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Introduction Cluster Analysis

Clustering

Aim: It seeks to obtained a reduced representation of the initial data

Organization of data into homogeneous subsets "clusters" or "classes"

Terminology can depend on the field:

Structure of clustering

It can take different forms: partitions, sequence of encased partitions or hierarchical,
overlapping clusters, clusters with high density, fuzzy clusters.

In this chapter we focus on the hierarchical methods

Characteristics of these methods

This section is devoted to the partitioning methods or nonhierarchical clustering
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k-means algorithm

Description

This section is devoted to the partitioning methods or nonhierarchical clustering. We
keep the previous notation and we begin by describing the well-know k-means when
the set to classify Ω is measured by p continuous variables

To look for the optimal partition z it suffices to minimize the within-cluster variance
W (z)

W (z) =
K∑

k=1

∑
i∈zk

||x i − xzk
||2.

which is equivalent to maximize the between-cluster variance

B(z) =
K∑

k=1

πk ||x zk
− x ||2,

where πk is the weight of the cluster zk and x is the vector center of all data. This
equivalence is due to the decomposition of the total variance I of data

I = W (z) + B(z)
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k-means algorithm

Description of k-means

The one-parameter optimization W (z) is equivalent to the optimization of the
two-parameter optimization W (z, µ)

W (z, µ) =
K∑

k=1

∑
i∈zk

||x i − µk ||
2, (1)

where µ = (µ1, . . . , µK ) with µk from R
p represents the center or prototype of the

cluster zk .

This optimization can be carried out by the k-means algorithm and the principal
steps of the k-means are the following:

1 Randomly select K objects of Ω which form the K first cluster means µ1, . . . , µK .
2 While not convergence

1 assign each object of Ω to the cluster with the nearest cluster mean. If this one is not
unique the object is assigned to the cluster with the smallest subscript.

2 The cluster means computed become the new cluster means.

In the iteration process k-means yields a sequence µ(0), z(1), µ(1), z(2), . . . of partitions
and centers with decreasing the values of the criterion until the convergence at the
minimum value
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k-means algorithm

Description of k-means

We illustrate the different steps of k-means by applying it with K = 2 on a simple
set Ω of 10 objects located in plan as depicted in a rectangle

Example of 10 objects to classify
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k-means algorithm

Description of k-means

The kmeans algorithm can then be summarized in the following way ??

Process of k-means.

Step 1 : arbitrarily choose 2 objects Step 2 : assign each object
            to the nearest cluster mean

            to the nearest cluster mean
Step 4 : assign each objectStep 3 : compute the cluster means

Step 5 : compute the cluster means
            to the nearest cluster mean

Step 6 : assign each object 

The process terminates and this algorithm will not change any more the results: The
algorithm converges. Note that the obtained partition corresponds to the observable
structure in two clusters
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k-means algorithm k-means and its variants

Within-cluster criterion

It corresponds to the famous sum-of-squares criterion (SSQ)

Different approaches in clustering are based on this criterion but under different
forms due to different hypothesis

First Hypothesis

z is a known partition and x1, . . . , xn as a realization of a random vector x with f its
density on R

p.
The problem is to look for the partition z in R

p minimizing :

W (z) =
∑
k

∫
zk

||x − Ezk
(X )||2dP(x)

As P(x < X < x + dx) = f (x)dx , W (z) is equivalent to

W (z, µ) =
∑
k

∫
zk

||x − Ezk
(X )||2f (x)dx

=
∑
k

∫
zk

f (x)||x − µk ||
2dx (2)

In R, this formulation has been provided in the framework of optimum proportional
stratified sampling (Dalenius, 1950). Even if the k-means algorithm was not used but
another called the shooting algorithm, this later needs two principal steps of k-means
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k-means algorithm k-means and its variants

Within-cluster criterion

Different extensions to this algorithm were proposed and successfully applied in
image compression. The figure( photo-Fisher) illustrates an application of the LLoyd
algorithm in the context of scalar quantization.

Example of scalar quantization.

Nadif (CRIP5 ) IRAN, December, 13-21, 2008 SEMINAIRES 10 / 38



k-means algorithm k-means and its variants

Within-cluster criterion

In addition, the optimization of SSQ2 was considered in multidimensional case R
p,

and the first to propose the k-means explicitly was Steinhauss (1956)

Actually, the k-means version commonly used is due to Forgy (1965)

After several works concerned on different variants of k-means and sometimes under
different names algorithms were proposed, see for instance (Bock, 2007)

We can cite the nuées dynamiques or dynamic clusters method (Diday, 1971),
iterated minimum-distance partition method (Bock, 1974)

Another approach which consists to consider the data as a sample is appeared with
MacQueen (1967) and a stochastic version of k-means is performed and inspired the
Kohonen maps
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k-means algorithm Principal points to be retained

Before performing a cluster analysis on coordinate data, it is necessary to consider
scaling or transforming the variables since variables with large variances tend to have
more effect on the resulting clusters than those with small variances. Other
transformations can be used according the nature of data, this step is very important
and can be present in the metric as we will see later on.

If our aim is to find the couple (z, µ) minimizing the criterion W , the k-means
algorithm does not provide necessarily the best result, but just a sequence of couples
whose the value of criterion is going to decrease and we obtain a local optimum.
Then and as in practice the convergence is reached very quickly (often less than 10
iterations even with large data) in order to obtain an interesting solutions, the user
needs to run k-means several times and choose the best result according the SSQ
criterion.

The k-means algorithm can use an Lm clustering criterion instead of the
least-squares L2 criterion. Note that values of m less than 2 reduce the effect of
outliers on the cluster centers compared with least-squares criterion.

In general, the criterion is not independent of the number of classes. For example,
the partition into n classes, where each object forms a singleton cluster, has a null
within-cluster criterion and therefore the optimal partition is without interest. It is
then necessary to fix a priori the number of classes.
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k-means algorithm Principal points to be retained

If this number is not known, several solutions allowing to solve this very difficult
problem are used. For example, the best partition is sought for several numbers of
classes and we study the decrease of the criterion according the number of classes to
select the number of classes by using the scree plot and choosing an elbow. Indeed,
the quality of a partition can be evaluated by the Rsquare (RSQ)

RSQ = 1 −
W

I
=

B

I

The k-means has a very low computational complexity which translates directly into
a high speed, it suffices then to run k-means with different number of clusters and
use the elbow method

different methods (see course 3)

Knowing that according to starting points chosen, the results will be different, it
remains with to exploit these different results. Several solutions were proposed: we
run the k-means several times by initiating with different random initializations.
Several strategies are then possible.

We select a good initialization with supplementary informations or with an automatic
procedure (points strongly distant, regions with high density, etc.)
We should however make a compromise between the necessary time to the research of
the initial configuration and that necessary time for the algorithm itself
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k-means algorithm Principal points to be retained

Link between k-means and the Ward method: The two methods are similar in that
they both attempt to the within-cluster variance (Wong, 1982).

1 Apply k-means to cluster Ω into fifty clusters, for example. In practice, this number

depending on the size of data can be taken equal to n
1
3

2 Run the Ward method on these obtained cluster means
3 From the dendrogram we propose a number of clusters by using the SPRSQ criterion
4 Eventually, apply k-means on the obtained clusters to improve SPRSQ

Fisher’s method (1958): Note that there exist some situations for which we have
effective algorithms allowing to find global optimum. It is the case where there is an
order constraint on the partitions. This constraint can be implicit (for instance,
when the data are in R) or explicit (for instance,constraint imposed by the user).
We can then use a dynamic algorithm of programming such as the Fisher’s
algorithm which provides the global optimum.
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k-means algorithm Principal points to be retained

Importance of the metric

Let be x a data matrix that consists of a set of objects described by 3 continuous
variables x , y and z Naturally, we can use the Standardized Euclidean distance on
standardized data but sometimes the clustering on the profiles (row percents) are
more adapted in certain contexts and as the values of this data matrix are all
positive we can use the metric χ2

Extract of data

x y z x y z x y z

37 31 40 117 132 142 201 240 194

35 26 29 166 118 117 205 266 205

42 44 25 115 126 153 178 212 256

43 20 28 152 105 115 240 223 172

32 26 43 114 119 162 195 199 256

44 32 27 109 109 91 190 223 203

31 38 29 136 150 95 277 206 190

28 47 49 100 132 152 212 198 259

.. .. .. ... ... ... ... ... ...
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k-means algorithm Principal points to be retained

Projection of objects on the factorial planes spawned by the first and second axes by
PCA and CA
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Correspondence Analysis: CA

Projection of clusters on the factorial planes spawned by the first and second axes by
PCA and CA.
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k-means algorithm Principal points to be retained

Projection of clusters on the factorial planes spawned by the first and second axes by
PCA and CA.
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k-means algorithm Principal points to be retained

Example of Butterflies

k-means by using the χ2 distance

This table can be considered as the contingency table

Why ?
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k-means algorithm Principal points to be retained

Contingency table and χ2

There are several measures of association and the most employed is the chi-square χ2.
This criterion, used for example in the correspondence analysis

χ2(I , J) =
∑
i,j

(xij −
xi.x.j

N
)2

xi.x.j

N

= N
∑
i,j

(fij − fi.f.j )
2

fi.f.j
.

χ2 usually provides statistical evidence of a significant association, or dependence,
between rows and columns of the table. It represents the deviation between the
theoretical frequencies fi.f.j , that we would have if I and J were independent, and
the observed frequencies fij

If I and J are independent, the χ2 will be zero and if there is a strong relationship
between I and J, the χ2 will be high

A significant chi-square indicates a departure from row or column homogeneity and
can be used as a measure of heterogeneity. Then, the chi-square can be used to
evaluate the quality of a partitions of I or w of J

Associated χ2(z, J) of the contingency table with K rows in making the sum of rows
of each cluster

We have χ2(I , J) ≥ χ2(z, J) and the objective is to find the partitions z which

minimizing this loss, i.e. which maximizes χ2(z, J) = N
∑

k,`

(fkj−fk.
f.j )

2

fk.
f.j
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k-means algorithm Principal points to be retained

Clustering of contingency table

The Euclidean classical distance in not appropriated

Clusters of objects is not informative than clustering of the profiles

The χ2 is more adapted

Transformation of data

The data matrix x is a n × p matrix defined by x = {(xij ); i ∈ I , j ∈ J} where I is a
categorical variable with n categories and J a categorical variable with p categories

We denote the row and columns total of x by xi. =
∑p

j=1 xij and x.j =
∑n

i=1 xij and
the overall total simply by N =

∑
ij xij .

We denote {(fij = xij/N); i ∈ I , j ∈ J}

the marginal frequencies fi. =
∑

j fij and f.j =
∑

i fij

The row profiles f i
J = (fi1/fi., . . . , fip/fi.)

The average row profile fJ = (f.1, . . . , f.p)
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k-means algorithm Principal points to be retained

Time-budget data matrix (Jambu 1976)

prof tran home child shop wash meal sleep tv leis

maus 610 140 60 10 120 95 115 760 175 315

waus 475 90 250 30 140 120 100 775 115 305

wnaus 10 0 495 110 170 110 130 785 160 430

mnsus 615 141 65 10 115 90 115 765 180 305

wnsus 179 29 421 87 161 112 119 776 143 373

msus 585 115 50 0 150 105 100 760 150 385

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mnsea 652 133 134 22 68 94 102 762 122 310

wnsea 434 77 431 60 117 88 105 770 73 229

msea 627 148 68 0 88 92 86 770 58 463

wsea 433 86 296 21 128 102 94 758 58 379

I : types of population and J : variety of activities, xij : amount of time spent on a
variety of activities j by i during a given time period j
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k-means algorithm Principal points to be retained

Notation

The choice of χ2 metric is justified for several reasons, in particular because of the
similar role played by each of the two dimensions in the analyzed table, and also
because of the property of distributional equivalence, which implies stable results
when agglomerating elements with similar profiles

Each row i corresponds to a point vector R
p defined by the profile fiJ weighted by

the marginal frequency fi.

The maximization of χ2(z, J) can be viewed as the minimization of a criterion
depending on the partition and the centers of clusters

z is a partition of the rows, we can define the frequencies fkj =
∑

i∈zk
fij and the

average row profile of the cluster zk is defined by the vector fkJ = (
fk1

fk.

, . . . ,
fkp
fk.

)

where fk. =
∑p

j=1 fkj
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k-means algorithm Principal points to be retained

SSQ criterion

With this representation, the total of squared distances T , the between-cluster sums
of squares B(z) and the within-cluster sums of squares take the forms

T =

n∑
i=1

fi ;d
2(fiJ , fJ) , B(z) =

n∑
i=1

fk.d
2(fkJ , fJ) =

1

N
χ2(z, J),

and

W (z) =

K∑
k=1

∑
i∈zk

fi.d
2(fiJ , fkJ ).

The traditional relation T = W (z) + B(z) leads to the following relation:

χ2(I , J) = NW (z) + χ2(z, J).

The term NW (z) therefore represents the information lost when grouping the
elements according to the partition z, and χ2(z, J) corresponds to the information
which is preserved

Looking for the partition maximizing the criterion χ2(z, J) is equivalent to looking
for the partition minimizing W (z) or W (z, a)

To minimize this criterion it is possible to apply k-means to the set of profiles with
the χ2 metric. The iterative algorithm maximizing locally χ2(z, J)
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k-means algorithm Principal points to be retained

Clustering of Categorical data

Generally we apply the clustering to a particular indicator matrix

Let a variable with 3 categories 1, 2, 3 ⇒ (1, 0, 0), (0, 1, 0), (0, 0, 1), then the matrix
has the number of rows equal to the total number of objects and the number of
columns equal to the sum of all categories corresponding to all variables

As before the χ2 is the more appropriate metric

We can apply the kmeans with the χ2 metric

Example

a b

1 1 2

2 3 2

3 2 3

4 1 1

5 1 2

6 3 2

7 3 3

8 1 1

9 2 2

10 2 3

a1 a2 a3 b1 b2 b3

1 1 0 0 0 1 0

2 0 0 1 0 1 0

3 0 1 0 0 0 1

4 1 0 0 1 0 0

5 1 0 0 0 1 0

6 0 0 1 0 1 0

7 0 0 1 0 0 1

8 1 0 0 1 0 0

9 0 1 0 0 1 0

10 0 1 0 0 0 1

The distance takes the following form:

dχ2(i , i ′) =

p∑
j=1

1

f.j
(
fij

fi.
−

fi′ j

fi′.
)2
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Extensions of k-means Sequential methods

Sequential methods

The k-means algorithm has different extensions in order to apply it on different
types of data such as the sequential data

The online variants of k-means are particularly adequate when all the data to be
classified are not available in the beginning

The parameters defining the classes can then be adjusted when a new data comes as
a continuous stream without too many calculations

Unlike k-means the objects concerning by the step assignation are randomly selected
and the update of cluster means is realized after each assignation of one object

More precisely, at the (t)th iteration, the object x i is randomly selected, then we

determine the nearest prototype µ
(t)
k which becomes after assignation of x i equal to

µ
(t+1)
k =

x i + n
(t)
k · µ

(t)
k

n
(t+1)
k

,

where n
(t)
k represents the cardinality of the cluster z

(t)
k and n

(t+1)
k = n

(t)
k + 1.

µ
(t+1)
k = µ

(t)
k +

1

n
(t+1)
k

(x i − µ
(t)
k ),
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Extensions of k-means Sequential methods

The mean can be generalized

µ
(t+1)
k = µ

(t)
k + ε(t)(x i − µ

(t)
k ),

where ε(t) is a decreasing learning coefficient

The usual hypothesis on the adaptation parameter to get almost sure results is then
(conditions of Robbins-Monro):

∑
t

ε(t) = +∞ and
∑

t

ε(t)2 < +∞

This formulation of the cluster means can be extended and constitutes the version of
other algorithms such as the well-known Self-Organizing-Mapping
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Extensions of k-means Self-Organizing-Mapping

Self-Organizing-Mapping

Self-Organizing-Mapping or SOM a type of clustering, inspired by neuroscience, that
has been introduced in Kohonen (1982).

In the SOM literature, we refer to the clusters by the nodes or neurons and each of
them has a weight in R

p, these weights refer to the cluster means

The principal advantage of SOM that is preserves the topology clustering. Generally,
the neurons are arranged as one or two-dimensional rectangular grid preserving
relations between the objects called also units

SOM offers an good tool to visualize clusters and evaluate their proximity in a
reduced space

Unlike k-means and AHC, the previous expression of the cluster means or the weight
of a neuron k becomes in the SOM context

µ
(t+1)
k = µ

(t)
k + ε(t) × h(k , `)(x i − µ

(t)
k ), (3)

where h(k , `) is the neighborhood function between the neuron k whose weight µ
(t)
k

is the most similar to x i (the best matching unit or the winner) and the other

neurons ` with weights µ` close enough to µ
(t)
k
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Extensions of k-means Self-Organizing-Mapping

The neighborhood function

This function can take different forms, it evaluates the proximity between the winner
k and the neuron ` located in a reduced space generally in R

2 with the position rk
and r`

In the early publications about SOMs, h(k , `) was defined by: h(k , `) = 1 if
d(k , `) ≤ λ and 0 otherwise

Gaussian function is a common choice h(k , `) = exp(−
α||rk−r`||

2

2σh(t)
) where σh(t)

controls the width of the neighborhood of h. This function h is declined because
σh(t) during the training process as well as the learning rate ε(t)

With this grid moving during the iterations of SOM, we obtain a partition and a
visualization of the clusters as in factorial plan from PCA, except this representation
is not linear because it is not an orthogonal projection.

The different steps of SOM are similar than the steps of k-means. In addition, two
versions batch and online can be used. The first one performs the assignment and
update steps for all data units at once and the second process as the MacQueen
algorithm.

As k-means, SOM requires to fix the number of clusters (nodes of the grid), and a
choice of initialization. PCA appears an attractive and interesting approach

As the numbers of nodes is higher, the number of clusters can be assess by applying
AHC algorithm with appropriated agglomerative criterion on these nodes
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Extensions of k-means Self-Organizing-Mapping

Example: Iris data

From the well-know Iris flower data (Fisher, 1936) which consists of 50 samples of
three species of Iris flowers (Setosa, Virginica and Versicolor). Four features were
measured from each sample: length and width of sepal and petal, we apply SOM
with 10 × 10 clusters

Iris on grid 10 × 10
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Extensions of k-means Self-Organizing-Mapping

Grid by variable
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Extensions of k-means Dynamic clusters method

Dynamic clusters method

The nuées dynamiques (Diday, 1971) is based on the quite powerful idea that the
cluster centers are not necessarily cluster means elements of R

p. Then he proposed
to replace them by centers being able to take different forms adapted to the problem
to be solved.

Let L be the set of centers, and D : Ω× L → R
+, a measure of dissimilarity between

objects of Ω and the centers of L. The aim is to look for a partition of Ω into K

clusters minimizing the following criterion

C (z, L) =
K∑

k=1

∑
x∈zk

D(x, λk)

where z = (z1, . . . , zK ) and L = (λ1, . . . , λK ) with λk ∈ L

If Ω ⊂ R
p, L = R

p and D(x,λ) = d2(x , λ) then C (z, L) = W (z, µ).

Like the k-means, to tackle the minimization of C (z, L) we can use an alternating
optimization method based on

1 Compute z
(t+1) minimizing C(., L(t))

2 Compute L(t+1) minimizing C(z(t+1), .).

These steps yield the following sequence

L
(0) → z(1) → L

(1) → z(2) → L
(2) → . . . → z(t) → L

(t) → . . .
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Extensions of k-means Dynamic clusters method

The dynamical clusters method became so classical that often it is referred wrongly by
k-means. It allows the user to choose the nature of the cluster centers. Next, we sketch
different situations

Examples of dynamic clusters method

The k-medoids algorithm is a typical dynamical cluster methods minimizing the SSQ
criterion, But in contrast to k-means the cluster centers are objects of Ω. The
principal advantage of k-medoids is that it overcomes the problem of outliers
(Kaufman, 1987). A version PAM (Partition Around Medoids) by Kaufman (1990).
Other variants of PAM with less complexity were proposed such as CLARANS by Ng
and Han (1994)

The choice of distance is crucial in clustering. In the process of dynamical clusters
we can try to learn a metric. Then instead of to use a fixed distance we can consider
that Ω ⊂ R

p and L = R
p × ∆ where ∆ is set of distances defined on R

p and
D(x, (λ, d)) = d(x,λ). Then the method performs clustering and distance metric
learning simultaneously. This process allows to take into account the shapes of
clusters (Diday, 1974, 1977)
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Extensions of k-means Dynamic clusters method

Clustering of categorical data

The dissimilarity between two vectors of categories can be expressed as

D(x i , λk) =

p∑
j=1

δ(x ij , λkj )

where δ(x ij , λkj ) = 1 if x ij = λkj and 0 otherwise

D reflects the number of different categories between the vector x i and the center λk

The centers of obtained clusters are summarized by the vectors of categories (Nadif
and Marchetti, 1993) or under name k-modes (Huang, 97)

Binary data

When the data are binary, the distance

D(x, λk) =

p∑
j=1

|x ij − λkj |

is the Manhattan distance and the vector centers belong to {0, 1}p

Nadif (CRIP5 ) IRAN, December, 13-21, 2008 SEMINAIRES 34 / 38



Extensions of k-means Dynamic clusters method

Nominal categorical data matrix and reorganized data matrix

a b c d e

1 1 2 2 3 2

2 3 2 1 1 1

3 2 3 3 1 1

4 1 1 2 3 3

5 1 2 1 3 3

6 3 2 1 1 2

7 3 3 2 1 1

8 1 1 1 3 3

9 2 2 2 1 1

10 2 3 3 2 2

a b c d e

3 2 3 3 1 1

7 3 3 2 1 1

9 2 2 2 1 1

10 2 3 3 2 2

1 1 2 2 3 2

4 1 1 2 3 3

5 1 2 1 3 3

8 1 1 1 3 3

2 3 2 1 1 1

6 3 2 1 1 2

Centers and Degree of homogeneity

a b c d e

A 2 3 2 1 1

B 1 1 1 3 3

C 3 2 1 1 1

a b c d e

A 75 75 50 75 75

B 100 50 50 100 75

C 100 100 100 100 50
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Extensions of k-means Dynamic clusters method

Binary data matrix and reorganized data matrix

a b c d e

1 1 0 1 0 1

2 0 1 0 1 0

3 1 0 0 0 0

4 1 0 1 0 0

5 0 1 0 1 1

6 0 1 0 0 1

7 0 1 0 0 0

8 1 0 1 0 1

9 1 0 0 1 0

10 0 1 0 1 0

a b c d e

1 1 0 1 0 1

4 1 0 1 0 0

8 1 0 1 0 1

2 0 1 0 1 0

5 0 1 0 1 1

6 0 1 0 0 1

10 0 1 0 1 0

3 1 0 0 0 0

7 0 1 0 0 0

9 1 0 0 1 0

Centers and Degree of homogeneity

a b c d e

A 1 0 1 0 1

B 0 1 0 1 0

C 1 0 0 0 0

a b c d e

A 100 100 100 100 67

B 100 100 100 75 50

C 67 67 100 67 100

Simple solution for Ordinal data

Let a variable with 3 categories 1, 2, 3 ⇒ (1, 0, 0), (1, 1, 0), (1, 1, 1)

Clustering of binary data
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Extensions of k-means Dynamic clusters method

Conclusion

Advantages

Simple and efficient method

Give readable results

Complementary to PCA, CA, MDS etc.

Extension to contingency tables or categorical data from the principal components

Fuzzy variants of k-means (see the finite mixture model)

Methods available in Statistic and data mining Software (See FactoMIner of R)

Disadvantages

Depend on the shape of clusters

It requires the number of clusters

Course 2

Mixture model
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Extensions of k-means Dynamic clusters method

Exercise 1

Id y x

S1 5 5

S2 6 6

S3 15 14

S4 16 15

S5 25 20

S6 30 19

Without any calculation

plot y ∗ x

Initialize the k-means algorithm with S1, S4 et S6 and looking for 3 clusters.
Remark ?

Initialize the k-means algorithm with S4, S5 et S6 and looking for 3 clusters.
Remark ?

Nadif (CRIP5 ) IRAN, December, 13-21, 2008 SEMINAIRES 38 / 38


	Introduction
	Cluster Analysis

	k-means algorithm
	k-means and its variants
	Principal points to be retained
	Principal points to be retained

	Extensions of k-means
	Sequential methods
	Self-Organizing-Mapping
	Dynamic clusters method


