. The model is the same for everyone, but the parameters may differ from
person to person. Any curve capable of being described by a small number of
parameters could be used; for simplicity we use a straight line in our example.
Such a line may be identified by two parameters, its intercept and its slope.
That is, one individual may have a steeper rate of increase than another (a
difference in slope); or one may begin at a higher or lower level (a difference in
intercept).

Our example involves attitudes of tolerance toward deviant behaviors
(stealing, cheating, drug use, etc.), measured annually in a sample of young
adolescents. (The example is adapted from Willett and Sayer, 1994).
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Table 4-17 Tolerance of deviant behaviors at four ages and exposure to
deviant peers

Tolerance for deviance at age Age 11
11 12 13 14 exposure

Means
Covariances

11
12
13
14

.2008 .2263 .3255 .4168 -.0788

.0317

.0133 .0395

.0175 .0256 .0724

.0213 .0236 .0531 .0857
Age 11 exposure .0115 .0133 .0089 .0091 .0693

Note: Data from Willett and Sayer (1994). N = 168. Log scores.

Means and covariances for the tolerance measure for ages 11 to 14 are
given in Table 4-17. Also included in the table is a measure of the exposure of
the individual at age 11 to peers who engage in such activities. A question of
interest is whether exposure to such peers at age 11 affects either the initial
level or the subsequent rate of increase in tolerance for behaviors of this kind.
Both measures were transformed by the authors to logarithms to reduce
skewness.

A path model is shown in Figure 4-8. The measures of tolerance at ages
11 to 14 are represented by the four squares at the bottom of the figure. The
latent variables I and S represent the intercept and slope that characterize an
individual's pattern of response. Note that these have been assigned fixed
paths to the measures. These paths imply that an individual's response at age

Fig. 4-8 Path model of change in tolerance for deviant behaviors.
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11 will be determined by his intercept parameter, plus zero units of slope, plus
a residual (e). His response at age 12 will be the intercept parameter, plus one
unit of slope, plus error. At 13, intercept plus two units, plus error. And so on.

In the upper part of the figure there is a latent variable E, representing
exposure to deviant peers. This is assumed to contribute via paths a and b to
the intercept and slope of an individual's growth curve. The measured variable
E is taken to be an imperfect index of this latent variable; in the absence of
information about the actual reliability of measurement, we have assigned a
numerical value for illustrative purposes using an arbitrarily assumed reliability
of .80 (i.e., error variance = .20 x .0693 = .0139).

Again, the triangle in the diagram with a 1 in it represents a constant
value of 1. Recall that because it is a constant, the paths /', j, and k leading from
it do not contribute to the variances of the latent variables to which they point, or
their covariances, but they provide a convenient way of representing effects on
means. Fitting the model (via LISREL and a maximum likelihood criterion)
yields the values in Table 4-18. The parameter / merely reflects the mean log
exposure score of -.0788. The intercept parameter j gives the initial level of
tolerance for deviant behavior, and k the yearly increment, yielding approximate
predicted values of .20, .27, .34, and .41 for the four ages. ("Approximate,"
because this neglects small additional effects via the paths ia and /b~the actual
predicted values run about .01 lower.) The paths a and b indicate the effects of
exposure to delinquent peers on tolerance: There is an appreciable effect on
level but essentially none on slope (the small negative value of b is less than
half its standard error). That is, children who were exposed to more delinquent
peers at age 11 show higher levels of tolerance for deviant behavior, but the
rate of increase over age in all groups appears to be about the same.

A linear latent growth curve does not, however, fit these data particularly
well. The overall chi square is a highly significant 26.37 for 8 df. The RMSEA is
an unsatisfactory .117. Inspection of the means in Table 4-17 suggests that it is
the first one that is chiefly out of line-the increases from ages 12 to 13 to 14 are
close to 1.0 per year, but the increase from 11 to 12 is only about .2. One can't,
of course, know from these data whether this might represent a genuine

Table 4-18 Results from fitting path model of Fig. 4.8 to data of Table 4-17

Means Paths (std.) Residual variances (std.)

i -.08
j .20
k .07

a
b

.42
-.05

c
d

.82

.99+
e
f
g
h

.54

.66

.41

.26

Note: Paths and residual variances are standardized.
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discontinuity due (let us say) to hormonal or ecological factors entering the
picture at around age 12, or a measurement artifact such as a floor effect. A log
score of .2008 corresponds to a raw score value of 1.22, and the minimum
possible raw score (if a child indicates that all the deviant behaviors are "very
wrong") is 1.00. We can easily enough ask "what if." Suppose the mean at the
first measurement had been, say, .1200 instead of .2008--i.e., roughly in line
with the others-would the model have fit acceptably? The answer is, better but
still not wonderfully. The chi square is substantially lower, 16.27, but one would
still reject the hypothesis of perfect fit. The RMSEA drops to a marginally
acceptable .079, but one could still not reject the hypothesis that the fit is poor in
the population (upper 90% confidence limit for RMSEA is .134). Would the
substantive interpretation be any different? Not much. Lowering the first point
would give us a lower intercept parameter (/= .14) and a higher estimate of the
slope (k= .10), but the conclusions about the effect of peers (parameters a and
b) would be essentially unchanged. Of course this remains speculation, but it
and other "what if's that one might consider may be helpful in planning the next
experiment, or may give some idea as to which results from this one are likely to
prove robust. (For another "what if" in this case, see the exercises at the end of
the chapter.)

Factorial equivalence

As mentioned earlier, an issue arises when a model is fitted in two or more
groups: Are the latent variables the same in both groups? The issue is salient
in cross-cultural comparisons. If we want to claim (for example) that family
loyalty is more strongly related to conservatism in Mexico than in the United
States, we must first be able to show that our measures of the latent variables
family loyalty and conservatism are equivalent in both cultures. Otherwise, it
makes little sense to compare the correlations between them. The same issue
arises in making comparisons in distinct subgroups within one society, such as
males and females, or different ethnic groups. What does it mean to say that
women are more anxious than men, or less anxious, if our measure of anxiety
does not have the same meaning in the two sexes?

In SEM terms, if we want to make comparisons involving latent variables
in two or more groups, we are asking questions of the form: Are the means of
the latent variables equal? Are their variances equal? Are the relations
between Latent Variable A and Latent Variable B the same in the different
groups? To be able to answer such questions requires that we first
demonstrate the invariance across groups of the measurement part of our
model. Meredith (1993) has distinguished between strict factorial invariance
and strong factorial invariance in this situation. Strict factorial invariance
requires equivalence of all the elements of the measurement model-the factor
loadings, the specific means for each of the manifest variables (i.e., those to
which the effects of the latent variables are added), and the specific variances.
Strong factorial variance merely requires equivalence for the first two, allowing
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the possibility that measurement error, for example, might differ from group to
group. For making cross-group comparisons of latent variables, strict factorial
invariance in the measurement model is the scientific ideal. However, with due
caution in interpretation within a substantive framework, strong factorial
invariance may be adequate, and in some cases even weaker factorial
invariance, in the form of identity or similar configuration of just the factor
loadings, may permit drawing useful conclusions. The fitting to the data of
models involving means is an essential step in making cross-group inferences
about latent variables, but we must be able to say that they are the same
variables in each group.

The Versatility of Multiple-Group Designs

One use of a multiple-group model is to deal with interactions. In one of his
short stories, F. Scott Fitzgerald said of the very rich that "They are different from
you and me." If the very rich are only different in that they have more money,
and, accordingly, differ in attitudes that tend to vary with money, one could
include wealth as a variable in an ordinary path model along with attitude
measures. A good fit of this model would be testimony to the accuracy of such
an interpretation. On the other hand, if the very rich are categorically different,
that is, have attitudes that vary in distinctively different ways from yours and
mine, a better solution would be to fit a two-group model, in which measures
could be related in different ways among the very rich and the rest of us.

If one is in doubt as to whether the very rich are fundamentally different, a
natural approach would be to see if the same model could be fit in both groups-
does constraining them to be the same lead to a significant increase in chi
square? If so, one could pursue further model fitting to ascertain which
differences between the rich and the rest of us are essential and which are not.

This logic can be extended to many different kinds of interaction. Are
individuals low, medium and high in the strength of an attitude susceptible to
different forms of persuasion? Do men and women achieve economic success
by different routes? Do paranoid and non-paranoid schizophrenics show a
different pattern of physiological response to a sudden noise? Fit multiple
group models and see.

Experiments and data summary

Latent variable models need not be confined to correlational settings, but can
provide an effective and flexible way of analyzing the data from experiments. In
the simplest case, where one could use SEM but probably wouldn't, there is an
experimental group and a control group, and one tests for a difference between
means in a two-group design. In more complex cases, one may have multiple
experimental and control groups, various covariates, unequal sample sizes, a
desire to equate or leave free various parameters across groups, and so on,
and an approach via SEM may be quite attractive.

147



Chapter 4: Multiple Groups or Occasions

In Chapter 2 we discussed multiple groups as a way of handling missing
data. Another possible application is as a method of data summary. If the same
model is fit in a number of data samples, the parameters that can and can't be
equated represent an economical way of describing the areas of agreement
among the samples, and of testing for differences. Where applicable, this may
sometimes have advantages over meta-analysis or similar techniques.

A Concluding Comment

The examples we have considered in this and the preceding chapter represent
a variety of applications of path and structural equation analysis to empirical
data in the social and behavioral sciences. Most of these models were
originally fit using LISREL, but as we noted earlier, this fact reflects the
widespread availability of this particular program rather than any inherent
feature of these problems.

In the next two chapters we turn temporarily away from models like these
to consider the important class of latent variable methods known as exploratory
factor analysis. In the final chapter we return to consider some strategic issues
in the use of latent variable models in scientific research.

Chapter 4 Notes

Some of the kinds of models described in this chapter are discussed in a
special section of Child Development (Connell & Tanaka, 1987) dealing with
structural modeling over time. See also edited books by Collins and Horn
(1991), Collins and Sayer (2001), and Gottman (1995). For latent variable
growth curve modeling, see Duncan et al. (1999). For a general view of the
multivariate modeling of changes over time, see Nesselroade (2002). For
behavior genetic models, which inherently involve model fitting in multiple
groups, see a special issue of the journal Behavior Genetics (Boomsma et al.
1989), and a book by Neale and Garden (1992).

Statistical issues with multiple groups. Yuan and Bentler (2001 a)
discuss multigroup modeling in the presence of nonnormality or similar
problems. Steiger (1998) deals with extension of the RMSEA to the multiple
group situation.

Simplexes. Guttman (1954) originally proposed the simplex model for
the case of a series of tests successively increasing in complexity, such that
each required the skills of all the preceding tests, plus some new ones--an
example would be addition, multiplication, long division. But simplex
correlation patterns may occur in many other situations, such as the growth
process considered in the chapter. The Bracht and Hopkins example was
slightly simplified for purposes of illustration by omitting data from one grade,
the ninth. Joreskog (Joreskog & Sorbom, 1979, Chapter 3) discusses model-
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fitting involving a number of variants of the simplex.
Latent traits and latent states. The distinction is discussed by

Steyer and Schmitt (1990); Tisak and Tisak (2000) explore how this tradition
relates to the latent growth curve ideas discussed in this chapter.

Modeling the individual and the group. Molenaar et al. (2003)
emphasize that the two are not the same. Mehta and West (2000) show how to
use individual-growth-curve-based SEM to deal with the effects of measuring
different individuals at different ages.

Genetic assumptions. The value of .5 for the genetic correlation
between dizygotic twins (numerical-ability example) assumes that assortative
mating (the tendency for like to marry like) and genetic dominance and epistasis
(nonadditive effects of the genes on the trait) are negligible in the case of
numerical ability, or at least that to the extent they occur they offset one another.
The first process would tend to raise the genetic correlation for fraternal twins,
and the latter two would tend to lower it. Assortative mating tends to be
substantial for general intelligence and verbal abilities but is usually modest for
more specialized abilities, such as numerical and spatial skills (DeFries et al.,
1979). In the sociability example, a path allowing for nonadditive genetic effects
is included in the model.

Models involving means. Willett and Sayer's (1994) example given
in the present chapter has been simplified for illustrative purposes by dropping
one age (15) and one predictor variable (gender). A basic paper on latent
curve analysis is Meredith and Tisak (1990). For a technical summary of the
fitting of mean and covariance structures, see Browne and Arminger (1995); a
basic paper is Sorbom (1974). Hancock (1997) compares the group mean
differences approach described in the text to an alternative strategy of carrying
out the analysis within a single group but adding a variable that codes for group
identification (cf. Head Start example in Chapter 3). Dolan (1992) and Dolan
and Molenaar (1994) consider group mean differences in a selection context. A
cross-cultural application is discussed by Little (1997). The varying of means
over groups and over time are brought into a common SEM framework by
Meredith (1991). Three different ways of representing changes in means in
SEM are described by Browne and du Toit (1991). For a readable exposition of
latent growth modeling, see Lawrence and Hancock (1998). For further
examples of its use, see Duncan and Duncan (1994) and Stoolmiller (1994,
1995). Extensions of such models to multiple groups and several trait domains
are discussed by Willett and Sayer (1996). Reasons for preferring these
models to an alternative, direct arrows connecting measures repeated over
time, are given by Stoolmiller and Bank (1995). Cheong et al. (2003) discuss
representing mediational processes in latent growth curve models, and Muthen
(1997) the use of latent growth curve models with multilevel data. McArdle (e.g.,
2001) describes an approach to change over time via latent difference scores.
Kaplan et al. (2001) ask what happens when the model is dynamic and you
model it as static. For modeling of time series, see du Toit and Browne (2001).
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Longitudinal behavior-genetic growth curve models. Genetic
and environmental effects on a trait over time may be modeled using twin or
other behavior genetic multiple group models (McArdle, 1986; Neale &
McArdle, 2000). Examples using large longitudinal twin samples include
McGue and Christensen (2003) and Finkel et al. (2003). See also Heiman et al.
(2003). McArdle and Hamagami (2003) discuss several different model-fitting
approaches to inferring how genes and environment contribute to trait changes
over time.

Factorial equivalence. The issue of practical versus statistical
significance arises in this context as well. With very large samples, failures of
chi-square tests may occur with discrepancies from factorial invariance that are
too small to make a practical difference. Cheung and Rensvold (2002) explore
the use of differences in goodness-of-fit indices in this situation. Steenkamp
and Baumgartner (1998) discuss various kinds of invariance in cross-national
research, and Lubke and Dolan (2003) look specifically at the requirement that
residual variances be equal across groups. Millsap (1998) discusses
invariance of intercepts. Rivera and Satorra (2002) compare several SEM
approaches to group differences with nonnormal data in a large multi-country
data set. A number of issues in establishing cross-cultural equivalence are
discussed in Harkness et al. (2003).

Analyzing experiments. See, for example, Bagozzi and Yi (1989),
Kiihnel (1988), Muthen and Speckart (1985), and Kano (2001). Cole et al.
(1993) discuss the relative merits of SEM and MANOVA for analysis in
experimental (and nonexperimental) designs. A combination of experiment and
SEM is discussed by du Toit and Cudeck (2001).

Fitzgerald quotation. From his story "The rich boy" (1982, p. 139).
Multiple-group analysis as data summary. For a number of

examples, see Loehlin (1992).

Chapter 4 Exercises

1. Fit the Tesser and Paulhus correlations (Table 4-1) as a confirmatory
factor analysis involving five uncorrelated factors: a general attraction factor on
which all eight measurements are loaded, and four specific factors, one for each
test. Assume equal loadings across the two occasions for the general and the
specific factors and the residuals.

2. For the model in problem 1, relax the requirement that the loadings on
the general factor are equal on the two occasions. Does this significantly
improve the goodness of fit?

3. Test the hypothesis for the Judd-Milbum data (Tables 4-5 and 4-7)
that the measurement model is the same across groups, although the structural
model may differ. (Note that covariances are analyzed, not correlations.)
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4. Set up and solve the path problem for the genetics of numerical ability
as in the text (sexes equal), using correlations rather than covariances. Still
using correlations, test the additional hypothesis that the three subscales are
parallel tests of numerical ability (i.e., have a single common parameter in each
of the five sets in Table 4-11).

Table 4-19 Data for problem 5 (women above diagonal, men below)

Scale A B C D M SD

A 1.00 .48 .10 .28
B .50 1.00 .15 .40
C .12 .16 1.00 .12
D .45 .70 .17 1.00

SD 1.08 1.15 1.01 1.18
M 7.5 10.2 7.0 11.1

.98 5.2
1.00 7.0

.99 6.1
1.03 8.3

N 208
200

5. Table 4-19 shows means, standard deviations, and correlations on
four hypothetical masculinity-femininity scales in samples of 200 men (below
diagonal) and 208 women (above diagonal). Is it reasonable to conclude that
there is a general masculinity-femininity latent variable that accounts both for
the interrelationships among the measures and the differences in mean and
variance between the samples? Are there differences between the sexes in
how the tests measure this factor?

6. Would the latent curve model of growth (Fig. 4-8) fit better if the growth
curve were quadratic rather than linear in this age range? (Hint: Set the paths
from S to values 0, 1, 4, 9 instead of 0, 1, 2, 3.)
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Chapter Five:
Exploratory Factor Analysis-Basics

So far, we have been discussing cases in which a specific hypothesized model
is fit to the data. Suppose that we have a path diagram consisting of arrows
from X and Y pointing to Z. The theory, represented in the path diagram,
indicates that X and Y are independent causes, and the sole causes, of Z. The
qualitative features of the situation are thus spelled out in advance, and the
question we ask is, does this model remain plausible when we look at the data?
And if so, what are the quantitative relationships: What is our best estimate of
the relative strengths of the two causal effects?

In this chapter we turn to another class of latent variable problems, the
class that has been widely familiar to psychologists and other social and
biological scientists under the name factor analysis, but which we are calling
exploratory factor analysis to distinguish it from confirmatory factor analysis,
which we have treated as an example of the kind of model fitting described in
the preceding paragraph.

In exploratory factor analysis we do not begin with a specific model, only
with rather general specifications about what kind of a model we are looking for.
We must then find the model as well as estimate the values of its paths and
correlations.

One can do a certain amount of exploration with general model-fitting
methods, via trial-and-error modification of an existing model to improve its fit to
data. But the methods we cover in this chapter and the next start out de novo to
seek a model of a particular kind to fit to a set of data.

One thing that makes this feasible is that the class of acceptable models
in the usual exploratory factor analysis is highly restricted: models with no
causal links among the latent variables and with only a single layer of causal
paths between latent and observed variables. (This implies, among other
things, that these models have no looped or reciprocal paths.) Such models
are, in the terminology of earlier chapters, mostly measurement model, with the
structural model reduced to simple intercorrelations among the latent variables.

Indeed, in the perspective of earlier chapters, one way to think of
exploratory factor analysis is as a process of discovering and defining latent
variables and a measurement model that can then provide the basis for a
causal analysis of relations among the latent variables.
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hFig. 5.1 Example of a factor analysis model. A, B, C = factors; D, E, F, G, H 
observed variables; a, b, c = factor intercorrelations; d, e, f, g, h = specifics;
i, j, k, m, n, etc. = factor pattern coefficients.

The latent variables in factor analysis models are traditionally called
factors. Most often, in practice, both observed and latent variables are kept in
standardized form; that is to say, correlations rather than covariances are
analyzed, and the latent variables~the factors-are scaled to unit standard
deviations. We mostly follow this procedure in this chapter. However, it is
important to be aware that this is not a necessary feature of factor analysis-that
one can, and in certain circumstances should, keep data in its rawscore units
and analyze covariances rather than correlations, and that some factor analytic
methods scale factors to other metrics than standard deviations of 1.0.

Figure 5.1 shows an example of a factor analysis model that reintroduces
some of the factor analysis terminology that was earlier presented in Chapter 1
and adds a few new matrix symbols. A, B, and C are the three common factors.
Their intercorrelations are represented by the curved arrows a, b, and c, which
collectively form the factor intercorrelation matrix, which we designate F. D, E,
F, G, and H are the observed variables, the tests or measures or other
observations whose intercorrelation matrix, R, we are analyzing. The arrows /,
j, k, etc. represent paths from latent to observed variables, the factor pattern
coefficients. Collectively, these paths are known as the factor pattern, in matrix
form P. Finally, paths d, e, f, etc. represent residual or unique factors, also
called specific factors. They are expressed in matrix form as a diagonal matrix
U, or as variances U2. The communalities, the share of the variance of the
variables explained by the factors, are equal to I - U2, where I is the identity
matrix.

In the example, the dimensions of matrix F would be 3 x 3, matrices R
and U would be 5 x 5 (although only the five nonzero diagonal values of U
would be of interest), and P would be 5 x 3; conventionally, P is arranged so
that the rows represent the observed variables and the columns the factors.
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Another matrix mentioned earlier, the factor structure matrix of correlations
between factors and observed variables, is symbolized by S; its dimensions are
also variables by factors, or 5 x 3 in the example. Recall that the elements of
this matrix are a complex function of the paths and interfactor correlations--for
example, the correlation between A and D is i+bm+an.

For a factor model, one can obtain the correlations implied by the model
either by tracing the appropriate paths in the diagram according to Wright's
rules, or, more compactly, by the matrix operations impR = PFP'+ U2, where the
imp before R indicates that these are implied or predicted, rather than observed,
values of the correlations. (PFP' by itself yields communalities in the diagonal
instead of total variances-a so-called reduced correlation matrix that we
symbolize by Rr.) The reader may wish to satisfy him- or herself, by working
through an example or two, that path tracing and matrix calculation indeed give
identical results.

Now it is in general the case that there are an infinite number of possible
path models that can reproduce any given set of intercorrelations, and this is
still true even if we restrict ourselves to the class of factor models. To give our
search any point we must redefine it more narrowly. Let us invoke parsimony,
then, and say that we are looking for the simplest factor model that will do a
reasonable job of explaining the observed intercorrelations.

How does one determine whether a particular model does a reasonable
job of explaining observed correlations? This is by now a familiar problem with
a familiar solution: One generates the correlations implied by the model and
then uses a formal or informal criterion of goodness of fit to assess their
discrepancy from the observed correlations. Smallest absolute differences,
least squares and maximum likelihood have all been used for this purpose.

What is meant by a simple model? Factor analysts typically use a two-
step definition: (1) a model that requires the smallest number of latent variables
(factors); (2) given this number of factors, the model with the smallest number of
nonzero paths in its pattern matrix. Additional criteria are sometimes invoked,
such as (3) uncorrelated factors or (4) equal distribution of paths across
variables or factors, but we focus on the first two, which are common to nearly
all methods of exploratory factor analysis.

Applications of the first two criteria of simplicity correspond to the two
main divisions of an exploratory factor analysis, factor extraction and rotation.

In the first step, factor extraction, methods are employed to yield models
having the smallest number of factors that will do a reasonable job of explaining
the correlations, although such methods typically produce models that are
highly unsatisfactory according to the second criterion. Then in the second
step, rotation, these models are transformed to retain the same small number of
factors, but to improve them with respect to the second criterion of nonzero
paths.
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Factor Extraction

One straightforward procedure goes as follows, beginning with the reduced
correlation matrix Rr (a correlation matrix with estimated communalities
replacing the 1s in the diagonal):

Step 1. Solve for a general factor of Rr.
Step 2. Obtain the matrix impR implied by the obtained general factor.
Step 3. Subtract impR from the matrix used in Step 1, leaving a residual

matrix that we designate resR.
Step 4. Examine the residual matrix resR; are you willing to regard it as

trivial? If so, stop. If not, put resR in place of Rr in Step 1, and repeat.

This account glosses over some details, but it gives the essentials of a
procedure that will produce a series of factors of decreasing magnitude, each of
which is uncorrelated with all the others. This facilitates reaching the first goal
of simplicity, the smallest number of factors necessary to fit the data reasonably
well, because if factors are solved for in order of size, when one cuts off the
process in Step 4, one knows that no potential factor remains unconsidered
whose contribution toward explaining R would exceed that of the least
important factor examined so far. And because the factors are independent,
each obtained factor will make a unique and nonoverlapping contribution to the
explanation of R.

The factors resulting from the process described, being general factors,
will tend to have many nonzero paths and thus not be simple according to the
second of our two criteria; we deal with this problem later when we discuss the
second stage of exploratory factor analysis known as "rotation."

Extracting successive general factors

An example of a general factor is shown in Table 5-1 (next page). On the left in
the table is an intercorrelation matrix, with communalities (in parentheses)
replacing the 1s in the diagonal; thus, it is a reduced correlation matrix Rr. For
purposes of the example, we have inserted exact communalities in the
diagonal-ordinarily, one would not know these, and would have to begin with
estimates of them (we discuss some methods later in this chapter).

Shown to the right in Table 5-1 are general factors extracted from the
same correlation matrix by two methods. The column labeled Principal factor
contains values obtained by an iterative search for a set of path coefficients
which would yield the best fit of implied to observed correlations according to a
least squares criterion. The column labeled Canonical factor contains values
obtained by a similar search using a maximum likelihood criterion instead. (The
searches were carried out via LISREL, specifying one standardized latent
variable and residuals fixed to U2.) Note that although each method leads to
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Table 5-1 Extraction of an initial general factor by two methods (hypothetical
correlations with exact communalities)

First general factor

Principal Canonical
D E F G H factor factor

D
E
F
G
H

(.16)
.20
.24
.00
.00

.20
(.74)
.58
.56
.21

.24

.58
(.55)
.41
.21

.00

.56

.41
(.91)
.51

.00

.21

.21

.51
(-36)

D
E
F
G
H

.170

.782

.649

.857

.450

.065

.685

.525

.939

.507

slightly different estimates of the paths from the factor to the variables, the
solutions are generally similar, in that G is largest, D is smallest, with E then F
and H falling between.

As we see later, there are other methods for obtaining principal and
canonical factor loadings via the matrix attributes known as eigenvalues and
eigenvectors, but those methods yield results equivalent to these.

Table 5-2 carries the process through successively to a second and third
factor, using the principal factor method. In the first row of Table 5-2 are shown
the correlation matrix, the same as in Table 5-1, with communalities in the
diagonal. On the right, in the columns of factor pattern matrix P, the loadings of
the three factors are entered as they are calculated. The first column, labeled I,
is the first principal factor from Table 5-1, the single factor that by a least
squares criterion comes closest to reproducing Rr. Below this, on the right in

the second row of matrices, are shown impR, the correlations (and
communalities) implied by the first general factor. They are obtained via pp'
(e.g., .1702 = .029; .170 x .782 = .133; etc.). On the left in this row is what is left
unexplained-the residual matrix resR, obtained by subtracting impR from Rr

(e.g., .16 - .029 = .131; .20 - .133 = .067; etc.)
The basic principal factor procedure is then applied to this residual

matrix, to find the single general factor best capable of explaining these
remaining correlations: The result is the second principal factor, labeled II in the
matrix P. (This was again obtained by LISREL, with the residuals now fixed at
1-. 131, etc.)

In the third row of matrices, these various steps are repeated. The matrix
implied by factor II is impR2, and the still unexplained correlations, resR2, are
obtained by subtracting impR2 from resR-). Clearly, not very much is left
unexplained--the largest numbers in resR2 are on the order of .03 or .04. In
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Table 5-2 Extraction of three successive general factors by the principal factor
method (data of Table 5-1)

Rr

D
E
F
G
H

D
(.16)
.20
.24
.00
.00

E
.20

(.74)
.58
.56
.21

F
.24
.58

(.55)
.41
.21

G
.00
.56
.41

(.91)
.51

H
.00
.21
.21
.51

(.36)

P

D
E
F
G
H

I
.170
.782
.649
.857
.450

II
.325
.302
.330

-.413
-.337

III
.161

-.193
.142

-.071
.208

h2

.160

.740

.550

.910

.360

resR-

(.131) .067 .130 -.146 -.076
.067 (.128) .072 -.111 -.142
.130 .072 (.129) -.146 -.082

-.146 -.111 -.146 (.175) .124
-.076 -.142 -.082 .124 (.157)

(.025) -.031 .023 -.012 .034
-.031 (.037) -.028 .013 -.040
.023 -.028 (.020) -.010 .029

-.012 .013 -.010 (.005) -.015
.034 -.040 .029 -.015 (.043)

(-.001) .000 .000 -.001 .001
.000 (.000) -.001 -.001 .000
.000 -.100 (.000) .000 -.001

-.001 -.001 .000 (.000) .000
.001 .000 -.001 .000 (.000)

impR-)

(.029) .133 .110 .146 .076
.133 (.612) .508 .671 .352
.110 .508 (.421) .556 .292
.146 .671 .556 (.735) .386
.076 .352 .292 .386 (.203)

(.106) .098 .107 -.134 -.110
.098 (.091) .100 -.124 -.102
.107 .100 (.109) -.136 -.111

-.134 -.124 -.136 (.170) .139
-.110 -.102 -.111 .139 (.114)

(.026) -.031 .023 -.011 .033
-.031 (.037) -.027 .014 -.040
.023 -.027 (.020) -.010 .030

-.011 .014 -.010 (.005) -.015
.033 -.040 .030 -.015 (.043)

many practical situations we might well decide that the small values left in resR2

are attributable to sampling or measurement error, poor estimation of the
communalities, or the like, and stop at this point. But in our hypothetical exact
example we continue to a third factor, III, which, as shown in resR3 in the bottom
row, explains (except for minor rounding errors) everything that is left.

Note that the contributions of the three factors, that is, impR-j + impR2 +
impRs, plus the final residual matrix resR$, will always add up to the starting
matrix Rr. This is a consequence of these being independent factors: Each
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explains a unique and nonoverlapping portion of the covariation in Rr. Note
also that the sizes of the pattern coefficients in P tend on the whole to decrease
as we move from I to II to III: Successive factors are less important; impR-|
explains more of Rr than does impR2, and impR2 more than impRs.

Notice further that the total explained correlation Rr can be obtained
either by impR-) + impR2 + impRs or by PP'. This equivalence is not surprising if
one traces the steps of matrix multiplication, because exactly the same products
are involved in both instances, and only the order of adding them up differs.

Finally, notice the column at the top right of Table 5-2 labeled /T2, the
communalities implied by the solution. They are obtained as the diagonal of
PP', or, equivalently, as the sums of the squared elements of the rows of P (to
see this equivalence, go mentally through the steps of the matrix multiplication
PP'). In this case, because true communalities were used to begin with and the
solution is complete, the implied communalities agree with the diagonal of Rr.

Figure 5.2 compares the preceding solution, expressed in path diagram
form, with the causal model which in fact was used to generate the correlation
matrix analyzed in Table 5-2.

First, by the appropriate path tracing, either diagram yields the same
correlations among variables and the same communalities. The communality of
G in the top diagram is the sum of the squares of the paths to B and C, plus
twice the product of these paths and the correlation rgc; i-e-« -52 + .62 + 2 x .5 x
.5 x .6 = .91. The communality of G in the bottom diagram is just the sum of the
squared paths to I, II, and III, because the latter are all uncorrelated; i.e., .S62 +
(-.41)2 + (-.07)2 = .91. The correlation between D and E in the top diagram is
.4 x .5 = .20. That between D and E in the bottom diagram is .17 x .78 + .32 x
.30 + .16 x (-.19), which also equals .20.

Both of these three-factor models, then, explain the data equally well:
They imply the same correlations and communalities (and hence the same
specific variances). The one explains the data with a smaller number of paths
(9) and has two of its factors correlated. The other explains the data with three
uncorrelated general factors of decreasing magnitude, involving a total of 15
paths, one from every factor to every variable.

Most factor analysts believe that the action of causes in the real world is
better represented by models like (a) than by models like (b). Causes typically
have a limited range of effects-not every cause influences everything. And
real-life causal influences may often be correlated. Nevertheless, a model like
(b) has two great merits: (1) It can be arrived at by straightforward procedures
from data, and (2) it establishes how many factors are necessary to explain the
data to any desired degree of precision. As noted earlier, methods exist for
transforming models like (b) into models more like (a), so that a model like (b)
can be used as a first step in an exploratory analysis.
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Fig. 5.2 Path models for Table 5-1. (a) Model used to generate correlations,
(b) Model representing initial principal factor solution.

Direct calculation of principal factors

We have considered one way of arriving at an initial factor solution: by the
successive extraction of independent general factors from a correlation matrix
with communalities in the diagonal. In practice, however, a direct calculation
can be used to obtain loadings for all the principal factors simultaneously.
By this method, the principal factor pattern is obtained via the eigenvalues and
eigenvectors of the reduced correlation matrix; i.e., the matrix Rr. (Readers
unfamiliar with the concepts of eigenvalues and eigenvectors should consult
Appendix A or a matrix algebra text.) If we arrange the eigenvectors in the
columns of a matrix V and the square roots of the eigenvalues from large to
small in a diagonal matrix L, we can obtain the principal factors by the matrix
multiplication P = VL Put another way, the principal factor pattern is a
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rescaling of the eigenvectors by the square roots of the eigenvalues.
Postmultiplying a matrix by a diagonal matrix rescales its columns by the values
in the diagonal matrix.

Given the eigenvalues and eigenvectors, then, the principal axis solution
is simple. This just sweeps the computational effort under the rug, of course, by
pushing it back into the chore of computing the eigenvalues and vectors. This is
a very substantial computation, if carried out by hand for a large correlation
matrix-think in terms of days or weeks, not minutes or hours. But fast and
efficient computer routines exist for calculating the eigenvalues and vectors of
symmetric matrices, and are widely available. If for any reason you wish to
solve for eigenvalues and vectors by hand, which is feasible for small
examples, standard textbooks (e.g., Morrison, 1976) will show you how.

The eigenvalues corresponding to the principal factors are of interest in
their own right--they represent the variance of observed variables explained by
the successive factors. If we sum the squares of the factor loadings P in Table
5-2 by columns rather than rows, we will obtain the eigenvalues. They are,
respectively, 2.00, .59, and .13. Their sum, 2.72, is the same as the sum of the
communalities; it is the total explained variance. The first factor accounts for a
substantial part of the total communality (2.00/2.72 of it, or about 74%). The
second factor accounts for about 22%, and the third for 5%. Another way of
looking at the three eigenvalues is as the sums of the diagonal elements
(traces) of the three implied matrices in Table 5-2. (Can you see why these are
algebraically equivalent?) Again, the eigenvalues reflect the relative
contributions of the three factors.

We need now to return to two matters that we have so far finessed in our
examples: namely, (1) estimating the communalities, and (2) deciding at what
point the residuals become negligible. In real-life data analyses we do not
usually have advance knowledge of how much of a variable's variance is
shared with other variables and how much is specific. And in real life, we will
usually have many trivial influences on our variables in addition to the main
causes we hope to isolate, so that after the factors representing the latter are
extracted we still expect to find a certain amount of residual covariance. At what
point do we conclude that all the major factors have been accounted for, and
what is left in the residual matrix is just miscellaneous debris? We consider
these topics in turn.

Estimating Communalities

As we have seen, an exploratory factor analysis begins by removing unique
variance from the diagonal of the correlation or covariance matrix among the
variables. Because one rarely knows in advance what proportion of the
variance is unique and what is shared with other variables in the matrix (if one
did, one would probably not need to be doing an exploratory analysis), some
sort of estimate must be used. How does one arrive at such an estimate? How
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important is it that the estimate be an accurate one?
The answer to the second question is easy: The larger the number of

variables being analyzed, the less important it is to have accurate estimates of
the communalities. Why? Because the larger the matrix, the less of it lies in the
diagonal. In a 2 x 2 matrix, half the elements are diagonal elements. In a 10 x
10 matrix, only one tenth are (10 diagonal cells out of a total of 100). In a 100 x
100 matrix, 1% of the matrix is in the diagonal, and 99% consists of off-diagonal
cells. In a 2 x 2 matrix, an error in a communality would be an error in one of
two cells making up a row or column total. In a 100 x 100 matrix, it would be an
error in one of a hundred numbers entering into the total, and its effect would be
greatly attenuated. In factoring a correlation matrix of more than, say, 40
variables, it hardly matters what numbers one puts into the principal diagonal,
even 1 s or Os~although since it is very easy to arrive at better estimates than
these, one might as well do so. Many different methods have been proposed.
We discuss two in this chapter, plus a strategy for improving any initial estimate
via iteration.

Highest correlation of a variable

A very simpleminded but serviceable approach in large matrices is to use as the
communality estimate for a given variable the highest absolute value of its
correlation with any other variable in the matrix; that is, the largest off-diagonal
number in each row in the matrix is put into the diagonal with positive sign.

The highest correlation of a variable with another variable in the matrix
isn't its communality, of course, but it will in a general way resemble it:
Variables that share much variance with other variables in the matrix will have
high correlations with those variables and hence get high communality
estimates, as they should, whereas variables that don't have much in common
with any other variables in the matrix will have low correlations and hence get
low communality estimates, again correctly. Some cases won't work out quite
so well-e.g., a variable that has moderate correlations with each of several
quite different variables might have a high true communality but would receive
only a moderate estimate by this method. Nevertheless, in reasonably large
matrices, or as a starting point for a more elaborate iterative solution, this quick
and easy method is often quite adequate.

Squared multiple correlations

A more sophisticated method, but one requiring considerably more
computation, is to estimate the communality of a given variable by the squared
multiple correlation of that variable with all the remaining variables in the matrix.
In practice, this is usually done by obtaining R-1, the inverse of the (unreduced)
correlation matrix R. The reciprocals of the diagonal elements of R-1, subtracted
from 1, yield the desired squared multiple correlations (often called SMCs for
short); that is, for the / th variable:
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SMC/ =1 -1/k//,

where k/y is the /th element of the main diagonal of R-1.
Table 5-3 illustrates the calculation of SMCs for the example of

Table 5-1. R is the correlation matrix; R'1 is its inverse, calculated by a
standard computer routine. The bottom part of the table shows the steps in
obtaining the SMCs.

SMCs are not communalities either; in fact, they are systematically lower
than (at most equal to) the true communalities. Nevertheless, they are related to
the communalities in a general way, in that if a variable is highly predictable
from other variables in the matrix, it will tend to share a good deal of variance in
common with them, and if it is unpredictable from the other variables, it means
that it has little common variance. In large matrices, the SMCs are often only
slightly below the theoretical true communalities.

Table 5-3 Calculation of squared multiple correlations of each variable with
all others (data of Table 5-1)

R 1.00
.20
.24
.00
.00

.20
1.00
.58
.56
.21

.24

.58
1.00
.41
.21

.00

.56

.41
1.00
.51

.00

.21

.21

.51
1.00

R-1 1.096 -.204 -.230 .219 -.021
-.204 1.921 -.751 -.869 .197
-.230 -.751 1.585 -.189 -.079
.219 -.869 -.189 1.961 -.778

-.021 .197 -.079 -.778 1.372

diagonal 1/diag. SMC

D 1.096 .912 .088
E 1.921 .521 .479
F 1.585 .631 .369
G 1.961 .510 .490
H 1.372 .729 .271
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Iterative improvement of the estimate

The basic idea is that one makes an initial communality estimate somehow,
obtains a factor pattern matrix P, and then uses that to obtain the set of
communalities implied by the factor solution. In the usual case of uncorrelated
initial factors, these are just the sums of the squares of the elements in the rows
of P; more generally, they may be obtained as the diagonal of PFP', where F
is the matrix of factor intercorrelations. One can then take these implied
communalities, which should represent a better estimate than the initial ones,
put them in place of the original estimates in Rr, and repeat the process. The P
from this should yield still better estimates of the communalities, which can be
reinserted in Rr, and the process repeated until successive repetitions no
longer lead to material changes in the estimates. Such a process involves a
good deal of calculation, but it is easily programmed for a computer, and most
factor analysis programs provide iterative improvement of initial communality
estimates as an option.

Table 5-4 shows several different communality estimates based on the
artificial example of Table 5-1. The first column gives the true communality. The
first estimate, highest correlation in the row, shows a not-atypical pattern for this
method of overestimating low communalities and underestimating high ones.
The second, SMCs, shows, as expected, all estimates on the low side. The
third shows the outcome of an iterative solution starting with SMCs. (We
discuss the fourth shortly). No solution recovers the exact set of communalities
of the model generating the correlations, but for this small matrix the iterative
solution comes much closer than either of the one-step estimates, and the total
estimated communality is also fairly close to that of the theoretical factors.

Table 5-4 Comparison of some communality estimates for the correlation
matrix of Table 5-1

h2 estimate
Variable h2 1 2 3

C .16
D .74
E .55
F .91
G ,36
Sum 2.72 2.47 1.70 2.71 2.49

Note: h2 = communality from model which generated re. Estimates: (1) highest r in row; (2) SMC;
(3) SMC with iteration (3 principal factors); (4) SMC with limited iteration (same, 3 cycles).
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One disadvantage of iterative solutions for the communalities is that they
will sometimes lead to a "Heywood case"; a communality will converge on a
value greater than 1.0. This is awkward; a hypothetical variable that shares
more than all of its variance with other variables is not too meaningful. Some
factor analysis computer programs will stop the iterative process automatically
when an offending communality reaches 1.0, but this isn't much better, because
a variable with no unique variance is usually not plausible either. A possible
alternative strategy in such a case might be to show, e.g., by means of a x2 test,
that the fit of the model with the communality reduced to a sensible value is not
significantly worse than it is with the Heywood case communality. If this proves
notlo be the case, the model is unsatisfactory and something else must be
considered-extracting a different number of factors, reseating variables to
linearize relationships, eliminating the offending variable, or the like. Another
strategy is to limit the number of iterations-two or three will often produce a
substantial improvement in communality estimates without taking one across
the line into Heywood territory. An illustration of the effects of limited iteration
(3 cycles) is shown in column 4 of Table 5-4. It will be seen that most of the
communality estimates have moved substantially toward their true values in the
first column from the SMCs in column 2.

If you are a very alert reader, it may have occurred to you that there is
another potential fly in the ointment in using iterative approaches. In order to
use such an approach to improving communality estimates, one must first know
how many factors to extract-because using a different number of columns in P
will result in different implied communalities. In the case of our hypothetical
example, we used the three factors known to account for the data as the basis of
our iterative improvement, but in real life one must first decide how many factors
to use to obtain the implied communality estimates that are to be iteratively
improved. To this problem of determining the number of factors we now turn.

Determining the Number of Factors

In practice, deciding on the number of factors is a much stickier problem than
communality estimation. As mentioned in the last section, with reasonably large
correlation matrices even quite gross errors in estimating the communalities of
individual variables will usually have only minor effects on the outcome of a
factor analysis. Not so with extracting too many or too few factors. This will not
make too much difference in the initial step of factor extraction, other than
adding or subtracting a few columns of relatively small factors in the factor
pattern matrix P. But it will often make a material difference when the next,
transformation stage is reached. Admitting an additional latent variable or two
into rotations often leads to a substantial rearrangement of paths from existing
latent variables; trying to fit the data with one or two fewer latent variables can
also lead to a substantial reshuffling of paths. Such rearrangements can lead to
quite different interpretations of the causal structure underlying the observed
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correlations.
So the problem is not a trivial one. What is its solution? In fact, many

solutions have been proposed. We describe three in this chapter, the Kaiser-
Guttman rule, the scree test, and parallel analysis, and others in the next.

The Kaiser-Guttman rule

This is easily stated: (1) Obtain the eigenvalues of the correlation matrix R (not
the reduced matrix Rr); (2) ascertain how many eigenvalues are greater than
1.0. That number is the number of nontrivial factors that there will be in the
factor analysis. Although various rationales have been offered for the choice of
the particular value 1.0, none is entirely compelling, and it is perhaps best
thought of as an empirical rule that often works quite well. Because it is easy to
apply and has been incorporated into various popular computer programs for
factor analysis, it has undoubtedly been the method most often used to answer
the question "How many factors?" in factor analyses during recent decades.

It is not, however, infallible. If you apply it, for example, to a set of
eigenvalues obtained by factoring the intercorrelations of random data, the
Kaiser-Guttman rule will not tell you that there are no interpretable factors to be
found. On the contrary, there will typically be a sizeable number of factors from
such data with eigenvalues greater than 1.0, so the rule will tell you to extract
that many factors. (To see that there must be eigenvalues greater than 1.0,
consider that their sum must be m for an m-variable matrix. When you extract
them in order of size, there will be some larger than 1.0 at the beginning of the
list and some smaller than 1.0 at the end.)

Table 5-5 (next page) provides an example, in which eigenvalues from
the correlations of random scores and real psychological test data are
compared. If one were to apply the Kaiser-Guttman rule to the random data, it
would suggest the presence of 11 meaningful factors; there are, of course,
actually none. For the real psychological data, the rule would suggest 5 factors,
which is not unreasonable-factor analysts, using various criteria, have usually
argued for either 4 or 5 factors in these particular data. (Note that the 5th
eigenvalue is only just slightly above 1.0, which suggests another difficulty with
a Kaiser-Guttman type of rule: Chance fluctuations in correlations might easily
shift a borderline eigenvalue from, say, .999 to 1.001, leading to a different
decision for the number of factors, but would one really want to take such a
small difference seriously?)

Presumably, one does not often factor correlations based on random
data intentionally, but one may occasionally want to factor analyze something
similar-say, intercorrelations of measures of quite low reliability, such as
individual questionnaire items, which could involve a substantial influence of
random measurement error. In such cases one could be led badly astray by
blind reliance on the Kaiser-Guttman rule.
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Table 5-6. Eigenvalues from random and real data

Rank
in size

1
2
3
4
5
6
7
8
9

10
11
12

Random
data
1.737
1.670
1.621
1.522
1.450
1.393
1.293
1.156
1.138
1.063
1.014
.964

Real
data

8.135
2.096
1.693
1.502
1.025
.943
.901
.816
.790
.707
.639
.543

Rank
in size

13
14
15
16
17
18
19
20
21
22
23
24

Random
data
.902
.850
.806
.730
.717
.707
.672
.614
.581
.545
.445
.412

Real
data
.533
.509
.477
.390
.382
.340
.334
.316
.297
.268
.190
.172

Note: Random data = correlation matrix of random scores on 24 variables for 145 cases. Real data
= Holzinger-Swineford data on 24 ability tests for 145 7th- and 8th-grade children, from Harman
(1976, p. 161).

The scree test

This procedure also employs eigenvalues. However, instead of using a 1.0
cutoff, the user plots successive eigenvalues on a graph and arrives at a
decision based on the point at which the curve of decreasing eigenvalues
changes from a rapid, decelerating decline to a flat gradual slope.

The nature of this change can be best illustrated by an example. The
eigenvalues for the real data from Table 5-5 are plotted in Fig. 5.3. Notice how
the first few eigenvalues drop precipitously, and then after the fourth, how a
gradual linear decline sets in. This decline is seldom absolutely linear out to
the last eigenvalue-often, as here, it may shift to a more gradual slope
somewhere en route. This linear or near-linear slope of gradually declining
eigenvalues was called the scree by R. B. Cattell (1966a), who proposed this
test. He arrived at this name from the geological term for the rubble of boulders
and debris extending out from the base of a steep mountain slope. The idea is
that when you climb up to the top of the scree, you have reached the real
mountain slope~or the real factors. Below that, you have a rubble of trivial or
error factors. The scree test would suggest four factors in this example, for the
four eigenvalues rising above the scree.

Figure 5.4 shows the scree test applied to the eigenvalues from random
data. In this case, there are no true factors arising above the rubble of the
scree, which begins with the first eigenvalue. Again, the scree has an initial,
approximately linear segment, and then further out another section of slightly
lesser slope. In this example, the scree test would provide much better
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Fig. 5.3 Scree test for Holzinger-Swineford data of Table 5-6. Horizontal axis:
eigenvalue number; vertical axis: eigenvalue size.

8 12 16 20 24

Fig. 5.4 Scree test for random data of Table 5-6. Horizontal axis: eigenvalue
number; vertical axis: eigenvalue size.

guidance to the number of factors than would the Kaiser-Guttman rule-although
either approach would work fairly well for the data of Fig. 5.3.

Figure 5.5 (next page) applies the scree test to the artificial example of
Table 5-1. This illustrates a difficulty of applying the scree test in small
problems: There is not enough excess of variables over factors to yield
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Fig. 5.5 Scree test for data of sample problem of Table 5-1. Horizontal axis:
eigenvalue number; vertical axis: eigenvalue size.

sufficient rubble for a well-defined scree. The Kaiser-Guttman rule would
suggest two factors in this case. A scree test would indicate the presence of at
least one real factor and would not be very compelling after that-one could
make a case for one, two, three, or more factors. The graph is consistent with
the presence of three factors, but one's confidence in the true linearity of a slope
defined with just two points cannot be very high!

Most users of the scree test inspect visual plots of the eigenvalues in the
manner we have described. However, a computer-based version also exists
(Gorsuch, 1983, p. 168), and Bentler and Yuan (1998) have proposed a
statistical test for the linearity of the eigenvalues remaining after the extraction
of a given number of factors-that is, a statistical version of the scree test.

Parallel analysis

Another eigenvalue-based procedure, parallel analysis (Horn, 1965), does not
rely on eigenvalues greater than 1.0, but uses the number of eigenvalues that
are greater than those which would result from factoring random data. For
example, in Table 5.5, only the first three real-data eigenvalues exceed the
corresponding random-data eigenvalues. The fourth is close, but thereafter the
random ones are clearly larger. Thus the indication would be for the extraction
of three, or possibly four, factors. In this case, three might represent
underextraction; four or five factors is the usual choice for these data (Harman,
1976, p. 234). Also, in practice, one normally does the random factoring several
times, rather than just once, to get a better estimate of the random-data curve.
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Rotation

Up to this point, we have pursued one approach to simplicity: to account
adequately for the data with the smallest number of latent variables, or factors.
The strategy was to solve for a series of uncorrelated general factors of
decreasing size, each accounting for as much as possible of the covariation left
unaccounted for by the preceding factors.

As noted earlier, the typical next step is to transform such solutions to
simplify them in another way--to minimize the number of paths appearing in the
path diagram. This process is what factor analysts have traditionally called
rotation. It received this name because it is possible to visualize these
transformations as rotations of coordinate axes in a multidimensional space. A
serious student of factor analysis will certainly want to explore this way of
viewing the problem, but we do not need to do so for our purposes here.
References to the spatial approach crop up from time to time in our terminology
--uncorrelated factors are called orthogonal (at right angles), and correlated
factors are called oblique, because that is the way they looked when the early
factor analysts plotted them on their graph paper. But for the most part we view
the matter in terms of iterative searches for transformation matrices that will
change initial factor solutions into final ones that account just as well for the
original correlations but are simpler in other ways.

Consider the path diagram in Fig. 5.6. It represents two factors, A and B,
which are correlated .5, and which affect the observed variables C through H
via the paths shown, leaving unexplained the residual variances given at the
bottom of the figure. By now you should be able to verify readily that the path
diagram would produce the correlation matrix and the communalities h2 shown
in the top part of Table 5-6 (next page).

.6

Fig. 5.6 Two-factor example to illustrate rotation.
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Table 5-6 Example of rotated two-factor solution (artificial data based on
Fig. 5.6; exact communalities)

R

C
D
E

C
1.00
.48
.44

D
.48

1.00
.33

E
.44
.33

1.00

F
.52
.39
.47

G
.28
.21
.35

H
.24
.18
.30

h2

.64

.36

.37
F .52 .39 .47 1.00 .49 .42 .61
G .28 .21 .35 .49 1.00 .42 .49
H .24 .18 .30 .42 .42 1.00 .36

PO
I

C .704
D .528
E .607
F .778
G .596
H .510

II
-.379
-.284
-.032
.073
.368
.315

I
II

F

A
B

T
A
.607

-.982

= (TT)-
A

1.00
.50

B
.547

1.017

B
.50

1.00

P

C
D
E
F
G
H

A
.80
.60
.40
.40
.00
.00

B
-.00
-.00
.30
.50
.70
.60

Note: R = correlation matrix; Pg = initial principal factor pattern; T = transformation matrix; P =

transformed factor pattern; F = factor intercorrelations.

The matrix P0 represents principal factors obtained from the eigenvalues and
vectors of Rr (using the exact communalities shown), in the manner outlined
earlier. It is simple in the first sense we have considered: PfjPo reconstructs Rr

exactly (within rounding error); i.e., the two factors account for all the common
variance and covariance in the matrix, and the first accounts for as much as
possible by itself. The factor pattern is not, however, simple in the second
sense. Only one, or at most two, paths (from the second factor to E and F) are
small enough to plausibly be considered negligible.

Next to P0 in the table is a matrix T. For the moment we will not worry
about how it was obtained--by magic, perhaps. But what it does is to produce
by the matrix multiplication P0T a new matrix P, one that has several zero
paths, four, in fact, and whose remaining paths--to two decimal places-agree
perfectly with those of the model that generated the data. As shown below T,
one can also obtain as a function of T the intercorrelation matrix of the factors,
F, again in agreement with the model of Fig. 5.6.

The factor pattern P is "just as good as" P0 in the sense that both can
reconstruct the original (reduced) correlation matrix Rr with two factors--
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although because the factors represented by P are correlated, we must take this
into account. For P0, we can use PoPo'to yield tne matrix Rr. With P, we use
PFP', where F is the factor intercorrelation matrix. This is the more general
formulation and includes PoPo'as a special case: Because the initial factors
are uncorrelated, their intercorrelation matrix is an identity matrix and can be
dropped from the expression.

If we know T, then, we can transform P0 to the simpler pattern P that we
seek (assuming that such a simpler pattern exists). How can we find T? In
some very simple cases it can be obtained by direct calculation, but in general
it is pursued by a process of iterative trial and error, and nowadays a computer
usually carries out the search.

A variety of different procedures exist for this purpose, going by such
exotic names as Varimax, Quartimax, Oblimin, Orthoblique, and Promax, to
name just a few of the more popular ones. (Gorsuch, 1983, gives a table listing
19 such procedures and describes it as a "sample.") We will say something
later about the differences among the methods, but for the moment let us
consider them as all doing the same thing: modifying some initial arbitrary T
(such as an identity matrix) by some form of systematic trial and error so that it
yields a P which, while retaining its capacity to reconstruct Rr, gets
progressively simpler and simpler in the second sense of containing an
increasing number of zero or near-zero paths.

For the present, we discuss two rotation methods: Varimax, which
produces orthogonal factors, and Oblimin, which allows factors to be
correlated. In the next chapter we consider some others.

An orthogonal transformation procedure-Varimax

Varimax, derived by Henry Kaiser (1958) from an earlier procedure called
Quartimax (Neuhaus & Wrigley, 1954), seeks for a T that will produce factors
uncorrelated with one another; that is, after the transformation the factors
remain independent, but are simpler in the sense of having more zero or near-
zero paths.

Both Quartimax and Varimax use a criterion of simplicity of P that is
based on the sum of the fourth powers of the pattern coefficients, and both
modify T in an iterative fashion until a P is reached for which the criterion
cannot be improved. In both, the changes in T are introduced in such a way
that (TT)-1, the factor intercorrelation matrix F, always remains an identity
matrix. The criteria used, and hence the properties of the solutions, are,
however, a little different. Quartimax uses as a criterion just the sum of the
fourth powers of the elements of P: in symbols,

Zip4,

where p represents a pattern coefficient, and the ZX means to sum over both
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rows and columns.
Varimax subtracts from this sum a function of the sum of squared

coefficients within columns of P. The Varimax criterion may be given as

where Zf and £v indicate summing across factors and variables, respectively,
and k is the number of variables.

The sums of fourth powers of the coefficients in a P matrix will tend to be
greater when some coefficients are high and some are low than when all are
middling (given that in both cases the correlation matrix is equally well
reconstructed, and the factors remain orthogonal). Thus, the iterative process
will tend to move toward a P matrix with a few high values and many near-zero
values, if such a matrix can be found that continues to meet the other
requirements.

The Quartimax criterion is indifferent to where the high values are located
within the P matrix-many of them could be on a single general factor, for
example. The Varimax modification awards a bonus to solutions in which the
variance is spread out more evenly across the factors in P, so Varimax tends to
avoid solutions containing a general factor.

Varimax is usually applied to variables that have first been rescaled so
their communality equals 1 .0. This tends to prevent the transformation process
from being dominated by a few variables of high communality. Varimax applied
to variables rescaled in this way is called "normal" or "normalized" Varimax--as
opposed to "raw" Varimax, in which the criterion is calculated on coefficients in
their ordinary scaling. The rescaling is easily accomplished by dividing every
coefficient in a row of the factor pattern matrix by the /r2 of that variable before
beginning the rotational process, and then scaling back by multiplying by h2 at
the end. This procedure is also sometimes referred to as "Kaiser
normalization," after its inventor.

Varimax is a relatively fast and robust procedure, and is widely available
in standard computer factor analysis packages. It can be used with confidence
whenever conditions are suitable (i.e., where the causal factors underlying the
observed correlations are expected to be independent of one another, or nearly
so, and one expects to find the variance spread out among the factors). Even
when moderately correlated factors are expected, Varimax is sometimes still
used because of its other virtues. Even with somewhat correlated factors it will
often identify the main factors correctly. If an orthogonal procedure is used
when factors are in fact correlated, the low coefficients will only be relatively
low, not near zero as they would be with an oblique factor solution, but which
coefficients are high and which low will often agree fairly well between the two
solutions.

Table 5-7 gives examples of Quartimax and Varimax solutions based on
the sample problem of Fig. 5.6. An initial principal factor solution was
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Table 5-7 Factor pattern matrices, factor intercorrelations, and transformation
matrices for Quartimax and Varimax transformations of an initial principal factor
solution (example problem of Fig. 5.6)

Initial Quartimax Varimax Paths
P

I II A B A B A B
C .70 -.38 .78 -.17 .78 .20 .80 .00
D .53 -.28 .59 -.13 .58 .15 .60 .00
E .61 -.03 .59 .13 .47 .39 .40 .30
F .78 .07 .73 .28 .52 .58 .40 .50
G .60 .37 .47 .52 .19 .67 .00 .70
H .51 .32 .41 .44 .16 .58 .00 .60

F
I II A B A B A B

I 1.00 .00 A 1.00 .00 A 1.00 .00 A 1.00 .50
II .00 1.00 B .00 1.00 B .00 1.00 B .50 1.00

A B A B
I .962 .273 .736 .677
II -.273 .962 -.677 .736

Criteria:
Quartimax 1.082 1.092 1.060
Varimax .107 .204 .389

Note: Communalities for initial solution iterated from SMCs. Raw Quartimax and Varimax
transformations. Paths from path diagram.

transformed so as to maximize the Quartimax or Varimax criterion. The raw
versions were used to keep the examples simple. Note that the T matrices for
orthogonal rotations are symmetrical, apart from signs.

It will be observed that the Varimax P approximates the values of the
original path model fairly well in its larger coefficients, but that the small ones
are systematically overestimated. The Quartimax P assigns relatively more
variance to the first factor, making it a fairly general factor.

From the values of the Quartimax and Varimax criteria given at the
bottom of the table, you can see that each criterion is highest for its own solution
(as it should be). The initial principal factor solution is not too bad by the
Quartimax criterion because it does have some high and some low loadings,
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but it is unsatisfactory to Varimax because the principal factor solution
maximizes the difference in variance between the two factors.

In this example, Varimax does better than Quartimax at approximating
the paths of the original model, and either one does better than the initial
principal factor solution. The advantage Varimax has here results from the fact
that the model to be approximated has two roughly equal factors-that is, there
is no general factor present.

An oblique transformation procedure-Oblimin

When the true underlying factors are substantially correlated, orthogonal
rotations such as those of Varimax cannot achieve ideal solutions. A variety of
methods have been proposed for locating good solutions when factors are
correlated with one another ("oblique"). Because the factor intercorrelations
represent additional free variables, there are more possibilities for strange
things to happen in oblique than in orthogonal solutions. For example, two
tentative factors may converge on the same destination during an iterative
search, as evidenced by the correlation between them becoming high and
eventually moving toward 1 .00~this cannot happen if factors are kept
orthogonal. Despite their real theoretical merits, oblique solutions tend to be
more difficult to compute, more vulnerable to idiosyncrasies in the data, and
generally more likely to go extravagantly awry than orthogonal ones. There is
no one oblique procedure that works well in all situations, hence the
proliferation of methods. We describe here one widely used procedure, Direct
Oblimin, and will briefly discuss some others in the next chapter. Direct Oblimin
uses an iterative procedure based on improving a criterion, as in Quartimax or
Varimax, except that the requirement that factors be uncorrelated is dropped.

The criterion used in the Direct Oblimin procedure (Jennrich & Sampson,
1966) is as follows--the criterion is minimized rather than maximized:

Zjj refers to the sum over all factor pairs ij (i <j), and the other symbols are as

used for the Varimax criterion. The weight w (sometimes given as 8) specifies
different variants of Oblimin that differ in the degree to which correlation among
the factors is encouraged. If w= 0, only the first part of the expression, the
products of the squared pattern coefficients on different factors, is operative.
This variant is sometimes given a special name, Direct Quartimin. It tends to
result in solutions with fairly substantial correlations among the factors. By
making the weight w negative, high correlations among factors are penalized.
Most often, zero weights or modest negative weights (e.g., w= -.5) will work
best. Large negative weights (e.g., w= -10) will yield essentially orthogonal
factors. Positive weights (e.g., w=.5) tend to produce over-oblique and often
problematic solutions.
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The term direct in the title of Direct Oblimin indicates that the criterion is
applied directly to the factor pattern matrix P. (There also exists an Indirect
Oblimin in which the criterion is applied to a different matrix). Again, as in the
case of Varimax, the transformation may be carried out on a factor matrix
rescaled so that all the communalities are equal to 1.0, with a return to the
original metric at the end.

Table 5-8 presents a Direct Oblimin solution for the sample 2-factor
problem. (The Quartimin version--w= 0--was used.) Observe that the pattern
coefficients approximate the paths of the original model quite well, except that
the near-zero loadings are slightly negative. The correlation between factors is
a little on the high side (.57 vs. .50), but on the whole the solution has recovered
quite well the characteristics of the path diagram that generated the
correlations.

Below the F in the table is the T, the transformation matrix that produces
the Oblimin P from the P0 of the initial solution. It is this T, of course, that has

Table 5-8 Factor pattern matrix, factor intercorrelations, and transformation
matrix for an Oblimin transformation of an initial principal factor solution
(example problem of Fig. 5.6)

Initial

P
C
D
E
F
G
H

1
.70
.53
.61
.78
.60
.51

II
-.38
-.28
-.03
.07
.37
.32

Oblimin

A
.81
.61
.38
.37

-.05
-.04

B
-.02
-.01
.30
.51
.73
.62

Original

A
.80
.60
.40
.40
.00
.00

B
.00
.00
.30
.50
.70
.60

F I II A B A B
I 1.00 .00 A 1.00 .57 A 1.00 .50
II .00 1.00 B .57 1.00 B .50 1.00

T A B
I .575 .555
II -1.071 1.081

Criterion:
Oblimin .172 .051

Note: Same initial solution as Table 5-7. Oblimin is Direct Quartimin (w = 0), unnormalized.
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resulted from iterative modifications by the computer program until the resulting
P has as low a score as possible on the Oblimin criterion. In the bottom row of
the table are given values of the Oblimin criterion for the initial solution and for
the Oblimin solution, which has succeeded in reducing it considerably.

Factor pattern and factor structure in oblique solutions

As mentioned previously, two matrices relating the observed variables to
the latent variables are frequently reported. One is the factor pattern
matrix P that we have already discussed. The other is the factor structure
matrix S, which is a matrix giving the correlations between the factors and
the variables. When factors are uncorrelated (orthogonal), there is just a
single path from any factor to any variable, and hence the correlation
between them is numerically equal to the path coefficient. In this case,
therefore, S equals P and only one need be reported. However, in an
oblique solution, there will be additional compound paths between factors
and variables via correlations with other factors, and S will in general not
be equal to P. However, S may readily be calculated from P and the
factor intercorrelations F by the equation:

S = PF.

Table 5-9 gives an example based on the paths from Fig. 5.6
(labeled "original paths" in Table 5-8). Note that the S matrix does not
have the zero paths of the P matrix; because the factors are correlated,
each is correlated with variables on which it has no direct causal
influence. (The reader should verify that the matrix multiplication that

Table 5-9 Factor structure, for the factor pattern of Table 5-8

Factor pattern Factor intercorrelations Factor structure
P F S

A B A B A B
C .80 .00 A 1.00 .50 C .80 .40
D .60 .00 B .50 1.00 D .60 .30
E .40 .30 E .55 .50
F .40 .50 F .65 .70
G .00 .70 G .35 .70
H .00 .60 H .30 .60
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yields S is equivalent to determining the correlations from tracing the
paths in the path diagram of Fig. 5.6.)

An Example: Thurstone's Box Problem

In this section, we carry through an exploratory factor analysis from raw
scores to rotated factors. We use as an example a demonstration problem
originally devised by Thurstone (1947) and later modified by Kaiser and
Horst (1975). The intent is to illustrate exploratory factor analysis in a
situation in which the true underlying latent variables are known, so we
can check our results.

Thurstone began with a hypothetical population of 20 rectangular
boxes; the first three are illustrated at the top of Table 5-10. For each box,
a number of "scores" were derived, as mathematical functions of one or
more of its three dimensions length (= X), width (= Y), and height (= Z).
Thus, the first box, which was 3 units long by 2 wide by 1 high, had a score
on the first variable (X2) of 9, on the second (Y2) of 4, and so on. The
fourth, fifth, and sixth variables are products of two dimensions each, the
seventh through ninth are natural logarithms, and the tenth is the triple
product XYZ. (Thurstone actually created 20 variables, but we are using
only 10 of them to keep the example more manageable.)

Table 5-10 Scores on 10 variables for first three boxes, Thurstone's box
problem (data from Kaiser & Horst, 1975)

Variable Box1 Box 2 Box 3
True Observed True Observed True Observed

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

X2

Y2

Z2

XY
XZ
YZ
InX
InY
InZ
XYZ

9.0
4.0
1.0
6.0
3.0
2.0
1.1
.7
.0

6.0

8.9
5.0
2.7
5.6
3.4
2.1
1.1

.8

.3
2.3

9.0
4.0
4.0
6.0
6.0
4.0
1.1

.7

.7
12.0

9.4
4.5
3.8
5.4
8.1
3.4
1.1

.6

.4
9.8

9.0
9.0
1.0
9.0
3.0
3.0
1.1
1.1

.0
9.0

6.9
10.2

.7
10.3
4.2
3.2
1.1
1.1

.0
9.9
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Kaiser and Horst added 5% random error to Thurstone's scores, in
the interest of greater realism, and doubled the number of boxes from 20
to 40 by using each twice (with different random errors). The resulting
scores for the first three boxes, rounded to one decimal place, are given in
the columns labeled observed in Table 5-10. The full data matrix is in
Appendix F, and the matrix of score intercorrelations in Table 5-11.

Table 5-11 Correlation matrix, Thurstone box problem

V1
V1 1.00
V2
V3
V4
V5
V6
V7
V8
V9
V10

V2 V3
.23 .08
1.00 .17

1.00

V4
.64
.84
.14
1.00

V5
.42
.21
.85
.34
1.00

V6
.15
.57
.84
.50
.78
1.00

V7
.92
.37
.16
.73
.50
.30
1.00

V8
.10
.93
.27
.76
.22
.64
.28
1.00

V9
.10
.13
.91
.12
.87
.81
.18
.21
1.00

V10
.46
.53
.77
.65
.87
.91
.59
.58
.76
1.00

Fig. 5.7 Scree test for Thurstone box problem.

The eigenvalues are given in Table 5-12 and a scree test in Fig. 5.7.
Clearly, by either the Kaiser-Guttman rule or the scree test, a three-factor
solution is indicated. Table 5-13 shows three principal factors based on
the (unrounded) correlation matrix, using iterated communality estimates
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Table 5-12 Eigenvalues, Thurstone box problem

1.
2.
3.
4.
5.

5.621
2.348
1.602

.100

.088

6.
7.
8.
9.

10.

.079

.072

.049

.025

.015

Table 5-13 Unrotated principal factors, Thurstone box problem

Variables
V1
V2
V3
V4
V5
V6
V7
V8
V9
V10

F1
.503
.649
.732
.736
.834
.904
.633
.664
.717
.971

F2
.468
.506

-.615
.647

-.400
-.280
.470
.382

-.627
-.108

F3
.683

-.499
-.020
-.056
.282

-.252
.558

-.604
.045
.047

h2
.938
.925
.914
.963
.934
.959
.933
.951
.909
.956

starting from SMCs. As you can see, the communality estimates are all
quite high, in the range .90 to .97, consistent with the fact that the variables
contain around 5% random error.

Table 5-14 (next page) shows two transformed solutions and a
direct confirmatory maximum likelihood solution. The first solution is an
orthogonal rotation using Varimax. For most practical purposes, this
would be quite adequate: it correctly identifies the three factors as
respectively reflecting the latent dimensions Z, Y, and X that underlie the
manifest measurements, as one may verify by comparing the rotated factor
pattern to the path diagram of Fig. 5.8 (p. 181). Nevertheless, because
nearly all the minor loadings in the Varimax solution are positive, there is
an indication that the underlying dimensions X, Y, and Z are slightly
correlated with one another; i.e., that there is a general size factor in the
population of boxes. Therefore, an oblique solution (Direct Oblimin; w = 0)
was carried out; it is also shown in Table 5-14. This yields a slightly
cleaner solution; whereas the Varimax factor pattern had several of its
minor loadings in the .15 to .25 range, the oblique solution has all its near-
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Table 5-14 Final factor solutions, Thurstone box problem

Varimax

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10

F1
F2
F3

F1
.08
.11
.95
.10
.90
.84
.17
.20
.95
.79

1.00

F2
.06
.94
.08
.77
.05
.50
.22
.95
.02
.43

.00
1.00

F3
.96
.16

-.02
.60
.36
.05
.93
.02
.02
.39

.00

.00
1.00

Direct Oblimin
F1

-.00
-.03
.98

-.05
.90
.80
.07
.08
.99
.73

1.00

F2
-.08
.96

-.04
.72

-.12
.41
.08
.98

-.10
.30

.28
1.00

F3
.99
.03

-.11
.51
.29

-.09
.92

-.12
-.07
.28

.22

.29
1.00

Confirmatory
F1

.00

.00
.95
.00
.85
.79
.00
.00
.95
.71

1.00

F2
.00
.96
.00
.70
.00
.48
.00
.95
.00
.36

.15
1.00

F3
.96
.00
.00
.53
.36
.00
.95
.00
.00
.36

.11

.25
1.00

Note: Kaiser normalization used for Varimax and Oblimin solutions.

zero loadings .12 or less in absolute value. The correlations among the
factors are modest~in the .20s. There is, however, a suggestion that this
solution may be a little too oblique: 11 of the 15 near-zero loadings are
negative.

On the far right in Table 5-14 is a confirmatory maximum likelihood
analysis of the correlation matrix via LISREL, based on the path diagram
of Fig. 5.8: The zero values shown were fixed, and the nonzero values
solved for. Note that this solution is a trifle less oblique than the Oblimin
solution but agrees with it in finding the three dimensions to be slightly
correlated in these data, suggesting the presence of a (modest) general
size factor. We can compare the factor intercorrelations with the true
correlations among the length, width, and height dimensions, calculated
for Thurstone's original population of boxes: TXY = -25, ryz = -25, rxz =
.10. Obviously, the two oblique factor solutions have come reasonably
close--the Oblimin, as suspected, has slightly overestimated the
correlations.

Thus, a factor analysis can correctly recover information about
known latent variables, even in the face of a certain amount of random
error and nonlinearities of relationship between the latent and observed
variables. However, a caution: It is not always this easy. This is, after all,
an example in which three and only three major latent dimensions are
present. In most real-life data sets confronting social and behavioral
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Fig. 5.8 Path diagram of Thurstone box problem.

scientists, there are likely to be numerous lesser causal factors in addition to the
few major factors the analyst is interested in. The smaller of these extraneous
factors can usually be safely lumped together under the heading of random
error-this means, incidentally, that the communalities are likely to be
considerably lower than the .95s of the box example. But in addition there are
likely to be some appreciable nuisance factors present, not quite large enough
to isolate successfully, yet sufficiently large to distort the picture presented by
the main variables. The investigator may be deemed fortunate who encounters
a situation as clear-cut as Thurstone's boxes.

Factor Analysis Using Packaged Programs--
SPSS and SAS

Several widely used statistical program packages contain facilities for
doing factor analysis, and two are described briefly here. Additional
information may be found in a paper by MacCallum (1983), which
compares several factor analysis programs in some detail. Two cautions:
Programs are not static entities~they get revised by their makers from time
to time; and program packages are not monolithic-sometimes different
subprograms within a package do things differently. There is no substitute
for a direct test to determine what the version of program X currently on
your local computer actually does in situation Y.

Here we consider the SPSS program called FACTOR (SPSS Inc.,
1990), and the SAS program PROC FACTOR (SAS Institute, 1990).
These two programs are generally similar in what they do, but not
identical. In ease of use, the overriding consideration is familiarity with the
general system: Someone who knows other SAS or SPSS programs
should find the corresponding factor analysis program easy to learn and
use, whereas someone coming as a complete stranger to a system must
acquire a considerable baggage of information about forms of data input,
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handling of missing values, managing of data and output files,
conventions for program representation, etc., common to the programs in
that system.

In the factor extraction step, both programs can carry out a simple
principal factor analysis of a correlation matrix, with user-supplied
communalities. (If these are 1.0, this is a principal components analysis.)
Table 5-15 and 5-16 show examples of program setups in the two systems
that will accomplish a principal factor analysis with Varimax rotation for the
correlation matrix of Table 5-1.

Both programs allow many options-with respect to ways of
estimating communalities, deciding on how many factors to extract, etc. In
general, SAS tends to offer a wider array of options than SPSS. Each

Table 5-15 SPSS FACTOR

TITLE 'CHAPTER 5 EXAMPLE'
MATRIX DATA VARIABLES=D E F G H /CONTENTS=CORR
BEGIN DATA
1.00
.20 1.00
.24 .58 1.00
.00 .56 .41 1.00
.00 .21 .21 .51 1.00

END DATA
LIST
FACTOR MATRIX=IN (COR=*)

/DIAGONAL=.16 .74 .55 .91 .36
/CRITERIA=FACTORS (3)
/ EXTRACTION PAF
/ROTATION=VARIMAX

Table 5-16 SAS PROC FACTOR

DATA EXAMP(TYPE=CORR);
_TYPE_ ='CORR';
INPUT _NAME_ $ D E F G H;
CARDS;
D 1.0 . . . .
E .20 1.0 . . .
F .24 .58 1.0 . .
G .00 .56 .41 1.0 .
H .00 .21 .21 .51 1.0

PROC FACTOR METHOD=PRIN NFACT=3 ROTATE=VARIMAX;
PRIORS .16 .74 .55 .91 .36;
TITLE 'CHAPTER 5 EXAMPLE';

RUN;
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package provides a number of methods of factor extraction-most of the
methods described in this book are available in both. In either system, one may
begin an analysis from raw data or from a matrix entered directly or produced by
other programs in the series. Following factor extraction, one may proceed
immediately to the factor rotation step, or save the results of the extraction for
entry into different rotation procedures.

In current versions, both packages provide the basic orthogonal rotation
procedures Varimax and Quartimax, either raw or normalized; SAS also
provides a more general Orthomax procedure of which Varimax and Quartimax
are special cases. For oblique rotation methods, both packages offer Oblimin,
described in the present chapter, and a program called Promax, described in
the next. SAS also offers Procrustes and Orthoblique, programs described
briefly in the next chapter, and several others (the options available in earlier
versions of the two packages may vary). SAS and SPSS differ in what they do
if no specification is made concerning rotation. SPSS rotates automatically,
using its default rotation procedure, which is Varimax; in order not to rotate, the
user must specify a no-rotation option. In SAS the default is for no rotation, so if
the user wishes to rotate, a particular rotation procedure must be specified.

If you are familiar with one system, but switch to the other to obtain some
particular feature--a word of caution: read the manual carefully, and make
some checks. Some of the little things are done differently in SPSS and SAS,
and an unwary user can easily wind up with a different analysis than the one
intended.

Chapter 5 Notes

There are a number of excellent books on factor analysis in which you can
pursue further the topics of this and the next chapter. Examples include:

Harman, H. H. (1976). Modern factor analysis (3rd ed.). Probably the
best systematic treatment of the many variants of factor analysis. Extensive
worked examples.

Mulaik, S. A. (1972). The foundations of factor analysis. A well-regarded
general text.

Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Broad and readable,
with a practical research emphasis. Less formal than Harman or Mulaik.

Lawley, D. N., & Maxwell, A. E. (1971). Factor analysis as a statistical
method (2nd ed.). An emphasis on statistical inference and the use of
maximum likelihood methods.

Cattell, R. B. (1978). The scientific use of factor analysis. A rich but
opinionated discussion by a creative contributor to the field.

McDonald, R. P. (1985). Factor analysis and related methods. Good on
relationships between factor analysis and other latent variable modeling.
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Many references to the research literature using exploratory factor analysis can
be found in the texts just listed. Harman (1976, pp. 7-8), for example, cites
studies in fields as diverse as economics, medicine, geology, meteorology,
political science, sociology, biological taxonomy, anthropology, architecture,
human engineering, communication, and the study of lightplane accidents. If
you want to get really serious, Hinman and Bolton (1979) give short
descriptions of approximately 1000 factor analytic studies published in the
areas of experimental, animal, developmental, social, personality, clinical,
educational, and industrial psychology during just the 5-year period 1971-1975!
Fabrigar et al. (1999) evaluate the use of exploratory factor analysis in
contemporary research.

Sample size. MacCallum et al. (1999) found little support for
commonly suggested rules of thumb regarding sample sizes in exploratory
factor analysis. With high communalities, a small number of factors, and a
relatively large number of indicators per factor, Ns of 100 or less yielded good
recovery of factors; with lower communalities, more factors, and fewer
indicators per factor, Ns of 300 or even 500 might be required for comparable
results.

Factor analysis model. MacCallum and Tucker (1991; see also
MacCallum et al., 2001) suggest that the factor analysis model be reformulated
to take explicit account of the fact that it is only expected to be an approximation
in the population, due to the presence of minor undetected factors,
nonlinearities, and the like. Increasing sample size will diminish misfit due to
random error, but not misfit due to elements such as these.

Communality estimation. Kaiser (1990) suggests the square of the
highest correlation of a variable as a starting point for iterative estimation.

Number of factors. Zwick and Velicer (1986) compared five
methods, including the three described in this chapter, for determining the
number of factors to extract (actually, in their case, principal components).
Of the three, parallel analysis came off the best, the scree test also did
quite well, and the Kaiser-Guttman rule was least satisfactory. Schweizer
(1992) also found the Kaiser-Guttman rule to perform less well than the
scree test and parallel analysis. In the Zwick and Velicer study, a fourth
method, Velicer's (1976) minimum average partial correlations (MAP) also
performed well. Humphreys and Montanelli (1975), Lautenschlager
(1989), and Turner (1998) discuss parallel analysis; the latter suggests a
modification to correct a slight tendency to underextract. Lawrence and
Hancock (1999) explore the consequences of extracting too many factors
in a factor analysis. Wood et al. (1996) look at both over- and under-
extraction-they find the latter to have more serious consequences.

Kaiser normalization. An alternative procedure proposed by Cureton
and Mulaik is discussed by Browne (2001). It gives greater weight to tests
loading on a single factor, and less weight to tests loading on two or more
factors. Either procedure may sometimes lead to difficulties in small samples.
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Other model data sets. Other sets of data with known underlying
properties that can be used to try out exploratory factor analysis methods
include populations of real measured boxes (Thurstone, 1947, p. 369; Gorsuch,
1983, p. 11), chicken eggs (Coan, 1959), and cups of coffee (Cattell & Sullivan,
1962). An elaborate artificial data set is provided by Cattell and Jaspers (1967).

Chapter 5 Exercises

Problems 1 and 2 involve the following correlation matrix R (N = 200):
A B C D

A 1.00 .28 -.14 .42
B .28 1.00 -.08 .24
C -.14 -.08 1.00 -.12
D .42 .24 -.12 1.00

1. Obtain eigenvalues and eigenvectors of R, using any available
computer program that yields normalized eigenvectors (W = I). Rescale the
eigenvectors to principal factor pattern coefficients, P, by VL, where L is a
diagonal matrix of the square roots of the eigenvalues. Show that, by using
1, 2, 3, and 4 factors (i.e., 1 to 4 columns of P), PP' gives increasingly accurate
reconstructions of R (but comment).

2. If U2 is a diagonal matrix of uniquenesses with elements .51, .84, .96,
and .64, obtain Rr as R - U2. Obtain the eigenvalues and eigenvectors of Rr,
and convert to P (set any small imaginary square roots to zero). Use the first
column of P to reconstruct Rr. Comment.

Problems 3 to 5 involve the following R matrix of five socioeconomic variables
for 25 Los Angeles census tracts (Harman, 1976, p. 14).

Variable Pop Sch Emp Pro Hou
Total population 1.00 .01 .97 .44 .02
Median school years 1.00 .15 .69 .86
Total employment 1.00 .51 .12
Professional services 1.00 .78
Median house value 1.00

Standard deviations 3440 1.8 1241 115 6368

3. Estimate the communalities of R by squared multiple correlations,
using any available matrix inversion program.

185



Chapter 5: EFA~Basics

4. How many factors would be indicated for R by the Kaiser-Guttman
rule? By the scree test?

5. Use an SEM program to test the hypothesis that a single common
factor would fit these data. (Hint: fix residuals to U2 and analyze R matrix.)
Would you accept or reject the hypothesis of a single common factor?

Given the initial pattern matrix P0 below for two tests of verbal ability and
two tests of mechanical aptitude, and the transformation matrix T:

P0 I II T A B
V1 .8 .2 I .75 .36
V2 .8 .3 II .96 -1.16
M1 .6 -.4
M2 .4 -.4

6. Calculate the rotated factor pattern P. Obtain the factor
intercorrelations F, and the factor structure S.

7. Draw the path diagrams for the rotated and unrotated factors,
omitting any paths less than .10 in absolute value.

8. Calculate the communalities from the path diagram for the
rotated factors, and as the sum of the squares of the rows of P0.
Comment.

9. If your factor analysis program will let you enter P0 directly, carry
out a Varimax and a Direct Oblimin (w= 0) or other oblique rotation of P0.
Use Kaiser normalization. Compare the orthogonal and oblique solutions
to each other and to the problem 6 solution.

10. Verify by direct matrix calculation (PFP') that both rotated solutions
imply the same Rr, and that this is the same as that implied by the unrotated
matrix P0.
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Chapter Six:
Exploratory Factor Analysis-Elaborations

Rescalings-Alpha and Canonical Factors

We saw in Chapter 5 that general factors may be obtained using a maximum
likelihood rather than a least squares criterion, and we called these Canonical
factors. It turns out that Canonical factors (Rao, 1955; Harris, 1962), and yet
another variety, Alpha factors (Kaiser & Caffrey, 1965) can be obtained via the
same basic eigenvalue-eigenvector procedure as principal factors, by reseating
the starting correlation or covariance matrix before carrying out the calculation.

The two methods use different preliminary scalings: Alpha analysis
rescales variables so that they have equal communalities of 1.0, whereas the
Canonical factor approach rescales variables so that they have equal
uniquenesses of 1.0.

A numerical example of Alpha and Canonical factor analysis, based on
the correlation matrix of Table 5-1, is given in Table 6-1 (next page). Formally,
the Alpha method rescales variables by H'1RrH'1, where H'1 is a diagonal
matrix of the reciprocals of the square roots of the commmunalities, and the
Canonical method rescales by U'1RrU'1, where IH contains the reciprocals of
the square roots of the uniquenesses. (Recall that one obtains the inverse of a
diagonal matrix by taking reciprocals of its elements.) The Alpha rescaling
results in a matrix in which differences along the diagonal are eliminated,
whereas the Canonical rescaling results in a matrix in which they are
enhanced.

Table 6-1 illustrates the process with the same reduced correlation
matrix used for the principal factor solution in Chapter 5; it is shown in the
center of the top row. To its left is a column vector of the reciprocals of the
square roots of the communalities (e.g., 1A/.16 = 2.5). These are used in the
diagonal matrix H'1 which pre and postmultiplies Rr to yield the matrix shown
on the left in the second row. Note that this has rescaled all the diagonal
elements to 1.0, and the other elements proportionately (zeroes, of course, stay
zero).

To the right is the Canonical factor solution. At the top are the u -1 (e.g.,
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Table 6-1 Alpha and Canonical factor solutions (correlation matrix of
Table 5-1, exact communalities)

h-1
2.500
1.162
1.348
1.048
1.667

.16

.20

.24

.00

.00

.20

.74

.58

.56

.21

Rr
.24
.58
.55
.41
.21

.00

.56

.41

.91

.51

.00

.21

.21

.51

.36

U'1

1.091
1.961
1.491
3.333
1.250

1.000 .581 .809 .000 .000
.581 1.000 .909 .682 .407
.809 .909 1.000 .580 .472
.000 .682 .580 1.000 .891
.000 .407 .472 .891 1.000

.190 .428

.428 2.846

.390 1.696

.000 3.661

.000 .515

U !RrU 1
.390 .000 .000

1.696 3.661 .515
1.222 2.037 .391
2.03710.111 2.125

.391 2.125 .562

Alpha factors Canonical factors
I II III

.586 .770

.918 .174

.948 .315

.808 -.577

.694 -.638

Rescaled Alpha factors

I
.23
.79
.70
.77
.42

II
.31
.15
.23

-.55
-.38

III
.10

-.31
.03

-.11
.20

.253 .071
-.357 1 .344
.044 .783

-.115 3.130
.333 .634

Principal factors

I
.17
.78
.65
.86
.45

II
.32
.30
.33

-.41
-.34

III
.16

-.19
.14

-.07
.21

.383 .198

.992 -.236

.720 .301
-.560 -.038
-.270 .295

Rescaled Canonical
factors

I
.06
.69
.53
.94
.51

II
.35
.51
.48

-.17
-.22

III
.18

-.12
.20

-.01
.24

1-.16 = .84; 1/V.84 = 1.091). In the second row is the rescaled Rr matrix. Note
that the differences are now exaggerated: The high values tend to be scaled up
much more than the low values--.16 becomes .19, whereas .91 becomes 10.11.
This is because the uniqueness for the first variable is already large (.84) and
only needs to be increased a little to equal 1.0, whereas the small uniqueness
in the second case (.09) must be increased manyfold.

In the third row of the table are the factor patterns, obtained via VL from
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the eigenvalue-eigenvector solutions of the matrices above them, as with
principal factors. Finally, the factors are returned to their original metric (the
standardized variables of the correlation matrix) by the rescalings HP and UP,
respectively. A general similarity to the principal factor solution (bottom row,
center) is evident, although there are differences in the sizes of coefficients.
Those for the principal factor method tend to lie between the values derived
from the two rescalings.

Rao arrived at his formulation of Canonical factor analysis via an attempt
to define factors that would have maximum generalizability to other samples of
subjects. Kaiser and Caffrey arrived at their formulation of Alpha factor analysis
via an attempt to define factors that would have maximum generalizability to
other measures of the underlying variables. Although it is not necessarily the
case that transformed versions of these solutions would retain these properties
for individual factors, one might perhaps still choose one of these two
approaches if one's primary concern lay with the one or the other kind of
generalization.

Both the Alpha and Canonical factor methods can be said to be "scale
free," in the sense that they yield the same factors when starting from differently
scaled variables: for example, from a covariance matrix of variables in their
original raw units, or from a correlation matrix, where the variables are implicitly
standardized. The principal factor approach will give different factor solutions in
these two cases. The Alpha and Canonical approaches, because of their
preliminary rescaling of both the correlation and covariance matrices to the
same standard form, will not, arriving at the same solution in each case. These
factors--as in Table 6-1--are often scaled back to an ordinary standard-score
metric at the end for interpretability. However, the basic properties of the
solutions-maximum accounting for communality by each factor, and so on--
apply to the scaling in which the eigenvalue solution is actually carried out.

From a more general perspective, we may speak of various possible
alternative scalings of variables for a factor analysis: (1) Leave the variables in
their original rawscore metrics, i.e., do a principal factor analysis of the
covariance matrix C (actually, of the reduced covariance matrix Cr, with
common variances in the diagonal); (2) scale the variables by the square roots
of their variances (their standard deviations), by factoring the correlations Rr;
(3) scale the variables by the square roots of the common portions of their
variances, i.e., do an Alpha analysis; or, (4) scale the variables by the square
roots of the unique portions of their variances, i.e., do a Canonical analysis.

Alternative 2, the factor analysis of ordinary correlations, is by far the
most widely used in practice. It might perhaps be regarded as a compromise
between 3 and 4 when one is concerned, as one usually is, with generalizing
across both subjects and variables. Alternative 1, the factoring of covariances,
may suffer excessively from arbitrariness of scale: A variable, e.g., annual
income, can have a quite different effect on the factor analysis if it is expressed
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in dollars or in thousands of dollars, because of the huge difference in the size
of the variance and covariances in the two cases. However, when differing
sizes of variances are at the heart of the issue, as may be the case in comparing
factor analyses across different groups (e.g., different cultures, different ages, or
the like), one would not want to lose the differences among the groups by
restandardizing for each, and hence would prefer to work with the covariance
matrices directly. As we have noted earlier, a possible way to eat one's cake
and have it too is to standardize all one's variables over the combined groups,
to deal with the problem of noncomparable units of the different variables, and
then to factor analyze covariance matrices for the separate groups using this
common metric.

Alternative Stopping Criteria

Chi-square test of residuals

As noted, the Canonical factors are maximum likelihood factors, that is, each
factor represents the best possible fit to the residual correlations, according to a
maximum likelihood criterion. This presents the possibility of a x2 test after the
addition of each factor, as to whether the correlations implied by the factors
extracted so far constitute an adequate account of the original correlations.

Table 6-2 Chi-square test of residuals after each factor (sample problem of
Table 5-1, with communalities assumed known), N = 100

Factor pattern

D
E
F
G
H

X2

df
P

.06

.69

.53

.94

.51

94.67
10
<.001

.35

.51

.48
-.17
-.22

3.16
5
>.50

.18
-.12
.20

-.01
.24

0.00
0

Note: Maximum likelihood factors extracted successively via LISREL. Chi-square test is for the
significance of residuals after the extraction of the given factor (= test of goodness of fit of impR
to Rr based on all factors so far).
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Such a test may be thought of either as a test of the goodness of fit of the model
to the data, or as a test for the insignificance of the residuals left when the
correlations implied by the model are subtracted from the observed correlations.

The calculations for the example problem of Table 5-1 are shown in
Table 6-2. The maximum likelihood factors were obtained by successive
extractions of a single factor using LISREL; as can be seen, they are the same
as the rescaled canonical factors calculated via eigenvalues and vectors in
Table 6-1. Chi squares were obtained on the assumption that the correlations
were based on 100 subjects. As can be seen, a statistical test at a conventional
significance level would have concluded that two factors, plus sampling error,
provide a plausible explanation of the data-agreeing, in this case, with the
Kaiser-Guttman rule. Only if the expected sampling error were considerably
decreased, e.g., if a sample size of upwards of 400 were assumed, would a x2

test suggest the extraction of a third factor from this particular matrix of
correlations. (Note that such "what if" questions are easily answered because
the x2s go up proportionally to N - 1.)

Cross-validation

The ultimate test of any method of choosing the number of factors to extract is
that it selects factors that will be found again in new samples of subjects and
new sets of tests covering the same domain. If the ultimate criterion is cross-
validation, why not use it as the immediate criterion? Indeed, several such
procedures have been suggested. One such method, which cross-validates
across subject samples, has been proposed by Cudeck and Browne (1983).

The method goes as follows:

1. Split the subjects randomly into two equal subsamples, call them A
and B.

2. Take one subsample, say A, and factor with increasing numbers of
factors, 1, 2, 3 , . . . , k.

3. After each factor is extracted, apply a goodness-of-fit test, such as
maximum likelihood, to the discrepancy between the correlations implied by the
factors extracted in A and the observed correlations in the other subsample, B.

4. Repeat, factoring in B and testing against A.
5. Take as the optimum number of factors the one that yields the best

cross-validation indices of fit. Ideally, this number will turn out to be the same
for both directions of cross-validation. If it is not, one could argue either for
taking the smaller of the two, or an intermediate number. In Cudeck and
Browne's examples (discussed shortly), if the number was not the same in both
directions it was usually close.
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The fit of the model to the correlations in the original subsample
necessarily improves as the number of factors increases. But the fit to the
correlations in the opposite subsample typically improves and then deteriorates,
suggesting that after awhile the factoring in the first subsample is merely fitting
idiosyncrasies of sampling error, making the fit in the second sample get worse
instead of better.

Table 6-3 provides some examples from Cudeck and Browne. The data
were subsamples drawn from a large study in which six ability tests were given
on three occasions to a large group of high school students. There were thus
18 measures intercorrelated for each subsample, from which 9 factors were
extracted using a maximum likelihood procedure. After each factor, the
maximum likelihood criterion was calculated for the fit to the opposite
subsample correlations; these numbers are presented in the table. As you can
see, for the smallest subsample size (75 subjects apiece), the best cross-
validation in each direction was for a 3-factor solution. For the 200-subject
subsamples, 4 or 5 factors represented the best cross-validation, and for 800-
subject subsamples, 8 or 9 factors were optimum.

The authors also reported the number of factors that would have been
chosen in each case based on a x2 test in the original sample. These x2s are
not shown in the table, but a § symbol marks the smallest number of factors that
yielded an acceptable solution (p > .05). For the smaller samples, the number
of factors cross-validating tended to be less than the number that were
statistically significant in the original sample (3 factors versus 5 factors for

Table 6-3 Using a cross-validation criterion in choosing the number of factors,
for three sample sizes (data from Cudeck & Browne, 1983)

Number N = 75 N = 200 N = 800
of factors A B A B A B

1
2
3
4
5
6
7
8
9

5.02
4.94
4.91*
5.30H
5.55§
5.72
5.97
5.88

4.99
5.14
4.71*
5.05
5.20§H
5.37
5.61
5.79
5.70

2.56
2.05
1.85
1.83*
1.90
1 -83§H
1.86
1.88
1.91

2.52
2.13
1.87
1.90
1.66*
1.77§
1.74H
1.79
1.75

1.75
1.31
.92
.81
.72
.69
.61
.56*
•58H§

1.82
1.34
.97
.81
.73
.68
.68
.64§
.64*H

* best cross-validation criterion.
§ smallest number of factors with p > .05.
H number of factors chosen by Akaike's criterion.
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N = 75). For large samples, the two criteria tended to yield comparable
numbers of factors. Cudeck and Browne studied other sample sizes as well as
those shown; they also demonstrated that their procedure can be used with
other structural models besides factor models.

In addition, Cudeck and Browne report results for Akaike's information
criterion (see Appendix D) based on the x2 in the original sample. The number
of factors yielding the most parsimonious solution based on this criterion is
shown by the H symbol in Table 6-3. In general, the parsimonious solution by
Akaike's criterion corresponded quite well with the first solution acceptable at
the .05 level of significance. Both methods slightly overfactored relative to the
cross-validation criterion in smaller samples but tended to agree with it in large
ones.

Alternative Rotation Methods

As mentioned in Chapter 5, many methods of factor rotation exist. Why?
Several reasons might be mentioned. First, some procedures incorporate
particular constraints. For example, some seek the best solution with
uncorrelated factors, others allow factors to become correlated. Some
procedures allow a general factor to emerge, others avoid one. Second, the
different procedures differ in such practical characteristics as how widely they
are available, how difficult they are to use, how robust they are in the face of
various adversities, and so on. And finally, none of them works best on all
problems. On a particular correlation matrix, method A finds a simple P that
method B does not; on another matrix, method B goes to an elegant solution
like a hot knife through butter, whereas method A bogs down hopelessly. Of
course, on many problems with fairly simple and clear-cut structure, any of a
variety of procedures will locate that structure and yield basically similar results.

Orthomax

The Varimax and Quartimax procedures discussed in the last chapter can be
considered special cases of a general class of orthogonal transformations
called Orthomax, whose criterion can be written:

The weight w determines the particular criterion. If w= 0, the second part of the
expression vanishes, and we have the Quartimax criterion. With w = 1 , we have
Varimax. Intermediate values of w would yield solutions with intermediate
properties. A negative value of w would award a bonus to solutions with
unequal factors, instead of a penalty, and so on.
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Promax

The Promax solution (Hendrickson & White, 1964) is an oblique solution that
proceeds in two steps. First an orthogonal Varimax solution is obtained. Then it
is transformed to an oblique solution that has the same high and low loadings,
but with the low loadings reduced (if possible) to near-zero values. The second
step is done by direct calculation, not iteration, so that if an orthogonal solution
can correctly identify the factors, Promax provides an efficient route to an
oblique solution.

The second step of a Promax solution is a variant of a procedure called
Procrustes (Hurley & Cattell, 1962), which forces a factor pattern matrix to a best
least squares fit to a predesignated target matrix. It gets its name from the
legendary Greek who forced travelers to fit his guest bed by stretching or
lopping them as necessary.

In Promax, the target matrix is obtained by raising the elements of the
Varimax-rotated pattern matrix to a higher power-usually the third or fourth--
and restoring minus signs if the power is even. By raising the pattern
coefficients to a higher power, the low values go essentially to zero, while the
high values, although they are lowered, remain appreciable, so the contrast
between high and low values is sharpened. For example, at the fourth power
all loadings of .26 or less become zero to two decimal places, whereas loadings
of .70 and .80 remain appreciable at .24 and .41.

Call the target matrix Pf. Then an initial transformation matrix Tj is
obtained by a least squares matrix solution of an overdetermined set of
simultaneous equations:

where P0 is the initial unrotated factor pattern matrix. This is the first part of the
Procrustes solution. The second part is to rescale Tj to its final form T by
postmultiplying it by a diagonal matrix D, chosen to make the factor
intercorrelation matrix (TT)-1 have diagonal elements equal to 1 .0. The
necessary D may be obtained as the square roots of the diagonal elements of
(TjTj)-i.

Table 6-4 illustrates a Promax solution to the rotation problem of the
previous chapter, based on the Varimax solution of Table 5-7 (page 173). At
the left of the table is Pf, obtained from the Varimax solution by raising its
elements to the fourth power (because they were all initially positive, no
restoration of minus signs is required). In the center of the table, Tj, (TjTj)-1, D,
and T are successively calculated. At the right, T is applied to the unrotated
solution to yield a Promax solution, which is quite similar to the Oblimin solution
of Table 5-8 in the preceding chapter.
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Table 6-4 Calculation of a Promax solution via Procrustes, from the Varimax
solution of Table 5-7

Pt
A

.37

.11

.05

.07

.00

B
.00
.00
.02
.11

.20

Tj
A

I .171
II -.362

A

B
.115
.247

'i)~1

B

A
A 3.253
B .000

T =
A

D

B
.000

4.779

TjD

B

P =
A

.84

.62

.37

.35

-.10

P0T
B

-.06
-.04
.30
.51

.77
.00 .11 A 10.583 9.947 I .556 .549 -.09 .66

B 9.947 22.842 II -1.176 1.180

Note: P{ is target factor pattern = Varimax solution of Table 5-7 with elements raised to 4th power.

TJ = (Po'Po)"1Po'Pt= transformation matrix before reseating. D = square roots of diagonal

elements of (TjTj)"1. T = rescaled transformation matrix. P0 = unrelated factor pattern.
P = rotated factor pattern.

Other oblique rotation methods

As noted earlier, a large number of different methods for oblique factor rotation
have been proposed. Some represent slight variations on those discussed in
this book; the reader can consult other sources (such as Gorsuch, 1983) for
more details and citations to original articles. Two methods operating on rather
different principles may be worth mentioning briefly. One is the method called
Orthoblique (Harris & Kaiser, 1964). This procedure, like Promax, reaches an
oblique solution via an orthogonal rotation, but the strategy is a slightly different
one. The first k eigenvectors of the correlation matrix (where k is the desired
number of factors) are subjected to an orthogonal rotation (originally, raw
Quartimax, although others can also be used). The transformation matrix
developed in this step is then rescaled in its rows or columns or both by suitable
diagonal matrices, to become the final transformation matrix T, the matrix that
transforms an initial principal factor solution into the final rotated oblique
solution.

The other principle to be considered is embodied in procedures such as
Maxplane (Cattell & Muerle, 1960) and the KD transformation (Kaiser & Madow,
1974). These methods focus specifically on low pattern coefficients and work at
transforming factors to get as many pattern coefficients close to zero as
possible. Methods such as these strive directly for the second kind of simplicity
in a pattern matrix--a large number of near-zero paths. They are most often
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used to apply final touches to an approximate solution arrived at by another
procedure. As a case in point, the KD procedure applied following an
Orthoblique rotation yielded a solution to the Table 5-6 rotation problem that
was an almost exact reproduction of the underlying path model, differing from it
by no more than .01 in any correlation or path coefficient.

Estimating Factor Scores

Given a factor solution, and the scores of individuals on the observed variables,
can we determine the individuals' scores on the latent variables, the factors?
This would be attractive to do, if we assume the latent variables to represent
fundamental causal influences underlying the interrelations of the superficial
measures we actually observe.

The answer is, in general: No we cannot, although we can provide
estimates of such scores. These estimates may be quite good if the observed
variables are strongly related to the latent variables, or quite poor if they are not.

A number of different methods have been proposed and are discussed in
standard factor analysis texts such as Gorsuch (1983) or Harman (1976). One
simple one is to add together with equal weight the scores on the observed
variables that are most highly correlated with the factor--a robust approach that
has a good deal to be said for it. However, the most widely used method is to
recognize that we are dealing with a prediction situation, in which we want to
predict the latent variable, the factor, from the set of observed variables. An
accepted way of making predictions of a given variable from a set of related
variables is by carrying out a multiple regression.

Recall that in multiple regression one solves for a set of weights (called
"beta weights"), which can be applied to the observed variables to predict the
unknown variable. To solve for such weights, one needs to know the
correlations among the predictor variables, and the correlations of these with
the variable being predicted. Then the vector of beta weights may be obtained
by premultiplying the latter by the inverse of the former. The matrix of
correlations among the predictors (the observed variables) is of course
obtainable-it is just the correlation matrix R. The correlations of the observed
variables with a factor is a column of the factor structure matrix S; let's call this
s. So we can get the desired beta weights b for estimating a factor as follows:

b = R 1 s .

These weights b, applied to the observed variables in standard-score
form, will yield the best prediction, in the least squares sense, of this factor from
these variables. The equation

B = R1S
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will give the beta weights, as columns of B, for the whole set of factors
simultaneously.

One can work with raw instead of standard scores by rescaling the betas
appropriately and supplying an additive constant, but we need not deal with
such complications here. Any standard text on multiple regression will supply
the details.

All the other paraphernalia of regression analysis apply. The vector
multiplication b's gives the square of the multiple correlation of the factor with
the predictors and thus represents the proportion of variance of the factor that is
predictable from the observed variables. This will give one some notion of how
well the factor scores are estimated in the present set of data. To get an idea of
how well these factor estimation weights will transfer to new samples, a cross-
validity coefficient can be calculated (Rozeboom, 1978):

RC2 = 1 - (1 - R2)(N + m)/(N - m).

The R2 inside the parentheses is the squared multiple correlation, N is the
sample size, and m is the number of predictors (observed variables). The
corrected value Rc

2 is an estimate of how well the beta weights calculated in the
given sample will predict in the population (and hence, on average, in new
random samples from that population). If the measurement is good--that is, the
obtained multiple correlation is high-and if the ratio of subjects to variables is
large, one would not expect much falling-off of prediction in a new sample. For
instance, in a 6-variable problem based on 100 subjects in which the obtained
multiple correlation is .90, the expected drop-off when using the factor
estimation weights in a new sample is only to a correlation of .89:
Rc

2 = 1 - (1 - .81) 106/94 = .786; V.786 = .89. If one were to do a 17-variable
factor analysis on 50 subjects and obtain a multiple correlation of .70, the
expected drop would be all the way to zero (try it in the formula and see), and
the factor score estimation would be completely worthless.

The factor scores estimated by regression using beta weights and
standardized predictors will have a mean of zero and a variance equal to R2.
If it is desired to produce the factor scores in standard score form, which is
customary, the beta weights can simply be multiplied by 1/R before applying
them to the (standardized) predictors. (A little reflection should show why this is
so. Hint: What is the standard deviation of the initial set of estimated factor
scores?)

Table 6-5 (next page) shows the calculation of factor scores for our two-
factor example. At the top of the table are R-1, the inverse of the correlation
matrix, and S, the factor structure matrix (from Table 5-9). R-1S yields the beta
weights, B. B'S yields a matrix that has the squared multiple correlations from
the regressions in its principal diagonal; the reciprocals of their square roots are
in the rescaling matrix D-1/2, which rescales B to W. W contains the coefficients
that produce standardized estimates of the factor scores.
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The final step is taken in the bottom row of the table. Hypothetical data
for three subjects on the six variables are shown in the rows of Z.
Postmultiplied by W, these yield the estimates (in standard-score form) of
scores for these three individuals on the two factors A and B.

The correlation among these factor estimates can be obtained, if desired,
by pre- and postmultiplying B'S by D'1/2. The estimates for the two factors turn
out to be correlated .67, somewhat higher than the correlation of .50 between
the factors themselves. This is a typical result when estimating factor scores by
this method.

Table 6-5 Estimating factor scores by regression (two-factor example of
Tables 5-6 and 5-9)

R'1 Inverse of correlation matrix S Factor structure

C D E F G H A B
C 1.64 -.48 -.32 .52 .01 .00 C .80 .40
D -.48 1.36 -.14 -.22 .00 .00 D .60 .30
E -.32 -.14 1.43 -.31 -.18 -.12 E .55 .50
F -.52 -.22 -.31 1.88 -.48 -.33 F .65 .70
G .01 .00 -.18 -.48 1.44 -.35 G .35 .70
H .00 .00 -.12 -.33 -.35 1.32 H .30 .60

B Beta weights W Factor score weights

A B B'S A B
C .51 -.01 .769 .502 C .58 -.01
D .22 -.00 .502 .725 D .25 -.00
E .15 .13 E .17 .15
F .23 .35 D-"2 F .27 .41
G -.00 .38 1.140 .000 G -.00 .44
H -.00 .26 .000 1.174 H -.00 .30

Z Data (standard scores) Zp Factor scores

C D E F G H A B
1.2 .6 1.5 .8 .1 1.1 1.31 .92

-1.0 -1.6 -.1 .0 .8 -1.4 -.99 -.07
-.7 1.2 .9 -1.0 -1.3 .7 -.23 -.64

Note: B = R-1S; D = diag B'S; W = BD'1/2; ZF = ZW.
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As another illustration, Table 6-6 shows factor scores for the first three
boxes in Thurstone's box problem (see Table 5-10, last chapter; the factor
scores are based on the Direct Oblimin solution in Table 5-14). Comparison to
standardized values of the true scores suggests that, with the high
communalities of this example, the factor scores do a reasonable (although not
a perfect) job of estimating the true-score values.

Table 6-6 Theoretical true standard scores compared to factor scores, first
three boxes in Table 5-10 (Direct Oblimin solution of Table 5-14)

Original

Box 1
Box 2
Box 3

X
3
3
3

Y
2
2
3

Z
1
2
1

-1
-1
-1

Standardized
X
.43
.43
.43

Y
-1.29
-1.29

.00

Z
-1.17

.13
-1.17

-1
-1
-1

Factor scores
F3
.47
.26
.42

F2
-1.05
-1.40

.13

F1
-.93
-.26

-1.05

Note: Means for original scores over population of 40 boxes: 4.1, 3.0, 1.9; SDs: .768, .775,
.768; factors reordered for ease of comparison.

Factor score indeterminacy

It is tempting to interpret the factor score estimation problem as though there
were a "real" set of factor scores out there somewhere, and our difficulty is in not
being able to estimate them accurately. But in a sense, the fundamental
problem is not really one of estimation, it is that a given factor solution (P, S,
and F) just doesn't define factors uniquely. For any given P, S, and F there is a
range of potential factors that are equally compatible with the obtained results.
If the communalities of the original variables are high, these potential factors will
tend to be highly correlated, much like one another, and the choice among them
may not be crucial. But if the communalities are low, some potential factors may
actually have zero correlations with others (McDonald & Mulaik, 1979). In short,
if we hope to score subjects accurately on latent variables, they should be latent
variables with strong and preferably multiple links to data. If there are important
aspects of our latent constructs that are not well reflected in our measurements,
and many aspects of our measures unrelated to the latent constructs, we should
not be surprised if there is ambiguity in trying to assess the one from the other.

Extension analysis

Suppose we carry out an exploratory factor analysis on a set of variables, and
have available the scores of additional variables for the same subjects. Can we
extend the factor solution to these new variables? The answer is: Yes, we can,
but subject to the same limitation as with calculating scores on the factors.
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The simplest way, conceptually, is just to obtain the estimated scores on
a factor and correlate these scores with the scores on the additional variables.
This will provide the matrix S for the new variables, their correlations with the
(estimated) factors. One can then obtain the factor pattern matrix P for the new
variables by the relationship P = SF'1, the inverse of the relationship S = PF
given earlier for getting the factor structure from the factor pattern matrix. Again,
this is the factor pattern for the new variables with respect to the estimated
factors, and the utility of an extension analysis thus is dependent to a
considerable degree on the presence of conditions that minimize factor
indeterminacy and lead to accurate estimation of factor scores.

In practice we do not actually have to go through the step of calculating
factor scores for individuals--a matrix shortcut exists. To obtain the estimated
correlations of a factor with the new variables, one may multiply the matrix of
correlations of the new variables with the old ones, call it Q, times the vector of
beta weights scaled to produce standardized factor scores, call it w; that is,

s = Qw.

If W is a matrix with reseated beta weights as its columns, the equation
becomes:

S = QW,

providing a convenient way of calculating S, and thence P.
Table 6-7 illustrates the extension of the example two-factor analysis to

Table 6-7 Extension of factor analysis of Table 5-6 to two new variables
I and J

Q Correlations of new variables W
with original variables

I
J

S

C
.60 .
.20 .

Factor

D E
40 .50
10 -.10

F G
.60 .50

-.30 -.10

H
.40

-.20

P Factor
structure

I
J

A
.69 .
.05 -.

B
66
24

pattern
A

I .48
J .22

B
.42

-.36

C
D
E
F
G
H

Factor score
weights

A
.58
.25
.17
.27

-.00
-.00

B
-.01
-.00
.15
.41
.44
.30

Note: S = QW; P = SF'1. Factor score weights from Table 6-5.
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two new variables, I and J. Hypothetical correlations of the two new variables
with the original six variables are shown as Q, as well as the factor score
coefficients W from Table 6-5. The factor structure matrix S for the new
variables is obtained by the matrix multiplication QW, and the factor pattern
matrix P by SF'1, where F'1 is the inverse of the factor intercorrelation matrix F
from Table 5-6. The matrix S gives the estimated correlations of the new
variables with the two factors A and B, and P gives estimates of the paths from
the factors to the new variables.

There is a question that might have occurred to some readers: If one has
scores on the additional variables for the same subjects, why weren't these
variables just entered into the factor analysis in the first place, yielding pattern
coefficients and correlations with the factors directly? There could be several
reasons why one might not do this. The additional scores might only have
become available after the original factor analysis was carried out. Or the
additional variables might have been excluded from the factor analysis to avoid
distorting it or biasing it in some way; for example, some variables might have
been excluded because of artifactually high correlations with included
variables, or because they were external reference variables which were
desired for help in interpreting the factors, but which one did not want
influencing the factor analysis itself. Or one might have an extremely large
number of variables available, only a subset of which could feasibly be used for
a factor analysis, but all of whose relationships with the factors would be of
interest. In any of these situations, an extension analysis could be the answer.

Higher Order Factors

One of the products of an analysis into oblique factors is the matrix F of
correlations among the factors. This is an intercorrelation matrix, and
intercorrelation matrices can be factored. Such a factor analysis of the
intercorrelations among factors is called a second-order factor analysis.

If this factor analysis is also oblique, there will be a matrix of
intercorrelations among the second-order factors, which can in turn be factored.
This would be called a third-order factor analysis. If the third-order factor
analysis is oblique . . . . And so on.

In principle, this process could go on indefinitely, provided one started
with enough variables, but in practice second-order factor analyses are fairly
uncommon, third-order factor analyses are decidedly rare, and fourth-order
factor analyses are practically nonexistent. However, the general idea of a
hierarchical arrangement of factors is reasonably straightforward. One might,
for example, imagine factoring a variety of arithmetic items to form scales for
addition, multiplication, etc., with these in turn components of a numerical ability
factor, and this as a subcomponent of general intelligence.

Because second- and third-order factor analyses are just factor analyses
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of correlation matrices, they can be carried out by the same methods used for
first-order analyses, with the same issues involved: estimation of
communalities, number of factors, orthogonal or oblique rotation, and so on.
(A decision at any stage for orthogonal rotation terminates the sequence.)

Factor methods involving statistical tests, such as maximum likelihood,
should probably be avoided for exploratory higher order analyses, because the
statistical rationales based on sample size are derived for the case of first-order
correlations or covariances and would be of doubtful applicability to the factor
intercorrelation matrices involved in higher order analyses. However, standard
model-fitting methods, as described in earlier chapters, can be used to fit
models involving first- and higher-order factors simultaneously to data in a
confirmatory factor analysis.

Direct expression of higher order factors

It may be useful in interpreting higher order factors to express directly their
relationship to the original variables (Cattell & White, see Cattell, 1978). The
path diagram of Fig. 6.1 illustrates the situation. The pattern coefficients of
second-order factor A would be b, c, and dfor the first-order factors C, D, and E.
For the original variables G, H, I, J, and K, they would be bg, bh, ci, cj + dk, and
dl, respectively.

Table 6-8 shows the three pattern matrices involved. P0i and Pi2 are
the pattern matrices obtained in the first- and second-order factor analyses. As
you should verify, the third matrix P02 can be obtained from these by the matrix
multiplication PoiP-i2- Thus, multiplication of the two factor pattern matrices will
yield the factor pattern matrix directly relating second-order factors to the
original variables. For a third-order analysis, PoiPi2P23 would yield the factor
pattern P03 relating the third-order factors to the original variables. The
extension to still higher orders is straightforward.

Fig. 6.1 Path diagram representing a higher-order factor analysis. C, D, E, F
first-order factors; A, B = second-order factors; G, H, I, J, K, L, M = observed
variables; W, X, Y, Z = residuals from second order analysis.
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Table 6-8 Factor patterns of Fig. 6.1: (a) variables related to first-order factors;
(b) first-order factors related to second-order factors; (c) variables related
directly to second-order factors

(a)
POI

C D E F
G g - - -
H h - - -
I - i - -
J - j k -
K - - I m
L - - - n
M - - - o

(b)
P12

A B
C b -
D c -
E d e
F - f

P02

G
H
I
J
K
L
M

(c)

A
bg
bh
ci
cj+dk
dl
-

B
-
-
-
ek
el+fm
fn
fo

Note: Dash indicates zero path. Subscripts 2, 1, 0 refer to 2nd-order factors, 1st-order factors,
and variables.

Schmid-Leiman transformation

Another approach to relating higher-order factors directly to the observed
variables is that due to Schmid and Leiman (1957). This representation is
illustrated in Fig. 6.2 for the same case as that of Fig. 6.1.

The strategy followed is a hierarchical one: The higher order factors are
allowed to account for as much of the correlation among the observed variables

Fig. 6.2 Path diagram of higher-order factor analysis with first-order factors
residualized. A, B = second-order factors of original analysis; Cr, Dr, Er, Fr =
residualized first-order factors of original analysis; G to M = variables.
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as they can, and the lower order factors are reduced to residual factors
uncorrelated with the higher order factors. If the correlation among the lower-
order factors is explained entirely by the higher-order factors, as is the case in
the example, the residual factors will be uncorrelated with each other as well.
Although the relative amount of influence attributed to the lower order factors is
decreased by this transformation, they may gain in clarity of interpretation, for
each now represents the independent contribution of the factor in question. If,
say, A represented a broad influence in the personality domain such as
extraversion, and C, D, and E represented such component traits as sociability,
impulsivity, risk taking, and the like, this procedure would allow extraversion to
account for as much as possible of the intercorrelation among observable
extraverted behaviors (G, H, I, J, K), and the residualized Cr, Dr, and Er would
represent effects specific to impulsivity, risk-taking, and so on. One might argue
in particular cases whether this model better represents the underlying causal
influences than does the original representation of Fig. 6.1, but when it does,
the Schmid-Leiman transformation will be useful.

Basically, the procedure is as follows: The pattern matrix for the highest
order (in this case the second) is obtained as for the Cattell-White
transformation of the preceding section, by PoiPi2> based on the original first-
and second-order analyses. Then, the next-lower order factors (here, the first-
order factors) are residualized by scaling down their original pattern coefficients
by the multiplication PoiU-|, where U-) is a diagonal matrix of the square roots
of the uniquenesses from the higher order analysis.

The reader may find this process easier to understand if it is looked at in
path terms. The key step is to realize that the residualized factors Cr, Dr, etc. of
Fig. 6.2 are the direct equivalents of the second-order residuals W, X, etc. in Fig.
6.1. The square roots of the uniquenesses, u, used in the rescaling are just the
values of the paths w, x, etc. in Fig. 6.1, and the paths p, q, etc. in Fig. 6.2 are
equivalent to the compound paths wg and wh in Fig. 6.1. In the Schmid-Leiman
transformation we break the causation of, say, variable G into two independent
paths (plus a residual). These two paths are labeled p and rin Fig. 6.2, and
they correspond to wg and bg in Fig. 6.1. W is of course a causal source
independent of A, by its definition as a residual.

Fig. 6.3 and Table 6-9 illustrate the procedure numerically with a simple
example. (This particular example is too small actually to have yielded a
determinate solution in an exploratory second-order analysis, but will suffice to
illustrate the Schmid-Leiman procedure.) Fig. 6.3(a) is the original two-level
path model, whereas diagram (b) is the alternative Schmid-Leiman
representation, after B and C have been transformed to uncorrelated residual
factors. Diagrams (a) and (b) imply exactly the same correlation matrix and
communalities: for example, TOE is .6 x .8 = .48 on the left, and .36 x .48 + .48 x
.64 = .48 on the right. The communality of D is .e2 = .36 on the left, and .S62 +
.482 = .36 on the right.
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Fig. 6.3 (a) A simple two-level factor model, and (b) the same model
after a Schmid-Leiman transformation. Br and Cr are residualized versions
of B and C.

Table 6-9 Matrices for Schmid-Leiman example of Fig. 6.3

D E F G h2 B C h2 u2 u
D 1.000 .480 .144 .144 .36 B 1.00 .48 .64 .36 .60
E 1.000 .192 .192 .64 C 1.00 .36 .64 .80
F 1.000 .250 .25
G 1.000 .25

POI

D
E
F
G

B
.60
.80
.00
.00

P12
C A

.00 B .80

.00 C .60

.50

.50

^02

D
E
F
G

POI
A

.48

.64

.30

.30

D
E
F
G

Br

.36

.48

.00

.00

Cr

.00

.00

.40

.40

h2

.36

.64

.25

.25

Note: P0i and P-)2 presumed to be obtained in a first- and second-order factor analysis of
correlation matrix R, with the second-order analysis based on factor correlation matrix F from the
first-order analysis. P02 obtained as Poipi2-tne Cattell-White formula. The P0-| matrix on the
right for the Schmid-Leiman residualized factors Br and Cr is obtained as PotO-), where U-| is a

diagonal matrix of u, the square roots of the uniquenesses of B and C, based on the second-
order analysis (upper right).

Table 6-9 shows the correlation matrix R among the observed variables,
the correlation matrix F among the first-order factors that is the basis of the
second-order analysis, and (left, below) the pattern matrices P0i and P-\2 of the
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first- and second-order analyses (these matrices contain the paths at the first
and second levels of Fig. 6.3(a)). At the bottom center of the table is the pattern
matrix P02 relating the second-order factor A to the original variables (obtained
via the Cattell-White formula), and to its right the pattern matrix P01 for the
residualized factors Br and Cr after the Schmid-Leiman transformation. These
are proportional to the original P0-| coefficients (bottom, left). The rescaling is
by the square roots of the uniquenesses u of the original first-order factors (top
right). Note that because Cr and Br are independent of each other and of A, the
communality for each variable can be obtained by summing the squares of the
coefficients across rows of P02 and P0i (lower right in the table).

Note also that the reduced correlation matrix Rr (with communalities in
the diagonal) can be obtained by adding together two independent
components: P02Po2 and ^01^01'- representing, respectively, the
contribution of the general factor A and the group factors Br and Cr.

Finally, the reader should note the complete equivalence of the matrix
results and the path results: i.e., in this simple case the values in Fig. 6.3(b) can
be obtained virtually by inspection from Fig. 6.3(a), as the products of the two
levels of paths. The picture is not quite so simple if the higher-order factors
don't completely explain the intercorrelations of the lower-order factors and
there are correlated residuals to be taken into account, but the principle still
holds.

Hierarchical trait theories have long been popular, especially with British
writers, since Spearman's successors first introduced a layer of group factors
between g and the specifics. Higher order factor analysis in general, and the
Schmid-Leiman transformation in particular, represent convenient ways of
formalizing theories of this character.

Nonlinear Factor Analysis

Ordinary factor analysis, like the other path models that have been discussed in
the earlier chapters of this book, assumes linear relationships between the
latent variables-the factors-and the observed, measured variables. What if the
relationships in some real-world case are not linear?

If they are nonlinear but monotonic--i.e., the two change together in a
constant direction, though not necessarily in equivalent amounts--an ordinary
linear approach will often yield a decent first approximation. But suppose the
relationship is nonmonotonic, say, an inverted-U function of the kind that may
hold between motivation and complex performance, where increasing levels of
motivation up to a point improve performance and thereafter detract from it.
What then?

The issue has been addressed by R. P. McDonald (1962, 1967), who
notes that if one does an ordinary factor analysis of the correlations among
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variables related to a latent variable by a curvilinear function, one will tend to
obtain two factors. But how can one distinguish the two factors obtained in this
case from the two factors obtained when there are two latent variables and
ordinary linear relationships?

McDonald's suggestion: Obtain scores for individual subjects on the two
factors (actually, for technical reasons he prefers to use principal component
rather than factor scores). Plot these scores on a scatter diagram. If the two
sets of obtained component scores really reflect a single underlying variable
curvilinearly related to the observed measurements, the plotted points should
tend to fall along a curved line representing the relationship.

Let us consider an example. Suppose that we have several observed
variables Y that are related to a latent variable X by equations of the general
form:

Y = aX + bX2 + c .

(Recognize the similarity to the case discussed earlier of nonlinear relationships
among latent variables-there, however, the nonlinearities were in the structural
model, and the measurement model was assumed to be linear; here we are
considering a nonlinear measurement model.)

The preceding equation specifies a curvilinear relationship between X
and Y. For example, suppose that a=1,b = -1,c=15, and X varies from -3 to
+4 in integer steps. Fig. 6.4 shows the resulting curve. The linear correlation
between X and Y is zero, but there is a perfect nonlinear relationship.

Fig. 6.4 Graph of curvilinear relationship (a = 1, b = -1, c = 15).
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Table 6-10 Equations to produce scores on tests Y1 to Y5 from given values
of latent variable X and specific variables C1 to C5

Y1 = X + 2X2 - C1
Y2 = 4X - X2 + 2C2
Y3 = -X - 3X2 + C3
Y4 = -2X + .5X2 . 2C4
Y5 = -3X + X2 + C5

Table 6-10 shows a hypothetical example of five tests, Y1 to Y5, each of
which is related to the underlying variable X by a quadratic equation of the type
mentioned; the tests differ, however, in the relative strength and sign of the
linear and quadratic components, and in the contribution of the unique
component c.

For illustrative purposes, 100 simulated subjects were assigned scores
on these five tests, by drawing for each subject six random integers in the range
±5, one representing X and one each of the five C's, and inserting them in the
formulas for the five Y's. These scores were then intercorrelated and two factors
extracted by a standard factor analysis program (SPSS FACTOR), using 1s in
the diagonal to yield principal components. The correlation matrix, the pattern
coefficients, and the eigenvalues are given in Table 6-11. Notice that by the
Kaiser-Guttman rule this is a very clear two-factor structure. Figure 6.5 shows a
scatterplot of the scores on component 2 plotted against component 1.

Table 6-11 Principal components analysis of the intercorrelations of five
hypothetical tests on 100 subjects

Correlations Factor pattern

Y1 Y2 Y3 Y4 Y5 C1 C2 h2

Y1 1.00 -.20 -.98 .17 .47 .75 -.65 .99
Y2 1.00 .23 -.55 -.82 -.74 -.53 .83
Y3 1.00 -.19 -.50 -.77 .63 .99
Y4 1.00 .61 .64 .51 .68
Y5 1.00 .90 .28 .89

Eigenvalues: 2.92, 1.45, .49, .13, .02
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Fig. 6.5 Scatterplot of first two principal component scores from factor analysis
of Table 6-11.

The curvilinear trend of the points in Fig. 6.5 is evident. The orientation of the
parabolic curve on the graph is somewhat arbitrary, since it depends on just
how the two factors emerge, and this will vary with the particular constitution of
the tests. McDonald discusses methods of rotating the configuration to a
standard orientation, and fitting a parabola to the data, but we need not pursue
these matters here.

McDonald also discusses more complex possible cases. For example, a
three-factor solution might reflect three ordinary linear latent variables, or one
linear and one quadratic relationship, or two linear variables and their product,
or first, second, and third powers of a single variable. Although such cases can
in principle be handled by the present approach, in practice the discrimination
among these alternatives would often place considerable demands on the
quality and quantity of available data.

Fortunately for the simplicity of life, the variables that social and
behavioral scientists measure are most often linearly or at least monotonically
related to the underlying latent variables, so that linear methods will normally
serve at least as a first approximation. But not always-so if you are working in a
domain in which you suspect that nonmonotonic relationships might be present,
it would probably not be a bad idea to calculate some principal component
scores and do a little plotting. One caution: This method will work better with
variables of fairly high communality. With variables of low communality, the
amount of scatter of scores due to specificity and error is likely to make it difficult
to distinguish any systematic trends in the data. If a latent variable is really only
very weakly related to observed variables, establishing the exact form of that
relationship may not be easy.

209



Chapter 6: EFA~Elaborations

Chapter 6 Notes

Analytic rotation methods. Browne (2001) gives a thorough review
of the history of such methods, both orthogonal and oblique. He also provides
via his website (http://quantrm2.psy.ohio-state.edu/browne/) a comprehensive
program for exploratory factor analysis (CEFA). Rozeboom (1992) discusses
strategies for finding alternative good rotational solutions.

Orthomax. Browne (2001) discusses an even more general class of
analytic rotation criteria, the Crawford-Ferguson family, which covers oblique
rotation as well, and reduces to orthomax in the orthogonal case.

Additional oblique rotation methods. Among those that have been
proposed are Geomin (Yates, 1987), Promaj (Trendafilov, 1994), Promin
(Lorenzo-Seva, 1999), and Simplimax (Kiers, 1994). Several are variants of
Promax.

Rotation criteria variants. Some computer packages calculate
these criteria in forms that are slightly different from but equivalent to those
given in this book.

Rotation in multiple groups. McArdle and Cattell (1994) discuss the
simultaneous rotation of factor solutions in several different groups.

Bootstrap. Evaluating the stability of rotated factor solutions by means
of bootstrap procedures is discussed by Lambert et al. (1991). Chan et al.
(1999) use the bootstrap to assess consistency of factors across groups when
rotated to maximum similarity by a Procrustes procedure.

Standard errors. Calculating the standard errors of rotated factor
loadings in exploratory factor analysis is discussed by Cudeck and O'Dell
(1994). They conclude that the matter is complex, and that rules of thumb of the
form "interpret all loadings whose absolute value exceeds .30" are often grossly
inaccurate. (Note that bootstrapping-see above--is sometimes a possibility.)

Factor scores. For a discussion of alternative approaches, see Saris
et al. (1978), ten Berge and Knol (1985), and Bentler and Yuan (1997). The
matter of factor score indeterminacy is discussed at length in an issue of
Multivariate Behavioral Research (Vol. 31, No. 4, 1996). For a discussion of
indeterminacy in SEM models generally, see McDonald and Bolt (1998).

Cross-validation. MacCallum et al. (1994) discuss various strategies
of partial cross-validation for factor analysis and other SEM models--an
example might be cross-validating factor loadings but not factor covariances.

Factor analyses of ipsative measures. The special problems
involved in factor analyzing so-called "ipsative" measures, such as rankings or
Q-sorts, are discussed by Dunlap and Cornwell (1994).

Higher-order factor analysis. Undheim and Gustafsson (1987),
Harlow and Newcomb (1990), Benson and Bandelos (1992), Bickley et al.
(1995), and Keith (1997) provide examples. Rindskopf and Rose (1988)
discuss some of the issues arising in a confirmatory factor analysis approach to
higher-order analyses. Gustafsson and Balke (1993) describe a slightly
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different model, which they call the nested factor model. It is obtained by the
direct fitting of a model of the form of that in Fig. 6.3(b).

Nonlinear factor analysis. A paper by Etezadi-Amoli and McDonald
(1983) describes a "second generation" version. See Lingoes and Guttman
(1967) for an approach to a "nonmetric factor analysis."

Chapter 6 Exercises

1. Using as a target matrix the Varimax solution of problem 9 in
Chapter 5 (page 186) raised to the 4th power, carry out the Procrustes matrix
calculations. Obtain P and F for this Promax solution and compare to the
oblique solutions in that problem.

2. Extend the analysis of Table 6-7 (page 200) to incorporate a third new
variable, whose correlations with variables C through H are .00, -.20, .00, .80,
.50 and .00, respectively.

3. Take the oblique factor solution below, and carry out a second-order
factor analysis; i.e., extract a single principal factor from the F matrix. Report
P12-

P .01 .01 .58
.01 -.00 .50
.01 .65 .33
.74 .02 .01
.02 .81 -.06
.75 -.02 -.01

F 1.00 .41 .49
1.00 .94

1.00

4. Relate the second-order factor in the preceding problem directly to the
original first-order variables.

5. Subject the analysis of problems 3 and 4 to a Schmid-Leiman
transformation.

6. Apply a Varimax rotation to the factor pattern of Table 6-11. How
would you interpret the resulting rotated factors in terms of the equations in
Table 6-10?
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7. Repeat the analysis of Thurstone's box problem (previous chapter),
using a different method of factor extraction and a different oblique rotation
procedure. Compare your results with those obtained in Chapter 5.
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Chapter Seven:
Issues in the Application of Latent Variable
Models

In this chapter we expand our horizons with regard to latent variable analysis
and its application. We begin with a discussion of exploratory model
modification and the implications of alternative models, and we end with a
couple of critiques of the causal modeling enterprise. In between, we consider
how latent variable analysis might be extended to handle additional kinds of
problems, and whether the construction of path diagrams might be mechanized.

Exploratory Modification of a Model

A model is applied to some data. It fits badly. What next?
A sensible strategy in many cases is to try to find out why the model

doesn't fit, and change it so that it fits better. One needs to be a bit careful here,
because presumably one is not just interested in fitting this particular data set
better, but in fitting other data sets well in the future-data sets which involve
these same measures in new samples of subjects, or other measures presumed
to be relevant to the same underlying constructs, or other situations in which
these constructs are involved. In other words, one wants genuine improvement
in measurement or theory, not just a procedure for decreasing chi square.

Remember that the chi square after model modifications based on
information from the present data set no longer has the same statistical
meaning as chi square from the initial test of a model, because of possible
capitalization on chance features of the data in making the changes. The
smaller the sample, the greater this risk, because in a small sample, chance will
have more effect on the correlations or covariances, and so there is a greater
likelihood that some model changes will be made to accommodate features of
this particular data set which will simply not be there in the next one.

Keeping in mind, then, that we will need to discount the apparent merits
of a revised model-the more so, the smaller the sample and the more extensive
the data-influenced revisions-how do we go about accomplishing these
modifications in the first place? There is no one prescription that will fit every
case, but there are strategies that may be helpful.
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Divide and conquer

A first step that is nearly always worth considering is to ascertain to what extent
the lack of fit resides in the measurement and in the structural parts of the
model. This is straightforward to do. One simply fits to the data a confirmatory
factor analysis model in which the latent variables are allowed to be completely
intercorrelated, and the paths from them to the observed variables are as
specified in the measurement part of the original model. To the extent that this
model fits badly, we know that the misfit is in the measurement part of the
original model, because in allowing all possible correlations among the latent
variables, we have a structural submodel that is guaranteed to fit perfectly.

It is also instructive to compare the x2 from this confirmatory factor
analysis with the x2 from the original model fitting. If they do not differ
significantly, we know that the structural part of the original model is not creating
a substantial additional misfit to that produced by the measurement part.

In this event, should we congratulate ourselves that our structural theory,
which is probably what mainly interests us, is correct, even though our
measurement is rotten? No. On the face of it, what we have shown is that a
theory of the form we propose could account for the relationships among the
latent variables, but until we have a satisfactory measurement model, we don't
know that the latent variables are in fact the constructs specified by our theory.

Had it turned out in the confirmatory factor analysis that the measurement
part of the model fit well, and significantly better than the whole model, we
would have localized the problem to the structural model, and we could
proceed to tackle that directly. However, if, as usually happens, the initial tests
suggest problems in the measurement model or in both, it will normally be
desirable to start work with the measurement model, as there is little point in
having a theory that works, but not for the variables intended.

Improving a measurement model

Suppose, then, that there are problems in the measurement model. Inspecting
the results of the confirmatory factor analysis solution should give clues as to
their nature.

There are two main sources of difficulty in measurement models. First,
some indicators may fail to reflect the constructs they are supposed to measure.
For example, they may have low factor loadings, or factor loadings of the wrong
sign. (If they appear to have large loadings of the wrong sign, one should check
the possibility that something has been inadvertently reversed in scoring.) One
way of dealing with a variable which loads poorly is simply to drop it. However,
one should always consider the consequences before taking such a step. Are
the remaining measures conceptually adequate for defining the latent variable?
Suppose there are, say, three indicators reflecting one aspect of the latent
variable, and two indicators which reflect some other, essential aspect. Even
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though the fit of the measurement model would be improved by dropping the
latter two, you shouldn't do it if it will produce a shift in the meaning of the latent
variable which makes it unsuitable for testing the original theory.

If you have a latent variable which has only two indicators, and there
appear to be measurement problems with it--again, think before acting. If one
measure is conceptually superior to the other, you might be better off using just
it, fixing its path to an estimate of the square root of its reliability. If both
measures seem conceptually valid, you might try setting their paths equal.
Adding this constraint will increase chi square, but often by very little, and to the
extent that it produces a more sensible measurement model it should behave
better in cross-validation. Later in this chapter we will discuss circumstances in
which one might wish to consider reversing the direction of the arrows between
latent and observed variables to deal with measurement model problems.

The second main source of measurement model misfit is that indicators
may to some extent reflect constructs other than the one they are intended to
measure. If an indicator in fact reflects two constructs, but it is taken as a
measure of one and given a zero path from the other, there will be a misfit. The
model is now discrepant with reality, because the correlations of this measure
with others are reflecting both aspects of it, but the model assumes that only one
aspect is present. Again, the choice of whether to omit such an ambiguous
measure or to allow paths to it from both latent variables will depend on such
considerations as whether one has adequate measures of both without it (drop
it) or not (probably keep it, although it may distort relations between the two
constructs by bringing in a correlation due to the specific aspects of the
measure).

Model-fitting programs such as EQS or LISREL provide diagnostic
indicators that can be helpful in deciding which additional paths from latent
variables to indicators might improve the fit of the model. These are called
Modification Indices in LISREL and Lagrange Multiplier Tests in EQS. What
they do for you is tell you roughly how much the x2 for the model will be
improved by freeing each fixed path present in the model. In the case of a
typical confirmatory factor analysis model, the fixed paths are the zero paths
between each factor and the variables that are not supposed to load on it. If a
few of these have large modification indices, they should be examined as
possible cases of measures loading on multiple factors, and suitable remedies
considered. As both the LISREL and the EQS manuals emphasize, one should
not just free paths blindly. This will reduce x2s, but it can also produce
nonsensical models. Furthermore, freeing certain paths can have major effects
on the modification indices of others, so that one should be cautious about
introducing wholesale changes at a given step. EQS has a multivariate version
of the Lagrange test that can help here.

There are other possibilities that may be considered in tackling an ailing
measurement model. (1) Consider the introduction of one or more method
factors, to account for covariation among measures which is due to shared
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methods rather than the latent variables of the theory-see the discussion of
multitrait-multimethod matrices in Chapter 3. The contribution of method
variance to the correlations among measures in the social and behavioral
sciences is often considerable. One review estimated that method variance
accounts for about 25% and trait variance about 40% of the total for personality
and aptitude measures, with the remainder error variance. For attitude
measures, method variance played an even larger role-about 40% method
variance and 30% content variance. (2) Allow correlated residuals between
pairs of measures that share some specific basis of covariation over and above
their participation in common factors. Modification indices can give clues to
possible candidates for this treatment, as can large isolated entries in the
residual matrix (the difference between the observed and implied correlation
matrices). Correlated residuals can be introduced between the indicants of a
given latent variable or across latent variables. Again, if they have a rational
basis, their chances of standing up in cross-validation are better.

The choice between 1 and 2 above depends largely on how many
variables are involved. If a method artifact or shared specific variance affects
just two variables, introducing a correlated residual is the simplest way to
handle it. If several variables are involved, introducing an additional factor is
more efficient, and conceptually more powerful. In between are cases that can
be handled either way.

A final possible strategy is to decide that the measurement model is
"good enough," despite a substantial x2, and go directly on to the structural
model. For example, one may determine from the confirmatory factor analysis
that each latent variable is well measured by its proposed indicators, and that
the only problem is that there are a number of lesser secondary loadings,
correlated residuals, and the like, which are clearly nonzero, hence the x2, but
are small in comparison with the defining loadings. One would then use the x2

from the confirmatory factor analysis as a reference from which to examine the
effect of changes in the structural part of the model. This strategy may be
particularly attractive when working with very large samples, where quite small
departures from ideal measurement can lead to large x2s. If one is in an
exploratory mode anyway, there is clearly no mandate that all measurement
problems must be resolved completely before any structural problems can be
addressed.

A variant of this last strategy is to form a composite variable from the
indicators of each factor and use that as a single indicator of the latent variable,
with its path fixed to the square root of the internal consistency reliability (for a
standardized variable) and its residual fixed to the error variance. The merit of
this strategy is that the investigation of the structural model is quicker, cheaper,
and cleaner, because of the smaller matrix and the elimination of distractions
from the measurement model. A possible disadvantage is that the
measurement part of the model is frozen, and changes in it can no longer
develop in response to changes in the structural part of the model.
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Improving the fit of a structural model

Changing a structural model is changing one's theory, and should always be
done with that in mind. No simple rules will always apply. One can use the
information provided by the fitting program to see whether existing paths are
significantly different from zero. If not, one might consider dropping some of
them from the model. Or one can look at modification indices to get an idea
what the effects on the fit would be if one were to add particular paths, allow
covariances, or the like. Or one can inspect residuals to see what aspects of the
data are not well accounted for by the model as it stands. Probably one should
consider all these sources of information to get ideas about possible changes,
but modifications should not be made without careful consideration of their
implications for the substantive theory that the model is intended to reflect.

Such a caution is emphasized by a study by MacCallum (1986), who
investigated the merits of a simple automatic model-improvement strategy: If a
model does not fit, make the single change that most improves its fit. Repeat as
necessary until a nonsignificant %2 is achieved. Then test for and delete any
unnecessary paths. MacCallum took known models, imposed simple
specification errors (for example, a path might be omitted or an extra one
added), and fit the models to random samples of data from populations in which
the true models held. All models had a correctly specified measurement
portion--the errors occurred only in the structural model. The model-
improvement strategy described above was applied in each case.

The results were moderately complex, but the following examples should
give a feel for them. For a sample size of 300 cases and just a single omitted
path, only 10 of 20 attempts were successful in reaching the true model. With
the same sample size and a more poorly specified model (two paths omitted,
one added), the true model was never achieved in 20 tries, although sometimes
one or two correct steps toward it were taken. With the latter model and N = 100
there were many problems, such as improper solutions or a failure to reject the
initial incorrect model. Only 8 of 20 tries even got as far as making one
legitimate change, and in 7 of the 8 it was a wrong one.

In short, such an automatic procedure of structural model modification
cannot generally be recommended--and if one tries it with small samples, one
must be very brave indeed. In a subsequent study (Silvia & MacCallum, 1988),
it was shown that with larger samples (N = 500) and with the use of some
relevant prior theoretical knowledge, such searches were more often successful
in arriving at a known true model, although by no means always so.

In any case, the outcome of any structural model modification is a new
theory. It should hardly be necessary to point out that one needs to test that
new theory on fresh data before proclaiming its merits to the world--i.e., cross-
validation is essential when exploratory modification of a structural model is
undertaken. And it is prudent even when changes are confined to the
measurement model, particularly when the changes are extensive or the
samples are small.
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Alternative Models

There is always more than one way to account for a particular set of
interrelationships among variables, and the path modeler should be aware of
this fact. In this section we consider two examples, one involving the direction
of the causal arrows between latent and manifest variables, and one involving
more general issues of equivalence among models.

Are observed variables causes or effects of latent variables?

It is traditional in structural equation modeling--as evidenced in most of the path
diagrams in this book-to have the arrows in the measurement model go from
the latent variable to the observed indicator of it. But this may not always be
sensible.

Consider the path model in Fig. 7.1, from a hypothetical study of life
satisfaction in an elderly population, drawn as a traditional structural modeler
would do it. On the left side we have two latent variables, Health, indexed by
several particular classes of medical problems, and Financial Resources,
indexed by Current Earnings and Retirement Income; these are seen as
contributing to Life Satisfaction on the right, indexed by ratings by Self, Spouse,
and Friend. Let's worry a little about the direction of the causal arrows for the
latent variables on the left side of the diagram. The way the diagram is drawn,
health is a general condition of the individual, which is reflected in the
pathology of various body systems. But one could look at it differently, as in Fig.
7.2, which holds that health is just a summary construct reflecting the degree to

Fig. 7.1 A hypothetical study of life satisfaction: conventional measurement
model.
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Fig. 7.2 A hypothetical study of life satisfaction: indicators causing latent
variables.

which a person has things wrong with various bodily systems.
An important difference is that looking at it as in Fig. 7.1 implies that there

will be positive correlations among the indicators, and looking at it as in Fig. 7.2
does not. That is, Fig. 7.1 says that because heart problems and joint problems
are both indicators of a general condition called health, their correlation will be
the product of the individual paths from that construct; thus if both are good
measures of health they will by that fact be substantially correlated. Figure 7.2
makes no such claim. The conditions could be correlated, but they could be
independent. In any case, their correlation would not depend on their status as
measures of health. Without arguing the merits of either approach in this
particular case, it is clear that the approaches are different, and that in
constructing a path model one might want to consider both as possibilities.

A more striking instance is presented by the Financial Resources latent
variable, because here one would clearly want to have current earnings and
retirement income act as sources (Fig. 7.2) rather than as indicants (Fig. 7.1).
Fig. 7.1 implies that current earnings will be positively correlated with retirement
income, but in a real elderly population the correlation might well be negative, if
individuals who have inadequate retirement incomes must depend on income
from working. In an ordinary measurement model, two negatively correlated
indicators, each with positive paths to the construct (Fig. 7.1) will create
problems, but there is no inherent difficulty with having alternative sources of
something called Financial Resources (Fig. 7.2), which is in turn an important
contributor to something called Life Satisfaction. (The measurement of the
latter, by the way, is quite satisfactorily handled by the traditional paradigm in
this example: one can think of Life Satisfaction as a condition of the individual
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which affects the ratings given by the three informants, and one would expect
their ratings of it--if valid-to be positively correlated.) In short, sometimes one
will want to do it one way, sometimes the other, but both possibilities should be
kept in mind.

Constructing models in which causal arrows run from observed to latent
variables can be done directly in some SEM programs, but may require a little
legerdemain in others. In the latter, one can link the observed variables by fixed
1.0 paths to dummy latent variables. Then paths can be run from these dummy
variables to others in the model.

Note that in Fig. 7.2 the latent variables of health and financial resources
are shown as completely determined by the specified causes (no residual
arrow). This is necessary here in order to achieve an identified solution. In an
expanded study, with downstream paths from health and financial resources to
additional manifest variables, one could solve for residual paths for these two
latent variables as well.

Equivalent structural models

Arrows which might run in either direction are not just a feature of measurement
models. As you deal with structural models, you should be aware that often one
can make quite radical changes in a model--for example, by reversing the
direction of one or more of its causal arrows--and still have a model that fits the
data exactly as well as before, but with quite different values for its paths.
(Stelzl, 1986, discusses the conditions under which this will happen.) Let us
consider the example shown in Table 7-1 and Fig. 7.3.

The six variables D through I represent two measures for each of three
latent variables: a mother's verbal aptitude, her child's verbal aptitude, and the
amount of reading aloud to the child that the mother has done.

Table 7-1 Correlations among six hypothetical variables (for example of
Fig. 7.3), N = 100

D E F G H I

D 1.00 .56 .38 .34 .50 .50
E 1.00 .43 .38 .58 .58
F 1.00 .72 .43 .43
G 1.00 .38 .38
H 1.00 .64
I 1.00
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Fig. 7.3 Three alternative models of relations among MV (mother's verbal
aptitude), CV (child's verbal aptitude), and MR (mother's reading to child).
(Same measurement model throughout.)

On the left in the figure, model (a), is a model whose structural portion
assumes that a mother's reading aloud to her child has a causal effect on the
development of the child's verbal aptitude. The model also assumes that a
mother's verbal aptitude may affect how much she is inclined to read to the
child, as well as possibly having a direct effect on the child's verbal aptitude, an
effect that might, for example, occur via the genes she has transmitted to her
child. If we solve this model for the correlations in Table 7-1, we obtain a very
good fit indeed, the %2 is .02, based on 7 df. The value of the path from
mother's verbal aptitude to her reading to the child (path a) is .60, the direct path
from her own verbal aptitude to her child's verbal aptitude (path b) is .09, and
the effect of mother's reading on child's verbal aptitude (path c) is .85.
Obviously, mother's reading aloud is a key variable in explaining the child's
verbal aptitude.

But suppose that we were to entertain a quite different hypothesis,
namely, that a mother's reading to a child has no effect whatever on its verbal
aptitude; but, on the other hand, that the amount of reading a mother does to
her child over the years is affected by how much the child enjoys it, which is in
part a function of the child's verbal aptitude. We now have the structural model
shown as (b). If we fit that model to the data, we obtain exactly the same good
fit, and the same low x2- But the values of the paths, and the interpretation of
the model, are now quite different. There is a substantial direct determination of
child's verbal aptitude by mother's verbal aptitude (b = .60). Mother's verbal
aptitude has only a very minor effect on how much she reads to the child
(a = .10). Path c remains strong (.84), although now, of course, it represents an
entirely different causal effect. A developmental psychologist with hereditarian
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theoretical preferences might like this second model better, with its direct
mother-child transmission, and a psychologist of environmentalist inclinations
might fancy the first. The point, however, is that both models are exactly
equivalent in their fit to the data. And so, for that matter, are others-including
such unlikely models as (c)--which both psychologists might be pained to find
has an identical x2 of .02, for a = .32, b = .30, and c = .90.

The practical moral: Think about each causal arrow in your path
diagram. If there is reasonable doubt about which direction it goes, it might
make sense to replace the directed path by a simple correlation or a reversed
path and see how much difference this makes for other paths in the model.
Sometimes the effects of such a change will be quite localized. If so, the
interpretation of other paths may still be secure. If no t . . . . Well, surely you
would want at least to be aware of this fact when discussing your results.

Not everyone is, apparently. One study examined 53 published
examples of SEM analyses. In over 80% of them mathematically equivalent
models could be found, often in large numbers, and yet in no paper did the
authors explicitly acknowledge or discuss the existence of such potential rivals
to their favored model.

Can path diagrams be constructed automatically?

Interesting work by Judea Pearl (e.g., 1998, 2000) of UCLA and by a group of
scientists at Carnegie Mellon University (e.g., Spirtes, Richardson, Meek,
Scheines, & Glymour, 1998) suggests that the answer to this question is at least
"sometimes."

Indeed, Pearl argues that one of the basic requirements of an intelligent
system is that it be able to construct models of cause-and-effect relationships in
its environment. It can't rely exclusively on built-in knowledge, but has to be
able to translate observational information, basically correlational in character,
into causal models-i.e., it must construct path diagrams, or their equivalent.

What are the clues that people (or other intelligent systems) use to do
this? Consider three events A, B, and C. A is correlated with C, and B with C,
but A and B are uncorrelated. When confronted with this situation, people
normally give the interpretation (a) in Figure 7.4, not the interpretation (b), which
implies exactly the same correlations, and hence is equally consistent with the
observations. Why this preference? Pearl says, for at least two reasons.
Reason 1: Model (a) is a simpler explanation than model (b)-it has one less
arrow. Reason 2: Model (a) will be more stable than model (b) in the face of
mild fluctuations. If one of the two paths in (a) changes a bit with time or
circumstance, TAB remains zero, but if this happens to any one of the paths in
(b), r/\B is no longer zero.

Also of great importance in identifying cause is temporal sequence. If we
know that C follows A and B in time, our choice of (a) over (b) is even more
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Fig. 7.4 Two alternative causal patterns implying the same correlations.

compelling, whereas if we observe C preceding A and B, we will have to
struggle with explanations like (b), invoke additional variables, disbelieve our
eyes and wait for more data, or whatever. But Pearl emphasizes that even
without temporal information, an intelligent system trying to get along in our
world, if it observes A and B correlated with C but not with each other, should
pick explanation (a). Presumably, systems that do this are better adapted to
survive, and will thus have evolved a preference for parsing their environments
according to the criteria of simplicity and stability that underlie the choice of (a)
over (b).

1C*

Can one mechanize a search for prospective causal sequences in a welter of
correlational data? Several schemes of this sort have been translated into
computer programs. I briefly describe one called 1C*, the 1C standing for
"Inductive Causation," and the asterisk meaning that latent (i.e., unobserved)
variables are allowed to occur.

The details of this algorithm are beyond our scope here, but roughly
speaking it proceeds in three steps:

1. Locate pairs of observed variables which cannot be disconnected by
holding other observed variables constant; these are then joined by lines--as
yet without arrowheads--!.e., they represent prospective causal arrows, but the
direction of causation is not known, and some may not even be causal, but
represent correlations produced by unobserved latent variables, which of
course weren't controlled.

2. Locate patterns in this network of the sort in Fig. 7.4(a), to begin to
assign directions to causes.

3. Add further arrowheads according to additional rules, until no more
can be added.
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The outcome of this procedure is a diagram that consists of some
definitely established causal paths, some others which may either be causal or
correlated via a latent common cause, some which are definitely the latter, and
some which remain ambiguous: a may cause b, b may cause a, or a latent
variable may affect both.

We need not dwell on the procedural details, because it seems likely that
the algorithms in biological brains involve some form of massively parallel
processing, in contrast to the extensive and exhaustive serial searches carried
out by the computer algorithms. Nevertheless, the fact that the latter are able to
turn purely covariational input into path diagrams, even incomplete ones, is
instructive. If temporal information is also available, the algorithms are much
faster and more efficient-for example, in step 1 they need only hold constant
events prior to the pair under consideration, and in later steps, when causal
arrows are found their direction is immediately known: from earlier to later. If
one can also rule out latent variables, matters are even further simplified, but
from the perspective of this book, that would hardly do.

The work of these modelers also bears on a topic addressed earlier in
this chapter: that of equivalent models. The incomplete path diagram
generated by the 1C* procedure automatically defines a set of equivalent
models. Each completely unspecified path can be replaced by a causal path
running from a to b, one running from b to a, or a two-headed curved arrow
connecting the two; each partially specified path admits two options. These
variations represent equivalent (and equivocal) interpretations of the given data
set.

The idea of finding models empirically, as opposed to generating them a
priori, is in some ways analogous in spirit to exploratory versus confirmatory
factor analysis. In both cases we start with some general ideas about how the
world is structured and search a database of relationships among observed
variables for structures which meet the criteria. The two differ: 1C* is focused on
elucidating causal relations among the observed variables, and regards latent
variables as more or less a nuisance, whereas exploratory factor analysis
focuses on the latent variables, seeking to locate a small number of them and
specify their relationships to the observed variables.

Despite this difference in focus, latent variable modelers will continue to
watch with interest the developments in this area. It seems unlikely that 1C* or
its descendants will replace LISREL and its fellows in the hearts of structural
equation modelers anytime soon. However, those interested in equivalent
models, in model identification, in specification searches, or in the causal status
of SEM may find useful ideas here.

Modes of Latent Variable Analysis

In this section we look at a number of different modes in which data can be
approached in factor analysis and other latent variable methods.
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R, Q, P, O, T, and S techniques of factor analysis

Cattell (1952) has suggested that sets of data to be factor analyzed may be
classified along three dimensions; by considering these in pairs he defines
what he calls R, Q, P, O, T, and S techniques of factor analysis. The
relationships among these are summarized in Table 7-2, which is based on a
similar table in Gorsuch (1983, p. 312). The reader interested in more details
than are given here, or further references to the literature on this topic, will find
Gorsuch a useful source.

In this view, the three basic dimensions of data are tests or measures,
persons or objects measured, and situations or occasions of measurement. In
the most common form of factor analysis, one factors the relationships among
tests or measures that are correlated for a sample of persons based on a single
occasion of measurement. Cattell calls this R technique. A data matrix for
typical R technique analysis is shown at the left in Table 7-3 (next page). Each
of the seven tests has been given to a number of persons. A correlation
coefficient is calculated for each pair of tests, i.e., between each pair of columns
in Table 7-3(a). The resulting 7x7 correlation matrix among tests is the basis
for the factor analysis.

The data matrix on the right of Table 7-3 is for the complement of
R technique, Q technique. The form of data matrix is the transpose of that used
in R technique-the rows are tests and the columns are people. The
intercorrelations, still calculated among all possible pairs of columns and still for

Table 7-2 Relationships among R, Q, P, O, T, and S techniques

What is Correlation
factored across Example

One occasion
R technique measures persons

Q technique persons measures

One person
P technique

O technique

One measure
T technique

S technique

measures occasions

occasions measures

occasions persons

persons occasions

basic personality
traits

personality typology

individual personality
structure

individual psychological
environment

anxiety-arousing
situations

anxious person types
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Table 7-3 Data matrices for R and Q techniques

(a) R technique (b) Q technique

T1 T2 T3 T4 T5 T6 T7 Al Ben Carl. . .Zach
A l 5 1 2 6 3 5 7 T 1 5 2 7 . . . 1
Ben 2 6 7 1 8 5 2 T2 1 6 4 ... 4
Carl 7 4 3 6 4 4 8 T 3 2 7 3 . . . 5

Zach 1 4 5 2 5 6 4 T 7 7 2 8 . . . 4

data gathered on a single occasion, are correlations among people rather than
correlations among tests. They express how much Al is like Ben, or Ben is like
Zach, on these tests. In the particular example in Table 7-3(b), Al and Ben are
negatively correlated. They are systematically unlike each other—on those tests
where Ben has relatively high scores Al scores low, and vice versa. Al and
Carl, on the other hand, are positively correlated, agreeing on their high and
low tests.

Note that resemblances based on correlations ignore possible
differences in means. Al and Carl's correlation reflects the fact that they show
the same pattern of scores, even though Carl's scores tend to be systematically
higher. The correlation between them would not change if we were to add two
points to every one of Al's tests, although this would make Al and Carl's scores
more alike in absolute terms. Nor would the correlation decrease if we were to
add 10 points to each one of Carl's scores, although in some ways this would
make Al and Carl very different. For these reasons one might prefer sometimes
to use another measure of association than an ordinary Pearson correlation for
Q technique--for example, some measure of distances between profiles (see
Overall & Klett, 1972, Chapter 8, for a discussion).

One should also be aware that Q technique correlations can be quite
sensitive to the scales of the tests over which they are computed. Merely
changing the scoring of test 3 in Table 7-3, to give 10 points per item instead of
one, although trivial in concept, will in fact drastically affect the correlations--for
example, it changes the correlation over the 7 tests between Al and Ben from
-.81 to +.92. (Can you see why?) For this reason, it is often desirable to
standardize the rows of the data matrix (i.e., express the test scores in standard
score form) prior to doing the correlations for a Q-type factor analysis-
particularly if the test scores are in noncomparable units. (This is sometimes
referred to as double-centering the data matrix, because the correlation itself
effectively standardizes by columns.)

R technique seeks the dimensions underlying groupings of tests or
measures and might be used, for example, in a study of basic personality traits.
Q technique seeks the dimensions underlying clusters of persons and might be
used, say, in a study of personality types. In practice, the two approaches might
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in fact lead to the same underlying latent variables: Either a study of personality
scales or of person types might lead one to an introversion-extraversion
dimension. Nevertheless, the routes taken and the intermediate products of the
analyses would be quite different in the two cases.

The next two techniques, P and O, are also complementary to one
another, but they both use just a single subject, tested on repeated occasions.

In P technique, shown on the left in Table 7-4, one considers two
measures similar if scores on them tend to vary together over occasions in the
life of an individual. In the table, measures T1 and Tm appear to go together, as
do T2 and T3, with the two sets tending to be negatively related. P technique is
best suited for use with measures of states, such as moods or motive arousal,
which can be expected to vary from day to day in the life of an individual. Its
merit is that it can give a picture of the mood or motive structure of that particular
person. Some personality psychologists, who have objected to the usual
R-type factor analysis as only yielding a picture of a mythical "average person"
(no example of which may actually exist!), should find a P technique approach
more congenial.

An illustration of a study using P technique is that of Cattell and Cross
(1952), in which multiple measures designed to assess the strengths of a
number of motivational states (anxiety, self-confidence, sex drive, fatigue, and
the like) were obtained twice daily for a particular individual--a 24-year-old
drama student-over a period of 40 days. A factor analysis of the
intercorrelations of these measures over the 80 occasions yielded some
patterns much like those that had been found in previous R-type researches, but
others that appeared to be idiosyncratic to this particular individual-or at any
rate, to his life during this period.

O technique, the complement of P technique, has not apparently been
much used, although it is an interesting idea. Its correlations (Table 7-4(b)) are
based on the similarity of occasions in one person's life, assessed across a
multiplicity of measures. It asks which are the occasions that go together in
terms of a person's reactions to them-which situations arouse anxiety, which
are challenging, which depressing. One might think of this as a way of getting

Table 7-15 Data matrices for P and O techniques

(a) P technique (b) O technique

T1 T2 T3 ... Tm Day1 Day2Day3 . . . DayN
Day1 7 1 2 . . . 8 T17 4 2 . . . 1
Day2 4 2 3 . . . 5 T21 2 6 . . . 7
Day3 2 6 8 . . . 3 T32 3 8 . . . 6

DayN 1 7 6 . . . 2 Tm8 5 3 . . . 2
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at the structure of a person's psychological environment, of the events to which
he or she responds in characteristic ways. For the same reasons as in Q
technique, preliminary standardization of scores on the measures used will
often be desirable in O technique.

The final pair of complementary approaches, T and S techniques, seem
also not to have been much explored. They restrict themselves to a single
response measure but assess it across both persons and situations. In T
technique one looks at resemblances among situations in their effect on the
response measure, and in S technique at resemblances among persons. For
example, in a study such as that of Endler, Hunt, and Rosenstein (1962), in
which ratings of anxiety were obtained across both persons and situations, one
could either factor the different types of situations to study the relationships
among anxiety-arousing situations (T technique), or factor the persons to obtain
a typology of persons based on the situations that arouse their anxiety (S
technique). In either case one might infer latent dimensions such as physical
versus social anxiety, or realistic versus imaginary fears.

Three-mode factor analysis

The six types of factor analysis described in the preceding section can be
considered to represent different ways of collapsing a three-dimensional
rectangular data matrix-see Fig. 7.5. The two horizontal dimensions of the
cube are measures, and situations or occasions, the vertical dimension is
persons. Any point within the cube represents the score of a particular person
on a particular measure on a particular occasion.

If we take a slice off the left front face of the cube (or any slice parallel to
it), we have data from a single occasion and hence an R or a Q technique study,
depending on whether we choose to run our correlations vertically or
horizontally. If we take a slice off the right face, or parallel to it, we have data

Fig. 7.5 A three-dimensional data matrix.
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from a single measure, and hence a T or S technique study. And if we take a
slice off the top, or any horizontal slice, we have data from a single person, and
P or O technique, depending on whether we calculate our correlations among
the measures or the occasions.

But can we do a single, overall analysis of the whole data cube? Yes, we
can. The procedure is known as three-mode factor analysis and was
developed by Ledyard Tucker (1964). We do not attempt to describe the
method at the level of calculational detail, but, roughly, it results in three sets of
factors resulting from the analysis of correlations involving measures, persons,
and situations, and a core matrix that relates the three separate sets of factors.

Tucker presents an analysis of the Endler, Hunt, and Rosenstein anxiety
data. The measures were different responses that might be associated with
anxiety (e.g., "heart beats faster," "need to urinate frequently"); the situations
were such potentially anxiety-arousing situations as making a speech or going
on an initial date; the persons were the student subjects doing the ratings.
Factors were reported for each of the three modes separately: for example,
"heart beats faster" and "get uneasy feeling" went together on a measures
factor; "speak before large group" and "job interview" went together on a
situations factor; and three person-dimensions emerged among the subjects.
The core matrix showed relationships involving all three modes: for example,
one of the person types showed distress responses in interpersonal situations,
while two other types tended to show exhilaration; the latter two types differed,
however, in their responses to situations with inanimate or unknown dangers.

Three-mode analyses in structural equation modeling

Analogous approaches to data in three modes occur in structural equation
analysis, although they have not been so formally systematized as in factor
analysis. A multitrait-multimethod matrix is three-mode: traits, methods, and
persons. And so may be a structural equation analysis of events over time:
multiple measures on each of a sample of persons taken on each of several
occasions. In each case the simultaneous analysis over the three modes is
capable of providing information unattainable from any two modes considered
separately.

Many opportunities have yet to be explored for extending such analyses
to new kinds of problems. You might want to think about what it might mean to
do, say, structural equation analyses of O or S types in your own substantive
area of interest. Also, there is no law that says that three modes is the limit. For
example, Cattell in one place discusses as many as 10 modes (1966b). Finally,
there are many variations possible within any single design--for example,
instead of achievement test scores on schoolchildren across grades, how about
economic indicators on countries across decades? The risk of ever having to
say "everything has been done" seems negligible.
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Criticisms of Latent Variable Modeling

Any structural modeler who wants to find out what an intelligent and articulate
critic can say against this enterprise should certainly read a trenchant critique
by D. A. Freedman (1987a). This article, plus a number of responses by
structural modelers and others and a reply by Freedman, constitute a whole
issue of the Journal of Educational Statistics.

Freedman's critique

Freedman is not one to pull punches. In his second paragraph he says:
"Indeed, path models are now widely used in the social sciences, to disentangle
complex cause-and-effect relationships. Despite their popularity, I do not
believe they have in fact created much new understanding of the phenomena
they are intended to illuminate. On the whole, they may divert attention from the
real issues, by purporting to do what cannot be done-given the limits on our
knowledge of the underlying processes" (1987a, p. 101f). And later in his
introduction: "At bottom, my critique is pretty simple-minded: Nobody pays much
attention to the assumptions, and the technology tends to overwhelm common
sense" (p. 102).

A key objection of Freedman's is that structural modelers tend to interpret
the results of their model fitting as //they had done an experiment, when in fact
they have not.

Suppose we fit a path model of the sort shown on the left in Fig. 7.6, and
obtain a value of .05 for the path coefficient. What do we conclude? That
sending people to school for another year will increase their incomes by 5%?
That, roughly, is what structural modelers do tend to conclude, if they conclude
anything at all, says Freedman, only they usually do it in situations sufficiently

Fig. 7.6 Two models of the relationship between education and income.
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more complicated than this to obscure what is going on.
Now if we had actually done the experiment of sending a random sample

of people to school for an extra year, fine. But as we have not, our conclusion is
vulnerable to anything we have done wrong in our modeling, such as omitting
important variables, and this is true regardless of how well our model fits the
data we have. In the example, Freedman points out that there might be a third
variable in this situation, family background, that affects both education and
income, and whose inclusion would most likely change the value of the path f
from education to income (righthand diagram). Very well, says the modeler,
"now we've got it: f represents the impact of education on income, with family
background controlled for."

"Unfortunately," Freedman continues, "it is not so easy. How do we know
that it is right this time? How about age, sex, or ability, just for starters? How do
we know when the equations will reliably predict the results of interventions-
without doing the experiment?" (p. 104).

Freedman distinguishes between descriptive models which simply
describe relationships, and structural models which purport to give causal
explanations. He believes that much of the latent variable modeling literature
consists of the former masquerading as the latter. "In my opinion, the confusion
between descriptive and structural models pervades the social-science
scholarly literature of the past 20 years, and has distorted the research agenda
of a generation. In the end, this confusion might easily destroy the idea of
scientific right and wrong" (1987b, p. 221).

Freedman goes on: "The modelers I count among my friends are
interesting and attractive personalities, and serious scholars. However, on
behalf of the models themselves, the core of the enterprise, I can find only two
points to make: They may have heuristic value for certain investigators; and
some day, there may be a real one."

Freedman is right on the first point-latent variable models can be helpful
in describing causal relationships involving measured and unmeasured
variables, and that is why we have taken the time and effort to learn about them
in this book. In one sense, he is wrong on the second, because there will never
be a "real one." Causal models are inherently hypothetical; they have a big If
up front. If we assume a model like this, then such-and-such consequences
follow. This is a very useful thing to be able to do, because, as all causal
modelers know, what follows from our model, at least on the first try, is usually
quite discrepant from the real-world data that we are attempting to explain.
However, Freedman is quite right to chide modelers who assume that when
they eventually arrive at a model that does fit their data, the scientific enterprise
is over. Of course not. What they then have (at most) is a theory that can
explain these facts. They do not know that this theory is true, in the
commonsense meaning of this term, until they (or others) have done the
experiments or the cross-validitory and confirmatory observational studies
necessary to test and support it.
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So long as we want to try to describe complex real-life phenomena as
they occur in their natural settings, it seems to me that our chief alternatives are
the literary essay and the path model. Many as are the merits of literary essays,
the path model has one immense advantage from a scientific standpoint. It is
much, much easier to demonstrate that its conclusions are incorrect.

But having done this, and having found that our models have problems,
then what? Should we retreat to simple models of simple situations, in the hope
that eventually we will improve our understanding of the complex phenomenon
with which we began? Or should we continue to work with our complex models
to try to locate the wrong assumptions that are making them behave badly with
respect to the data? Tastes will differ here, but so long as there are those who
hold to the second view, there will be structural modelers. Personally, I think
that our best hope is that there continue to be both kinds of people; that they
both vigorously continue to pursue their respective strategies; and that, at least
from time to time, they talk to each other.

Cliff's caveats

In a somewhat friendlier article entitled "Some cautions concerning the
application of causal modeling methods," Norman Cliff (1983) gives some
gentle warnings and sensible advice to the users of programs such as LISREL:
"Initially, these methods seemed to be a great boon to social science research,
but there is some danger that they may instead become a disaster, a disaster
because they seem to encourage one to suspend his normal critical faculties.
Somehow the use of one of these computer procedures lends an air of
unchallengeable sanctity to conclusions that would otherwise be subjected to
the most intense scrutiny" (p. 116).

I hope that if you have gotten this far in this book you have enough sense
of how these models work and do not work, and of some of the vicissitudes to
which they are subject, that "unchallengeable sanctity" will not characterize your
attitude toward conclusions drawn from their use. But it is worth reminding
ourselves briefly of the four principles of elementary scientific inference that Cliff
suggests are particularly likely to be violated in the initial flush of enthusiasm of
causal modelers:

The first principle is that the data do not confirm a model, they only fail to
disconfirm it, together with the corollary that when the data do not
disconfirm a model, there are many other models that are not
disconfirmed either. The second principle is that post hoc does not imply
propterhoc. That is, if a and b are related, and a followed b in time, it is
not necessarily true that b caused a. The third principle is that just
because we name something does not mean that we understand it, or
even that we have named it correctly. And the fourth principle is that ex
post facto explanations are untrustworthy (pp. 116-117).
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Let us look at each of these four principles in a little more detail.

The unanalyzed variable

Suppose that a particular model "fits"--i.e., it is not rejected, given the data. That
does not mean that other models would not fit equally well, maybe even better.
Suppose, for example, there is some variable V that we have overlooked that is
related to the variables X, Y, and Z, which we have included in our model. We
can run LISREL or EQS forward, backward, or upside down on a model of X, Y,
and Z, but it will not tell us that a model with V in it would have fit better. We can
only be reasonably sure that if there is such a V and it has causal effects on
variables included in our model, our estimates of some of the paths in our
model will be wrong. As Cliff puts it: "These programs are not magic. They
cannot tell the user about what is not there" (p. 118).

Post hoc is not propter hoc

Cliff cites an incautious author who concludes, on the basis of a significant
arrow in a path diagram, that "Father's Occupation caused [Child's]
Intelligence." Cliff goes on, "It may be that it does, but somehow I doubt it. It
seems unlikely that, if ever the causal variables involved in scores on modern
'intelligence1 tests are sorted out, one's father's occupation will ever be one of
them" (p. 120). Of course, there may be variables correlated with father's
occupation that do play a causal role, but that takes us back to the preceding
point.

To make things worse, time of measurement is not always a safe guide to
the sequence of events. "Consider the possibility that we measure a child's
intelligence in the fifth grade and her father's occupation when she is in the
tenth" (p. 120). Should we then put in a causal arrow leading from the earlier to
the later event?

The fact that we can name it does not mean we know what it is

Latent variables are only defined by way of their associations with manifest
variables. Because we are always to some degree wrong about what our
manifest variables mean (there is always some degree of invalidity and
unreliability of measurement), Cliff says,". . . we can only interpret our results
very cautiously unless or until we have included enough indicators of a variable
in our analysis, and have satisfied not only ourselves but skeptical colleagues
and critics that we have done so" (p. 121). Even a "confirmatory" factor analysis
does not escape these problems. It just tells us that we have one set of
parameters that is consistent with the data. "There are typically an infinity of
alternative sets of parameters which are equally consistent with the data, many
of which would lead to entirely different conclusions concerning the nature of
the latent variables" (pp. 122-123).
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Ex post facto explanations are untrustworthy

Once a model has been modified to make it fit better to a given data set, one
can no longer take the probability values associated with subsequent
goodness-of-fit tests at face value. If a model has been adjusted on the basis of
its fit or lack of fit to a particular body of data, its statistical status is precarious
until it can be tested on a new body of data that did not contribute to the
adjustment.

One way to deal with this problem is cross-validation. Split the initial
data set in half, play around with model-fitting on one half of the data until you
get a model you are happy with, and then carry out the statistical test--once--on
the unused half of the data. The x2 will then be legitimate. This procedure has
its disadvantages-for one thing, it requires twice the sample size-but it has the
preeminent advantage of not leaving the investigator and his readers with
results which "they know are unstable to an unknown degree" (p. 124).

In conclusion

Neither Cliff nor I would wish to discourage you from the use of causal model-
fitting methods, which in his view represent "perhaps the most important and
influential statistical revolution to have occurred in the social sciences" (1983,
p. 115). He concludes, and I can only echo: "programs such as LISREL and its
relatives provide completely unprecedented opportunities . . . . With their aid,
conclusions can be made which heretofore would have been impossible, but
only provided the analysis is approached intelligently, tough-mindedly, and
honestly" (p. 125).

Go do it.

Chapter 7 Notes

Improving measurement models. Anderson and Gerbing (1982,
1988) discuss the merits of doing a confirmatory factor analysis to start, and
offer much other practical advice; other authors, e.g., Bentler and Bonett (1980)
and James et al. (1982), have also advocated localizing misfits to the structural
or the measurement parts of the model. Burt (1981), under the label of
"interpretational confounding," discusses the relative roles played by the
covariance among the indicators of a given latent variable and covariances with
the indicators of other latent variables in defining the construct. The smaller the
number of indicators per latent variable, the greater tends to be the role of the
latter kind of covariation, which may make latent variables hard to interpret.
These various issues are further explored in an interchange between Kumar
and Dillon (1987a,b) and Anderson et al. (1987). For some arguments against
the separation of structural and measurement models in model fitting, see
Hayduk (1996); on the other side, for favorable views on the use of factor
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analysis in the construction of measurement models, see Gerbing and Hamilton
(1994, 1996). For a thoughtful discussion and some Monte Carlo results on the
choice of indicators for latent variables, see Little et al. (1999).

Modification indices, etc. A review of the status of Modification
Indices/Lagrange Multiplier Tests and their opposite numbers, T-Values, z-tests,
and Wald Tests, is provided by Satorra (1989).

Trait and method variance. The review mentioned in the text is by
Cote and Buckley (1987); it covers some 70 multitrait-multimethod studies.

Improving structural models. Lance et al. (1988) use confirmatory
factor analysis for dealing with the measurement model, but for the structural
model suggest a different approach in which one examines the model one
equation at a time (using ordinary multiple regression methods) rather than all
at once. In a Monte Carlo study, they found this strategy to be relatively effective
in detecting known misspecifications. Lehmann and Gupta (1989) propose a
regression-based approach at both stages, first for the measurement model and
then for the structural model. A more radically different approach is taken by
Spirtes, Scheines, and Glymour (1990a; Spirtes et al., 1993; Scheines et al.,
1998). Their strategy, using a program named TETRAD (Glymour et al., 1988),
emphasizes the systematic generation of many possible alternatives to a given
model and rapid tests, rather than elaborate model-fitting with a few models.
They report Monte Carlo studies in which TETRAD substantially outperformed
EOS and LISREL in locating correct models. Not altogether surprisingly,
Bentler and Chou (1990) and Joreskog and Sorbom (1990) express some
reservations; Spirtes et al. (1990b) reply. See also Glymour et al. (1988).
Marcoulides, Drezner, and Schumacker (1998), and Marcoulides and Drezner
(2001, 2003) suggest three other algorithms for specification searches in SEM:
tabu search, a genetic algorithm, and a so-called "ant colony" algorithm.

Kaplan (1990) takes a more traditional approach to model modification,
but advocates the use of an "expected parameter change" statistic in addition to
the usual modification indices. His article is followed by a number of comments
from experts in the field (MacCallum, Bentler, Steiger, Bollen, Tanaka, Hayduk),
with a reply by Kaplan. See also MacCallum et al. (1992).

Observed variables-causes or effects? The terminology varies:
"formative" vs. "reflective" indicators refers to the same distinction as "cause" vs.
"effect" indicators. Cohen et al. (1990), Bollen and Lennox (1991), and
MacCallum and Browne (1993) provide discussions of causal indicators, and
Edwards and Bagozzi (2000) discuss the principles that underlie a choice
between the two kinds. Bollen and Ting (2000) provide a statistical test for
distinguishing them.

An alternative approach to structural modeling, called Partial Least
Squares (PLS), is distinguished by its use of indicators of the causal type. For
accounts and applications of PLS, see Wold (1982), Fornell and Bookstein
(1982), Dijkstra (1983), Wellhofer (1984), Lohmoller (1988), and Chin and
Newsted (1999). A discussion of the relationships between PLS and
conventional SEM methods is provided by McDonald (1996).
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Equivalent structural models. Lee and Hershberger (1990) give an
alternative formulation of Stelzl's rules for equivalence, and distinguish
between "equivalence in principle" (models that are equivalent for any data set)
and models which are equivalent for a particular data set under consideration,
but may not be for others. MacCallum et al. (1993) is the study mentioned in the
text that checked 53 published SEM studies for the presence of equivalent
models. Hershberger (1994), Hayduk (1996), Williams et al. (1996), and Raykov
and Penev (2001) provide additional discussion of the topic.

Can path diagrams be constructed automatically? The account
in this chapter is mostly based on Pearl's (2000) book Causality: Models,
reasoning, and inference, especially Chapter 2, "A theory of inferred
causation." The concept of "(^-separation" is involved in step 1 of 1C*; structures
like those of Fig. 7.4(a) are called "^-structures" or "colliders." Pearl's approach
covers discrete states and relations of probability between them, as well as the
continuous quantitative variables emphasized here. Interested readers may
wish to follow up with the other references cited and Shipley's (2000) Cause
and correlation in biology; see also Hayduk et al. (2003) on ^separation. The
TETRAD programs of the Carnegie Mellon group (see Note on improving
structural models) are in this tradition. See Glymour (2001) for an account with
an emphasis on psychology.

Modes of factor analysis. Cronbach (1984) discusses R, P, Q, etc.
techniques. Kroonenberg (1983) provides an extensive annotated bibliography
on three-mode factor analysis. See also a review by Snyder (1988). Three-
mode longitudinal applications are discussed by Kroonenberg, Lammers, and
Stoop (1985). Nesselroade and Ghisletta (2003) discuss O, P, Q, R, S and T
techniques and their relationship to several different models of change over
time.

Critique and controversy. For other examples of criticisms of the
causal modeling enterprise, varying widely along a friendly/hostile dimension,
see Martin (1982), Baumrind (1983), Biddle and Marlin (1987), and Breckler
(1990); Huba and Bentler (1982) reply to Martin. Steiger (2001) expresses
concern at the inadequacies of introductory texts in SEM. He lists a number of
issues that users of SEM "should probably be aware of to avoid being a danger
to themselves or others" (p. 331), but which he finds neglected or
misrepresented in most introductory texts.

Publication. If you are planning to publish a study in this area yourself,
you might find Steiger's (1988), Hoyle and Panter's (1995), and Boomsma's
(2000) advice and comments useful.
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Chapter 7 Exercises

1. For 100 married couples, two measures each of husband's happiness
and wife's happiness are obtained, with the correlations shown. Fit path
models which assume (a) that husband's happiness affects wife's happiness,
but not vice versa; (b) that wife's happiness affects husband's happiness, but
not vice versa; (c) that husband's and wife's happiness affect each other
equally; and (d) that husband's and wife's happiness are simply correlated.
Comment on the results.

HH1 HH2 WH1 WH2
Husband's Happiness 1 1.00 .65 .35 .30
Husband's Happiness 2 1.00 .30 .35
Wife's Happiness 1 1.00 .60
Wife's Happiness 2 1.00

2. Suppose AC and BC in Fig. 7.4(a), page 223, were each .6 instead of .5.
What values would the three paths in (b) need to take in order to make it equivalent
to (a)? (Solve by trial and error to two decimal places, or, if you like, do a little
algebra to get an exact solution.)

3. Carry out an exploratory Q-technique factor analysis of the data in
Table 7-3, using the scores for the 4 persons on all 7 tests. Comment on your
results.

4. Suggest an example of T technique that might be relevant to
experimental psychology.

5. Is the study of Judd and Milburn (see Chapter 4) a four-mode
structural analysis? (Give your reasoning.)

6. Think of an additional caveat that you might offer a beginner in causal
modeling.
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This appendix reviews some basic aspects of matrix algebra, confining itself
to those used in this book and proceeding largely by example rather than by
formal definition and proof.

Matrices

A matrix is a rectangular array of numbers. Examples of three matrices, A, B,
and D, are given in Fig. A.1. Matrix A has dimensions 4x3 (the number of rows
precedes the number of columns). B and D are square 3x3 matrices; they can
alternatively be described as being of order 3. Matrices B and D are also
symmetric matrices: Each row of the matrix is identical with the corresponding
column, so that the matrix is symmetrical around the principal diagonal that runs
from its upper left to lower right. A symmetric matrix is necessarily square, but a
square matrix is not necessarily symmetric: The first three rows of matrix A
would constitute a square, nonsymmetric matrix.

1
6
3
4

4
2
3
6

A

7
5
0
1

1.00
.32
.64

.32
1.00
.27

B

.64

.27
1.00

2
0
0

0
-3
0

D

0
0

-1

Fig. A.1 Some examples of matrices.

Matrix B happens to be a familiar example of a symmetric matrix, a
correlation matrix. A variance-covariance matrix would provide another
example. Matrix D is a diagonal matrix: all zeroes except for the principal
diagonal. If the values in the diagonal of D were all 1s, it would have a special
name: an identity matrix, symbolized I. A matrix of all zeroes is called a null
matrix.

Matrices are ordinarily designated by bold-face capital letters.

The transpose of a matrix

The transpose of a matrix is obtained by interchanging each row with its
corresponding column. Thus, the transpose of matrix A in Fig. A.1,
conventionally designated A', is:

1 6 3 4
4 2 3 6
7 5 0 1
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in which the first column of A becomes the first row of A', and so on. In the case
of a symmetric matrix, A' = A, as you can see if you attempt to transpose matrix
B or D in Fig. A.1.

Note that the transpose of a 4 x 3 matrix will have the dimensions 3x4
because rows and columns are interchanged. The transpose of a square matrix
will be another square matrix of the same order, but it will not be the same
matrix unless the original matrix was symmetric.

Vectors and scalars

A single row or column of numbers is called a vector. Examples of column and
row vectors are shown in Fig. A.2. The two vectors are of length 4 and 3,
respectively. Column vectors are designated by lower case bold-face letters--
e.g., vector a. Row vectors, as transposes of column vectors, are marked with a
prime symbol--e.g., vector b'.

a: 1
2
4
3

b': .3 1.0

c: 17.3

.5

Fig. A.2 Column and row vectors and a scalar.

Single numbers, of the kind familiar in ordinary arithmetic, are referred to
in matrix terminology as scalars and are usually designated by lower case
roman letters--e.g., scalar c in Fig. A.2.

Addition and subtraction of matrices

Two matrices, which must be of the same dimensions, may be added together
by adding algebraically the corresponding elements of the two matrices, as
shown for the two 3x2 matrices A and B in Fig. A.3. A matrix may be
subtracted from another by reversing the signs of its elements and then adding,
as in ordinary algebra. Examples are shown at the right in Fig. A.3.

1 2
4 6
5 -2

A

0 1
0 -1
3 -1

B

1 3
4 5
8 -3

A+B

1 1
4 7
2 -1

A-B

-1 -1
-4 -7
-2 1

B-A

Fig. A.3 Matrix addition and subtraction.
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Two column vectors of the same length, or two row vectors of the same
length, may be added or subtracted in the same way. (As, of course, may two
scalars.)

Multiplication of vectors and matrices

A row vector and a column vector of the same length may be multiplied by
obtaining the sum of the products of their corresponding elements, as illustrated
in Fig. A.4 for a'b. Note that this is a multiplication in the order row vector times
column vector. In matrix arithmetic the order of matrices or vectors in a

a': 1 0 2 3 b: 1
2
4
3

1x1 = 1
0x2 = 0
2x4 = 8
3x3 = 9

a'b = 18

Fig. A.4 An example of the vector multiplication a'b.

multiplication is not the indifferent matter that it is in scalar arithmetic, where
ab = ba. The product ba' is something entirely different from a'b (as we see
shortly).

Two matrices may be multiplied by multiplying each of the row vectors of
the first matrix in turn times each of the column vectors of the second matrix.
Each of these vector multiplications yields a single number that constitutes an
element of a row of the product matrix. A step-by-step example is given in
Fig. A.5. Notice that the result matrix has as many rows as the first matrix, and
as many columns as the second, and that for multiplication to be possible, the
rows of the first matrix and the columns of the second must be equal in length.
Two matrices are said to conform for multiplication when this last condition
holds~an easy way of checking is to see that the second dimension of the first
matrix agrees with the first dimension of the second: that is, a 3 x 5 matrix can
be multiplied times a5x2 , o r a 7 x 2 times a 2 x 3. The middle numbers in the
sequence must match; the outer numbers give the dimensions of the result. In
the first example, the 5s match and the result will be a 3 x 2 matrix; in the
second example, the 2s match and the result will be 7 x 3. In Fig. A.5, the
multiplication was of a 3 x 2 times a 2 x 2 matrix; the middle 2s match and the
result was 3x2 . Working through a sample case or two will make it evident to
you why these rules hold.

These principles generalize to longer series of matrix multiplications: If
W, X, Y, and Z are, respectively, of dimensions 4x2 , 2x3, 3x7, and 7x5,
the multiplication WXYZ can be carried out and the result will be of dimension
4x5 . (You can see this by carrying out the steps successively: 4x2 times
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13 45 1st row of A, 1st col of B 1x4 = 4
2 1 2 2 3 x 2 = 6
0 2 1 0
A B 1st row of A, 2nd col of B 1x5 = 5

3x2 = 6
1 1

2nd row of A, I s t c o l o f B 2x4 = 8
1x2 = 2

10

2nd row of A, 2nd col of B 2 x 5 = 1 0
1 x 2 = 2

12

3rd row of A, I s t co l o fB 0 x 4 = 0
2 x 2 = 4

4

3rd row of A, 2nd col of B 0x5 = 0
2x2 = 4

result AB: 10 1 1 4
10 12
4 4

Fig. A.5 Step-by-step example of the matrix multiplication A times B.

2 x 3 is proper and will yield a 4 x 3 matrix; 4x3 times 3x7 will work and yield
a 4 x 7 matrix; and so on.) The rules also hold for vectors, considered as 1 x n
or n x 1 matrices. Thus, a 1 x 4 row vector times a 4 x 1 column vector yields a 1
x 1 single number result (as we have seen in Fig. A.4). A 4 x 1 column vector
times a 1 x 4 row vector, on the other hand, would produce a 4 x 4 matrix as an
answer, and that matrix would be obtained by applying the regular rules of
matrix multiplication: taking each row (of length 1) of the column vector and
multiplying it successively by each column of the row vector to yield the
elements of the rows of the result vector. (You might want to verify that for the
two vectors of Fig. A.4, the first two rows of the product ab' would be 1 2 4 3 and
0000 , and the first two rows of ba' would be 1 0 2 3 and 2046. )

Because the order of matrix multiplication is important, the terms pre- and
postmultiplication are often used to eliminate ambiguity. In the product AB, B is
said to be premultiplied by A, or A to be postmultiplied by B. In the product
a'Ba, the matrix is pre- and postmultiplied by the vector. (Incidentally, can you
see that B must be a square matrix, that the result will be a scalar, and why one
would seldom run across the alternative product aBa'?)
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Some special cases of matrix multiplication

The basis of these rules will be self-evident if you work through an example or
two.

1. A matrix pre- or postmultiplied by a null matrix yields a null matrix. (The
null matrix acts like a zero in scalar arithmetic.)

2. A matrix pre or postmultiplied by an identity matrix is unchanged. (The
identity matrix acts like a 1 in scalar arithmetic.)

3. Premultiplying a matrix by a diagonal matrix rescales the rows of the
matrix by the corresponding elements of the diagonal matrix; postmultiplying by
a diagonal matrix rescales the columns. (Try AD or DB in Fig. A.1, for
example.)

4. Pre- or postmultiplying a matrix by its transpose can always be done
and yields a symmetric matrix.

Multiplying a vector or matrix by a scalar

Multiplying a matrix or vector by a scalar is done by multiplying every element in
the matrix or vector by that scalar. In a series of matrix operations, the location
of a scalar does not matter, and may be changed at will: ka'BC = a'kBC =
a'BkC = a'BCk, where k is a scalar. (But of course ka'BC doesn't equal
kBa'C or ka'CB--the vectors and matrices cannot in general be reordered.)

The inverse of a matrix

There is no operation of matrix division as such, but a matrix inverse is the
matrix analogue of a reciprocal of a number in scalar arithmetic, so multiplying
by an inverse is the matrix equivalent of dividing.

The inverse of a matrix A, symbolized by A'1, is a matrix such that AA'1

or A-1 A equals an identity matrix. (Just as k x 1/k = 1.) Only square matrices
have inverses, and not all of them do-if a matrix has some rows or columns that
are linearly predictable from others, it will have no inverse. A matrix that has no
inverse is called singular. Matrix inversion is a basic step in solving matrix
equations: If BX = A, and B has an inverse, you can solve for X by
premultiplying both sides of the equation by B'1, i.e.:

BX = A
B 1BX = B-'A
IX = B-1A
X = B 1A

Obtaining the inverse of a matrix tends in general to be a large
computational task. Let a computer do it. You can always check to see whether
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the result it has given you is correct by carrying out the multiplication AA'1,
which should equal I within rounding error.

Some useful facts about inverses:
1. The inverse of the transpose of a matrix is the transpose of its inverse:

(A-)-i=(A-i)'.
2. Taking the inverse of an inverse yields the original matrix: (A'1)-1= A.
3. The inverse of a symmetric matrix is also symmetric.

1 0 0
0 1 0
0 0 1

1

4 2
5 3

A

1 0 0
0 1 0
0 0 1

I-1

1
12 - 10

2 0 0
0 3 0
0 0-4

D

[3 -2] .
-5 4J -

1 / 2 0 0
0 1 / 3 0

0 0-1 /4

D-1

1.5 -1.0
-2.5 2.0

A'1

Fig. A.6 Some special cases of matrix inversion.

A few special cases of matrix inversion that do not require extensive
computation are illustrated in Fig. A.6. You might want to verify these by
showing that AA-1= I in each case.

1. The inverse of an identity matrix is itself.
2. A diagonal matrix can be inverted by replacing each diagonal element

by its reciprocal.
3. The inverse of a 2 x 2 matrix, for example:

a b
c d

may be obtained by interchanging the two diagonal elements a and d,
changing the signs of the two off-diagonal elements b and c, and
multiplying the result by the scalar 1/(ad - be).

Inverse or transpose of a product

The transpose of a product of matrices is equal to the product of the transposes
of the matrices, taken in reverse order. (ABCD)' = D'C'B'A'.

The inverse of a product of matrices is equal to the product of the
inverses of the matrices, taken in reverse order:
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Of course, this presupposes that the necessary inverses exist, i.e., that A, B, C,
and D are square, nonsingular matrices (they must also all be of the same
order for the multiplication to be possible).

Eigenvalues and eigenvectors of a correlation or covariance matrix

If C is an m x m variance-covariance or correlation matrix, it can be
decomposed into a matrix product VL2V, where V is a square m x m matrix
whose columns are called the eigenvectors of matrix C, and L2 is a diagonal
matrix of numbers, customarily arranged in descending order of size, called the
eigenvalues of C. V and L2 are so chosen as to have the following additional
properties:

W = I,
and Cv = I2v,

where I2 is any one of the eigenvalues and v the corresponding eigenvector.
That is, the eigenvectors are mutually o/t/?ogfona/(=uncorrelated), and each has
the property that when it postmultiplies the matrix C the result is a vector
proportional to itself, the coefficient of proportionality being the eigenvalue.

Eigenvalues and eigenvectors are also sometimes known as
characteristic roots and characteristic vectors, or latent roots and latent vectors.

The calculation of eigenvalues and eigenvectors, even more than the
calculation of inverses, is a task for computers. Again, you can always verify
that the results the computer gives you have the properties specified. Fig. A.7
gives eigenvectors and eigenvalues for the correlation matrix of Fig. A.1.

A few useful additional properties of eigenvalues:
1. The sum of the elements of the principal diagonal, called the trace, of

C and L2 are equal.
2. The product of the eigenvalues of a matrix is called the determinant of

the matrix. The determinant of matrix C is symbolized ICI. A singular matrix, one
which has one or more rows or columns linearly predictable from others, has
one or more zero eigenvalues and thus a determinant of zero.

3. The number of nonzero eigenvalues of a matrix is called the rank of
the matrix, which is the number of nonredundant rows or columns it contains.

1.00
.32
.64

.32
1.00
.27

C

.64

.27
1.00

1.846
0
0

tr L 2 =3

0
797

0

L2

.00

0
0

.358

ICI =

-.641
-.443
-.627

.526

.261
-.894
.364

V

.721
-.070
-.689

Fig. A.7 Eigenvalues and eigenvectors of a correlation matrix.
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In this appendix we show how the McArdle-McDonald matrix equation
described in Chapter 2 can be derived from the structural-equation translation
of a path diagram.

Figure B.1 repeats the path diagram used in the example, with the
structural equations given to the right of the figure.

Fig. B.1 Path model for example.

Now we write out these same equations so that each of them has on its
right-hand side all the variables in the path diagram. This means putting in a lot
of zero coefficients but gets the equations into a convenient form to express as
matrices. For completeness, structural equations have been added for A and B,
although these are not very exciting because neither has any incoming causal
arrows from other variables in the diagram. In each equation, the first four terms
indicate causal arrows from other variables (hence the variable itself always
gets a zero coefficient). The last term in each expression is the residual.
Source variables such as A and B have by definition all of their causes external
to the path diagram, so they are treated as "all residual."

A = OA + OB + OC + OD + A
B = OA + OB + OC + OD + B
C = aA + cB + OC + OD + e
D = aA + OB + OC + OD + d

Next we write this in matrix form. (You might want to check to assure
yourself that the matrix formulation is indeed the equivalent of the equations.)

A 0 0 0 0 A A
B = 0 0 0 0 x 6 + B
C a c 0 0 C e
D a 0 0 0 D d

Now let's call these matrices, from left to right, v, A, v (again), and u.
The matrix equation can then be written:

v = Av + u .

245



Appendix B: Matrix Version of Path Equations

By simple matrix algebra, we solve for v:

v - Av = u
(I - A)v = u

If we assume the variables all to be in deviation-score form, the matrix of
covariances among all the variables may be obtained as w' In , or

(I- A)-1uu'(l- A)-17n.

Let us call uu'/n --which is itself a covariance matrix-S. Then:

vv'/n =( l -A)- iS( l-A)- i ' .

Pre- and postmultiplication by F and F' selects the observed variables C:

C = F ( I - A ) 1 S ( I - A)1'F',

which is the McArdle-McDonald equation.

Obtaining (I - A)-1

McArdle and McDonald point out that the matrix (I - A)-1 can be obtained for
unlooped path diagrams as:

I + A + AA + AAA + . . . ,

where the series is carried out until the product terms become zero. If there are
no compound paths in the diagram that contain more than one consecutive
straight arrow in the same direction, this will occur after the term A; with a
maximum of two consecutive straight arrows, it will be after AA; and so on.

The example of Fig. B.1 contains only single straight arrows in its paths.
Thus, AA (as you should verify) is a null matrix. Therefore,

(I - A)-1 = I + A = 1 0 0 0
0 1 0 0
a c 1 0
a 0 0 1

as used for the Chapter 2 example.
In Chapter 1 , "direct" and "indirect" causal effects were discussed. Note

that matrix A represents direct effects, and AA, AAA, etc. indirect effects.
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LISREL makes basic distinctions between independent and dependent
variables in addition to latent and observed variables. Thus the latent variables
in the structural model are of two kinds: the source latent variables, Ksi, and the
downstream latent variables, Eta. The measurement model, that connects the
latent to the observed variables, consists of two submodels, referred to as the
"X-side" and the "Y-side." The X-side contains the indicators of the source latent
variables, the Ksis, and the Y-side contains the indicators of the downstream
latent variables, the Etas.

Fig. C.1 Summary of matrix representation in LISREL.

Figure C.1 summarizes the relationships in LISREL. The portions of the
diagram to the left and the right constitute the two measurement submodels; the
portion in the middle is the structural model. The latent independent variables
Ksi (NK of them) constitute the vector k. The latent dependent variables Eta are
downstream variables; there are NE of them, in e. There are NX observed
independent variables X, and NY observed dependent variables Y. The Xs and
Ys are all treated as downstream variables-fallible observed indexes only
imperfectly reflecting the true latent variables lying behind them. The vertical
upward arrows in Fig. C.1 represent the residual paths for the three sets of
downstream variables--of course, there are none for the Ksis, which are source
variables. The two-letter symbols next to the arrows in the diagram represent
the eight basic LISREL matrices (not all problems need all of these). The
matrices LX and LY represent the paths from latent to observed variables, and
TD and TE the variance-covariance matrices of residuals (diagonal matrices, if
the residuals are assumed to be uncorrelated). These four matrices constitute
the measurement model. The dimensions of these matrices follow from the
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numbers of variables involved: LX is NX x NK, LY is NY x NE, and TD and TE
are square matrices of order NX and NY, respectively.

In the structural model, GA contains paths from Ksis to Etas--from source
to downstream latent variables. PH represents the variance-covariance matrix
of the source variables, and BE any paths between downstream latent
variables. GA is of dimension NE x NK, and PH and BE are of order NK and
NE, respectively. PS, the variance-covariance matrix of the residuals of the
downstream latent variables, is also a square matrix of order NE.

The input to LISREL sets up the eight matrices with a combination of
fixed values (usually 1s and Os) and unknowns to be solved for. (With SIMPLIS,
this occurs automatically.) The multiplication of these matrices yields the
implied values of the correlations (or covariances) that are used by the
minimization part of the program. The overall matrix formula used by LISREL,
with its eight matrices, is considerably more elaborate than the McArdle-
McDonald formula, which involves three; we will not need to go into the details.

Table C-1 shows one way of defining input to LISREL for the Chapter 2
example of Fig. 2.5, repeated for convenience here as Fig. C.2. Above the
program itself are the three matrices required for this problem, LX, PH, and
TD--they are what we are trying to specify, not part of the input itself. The first
line of the actual input is a title. The second gives data specifications: number
of input variables = 4; number of observations (cases) = 100; the matrix to be
analyzed is a correlation matrix (CM would mean covariance matrix). The third
line specifies that a correlation matrix is to be read, in free-field format (items
separated by any number of spaces). If the matrix were to be in other than
lower triangular form, or in a fixed format, this would be specified as well. The
correlations follow in lines 4 through 7. The lines from MODEL to START define
the matrices and starting values of the model.

As noted in the text, the general philosophy of LISREL is that things are
assumed to be in some typical form by default unless otherwise specified. The
MODEL line says that there are 4 X-variables and 2 Ksi variables. The "ST"
specifies that the PH matrix is to be a correlation matrix (symmetrical, with 1s
fixed in the diagonal and free values elsewhere). Because nothing is said

Fig. C.2 Path diagram for first example.
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Table C-1 The necessary LISREL matrices, and an example of LISREL input
for solving the path diagram of Fig. C.2

The matrices
LX
a 0
b 0
0 c
0 d

PH
1 e
e 1

TD
w 0
0 x
0 0
0 0

0
0
y
0

0
0
0
z

The input
INPUT FOR FIG C.2 PROBLEM
DATA NI=4 N0=100 MA=KM
KM
1.00
.50
.10
.20

MODEL
FREE

1.00
.10
.30

NX=4
LX 1

1.00
.20
NK=2

1 LX

1.

2

.00
PH=ST
1 LX 3 2 LX 4 2

START .5 ALL
OUTPUT NS

about LX and TD, these matrices are assumed to be in their default forms--
respectively, a rectangular matrix with all values fixed to zero, and a diagonal
matrix with all diagonal values free. Nothing more is needed for TD. The line
beginning FREE specifies exceptions: LX locations 1 and 2 of column 1, and 3
and 4 of column 2, are to be free values to be solved for, not the fixed zeros
currently specified. The line beginning START sets an initial value of .5 into all
free values. The NS in the OUTPUT line tells LISREL to use the starting values
we have provided, rather than calculate its own. Because OUTPUT carries no
additional specifications, the standard output will be produced and the standard
fitting criterion will be used (for LISREL this is maximum likelihood).

W

Fig. C.3 Path model for second example.
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Table C-2 LISREL matrices and input for Fig. C.3 example

The matrices
LX LY
a 1
b d

PH
1

GA
e

PS
V

TD
w 0
0 x

TE
y o
0 z

The input
INPUT FOR FIG C.3 PROBLEM

[lines 2-7 same as for previous example]

SELECT
3 4 1 2
MODEL NX=2 NK=1 NY=2 NE=1 PH=ST LX=FR LY=FR
FIX LY 1 1
START 1.0 LY 1 1
OUTPUT SS UL

Table C-2 shows the input required for the second model, that of
Fig. C.3. There are now seven LISREL matrices, as shown above the program.
(BE is the unused eighth-there can be no arrows between downstream latent
variables, since there is only one Eta.) Aside from the title, there are no
changes in the first seven lines of the input, through the correlation matrix. The
next two lines reorder the input: LISREL requires that dependent variables (the
third and the fourth in the correlation matrix as read) precede independent
variables (1 and 2). The MODEL line indicates two X and two Y variables, and
one Ksi and one Eta. LX and LY are started as FREE matrices, and then, in
the next two lines, the first element of LY is fixed and set to 1, to scale the latent
variable. GA, PS, TD, and TE are in their default forms, so no further
specification is necessary for them. The UL in the OUTPUT line requests that
fitting be done using an ordinary ("unweighted") least squares criterion. SS
asks for a standardized solution. This time LISREL is permitted to calculate its
own start values.

Many input variations are possible in LISREL. Matrices specifying the
model can be given explicitly, if desired; or one can specify matrices to be
diagonal, symmetrical, and so on. Lines of the form EQUAL LX 1 1 LX 2 1 can
be used to specify that LX 2 1 is constrained to be equal to LX 1 1. Raw data or
matrices can be read in from an external file. Various kinds of information can
be requested in the output. The LISREL manual may be consulted for details.
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Several examples of typical fit indices will be described briefly. First we consider four
sample-based indices: the Bentler-Bonett normed fit index, NFI, a df-adjusted version
of it, PNFI, and two corresponding goodness-of-fit indices used by LISREL--GFI and
AGFI. Then we examine briefly a philosophically different index, Akaike's information
criterion, AIC, and a related index, Cudeck and Browne's estimated cross-validation
index, ECVI. After that, we go on to discuss a number of population-based indices.
(References may be found in Notes to Chapter 2)

Bentler and Bonett's normed fit index: NFI

Bentler and Bonett (1980) suggest that the goodness of fit of a particular model
may be usefully assessed relative to the fit of some baseline "null model." Such
a null model would be an arbitrary, highly restricted model-say, that all
correlations are zero, or that all correlations are equal, or some such-which
would represent a baseline level that any realistic model would be expected to
exceed. The index would then represent the point at which the model being
evaluated falls on a scale running from this baseline model to perfect fit. The
normed fit index may be defined as:

NFI = 1 - (Fk/Fb)

where the subscripts k and b refer to the model in question and the baseline
model, respectively. As you can see, if the fit is excellent (F|< is close to zero)
the righthand part of the expression approaches zero, and NFI approaches 1.
At the other extreme, if the fit is little better than that of the baseline model (F|< is
close to Fb) the righthand part of the expression approaches one, and NFI
approaches zero. NFI can logically be negative, if the model tested happens to
fit worse than the baseline model, but in practice this is unlikely; if it should
happen, it would certainly be a reason not to be proud of the model in question.
NFI cannot go above 1.0, which represents a perfect fit. (NFI--and most of the
other indices we will consider-can alternatively be defined via x2- In this case,
X2 can simply be substituted for F, because multiplying the numerator and
denominator of the ratio on the right by N -1 does not alter the ratio.)

LISREL's goodness-of-fit index: GFI

The program LISREL provides a similar index, one which compares the fit of a
given model to that of no model at all-i.e., to the fit index applied to the original
covariance matrix. That is,

GFI = 1 - (Fk/Fs)
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where F|<, as before, refers to the fit of the model in question, and Fs refers to the
fit with the observed covariance matrix S substituted for S-C. For maximum
likelihood estimation, Fs may be obtained as 1/2 tr (SC~1)2, via the formula
given in the section on fit functions in Chapter 2-or, approximately, as 1/2 m,
where m is the number of variables in the covariance matrix.

GFI is thus of the same general form as NFI, and like it compares the fit of
any particular model to a baseline, but the baseline is different. The GFI deals
with explained covariance relative to total covariance rather than comparing the
relative lack of fit of two models.

Examples of fit indices may be seen in Table D-1, where various fit
criteria are applied to a series of increasingly constrained models. The first two
rows of the table correspond to the one-factor model and the two-factor model fit
to the four-variable correlation matrix in Fig. 2.8 and Table 2-12 (pages 62-63).
The next three rows represent increasing constraints placed upon the one-
factor model: that paths a and b are equal, that a = b and c = d, and that all four
factor loadings are equal. The last row of the table gives a null or baseline
model that represents the hypothesis that the four variables are mutually
uncorrelated. All fits in the table are based on a maximum likelihood criterion,
and treat the correlation matrix as a covariance matrix of standardized
variables. The larger sample size from the example, 240, is used throughout.

First, note that that F, x2, NFI, and GFI (marked by asterisks in the table)
always get worse, or at least no better, as we move down the table. (As we go
down, the models involve successively fewer free parameters, as indicated by
the increase in degrees of freedom.) NFI goes to zero as we reach the null
model, which represents its baseline, but GFI does not, because a model of
uncorrelated variables accounts for a reasonable proportion of the covariance
matrix in this example. Against GFI's lower baseline, any given level of fit
receives a higher score than against NFI's higher baseline. An arbitrary rule of

Table D-1 Comparison of several sample-based criteria of model fit, for
models of Fig. 2.8

model F x2 df NFI PNFI GFI AGFI AIC ECVI

2-factor .0063 1.51 1 .977 .163 .997 .969 19.51 .083
1-factor .0390 9.31 2 .858 .286 .981 .903 25.31 .107
a=b .0404 9.66 3 .853 .426 .980 .933 23.66 .100
a=b, c=d .0423 10.11 4 .846 .564 .979 .948 22.11 .094
a=b=c=d .0423 10.11 5 .846 .705 .979 .958 20.11 .085
null .2748 65.68 6 .000 .000 .866 .776 73.68 .309
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thumb (such as ".90 or better represents a good fit") obviously doesn't mean the
same thing in the two cases-only the 2-factor model would meet that criterion
for the NFI, but all five models do for the GFI, and even the null model comes
close. The superficial similarity of being on a 0 to 1 scale does not make such
indices automatically equivalent to one another and it does not justify assuming
that a particular value, such as .90, will have the same meaning across indices.

Parsimony adjustments: PNFI and AGFI

A problem that disturbs some users of simple fit indices such as NFI or GFI (or,
for that matter, F or %2) is that within any nested series of models the fit always
improves as the models solve for more free parameters. For example, a perfect
fit can always be achieved by fitting one free parameter for each observed
variance or covariance, but such a model would be of no scientific interest.
What we want is models that fit well, but include relatively few unknown
parameters. This has led to a number of proposals for indices that evaluate fit
while penalizing the use of more parameters in achieving it. One of these is the
parsimonious fit index of James, Mulaik, and Brett (1982), which adjusts NFI by
the ratio of degrees of freedom of the observed model to the baseline model.

PNFI = (dffc/dfb) NFI

The 2-factor model in the Table D-1 example, which fits very well according to
the NFI, achieves this fit by solving for 9 unknowns (the four factor loadings, the
four residuals, and the correlation between the factors), and this lack of
parsimony is severely penalized in its low PNFI. Or compare the models in the
second and fifth rows of the table. The former solves for all four factor loadings
separately, the latter for just the one common value, gaining three degrees of
freedom in the process. Yet the latter, in terms of NFI (or F or %2) fits nearly as
well as the former, and thus shows up much more favorably on PNFI, which
gives it credit for achieving this level of fit with fewer unknowns.

LISREL's Adjusted Goodness-of-Fit Index, AGFI, also applies an
adjustment based on the ratio of degrees of freedom of the model being fitted
and the baseline matrix, but rather than applying it to the GFI as a whole, it
applies it only to the righthand portion:

AGFI = 1 - (Fk/Fs)(dfs/dfk),

where dfs is m(m + 1)/2, the number of unduplicated elements in the covariance
matrix. Note that the df ratio is inverted because it is being applied to the part
that is subtracted from 1. In the Table D-1 example, it is evident that when the fit
is good, this part is small, and thus the parsimony adjustment has a much less
drastic effect on AGFI than on PNFI. The 2-factor model, although its fit is
reduced slightly by the adjustment, still qualifies as the best of the five non-null
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models, instead of dropping to the worst as with the PNFI. Nevertheless the
adjustment for parsimony does make a difference--the highly parsimonious
a = b = c = d model does relatively well on the AGFI, coming in a close second
to the 2-factor model.

Two other strategies: AIC and ECVI

The last two columns of Table D-1 show two other fit indices that take parsimony
into account. The first, Akaike's Information Criterion, AIC, has a rationale
derived from information theory. It involves a simple parsimony adjustment,
additive rather than multiplicative. The index is given in various forms, but a
simple one is:

AIC = x2+2q,

where q is the number of unknown parameters being solved for. AIC is a
badness-of-fit indicator, with small values indicating good fits and large values
poor ones. A low x2 obtained by fitting few parameters (small q) is the ideal.
Decreasing x2 by solving for more parameters will only be a benefit if x2 is
decreased by more than 2.0 for each parameter added. In Table D-1 going from
the 1-factor to the 2-factor model results in a drop in x2 of 7.8 for one added
parameter, so AIC decreases. But going from the row 5 to the row 4 model adds
one parameter and doesn't decrease x2 at all, so AIC increases by 2.0. Note
that in this particular example the rank order of the models is the same by AIC
as by AGFI-row 1 best, and then rows 5, 4, 3, 2, and 6, respectively. PNFI
disagrees sharply on the row 1 model but rank-orders the rest the same.

The last column of Table D-1 contains Browne and Cudeck's Expected
Cross-Validation Index, ECVI. It turns out to be closely related to AIC, although
developed from a somewhat different perspective. The idea is that models that
fit well and are simple stand a better chance of fitting well in a new sample than
models that are not simple-because models with many parameters will have
capitalized on chance more in the fitting process. (An empirical study by
Cudeck and Browne supporting this notion is discussed in Chapter 6.) From
this idea, Browne and Cudeck derive an index:

ECVI = F[< + 2q/(N - m - 2),

with q and m referring as before to the number of free parameters solved for and
the number of variables in the matrix. The smaller the ECVI, the better the
model is expected to cross-validate in a new sample-ECVI is in fact an estimate
of the F we would obtain if we compared the implied covariance matrix C based
on our present solution to the S from a new sample drawn from this population.
ECVI will be larger than the F obtained in the present sample, because the latter
is assumed to have capitalized on chance features of the present sample. The

254



Appendix D: Goodness-of-fit Indices

amount of such capitalization-represented by the second term on the right of
the expression-will be small for economical models (small q) and large
samples (large N).

To see the relationship of ECVI to AIC, imagine both terms on the right of
the expression for ECVI to be multiplied by N -1. Recall that N -1 times F will
yield x2 for the first term. For the second term, (N - 1)/(N - m - 2) only slightly
exceeds 1.0 for reasonably large N-in the example, this ratio is 1.021. If so, the
second term will differ only slightly from 2q. Thus ECVI will typically rank
models in about the same order of merit as AIC, as is the case in Table D-1.

An attractive feature of ECVI is that confidence intervals are available for
it. For the .083 in the first row of Table D-1, the 90% confidence interval was
computed by the model-fitting program as .000 to .116. Thus we know not only
what kind of fit to expect on average in a new sample, but we have some idea of
how precise our knowledge is.

Population-based criteria of model fit

As noted earlier, there has been recent interest in fit criteria that try to estimate
the part of the lack of fit that is due to the discrepancy between model and reality
in the population, as distinct from that arising merely from sampling error.
Looked at in another way, the multiplication of a minimum F by N - 1 gives a
quantity distributed as chi square when the model fits in the population; when
the model does not fit, the distribution of (N - 1)F follows a somewhat different
theoretical distribution, called noncentral chi square. This distribution is
characterized by a quantity called the noncentrality parameter, which depends
on the degree of discrepancy. This noncentrality parameter provides the
underlying basis for the population-based criteria of fit that we consider next.

The noncentrality parameter can be estimated by the difference between
a given best-fit x2 and its degrees of freedom. A rescaled version of the
parameter, labeled d in Table D-2 (next page), is obtained by dividing x2 - df by
N-1. It will be convenient for defining the population fit indices.

Population versions of NFI and GFI: RNI and G1

A population-based version of the normed fit index NFI, called the relative
noncentrality index RNI by Marsh and the fit index Fl by Bentler, can be
obtained as

RNI = 1 - dk/db ,

that is, by replacing the Fs in the sample-based formula by the corresponding
cfe. Although this index will usually fall between 0 and 1, it won't always do so-
a dk can be negative if a sample x2 is less than its corresponding df, and this
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Table D-2 Comparison of some population-based criteria of model fit, for the
same models as in Table D-1

model
2-factor
1 -factor
a=b
a=b, c=d
a=b=c=d
null

d
.0021
.0306
.0279
.0256
.0214
.2497

RNI
df (Fl, CFI)
1
2
3
4
5
6

.992

.877

.888

.898

.914

.000

G1
.999
.985
.986
.987
.989
.889

TLI
(NNFI)
.949
.633
.777
.846
.897
.000

Cl
.999
.985
.986
.987
.989
.883

RMSEA
.046
.124
.096
.080
.065
.204

can happen, especially in small samples, where an unusually small x2 might
well occur by chance. If so, RNI will exceed 1. Rentier has suggested a
modification of RNI that simply changes values greater than 1 to 1, and negative
values to zero; he labeled this the Comparative Fit Index, CFI.

A population-based analogue of LISREL's GFI has been proposed by
Steiger. He calls it Gammal, and obtains it via the formula:

G1 =

It is evident that as d[< approaches zero, G1 will approach 1.0. Its behavior at
the opposite end of the scale is less immediately obvious, but it seems unlikely
that it would ever approach zero-indeed, one would expect d|< to be in general
less than 1/2 m, the approximate value of Fs; this would imply a minimum value
of .5 for G1. Values for RNI and G1 for the sequence of models used in
Table D-1 are given in Table D-2. Note that because x2 and df are both
involved in obtaining d, these indices, unlike their two sample-based
counterparts, do not necessarily always decrease as one moves down the
column. In fact, their order of preference among models in these examples
corresponds to that of the parsimony adjusted sample-based indices AGFI, AIC,
and ECVI. Note also that RNI and G1 yield relatively higher numerical values
than NFI and GFI do, making the choice of any arbitrary threshold of fit, such as
.90, even less appealing. (Even the null model is barely below .90 in the case
ofG1!)

Two other population-based indices: Cl and TLI

A different way of placing don a 0 to 1 scale was suggested by McDonald. He
calls it the Centrality Index, Cl. It is defined as
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where e is the constant 2.71828..., the base of natural logarithms. When dk is
zero, the exponent will be zero, and Cl will equal 1.0. For large dk, Cl will be
small-how small will in part be a function of the number of variables in the
matrix. For our example, where m = 4, dk is unlikely to exceed one-half that, or
2, which would imply a minimum Cl of about .37. In the examples of
Table D-2, it can be seen that Cl is quite similar to G1--slightly lower by the
bottom of the column, but still with a large value for the so-called "null model."

An interesting index, which historically antedates the others, was
introduced in 1973 in a factor analysis context by Tucker and Lewis, and
reintroduced in 1980 by Bentler and Bonett under the label of Nonnormed Fit
Index, or NNFI. It is usually labeled NNFI in the output of model-fitting
programs, but is more often referred to elsewhere as the Tucker-Lewis Index,
TLI. It has been defined in several different ways, but the fact that it amounts to
a parsimony-adjusted version of the RNI can be most easily seen via the
definition:

TLI = 1 - (dk/db)(dfb/dfk).

That is, the TLI is the RNI with the subtractive part multiplied by a ratio of the
degrees of freedom of the baseline and current models. Note that this
adjustment is applied to the righthand part, in the spirit of LISREL's AGFI, rather
than to the index as a whole, as in the case of the PNFI. Note also that a further
parsimony adjustment is being made to an index which already contains an
implicit allowance for parsimony, as do all the d-based indices. The advantage
of the row 5 model over the row 2 model in Table D-2, which reflects the
former's greater parsimony, is considerably larger for the TLI than for Cl or G1.

The Tucker-Lewis Index, especially when computed from a small sample,
may sometimes exceed 1.0 or be negative-this simply reflects sampling error:
a value greater than 1.0 may be interpreted as representing a good fit, and one
less than zero a poor one. Some prefer simply to adjust such values to 1.0 and
0, respectively; the resulting index may be called the normed Tucker-Lewis
Index, or NTLI. Except at the extremes, TLI and NTLI are identical.

For comparison with the other population-based indices, the RMSEA
discussed in Chapter 2 is also included in Table D-2. By either of the standards
mentioned in the text, the fit of the 2-factor model in the first row of the table
would be considered excellent, and that of the parsimonious 5 df model
acceptable. The fits of the 3 df and 4 df models might be judged to be marginal,
and the fit of the 2 df and the null models clearly unacceptable.
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A phantom variable (Rindskopf, 1984b) is an unmeasured latent variable with
no residual. Phantom variables can be used to trick model-fitting programs into
imposing constraints that are not normally within their repertoire.

For example, if one wishes to specify that the path from A to C in Fig.
E.1 (a) is equal to the square of the path from A to B, one can do it by inserting
the phantom variable P in the lower path, as shown in (b), and setting the three
paths labeled x to be equal. Or if one wishes the path AC to be three times the
value of path AB, in Fig. E.2(a), one can proceed as in (b), fixing the path from A
to P to the value 3 and equating xs.

Fig. E.1 Phantom variables example: x2.

Fig. E.2 Phantom variables example: 3x.

Fig. E.3 Phantom variables example: xy.
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If one wants AD to equal the product of paths AB and AC (Fig. E.3(a)),
one can proceed as in (b), equating xs and ys. Or if one wants AD to equal the
sum of AB and AC (Fig. E.4(a)), two phantom variables, as shown in (b), will do
the trick. A weighted sum of x and y can be obtained by fixing appropriate
values on the paths from A. Many other variations may be achieved,
remembering that products are represented by serial paths, and sums by paths
in parallel.

Fig. E.4 Phantom variables example: x+y.

(a) (b)

Fig. E.5 Phantom variables examples: keeping a residual variance
positive and imposing an inequality constraint.

If one wants to require a residual variance to remain positive, the
arrangement shown in Fig. E.5(a) will do it. The variance of the phantom
variable is fixed to 1.0, and its contribution to the variance of B is equal to the
square of the path coefficient x, and thus must be positive (or zero). Finally,
Fig. E.5(b) illustrates the imposition of an inequality constraint using phantom
variables. It is desired to make the path from A to B greater than or equal to 2.0.
The addition of the phantom variable P and its associated paths will do the trick,
since the value of x2 cannot be negative. If one wishes the path to be less than
or equal to 2.0, insert a second phantom variable into one of the x paths, with
-1.0 on one side and x on the other.

The topic of phantom variables is perhaps not likely to be of lasting
importance in SEM. Increasingly, SEM programs include facilities for imposing
constraints directly. In the meantime, phantom variables are fun, and can provide
ways of escaping the limitations of a particular model-fitting program.

259



Appendix F: Data Matrix for Thurstone's Box Problem

Box V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

89
94
69
122
88
182
167
169
185
158
137
160
164
265
253
229
252
256
249
253
97
91
81
83
88
159
166
157
122
171
174
158
165
246
263
215
231
235
252
248

50
45
102
96
91
16
47
110
87
89
158
144
140
36
41
107
74
158
160
165
29
39
80
75
108
29
57
90
85
80
163
148
142
46
38
85
87
176
159
157

27
38
7

41
92
1
30
3
40
104
2

41
93
16
37
38
92
4
33
85
18
45
10
39
95
7
42
6
35
101
18
49
86
13
58
41
83
21
43
83

56
54
103
78
90
96
70
118
137
118
149
134
143
100
99
143
150
194
226
196
52
57
101
83
91
88
86
117
112
114
173
158
146
113
87
149
144
185
199
199

34
81
42
61
96
37
77
45
77
116
47
77
117
43
101
122
138
48
87
151
27
65
28
62
96
41
94
47
74
130
39
80
101
52
110
101
144
48
90
139

21
34
32
66
82
20
36
29
48
94
39
85
117
17
26
56
104
43
73
132
28
33
16
63
97
16
45
28
63
93
54
88
114
4
37
65
82
35
78
124

11
11
11
11
11
14
14
14
14
14
14
14
15
16
15
17
17
16
17
16
11
11
10
12
12
13
14
14
14
14
15
14
14
15
16
16
17
16
16
16

8
6

11
11
12
7
7

11
10
11
14
14
15
7
6

11
11
14
14
13
7
7
12
10
12
7
6
10
12
11
14
14
14
7
6
10
12
14
14
14

3
4
0
9

11
-1
7
1
8

11
-1
8

11
0
7
7
12
0
7

11
0
7
-1
9

11
1
7
0
7
12
-1
7
12
-1
9
6
13
-2
7
13

23
98
99
145
286
154
201
60
231
401
180
293
492
157
186
351
486
210
432
604
48
124
77
148
315
50
223
95
265
393
200
383
445
107
207
311
483
168
418
554
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Appendix F: Box Problem Data

Note to Table: Data matrix for 40 boxes on 10 variables, Thurstone's Box
Problem example in Chapter 5 (data from Kaiser & Horst, 1975, all scores x 10).
The boxes are ordered in the table by increasing X dimension; boxes 21-40
represent a repetition of boxes 1-20, with different errors.
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Appendix G: Table of Chi Square

df P=.99 .90 .70 .50 .30 .10 .05 .01

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

z

.00

.02

.12

.30

.55

.87
1.24
1.65
2.09
2.56

3.05
3.57
4.11
4.66
5.23

5.81
6.41
7.02
7.63
8.26

8.90
9.54

10.20
10.86
11.52

12.20
12.88
13.56
14.26
14.95

-2.33

.02

.21

.58
1.06
1.61

2.20
2.83
3.49
4.17
4.86

5.58
6.30
7.04
7.79
8.55

9.31
10.08
10.86
11.65
12.44

13.24
14.04
14.85
15.66
16.47

17.29
18.11
18.94
19.77
20.60

-1.28

.15

.71
1.42
2.20
3.00

3.83
4.67
5.53
6.39
7.27

8.15
9.03
9.93

10.82
11.72

12.62
13.53
14.44
15.35
16.27

17.18
18.10
19.02
19.94
20.87

21.79
22.72
23.65
24.58
25.51

-.52

.46
1.39
2.37
3.36
4.35

5.35
6.35
7.34
8.34
9.34

10.34
11.34
12.34
13.34
14.34

15.34
16.34
17.34
18.34
19.34

20.34
21.34
22.34
23.34
24.34

25.34
26.34
27.34
28.34
29.34

.00

1.07
2.41
3.66
4.88
6.06

7.23
8.38
9.52

10.66
11.78

12.90
14.01
15.12
16.22
17.32

18.42
19.51
20.60
21.69
22.78

23.86
24.94
26.02
27.10
28.17

29.25
30.32
31.39
32.46
33.53

.52

2.71
4.60
6.25
7.78
9.24

10.64
12.02
13.36
14.68
15.99

17.28
18.55
19.81
21.06
22.31

23.54
24.77
25.99
27.20
28.41

29.62
30.81
32.01
33.20
34.38

35.56
36.74
37.92
39.09
40.26

1.28

3.84
5.99
7.82
9.49

11.07

12.59
14.07
15.51
16.92
18.31

19.68
21.03
22.36
23.68
25.00

26.30
27.59
28.87
30.14
31.41

32.67
33.92
35.17
36.42
37.65

38.88
40.11
41.34
42.56
43.77

1.64

6.64
9.21

11.34
13.28
15.09

16.81
18.48
20.09
21.67
23.21

24.72
26.22
27.69
29.14
30.58

32.00
33.41
34.80
36.19
37.57

38.93
40.29
41.64
42.98
44.31

45.64
46.96
48.28
49.59
50.89

2.33

Note: Table entries are values of yp- exceeded P proportion of the time, for given df. Abridged
from Table III, in R. A. Fisher Statistical Methods for Research Workers (13th Ed.), Hafner, 1958.
Used by permission. For df greater than 30, the quantity [2x^]^ -[2df-1]^2 may be evaluated
as a normal deviate (bottom row).
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Appendix H: Noncentral Chi Square for Estimating Power

df

1
2
3
4
5

6
7
8
9

10

20
30
40
50
60

70
80
90

100

.50

3.84
4.96
5.76
6.42
6.99

7.51
7.97
8.41
8.82
9.20

12.27
14.61
16.57
18.31
19.88

21.32
22.66
23.92
25.12

.60

4.90
6.22
7.16
7.93
8.59

9.19
9.74

10.24
10.71
11.16

14.72
17.44
19.70
21.71
23.53

25.20
26.75
29.10
29.58

Power
.70 .80

6.17
7.71
8.79
9.69

10.46

11.15
11.77
12.35
12.90
13.41

17.50
20.62
23.22
25.52
27.60

29.51
31.29
32.95
34.53

7.85
9.64

10.91
11.94
12.83

13.63
14.35
15.03
15.66
16.25

20.97
24.56
27.55
30.20
32.59

34.78
36.83
38.74
40.55

.90

10.51
12.66
14.17
15.41
16.47

17.42
18.29
19.09
19.84
20.54

26.14
30.39
33.93
37.07
39.89

42.48
44.89
47.15
49.29

.99

18.37
21.40
23.52
25.25
26.73

28.05
29.25
30.36
31.40
32.37

40.11
45.95
50.82
55.13
58.99

62.54
65.84
68.93
71.85

Note: Entries are noncentral %2s required for indicated power (top) for given df (side), at .05
significance level. Abridged from Haynam, G. E., Govindarajulu, Z., and Leone, F. C. (1973).
"Tables of the cumulative non-central chi-square distribution." In Selected tables in mathematical
statistics (Vol. 1, pp. 1-42). Providence, Rl: American Mathematical Society. Used by permission
of the American Mathematical Society
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Appendix I: Power of a test of poor fit and sample sizes
needed for powers of .80 and .90

df

1
2
3
4
5

6
7
8
9
10

20
30
40
50
60

70
80
90
100

100

.07

.10

.13

.15

.18

.20

.22

.24

.26

.28

.46

.61

.72

.81

.87

.91

.94

.96

.97

N
300

.15

.27

.36

.44

.51

.58

.64

.69

.73

.77

.96

.99
-1.00
-1.00
-1.00

-1.00
-1.00
-1.00
-1.00

500

.26

.43

.56

.66

.75

.81

.86

.90

.93

.95

-1.00
-1.00
-1.00
-1.00
-1.00

-1.00
-1.00
-1.00
-1.00

N needed
for power
of .80

2475
1289
891
690
569

487
428
384
349
320

188
141
115
99
88

80
73
68
64

N needed
for power
of .90

3427
1763
1206
927
758

646
564
503
455
417

239
177
144
123
109

98
90
83
78

Note: Lefthand columns: the power to reject the hypothesis of poor fit (RMSEA > .10), given
population RMSEA of .05, for indicated sample size (top) and df (side). Assumes .05 significance
level. Righthand columns: Ns required for powers of .80 and .90 for this test. Follows method of
MacCallum, Browne, and Sugawara (1996).
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Answers to Exercises

Chapter 1

1 & 2. Various legitimate diagrams are possible, depending on assumptions
made-for examples, those shown:

Fig. J.1 Problems 1 & 2—possible answers.

3. An example: Stress (A) leads to anxiety (B), which in turn is reflected in
responses to a questionnaire scale (C) and a physiological measure (D). The
residual arrows mean that anxiety is also affected by factors other than stress
as measured, and that questionnaire scores and the physiological
measurement do not reflect anxiety perfectly.

4. Source variables: A, B, W, X, Y, Z. Downstream variables: C, D, E, F, G.

5. That it is completely determined by A and B.

6. r/\p = ae + bf + hcf; r^Q = °dg + bhdg; TQE = ahd; r^p = dcf + dhbf + dhae.

7. s2c = a2 + i2; s2o = b2 + c2 + 2bhc; s2p = e2 + f2 + 2eabf + 2eahcf + j2.

8. No. There are (4 x 5)/2 = 10 observed covariances, and 12 unknowns~a, b,
c, d, e, f, g, h, i, j, k, I. Or, in terms of correlations, there are 6 observed
correlations and 8 unknown paths to be solved (excluding residuals).

9. CCD = a* s2A b* + a* CAB c*
cFG = e*a* CAB d*g* + f*b* cAB d*g* + f*c* s2

B d*g*

CAG = CAB d*g*
s2G = 9*2 s2E + '*2 s2Z [°r] 9*2 k*2 s2Y + 9*2 d*2 s2e + I*2

s2o = b*2 s2A + c*2 s2e + 2b*c* CAB
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10. D = bA + cB; E = dB + kY; F = eC + fD+jX.

11. For example: (additional labeling ok)

Fig J.2 RAM path diagram, problem 11.

12. TBC = c + ba = .70; TCD = a2 + cba = .48; rgrj) = ba = .30.
a = .6; b = .5; c = .4 [or] a = -.6; b = -.5; c = .4.
d = V(1 - .36) = .8; e = V(1 - .36 - .16 - .24) = .49.

13. abxbc/ac = b2 = .42x.14/.12 = .49; b = .7.
a = .6; c = .2; [or] b = -.7; a = -.6; c = -.2.

Chapter 2

Note: In this and the next two chapters, suggestions are sometimes given
regarding problem setups for path-oriented and for structural equation
oriented programs. This should cover most SEM programs that a beginner is
likely to be using, including SIMPLIS, EQS, CALIS, AMOS, SEPATH and
RAMONA. If you are using MX, translate your path diagram into the McArdle-
McDonald matrices A, S, and F and proceed as in the example in the text.

1. The results for the first complete cycle and for the next three major cycles
are:

Cycle 1
1a
1b
1c

Cycle 2
Cycle 3
Cycle 4

a b c
.5 .5 .5
.501 .5 .5
.5 .501 .5
.5 .5 .501
.5 .5 .6
.6 .5 .6
.6 .5 .7

rAD rCD
.25 .25 .25
.2505 .2505 .25
.2505 .25 .2505
.25 .2505 .2505
.25 .30 .30
.30 .36 .30
.30 .42 .35

criterion
.035
.0348005
.0348505
.0347505*
.015
.0041
.0004

266



Answers

2. The calculated values, using the equations on p. 14, are a = .5855, b
.5223, and c = .6831. The iterative solution of .6, .5, and .7 at cycle 4 is
approaching these, and at this point is accurate to one decimal place.

3. For example:

Fig. J.3 A difficult terrain for a simple search program.

4. A
A B C D

A 0 0 0 0
B a 0 0 0
C 0 b 0 0
D 0 c 0 0

A B C D
A 1 0 0 0
B 0 x2 0 0
C 0 0 y2 0
D 0 0 0 z2

A
A 1
B 0
C 0

B C D
0 0 0
1 0 0
0 1 0

Fig. J.4 Path model for Problem 5.

5. Hints: For path-oriented programs, follow the path model above. There will
be 4 paths from Am (to Ami, Am2, Am3, and Ac) and 2 paths from Ac (to Ac1
and Ac2), plus residuals. For structural equation oriented programs, there will
be 6 structural equations-one for each of the 5 observed variables and one
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for Ac, each including a residual term. The problem is like that in Fig. 2.6, but
with one more indicator for the source latent variable.

Results: Standardized paths: a = .920, b = .761, c = .652, d = .879,
e = .683, f = .356. Residual variances: U = .153, V = .420, W = .575, X = .228,
Y = .534, Z = .873. x2 = 5.80, 4 df, p > .20. The model is consistent with the
data. It implies that a little more than one third (.356) of ambition translates
into achievement, when both are expressed in standard-score units.

6. Model 1 (x2 = 16.21, 7df) is a significantly poor fit to the data, and a
significantly worse fit than any of the other three (x2djff 8.09, 2df; 13.71, 3df;
14.93, 6df). None of the others can be rejected (p > .05 for each), but the third
fits significantly better than the second (x2diff 5.62, 1df).

7.
model x2 unknowns df RMSEA

null
1.
2.
3.
4.

25.00
16.21
8.12
2.50
1.28

0
3
5
6
9

10
7
5
4
1

.123
.115
.079
.000
.053

Model 4 in absolute terms is the closest fit (x2 = 1.28), but involves many
parameters. According to RMSEA, it is an acceptable but not an excellent fit.
Model 3 is relatively parsimonious, and an excellent fit by RMSEA, for which
the null model and Model 1 are unacceptable and Model 2 marginally
acceptable.

8. The implied matrix will consist of .36s within and .18s across factors.
X2 = 5.08. As a test of a specific hypothesized path (1 df) the power would be
61%; an N of about 77 would be needed for 80% power (7.85/5.08 x 50).

9.

Fig. J.5 Path diagram for problem 9.

Hints: For path input-there are 4 paths, from C to each of W, X, Y, and Z (plus
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residuals). For structural equation input-there are 4 structural equations, for
W, X, Y, and Z. In both, path a is fixed in value to 1.0, and there is one
variance to solve for, e. Don't forget to specify a least squares solution.

Results: Unstandardized: a* = 1.000, b* = 1.120, c* =1.351, d* = .829,
e* = .364. Standardized: a = .604, b = .676, c = .815, d = .500, e = 1.00.
Residual variances: f = .636, g = .543 h = .335, I = .749.

10. a = 1.0 x V.364/1 = .603; b = 1.120 x V.364/1 = .676, etc.

11. 10 observed statistics minus 8 parameters = 2 df. From the Table:
Power = .43; N = 1289 needed for power of .80.

Chapter 3

1. Hints: Like Fig. 3.5, except with a third observed variable. Path input-
3 paths (plus residuals). Structural equation input-equations for each of the
3 observed variables. For parallel tests, specify equalities for both paths and
residuals, for tau-equivalence, for paths only. (The method of imposing
equality varies with the program-some do it by special statement, "constraint,"
"set," "let," etc., some just by giving variables the same name.)

Goodness of fit (maximum likelihood solution):
parallel: x2 = 10.35, 4 df, p < .05
tau-equivalent: %2 = 5.96, 2 df, p > .05

Reject hypothesis that tests are parallel; hypothesis of tau-equivalence
cannot be rejected (but with this small sample, this does not mean that it fits
very well-in fact the RMSEA of .241 would suggest a poor approximation.)

2. A model with the three paths from F2 constrained to be equal has a %2 of

288.21 for 26 df; thus x2
djff = 62.00 with 2df; with this huge sample we can

conclude that the modest differences are real ones.

3. Within trait across method: .71, .53, .43, .48, .42, .22, .46, .24, .31;
median = .43.

Within method across trait: .37, -.24, -.14, .37, -.15, -.19, .23, -.05, -.12;
median absolute value = .19.

Across method and trait: .35, -.18, -.15, .39, -.27, -.31, .31, -.22, -.10, .17,
-.04, -.13, .36, -.15, -.25, .09, -.04, -.11; median absolute value = .175.
Suggests reasonable convergent and discriminant validity of traits, and not a
great deal of influence of measurement method.

4. Hints: Full model: for path input-9 paths from trait factors, 9 from method
factors, 9 residuals, 6 factor variances fixed to 1.0, 3 covariances among trait
factors; for structural equations-9 equations, each involving 2 factors and a
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residual, variances and covariances as above.
Goodness of fit (maximum likelihood solution):

both kinds of factors x2 = 14.15,15 df, p > .50
trait only: X2 = 21.94, 24 df, p > .50
method only: X2 = 232.77, 27 df p < .001

Trait factors, with or without method factors, fit well. Method factors alone do
not yield an acceptable fit. Method factors do not add significantly to the fit of
trait factors (x2

diff = 7.79, 9 df, p > .50).

5. CZ
[-7
.9
1.0
.5
.0

0<Z
.504
.648
.72
.36
.00

0<Y
.5184
.5184
.5184
.5184
.5184

0(Y-Z
.3544]
.1698
.0
.4467
.5184

Only as CZ approaches 1 .0 does OCY-Z become small. With values of .5 or
less it is only slightly reduced.

6&7.

8. Line 2 solution: x2 = 18.89, 28 df. Without z for occupational aspiration:
X2 = 30.62, 29 df, x2diff = 1 1 -73, 1 df, p < .001 . Without z for educational

aspiration: x2 = 19.32, 29 df; x2diff = -43. 1 df, p > .50. Residual correlation of
the friends' educational aspirations is not statistically significant, but that for
occupational aspirations is.

9. Show that inclusion of covariances between the residuals from RPA and
REA or ROA, and FPA and FEA or FOA, leads to a significant decrease in x2.

1 o. VA = vx + vs CAC.AD =
CB.AC = ° VY = °2vx + d2vz + 2cdi + eVxz + vw

Chapter 4

1 . Hints: Path input--5 factors, one with paths to 8 variables, 4 with paths to 2
each (plus 8 residuals). Structural equation input--8 equations, each with the
general factor, a specific factor, and a residual. In both cases-- 12 equalities
imposed, 5 factor variances set to 1 .0, no factor covariances.

Result: x2 = 72.14, 24 df, p < .001 ; reject such a model.
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2. Hint: remove 4 equality constraints.
Result: x2 = 65.53, 20 df. x2diff = 6.61, 4 df, p > .10. This model does not

fit significantly better.

3. With different structural and measurement models (text), x2 = 24.56, with
32 df. Requiring the measurement model to be the same yields x2 = 119.33
with 56 df; x2diff = 94.77, with 24 df, p < .001. The same measurement model
does not fit in both groups.

4. Hint: Four groups, differing only in the fixed genetic correlation, with
appropriate within-group equality constraints.

Result: For the original solution based on correlations, x2 is 74.83 with
69 df, p > .20. For the hypothesis of parallel tests, x2 is 91.59 with 79 df,
p > .15. So x2diff = 16.76, 10 df, p > .05. Thus, one would not reject the
hypothesis that the three scales are parallel tests of numerical ability. (Under
this model, the genetic paths a are .665, the residual variances b are .561,
and the residual covariances are c = .209 across tests within persons,
d = .244 for the same test across persons, and e = .150 across both tests and
persons.)

5. A single-factor model with factor pattern the same for both sexes, but latent
variable mean and variance and residual variances allowed to differ, fits the
data quite adequately: x2 = 9.25, 10 df, p > .50; RMSEA = 0. Allowing the
factor patterns to differ between men and women does not significantly
improve the fit: x2 = 4.61, 7 df; x2dift = 4-64- 3 df- P = -20- (lf in the first
condition the residuals are also required to be equal, the fit is still satisfactory:
X2 = 15.71, 14df, p>.30.)

6. The nonlinear model fits a bit better than the original linear model, but still
not acceptably (x2 = 17.30, 8 df, p < .03). The RMSEA of .083 is marginal, and
a poor fit in the population cannot be rejected (upper 90% Cl = .138). The two
models are not nested, so a direct chi-square test of the difference between
them cannot be made.
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Chapter 5

1. Eigenvalues: 1.6912, .9458, .7866, .5764

Eigenvectors: -.601 .109 .282 -.740
-.476 .256 -.834 .107
.277 .951 .128 -.037

-.579 .133 .456 .663

Principal Factors: -.781 .106 .250 -.562
-.620 .249 -.740 .081
.361 .925 .114 -.028

-.753 .129 .404 .503

F»1 .61 «2 .62 R3 .68 R4 = R

.48 .38 .51 .45 .33 .99
-.28 -.22 .13 -.18 .01 .99 -.16 -.08 1.00
.59 .47 -.27 .57 .60 .50 -.15 .58 .70 .20 -.11 .75

Successive matrices do improve in fit, but much of this improvement, after R-j,
is in fitting the diagonal elements.

2. Rr .49 .28-.14 .42 Eigenvalues: 1.0500, .0000, .0000, .0000
.28 .16 -.08 .24 v-| -683 p-j .70o

-.14 -.08 .04 -.12 .390 .400
.42 .24 -.12 .36 -.195 -.200

.586 .600

PP' reconstructs Rr exactly.

3. SMCs: .962, .800, .962, .791, .842

4. Eigenvalues: 2.867, 1.798, .217, .098, .019. Two factors by either
criterion.

5. First factor loadings: .977, .137, .984, .530, .132. x2 = 243.77, 10 df,
p < .001. Reject hypothesis of one common factor.

6. P .79 .06 F 1.00 .57 S .82 .51
.89 -.06 .57 1.00 .85 .45
.07 .68 .45 .72

-.08 .61 .26 .56
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7.

Fig. J.6 Path diagrams for unrotated (a) and rotated (b) factors.

8. Path diagram h2s: .62, .79, .46, .37.
h2s from P0 rows: .68, .73, .52, .32.

The two are similar but not identical. The h2s from the path diagram may be
either larger or smaller because some of the small omitted paths are positive
and some negative, resulting in covariance contributions of both signs.

9- Pvarimax .78 .28 Poblimin .79 .07 porthob .78 .07
.83 .19 .88 -.04 .88 -.05
.28 .67 .10 .66 .06 .68
.11 .55 -.05 .59 -.09 .61

yarimax 1.00 .00 Foblimin1.00 .52
.00 1.00 .52 1.00

.00 .56

.56 1.00

Either oblique P is similar to the Problem 6 solution. The orthogonal P has
similar high loadings, but its low loadings are not as close to zero.

10.

1- Ppromax -77 .09
.86 -.02
.07 .68

-.08 .60

Chapter 6

F 1.00 .53
.53 1.00

Quite similar to other oblique solutions

2. Add a row .17 .55 to S and a row -.14 .62 to P.
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3. P12 .56
.74
.88

4. Pfj2 = p01p12- The coefficients are .52, .45, .78, .44, .56, and .40.

5.

6. P

.52 .01 .01 .28

.45 .01 -.00 .24

.78 .01 .44 .16

.44 .61 .01 .00

.56 .02 .55 -.03

.40 .62 -.01 -.00

.13 .98
-.91 -.09
-.16 -.98
.82 .04
.86 .39

Large coefficients on the first factor correspond to equations that give
relatively large weights to X, and on the second, to equations that give
relatively large weights to X2.

7.

Chapter 7

1. Hint: A path model for part (a) is shown in Fig. J.7.

h

Fig. J.7 Path diagram for problem 1, part (a).

The three are equivalent models. All fits identical ( x2 = 1 -78, 1 df, p > .10),
but path values and residual variances change in the structural model.
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Answers

2. AC = .6, BC = .94, AB = -.56. (Exact solution: BC = .9375 and AB = -.5625;
possible equations BC = AC/(1 - AC2), AB = -BC x AC.)

3. P .778 Al Eigenvalues: 3.12, .67, .15, .06
-.999 Ben (factor solution-principal factors
.943 Carl with iteration for communalities,

-.643 Zach starting from SMCs)

The data are fairly well described by a single factor, on which Carl and Al are
alike and opposite to Ben and Zach.

4. For example, one might obtain a measure of motor skill for a sample of
persons under a number of different conditions, and intercorrelate and factor
the conditions to study the major dimensions of their influence on motor skill.

5. Conceivably, but it is perhaps better described as a three-mode analysis
carried out in two groups (college and noncollege). The three modes are
persons, occasions (72, 74, 76), and attitudes (toward busing, criminals,
jobs).

6.
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ADF (asymptotically distribution-
free) criterion 52-53, 81.

AGFI (adjusted goodness-of-fit
index) 83, 251-254.

AIC (Akaike's information
criterion) 251-252, 254-255;
examples 192-193.

Akaike's information criterion.
See AIC.

Alpha factors 187-189.
alternative models 66, 218-222.

See also equivalent models.
AMOS model-fitting program 44-

45, 50-51, 77, 82.
analytic rotation of factors 210.

See also Varimax,
Quartimax, Oblimin,
Orthomax, Orthoblique,
Maxplane.

asymptotically distribution-free
criterion. See ADF.

AUFIT model-fitting program 81.
automatic construction of path

diagrams 222-224, 236.

baseline model. See null
model,

behavior genetic models 132-
138, 149-150.

Bentler-Lee study. See
multitrait-multimethod
models.

Bentler-Woodward study. See
Head Start study,

beta weights 12, 196-198.
bibliography of SEM 32.
books, on factor analysis 183; on

latent variable modeling 31-
32.

bootstrap 60, 82, 116, 211.
box problem. See Thurstone's

box problem.

Bracht-Hopkins study. See
simplex.

CALIS model-fitting program 44,
51.

Canonical factors 155-156, 187-
190.

career aspirations, study of 107-
111.

categorical data in SEM 51, 59,
82. See also latent class
analysis.

Cattell-White transformation 202,
204-206.

causal indicators. See effect
versus causal indicators.

causes 2-13, 30, 152, 222-224,
230-231; in factor models
158; temporal sequence and
120, 222-224, 232-234;
unitary 6. See also direct and
indirect effects, effect versus
causal indicators, feedback,
path coefficient, reciprocal
paths.

caveats in latent variable
modeling 57, 66, 80, 213,
217, 232-234. See also
critiques of latent variable
modeling.

CEFA (exploratory factor
analysis program) 210.

CFI (comparative fit index). See
RNI.

chi square distribution 55, 262.
See also chi-square tests,
goodness-of-fit criteria,
noncentral chi square.
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Chi-square tests, hierarchical
61-66; examples 96-97, 109-
111, 131, 134, 138, 142; ex
post facto 213, 234; in factor
analysis 190-191.

Cl (centrality index) goodness-
of-fit index 256-257.

Cliff's caveats 232-234.
common factors 20-22, 153;

examples 62, 93, 177-181.
See also general, specific
factors,

communality 19, 21-22, 155-
159; in Alpha and Canonical
rescalings 187; methods of
estimation 160-164, 184.
See also Kaiser
normalization, reduced
correlation matrix,

completeness of a path diagram
4-6.

compound path 8-10, 35; with
raw scores 27.

confirmatory factor analysis 16-
17,30,92, 152;
measurement model as 89;
Monte Carlo studies 58-59;
psychometric variants of 95-
102; other examples 92-95,
180. See also exploratory
factor analysis,

congeneric tests 95-98.
constraints. See equality

specification in model-fitting
programs, phantom
variables.

convergent validity 98-99.
correlated residuals, errors. See

residual correlations,
covariances.

correlations versus covariances.
See standardized versus
unstandardized variables.

COSAN model-fitting program
44, 51, 114-115, 117.

criteria of model fit. See fit
functions, goodness-of-fit
indices,

critiques of latent variable
modeling 230-234, 236.

cross-validation 66, 217, 234;
cross-validity coefficient 197;
in factor analysis 191-193,
210. See also ECVI.

Cudeck-Browne study. See
cross-validation in factor
analysis.

degrees of freedom in model
fitting 63-66, 71-73, 79-80;
examples 91, 95, 102, 106,
131; in goodness-of-fit
criteria 67-69, 251-257.

desegregation study 87-91, 116.
determinant of a matrix 53, 244.
deviant behaviors, study of

tolerance toward 143-146,
149.

direct and indirect effects 8, 30,
75, 246.

Direct Oblimin. See Oblimin
factor rotation program.

directions of paths, reversal of.
See alternative models,
effect and causal indicators.

discrepancy functions 52, 54.
See also fit functions.

discriminant validity 98-99.
double-centering a matrix 226.
downstream variables 4-7, 9, 20;

and structural equations, 23,
48; in EOS 48; in McArdle-
McDonald matrices 41; in
SIMPLIS/LISREL 46-47, 247-
248.

Duncan-Haller-Portes study.
See career aspirations, study
of.
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ECVI (expected cross-validation
index) goodness-of-fit index
251-252, 254-255.

effect versus causal indicators
218-220, 235.

eigenvalues, and eigenvectors
156, 159-160, 244; and
number of factors 165-168,
178-179, 209.

eigenvectors. See eigenvalues,
elite and non-elite groups. See

liberal-conservative attitudes,
study of.

EM algorithm 81.
empirical underidentification 74.
endogenous variables 4. See

also downstream variables.
EQS model-fitting program 44,

48-49,52,66,81-82,215,
233.

equality specification in model-
fitting programs 48-49, 79,
113.

equivalent models 220-222,
224, 236.

error of approximation versus
error of estimation 67.

exogenous variables 4. See
also source variables,

expected cross-validation index.
See ECVI.

expected parameter change
statistic 235.

experiments, and SEM 230-231;
use of latent variable models
to analyze 147, 150. See
also Head Start study,

exploratory factor analysis 16-
17, 30, 152-210.

exploratory model fitting 66, 152,
213-217, 231, 234-235.

extension analysis 199-201.
extraction of factors. See factor

extraction.

EzPATH model-fitting program
51.

FACTOR (SAS, SPSS
programs) 181-183, 209.

factor analysis 1, 16-22, 28-29,
30; books on 183; model
184. See also confirmatory,
exploratory, nonlinear factor
analysis.

factor extraction 154-168, 187-
193; over- and
underextraction 184. See
also Alpha factors, Canonical
factors, maximum likelihood
factor extraction, principal
factors.

factor intercorrelation matrix 21 -
22, 92-94, 153, 180; and
higher order factors 201-202.
See also orthogonal versus
oblique rotation, factor
structure.

factor pattern 20-22, 92-94, 153-
154, 155-160, 164, 170-176,
179-180. See also
confirmatory factor analysis,
factor extraction, factor
rotation, factor structure.

factor rotation 169-176,193-
196, 210; in box problem
179-180.

factor scores 196-200, 210;
indeterminancy of 199; in
nonlinear factor analysis
207-209.

factor structure 20-22, 92, 154,
176-177; in estimating factor
scores 197-198, 200-201.

factorial equivalence 142, 146-
147.

feedback, in path diagrams 7-8.
See also looped path
models, reciprocal paths.
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Fl (fit index) 255-256.
FIML (full information maximum

likelihood) 77.
Fisher scoring method 81.
fit functions 52-58, 255. See

also ADF, generalized least
squares, least squares,
maximum likelihood criterion.

Fletcher-Powell method 81.
formative indicators. See effect

versus causal indicators.
FORTRAN programming

language 51.
Freedman critique 230-231.
full information maximum

likelihood. See FIML.

G1 (gammal) goodness-of-fit
index 255-256.

gammal. Seed.
GAUSS mathematical

programming language 51.
Gauss-Newton method 81.
general factor 17-20; solutions

for 18-19, 155-160; examples
56,62, 89, 121-122, 133-
134. See also common
factors, specific factors,

general-purpose model-fitting
programs 37, 44, 81, 135,
138.

generalized least squares 52-
55, 57, 61, 79; example 114.

Geomin factor rotation program
210.

GFI (goodness-of-fit index) 83,
251-253, 255.

GLS. See generalized least
squares,

goodness-of-fit indices 67-70,
82-83,251-257. See also fit
functions, RMSEA.

groups, models comparing two
or more. See multiple
groups.

Head Start study 103-106.
Heywood case 58, 102, 164.
hierarchical chi-square test. See

chi-square tests, hierarchical,
hierarchical modeling. See

multilevel modeling, higher
order factors,

higher order factors 201-206,
210.

highest r method of communality
estimation 161, 163.

Holahan-Moos study. See
stress, resources and
depression study.

1C* algorithm 223-224.
Identification 74-75, 83-84, 106-

107, 224. See also
overdetermined path
diagram, underdetermined
path diagram.

implied correlations,
covariances 19, 21, 71-72,
154-158; and means 140; in
iterative solutions 35-37; via
matrix calculations 40-44,
154, 248. See also residual
correlations, covariances.

improper solutions. See
Heywood case.

imputation, multiple 77.
incremental fit indices 67, 251-

254.
indirect effect. See direct and

indirect effects.
individual and group 149.
interactions, in SEM 112, 115,

147. See also nonlinear
relationships.

internet and SEM 32, 81, 83, 84,
210.

interpretational confounding
234.
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inverse of a matrix 242-243; in
communality estimation 161-
162; in factor score
estimation 196-198; in fit
functions 52-56; in path
calculation 41-44, 246.

ipsative measures, factor
analysis of 210.

item response theory 29, 31.
iteration to improve

communalities 163-164.
iterative model fitting 35-40.

journals featuring latent variable
methods 31.

Judd-Milburn study. See liberal-
conservative attitudes, study
of.

just-determined path diagram
15. See also identification.

Kaiser normalization 172, 180,
183.

Kaiser-Guttman rule 165, 167-
168, 178, 184,209.

KD factor rotation program 195-
196.

Kenny-Judd study. See
nonlinear relationships.

Lagrange multiplier tests 215,
235.

latent class analysis 30-31.
latent growth curves 143-146,

149-150.
latent states vs. latent traits 149.
Latent vs. manifest variables.

See manifest vs. latent,
least squares 36, 44, 48, 52-57,

61, 154; examples 20, 36-
37; principal factor and 155.
See also generalized least
squares, maximum likelihood
criterion.

Levenberg-Marquardt method
81.

liberal-conservative attitudes,
study of 127-132.

LISREL model-fitting program
40,44-48,51,56,59,77,81-
82,90-91, 105, 114-115,
117, 122, 128, 145, 155-156,
180, 190-191, 215,232-234,
235, 247-250, 251, 253, 256-
257.

listwise deletion 76.
longitudinal models. See time,

models of events over.
looped path models 7-9, 75,

106, 117. See also
reciprocal paths.

Lord study. See parallel and
congeneric tests.

love, study of 120-124.

manifest versus latent variables
1, 13, 16-17,28-30. See
also factor scores,
indeterminacy of.

MAR (missing at random) 78.
Maruyama-McGarvey study.

See desegregation study,
matrix algebra, basics 238-244.
matrix formulation of path

models 40-45, 49-50, 81,
245-250.

maximum likelihood criterion 44,
46,48,52-59,79,91, 145,
154. See also maximum
likelihood factor extraction,
FIML

maximum likelihood factor
extraction 155, 187, 190-191;
and higher order factors 202.

Maxplane factor rotation
program 195.

MCAR (missing completely at
random) 78.
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Mclver study. See police, study
of attitudes toward,

means, models including 16,
139-146, 149, 206.

measurement model. See
structural and measurement
model.

MECOSA model-fitting program
44,51.

mediation 103, 116.
meta-analysis, use of latent

variable models in 148, 150.
method variance 98-102, 215-

216.
missing data in SEM 75-78, 84.
ML. See maximum likelihood,
modes of latent variable analysis

224-229, 236.
modification indices 215, 235.
Monte Carlo studies 58-59, 82.
Mplus model-fitting program 44,

51,77.
multilevel modeling 29, 31. See

also higher order factors,
multiple groups 129-143, 146-

150; and missing data 76-77;
in programs 51; rotation in
210.

multiple regression and path
analysis 12-13, 106. See
also factor scores,

multitrait-multimethod models
98-102, 116,216,229,235.

multivariate normality 53-54, 58-
60,69,82, 114, 122.

MX model-fitting program 44-45,
49-50,77,81-82, 117.

nested factor model 210.
nested SEM models. See chi-

square tests, hierarchical.
Newton-Raphson method 81.
NFI (normed fit index)

goodness-of-fit index 251-
253, 255.

NNFI (Non-normed fit index).
SeeTLI.

noncentral chi square 68-69,
71-72,83,255,263.

noncentrality parameter 68, 255-
256.

nonlinear factor analysis 206-
209,211.

nonlinear relationships 7, 111-
115, 117,206-209.

nonnested models 82. See also
chi-square tests, hierarchical,

nonnormal distributions. See
multivariate normality.

Nonnormed Fit Index. SeeTLI.
Normed Fit Index. See NFI.
not-close fit, test of 83-84.
NTLI (Normed Tucker-Lewis

index) 257.
null model 67, 138, 251-253,

256-257.
number of factors, determination

of 164-168, 184, 190-192.
See also Kaiser-Guttman
rule, scree test, parallel
analysis,

numerical ability, study of 132-
135.

O technique 225, 227-229, 236.
Oblimin factor rotation program

171, 174-176, 179-180, 183.
observed variables. See

manifest vs. latent variables.
OLS (ordinary least squares).

See least squares.
Orthoblique factor rotation

program 171, 183, 196.
orthogonal versus oblique

rotation 169, 171, 174, 176,
195, 201; in box problem
179-180. See also Promax
factor rotation program,
Orthoblique factor rotation
program.
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Orthomax factor rotation
program 183, 193, 210.

outliers 59-60, 82.
overdetermined path diagram

14-15, 31. See also
identification.

P technique 225, 227-228, 236.
pain/vise deletion 76.
parallel analysis 168, 184.
parallel tests 13, 95-98.
parsimonious normed fit index.

See PNFI.
partial correlation 102-103. See

also path coefficient,
partial least squares. See PLS.
path analysis 1, 8-16; and

structural equation analysis
23-24, 245-246;
standardized and
unstandardized 24-28, 31;
with manifest and latent
variables 13-14, 28-29.

path coefficient 12-14, 18-21;
unstandardized 24-28.

path diagram 2-16; and factor
models 17-22, 153, 159; and
structural equations 23-24,
245-246; matrix
representation of 40-44, 245-
246.

pattern, factor. See factor
pattern.

Pearl, Judea. See automatic
construction of path
diagrams,

phantom variables 114, 258-
259.

PLS 235.
PNFI (parsimonious normed fit

index) goodness-of-fit index
251-254.

police, study of attitudes toward
92-95.

poor fit, test of 69; power 73, 83,
264; examples 94, 97, 123,
126, 134, 141.

population-based fit indices 67-
69, 255-257.

power to reject model 61, 70-73,
83, 263-264.

PRELIS program 51.
principal components 29, 31; in

nonlinear factor analysis
207-210; programs 182.

principal factors 155-160, 163,
170, 175; in box problem
178-179; programs 182.

Procrustes factor rotation
program 183, 194-195.

Promaj factor rotation program
210.

Promax factor rotation program
171, 183, 194-195,210.

Promin factor rotation program
210.

psychometric applications of
model fitting 95-102. See
also reliability,

publication in SEM 236.

Q technique 225-226, 228, 236.
Quartimax factor rotation

program 171-174, 183.
Quartimin variant of Oblimin

174-175.

R technique 225-228, 236.
RAM (reticular action model) 16,

51,81.
RAMONA model-fitting program

44, 51, 80.
raw score path rules 26-28, 43-

44.
reciprocal paths 7, 90, 106-111.
recursive and nonrecursive 31.

See looped path models,
reduced correlation matrix 155-

159. See also communality.
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reflective indicators. See effect
versus causal indicators,

relative noncentrality index. See
RNI.

reliability, test 2-3, 13, 103, 109,
137-138, 215-216.

residual arrows, paths 3, 5-6, 12-
13, 16,24,47,89,245,247;
variances 41-42, 46-47, 55,
123, 247. See also Heywood
case, specific factors,
uniquenesses,

residual correlations,
covariances 5, 22, 42, 75,
155-157, 216; examples 95,
106-111, 134-135; overtime
121-123, 128-129. See also
number of factors,
determination of.

reticular action model. See
RAM.

RMSEA (root-mean-square error
of approximation) 68-71, 73,
83, 264; examples 90, 94, 97,
102, 106, 123, 126, 128, 134,
145-146.

RNI (relative noncentrality index)
goodness-of-fit index 255-
257.

root-mean-square error of
approximation. See RMSEA.

rotation of factors. See factor
rotation.

S technique 225, 228-229, 236.
sample size in exploratory factor

analysis 184; in latent
variable modeling 53, 55, 60-
62,67-68, 70-73, 82, 191,
192-193; Monte Carlo
studies 58-59, 217; very
large samples 53, 67, 92-95.

SAS statistical package 1,51,
60, 181-183.

Satorra-Bentler scaled statistic
82.

Schmid-Leiman transformation
203-206.

scree test 166-168; in box
problem 178.

SEM (structural equation
modeling) 1, 44, and
throughout.

SEM programs 44-51, 81.
SEMFAQ (structural equation

modeling, frequently asked
questions) 32.

SEMNET (structural equation
modeling discussion
network) 32, 81.

SEPATH model-fitting program
44,51,80,82.

simplex 124-126, 148-149.
simplicity of factor model 154-

155, 169, 171.
Simplimax factor rotation

program 210.
SIMPLIS model-fitting program

45-48.
SMC (squared multiple

correlation) 12-13, 20; in
communality estimation 161-
164.

sociability, study of 135-138.
source variables 4-6, 10, 15; and

matrix representation 41; and
structural equations 24, 48; in
SIMPLIS/LISREL 47, 247.

Spearman. See two-factor
theory of intelligence,

specific factors 17, 20, 153. See
also residual arrows,
uniquenesses.

SPSS statistical package 1, 60,
181-183, 209.

squared multiple correlation.
See SMC.

SRMR (standardized root mean
square residual) 70.
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standard errors 59-60, 66; in
factor analysis 210.

standardized solution 80. See
also standardized versus
unstandardized variables.

standardized versus
unstandardized variables 8,
24-28, 31, 78-80; in factor
analysis 153, 189; in matrix
representation 41-44; in
model fitting 78-80, 84; over
time 123-124.

start values 35-38, 46-48, 81.
steepest descent method 38, 80.
stress, resources, and

depression study 140-143.
structural and measurement

model 87-91, 112, 206-207,
208, 214-217, 234-235, 247-
248; and factor analysis 92,
152.

structural equations 1, 23-24, 30,
112, 245; in programs 45,
48-49, 51.

structural versus descriptive
models 231.

structure, factor. See factor
structure.

SYSTAT statistical package 51.

T technique 225, 228-229, 236.
tau-equivalent tests 55, 95.
Tesser-Paulhus study. See

love, study of.
TETRAD computer program 235-

236.
three mode factor analysis 228-

229, 236.
Thurstone's box problem 177-

181; raw data 260-261; other
model data sets 185.

time, models of events over 3,
120-129, 143-146, 148-150,
222-224; caveat 233. See
also modes of latent variable
analysis.

TLI (Tucker-Lewis index)
goodness-of-fit index 256-
257.

transformation matrix, in factor
rotation 170-175, 194-195.

triads, method of 18-19.
Tucker-Lewis index. See TLI.
two-factor theory of intelligence

17-20.

underdetermined path diagram
14-15,22,31. See also
identification.

uniquenesses 153; in Canonical
factor scaling 187-189; in
higher order factoring 204-
206. See also residual
arrows, specific factors.

Vandenberg study. See
numerical ability, study of.

Varimax factor rotation program
171-174, 179-180, 182-183.

Wald test 66, 235.
Willett-Sayer study. See deviant

behaviors, study of tolerance
toward.

Wright's rules 8-10, 27, 30, 40,
42, 106, 154.
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