Chapter 10: Rotation

\checkmark Angular Position, Velocity and Acceleration
\checkmark Rotational Kinematics
\checkmark Kinetic Energy of Rotation
\checkmark Rotational Inertia
\checkmark Torque
\checkmark Energy Consideration in Rotational Motion

Chapter 10: Rotation

Session 21:

\checkmark Kinetic Energy of Rotation
\checkmark Rotational Inertia
\checkmark Examples

Kinetic Energy of Rotation

$$
k=\frac{1}{2} M v_{c o m}^{2}=0
$$

$$
k=\frac{1}{2} m v^{2}=\frac{1}{2} m(r \omega)^{2}=\frac{1}{2}\left(m r^{2}\right) \omega^{2}
$$

For a collection of rotating objects:

$$
k=\sum_{i=1}^{N} k_{i}=\sum_{i=1}^{N} \frac{1}{2}\left(m_{i} r_{i}^{2}\right) \omega_{i}^{2}=\frac{1}{2} \sum_{i=1}^{N}\left(m_{i} r_{i}^{2}\right) \omega_{i}^{2}
$$

if $\omega=$ constant

$$
k=\frac{1}{2}\left(\sum_{i=1}^{N} m_{i} r_{i}^{2}\right) \omega^{2}=\frac{1}{2} I \omega^{2} \quad I=\sum_{i=1}^{N} m_{i} r_{i}^{2}
$$

Kinetic Energy of Rotation

$$
k=\frac{1}{2}\left(\sum_{i=1}^{N} m_{i} r_{i}^{2}\right) \omega^{2}=\frac{1}{2} I \omega^{2}
$$

For rotation about y axis:

$$
\begin{gathered}
I_{y}=\sum_{i=1}^{4} m_{i} r_{i}^{2}=M a^{2}+M a^{2}+m(0)+m(0)=2 M a^{2} \\
k_{l}=\frac{1}{2}\left(2 M a^{2}\right) \omega^{2}=M a^{2} \omega^{2}
\end{gathered}
$$

For rotation about z axis:
$I_{z}=\sum_{i=1}^{4} m_{i} r_{i}^{2}=M a^{2}+M a^{2}+m b^{2}+m b^{2}=2 M a^{2}+2 m b^{2}$

$$
k_{2}=\frac{1}{2}\left(2 M a^{2}+2 m b^{2}\right) \omega^{2}=\left(M a^{2}+m b^{2}\right) \omega^{2}
$$

$$
k_{2}>k_{1}
$$

Rotational Inertia of A Rigid Body

$$
\begin{gathered}
I=\sum_{i=1}^{N} m_{i} r_{i}^{2} \\
I=\lim _{\Delta m_{i} \rightarrow 0} \sum_{i} r_{i}^{2} \Delta m_{i} \\
I=\int r^{2} d m
\end{gathered}
$$

1) Linear Mass Density \rightarrow mass per unit length : $\lambda=\frac{m}{L} \longmapsto d m=\lambda d L$
2) Surface Mass Density \rightarrow mass per unit surface, : $\sigma=\frac{m}{A} \Rightarrow d m=\sigma d A$
3) Volumetric Mass Density \rightarrow mass per unit volume: $\rho=\frac{m}{V} \quad \square d m=\rho d V$

Ex 6: Calculate the moment of inertia of a uniform thin rod of length \mathbf{L} and mass \mathbf{M} about an axis perpendicular to the rod and passing through its center of mass.

$$
I=\int r^{2} d m
$$

$\lambda=\frac{M}{L} \Rightarrow d m=\lambda d x=\frac{M}{L} d x$

$$
I_{y}=\int r^{2} d m=\int_{-L / 2}^{L / 2} x^{2}\left(\frac{M}{L} d x\right)
$$

$$
I_{y}=\left.2\left(\frac{M}{L}\right) \frac{x^{3}}{3}\right|_{0} ^{\frac{L}{2}}=2\left(\frac{M}{L}\right) \frac{L^{3}}{24}=\frac{1}{12} M L^{2}
$$

$$
I_{y^{\prime}}=\int r^{2} d m=\int_{0}^{L} x^{2}\left(\frac{M}{L} d x\right)=\frac{1}{3} M L^{2}
$$

$$
I_{y^{\prime}}>I_{y}
$$

Parallel-Axis Theorem

$$
\begin{aligned}
& I_{z}=\int r^{2} d m=\int\left(x^{2}+y^{2}\right) d m=\int\left[\left(x^{\prime}+x_{z}^{\left.x_{c o m}\right)^{2}}+\left(y_{c o m}^{\left.\left.y^{\prime}+y_{c o m}\right)^{2}\right] d m}\right.\right.\right. \\
& I_{z}=\underbrace{\int\left(x^{\prime 2}+y^{\prime 2}\right) d m}_{I_{c o m}}+2 x_{\text {com }}^{\int x^{\prime} d m}+2 y_{\text {com }}^{\int y^{\prime} d m}+(\underbrace{x_{c o m}^{2}+y_{c o m}^{2}}_{0}) \int d m
\end{aligned}
$$

$I_{y^{\prime}}=I_{c o m}+M h^{2}=\frac{1}{12} M L^{2}+M\left(\frac{L}{2}\right)^{2}=\frac{1}{3} M L^{2}$

Rotation
axis

Ex 7: (Problem 10. 41 Halliday)

Two particles, each with mass $\mathbf{m}=\mathbf{0 . 8 5} \mathbf{~ k g}$, are fastened to each other, and to a rotation axis at O, by two thin rods, each with length $\mathbf{d}=5.6 \mathrm{~cm}$ and mass $\mathbf{M}=1.2 \mathrm{~kg}$. The combination rotates around the rotation axis with the angular speed $\boldsymbol{\omega}=\mathbf{0 . 3 0} \mathbf{r a d} / \mathrm{s}$. Measured bout O , what are the combination's (a) rotational inertia and (b) kinetic energy?

Two particles:

Two rods:

$$
I_{1}=m d^{2}+m(2 d)^{2}=5 m d^{2}
$$

$$
I_{2}=\left[\frac{1}{12} M d^{2}+M\left(\frac{d}{2}\right)^{2}\right]+\left[\frac{1}{12} M d^{2}+M\left(\frac{3 d}{2}\right)^{2}\right]=\frac{8}{3} M d^{2}
$$

$$
I_{T}=I_{1}+I_{2}=5 m d^{2}+\frac{8}{3} M d^{2}=\left(5 \times 0.85+\frac{8}{3} \times 1.2\right)(0.056)^{2}=0.023 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

$$
k=\frac{1}{2} I_{T} \omega^{2}=\frac{1}{2}(0.023)(0.30)^{2}=1.03 \times 10^{-3} \mathrm{~J}
$$

Ex 8: A uniform, thin, solid door has height 2.20 m , width 0.870 m , and mass $\mathbf{2 3} \mathbf{~ k g}$. Find its rotational inertia for rotation on its hinges.

$$
I=\int r^{2} d m
$$

$$
\sigma=\frac{M}{A} \quad \square d m=\sigma d A=\frac{M}{A} h d x
$$

$$
I=\int r^{2} d m=\int_{0}^{w} x^{2}\left(\frac{M}{A} h d x\right)=\frac{M}{A} h \int_{0}^{w} x^{2} d x=\frac{M}{A} h \frac{w^{3}}{3} \quad A=w h
$$

$$
I=\frac{1}{3} M w^{2}=\frac{1}{3}(23)(0.87)^{2}=5.80 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

Ex 9: Find the moment of inertia of a uniform thin disc of radius \mathbf{R} and mass \mathbf{M} about an axis perpendicular to the disc and passing through its center of mass.

$$
I=\int r^{2} d m
$$

R R R

$$
\begin{aligned}
& \sigma= \frac{M}{A} \\
& I_{z}=\int_{0}^{R} r^{2}\left[\frac{M}{A}(2 \pi r d r)\right] d m=\sigma d A=\frac{M}{A}(2 \pi r d r) \\
& I_{z}=\frac{1}{2} M R^{2} \\
& I_{z}=I_{x}+I_{y}=2 I_{x}=2 I_{y} \\
& 10
\end{aligned}
$$

Some Rotational Inertias

Ex 10: (Problem 10. 43 Halliday)

The uniform solid block has mass 0.172 kg and edge lengths $\mathbf{a}=3.5 \mathrm{~cm}, \mathbf{b}=8.4 \mathrm{~cm}$, and $\mathbf{c}=1.4 \mathrm{~cm}$. Calculate its rotational inertia about an axis through one corner and perpendicular to the large faces.

$$
I_{z}=I_{c o m}+M h^{2}
$$

$$
I_{z}=\frac{1}{12} M\left(a^{2}+b^{2}\right)+M\left(\sqrt{\frac{a^{2}}{4}+\frac{b^{2}}{4}}\right)^{2}=\frac{1}{3} M\left(a^{2}+b^{2}\right)
$$

$$
I_{z}=\frac{1}{3}(0.172)\left[(0.35)^{2}+(0.84)^{2}\right]=0.048 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& I=\int r^{2} d m \quad \rho=\frac{M}{V} \quad \square d m=\rho d V=\frac{M}{V}(c d x d y) \\
& I_{z}=\int_{0}^{a b} \int_{0}^{b}\left(x^{2}+y^{2}\right)\left[\frac{M}{V}(c d x d y)\right]=\frac{M}{V} c\left(\int_{0}^{a} \int_{0}^{b} x^{2} d x d y+\int_{0}^{a b} \int_{0}^{2} y^{2} d x d y\right)=\frac{M}{V} c\left(\frac{b a^{3}}{3}+\frac{a b^{3}}{3}\right) \\
& \quad V=a b c \quad \square \\
& I_{z}=\frac{1}{3} M\left(a^{2}+b^{2}\right)
\end{aligned}
$$

