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Part	I:	The	Fundamentals	of	Big	Data

Chapter	1	Understanding	Big	Data

Chapter	2	Business	Motivations	and	Drivers	for	Big	Data	Adoption

Chapter	3	Big	Data	Adoption	and	Planning	Considerations

Chapter	4	Enterprise	Technologies	and	Big	Data	Business	Intelligence

Big	Data	has	the	ability	to	change	the	nature	of	a	business.	In	fact,	there	are	many	firms
whose	sole	existence	is	based	upon	their	capability	to	generate	insights	that	only	Big	Data
can	deliver.	This	first	set	of	chapters	covers	the	essentials	of	Big	Data,	primarily	from	a
business	perspective.	Businesses	need	to	understand	that	Big	Data	is	not	just	about
technology—it	is	also	about	how	these	technologies	can	propel	an	organization	forward.

Part	I	has	the	following	structure:

•	Chapter	1	delivers	insight	into	key	concepts	and	terminology	that	define	the	very
essence	of	Big	Data	and	the	promise	it	holds	to	deliver	sophisticated	business
insights.	The	various	characteristics	that	distinguish	Big	Data	datasets	are	explained,
as	are	definitions	of	the	different	types	of	data	that	can	be	subject	to	its	analysis
techniques.

•	Chapter	2	seeks	to	answer	the	question	of	why	businesses	should	be	motivated	to
adopt	Big	Data	as	a	consequence	of	underlying	shifts	in	the	marketplace	and
business	world.	Big	Data	is	not	a	technology	related	to	business	transformation;
instead,	it	enables	innovation	within	an	enterprise	on	the	condition	that	the	enterprise
acts	upon	its	insights.



•	Chapter	3	shows	that	Big	Data	is	not	simply	“business	as	usual,”	and	that	the
decision	to	adopt	Big	Data	must	take	into	account	many	business	and	technology
considerations.	This	underscores	the	fact	that	Big	Data	opens	an	enterprise	to
external	data	influences	that	must	be	governed	and	managed.	Likewise,	the	Big	Data
analytics	lifecycle	imposes	distinct	processing	requirements.

•	Chapter	4	examines	current	approaches	to	enterprise	data	warehousing	and	business
intelligence.	It	then	expands	this	notion	to	show	that	Big	Data	storage	and	analysis
resources	can	be	used	in	conjunction	with	corporate	performance	monitoring	tools	to
broaden	the	analytic	capabilities	of	the	enterprise	and	deepen	the	insights	delivered
by	Business	Intelligence.

Big	Data	used	correctly	is	part	of	a	strategic	initiative	built	upon	the	premise	that	the
internal	data	within	a	business	does	not	hold	all	the	answers.	In	other	words,	Big	Data	is
not	simply	about	data	management	problems	that	can	be	solved	with	technology.	It	is
about	business	problems	whose	solutions	are	enabled	by	technology	that	can	support	the
analysis	of	Big	Data	datasets.	For	this	reason,	the	business-focused	discussion	in	Part	I
sets	the	stage	for	the	technology-focused	topics	covered	in	Part	II.



Chapter	1.	Understanding	Big	Data

Concepts	and	Terminology

Big	Data	Characteristics

Different	Types	of	Data

Case	Study	Background

Big	Data	is	a	field	dedicated	to	the	analysis,	processing,	and	storage	of	large	collections	of
data	that	frequently	originate	from	disparate	sources.	Big	Data	solutions	and	practices	are
typically	required	when	traditional	data	analysis,	processing	and	storage	technologies	and
techniques	are	insufficient.	Specifically,	Big	Data	addresses	distinct	requirements,	such	as
the	combining	of	multiple	unrelated	datasets,	processing	of	large	amounts	of	unstructured
data	and	harvesting	of	hidden	information	in	a	time-sensitive	manner.

Although	Big	Data	may	appear	as	a	new	discipline,	it	has	been	developing	for	years.	The
management	and	analysis	of	large	datasets	has	been	a	long-standing	problem—from	labor-
intensive	approaches	of	early	census	efforts	to	the	actuarial	science	behind	the	calculations
of	insurance	premiums.	Big	Data	science	has	evolved	from	these	roots.

In	addition	to	traditional	analytic	approaches	based	on	statistics,	Big	Data	adds	newer
techniques	that	leverage	computational	resources	and	approaches	to	execute	analytic
algorithms.	This	shift	is	important	as	datasets	continue	to	become	larger,	more	diverse,
more	complex	and	streaming-centric.	While	statistical	approaches	have	been	used	to
approximate	measures	of	a	population	via	sampling	since	Biblical	times,	advances	in
computational	science	have	allowed	the	processing	of	entire	datasets,	making	such
sampling	unnecessary.



The	analysis	of	Big	Data	datasets	is	an	interdisciplinary	endeavor	that	blends	mathematics,
statistics,	computer	science	and	subject	matter	expertise.	This	mixture	of	skillsets	and
perspectives	has	led	to	some	confusion	as	to	what	comprises	the	field	of	Big	Data	and	its
analysis,	for	the	response	one	receives	will	be	dependent	upon	the	perspective	of	whoever
is	answering	the	question.	The	boundaries	of	what	constitutes	a	Big	Data	problem	are	also
changing	due	to	the	ever-shifting	and	advancing	landscape	of	software	and	hardware
technology.	This	is	due	to	the	fact	that	the	definition	of	Big	Data	takes	into	account	the
impact	of	the	data’s	characteristics	on	the	design	of	the	solution	environment	itself.	Thirty
years	ago,	one	gigabyte	of	data	could	amount	to	a	Big	Data	problem	and	require	special
purpose	computing	resources.	Now,	gigabytes	of	data	are	commonplace	and	can	be	easily
transmitted,	processed	and	stored	on	consumer-oriented	devices.

Data	within	Big	Data	environments	generally	accumulates	from	being	amassed	within	the
enterprise	via	applications,	sensors	and	external	sources.	Data	processed	by	a	Big	Data
solution	can	be	used	by	enterprise	applications	directly	or	can	be	fed	into	a	data	warehouse
to	enrich	existing	data	there.	The	results	obtained	through	the	processing	of	Big	Data	can
lead	to	a	wide	range	of	insights	and	benefits,	such	as:

•	operational	optimization

•	actionable	intelligence

•	identification	of	new	markets

•	accurate	predictions

•	fault	and	fraud	detection

•	more	detailed	records

•	improved	decision-making

•	scientific	discoveries

Evidently,	the	applications	and	potential	benefits	of	Big	Data	are	broad.	However,	there
are	numerous	issues	that	need	to	be	considered	when	adopting	Big	Data	analytics
approaches.	These	issues	need	to	be	understood	and	weighed	against	anticipated	benefits
so	that	informed	decisions	and	plans	can	be	produced.	These	topics	are	discussed
separately	in	Part	II.

Concepts	and	Terminology
As	a	starting	point,	several	fundamental	concepts	and	terms	need	to	be	defined	and
understood.

Datasets
Collections	or	groups	of	related	data	are	generally	referred	to	as	datasets.	Each	group	or
dataset	member	(datum)	shares	the	same	set	of	attributes	or	properties	as	others	in	the
same	dataset.	Some	examples	of	datasets	are:

•	tweets	stored	in	a	flat	file

•	a	collection	of	image	files	in	a	directory



•	an	extract	of	rows	from	a	database	table	stored	in	a	CSV	formatted	file

•	historical	weather	observations	that	are	stored	as	XML	files

Figure	1.1	shows	three	datasets	based	on	three	different	data	formats.

Figure	1.1	Datasets	can	be	found	in	many	different	formats.

Data	Analysis
Data	analysis	is	the	process	of	examining	data	to	find	facts,	relationships,	patterns,
insights	and/or	trends.	The	overall	goal	of	data	analysis	is	to	support	better	decision-
making.	A	simple	data	analysis	example	is	the	analysis	of	ice	cream	sales	data	in	order	to
determine	how	the	number	of	ice	cream	cones	sold	is	related	to	the	daily	temperature.	The
results	of	such	an	analysis	would	support	decisions	related	to	how	much	ice	cream	a	store
should	order	in	relation	to	weather	forecast	information.	Carrying	out	data	analysis	helps
establish	patterns	and	relationships	among	the	data	being	analyzed.	Figure	1.2	shows	the
symbol	used	to	represent	data	analysis.

Figure	1.2	The	symbol	used	to	represent	data	analysis.

Data	Analytics
Data	analytics	is	a	broader	term	that	encompasses	data	analysis.	Data	analytics	is	a
discipline	that	includes	the	management	of	the	complete	data	lifecycle,	which
encompasses	collecting,	cleansing,	organizing,	storing,	analyzing	and	governing	data.	The
term	includes	the	development	of	analysis	methods,	scientific	techniques	and	automated
tools.	In	Big	Data	environments,	data	analytics	has	developed	methods	that	allow	data
analysis	to	occur	through	the	use	of	highly	scalable	distributed	technologies	and
frameworks	that	are	capable	of	analyzing	large	volumes	of	data	from	different	sources.
Figure	1.3	shows	the	symbol	used	to	represent	analytics.



Figure	1.3	The	symbol	used	to	represent	data	analytics.

The	Big	Data	analytics	lifecycle	generally	involves	identifying,	procuring,	preparing	and
analyzing	large	amounts	of	raw,	unstructured	data	to	extract	meaningful	information	that
can	serve	as	an	input	for	identifying	patterns,	enriching	existing	enterprise	data	and
performing	large-scale	searches.

Different	kinds	of	organizations	use	data	analytics	tools	and	techniques	in	different	ways.
Take,	for	example,	these	three	sectors:

•	In	business-oriented	environments,	data	analytics	results	can	lower	operational	costs
and	facilitate	strategic	decision-making.

•	In	the	scientific	domain,	data	analytics	can	help	identify	the	cause	of	a	phenomenon
to	improve	the	accuracy	of	predictions.

•	In	service-based	environments	like	public	sector	organizations,	data	analytics	can
help	strengthen	the	focus	on	delivering	high-quality	services	by	driving	down	costs.

Data	analytics	enable	data-driven	decision-making	with	scientific	backing	so	that
decisions	can	be	based	on	factual	data	and	not	simply	on	past	experience	or	intuition
alone.	There	are	four	general	categories	of	analytics	that	are	distinguished	by	the	results
they	produce:

•	descriptive	analytics

•	diagnostic	analytics

•	predictive	analytics

•	prescriptive	analytics

The	different	analytics	types	leverage	different	techniques	and	analysis	algorithms.	This
implies	that	there	may	be	varying	data,	storage	and	processing	requirements	to	facilitate
the	delivery	of	multiple	types	of	analytic	results.	Figure	1.4	depicts	the	reality	that	the
generation	of	high	value	analytic	results	increases	the	complexity	and	cost	of	the	analytic
environment.



Figure	1.4	Value	and	complexity	increase	from	descriptive	to	prescriptive	analytics.

Descriptive	Analytics

Descriptive	analytics	are	carried	out	to	answer	questions	about	events	that	have	already
occurred.	This	form	of	analytics	contextualizes	data	to	generate	information.

Sample	questions	can	include:

•	What	was	the	sales	volume	over	the	past	12	months?

•	What	is	the	number	of	support	calls	received	as	categorized	by	severity	and
geographic	location?

•	What	is	the	monthly	commission	earned	by	each	sales	agent?

It	is	estimated	that	80%	of	generated	analytics	results	are	descriptive	in	nature.	Value-
wise,	descriptive	analytics	provide	the	least	worth	and	require	a	relatively	basic	skillset.

Descriptive	analytics	are	often	carried	out	via	ad-hoc	reporting	or	dashboards,	as	shown	in
Figure	1.5.	The	reports	are	generally	static	in	nature	and	display	historical	data	that	is
presented	in	the	form	of	data	grids	or	charts.	Queries	are	executed	on	operational	data
stores	from	within	an	enterprise,	for	example	a	Customer	Relationship	Management
system	(CRM)	or	Enterprise	Resource	Planning	(ERP)	system.



Figure	1.5	The	operational	systems,	pictured	left,	are	queried	via	descriptive	analytics
tools	to	generate	reports	or	dashboards,	pictured	right.

Diagnostic	Analytics

Diagnostic	analytics	aim	to	determine	the	cause	of	a	phenomenon	that	occurred	in	the	past
using	questions	that	focus	on	the	reason	behind	the	event.	The	goal	of	this	type	of
analytics	is	to	determine	what	information	is	related	to	the	phenomenon	in	order	to	enable
answering	questions	that	seek	to	determine	why	something	has	occurred.

Such	questions	include:

•	Why	were	Q2	sales	less	than	Q1	sales?

•	Why	have	there	been	more	support	calls	originating	from	the	Eastern	region	than
from	the	Western	region?

•	Why	was	there	an	increase	in	patient	re-admission	rates	over	the	past	three	months?

Diagnostic	analytics	provide	more	value	than	descriptive	analytics	but	require	a	more
advanced	skillset.	Diagnostic	analytics	usually	require	collecting	data	from	multiple
sources	and	storing	it	in	a	structure	that	lends	itself	to	performing	drill-down	and	roll-up
analysis,	as	shown	in	Figure	1.6.	Diagnostic	analytics	results	are	viewed	via	interactive
visualization	tools	that	enable	users	to	identify	trends	and	patterns.	The	executed	queries
are	more	complex	compared	to	those	of	descriptive	analytics	and	are	performed	on	multi-
dimensional	data	held	in	analytic	processing	systems.



Figure	1.6	Diagnostic	analytics	can	result	in	data	that	is	suitable	for	performing	drill-
down	and	roll-up	analysis.

Predictive	Analytics

Predictive	analytics	are	carried	out	in	an	attempt	to	determine	the	outcome	of	an	event	that
might	occur	in	the	future.	With	predictive	analytics,	information	is	enhanced	with	meaning
to	generate	knowledge	that	conveys	how	that	information	is	related.	The	strength	and
magnitude	of	the	associations	form	the	basis	of	models	that	are	used	to	generate	future
predictions	based	upon	past	events.	It	is	important	to	understand	that	the	models	used	for
predictive	analytics	have	implicit	dependencies	on	the	conditions	under	which	the	past
events	occurred.	If	these	underlying	conditions	change,	then	the	models	that	make
predictions	need	to	be	updated.

Questions	are	usually	formulated	using	a	what-if	rationale,	such	as	the	following:

•	What	are	the	chances	that	a	customer	will	default	on	a	loan	if	they	have	missed	a
monthly	payment?

•	What	will	be	the	patient	survival	rate	if	Drug	B	is	administered	instead	of	Drug	A?

•	If	a	customer	has	purchased	Products	A	and	B,	what	are	the	chances	that	they	will
also	purchase	Product	C?

Predictive	analytics	try	to	predict	the	outcomes	of	events,	and	predictions	are	made	based
on	patterns,	trends	and	exceptions	found	in	historical	and	current	data.	This	can	lead	to	the
identification	of	both	risks	and	opportunities.

This	kind	of	analytics	involves	the	use	of	large	datasets	comprised	of	internal	and	external
data	and	various	data	analysis	techniques.	It	provides	greater	value	and	requires	a	more
advanced	skillset	than	both	descriptive	and	diagnostic	analytics.	The	tools	used	generally
abstract	underlying	statistical	intricacies	by	providing	user-friendly	front-end	interfaces,	as
shown	in	Figure	1.7.



Figure	1.7	Predictive	analytics	tools	can	provide	user-friendly	front-end	interfaces.

Prescriptive	Analytics

Prescriptive	analytics	build	upon	the	results	of	predictive	analytics	by	prescribing	actions
that	should	be	taken.	The	focus	is	not	only	on	which	prescribed	option	is	best	to	follow,
but	why.	In	other	words,	prescriptive	analytics	provide	results	that	can	be	reasoned	about
because	they	embed	elements	of	situational	understanding.	Thus,	this	kind	of	analytics	can
be	used	to	gain	an	advantage	or	mitigate	a	risk.

Sample	questions	may	include:

•	Among	three	drugs,	which	one	provides	the	best	results?

•	When	is	the	best	time	to	trade	a	particular	stock?

Prescriptive	analytics	provide	more	value	than	any	other	type	of	analytics	and
correspondingly	require	the	most	advanced	skillset,	as	well	as	specialized	software	and
tools.	Various	outcomes	are	calculated,	and	the	best	course	of	action	for	each	outcome	is
suggested.	The	approach	shifts	from	explanatory	to	advisory	and	can	include	the
simulation	of	various	scenarios.

This	sort	of	analytics	incorporates	internal	data	with	external	data.	Internal	data	might
include	current	and	historical	sales	data,	customer	information,	product	data	and	business
rules.	External	data	may	include	social	media	data,	weather	forecasts	and	government-
produced	demographic	data.	Prescriptive	analytics	involve	the	use	of	business	rules	and
large	amounts	of	internal	and	external	data	to	simulate	outcomes	and	prescribe	the	best
course	of	action,	as	shown	in	Figure	1.8.



Figure	1.8	Prescriptive	analytics	involves	the	use	of	business	rules	and	internal	and/or
external	data	to	perform	an	in-depth	analysis.

Business	Intelligence	(BI)
BI	enables	an	organization	to	gain	insight	into	the	performance	of	an	enterprise	by
analyzing	data	generated	by	its	business	processes	and	information	systems.	The	results	of
the	analysis	can	be	used	by	management	to	steer	the	business	in	an	effort	to	correct
detected	issues	or	otherwise	enhance	organizational	performance.	BI	applies	analytics	to
large	amounts	of	data	across	the	enterprise,	which	has	typically	been	consolidated	into	an
enterprise	data	warehouse	to	run	analytical	queries.	As	shown	in	Figure	1.9,	the	output	of
BI	can	be	surfaced	to	a	dashboard	that	allows	managers	to	access	and	analyze	the	results
and	potentially	refine	the	analytic	queries	to	further	explore	the	data.



Figure	1.9	BI	can	be	used	to	improve	business	applications,	consolidate	data	in	data
warehouses	and	analyze	queries	via	a	dashboard.

Key	Performance	Indicators	(KPI)
A	KPI	is	a	metric	that	can	be	used	to	gauge	success	within	a	particular	business	context.
KPIs	are	linked	with	an	enterprise’s	overall	strategic	goals	and	objectives.	They	are	often
used	to	identify	business	performance	problems	and	demonstrate	regulatory	compliance.
KPIs	therefore	act	as	quantifiable	reference	points	for	measuring	a	specific	aspect	of	a
business’	overall	performance.	KPIs	are	often	displayed	via	a	KPI	dashboard,	as	shown	in
Figure	1.10.	The	dashboard	consolidates	the	display	of	multiple	KPIs	and	compares	the
actual	measurements	with	threshold	values	that	define	the	acceptable	value	range	of	the
KPI.

Figure	1.10	A	KPI	dashboard	acts	as	a	central	reference	point	for	gauging	business
performance.



Big	Data	Characteristics
For	a	dataset	to	be	considered	Big	Data,	it	must	possess	one	or	more	characteristics	that
require	accommodation	in	the	solution	design	and	architecture	of	the	analytic
environment.	Most	of	these	data	characteristics	were	initially	identified	by	Doug	Laney	in
early	2001	when	he	published	an	article	describing	the	impact	of	the	volume,	velocity	and
variety	of	e-commerce	data	on	enterprise	data	warehouses.	To	this	list,	veracity	has	been
added	to	account	for	the	lower	signal-to-noise	ratio	of	unstructured	data	as	compared	to
structured	data	sources.	Ultimately,	the	goal	is	to	conduct	analysis	of	the	data	in	such	a
manner	that	high-quality	results	are	delivered	in	a	timely	manner,	which	provides	optimal
value	to	the	enterprise.

This	section	explores	the	five	Big	Data	characteristics	that	can	be	used	to	help	differentiate
data	categorized	as	“Big”	from	other	forms	of	data.	The	five	Big	Data	traits	shown	in
Figure	1.11	are	commonly	referred	to	as	the	Five	Vs:

•	volume

•	velocity

•	variety

•	veracity

•	value

Figure	1.11	The	Five	Vs	of	Big	Data.

Volume
The	anticipated	volume	of	data	that	is	processed	by	Big	Data	solutions	is	substantial	and
ever-growing.	High	data	volumes	impose	distinct	data	storage	and	processing	demands,	as
well	as	additional	data	preparation,	curation	and	management	processes.	Figure	1.12
provides	a	visual	representation	of	the	large	volume	of	data	being	created	daily	by
organizations	and	users	world-wide.



Figure	1.12	Organizations	and	users	world-wide	create	over	2.5	EBs	of	data	a	day.	As	a
point	of	comparison,	the	Library	of	Congress	currently	holds	more	than	300	TBs	of

data.

Typical	data	sources	that	are	responsible	for	generating	high	data	volumes	can	include:

•	online	transactions,	such	as	point-of-sale	and	banking

•	scientific	and	research	experiments,	such	as	the	Large	Hadron	Collider	and	Atacama
Large	Millimeter/Submillimeter	Array	telescope

•	sensors,	such	as	GPS	sensors,	RFIDs,	smart	meters	and	telematics

•	social	media,	such	as	Facebook	and	Twitter

Velocity
In	Big	Data	environments,	data	can	arrive	at	fast	speeds,	and	enormous	datasets	can
accumulate	within	very	short	periods	of	time.	From	an	enterprise’s	point	of	view,	the
velocity	of	data	translates	into	the	amount	of	time	it	takes	for	the	data	to	be	processed	once
it	enters	the	enterprise’s	perimeter.	Coping	with	the	fast	inflow	of	data	requires	the
enterprise	to	design	highly	elastic	and	available	data	processing	solutions	and
corresponding	data	storage	capabilities.

Depending	on	the	data	source,	velocity	may	not	always	be	high.	For	example,	MRI	scan
images	are	not	generated	as	frequently	as	log	entries	from	a	high-traffic	webserver.	As
illustrated	in	Figure	1.13,	data	velocity	is	put	into	perspective	when	considering	that	the
following	data	volume	can	easily	be	generated	in	a	given	minute:	350,000	tweets,	300
hours	of	video	footage	uploaded	to	YouTube,	171	million	emails	and	330	GBs	of	sensor
data	from	a	jet	engine.



Figure	1.13	Examples	of	high-velocity	Big	Data	datasets	produced	every	minute
include	tweets,	video,	emails	and	GBs	generated	from	a	jet	engine.

Variety
Data	variety	refers	to	the	multiple	formats	and	types	of	data	that	need	to	be	supported	by
Big	Data	solutions.	Data	variety	brings	challenges	for	enterprises	in	terms	of	data
integration,	transformation,	processing,	and	storage.	Figure	1.14	provides	a	visual
representation	of	data	variety,	which	includes	structured	data	in	the	form	of	financial
transactions,	semi-structured	data	in	the	form	of	emails	and	unstructured	data	in	the	form
of	images.

Figure	1.14	Examples	of	high-variety	Big	Data	datasets	include	structured,	textual,
image,	video,	audio,	XML,	JSON,	sensor	data	and	metadata.

Veracity
Veracity	refers	to	the	quality	or	fidelity	of	data.	Data	that	enters	Big	Data	environments
needs	to	be	assessed	for	quality,	which	can	lead	to	data	processing	activities	to	resolve
invalid	data	and	remove	noise.	In	relation	to	veracity,	data	can	be	part	of	the	signal	or
noise	of	a	dataset.	Noise	is	data	that	cannot	be	converted	into	information	and	thus	has	no
value,	whereas	signals	have	value	and	lead	to	meaningful	information.	Data	with	a	high
signal-to-noise	ratio	has	more	veracity	than	data	with	a	lower	ratio.	Data	that	is	acquired
in	a	controlled	manner,	for	example	via	online	customer	registrations,	usually	contains	less
noise	than	data	acquired	via	uncontrolled	sources,	such	as	blog	postings.	Thus	the	signal-
to-noise	ratio	of	data	is	dependent	upon	the	source	of	the	data	and	its	type.



Value
Value	is	defined	as	the	usefulness	of	data	for	an	enterprise.	The	value	characteristic	is
intuitively	related	to	the	veracity	characteristic	in	that	the	higher	the	data	fidelity,	the	more
value	it	holds	for	the	business.	Value	is	also	dependent	on	how	long	data	processing	takes
because	analytics	results	have	a	shelf-life;	for	example,	a	20	minute	delayed	stock	quote
has	little	to	no	value	for	making	a	trade	compared	to	a	quote	that	is	20	milliseconds	old.
As	demonstrated,	value	and	time	are	inversely	related.	The	longer	it	takes	for	data	to	be
turned	into	meaningful	information,	the	less	value	it	has	for	a	business.	Stale	results
inhibit	the	quality	and	speed	of	informed	decision-making.	Figure	1.15	provides	two
illustrations	of	how	value	is	impacted	by	the	veracity	of	data	and	the	timeliness	of
generated	analytic	results.

Figure	1.15	Data	that	has	high	veracity	and	can	be	analyzed	quickly	has	more	value	to
a	business.

Apart	from	veracity	and	time,	value	is	also	impacted	by	the	following	lifecycle-related
concerns:

•	How	well	has	the	data	been	stored?

•	Were	valuable	attributes	of	the	data	removed	during	data	cleansing?

•	Are	the	right	types	of	questions	being	asked	during	data	analysis?

•	Are	the	results	of	the	analysis	being	accurately	communicated	to	the	appropriate
decision-makers?

Different	Types	of	Data
The	data	processed	by	Big	Data	solutions	can	be	human-generated	or	machine-generated,
although	it	is	ultimately	the	responsibility	of	machines	to	generate	the	analytic	results.
Human-generated	data	is	the	result	of	human	interaction	with	systems,	such	as	online
services	and	digital	devices.	Figure	1.16	shows	examples	of	human-generated	data.



Figure	1.16	Examples	of	human-generated	data	include	social	media,	blog	posts,
emails,	photo	sharing	and	messaging.

Machine-generated	data	is	generated	by	software	programs	and	hardware	devices	in
response	to	real-world	events.	For	example,	a	log	file	captures	an	authorization	decision
made	by	a	security	service,	and	a	point-of-sale	system	generates	a	transaction	against
inventory	to	reflect	items	purchased	by	a	customer.	From	a	hardware	perspective,	an
example	of	machine-generated	data	would	be	information	conveyed	from	the	numerous
sensors	in	a	cellphone	that	may	be	reporting	information,	including	position	and	cell	tower
signal	strength.	Figure	1.17	provides	a	visual	representation	of	different	types	of	machine-
generated	data.

Figure	1.17	Examples	of	machine-generated	data	include	web	logs,	sensor	data,
telemetry	data,	smart	meter	data	and	appliance	usage	data.



As	demonstrated,	human-generated	and	machine-generated	data	can	come	from	a	variety
of	sources	and	be	represented	in	various	formats	or	types.	This	section	examines	the
variety	of	data	types	that	are	processed	by	Big	Data	solutions.	The	primary	types	of	data
are:

•	structured	data

•	unstructured	data

•	semi-structured	data

These	data	types	refer	to	the	internal	organization	of	data	and	are	sometimes	called	data
formats.	Apart	from	these	three	fundamental	data	types,	another	important	type	of	data	in
Big	Data	environments	is	metadata.	Each	will	be	explored	in	turn.

Structured	Data
Structured	data	conforms	to	a	data	model	or	schema	and	is	often	stored	in	tabular	form.	It
is	used	to	capture	relationships	between	different	entities	and	is	therefore	most	often
stored	in	a	relational	database.	Structured	data	is	frequently	generated	by	enterprise
applications	and	information	systems	like	ERP	and	CRM	systems.	Due	to	the	abundance
of	tools	and	databases	that	natively	support	structured	data,	it	rarely	requires	special
consideration	in	regards	to	processing	or	storage.	Examples	of	this	type	of	data	include
banking	transactions,	invoices,	and	customer	records.	Figure	1.18	shows	the	symbol	used
to	represent	structured	data.

Figure	1.18	The	symbol	used	to	represent	structured	data	stored	in	a	tabular	form.

Unstructured	Data
Data	that	does	not	conform	to	a	data	model	or	data	schema	is	known	as	unstructured	data.
It	is	estimated	that	unstructured	data	makes	up	80%	of	the	data	within	any	given
enterprise.	Unstructured	data	has	a	faster	growth	rate	than	structured	data.	Figure	1.19
illustrates	some	common	types	of	unstructured	data.	This	form	of	data	is	either	textual	or
binary	and	often	conveyed	via	files	that	are	self-contained	and	non-relational.	A	text	file
may	contain	the	contents	of	various	tweets	or	blog	postings.	Binary	files	are	often	media
files	that	contain	image,	audio	or	video	data.	Technically,	both	text	and	binary	files	have	a
structure	defined	by	the	file	format	itself,	but	this	aspect	is	disregarded,	and	the	notion	of
being	unstructured	is	in	relation	to	the	format	of	the	data	contained	in	the	file	itself.



Figure	1.19	Video,	image	and	audio	files	are	all	types	of	unstructured	data.

Special	purpose	logic	is	usually	required	to	process	and	store	unstructured	data.	For
example,	to	play	a	video	file,	it	is	essential	that	the	correct	codec	(coder-decoder)	is
available.	Unstructured	data	cannot	be	directly	processed	or	queried	using	SQL.	If	it	is
required	to	be	stored	within	a	relational	database,	it	is	stored	in	a	table	as	a	Binary	Large
Object	(BLOB).	Alternatively,	a	Not-only	SQL	(NoSQL)	database	is	a	non-relational
database	that	can	be	used	to	store	unstructured	data	alongside	structured	data.

Semi-structured	Data
Semi-structured	data	has	a	defined	level	of	structure	and	consistency,	but	is	not	relational
in	nature.	Instead,	semi-structured	data	is	hierarchical	or	graph-based.	This	kind	of	data	is
commonly	stored	in	files	that	contain	text.	For	instance,	Figure	1.20	shows	that	XML	and
JSON	files	are	common	forms	of	semi-structured	data.	Due	to	the	textual	nature	of	this
data	and	its	conformance	to	some	level	of	structure,	it	is	more	easily	processed	than
unstructured	data.

Figure	1.20	XML,	JSON	and	sensor	data	are	semi-structured.

Examples	of	common	sources	of	semi-structured	data	include	electronic	data	interchange
(EDI)	files,	spreadsheets,	RSS	feeds	and	sensor	data.	Semi-structured	data	often	has
special	pre-processing	and	storage	requirements,	especially	if	the	underlying	format	is	not
text-based.	An	example	of	pre-processing	of	semi-structured	data	would	be	the	validation
of	an	XML	file	to	ensure	that	it	conformed	to	its	schema	definition.

Metadata
Metadata	provides	information	about	a	dataset’s	characteristics	and	structure.	This	type	of
data	is	mostly	machine-generated	and	can	be	appended	to	data.	The	tracking	of	metadata
is	crucial	to	Big	Data	processing,	storage	and	analysis	because	it	provides	information
about	the	pedigree	of	the	data	and	its	provenance	during	processing.	Examples	of
metadata	include:

•	XML	tags	providing	the	author	and	creation	date	of	a	document



•	attributes	providing	the	file	size	and	resolution	of	a	digital	photograph

Big	Data	solutions	rely	on	metadata,	particularly	when	processing	semi-structured	and
unstructured	data.	Figure	1.21	shows	the	symbol	used	to	represent	metadata.

Figure	1.21	The	symbol	used	to	represent	metadata.

Case	Study	Background
Ensure	to	Insure	(ETI)	is	a	leading	insurance	company	that	provides	a	range	of	insurance
plans	in	the	health,	building,	marine	and	aviation	sectors	to	its	25	million	globally
dispersed	customer	base.	The	company	consists	of	a	workforce	of	around	5,000
employees	and	generates	annual	revenue	of	more	than	350,000,000	USD.

History
ETI	started	its	life	as	an	exclusive	health	insurance	provider	50	years	ago.	As	a	result	of
multiple	acquisitions	over	the	past	30	years,	ETI	has	extended	its	services	to	include
property	and	casualty	insurance	plans	in	the	building,	marine	and	aviation	sectors.	Each	of
its	four	sectors	is	comprised	of	a	core	team	of	specialized	and	experienced	agents,
actuaries,	underwriters	and	claim	adjusters.

The	agents	generate	the	company’s	revenue	by	selling	policies	while	the	actuaries	are
responsible	for	risk	assessment,	coming	up	with	new	insurance	plans	and	revising	existing
plans.	The	actuaries	also	perform	what-if	analyses	and	make	use	of	dashboards	and
scorecards	for	scenario	evaluation.	The	underwriters	evaluate	new	insurance	applications
and	decide	on	the	premium	amount.	The	claim	adjusters	deal	with	investigating	claims
made	against	a	policy	and	arrive	at	a	settlement	amount	for	the	policyholder.

Some	of	the	key	departments	within	ETI	include	the	underwriting,	claims	settlement,
customer	care,	legal,	marketing,	human	resource,	accounts	and	IT	departments.	Both
prospective	and	existing	customers	generally	contact	ETI’s	customer	care	department	via
telephone,	although	contact	via	email	and	social	media	has	increased	exponentially	over
the	past	few	years.

ETI	strives	to	distinguish	itself	by	providing	competitive	policies	and	premium	customer
service	that	does	not	end	once	a	policy	has	been	sold.	Its	management	believes	that	doing
so	helps	to	achieve	increased	levels	of	customer	acquisition	and	retention.	ETI	relies
heavily	on	its	actuaries	to	create	insurance	plans	that	reflect	the	needs	of	its	customers.



Technical	Infrastructure	and	Automation	Environment
ETI’s	IT	environment	consists	of	a	combination	of	client-server	and	mainframe	platforms
that	support	the	execution	of	a	number	of	systems,	including	policy	quotation,	policy
administration,	claims	management,	risk	assessment,	document	management,	billing,
enterprise	resource	planning	(ERP)	and	customer	relationship	management	(CRM).

The	policy	quotation	system	is	used	to	create	new	insurance	plans	and	to	provide	quotes	to
prospective	customers.	It	is	integrated	with	the	website	and	customer	care	portal	to
provide	website	visitors	and	customer	care	agents	the	ability	to	obtain	insurance	quotes.
The	policy	administration	system	handles	all	aspects	of	policy	lifecycle	management,
including	issuance,	update,	renewal	and	cancellation	of	policies.	The	claims	management
system	deals	with	claim	processing	activities.

A	claim	is	registered	when	a	policyholder	makes	a	report,	which	is	then	assigned	to	a
claim	adjuster	who	analyzes	the	claim	in	light	of	the	available	information	that	was
submitted	when	the	claim	was	made,	as	well	other	background	information	obtained	from
different	internal	and	external	sources.	Based	on	the	analyzed	information,	the	claim	is
settled	following	a	certain	set	of	business	rules.	The	risk	assessment	system	is	used	by	the
actuaries	to	assess	any	potential	risk,	such	as	a	storm	or	a	flood	that	could	result	in
policyholders	making	claims.	The	risk	assessment	system	enables	probability-based	risk
evaluation	that	involves	executing	various	mathematical	and	statistical	models.

The	document	management	system	serves	as	a	central	repository	for	all	kinds	of
documents,	including	policies,	claims,	scanned	documents	and	customer	correspondence.
The	billing	system	keeps	track	of	premium	collection	from	customers	and	also	generates
various	reminders	for	customers	who	have	missed	their	payment	via	email	and	postal
mail.	The	ERP	system	is	used	for	day-to-day	running	of	ETI,	including	human	resource
management	and	accounts.	The	CRM	system	records	all	aspects	of	customer
communication	via	phone,	email	and	postal	mail	and	also	provides	a	portal	for	call	center
agents	for	dealing	with	customer	enquiries.	Furthermore,	it	enables	the	marketing	team	to
create,	run	and	manage	marketing	campaigns.	Data	from	these	operational	systems	is
exported	to	an	Enterprise	Data	Warehouse	(EDW)	that	is	used	to	generate	reports	for
financial	and	performance	analysis.	The	EDW	is	also	used	to	generate	reports	for	different
regulatory	authorities	to	ensure	continuous	regulatory	compliance.

Business	Goals	and	Obstacles
Over	the	past	few	decades,	the	company’s	profitability	has	been	in	decline.	A	committee
comprised	of	senior	managers	was	formed	to	investigate	and	make	recommendations.	The
committee’s	findings	revealed	that	the	main	reason	behind	the	company’s	deteriorating
financial	position	is	the	increased	number	of	fraudulent	claims	and	the	associated
payments	being	made	against	them.	These	findings	showed	that	the	fraud	committed	has
become	complex	and	hard	to	detect	because	fraudsters	have	become	more	sophisticated
and	organized.	Apart	from	incurring	direct	monetary	loss,	the	costs	related	to	the
processing	of	fraudulent	claims	result	in	indirect	loss.

Another	contributing	factor	is	a	significant	upsurge	in	the	occurrence	of	catastrophes	such
as	floods,	storms	and	epidemics,	which	have	also	increased	the	number	of	high-end



genuine	claims.	Further	reasons	for	declines	in	revenue	include	customer	defection	due	to
slow	claims	processing	and	insurance	products	that	no	longer	match	the	needs	of
customers.	The	latter	weakness	has	been	exposed	by	the	emergence	of	tech-savvy
competitors	that	employ	the	use	of	telematics	to	provide	personalized	policies.

The	committee	pointed	out	that	the	frequency	with	which	the	existing	regulations	change
and	new	regulations	are	introduced	has	recently	increased.	The	company	has	unfortunately
been	slow	to	respond	and	has	not	been	able	to	ensure	full	and	continuous	compliance.	Due
to	these	shortcomings,	ETI	has	had	to	pay	heavy	fines.

The	committee	noted	that	yet	another	reason	behind	the	company’s	poor	financial
performance	is	that	insurance	plans	are	created	and	policies	are	underwritten	without	a
thorough	risk	assessment.	This	has	led	to	incorrect	premiums	being	set	and	more	payouts
being	made	than	anticipated.	Currently,	the	shortfall	between	the	collected	premiums	and
the	payouts	made	is	compensated	for	with	return	on	investments.	However,	this	is	not	a
long-term	solution	as	it	dilutes	the	profit	made	on	investments.	In	addition,	the	insurance
plans	are	generally	based	on	the	actuaries’	experience	and	analysis	of	the	population	as	a
whole,	resulting	in	insurance	plans	that	only	apply	to	an	average	set	of	customers.
Customers	whose	circumstances	deviate	from	the	average	set	are	not	interested	in	such
insurance	plans.

The	aforementioned	reasons	are	also	responsible	for	ETI’s	falling	share	price	and	decrease
in	market	share.

Based	on	the	committee’s	findings,	the	following	strategic	goals	are	set	by	ETI’s	directors:

1.	Decrease	losses	by	(a)	improving	risk	evaluation	and	maximizing	risk	mitigation,
which	applies	to	both	creation	of	insurance	plans	and	when	new	applications	are
screened	at	the	time	of	issuing	a	policy,	(b)	implementing	a	proactive	catastrophe
management	system	that	decreases	the	number	of	potential	claims	resulting	from	a
calamity	and	(c)	detecting	fraudulent	claims.

2.	Decrease	customer	defection	and	improve	customer	retention	with	(a)	speedy
settlement	of	claims	and	(b)	personalized	and	competitive	policies	based	on
individual	circumstances	rather	than	demographic	generalization	alone.

3.	Achieve	and	maintain	full	regulatory	compliance	at	all	times	by	employing
enhanced	risk	management	techniques	that	can	better	predict	risks,	because	the
majority	of	regulations	require	accurate	knowledge	of	risks	in	order	to	ensure
compliance.

After	consulting	with	its	IT	team,	the	committee	recommended	the	adoption	of	a	data-
driven	strategy	with	enhanced	analytics	to	be	applied	across	multiple	business	functions	in
such	a	way	that	different	business	processes	take	into	account	relevant	internal	and
external	data.	In	this	way,	decisions	can	be	based	on	evidence	rather	than	on	experience
and	intuition	alone.	In	particular,	augmentation	of	large	amounts	of	structured	data	with
large	amounts	of	unstructured	data	is	stressed	in	support	of	performing	deep	yet	timely
data	analyses.

The	committee	asked	the	IT	team	if	there	are	any	existing	obstacles	that	might	prevent	the
implementation	of	the	aforementioned	strategy.	The	IT	team	was	reminded	of	the	financial



constraints	within	which	it	needs	to	operate.	In	response	to	this,	the	team	prepared	a
feasibility	report	that	highlights	the	following	obstacles:

•	Acquiring,	storing	and	processing	unstructured	data	from	internal	and	external	data
sources	–	Currently,	only	structured	data	is	stored	and	processed,	because	the
existing	technology	does	not	support	the	storage	and	processing	of	unstructured
data.

•	Processing	large	amounts	of	data	in	a	timely	manner	–	Although	the	EDW	is	used	to
generate	reports	based	on	historical	data,	the	amount	of	data	processed	cannot	be
classified	as	large,	and	the	reports	take	a	long	time	to	generate.

•	Processing	multiple	types	of	data	and	combining	structured	data	with	unstructured
data	–	Multiple	types	of	unstructured	data	are	produced,	such	as	textual	documents
and	call	center	logs	that	cannot	currently	be	processed	due	to	their	unstructured
nature.	Secondly,	structured	data	is	used	in	isolation	for	all	types	of	analyses.

The	IT	team	concluded	by	issuing	a	recommendation	that	ETI	adopt	Big	Data	as	the
primary	means	of	overcoming	these	impediments	in	support	of	achieving	the	set	goals.

Case	Study	Example

Although	ETI	has	chosen	Big	Data	for	the	implementation	of	its	strategic	goals,	as
it	currently	stands,	ETI	has	no	in-house	Big	Data	skills	and	needs	to	choose
between	hiring	a	Big	Data	consultant	or	sending	its	IT	team	on	a	Big	Data	training
course.	The	latter	option	is	chosen.	However,	only	the	senior	IT	team	members	are
sent	to	the	training	in	anticipation	of	a	cost-effective,	long-term	solution	where	the
trained	team	members	will	become	a	permanent	in-house	Big	Data	resource	that
can	be	consulted	any	time	and	can	also	train	junior	team	members	to	further
increase	the	in-house	Big	Data	skillset.

Having	received	the	Big	Data	training,	the	trained	team	members	emphasize	the
need	for	a	common	vocabulary	of	terms	so	that	the	entire	team	is	on	the	same	page
when	talking	about	Big	Data.	An	example-driven	approach	is	adopted.	When
discussing	datasets,	some	of	the	related	datasets	pointed	out	by	the	team	members
include	claims,	policies,	quotes,	customer	profile	data	and	census	data.	Although
the	data	analysis	and	data	analytics	concepts	are	quickly	comprehended,	some	of
the	team	members	that	do	not	have	much	business	exposure	have	trouble
understanding	BI	and	the	establishment	of	appropriate	KPIs.	One	of	the	trained	IT
team	members	explains	BI	by	using	the	monthly	report	generation	process	for
evaluating	the	previous	month’s	performance	as	an	example.	This	process	involves
importing	data	from	operational	systems	into	the	EDW	and	generating	KPIs	such	as
policies	sold	and	claims	submitted,	processed,	accepted	and	rejected	that	are
displayed	on	different	dashboards	and	scorecards.

In	terms	of	analytics,	ETI	makes	use	of	both	descriptive	and	diagnostic	analytics.
Descriptive	analytics	include	querying	the	policy	administration	system	to
determine	the	number	of	polices	sold	each	day,	querying	the	claims	management
system	to	find	out	how	many	claims	are	submitted	daily	and	querying	the	billing
system	to	find	out	how	many	customers	are	behind	on	their	premium	payments.



Diagnostic	analytics	are	carried	out	as	part	of	various	BI	activities,	such	as
performing	queries	to	answer	questions	such	as	why	last	month’s	sales	target	was
not	met.	This	includes	performing	drill-down	operations	to	breakdown	sales	by	type
and	location	so	that	it	can	be	determined	which	locations	underperformed	for
specific	types	of	policies.

ETI	currently	does	not	utilize	predictive	nor	prescriptive	analytics.	However,	the
adoption	of	Big	Data	will	enable	it	to	perform	these	types	of	analytics	as	now	it	can
make	use	of	unstructured	data,	which	when	combined	with	structured	data	provides
a	rich	resource	in	support	of	these	analytics	types.	ETI	has	decided	to	implement
these	two	types	of	analytics	in	a	gradual	manner	by	first	implementing	predictive
analytics	and	then	slowly	building	up	their	capabilities	to	implement	prescriptive
analytics.

At	this	stage,	ETI	is	planning	to	make	use	of	predictive	analytics	in	support	of
achieving	its	goals.	For	example,	predictive	analytics	will	enable	detection	of
fraudulent	claims	by	predicting	which	claim	is	a	fraudulent	one	and	in	case	of
customer	defection	by	predicting	which	customers	are	likely	to	defect.	In	the	future,
via	prescriptive	analytics,	it	is	anticipated	that	ETI	can	further	enhance	the
realization	of	its	goals.	For	example,	prescriptive	analytics	can	prescribe	the	correct
premium	amount	considering	all	risk	factors	or	can	prescribe	the	best	course	of
action	to	take	for	mitigating	claims	when	faced	with	catastrophes,	such	as	floods	or
storms.

Identifying	Data	Characteristics
The	IT	team	members	want	to	gauge	different	datasets	that	are	generated	inside
ETI’s	boundary	as	well	as	any	other	data	generated	outside	ETI’s	boundary	that
may	be	of	interest	to	the	company	in	the	context	of	volume,	velocity,	variety,
veracity	and	value	characteristics.	The	team	members	take	each	characteristic	in
turn	and	discuss	how	different	datasets	manifest	that	characteristic.

Volume

The	team	notes	that	within	the	company,	a	large	amount	of	transactional	data	is
generated	as	a	result	of	processing	claims,	selling	new	policies	and	changes	to
existing	policies.	However,	a	quick	discussion	reveals	that	large	volumes	of
unstructured	data,	both	inside	and	outside	the	company,	may	prove	helpful	in
achieving	ETI’s	goals.	This	data	includes	health	records,	documents	submitted	by
the	customers	at	the	time	of	submitting	an	insurance	application,	property
schedules,	fleet	data,	social	media	data	and	weather	data.

Velocity

With	regards	to	the	in-flow	of	data,	some	of	the	data	is	low	velocity,	such	as	the
claims	submission	data	and	the	new	policies	issued	data.	However,	data	such	as
webserver	logs	and	insurance	quotes	is	high	velocity	data.	Looking	outside	the
company,	the	IT	team	members	anticipate	that	social	media	data	and	the	weather
data	may	arrive	at	a	fast	pace.	Further,	it	is	anticipated	that	for	catastrophe
management	and	fraudulent	claim	detection,	data	needs	to	be	processed	reasonably



quickly	to	minimize	losses.

Variety

In	pursuit	of	its	goals,	ETI	will	be	required	to	incorporate	a	range	of	datasets	that
include	health	records,	policy	data,	claim	data,	quote	data,	social	media	data,	call
center	agent	notes,	claim	adjuster	notes,	incident	photographs,	weather	reports,
census	data,	webserver	logs	and	emails.

Veracity

A	sample	of	data	taken	from	the	operational	systems	and	the	EDW	shows	signs	of
high	veracity.	The	IT	team	attributes	this	to	the	data	validation	performed	at
multiple	stages	including	validation	at	the	time	of	data	entry,	validation	at	various
points	when	an	application	is	processing	data,	such	as	function-level	input
validation,	and	validation	performed	by	the	database	when	data	is	persisted.
Looking	outside	ETI’s	boundary,	a	study	of	a	few	samples	taken	from	the	social
media	data	and	weather	data	demonstrates	further	decline	in	veracity	indicating	that
such	data	will	require	an	increased	level	of	data	validation	and	cleansing	to	make	it
high	veracity	data.

Value

As	far	as	the	value	characteristic	is	concerned,	all	IT	team	members	concur	that
they	need	to	draw	maximum	value	out	of	the	available	datasets	by	ensuring	the
datasets	are	stored	in	their	original	form	and	that	they	are	subjected	to	the	right	type
of	analytics.

Identifying	Types	of	Data
The	IT	team	members	go	through	a	categorization	exercise	of	the	various	datasets
that	have	been	identified	up	until	now	and	come	up	with	the	following	list:

•	Structured	data:	policy	data,	claim	data,	customer	profile	data	and	quote	data.

•	Unstructured	data:	social	media	data,	insurance	application	documents,	call
center	agent	notes,	claim	adjuster	notes	and	incident	photographs.

•	Semi-structured	data:	health	records,	customer	profile	data,	weather	reports,
census	data,	webserver	logs	and	emails.

Metadata	is	a	new	concept	for	the	group	as	ETI’s	current	data	management
procedures	do	not	create	nor	append	any	metadata.	Also,	the	current	data
processing	practices	do	not	take	into	account	any	metadata	even	if	it	were	present.
One	of	the	reasons	noted	by	the	IT	team	is	that	currently,	nearly	all	data	that	is
stored	and	processed	is	structured	in	nature	and	originates	from	within	the
company.	Hence,	the	origins	and	the	characteristics	of	data	are	implicitly	known.
After	some	consideration,	the	members	of	the	team	realize	that	for	the	structured
data,	the	data	dictionary	and	the	existence	of	last	updated	timestamp	and	last
updated	userid	columns	within	the	different	relational	database	tables	can	be	used
as	a	form	of	metadata.



Chapter	2.	Business	Motivations	and	Drivers	for	Big	Data
Adoption

Marketplace	Dynamics

Business	Architecture

Business	Process	Management

Information	and	Communications	Technology

Internet	of	Everything	(IoE)

In	many	organizations	it	is	now	acceptable	for	a	business	to	be	architected	in	much	the
same	way	as	its	technology.	This	shift	in	perspective	is	reflected	in	the	expanding	domain
of	enterprise	architecture,	which	used	to	be	closely	aligned	with	technology	architecture
but	now	includes	business	architecture	as	well.	Although	businesses	still	view	themselves
from	a	mechanistic	system’s	point	of	view,	with	command	and	control	being	passed	from
executives	to	managers	to	front-line	employees,	feedback	loops	based	upon	linked	and
aligned	measurements	are	providing	greater	insight	into	the	effectiveness	of	management
decision-making.

This	cycle	from	decision	to	action	to	measurement	and	assessment	of	results	creates
opportunities	for	businesses	to	optimize	their	operations	continuously.	In	fact,	the
mechanistic	management	view	is	being	supplanted	by	one	that	is	more	organic	and	that
drives	the	business	based	upon	its	ability	to	convert	data	into	knowledge	and	insight.	One
problem	with	this	perspective	is	that,	traditionally,	businesses	were	driven	almost
exclusively	by	internal	data	held	in	their	information	systems.	However,	companies	are



learning	that	this	is	not	sufficient	in	order	to	execute	their	business	models	in	a
marketplace	that	more	resembles	an	ecological	system.	As	such,	organizations	need	to
consume	data	from	the	outside	to	sense	directly	the	factors	that	influence	their
profitability.	The	use	of	such	external	data	most	often	results	in	“Big	Data”	datasets.

This	chapter	explores	the	business	motivations	and	drivers	behind	the	adoption	of	Big
Data	solutions	and	technologies.	The	adoption	of	Big	Data	represents	the	confluence	of
several	forces	to	include:	marketplace	dynamics,	an	appreciation	and	formalism	of
Business	Architecture	(BA),	the	realization	that	a	business’	ability	to	deliver	value	is
directly	tied	to	Business	Process	Management	(BPM),	innovation	in	Information	and
Communications	Technology	(ICT)	and	finally	the	Internet	of	Everything	(IoE).	Each	of
these	topics	will	be	explored	in	turn.

Marketplace	Dynamics
There	has	been	a	fundamental	shift	in	the	way	businesses	view	themselves	and	the
marketplace.	In	the	past	15	years,	two	large	stock	market	corrections	have	taken	place—
the	first	was	the	dot-com	bubble	burst	in	2000,	and	the	second	was	the	global	recession
that	began	in	2008.	In	each	case,	businesses	entrenched	and	worked	to	improve	their
efficiency	and	effectiveness	to	stabilize	their	profitability	by	reducing	costs.	This	of	course
is	normal.	When	customers	are	scarce,	cost-cutting	often	ensues	to	maintain	the	corporate
bottom	line.	In	this	environment,	companies	conduct	transformation	projects	to	improve
their	corporate	processes	to	achieve	savings.

Davenport	and	Prusak	have	provided	generally-accepted	working	definitions
of	data,	information	and	knowledge	in	their	book	Working	Knowledge.
According	to	Davenport	and	Prusak,	“[d]ata	is	a	set	of	discrete,	objective
facts	about	events.”	In	a	business	sense,	these	events	are	activities	that	occur
within	an	organization’s	business	processes	and	information	systems—they
represent	the	generation,	modification	and	completion	of	work	associated
with	business	entities;	for	example,	orders,	shipments,	notifications	and
customer	address	updates.	These	events	are	a	reflection	of	real-world	activity
that	is	represented	within	the	relational	data	stores	of	corporate	information
systems.	Davenport	and	Prusak	further	define	information	as	“data	that	makes
a	difference.”	It	is	data	that	has	been	contextualized	to	provide
communication;	it	delivers	a	message	and	informs	the	receiver—whether	it	be
a	human	or	system.	Information	is	then	enriched	via	experience	and	insight	in
the	generation	of	knowledge.	The	authors	state	that	“[k]nowledge	is	a	fluid
mix	of	framed	experience,	values,	contextual	information	and	expert	insight
that	provides	a	framework	for	evaluating	and	incorporating	new	experiences
and	information.”

As	the	global	economies	began	to	emerge	from	recession,	companies	began	to	focus
outward,	looking	to	find	new	customers	and	keep	existing	customers	from	defecting	to
marketplace	competitors.	This	was	accomplished	by	offering	new	products	and	services
and	delivering	increased	value	propositions	to	customers.	It	is	a	very	different	market
cycle	to	the	one	that	focuses	on	cost-cutting,	for	it	is	not	about	transformation	but	instead



innovation.	Innovation	brings	hope	to	a	company	that	it	will	find	new	ways	to	achieve	a
competitive	advantage	in	the	marketplace	and	a	consequent	increase	in	top	line	revenue.

The	global	economy	can	experience	periods	of	uncertainty	due	to	various	factors.	We
generally	accept	that	the	economies	of	the	major	developed	countries	in	the	world	are	now
inextricably	intertwined;	in	other	words,	they	form	a	system	of	systems.	Likewise,	the
world’s	businesses	are	shifting	their	perspective	about	their	identity	and	independence	as
they	recognize	that	they	are	also	intertwined	in	intricate	product	and	service	networks.

For	this	reason,	companies	need	to	expand	their	Business	Intelligence	activities	beyond
retrospective	reflection	on	internal	information	extracted	from	their	corporate	information
systems.	They	need	to	open	themselves	to	external	data	sources	as	a	means	of	sensing	the
marketplace	and	their	position	within	it.	Recognizing	that	external	data	brings	additional
context	to	their	internal	data	allows	a	corporation	to	move	up	the	analytic	value	chain	from
hindsight	to	insight	with	greater	ease.	With	appropriate	tooling,	which	often	supports
sophisticated	simulation	capabilities,	a	company	can	develop	analytic	results	that	provide
foresight.	In	this	case,	the	tooling	assists	in	bridging	the	gap	between	knowledge	and
wisdom	as	well	as	provides	advisory	analytic	results.	This	is	the	power	of	Big	Data—
enriching	corporate	perspective	beyond	introspection,	from	which	a	business	can	only
infer	information	about	marketplace	sentiment,	to	sensing	the	marketplace	itself.

The	transition	from	hindsight	to	foresight	can	be	understood	through	the	lens	of	the	DIKW
pyramid	depicted	in	Figure	2.1.	Note	that	in	this	figure,	at	the	top	of	the	triangle,	wisdom
is	shown	as	an	outline	to	indicate	that	it	exists	but	is	not	typically	generated	via	ICT
systems.	Instead,	knowledge	workers	provide	the	insight	and	experience	to	frame	the
available	knowledge	so	that	it	can	be	integrated	to	form	wisdom.	Wisdom	generation	by
technological	means	quickly	devolves	into	a	philosophical	discussion	that	is	not	within	the
scope	of	this	book.	Within	business	environments,	technology	is	used	to	support
knowledge	management,	and	personnel	are	responsible	for	applying	their	competency	and
wisdom	to	act	accordingly.



Figure	2.1	The	DIKW	pyramid	shows	how	data	can	be	enriched	with	context	to	create
information,	information	can	be	supplied	with	meaning	to	create	knowledge	and

knowledge	can	be	integrated	to	form	wisdom.

Business	Architecture
Within	the	past	decade,	there	has	been	a	realization	that	too	often	a	corporation’s
enterprise	architecture	is	simply	a	myopic	view	of	its	technology	architecture.	In	an	effort
to	wrest	power	from	the	stronghold	of	IT,	business	architecture	has	emerged	as	a
complementary	discipline.	In	the	future,	the	goal	is	that	enterprise	architecture	will	present
a	balanced	view	between	business	and	technology	architectures.	Business	architecture
provides	a	means	of	blueprinting	or	concretely	expressing	the	design	of	the	business.	A
business	architecture	helps	an	organization	align	its	strategic	vision	with	its	underlying
execution,	whether	they	be	technical	resources	or	human	capital.	Thus,	a	business
architecture	includes	linkages	from	abstract	concepts	like	business	mission,	vision,
strategy	and	goals	to	more	concrete	ones	like	business	services,	organizational	structure,
key	performance	indicators	and	application	services.

These	linkages	are	important	because	they	provide	guidance	as	to	how	to	align	the
business	and	its	information	technology.	It	is	an	accepted	view	that	a	business	operates	as
a	layered	system—the	top	layer	is	the	strategic	layer	occupied	by	C-level	executives	and
advisory	groups;	the	middle	layer	is	the	tactical	or	managerial	layer	that	seeks	to	steer	the
organization	in	alignment	with	the	strategy;	and	the	bottom	layer	is	the	operations	layer
where	a	business	executes	its	core	processes	and	delivers	value	to	its	customers.	These
three	layers	often	exhibit	a	degree	of	independence	from	one	another,	but	each	layer’s
goals	and	objectives	are	influenced	by	and	often	defined	by	the	layer	above,	in	other
words	top-down.	From	a	monitoring	perspective,	communication	flows	upstream,	or



bottom-up	via	the	collection	of	metrics.	Business	activity	monitoring	at	the	operations
layer	generates	Performance	Indicators	(PIs)	and	metrics,	for	both	services	and	processes.
They	are	aggregated	to	create	Key	Performance	Indicators	(KPIs)	used	at	the	tactical
layer.	These	KPIs	can	be	aligned	with	Critical	Success	Factors	(CSFs)	at	the	strategic
layer,	which	in	turn	help	measure	progress	being	made	toward	the	achievement	of
strategic	goals	and	objectives.

Big	Data	has	ties	to	business	architecture	at	each	of	the	organizational	layers,	as	depicted
in	Figure	2.2.	Big	Data	enhances	value	as	it	provides	additional	context	through	the
integration	of	external	perspectives	to	help	convert	data	into	information	and	provide
meaning	to	generate	knowledge	from	information.	For	instance,	at	the	operational	level,
metrics	are	generated	that	simply	report	on	what	is	happening	in	the	business.	In	essence,
we	are	converting	data	through	business	concepts	and	context	to	generate	information.	At
the	managerial	level,	this	information	can	be	examined	through	the	lens	of	corporate
performance	to	answer	questions	regarding	how	the	business	is	performing.	In	other
words,	give	meaning	to	the	information.	This	information	may	be	further	enriched	to
answer	questions	regarding	why	the	business	is	performing	at	the	level	it	is.	When	armed
with	this	knowledge,	the	strategic	layer	can	provide	further	insight	to	help	answer
questions	of	which	strategy	needs	to	change	or	be	adopted	in	order	to	correct	or	enhance
the	performance.

Figure	2.2	The	DIKW	pyramid	illustrates	alignment	with	Strategic,	Tactical	and
Operational	corporate	levels.

As	with	any	layered	system,	the	layers	do	not	all	change	at	the	same	speed.	In	the	case	of	a
business	enterprise,	the	strategic	layer	is	the	slowest	moving	layer,	and	the	operational
layer	is	the	fastest	moving	layer.	The	slower	moving	layers	provide	stability	and	direction



to	the	faster	moving	layers.	In	traditional	organizational	hierarchies,	the	management	layer
is	responsible	for	directing	the	operational	layer	in	alignment	with	the	strategy	created	by
the	executive	team.	Because	of	this	variation	in	regard	to	speed	of	change,	it	is	possible	to
envision	the	three	layers	as	being	responsible	for	strategy	execution,	business	execution
and	process	execution	respectively.	Each	of	these	layers	relies	upon	different	metrics	and
measures,	presented	through	different	visualization	and	reporting	functions.	For	example,
the	strategy	layer	may	rely	upon	balanced	scorecards,	the	management	layer	upon	an
interactive	visualization	of	KPIs	and	corporate	performance	and	the	operational	layer	on
visualizations	of	executing	business	processes	and	their	statuses.

Figure	2.3,	a	variant	of	a	diagram	produced	by	Joe	Gollner	in	his	blog	post	“The	Anatomy
of	Knowledge,”	shows	how	an	organization	can	relate	and	align	its	organizational	layers
by	creating	a	virtuous	cycle	via	a	feedback	loop.	On	the	right	side	of	the	figure,	the
strategic	layer	drives	response	via	the	application	of	judgment	by	making	decisions
regarding	corporate	strategy,	policy,	goals	and	objectives	that	are	communicated	as
constraints	to	the	tactical	layer.	The	tactical	layer	in	turn	leverages	this	knowledge	to
generate	priorities	and	actions	that	conform	to	corporate	direction.	These	actions	adjust	the
execution	of	business	at	the	operational	layer.	This	in	turn	should	generate	measureable
change	in	the	experience	of	internal	stakeholders	and	external	customers	as	they	deliver
and	consume	business	services.	This	change,	or	result,	should	surface	and	be	visible	in	the
data	in	the	form	of	changed	PIs	that	are	then	aggregated	into	KPIs.	Recall	that	KPIs	are
metrics	that	can	be	associated	with	critical	success	factors	that	inform	the	executive	team
as	to	whether	or	not	their	strategies	are	working.	Over	time,	the	strategic	and	management
layers	injection	of	judgment	and	action	into	the	loop	will	serve	to	refine	the	delivery	of
business	services.

Figure	2.3	The	creation	of	a	virtuous	cycle	to	align	an	organization	across	layers	via	a
feedback	loop.



Business	Process	Management
Businesses	deliver	value	to	customers	and	other	stakeholders	via	the	execution	of	their
business	processes.	A	business	process	is	a	description	of	how	work	is	performed	in	an
organization.	It	describes	all	work-related	activities	and	their	relationships,	aligned	with
the	organizational	actors	and	resources	responsible	for	conducting	them.	The	relationships
between	activities	may	be	temporal;	for	example,	activity	A	is	executed	before	activity	B.
The	relationships	can	also	describe	whether	the	execution	of	activities	is	conditional,
based	upon	the	outputs	or	conditions	generated	by	other	activities	or	by	sensing	events
generated	outside	of	the	business	process	itself.

Business	process	management	applies	process	excellence	techniques	to	improve	corporate
execution.	Business	Process	Management	Systems	(BPMS)	provide	software	developers	a
model	driven	platform	that	is	becoming	the	Business	Application	Development
Environment	(BADE)	of	choice.	A	business	application	needs	to:	mediate	between
humans	and	other	technology-hosted	resources,	execute	in	alignment	with	corporate
policies	and	ensure	the	fair	distribution	of	work	to	employees.	As	a	BADE,	models	of	a
business	process	are	joined	with:	models	of	organizational	roles	and	structure,	business
entities	and	their	relationships,	business	rules	and	the	user-interface.	The	development
environment	integrates	these	models	together	to	create	a	business	application	that	manages
screenflow	and	workflow	and	provides	workload	management.	This	is	accomplished	in	an
execution	environment	that	enforces	corporate	policy	and	security	and	provides	state
management	for	long-running	business	processes.	The	state	of	an	individual	process,	or	all
processes,	can	be	interrogated	via	Business	Activity	Monitoring	(BAM)	and	visualized.

When	BPM	is	combined	with	BPMSs	that	are	intelligent,	processes	can	be	executed	in	a
goal-driven	manner.	Goals	are	connected	to	process	fragments	that	are	dynamically
chosen	and	assembled	at	run-time	in	alignment	with	the	evaluation	of	the	goals.	When	the
combination	of	Big	Data	analytic	results	and	goal-driven	behavior	are	used	together,
process	execution	can	become	adaptive	to	the	marketplace	and	responsive	to
environmental	conditions.	As	a	simple	example,	a	customer	contact	process	has	process
fragments	that	enable	communication	with	customers	via	a	voice	call,	email,	text	message
and	traditional	postal	mail.	In	the	beginning,	the	choice	of	these	contact	methods	is
unweighted,	and	they	are	chosen	at	random.	However,	behind-the-scenes	analysis	is	being
done	to	measure	the	effectiveness	of	the	contact	method	via	statistical	analysis	of
customer	responsiveness.

The	results	of	this	analysis	are	tied	to	a	goal	responsible	for	selecting	the	contact	method,
and	when	a	clear	preference	is	determined,	the	weighting	is	changed	to	favor	the	contact
method	that	achieves	the	best	response.	A	more	detailed	analysis	could	leverage	customer
clustering,	which	would	assign	individual	customers	to	groups	where	one	of	the	cluster
dimensions	is	the	contact	method.	In	this	case,	customers	can	be	contacted	with	even
greater	refinement,	which	provides	a	pathway	to	one-to-one	targeted	marketing.

Information	and	Communications	Technology
This	section	examines	the	following	ICT	developments	that	have	accelerated	the	pace	of
Big	Data	adoption	in	businesses:



•	data	analytics	and	data	science

•	digitization

•	affordable	technology	and	commodity	hardware

•	social	media

•	hyper-connected	communities	and	devices

•	cloud	computing

Data	Analytics	and	Data	Science
Enterprises	are	collecting,	procuring,	storing,	curating	and	processing	increasing	quantities
of	data.	This	is	occurring	in	an	effort	to	find	new	insights	that	can	drive	more	efficient	and
effective	operations,	provide	management	the	ability	to	steer	the	business	proactively	and
allow	the	C-suite	to	better	formulate	and	assess	their	strategic	initiatives.	Ultimately,
enterprises	are	looking	for	new	ways	to	gain	a	competitive	edge.	Thus	the	need	for
techniques	and	technologies	that	can	extract	meaningful	information	and	insights	has
increased.	Computational	approaches,	statistical	techniques	and	data	warehousing	have
advanced	to	the	point	where	they	have	merged,	each	bringing	their	specific	techniques	and
tools	that	allow	the	performance	of	Big	Data	analysis.	The	maturity	of	these	fields	of
practice	inspired	and	enabled	much	of	the	core	functionality	expected	from	contemporary
Big	Data	solutions,	environments	and	platforms.

Digitization
For	many	businesses,	digital	mediums	have	replaced	physical	mediums	as	the	de	facto
communications	and	delivery	mechanism.	The	use	of	digital	artifacts	saves	both	time	and
cost	as	distribution	is	supported	by	the	vast	pre-existing	infrastructure	of	the	Internet.	As
consumers	connect	to	a	business	through	their	interaction	with	these	digital	substitutes,	it
leads	to	an	opportunity	to	collect	further	“secondary”	data;	for	example,	requesting	a
customer	to	provide	feedback,	complete	a	survey,	or	simply	providing	a	hook	to	display	a
relevant	advertisement	and	tracking	its	click-through	rate.	Collecting	secondary	data	can
be	important	for	businesses	because	mining	this	data	can	allow	for	customized	marketing,
automated	recommendations	and	the	development	of	optimized	product	features.	Figure
2.4	provides	a	visual	representation	of	examples	of	digitization.



Figure	2.4	Examples	of	digitization	include	online	banking,	on-demand	television	and
streaming	video.

Affordable	Technology	and	Commodity	Hardware
Technology	capable	of	storing	and	processing	large	quantities	of	diverse	data	has	become
increasingly	affordable.	Additionally,	Big	Data	solutions	often	leverage	open-source
software	that	executes	on	commodity	hardware,	further	reducing	costs.	The	combination
of	commodity	hardware	and	open	source	software	has	virtually	eliminated	the	advantage
that	large	enterprises	used	to	hold	by	being	able	to	outspend	their	smaller	competitors	due
to	the	larger	size	of	their	IT	budgets.	Technology	no	longer	delivers	competitive
advantage.	Instead,	it	simply	becomes	the	platform	upon	which	the	business	executes.
From	a	business	standpoint,	utilization	of	affordable	technology	and	commodity	hardware
to	generate	analytic	results	that	can	further	optimize	the	execution	of	its	business
processes	is	the	path	to	competitive	advantage.

The	use	of	commodity	hardware	makes	the	adoption	of	Big	Data	solutions	accessible	to
businesses	without	large	capital	investments.	Figure	2.5	provides	an	example	of	the	price
decline	associated	with	data	storage	prices	over	the	past	20	years.



Figure	2.5	Data	storage	prices	have	dropped	dramatically	from	more	than	$10,000	to
less	than	$0.10	per	GB	over	the	decades.

Social	Media
The	emergence	of	social	media	has	empowered	customers	to	provide	feedback	in	near-
realtime	via	open	and	public	mediums.	This	shift	has	forced	businesses	to	consider
customer	feedback	on	their	service	and	product	offerings	in	their	strategic	planning.	As	a
result,	businesses	are	storing	increasing	amounts	of	data	on	customer	interactions	within
their	customer	relationship	management	systems	(CRM)	and	from	harvesting	customer
reviews,	complaints	and	praise	from	social	media	sites.	This	information	feeds	Big	Data
analysis	algorithms	that	surface	the	voice	of	the	customer	in	an	attempt	to	provide	better
levels	of	service,	increase	sales,	enable	targeted	marketing	and	even	create	new	products
and	services.	Businesses	have	realized	that	branding	activity	is	no	longer	completely
managed	by	internal	marketing	activities.	Instead,	product	brands	and	corporate	reputation
are	co-created	by	the	company	and	its	customers.	For	this	reason,	businesses	are
increasingly	interested	in	incorporating	publicly	available	datasets	from	social	media	and
other	external	data	sources.



Hyper-Connected	Communities	and	Devices
The	broadening	coverage	of	the	Internet	and	the	proliferation	of	cellular	and	Wi-Fi
networks	has	enabled	more	people	and	their	devices	to	be	continuously	active	in	virtual
communities.	Coupled	with	the	proliferation	of	Internet	connected	sensors,	the
underpinnings	of	the	Internet	of	Things	(IoT),	a	vast	collection	of	smart	Internet-
connected	devices,	is	being	formed.	As	shown	in	Figure	2.6,	this	in	turn	has	resulted	in	a
massive	increase	in	the	number	of	available	data	streams.	While	some	streams	are	public,
other	streams	are	channeled	directly	to	corporations	for	analysis.	As	an	example,	the
performance-based	management	contracts	associated	with	heavy	equipment	used	in	the
mining	industry	incentivize	the	optimal	performance	of	preventive	and	predictive
maintenance	in	an	effort	to	reduce	the	need	and	avoid	the	downtime	associated	with
unplanned	corrective	maintenance.	This	requires	detailed	analysis	of	sensor	readings
emitted	by	the	equipment	for	the	early	detection	of	issues	that	can	be	resolved	via	the
proactive	scheduling	of	maintenance	activities.

Figure	2.6	Hyper-connected	communities	and	devices	include	television,	mobile
computing,	RFIDs,	refrigerators,	GPS	devices,	mobile	devices	and	smart	meters.

Cloud	Computing
Cloud	computing	advancements	have	led	to	the	creation	of	environments	that	are	capable
of	providing	highly	scalable,	on-demand	IT	resources	that	can	be	leased	via	pay-as-you-go
models.	Businesses	have	the	opportunity	to	leverage	the	infrastructure,	storage	and
processing	capabilities	provided	by	these	environments	in	order	to	build-out	scalable	Big
Data	solutions	that	can	carry	out	large-scale	processing	tasks.	Although	traditionally
thought	of	as	off-premise	environments	typically	depicted	with	a	cloud	symbol,	businesses
are	also	leveraging	cloud	management	software	to	create	on	premise	clouds	to	more
effectively	utilize	their	existing	infrastructure	via	virtualization.	In	either	case,	the	ability
of	a	cloud	to	dynamically	scale	based	upon	load	allows	for	the	creation	of	resilient
analytic	environments	that	maximize	efficient	utilization	of	ICT	resources.

Figure	2.7	displays	an	example	of	how	a	cloud	environment	can	be	leveraged	for	its



scaling	capabilities	to	perform	Big	Data	processing	tasks.	The	fact	that	off-premise	cloud-
based	IT	resources	can	be	leased	dramatically	reduces	the	required	up-front	investment	of
Big	Data	projects.

Figure	2.7	The	cloud	can	be	used	to	complete	on-demand	data	analysis	at	the	end	of
each	month	or	enable	the	scaling	out	of	systems	with	an	increase	in	load.

It	makes	sense	for	enterprises	already	using	cloud	computing	to	reuse	the	cloud	for	their
Big	Data	initiatives	because:

•	personnel	already	possesses	the	required	cloud	computing	skills

•	the	input	data	already	exists	in	the	cloud

Migrating	to	the	cloud	is	logical	for	enterprises	planning	to	run	analytics	on	datasets	that
are	available	via	data	markets,	as	many	data	markets	make	their	datasets	available	in	a
cloud	environment,	such	as	Amazon	S3.

In	short,	cloud	computing	can	provide	three	essential	ingredients	required	for	a	Big	Data
solution:	external	datasets,	scalable	processing	capabilities	and	vast	amounts	of	storage.



Internet	of	Everything	(IoE)
The	convergence	of	advancements	in	information	and	communications	technology,
marketplace	dynamics,	business	architecture	and	business	process	management	all
contribute	to	the	opportunity	of	what	is	now	known	as	the	Internet	of	Everything	or	IoE.
The	IoE	combines	the	services	provided	by	smart	connected	devices	of	the	Internet	of
Things	into	meaningful	business	processes	that	possess	the	ability	to	provide	unique	and
differentiating	value	propositions.	It	is	a	platform	for	innovation	enabling	the	creation	of
new	products	and	services	and	new	sources	of	revenue	for	businesses.	Big	Data	is	the
heart	of	the	IoE.	Hyper-connected	communities	and	devices	running	on	affordable
technology	and	commodity	hardware	stream	digitized	data	that	is	subject	to	analytic
processes	hosted	in	elastic	cloud	computing	environments.	The	results	of	the	analysis	can
provide	insight	as	to	how	much	value	is	generated	by	the	current	process	and	whether	or
not	the	process	should	proactively	seek	opportunities	to	further	optimize	itself.

IoE-specific	companies	can	leverage	Big	Data	to	establish	and	optimize	workflows	and
offer	them	to	third	parties	as	outsourced	business	processes.	As	established	in	the	Business
Process	Manifesto	edited	by	Roger	Burlton	(2011),	an	organization’s	business	processes
are	the	source	for	generating	outcomes	of	value	for	customers	and	other	stakeholders.	In
combination	with	the	analysis	of	streaming	data	and	customer	context,	being	able	to	adapt
the	execution	of	these	processes	to	align	with	the	customer’s	goals	will	be	a	key	corporate
differentiator	in	the	future.

One	example	of	an	area	that	has	benefited	from	the	IoE	is	precision	agriculture,	with
traditional	farming	equipment	manufacturers	leading	the	way.	When	joined	together	as	a
system	of	systems,	GPS-controlled	tractors,	in-field	moisture	and	fertilization	sensors,	on-
demand	watering,	fertilization,	pesticide	application	systems	and	variable	rate	seeding
equipment	can	maximize	field	productivity	while	minimizing	cost.	Precision	agriculture
enables	alternative	farming	approaches	that	challenge	industrial	monoculture	farms.	With
the	aid	of	the	IoE,	smaller	farms	are	able	to	compete	by	leveraging	crop	diversity	and
environmentally	sensitive	practices.	Besides	having	smart	connected	farming	equipment,
the	Big	Data	analysis	of	equipment	and	in-field	sensor	data	can	drive	a	decision	support
system	that	can	guide	farmers	and	their	machines	to	optimum	yields.

Case	Study	Example

ETI’s	committee	of	senior	managers	investigated	the	company’s	deteriorating
financial	position	and	realized	that	many	of	the	corporation’s	current	problems
could	have	been	detected	earlier.	If	the	management	at	the	tactical	level	had	greater
awareness,	they	could	have	proactively	taken	action	to	avoid	some	of	the	losses.
This	lack	of	early	warning	was	due	to	the	fact	that	ETI	failed	to	sense	that
marketplace	dynamics	had	changed.	New	competitors	using	advanced	technologies
to	process	claims	and	set	premiums	had	disrupted	the	market	and	taken	a	share	of
ETI’s	business.	At	the	same	time,	the	company’s	lack	of	sophisticated	fraud
detection	has	been	exploited	by	unscrupulous	customers	and	perhaps	even
organized	crime.

The	senior	management	team	reports	their	findings	to	the	executive	management
team.	Subsequently,	in	light	of	the	previous	strategic	goals	that	were	established,	a



new	set	of	transformation	and	innovation	corporate	priorities	are	established.	These
initiatives	will	be	used	to	direct	and	guide	corporate	resources	to	solutions	that	will
enhance	ETI’s	ability	to	increase	profits.

Considering	transformation,	business	process	management	disciplines	will	be
adopted	to	document,	analyze	and	improve	the	processing	of	claims.	These	business
process	models	will	then	be	consumed	by	a	Business	Process	Management	System
(BPMS),	which	is	essentially	a	process	automation	framework,	to	ensure	consistent
and	auditable	process	execution.	This	will	help	ETI	demonstrate	regulatory
compliance.	An	additional	benefit	of	using	a	BPMS	is	that	the	traceability	of	claims
processed	by	the	system	includes	information	about	which	employees	have
processed	which	claim.	Although	it	has	not	been	confirmed,	there	is	a	suspicion	that
some	portion	of	the	fraudulent	claims	being	processed	may	be	traceable	to
employees	that	are	subverting	internal	manual	controls	driven	by	corporate	policy.
In	other	words,	not	only	will	the	BPMS	enhance	the	ability	to	meet	external
regulatory	compliance,	it	will	also	enforce	standard	operating	procedures	and	work
practices	within	ETI.

Risk	assessment	and	fraud	detection	will	be	enhanced	with	the	application	of
innovative	Big	Data	technologies	that	will	produce	analytic	results	that	can	drive
data-driven	decision-making.	The	risk	assessment	results	will	help	actuaries	lessen
their	reliance	on	intuition	by	providing	them	with	generated	risk	assessment
metrics.	Furthermore,	the	output	of	the	fraud	detection	capability	will	be
incorporated	into	the	automated	claims	processing	workflow.	The	fraud	detection
results	will	also	be	used	to	direct	questionable	claims	to	experienced	claims
adjustors.	The	adjustors	will	be	able	to	more	carefully	assess	the	nature	of	a	claim
in	relation	to	ETI	claim	liability	and	the	likelihood	of	it	actually	being	fraudulent.
Over	time,	this	manual	processing	could	lead	to	greater	automation	as	the	claims
adjusters’	decisions	are	tracked	by	the	BPMS	and	can	therefore	be	used	to	create
training	sets	of	claims	data	that	include	the	decision	of	whether	or	not	the	claim	was
deemed	fraudulent.	These	training	sets	will	enhance	ETI’s	ability	to	perform
predictive	analytics,	for	the	sets	can	be	consumed	by	an	automated	classifier.

Of	course,	the	executives	also	realize	that	they	have	been	unable	to	continuously
optimize	the	operations	of	ETI	because	they	have	not	been	enriching	data
sufficiently	enough	to	generate	knowledge.	The	reason	for	this	is	ultimately	traced
to	a	lack	of	understanding	of	business	architecture.	Corporately,	the	executives
realize	that	they	have	been	treating	every	measurement	as	a	Key	Performance
Indicator	(KPI).	This	has	generated	lots	of	analysis,	but	since	it	lacked	focus,	it	was
not	delivering	on	its	potential	value.	With	the	realization	that	KPIs	are	higher-level
metrics	and	fewer	in	quantity,	they	were	able	to	readily	agree	on	the	handful	of
metrics	that	should	be	monitored	at	the	tactical	level.

Additionally,	the	executives	have	always	had	trouble	aligning	business	execution
with	strategic	execution.	This	was	caused	in	part	by	a	failure	to	define	Critical
Success	Factors	(CSFs).	Strategic	goals	and	objectives	should	be	assessed	by	CSFs
rather	than	KPIs.	Putting	CSFs	in	place	has	helped	ETI	link	and	align	the	strategic,
tactical	and	operating	levels	of	their	business.	The	executive	and	management



teams	will	be	closely	monitoring	their	new	measurement	and	assessment	initiative
in	an	effort	to	quantify	the	benefits	it	delivers	over	the	next	quarter.

One	final	decision	was	made	by	the	executives	at	ETI.	This	decision	created	a	new
organizational	role	responsible	for	innovation	management.	The	executives	realized
that	the	company	had	become	too	introspective.	Caught	up	in	the	work	of	managing
four	insurance	product	lines,	the	team	failed	to	recognize	that	the	marketplace	was
changing.	The	group	was	surprised	to	learn	about	the	benefits	of	Big	Data	and
contemporary	data	analytics	tools	and	technologies.	Likewise,	although	they	had
digitized	their	e-billing	and	made	heavy	use	of	scanning	technologies	for	claims
processing,	they	had	not	considered	that	customer	use	of	smartphone	technology
could	produce	new	channels	of	digital	information	that	could	further	streamline
claims	processing.	Although	the	executives	do	not	feel	that	they	are	in	a	position	to
adopt	cloud	technology	at	the	infrastructure	level,	they	have	considered	using	third-
party	software	as	a	service	provider	to	reduce	the	operational	costs	associated	with
managing	their	relationship	with	customers.

At	this	point,	the	executive	and	senior	management	teams	believe	that	they	have
addressed	organizational	alignment	issues,	put	a	plan	in	place	to	adopt	business
process	management	disciplines	and	technology,	and	successfully	adopted	Big
Data,	which	will	increase	their	ability	to	sense	the	marketplace	and	therefore	be
better	able	to	adapt	to	changing	conditions.



Chapter	3.	Big	Data	Adoption	and	Planning	Considerations
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Big	Data	Analytics	Lifecycle

Big	Data	initiatives	are	strategic	in	nature	and	should	be	business-driven.	The	adoption	of
Big	Data	can	be	transformative	but	is	more	often	innovative.	Transformation	activities	are
typically	low-risk	endeavors	designed	to	deliver	increased	efficiency	and	effectiveness.
Innovation	requires	a	shift	in	mindset	because	it	will	fundamentally	alter	the	structure	of	a
business	either	in	its	products,	services	or	organization.	This	is	the	power	of	Big	Data
adoption;	it	can	enable	this	sort	of	change.	Innovation	management	requires	care—too
many	controlling	forces	can	stifle	the	initiative	and	dampen	the	results,	and	too	little



oversight	can	turn	a	best	intentioned	project	into	a	science	experiment	that	never	delivers
promised	results.	It	is	against	this	backdrop	that	Chapter	3	addresses	Big	Data	adoption
and	planning	considerations.

Given	the	nature	of	Big	Data	and	its	analytic	power,	there	are	many	issues	that	need	to	be
considered	and	planned	for	in	the	beginning.	For	example,	with	the	adoption	of	any	new
technology,	the	means	to	secure	it	in	a	way	that	conforms	to	existing	corporate	standards
needs	to	be	addressed.	Issues	related	to	tracking	the	provenance	of	a	dataset	from	its
procurement	to	its	utilization	is	often	a	new	requirement	for	organizations.	Managing	the
privacy	of	constituents	whose	data	is	being	handled	or	whose	identity	is	revealed	by
analytic	processes	must	be	planned	for.	Big	Data	even	opens	up	additional	opportunities	to
consider	moving	beyond	on-premise	environments	and	into	remotely-provisioned,
scalable	environments	that	are	hosted	in	a	cloud.	In	fact,	all	of	the	above	considerations
require	an	organization	to	recognize	and	establish	a	set	of	distinct	governance	processes
and	decision	frameworks	to	ensure	that	responsible	parties	understand	Big	Data’s	nature,
implications	and	management	requirements.

Organizationally,	the	adoption	of	Big	Data	changes	the	approach	to	performing	business
analytics.	For	this	reason,	a	Big	Data	analytics	lifecycle	is	introduced	in	this	chapter.	The
lifecycle	begins	with	the	establishment	of	a	business	case	for	the	Big	Data	project	and
ends	with	ensuring	that	the	analytic	results	are	deployed	to	the	organization	to	generate
maximal	value.	There	are	a	number	of	stages	in	between	that	organize	the	steps	of
identifying,	procuring,	filtering,	extracting,	cleansing	and	aggregating	of	data.	This	is	all
required	before	the	analysis	even	occurs.	The	execution	of	this	lifecycle	requires	new
competencies	to	be	developed	or	hired	into	the	organization.

As	demonstrated,	there	are	many	things	to	consider	and	account	for	when	adopting	Big
Data.	This	chapter	explains	the	primary	potential	issues	and	considerations.

Organization	Prerequisites
Big	Data	frameworks	are	not	turn-key	solutions.	In	order	for	data	analysis	and	analytics	to
offer	value,	enterprises	need	to	have	data	management	and	Big	Data	governance
frameworks.	Sound	processes	and	sufficient	skillsets	for	those	who	will	be	responsible	for
implementing,	customizing,	populating	and	using	Big	Data	solutions	are	also	necessary.
Additionally,	the	quality	of	the	data	targeted	for	processing	by	Big	Data	solutions	needs	to
be	assessed.

Outdated,	invalid,	or	poorly	identified	data	will	result	in	low-quality	input	which,
regardless	of	how	good	the	Big	Data	solution	is,	will	continue	to	produce	low-quality
results.	The	longevity	of	the	Big	Data	environment	also	needs	to	be	planned	for.	A
roadmap	needs	to	be	defined	to	ensure	that	any	necessary	expansion	or	augmentation	of
the	environment	is	planned	out	to	stay	in	sync	with	the	requirements	of	the	enterprise.



Data	Procurement
The	acquisition	of	Big	Data	solutions	themselves	can	be	economical,	due	to	the
availability	of	open-source	platforms	and	tools	and	opportunities	to	leverage	commodity
hardware.	However,	a	substantial	budget	may	still	be	required	to	obtain	external	data.	The
nature	of	the	business	may	make	external	data	very	valuable.	The	greater	the	volume	and
variety	of	data	that	can	be	supplied,	the	higher	the	chances	are	of	finding	hidden	insights
from	patterns.

External	data	sources	include	government	data	sources	and	commercial	data	markets.
Government-provided	data,	such	as	geo-spatial	data,	may	be	free.	However,	most
commercially	relevant	data	will	need	to	be	purchased	and	may	involve	the	continuation	of
subscription	costs	to	ensure	the	delivery	of	updates	to	procured	datasets.

Privacy
Performing	analytics	on	datasets	can	reveal	confidential	information	about	organizations
or	individuals.	Even	analyzing	separate	datasets	that	contain	seemingly	benign	data	can
reveal	private	information	when	the	datasets	are	analyzed	jointly.	This	can	lead	to
intentional	or	inadvertent	breaches	of	privacy.

Addressing	these	privacy	concerns	requires	an	understanding	of	the	nature	of	data	being
accumulated	and	relevant	data	privacy	regulations,	as	well	as	special	techniques	for	data
tagging	and	anonymization.	For	example,	telemetry	data,	such	as	a	car’s	GPS	log	or	smart
meter	data	readings,	collected	over	an	extended	period	of	time	can	reveal	an	individual’s
location	and	behavior,	as	shown	in	Figure	3.1.



Figure	3.1	Information	gathered	from	running	analytics	on	image	files,	relational	data
and	textual	data	is	used	to	create	John’s	profile.

Security
Some	of	the	components	of	Big	Data	solutions	lack	the	robustness	of	traditional	enterprise
solution	environments	when	it	comes	to	access	control	and	data	security.	Securing	Big
Data	involves	ensuring	that	the	data	networks	and	repositories	are	sufficiently	secured	via
authentication	and	authorization	mechanisms.

Big	Data	security	further	involves	establishing	data	access	levels	for	different	categories
of	users.	For	example,	unlike	traditional	relational	database	management	systems,	NoSQL
databases	generally	do	not	provide	robust	built-in	security	mechanisms.	They	instead	rely
on	simple	HTTP-based	APIs	where	data	is	exchanged	in	plaintext,	making	the	data	prone
to	network-based	attacks,	as	shown	in	Figure	3.2.



Figure	3.2	NoSQL	databases	can	be	susceptible	to	network-based	attacks.

Provenance
Provenance	refers	to	information	about	the	source	of	the	data	and	how	it	has	been
processed.	Provenance	information	helps	determine	the	authenticity	and	quality	of	data,
and	it	can	be	used	for	auditing	purposes.	Maintaining	provenance	as	large	volumes	of	data
are	acquired,	combined	and	put	through	multiple	processing	stages	can	be	a	complex	task.
At	different	stages	in	the	analytics	lifecycle,	data	will	be	in	different	states	due	to	the	fact
it	may	be	being	transmitted,	processed	or	in	storage.	These	states	correspond	to	the	notion
of	data-in-motion,	data-in-use	and	data-at-rest.	Importantly,	whenever	Big	Data	changes
state,	it	should	trigger	the	capture	of	provenance	information	that	is	recorded	as	metadata.

As	data	enters	the	analytic	environment,	its	provenance	record	can	be	initialized	with	the
recording	of	information	that	captures	the	pedigree	of	the	data.	Ultimately,	the	goal	of
capturing	provenance	is	to	be	able	to	reason	over	the	generated	analytic	results	with	the
knowledge	of	the	origin	of	the	data	and	what	steps	or	algorithms	were	used	to	process	the
data	that	led	to	the	result.	Provenance	information	is	essential	to	being	able	to	realize	the
value	of	the	analytic	result.	Much	like	scientific	research,	if	results	cannot	be	justified	and
repeated,	they	lack	credibility.	When	provenance	information	is	captured	on	the	way	to
generating	analytic	results	as	in	Figure	3.3,	the	results	can	be	more	easily	trusted	and
thereby	used	with	confidence.



Figure	3.3	Data	may	also	need	to	be	annotated	with	source	dataset	attributes	and
processing	step	details	as	it	passes	through	the	data	transformation	steps.

Limited	Realtime	Support
Dashboards	and	other	applications	that	require	streaming	data	and	alerts	often	demand
realtime	or	near-realtime	data	transmissions.	Many	open	source	Big	Data	solutions	and
tools	are	batch-oriented;	however,	there	is	a	new	generation	of	realtime	capable	open
source	tools	that	have	support	for	streaming	data	analysis.	Many	of	the	realtime	data
analysis	solutions	that	do	exist	are	proprietary.	Approaches	that	achieve	near-realtime
results	often	process	transactional	data	as	it	arrives	and	combine	it	with	previously
summarized	batch-processed	data.



Distinct	Performance	Challenges
Due	to	the	volumes	of	data	that	some	Big	Data	solutions	are	required	to	process,
performance	is	often	a	concern.	For	example,	large	datasets	coupled	with	complex	search
algorithms	can	lead	to	long	query	times.	Another	performance	challenge	is	related	to
network	bandwidth.	With	increasing	data	volumes,	the	time	to	transfer	a	unit	of	data	can
exceed	its	actual	data	processing	time,	as	shown	in	Figure	3.4.

Figure	3.4	Transferring	1	PB	of	data	via	a	1-Gigabit	LAN	connection	at	80%
throughput	will	take	approximately	2,750	hours.

Distinct	Governance	Requirements
Big	Data	solutions	access	data	and	generate	data,	all	of	which	become	assets	of	the
business.	A	governance	framework	is	required	to	ensure	that	the	data	and	the	solution
environment	itself	are	regulated,	standardized	and	evolved	in	a	controlled	manner.

Examples	of	what	a	Big	Data	governance	framework	can	encompass	include:

•	standardization	of	how	data	is	tagged	and	the	metadata	used	for	tagging

•	policies	that	regulate	the	kind	of	external	data	that	may	be	acquired

•	policies	regarding	the	management	of	data	privacy	and	data	anonymization

•	policies	for	the	archiving	of	data	sources	and	analysis	results

•	policies	that	establish	guidelines	for	data	cleansing	and	filtering

Distinct	Methodology
A	methodology	will	be	required	to	control	how	data	flows	into	and	out	of	Big	Data
solutions.	It	will	need	to	consider	how	feedback	loops	can	be	established	to	enable	the
processed	data	to	undergo	repeated	refinement,	as	shown	in	Figure	3.5.	For	example,	an
iterative	approach	may	be	used	to	enable	business	personnel	to	provide	IT	personnel	with
feedback	on	a	periodic	basis.	Each	feedback	cycle	provides	opportunities	for	system
refinement	by	modifying	data	preparation	or	data	analysis	steps.



Figure	3.5	Each	repetition	can	help	fine-tune	processing	steps,	algorithms	and	data
models	to	improve	the	accuracy	of	results	and	deliver	greater	value	to	the	business.

Clouds
As	mentioned	in	Chapter	2,	clouds	provide	remote	environments	that	can	host	IT
infrastructure	for	large-scale	storage	and	processing,	among	other	things.	Regardless	of
whether	an	organization	is	already	cloud-enabled,	the	adoption	of	a	Big	Data	environment
may	necessitate	that	some	or	all	of	that	environment	be	hosted	within	a	cloud.	For
example,	an	enterprise	that	runs	its	CRM	system	in	a	cloud	decides	to	add	a	Big	Data
solution	in	the	same	cloud	environment	in	order	to	run	analytics	on	its	CRM	data.	This
data	can	then	be	shared	with	its	primary	Big	Data	environment	that	resides	within	the
enterprise	boundaries.

Common	justifications	for	incorporating	a	cloud	environment	in	support	of	a	Big	Data
solution	include:

•	inadequate	in-house	hardware	resources

•	upfront	capital	investment	for	system	procurement	is	not	available

•	the	project	is	to	be	isolated	from	the	rest	of	the	business	so	that	existing	business
processes	are	not	impacted

•	the	Big	Data	initiative	is	a	proof	of	concept

•	datasets	that	need	to	be	processed	are	already	cloud	resident

•	the	limits	of	available	computing	and	storage	resources	used	by	an	in-house	Big
Data	solution	are	being	reached



Big	Data	Analytics	Lifecycle
Big	Data	analysis	differs	from	traditional	data	analysis	primarily	due	to	the	volume,
velocity	and	variety	characteristics	of	the	data	being	processes.	To	address	the	distinct
requirements	for	performing	analysis	on	Big	Data,	a	step-by-step	methodology	is	needed
to	organize	the	activities	and	tasks	involved	with	acquiring,	processing,	analyzing	and
repurposing	data.	The	upcoming	sections	explore	a	specific	data	analytics	lifecycle	that
organizes	and	manages	the	tasks	and	activities	associated	with	the	analysis	of	Big	Data.
From	a	Big	Data	adoption	and	planning	perspective,	it	is	important	that	in	addition	to	the
lifecycle,	consideration	be	made	for	issues	of	training,	education,	tooling	and	staffing	of	a
data	analytics	team.

The	Big	Data	analytics	lifecycle	can	be	divided	into	the	following	nine	stages,	as	shown	in
Figure	3.6:

1.	Business	Case	Evaluation

2.	Data	Identification

3.	Data	Acquisition	&	Filtering

4.	Data	Extraction

5.	Data	Validation	&	Cleansing

6.	Data	Aggregation	&	Representation

7.	Data	Analysis

8.	Data	Visualization

9.	Utilization	of	Analysis	Results



Figure	3.6	The	nine	stages	of	the	Big	Data	analytics	lifecycle.

Business	Case	Evaluation
Each	Big	Data	analytics	lifecycle	must	begin	with	a	well-defined	business	case	that
presents	a	clear	understanding	of	the	justification,	motivation	and	goals	of	carrying	out	the
analysis.	The	Business	Case	Evaluation	stage	shown	in	Figure	3.7	requires	that	a	business
case	be	created,	assessed	and	approved	prior	to	proceeding	with	the	actual	hands-on
analysis	tasks.



Figure	3.7	Stage	1	of	the	Big	Data	analytics	lifecycle.

An	evaluation	of	a	Big	Data	analytics	business	case	helps	decision-makers	understand	the
business	resources	that	will	need	to	be	utilized	and	which	business	challenges	the	analysis
will	tackle.	The	further	identification	of	KPIs	during	this	stage	can	help	determine
assessment	criteria	and	guidance	for	the	evaluation	of	the	analytic	results.	If	KPIs	are	not
readily	available,	efforts	should	be	made	to	make	the	goals	of	the	analysis	project
SMART,	which	stands	for	specific,	measurable,	attainable,	relevant	and	timely.

Based	on	business	requirements	that	are	documented	in	the	business	case,	it	can	be



determined	whether	the	business	problems	being	addressed	are	really	Big	Data	problems.
In	order	to	qualify	as	a	Big	Data	problem,	a	business	problem	needs	to	be	directly	related
to	one	or	more	of	the	Big	Data	characteristics	of	volume,	velocity,	or	variety.

Note	also	that	another	outcome	of	this	stage	is	the	determination	of	the	underlying	budget
required	to	carry	out	the	analysis	project.	Any	required	purchase,	such	as	tools,	hardware
and	training,	must	be	understood	in	advance	so	that	the	anticipated	investment	can	be
weighed	against	the	expected	benefits	of	achieving	the	goals.	Initial	iterations	of	the	Big
Data	analytics	lifecycle	will	require	more	up-front	investment	of	Big	Data	technologies,
products	and	training	compared	to	later	iterations	where	these	earlier	investments	can	be
repeatedly	leveraged.

Data	Identification
The	Data	Identification	stage	shown	in	Figure	3.8	is	dedicated	to	identifying	the	datasets
required	for	the	analysis	project	and	their	sources.



Figure	3.8	Data	Identification	is	stage	2	of	the	Big	Data	analytics	lifecycle.

Identifying	a	wider	variety	of	data	sources	may	increase	the	probability	of	finding	hidden
patterns	and	correlations.	For	example,	to	provide	insight,	it	can	be	beneficial	to	identify
as	many	types	of	related	data	sources	as	possible,	especially	when	it	is	unclear	exactly
what	to	look	for.

Depending	on	the	business	scope	of	the	analysis	project	and	nature	of	the	business
problems	being	addressed,	the	required	datasets	and	their	sources	can	be	internal	and/or
external	to	the	enterprise.



In	the	case	of	internal	datasets,	a	list	of	available	datasets	from	internal	sources,	such	as
data	marts	and	operational	systems,	are	typically	compiled	and	matched	against	a	pre-
defined	dataset	specification.

In	the	case	of	external	datasets,	a	list	of	possible	third-party	data	providers,	such	as	data
markets	and	publicly	available	datasets,	are	compiled.	Some	forms	of	external	data	may	be
embedded	within	blogs	or	other	types	of	content-based	web	sites,	in	which	case	they	may
need	to	be	harvested	via	automated	tools.

Data	Acquisition	and	Filtering
During	the	Data	Acquisition	and	Filtering	stage,	shown	in	Figure	3.9,	the	data	is	gathered
from	all	of	the	data	sources	that	were	identified	during	the	previous	stage.	The	acquired
data	is	then	subjected	to	automated	filtering	for	the	removal	of	corrupt	data	or	data	that
has	been	deemed	to	have	no	value	to	the	analysis	objectives.



Figure	3.9	Stage	3	of	the	Big	Data	analytics	lifecycle.

Depending	on	the	type	of	data	source,	data	may	come	as	a	collection	of	files,	such	as	data
purchased	from	a	third-party	data	provider,	or	may	require	API	integration,	such	as	with
Twitter.	In	many	cases,	especially	where	external,	unstructured	data	is	concerned,	some	or
most	of	the	acquired	data	may	be	irrelevant	(noise)	and	can	be	discarded	as	part	of	the
filtering	process.

Data	classified	as	“corrupt”	can	include	records	with	missing	or	nonsensical	values	or
invalid	data	types.	Data	that	is	filtered	out	for	one	analysis	may	possibly	be	valuable	for	a



different	type	of	analysis.	Therefore,	it	is	advisable	to	store	a	verbatim	copy	of	the	original
dataset	before	proceeding	with	the	filtering.	To	minimize	the	required	storage	space,	the
verbatim	copy	can	be	compressed.

Both	internal	and	external	data	needs	to	be	persisted	once	it	gets	generated	or	enters	the
enterprise	boundary.	For	batch	analytics,	this	data	is	persisted	to	disk	prior	to	analysis.	In
the	case	of	realtime	analytics,	the	data	is	analyzed	first	and	then	persisted	to	disk.

As	evidenced	in	Figure	3.10,	metadata	can	be	added	via	automation	to	data	from	both
internal	and	external	data	sources	to	improve	the	classification	and	querying.	Examples	of
appended	metadata	include	dataset	size	and	structure,	source	information,	date	and	time	of
creation	or	collection	and	language-specific	information.	It	is	vital	that	metadata	be
machine-readable	and	passed	forward	along	subsequent	analysis	stages.	This	helps
maintain	data	provenance	throughout	the	Big	Data	analytics	lifecycle,	which	helps	to
establish	and	preserve	data	accuracy	and	quality.

Figure	3.10	Metadata	is	added	to	data	from	internal	and	external	sources.

Data	Extraction
Some	of	the	data	identified	as	input	for	the	analysis	may	arrive	in	a	format	incompatible
with	the	Big	Data	solution.	The	need	to	address	disparate	types	of	data	is	more	likely	with
data	from	external	sources.	The	Data	Extraction	lifecycle	stage,	shown	in	Figure	3.11,	is
dedicated	to	extracting	disparate	data	and	transforming	it	into	a	format	that	the	underlying
Big	Data	solution	can	use	for	the	purpose	of	the	data	analysis.



Figure	3.11	Stage	4	of	the	Big	Data	analytics	lifecycle.

The	extent	of	extraction	and	transformation	required	depends	on	the	types	of	analytics	and
capabilities	of	the	Big	Data	solution.	For	example,	extracting	the	required	fields	from
delimited	textual	data,	such	as	with	webserver	log	files,	may	not	be	necessary	if	the
underlying	Big	Data	solution	can	already	directly	process	those	files.

Similarly,	extracting	text	for	text	analytics,	which	requires	scans	of	whole	documents,	is
simplified	if	the	underlying	Big	Data	solution	can	directly	read	the	document	in	its	native
format.



Figure	3.12	illustrates	the	extraction	of	comments	and	a	user	ID	embedded	within	an	XML
document	without	the	need	for	further	transformation.

Figure	3.12	Comments	and	user	IDs	are	extracted	from	an	XML	document.

Figure	3.13	demonstrates	the	extraction	of	the	latitude	and	longitude	coordinates	of	a	user
from	a	single	JSON	field.

Figure	3.13	The	user	ID	and	coordinates	of	a	user	are	extracted	from	a	single	JSON
field.

Further	transformation	is	needed	in	order	to	separate	the	data	into	two	separate	fields	as
required	by	the	Big	Data	solution.

Data	Validation	and	Cleansing
Invalid	data	can	skew	and	falsify	analysis	results.	Unlike	traditional	enterprise	data,	where
the	data	structure	is	pre-defined	and	data	is	pre-validated,	data	input	into	Big	Data
analyses	can	be	unstructured	without	any	indication	of	validity.	Its	complexity	can	further
make	it	difficult	to	arrive	at	a	set	of	suitable	validation	constraints.

The	Data	Validation	and	Cleansing	stage	shown	in	Figure	3.14	is	dedicated	to	establishing
often	complex	validation	rules	and	removing	any	known	invalid	data.



Figure	3.14	Stage	5	of	the	Big	Data	analytics	lifecycle.

Big	Data	solutions	often	receive	redundant	data	across	different	datasets.	This	redundancy
can	be	exploited	to	explore	interconnected	datasets	in	order	to	assemble	validation
parameters	and	fill	in	missing	valid	data.

For	example,	as	illustrated	in	Figure	3.15:

•	The	first	value	in	Dataset	B	is	validated	against	its	corresponding	value	in	Dataset
A.



•	The	second	value	in	Dataset	B	is	not	validated	against	its	corresponding	value	in
Dataset	A.

•	If	a	value	is	missing,	it	is	inserted	from	Dataset	A.

Figure	3.15	Data	validation	can	be	used	to	examine	interconnected	datasets	in	order	to
fill	in	missing	valid	data.

For	batch	analytics,	data	validation	and	cleansing	can	be	achieved	via	an	offline	ETL
operation.	For	realtime	analytics,	a	more	complex	in-memory	system	is	required	to
validate	and	cleanse	the	data	as	it	arrives	from	the	source.	Provenance	can	play	an
important	role	in	determining	the	accuracy	and	quality	of	questionable	data.	Data	that
appears	to	be	invalid	may	still	be	valuable	in	that	it	may	possess	hidden	patterns	and
trends,	as	shown	in	Figure	3.16.

Figure	3.16	The	presence	of	invalid	data	is	resulting	in	spikes.	Although	the	data
appears	abnormal,	it	may	be	indicative	of	a	new	pattern.

Data	Aggregation	and	Representation
Data	may	be	spread	across	multiple	datasets,	requiring	that	datasets	be	joined	together	via
common	fields,	for	example	date	or	ID.	In	other	cases,	the	same	data	fields	may	appear	in
multiple	datasets,	such	as	date	of	birth.	Either	way,	a	method	of	data	reconciliation	is
required	or	the	dataset	representing	the	correct	value	needs	to	be	determined.

The	Data	Aggregation	and	Representation	stage,	shown	in	Figure	3.17,	is	dedicated	to
integrating	multiple	datasets	together	to	arrive	at	a	unified	view.



Figure	3.17	Stage	6	of	the	Big	Data	analytics	lifecycle.

Performing	this	stage	can	become	complicated	because	of	differences	in:

•	Data	Structure	–	Although	the	data	format	may	be	the	same,	the	data	model	may	be
different.

•	Semantics	–	A	value	that	is	labeled	differently	in	two	different	datasets	may	mean
the	same	thing,	for	example	“surname”	and	“last	name.”

The	large	volumes	processed	by	Big	Data	solutions	can	make	data	aggregation	a	time	and



effort-intensive	operation.	Reconciling	these	differences	can	require	complex	logic	that	is
executed	automatically	without	the	need	for	human	intervention.

Future	data	analysis	requirements	need	to	be	considered	during	this	stage	to	help	foster
data	reusability.	Whether	data	aggregation	is	required	or	not,	it	is	important	to	understand
that	the	same	data	can	be	stored	in	many	different	forms.	One	form	may	be	better	suited
for	a	particular	type	of	analysis	than	another.	For	example,	data	stored	as	a	BLOB	would
be	of	little	use	if	the	analysis	requires	access	to	individual	data	fields.

A	data	structure	standardized	by	the	Big	Data	solution	can	act	as	a	common	denominator
that	can	be	used	for	a	range	of	analysis	techniques	and	projects.	This	can	require
establishing	a	central,	standard	analysis	repository,	such	as	a	NoSQL	database,	as	shown
in	Figure	3.18.

Figure	3.18	A	simple	example	of	data	aggregation	where	two	datasets	are	aggregated
together	using	the	Id	field.

Figure	3.19	shows	the	same	piece	of	data	stored	in	two	different	formats.	Dataset	A
contains	the	desired	piece	of	data,	but	it	is	part	of	a	BLOB	that	is	not	readily	accessible	for
querying.	Dataset	B	contains	the	same	piece	of	data	organized	in	column-based	storage,
enabling	each	field	to	be	queried	individually.

Figure	3.19	Dataset	A	and	B	can	be	combined	to	create	a	standardized	data	structure
with	a	Big	Data	solution.



Data	Analysis
The	Data	Analysis	stage	shown	in	Figure	3.20	is	dedicated	to	carrying	out	the	actual
analysis	task,	which	typically	involves	one	or	more	types	of	analytics.	This	stage	can	be
iterative	in	nature,	especially	if	the	data	analysis	is	exploratory,	in	which	case	analysis	is
repeated	until	the	appropriate	pattern	or	correlation	is	uncovered.	The	exploratory	analysis
approach	will	be	explained	shortly,	along	with	confirmatory	analysis.

Figure	3.20	Stage	7	of	the	Big	Data	analytics	lifecycle.



Depending	on	the	type	of	analytic	result	required,	this	stage	can	be	as	simple	as	querying	a
dataset	to	compute	an	aggregation	for	comparison.	On	the	other	hand,	it	can	be	as
challenging	as	combining	data	mining	and	complex	statistical	analysis	techniques	to
discover	patterns	and	anomalies	or	to	generate	a	statistical	or	mathematical	model	to
depict	relationships	between	variables.

Data	analysis	can	be	classified	as	confirmatory	analysis	or	exploratory	analysis,	the	latter
of	which	is	linked	to	data	mining,	as	shown	in	Figure	3.21.

Figure	3.21	Data	analysis	can	be	carried	out	as	confirmatory	or	exploratory	analysis.

Confirmatory	data	analysis	is	a	deductive	approach	where	the	cause	of	the	phenomenon
being	investigated	is	proposed	beforehand.	The	proposed	cause	or	assumption	is	called	a
hypothesis.	The	data	is	then	analyzed	to	prove	or	disprove	the	hypothesis	and	provide
definitive	answers	to	specific	questions.	Data	sampling	techiniques	are	typically	used.
Unexpected	findings	or	anomalies	are	usually	ignored	since	a	predetermined	cause	was
assumed.

Exploratory	data	analysis	is	an	inductive	approach	that	is	closely	associated	with	data
mining.	No	hypothesis	or	predetermined	assumptions	are	generated.	Instead,	the	data	is
explored	through	analysis	to	develop	an	understanding	of	the	cause	of	the	phenomenon.
Although	it	may	not	provide	definitive	answers,	this	method	provides	a	general	direction
that	can	facilitate	the	discovery	of	patterns	or	anomalies.

Data	Visualization
The	ability	to	analyze	massive	amounts	of	data	and	find	useful	insights	carries	little	value
if	the	only	ones	that	can	interpret	the	results	are	the	analysts.

The	Data	Visualization	stage,	shown	in	Figure	3.22,	is	dedicated	to	using	data
visualization	techniques	and	tools	to	graphically	communicate	the	analysis	results	for
effective	interpretation	by	business	users.



Figure	3.22	Stage	8	of	the	Big	Data	analytics	lifecycle.

Business	users	need	to	be	able	to	understand	the	results	in	order	to	obtain	value	from	the
analysis	and	subsequently	have	the	ability	to	provide	feedback,	as	indicated	by	the	dashed
line	leading	from	stage	8	back	to	stage	7.

The	results	of	completing	the	Data	Visualization	stage	provide	users	with	the	ability	to
perform	visual	analysis,	allowing	for	the	discovery	of	answers	to	questions	that	users	have
not	yet	even	formulated.	Visual	analysis	techniques	are	covered	later	in	this	book.



The	same	results	may	be	presented	in	a	number	of	different	ways,	which	can	influence	the
interpretation	of	the	results.	Consequently,	it	is	important	to	use	the	most	suitable
visualization	technique	by	keeping	the	business	domain	in	context.

Another	aspect	to	keep	in	mind	is	that	providing	a	method	of	drilling	down	to
comparatively	simple	statistics	is	crucial,	in	order	for	users	to	understand	how	the	rolled
up	or	aggregated	results	were	generated.

Utilization	of	Analysis	Results
Subsequent	to	analysis	results	being	made	available	to	business	users	to	support	business
decision-making,	such	as	via	dashboards,	there	may	be	further	opportunities	to	utilize	the
analysis	results.	The	Utilization	of	Analysis	Results	stage,	shown	in	Figure	3.23,	is
dedicated	to	determining	how	and	where	processed	analysis	data	can	be	further	leveraged.



Figure	3.23	Stage	9	of	the	Big	Data	analytics	lifecycle.

Depending	on	the	nature	of	the	analysis	problems	being	addressed,	it	is	possible	for	the
analysis	results	to	produce	“models”	that	encapsulate	new	insights	and	understandings
about	the	nature	of	the	patterns	and	relationships	that	exist	within	the	data	that	was
analyzed.	A	model	may	look	like	a	mathematical	equation	or	a	set	of	rules.	Models	can	be
used	to	improve	business	process	logic	and	application	system	logic,	and	they	can	form
the	basis	of	a	new	system	or	software	program.

Common	areas	that	are	explored	during	this	stage	include	the	following:



•	Input	for	Enterprise	Systems	–	The	data	analysis	results	may	be	automatically	or
manually	fed	directly	into	enterprise	systems	to	enhance	and	optimize	their
behaviors	and	performance.	For	example,	an	online	store	can	be	fed	processed
customer-related	analysis	results	that	may	impact	how	it	generates	product
recommendations.	New	models	may	be	used	to	improve	the	programming	logic
within	existing	enterprise	systems	or	may	form	the	basis	of	new	systems.

•	Business	Process	Optimization	–	The	identified	patterns,	correlations	and	anomalies
discovered	during	the	data	analysis	are	used	to	refine	business	processes.	An
example	is	consolidating	transportation	routes	as	part	of	a	supply	chain	process.
Models	may	also	lead	to	opportunities	to	improve	business	process	logic.

•	Alerts	–	Data	analysis	results	can	be	used	as	input	for	existing	alerts	or	may	form	the
basis	of	new	alerts.	For	example,	alerts	may	be	created	to	inform	users	via	email	or
SMS	text	about	an	event	that	requires	them	to	take	corrective	action.

Case	Study	Example

The	majority	of	ETI’s	IT	team	is	convinced	that	Big	Data	is	the	silver	bullet	that
will	address	all	of	their	current	issues.	However,	the	trained	IT	members	point	out
that	adopting	Big	Data	is	not	the	same	as	simply	adopting	a	technology	platform.
Rather,	a	range	of	factors	first	need	to	be	considered	in	order	to	ensure	successful
adoption	of	Big	Data.	Therefore,	to	ensure	that	the	impact	of	business-related
factors	is	fully	understood,	the	IT	team	sits	together	with	the	business	managers	to
create	a	feasibility	report.	Involving	business	personnel	at	this	early	stage	will
further	help	create	an	environment	that	reduces	the	gap	between	management’s
perceived	expectations	and	what	IT	can	actually	deliver.

There	is	a	strong	understanding	that	the	adoption	of	Big	Data	is	business-oriented
and	will	assist	ETI	in	reaching	its	goals.	Big	Data’s	abilities	to	store	and	process
large	amounts	of	unstructured	data	and	combine	multiple	datasets	will	help	ETI
comprehend	risk.	The	company	hopes	that,	as	a	result,	it	can	minimize	losses	by
only	accepting	less-risky	applicants	as	customers.	Similarly,	ETI	predicts	that	the
ability	to	look	into	the	unstructured	behavioral	data	of	a	customer	and	discover
abnormal	behavior	will	further	help	reduce	loss	because	fraudulent	claims	can	be
rejected.

The	decision	to	train	the	IT	team	in	the	field	of	Big	Data	has	increased	ETI’s
readiness	for	adopting	Big	Data.	The	team	believes	that	it	now	has	the	basic	skillset
required	for	undertaking	a	Big	Data	initiative.	Data	identified	and	categorized
earlier	puts	the	team	in	a	strong	position	for	deciding	on	the	required	technologies.
The	early	engagement	of	business	management	has	also	provided	insights	that
allow	them	to	anticipate	changes	that	may	be	required	in	the	future	to	keep	the	Big
Data	solution	platform	in	alignment	with	any	emerging	business	requirements.

At	this	preliminary	stage,	only	a	handful	of	external	data	sources,	such	as	social
media	and	census	data,	have	been	identified.	It	is	agreed	by	the	business	personnel
that	a	sufficient	budget	will	be	allocated	for	the	acquisition	of	data	from	third-party
data	providers.	Regarding	privacy,	the	business	users	are	a	bit	wary	that	obtaining



additional	data	about	customers	could	spark	customer	distrust.	However,	it	is
thought	that	an	incentive-driven	scheme,	such	as	lower	premiums,	can	be
introduced	in	order	to	gain	customers’	consent	and	trust.	When	considering	issues
of	security,	the	IT	team	notes	that	additional	development	efforts	will	be	required	to
ensure	that	standardized,	role-based	access	controls	are	in	place	for	data	held	within
the	Big	Data	solution	environment.	This	is	especially	relevant	for	the	open-source
databases	that	will	hold	non-relational	data.

Although	the	business	users	are	excited	about	being	able	to	perform	deep	analytics
through	the	use	of	unstructured	data,	they	pose	a	question	regarding	the	degree	to
which	can	they	trust	the	results,	for	the	analysis	involves	data	from	third-party	data
providers.	The	IT	team	responds	that	a	framework	will	be	adopted	for	adding	and
updating	metadata	for	each	dataset	that	is	stored	and	processed	so	that	provenance
is	maintained	at	all	times	and	processing	results	can	be	traced	all	the	way	back	to
the	constituent	data	sources.

ETI’s	present	goals	include	decreasing	the	time	it	takes	to	settle	claims	and	detect
fraudulent	claims.	The	achievement	of	these	goals	will	require	a	solution	that
provides	results	in	a	timely	manner.	However,	it	is	not	anticipated	that	realtime	data
analysis	support	will	be	required.	The	IT	team	believes	that	these	goals	can	be
satisfied	by	developing	a	batch-based	Big	Data	solution	that	leverages	open	source
Big	Data	technology.

ETI’s	current	IT	infrastructure	consists	of	comparatively	older	networking
standards.	Similarly,	the	specifications	of	most	of	the	servers,	such	as	the	processor
speed,	disk	capacity	and	disk	speed,	dictate	that	they	are	not	capable	of	providing
optimum	data	processing	performance.	Hence	it	is	agreed	that	the	current	IT
infrastructure	needs	an	upgrade	before	a	Big	Data	solution	can	be	designed	and
built.

Both	the	business	and	IT	teams	strongly	believe	that	a	Big	Data	governance
framework	is	required	to	not	only	help	them	standardize	the	usage	of	disparate	data
sources	but	also	fully	comply	with	any	data	privacy-related	regulations.
Furthermore,	due	to	the	business	focus	of	the	data	analysis	and	to	ensure	that
meaningful	analysis	results	are	generated,	it	is	decided	that	an	iterative	data	analysis
approach	that	includes	business	personnel	from	the	relevant	department	needs	to	be
adopted.	For	example,	in	the	“improving	customer	retention”	scenario,	the
marketing	and	sales	team	can	be	included	in	the	data	analysis	process	right	from	the
selection	of	datasets	so	that	only	the	relevant	attributes	of	these	datasets	are	chosen.
Later,	the	business	team	can	provide	valuable	feedback	in	terms	of	interpretation
and	applicability	of	the	analysis	results.

With	regards	to	cloud	computing,	the	IT	team	observes	that	none	of	its	systems	are
currently	hosted	in	the	cloud	and	that	the	team	does	not	possess	cloud-related
skillsets.	These	facts	alongside	data	privacy	concerns	lead	the	IT	team	to	the
decision	to	build	an	on-premise	Big	Data	solution.	The	group	notes	that	they	will
leave	the	option	of	cloud-based	hosting	open	because	there	is	some	speculation	that
their	internal	CRM	system	may	be	replaced	with	a	cloud-hosted,	software-as-a-
service	CRM	solution	in	the	future.



Big	Data	Analytics	Lifecycle
ETI’s	Big	Data	journey	has	reached	the	stage	where	its	IT	team	possesses	the
necessary	skills	and	the	management	is	convinced	of	the	potential	benefits	that	a
Big	Data	solution	can	bring	in	support	of	the	business	goals.	The	CEO	and	the
directors	are	eager	to	see	Big	Data	in	action.	In	response	to	this,	the	IT	team,	in
partnership	with	the	business	personnel,	take	on	ETI’s	first	Big	Data	project.	After	a
thorough	evaluation	process,	the	“detection	of	fraudulent	claims”	objective	is
chosen	as	the	first	Big	Data	solution.	The	team	then	follows	a	step-by-step
approach	as	set	forth	by	the	Big	Data	Analytics	Lifecycle	in	pursuit	of	achieving
this	objective.

Business	Case	Evaluation
Carrying	out	Big	Data	analysis	for	the	“detection	of	fraudulent	claims”	directly
corresponds	to	a	decrease	in	monetary	loss	and	hence	carries	complete	business
backing.	Although	fraud	occurs	across	all	the	four	business	sectors	of	ETI,	in	the
interest	of	keeping	the	analysis	somewhat	straightforward,	the	scope	of	Big	Data
analysis	is	limited	to	identification	of	fraud	in	the	building	sector.

ETI	provides	building	and	contents	insurance	to	both	domestic	and	commercial
customers.	Although	insurance	fraud	can	both	be	opportunistic	and	organized,
opportunistic	fraud	in	the	form	of	lying	and	exaggeration	covers	the	majority	of	the
cases.	To	measure	the	success	of	the	Big	Data	solution	for	fraud	detection,	one	of
the	KPIs	set	is	the	reduction	in	fraudulent	claims	by	15%.

Taking	their	budget	into	account,	the	team	decides	that	their	largest	expense	will	be
in	the	procuring	of	new	infrastructure	that	is	appropriate	for	building	a	Big	Data
solution	environment.	They	realize	that	they	will	be	leveraging	open	source
technologies	to	support	batch	processing	and	therefore	do	not	believe	that	a	large,
initial	up-front	investment	is	required	for	tooling.	However,	when	they	consider	the
broader	Big	Data	analytics	lifecycle,	the	team	members	realize	that	they	should
budget	for	the	acquisition	of	additional	data	quality	and	cleansing	tools	and	newer
data	visualization	technologies.	After	accounting	for	these	expenses,	a	cost-benefit
analysis	reveals	that	the	investment	in	the	Big	Data	solution	can	return	itself	several
times	over	if	the	targeted	fraud-detecting	KPIs	can	be	attained.	As	a	result	of	this
analysis,	the	team	believes	that	a	strong	business	case	exists	for	using	Big	Data	for
enhanced	data	analysis.

Data	Identification
A	number	of	internal	and	external	datasets	are	identified.	Internal	data	includes
policy	data,	insurance	application	documents,	claim	data,	claim	adjuster	notes,
incident	photographs,	call	center	agent	notes	and	emails.	External	data	includes
social	media	data	(Twitter	feeds),	weather	reports,	geographical	(GIS)	data	and
census	data.	Nearly	all	datasets	go	back	five	years	in	time.	The	claim	data	consists
of	historical	claim	data	consisting	of	multiple	fields	where	one	of	the	fields
specifies	if	the	claim	was	fraudulent	or	legitimate.

Data	Acquisition	and	Filtering



The	policy	data	is	obtained	from	the	policy	administration	system,	the	claim	data,
incident	photographs	and	claim	adjuster	notes	are	acquired	from	the	claims
management	system	and	the	insurance	application	documents	are	obtained	from	the
document	management	system.	The	claim	adjuster	notes	are	currently	embedded
within	the	claim	data.	Hence	a	separate	process	is	used	to	extract	them.	Call	center
agent	notes	and	emails	are	obtained	from	the	CRM	system.

The	rest	of	the	datasets	are	acquired	from	third-party	data	providers.	A	compressed
copy	of	the	original	version	of	all	of	the	datasets	is	stored	on-disk.	From	a
provenance	perspective,	the	following	metadata	is	tracked	to	capture	the	pedigree
of	each	dataset:	dataset’s	name,	source,	size,	format,	checksum,	acquired	date	and
number	of	records.	A	quick	check	of	the	data	qualities	of	Twitter	feeds	and	weather
reports	suggests	that	around	four	to	five	percent	of	their	records	are	corrupt.
Consequently,	two	batch	data	filtering	jobs	are	established	to	remove	the	corrupt
records.

Data	Extraction
The	IT	team	observes	that	some	of	the	datasets	will	need	to	be	pre-processed	in
order	to	extract	the	required	fields.	For	example,	the	tweets	dataset	is	in	JSON
format.	In	order	to	be	able	to	analyze	the	tweets,	the	user	id,	timestamp	and	the
tweet	text	need	to	be	extracted	and	converted	to	tabular	form.	Further,	the	weather
dataset	arrives	in	a	hierarchical	format	(XML),	and	fields	such	as	timestamp,
temperature	forecast,	wind	speed	forecast,	wind	direction	forecast,	snow	forecast
and	flood	forecast	are	also	extracted	and	saved	in	a	tabular	form.

Data	Validation	and	Cleansing
To	keep	costs	down,	ETI	is	currently	using	free	versions	of	the	weather	and	the
census	datasets	that	are	not	guaranteed	to	be	100%	accurate.	As	a	result,	these
datasets	need	to	be	validated	and	cleansed.	Based	on	the	published	field
information,	the	team	is	able	to	check	the	extracted	fields	for	typographical	errors
and	any	incorrect	data	as	well	as	data	type	and	range	validation.	A	rule	is
established	that	a	record	will	not	be	removed	if	it	contains	some	meaningful	level	of
information	even	though	some	of	its	fields	may	contain	invalid	data.

Data	Aggregation	and	Representation
For	meaningful	analysis	of	data,	it	is	decided	to	join	together	policy	data,	claim	data
and	call	center	agent	notes	in	a	single	dataset	that	is	tabular	in	nature	where	each
field	can	be	referenced	via	a	data	query.	It	is	thought	that	this	will	not	only	help
with	the	current	data	analysis	task	of	detecting	fraudulent	claims	but	will	also	help
with	other	data	analysis	tasks,	such	as	risk	evaluation	and	speedy	settlement	of
claims.	The	resulting	dataset	is	stored	in	a	NoSQL	database.

Data	Analysis
The	IT	team	involves	the	data	analysts	at	this	stage	as	it	does	not	have	the	right
skillset	for	analyzing	data	in	support	of	detecting	fraudulent	claims.	In	order	to	be
able	to	detect	fraudulent	transactions,	first	the	nature	of	fraudulent	claims	needs	to



be	analyzed	in	order	to	find	which	characteristics	differentiate	a	fraudulent	claim
from	a	legitimate	claim.	For	this,	the	exploratory	data	analysis	approach	is	taken.
As	part	of	this	analysis,	a	range	of	analysis	techniques	are	applied,	some	of	which
are	discussed	in	Chapter	8.	This	stage	is	repeated	a	number	of	times	as	the	results
generated	after	the	first	pass	are	not	conclusive	enough	to	comprehend	what	makes
a	fraudulent	claim	different	from	a	legitimate	claim.	As	part	of	this	exercise,
attributes	that	are	less	indicative	of	a	fraudulent	claim	are	dropped	while	attributes
that	carry	a	direct	relationship	are	kept	or	added.

Data	Visualization
The	team	has	discovered	some	interesting	findings	and	now	needs	to	convey	the
results	to	the	actuaries,	underwriters	and	claim	adjusters.	Different	visualization
methods	are	used	including	bar	and	line	graphs	and	scatter	plots.	Scatter	plots	are
used	to	analyze	groups	of	fraudulent	and	legitimate	claims	in	the	light	of	different
factors,	such	as	customer	age,	age	of	policy,	number	of	claims	made	and	value	of
claim.

Utilization	of	Analysis	Results
Based	on	the	data	analysis	results,	the	underwriting	and	the	claims	settlement	users
have	now	developed	an	understanding	of	the	nature	of	fraudulent	claims.	However,
in	order	to	realize	tangible	benefits	from	this	data	analysis	exercise,	a	model	based
on	a	machine-learning	technique	is	generated,	which	is	then	incorporated	into	the
existing	claim	processing	system	to	flag	fraudulent	claims.	The	involved	machine
learning	technique	will	be	discussed	in	Chapter	8.



Chapter	4.	Enterprise	Technologies	and	Big	Data	Business
Intelligence

Online	Transaction	Processing	(OLTP)

Online	Analytical	Processing	(OLAP)

Extract	Transform	Load	(ETL)

Data	Warehouses

Data	Marts

Traditional	BI

Big	Data	BI

As	described	in	Chapter	2,	in	an	enterprise	executed	as	a	layered	system,	the	strategic
layer	constrains	the	tactical	layer,	which	directs	the	operational	layer.	The	alignment	of
layers	is	captured	through	metrics	and	performance	indicators,	which	provide	the
operational	layer	with	insight	into	how	its	processes	are	executing.	These	measurements
are	aggregated	and	enhanced	with	additional	meaning	to	become	KPIs,	through	which
managers	of	the	tactical	layer	can	assess	corporate	performance,	or	business	execution.
The	KPIs	are	related	with	other	measurements	and	understandings	that	are	used	to	assess
critical	success	factors.	Ultimately,	this	series	of	enrichment	corresponds	with	the
transformation	of	data	into	information,	information	into	knowledge	and	knowledge	into
wisdom.

This	chapter	discusses	the	enterprise	technologies	that	support	this	transformation.	Data	is



held	within	the	operational-level	information	systems	of	an	organization.	Moreover,
database	structure	is	leveraged	with	queries	to	generate	information.	Higher	up	the
analytic	food	chain	are	analytical	processing	systems.	These	systems	leverage	multi-
dimensional	structures	to	answer	more	complex	queries	and	provide	deeper	insight	into
business	operations.	On	a	larger	scale,	data	is	collected	from	throughout	the	enterprise	and
warehoused	in	a	data	warehouse.	It	is	from	these	data	stores	that	management	gains
insight	into	broader	corporate	performance	and	KPIs.

This	chapter	covers	the	following	topics:

•	Online	Transaction	Processing	(OLTP)

•	Online	Analytical	Processing	(OLAP)

•	Extract	Transform	Load	(ETL)

•	Data	Warehouses

•	Data	Marts

•	Traditional	BI

•	Big	Data	BI

Online	Transaction	Processing	(OLTP)
OLTP	is	a	software	system	that	processes	transaction-oriented	data.	The	term	“online
transaction”	refers	to	the	completion	of	an	activity	in	realtime	and	is	not	batch-processed.
OLTP	systems	store	operational	data	that	is	normalized.	This	data	is	a	common	source	of
structured	data	and	serves	as	input	to	many	analytic	processes.	Big	Data	analysis	results
can	be	used	to	augment	OLTP	data	stored	in	the	underlying	relational	databases.	OLTP
systems,	for	example	a	point	of	sale	system,	execute	business	processes	in	support	of
corporate	operations.	As	shown	in	Figure	4.1,	they	perform	transactions	against	a
relational	database.

Figure	4.1	OLTP	systems	perform	simple	database	operations	to	provide	sub-second
response	times.

The	queries	supported	by	OLTP	systems	are	comprised	of	simple	insert,	delete	and	update
operations	with	sub-second	response	times.	Examples	include	ticket	reservation	systems,
banking	and	point	of	sale	systems.



Online	Analytical	Processing	(OLAP)
Online	analytical	processing	(OLAP)	systems	are	used	for	processing	data	analysis
queries.	OLAPs	form	an	integral	part	of	business	intelligence,	data	mining	and	machine
learning	processes.	They	are	relevant	to	Big	Data	in	that	they	can	serve	as	both	a	data
source	as	well	as	a	data	sink	that	is	capable	of	receiving	data.	They	are	used	in	diagnostic,
predictive	and	prescriptive	analytics.	As	shown	in	Figure	4.2,	OLAP	systems	perform
long-running,	complex	queries	against	a	multidimensional	database	whose	structure	is
optimized	for	performing	advanced	analytics.

Figure	4.2	OLAP	systems	use	multidimensional	databases.

OLAP	systems	store	historical	data	that	is	aggregated	and	denormalized	to	support	fast
reporting	capability.	They	further	use	databases	that	store	historical	data	in
multidimensional	structures	and	can	answer	complex	queries	based	on	the	relationships
between	multiple	aspects	of	the	data.

Extract	Transform	Load	(ETL)
Extract	Transform	Load	(ETL)	is	a	process	of	loading	data	from	a	source	system	into	a
target	system.	The	source	system	can	be	a	database,	a	flat	file,	or	an	application.	Similarly,
the	target	system	can	be	a	database	or	some	other	storage	system.

ETL	represents	the	main	operation	through	which	data	warehouses	are	fed	data.	A	Big
Data	solution	encompasses	the	ETL	feature-set	for	converting	data	of	different	types.
Figure	4.3	shows	that	the	required	data	is	first	obtained	or	extracted	from	the	sources,	after
which	the	extracts	are	modified	or	transformed	by	the	application	of	rules.	Finally,	the
data	is	inserted	or	loaded	into	the	target	system.



Figure	4.3	An	ETL	process	can	extract	data	from	multiple	sources	and	transform	it	for
loading	into	a	single	target	system.

Data	Warehouses
A	data	warehouse	is	a	central,	enterprise-wide	repository	consisting	of	historical	and
current	data.	Data	warehouses	are	heavily	used	by	BI	to	run	various	analytical	queries,	and
they	usually	interface	with	an	OLAP	system	to	support	multi-dimensional	analytical
queries,	as	shown	in	Figure	4.4.

Figure	4.4	Batch	jobs	periodically	load	data	into	a	data	warehouse	from	operational
systems	like	ERP,	CRM	and	SCM.

Data	pertaining	to	multiple	business	entities	from	different	operational	systems	is



periodically	extracted,	validated,	transformed	and	consolidated	into	a	single	denormalized
database.	With	periodic	data	imports	from	across	the	enterprise,	the	amount	of	data
contained	in	a	given	data	warehouse	will	continue	to	increase.	Over	time	this	leads	to
slower	query	response	times	for	data	analysis	tasks.	To	resolve	this	shortcoming,	data
warehouses	usually	contain	optimized	databases,	called	analytical	databases,	to	handle
reporting	and	data	analysis	tasks.	An	analytical	database	can	exist	as	a	separate	DBMS,	as
in	the	case	of	an	OLAP	database.

Data	Marts
A	data	mart	is	a	subset	of	the	data	stored	in	a	data	warehouse	that	typically	belongs	to	a
department,	division,	or	specific	line	of	business.	Data	warehouses	can	have	multiple	data
marts.	As	shown	in	Figure	4.5,	enterprise-wide	data	is	collected	and	business	entities	are
then	extracted.	Domain-specific	entities	are	persisted	into	the	data	warehouse	via	an	ETL
process.

Figure	4.5	A	data	warehouse’s	single	version	of	“truth”	is	based	on	cleansed	data,
which	is	a	prerequisite	for	accurate	and	error-free	reports,	as	per	the	output	shown	on

the	right.

Traditional	BI
Traditional	BI	primarily	utilizes	descriptive	and	diagnostic	analytics	to	provide
information	on	historical	and	current	events.	It	is	not	“intelligent”	because	it	only	provides
answers	to	correctly	formulated	questions.	Correctly	formulating	questions	requires	an
understanding	of	business	problems	and	issues	and	of	the	data	itself.	BI	reports	on
different	KPIs	through:

•	ad-hoc	reports



•	dashboards

Ad-hoc	Reports
Ad-hoc	reporting	is	a	process	that	involves	manually	processing	data	to	produce	custom-
made	reports,	as	shown	in	Figure	4.6.	The	focus	of	an	ad-hoc	report	is	usually	on	a
specific	area	of	the	business,	such	as	its	marketing	or	supply	chain	management.	The
generated	custom	reports	are	detailed	and	often	tabular	in	nature.

Figure	4.6	OLAP	and	OLTP	data	sources	can	be	used	by	BI	tools	for	both	ad-hoc
reporting	and	dashboards.

Dashboards
Dashboards	provide	a	holistic	view	of	key	business	areas.	The	information	displayed	on
dashboards	is	generated	at	periodic	intervals	in	realtime	or	near-realtime.	The	presentation
of	data	on	dashboards	is	graphical	in	nature,	using	bar	charts,	pie	charts	and	gauges,	as
shown	in	Figure	4.7.

Figure	4.7	BI	tools	use	both	OLAP	and	OLTP	to	display	the	information	on
dashboards.

As	previously	explained,	data	warehouses	and	data	marts	contain	consolidated	and



validated	information	about	enterprise-wide	business	entities.	Traditional	BI	cannot
function	effectively	without	data	marts	because	they	contain	the	optimized	and	segregated
data	that	BI	requires	for	reporting	purposes.	Without	data	marts,	data	needs	to	be	extracted
from	the	data	warehouse	via	an	ETL	process	on	an	ad-hoc	basis	whenever	a	query	needs
to	be	run.	This	increases	the	time	and	effort	to	execute	queries	and	generate	reports.

Traditional	BI	uses	data	warehouses	and	data	marts	for	reporting	and	data	analysis
because	they	allow	complex	data	analysis	queries	with	multiple	joins	and	aggregations	to
be	issued,	as	shown	in	Figure	4.8.

Figure	4.8	An	example	of	traditional	BI.

Big	Data	BI
Big	Data	BI	builds	upon	traditional	BI	by	acting	on	the	cleansed,	consolidated	enterprise-
wide	data	in	the	data	warehouse	and	combining	it	with	semi-structured	and	unstructured
data	sources.	It	comprises	both	predictive	and	prescriptive	analytics	to	facilitate	the
development	of	an	enterprise-wide	understanding	of	business	performance.

While	traditional	BI	analyses	generally	focus	on	individual	business	processes,	Big	Data
BI	analyses	focus	on	multiple	business	processes	simultaneously.	This	helps	reveal
patterns	and	anomalies	across	a	broader	scope	within	the	enterprise.	It	also	leads	to	data
discovery	by	identifying	insights	and	information	that	may	have	been	previously	absent	or
unknown.



Big	Data	BI	requires	the	analysis	of	unstructured,	semi-structured	and	structured	data
residing	in	the	enterprise	data	warehouse.	This	requires	a	“next-generation”	data
warehouse	that	uses	new	features	and	technologies	to	store	cleansed	data	originating	from
a	variety	of	sources	in	a	single	uniform	data	format.	The	coupling	of	a	traditional	data
warehouse	with	these	new	technologies	results	in	a	hybrid	data	warehouse.	This
warehouse	acts	as	a	uniform	and	central	repository	of	structured,	semi-structured	and
unstructured	data	that	can	provide	Big	Data	BI	tools	with	all	of	the	required	data.	This
eliminates	the	need	for	Big	Data	BI	tools	to	have	to	connect	to	multiple	data	sources	to
retrieve	or	access	data.	In	Figure	4.9,	a	next-generation	data	warehouse	establishes	a
standardized	data	access	layer	across	a	range	of	data	sources.

Figure	4.9	A	next-generation	data	warehouse.



Traditional	Data	Visualization
Data	visualization	is	a	technique	whereby	analytical	results	are	graphically	communicated
using	elements	like	charts,	maps,	data	grids,	infographics	and	alerts.	Graphically
representing	data	can	make	it	easier	to	understand	reports,	view	trends	and	identify
patterns.

Traditional	data	visualization	provides	mostly	static	charts	and	graphs	in	reports	and
dashboards,	whereas	contemporary	data	visualization	tools	are	interactive	and	can	provide
both	summarized	and	detailed	views	of	data.	They	are	designed	to	help	people	who	lack
statistical	and/or	mathematical	skills	to	better	understand	analytical	results	without	having
to	resort	to	spreadsheets.

Traditional	data	visualization	tools	query	data	from	relational	databases,	OLAP	systems,
data	warehouses	and	spreadsheets	to	present	both	descriptive	and	diagnostic	analytics
results.

Data	Visualization	for	Big	Data
Big	Data	solutions	require	data	visualization	tools	that	can	seamlessly	connect	to
structured,	semi-structured	and	unstructured	data	sources	and	are	further	capable	of
handling	millions	of	data	records.	Data	visualization	tools	for	Big	Data	solutions	generally
use	in-memory	analytical	technologies	that	reduce	the	latency	normally	attributed	to
traditional,	disk-based	data	visualization	tools.

Advanced	data	visualization	tools	for	Big	Data	solutions	incorporate	predictive	and
prescriptive	data	analytics	and	data	transformation	features.	These	tools	eliminate	the	need
for	data	pre-processing	methods,	such	as	ETL.	The	tools	also	provide	the	ability	to
directly	connect	to	structured,	semi-structured	and	unstructured	data	sources.	As	part	of
Big	Data	solutions,	advanced	data	visualization	tools	can	join	structured	and	unstructured
data	that	is	kept	in	memory	for	fast	data	access.	Queries	and	statistical	formulas	can	then
be	applied	as	part	of	various	data	analysis	tasks	for	viewing	data	in	a	user-friendly	format,
such	as	on	a	dashboard.

Common	features	of	visualization	tools	used	in	Big	Data:

•	Aggregation	–	provides	a	holistic	and	summarized	view	of	data	across	multiple
contexts

•	Drill-down	–	enables	a	detailed	view	of	the	data	of	interest	by	focusing	in	on	a	data
subset	from	the	summarized	view

•	Filtering	–	helps	focus	on	a	particular	set	of	data	by	filtering	away	the	data	that	is
not	of	immediate	interest

•	Roll-up	–	groups	data	across	multiple	categories	to	show	subtotals	and	totals

•	What-if	analysis	–	enables	multiple	outcomes	to	be	visualized	by	enabling	related
factors	to	be	dynamically	changed.

Case	Study	Example



Enterprise	Technology
ETI	employs	OLTP	in	almost	every	business	function.	Its	policy	quotation,	policy
administration,	claims	management,	billing,	enterprise	resource	planning	(ERP)	and
customer	relationship	management	(CRM)	systems	are	all	OLTP-based.	An
example	of	ETI’s	employment	of	OLTP	occurs	whenever	there	is	the	submission	of
a	new	claim,	for	it	results	in	the	creation	of	a	new	record	in	the	claim	table	found
within	the	relational	database	used	by	the	claims	management	system.	Similarly,	as
the	claim	gets	processed	by	the	claim	adjuster,	its	status	changes	from	submitted	to
assigned	and	from	assigned	to	processing	and	finally	to	processed	through	simple
database	update	operations.

The	EDW	is	populated	weekly	via	multiple	ETL	operations	that	involve	extracting
data	from	tables	in	the	relational	databases	used	by	operational	systems,	validating
and	transforming	the	data	and	loading	it	into	the	EDW’s	database.	Data	extracted
from	the	operational	systems	is	in	a	flat	file	format	that	is	first	imported	into	a
staging	database,	where	it	is	transformed	by	the	execution	of	various	scripts.	One
ETL	process	that	deals	with	customer	data	involves	the	application	of	several	data
validation	rules,	one	of	which	is	to	confirm	that	each	customer	has	both	the	first	and
surname	fields	populated	with	meaningful	characters.	Also,	as	part	of	the	same	ETL
process,	the	first	two	lines	of	the	address	are	joined	together.

The	EDW	includes	an	OLAP	system	where	data	is	kept	in	the	form	of	cubes	that
enable	the	execution	of	various	reporting	queries.	For	example,	the	policy	cube	is
made	up	of	calculations	of	policies	sold	(the	fact	table)	and	dimensions	of	location,
type	and	time	(dimension	tables.)	The	analysts	perform	queries	on	different	cubes	as
part	of	business	intelligence	(BI)	activities.	For	security	and	fast	query	response,	the
EDW	further	contains	two	data	marts.	One	of	them	is	comprised	of	claim	and
policy	data	that	is	used	by	the	actuaries	and	the	legal	team	for	various	data	analyses,
including	risk	assessment	and	regulatory	compliance	assurance.	The	second	one
contains	sales-related	data	that	is	used	by	the	sales	team	to	monitor	sales	and	set
future	sales	strategies.

Big	Data	Business	Intelligence
As	established,	ETI	currently	employs	BI	that	falls	into	the	category	of	traditional
BI.	One	particular	dashboard	used	by	the	sales	team	displays	various	policy-related
KPIs	via	different	charts,	such	as	a	breakdown	of	sold	policies	by	type,	region	and
value	and	policies	expiring	each	month.	Different	dashboards	inform	agents	of	their
current	performances,	such	as	commissions	earned	and	whether	or	not	they	are	on
track	for	achieving	their	monthly	targets.	Both	of	these	dashboards	are	fed	data
from	the	sales	data	mart.

In	the	call	center,	a	scoreboard	provides	vital	statistics	related	to	daily	operations	of
the	center,	such	as	the	number	of	calls	in	queue,	average	waiting	time,	number	of
calls	dropped	and	calls	by	type.	This	scoreboard	is	fed	data	directly	from	the
CRM’s	relational	database	with	a	BI	product	that	provides	a	simple	user	interface
for	constructing	different	SQL	queries	that	are	periodically	executed	to	obtain
required	KPIs.	The	legal	team	and	the	actuaries,	however,	generate	some	ad-hoc



reports	that	resemble	a	spreadsheet.	Some	of	these	reports	are	sent	to	the	regulatory
authorities	as	part	of	assuring	continuous	regulatory	compliance.

ETI	believes	that	the	adoption	of	Big	Data	BI	will	greatly	help	in	achieving	its
strategic	goals.	For	example,	the	incorporation	of	social	media	along	with	a	call
center	agent’s	notes	may	provide	a	better	understanding	of	the	reasons	behind	a
customer’s	defection.	Similarly,	the	legitimacy	of	a	filed	claim	can	be	ascertained
more	quickly	if	valuable	information	can	be	harvested	from	the	documents
submitted	at	the	time	a	policy	was	purchased	and	cross-referenced	against	the	claim
data.	This	information	can	then	be	correlated	with	similar	claims	to	detect	fraud.

With	regards	to	data	visualization,	the	BI	tools	used	by	the	analysts	currently	only
operate	on	structured	data.	In	terms	of	sophistication	and	ease	of	use,	most	of	these
tools	provide	point-and-click	functionality	where	either	a	wizard	can	be	used	or	the
required	fields	can	be	selected	manually	from	the	relevant	tables	displayed
graphically	to	construct	a	database	query.	The	query	results	can	then	be	displayed
by	choosing	the	relevant	charts	and	graphs.	The	end	result	is	a	dashboard	where
different	statistics	are	displayed.	The	dashboard	can	be	configured	to	add	filtering,
aggregation	and	drill-down	options.	An	example	of	this	could	be	a	user	who	clicks
on	a	quarterly	sales	figures	chart	and	is	taken	to	a	monthly	breakdown	of	sales
figures.	Although	a	dashboard	that	provides	the	what-if	analysis	feature	is	not
currently	supported,	having	one	would	allow	the	actuaries	to	quickly	ascertain
different	risk	levels	by	changing	relevant	risk	factors.



Part	II:	Storing	and	Analyzing	Big	Data

Chapter	5	Big	Data	Storage	Concepts

Chapter	6	Big	Data	Processing	Concepts

Chapter	7	Big	Data	Storage	Technology

Chapter	8	Big	Data	Analysis	Techniques

As	presented	in	Part	I,	the	drivers	behind	Big	Data	adoption	are	both	business-	and
technology-related.	In	the	remainder	of	this	book,	the	focus	shifts	from	providing	a	high-
level	understanding	of	Big	Data	and	its	business	implications	to	covering	key	concepts
related	to	the	two	main	Big	Data	concerns:	storage	and	analysis.

Part	II	has	the	following	structure:

•	Chapter	5	explores	key	concepts	related	to	the	storage	of	Big	Data	datasets.	These
concepts	inform	the	reader	of	how	Big	Data	storage	has	radically	different
characteristics	than	the	relational	database	technology	common	to	traditional
business	information	systems.

•	Chapter	6	provides	insights	into	how	Big	Data	datasets	are	processed	by	leveraging
distributed	and	parallel	processing	capabilities.	This	is	further	illustrated	with	an
examination	of	the	MapReduce	framework,	which	shows	how	it	leverages	a	divide-
and-conquer	approach	to	efficiently	process	Big	Data	datasets.

•	Chapter	7	expands	upon	the	storage	topic,	showing	how	the	concepts	from	Chapter	5
are	implemented	with	different	flavors	of	NoSQL	database	technology.	The
requirements	of	batch	and	realtime	processing	modes	are	further	explored	from	the



perspective	of	on-disk	and	in-memory	storage	options.

•	Chapter	8	provides	an	introduction	to	a	range	of	Big	Data	analysis	techniques.	The
analysis	of	Big	Data	leverages	statistical	approaches	for	quantitative	and	qualitative
analysis,	whereas	computational	approaches	are	used	for	data	mining	and	machine
learning.

The	technology	concepts	covered	in	Part	II	are	important	for	business	and	technology
leaders	as	well	as	decision-makers	who	will	be	called	upon	to	evaluate	the	business	case
for	Big	Data	adoption	in	their	enterprises.
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Data	acquired	from	external	sources	is	often	not	in	a	format	or	structure	that	can	be
directly	processed.	To	overcome	these	incompatibilities	and	prepare	data	for	storage	and
processing,	data	wrangling	is	necessary.	Data	wrangling	includes	steps	to	filter,	cleanse
and	otherwise	prepare	the	data	for	downstream	analysis.	From	a	storage	perspective,	a
copy	of	the	data	is	first	stored	in	its	acquired	format,	and,	after	wrangling,	the	prepared
data	needs	to	be	stored	again.	Typically,	storage	is	required	whenever	the	following
occurs:

•	external	datasets	are	acquired,	or	internal	data	will	be	used	in	a	Big	Data
environment



•	data	is	manipulated	to	be	made	amenable	for	data	analysis

•	data	is	processed	via	an	ETL	activity,	or	output	is	generated	as	a	result	of	an
analytical	operation

Due	to	the	need	to	store	Big	Data	datasets,	often	in	multiple	copies,	innovative	storage
strategies	and	technologies	have	been	created	to	achieve	cost-effective	and	highly	scalable
storage	solutions.	In	order	to	understand	the	underlying	mechanisms	behind	Big	Data
storage	technology,	the	following	topics	are	introduced	in	this	chapter:

•	clusters

•	file	systems	and	distributed	files	systems

•	NoSQL

•	sharding

•	replication

•	CAP	theorem

•	ACID

•	BASE

Clusters
In	computing,	a	cluster	is	a	tightly	coupled	collection	of	servers,	or	nodes.	These	servers
usually	have	the	same	hardware	specifications	and	are	connected	together	via	a	network	to
work	as	a	single	unit,	as	shown	in	Figure	5.1.	Each	node	in	the	cluster	has	its	own
dedicated	resources,	such	as	memory,	a	processor,	and	a	hard	drive.	A	cluster	can	execute
a	task	by	splitting	it	into	small	pieces	and	distributing	their	execution	onto	different
computers	that	belong	to	the	cluster.

Figure	5.1	The	symbol	used	to	represent	a	cluster.



File	Systems	and	Distributed	File	Systems
A	file	system	is	the	method	of	storing	and	organizing	data	on	a	storage	device,	such	as
flash	drives,	DVDs	and	hard	drives.	A	file	is	an	atomic	unit	of	storage	used	by	the	file
system	to	store	data.	A	file	system	provides	a	logical	view	of	the	data	stored	on	the	storage
device	and	presents	it	as	a	tree	structure	of	directories	and	files	as	pictured	in	Figure	5.2.
Operating	systems	employ	file	systems	to	store	and	retrieve	data	on	behalf	of	applications.
Each	operating	system	provides	support	for	one	or	more	file	systems,	for	example	NTFS
on	Microsoft	Windows	and	ext	on	Linux.

Figure	5.2	The	symbol	used	to	represent	a	file	system.

A	distributed	file	system	is	a	file	system	that	can	store	large	files	spread	across	the	nodes
of	a	cluster,	as	illustrated	in	Figure	5.3.	To	the	client,	files	appear	to	be	local;	however,	this
is	only	a	logical	view	as	physically	the	files	are	distributed	throughout	the	cluster.	This
local	view	is	presented	via	the	distributed	file	system	and	it	enables	the	files	to	be
accessed	from	multiple	locations.	Examples	include	the	Google	File	System	(GFS)	and
Hadoop	Distributed	File	System	(HDFS).

Figure	5.3	The	symbol	used	to	represent	distributed	file	systems.



NoSQL
A	Not-only	SQL	(NoSQL)	database	is	a	non-relational	database	that	is	highly	scalable,
fault-tolerant	and	specifically	designed	to	house	semi-structured	and	unstructured	data.	A
NoSQL	database	often	provides	an	API-based	query	interface	that	can	be	called	from
within	an	application.	NoSQL	databases	also	support	query	languages	other	than
Structured	Query	Language	(SQL)	because	SQL	was	designed	to	query	structured	data
stored	within	a	relational	database.	As	an	example,	a	NoSQL	database	that	is	optimized	to
store	XML	files	will	often	use	XQuery	as	the	query	language.	Likewise,	a	NoSQL
database	designed	to	store	RDF	data	will	use	SPARQL	to	query	the	relationships	it
contains.	That	being	said,	there	are	some	NoSQL	databases	that	also	provide	an	SQL-like
query	interface,	as	shown	in	Figure	5.4.

Figure	5.4	A	NoSQL	database	can	provide	an	API-	or	SQL-like	query	interface.

Sharding
Sharding	is	the	process	of	horizontally	partitioning	a	large	dataset	into	a	collection	of
smaller,	more	manageable	datasets	called	shards.	The	shards	are	distributed	across
multiple	nodes,	where	a	node	is	a	server	or	a	machine	(Figure	5.5).	Each	shard	is	stored	on
a	separate	node	and	each	node	is	responsible	for	only	the	data	stored	on	it.	Each	shard
shares	the	same	schema,	and	all	shards	collectively	represent	the	complete	dataset.



Figure	5.5	An	example	of	sharding	where	a	dataset	is	spread	across	Node	A	and	Node
B,	resulting	in	Shard	A	and	Shard	B,	respectively.

Sharding	is	often	transparent	to	the	client,	but	this	is	not	a	requirement.	Sharding	allows
the	distribution	of	processing	loads	across	multiple	nodes	to	achieve	horizontal	scalability.
Horizontal	scaling	is	a	method	for	increasing	a	system’s	capacity	by	adding	similar	or
higher	capacity	resources	alongside	existing	resources.	Since	each	node	is	responsible	for
only	a	part	of	the	whole	dataset,	read/write	times	are	greatly	improved.

Figure	5.6	presents	an	illustration	of	how	sharding	works	in	practice:

1.	Each	shard	can	independently	service	reads	and	writes	for	the	specific	subset	of	data
that	it	is	responsible	for.

2.	Depending	on	the	query,	data	may	need	to	be	fetched	from	both	shards.



Figure	5.6	A	sharding	example	where	data	is	fetched	from	both	Node	A	and	Node	B.

A	benefit	of	sharding	is	that	it	provides	partial	tolerance	toward	failures.	In	case	of	a	node
failure,	only	data	stored	on	that	node	is	affected.

With	regards	to	data	partitioning,	query	patterns	need	to	be	taken	into	account	so	that
shards	themselves	do	not	become	performance	bottlenecks.	For	example,	queries	requiring
data	from	multiple	shards	will	impose	performance	penalties.	Data	locality	keeps
commonly	accessed	data	co-located	on	a	single	shard	and	helps	counter	such	performance
issues.



Replication
Replication	stores	multiple	copies	of	a	dataset,	known	as	replicas,	on	multiple	nodes
(Figure	5.7).	Replication	provides	scalability	and	availability	due	to	the	fact	that	the	same
data	is	replicated	on	various	nodes.	Fault	tolerance	is	also	achieved	since	data	redundancy
ensures	that	data	is	not	lost	when	an	individual	node	fails.	There	are	two	different	methods
that	are	used	to	implement	replication:

•	master-slave

•	peer-to-peer

Figure	5.7	An	example	of	replication	where	a	dataset	is	replicated	to	Node	A	and	Node
B,	resulting	in	Replica	A	and	Replica	B.



Master-Slave
During	master-slave	replication,	nodes	are	arranged	in	a	master-slave	configuration,	and
all	data	is	written	to	a	master	node.	Once	saved,	the	data	is	replicated	over	to	multiple
slave	nodes.	All	external	write	requests,	including	insert,	update	and	delete,	occur	on	the
master	node,	whereas	read	requests	can	be	fulfilled	by	any	slave	node.	In	Figure	5.8,
writes	are	managed	by	the	master	node	and	data	can	be	read	from	either	Slave	A	or	Slave
B.

Figure	5.8	An	example	of	master-slave	replication	where	Master	A	is	the	single	point
of	contact	for	all	writes,	and	data	can	be	read	from	Slave	A	and	Slave	B.

Master-slave	replication	is	ideal	for	read	intensive	loads	rather	than	write	intensive	loads
since	growing	read	demands	can	be	managed	by	horizontal	scaling	to	add	more	slave
nodes.	Writes	are	consistent,	as	all	writes	are	coordinated	by	the	master	node.	The
implication	is	that	write	performance	will	suffer	as	the	amount	of	writes	increases.	If	the
master	node	fails,	reads	are	still	possible	via	any	of	the	slave	nodes.

A	slave	node	can	be	configured	as	a	backup	node	for	the	master	node.	In	the	event	that	the



master	node	fails,	writes	are	not	supported	until	a	master	node	is	reestablished.	The	master
node	is	either	resurrected	from	a	backup	of	the	master	node,	or	a	new	master	node	is
chosen	from	the	slave	nodes.

One	concern	with	master-slave	replication	is	read	inconsistency,	which	can	be	an	issue	if	a
slave	node	is	read	prior	to	an	update	to	the	master	being	copied	to	it.	To	ensure	read
consistency,	a	voting	system	can	be	implemented	where	a	read	is	declared	consistent	if	the
majority	of	the	slaves	contain	the	same	version	of	the	record.	Implementation	of	such	a
voting	system	requires	a	reliable	and	fast	communication	mechanism	between	the	slaves.

Figure	5.9	illustrates	a	scenario	where	read	inconsistency	occurs.

1.	User	A	updates	data.

2.	The	data	is	copied	over	to	Slave	A	by	the	Master.

3.	Before	the	data	is	copied	over	to	Slave	B,	User	B	tries	to	read	the	data	from	Slave
B,	which	results	in	an	inconsistent	read.

4.	The	data	will	eventually	become	consistent	when	Slave	B	is	updated	by	the	Master.



Figure	5.9	An	example	of	master-slave	replication	where	read	inconsistency	occurs.

Peer-to-Peer
With	peer-to-peer	replication,	all	nodes	operate	at	the	same	level.	In	other	words,	there	is
not	a	master-slave	relationship	between	the	nodes.	Each	node,	known	as	a	peer,	is	equally
capable	of	handling	reads	and	writes.	Each	write	is	copied	to	all	peers,	as	illustrated	in
Figure	5.10.



Figure	5.10	Writes	are	copied	to	Peers	A,	B	and	C	simultaneously.	Data	is	read	from
Peer	A,	but	it	can	also	be	read	from	Peers	B	or	C.

Peer-to-peer	replication	is	prone	to	write	inconsistencies	that	occur	as	a	result	of	a
simultaneous	update	of	the	same	data	across	multiple	peers.	This	can	be	addressed	by
implementing	either	a	pessimistic	or	optimistic	concurrency	strategy.

•	Pessimistic	concurrency	is	a	proactive	strategy	that	prevents	inconsistency.	It	uses
locking	to	ensure	that	only	one	update	to	a	record	can	occur	at	a	time.	However,	this
is	detrimental	to	availability	since	the	database	record	being	updated	remains
unavailable	until	all	locks	are	released.

•	Optimistic	concurrency	is	a	reactive	strategy	that	does	not	use	locking.	Instead,	it
allows	inconsistency	to	occur	with	knowledge	that	eventually	consistency	will	be
achieved	after	all	updates	have	propagated.

With	optimistic	concurrency,	peers	may	remain	inconsistent	for	some	period	of	time
before	attaining	consistency.	However,	the	database	remains	available	as	no	locking	is
involved.	Like	master-slave	replication,	reads	can	be	inconsistent	during	the	time	period
when	some	of	the	peers	have	completed	their	updates	while	others	perform	their	updates.
However,	reads	eventually	become	consistent	when	the	updates	have	been	executed	on	all
peers.

To	ensure	read	consistency,	a	voting	system	can	be	implemented	where	a	read	is	declared
consistent	if	the	majority	of	the	peers	contain	the	same	version	of	the	record.	As
previously	indicated,	implementation	of	such	a	voting	system	requires	a	reliable	and	fast
communication	mechanism	between	the	peers.

Figure	5.11	demonstrates	a	scenario	where	an	inconsistent	read	occurs.

1.	User	A	updates	data.

2.	a.	The	data	is	copied	over	to	Peer	A.



b.	The	data	is	copied	over	to	Peer	B.

3.	Before	the	data	is	copied	over	to	Peer	C,	User	B	tries	to	read	the	data	from	Peer	C,
resulting	in	an	inconsistent	read.

4.	The	data	will	eventually	be	updated	on	Peer	C,	and	the	database	will	once	again
become	consistent.

Figure	5.11	An	example	of	peer-to-peer	replication	where	an	inconsistent	read	occurs.

Sharding	and	Replication
To	improve	on	the	limited	fault	tolerance	offered	by	sharding,	while	additionally
benefiting	from	the	increased	availability	and	scalability	of	replication,	both	sharding	and
replication	can	be	combined,	as	shown	in	Figure	5.12.



Figure	5.12	A	comparison	of	sharding	and	replication	that	shows	how	a	dataset	is
distributed	between	two	nodes	with	the	different	approaches.

This	section	covers	the	following	combinations:

•	sharding	and	master-slave	replication



•	sharding	and	peer-to-peer	replication

Combining	Sharding	and	Master-Slave	Replication
When	sharding	is	combined	with	master-slave	replication,	multiple	shards	become	slaves
of	a	single	master,	and	the	master	itself	is	a	shard.	Although	this	results	in	multiple
masters,	a	single	slave-shard	can	only	be	managed	by	a	single	master-shard.

Write	consistency	is	maintained	by	the	master-shard.	However,	if	the	master-shard
becomes	non-operational	or	a	network	outage	occurs,	fault	tolerance	with	regards	to	write
operations	is	impacted.	Replicas	of	shards	are	kept	on	multiple	slave	nodes	to	provide
scalability	and	fault	tolerance	for	read	operations.

In	Figure	5.13:

•	Each	node	acts	both	as	a	master	and	a	slave	for	different	shards.

•	Writes	(id	=	2)	to	Shard	A	are	regulated	by	Node	A,	as	it	is	the	master	for	Shard	A.

•	Node	A	replicates	data	(id	=	2)	to	Node	B,	which	is	a	slave	for	Shard	A.

•	Reads	(id	=	4)	can	be	served	directly	by	either	Node	B	or	Node	C	as	they	each
contain	Shard	B.

Figure	5.13	An	example	that	shows	the	combination	of	sharding	and	master-slave
replication.



Combining	Sharding	and	Peer-to-Peer	Replication
When	combining	sharding	with	peer-to-peer	replication,	each	shard	is	replicated	to
multiple	peers,	and	each	peer	is	only	responsible	for	a	subset	of	the	overall	dataset.
Collectively,	this	helps	achieve	increased	scalability	and	fault	tolerance.	As	there	is	no
master	involved,	there	is	no	single	point	of	failure	and	fault-tolerance	for	both	read	and
write	operations	is	supported.

In	Figure	5.14:

•	Each	node	contains	replicas	of	two	different	shards.

•	Writes	(id	=	3)	are	replicated	to	both	Node	A	and	Node	C	(Peers)	as	they	are
responsible	for	Shard	C.

•	Reads	(id	=	6)	can	be	served	by	either	Node	B	or	Node	C	as	they	each	contain	Shard
B.

Figure	5.14	An	example	of	the	combination	of	sharding	and	peer-to-peer	replication.

CAP	Theorem
The	Consistency,	Availability,	and	Partition	tolerance	(CAP)	theorem,	also	known	as
Brewer’s	theorem,	expresses	a	triple	constraint	related	to	distributed	database	systems.	It
states	that	a	distributed	database	system,	running	on	a	cluster,	can	only	provide	two	of	the
following	three	properties:

•	Consistency	–	A	read	from	any	node	results	in	the	same	data	across	multiple	nodes
(Figure	5.15).



Figure	5.15	Consistency:	all	three	users	get	the	same	value	for	the	amount	column	even
though	three	different	nodes	are	serving	the	record.

•	Availability	–	A	read/write	request	will	always	be	acknowledged	in	the	form	of	a
success	or	a	failure	(Figure	5.16).



Figure	5.16	Availability	and	partition	tolerance:	in	the	event	of	a	communication
failure,	requests	from	both	users	are	still	serviced	(1,	2).	However,	with	User	B,	the
update	fails	as	the	record	with	id	=	3	has	not	been	copied	over	to	Peer	C.	The	user	is

duly	notified	(3)	that	the	update	has	failed.

•	Partition	tolerance	–	The	database	system	can	tolerate	communication	outages	that
split	the	cluster	into	multiple	silos	and	can	still	service	read/write	requests	(Figure
5.16).

The	following	scenarios	demonstrate	why	only	two	of	the	three	properties	of	the	CAP
theorem	are	simultaneously	supportable.	To	aid	this	discussion,	Figure	5.17	provides	a
Venn	diagram	showing	the	areas	of	overlap	between	consistency,	availability	and	partition
tolerance.



Figure	5.17	A	Venn	diagram	summarizing	the	CAP	theorem.

If	consistency	(C)	and	availability	(A)	are	required,	available	nodes	need	to	communicate
to	ensure	consistency	(C).	Therefore,	partition	tolerance	(P)	is	not	possible.

If	consistency	(C)	and	partition	tolerance	(P)	are	required,	nodes	cannot	remain	available
(A)	as	the	nodes	will	become	unavailable	while	achieving	a	state	of	consistency	(C).

If	availability	(A)	and	partition	tolerance	(P)	are	required,	then	consistency	(C)	is	not
possible	because	of	the	data	communication	requirement	between	the	nodes.	So,	the
database	can	remain	available	(A)	but	with	inconsistent	results.

In	a	distributed	database,	scalability	and	fault	tolerance	can	be	improved	through
additional	nodes,	although	this	challenges	consistency	(C).	The	addition	of	nodes	can	also
cause	availability	(A)	to	suffer	due	to	the	latency	caused	by	increased	communication
between	nodes.

Distributed	database	systems	cannot	be	100%	partition	tolerant	(P).	Although
communication	outages	are	rare	and	temporary,	partition	tolerance	(P)	must	always	be
supported	by	a	distributed	database;	therefore,	CAP	is	generally	a	choice	between
choosing	either	C+P	or	A+P.	The	requirements	of	the	system	will	dictate	which	is	chosen.



ACID
ACID	is	a	database	design	principle	related	to	transaction	management.	It	is	an	acronym
that	stands	for:

•	atomicity

•	consistency

•	isolation

•	durability

ACID	is	a	transaction	management	style	that	leverages	pessimistic	concurrency	controls	to
ensure	consistency	is	maintained	through	the	application	of	record	locks.	ACID	is	the
traditional	approach	to	database	transaction	management	as	it	is	leveraged	by	relational
database	management	systems.

Atomicity	ensures	that	all	operations	will	always	succeed	or	fail	completely.	In	other
words,	there	are	no	partial	transactions.

The	following	steps	are	illustrated	in	Figure	5.18:

1.	A	user	attempts	to	update	three	records	as	a	part	of	a	transaction.

2.	Two	records	are	successfully	updated	before	the	occurrence	of	an	error.

3.	As	a	result,	the	database	roll	backs	any	partial	effects	of	the	transaction	and	puts	the
system	back	to	its	prior	state.

Figure	5.18	An	example	of	the	atomicity	property	of	ACID	is	evident	here.



Consistency	ensures	that	the	database	will	always	remain	in	a	consistent	state	by	ensuring
that	only	data	that	conforms	to	the	constraints	of	the	database	schema	can	be	written	to	the
database.	Thus	a	database	that	is	in	a	consistent	state	will	remain	in	a	consistent	state
following	a	successful	transaction.

In	Figure	5.19:

1.	A	user	attempts	to	update	the	amount	column	of	the	table	that	is	of	type	float	with	a
varchar	value.

2.	The	database	applies	its	validation	check	and	rejects	this	update	because	the	value
violates	the	constraint	checks	for	the	amount	column.

Figure	5.19	An	example	of	the	consistency	of	ACID.

Isolation	ensures	that	the	results	of	a	transaction	are	not	visible	to	other	operations	until	it
is	complete.

In	Figure	5.20:

1.	User	A	attempts	to	update	two	records	as	part	of	a	transaction.

2.	The	database	successfully	updates	the	first	record.

3.	However,	before	it	can	update	the	second	record,	User	B	attempts	to	update	the
same	record.	The	database	does	not	permit	User	B’s	update	until	User	A’s	update
succeeds	or	fails	in	full.	This	occurs	because	the	record	with	id3	is	locked	by	the
database	until	the	transaction	is	complete.



Figure	5.20	An	example	of	the	isolation	property	of	ACID.

Durability	ensures	that	the	results	of	an	operation	are	permanent.	In	other	words,	once	a
transaction	has	been	committed,	it	cannot	be	rolled	back.	This	is	irrespective	of	any
system	failure.

In	Figure	5.21:

1.	A	user	updates	a	record	as	part	of	a	transaction.

2.	The	database	successfully	updates	the	record.

3.	Right	after	this	update,	a	power	failure	occurs.	The	database	maintains	its	state
while	there	is	no	power.

4.	The	power	is	resumed.

5.	The	database	serves	the	record	as	per	last	update	when	requested	by	the	user.



Figure	5.21	The	durability	characteristic	of	ACID.

Figure	5.22	shows	the	results	of	the	application	of	the	ACID	principle:

1.	User	A	attempts	to	update	a	record	as	part	of	a	transaction.

2.	The	database	validates	the	value	and	the	update	is	successfully	applied.

3.	After	the	successful	completion	of	the	transaction,	when	Users	B	and	C	request	the
same	record,	the	database	provides	the	updated	value	to	both	the	users.



Figure	5.22	The	ACID	principle	results	in	consistent	database	behavior.

BASE
BASE	is	a	database	design	principle	based	on	the	CAP	theorem	and	leveraged	by	database
systems	that	use	distributed	technology.	BASE	stands	for:

•	basically	available

•	soft	state

•	eventual	consistency

When	a	database	supports	BASE,	it	favors	availability	over	consistency.	In	other	words,
the	database	is	A+P	from	a	CAP	perspective.	In	essence,	BASE	leverages	optimistic
concurrency	by	relaxing	the	strong	consistency	constraints	mandated	by	the	ACID
properties.

If	a	database	is	“basically	available,”	that	database	will	always	acknowledge	a	client’s



request,	either	in	the	form	of	the	requested	data	or	a	success/failure	notification.

In	Figure	5.23,	the	database	is	basically	available,	even	though	it	has	been	partitioned	as	a
result	of	a	network	failure.

Figure	5.23	User	A	and	User	B	receive	data	despite	the	database	being	partitioned	by	a
network	failure.

Soft	state	means	that	a	database	may	be	in	an	inconsistent	state	when	data	is	read;	thus,	the
results	may	change	if	the	same	data	is	requested	again.	This	is	because	the	data	could	be
updated	for	consistency,	even	though	no	user	has	written	to	the	database	between	the	two
reads.	This	property	is	closely	related	to	eventual	consistency.

In	Figure	5.24:

1.	User	A	updates	a	record	on	Peer	A.

2.	Before	the	other	peers	are	updated,	User	B	requests	the	same	record	from	Peer	C.

3.	The	database	is	now	in	a	soft	state,	and	stale	data	is	returned	to	User	B.



Figure	5.24	An	example	of	the	soft	state	property	of	BASE	is	shown	here.

Eventual	consistency	is	the	state	in	which	reads	by	different	clients,	immediately
following	a	write	to	the	database,	may	not	return	consistent	results.	The	database	only
attains	consistency	once	the	changes	have	been	propagated	to	all	nodes.	While	the
database	is	in	the	process	of	attaining	the	state	of	eventual	consistency,	it	will	be	in	a	soft
state.

In	Figure	5.25:

1.	User	A	updates	a	record.

2.	The	record	only	gets	updated	at	Peer	A,	but	before	the	other	peers	can	be	updated,
User	B	requests	the	same	record.

3.	The	database	is	now	in	a	soft	state.	Stale	data	is	returned	to	User	B	from	Peer	C.

4.	However,	the	consistency	is	eventually	attained,	and	User	C	gets	the	correct	value.



Figure	5.25	An	example	of	the	eventual	consistency	property	of	BASE.

BASE	emphasizes	availability	over	immediate	consistency,	in	contrast	to	ACID,	which
ensures	immediate	consistency	at	the	expense	of	availability	due	to	record	locking.	This
soft	approach	toward	consistency	allows	BASE	compliant	databases	to	serve	multiple
clients	without	any	latency	albeit	serving	inconsistent	results.	However,	BASE-compliant
databases	are	not	useful	for	transactional	systems	where	lack	of	consistency	is	a	concern.



Case	Study	Example

ETI’s	IT	environment	currently	utilizes	both	Linux	and	Windows	operating
systems.	Consequently,	both	ext	and	NTFS	file	systems	are	in	use.	The	webservers
and	some	of	the	application	servers	employ	ext,	while	the	rest	of	the	application
servers,	the	database	servers	and	the	end-users’	PCs	are	configured	to	use	NTFS.
Network-attached	storage	(NAS)	configured	with	RAID	5	is	also	used	for	fault-
tolerant	document	storage.	Although	the	IT	team	is	conversant	with	file	systems,	the
concepts	of	cluster,	distributed	file	system	and	NoSQL	are	new	to	the	group.
Nevertheless,	after	a	discussion	with	the	trained	IT	team	members,	the	entire	group
is	able	to	understand	these	concepts	and	technologies.

ETI’s	current	IT	landscape	comprises	entirely	of	relational	databases	that	employ
the	ACID	database	design	principle.	The	IT	team	has	no	understanding	of	the
BASE	principle	and	is	having	trouble	comprehending	the	CAP	theorem.	Some	of
the	team	members	are	unsure	about	the	need	and	importance	of	these	concepts	with
regards	to	Big	Data	dataset	storage.	Seeing	this,	the	IT-trained	employees	try	to
ease	their	fellow	team	members’	confusion	by	explaining	that	these	concepts	are
only	applicable	to	the	storage	of	enormous	amounts	of	data	in	a	distributed	fashion
on	a	cluster.	Clusters	have	become	the	obvious	choice	for	storing	very	large	volume
of	data	due	to	their	ability	to	support	linear	scalability	by	scaling	out.

Since	clusters	are	comprised	of	nodes	connected	via	a	network,	communication
failures	that	create	silos	or	partitions	of	a	cluster	are	inevitable.	To	address	the
partition	issue,	the	BASE	principle	and	CAP	theorem	are	introduced.	They	further
explain	that	any	database	following	the	BASE	principle	becomes	more	responsive
to	its	clients,	albeit	the	data	being	read	may	be	inconsistent	when	compared	to	a
database	that	follows	the	ACID	principle.	Having	understood	the	BASE	principle,
the	IT	team	more	easily	comprehends	why	a	database	implemented	in	a	cluster	has
to	choose	between	consistency	and	availability.

Although	none	of	the	existing	relational	databases	use	sharding,	almost	all
relational	databases	are	replicated	for	disaster	recovery	and	operational	reporting.
To	better	understand	the	concepts	of	sharding	and	replication,	the	IT	team	goes
through	an	exercise	of	how	these	concepts	can	be	applied	to	the	insurance	quote
data	as	a	large	number	of	quotes	are	created	and	accessed	quickly.	For	sharding,	the
team	believes	that	using	the	type	(the	insurance	sector—heath,	building,	marine	and
aviation)	of	the	insurance	quote	as	sharding	criteria	will	create	a	balanced	set	of
data	across	multiple	nodes,	for	queries	are	mostly	executed	within	the	same
insurance	sector,	and	inter-sector	queries	are	rare.	With	regards	to	replication,	the
team	is	in	favor	of	choosing	a	NoSQL	database	that	implements	the	peer-to-peer
replication	strategy.	The	reason	behind	their	decision	is	that	the	insurance	quotes
are	created	and	retrieved	quite	frequently	but	seldom	updated.	Hence	the	chances	of
getting	an	inconsistent	record	are	low.	Considering	this,	the	team	favors	read/write
performance	over	consistency	by	choosing	peer-to-peer	replication.



Chapter	6.	Big	Data	Processing	Concepts

Parallel	Data	Processing

Distributed	Data	Processing

Hadoop

Processing	Workloads

Cluster

Processing	in	Batch	Mode

Processing	in	Realtime	Mode

The	need	to	process	large	volumes	of	data	is	not	new.	When	considering	the	relationship
between	a	data	warehouse	and	its	associated	data	marts,	it	becomes	clear	that	partitioning
a	large	dataset	into	a	smaller	one	can	speed	up	processing.	Big	Data	datasets	stored	on
distributed	file	systems	or	within	a	distributed	database	are	already	partitioned	into	smaller
datasets.	The	key	to	understanding	Big	Data	processing	is	the	realization	that	unlike	the
centralized	processing,	which	occurs	within	a	traditional	relational	database,	Big	Data	is
often	processed	in	parallel	in	a	distributed	fashion	at	the	location	in	which	it	is	stored.

Of	course,	not	all	Big	Data	is	batch-processed.	Some	data	possesses	the	velocity
characteristic	and	arrives	in	a	time-ordered	stream.	Big	Data	analytics	has	answers	for	this
type	of	processing	as	well.	By	leveraging	in-memory	storage	architectures,	sense-making
can	occur	to	deliver	situational	awareness.	An	important	principle	that	constrains
streaming	Big	Data	processing	is	called	the	Speed,	Consistency,	and	Volume	(SCV)



principle.	It	is	detailed	within	this	chapter	as	well.

To	further	the	discussion	of	Big	Data	processing,	each	of	the	following	concepts	will	be
examined	in	turn:

•	parallel	data	processing

•	distributed	data	processing

•	Hadoop

•	processing	workloads

•	cluster

Parallel	Data	Processing
Parallel	data	processing	involves	the	simultaneous	execution	of	multiple	sub-tasks	that
collectively	comprise	a	larger	task.	The	goal	is	to	reduce	the	execution	time	by	dividing	a
single	larger	task	into	multiple	smaller	tasks	that	run	concurrently.

Although	parallel	data	processing	can	be	achieved	through	multiple	networked	machines,
it	is	more	typically	achieved	within	the	confines	of	a	single	machine	with	multiple
processors	or	cores,	as	shown	in	Figure	6.1.

Figure	6.1	A	task	can	be	divided	into	three	sub-tasks	that	are	executed	in	parallel	on
three	different	processors	within	the	same	machine.

Distributed	Data	Processing
Distributed	data	processing	is	closely	related	to	parallel	data	processing	in	that	the	same
principle	of	“divide-and-conquer”	is	applied.	However,	distributed	data	processing	is
always	achieved	through	physically	separate	machines	that	are	networked	together	as	a
cluster.	In	Figure	6.2,	a	task	is	divided	into	three	sub-tasks	that	are	then	executed	on	three
different	machines	sharing	one	physical	switch.



Figure	6.2	An	example	of	distributed	data	processing.

Hadoop
Hadoop	is	an	open-source	framework	for	large-scale	data	storage	and	data	processing	that
is	compatible	with	commodity	hardware.	The	Hadoop	framework	has	established	itself	as
a	de	facto	industry	platform	for	contemporary	Big	Data	solutions.	It	can	be	used	as	an
ETL	engine	or	as	an	analytics	engine	for	processing	large	amounts	of	structured,	semi-
structured	and	unstructured	data.	From	an	analysis	perspective,	Hadoop	implements	the
MapReduce	processing	framework.	Figure	6.3	illustrates	some	of	Hadoop’s	features.



Figure	6.3	Hadoop	is	a	versatile	framework	that	provides	both	processing	and	storage
capabilities.

Processing	Workloads
A	processing	workload	in	Big	Data	is	defined	as	the	amount	and	nature	of	data	that	is
processed	within	a	certain	amount	of	time.	Workloads	are	usually	divided	into	two	types:

•	batch

•	transactional

Batch
Batch	processing,	also	known	as	offline	processing,	involves	processing	data	in	batches
and	usually	imposes	delays,	which	in	turn	results	in	high-latency	responses.	Batch
workloads	typically	involve	large	quantities	of	data	with	sequential	read/writes	and
comprise	of	groups	of	read	or	write	queries.

Queries	can	be	complex	and	involve	multiple	joins.	OLAP	systems	commonly	process
workloads	in	batches.	Strategic	BI	and	analytics	are	batch-oriented	as	they	are	highly
read-intensive	tasks	involving	large	volumes	of	data.	As	shown	in	Figure	6.4,	a	batch
workload	comprises	grouped	read/writes	that	have	a	large	data	footprint	and	may	contain
complex	joins	and	provide	high-latency	responses.



Figure	6.4	A	batch	workload	can	include	grouped	read/writes	to	INSERT,	SELECT,
UPDATE	and	DELETE.

Transactional
Transactional	processing	is	also	known	as	online	processing.	Transactional	workload
processing	follows	an	approach	whereby	data	is	processed	interactively	without	delay,
resulting	in	low-latency	responses.	Transaction	workloads	involve	small	amounts	of	data
with	random	reads	and	writes.

OLTP	and	operational	systems,	which	are	generally	write-intensive,	fall	within	this
category.	Although	these	workloads	contain	a	mix	of	read/write	queries,	they	are	generally
more	write-intensive	than	read-intensive.

Transactional	workloads	comprise	random	reads/writes	that	involve	fewer	joins	than
business	intelligence	and	reporting	workloads.	Given	their	online	nature	and	operational
significance	to	the	enterprise,	they	require	low-latency	responses	with	a	smaller	data
footprint,	as	shown	in	Figure	6.5.



Figure	6.5	Transactional	workloads	have	few	joins	and	lower	latency	responses	than
batch	workloads.

Cluster
In	the	same	manner	that	clusters	provide	necessary	support	to	create	horizontally	scalable
storage	solutions,	clusters	also	provides	the	mechanism	to	enable	distributed	data
processing	with	linear	scalability.	Since	clusters	are	highly	scalable,	they	provide	an	ideal
environment	for	Big	Data	processing	as	large	datasets	can	be	divided	into	smaller	datasets
and	then	processed	in	parallel	in	a	distributed	manner.	When	leveraging	a	cluster,	Big	Data
datasets	can	either	be	processed	in	batch	mode	or	realtime	mode	(Figure	6.6).	Ideally,	a
cluster	will	be	comprised	of	low-cost	commodity	nodes	that	collectively	provide	increased
processing	capacity.

Figure	6.6	A	cluster	can	be	utilized	to	support	batch	processing	of	bulk	data	and
realtime	processing	of	streaming	data.

An	additional	benefit	of	clusters	is	that	they	provide	inherent	redundancy	and	fault



tolerance,	as	they	consist	of	physically	separate	nodes.	Redundancy	and	fault	tolerance
allow	resilient	processing	and	analysis	to	occur	if	a	network	or	node	failure	occurs.	Due	to
fluctuations	in	the	processing	demands	placed	upon	a	Big	Data	environment,	leveraging
cloud-host	infrastructure	services,	or	ready-made	analytical	environments	as	the	backbone
of	a	cluster,	is	sensible	due	to	their	elasticity	and	pay-for-use	model	of	utility-based
computing.

Processing	in	Batch	Mode
In	batch	mode,	data	is	processed	offline	in	batches	and	the	response	time	could	vary	from
minutes	to	hours.	As	well,	data	must	be	persisted	to	the	disk	before	it	can	be	processed.
Batch	mode	generally	involves	processing	a	range	of	large	datasets,	either	on	their	own	or
joined	together,	essentially	addressing	the	volume	and	variety	characteristics	of	Big	Data
datasets.

The	majority	of	Big	Data	processing	occurs	in	batch	mode.	It	is	relatively	simple,	easy	to
set	up	and	low	in	cost	compared	to	realtime	mode.	Strategic	BI,	predictive	and
prescriptive	analytics	and	ETL	operations	are	commonly	batch-oriented.

Batch	Processing	with	MapReduce
MapReduce	is	a	widely	used	implementation	of	a	batch	processing	framework.	It	is	highly
scalable	and	reliable	and	is	based	on	the	principle	of	divide-and-conquer,	which	provides
built-in	fault	tolerance	and	redundancy.	It	divides	a	big	problem	into	a	collection	of
smaller	problems	that	can	each	be	solved	quickly.	MapReduce	has	roots	in	both
distributed	and	parallel	computing.	MapReduce	is	a	batch-oriented	processing	engine
(Figure	6.7)	used	to	process	large	datasets	using	parallel	processing	deployed	over	clusters
of	commodity	hardware.

Figure	6.7	The	symbol	used	to	represent	a	processing	engine.

MapReduce	does	not	require	that	the	input	data	conform	to	any	particular	data	model.
Therefore,	it	can	be	used	to	process	schema-less	datasets.	A	dataset	is	broken	down	into
multiple	smaller	parts,	and	operations	are	performed	on	each	part	independently	and	in
parallel.	The	results	from	all	operations	are	then	summarized	to	arrive	at	the	answer.
Because	of	the	coordination	overhead	involved	in	managing	a	job,	the	MapReduce
processing	engine	generally	only	supports	batch	workloads	as	this	work	is	not	expected	to
have	low	latency.	MapReduce	is	based	on	Google’s	research	paper	on	the	subject,
published	in	early	2000.

The	MapReduce	processing	engine	works	differently	compared	to	the	traditional	data
processing	paradigm.	Traditionally,	data	processing	requires	moving	data	from	the	storage
node	to	the	processing	node	that	runs	the	data	processing	algorithm.	This	approach	works
fine	for	smaller	datasets;	however,	with	large	datasets,	moving	data	can	incur	more



overhead	than	the	actual	processing	of	the	data.

With	MapReduce,	the	data	processing	algorithm	is	instead	moved	to	the	nodes	that	store
the	data.	The	data	processing	algorithm	executes	in	parallel	on	these	nodes,	thereby
eliminating	the	need	to	move	the	data	first.	This	not	only	saves	network	bandwidth	but	it
also	results	in	a	large	reduction	in	processing	time	for	large	datasets,	since	processing
smaller	chunks	of	data	in	parallel	is	much	faster.

Map	and	Reduce	Tasks
A	single	processing	run	of	the	MapReduce	processing	engine	is	known	as	a	MapReduce
job.	Each	MapReduce	job	is	composed	of	a	map	task	and	a	reduce	task	and	each	task
consists	of	multiple	stages.	Figure	6.8	shows	the	map	and	reduce	task,	along	with	their
individual	stages.

Figure	6.8	An	illustration	of	a	MapReduce	job	with	the	map	stage	highlighted.

Map	tasks

•	map

•	combine	(optional)

•	partition

Reduce	tasks

•	shuffle	and	sort

•	reduce



Map

The	first	stage	of	MapReduce	is	known	as	map,	during	which	the	dataset	file	is	divided
into	multiple	smaller	splits.	Each	split	is	parsed	into	its	constituent	records	as	a	key-value
pair.	The	key	is	usually	the	ordinal	position	of	the	record,	and	the	value	is	the	actual
record.

The	parsed	key-value	pairs	for	each	split	are	then	sent	to	a	map	function	or	mapper,	with
one	mapper	function	per	split.	The	map	function	executes	user-defined	logic.	Each	split
generally	contains	multiple	key-value	pairs,	and	the	mapper	is	run	once	for	each	key-value
pair	in	the	split.

The	mapper	processes	each	key-value	pair	as	per	the	user-defined	logic	and	further
generates	a	key-value	pair	as	its	output.	The	output	key	can	either	be	the	same	as	the	input
key	or	a	substring	value	from	the	input	value,	or	another	serializable	user-defined	object.
Similarly,	the	output	value	can	either	be	the	same	as	the	input	value	or	a	substring	value
from	the	input	value,	or	another	serializable	user-defined	object.

When	all	records	of	the	split	have	been	processed,	the	output	is	a	list	of	key-value	pairs
where	multiple	key-value	pairs	can	exist	for	the	same	key.	It	should	be	noted	that	for	an
input	key-value	pair,	a	mapper	may	not	produce	any	output	key-value	pair	(filtering)	or
can	generate	multiple	key-value	pairs	(demultiplexing.)	The	map	stage	can	be	summarized
by	the	equation	shown	in	Figure	6.9.

Figure	6.9	A	summary	of	the	map	stage.

Combine

Generally,	the	output	of	the	map	function	is	handled	directly	by	the	reduce	function.
However,	map	tasks	and	reduce	tasks	are	mostly	run	over	different	nodes.	This	requires
moving	data	between	mappers	and	reducers.	This	data	movement	can	consume	a	lot	of
valuable	bandwidth	and	directly	contributes	to	processing	latency.

With	larger	datasets,	the	time	taken	to	move	the	data	between	map	and	reduce	stages	can
exceed	the	actual	processing	undertaken	by	the	map	and	reduce	tasks.	For	this	reason,	the
MapReduce	engine	provides	an	optional	combine	function	(combiner)	that	summarizes	a
mapper’s	output	before	it	gets	processed	by	the	reducer.	Figure	6.10	illustrates	the
consolidation	of	the	output	from	the	map	stage	by	the	combine	stage.



Figure	6.10	The	combine	stage	groups	the	output	from	the	map	stage.

A	combiner	is	essentially	a	reducer	function	that	locally	groups	a	mapper’s	output	on	the
same	node	as	the	mapper.	A	reducer	function	can	be	used	as	a	combiner	function,	or	a
custom	user-defined	function	can	be	used.

The	MapReduce	engine	combines	all	values	for	a	given	key	from	the	mapper	output,
creating	multiple	key-value	pairs	as	input	to	the	combiner	where	the	key	is	not	repeated
and	the	value	exists	as	a	list	of	all	corresponding	values	for	that	key.	The	combiner	stage	is
only	an	optimization	stage,	and	may	therefore	not	even	be	called	by	the	MapReduce
engine.

For	example,	a	combiner	function	will	work	for	finding	the	largest	or	the	smallest	number,
but	will	not	work	for	finding	the	average	of	all	numbers	since	it	only	works	with	a	subset
of	the	data.	The	combine	stage	can	be	summarized	by	the	equation	shown	in	Figure	6.11.

Figure	6.11	A	summary	of	the	combine	stage.



Partition

During	the	partition	stage,	if	more	than	one	reducer	is	involved,	a	partitioner	divides	the
output	from	the	mapper	or	combiner	(if	specified	and	called	by	the	MapReduce	engine)
into	partitions	between	reducer	instances.	The	number	of	partitions	will	equal	the	number
of	reducers.	Figure	6.12	shows	the	partition	stage	assigning	the	outputs	from	the	combine
stage	to	specific	reducers.

Figure	6.12	The	partition	stage	assigns	output	from	the	map	task	to	reducers.

Although	each	partition	contains	multiple	key-value	pairs,	all	records	for	a	particular	key
are	assigned	to	the	same	partition.	The	MapReduce	engine	guarantees	a	random	and	fair
distribution	between	reducers	while	making	sure	that	all	of	the	same	keys	across	multiple
mappers	end	up	with	the	same	reducer	instance.

Depending	on	the	nature	of	the	job,	certain	reducers	can	sometimes	receive	a	large	number
of	key-value	pairs	compared	to	others.	As	a	result	of	this	uneven	workload,	some	reducers
will	finish	earlier	than	others.	Overall,	this	is	less	efficient	and	leads	to	longer	job
execution	times	than	if	the	work	was	evenly	split	across	reducers.	This	can	be	rectified	by
customizing	the	partitioning	logic	in	order	to	guarantee	a	fair	distribution	of	key-value
pairs.

The	partition	function	is	the	last	stage	of	the	map	task.	It	returns	the	index	of	the	reducer
to	which	a	particular	partition	should	be	sent.	The	partition	stage	can	be	summarized	by
the	equation	in	Figure	6.13.



Figure	6.13	A	summary	of	the	partition	stage.

Shuffle	and	Sort

During	the	first	stage	of	the	reduce	task,	output	from	all	partitioners	is	copied	across	the
network	to	the	nodes	running	the	reduce	task.	This	is	known	as	shuffling.	The	list	based
key-value	output	from	each	partitioner	can	contain	the	same	key	multiple	times.

Next,	the	MapReduce	engine	automatically	groups	and	sorts	the	key-value	pairs	according
to	the	keys	so	that	the	output	contains	a	sorted	list	of	all	input	keys	and	their	values	with
the	same	keys	appearing	together.	The	way	in	which	keys	are	grouped	and	sorted	can	be
customized.

This	merge	creates	a	single	key-value	pair	per	group,	where	key	is	the	group	key	and	the
value	is	the	list	of	all	group	values.	This	stage	can	be	summarized	by	the	equation	in
Figure	6.14.

Figure	6.14	A	summary	of	the	shuffle	and	sort	stage.

Figure	6.15	depicts	a	hypothetical	MapReduce	job	that	is	executing	the	shuffle	and	sort
stage	of	the	reduce	task.



Figure	6.15	During	the	shuffle	and	sort	stage,	data	is	copied	across	the	network	to	the
reducer	nodes	and	sorted	by	key.

Reduce

Reduce	is	the	final	stage	of	the	reduce	task.	Depending	on	the	user-defined	logic	specified
in	the	reduce	function	(reducer),	the	reducer	will	either	further	summarize	its	input	or	will
emit	the	output	without	making	any	changes.	In	either	case,	for	each	key-value	pair	that	a
reducer	receives,	the	list	of	values	stored	in	the	value	part	of	the	pair	is	processed	and
another	key-value	pair	is	written	out.

The	output	key	can	either	be	the	same	as	the	input	key	or	a	substring	value	from	the	input
value,	or	another	serializable	user-defined	object.	The	output	value	can	either	be	the	same
as	the	input	value	or	a	substring	value	from	the	input	value,	or	another	serializable	user-
defined	object.

Note	that	just	like	the	mapper,	for	the	input	key-value	pair,	a	reducer	may	not	produce	any
output	key-value	pair	(filtering)	or	can	generate	multiple	key-value	pairs	(demultiplexing).
The	output	of	the	reducer,	that	is	the	key-value	pairs,	is	then	written	out	as	a	separate	file
—one	file	per	reducer.	This	is	depicted	in	Figure	6.16,	which	highlights	the	reduce	stage
of	the	reduce	task.	To	view	the	full	output	from	the	MapReduce	job,	all	the	file	parts	must
be	combined.



Figure	6.16	The	reduce	stage	is	the	last	stage	of	the	reduce	task.

The	number	of	reducers	can	be	customized.	It	is	also	possible	to	have	a	MapReduce	job
without	a	reducer,	for	example	when	performing	filtering.

Note	that	the	output	signature	(key-value	types)	of	the	map	function	should	match	that	of
the	input	signature	(key-value	types)	of	the	reduce/combine	function.	The	reduce	stage	can
be	summarized	by	the	equation	in	Figure	6.17.

Figure	6.17	A	summary	of	the	reduce	stage.

A	Simple	MapReduce	Example
The	following	steps	are	shown	in	Figure	6.18:

1.	The	input	(sales.txt)	is	divided	into	two	splits.

2.	Two	map	tasks	running	on	two	different	nodes,	Node	A	and	Node	B,	extract	product
and	quantity	from	the	respective	split’s	records	in	parallel.	The	output	from	each
map	function	is	a	key-value	pair	where	product	is	the	key	while	quantity	is	the
value.

3.	The	combiner	then	performs	local	summation	of	product	quantities.



4.	As	there	is	only	one	reduce	task,	no	partitioning	is	performed.

5.	The	output	from	the	two	map	tasks	is	then	copied	to	a	third	node,	Node	C,	that	runs
the	shuffle	stage	as	part	of	the	reduce	task.

6.	The	sort	stage	then	groups	all	quantities	of	the	same	product	together	as	a	list.

7.	Like	the	combiner,	the	reduce	function	then	sums	up	the	quantities	of	each	unique
product	in	order	to	create	the	output.

Figure	6.18	An	example	of	MapReduce	in	action.

Understanding	MapReduce	Algorithms
Unlike	traditional	programming	models,	MapReduce	follows	a	distinct	programming
model.	In	order	to	understand	how	algorithms	can	be	designed	or	adapted	to	this
programming	model,	its	design	principle	first	needs	to	be	explored.

As	described	earlier,	MapReduce	works	on	the	principle	of	divide-and-conquer.	However,
it	is	important	to	understand	the	semantics	of	this	principle	in	the	context	of	MapReduce.
The	divide-and-conquer	principle	is	generally	achieved	using	one	of	the	following
approaches:

•	Task	Parallelism	–	Task	parallelism	refers	to	the	parallelization	of	data	processing
by	dividing	a	task	into	sub-tasks	and	running	each	sub-task	on	a	separate	processor,
generally	on	a	separate	node	in	a	cluster	(Figure	6.19).	Each	sub-task	generally
executes	a	different	algorithm,	with	its	own	copy	of	the	same	data	or	different	data
as	its	input,	in	parallel.	Generally,	the	output	from	multiple	sub-tasks	is	joined
together	to	obtain	the	final	set	of	results.



Figure	6.19	A	task	is	split	into	two	sub-tasks,	Sub-task	A	and	Sub-task	B,	which	are
then	run	on	two	different	nodes	on	the	same	dataset.

•	Data	Parallelism	–	Data	parallelism	refers	to	the	parallelization	of	data	processing
by	dividing	a	dataset	into	multiple	datasets	and	processing	each	sub-dataset	in
parallel	(Figure	6.20).	The	sub-datasets	are	spread	across	multiple	nodes	and	are	all
processed	using	the	same	algorithm.	Generally,	the	output	from	each	processed	sub-
dataset	is	joined	together	to	obtain	the	final	set	of	results.



Figure	6.20	A	dataset	is	divided	into	two	sub-datasets,	Sub-dataset	A	and	Sub-dataset
B,	which	are	then	processed	on	two	different	nodes	using	the	same	function.

Within	Big	Data	environments,	the	same	task	generally	needs	to	be	performed	repeatedly
on	a	data	unit,	such	as	a	record,	where	the	complete	dataset	is	distributed	across	multiple
locations	due	to	its	large	size.	MapReduce	addresses	this	requirement	by	employing	the
data	parallelism	approach,	where	the	data	is	divided	into	splits.	Each	split	is	then
processed	by	its	own	instance	of	the	map	function,	which	contains	the	same	processing
logic	as	the	other	map	functions.

The	majority	of	traditional	algorithmic	development	follows	a	sequential	approach	where
operations	on	data	are	performed	one	after	the	other	in	such	a	way	that	subsequent
operation	is	dependent	on	its	preceding	operation.

In	MapReduce,	operations	are	divided	among	the	map	and	reduce	functions.	Map	and
reduce	tasks	are	independent	and	in	turn	run	isolated	from	one	another.	Furthermore,	each
instance	of	a	map	or	reduce	function	runs	independently	of	other	instances.

Function	signatures	in	traditional	algorithmic	development	are	generally	not	constrained.
In	MapReduce,	the	map	and	reduce	function	signatures	are	constrained	to	a	set	of	key-
value	pairs.	This	is	the	only	way	that	a	map	function	can	communicate	with	a	reduce



function.	Apart	from	this,	the	logic	in	the	map	function	is	dependent	on	how	records	are
parsed,	which	further	depends	on	what	constitutes	a	logical	data	unit	within	the	dataset.

For	example,	each	line	in	a	text	file	generally	represents	a	single	record.	However,	it	may
be	that	a	set	of	two	or	more	lines	actually	constitute	a	single	record	(Figure	6.21).
Furthermore,	the	logic	within	the	reduce	function	is	dependent	on	the	output	of	the	map
function,	particularly	which	keys	were	emitted	from	the	map	function	as	the	reduce
function	receives	a	unique	key	with	a	consolidated	list	of	all	of	its	values.	It	should	be
noted	that	in	some	scenarios,	such	as	with	text	extraction,	a	reduce	function	may	not	be
required.

Figure	6.21	An	instance	where	three	lines	constitute	a	single	record.

The	key	considerations	when	developing	a	MapReduce	algorithm	can	be	summarized	as
follows:

•	Use	of	relatively	simplistic	algorithmic	logic,	such	that	the	required	result	can	be
obtained	by	applying	the	same	logic	to	different	portions	of	a	dataset	in	parallel	and
then	aggregating	the	results	in	some	manner.

•	Availability	of	the	dataset	in	a	distributed	manner	partitioned	across	a	cluster	so	that
multiple	map	functions	can	process	different	subsets	of	a	dataset	in	parallel.

•	Understanding	of	the	data	structure	within	the	dataset	so	that	a	meaningful	data	unit
(a	single	record)	can	be	chosen.

•	Dividing	algorithmic	logic	into	map	and	reduce	functions	so	that	the	logic	in	the
map	function	is	not	dependent	on	the	complete	dataset,	since	only	data	within	a
single	split	is	available.

•	Emitting	the	correct	key	from	the	map	function	along	with	all	the	required	data	as
value	because	the	reduce	function’s	logic	can	only	process	those	values	that	were
emitted	as	part	of	the	key-value	pairs	from	the	map	function.

•	Emitting	the	correct	key	from	the	reduce	function	along	with	the	required	data	as
value	because	the	output	from	each	reduce	function	becomes	the	final	output	of	the
MapReduce	algorithm.

Processing	in	Realtime	Mode
In	realtime	mode,	data	is	processed	in-memory	as	it	is	captured	before	being	persisted	to
the	disk.	Response	time	generally	ranges	from	a	sub-second	to	under	a	minute.	Realtime
mode	addresses	the	velocity	characteristic	of	Big	Data	datasets.

Within	Big	Data	processing,	realtime	processing	is	also	called	event	or	stream	processing
as	the	data	either	arrives	continuously	(stream)	or	at	intervals	(event).	The	individual
event/stream	datum	is	generally	small	in	size,	but	its	continuous	nature	results	in	very



large	datasets.

Another	related	term,	interactive	mode,	falls	within	the	category	of	realtime.	Interactive
mode	generally	refers	to	query	processing	in	realtime.	Operational	BI/analytics	are
generally	conducted	in	realtime	mode.

A	fundamental	principle	related	to	Big	Data	processing	is	called	the	Speed,	Consistency
and	Volume	(SCV)	principle.	It	is	covered	first	as	it	establishes	some	basic	constraints	on
processing	that	mainly	impact	realtime	processing	mode.

Speed	Consistency	Volume	(SCV)
Whereas	the	CAP	theorem	is	primarily	related	to	distributed	data	storage,	the	SCV	(Figure
6.22)	principle	is	related	to	distributed	data	processing.	It	states	that	a	distributed	data
processing	system	can	be	designed	to	support	only	two	of	the	following	three
requirements:

•	Speed	–	Speed	refers	to	how	quickly	the	data	can	be	processed	once	it	is	generated.
In	the	case	of	realtime	analytics,	data	is	processed	comparatively	faster	than	batch
analytics.	This	generally	excludes	the	time	taken	to	capture	data	and	focuses	only	on
the	actual	data	processing,	such	as	generating	statistics	or	executing	an	algorithm.

•	Consistency	–	Consistency	refers	to	the	accuracy	and	the	precision	of	the	results.
Results	are	deemed	accurate	if	they	are	close	to	the	correct	value	and	precise	if	close
to	each	other.	A	more	consistent	system	will	make	use	of	all	available	data,	resulting
in	high	accuracy	and	precision	as	compared	to	a	less	consistent	system	that	makes
use	of	sampling	techniques,	which	can	result	in	lower	accuracy	with	an	acceptable
level	of	precision.

•	Volume	–	Volume	refers	to	the	amount	of	data	that	can	be	processed.	Big	Data’s
velocity	characteristic	results	in	fast	growing	datasets	leading	to	huge	volumes	of
data	that	need	to	be	processed	in	a	distributed	manner.	Processing	such	voluminous
data	in	its	entirety	while	ensuring	speed	and	consistency	is	not	possible.



Figure	6.22	This	Venn	diagram	summarizes	the	SCV	principle.

If	speed	(S)	and	consistency	(C)	are	required,	it	is	not	possible	to	process	high	volumes	of
data	(V)	because	large	amounts	of	data	slow	down	data	processing.

If	consistency	(C)	and	processing	of	high	volumes	of	data	(V)	are	required,	it	is	not
possible	to	process	the	data	at	high	speed	(S)	as	achieving	high	speed	data	processing
requires	smaller	data	volumes.

If	high	volume	(V)	data	processing	coupled	with	high	speed	(S)	data	processing	is
required,	the	processed	results	will	not	be	consistent	(C)	since	high-speed	processing	of
large	amounts	of	data	involves	sampling	the	data,	which	may	reduce	consistency.

It	should	be	noted	that	the	choice	of	which	two	of	the	three	dimensions	to	support	is	fully
dependent	upon	the	system	requirements	of	the	analysis	environment.

In	Big	Data	environments,	making	the	maximum	amount	of	data	available	is	mandatory



for	performing	in-depth	analysis,	such	as	pattern	identification.	Hence,	forgoing	volume
(V)	over	speed	(S)	and	consistency	(C)	needs	to	be	considered	carefully	as	data	may	still
be	required	for	batch	processing	in	order	to	glean	further	insights.

In	the	case	of	Big	Data	processing,	assuming	that	data	(V)	loss	is	unacceptable,	generally
a	realtime	data	analysis	system	will	either	be	S+V	or	C+V,	depending	upon	whether	speed
(S)	or	consistent	results	(C)	is	favored.

Processing	Big	Data	in	realtime	generally	refers	to	realtime	or	near-realtime	analytics.
Data	is	processed	as	it	arrives	at	the	enterprise	boundary	without	an	unreasonable	delay.
Instead	of	initially	persisting	the	data	to	the	disk,	for	example	to	a	database,	the	data	is
first	processed	in	memory	and	then	persisted	to	the	disk	for	future	use	or	archival
purposes.	This	is	opposite	of	batch	processing	mode,	where	data	is	persisted	to	the	disk
first	and	then	subsequently	processed,	which	can	create	significant	delays.

Analyzing	Big	Data	in	realtime	requires	the	use	of	in-memory	storage	devices	(IMDGs	or
IMDBs).	Once	in	memory,	the	data	can	then	be	processed	in	realtime	without	incurring
any	hard-disk	I/O	latency.	The	realtime	processing	may	involve	calculating	simple
statistics,	executing	complex	algorithms	or	updating	the	state	of	the	in-memory	data	as	a
result	of	a	change	detected	in	some	metric.

For	enhanced	data	analysis,	in-memory	data	can	be	combined	with	previously	batch-
processed	data	or	denormalized	data	loaded	from	on-disk	storage	devices.	This	helps	to
achieve	realtime	data	processing	as	datasets	can	be	joined	in	memory.

Although	realtime	Big	Data	processing	generally	refers	to	incoming	new	data,	it	can	also
include	performing	queries	on	previously	persisted	data	that	requires	interactive	response.
Once	the	data	has	been	processed,	the	processing	results	can	then	be	published	for
interested	consumers.	This	may	occur	via	a	realtime	dashboard	application	or	a	Web
application	that	delivers	realtime	updates	to	the	user.

Depending	on	system	requirements,	the	processed	data	along	with	the	raw	input	data	can
be	offloaded	to	on-disk	storage	for	subsequent	complex,	batch	data	analyses.

The	following	steps	are	shown	in	Figure	6.23:

1.	Streaming	data	is	captured	via	a	data	transfer	engine.

2.	It	is	then	simultaneously	saved	to	an	in-memory	storage	device	(a)	and	an	on-disk
storage	device	(b).

3.	A	processing	engine	is	then	used	to	process	data	in	realtime.

4.	Finally,	the	results	are	fed	to	a	dashboard	for	operational	analysis.



Figure	6.23	An	example	of	realtime	data	processing	in	a	Big	Data	environment.

Two	important	concepts	related	to	realtime	Big	Data	processing	are:

•	Event	Stream	Processing	(ESP)

•	Complex	Event	Processing	(CEP)

Event	Stream	Processing
During	ESP,	an	incoming	stream	of	events,	generally	from	a	single	source	and	ordered	by
time,	is	continuously	analyzed.	The	analysis	can	occur	via	simple	queries	or	the
application	of	algorithms	that	are	mostly	formula-based.	The	analysis	takes	place	in-
memory	before	storing	the	events	to	an	on-disk	storage	device.

Other	(memory	resident)	data	sources	can	also	be	incorporated	into	the	analysis	for
performing	richer	analytics.	The	processing	results	can	be	fed	to	a	dashboard	or	can	act	as
a	trigger	for	another	application	to	perform	a	preconfigured	action	or	further	analysis.	ESP
focuses	more	on	speed	than	complexity;	the	operation	to	be	executed	is	comparatively
simple	to	aid	faster	execution.

Complex	Event	Processing
During	CEP,	a	number	of	realtime	events	often	coming	from	disparate	sources	and
arriving	at	different	time	intervals	are	analyzed	simultaneously	for	the	detection	of
patterns	and	initiation	of	action.	Rule-based	algorithms	and	statistical	techniques	are
applied,	taking	into	account	business	logic	and	process	context	to	discover	cross-cutting
complex	event	patterns.

CEP	focuses	more	on	complexity,	providing	rich	analytics.	However,	as	a	result,	speed	of
execution	may	be	adversely	affected.	In	general,	CEP	is	considered	to	be	a	superset	of
ESP	and	often	the	output	of	ESP	results	in	the	generation	of	synthetic	events	that	can	be
fed	into	CEP.

Realtime	Big	Data	Processing	and	SCV
While	designing	a	realtime	Big	Data	processing	system,	the	SCV	principle	needs	to	be
kept	in	mind.	In	light	of	this	principle,	consider	a	hard-realtime	and	a	near-realtime	Big
Data	processing	system.	For	both	hard-realtime	and	near-realtime	scenarios,	we	assume
that	data	loss	is	unacceptable;	in	other	words,	high	data	volume	(V)	processing	is	required
for	both	the	systems.



Note	that	the	requirement	that	the	data	loss	should	not	occur	does	not	mean	that	all	data
will	actually	be	processed	in	realtime.	Rather,	it	means	that	the	system	captures	all	input
data	and	that	the	data	is	always	persisted	to	disk	either	directly	by	writing	it	to	on-disk
storage	or	indirectly	to	a	disk	serving	as	a	persistence	layer	for	in-memory	storage.

In	the	case	of	a	hard-realtime	system,	a	fast	response	(S)	is	required,	hence	consistency
(C)	will	be	compromised	if	high	volume	data	(V)	needs	to	be	processed	in	memory.	This
scenario	will	require	the	use	of	sampling	or	approximation	techniques,	which	will	in	turn
generate	less	accurate	results	but	with	tolerable	precision	in	a	timely	manner.

In	the	case	of	a	near-realtime	system,	a	reasonably	fast	response	(S)	is	required,	hence
consistency	(C)	can	be	guaranteed	if	high	volume	data	(V)	needs	to	be	processed	in
memory.	Results	will	be	more	accurate	when	compared	to	a	hard-realtime	system	since
the	complete	dataset	can	be	used	instead	of	taking	samples	or	employing	approximation
techniques.

Thus,	in	the	context	of	Big	Data	processing,	a	hard-realtime	system	requires	a	compromise
on	consistency	(C)	to	guarantee	a	fast	response	(S)	while	a	near-realtime	system	can
compromise	speed	(S)	to	guarantee	consistent	results	(C).

Realtime	Big	Data	Processing	and	MapReduce
MapReduce	is	generally	unsuitable	for	realtime	Big	Data	processing.	There	are	several
reasons	for	this,	not	the	least	of	which	is	the	amount	of	overhead	associated	with
MapReduce	job	creation	and	coordination.	MapReduce	is	intended	for	the	batch-oriented
processing	of	large	amounts	of	data	that	has	been	stored	to	disk.	MapReduce	cannot
process	data	incrementally	and	can	only	process	complete	datasets.	It	therefore	requires	all
input	data	to	be	available	in	its	entirety	before	the	execution	of	the	data	processing	job.
This	is	at	odds	with	the	requirements	for	realtime	data	processing	as	realtime	processing
involves	data	that	is	often	incomplete	and	continuously	arriving	via	a	stream.

Additionally,	with	MapReduce	a	reduce	task	cannot	generally	start	before	the	completion
of	all	map	tasks.	First,	the	map	output	is	persisted	locally	on	each	node	that	runs	the	map
function.	Next,	the	map	output	is	copied	over	the	network	to	the	nodes	that	run	the	reduce
function,	introducing	processing	latency.	Similarly,	the	results	of	one	reducer	cannot	be
directly	fed	into	another	reducer,	rather	the	results	would	have	to	be	passed	to	a	mapper
first	in	a	subsequent	MapReduce	job.

As	demonstrated,	MapReduce	is	generally	not	useful	for	realtime	processing,	especially
when	hard-realtime	constraints	are	present.	There	are	however	some	strategies	that	can
enable	the	use	of	MapReduce	in	near-realtime	Big	Data	processing	scenarios.

One	strategy	is	to	use	in-memory	storage	to	store	data	that	serves	as	input	to	interactive
queries	that	consist	of	MapReduce	jobs.	Alternatively,	micro-batch	MapReduce	jobs	can
be	deployed	that	are	configured	to	run	on	comparatively	smaller	datasets	at	frequent
intervals,	such	as	every	fifteen	minutes.	Another	approach	is	to	continuously	run
MapReduce	jobs	against	on-disk	datasets	to	create	materialized	views	that	can	then	be
combined	with	small	volume	analysis	results,	obtained	from	newly	arriving	in-memory
streaming	data,	for	interactive	query	processing.

Given	the	predominance	of	smart	devices	and	corporate	desires	to	engage	customers	more



proactively,	advancements	in	realtime	Big	Data	processing	capabilities	are	occurring	very
quickly.	Several	open	source	Apache	projects,	specifically	Spark,	Storm	and	Tez,	provide
true	realtime	Big	Data	processing	capabilities	and	are	the	foundation	of	a	new	generation
of	realtime	processing	solutions.

Case	Study	Example

Most	of	ETI’s	operational	information	systems	utilize	client-server	and	n-tier
architectures.	After	surveying	its	inventory	of	IT	systems,	the	company	determines
that	none	of	the	systems	employ	distributed	data	processing.	Instead,	data	that
needs	to	be	processed	is	either	received	from	a	client	or	retrieved	from	the	database
and	then	processed	by	a	single	machine.	Although	the	current	data	processing
model	does	not	employ	distributed	data	processing,	some	of	the	software	engineers
agree	that	the	parallel	data	processing	model	on	a	machine-level	is	used	to	some
degree.	Their	understanding	is	based	on	the	fact	that	some	of	their	high-
performance	custom	applications	make	use	of	multi-threading	to	enable	a	data
processing	job	to	be	split	for	execution	on	the	multiple	cores	present	in	rack-based
servers.

Processing	Workloads
The	IT	team	understands	transactional	and	batch	workloads	because	both
workloads	are	currently	manifested	in	data	processing	in	ETI’s	IT	environment.
Operational	systems,	such	as	claims	management	and	billing,	exhibit	transactional
workload	comprising	of	ACID-compliant	database	transactions.	On	the	other	hand,
the	population	of	the	EDW	via	ETL	and	BI	activities	represents	batch	workload.

Processing	in	Batch	Mode
Being	new	to	Big	Data	technologies,	the	IT	team	opts	for	an	incremental	approach
by	first	implementing	batch	processing	of	data.	Once	the	team	has	gained	enough
experience,	it	can	move	toward	implementing	realtime	processing	of	data.

To	get	an	understanding	of	the	MapReduce	framework,	the	IT	team	picks	up	a
scenario	where	MapReduce	can	be	applied,	and	performs	a	mental	exercise.	The
members	observe	that	one	task	that	needs	to	be	performed	on	a	regular	basis	and
takes	a	long	time	to	complete	is	the	locating	of	the	most	popular	insurance	products.
The	popularity	of	an	insurance	product	is	determined	by	finding	out	how	many
times	the	corresponding	page	of	that	product	was	viewed.	The	webserver	creates	an
entry	(a	line	of	text	with	a	comma-delimited	set	of	fields)	in	a	log	file	whenever	a
webpage	is	requested.	Among	other	fields,	the	webserver	log	contains	the	IP
address	of	the	website	visitor	that	requested	the	webpage,	the	time	when	the
webpage	was	requested	and	the	page	name.	The	page	name	corresponds	to	the
name	of	the	insurance	product	that	the	website	visitor	is	interested	in.	Currently,	the
webserver	logs	are	imported	from	all	webservers	into	a	relational	database.	Next	an
SQL	query	is	executed	to	get	a	list	of	page	names	along	with	a	count	of	page	views.
The	import	of	the	log	files	and	the	execution	of	the	SQL	query	take	a	long	time	to
complete.



To	obtain	the	page	view	count	using	MapReduce,	the	IT	team	takes	the	following
approach.	In	the	map	stage,	for	each	input	line	of	text,	the	page	name	is	extracted
and	set	as	the	output	key	while	a	numeric	value	of	1	is	set	as	the	value.	In	the
reduce	stage,	all	of	the	input	values	(a	list	of	1s)	for	a	single	input	key	(the	page
name)	are	simply	summed	up	using	a	loop	to	get	the	total	page	view	count.	The
output	from	the	reduce	stage	consists	of	the	page	name	as	the	key	and	the	total	page
view	count	as	the	value.	To	make	the	processing	more	efficient,	the	trained	IT	team
members	remind	the	rest	of	the	group	that	a	combiner	can	be	used	to	execute
exactly	the	same	logic	as	the	reducer.	However,	the	output	from	the	combiner	will
consist	of	the	subtotal	of	the	page	views	count.	Therefore,	in	the	reducer,	although
the	logic	for	getting	the	total	number	of	page	views	remains	the	same,	instead	of
getting	a	list	of	1s	(the	value)	against	each	page	name	(the	key),	the	list	of	input
values	will	consist	of	the	subtotal	from	each	mapper.

Processing	in	Realtime
The	IT	team	believes	that	the	event	stream	processing	model	can	be	used	to	perform
sentiment	analysis	on	Twitter	data	in	realtime	to	find	the	reasons	behind	any
customer	dissatisfaction.



Chapter	7.	Big	Data	Storage	Technology

On-Disk	Storage	Devices

In-Memory	Storage	Devices

Storage	technology	has	continued	to	evolve	over	time,	moving	from	inside	the	server	to
out	on	the	network.	Today’s	push	to	converged	architecture	puts	compute,	storage,
memory	and	network	back	into	the	box,	where	the	architecture	can	be	uniformly
administered.	Amidst	these	changes,	the	need	to	store	Big	Data	has	radically	altered	the
relational,	database-centric	view	that	has	been	embraced	by	Enterprise	ICT	since	the	late
1980s.	The	bottom	line	is	that	relational	technology	is	simply	not	scalable	in	a	manner	to
support	Big	Data	volumes.	Not	to	mention,	businesses	can	find	genuine	value	in
processing	semi-structured	and	unstructured	data,	which	are	generally	incompatible	with
relational	approaches.

Big	Data	has	pushed	the	storage	boundary	to	unified	views	of	the	available	memory	and
disk	storage	of	a	cluster.	If	more	storage	is	needed,	horizontal	scalability	allows	the
expansion	of	the	cluster	through	the	addition	of	more	nodes.	The	fact	that	this	is	equally
true	for	both	memory	and	disk	devices	is	important	as	innovative	approaches	deliver
realtime	analytics	via	in-memory	storage.	Even	batch-based	processing	has	accelerated	by
the	performance	of	Solid	State	Drives	(SSDs),	which	have	become	less	expensive.

This	chapter	delves	deeper	into	the	use	of	on-disk	and	in-memory	storage	devices	for	Big
Data.	Topics	ranging	from	simple	notions	of	distributed	files	systems	for	flat	file	storage
to	NoSQL	devices	for	unstructured	and	semi-structured	data	are	covered.	Specifically,	the
different	varieties	of	NoSQL	database	technologies	and	their	appropriate	uses	are



explained.	The	last	major	topic	of	the	chapter	is	in-memory	storage,	which	facilitates	the
processing	of	streaming	data	and	can	hold	entire	databases.	These	technologies	enable	a
shift	from	traditional	on-disk,	batch-oriented	processing	to	in-memory	realtime
processing.

On-Disk	Storage	Devices
On-disk	storage	generally	utilizes	low	cost	hard-disk	drives	for	long-term	storage.	On-disk
storage	can	be	implemented	via	a	distributed	file	system	or	a	database	as	shown	in	Figure
7.1.

Figure	7.1	On-disk	storage	can	be	implemented	with	a	distributed	file	system	or	a
database.

Distributed	File	Systems
Distributed	file	systems,	like	any	file	system,	are	agnostic	to	the	data	being	stored	and
therefore	support	schema-less	data	storage.	In	general,	a	distributed	file	system	storage
device	provides	out	of	box	redundancy	and	high	availability	by	copying	data	to	multiple
locations	via	replication.

A	storage	device	that	is	implemented	with	a	distributed	file	system	provides	simple,	fast
access	data	storage	that	is	capable	of	storing	large	datasets	that	are	non-relational	in
nature,	such	as	semi-structured	and	unstructured	data.	Although	based	on	straightforward
file	locking	mechanisms	for	concurrency	control,	it	provides	fast	read/write	capability,
which	addresses	the	velocity	characteristic	of	Big	Data.

A	distributed	file	system	is	not	ideal	for	datasets	comprising	a	large	number	of	small	files
as	this	creates	excessive	disk-seek	activity,	slowing	down	the	overall	data	access.	There	is
also	more	overhead	involved	in	processing	multiple	smaller	files,	as	dedicated	processes
are	generally	spawned	by	the	processing	engine	at	runtime	for	processing	each	file	before
the	results	are	synchronized	from	across	the	cluster.



Due	to	these	limitations,	distributed	file	systems	work	best	with	fewer	but	larger	files
accessed	in	a	sequential	manner.	Multiple	smaller	files	are	generally	combined	into	a
single	file	to	enable	optimum	storage	and	processing.	This	allows	the	distributed	file
systems	to	have	increased	performance	when	data	must	be	accessed	in	streaming	mode
with	no	random	reads	and	writes	(Figure	7.2).

Figure	7.2	A	distributed	file	system	accessing	data	in	streaming	mode	with	no	random
reads	and	writes.

A	distributed	file	system	storage	device	is	suitable	when	large	datasets	of	raw	data	are	to
be	stored	or	when	archiving	of	datasets	is	required.	In	addition,	it	provides	an	inexpensive
storage	option	for	storing	large	amounts	of	data	over	a	long	period	of	time	that	needs	to
remain	online.	This	is	because	more	disks	can	simply	be	added	to	the	cluster	without
needing	to	offload	the	data	to	offline	data	storage,	such	as	tapes.	It	should	be	noted	that
distributed	file	systems	do	not	provide	the	ability	to	search	the	contents	of	files	as	standard
out-of-the-box	capability.

RDBMS	Databases
Relational	database	management	systems	(RDBMSs)	are	good	for	handling	transactional
workloads	involving	small	amounts	of	data	with	random	read/write	properties.	RDBMSs
are	ACID-compliant,	and,	to	honor	this	compliance,	they	are	generally	restricted	to	a
single	node.	For	this	reason,	RDBMSs	do	not	provide	out-of-the-box	redundancy	and	fault
tolerance.

To	handle	large	volumes	of	data	arriving	at	a	fast	pace,	relational	databases	generally	need
to	scale.	RDBMSs	employ	vertical	scaling,	not	horizontal	scaling,	which	is	a	more	costly
and	disruptive	scaling	strategy.	This	makes	RDBMSs	less	than	ideal	for	long-term	storage
of	data	that	accumulates	over	time.

Note	that	some	relational	databases,	for	example	IBM	DB2	pureScale,	Sybase	ASE
Cluster	Edition,	Oracle	Real	Application	Clusters	(RAC)	and	Microsoft	Parallel	Data
Warehouse	(PDW),	are	capable	of	being	run	on	clusters	(Figure	7.3).	However,	these
database	clusters	still	use	shared	storage	that	can	act	as	a	single	point	of	failure.



Figure	7.3	A	clustered	rational	database	uses	a	shared	storage	architecture,	which	is	a
potential	single	point	of	failure	that	affects	the	availability	of	the	database.

Relational	databases	need	to	be	manually	sharded,	mostly	using	application	logic.	This
means	that	the	application	logic	needs	to	know	which	shard	to	query	in	order	to	get	the
required	data.	This	further	complicates	data	processing	when	data	from	multiple	shards	is
required.

The	following	steps	are	shown	in	Figure	7.4:

1.	A	user	writes	a	record	(id	=	2).

2.	The	application	logic	determines	which	shard	it	should	be	written	to.

3.	It	is	sent	to	the	shard	determined	by	the	application	logic.

4.	The	user	reads	a	record	(id	=	4),	and	the	application	logic	determines	which	shard
contains	the	data.



5.	The	data	is	read	and	returned	to	the	application.

6.	The	application	then	returns	the	record	to	the	user.

Figure	7.4	A	relational	database	is	manually	sharded	using	application	logic.

The	following	steps	are	shown	in	Figure	7.5:

1.	A	user	requests	multiple	records	(id	=	1,	3)	and	the	application	logic	is	used	to
determine	which	shards	need	to	be	read.

2.	It	is	determined	by	the	application	logic	that	both	Shard	A	and	Shard	B	need	to	be
read.

3.	The	data	is	read	and	joined	by	the	application.

4.	Finally,	the	data	is	returned	to	the	user.



Figure	7.5	An	example	of	the	use	of	the	application	logic	to	join	data	retrieved	from
multiple	shards.

Relational	databases	generally	require	data	to	adhere	to	a	schema.	As	a	result,	storage	of
semi-structured	and	unstructured	data	whose	schemas	are	non-relational	is	not	directly
supported.	Furthermore,	with	a	relational	database	schema	conformance	is	validated	at	the
time	of	data	insert	or	update	by	checking	the	data	against	the	constraints	of	the	schema.
This	introduces	overhead	that	creates	latency.

This	latency	makes	relational	databases	a	less	than	ideal	choice	for	storing	high	velocity
data	that	needs	a	highly	available	database	storage	device	with	fast	data	write	capability.
As	a	result	of	its	shortcomings,	a	traditional	RDBMS	is	generally	not	useful	as	the	primary
storage	device	in	a	Big	Data	solution	environment.

NoSQL	Databases
Not-only	SQL	(NoSQL)	refers	to	technologies	used	to	develop	next	generation	non-
relational	databases	that	are	highly	scalable	and	fault-tolerant.	The	symbol	used	to
represent	NoSQL	databases	is	shown	in	Figure	7.6.



Figure	7.6	The	symbol	used	to	represent	a	NoSQL	database.

Characteristics

Below	is	a	list	of	the	principal	features	of	NoSQL	storage	devices	that	differentiate	them
from	traditional	RDBMSs.	This	list	should	only	be	considered	a	general	guide,	as	not	all
NoSQL	storage	devices	exhibit	all	of	these	features.

•	Schema-less	data	model	–	Data	can	exist	in	its	raw	form.

•	Scale	out	rather	than	scale	up	–	More	nodes	can	be	added	to	obtain	additional
storage	with	a	NoSQL	database,	in	contrast	to	having	to	replace	the	existing	node
with	a	better,	higher	performance/capacity	one.

•	Highly	available	–	This	is	built	on	cluster-based	technologies	that	provide	fault
tolerance	out	of	the	box.

•	Lower	operational	costs	–	Many	NoSQL	databases	are	built	on	Open	Source
platforms	with	no	licensing	costs.	They	can	often	be	deployed	on	commodity
hardware.

•	Eventual	consistency	–	Data	reads	across	multiple	nodes	but	may	not	be	consistent
immediately	after	a	write.	However,	all	nodes	will	eventually	be	in	a	consistent	state.

•	BASE,	not	ACID	–	BASE	compliance	requires	a	database	to	maintain	high
availability	in	the	event	of	network/node	failure,	while	not	requiring	the	database	to
be	in	a	consistent	state	whenever	an	update	occurs.	The	database	can	be	in	a
soft/inconsistent	state	until	it	eventually	attains	consistency.	As	a	result,	in
consideration	of	the	CAP	theorem,	NoSQL	storage	devices	are	generally	AP	or	CP.

•	API	driven	data	access	–	Data	access	is	generally	supported	via	API	based	queries,
including	RESTful	APIs,	whereas	some	implementations	may	also	provide	SQL-like
query	capability.

•	Auto	sharding	and	replication	–	To	support	horizontal	scaling	and	provide	high
availability,	a	NoSQL	storage	device	automatically	employs	sharding	and	replication
techniques	where	the	dataset	is	partitioned	horizontally	and	then	copied	to	multiple
nodes.

•	Integrated	caching	–	This	removes	the	need	for	a	third-party	distributed	caching
layer,	such	as	Memcached.

•	Distributed	query	support	–	NoSQL	storage	devices	maintain	consistent	query
behavior	across	multiple	shards.

•	Polyglot	persistence	–	The	use	of	NoSQL	storage	does	not	mandate	retiring
traditional	RDBMSs.	In	fact,	both	can	be	used	at	the	same	time,	thereby	supporting



polyglot	persistence,	which	is	an	approach	of	persisting	data	using	different	types	of
storage	technologies	within	the	same	solution	architecture.	This	is	good	for
developing	systems	requiring	structured	as	well	as	semi/unstructured	data.

•	Aggregate-focused	–	Unlike	relational	databases	that	are	most	effective	with	fully
normalized	data,	NoSQL	storage	devices	store	de-normalized	aggregated	data	(an
entity	containing	merged,	often	nested,	data	for	an	object)	thereby	eliminating	the
need	for	joins	and	extensive	mapping	between	application	objects	and	the	data
stored	in	the	database.	One	exception,	however,	is	that	graph	database	storage
devices	(introduced	shortly)	are	not	aggregate-focused.

Rationale

The	emergence	of	NoSQL	storage	devices	can	primarily	be	attributed	to	the	volume,
velocity	and	variety	characteristics	of	Big	Data	datasets.

Volume

The	storage	requirement	of	ever	increasing	data	volumes	commands	the	use	of	databases
that	are	highly	scalable	while	keeping	costs	down	for	the	business	to	remain	competitive.
NoSQL	storage	devices	fulfill	this	requirement	by	providing	scale	out	capability	while
using	inexpensive	commodity	servers.

Velocity

The	fast	influx	of	data	requires	databases	with	fast	access	data	write	capability.	NoSQL
storage	devices	enable	fast	writes	by	using	schema-on-read	rather	than	schema-on-write
principle.	Being	highly	available,	NoSQL	storage	devices	can	ensure	that	write	latency
does	not	occur	because	of	node	or	network	failure.

Variety

A	storage	device	needs	to	handle	different	data	formats	including	documents,	emails,
images	and	videos	and	incomplete	data.	NoSQL	storage	devices	can	store	these	different
forms	of	semi-structured	and	unstructured	data	formats.	At	the	same	time,	NoSQL	storage
devices	are	able	to	store	schema-less	data	and	incomplete	data	with	the	added	ability	of
making	schema	changes	as	the	data	model	of	the	datasets	evolve.	In	other	words,	NoSQL
databases	support	schema	evolution.

Types

NoSQL	storage	devices	can	mainly	be	divided	into	four	types	based	on	the	way	they	store
data,	as	shown	in	Figures	7.7–7.10:

•	key-value

•	document

•	column-family

•	graph



Figure	7.7	An	example	of	key-value	NoSQL	storage.

Figure	7.8	An	example	of	document	NoSQL	storage.

Figure	7.9	An	example	of	column-family	NoSQL	storage.



Figure	7.10	An	example	of	graph	NoSQL	storage.

Key-Value

Key-value	storage	devices	store	data	as	key-value	pairs	and	act	like	hash	tables.	The	table
is	a	list	of	values	where	each	value	is	identified	by	a	key.	The	value	is	opaque	to	the
database	and	is	typically	stored	as	a	BLOB.	The	value	stored	can	be	any	aggregate,
ranging	from	sensor	data	to	videos.

Value	look-up	can	only	be	performed	via	the	keys	as	the	database	is	oblivious	to	the
details	of	the	stored	aggregate.	Partial	updates	are	not	possible.	An	update	is	either	a	delete
or	an	insert	operation.

Key-value	storage	devices	generally	do	not	maintain	any	indexes,	therefore	writes	are
quite	fast.	Based	on	a	simple	storage	model,	key-value	storage	devices	are	highly	scalable.

As	keys	are	the	only	means	of	retrieving	the	data,	the	key	is	usually	appended	with	the
type	of	the	value	being	saved	for	easy	retrieval.	An	example	of	this	is	123_sensor1.

To	provide	some	structure	to	the	stored	data,	most	key-value	storage	devices	provide
collections	or	buckets	(like	tables)	into	which	key-value	pairs	can	be	organized.	A	single
collection	can	hold	multiple	data	formats,	as	shown	in	Figure	7.11.	Some	implementations
support	compressing	values	for	reducing	the	storage	footprint.	However,	this	introduces
latency	at	read	time,	as	the	data	needs	to	be	decompressed	first	before	being	returned.

Figure	7.11	An	example	of	data	organized	into	key-value	pairs.

A	key-value	storage	device	is	appropriate	when:

•	unstructured	data	storage	is	required

•	high	performance	read/writes	are	required



•	the	value	is	fully	identifiable	via	the	key	alone

•	value	is	a	standalone	entity	that	is	not	dependent	on	other	values

•	values	have	a	comparatively	simple	structure	or	are	binary

•	query	patterns	are	simple,	involving	insert,	select	and	delete	operations	only

•	stored	values	are	manipulated	at	the	application	layer

A	key-value	storage	device	is	inappropriate	when:

•	applications	require	searching	or	filtering	data	using	attributes	of	the	stored	value

•	relationships	exist	between	different	key-value	entries

•	a	group	of	keys’	values	need	to	be	updated	in	a	single	transaction

•	multiple	keys	require	manipulation	in	a	single	operation

•	schema	consistency	across	different	values	is	required

•	update	to	individual	attributes	of	the	value	is	required

Examples	of	key-value	storage	devices	include	Riak,	Redis,	and	Amazon	Dynamo	DB.

Document

Document	storage	devices	also	store	data	as	key-value	pairs.	However,	unlike	key-value
storage	devices,	the	stored	value	is	a	document	that	can	be	queried	by	the	database.	These
documents	can	have	a	complex	nested	structure,	such	as	an	invoice,	as	shown	in	Figure
7.12.	The	documents	can	be	encoded	using	either	a	text-based	encoding	scheme,	such	as
XML	or	JSON,	or	using	a	binary	encoding	scheme,	such	as	BSON	(Binary	JSON).

Figure	7.12	A	depiction	of	JSON	data	stored	in	a	document	storage	device.

Like	key-value	storage	devices,	most	document	storage	devices	provide	collections	or
buckets	(like	tables)	into	which	key-value	pairs	can	be	organized.	The	main	differences
between	document	storage	devices	and	key-value	storage	devices	are	as	follows:

•	document	storage	devices	are	value-aware

•	the	stored	value	is	self-describing;	the	schema	can	be	inferred	from	the	structure	of
the	value	or	a	reference	to	the	schema	for	the	document	is	included	in	the	value

•	a	select	operation	can	reference	a	field	inside	the	aggregate	value

•	a	select	operation	can	retrieve	a	part	of	the	aggregate	value

•	partial	updates	are	supported;	therefore	a	subset	of	the	aggregate	can	be	updated



•	indexes	that	speed	up	searches	are	generally	supported

Each	document	can	have	a	different	schema;	therefore,	it	is	possible	to	store	different
types	of	documents	in	the	same	collection	or	bucket.	Additional	fields	can	be	added	to	a
document	after	the	initial	insert,	thereby	providing	flexible	schema	support.

It	should	be	noted	that	document	storage	devices	are	not	limited	to	storing	data	that	occurs
in	the	form	of	actual	documents,	such	as	an	XML	file,	but	they	can	also	be	used	to	store
any	aggregate	that	consists	of	a	collection	of	fields	having	a	flat	or	a	nested	schema.	See
Figure	7.12,	which	shows	JSON	documents	being	stored	in	a	document	NoSQL	database.

A	document	storage	device	is	appropriate	when:

•	storing	semi-structured	document-oriented	data	comprising	flat	or	nested	schema

•	schema	evolution	is	a	requirement	as	the	structure	of	the	document	is	either
unknown	or	is	likely	to	change

•	applications	require	a	partial	update	of	the	aggregate	stored	as	a	document

•	searches	need	to	be	performed	on	different	fields	of	the	documents

•	storing	domain	objects,	such	as	customers,	in	serialized	object	form

•	query	patterns	involve	insert,	select,	update	and	delete	operations

A	document	storage	device	is	inappropriate	when:

•	multiple	documents	need	to	be	updated	as	part	of	a	single	transaction

•	performing	operations	that	need	joins	between	multiple	documents	or	storing	data
that	is	normalized

•	schema	enforcement	for	achieving	consistent	query	design	is	required	as	the
document	structure	may	change	between	successive	query	runs,	which	will	require
restructuring	the	query

•	the	stored	value	is	not	self-describing	and	does	not	have	a	reference	to	a	schema

•	binary	data	needs	to	be	stored

Examples	of	document	storage	devices	include	MongoDB,	CouchDB,	and	Terrastore.

Column-Family

Column-family	storage	devices	store	data	much	like	a	traditional	RDBMS	but	group
related	columns	together	in	a	row,	resulting	in	column-families	(Figure	7.13).	Each
column	can	be	a	collection	of	related	columns	itself,	referred	to	as	a	super-column.



Figure	7.13	The	highlighted	columns	depict	the	flexible	schema	feature	supported	by
the	column-family	databases,	where	each	row	can	have	a	different	set	of	columns.

Each	super-column	can	contain	an	arbitrary	number	of	related	columns	that	are	generally
retrieved	or	updated	as	a	single	unit.	Each	row	consists	of	multiple	column-families	and
can	have	a	different	set	of	columns,	thereby	manifesting	flexible	schema	support.	Each
row	is	identified	by	a	row	key.

Column-family	storage	devices	provide	fast	data	access	with	random	read/write	capability.
They	store	different	column-families	in	separate	physical	files,	which	improves	query
responsiveness	as	only	the	required	column-families	are	searched.

Some	column-family	storage	devices	provide	support	for	selectively	compressing	column-
families.	Leaving	searchable	column-families	uncompressed	can	make	queries	faster
because	the	target	column	does	not	need	to	be	decompressed	for	lookup.	Most
implementations	support	data	versioning	while	some	support	specifying	an	expiry	time	for
column	data.	When	the	expiry	time	has	passed,	the	data	is	automatically	removed.

A	column-family	storage	device	is	appropriate	when:

•	realtime	random	read/write	capability	is	needed	and	data	being	stored	has	some
defined	structure

•	data	represents	a	tabular	structure,	each	row	consists	of	a	large	number	of	columns
and	nested	groups	of	interrelated	data	exist

•	support	for	schema	evolution	is	required	as	column	families	can	be	added	or
removed	without	any	system	downtime

•	certain	fields	are	mostly	accessed	together,	and	searches	need	to	be	performed	using
field	values

•	efficient	use	of	storage	is	required	when	the	data	consists	of	sparsely	populated	rows
since	column-family	databases	only	allocate	storage	space	if	a	column	exists	for	a
row.	If	no	column	is	present,	no	space	is	allocated.



•	query	patterns	involve	insert,	select,	update	and	delete	operations

A	column-family	storage	device	is	inappropriate	when:

•	relational	data	access	is	required;	for	example,	joins

•	ACID	transactional	support	is	required

•	binary	data	needs	to	be	stored

•	SQL-compliant	queries	need	to	be	executed

•	query	patterns	are	likely	to	change	frequently	because	that	could	initiate	a
corresponding	restructuring	of	how	column-families	are	arranged

Examples	of	column-family	storage	devices	include	Cassandra,	HBase	and	Amazon
SimpleDB.

Graph

Graph	storage	devices	are	used	to	persist	inter-connected	entities.	Unlike	other	NoSQL
storage	devices,	where	the	emphasis	is	on	the	structure	of	the	entities,	graph	storage
devices	place	emphasis	on	storing	the	linkages	between	entities	(Figure	7.14).



Figure	7.14	Graph	storage	devices	store	entities	and	their	relationships.

Entities	are	stored	as	nodes	(not	to	be	confused	with	cluster	nodes)	and	are	also	called
vertices,	while	the	linkages	between	entities	are	stored	as	edges.	In	RDBMS	parlance,
each	node	can	be	thought	of	a	single	row	while	the	edge	denotes	a	join.

Nodes	can	have	more	than	one	type	of	link	between	them	through	multiple	edges.	Each
node	can	have	attribute	data	as	key-value	pairs,	such	as	a	customer	node	with	ID,	name
and	age	attributes.

Each	edge	can	have	its	own	attribute	data	as	key-value	pairs,	which	can	be	used	to	further
filter	query	results.	Having	multiple	edges	are	similar	to	defining	multiple	foreign	keys	in
an	RDBMS;	however,	not	every	node	is	required	to	have	the	same	edges.	Queries
generally	involve	finding	interconnected	nodes	based	on	node	attributes	and/or	edge
attributes,	commonly	referred	to	as	node	traversal.	Edges	can	be	unidirectional	or
bidirectional,	setting	the	node	traversal	direction.	Generally,	graph	storage	devices	provide
consistency	via	ACID	compliance.

The	degree	of	usefulness	of	a	graph	storage	device	depends	on	the	number	and	types	of
edges	defined	between	the	nodes.	The	greater	the	number	and	more	diverse	the	edges	are,
the	more	diverse	the	types	of	queries	it	can	handle.	As	a	result,	it	is	important	to



comprehensively	capture	the	types	of	relations	that	exist	between	the	nodes.	This	is	not
only	true	for	existing	usage	scenarios,	but	also	for	exploratory	analysis	of	data.

Graph	storage	devices	generally	allow	adding	new	types	of	nodes	without	making	changes
to	the	database.	This	also	enables	defining	additional	links	between	nodes	as	new	types	of
relationships	or	nodes	appear	in	the	database.

A	graph	storage	device	is	appropriate	when:

•	interconnected	entities	need	to	be	stored

•	querying	entities	based	on	the	type	of	relationship	with	each	other	rather	than	the
attributes	of	the	entities

•	finding	groups	of	interconnected	entities

•	finding	distances	between	entities	in	terms	of	the	node	traversal	distance

•	mining	data	with	a	view	toward	finding	patterns

A	graph	storage	device	is	inappropriate	when:

•	updates	are	required	to	a	large	number	of	node	attributes	or	edge	attributes,	as	this
involves	searching	for	nodes	or	edges,	which	is	a	costly	operation	compared	to
performing	node	traversals

•	entities	have	a	large	number	of	attributes	or	nested	data—it	is	best	to	store
lightweight	entities	in	a	graph	storage	device	while	storing	the	rest	of	the	attribute
data	in	a	separate	non-graph	NoSQL	storage	device

•	binary	storage	is	required

•	queries	based	on	the	selection	of	node/edge	attributes	dominate	node	traversal
queries

Examples	include	Neo4J,	Infinite	Graph	and	OrientDB.

NewSQL	Databases
NoSQL	storage	devices	are	highly	scalable,	available,	fault-tolerant	and	fast	for	read/write
operations.	However,	they	do	not	provide	the	same	transaction	and	consistency	support	as
exhibited	by	ACID	compliant	RDBMSs.	Following	the	BASE	model,	NoSQL	storage
devices	provide	eventual	consistency	rather	than	immediate	consistency.	They	therefore
will	be	in	a	soft	state	while	reaching	the	state	of	eventual	consistency.	As	a	result,	they	are
not	appropriate	for	use	when	implementing	large	scale	transactional	systems.

NewSQL	storage	devices	combine	the	ACID	properties	of	RDBMS	with	the	scalability
and	fault	tolerance	offered	by	NoSQL	storage	devices.	NewSQL	databases	generally
support	SQL	compliant	syntax	for	data	definition	and	data	manipulation	operations,	and
they	often	use	a	logical	relational	data	model	for	data	storage.

NewSQL	databases	can	be	used	for	developing	OLTP	systems	with	very	high	volumes	of
transactions,	for	example	a	banking	system.	They	can	also	be	used	for	realtime	analytics,
for	example	operational	analytics,	as	some	implementations	leverage	in-memory	storage.

As	compared	to	a	NoSQL	storage	device,	a	NewSQL	storage	device	provides	an	easier



transition	from	a	traditional	RDBMS	to	a	highly	scalable	database	due	to	its	support	for
SQL.

Examples	of	NewSQL	databases	include	VoltDB,	NuoDB	and	InnoDB.

In-Memory	Storage	Devices
The	preceding	section	introduced	the	on-disk	storage	device	and	its	various	types	as	a
fundamental	means	of	data	storage.	This	section	builds	upon	this	knowledge	by	presenting
in-memory	storage	as	a	means	of	providing	options	for	highly	performant,	advanced	data
storage.

An	in-memory	storage	device	generally	utilizes	RAM,	the	main	memory	of	a	computer,	as
its	storage	medium	to	provide	fast	data	access.	The	growing	capacity	and	decreasing	cost
of	RAM,	coupled	with	the	increasing	read/write	speed	of	solid	state	hard	drives,	has	made
it	possible	to	develop	in-memory	data	storage	solutions.

Storage	of	data	in	memory	eliminates	the	latency	of	disk	I/O	and	the	data	transfer	time
between	the	main	memory	and	the	hard	drive.	This	overall	reduction	in	data	read/write
latency	makes	data	processing	much	faster.	In-memory	storage	device	capacity	can	be
increased	massively	by	horizontally	scaling	the	cluster	that	is	hosting	the	in-memory
storage	device.

Cluster-based	memory	enables	storage	of	large	amounts	of	data,	including	Big	Data
datasets,	which	can	be	accessed	considerably	faster	when	compared	with	an	on-disk
storage	device.	This	significantly	reduces	the	overall	execution	time	of	Big	Data	analytics,
thus	enabling	realtime	Big	Data	analytics.

Figure	7.15	shows	the	symbol	that	represents	an	in-memory	storage	device.	Figure	7.16
illustrates	an	access	time	comparison	between	in-memory	and	on-disk	storage	devices.
The	top	of	the	figure	shows	that	a	sequential	read	of	1	MB	of	data	from	an	in-memory
storage	device	takes	around	0.25	ms.	The	bottom	half	of	the	figure	shows	that	reading	the
same	amount	of	data	from	an	on-disk	storage	device	takes	around	20	ms.	This
demonstrates	that	reading	data	from	in-memory	storage	is	approximately	80	times	faster
than	on-disk	storage.	Note	that	it	is	assumed	that	the	network	data	transfer	time	is	the
same	across	the	two	scenarios	and	it	has	therefore	been	excluded	from	the	read	time.

Figure	7.15	The	symbol	used	to	represent	an	in-memory	storage	device.



Figure	7.16	In-memory	storage	devices	are	80	times	faster	at	transferring	data	than	on-
disk	storage	devices.

An	in-memory	storage	device	enables	in-memory	analytics,	which	refers	to	in-memory
analysis	of	data,	such	as	generating	statistics	by	executing	queries	on	data	that	is	stored	in
memory	instead	of	on	disk.	In-memory	analytics	enable	operational	analytics	and
operational	BI	through	fast	execution	of	queries	and	algorithms.

Primarily,	in-memory	storage	enables	making	sense	of	the	fast	influx	of	data	in	a	Big	Data
environment	(velocity	characteristic)	by	providing	a	storage	medium	that	facilitates
realtime	insight	generation.	This	supports	making	quick	business	decisions	for	mitigating
a	threat	or	taking	advantage	of	an	opportunity.

A	Big	Data	in-memory	storage	device	is	implemented	over	a	cluster,	providing	high
availability	and	redundancy.	Therefore,	horizontal	scalability	can	be	achieved	by	simply
adding	more	nodes	or	memory.	When	compared	with	an	on-disk	storage	device,	an	in-
memory	storage	device	is	expensive	because	of	the	higher	cost	of	memory	as	compared	to
a	disk-based	storage	device.

Although	a	64-bit	machine	can	make	use	of	16	exabytes	of	memory,	due	to	the	physical
limitations	of	the	machine,	such	as	the	number	of	memory	bays,	the	installed	memory	is
considerably	less.	For	scaling	out,	it	is	not	just	the	addition	of	more	memory,	but	also	the
addition	of	nodes	that	are	required	once	the	per	node	memory	limit	is	reached.	This
increases	the	data	storage	cost.

Apart	from	being	expensive,	in-memory	storage	devices	do	not	provide	the	same	level	of
support	for	durable	data	storage.	The	price	factor	further	affects	the	achievable	capacity	of
an	in-memory	device	when	compared	with	an	on-disk	storage	device.	Consequently,	only
up-to-date	and	fresh	data	or	data	that	has	the	most	value	is	kept	in	memory,	whereas	stale
data	gets	replaced	with	newer,	fresher	data.

Depending	on	how	it	is	implemented,	an	in-memory	storage	device	can	support	schema-
less	or	schema-aware	storage.	Schema-less	storage	support	is	provided	through	key-value
based	data	persistence.



An	in-memory	storage	device	is	appropriate	when:

•	data	arrives	at	a	fast	pace	and	requires	realtime	analytics	or	event	stream	processing

•	continuous	or	always-on	analytics	is	required,	such	as	operational	BI	and	operational
analytics

•	interactive	query	processing	and	realtime	data	visualization	needs	to	be	performed,
including	what-if	analysis	and	drill-down	operations

•	the	same	dataset	is	required	by	multiple	data	processing	jobs

•	performing	exploratory	data	analysis,	as	the	same	dataset	does	not	need	to	be
reloaded	from	disk	if	the	algorithm	changes

•	data	processing	involves	iterative	access	to	the	same	dataset,	such	as	executing
graph-based	algorithms

•	developing	low	latency	Big	Data	solutions	with	ACID	transaction	support

An	in-memory	storage	device	is	inappropriate	when:

•	data	processing	consists	of	batch	processing

•	very	large	amounts	of	data	need	to	be	persisted	in-memory	for	a	long	time	in	order
to	perform	in-depth	data	analysis

•	performing	strategic	BI	or	strategic	analytics	that	involves	access	to	very	large
amounts	of	data	and	involves	batch	data	processing

•	datasets	are	extremely	large	and	do	not	fit	into	the	available	memory

•	making	the	transition	from	traditional	data	analysis	toward	Big	Data	analysis,	as
incorporating	an	in-memory	storage	device	may	require	additional	skills	and
involves	a	complex	setup

•	an	enterprise	has	a	limited	budget,	as	setting	up	an	in-memory	storage	device	may
require	upgrading	nodes,	which	could	either	be	done	by	node	replacement	or	by
adding	more	RAM

In-memory	storage	devices	can	be	implemented	as:

•	In-Memory	Data	Grid	(IMDG)

•	In-Memory	Database	(IMDB)

Although	both	of	these	technologies	use	memory	as	their	underlying	data	storage	medium,
what	makes	them	distinct	is	the	way	data	is	stored	in	the	memory.	Key	features	of	each	of
these	technologies	are	discussed	next.

In-Memory	Data	Grids
IMDGs	store	data	in	memory	as	key-value	pairs	across	multiple	nodes	where	the	keys	and
values	can	be	any	business	object	or	application	data	in	serialized	form.	This	supports
schema-less	data	storage	through	storage	of	semi/unstructured	data.	Data	access	is
typically	provided	via	APIs.	The	symbol	used	to	depict	an	IMDG	is	shown	in	Figure	7.17.



Figure	7.17	The	symbol	used	to	represent	an	IMDG.

In	Figure	7.18:

1.	An	image	(a),	XML	data	(b)	and	a	customer	object	(c)	are	first	serialized	using	a
serialization	engine.

2.	They	are	then	stored	as	key-value	pairs	in	an	IMDG.

3.	A	client	requests	the	customer	object	via	its	key.

4.	The	value	is	then	returned	by	the	IMDG	in	serialized	form.

5.	The	client	then	utilizes	a	serialization	engine	to	deserialize	the	value	to	obtain	the
customer	object…

6.	…	in	order	to	manipulate	the	customer	object.

Figure	7.18	An	IMDG	storage	device.

Nodes	in	IMDGs	keep	themselves	synchronized	and	collectively	provide	high	availability,
fault	tolerance	and	consistency.	In	comparison	to	NoSQL’s	eventual	consistency	approach,
IMDGs	support	immediate	consistency.

As	compared	to	relational	IMDBs	(discussed	under	IMDB),	IMDGs	provide	faster	data



access	as	IMDGs	store	non-relational	data	as	objects.	Hence,	unlike	relational	IMDBs,
object-to-relational	mapping	is	not	required	and	clients	can	work	directly	with	the	domain
specific	objects.

IMDGs	scale	horizontally	by	implementing	data	partitioning	and	data	replication	and
further	support	reliability	by	replicating	data	to	at	least	one	extra	node.	In	case	of	a
machine	failure,	IMDGs	automatically	re-create	lost	copies	of	data	from	replicas	as	part	of
the	recovery	process.

IMDGs	are	heavily	used	for	realtime	analytics	because	they	support	Complex	Event
Processing	(CEP)	via	the	publish-subscribe	messaging	model.	This	is	achieved	through	a
feature	called	continuous	querying,	also	known	as	active	querying,	where	a	filter	for
event(s)	of	interest	is	registered	with	the	IMDG.	The	IMDG	then	continuously	evaluates
the	filter	and	whenever	the	filter	is	satisfied	as	a	result	of	insert/update/delete	operations,
subscribing	clients	are	informed	(Figure	7.19).	Notifications	are	sent	asynchronously	as
change	events,	such	as	added,	removed	and	updated	events,	with	information	about	key-
value	pairs,	such	as	old	and	new	values.



Figure	7.19	An	IMDG	stores	stock	prices	where	the	key	is	the	stock	symbol,	and	the
value	is	the	stock	price	(shown	as	text	for	readability).	A	client	issues	a	continuous

query	(key=SSNLF)	(1)	which	is	registered	in	the	IMDG	(2).	When	the	stock	price	for
SSNLF	stock	changes	(3),	an	updated	event	is	sent	to	the	subscribing	client	that

contains	various	details	about	the	event	(4).

From	a	functionality	point	of	view,	an	IMDG	is	akin	to	a	distributed	cache	as	both	provide
memory-based	access	to	frequently	accessed	data.	However,	unlike	a	distributed	cache,	an
IMDG	provides	built	in	support	for	replication	and	high	availability.

Realtime	processing	engines	can	make	use	of	IMDG	where	high	velocity	data	is	stored	in
the	IMDG	as	it	arrives	and	is	processed	there	before	being	saved	to	an	on-disk	storage
device,	or	data	from	the	on-disk	storage	device	is	copied	to	the	IMDG.	This	makes	data
processing	orders	of	magnitude	faster	and	further	enables	data-reuse	in	case	multiple	jobs
or	iterative	algorithms	are	run	against	the	same	data.	IMDGs	may	also	support	in-memory
MapReduce	that	helps	to	reduce	the	latency	of	disk	based	MapReduce	processing,
especially	when	the	same	job	needs	to	be	executed	multiple	times.

An	IMDG	can	also	be	deployed	within	a	cloud	based	environment	where	it	provides	a
flexible	storage	medium	that	can	scale	out	or	scale	in	automatically	as	the	storage	demand
increases	or	decreases,	as	shown	in	Figure	7.20.



Figure	7.20	An	IMDG	deployed	in	a	cloud	scales	out	automatically	as	the	demand	for
data	storage	increases.

IMDGs	can	be	added	to	existing	Big	Data	solutions	by	introducing	them	between	the
existing	on-disk	storage	device	and	the	data	processing	application.	However,	this
introduction	generally	requires	changing	the	application	code	to	implement	the	IMDGs
API.

Note	that	some	IMDG	implementations	may	also	provide	limited	or	full	SQL	support.

Examples	include	In-Memory	Data	Fabric,	Hazelcast	and	Oracle	Coherence.

In	a	Big	Data	solution	environment,	IMDGs	are	often	deployed	together	with	on-disk
storage	devices	that	act	as	the	backend	storage.	This	is	achieved	via	the	following
approaches	that	can	be	combined	as	necessary	to	support	read/write	performance,
consistency	and	simplicity	requirements:

•	read-through

•	write-through

•	write-behind

•	refresh-ahead



Read-through

If	a	requested	value	for	a	key	is	not	found	in	the	IMDG,	then	it	is	synchronously	read	from
the	backend	on-disk	storage	device,	such	as	a	database.	Upon	a	successful	read	from	the
backend	on-disk	storage	device,	the	key-value	pair	is	inserted	into	the	IMDG,	and	the
requested	value	is	returned	to	the	client.	Any	subsequent	requests	for	the	same	key	are
then	served	by	the	IMDG	directly,	instead	of	the	backend	storage.	Although	it	is	a	simple
approach,	its	synchronous	nature	may	introduce	read	latency.	Figure	7.21	is	an	example	of
the	read-through	approach,	where	Client	A	tries	to	read	key	K3	(1)	which	does	not
currently	exist	in	the	IMDG.	Consequently,	it	is	read	from	the	backend	storage	(2)	and
inserted	into	the	IMDG	(3)	before	being	sent	to	Client	A	(4).	A	subsequent	request	for	the
same	key	by	Client	B	(5)	is	then	served	directly	by	the	IMDG	(6).

Figure	7.21	An	example	of	using	an	IMDG	with	the	read-through	approach.

Write-through

Any	write	(insert/update/delete)	to	the	IMDG	is	written	synchronously	in	a	transactional
manner	to	the	backend	on-disk	storage	device,	such	as	a	database.	If	the	write	to	the
backend	on-disk	storage	device	fails,	the	IMDG’s	update	is	rolled	back.	Due	to	this
transactional	nature,	data	consistency	is	achieved	immediately	between	the	two	data
stores.	However,	this	transactional	support	is	provided	at	the	expense	of	write	latency	as
any	write	operation	is	considered	complete	only	when	feedback	(write	success/failure)
from	the	backend	storage	is	received	(Figure	7.22).



Figure	7.22	A	client	inserts	a	new	key-value	pair	(K3,V3)	which	is	inserted	into	both
the	IMDG	(1a)	and	the	backend	storage	(1b)	in	a	transactional	manner.	Upon	successful

insertion	of	data	into	the	IMDG	(2a)	and	the	backend	storage	(2b),	the	client	is
informed	that	data	has	been	successfully	inserted	(3).

Write-behind

Any	write	to	the	IMDG	is	written	asynchronously	in	a	batch	manner	to	the	backend	on-
disk	storage	device,	such	as	a	database.

A	queue	is	generally	placed	between	the	IMDG	and	the	backend	storage	for	keeping	track
of	the	required	changes	to	the	backend	storage.	This	queue	can	be	configured	to	write	data
to	the	backend	storage	at	different	intervals.

The	asynchronous	nature	increases	both	write	performance	(the	write	operation	is
considered	completed	as	soon	as	it	is	written	to	the	IMDG)	and	read	performance	(data
can	be	read	from	the	IMDG	as	soon	as	it	is	written	to	the	IMDG)	and
scalability/availability	in	general.

However,	the	asynchronous	nature	introduces	inconsistency	until	the	backend	storage	is
updated	at	the	specified	interval.

In	Figure	7.23:

1.	Client	A	updates	value	of	K3,	which	is	updated	in	the	IMDG	(a)	and	is	also	sent	to	a
queue	(b).

2.	However,	before	the	backend	storage	is	updated,	Client	B	makes	a	request	for	the
same	key.

3.	The	old	value	is	sent.



4.	After	the	configured	interval…

5.	…	the	backend	storage	is	eventually	updated.

6.	Client	C	makes	a	request	for	the	same	key.

7.	This	time,	the	updated	value	is	sent.

Figure	7.23	An	example	of	the	write-behind	approach.



Refresh-ahead

Refresh-ahead	is	a	proactive	approach	where	any	frequently	accessed	values	are
automatically,	asynchronously	refreshed	in	the	IMDG,	provided	that	the	value	is	accessed
before	its	expiry	time	as	configured	in	the	IMDG.	If	a	value	is	accessed	after	its	expiry
time,	the	value,	like	in	the	read-through	approach,	is	synchronously	read	from	the	backend
storage	and	updated	in	the	IMDG	before	being	returned	to	the	client.

Due	to	its	asynchronous	and	forward-looking	nature,	this	approach	helps	achieve	better
read-performance	and	is	especially	useful	when	the	same	values	are	accessed	frequently	or
accessed	by	a	number	of	clients.

Compared	to	the	read-through	approach,	where	a	value	is	served	from	the	IMDG	until	its
expiry,	data	inconsistency	between	the	IMDG	and	the	backend	storage	is	minimized	as
values	are	refreshed	before	they	expire.

In	Figure	7.24:

1.	Client	A	requests	K3	before	its	expiry	time.

2.	The	current	value	is	returned	from	the	IMDG.

3.	The	value	is	refreshed	from	the	backend	storage.

4.	The	value	is	then	updated	in	the	IMDG	asynchronously.

5.	After	the	configured	expiry	time,	the	key-value	pair	is	evicted	from	the	IMDG.

6.	Now	Client	B	makes	a	request	for	K3.

7.	As	the	key	does	not	exist	in	the	IMDG,	it	is	synchronously	requested	from	the
backend	storage…

8.	…and	updated.

9.	The	value	is	then	returned	to	Client	B.



Figure	7.24	An	example	of	an	IMDG	leveraging	the	refresh-ahead	approach.

An	IMDG	storage	device	is	appropriate	when:

•	data	needs	to	be	readily	accessible	in	object	form	with	minimal	latency

•	data	being	stored	is	non-relational	in	nature	such	as	semi-structured	and	unstructured
data

•	adding	realtime	support	to	an	existing	Big	Data	solution	currently	using	on-disk
storage

•	the	existing	storage	device	cannot	be	replaced	but	the	data	access	layer	can	be
modified

•	scalability	is	more	important	than	relational	storage;	although	IMDGs	are	more
scalable	than	IMDBs	(IMDBs	are	functionally	complete	databases),	they	do	not
support	relational	storage

Examples	of	IMDG	storage	devices	include:	Hazelcast,	Infinispan,	Pivotal	GemFire	and
Gigaspaces	XAP.

In-Memory	Databases
IMDBs	are	in-memory	storage	devices	that	employ	database	technology	and	leverage	the
performance	of	RAM	to	overcome	runtime	latency	issues	that	plague	on-disk	storage
devices.	The	symbol	for	an	IMDB	is	shown	in	Figure	7.25.



Figure	7.25	The	symbol	used	to	represent	an	IMDB.

In	Figure	7.26:

1.	A	relational	dataset	is	stored	into	an	IMDB.

2.	A	client	requests	a	customer	record	(id	=	2)	via	SQL.

3.	The	relevant	customer	record	is	then	returned	by	the	IMDB,	which	is	directly
manipulated	by	the	client	without	the	need	for	any	deserialization.

Figure	7.26	An	example	depicting	the	retrieval	of	data	from	an	IMDB.

An	IMDB	can	be	relational	in	nature	(relational	IMDB)	for	the	storage	of	structured	data,
or	may	leverage	NoSQL	technology	(non-relational	IMDB)	for	the	storage	of	semi-
structured	and	unstructured	data.

Unlike	IMDGs,	which	generally	provide	data	access	via	APIs,	relational	IMDBs	make	use
of	the	more	familiar	SQL	language,	which	helps	data	analysts	or	data	scientists	that	do	not
have	advanced	programming	skills.	NoSQL-based	IMDBs	generally	provide	API-based



access,	which	may	be	as	simple	as	put,	get	and	delete	operations.	Depending	on	the
underlying	implementation,	some	IMDBs	scale-out,	while	others	scale-up,	to	achieve
scalability.

Not	all	IMDB	implementations	directly	support	durability,	but	instead	leverage	various
strategies	for	providing	durability	in	the	face	of	machine	failures	or	memory	corruption.
These	strategies	include	the	following:

•	Use	of	Non-volatile	RAM	(NVRAM)	for	storing	data	permanently.

•	Database	transaction	logs	can	be	periodically	stored	to	a	non-volatile	medium,	such
as	disk.

•	Snapshot	files,	which	capture	database	state	at	a	certain	point	in	time,	are	saved	to
disk.

•	An	IMDB	may	leverage	sharding	and	replication	to	support	increasing	availability
and	reliability	as	a	substitute	for	durability.

•	IMDBs	can	be	used	in	conjunction	with	on-disk	storage	devices	such	as	NoSQL
databases	and	RDBMSs	for	durable	storage.

Like	an	IMDG,	an	IMDB	may	also	support	the	continuous	query	feature,	where	a	filter	in
the	form	of	a	query	for	data	of	interest	is	registered	with	the	IMDB.	The	IMDB	then
continuously	executes	the	query	in	an	iterative	manner.	Whenever	the	query	result	is
modified	as	a	result	of	insert/update/delete	operations,	subscribing	clients	are
asynchronously	informed	by	sending	out	changes	as	events,	such	as	added,	removed	and
updated	events,	with	information	about	record	values,	such	as	old	and	new	values.

In	Figure	7.27,	an	IMDB	stores	temperature	values	for	various	sensors.	The	following
steps	are	shown:

1.	A	client	issues	a	continuous	query	(select	*	from	sensors	where	temperature	>	75).

2.	It	is	registered	in	the	IMDB.

3.	When	the	temperature	for	any	sensor	exceeds	75F	…

4.	…	an	updated	event	is	sent	to	the	subscribing	client	that	contains	various	details
about	the	event.



Figure	7.27	An	example	of	IMDB	storage	configured	with	a	continuous	query.

IMDBs	are	heavily	used	in	realtime	analytics	and	can	further	be	used	for	developing	low
latency	applications	requiring	full	ACID	transaction	support	(relational	IMDB).	In
comparison	with	IMDGs,	IMDBs	provide	an	easy	to	set	up	in-memory	data	storage
option,	as	IMDBs	do	not	generally	require	on-disk	backend	storage	devices.

Introduction	of	IMDBs	into	an	existing	Big	Data	solution	generally	requires	replacement
of	existing	on-disk	storage	devices,	including	any	RDBMSs	if	used.	In	the	case	of
replacing	an	RDBMS	with	a	relational	IMDB,	little	or	no	application	code	change	is
required	due	to	SQL	support	provided	by	the	relational	IMDB.	However,	when	replacing
an	RDBMS	with	a	NoSQL	IMDB,	code	change	may	be	required	due	to	the	need	to
implement	the	IMDB’s	NoSQL	APIs.

In	the	case	of	replacing	an	on-disk	NoSQL	database	with	a	relational	IMDB,	code	change
will	often	be	required	to	establish	SQL-based	access.	However,	when	replacing	an	on-disk
NoSQL	database	with	a	NoSQL	IMDB,	code	change	may	still	be	required	due	to	the
implementation	of	new	APIs.

Relational	IMDBs	are	generally	less	scalable	than	IMDGs,	as	relational	IMDBs	need	to
support	distributed	queries	and	transactions	across	the	cluster.	Some	IMDB
implementations	may	benefit	from	scaling	up,	which	helps	to	address	the	latency	that
occurs	when	executing	queries	and	transactions	in	a	scale-out	environment.

Examples	include	Aerospike,	MemSQL,	Altibase	HDB,	eXtreme	DB	and	Pivotal	GemFire
XD.

An	IMDB	storage	device	is	appropriate	when:

•	relational	data	needs	to	be	stored	in	memory	with	ACID	support

•	adding	realtime	support	to	an	existing	Big	Data	solution	currently	using	on-disk



storage

•	the	existing	on-disk	storage	device	can	be	replaced	with	an	in-memory	equivalent
technology

•	it	is	required	to	minimize	changes	to	the	data	access	layer	of	the	application	code,
such	as	when	the	application	consists	of	an	SQL-based	data	access	layer

•	relational	storage	is	more	important	than	scalability

Case	Study	Example

ETI’s	IT	team	is	evaluating	the	use	of	different	Big	Data	storage	technologies	for
storing	the	range	of	datasets	identified	in	Chapter	1.	Following	the	data	processing
strategy,	the	team	decides	to	introduce	on-disk	storage	technologies	to	enable	batch
processing	of	data	and	to	incorporate	in-memory	storage	technologies	that	support
realtime	data	processing.	The	team	identifies	that	it	needs	to	utilize	a	combination
of	the	distributed	file	system	and	NoSQL	databases	to	store	a	variety	of	raw
datasets	produced	both	within	and	beyond	ETI’s	boundaries	and	to	store	processed
data.

Any	line-based	textual	dataset,	such	as	webserver	log	files,	where	a	record	is
represented	by	a	delimited	line	of	text	and	the	dataset	can	be	processed	in	a
streaming	fashion	(records	are	processed	one	after	the	other	without	requiring
random	access	to	specific	records),	will	be	stored	in	Hadoop’s	distributed	file
system	(HDFS).

The	incident	photographs	have	a	large	storage	footprint	and	are	currently	stored	in	a
relational	database	as	a	BLOB	with	an	ID	that	corresponds	to	the	incident	ID.	Since
these	photographs	are	binary	data	and	need	to	be	accessed	via	their	IDs,	the	IT	team
believes	that	a	key-value	database	can	be	used	instead	to	store	them.	This	will
provide	an	inexpensive	means	of	storing	incident	photographs	and	will	free	up
space	on	the	relational	database.

A	NoSQL	document	database	will	be	used	to	store	hierarchical	data	that	includes
Twitter	data	(JSON),	weather	data	(XML),	call	center	agent	notes	(XML),	claim
adjuster	notes	(XML),	health	records	(HL7	compliant	records	in	XML)	and	emails
(XML).

When	a	natural	grouping	of	fields	exists	and	related	fields	are	accessed	together,
data	is	saved	in	a	NoSQL	column-family	database.	For	example,	the	customer
profile	data	consists	of	customer’s	personal	details,	address	and	interests	as	well	as
current	policy	fields	that	each	consist	of	multiple	fields.	On	the	other	hand,
processed	tweets	and	weather	data	can	also	be	stored	in	a	column-family	database
since	the	processed	data	needs	to	be	in	a	tabular	form	from	which	individual	fields
can	be	accessed	for	different	analytical	queries.



Chapter	8.	Big	Data	Analysis	Techniques

Quantitative	Analysis

Qualitative	Analysis

Data	Mining

Statistical	Analysis

Machine	Learning

Semantic	Analysis

Visual	Analysis

Big	Data	analysis	blends	traditional	statistical	data	analysis	approaches	with
computational	ones.	Statistical	sampling	from	a	population	is	ideal	when	the	entire	dataset
is	available,	and	this	condition	is	typical	of	traditional	batch	processing	scenarios.
However,	Big	Data	can	shift	batch	processing	to	realtime	processing	due	to	the	need	to
make	sense	of	streaming	data.	With	streaming	data,	the	dataset	accumulates	over	time,	and
the	data	is	time-ordered.	Streaming	data	places	an	emphasis	on	timely	processing,	for
analytic	results	have	a	shelf-life.	Whether	it	is	the	recognition	of	an	upsell	opportunity	that
presents	itself	due	to	the	current	context	of	a	customer,	or	the	detection	of	anomalous
conditions	in	an	industrial	setting	that	require	intervention	to	protect	equipment	or	ensure
product	quality,	time	is	of	the	essence,	and	freshness	of	the	analytic	result	is	essential.



In	2003,	William	Agresti	recognized	the	shift	toward	computational
approaches	and	argued	for	the	creation	of	a	new	computational	discipline
named	Discovery	Informatics.	Agresti’s	view	of	this	field	was	one	that
embraced	composition.	In	other	words,	he	believed	that	discovery	informatics
was	a	synthesis	of	the	following	fields:	pattern	recognition	(data	mining);
artificial	intelligence	(machine	learning);	document	and	text	processing
(semantic	processing);	database	management	and	information	storage	and
retrieval.	Agresti’s	insight	into	the	importance	and	breadth	of	computational
approaches	to	data	analysis	was	forward-thinking	at	the	time,	and	his
perspective	on	the	matter	has	only	been	reinforced	by	the	passage	of	time	and
the	emergence	of	data	science	as	a	discipline.

In	any	fast	moving	field	like	Big	Data,	there	are	always	opportunities	for	innovation.	An
example	of	this	is	the	question	of	how	to	best	blend	statistical	and	computational
approaches	for	a	given	analytical	problem.	Statistical	techniques	are	commonly	preferred
for	exploratory	data	analysis,	after	which	computational	techniques	that	leverage	the
insight	gleaned	from	the	statistical	study	of	a	dataset	can	be	applied.	The	shift	from	batch
to	realtime	presents	other	challenges	as	realtime	techniques	need	to	leverage
computationally-efficient	algorithms.

One	challenge	concerns	the	best	way	of	balancing	the	accuracy	of	an	analytic	result
against	the	run-time	of	the	algorithm.	In	many	cases,	an	approximation	may	be	sufficient
and	affordable.	From	a	storage	perspective,	multi-tiered	storage	solutions	which	leverage
RAM,	solid-state	drives	and	hard-disk	drives	will	provide	near-term	flexibility	and
realtime	analytic	capability	with	long-term,	cost-effective	persistent	storage.	In	the	long
run,	an	organization	will	operate	its	Big	Data	analysis	engine	at	two	speeds:	processing
streaming	data	as	it	arrives	and	performing	batch	analysis	of	this	data	as	it	accumulates	to
look	for	patterns	and	trends.	(The	symbol	used	to	represent	data	analysis	is	shown	in
Figure	8.1.)

Figure	8.1	The	symbol	used	to	represent	data	analysis.

This	chapter	begins	with	descriptions	of	the	following	basic	types	of	data	analysis:

•	quantitative	analysis

•	qualitative	analysis

•	data	mining

•	statistical	analysis



•	machine	learning

•	semantic	analysis

•	visual	analysis

Quantitative	Analysis
Quantitative	analysis	is	a	data	analysis	technique	that	focuses	on	quantifying	the	patterns
and	correlations	found	in	the	data.	Based	on	statistical	practices,	this	technique	involves
analyzing	a	large	number	of	observations	from	a	dataset.	Since	the	sample	size	is	large,
the	results	can	be	applied	in	a	generalized	manner	to	the	entire	dataset.	Figure	8.2	depicts
the	fact	that	quantitative	analysis	produces	numerical	results.

Figure	8.2	The	output	of	quantitative	analysis	is	numerical	in	nature.

Quantitative	analysis	results	are	absolute	in	nature	and	can	therefore	be	used	for	numerical
comparisons.	For	example,	a	quantitative	analysis	of	ice	cream	sales	may	discover	that	a	5
degree	increase	in	temperature	increases	ice	cream	sales	by	15%.

Qualitative	Analysis
Qualitative	analysis	is	a	data	analysis	technique	that	focuses	on	describing	various	data
qualities	using	words.	It	involves	analyzing	a	smaller	sample	in	greater	depth	compared	to
quantitative	data	analysis.	These	analysis	results	cannot	be	generalized	to	an	entire	dataset
due	to	the	small	sample	size.	They	also	cannot	be	measured	numerically	or	used	for
numerical	comparisons.	For	example,	an	analysis	of	ice	cream	sales	may	reveal	that	May’s
sales	figures	were	not	as	high	as	June’s.	The	analysis	results	state	only	that	the	figures
were	“not	as	high	as,”	and	do	not	provide	a	numerical	difference.	The	output	of	qualitative
analysis	is	a	description	of	the	relationship	using	words	as	shown	in	Figure	8.3.

Figure	8.3	Qualitative	results	are	descriptive	in	nature	and	not	generalizable	to	the
entire	dataset.



Data	Mining
Data	mining,	also	known	as	data	discovery,	is	a	specialized	form	of	data	analysis	that
targets	large	datasets.	In	relation	to	Big	Data	analysis,	data	mining	generally	refers	to
automated,	software-based	techniques	that	sift	through	massive	datasets	to	identify
patterns	and	trends.

Specifically,	it	involves	extracting	hidden	or	unknown	patterns	in	the	data	with	the
intention	of	identifying	previously	unknown	patterns.	Data	mining	forms	the	basis	for
predictive	analytics	and	business	intelligence	(BI).	The	symbol	used	to	represent	data
mining	is	shown	in	Figure	8.4.

Figure	8.4	The	symbol	used	to	represent	data	mining.

Statistical	Analysis
Statistical	analysis	uses	statistical	methods	based	on	mathematical	formulas	as	a	means	for
analyzing	data.	Statistical	analysis	is	most	often	quantitative,	but	can	also	be	qualitative.
This	type	of	analysis	is	commonly	used	to	describe	datasets	via	summarization,	such	as
providing	the	mean,	median,	or	mode	of	statistics	associated	with	the	dataset.	It	can	also
be	used	to	infer	patterns	and	relationships	within	the	dataset,	such	as	regression	and
correlation.

This	section	describes	the	following	types	of	statistical	analysis:

•	A/B	Testing

•	Correlation

•	Regression

A/B	Testing
A/B	testing,	also	known	as	split	or	bucket	testing,	compares	two	versions	of	an	element	to
determine	which	version	is	superior	based	on	a	pre-defined	metric.	The	element	can	be	a
range	of	things.	For	example,	it	can	be	content,	such	as	a	Web	page,	or	an	offer	for	a
product	or	service,	such	as	deals	on	electronic	items.	The	current	version	of	the	element	is
called	the	control	version,	whereas	the	modified	version	is	called	the	treatment.	Both
versions	are	subjected	to	an	experiment	simultaneously.	The	observations	are	recorded	to
determine	which	version	is	more	successful.

Although	A/B	testing	can	be	implemented	in	almost	any	domain,	it	is	most	often	used	in
marketing.	Generally,	the	objective	is	to	gauge	human	behavior	with	the	goal	of	increasing
sales.	For	example,	in	order	to	determine	the	best	possible	layout	for	an	ice	cream	ad	on
Company	A’s	Web	site,	two	different	versions	of	the	ad	are	used.	Version	A	is	an	existing
ad	(the	control)	while	Version	B	has	had	its	layout	slightly	altered	(the	treatment).	Both



versions	are	then	simultaneously	shown	to	different	users:

•	Version	A	to	Group	A

•	Version	B	to	Group	B

The	analysis	of	the	results	reveals	that	Version	B	of	the	ad	resulted	in	more	sales	as
compared	to	Version	A.

In	other	areas	such	as	the	scientific	domains,	the	objective	may	simply	be	to	observe
which	version	works	better	in	order	to	improve	a	process	or	product.	Figure	8.5	provides
an	example	of	A/B	testing	on	two	different	email	versions	sent	simultaneously.

Figure	8.5	Two	different	email	versions	are	sent	out	simultaneously	as	part	of	a
marketing	campaign	to	see	which	version	brings	in	more	prospective	customers.

Sample	questions	can	include:

•	Is	the	new	version	of	a	drug	better	than	the	old	one?

•	Do	customers	respond	better	to	advertisements	delivered	by	email	or	postal	mail?

•	Is	the	newly	designed	homepage	of	the	Web	site	generating	more	user	traffic?

Correlation
Correlation	is	an	analysis	technique	used	to	determine	whether	two	variables	are	related	to
each	other.	If	they	are	found	to	be	related,	the	next	step	is	to	determine	what	their
relationship	is.	For	example,	the	value	of	Variable	A	increases	whenever	the	value	of
Variable	B	increases.	We	may	be	further	interested	in	discovering	how	closely	Variables	A
and	B	are	related,	which	means	we	may	also	want	to	analyze	the	extent	to	which	Variable
B	increases	in	relation	to	Variable	A’s	increase.

The	use	of	correlation	helps	to	develop	an	understanding	of	a	dataset	and	find
relationships	that	can	assist	in	explaining	a	phenomenon.	Correlation	is	therefore
commonly	used	for	data	mining	where	the	identification	of	relationships	between
variables	in	a	dataset	leads	to	the	discovery	of	patterns	and	anomalies.	This	can	reveal	the
nature	of	the	dataset	or	the	cause	of	a	phenomenon.

When	two	variables	are	considered	to	be	correlated	they	are	aligned	based	on	a	linear
relationship.	This	means	that	when	one	variable	changes,	the	other	variable	also	changes
proportionally	and	constantly.

Correlation	is	expressed	as	a	decimal	number	between	–1	to	+1,	which	is	known	as	the
correlation	coefficient.	The	degree	of	relationship	changes	from	being	strong	to	weak



when	moving	from	–1	to	0	or	+1	to	0.

Figure	8.6	shows	a	correlation	of	+1,	which	suggests	that	there	is	a	strong	positive
relationship	between	the	two	variables.

Figure	8.6	When	one	variable	increases,	the	other	also	increases	and	vice	versa.

Figure	8.7	shows	a	correlation	of	0,	which	suggests	that	there	is	no	relationship	at	all
between	the	two	variables.

Figure	8.7	When	one	variable	increases,	the	other	may	stay	the	same,	or	increase	or
decrease	arbitrarily.

In	Figure	8.8,	a	slope	of	–1	suggests	that	there	is	a	strong	negative	relationship	between
the	two	variables.



Figure	8.8	When	one	variable	increases,	the	other	decreases	and	vice	versa.

For	example,	managers	believe	that	ice	cream	stores	need	to	stock	more	ice	cream	for	hot
days,	but	don’t	know	how	much	extra	to	stock.	To	determine	if	a	relationship	actually
exists	between	temperature	and	ice	cream	sales,	the	analysts	first	apply	correlation	to	the
number	of	ice	creams	sold	and	the	recorded	temperature	readings.	A	value	of	+0.75
suggests	that	there	exists	a	strong	relationship	between	the	two.	This	relationship	indicates
that	as	temperature	increases,	more	ice	creams	are	sold.

Further	sample	questions	addressed	by	correlation	can	include:

•	Does	distance	from	the	sea	affect	the	temperature	of	a	city?

•	Do	students	who	perform	well	at	elementary	school	perform	equally	well	at	high
school?

•	To	what	extent	is	obesity	linked	with	overeating?

Regression
The	analysis	technique	of	regression	explores	how	a	dependent	variable	is	related	to	an
independent	variable	within	a	dataset.	As	a	sample	scenario,	regression	could	help
determine	the	type	of	relationship	that	exists	between	temperature,	the	independent
variable,	and	crop	yield,	the	dependent	variable.

Applying	this	technique	helps	determine	how	the	value	of	the	dependent	variable	changes
in	relation	to	changes	in	the	value	of	the	independent	variable.	When	the	independent
variable	increases,	for	example,	does	the	dependent	variable	also	increase?	If	yes,	is	the
increase	in	a	linear	or	non-linear	proportion?

For	example,	in	order	to	determine	how	much	extra	stock	each	ice	cream	store	needs	to
have,	the	analysts	apply	regression	by	feeding	in	the	values	of	temperature	readings.	These
values	are	based	on	the	weather	forecast	as	an	independent	variable	and	the	number	of	ice
creams	sold	as	the	dependent	variable.	What	the	analysts	discover	is	that	15%	of
additional	stock	is	required	for	every	5-degree	increase	in	temperature.



More	than	one	independent	variable	can	be	tested	at	the	same	time.	However,	in	such
cases,	only	one	independent	variable	may	change,	while	others	are	kept	constant.
Regression	can	help	enable	a	better	understanding	of	what	a	phenomenon	is	and	why	it
occurred.	It	can	also	be	used	to	make	predictions	about	the	values	of	the	dependent
variable.

Linear	regression	represents	a	constant	rate	of	change,	as	shown	in	Figure	8.9.

Figure	8.9	Linear	regression

Non-linear	regression	represents	a	variable	rate	of	change,	as	shown	in	Figure	8.10.

Figure	8.10	Non-linear	regression



Sample	questions	can	include:

•	What	will	be	the	temperature	of	a	city	that	is	250	miles	away	from	the	sea?

•	What	will	be	the	grades	of	a	student	studying	at	a	high	school	based	on	their
primary	school	grades?

•	What	are	the	chances	that	a	person	will	be	obese	based	on	the	amount	of	their	food
intake?

Regression	and	correlation	have	a	number	of	important	differences.	Correlation	does	not
imply	causation.	The	change	in	the	value	of	one	variable	may	not	be	responsible	for	the
change	in	the	value	of	the	second	variable,	although	both	may	change	at	the	same	rate.
This	can	occur	due	to	an	unknown	third	variable,	known	as	the	confounding	factor.
Correlation	assumes	that	both	variables	are	independent.

Regression,	on	the	other	hand,	is	applicable	to	variables	that	have	previously	been
identified	as	dependent	and	independent	variables	and	implies	that	there	is	a	degree	of
causation	between	the	variables.	The	causation	may	be	direct	or	indirect.

Within	Big	Data,	correlation	can	first	be	applied	to	discover	if	a	relationship	exists.
Regression	can	then	be	applied	to	further	explore	the	relationship	and	predict	the	values	of
the	dependent	variable,	based	on	the	known	values	of	the	independent	variable.

Machine	Learning
Humans	are	good	at	spotting	patterns	and	relationships	within	data.	Unfortunately,	we
cannot	process	large	amounts	of	data	very	quickly.	Machines,	on	the	other	hand,	are	very
adept	at	processing	large	amounts	of	data	quickly,	but	only	if	they	know	how.

If	human	knowledge	can	be	combined	with	the	processing	speed	of	machines,	machines
will	be	able	to	process	large	amounts	of	data	without	requiring	much	human	intervention.
This	is	the	basic	concept	of	machine	learning.

In	this	section,	machine	learning	and	its	relationship	to	data	mining	are	explored	through
coverage	of	the	following	types	of	machine	learning	techniques:

•	Classification

•	Clustering

•	Outlier	Detection

•	Filtering

Classification	(Supervised	Machine	Learning)
Classification	is	a	supervised	learning	technique	by	which	data	is	classified	into	relevant,
previously	learned	categories.	It	consists	of	two	steps:

1.	The	system	is	fed	training	data	that	is	already	categorized	or	labeled,	so	that	it	can
develop	an	understanding	of	the	different	categories.

2.	The	system	is	fed	unknown	but	similar	data	for	classification	and	based	on	the
understanding	it	developed	from	the	training	data,	the	algorithm	will	classify	the



unlabeled	data.

A	common	application	of	this	technique	is	for	the	filtering	of	email	spam.	Note	that
classification	can	be	performed	for	two	or	more	categories.	In	a	simplified	classification
process,	the	machine	is	fed	labeled	data	during	training	that	builds	its	understanding	of	the
classification,	as	shown	in	Figure	8.11.	The	machine	is	then	fed	unlabeled	data,	which	it
classifies	itself.

Figure	8.11	Machine	learning	can	be	used	to	automatically	classify	datasets.

For	example,	a	bank	wants	to	find	out	which	of	its	customers	is	likely	to	default	on	loan
payments.	Based	on	historic	data,	a	training	dataset	is	compiled	that	contains	labeled
examples	of	customers	that	have	or	have	not	previously	defaulted.	This	training	data	is	fed
to	a	classification	algorithm	that	is	used	to	develop	an	understanding	of	“good”	and	“bad”
customers.	Finally,	new	untagged	customer	data	is	fed	in	order	to	find	out	whether	a	given
customer	belongs	to	the	defaulting	category.

Sample	questions	can	include:

•	Should	an	applicant’s	credit	card	application	be	accepted	or	rejected	based	on	other
accepted	or	rejected	applications?

•	Is	a	tomato	a	fruit	or	a	vegetable	based	on	the	known	examples	of	fruit	and
vegetables?

•	Do	the	medical	test	results	for	the	patient	indicate	a	risk	for	a	heart	attack?

Clustering	(Unsupervised	Machine	Learning)
Clustering	is	an	unsupervised	learning	technique	by	which	data	is	divided	into	different
groups	so	that	the	data	in	each	group	has	similar	properties.	There	is	no	prior	learning	of
categories	required.	Instead,	categories	are	implicitly	generated	based	on	the	data
groupings.	How	the	data	is	grouped	depends	on	the	type	of	algorithm	used.	Each
algorithm	uses	a	different	technique	to	identify	clusters.

Clustering	is	generally	used	in	data	mining	to	get	an	understanding	of	the	properties	of	a
given	dataset.	After	developing	this	understanding,	classification	can	be	used	to	make



better	predictions	about	similar	but	new	or	unseen	data.

Clustering	can	be	applied	to	the	categorization	of	unknown	documents	and	to	personalized
marketing	campaigns	by	grouping	together	customers	with	similar	behavior.	A	scatter
graph	provides	a	visual	representation	of	clusters	in	Figure	8.12.

Figure	8.12	A	scatter	graph	summarizes	the	results	of	clustering.

For	example,	a	bank	wants	to	introduce	its	existing	customers	to	a	range	of	new	financial
products	based	on	the	customer	profiles	it	has	on	record.	The	analysts	categorize
customers	into	multiple	groups	using	clustering.	Each	group	is	then	introduced	to	one	or
more	financial	products	most	suitable	to	the	characteristics	of	the	overall	profile	of	the
group.

Sample	questions	can	include:

•	How	many	different	species	of	trees	exist	based	on	the	similarity	between	trees?

•	How	many	groups	of	customers	exist	based	upon	similar	purchase	history?

•	What	are	the	different	groups	of	viruses	based	on	their	characteristics?

Outlier	Detection
Outlier	detection	is	the	process	of	finding	data	that	is	significantly	different	from	or
inconsistent	with	the	rest	of	the	data	within	a	given	dataset.	This	machine	learning
technique	is	used	to	identify	anomalies,	abnormalities	and	deviations	that	can	be
advantageous,	such	as	opportunities,	or	unfavorable,	such	as	risks.

Outlier	detection	is	closely	related	to	the	concept	of	classification	and	clustering,	although
its	algorithms	focus	on	finding	abnormal	values.	It	can	be	based	on	either	supervised	or
unsupervised	learning.	Applications	for	outlier	detection	include	fraud	detection,	medical
diagnosis,	network	data	analysis	and	sensor	data	analysis.	A	scatter	graph	visually
highlights	data	points	that	are	outliers,	as	shown	in	Figure	8.13.



Figure	8.13	A	scatter	graph	highlights	an	outlier.

For	example,	in	order	to	find	out	whether	or	not	a	transaction	is	likely	to	be	fraudulent,	the
bank’s	IT	team	builds	a	system	employing	an	outlier	detection	technique	that	is	based	on
supervised	learning.	A	set	of	known	fraudulent	transactions	is	first	fed	into	the	outlier
detection	algorithm.	After	training	the	system,	unknown	transactions	are	then	fed	into	the
outlier	detection	algorithm	to	predict	if	they	are	fraudulent	or	not.

Sample	questions	can	include:

•	Is	an	athlete	using	performance	enhancing	drugs?

•	Are	there	any	wrongly	identified	fruits	and	vegetables	in	the	training	dataset	used
for	a	classification	task?

•	Is	there	a	particular	strain	of	virus	that	does	not	respond	to	medication?

Filtering
Filtering	is	the	automated	process	of	finding	relevant	items	from	a	pool	of	items.	Items
can	be	filtered	either	based	on	a	user’s	own	behavior	or	by	matching	the	behavior	of
multiple	users.	Filtering	is	generally	applied	via	the	following	two	approaches:

•	collaborative	filtering

•	content-based	filtering

A	common	medium	by	which	filtering	is	implemented	is	via	the	use	of	a	recommender
system.	Collaborative	filtering	is	an	item	filtering	technique	based	on	the	collaboration,	or
merging,	of	a	user’s	past	behavior	with	the	behaviors	of	others.	A	target	user’s	past
behavior,	including	their	likes,	ratings,	purchase	history	and	more,	is	collaborated	with	the
behavior	of	similar	users.	Based	on	the	similarity	of	the	users’	behavior,	items	are	filtered
for	the	target	user.

Collaborative	filtering	is	solely	based	on	the	similarity	between	users’	behavior.	It	requires
a	large	amount	of	user	behavior	data	in	order	to	accurately	filter	items.	It	is	an	example	of



the	application	of	the	law	of	large	numbers.

Content-based	filtering	is	an	item	filtering	technique	focused	on	the	similarity	between
users	and	items.	A	user	profile	is	created	based	on	that	user’s	past	behavior,	for	example,
their	likes,	ratings	and	purchase	history.	The	similarities	identified	between	the	user
profile	and	the	attributes	of	various	items	lead	to	items	being	filtered	for	the	user.	Contrary
to	collaborative	filtering,	content-based	filtering	is	solely	dedicated	to	individual	user
preferences	and	does	not	require	data	about	other	users.

A	recommender	system	predicts	user	preferences	and	generates	suggestions	for	the	user
accordingly.	Suggestions	commonly	pertain	to	recommending	items,	such	as	movies,
books,	Web	pages	and	people.	A	recommender	system	typically	uses	either	collaborative
filtering	or	content-based	filtering	to	generate	suggestions.	It	may	also	be	based	on	a
hybrid	of	both	collaborative	filtering	and	content-based	filtering	to	fine-tune	the	accuracy
and	effectiveness	of	generated	suggestions.

For	example,	in	order	to	realize	cross-selling	opportunities,	the	bank	builds	a
recommender	system	that	uses	content-based	filtering.	Based	on	matches	found	between
financial	products	purchased	by	customers	and	the	properties	of	similar	financial	products,
the	recommender	system	automates	suggestions	for	potential	financial	products	that
customers	may	also	be	interested	in.

Sample	questions	can	include:

•	How	can	only	the	news	articles	that	a	user	is	interested	in	be	displayed?

•	Which	holiday	destinations	can	be	recommended	based	on	the	travel	history	of	a
vacationer?

•	Which	other	new	users	can	be	suggested	as	friends	based	on	the	current	profile	of	a
person?

Semantic	Analysis
A	fragment	of	text	or	speech	data	can	carry	different	meanings	in	different	contexts,
whereas	a	complete	sentence	may	retain	its	meaning,	even	if	structured	in	different	ways.
In	order	for	the	machines	to	extract	valuable	information,	text	and	speech	data	needs	to	be
understood	by	the	machines	in	the	same	way	as	humans	do.	Semantic	analysis	represents
practices	for	extracting	meaningful	information	from	textual	and	speech	data.

This	section	describes	the	following	types	of	semantic	analysis:

•	Natural	Language	Processing

•	Text	Analytics

•	Sentiment	Analysis

Natural	Language	Processing
Natural	language	processing	is	a	computer’s	ability	to	comprehend	human	speech	and	text
as	naturally	understood	by	humans.	This	allows	computers	to	perform	a	variety	of	useful
tasks,	such	as	full-text	searches.



For	example,	in	order	to	increase	the	quality	of	customer	care,	the	ice	cream	company
employs	natural	language	processing	to	transcribe	customer	calls	into	textual	data	that	are
then	mined	for	commonly	recurring	reasons	of	customer	dissatisfaction.

Instead	of	hard-coding	the	required	learning	rules,	either	supervised	or	unsupervised
machine	learning	is	applied	to	develop	the	computer’s	understanding	of	the	natural
language.	In	general,	the	more	learning	data	the	computer	has,	the	more	correctly	it	can
decipher	human	text	and	speech.

Natural	language	processing	includes	both	text	and	speech	recognition.	For	speech
recognition,	the	system	attempts	to	comprehend	the	speech	and	then	performs	an	action,
such	as	transcribing	text.

Sample	questions	can	include:

•	How	can	an	automated	phone	exchange	system	that	can	recognize	the	correct
department	extension	as	dictated	verbally	by	the	caller	be	developed?

•	How	can	grammatical	mistakes	be	automatically	identified?

•	How	can	a	system	that	can	correctly	understand	different	accents	of	English
language	be	designed?

Text	Analytics
Unstructured	text	is	generally	much	more	difficult	to	analyze	and	search	in	comparison	to
structured	text.	Text	analytics	is	the	specialized	analysis	of	text	through	the	application	of
data	mining,	machine	learning	and	natural	language	processing	techniques	to	extract	value
out	of	unstructured	text.	Text	analytics	essentially	provides	the	ability	to	discover	text
rather	than	just	search	it.

Useful	insights	from	text-based	data	can	be	gained	by	helping	businesses	develop	an
understanding	of	the	information	that	is	contained	within	a	large	body	of	text.	As	a
continuation	of	the	preceding	NLP	example,	the	transcribed	textual	data	is	further
analyzed	using	text	analytics	to	extract	meaningful	information	about	the	common	reasons
behind	customer	discontent.

The	basic	tenet	of	text	analytics	is	to	turn	unstructured	text	into	data	that	can	be	searched
and	analyzed.	As	the	amount	of	digitized	documents,	emails,	social	media	posts	and	log
files	increases,	businesses	have	an	increasing	need	to	leverage	any	value	that	can	be
extracted	from	these	forms	of	semi-structured	and	unstructured	data.	Solely	analyzing
operational	(structured)	data	may	cause	businesses	to	miss	out	on	cost-saving	or	business
expansion	opportunities,	especially	those	that	are	customer-focused.

Applications	include	document	classification	and	search,	as	well	as	building	a	360-degree
view	of	a	customer	by	extracting	information	from	a	CRM	system.

Text	analytics	generally	involves	two	steps:

1.	Parsing	text	within	documents	to	extract:

•	Named	Entities	–	person,	group,	place,	company

•	Pattern-Based	Entities	–	social	security	number,	zip	code



•	Concepts	–	an	abstract	representation	of	an	entity

•	Facts	–	relationship	between	entities

2.	Categorization	of	documents	using	these	extracted	entities	and	facts.

The	extracted	information	can	be	used	to	perform	a	context-specific	search	on	entities,
based	on	the	type	of	relationship	that	exists	between	the	entities.	Figure	8.14	shows	a
simplified	representation	of	text	analysis.

Figure	8.14	Entities	are	extracted	from	text	files	using	semantic	rules	and	structured	so
that	they	can	be	searched.

Sample	questions	can	include:

•	How	can	I	categorize	Web	sites	based	on	the	content	of	their	Web	pages?

•	How	can	I	find	the	books	that	contain	content	that	is	relevant	to	the	topic	that	I	am
studying?

•	How	can	I	identify	contracts	that	contain	confidential	company	information?

Sentiment	Analysis
Sentiment	analysis	is	a	specialized	form	of	text	analysis	that	focuses	on	determining	the
bias	or	emotions	of	individuals.	This	form	of	analysis	determines	the	attitude	of	the	author
of	the	text	by	analyzing	the	text	within	the	context	of	the	natural	language.	Sentiment
analysis	not	only	provides	information	about	how	individuals	feel,	but	also	the	intensity	of
their	feeling.	This	information	can	then	be	integrated	into	the	decision-making	process.
Common	applications	for	sentiment	analysis	include	identifying	customer	satisfaction	or
dissatisfaction	early,	gauging	product	success	or	failure,	and	spotting	new	trends.

For	example,	an	ice	cream	company	would	like	to	learn	about	which	of	its	ice	cream
flavors	are	most	liked	by	children.	Sales	data	alone	does	not	provide	this	information
because	the	children	that	consume	the	ice	cream	are	not	necessarily	the	purchasers	of	the
ice	cream.	Sentiment	analysis	is	applied	to	archived	customer	feedback	left	on	the	ice
cream	company’s	Web	site	to	extract	information	specifically	regarding	children’s
preferences	for	certain	ice	cream	flavors	over	other	flavors.

Sample	questions	can	include:

•	How	can	customer	reactions	to	the	new	packaging	of	the	product	be	gauged?

•	Which	contestant	is	a	likely	winner	of	a	singing	contest?

•	Can	customer	churn	be	measured	by	social	media	comments?



Visual	Analysis
Visual	analysis	is	a	form	of	data	analysis	that	involves	the	graphic	representation	of	data	to
enable	or	enhance	its	visual	perception.	Based	on	the	premise	that	humans	can	understand
and	draw	conclusions	from	graphics	more	quickly	than	from	text,	visual	analysis	acts	as	a
discovery	tool	in	the	field	of	Big	Data.

The	objective	is	to	use	graphic	representations	to	develop	a	deeper	understanding	of	the
data	being	analyzed.	Specifically,	it	helps	identify	and	highlight	hidden	patterns,
correlations	and	anomalies.	Visual	analysis	is	also	directly	related	to	exploratory	data
analysis	as	it	encourages	the	formulation	of	questions	from	different	angles.

This	section	describes	the	following	types	of	visual	analysis:

•	Heat	Maps

•	Time	Series	Plots

•	Network	Graphs

•	Spatial	Data	Mapping

Heat	Maps
Heat	maps	are	an	effective	visual	analysis	technique	for	expressing	patterns,	data
compositions	via	part-whole	relations	and	geographic	distributions	of	data.	They	also
facilitate	the	identification	of	areas	of	interest	and	the	discovery	of	extreme	(high/low)
values	within	a	dataset.

For	example,	in	order	to	identify	the	top-	and	worst-selling	regions	for	ice	cream	sales,	the
ice	cream	sales	data	is	plotted	using	a	heat	map.	Green	is	used	to	highlight	the	best
performing	regions,	while	red	is	used	to	highlight	worst	performing	regions.

The	heat	map	itself	is	a	visual,	color-coded	representation	of	data	values.	Each	value	is
given	a	color	according	to	its	type	or	the	range	that	it	falls	under.	For	example,	a	heat	map
may	assign	the	values	of	0–3	to	the	color	red,	4–6	to	amber	and	7–10	to	green.

A	heat	map	can	be	in	the	form	of	a	chart	or	a	map.	A	chart	represents	a	matrix	of	values	in
which	each	cell	is	color-coded	according	to	the	value,	as	shown	in	Figure	8.15.	It	can	also
represent	hierarchical	values	by	using	color-coded	nested	rectangles.



Figure	8.15	This	chart	heat	map	depicts	the	sales	of	three	divisions	within	a	company
over	a	period	of	six	months.

In	Figure	8.16,	a	map	represents	a	geographic	measure	by	which	different	regions	are
color-coded	or	shaded	according	to	a	certain	theme.	Instead	of	coloring	or	shading	the
whole	region,	the	map	may	be	superimposed	by	a	layer	made	up	of	collections	of
colored/shaded	points	relating	to	various	regions,	or	colored/shaded	shapes	representing
various	regions.

Figure	8.16	A	heat	map	of	the	US	sales	figures	from	2013.

Sample	questions	can	include:

•	How	can	I	visually	identify	any	patterns	related	to	carbon	emissions	across	a	large
number	of	cities	around	the	world?

•	How	can	I	see	if	there	are	any	patterns	of	different	types	of	cancers	in	relation	to
different	ethnicities?



•	How	can	I	analyze	soccer	players	according	to	their	strengths	and	weaknesses?

Time	Series	Plots
Time	series	plots	allow	the	analysis	of	data	that	is	recorded	over	periodic	intervals	of	time.
This	type	of	analysis	makes	use	of	time	series,	which	is	a	time-ordered	collection	of
values	recorded	over	regular	time	intervals.	An	example	is	a	time	series	that	contains	sales
figures	that	are	recorded	at	the	end	of	each	month.

Time	series	analysis	helps	to	uncover	patterns	within	data	that	are	time-dependent.	Once
identified,	the	pattern	can	be	extrapolated	for	future	predictions.	For	example,	to	identify
seasonal	sales	patterns,	monthly	ice	cream	sales	figures	are	plotted	as	a	time	series,	which
further	helps	to	forecast	sales	figures	for	the	next	season.

Time	series	analyses	are	usually	used	for	forecasting	by	identifying	long-term	trends,
seasonal	periodic	patterns	and	irregular	short-term	variations	in	the	dataset.	Unlike	other
types	of	analyses,	time	series	analysis	always	includes	time	as	a	comparison	variable,	and
the	data	collected	is	always	time-dependent.

A	time	series	plot	is	generally	expressed	using	a	line	chart,	with	time	plotted	on	the	x-axis
and	the	recorded	data	value	plotted	on	the	y-axis,	as	shown	in	Figure	8.17.

Figure	8.17	A	line	chart	depicts	a	sales	time	series	from	1990	to	1996.

The	time	series	presented	in	Figure	8.17	spans	seven	years.	The	evenly	spaced	peaks
toward	the	end	of	each	year	show	seasonal	periodic	patterns,	for	example	Christmas	sales.
The	dotted	red	circles	represent	short-term	irregular	variations.	The	blue	line	shows	an
upward	trend,	indicating	an	increase	in	sales.

Sample	questions	can	include:

•	How	much	yield	should	the	farmer	expect	based	on	historical	yield	data?

•	What	is	the	expected	increase	in	population	in	the	next	5	years?

•	Is	the	current	decrease	in	sales	a	one-off	occurrence	or	does	it	occur	regularly?



Network	Graphs
Within	the	context	of	visual	analysis,	a	network	graph	depicts	an	interconnected	collection
of	entities.	An	entity	can	be	a	person,	a	group,	or	some	other	business	domain	object	such
as	a	product.	Entities	may	be	connected	with	one	another	directly	or	indirectly.	Some
connections	may	only	be	one-way,	so	that	traversal	in	the	reverse	direction	is	not	possible.

Network	analysis	is	a	technique	that	focuses	on	analyzing	relationships	between	entities
within	the	network.	It	involves	plotting	entities	as	nodes	and	connections	as	edges
between	nodes.	There	are	specialized	variations	of	network	analysis,	including:

•	route	optimization

•	social	network	analysis

•	spread	prediction,	such	as	the	spread	of	a	contagious	disease

The	following	is	a	simple	example	based	on	ice	cream	sales	for	the	application	of	network
analysis	for	route	optimization.

Some	ice	cream	store	managers	are	complaining	about	the	time	it	takes	for	delivery	trucks
to	drive	between	the	central	warehouse	and	stores	in	remote	areas.	On	hotter	days,	ice
cream	delivered	from	the	central	warehouse	to	the	remote	stores	melts	and	cannot	be	sold.
Network	analysis	is	used	to	find	the	shortest	routes	between	the	central	warehouse	and	the
remote	stores	in	order	to	minimize	the	durations	of	deliveries.

Consider	the	social	network	graph	in	Figure	8.18	for	a	simple	example	of	social	network
analysis:

•	John	has	many	friends,	whereas	Alice	only	has	one	friend.

•	The	results	of	a	social	network	analysis	reveal	that	Alice	will	most	likely	befriend
John	and	Katie,	since	they	have	a	common	friend	named	Oliver.



Figure	8.18	An	example	of	a	social	network	graph.

Sample	questions	may	include:

•	How	can	I	identify	influencers	within	a	large	group	of	users?

•	Are	two	individuals	related	to	each	other	via	a	long	chain	of	ancestry?

•	How	can	I	identify	interaction	patterns	among	a	very	large	number	of	protein-to-
protein	interactions?

Spatial	Data	Mapping
Spatial	or	geospatial	data	is	commonly	used	to	identify	the	geographic	location	of
individual	entities	that	can	then	be	mapped.	Spatial	data	analysis	is	focused	on	analyzing
location-based	data	in	order	to	find	different	geographic	relationships	and	patterns
between	entities.

Spatial	data	is	manipulated	through	a	Geographic	Information	System	(GIS)	that	plots
spatial	data	on	a	map	generally	using	its	longitude	and	latitude	coordinates.	The	GIS
provides	tooling	that	enables	interactive	exploration	of	the	spatial	data,	for	example
measuring	the	distance	between	two	points,	or	defining	a	region	around	a	point	as	a	circle
with	a	defined	distance-based	radius.	With	the	ever-increasing	availability	of	location-
based	data,	such	as	sensor	and	social	media	data,	spatial	data	can	be	analyzed	to	gain
location	insights.

For	example,	as	part	of	a	corporate	expansion,	more	ice	cream	stores	are	planned	to	open.
There	is	a	requirement	that	no	two	stores	can	be	within	a	distance	of	5	kilometers	of	each
other	to	prevent	the	stores	from	competing	with	each	other.	Spatial	data	is	used	to	plot



existing	store	locations	and	to	then	identify	optimal	locations	for	new	stores	at	least	5
kilometers	away	from	existing	stores.

Applications	of	spatial	data	analysis	include	operations	and	logistic	optimization,
environmental	sciences	and	infrastructure	planning.	Data	used	as	input	for	spatial	data
analysis	can	either	contain	exact	locations,	such	as	longitude	and	latitude,	or	the
information	required	to	calculate	locations,	such	as	zip	codes	or	IP	addresses.

Furthermore,	spatial	data	analysis	can	be	used	to	determine	the	number	of	entities	that	fall
within	a	certain	radius	of	another	entity.	For	example,	a	supermarket	is	using	spatial
analysis	for	targeted	marketing,	as	shown	in	Figure	8.19.	Locations	are	extracted	from	the
users’	social	media	messages,	and	personalized	offers	are	delivered	in	realtime	based	on
the	proximity	of	the	user	to	the	store.

Figure	8.19	Spatial	data	analysis	can	be	used	for	targeted	marketing.

Sample	questions	can	include:

•	How	many	houses	will	be	affected	due	to	a	road	widening	project?

•	How	far	do	customers	have	to	commute	in	order	to	get	to	a	supermarket?

•	Where	are	the	high	and	low	concentrations	of	a	particular	mineral	based	on
readings	taken	from	a	number	of	sample	locations	within	an	area?

Case	Study	Example

ETI	currently	employs	both	quantitative	and	qualitative	analyses.	The	actuaries
perform	quantitative	analysis	through	the	application	of	various	statistical
techniques,	such	as	probability,	mean,	standard	deviation	and	distributions	for	risk



assessment.	On	the	other	hand,	qualitative	analysis	is	performed	during	the
underwriting	stage,	where	a	single	application	is	screened	in	detail	to	get	an	idea	of
risk	level—low,	medium	or	high.	Then,	the	claim	assessment	stage	analyzes	a
submitted	claim	to	get	an	inclination	as	to	whether	or	not	that	claim	is	fraudulent.
Currently,	ETI’s	analysts	do	not	perform	any	intense	data	mining.	Instead,	most	of
their	efforts	are	geared	toward	performing	BI	using	data	from	the	EDW.

The	IT	team	and	the	analysts	applied	a	range	of	analysis	techniques	in	pursuit	of
finding	fraudulent	transactions	during	the	data	analysis	stage	as	part	of	the	Big	Data
analytics	lifecycle.	Some	of	the	applied	techniques	are	presented	here.

Correlation
It	is	noted	that	a	number	of	fraudulent	insurance	claims	occur	right	after	a	policy	is
bought.	To	verify	this,	correlation	is	applied	to	the	age	of	policy	and	the	number	of
fraudulent	claims.	A	result	of	-0.80	shows	that	a	relationship	exists	between	the	two
variables:	the	number	of	fraudulent	claims	decreases	as	the	policy	gets	older.

Regression
Based	on	this	discovery,	the	analysts	want	to	find	out	how	many	fraudulent	claims
are	submitted	based	on	the	age	of	policy,	as	this	information	will	help	them	to
determine	the	chance	that	a	submitted	claim	is	fraudulent	or	not.	Consequently,	the
regression	technique	is	applied	by	keeping	the	age	of	policy	as	the	independent
variable	and	the	number	of	fraudulent	claims	as	the	dependent	variable.

Time	Series	Plot
The	analysts	want	to	find	out	whether	or	not	the	fraudulent	claims	are	time-
dependent.	They	are	particularly	interested	in	finding	out	if	there	are	any	particular
time	periods	in	which	the	number	of	fraudulent	claims	increases.	A	time	series	of
fraudulent	claims	for	the	past	five	years	is	generated	based	on	the	number	of
fraudulent	claims	that	were	calculated	each	week.	A	visual	analysis	of	the	time
series	plot	reveals	a	seasonal	trend	that	shows	that	the	number	of	fraudulent	claims
goes	up	just	before	a	holiday	and	toward	the	end	of	summer.	These	results	suggest
that	either	customers	make	false	claims	in	order	to	have	money	for	the	holiday
period	or	they	upgrade	their	electronics	and	other	goods	after	a	holiday	by	reporting
damage	or	theft.	A	few	short-term	irregular	variations	are	also	found,	which,	upon
closer	inspection,	are	discovered	to	be	linked	with	catastrophes	like	floods	and
storms.	The	long-term	trend	suggests	that	the	number	of	fraudulent	claims	is	likely
to	increase	in	the	future.

Clustering
Although	all	of	the	fraudulent	claims	are	different,	the	analysts	are	interested	in
finding	out	if	any	similarities	exist	between	fraudulent	claims.	A	clustering
technique	is	applied	that	groups	different	fraudulent	claims	based	on	a	number	of
attributes,	such	as	customer	age,	policy	age,	gender,	number	of	previous	claims	and
frequency	of	claim.



Classification
During	the	utilization	of	analysis	results	stage,	the	classification	analysis	technique
is	used	to	develop	a	model	that	can	differentiate	between	a	legitimate	claim	and	a
fraudulent	claim.	For	this,	the	model	is	first	trained	using	a	dataset	of	historic
claims,	in	which	each	claim	is	labeled	as	either	legitimate	or	fraudulent.	Once
trained,	the	model	is	brought	online,	where	newly-submitted,	unlabeled	claims	are
classified	as	fraudulent	or	legitimate.



Appendix	A.	Case	Study	Conclusion

ETI	has	successfully	developed	the	“fraudulent	claim	detection”	solution,	which	has
provided	the	IT	team	experience	and	confidence	in	the	realm	of	Big	Data	storage	and
analysis.	More	importantly,	they	see	that	they	have	achieved	only	a	part	of	one	of	the	key
objectives	established	by	the	senior	management.	Still	left	are	projects	that	are	intended
to:	improve	risk	assessment	for	applications	for	new	policies,	perform	catastrophe
management	to	decrease	the	number	of	claims	related	to	a	calamity,	decrease	customer
churn	by	providing	more	efficient	claims	settlement	and	personalized	policies	and,	finally,
achieve	full	regulatory	compliance.

Knowing	that	“success	breeds	success,”	the	corporate	innovation	manager,	working	from
a	prioritized	backlog	of	projects,	informs	the	IT	team	that	they	will	next	tackle	current
efficiency	problems	that	have	resulted	in	slow	claims	processing.	While	the	IT	team	was
busy	learning	enough	Big	Data	to	implement	a	solution	for	fraud	detection,	the	innovation
manager	had	deployed	a	team	of	business	analysts	to	document	and	analyze	the	claims
processing	business	process.	These	process	models	will	be	used	to	drive	an	automation
activity	that	will	be	implemented	with	a	BPMS.	The	innovation	manager	selected	this	as
the	next	target	because	they	want	to	generate	maximal	value	from	the	model	for	fraud
detection.	This	will	be	achieved	when	it	is	being	called	from	within	the	process
automation	framework.	This	will	allow	the	further	collection	of	training	data	that	can
drive	incremental	refinement	of	the	supervised	machine	learning	algorithm	that	drives	the
classification	of	claims	as	either	legitimate	or	fraudulent.

Another	advantage	of	implementing	process	automation	is	the	standardization	of	work
itself.	If	claims	examiners	are	all	forced	to	follow	the	same	claims	processing	procedures,



variation	in	customer	service	should	decline,	and	this	should	help	ETI’s	customers	achieve
a	greater	level	of	confidence	that	their	claims	are	being	processed	correctly.	Although	this
is	an	indirect	benefit,	it	is	one	that	recognizes	the	fact	that	it	is	through	the	execution	of
ETI’s	business	processes	that	customers	will	perceive	the	value	of	their	relationship	with
ETI.	Although	the	BPMS	itself	is	not	a	Big	Data	initiative,	it	will	generate	an	enormous
amount	of	data	related	to	things	like	end-to-end	process	time,	dwell	time	of	individual
activities	and	the	throughput	of	individual	employees	that	process	claims.	This	data	can	be
collected	and	mined	for	interesting	relationships,	especially	when	combined	with	customer
data.	It	would	be	valuable	to	know	whether	or	not	customer	defection	rates	are	correlated
with	claims	processing	times	for	defecting	customers.	If	they	are,	a	regression	model
could	be	developed	to	predict	which	customers	are	at	risk	for	defection,	and	they	can	be
proactively	contacted	by	customer	care	personnel.

ETI	is	seeing	improvement	in	its	daily	operations	through	the	creation	of	a	virtuous	cycle
of	management	action	followed	by	the	measurement	and	analysis	of	organizational
response.	The	executive	team	is	finding	it	useful	to	view	the	organization	not	as	a	machine
but	as	an	organism.	This	perspective	has	allowed	a	paradigm	shift	that	encourages	not
only	deeper	analytics	of	internal	data	but	also	a	realization	of	the	need	to	incorporate
external	data.	ETI	used	to	have	to	embarrassingly	admit	that	they	were	primarily	running
their	business	on	descriptive	analytics	from	OLTP	systems.	Now,	broader	perspectives	on
analytics	and	business	intelligence	are	enabling	more	efficient	use	of	their	EDW	and
OLAP	capabilities.	In	fact,	ETI’s	ability	to	examine	its	customer	base	across	the	Marine,
Aviation	and	Property	lines	of	business	has	allowed	the	organization	to	identify	that	there
are	many	customers	that	have	separate	policies	for	boats,	planes	and	high-end	luxury
properties.	This	insight	alone	has	opened	up	new	marketing	strategies	and	customer
upselling	opportunities.

Furthermore,	the	future	of	ETI	is	looking	brighter	as	the	company	embraces	data-driven
decision-making.	Now	that	its	business	has	experienced	benefit	from	diagnostic	and
predictive	analytics,	the	organization	is	considering	ways	to	use	prescriptive	analytics	to
achieve	risk-avoidance	goals.	ETI’s	ability	to	incrementally	adopt	Big	Data	and	use	it	as	a
means	of	bettering	the	alignment	between	business	and	IT	has	brought	unbelievable
benefits.	ETI’s	executive	team	has	agreed	that	Big	Data	is	a	big	deal,	and	they	expect	that
their	shareholders	will	feel	the	same	way	as	ETI	returns	to	profitability.
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