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Probability and Statistics by Example: II

Probability and statistics are as much about intuition and problem solving, as they
are about theorem proving. Because of this, students can find it very difficult to
make a successful transition from lectures to examinations to practice, since the
problems involved can vary so much in nature. Since the subject is critical in many
modern applications such as mathematical finance, quantitative management,
telecommunications, signal processing, bioinformatics, as well as traditional
ones such as insurance, social science and engineering, the authors have rectified
deficiencies in traditional lecture-based methods by collecting together a wealth
of exercises for which they have supplied complete solutions. These solutions are
adapted to needs and skills of students.

Following on from the success of Probability and Statistics by Example: Basic
Probability and Statistics, the authors here concentrate on random processes, par-
ticularly Markov processes, emphasising models rather than general constructions.
Basic mathematical facts are supplied as and when they are needed and historical
information is sprinkled throughout.
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Preface

This volume, like its predecessor, Probability and Statistics by Example, Vol. 1,
was initially conceived with the intention of giving Cambridge students an oppor-
tunity to check their level of preparation for Mathematical Tripos examinations.
And, as with the first volume, in the course of the preparation, another goal became
important: to give the general public a clearer picture of how probability- and
statistics-related courses are taught in a place like the University of Cambridge,
and what level of knowledge is achieved (or aimed for) by the end of these courses.
In addition, the specific topic of this volume, Markov chains and their applications,
has in recent years undergone a real surge. A number of remarkable theoretical
results were obtained in this field which only twenty years or so ago was con-
sidered by many probabilists as a ‘dead’ zone. Even more surprisingly, an active
part in this exciting development was played by applied research. Motivated by
a dramatically increasing number of problems emerging in such diverse areas as
computer science, biology and finance, applied people boldly invaded the territory
traditionally reserved for the few hardened enthusiasts who until then had contin-
ued to improve old results by removing one or another condition in theorems which
became increasingly difficult to read, let alone apply. We thus felt compelled to
include some of these relatively recent ideas in our book, although the correspond-
ing sections have little to do with current Cambridge courses. However, we have
tried to follow a distinctively Cambridge approach (as we see it) throughout the
whole volume.

On the whole, our feeling is that the modern theory of Markov chains can be
compared with a huge and complex living organism which has suddenly woken
from a period of hibernation and is now in a state of active consumption and
digestion of fresh foodstuff produced by fertile lands around it, flourishing under
blissful conditions. As often happens in nature, some parts of this living organism
go through vast changes: they become less or more important compared with the
previous state. In addition, some parts, like an old skin, may be sloughed off and
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viii Preface

replaced by new, better adapted to new realities. Our book then can be compared
with a photographic snapshot of this giant from a certain distance and angle. We
are not able to feature the whole animal (it is simply too big and fast-moving for
us), and many details of the picture within the frame of our snapshot are blurred.
However, we hope that the overall image is somewhat new and fresh.

At the same time, our goal was to treat those topics that are particularly impor-
tant, especially in the course of learning the basic concepts of Markov chains.
These are the aspects and issues that are particularly thought-provoking for a new-
comer and, not surprisingly, usually provide the most fertile grounds for setting up
problems suitable for exams. Roughly speaking, all the material from the theory of
Markov chains which proved to be useful in examinations in Cambridge during the
period 1991–2003 is included in the book.

It has to be said that studying via (or supporting the learning process by going
through) a large number of homogeneous problems (with or without solutions) can
be rather painstaking. A view popular among the mathematically-minded section of
the academic community could be that the most productive way of learning a math-
ematical subject is to digest proofs of a collection of theorems general enough to
serve many particular cases and then treat various questions as examples illustrat-
ing such theorems (the present authors were educated in precisely this fashion). The
problem is that it ideally suits the mathematically-minded section of the academic
community, but perhaps not the rest . . .

On the other hand, an increasing number of students (mainly, but not always,
with a non-mathematical background) strongly oppose (at least psychologically)
any attempt at a ‘decent’ proof of even basic theorems. Moreover, the manual cal-
culations often required in examples whose tailor-made background is obvious also
became increasingly unpopular with generations of students for whom computers
have become as ordinary as toothbrushes. The authors can refer to their own experi-
ence as lecturers when audiences have been convinced more by computer evidence
than by a formal proof. There is clearly a problem about how to teach an origi-
nally pure mathematics subject to a wider audience. There is some basis for the
above unpopularity, although we personally still believe that learning the proof of
convergence to an equilibrium distribution of a Markov chain is more productive
than seeing twenty or so numerical examples confirming this fact. But an artificial
example where, say, a four by four transition matrix is constructed so that its eigen-
values are of a ‘nice’ form (a particular value 1, easy to find from symmetry or an
other ‘educated guess’, and the remaining two from a quadratic equation), may
mis- or even back-fire, whereas an efficient modern package could do the job with-
out much fuss. However, our presentation disregards these aspects; we consider it
as first step towards a future style of book-writing.
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A particular feature of the book is the presence of what we have called ‘Worked
Examples’, along with ‘Examples’. The former show readers how to go about solv-
ing specific problems; in other words, give explicit guidance about how to make
the transition from the theory to the practical issue of solving problems. The end
of a worked example is marked by a symbol �. The latter are illustrative, and are
intended to reveal more about the underlying ideas. We must note that we have
been particularly influenced by books Norris, 1997, and Stroock, 2005. In addi-
tion, a number of past and present members of the Statistical Laboratory, DPMMS,
University of Cambridge, contributed to creating a particular style of presentation
(we wrote about it in the preface to the first volume). It is the pleasure to name here
David Williams, Frank Kelly, Geoffrey Grimmett, Douglas Kennedy, James Nor-
ris, Gareth Roberts and Colin Sparrow whose lectures we attended, whose lecture
notes we read and whose example sheets we worked on. In Swansea, great help
and encouragement came from Alan Hawkes, Aubrey Truman and again David
Williams. We are particularly grateful to Elie Bassouls who read the early ver-
sion of the book and made numerous suggestions for improving the presentation.
His help extended beyond the usual level of involvement of a careful reader into
preparation of a mathematical text and rendered the great service to the authors.

We would like to thank David Trarah for the efforts he made to clarify and
strengthen the structure of the book and for his careful editing work which went
much further than the usual copyediting. We also thank Sarah Shea-Simonds and
Eugenia Kelbert for checking the style of presentation.

The book comprises three chapters divided into sections. Chapters 1 and 2
include material from Cambridge undergraduate courses but go far beyond in vari-
ous aspects of Markov chain theory. In Chapter 3 we address selected topics from
Statistics where the structure of a Markov chain clarifies problems and answers.
Typically, these topics become straightforward for independent samples but are
technically involved in a general set-up.

The bibliography includes a list of monographs illustrating the dynamics of
development of the theory of random processes, particularly Markov chains, and
parallel progress in Statistics. References to relevant papers are given in the body
of the text. References to Vol. 1 mean Probability and Statistics by Example,
Volume 1.
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Discrete-time Markov chains

1.1 The Markov property and its immediate consequences

Mathematics cannot be learned by lectures alone, anymore
than piano playing can be learned by listening to a player.

C. Runge (1856–1927), German applied mathematician

Typically, the subject of Markov chains represents a logical continuation from a
basic course of probability. We will study a class of random processes describing
a wide variety of systems of theoretical and practical interest (and sometimes sim-
ply amusing). The fact that deep insight into the subject is possible without using
sophisticated mathematical tools may also be an explanation of why Markov chains
are popular in so many different disciplines which are seemingly remote from pure
mathematics.

The basic model for the first half of the book will be a system which changes
state in discrete time, according to some random mechanism. The collection of
states is called a state space and throughout the whole book will be assumed
finite or countable; we will denote it by I. Each i ∈ I is called a state; our sys-
tem will always be in one of these states. Sometimes we will know what state the
system occupies and sometimes only that the system is in state i with some prob-
ability. Therefore it makes sense to introduce a probability measure or probability
distribution (or, more simply, a distribution) on I. A probability distribution λ on I
is simply a countable collection (λi, i ∈ I) of non-negative numbers of total sum 1:

λi ≥ 0, ∑
i∈I

λi = 1. (1.1)

1



2 Discrete-time Markov chains

We can think of a unit ‘mass’ spread over the set I where point i has mass λi.
For that reason it is sometimes convenient to speak of a probability mass function
i ∈ I �→ λi. Then the probability of a set J ⊆ I is λ (J) = ∑ j∈J λ j.

If λi = 1 for some i ∈ I and λ j = 0 when j �= i, the distribution is ‘concentrated’
at point i. Then the state of our system becomes ‘deterministic’. We will denote
such a distribution by δi (the Dirac measure being an extreme case).

Sometimes the condition ∑i∈I λi = 1 is not fulfilled; then we simply say that λ is
a measure on I. If the total mass ∑i∈I λi < ∞, the measure is called finite and can be
transformed into a probability distribution by the normalisation: λ̃i = λi

/
∑ j∈I λ j

which defines a probability measure on I, since ∑i∈I λ̃i = ∑i∈I λi
/

∑ j∈I λ j = 1. But
even if ∑i∈I λi = ∞ (i.e. the total mass is infinite), we still can assign a finite value
λ (J) = ∑i∈J λi to finite subsets J ⊂ I.

The random mechanism through which a change of state occurs is described by
a transition matrix P, with entries pi j, i, j ∈ I. Entry pi j gives the probability that
the system will change state i to j in a unit of time. That is, pi j is the conditional
probability that the system will occupy state j at the next time-step given that it
is currently in state i. Hence, we have that each entry in P is non-negative but not
greater than 1, and the sum of entries along every row equals 1:

0 ≤ pi j ≤ 1 for all i, j ∈ I and ∑
j∈I

pi j = 1 for all i ∈ I. (1.2)

A matrix P with these properties is called stochastic. By analogy, a probability
distribution (λi) on I is often called a stochastic vector. Then a stochastic matrix is
one where every row is a stochastic vector.

Example 1.1.1 The simplest case is 2× 2 (a two-state space). Without loss of
generality, we may think that the states are 0 and 1: then the entries will be pi j,
i, j = 0,1. Here, the stochastic matrix has the form(

1−α α
β 1−β

)
where 0 ≤ α ,β ≤ 1. In particular, α = β = 0 gives the identity matrix I and α =
β = 1 the anti-diagonal matrix:(

1 0
0 1

)
,

(
0 1
1 0

)
.

A system with the identity transition matrix remains in the initial state forever; in
the anti-diagonal case it flips state every time, from 0 to 1 and vice versa.



1.1 The Markov property and its immediate consequences 3

On the other hand, α = β = 1/2 gives the matrix(
1/2 1/2
1/2 1/2

)
.

In this case the system may stay in its state or change it with equal probabilities.

It is convenient to represent the transition matrix by a diagram where arrows
show possible transitions and are labelled with the corresponding transition proba-
bilities (arrows leading back to their own origin are often omitted as well as labels
for deterministic transitions). See Figure 1.1, top.

La Dolce Beta
(From the series ‘Movies that never made it to the Big Screen’.)

Example 1.1.2 The 4×4 matrix⎛⎜⎜⎝
0 1/3 1/3 1/3

1/4 1/4 1/4 1/4
1/2 1/2 0 0
0 0 0 1

⎞⎟⎟⎠
is represented in Figure 1.1, bottom.

The time will take values n = 0,1,2, . . .. To complete the picture, we have to
specify in what state our system is at the initial time n = 0. Typically, we will
assume that the system at time n = 0 is in state i with probability λi for some given
‘initial’ distribution λ on I.

Denote by Xn the state of our system at time n. The rules specifying a Markov
chain with initial distribution λ and transition matrix P are that

(i) X0 has distribution λ :

P(X0 = i) = λi, for all i ∈ I,

(ii) more generally, for all n and i0, . . . , in ∈ I, the probabilities P(X0 = i0,X1 =
i1, . . . ,Xn = in) that the system occupies states i0, i1, . . . , in at times 0, 1,
. . . , n is written as a product

P(X0 = i0,X1 = i1, . . . ,Xn = in) = λi0 pi0i1 · · · pin−1in . (1.3)
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4 3

1

1/2

1/4

1/3
1/3

1/2
1/4

21/4

1/3

0
1

1/21/2

0

1

0

1

Fig. 1.1

Of course, (i) is a particular case of (ii), with n = 0.
An important corollary of (1.3) is the equation for the conditional probability

P(Xn+1 = j|X0 = i0, . . . ,Xn−1 = in−1,Xn = i) that the state at time n+1 is j, given
states i0, . . . , in−1 and in = i at times 0, . . . , n−1, n:

P(Xn+1 = j|X0 = i0, . . . ,Xn−1 = in−1,Xn = i)

=
P(X0 = i0, . . . ,Xn−1 = in−1,Xn = i,Xn+1 = j)

P(X0 = i0, . . . ,Xn−1 = in−1,Xn = i)

=
λi0 pi0i1 · · · pin−1i pi j

λi0 pi0i1 · · · pin−1i
= pi j. (1.4)

That is, conditional on X0 = i0, . . .,Xn−1 = in−1 and Xn = i, we see Xn+1 has the
distribution (pi j, j ∈ I). In particular, the conditional distribution of Xn+1 does not
depend on i0, . . ., in−1, i.e., depends only on the state i at the last preceding time n.

Formula (1.4) illustrates the ‘no memory’ property of a Markov chain (only the
current state counts for determining probabilities of future states).

Another consequence of (1.3) is an elegant formula involving matrix multiplica-
tion for the marginal probability distribution of Xn. Here we ask the question: what
is the probability P(Xn = j) that at time n our system is in state j? For example, for
n = 1 we can write:

P(X1 = j) = ∑
i∈I

P(X0 = i,X1 = j),
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by considering all possible initial states i. In fact, the events

{state i at time 0, state j at time 1}

do not intersect for different i ∈ I and their union gives the event

{state j at time 1}.

Now use (1.3) and recall the rules of matrix algebra:

∑
i∈I

P(X0 = i,X1 = j) = ∑
i∈I

λi pi j = (λP) j.

By a direct calculation, this formula is extended to a general n:

P(Xn = j) = ∑
i0,...,in−1

P(X0 = i0, . . . ,Xn−1 = in−1,Xn = j)

= ∑
i0,...,in−1

λi0 pi0i1 · · · pin−1 j = (λPn) j , (1.5)

where Pn is the nth power of the matrix P. That is, the stochastic vector describing
the distribution of Xn is obtained by applying the matrix Pn to the initial stochastic
vector λ .

Then, similarly,

P(Xn = i,Xn+1 = j)

= ∑
i0,...,in−1

P(X0 = i0, . . . ,Xn−1 = in−1,Xn = i,Xn+1 = j)

= ∑
i0,...,in−1

λi0 pi0i1 · · · pin−1i pi j = (λPn)i pi j,

and, hence

P(Xn+1 = j|Xn = i) =
P(Xn = i,Xn+1 = j)

P(Xn = i)
=

(λPn)i pi j

(λPn)i
= pi j. (1.6)

In other words, the entry pi j is the conditional probability that the state at the next
time-step is j given that at the preceding one it is i.

Moreover,

P(X0 = i,Xn = j)

= ∑
i1,...,in−1

P(X0 = i,X1 = i1, . . . ,Xn−1 = in−1,Xn = j)

= ∑
i1,...,in−1

λi pii1 · · · pin−1 j = λi(Pn)i j,

and

P(Xn = j|X0 = i) =
P(X0 = i,Xn = j)

P(X0 = i)
=

λi(Pn)i j

λi
= (Pn)i j. (1.7)
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That is, the entry (Pn)i j of matrix Pn gives the n-step transition probability from

state i to j. We also denote it sometimes by p(n)
i j .

More generally,

P(Xk = i,Xn+k = j) = (λPk)i(Pn)i j

and

P(Xk+n = j|Xk = i) =
P(Xk = i,Xk+n = j)

P(Xk = i)
=

(λPk)i(Pn)i j

(λPk)i
= (Pn)i j. (1.8)

A corollary of this observation is that the power Pn of a stochastic matrix is
again stochastic, viz. ∑ j∈I p(n)

i j = 1 for all i ∈ I. Of course, this fact can be verified
directly:

∑
j∈I

p(n)
i j = ∑

i1,...,in−1, j

pii1 · · · pin−1 j = ∑
i1

pii1 · · ·∑
j

pin−1 j = 1

as at each step (beginning with ∑ j) we get the sum 1, owing to (1.2).
Another consequence is that if we apply to a stochastic vector a stochastic

matrix (P or more generally Pn), we obtain another stochastic vector. Again, direct
calculation confirms this:

∑
j

(λPn) j = ∑
i, j

λi(Pn)i j = ∑
i

λi ∑
j

(Pn)i j = ∑
i

λi = 1.

An ultimate generalisation of (1.3) is the formula

P
(
Xk1 = i1,Xk2 = i2, . . . ,Xkn = in

)
= (λPk1)i1

(
Pk2−k1

)
i1i2

· · ·
(
Pkn−kn−1

)
in−1in

(1.9)

valid for all times 0 ≤ k1 < k2 < · · · < kn and states i1, . . ., in ∈ I.
It is now time to summarise our findings. Suppose that λ = (λi) is a stochastic

vector and P = (pi j) a transition matrix on I. The random state Xn at time n is
considered as a random variable with values in I.

Definition 1.1.3 A sequence of random variables Xn with values in a finite or
countable set I is a discrete-time Markov chain (DTMC), or a Markov chain for
short, with the initial distribution λ and transition matrix P if, for all i0, . . . , in ∈ I,
the joint probability P(X0 = i0, . . . ,Xn = in) is given by formula (1.3). In this case
we also say that (Xn) is Markov (λ ,P) or call it a (λ ,P) Markov chain.

Theorem 1.1.4 If (Xn) is Markov (λ ,P), then:

(i) the conditional probability

P(Xn+1 = j|X0 = i0, . . . ,Xn−1 = in−1,Xn = i)
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is equal to the conditional probability P(Xn+1 = j|Xn = i) and coincides
with pi j. In particular, the conditional distribution of Xn+1 given that X0 =
i0, . . . ,Xn−1 = in−1,Xn = i does not depend on i0, . . . , in−1 and coincides with
(pi j, j ∈ I), i.e. with row i of P;

(ii) the probability P(Xn = i) that the state at time n is i equals (λPn)i;

(iii) the entry p(n)
i j of matrix Pn corresponds to the conditional probability

P(Xk+n = j|Xk = i), i.e. gives the n-step transition probability from i to j;

(iv) the general probability

P
(
Xk1 = i1,Xk2 = i2, . . . ,Xkn = in

)
is given by (1.9).

Example 1.1.5 Suppose that all rows of P are the same, i.e. pi j = p j does not
depend on i. In addition, suppose that λ j = p j, i.e. λ coincides with the row of P.
Then, by (1.3)

P(X0 = i0,X1 = i1, . . . ,Xn = in) = pi0 pi1 · · · pin .

Also, in this example Pn = P, as

p(n)
i j = ∑

i1,...,in−1

pi1 · · · pin−1 p j = ∑
i1

pi1 ∑
i2

pi2 · · ·∑
in−1

pin−1 p j = p j,

owing to the fact that ∑l∈I pl = 1. Hence,

P(Xn = j) = (λPn) j = ∑
i∈I

pi p
(n)
i j = ∑

i∈I

pi p j = p j.

We see that

P(X0 = i0,X1 = i1, . . . ,Xn = in) = P(X0 = i0)P(X1 = i1) · · ·P(Xn = in).

That is (Xn) is a sequence of independent, identically distributed (IID) random
variables.

Example 1.1.6 If P is diagonal then it must coincide with the identity matrix I
where row i is given by the stochastic vector δi:⎛⎜⎜⎝

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 1

⎞⎟⎟⎠ .



8 Discrete-time Markov chains

In this case, every power Pn again equals the identity matrix (this property is called
idempotency; correspondingly, such a matrix P is called idempotent). Hence,
by (1.5), P(Xn = i) = λi. That is, the distribution of Xn is the same as X0. In other
words, the initial distribution is preserved in time.

Example 1.1.7 For a two-state DTMC, P =
(

1−α α
β 1−β

)
, the entries of Pn

can be found by a straightforward calculation. In fact, Pn = Pn−1P, which for entry
p(n)

00 yields

p(n)
00 = p(n−1)

00 (1−α)+ p(n−1)
01 β

= p(n−1)
00 (1−α)+

(
1− p(n−1)

00

)
β = β +(1−α −β )p(n−1)

00 .

This is a recursion in n, with p(0)
00 = 1 and p(1)

00 = 1−α . Hence,

p(n)
00 = A+B(1−α −β )n,

with

A+B = 1, A+B(1−α −β ) = 1−α ,

and, clearly,

p(n)
00 =

⎧⎨⎩
β

α +β
+

α
α +β

(1−α −β )n, if α +β > 0,

1, if α = β = 0.

Entry p(n)
11 is obtained by swapping α and β , and entries p(n)

01 and p(n)
10 as

complements to 1.

Example 1.1.8 In the general case, we can use the eigenvalues and eigenvectors
of P to find elements of Pn. Consider a 3×3 example

P =

⎛⎝ 0 1 0
0 2/3 1/3

1/3 0 2/3

⎞⎠ .

The eigenvalues are solutions to the characteristic equation:

det

⎛⎝ −μ 1 0
0 2/3−μ 1/3

1/3 0 2/3−μ

⎞⎠ = −μ3 +
4
3

μ2 − 4
9

μ +
1
9

= −(μ −1)
(

μ2 − 1
3

μ +
1
9

)
= 0,
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whence

μ0 = 1, μ± =
1± i

√
3

6
.

As the eigenvalues are distinct, matrix P is diagonalisable: there exists an invertible
matrix D such that

D−1PD =

⎛⎝1 0 0
0 (1+ i

√
3)/6 0

0 0 (1− i
√

3)/6

⎞⎠ ,

i.e.

P = D

⎛⎝1 0 0
0 (1+ i

√
3)/6 0

0 0 (1− i
√

3)/6

⎞⎠D−1.

Then

Pn = D

⎛⎝1 0 0
0
[
(1+ i

√
3)/6

]n
0

0 0
[
(1− i

√
3)/6

]n
⎞⎠D−1,

and each entry of Pn is a sum of the form

A+B

(
1+ i

√
3

6

)n

+C

(
1− i

√
3

6

)n

.

The coefficients A, B and C may be complex; they vary from entry to entry and are
found from the initial values n = 0,1,2. For n = 0, P0 is the identity matrix (just as
in the scalar case p0 = 1 for any p (p = 0 included!)); for n = 1, we use the matrix
P and for n = 2 we have to square it, to obtain P2. For instance, suppose that the
states are 1, 2 and 3; then the entries are p(n)

i j , i, j = 1,2,3. Then, for p(n)
12 :

p(0)
12 = A+B+C = 0, p(1)

12 = A+B
1+ i

√
3

6
+C

1− i
√

3
6

= 1,

and

p(2)
12 = A+B

(
1+ i

√
3

6

)2

+C

(
1− i

√
3

6

)2

=
2
3
.

The calculations may be simplified if we get rid of imaginary parts (as all
entries p(n)

i j of Pn are real non-negative). To this end, observe that μ± are complex
conjugate roots and write

1± i
√

3
6

=
1
3

(1± i
√

3
2

)
=

1
3

e±iπ/3 =
1
3

(
cos

π
3
± isin

π
3

)
.
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Then (
1± i

√
3

6

)n

=
(

1
3

)n

e±inπ/3 =
(

1
3

)n(
cos

πn
3

± isin
πn
3

)
,

and

p(n)
i j = α +

(
1
3

)n(
β cos

πn
3

+ γ sin
πn
3

)
,

where α = A, β = (B +C) and γ = i(B−C) must be real. Again, we have the

equations for n = 0,1,2; for p(n)
12 they are

α +β = 0, α +
1
3

(
1
2

β +
√

3
2

γ

)
= 1, α +

1
9

(
− 1

2
β +

√
3

2
γ

)
=

2
3
,

whence

α =
3
7
, β = −3

7
, γ =

9
7

√
3.

In particular, lim
n→∞

p(n)
12 = 3/7.

Example 1.1.9 Consider another 3×3 matrix

P =

⎛⎝1/3 0 2/3
1/3 2/3 0
1/3 1/3 1/3

⎞⎠ .

Here the characteristic equation is:

−μ3 +
4
3

μ2 − 1
3

μ = −(μ −1)
(

μ − 1
3

)
μ = 0,

with the eigenvalues

μ0 = 1, μ1 =
1
3
, μ2 = 0.

Hence, the entries p(n)
i j have a simple form

p(n)
i j = A+B

(
1
3

)n

+C ·0n.

Again we use three initial conditions, with P0, P and P2. For instance, for p(n)
11 :

A+B+C = 1, A+
1
3

B =
1
3
, A+

(
1
3

)2

B =
1
3
,
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whence A = 1/3, B = 0, C = 2/3 and p(n)
11 ≡ 1/3. Similarly, p(n)

12 = 1/3− (1/3)n

and p(n)
13 = 1/3+(1/3)n. As n → ∞, all entries of the first row of Pn approach 1/3

(in fact, the same is true for all 9 entries in Pn).

Example 1.1.10 We can make a number of observations. First, 1 is always an
eigenvalue of any stochastic matrix P. In fact: (i) the eigenvalue equation reads
det (μI−P) = det (μI−P)T = det

(
μI−PT

)
= 0, i.e. the eigenvalues of P and

its transpose PT coincide; (ii) 1 is always an eigenvalue of PT: the corresponding
eigenvector is the row 1 = (1, . . . ,1) of 1s. Formally, 1PT = 1, or equivalently,
P1T = 1T for the column 1T. To check the last equation, observe that every entry
of the column P1T is 1 (

P1T)
i = ∑

j∈I

pi j = 1,

because P is stochastic.

Therefore, the characteristic polynomial of a stochastic matrix is divisible by
(μ − 1); in the 3× 3 case this leads to a quadratic quotient polynomial, and all
eigenvalues can be found.

Second, if there is a complex eigenvalue μ+ of P then the complex conjugate
μ− = μ+ is also an eigenvalue, as this is the only way of producing a real char-
acteristic polynomial from the product of linear monomials, (μ −μ+)(μ −μ−) =
μ2−(μ++μ−)μ +μ+μ−, with real coefficients μ++μ− and μ+μ− = |μ±|2. Then,
writing

μ± = |μ±|e±iφ = |μ±|(cosφ ± isin φ),

we can work with real summands only, of the form β cos(nφ) and γ sin(nφ).

Third, the coefficient A (in front of 1) in the equation for p(n)
i j typically identifies

the limit lim
n→∞

p(n)
i j . This is because the modulus |μ| ≤ 1 for any eigenvalue μ of P,

and ‘generically’ (although not always), any eigenvalue μ �= 1 has |μ| < 1. This
fact is more delicate and will be commented on in subsequent sections. Then in the
decomposition

p(n)
i j = A+ ∑

eigenvalues μs �=1

Bsμn
s

all terms except for A are suppressed as n → ∞. (In the case of P =
(

0 1
1 0

)
this is

not true: the eigenvalues are 1 and −1 and there is no limit lim
n→∞

p(n)
i j as Pn oscillates

between I for n even and P for n odd.)
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It has to be said that many (even very simple) examples may lead to rather
cumbersome computations for entries p(n)

i j . For example, the matrix

P =

⎛⎝1/3 1/3 1/3
0 1/2 1/2

1/3 2/3 0

⎞⎠
has the characteristic equation

−μ3 +
5
6

μ2 +
5

18
μ − 1

9
= −(μ −1)

(
μ2 +

1
6

μ − 1
9

)
= 0,

with eigenvalues

μ0 = 1, μ± =
−1±

√
17

12
.

This leads to the equation

p(n)
i j = A+B

(
−1+

√
17

12

)n

+ C

(
−1−

√
17

12

)n

,

with

A+B+C = δi j, A+ B

(
−1+

√
17

12

)
+ C

(
−1+

√
17

12

)
= pi j,

and

A+B

(
−1+

√
17

12

)2

+ C

(
−1−

√
17

12

)2

= p(2)
i j .

For instance, for p(n)
21 the final expression is

4
19

+
2

19

(
6√
17

−1

)(
−1+

√
17

12

)n

− 2
19

(
6√
17

+1

)(
−1−

√
17

12

)n

.

αα

1

0

/(N − 1)

Fig. 1.2
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Example 1.1.11 A helpful property is the presence of symmetries in P: it may
reduce the number of states in the Markov chain. For example, the N ×N matrix

P =

⎛⎜⎜⎜⎝
1−α α/(N −1) . . . α/(N −1)

α/(N −1) 1−α . . . α/(N −1)
...

... . . .
...

α/(N −1) α/(N −1) . . . 1−α

⎞⎟⎟⎟⎠
describes a model of a virus mutation where a virus retains its genotype or changes
to one of (N −1) other types with equal probabilities.

To calculate p(n)
11 , we reduce the number of states to two (say, 1 and 0 (another)),

by considering original transitions from a state 1 to itself or to another state, and
backwards, without further specification (as for our problem all other states are
indistinguishable). The reduced two-state chain has the 2×2 transition matrix(

1−α α
α/(N −1) 1−α/(N −1)

)
.

We can apply the formulas of Example 1.1.7 (with β = α/(N −1))

p(n)
11 =

α/(N −1)
α +α/(N −1)

+
α

α +α/(N −1)

(
1−α − α

N −1

)n

=
1
N

+
N −1

N

(
1− αN

N −1

)n

.

Also, by symmetry,

p(n)
i j =

1− p(n)
11

N −1

for i �= j.

We are now in a position to establish the famous Markov property of a DTMC. It
asserts that the Markov chain begins afresh after any given time n (from its current
state).

Theorem 1.1.12 Let (Xn) be Markov (λ ,P). Then, for all m ≥ 1 and i ∈ I, con-
ditional on Xm = i, (Xm+n,n ≥ 0) is Markov (δi,P). In particular, conditional on
Xm = i, the random variables Xm+1, Xm+2, . . . are independent of the variables X0,
. . . , Xm−1.

In other words, in a DTMC, the past states (X0, . . . , Xm−1) and the future states
(Xm+1,Xm+2, . . .) are conditionally independent, given the present (Xm = i).
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Proof Recall that the stochastic vector δi has entries δi j, j ∈ I. We want to
check that for any event A determined by X0, . . .,Xm−1, and B determined by
Xm+1, . . .,Xm+1+n for some n, (i) the conditional probability P(A ∩ B|Xm = i)
decouples:

P(A∩B|Xm = i) = P(A|Xm = i)P(B|Xm = i), (1.10)

and (ii) the conditional probability P(B|Xm = i) is calculated as in the Markov chain
(δi,P):

P(B|Xm = i) = ∑
( j1,..., jn)∈B

pi j1 · · · p jn−1 jn . (1.11)

First, let A and B be of the form

A = {X0 = i0, . . . ,Xm−1 = im−1}, B = {Xm+1 = j1, . . . ,Xm+n = jn}

for some sequence of states i0, . . ., im−1, j1, . . ., jn ∈ I. Generally, A and B are
disjoint unions of such ‘elementary’ events.

For A and B as above,

P
(
A∩B∩{Xm = i}

)
= P
(
X0 = i0, . . . ,Xm−1 = im−1,Xm = i,Xm+1 = j1, . . . ,Xm+n = jn

)
= λi0 pi0i1 · · · pim−1i pi j1 · · · p jn−1 jn .

For a general B we have to sum over ( j1, . . . , jn) ∈ B:

λi0 pi0i1 · · · pim−1i ∑
( j1,..., jn)∈B

pi j1 · · · p jn−1 jn .

The sum ∑( j1,..., jn)∈B gives the conditional probability P(B|Xm = i), and it is
calculated as in the (δi,P) Markov chain.

Next, for a general A we sum over (i0, . . . , im−1) ∈ A:

P
(
A∩B∩{Xm = i}

)
= ∑

(i0,...,im−1)∈A

λi0 pi0i1 · · · pim−1iP(B|Xm = i)

= P(A∩{Xm = i})P(B|Xm = i).

Finally, to produce the conditional probability P
(
A ∩ B|Xm = i

)
, we divide by

P(Xm = i):

P
(
A∩B|Xm = i

)
=

P
(
A∩B∩{Xm = i}

)
P(Xm = i)

=
P
(
A∩{Xm = i}

)
P(Xm = i)

P(B|Xm = i)

= P(A|Xm = i) P(B|Xm = i),

as required.
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In future we will write Pi for the conditional probabilities P( · |X0 = i) given that
the state at time 0 is i. Similarly, Ei stands for expectation under distribution Pi.

Worked Example 1.1.13 Three girls A, B and C are playing table tennis. In each
game, two of the girls play against each other and the third girl does not play. The
winner of any given game n plays again in game n + 1. The probability that girl
x will beat girl y in any game that they play against each other is sx/(sx + sy) for
x,y ∈ {A,B,C}, x �= y, where sA, sB, sC represent the playing strengths of the three
girls.

(a) Represent this process as a DTMC by defining the possible states and
constructing the transition matrix.

(b) Determine the probability that the two girls who play each other in the
first game will play each other again in the fourth game. Show that this
probability does not depend on which two girls play in the first game.

Solution (a) Label states by A, B, C indicating which player is not playing in a
given game. Then the transition matrix is {A,B,C}×{A,B,C}:⎛⎝ 0 sC/(sB + sC) sB/(sB + sC)

sC/(sA + sC) 0 sA/(sA + sC)
sB/(sA + sB) sA/(sA + sB) 0

⎞⎠ .

The process is a Markov chain because the results of the subsequent games are
independent.

(b) Here, we look for the probability that after three steps the chain returns to a
given initial state.

From the symmetry, this probability is the same for any choice of the initial state
and is equal to

pAB pBC pCA + pAC pCB pBA =
2sAsBsC

(sA + sB)(sB + sC)(sC + sA)
.

Worked Example 1.1.14 A rock concert held in a hall with N numbered seats
attracted a huge crowd of spectators. The lights have been dimmed and N−1 seats
have already been taken, and now the last spectator enters the hall. The first N −1
spectators were advised by the ushers, rather imprudently, to take their seats com-
pletely at random, but the last spectator is determined to sit in the place indicated
on her ticket. If her place is free, she takes it, and the concert is ready to begin.
However, if her seat is taken, she loudly insists that the occupier vacates it. In this
case the occupier decides to follow the same rule: if the free seat is his, he takes
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it, otherwise he insists on his place being vacated. The same policy is then adopted
by the next unfortunate spectator, and so on. Each move takes 45 seconds. What is
the expected duration of the delay caused by these displacements?

Solution (sketch) It is important to keep in mind that, initially, the N−1 spectators
are distributed so that (a) the probability that seat j is free is 1/N, j = 1, . . . ,N,
(b) given that seat j is free, the probability that the first spectator entering the hall
takes seat i1, the second spectator takes seat i2, . . ., the (N − 1)st takes seat iN−1,
equals 1/(N −1)!, for any sequence i1, . . ., iN−1 covering the set {1, . . . ,N}\{ j}.
Consider a DTMC with states N, N−1, . . ., 0. Here, state 0 means that the spectator
attempting the free seat ‘succeeds’ (i.e. the available seat is indeed her correct
place), state 1 ≤ n ≤ N−1 means that the (N−n)th move is ‘unsuccessful’, and N
is the initial state. Then the probability of transition n → 0 is equal to 1/n and the
probability of transition from n → (n−1) is (n−1)/n; the probability of transition
0→ 0 equals 1. Let E(n) denote the expected number of transitions (displacements)
until the Markov chain enters state 0 from state n; we are interested in the quantity
E(N). A useful remark is that E(n) is the expected number of displacements for
the hall with n seats.

The key fact is the following recursion

E(n) =
n−1

n
×
[
1+E(n−1)

]
+

1
n
×0

=
n−1

n

[
1+E(n−1)

]
, n = 1,2, . . . ,N

with

E(1) = 0.

The solution is

E(N) =
1
N

(
N −1+N −2+ · · ·+1

)
=

N −1
2

.

If N = 121, the expected delay will be 45× 120
2

secs = 45 min.

Worked Example 1.1.15 The point about this problem is that it is often useful to
introduce probability where originally it was not present. Assume that the circle of

unit perimeter C1 =
{

z : |z| = 1
2π

}
has been partitioned into two disjoint (mea-

surable) sets, one, called red, of length 2/3 and the other, called blue, of length
1/3. Prove that it is always possible to inscribe in the circle a square such that at
least three of its four vertices have the red colour.
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Solution Given such a partition, consider a random inscribed square where we
choose an anchor point on C1 uniformly; this determines the square uniquely. Let
us number the vertices 1, 2, 3, 4, say clock-wise, beginning with the anchor. Set

Xi = 1
(
vertex i falls in the red set

)
, i = 1,2,3,4.

Then

E
(
the number of red vertices

)
= EX1 +EX2 +EX3 +EX4 = 4EX1 = 8/3 > 2.

Hence, the sum X1 +X2 +X3 +X4 must take values 3 or 4 with positive probability,
and therefore the inscription in question is always possible.

We can actually assess the probability P that at least three vertices will be red. In
fact, the following bound holds: P ≥ P0 where P0 = 1

3 is found from the equation

(1−P0)2+4P0 =
8
3

(which corresponds to the situation where with probability P0 we have four red
vertices and with the complementary probability 1−P0 just two).

Concluding this section, we would like to note that Definition 1.1.3 above intro-
duces a class of so-called homogeneous, or time-homogeneous Markov chains. We
omit the term ‘homogeneous’ except for a few cases when we consider ‘inhomoge-
neous’ chains (which will occur with continuous time Markov chains; see Section
2.4). We only mention that in an inhomogeneous Markov chain, the transition prob-
ability from state i to j depends on the time of transition. Consequently, instead of
a single transition matrix P, we have to introduce a family of matrices Pn where
n = 0,1,2, . . ., describing probabilities of transition from state i at time n to state j
at time n+1.

Dial M For Markov
(From the series ‘Movies that never made it to the Big Screen’.)

1.2 Class division

Communicating class struggle
(From the series ‘When they go political’.)

Class division is a natural partition of the state space I, generated by the transition
matrix P. We still work with finite state spaces and finite matrices, unless otherwise
stated.
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Definition 1.2.1 States i and j belong to the same communicating class if p(n)
i j > 0

and p(n′)
ji > 0 for some n,n′ ≥ 0. (Recall, for n = 0, P0 is the identity matrix I.

Therefore, the diagonal entry p(0)
ii in matrix P0 is always equal to 1.) The fact that

p(n)
i j > 0 and p(n′)

ji > 0 for some n,n′ ≥ 0 is denoted by i ↔ j. When one of these
conditions holds, we write i → j or j → i, and if we want to stress that some of
them do not, we write i �→ j or j �→ i.

To check that we have a correctly defined partition, observe that: (i) each state
communicates with itself, i.e. i ↔ i, as p(0)

ii = 1 (communication is a reflexive
relation); (ii) the relation i ↔ j is symmetric, i.e. holds or does not hold regard-
less of the order within the pair i, j (this is obvious from the definition); (iii) if
i ↔ j and j ↔ k then i ↔ k (communication is a transitive relation). Indeed, as
p(n+n′)

ik = ∑l∈I p(n)
il p(n′)

lk ≥ p(n)
i j p(n′)

jk , and similarly for p(n+n′)
ki . Then, because of (i),

each state i belongs to some class, because of (ii) each class is correctly defined as
an (unordered) subset of I, and because of (iii) any state j falls in no more than one
class. States from different classes, of course, do not communicate.

A useful fact is that i → j if and only if there exists a sequence of states

i0 = i, i1, . . . , in−1, in = j

such that pil il+1 > 0 for each pair (il, il+1), 0 ≤ l < n. In fact,

p(n)
i j = ∑

i1,...in−1

pii1 · · · pin−1 j,

and the whole sum is > 0 if and only if there exists at least one non-zero summand.

Definition 1.2.2 A communicating class C is called closed if for all i ∈ C and
j ∈ I such that i → j, state j ∈ C. In other words, a state cannot escape from a
closed communicating class. Otherwise, i.e. when a state (and indeed, all states)
can escape from a class, it is called non-closed or open. States forming non-closed
communicating classes are often called non-essential: they indeed are not essential
in the long run. A state i is called absorbing if pii = 1. Equivalently, the communi-
cating class of an absorbing state i consists solely of i (and is closed). An open class
consisting of a single state j occurs when this state can be visited only once, after
which the chain never returns. Some authors restrict their attention exclusively to
closed communicating classes and do not consider other types as classes.

What I did that was new was to prove . . .
that the class struggle necessarily leads

to the dictatorship of the proletariat.
K. Marx (1818–1883), German philosopher
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Example 1.2.3 A particle moves from state i = 1, . . . , N − 1 to state i + 1 with
probability p and state i−1 with probability 1− p where 0 < p < 1.

From states 0 and N it cannot move, i.e. once it reaches one of them, it stays there
forever. This example describes a match between two players where the winner
of a given game gets from the loser one ‘score unit’, and the match continues
until one of the players is left with no units. Another interpretation is a walk of
a drunken person from a pub, where he makes a step towards home (state 0) or
a lake (state N). In the first case, the value N is the total number of units of both
players before the match; it is obviously preserved in the course of the game. In
the second case, it is the distance in steps between the home and the lake (the
pub is somewhere in between). The state i = 0,1, . . . ,N is the number of units in
possession of player 1 or the distance from home; p and 1− p are the probabilities
that player 1 wins or loses a game, or that the drunkard makes a step towards
home or the lake. Results of different games or directions of different moves are
independent.

Here, the transition matrix is (N +1)× (N +1):

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 0 0
1− p 0 p 0 . . . 0 0 0

0 1− p 0 p . . . 0 0 0
...

...
...

... . . .
...

...
...

0 0 0 0 . . . 0 p 0
0 0 0 0 . . . 1− p 0 p
0 0 0 0 . . . 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Communicating classes are {0}, {1, . . . ,N −1} and {N}, and classes {0} and {N}
are closed (i.e. states 0 and N are absorbing). Thus, states 1, . . .,N − 1 are non-
essential, and the game will ultimately end at one of the border states.

Example 1.2.4 Consider a 6×6 transition matrix, on states {1,2,3,4,5,6}, of the
form

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 0 0 ∗ 0
0 0 ∗ 0 0 0
0 0 ∗ 0 0 ∗
0 ∗ 0 0 ∗ 0
∗ 0 0 0 0 ∗
0 ∗ 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠



20 Discrete-time Markov chains

 

0

1

2

3
p

p

p

p

1−p

1−p

1−p

1−p

1−p

. . .. . .

. . .
. . . . . .
. . .

p
1

1−p
1

p
2

1−p
2

p
3

1−p
3

p
4

1−p
4

a) b) c) 

Fig. 1.3

where ∗ stands for a non-zero entry. The communicating classes are C1 = {1,5},
C2 = {2,3,6} and C3 = {4}, of which only C2 is closed. If we start in class C2, we
remain in C2 forever. If we start in C3 (i.e. at state 4), we will enter C2 (and then
stay in C2 forever) or C1. Intuitively, after spending some time in C1, we must leave
it, i.e. enter C2. This is what happens in reality, as we will soon discover.

A simple but useful fact is

Theorem 1.2.5 A Markov chain with a finite state space always has at least one
closed communicating class.

To prove Theorem 1.2.5, consider any class, say C1. If it is not closed, take the
next class you can reach from C1. If it is not closed, you continue. You should end
up this process with reaching a closed class.

Remark 1.2.6 The situation with a countable, or denumerable, Markov chains,
where the state space I is countably infinite, is more complicated. Here, you may
have no closed class. In addition, states from infinite closed classes may also be
non-essential, in the sense that the chain may visit each of them only finitely
many times before being driven ‘to infinity’ (although still within the same closed
class).
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The simplest examples of a DTMC with countably many states are those where the
space I is the set of non-negative integers Z+ = {0,1,2, · · ·}. Three examples are
shown in Figure 1.3; the corresponding transition matrices are:

(a)

⎛⎜⎜⎜⎝
0 1 0 0 . . . 0 . . .

0 0 1 0 . . . 0 . . .

0 0 0 1 . . . 0 . . .
...

...
...

... . . .
... . . .

⎞⎟⎟⎟⎠ , (b)

⎛⎜⎜⎜⎝
0 1 0 0 . . . 0 . . .

1− p 0 p 0 . . . 0 . . .

0 1− p 0 p . . . 0 . . .
...

...
...

... . . .
... . . .

⎞⎟⎟⎟⎠
and

(c)

⎛⎜⎜⎜⎝
0 1 0 0 . . . 0 . . .

1− p1 0 p1 0 . . . 0 . . .

0 1− p2 0 p2 . . . 0 . . .
...

...
...

... . . .
... . . .

⎞⎟⎟⎟⎠ .

These models describe so-called birth-and-death processes, or birth-death pro-
cesses, where state i represents the size of the population, and during a transition
a member of the population may die or a new member may be born. In case (a)
only births are allowed, and the chain is deterministic. Here, every state i forms a
non-closed class and is non-essential. In model (b) a ‘death’ occurs with the same
chance 1− p and a birth with the same chance p, regardless of the size i of the pop-
ulation at the given time (unless i = 0 of course). In real life, it may be a queue of
‘tasks’ served by a ‘server’ (e.g. clients waiting in a barber shop with a single seat,
or computer programs subsequently executed by a processor). Then i is the number
of tasks in the queue. If, before the hairdresser finishes with a current client, a new
client comes, we have a jump i → i+1; otherwise a jump i → i−1 occurs. From 0
we can only jump to 1 (although in the ‘real time’ the hairdresser may be waiting
for a while for this to happen). There are two situations: p ≥ 1/2 and 0 < p < 1/2.
Intuitively, if p ≥ 1/2, tasks will arrive at least as often as they are served, and the
queue will become eventually infinite (which may rather please our hairdresser). In
this situation, as we shall see, each state i will be visited finitely many times and Xn

(the size of the queue at time n) will grow indefinitely with n. If 0 < p < 1/2, the
tasks will arrive less often, and the system will be able to reach an ‘equilibrium’,
with some stationary distribution of the queue size.

An often used modification of model (b) is where 0 is made an absorbing state,
with p00 = 1.

In the more general case (c), the rules of the population dynamics may include
chances for every member to die (but only one at a time); e.g. pn = λ/(λ + nμ),
1− pn = nμ/(λ +nμ) where λ > 0 and μ > 0 are ‘immigration’ and death ‘rates’;
the whole picture becomes more complicated. We will be able to analyse some of
these models in detail in Sections 1.5–1.7.
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Let us now go back to finite-state Markov chains In general, after a re-
numeration of states, the finite transition matrix P acquires a particular structure,
see Figure 1.4. Traditionally, the top left corner is occupied by a square block
O0 formed by probabilities of possible transitions between non-essential states
(i.e. between and inside non-closed communicating classes). This block can be
zero, if such transitions are not present. Next, square blocks C1, . . . ,Cm are cen-
tred on the main diagonal. They represent (and denote) closed communicating
classes of various size; these blocks form stochastic submatrices. The latter means
that for all i = 1, . . . ,m and for all states j ∈ Ci, the sum ∑k∈Ci

p jk of the entries
inside class Ci along row j equals 1. The Markov chains corresponding to individ-
ual blocks C1, . . .,Cm may be studied separately from each other (which is easier,
owing to their lesser size). Blocks O1, . . .,Om, to the right of O0 show transitions
from non-essential states to closed communicating classes. These blocks are non-
negative rectangular submatrices; some of blocks O1, . . .,Om (but not all) may be
zero. (We should not forget that summing the entries along a row of P always
gives 1.) If the chain does not have non-essential states, then blocks O0,O1, . . .,Om

are simply absent. The space outside blocks O0,O1, . . .,Om and C1, . . .,Cm is
filled with zeros. (There may also be plenty of zeros inside these blocks;
see below.)

We call a finite DTMC (Xn) (or equivalently, its transition matrix P) irreducible
if it has a single communicating class C (which is then automatically closed). In
other words, a finite transition matrix is irreducible if any pair of states i, j ∈ I
communicate; equivalently, the whole state space is one (closed) communicating
class: I = C. Pictorially, the matrix P is reduced in this case to a single block
C; see Figure 1.5a). A characteristic feature here is that, for any pair of states
i, j ∈ I, the entry p(n)

i j of matrix Pn (i.e. the transition probability from i to j in
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n steps) is strictly greater than 0 for some n ≥ 1 (depending, in general, on i
and j).

Some authors allow a more complicated situation, and call a finite DTMC irre-
ducible if it has a unique closed communicating class and a number of non-closed
classes. (The reason is that in this case a finite chain has a unique invariant, or
equilibrium distribution; see Section 1.7). The corresponding matrix is shown in
Figure 1.5b): it has a single square block C forming a stochastic submatrix plus a
top left square block O0 and a single rectangular block O1 (or simply O). When you
iterate such a matrix P, raising it to a power n, block O0 will tend to 0 as n → ∞.
The behaviour of block O is more complicated: we will analyse it later. As to block
C, it will be simply raised to power n (which is handy).

This gives us an idea of what happens when we iterate a general finite transition
matrix P with several closed communicating classes. Again, block O0 in the matrix
Pn will tend to 0 as n → ∞. And as before, blocks C1, . . .,Cm in Pn will simply be
raised to the power n. The last remark illustrates the view that if we have a reducible
chain, with more than one closed class, we may study separately its ‘restrictions’
to various closed classes.

For simplicity, let us now assume that a finite matrix P is irreducible. It is not
hard to guess that inside block C we may have a ‘periodic’ picture, with a number
v of smaller square ‘cells’ of equal size which are cyclically permuted by P: cell 1
is taken to cell 2, and so forth, cell v to cell 1. See Figure 1.6. The space outside
cells is again filled with zeros.

Such a picture corresponds to a partition of the space I (which under our assump-
tion forms a single (and closed) communicating class) into periodic subclasses
W1, . . .,Wv such that a one-step transition is possible only from a state j ∈ Wi to a
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state k ∈ Wi+1, i = 1, . . . ,v. (Here the sum i + 1 is understood modulo v, so that
Wv+1 = W1, v being called the period of class C.)

Worked Example 1.2.7 Given a state j, define the period v( j) of this state as the

greatest common divisor of numbers n such that p(n)
j j > 0. Prove that if states i and

j are from the same communicating class then v(i) = v( j). (This justifies the term
the ‘period of a communicating class’.)

Solution Let i and j be two distinct communicating states. Then p(k)
i j > 0 for

some k ≥ 1 and p(l)
ji > 0 for some l ≥ 1. Assume that p(n)

j j > 0, then p(n+k+l)
ii ≥

p(k)
i j p(n)

j j p(l)
ji > 0. Therefore, v(i) divides n + k + l. Next, v(i) divides 2n + k + l as

p(2n+k+l)
ii ≥ p(k)

i j

(
p(n)

j j

)2
p(l)

ji > 0. Thus, v(i) divides the difference (2n+k+ l)−(n+

k+ l) = n. This is true for all n with p(n)
j j > 0. Then v(i) must divide v( j), as v( j) is

the greatest common divisor. A similar argument leads to the conclusion that v( j)
divides v(i). Therefore, v(i) = v( j).

In the large majority of our examples the period of a closed communicating class
equals 1. Such a class (or, equivalently, its transition matrix) is called aperiodic.
When all communicating classes are aperiodic, the whole Markov chain (or its
transition matrix) is called aperiodic.

In general, if you raise the transition matrix P corresponding to a closed com-
municating class C of period v to the power v, then matrix Pv will decompose
into stochastic square submatrices centred on the main diagonal. Pictorially speak-
ing, periodic subclasses W1, . . . , Wv will play a rôle of closed communicating
classes for matrix Pv. (It has to be said that, formally, the last statement is not cor-
rect: some of the Wis may comprise several disjoint closed communicating classes
for Pv.)
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We see that the whole structure of a finite transition matrix P can be rather intri-
cate. Luckily, most applications and interesting examples do not need an excessive
level of generality, and we will be able to make simplifying assumptions.

Worked Example 1.2.8 Consider a stochastic 7×7 matrix

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/2 0 0 0 0 1/2
1/3 0 0 0 0 1/3 1/3
0 1/2 0 1/2 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 1/2 0 0 0 0 1/2

1/3 1/3 0 0 0 1/3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Find all communicating classes of the associated DTMC.

Solution See Figure 1.7. The communicating classes are {1,2,6,7}, {3} and
{4,5}. The closed classes are {1,2,6,7} and {4,5}; 3 is a non-essential state.

Class {4,5} has a periodic structure. Thus, the limit p(n)
i j does not exist (because of

oscillations) for i = 3,4,5 and j = 4,5. For class {1,2,6,7} we have a transition
submatrix ⎛⎜⎜⎝

0 1/2 0 1/2
1/3 0 1/3 1/3
0 1/2 0 1/2

1/3 1/3 1/3 0

⎞⎟⎟⎠ ,

with the symmetry 1 ↔ 6 and 2 ↔ 7. That is, if we merge 1 with 6 into state I and
2 with 7 into II, we get a two-state chain with the matrix

Π =
(

0 1
2/3 1/3

)
.

The last matrix has the characteristic equation

μ2 − 1
3

μ − 2
3

= 0,

with the roots μ0 = 1, μ1 = −2/3. Hence, the entries of Πn have the form A +
B(−2/3)n. Adjusting the constants yields

Πn =
(

2/5+3/5 (−2/3)n 3/5−3/5 (−2/3)n

2/5−2/5 (−2/3)n 3/5+2/5 (−2/3)n

)
.

Hence, as n → ∞

Πn →
(

2/5 3/5
2/5 3/5

)
.
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Then, by symmetry, for the original {1,2,6,7}-block, the limiting matrix is⎛⎜⎜⎝
1/5 3/10 1/5 3/10
1/5 3/10 1/5 3/10
1/5 3/10 1/5 3/10
1/5 3/10 1/5 3/10

⎞⎟⎟⎠ .

That is, p(n)
i1 , p(n)

i6 → 1/5 and p(n)
i2 , p(n)

i7 → 3/10, i = 1,2,6,7. Probabilities

p(n)
3 j converge to (1/2) lim

n→∞
p(n)

2 j , j = 1,2,6,7.

It has to be stressed that this is not the optimal way of calculating the limits
lim
n→∞

p(n)
i j . Later on, we will learn about much more efficient ways of doing it.

1.3 Hitting times and probabilities

A hit, a very palpable hit.
W. Shakespeare (1564–1616), English playwright and poet

From now on we denote by Pi the distribution of a DTMC (Xn) starting from the
state i ∈ I. Similarly, Ei stands for the expectation relative to Pi. Let A ⊂ I be a
set of states. The hitting time HA (of set A in the chain (Xn)) is the first time the
Markov chain enters A

HA = inf {n ≥ 0 : Xn ∈ A}. (1.12)
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The hitting probability hA
i (of set A from state i in chain (Xn)) is the probability that

the chain starting from state i will ever hit A

hA
i = Pi(HA < ∞) (1.13)

when A is a closed class, hA
i is called the absorption probability. The expected value

of HA is denoted by kA
i :

kA
i = Ei(HA) = ∑

0<n<∞
nPi(HA = n)+∞ ·Pi(HA = ∞), (1.14)

so that if Pi(HA = ∞) > 0, then kA
i = ∞. In other words, Ei(HA) = ∞ when there is

a positive chance the chain starting from i never enters A.
The basis for calculating the hitting probabilities is provided by

Theorem 1.3.1 Given A ⊂ I, the hitting probabilities hA
i give the minimal non-

negative solutions to the following linear system

hA
i =

⎧⎨⎩1, i ∈ A,

∑
j∈I

pi jhA
j , otherwise. (1.15)

That is, if gi ≥ 0 is any solution of (1.15), then gi ≥ hA
i , i ∈ I.

Proof Recall that hA
i is calculated for X0 = i. When i ∈ A, HA = 0, so hA

i = 1. If
i �∈ A, we have HA ≥ 1, and

hA
i = ∑

j∈I

Pi(HA < ∞,X1 = j) = ∑
j∈I

Pi(X1 = j)Pi(HA < ∞|X1 = j)

= ∑
j

pi jP j(HA < ∞) = ∑
j

pi jh
A
j ,

by the Markov property.
Now take any non-negative solution gi. For i ∈ A, gi = hA

i = 1. For i �∈ A,

gi = ∑
j

pi jg j = ∑
j∈A

pi j + ∑
j �∈A

pi jg j

= ∑
j∈A

pi j + ∑
j �∈A

pi j

(
∑
k∈A

p jk + ∑
k �∈A

p jkgk

)
= Pi(X1 ∈ A)+Pi(X1 �∈ A,X2 ∈ A)+ ∑

j �∈A,k �∈A

pi j p jkgk.

By repeated substitution, for all n,

gi = Pi(X1 ∈ A)+ · · ·+Pi(X1 �∈ A, . . . ,Xn−1 �∈ A,Xn ∈ A)

+ ∑
j1 �∈A

. . . ∑
jn �∈A

pi j1 p j1 j2 · · · p jn−1 jng jn .
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As gi ≥ 0, omitting the last sum makes the right-hand side smaller. The first n
summands give Pi(HA ≤ n). Hence

gi ≥ Pi(HA ≤ n), for all n ≥ 0.

Then

gi ≥ lim
n→∞

Pi(HA ≤ n) = Pi(HA < ∞) = hA
i .

In general, equations, even for more intricate hitting probabilities, give us a
powerful tool, especially when a symmetry of a DTMC can be used, as we shall
now see.

Worked Example 1.3.2 Construct a graph on seven vertices as follows: take a
regular hexagon and join opposite corners by a straight line; let the vertices be the
corners of the hexagon together with the point at the centre; let the edges be the
perimeter of the hexagon together with the lines joining the corners to the centre.
At discrete intervals a particle moves from one vertex of this graph to one of the
adjacent vertices at random, and independently of past moves. Suppose the particle
starts at a corner A. Find the probability that the particle will return to A without
hitting the central vertex C.

Solution See Figure 1.8. Set

hi = Pi(hit A before C).

Then the probability in question is hA, and by the symmetry of paths to A,

hA =
2
3

hB.

Now,

hB =
1
3

+
1
3

hD, hD =
1
3

hB +
1
3

hE,

A

B C

D E

Fig. 1.8
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and again by symmetry,

hE =
2
3

hD.

Then

hD =
1
3

hB +
2
9

hD, i.e. hD =
3
7

hB.

Next,

hB =
1
3

+
1
7

hB, i.e. hB =
7
18

.

Hence, hA = 7/27.

Example 1.3.3 Consider the birth-and-death process in Figure 1.3b. Set hi =
Pi(hit 0). Then hi is the minimal non-negative solution to

h0 = 1, hi = phi+1 +(1− p)hi−1, i ≥ 1.

For p �= 1/2, this is solved by

hi = A+B

(
1− p

p

)i

.

If p < 1/2, minimality and non-negativity imply that B = 0 and A = 1, with hi ≡ 1.
If p > 1/2, the conclusion is that A = 0 and B = 1, with

hi =
(

1− p
p

)i

.

For p = 1/2, the solution has the form

hi = A+Bi,

and again the minimality and non-negativity imply that B = 0 and A = 1, with
hi ≡ 1.

Note that hi is the extinction and 1− hi the survival probability (conditional on
X0 = i). Therefore, the survival probabilities are⎧⎨⎩1−

(
1−p

p

)i
, i ≥ 0, for p ∈ (1/2,1]

0, for p ∈ [0,1/2].

Every moment dies a man,
Every moment 1 1

16 is born
C. Babbage (1792–1871), English mathematician
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If we move to the process in Figure 1.3c, the equations become state-dependent:

h0 = 1, hi = pihi+1 +(1− pi)hi−1, i ≥ 1.

We solve them by considering the differences

ui = hi−1 −hi, with piui+1 = (1− pi)ui,

and

ui+1 =
1− pi

pi
ui =

1− pi

pi

1− pi−1

pi−1
· · · 1− p1

p1
u1.

Set γi = ((1− pi−1)/pi−1) · · ·((1− p1)/p1); then, as,

u1 + · · ·+ui = h0 −hi,

we obtain

hi = 1−A
(
γ0 + · · ·+ γi−1

)
.

Here γ0 = 1 and A = u1. The constant A has to be determined from the condition
of non-negative minimality:

A =

(
∑
i≥0

γi

)−1

.

That is,

hi =

⎧⎪⎪⎨⎪⎪⎩
1, if ∑

j≥0
γ j = ∞,(

∑
j≥i

γ j

/
∑
j≥0

γ j

)
, if ∑

j≥0
γ j < ∞.

In particular, in the second case, hi+1 ≤ hi and limi→∞ hi = 0. The survival
probabilities become⎧⎨⎩1−

(
∑∞

j=i γ j

/
∑∞

j=0 γ j

)
, if ∑∞

j=0 γ j < ∞,

0, if ∑∞
j=0 γ j = ∞.

We proceed to consider the mean hitting times kA
i . We have
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Theorem 1.3.4 Given A ⊂ I, the mean hitting times kA
i give the minimal non-

negative solutions to the following linear system

kA
i =

⎧⎨⎩0, i ∈ A,

1+ ∑
j �∈A

pi jkA
j , i �∈ A. (1.16)

That is, if gi ≥ 0 is any solution of (1.16), then gi ≥ kA
i for i ∈ I.

Proof Like hA
i before, the expected hitting time kA

i is calculated for X0 = i. When
i ∈ A, we have HA = 0, so kA

i = 0. If i �∈ A, then HA ≥ 1, and

Ei(HA|X1 = j) = 1+E jH
A

by the Markov property. Thus,

kA
i = Ei(HA) = ∑

j∈I

Ei(HA1(X1 = j)) = ∑
j

Pi(X1 = j)Ei(HA|X1 = j)

= 1+ ∑
j �∈A

Pi(X1 = j)E j(HA) = 1+ ∑
j �∈A

pi jk
A
j .

Now let gi be any non-negative solution. Then gi = kA
i = 0 for i ∈ A. If i �∈ A,

gi = 1+ ∑
j �∈A

pi jg j = 1+ ∑
j �∈A

pi j

(
1+ ∑

k �∈A

p jkgk

)
.

Writing 1 as Pi(HA ≥ 1) and ∑ j �∈A pi j as P(HA ≥ 2), obtain

gi = Pi(HA ≥ 1)+Pi(HA ≥ 2)+ ∑
j �∈A

pi j ∑
k �∈A

p jkgk.

By repeated substitution, for all n,

gi = Pi(HA ≥ 1)+ · · ·+Pi(HA ≥ n)+ ∑
j1 �∈A

· · · ∑
jn �∈A

pi j1 p j1 j2 · · · p jn−1 jng jn

≥ Pi(HA ≥ 1)+ · · ·+Pi(HA ≥ n)

since gi ≥ 0. Then, as n → ∞,

gi ≥ ∑
n≥1

Pi(HA ≥ n) = EiH
A = kA

i .

Note that in some cases the only non-negative solution to (1.16) is kA
i ≡ ∞, i �∈ A.

As in the case of the hA
i s, (1.16) can be efficiently used, especially when the system

has symmetries.
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Example 1.3.5 For the birth-and-death process featured in Figure 1.3b, set ki =
Ei(H0), the expected time of hitting 0. Then ki is the minimal non-negative solution
to

k0 = 0, ki = 1+ pki+1 +(1− p)ki−1, i ≥ 1.

The general solution here is of the form ki = A+Bi; the constants A and B are given
by A = 0, B = 1/(1− 2p). However, for p ≥ 1/2, there is no finite non-negative
solution. Hence, for i ≥ 1:

ki =

{
i/(1−2p), for 0 ≤ p < 1/2,

∞, for 1/2 ≤ p ≤ 1.

Worked Example 1.3.6 A flight of stairs has N steps. A frog starts at the bottom
of the stairs and tries to jump to the top, making a series of independent jumps as
follows. When the frog is on the ith step (0 < i < N) it succeeds in jumping up to
step i+1 with probability α (0 < α < 1/2), but with probability α it falls down to
step i−1 and with probability 1−2α it lands again on the ith step. When the frog
is at the bottom of the stairs (on step 0) it succeeds in jumping up to step 1 with
probability β , 0 < β < 1, but with probability 1−β it remains where it is. What is
the expected number of jumps before the frog reaches the top of the stairs?

Suppose that the same frog starts N steps below the top of an infinite flight
of descending stairs. What now is the expected number of jumps before the frog
reaches the top of the stairs?

Solution The system of equations for the [0,N] flight is

kN = 0,

ki = 1+αki−1 +(1−2α)ki +αki+1, 1 ≤ i ≤ N −1,

k0 = 1+(1−β )k0 +βk1.

Here, the general solution is

ki = A+Bi− 1
2α

i2,

and the boundary conditions at i = 0 and N yield

ki =
N2 − i2

2α
− N − i

2α
+

N − i
β

,

with

k0 =
N(N −1)

2α
+

N
β

.
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For infinite stairs, A + Bi− (i2/2α) cannot be maintained non-negative. Hence,
ki ≡ ∞.

Worked Example 1.3.7 Consider the Markov chain with state space
{1,2,3,4,5,6} and transition matrix⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1/2 0 0 1/2
1/5 1/5 1/5 1/5 1/5 0
1/3 0 1/3 0 0 1/3
1/6 1/6 1/6 1/6 1/6 1/6
0 0 0 0 1 0

1/4 0 1/2 0 0 1/4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Determine the communicating classes of the chain, and for each class indicate
whether it is closed or not.

Suppose that the chain starts in state 2; determine the probability that it ever
reaches state 6.

Suppose that the chain starts in state 3; determine the probability that it is in state
6 after exactly n transitions, n ≥ 1.

Solution The chain structure is represented in Figure 1.9.

States 1,3,6 form a closed class, 2,4 a non-closed class, and state 5 is absorbing
(and forms a closed class). If hi = Pi(hit 6) then h1 = h3 = 1, and

h2 =
1
5

h2 +
1
5

h4 +
2
5
,

h4 =
1
6

h4 +
1
6

h2 +
1
2
,

1

6 5

4

32

Fig. 1.9



34 Discrete-time Markov chains

whence h2 = 13/19, h4 = 14/19. Hence, the answer

P2(hit 6) =
13
19

.

Now, on class {1,3,6}, the transition matrix is⎛⎝ 0 1/2 1/2
1/3 1/3 1/3
1/4 1/2 1/4

⎞⎠ .

To find its eigenvalues solve

det

⎛⎝ −μ (1/2) (1/2)
(1/3) (1/3)−μ (1/3)
(1/4) (1/2) (1/4)−μ

⎞⎠= 0,

i.e.

μ3 − 7
12

μ2 − 9
24

μ − 1
24

= (μ −1)
(

μ2 +
5
12

μ +
1

24

)
= 0,

with

μ1 = 1, μ2 = − 1
4
, μ3 = − 1

6
.

This yields

p(n)
36 = A+B

(
− 1

4

)n

+C

(
− 1

6

)n

, n = 0,1, . . . .

At n = 0,1,2

A+B+C = 0, A− 1
4

B− 1
6

C =
1
3
,

A+
1

16
B+

1
36

C =
13
36

,

giving

A =
12
35

, B =
4
5
, C = − 8

7
,

with

p(n)
36 =

12
35

+
4
5

(
− 1

4

)n

− 8
7

(
− 1

6

)n

.
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1.4 Strong Markov property

Restore my Strong Markov property!
(From the series ‘When they go political’.)

The strong Markov property asserts that the process begins afresh not only after
any given time n but also after a randomly chosen time. An example of such a time
is Hi, the time the chain hits a given state i ∈ I. More generally,

Definition 1.4.1 A random variable T depending on X0, X1, . . . and taking values
0,1,2, . . .,∞ is called a stopping time if the event {T = n} is described in terms of
random variables X1, . . .,Xn only, without involving Xn+1,Xn+2, . . ..

Pictorially, by watching the chain, you know when you should stop without
anticipating future states. The hitting time HA is an example of a stopping time
as for n = 0: {HA = 0} = {X0 ∈ A}, and for n ≥ 1

{HA = n} = {X0 �∈ A, . . . ,Xn−1 �∈ A,Xn ∈ A}.

When A is reduced to a single state i, the hitting time is often called the passage
time:

H j = inf [n ≥ 0 : Xn = j].

Stop Man, Hit Woman
(From the series ‘Movies that never made it to the Big Screen’.)

On the other hand, the last exit time

LA = sup [n : Xn ∈ A]

is in general not a stopping time as the event {LA = n} requires knowledge of
Xn+1,Xn+2, . . ..

Theorem 1.4.2 Let (Xn,n ≥ 0) be Markov (λ ,P) and assume that T is a stopping
time. Then, conditional on T < ∞ and XT = i, (XT+n,n ≥ 0) is Markov (δi,P). In
particular, conditional on T < ∞ and XT = i, the random variables XT+1, XT+2, . . .
are independent of X0, . . . , XT−1.
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Proof Let A be an event determined by the chain before time T , i.e. by X0, . . .,XT−1,
and B by the chain after time T , i.e. by XT+1, . . .,XT+n for some n. We want to check
that for all n ≥ 1 and i ∈ I: (i)

P(A∩B | T < ∞,XT = i) = P(A | T < ∞,XT = i) P(B | T < ∞,XT = i)

and (ii) the conditional probability P(B | T < ∞,XT = i) is calculated as in the
(δi,P) Markov chain:

P(B | T < ∞,XT = i) = ∑
( j1,... jn)∈B

pi j1 · · · p jn−1 jn .

As in the proof of the Markov property, we first assume that A is of the form
{X0 = i0, . . . ,XT−1 = iT−1} and B is of the form {XT+1 = j1, . . . ,XT+n = jn} for
some i0, . . . , iT−1, j1, . . . , jn ∈ I. Given m, the event

A∩{T = m}∩{XT = i} = A∩{T = m,Xm = i}

is simply

{X0 = i0, . . . ,Xm−1 = im−1,Xm = i}

if T (i0, . . . , im−1, i) = m; it is empty if T (i0, . . . , im−1, i) �= m. Then the event
A∩B∩{T = m,XT = i} = A∩{T = m,Xm = i}∩B has probability

λi0 pi0i1 · · · pim−1i pi j1 · · · p jn−1 jn 1
(
T (i0, . . . , im−1, i) = m

)
.

For a general B we have to sum over ( j1, . . . , jn) ∈ B:

λi0 pi0i1 · · · pim−1i 1
(
T (i0, . . . , im−1, i) = m

)
∑

( j1,..., jn)∈B

pi j1 · · · p jn−1 jn .

The sum ∑( j1,..., jn)∈B does not depend on m; it gives the conditional probability
P(B|T < ∞,XT = i) and is indeed calculated as in the (δi,P) Markov chain.

For a general A we now sum over (i0, . . . , im−1) ∈ A:

P(A∩B∩{T = m,XT = i})×
∑

(i0,...,im−1)∈A

λi0 pi0i1 · · · pim−1i 1
(
T (i0, . . . , im−1, i) = m

)
P(B|T < ∞,XT = i)

= P(A∩{T = m,XT = i})P(B|T < ∞,XT = i).
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Summing over m then gives

P(A∩B∩{T < ∞,XT = i}) = P(A∩{T < ∞,XT = i}) P(B|T < ∞,XT = i).

Finally, dividing by P(T < ∞,XT = i) yields that the conditional probability P(A∩
B | T < ∞,XT = i) equals

P(A∩{T < ∞,XT = i})
P(T < ∞,XT = i)

P(B|T < ∞,XT = i)

= P(A | T < ∞,XT = i) P(B | T < ∞,XT = i)

as required.
The conditional probability P(A ∩ {T = m,XT = i} ∩ B | Xm = i), given that

Xm = i, is obtained after division by P(Xm = i) = (λPm)i: the ratio is determined
by X0, . . . , Xm, and the conditional probability

P
(
(A∩{T = m})∩{XT+1 = j1, . . . ,XT+n = jn} | Xm = i

)
= P
(
(A∩{T = m})∩{Xm+1 = j1, . . . ,Xm+n = jn} | Xm = i

)
.

By the Markov property we have the decomposition:

P
(
(A∩{T = m})∩{Xm+1 = j1, . . . ,Xm+n = jn} | Xm = i

)
= P
(
A∩{T = m} | Xm = i) P(Xm+1 = j1, . . . ,Xm+n = jn | Xm = i

)
= P
(
A∩{T = m} | Xm = i) pi j1 · · · p jn−1 jn .

Hence, the unconditional probability

P
(
(A∩{T = m})∩{Xm+1 = j1, . . . ,Xm+n = jn}∩{Xm = i}

)
= P
(
(A∩{T = m,Xm = i})∩{Xm+1 = j1, . . . ,Xm+n = jn}

)
= P
(
A∩{T = m} | Xm = i) P(Xm = i)pi j1 · · · p jn−1 jn

= P
(
A∩{T = m,Xm = i})pi j1 · · · p jn−1 jn .

Summing over m yields

P
(
(A∩{T < ∞,XT = i}∩{XT+1 = j1, . . . ,XT+n = jn}

)
= P
(
A∩{T < ∞,XT = i}) pi j1 · · · p jn−1 jn

and, dividing by P(T < ∞,XT = i),

P
(
A∩{XT+1 = j1, . . . ,XT+n = jn} | T < ∞,XT = i

)
= P
(
A | {T < ∞,XT = i}) pi j1 · · · p jn−1 jn .

Finally, for a general event B determined by XT+1, . . . , XT+n we sum over
( j1, . . . , jn) ∈ B.
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Worked Example 1.4.3 In the homogeneous birth-and-death process (see Exam-
ple 1.3.5), what is the distribution of the hitting time H0 = inf {n ≥ 0 : Xn = 0}
(the time to extinction)? In other words, what are the probabilities Pi(H0 = k) for
given i and k?

Solution This can be found by calculating the probability-generating function

φi(s) = Ei

(
sH0
)

= ∑0≤n<∞ sn
Pi(H0 = n).

By the strong Markov property,

φi(s) =
(
φ(s)

)i
, i ≥ 1,

where φ(s) = φ1(s). Thus it suffices to analyse the case i = 1. Then, given that
X0 = 1, we see that φ(s) is a root of the quadratic equation

psφ 2 −φ +qs = 0,

given by

φ(s) =
1

2ps

(
1−
√

1−4pqs2
)

, 0 < s < 1.

Example 1.4.4 The strong Markov property is very useful when you observe the
chain (Xn) only at certain times, for example, when it changes its states (i.e., when
Xn+1 �= Xn) or enters a subset J ⊂ I (i.e., when Xn ∈ J). The new chain is formally
described by introducing the sequence of observation times T0,T1, . . ., viz.

T0 = inf {n > 0 : Xn �= Xn−1}, or T0 = inf {n ≥ 0 : Xn ∈ J},

and

Tm+1 = inf {n > Tm : Xn �= Xn−1}, or Tm+1 = inf {n > Tm : Xn ∈ J}.

Then the chain (Yn,n ≥ 0) is defined by Ym = XTm .

In either case, each Tm is a stopping time. Assuming that Tm < ∞ for all m, the
strong Markov property guarantees that (Yn) is indeed a DTMC. The transition
probabilities pY

i j for the new chain are straightforward: in the first model

pY
i j =

⎧⎨⎩
pi j

1− pii
, i �= j,

0, i = j,
i, j ∈ I, (1.17)

and in the second model

pY
i j = pi j + ∑

k≥1
∑

j1,..., jk∈I\J

pi j1 · · · p jk j, for i, j ∈ J. (1.18)
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=

P JJ P J I\ J

P
I\ J I\ JP I\ J J

P

I \ JJ

Fig. 1.10

Here P = (pi j) is the transition matrix of the original chain (Xn).
The first model, with Yn+1 �= Yn, is called the jump chain (for the original DTMC

(Xn)); this model will play an important rôle in the analysis of continuous-time
Markov chains in Chapter 2. The second model, with Yn ∈ J, is called a partially
observed chain. For the partially observed Markov chain, the transition proba-
bilities pY

i j can be written in terms of matrix blocks PJJ , PJI\J , PI\JJ and PI\JI\J

extracted from the transition matrix P:

pY
i j =

(
PJJ)

i j +
[

PJI\J
(

II\J −PI\JI\J
)−1

PI\JJ
]

i j
, i, j ∈ J. (1.19)

Here II\J stands for the identity matrix over I \ J. See Figure 1.10.

1.5 Recurrence and transience: definitions and basic facts

The eternal silence of these infinite spaces terrifies me.
B. Pascal (1623–1662), French mathematician and philosopher

Recurrence and transience are important properties of DTMCs with countably infi-
nite state spaces. In this book, we prefer to pass from a finite to a countable case
in a rather casual way: we just extend basic definitions to the case of a countable
state space I. Of course, this requires infinite transition matrices P = (pi j, i, j ∈ I);
we have seen such matrices before (see page 21). The theory of infinite matrices
is more subtle than the theory of finite matrices; some of its important aspects
require working with infinite-dimensional spaces. We will not sail too far in these
directions, focussing on properties that are either direct generalisations of their
finite-dimensional counterparts or have an intuitively clear probabilistic meaning.

Definition 1.5.1 Given a state i ∈ I, we call it recurrent if

Pi
(
Xn = i for infinitely many n

)
= 1, (1.20)
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and transient if

Pi
(
Xn = i for infinitely many n

)
= 0, (1.21)

i.e.

Pi
(
Xn = i for finitely many n

)
= 1.

Note that in Definition 1.5.1 no intermediate value of the probability (i.e. strictly
between 0 and 1) is mentioned. This is clarified in Theorem 1.5.2 below. Set

fi := Pi
(
Xn = i for some n ≥ 1

)
(1.22)

Theorem 1.5.2 State i is recurrent if fi = 1 and transient if fi < 1. Therefore, every
state is either recurrent or transient.

Proof A useful random variable is the hitting/passage time of state i (in our context
it could also be called the return time to state i):

Ti = inf [n ≥ 1 : Xn = i], (1.23)

with

fi = Pi(Ti < ∞). (1.24)

Then, as was noted, the random variable Ti is a stopping time. By the strong Markov
property,

Pi (Xn = i for at least two values of n ≥ 1) = f 2
i ,

and more generally, for all k

Pi (Xn = i for at least k values of n ≥ 1) = f k
i . (1.25)

Denote by B(i)
k the event that Xn = i for at least k values of n ≥ 1. Then, obviously,

events B(i)
k are decreasing with k: B(i)

1 ⊇ B(i)
2 ⊇ . . ., and the event that Xn = i for

infinitely many values of n is the intersection
⋂

k≥1 B(i)
k . Hence,

Pi
(
Xn = i for infinitely many n

)
= lim

k→∞
P(B(i)

k ), (1.26)

which equals 1 when fi = 1 and 0 when fi < 1.

O the heavy change, . . .
Now thou art gone,

and never must return!
J. Milton (1608–1674), English poet
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It is worthwhile to introduce yet another random variable (which will be used quite
often)

Vi = number of visits to i = ∑
n≥0

1(Xn = i). (1.27)

Equivalently, Vi counts the total time spent at state i (including initial time 0 when
appropriate). Equation (1.25) can be re-written as

f k
i = Pi(Vi ≥ k). (1.28)

An important parameter is the expected value EiVi; more precisely, the formula

EiVi = ∑
n≥1

Pi (Vi ≥ n) = ∑
n≥0

f n
i . (1.29)

On the other hand,

EiVi = ∑
n≥0

Ei1(Xn = i) = ∑
n≥0

p(n)
ii ; (1.30)

here, p(0)
ii = 1 as P0 = I, the identity matrix. From (1.29), (1.30) we see that the

following assertion holds true.

Theorem 1.5.3 The state i is recurrent if

∑
n≥0

p(n)
ii = ∞, (1.31)

and transient if

∑
n≥0

p(n)
ii < ∞. (1.32)

Proof According to (1.29), (1.30), the sum ∑n≥0 p(n)
ii coincides with the sum of

the geometric progression ∑n≥0 f n
i . The latter is finite when fi < 1 (and equals

1/(1− fi)), and infinite when fi = 1.

Theorem 1.5.3 will be repeatedly used in the analysis of recurrence and
transience of states of various chains.

An alternative proof of Theorem 1.5.3 exploits the probability-generating
functions of a random variable Ti. Set

fi(n) = Pi(Ti = n) = Pi (Xn = i but Xl �= i for l = 1, . . . ,n−1) , n ≥ 1, (1.33)
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and

F(z)(= Fi(z)) = EzTi = ∑
n≥1

zn fi(n), |z| < 1; (1.34)

then fi = lim
z→1

F(z).

On the other hand,

p(n)
ii = Pi(Xn = i) = fi(n)+ fi(n−1)pii + · · ·+ fi(1)p(n−1)

ii ; (1.35)

this implies that if

U(z)(= Ui(z)) = ∑
n≥1

p(n)
ii zn, |z| < 1, (1.36)

then

U(z) = F(z)+F(z)U(z), i.e. U(z) =
F(z)

1−F(z)
.

Hence, the limiting value lim
z→1

U(z) is finite if and only if lim
z→1

F(z) < 1. That is,

(1.32) holds true if and only if fi < 1.

We conclude this section with the following remark. Equation (1.21) can be
written as

Pi(Vi < ∞) = 1, (1.37)

whereas (1.32) is

EiVi < ∞. (1.38)

We see that if the random variable Vi (the total number of visits to state i) is finite
with probability 1, then it must have a finite mean; the (more precisely, strong)
Markov property excludes an intermediate possibility where Pi(Vi < ∞) = 1 but
EiVi = ∞.

However, the situation is more subtle when we turn to the random variable Ti

(the passage, or return time to state i). We noticed that state i is recurrent if and
only if Pi(Ti < ∞) = 1, i.e. the return time to i is finite with probability 1. However,
the mean EiTi (or equivalently, lim

z→1
F ′(z)) can be finite or infinite. This divides

recurrent states into two distinct categories: positive recurrent and null recurrent
(see Section 1.7).

Communicating classes for countable DTMCs are defined in the same way as
for finite chains. For convenience we repeat the definition:

Definition 1.5.4 States i, j ∈ I belong to the same communicating class if p(n)
i j > 0

and p(n′)
ji > 0 for some n,n′ ≥ 0. Again, the communicating classes form a partition
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of the state space I, and, as some of them may be infinite, the number of commu-
nicating classes can also be infinite. Next, as in the finite case, a communicating
class C is called closed if i → j then j ∈ C, for all i ∈ C. Finally, we say that the
chain is irreducible if it has a unique communicating class (automatically closed).
In other words, in an irreducible DTMC, the whole of the state space I is a single
(closed) communicating class.

Remark 1.5.5 Observe that if the state space I is finite, the definition of a transient
state coincides with that of a non-essential state (i.e., a state from a non-closed
communicating class). In other words, in the finite case every state from a non-
closed class is transient, and every state from a closed class is recurrent. However,
as we noted in Remark 1.2.6, in the case of a countable DTMC a closed class
can consist entirely of transient states, which are, from a ‘physical’ point of view,
non-essential. It shows that in the countable case the concept of transience is more
relevant than that of a closed communicating class.

Our aim now is to prove that recurrence and transience are class properties. This
means that if states i, j lie in the same communicating class then they are either
both recurrent or both transient. We therefore could use

Definition 1.5.6 A communicating class is called recurrent (resp. transient) if all
its states are recurrent (resp., transient).

Theorem 1.5.7 Within the same communicating class, all states are of the same
type. Every finite closed communicating class is recurrent.

Proof Let C be a communicating class. Then, for all distinct i, j ∈C, p(m)
i j > 0 and

p(n)
ji > 0 for some m,n ≥ 1. Then for all r ≥ 0:

p(n+m+r)
ii ≥ p(m)

i j p(r)
j j p(n)

ji and p(n+m+r)
j j ≥ p(n)

ji p(r)
ii p(m)

i j ,

as the RHS in each inequality takes into account only a part of the possibilities of
return.

Hence

p(r)
j j ≤ p(n+m+r)

ii

p(m)
i j p(n)

ji

and, for r ≥ n+m,

p(r)
j j ≥ p(n)

ji p(r−n−m)
ii p(m)

i j .

Then the series ∑r p(r)
ii and ∑r p(r)

j j converge or diverge together.
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Now let C be a finite closed communicating class, and j ∈ C. Then, with X0 =
j ∈C, Xn ∈C for all n. Hence, there exists a state i ∈C visited infinitely often:

0 < P j(Vi = ∞) = P j(Ti < ∞) Pi(Vi = ∞).

Then Pi(Vi = ∞) > 0, i.e. state i is recurrent. Then every state from C is recurrent.

Definition 1.5.8 A transition matrix P (and a (λ ,P) Markov chain) is called
recurrent (resp. transient) if every state i is recurrent (respectively, transient).

We conclude this section with one more statement involving passage, or return,
times.

Theorem 1.5.9 If P is irreducible and recurrent then each random variable Tj (the
passage time to state j) is finite with probability 1. That is, P(Tj < ∞) = 1 for all j
and initial distributions λ .

Proof By the Markov property

P(Tj < ∞) = ∑
i

λiPi(Tj < ∞).

Given i, take m with p(m)
ji > 0. Write

1 = P j
(
Vj = ∞

)
≤ P j

(
Xn = j for some n ≥ m

)
(obviously, there is equality here, but the inequality will also do). Further,

P j
(
Xn = j for some n ≥ m

)
= ∑

k

p(m)
jk P j

(
Xn = j for some n ≥ m | Xm = k

)
= ∑

k

p(m)
jk Pk

(
Tj < ∞

)
≤ ∑

k

p(m)
jk = 1.

We see that each summand p(m)
jk Pk

(
Tj < ∞

)
must be equal to p(m)

jk ; otherwise we
would have that 1 < 1. Therefore,

Pi
(
Tj < ∞

)
p(m)

ji = p(m)
ji , i.e. Pi

(
Tj < ∞

)
= 1.

This is true for all i, hence for all initial distributions λ . Also, it is true for all j.
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Worked Example 1.5.10 Suppose that P is irreducible and recurrent and that the
state space contains at least two states. Define a new transition matrix P̂ = (p̂i j) by

p̂i j =

{
0 if i = j,

(1− pii)−1 pi j if i �= j.

Prove that P̂ is also irreducible and recurrent.

Solution If P = (pi j) is irreducible then pii < 1 for all state i (unless the total
number of states is 1). The matrix P̂ describes the Markov chain obtained from
the original DTMC by recording the jumps to the new state only; clearly it is irre-
ducible. Formally, take the sequence i0, . . ., im as above, then p̂il il+1 > 0. Now check
the recurrence of P̂: if in the original chain pii = 0 then the return to state i occurs
in both chains on the same event, hence the return probability to state i will be the
same. If pii > 0 then in the new chain, the return probability is equal to

1
1− pii

×Pi(return to i after time 1 in the original chain)

=
1

1− pii
(1− pii)

which is 1. Alternatively, hP̂ = h if and only if hP = h, i.e. the solutions to both
equations are the same. Hence, the minimal solution to hP̂ = h with hi = 1 is the
same as that to hP = h. Therefore, it identically equals 1, and the new chain is
recurrent if and only if the original one is.

1.6 Recurrence and transience: random walks on lattices

The only reason for time is so that everything doesn’t happen at once.
A. Einstein (1879–1955), German physicist

Random walks on cubic lattices are popular and interesting models of countable
Markov chains. Here we have a ‘particle’ that jumps at times n = 1,2, . . . from its
current position i ∈ Z

d to another site j ∈ Z
d with probability pi j, regardless of the

past sample trajectory. We will mostly focus on homogeneous nearest-neighbour
random walks where the probabilities pi j are greater than 0 only when i and j are
neighbouring sites and depend only on the direction from i to j (i.e. are determined
by p0, j where j is a neighbour of the origin 0 = (0, . . . ,0)). For d = 1 the lattice

Z
d is simply the set of integers; here a random walk (RW) is specified by the

probabilities p and q = 1− p of jumps to the right and the left.
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pp

0 1 21_

q=1_ p

Fig. 1.11

This is an intuitively appealing extended version of the drunkard model (or birth-
and-death process); see Example 1.2.3. Here, the state space is I = Z(= Z

1), and
the transition probability matrix is infinite and has a distinct ‘diagonal’ structure

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . . . . .

. . . q 0 p 0 . . .
. . .

. . . 0 q 0 p 0
. . .

. . . . . . 0 q 0 p
. . .

. . . . . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.39)

with entries p above and q below the main diagonal, and the rest filled with zeros.
If d = 2, then Z

2 is a plane square lattice; here we will consider the symmetric
nearest-neighbour RW where the probabilities of jumping in any direction are the
same and equal 1/4.

This is an infinitely extended two-dimensional version of the drunkard model.
If d = 3, then Z

3 is the three-dimensional cubic lattice; we may think of it as an
infinitely extended crystal. Then our walking particle may model a solitary quan-
tum electron moving between heavy ions or atoms fixed at the sites of the lattice.
The probability of moving to one of the six neighbours equals 1/6.

One can also imagine a higher-dimensional model for any given d. Here, the
probability of jump equals 1/(2d).

Theorem 1.6.1 For d = 1, the nearest-neighbour random walk on Z is transient,
unless p = q = 1/2, in which case it is recurrent.

Proof The DTMC in question is obviously irreducible, so it is enough to check
that the origin 0 is a recurrent state. We want to assess ∑n p(n)

00 . Observe that

p(n)
00 =

⎧⎨⎩0, n odd,
(2k)!
k!k!

pkqk, n = 2k even,
(1.40)
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1/6

0 = (0,0,0)

Fig. 1.12

as we need to make an equal number of steps to the right and the left. By using
Stirling’s formula,

n! ≈
√

2πnn+1/2 e−n, as n → ∞,

we have

p(2k)
00 ≈ (2k)2k+1/2

√
2πk2k+1

pkqk =
1√
πk

22k(pq)k. (1.41)

Now,

pq = p(1− p) ≤ 1
4
, 0 ≤ p ≤ 1,

and the only point of equality is p = q = 1/2. In other words, ρ := 4pq < 1 for

p �= 1/2 and ρ = 1 for p = 1/2. Consequently, with p(2k)
00 ≈ 1√

πk
ρk,

∑
n

p(n)
00

{
< ∞, p �= 1/2,

= ∞, p = 1/2.
(1.42)

Theorem 1.6.2 The nearest-neighbour symmetric random walk on Z
d is recurrent

for d = 2 and transient for d = 3 (and also for d > 3).

Proof d = 2: again consider a fixed state, say 0 = (0,0). Every closed path on Z
2

must have equally many jumps to the left and the right and equally many jumps up
and down.

Hence again p(n)
00 = 0 when n is odd.

A useful idea is to project the random walk onto orthogonal axes rotated by π/4.
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The moves are in one-to-one correspondence:

old coordinates: chain (Xn)
move by vector ±(1;0)
move by vector ±(0;1)

↔
new coordinates: chain (X ′

n)
move by vector ± (1/

√
2)(1;1)

move by vector ± (1/
√

2)(−1;1).

In the new coordinates, up to a factor 1/
√

2, the jumps are along diagonals of the
unit square.

This means that the chain (X ′
n) in the new coordinates is formed by a pair of

independent symmetric nearest-neighbour random walks on Z (in the horizontal
and vertical directions). Return to 0 = (0,0) means return to 0 in each of them.
Therefore, for n = 2k,

p(2k)
00 =

(
(2k)!
k!k!

1
22k

)2

≈ 1
πk

. (1.43)

Hence, ∑k p(2k)
00 = ∞, and the random walk is recurrent.

For d = 3, we still have p(n)
00 = 0 when n is odd. If n is even, a path returns to

0 = (0,0,0) if and only if it makes equal numbers of jumps in each of three pairs
of opposite directions (up/down, east/west, north/south). So,

p(2k)
00 = ∑

i, j,l≥0:
i+ j+l=k

(2k)!
(i!)2( j!)2(l!)2

(
1
6

)2k

=
(2k)!
(k!)2 ∑

i, j,l≥0:
i+ j+l=k

(
k!

i! j!l!

)2(1
6

)2k

≤ (2k)!
(k!)2

(
max

k!
i! j!l!

)
1
3k

1
22k ∑

i, j,l≥0:
i+ j+l=k

k!
i! j!l!

1
3k .

Now, the sum

∑
i, j,l≥0:

i+ j+l=k

k!
i! j!l!

= 3k (1.44)

is the number of ways placing k balls into 3 boxes. Also, for k = 3m,

(3m)!
m!m!m!

≥ (3m)!
i! j!l!

whenever i+ j + l = 3m. (1.45)

In fact, suppose that i < m < l. Then when you pass to i! j!l! from (m!)3, you
either (a) replace the ‘tails’ (i + 1) · · ·m and ( j + 1) · · ·m of m! by the product
(m + 1) · · ·(m + 2m− i− j), i.e., (m + 1) · · · l when j < m; or (b) replace the tail
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(i + 1) · · ·m by the product (m + 1) · · · j(m + 1) · · ·(3m − i − j); that is,
(m + 1) · · · j(m + 1) · · · l when j > m. Either way you increase the denominator,
hence decrease the ratio.

Then, for n = 2k = 6m,

p(6m)
00 ≤ (6m)!(

(3m)!
)2

(
1
2

)6m (3m)!
(m!)3

(
1
3

)3m

(1.46)

which, by Stirling, is

≈
√

2

(
1√
2π

)3 1

m3/2
. (1.47)

Hence, ∑m p(6m)
00 < ∞. But for m ≥ 1 we have p(6m)

00 ≥ (1/6)2 p(6m−2)
00 and p(6m)

00 ≥
(1/6)4 p(6m−4)

00 , i.e.

p(6m−2)
00 ≤ 62 p(6m)

00 and p(6m−4)
00 ≤ 64 p(6m)

00 .

Thus,

∑
k

p(2k)
00 ≤ ∑

m
p(6m)

00 (1+62 +64) < ∞, (1.48)

and the walk is transient.

A similar approach can be used in higher dimensions. But there is another way
to establish transience in all dimensions d > 3. Namely, project the random walk
(Xd

n ) on Z
d to three dimensions by discarding all coordinates but the first three. The

projected chain
(

Xproj
n

)
on Z

3 stays where it is with probability (d − 3)/d (when

the original walk jumps in one of the discarded directions), but when it jumps, it
behaves as the nearest-neighbour symmetric walk in dimension 3:

P

(
Xproj

n+1 = i± eα ∣∣Xproj
n = i

)
=

1/(2d)
1− (d −3)/d

=
1
6
, α = 1,2,3, (1.49)

with

e1 = (1;0;0), e2 = (0;1;0), e3 = (0;0;1).

Clearly, if the original d-dimensional walk returns to 0 = (0, . . . ,0), then the
projected walk returns to (0,0,0). Hence, if the original d-dimensional walk (Xd

n )
is recurrent then the projected chain

(
Xproj

n

)
is too. But then consider the random

walk on Z
3 obtained from

(
Xproj

n

)
by discarding the stays and recording the jumps

only. The latter is the nearest-neighbour symmetric random walk on Z
3 which is

transient. By Theorem 1.6.3 below,
(

Xproj
n

)
is also transient. Then so is (Xd

n ).
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Nearest-neighbour symmetric random walks are often called simple walks. Re-
phrasing a famous saying, we could state that in two dimensions every road of a
simple random walk will lead you to the origin (or any other given site) while in
three dimensions and higher it is no longer so. The difference between two and
three dimensions emerges in virtually all domains of mathematics.

We conclude this section by analysing the relation between a general DTMC
(Xn) and its jump chain (Yn) obtained when we record only the changes in the state
of (Xn). Suppose that the transition matrix of (Xn) is P = (pi j). Then for (Yn) the
transition matrix will be (p̂i j) where

p̂i j =

⎧⎨⎩0, i = j,
pi j

1− pii
, i �= j.

(1.50)

Theorem 1.6.3 If the jump chain (Yn) is transient then so is the original chain (Xn).

Proof If (Yn) is transient then for all states i

f̂i = Pi
(
(Yn) returns to i

)
< 1.

Now, for (Xn),

fi := Pi
(
(Xn) returns to i) = pii + ∑

j �=i

pi jP j
(
(Xn) hits i

)
= pii +(1− pii)∑

j �=i

pi j

1− pii
P j
(
(Xn) hits i

)
≤ pii +(1− pii)∑

j �=i

p̂i j P j
(
(Yn) hits i

)
,

because if (Xn) hits i from j then so does (Yn). The last expression may be written

fi ≤ pii +(1− pii) f̂i < 1.

Hence, fi < 1, and the chain (Xn) is transient.

We will return to this statement later on and give an alternative proof.

Worked Example 1.6.4 (i). Let (Xn,Yn) be a simple symmetric random walk in
Z

2, starting from (0,0), and set T = inf {n ≥ 0 : max{|Xn|, |Yn|} = 2}. Determine
the quantities ET and P(XT = 2 and YT = 0).
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(ii). Let (Xn)n≥0 be a DTMC with state space I and transition matrix P. What
does it mean to say that a state i ∈ I is recurrent? Prove that i is recurrent if and
only if ∑∞

n=0 p(n)
ii = ∞, where p(n)

ii denotes the (i, i) entry in Pn.
Show that the simple symmetric random walk in Z

2 is recurrent.

Solution (i). If ki = EiT and hi = Pi(XTYT = 0) then

k(0,0) = 1+ k(−1,0),

k(−1,0) = 1+
k(0,0)

4
+

k(−1,−1)

2
,

k(−1,−1) = 1+
k(−1,0)

2
,

h(0,0) = h(−1,0),

h(−1,0) =
1
4

+
h(0,0)

4
+

h(−1,−1)

2
,

h(−1,−1) =
h(−1,0)

2
,

by conditioning on the first step, the Markov property and symmetry.
Hence,

ET = k(0,0) =
9
2
, h(0,0) =

1
2
.

By symmetry,

P(XT = 2 and YT = 0) =
1
4

h(0,0) =
1
8
.

(ii) The state i is recurrent if fi = Pi(Ti < ∞) = 1 where Ti = inf{n ≥ 1 : Xn = i}.
If Vi is the total time spent in i then

Pi(Vi ≥ k +1) = Pi(Vi ≥ k) Pi(Vi ≥ k +1|Vi ≥ k)

= Pi(Vi ≥ k) fi = · · · = f k+1
i .

Then

Ei(Vi) = ∑
k≥1

P(Vi ≥ k) = ∑
k≥0

f k
i .

On the other hand,

EiVi = Ei ∑
n≥0

1(Xn = i) = ∑
n≥0

p(n)
ii .

Hence, fi = 1 if and only if ∑n≥0 p(n)
ii = ∞.

Now let (Xn) be a simple symmetric random walk in Z
2. It is irreducible, hence

it suffices to check that ∑n≥0 p(n)
ii = ∞ for a single i ∈ Z

2, say the origin (0,0).
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Write (X±
n ) for the projection of (Xn) on the diagonal {x = ±y} in Z

2. Then (X±
n )

are independent simple symmetric random walks on 1√
2
Z, and return to (0,0) in

(Xn) means return to 0 in each of (X±
n ). Next,

P0(X±
2k = 0) =

(
2k
k

)
1

22k ,

and

p(2k)
00 = P0(X+

2k = 0)P0(X−
2k = 0).

Then Stirling’s formula asserts that

p(2k)
00 ≈

( √
2√

2πk

(2k)2k

k2k

1
22k

)2

=
1

πk
, as k → ∞.

Hence,

∑
n≥0

p(n)
00 = ∑

k≥0

p(2k)
00 = ∞.

Random walks occupy a special place among Markov chains; their (often
strikingly beautiful) properties depend on the geometric and algebraic structures
(especially symmetries) existing in the state space (in the above examples, the
lattice Zd). In forthcoming sections, we will encounter examples of RWs on other
types of graphs and discover more aspects of the related theory.

1.7 Equilibrium distributions: definitions and basic facts

Time is a sort of river of passing events, and strong is its current;
no sooner is a thing brought to sight than it is swept by,

and another takes its place, and this too will be swept away.
Marcus Aurelius Antoninus (121–80), Roman Emperor

Let (Xn) be a DTMC with transition probability matrix P.

Definition 1.7.1 An initial probability distribution λ is called an equilibrium dis-
tribution (also a stationary, or an invariant distribution) if it is preserved in time.
That is, for all j ∈ I,

λ j = P(X0 = j) = P(X1 = j) = · · · = P(Xn = j) = · · · . (1.51)

As P(Xn = j) = ∑i λi p
(n)
i j = (λPn) j, this means that λ = (λi) is an invariant vector

for P (that is, an eigenvector with the eigenvalue 1): λP = λ .
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We will denote an equilibrium distribution (ED) by π = (πi) and use the equa-
tion πP = π without stressing it every time. Of course, the vector π satisfies two
properties: (a) entries πi ≥ 0 for all i ∈ I (geometrically, this means that π lies in
the non-negative orthant of a Euclidean space); and (b), ∑i πi = 1 (π lies on the
hyperplane orthogonal to the vector 1, with all entries 1, that passes through point(
1/|I|, . . . ,1/|I|

)
). If we have property (a), but property (b) is not satisfied, we

will use the notation μ instead of π and say that μ is an invariant measure (IM):
μ = (μi), μP = μ , μi ≥ 0 for all states i.

One should not confuse two equations πP = π (invariance) and Ph = h (the
hitting time equation).

Example 1.7.2 Consider the 2×2 transition matrix

P =
(

1−α α
β 1−β

)
.

Then: (a) if α +β > 0, it has a unique equilibrium distribution

π =
(

β
α +β

,
α

α +β

)
;

(b) if α = β = 0 then P =
(

1 0
0 1

)
, and every vector (x,y) is invariant.

Example 1.7.3 Let a,b ≥ N, a,b,N ∈ Z+. Consider a birth-death Markov chain
on n = 0,1, . . . ,N with

λn = (N −n)(a−n), μn = n(b− (N −n)).

Show that the equilibrium distribution is hypergeometric

πi =

(
a
i

)(
b

N − i

)
(

a+b
N

) , i = 0,1, . . . ,N.

The non-uniqueness of an ED may occur when the chain has more than one
closed communicating class. It may have equilibrium distributions supported by
different closed classes. See Figure 1.4. An open communicating class cannot sup-
port an equilibrium distribution as πi always vanishes for states i from open classes.

The multitude of closed communicating classes is the only source of non-
uniqueness of an ED, and an irreducible transition matrix P has at most one ED
(i.e. one or none). A finite irreducible matrix P always has a unique ED.

Next, if P is (countable) irreducible and transient then it has no ED.
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Furthermore, if P is irreducible and recurrent then two cases can occur:

(a) P has a (unique) equilibrium distribution π . Then all probabilities πi > 0.
In this case we say that P is positive recurrent.

(b) P has no equilibrium distribution. Then we say that P is null recurrent.

More precisely, every irreducible recurrent matrix P has an IM μ , with μP =
μ and all entries μi > 0. But the series ∑i∈Iμi may converge or diverge, and in
Definition 1.7.6 below we distinguish two cases:

∑
i

μi < ∞ : P positive recurrent,

∑
i

μi = ∞ : P null recurrent.

Note the following. Solutions to μP = μ admit addition ((μ1 +μ2)P = μ1P+μ2P)
and multiplication by a constant ((cμ)P = c(μP)). Hence we can compute
μi
/

∑ j μ j = πi to get ∑ j π j = 1 (when ∑ j μ j < ∞). We will see that for an
irreducible chain all IMs μ are proportional to each other: μ ′ = cμ . In particular,
they all have μi > 0 for all i ∈ I.

We now turn to the proof of the above properties. The key statement here is
Theorem 1.7.4. Set

γk
i = Ek

Tk−1

∑
n=0

1(Xn = i)

=

⎧⎨⎩
Ek
(
number of visits to i before returning to k

)
,

if i �= k (with 1 ≤ n < Tk),
1, if i = k (from n = 0).

(1.52)

Here, as in (1.23), Tk is the return time to state k:

Tk = inf [n ≥ 1 : Xn = k]. (1.53)

Then 0 ≤ γk
i ≤ ∞. Consider vectors γk = (γk

i , i ∈ I), parametrised by k ∈ I. Observe
that

∑
i∈I

γk
i = 1+ ∑

i∈I:i�=k

Ek
(
number of visits to i before returning to k

)
= 1+Ek(Tk −1) = EkTk. (1.54)

Theorem 1.7.4 (a) For all states k(
γkP
)

j
:= ∑

i∈I

γk
i pi j = γk

j , j �= k (invariance), (1.55)

and (
γkP
)

k
:= ∑

i∈I

γk
i pik ≤ 1 = γk

k (sub-invariance). (1.56)
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(b) We have that
(
γkP
)

k = 1 if and only if k is recurrent. Hence, the vector γk

is invariant: γk = γkP if and only if the state k is recurrent.
(c) If P is irreducible and recurrent then

0 < γk
i < ∞ for all states i,k ∈ I.

Hence, for an irreducible and recurrent matrix P, the vector γk is a ‘genuine’
invariant vector with strictly positive and finite entries.

Proof (a) By the Markov property for all m ≥ 2 and states i �= k and j �= k,

Pk (Tk > m−1,Xm−1 = i) pi j = Pk (Tk > m−1,Xm−1 = i,Xm = j) , (1.57)

and

Pk (Tk > m−1,Xm−1 = i) pik = Pk (Tk = m,Xm−1 = i) . (1.58)

Then, for j �= k,

γk
j = Ek ∑

0≤n≤Tk−1

1(Xn = j) = ∑
n≥1

Ek1(Xn = j,Tk > n)

= ∑
n≥1

Pk (Xn = j,Tk > n)

= pk j + ∑
n≥2

∑
i:i�=k

Pk (Tk > n−1,Xn−1 = i,Xn = j)

= pk j + ∑
n≥2

∑
i:i�=k

Pk (Tk > n−1,Xn−1 = i) pi j by (1.57)

= γk
k pk j + ∑

i:i�=k
∑
n≥1

Ek1(Tk > n,Xn = i) pi j =
(

γkP
)

j
.

Further, for j = k,(
γkP
)

k
= ∑

i∈I

γk
i pik = γk

k pkk + ∑
i:i�=k

γk
i pik

= pkk + ∑
i:i�=k

Ek

(
∑

1≤n<Tk

1(Xn = i)

)
pik

= pkk + ∑
i:i�=k

∑
n≥1

Ek1(Tk > n,Xn = i) pik

= pkk + ∑
i:i�=k

∑
n≥1

Pk (Tk = n+1,Xn = i) by (1.58)

= pkk + ∑
n≥2

Pk (Tk = n)

= ∑
n≥1

Pk (Tk = n) = Pk (Tk < ∞) := fk ≤ 1 = γk
k .

Observe that so far we have not used recurrence.
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(b) From the last equation,
(
γkP
)

k = 1 if and only if fk = 1, i.e., the state k is
recurrent.

(c) If P is irreducible then for all i,k ∈ I there exist m,n ≥ 0 such that p(n)
ik > 0

and p(m)
ki > 0. Assuming that P is recurrent, the vector γk is invariant and hence

γkPm = γkPn = γk. So,

γk
i = ∑

l

γk
l p(m)

li ≥ γk
k p(m)

ki = p(m)
ki .

On the other hand

1 = γk
k = ∑

l

γk
l p(n)

lk ≥ γk
i p(n)

ik , i.e., γk
i ≤ 1

p(n)
ik

.

Theorem 1.7.5 Suppose that μ = (μi) is an IM: thus μP = μ and μi ≥ 0 for all
i ∈ I. Suppose in addition that μk = 1 for some given state k. Then: (a) for all i ∈ I,

μi ≥ γk
i ;

(b) for an irreducible and recurrent matrix P, we have

μi = γk
i , for all i ∈ I.

Proof (a) Invariance plus the fact that μk = 1 imply that, for all j ∈ I and n ≥ 1,

μ j = ∑
i

μi pi j = 1 · pk j + ∑
i: i�=k

μi pi j = pk j + ∑
i�=k

∑
l

μl pli pi j

= pk j + ∑
i�=k

pki pi j + ∑
i�=k

∑
l �=k

μl pli pi j = · · ·

= pk j + ∑
i�=k

pki pi j + · · ·+ ∑
i1,...in−1 �=k

pki1 . . . pin−1 j

+∑
l

∑
i1,...,in−1 �=k

μl pli1 . . . pin−1 j.

Now, the non-negativity implies that the last expression is

≥ Pk (X1 = j,Tk > 1)+Pk (X2 = j,Tk > 2)+ · · ·
+Pk (Xn = j,Tk > n) ,

which tends to γk
j as n → ∞.

(b) Now let P be irreducible and recurrent. Then γk is invariant: γkP = γk. Then
μ̃ = μ − γk is also invariant: μ̃ = μ̃P, and, owing to (a), non-negative: μ̃i ≥ 0 for
all i ∈ I. But, for i = k, μ̃k = μk − γk

k = 1−1 = 0.

Next, given i ∈ I, there exists n ≥ 1 with p(n)
ik > 0. Then, as

0 = μ̃k = ∑
l

μ̃l p(n)
lk ≥ μ̃i p

(n)
ik ,



1.7 Equilibrium distributions: definitions and basic facts 57

we obtain that μ̃i = 0. Hence, μ̃ = 0 and μ = γk.

We see that for an irreducible recurrent chain, everything is fixed by the condi-
tion μk = 1. More precisely, if μ is a non-zero IM, i.e. μP = μ , μi ≥ 0 and μk > 0
for some state k, then

μ = μkγk.

This implies that all non-zero IMs are proportional: μ ′ = cμ . Next, every non-
zero IM has all entries finite and strictly positive. In particular, all vectors γk are
proportional:

γk
i γ i = γk, i,k ∈ I. (1.59)

Now, for an irreducible recurrent chain, we have two cases: (i) all non-zero IMs μ
have

∑
j∈I

μ j < ∞, (1.60)

and (ii) all non-zero IMs μ have

∑
j∈I

μ j = ∞. (1.61)

Definition 1.7.6 In the case (i) we call the irreducible Markov chain (or matrix P)
positive recurrent, and in case (ii) null recurrent.

If the number of states |I| < ∞ then the case (ii) is impossible. Hence, an
irreducible finite DTMC is always positive recurrent and has a (unique) equilib-
rium distribution π = (πi). Furthermore, equilibrium probabilities πi are strictly
positive.

We now see that, in general, when P is positive recurrent then normalising
μ j
/

∑i μi = π j yields a (unique) equilibrium distribution. It has all πi > 0. Then
γk is recovered by division:

γk =
1
πk

π, i.e., γk
i =

πi

πk
. (1.62)

In other words, we obtain the following

Theorem 1.7.7 In an irreducible positive recurrent chain with equilibrium
distribution π , for all states k �= i

Ek (the number of visits to i before returning to k) =
πi

πk
. (1.63)

For i = k we obtain
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Theorem 1.7.8 In an irreducible positive recurrent chain with equilibrium
distribution π , for all states k,

mk := EkTk = the mean return time to state k =
1
πk

< ∞. (1.64)

Proof In (1.54) we observed that

EkTk = 1+Ek (Tk −1) = 1+ ∑
i:i�=k

γk
i = ∑

i

γk
i < ∞.

Hence,

mk = ∑
i

πi

πk
=

1
πk

,

implying that mk = 1/πk.

Our results in this section are summarised in Table 1.1.

1.8 Positive and null recurrence

Not to know what has been transacted in former times
is to be always a child.

If no use is made of the labours of past ages,
the world must remain always in the infancy of knowledge.

Marcus Tullius Cicero (106–43 BC), Roman orator and statesman

Throughout this section we work with initial distributions λ = δi, i.e. consider
DTMCs starting from a particular state, and use the above notations Pi and Ei. The
state space I is assumed to be countably infinite (and further specified in examples
below). For simplicity, we omit reference to I: statements of the type ‘for all i’
mean for all i ∈ I, and we assume that the transition matrix P is irreducible.

We begin by elaborating Definitions 1.5.1 and 1.7.6. Recall

Ti = min
[
n ≥ 1 : Xn = i

]
stands for the return time to state i.
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(I) Irreducible DTMCs with more than one state have transition
probabilities 0 < pi j < 1 for all states i, j ∈ I (no absorption).

(II) An irreducible DTMC (Xn) can be transient or recurrent:
(i) Transient: Pi

(
return time Ti < ∞

)
< 1, i.e. Pi

(
Ti = ∞

)
> 0,

for all i ∈ I. Equivalently:
Pi
(
i is not visited in (Xn) after some finite time

)
= 1

and ∑n≥0 p(n)
ii < ∞, for all i ∈ I. Equivalently:

h{i}
j = P j (hit i) < 1, for some states j and i.

(ii) Recurrent: Pi
(

return time Ti < ∞
)

= 1,
i.e., Pi

(
Ti = ∞

)
= 0 for all i ∈ I. Equivalently:

Pi
(
i visited in (Xn) at arbitrarily large times

)
= 1

and ∑n≥0 p(n)
ii = ∞, for all i ∈ I. Equivalently: h{i}

j = P j
(
hit i
)

= 1, for all states j and i. In this case, for all i, the vector
γ i = (γ i

j) from (1.62) has 0 < γ i
j < ∞ and gives an IM for (Xn);

all such IMs are of the form αγ i. In particular,
vector γk = (γ i

k)
−1× vector γ i, for all states i,k.

(III) Next, an irreducible recurrent DTMC can be
(i) Null Recurrent: mi = Ei(return time Ti) = ∞,
for all i ∈ I; in this case there is no IM μ = (μi) with ∑ j μ j < ∞.
Hence, there is no ED.
(ii) Positive Recurrent: mi < ∞, for all i ∈ I; in this case any
invariant measure μ = (μi) has ∑ j μ j < ∞, and there exists
a unique equilibrium distribution π = (πi),
where πi = (μi/∑ j μ j) > 0. In this case, γk = mkπ . Furthermore,

EiTi =
1
πi

, and Ei(time at k before Ti) =
πk

πi
, for all states i,k.

Finite irreducible DTMCs are always PR.

Table 1.1

Definition 1.8.1 Set fi = Pi (Ti < ∞) and mi = EiTi. A state i is called

recurrent (R), if fi = 1; equivalently, ∑n p(n)
ii = ∞, or

Pi
(
Xn = i for infinitely many n

)
= 1,

positive recurrent (PR), if mi = EiTi < ∞,

null recurrent (NR), if mi = EiTi = ∞, but fi = 1,

transient (T), if fi < 1; equivalently, ∑n p(n)
ii < ∞, or

Pi
(
Xn = i for infinitely many n

)
= 0. (1.65)

As these are class properties, in the case of an irreducible matrix P, either all
states are PR or all states are NR or all states are T.
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Fig. 1.13

Definition 1.8.2 Given l = 0,1, . . ., define the subsequent return (or passage) times
Hl(= Hi

l ) to state i by H0 = 0, H1 = Ti, and

Hl = inf
[
n ≥ Hl−1 +1 : Xn = i

]
, l > 1. (1.66)

The difference

T (l)
i =

{
Hl −Hl−1, if Hl−1 < ∞,

0, if Hl−1 = ∞,
(1.67)

gives the time between the (l −1)st and lth return times to i, or the duration of the

lth excursion to states i, l = 1,2, . . .. Obviously, T (1)
i = Ti. See Figure 1.13.

May you always live in interesting return times.
(From the series ‘Thus spoke Superviser’.)

The above analysis of positive and null recurrence combined with the strong
Markov property leads to the following

Theorem 1.8.3 Assume that the chain (Xn) is recurrent and let i be any state.

Under the distribution Pi, the variables T (1)
i , T (2)

i , . . . are independent and iden-
tically distributed (IID) random variables, with positive integer values, finite with
probability 1. That is, for all k ≥ 1 and positive integers t1, . . . , tk,

Pi(T
(1)

i = t1, . . . ,T
(k)

i = tk) = ∏
1≤l≤k

Pi(Ti = tl), and ∑
t=1,2,...

Pi(Ti = t) = 1. (1.68)
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Furthermore, the expectation

mi := EiTi =

{
1/πi, if the chain (Xn) is PR,

∞, if the chain (Xn) is NR or T.
(1.69)

Here π = (πi) is the (unique) equilibrium distribution of the positive recurrent
DTMC (Xn).

The example of IID random variables (RVs) T (1)
i ,T (2)

i , . . . is quite intriguing, as
their (common) distribution is determined by the transition matrix P and varies in a
rather intricate way when we change P. Therefore, to analyse the sequence (T (n)

i ),
one needs to develop a general theory of IID RVs (in particular, it was one of the
strong motives for a general theory of summation of IID RVs).

An example of a general statement about IID RVs which we will use in the next
section is the following ‘strong’ Law of Large Numbers (LLN) for the sequence(
T (n)

i

)
:

Theorem 1.8.4 Under the assumptions of Theorem 1.8.3, for all states i, with
probability 1, the average

1
n

(
T (1)

i +T (2)
i + · · ·+T (n)

i

)
converges, as n → ∞, to the expected value mi specified in (1.69); symbolically(

T (1)
i +T (2)

i + · · ·+T (n)
i

)/
n

Pi−a.s.→ mi. That is,

Pi

(
lim
n→∞

1
n

n

∑
l=1

T (l)
i = mi

)
= 1. (1.70)

Remark 1.8.5 In previous sections we have already used various properties and
facts that hold with probability 1; there will be more examples of this in the forth-
coming sections. It has to be said that some of these facts and properties are rather
delicate and require careful analysis. An example of such a property is convergence
with probability 1 in Theorem 1.8.4. (This property is behind the term ‘strong’, as
opposed to ‘weak’, LLN; see below.) The alternative term for this form of conver-
gence is ‘almost sure convergence with respect to the probability distribution IPi’,

which is reflected in the notation
Pi−a.s.→ that we often use. When the probability

distribution in question is specified from the context, we write
a.s.→. We will discuss

properties of convergence with probability 1 in more detail in Chapter 3.

Remark 1.8.6 We want to stress that the statement of Theorem 1.8.4 holds in
‘full generality’, regardless of whether the value mi is finite or infinite, let alone
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existence of a finite second moment E
(
T (1)

i

)2
or finite higher moments E

(
T (1)

i

)n
,

n ≥ 3. In fact, the assertion of Theorem 1.8.4 holds in a much wider context of
ergodic processes.

We will not discuss here the proof of Theorem 1.8.4; the interested reader is
referred to more advanced books, e.g., Grimmett & Stirzaker, 1982, Stroock, 2005.

Example 1.8.7 Random walks on Z
d

(a) Symmetric nearest-neighbour random walk. We know that the symmetric
nearest-neighbour RW on Z

d (also called the simple RW) is recurrent for d = 1
and d = 2 and transient for d = 3. First, consider d = 1. The invariance equations
read

πi =
1
2

πi−1 +
1
2

πi+1, i ∈ Z,

and have an obvious non-negative solution πi ≡ 1 (which is unique, up to a positive
factor). As ∑i∈Z 1 diverges, the walk is null recurrent.
Hence, any IM λ ≥ 0 has λi = const > 0. Then, for all i �= k,

γk
i = Ek

(
number of visits to i before returning to k

)
= 1.

[You may find this surprising since it might be expected that

1 < γk
k+1 < γk

k+2 < · · · .]

More precisely,

Pk
(
number of visits to i before returning to k is n

)
=
(

1
2|k− i|

)2(
1− 1

2|k− i|

)n−1

,

see Worked Example 1.8.9 below. Also

mk = Ek(return time to k) = ∞, k ∈ Z.

For d = 2, the invariance equations are similar

π(i1,i2) =
1
4 ∑

(
π(i1±1,i2) +π(i1,i2±1)

)
, i = (i1, i2) ∈ Z

2,

and again have πi ≡ 1 as a solution. Hence, the walk is null recurrent, and as before,

γk
i ≡ 1.

For d = 3, πi ≡ 1 is still an IM (this remains true for all d). However, as the walk is
transient, the vectors γk are sub-invariant, not invariant. Hence, it is no longer true
that γk

i ≡ 1, although mk is still ≡ ∞.
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(b) Asymmetric nearest-neighbour random walk on Z. Here the invariance equa-
tions are

πi = pπi−1 +(1− p)πi+1, i ∈ Z,

and p �= 1/2. The RW is transient. A general non-negative solution

πi = A+B

(
p

1− p

)i

contains two parameters, A,B ≥ 0, and violates ∑i πi < ∞. We see that not all IMs
λ are proportional. Again, the γk are sub-invariant, not invariant. Also, it is not true
that γk

i is of the form λi/λk for some IM λ . But again mk ≡ ∞, as

1− fk = Pk(no return to k in a finite time) > 0.

Example 1.8.8 (Homogeneous birth-and-death process) This is a RW on the state
space Z+ = {0,1,2, . . .}, with

pii+1 = p, pii−1 = 1− p, i ≥ 1, p01 = q, p00 = 1−q,

where 0 ≤ p,q ≤ 1. Consider the case 0 < q ≤ 1 and 0 < p < 1, when the chain is
irreducible. Then the answer is

p < 1/2 : positive recurrent,
p = 1/2 : null recurrent,
p > 1/2 : transient,

regardless of q.
In fact, the invariance equations

πi = pπi−1 +(1− p)πi+1, i > 1,

π1 = qπ0 +(1− p)π2,

π0 = (1−q)π0 +(1− p)π1,

still admit the solution πi = A+B
(

p/(1− p)
)i

, i > 0.
For p < 1/2, a further reduction seems reasonable: A = 0. At i = 0,1 we obtain the
same equation

qπ0 = pB.

To normalise, write

1 = B

(
p
q

+
p

1− p
+

p2

(1− p)2 + . . .

)
= B

(
p
q

+
p/(1− p)

1− p/(1− p)

)

= B
p(1−2p+q)

q(1−2p)
, whence B =

q(1−2p)
p(1+q−2p)

.
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Therefore,

π0 =
1−2p

1+q−2p
, πi =

q
p

(
p

1− p

)i

π0, i ≥ 1,

and the chain is positive recurrent, as claimed.
Further, for p < 1/2,

γk
i = Ek

(
number of visits to i before returning to k

)
=

πi

πk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
p

1− p

)i−k

, 0 < i,k < ∞, i �= k,

q
p

(
p

1− p

)i

, 0 = k < i < ∞,

p
q

(
1− p

p

)k

, 0 = i < k < ∞,

and

mk = Ek(return time to k) =
1
πk

, k ∈ Z+.

For p ≥ 1/2, we have to consider fi = Pi(Ti < ∞). Writing

P0(T0 < ∞) = 1−q+q P1(hit 0),

we see that if P1(hit 0) < 1, the chain is transient. But

Pi(hit i−1) =
1− p

p
, i ≥ 1;

see Section 1.5. Hence, for p > 1/2 the chain is transient.
It remains to check the case p = 1/2. Here, fi = 1, and the chain is recurrent. The
invariance equations

πi =
1
2

πi−1 +
1
2

πi+1, i > 1,

have the general solution πi = A+Bi, i ≥ 1. At i = 1,0 they have the form

π1 = qπ0 +
1
2

π2, π0 = (1−q) π0 +
1
2

π1,

which yields B = 0 and

πi ≡ A, i ≥ 1, π0 =
1
2q

A,

and the non-negative IMs correspond to A ≥ 0. We see that the inequality ∑i πi < ∞
cannot hold unless A = 0. Thus, the chain does not have an equilibrium distribution,
and hence is null recurrent.
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Then, for p = 1/2, (i) all non-negative IMs λ = (λi) are proportional to each other,
and each such measure different from 0 has λi = A > 0 for i≥ 1 and λ0 = A/(2q) >

0. Furthermore, (ii) all vectors γk, k ≥ 0, must be invariant and hence proportional
to each other. With the normalisation γk

k = 1, the only possibility is that (a) γk
i ≡ 1

and γk
0 = 1/(2q) for all k, i ≥ 1 and (b) γ0

i = 2q for all i ≥ 1. (This looks even more
surprising, as one might expect that for k ≥ 1

γk
0 < · · · < γk

k−2 < γk
k−1 < 1 < γk

k+1 < γk
k+2 < · · · ,

and there is no reason to believe that γk
k−1 = γk

k+1 because of the asymmetry of the
model.)

Finally, it is not difficult to check that for all i > k ≥ 1

Pk
(
number of visits to i before returning to k is n

)
=
(

1
2(i− k)

)2(
1− 1

2(i− k)

)n−1

,

as in the case of the symmetric RW on Z.

Cherchez la Gamme: a Musical On Vectorial Return Times
(From the series ‘Movies that never made it to the Big Screen’.)

Worked Example 1.8.9

(i) Let X = (Xn : n ≥ 0) be a random walk on the integers, which moves one step
rightwards or one step leftwards with probability 1/2, at each time step. Show that

P(X2n = 0|X0 = 0) =
(

2n
n

)(
1
2

)2n

,

and deduce that X is recurrent.

(ii) Let X be given as above, and assume that X0 = 0. Let m be a strictly positive
integer, and let N be the number of visits to the point m before returning to 0.

Find P(N ≥ 1), and deduce that

P(N = n) =
(

1
2m

)2(
1− 1

2m

)n−1

, n ≥ 1.
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Solution (i) First, P(X2n = 0|X0 = 0) = p(2n)
00 is the probability that the sample path

of length 2n starts at and returns to 0. This is because each such path must have n

steps right and n steps left, the total number of such paths is

(
2n
n

)
, and each of

them has the same probability (1/2)2n. Hence the formula for P(X2n = 0|X0 = 0).
The sum ∑∞

n=1 P(Xn = 0|X0 = 0) coincides with ∑∞
n=1 P(X2n = 0|X0 = 0) (return

at odd times is not possible), and is evaluated via Stirling’s formula: n! ≈√
2πnn+1/2 e−n. This leads to the series ∑n 1/(

√
πn) which diverges. So, by The-

orem 1.5.3, the state 0 is recurrent. The same argument works for every state i.
Hence, the chain is recurrent. (The same conclusion holds because recurrence is a
class property; see Theorem 1.5.7.)

(ii) For the present write P to mean P0, the distribution of the (δ0,P) chain. Then
P(N ≥ 1) = P0(hit m before returning to 0). By conditioning on the first step, we
have

P(N ≥ 1) =
1
2

P1(hit m before visiting 0),

where Pi stands for the distribution of the (δi,P) chain. Set

hi = Pi(hit m before visiting 0);

then

hi =
1
2

hi−1 +
1
2

hi+1, 1 ≤ i < m.

The general solution hi = A + Bi is specified by h0 = 0, hm = 1: A = 0, B = 1/m.
Hence, h1 = 1/m, and P(N ≥ 1) = 1/(2m).

Clearly, 1− 1/(2m) = P(N = 0) = P0(hit 0 again before visiting m). By sym-
metry,

Pm(hit m again before visiting 0) = 1− 1
2m

.

To be in event {N = n}, a sample path from 0 must hit m before returning to 0,
return to m n−1 times without visiting 0 and then proceed to 0 without returning
to m. By the strong Markov property,

P(N = n) =
1

2m

(
1− 1

2m

)n−1 1
2m

,

the last factor being Pm(hit 0 before returning to m), again by symmetry. Hence the
result.

Worked Example 1.8.10 Consider a Markov chain on the state space
I = {0,1,2, . . .} ∪ {1′,2′,3′, . . .} with transition probabilities as illustrated in
Figure 1.14 where 0 < q < 1 and p = 1−q.
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Fig. 1.14

For each value of q, determine whether the chain is transient, null recurrent or
positive recurrent.

When the chain is positive recurrent, calculate the invariant distribution.

Solution For i ≥ 1 set

a = Pi(hit i−1), b = Pi′(hit i);

these probabilities do not depend on the value of i because of the homogeneous
property of the chain. Conditioning on the first jump and using the strong Markov
property we get

a = q+ pba2, b = q+ pba,

whence

b =
q

1− pa
, and a = q+

pqa2

1− pa
.

Thus,

p(1+q)a2 − (pq+1)a+q = 0,

and the solutions are

a = 1 and a =
q

1−q2 .

We are interested in the minimal solution

q
1−q2 < 1 if and only if q <

√
5−1
2

.

Therefore, the chain is recurrent if and only if q ≥
(√

5−1
)/

2 and transient if

and only if q <
(√

5−1
)/

2.
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To decide whether it is null- or positive recurrent, consider the invariance
equation π = πP:

π0 = π1q, πi = πi+1q+πi′q, i ≥ 1,

π1′ = π0, πi′ = π(i−1)′ p+πi−1 p, i′ ≥ 2.

This admits a recursive solution:

π1 =
1
q

π0, π1′ = π0,

π2 =
(

1
q2 −1

)
π0 =

1
q

1−q2

q
π0, π2′ = (1−q)

(
1+

1
q

)
π0 =

1−q2

q
π0,

π3 =
1
q

(
1−q2

q

)2

π0, π3′ =
(

1−q2

q

)2

π0.

By induction, one gets the general formulas

πi =
1
q

(
1−q2

q

)i−1

π0, πi′ =
(

1−q2

q

)i−1

π0,

and the equilibrium distribution will exist if and only if both series converge; that

is, (1− q2)/q < 1, i.e. q >
(√

5−1
)/

2. Hence, the chain is null recurrent when

q =
(√

5−1
)/

2 and positive recurrent when q >
(√

5−1
)/

2. In the latter case

π0 =

[
1+ ∑

i≥1

(
1
q

+1

)(
1−q2

q

)i−1
]−1

=
q2 +q−1

q2 +2q
.

Worked Example 1.8.11 Let (Wn) be the birth-and-death process on Z+ =
{0,1,2, . . .} with the following transition probabilities

pi,i+1 = pi,i−1 =
1
2
, i ≥ 1

p01 = 1 .

By relating (Wn) to the symmetric simple random walk (Yn) on Z, or otherwise,
prove that (Wn) is a recurrent Markov chain. By considering IMs, or otherwise,
prove that (Wn) is null recurrent.

Calculate the vectors γk = (γk
i , i ∈ Z+) for the chain (Wn), k ∈ Z+.

Finally, let W0 = 0 and let N be the number of visits to 1 before returning to 0.
Show that P0(N = n) = (1/2)n, n ≥ 1.
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Solution Now, (Wn) is an irreducible Markov chain. Also, Wn = |Yn| where (Yn) is
the nearest-neighbour symmetric random walk on Z. Hence, for all i ∈ Z,

P|i|((Wn) returns to i) ≥ Pi((Yn) returns to i);

but the right-hand side equals 1 since (Yn) is recurrent. Hence, the left-hand side
equals 1, and (Wn) is recurrent.

To check null recurrence, it suffices to prove that (Wn) has no equilibrium
distribution. Consider the invariance equations

π0 =
1
2

π1, π1 = π0 +
1
2

π2,

πi =
1
2

πi−1 +
1
2

πi+1, i ≥ 2.

The second line has a general solution πi = A+Bi, i ≥ 1. From the first line, B = 0
and π0 = A/2. Hence, any IM π is of the form

πi = A, i ≥ 1, π0 =
1
2

A,

where A ≥ 0. It has ∑i πi = ∞ unless A = 0. Thus, no equilibrium distribution can
exist, and (Wn) is null recurrent.

Therefore, for the chain (Wn),

γk
i =

πi

πk
=

⎧⎪⎨⎪⎩
1, i,k ≥ 1 or i = k = 0,

1/2, i = 0, k ≥ 1,

2, i ≥ 1, k = 0.

Next, by the strong Markov property,

P0(N = n) = P0(N ≥ 1)

×(P1(return to 1 without visiting 0))n−1

×P1(hit 0 without returning to 1)

=
1
2n .

In fact,

P0(N ≥ 1) = 1 (as p01 = 1),

P1(return to 1 without visiting 0) = 1− p10 = 1
2 (as the chain

hits 0 from 1 with probability 1/2 and is recurrent),



70 Discrete-time Markov chains

and

P1(hit 0 without returning to 1) = p10 = 1
2 .

There are many points in an infinite state space.
More than stars in the sky or grains of sand in Sahara.

(From the series ‘Thus spoke Superviser’.)

1.9 Convergence to equilibrium. Long-run proportions

Time is the image of eternity.
Laertius Diogenes, 2nd century AD, Greek writer

Convergence to equilibrium means that, as the time progresses, the Markov chain
‘forgets’ about its initial distribution λ . In particular, if λ = δ (i), the Dirac delta
concentrated at i, the chain ‘forgets’ about the initial state i. Clearly, this is related
to properties of the n-step matrix Pn as n → ∞. Consider first the case of a finite
chain.

Theorem 1.9.1 Suppose that a finite m×m transition matrix Pn converges, in each
entry, to a limiting matrix Π = (πi j):

lim
n→∞

p(n)
i j = πi j, for all i, j ∈ I. (1.71)

Then: (a) every row π(i) of Π is an equilibrium distribution

π(i)P = π(i) or πi j = ∑
l

πil pl j.

(b) If P is irreducible then all rows π(i) coincide: π(1) = · · · = π(m) = π . In this
case,

lim
n→∞

P(Xn = j) = π j for all j ∈ I and the initial distribution λ .

Proof (a) For all states j we have(
π(i)P

)
j

= ∑
l∈I

πil pl j = ∑
l

lim
n→∞

p(n)
il pl j = lim

n→∞∑
l

p(n)
il pl j

= lim
n→∞

p(n+1)
i j = πi j =

(
π(i)
)

j
. (1.72)
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(b) If P is irreducible then all rows π(i) of Π coincide as there is a unique
equilibrium distribution. Also,

lim
n→∞

P(Xn = j) = lim
n→∞∑

i

λi p
(n)
i j = ∑

i

λi lim
n→∞

p(n)
i j = π j. (1.73)

For a countable chain, our argument in (1.72) requires a justification of
exchanging the order of the limit and summation. We will do this later in this
section.

We see from Theorem 1.9.1 that the equilibrium distribution of a chain can be
identified from the limit of matrices Pn as n → ∞. More precisely, if we know that
Pn converges to a matrix Π whose rows are equal to each other then these rows give
the equilibrium distribution π . We see therefore that convergence Pn → Π where

Π has a structure

⎛⎝π −−−
π −−−
. . . −−−

⎞⎠ is a crucial factor.

So when does Pn → Π? A simple counterexample is P =
(

0 1
1 0

)
. Here,

Pn =
(

1 0
0 1

)
, n even;

Pn =
(

0 1
1 0

)
, n odd.

(1.74)

More generally, consider an m×m matrix P =

⎛⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
. . . . . . . . . · · · . . .

1 0 0 · · · 0.

⎞⎟⎟⎠
Here again, the equilibrium distribution is unique: π = (1/m, . . . ,1/m).
We know that in these examples, the matrix P is periodic. Recall that P is

aperiodic if and only if for all i ∈ I

p(n)
ii > 0 for all n large enough. (1.75)

If in addition, P is irreducible then, for all i, j ∈ I,

p(n)
i j > 0 for all n large enough. (1.76)

Theorem 1.9.2 Assume P is irreducible, aperiodic and positive recurrent. Then,
as n → ∞,

Pn → Π.
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The entries of the limiting matrix Π are constant along columns. In other words the
rows of Π are repetitions of the same vector π which is the (unique) equilibrium
distribution for P. Hence, the irreducible aperiodic and positive recurrent Markov
chain forgets its initial distribution: for all λ and j ∈ I

lim
n→∞

P(Xn = j) = π j.

Proof Consider two Markov chains: (X (i)
n ), which is

(
δ (i),P

)
; and (Xπ

n ), which is
(π,P). Then

p(n)
i j = Pi(X

(i)
n = j), π j = P(Xπ

n = j).

To evaluate the difference between these probabilities, we will identify their ‘com-
mon part’, by coupling the two Markov chains, i.e. running them together. One
way is to run both chains independently. This means that we consider the Markov
chain (Yn) on I × I, with states (k, l) where k, l ∈ I, the transition probabilities

pY
(k,l)(u,v) = pku plv, k, l,u,v ∈ I, (1.77)

and the initial distribution

P(Y0 = (k, l)) = 1(k = i)πl, k, l ∈ I.

But a better way is to run the chain (Wn) where the transition probabilities are

pW
(k,l)(u,v) =

{
pku plv, if k �= l,

pku1(u = v), if k = l,
k, l,u,v ∈ I, (1.78)

with the same initial distribution

P(W0 = (k, l)) = 1(k = i)πl, k, l ∈ I. (1.79)

Indeed, (1.78) determines a transition probability matrix on I × I: all entries
pW

(k,l)(u,v) ≥ 0 and the sum along a row equals 1. In fact,

∑
u,v∈I

pW
(k,l)(u,v) =

⎧⎨⎩∑
u

pku ∑
v

plv, if k �= l

∑
u

pku, if k = l
= 1.

Further, partial summation gives the original transitional probabilities P:

∑
v∈I

pW
(k,l)(u,v) = pku, ∑

u∈I

pW
(k,l)(u,v) = plv.
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Pictorially, the two components of the chain (Wn) behave individually like (X (i)
n )

and (Xπ
n ); together they evolve independently (i.e. as in (Yn)) until the (random)

time T when they coincide

T = inf
[
n ≥ 1 : X (i)

n = Xπ
n

]
,

after which they stay together. Therefore,

p(n)
i j −π j = P

W
(

X (i)
n = j

)
−P

W (Xπ
n = j) .

Writing

P
W
(

X (i)
n = j

)
= P

W
(

X (i)
n = j,T ≤ n

)
+P

W
(

X (i)
n = j,T > n

)
(1.80)

and

P
W (Xπ

n = j) = P
W (Xπ

n = j,T ≤ n)+P
W (Xπ

n = j,T > n) , (1.81)

we see that the first summands cancel each other:

P
W
(

X (i)
n = j,T ≤ n

)
= P

W (Xπ
n = j,T ≤ n) ,

as the events
{

X (i)
n = j,T ≤ n

}
and {Xπ

n = j,T ≤ n} coincide. Hence

p(n)
i j −π j = P

W
(

X (i)
n = j,T > n

)
−P

W (Xπ
n = j,T > n)

and ∣∣∣p(n)
i j −π j

∣∣∣≤ P
W (T > n) = P

Y (T > n). (1.82)

The last bound is called the coupling inequality.

Thus, it suffices to check that P
Y (T > n) → 0, i.e. P(T < ∞) = 1. But (Yn) is an

irreducible positive recurrent Markov chain. (Irreducibility follows from the fact
that the original matrix P is irreducible and aperiodic (equation (1.76) is helpful
here) and positive recurrence from the fact that (Yn) has the equilibrium distribution
(π ×π)(k,l) = πkπl .) Hence, by Theorem 1.5.9, for all states l ∈ I,

P
Y (T(l,l) < ∞

)
= 1,

where

T(l,l) = inf
[
n ≥ 0 : X (i)

n = Xπ
n = l

]
.

As T ≤ T(l,l), the statement follows.
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In the case of a finite irreducible aperiodic chain it is possible to establish that
the rate (or speed) of convergence of p(n)

i j to π j is geometric. This means that for
some m ≥ 1

p(m)
i j ≥ ρ for all states i, j. (1.83)

Theorem 1.9.3 If P is finite irreducible and aperiodic then for all states i, j∣∣∣p(n)
i j −π j

∣∣∣≤ (1−ρ)n/m − 1, (1.84)

where m and ρ are as in (1.83).

Proof Repeat the scheme of the proof of Theorem 1.9.2: we have to assess
P

Y (T > n). But in the finite case, we can write

P
W
(k,l)(T ≤ m) ≥ ∑

u∈I

p(m)
ku p(m)

lu ≥ ρ ∑
u∈I

p(m)
lu = ρ,

i.e.

P
W
(k,l)(T > m) ≤ (1−ρ) for all k, l ∈ I.

Then, by the strong Markov property,

P
W (T > n) ≤ P

W
(

T >
[ n

m

]
m
)
≤ P

W (T > m)[n/m]

and the assertion of Theorem 1.9.3 follows.

An instructive example is as follows

Worked Example 1.9.4 Consider a pack of cards labelled 1,2, . . . , 52. We repeat-
edly take the top card and insert it uniformly at random in one of the 52 possible
places, that is, either on the top or on the bottom or in one of the 50 places inside
the pack. How long on average will it take for the bottom card to reach the top?

Let pn denote the probability that after n iterations the cards are found in increas-
ing order. Show that, irrespective of the initial ordering, pn converges as n → ∞,
and determine the limit p. You should give precise statements of any general results
to which you appeal.

Show that, at least until the bottom card reaches the top, the ordering of cards
inserted beneath it, is uniformly random. Hence or otherwise show that, for all n,

|pn − p| ≤ 52(1+ ln52)/n.
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Solution Label the places 1,2, . . . , 52 where 1 is bottom. Suppose the bottom card
has reached place m. Then the top card is inserted below it with probability m/52.
The expected time until this happens satisfies

km = 1+
(

1− m
52

)
km,

with km = 52/m. Then the total expected time to reach the top equals

k1 + · · ·+ k51 = 52

(
1+

1
2

+ · · ·+ 1
51

)
.

The card ordering performs a Markov chain on the set of permutations S52 (the
permutation group). The chain is aperiodic, as the top card may be replaced at the
top. The chain is also irreducible as it always can be brought to increasing order,
by repeatedly inserting the top card at the bottom until the bottom becomes 1, then
inserting the top card in place 2, etc. By symmetry, the uniform distribution on S52

is invariant.

Hence, by the theorem that for an irreducible aperiodic Markov chain (Xn) with
equilibrium distribution π = (πi), lim

n→∞
P(Xn = j) = π j for all j, we have

lim
n→∞

pn = p =
1

(52)!
.

Finally, suppose we have inserted k cards beneath the original bottom card, and
these are ordered equiprobably at random. When the next card is inserted beneath
the bottom card it is equally likely to go in each of the k + 1 places. That is, the
k +1 cards will still be ordered randomly. This applies inductively until k = 51.

Then let T be the time the bottom card reaches the top. The pack is ran-
domly ordered at time T +1. By the strong Markov property it remains so at time
(T +1)∨n = max

[
T +1,n

]
. Therefore,

|pn − p| =
∣∣P(increasing at time n

)
−P
(
increasing at (T +1)∨n

)∣∣
≤ P(T ≥ n) ≤ 1

n
ET =

52
n

(
1+

1
2

+ · · ·+ 1
51

)
≤ 52

n

(
1+ ln52

)
.

What I say is, patience.
And shuffle the cards.

M de Cervantes (1547–1661), Spanish writer
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Remark 1.9.5 For a transient or null recurrent irreducible aperiodic chain, the
matrix Pn converges to a zero matrix:

lim
n→∞

Pn = O.

We will not give here the formal proof of this assertion. (For a transient case the
proof is based on the fact that the series ∑n≥1 p(n)

ii < ∞.)

The remaining part of this section focusses on long-run or long-time propor-
tions. This is a subject of so-called ergodic theorems which study time averages
along trajectories of random processes (in our situation, Markov chains). One of the
striking phenomena here is the fact that, under certain irreducibility-type assump-
tions, limiting time averages coincide with expected values relative to equilibrium
distributions. The latter can be considered as space averages (i.e. averages over
state space I). Thus, the above fact can be phrased as ‘the long-run time-average
equals the space average’; this is a formal expression of a ‘mixing property’ of a
random process (in fact, there exists an entire hierarchy of such properties). Mix-
ing properties are believed to be behind many phenomena observed in nature and
in various aspects of human activities. Historically, these properties are connected
with the names of two famous theoretical physicists of the 19th Century, American
J.W. Gibbs (1839–1903), and Austrian L. Boltzmann (1844–1906). Ergodic theo-
rems in turn form the basis of the Ergodic Theory, a well-developed mathematical
discipline embracing a broad spectrum of concepts and methods.

In the long-run proportion we are all dead.
J. Maynard Keynes (1883–1946), British economist

A natural example is as follows.

Definition 1.9.6 Consider the number of visits to state i before time n:

Vi(n) =
n−1

∑
k=0

1(Xk = i) . (1.85)

The limit (if it exists)

lim
n→∞

Vi(n)
n

(1.86)

is called the long-run proportion of the time spent in state i.

More generally, if f : I → R is a function on the state space I, then we consider
the sum

V ( f ,n) =
n−1

∑
k=0

f (Xk) (1.87)



1.9 Convergence to equilibrium. Long-run proportions 77

and the limit

lim
n→∞

V ( f ,n)
n

. (1.88)

Theorem 1.9.7 For all states i ∈ I, the ratio Vi(n)/n converges almost surely:

Pi

(
lim
n→∞

Vi(n)
n

= ri

)
= 1, (1.89)

where

ri =

{
πi, if i is positive recurrent,

0, if i is null recurrent or transient.
(1.90)

Proof First, suppose that state i is transient. Then, as we know, the total number
Vi of visits to i is finite with probability 1. See (1.27), (1.37). Hence, Vi/n → 0 as
n → ∞ with probability 1. As 0 ≤Vi(n)≤Vi, we deduce that Vi(n)/n → 0 as n → ∞
with probability 1.

Now let i be recurrent. Then the times T (1)
i , T (2)

i , . . . between successive returns
to state i are finite with Pi-probability 1. By Theorem 1.8.3, they are IID random
variables, with mean value mi equal to 1/πi in the positive recurrent case and to ∞
in the null recurrent case. Obviously,

T (1)
i + · · ·+T (Vi(n))

i ≥ n,

T
1

T
2

T
3

.  .  .( i)( i)( i)

i

state

T ( i)

i 1V _

1_
iV

( i)
H n

1_n

X n

1
32

4
..
.

( n)

( n)

(n)iV

time

T ( i)
V

i
( n)

time

Fig. 1.15
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but

T (1)
i + · · ·+T (Vi(n)−1)

i ≤ n−1 :

see Figure 1.15. So we can write

1
Vi(n)

(
T (1)

i + · · ·+T (Vi(n)−1)
i

)
≤ n

Vi(n)
≤ 1

Vi(n)

(
T (1)

i + · · ·+T (Vi(n))
i

)
. (1.91)

By Theorem 1.8.4, on an event of Pi-probability 1, the limit lim
n→∞

1
n ∑n

l=1 T (l)
i = mi

holds:

Pi

(
1
n

n

∑
l=1

T (l)
i → mi, as n → ∞

)
= 1. (1.92)

Next, as i is recurrent, the sequence (Vi(n)) increases indefinitely, again on an
event of Pi-probability 1:

Pi
(
Vi(n) ↗ ∞, as n → ∞

)
= 1. (1.93)

Then we can put in (1.92) a summation up to Vi(n), instead of n and, correspond-
ingly, divide by the factor Vi(n):

lim
n→∞

1
Vi(n)

Vi(n)

∑
l=1

T (l)
i = mi.

This relation holds on the intersection of the two aforementioned events of
probability 1, which obviously has again Pi-probability 1. On the same event,

lim
n→∞

1
Vi(n)

Vi(n)−1

∑
l=1

T (l)
i = mi.

In other words, (1.92) and (1.93) together yield

Pi

(
1

Vi(n)

Vi(n)−1

∑
l=1

T (l)
i → mi and

1
Vi(n)

Vi(n)

∑
l=1

T (l)
i → mi, as n → ∞

)
= 1. (1.94)

But then, owing to (1.91), still on the same intersection of two events of
Pi-probability 1, the ratio n/Vi(n) tends to mi, i.e. the inverse ratio Vi(n)/n
tends to ri = 1/mi. This gives (1.89), (1.90) and completes the proof of
Theorem 1.9.7.

Remark 1.9.8 A careful analysis of the proof of Theorem 1.9.7 shows that if P is
irreducible and positive recurrent, then we can claim that in (1.89) the probability
distribution Pi can be replaced by P j, or, in fact, by the distribution P generated by

an arbitrary initial distribution λ . This is possible because sums T (1)
i + · · ·+ T (n)

i
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still behave asymptotically as if the RVs T (l)
i were IID. (In reality, the distribution

of the first RV, T (1)
i = Ti = Hi

1, will be different and depend on the choice of the
initial state.)

Theorem 1.9.9 Let P be a finite irreducible transition matrix. Then, for any initial
distribution λ and a bounded function f on I,

P

(
lim
n→∞

V ( f ,n)
n

= π( f )
)

= 1, (1.95)

where

π( f ) = ∑
i∈I

πi f (i). (1.96)

Proof The proof of Theorem 1.9.9 is a refinement of that of Theorem 1.9.7. More
precisely, (1.95) is equivalent to

P

(
lim
n→∞

∣∣∣∣V ( f ,n)
n

−π( f )
∣∣∣∣= 0

)
= 1.

In other words, we have to check that on an event of P-probability 1,∣∣∣∣V ( f ,n)
n

−π( f )
∣∣∣∣→ 0, as n → ∞. (1.97)

Writing V ( f ,n) = ∑i∈I Vi(n) f (i) and π( f ) = ∑i∈I πi f (i), we can transform and
bound the left-hand side in (1.97) as follows∣∣∣∣V ( f ,n)

n
−π( f )

∣∣∣∣=
∣∣∣∣∣∑i∈I

(
Vi(n)

n
−πi

)
f (i)

∣∣∣∣∣≤ ∑
i∈I

∣∣∣∣Vi(n)
n

−πi

∣∣∣∣ ∣∣ f (i)∣∣.
We know that, for all i ∈ I, on an event of Pi-probability 1, Vi(n)/n → πi. Remark
1.9.5 allows us to claim convergence Vi(n)/n → πi on an event of P j-probability 1
(that is, regardless of the choice of the initial state), or, even stronger, on an event
of P-probability 1, where P is the distribution of the (λ ,P) Markov chain with any
initial distribution λ . Then (1.95) follows, which completes the proof.

Worked Example 1.9.10 Describe the long-time behaviour of discrete time
Markov chains on a finite state space. What about the convergence of probabilities,
or almost-sure behaviour? Explain what happens when the chain is not irreducible.

Solution The state space splits into open classes O1, . . .,O j and closed classes
Cj+1, . . .,Cj+l . If l = 1 (a unique closed class), it is irreducible. Starting from
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an open class, say Oi, we end up in closed class Ck with probability hk
i . These

probabilities satisfy

hk
i =

j+l

∑
r=1

p̂irh
k
r .

Here, p̂ir is the probability that we exit class Oi to class Or or Cr, and for r = j +1,
. . . , j + l: hk

r = δr,k.
The chain has a single ED π(r) concentrated on Cr, r = j +1, . . . , j + l (hence, a

unique ED when l = 1). Furthermore, any ED is a mixture of the EDs π(r).
Starting in Cr, we have, for any function f on Cr,

1
n

n

∑
t=0

f (Xt) → ∑
i∈Cr

π(r)
i f (i) almost surely.

Moreover, in the aperiodic case (where gcd {n : p(n)
aa > 0} = 1 for some a ∈ Cr),

for all i0 ∈Cr,

P(Xn = i|X0 = i0) → πr
i ,

and the convergence is with geometric speed.

1.10 Detailed balance and reversibility

Reversal of Time, Reversal of Fortune
(From the series ‘Movies that never made it to the Big Screen’.)

Let (X0,X1, . . .) be a Markov chain and fix N ≥ 1. What can we say about the time
reversal of (Xn), i.e. the family (XN−n, n = 0,1, . . . ,N) = (XN ,XN−1, . . . ,X0)?

Theorem 1.10.1 Let (Xn) be a (π,P) Markov chain where π = (πi) is an equilib-
rium distribution for P with πi > 0 for all i ∈ I. Then: (a) for all N ≥ 1, the time
reversal (XN ,XN−1, . . . ,X0) is a (π, P̂) Markov chain where P̂ = (p̂i j) has

p̂i j =
π j

πi
p ji. (1.98)

(b) If P is irreducible then so is P̂.

Proof (a) First, observe that P̂ is a stochastic matrix; that is, p̂i j ≥ 0 and

∑
j

p̂i j =
1
πi

∑
j

π j p ji =
1
πi

πi = 1.
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Next, π is P̂-invariant:

∑
i

πi p̂i j = ∑
i

π j p ji = π j ∑
i

p ji = π j.

Now pull the factor π• through the product

P(XN = iN , . . . ,X0 = i0) = P(X0 = i0, · · · ,XN = iN)

= πi0 pi0i1 · · · piN−1iN

= p̂i1i0πi1 · · · piN−1iN

= p̂i1i0 p̂i2i1πi2 · · ·
= p̂i1i0 · · · p̂iN iN−1πiN

= πiN p̂iN iN−1 · · · p̂i1i0 .

We see that (XN−n) is a (π, P̂) Markov chain.
(b) If P is irreducible then any pair of states i, j is connected; that is, there exists

a path i = i0, i1, . . . , in = j with

0 < pi0i1 · · · pin−1in = (1/πi0)πi0 pi0i1 · · · pin−1in

= (1/πi0)p̂i1i0πi1 · · · pin−1in = · · ·
= (1/πi0)p̂i1i0 · · · p̂inin−1πin .

So, p̂i1i0 · · · p̂inin−1 > 0, and j, i are connected in P̂.

The case where chain (XN−n) has the same distribution as (Xn) is of a particular
interest.

Theorem 1.10.2 Let (Xn) be a Markov chain. The following properties are
equivalent:

(i) for all n ≥ 1 and states i0, . . ., in,

P(X0 = i0, . . . ,Xn = in) = P(X0 = in, . . . ,Xn = i0). (1.99)

(ii) The chain (Xn) is in equilibrium, i.e. (Xn)∼ (π,P) where π is an equilibrium
distribution for P, and

πi pi j = π j p ji for all states i, j ∈ I. (1.100)

Proof (i) ⇒ (ii). Take n = 1,

P(X0 = i,X1 = j) = P(X0 = j,X1 = i),

and sum over j

∑
j

P(X0 = i,X1 = j) = P(X0 = i) = λi,
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∑
j

P(X0 = j,X1 = i) = P(X1 = i) = (λP)i .

So, λi = (λP)i for all i, i.e., λP = λ . Hence, the chain is in equilibrium: λ = π .
Next, for all i, j,

P(X0 = i,X1 = j) = πi pi j = P(X0 = j,X1 = i) = π j p ji.

(ii) ⇒ (i). Write

P(X0 = i0, . . . ,Xn = in) = πi0 pi0i1 · · · pin−1in

and use (1.100) to pull π• through the product

πi0 pi0i1 · · · pin−1in = pi0i1πi1 · · · pin−1in = · · ·
= pi0i1 · · · pinin−1πin

= πin pinin−1 · · · pi0i1

= P(X0 = in, . . . ,Xn = i0).

Definition 1.10.3 A Markov chain (Xn) satisfying (1.99) is called reversible.
Equations (1.100) are called detailed balance equations (DBEs).

So, the assertion of Theorem 1.10.2 reads: a Markov chain is reversible if and
only if it is in equilibrium, and the DBEs are satisfied.

DBEs are a powerful tool for identification of an ED.

Theorem 1.10.4 If λ and P satisfy the DBEs

λi pi j = λ j p ji, i, j ∈ I,

then λ is an ED for P, that is λP = λ .

Proof Sum over j:

λi ∑
j

pi j = λi,

∑
j

λ j p ji = (λP)i.

The two expressions are equal for all i, hence the result.

So, for a given matrix P, if the DBEs can be solved (that is, a probability distri-
bution that satisfies them can be found), the solution will give an ED. Furthermore,
the corresponding Markov chain will be reversible.
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An interesting and important class of Markov chains is formed by random walks
on graphs. We have seen examples of such chains: a birth-death process (a RW
on Z

1 or its subset), a RW on a plane square lattice Z
2 and, more generally, a

RW on a d-dimensional cubic lattice Z
d . A feature of these examples is that a

wandering particle can jump to any of its neighbouring sites; in the symmetric case,
the probability of each jump is the same. This idea can be extended to a general
graph, with directed or non-directed links (edges). Here, we focus on non-directed
graphs; a graph is understood as a collection G of vertices some of which are joined
by non-directed edges, or links, possibly several. Non-directed here means that the
edges can be traversed in both directions; sometimes it’s convenient to think that
each edge is formed by a pair of opposite arrows.

A graph is called connected if any two distinct vertices are connected with a path
formed by edges. The valency vi of a vertex i is defined as the number of edges at
i. The connectedness vi j is the number of edges joining vertices i and j. These
features are illustrated in Figure 1.16.

The RW on a graph has the following transition matrix P = (pi j):

pi j =

{
vi j
/

vi, if i and j are connected,

0, otherwise.
(1.101)

The matrix P is irreducible if and only if the graph is connected. The vector v = (vi)
satisfies the DBEs. That is, for all vertices i, j,

νi pi j = vi j = v j p ji, (1.102)

and hence ν is P-invariant. We obtain the following straightforward result.

Theorem 1.10.5 The RW on a graph with transition matrix P of the form (1.101),
is always positive or null recurrent. It is positive recurrent if and only if the total
valence ∑i vi < ∞, in which case π j = v j

/
∑i vi is an equilibrium distribution.

Furthermore, the chain with equilibrium distribution π is reversible.
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A simple but popular example of a graph is an �-site segment of a one-
dimensional lattice: here the valency of every vertex equals 2, except for the
endpoints where the valency is 1. See Figure 1.17.

An interesting class is formed by graphs with a constant valency: vi ≡ v; again
the simplest case is v = 2, where � vertices are placed on a circle (or on a perfect
polygon or any closed path). See again Figure 1.17. A popular example of a graph
with a constant valency is a fully connected graph with a given number of vertices,
say {1, . . . ,m}: here the valency equals m−1, and the graph has m(m−1)/2 (non-
directed) edges in total. See Figure 1.18.

Another important example is a regular cube in d dimensions, with 2d vertices.
Here the valency equals d, and the graph has d2d−1 (still non-directed) edges
joining neigbouring vertices. See Figure 1.19.
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Popular examples of infinite graphs of constant valency are lattices and trees.
In the case of a general finite graph of constant valency vi = v for any vertex i,

the sum ∑i vi equals v× |G| where |G| is the number of vertices. Then probabili-
ties pi j = p ji = vi j/v, for all neighbouring pairs i, j. That is, the transition matrix
P = (pi j) is Hermitian: P = PT. Furthermore, the equilibrium distribution π = (πi)
is uniform: πi = 1/|G|.

In Linear Algebra courses, it is asserted that a (complex) Hermitian matrix has
an orthonormal basis of eigenvectors, and its eigenvalues are all real. This handy
property is nice to retain whenever possible. For a DTMC, even when P is origi-
nally non-Hermitian, it can be ‘converted’ into a Hermitian matrix by changing the
scalar product. We will explore further this avenue in Sections 1.12–1.14.

Time present and time past
Are both perhaps present in the future,
And time future contained in time past.
T.S. Eliot (1888–1965), American poet

Worked Example 1.10.6 (i) We are given a finite set of airports. Assume that
between any two airports, i and j, there are ai j = a ji flights in each direction on
every day. A confused traveller takes one flight per day, choosing at random from
all available flights. Starting from i, how many days on average will pass until the
traveller returns again to i? Be careful to allow for the case where there may be no
flights at all between two given airports.

(ii) Consider the infinite tree T with root R, where for all m ≥ 0, all vertices at
distance 2m from R have degree 3, and where all other vertices (except R) have
degree 2. Show that the random walk on T is recurrent.

Solution (i) Let X0 = i be the starting airport, Xn the destination of the nth flight,
and I denote the set of airports reachable from i. Then (Xn) is an irreducible Markov
chain on I, so the expected return time to i is given by (1/πi), where π is the unique
equilibrium distribution. We will show that 1/πi = ∑ j,k∈I a jk

/
∑k∈I aik .

In fact,

p jk =
a jk

∑
l∈I

a jl
and

(
∑
l∈I

a jl

)
p jk =

(
∑
l∈I

akl

)
pk j.

So the vector v = (v j) with v j = ∑l∈I a jl is in detailed balance with P. Hence

π j = ∑
k∈I

a jk

/
∑

k,l∈I

akl.



86 Discrete-time Markov chains

(ii) Consider the distance Xn from the root R at time n. Then (Xn)n≥0 is a birth-death
Markov chain with transition

qi = pi = 1/2, if i �= 2m,

qi = 1/3, pi = 2/3, if i = 2m.

By a standard argument for hi = Pi(hit 0) we have

h0 = 1, hi = pihi+1 +qihi−1, i ≥ 1,

piui+1 = qiui, ui = hi−1 −hi,

ui+1 =
qi

pi
ui = γiu1, γi =

qi · · ·q1

pi · · · p1
,

and

u1 + · · ·+ui = h0 −hi,hi = 1−A(γ0 + · · ·+ γi−1).

The condition ∑i γi = ∞ forces A = 0 and hence hi = 1 for all i. Here,

γ2m−1 = 2−m,

so ∑i γi = ∞ and the walk is recurrent.

DBEs are convenient tools for finding an equilibrium distribution: if a measure
λ ≥ 0 is in detailed balance with P and has ∑i λi < ∞, then π j = λ j/∑i λi is an
equilibrium distribution.

Worked Example 1.10.7 Suppose that π = (πi) forms an ED for the transition
matrix P = (pi j), with πP = π , but that the DBEs (1.100) are not satisfied. What is
the time reversal of the chain (Xn) in equilibrium?

Solution Assume, for definiteness, that P is irreducible, and πi > 0 for all i ∈ I.
The answer comes out after we define the transition matrix PTR = (pTR

i j ) by

πi p
TR
i j = π j p ji, i, j ∈ I, (1.103)

or

pTR
i j =

π j

πi
p ji, i, j ∈ I. (1.104)

Equations (1.103), (1.104) indeed determine a transition matrix, as, for all i, j ∈ I,

pTR
i j ≥ 0, and ∑

j∈I

pTR
i j =

1
πi

∑
j∈I

π j p ji =
1
πi

πi = 1.
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Next, π gives an ED for PTR: for all j ∈ I,

∑
i∈I

πi p
TR
i j = ∑

i∈I

π j p ji = π j.

Then, repeating the argument from the proof of Theorem 1.10.1, we obtain that for
all N ≥ 1, the time reversal (XN−n, 0 ≤ n ≤ N) is a DTMC in equilibrium, with
transition matrix PTR and the same ED π . Symbolically,

(XTR
n ) ∼

(
π,PTR)−DTMC, (1.105)

where (XTR
n ) = (XN−n) stands for the time reversal of (Xn).

It is instructive to remember that PTR was proven to be a stochastic matrix
because π is an ED for the original transition matrix P while the proof that π is
an ED for PTR used only the fact that P is stochastic.

Example 1.10.8 The detailed balance equations have a useful geometric meaning.
Consider the state space I = {1, . . . ,s}. The matrix P generates a linear transfor-

mation R
s → R

s, where the vector x =

⎛⎜⎝x1
...

xs

⎞⎟⎠ is taken to be Px. Assuming that P

is irreducible, let π be the ED, with πi > 0, i = 1, . . . ,s. Consider a ‘tilted’ scalar
product 〈 · , · 〉π in R

s, where

〈x,y〉π =
s

∑
i=1

xiyiπi. (1.106)

Then the detailed balance equations (1.100) mean that P is self-adjoint (or
Hermitian) relative to the scalar product 〈 · , · 〉π . That is,

〈x,Py〉π = 〈Px,y〉π , x,y ∈ R
s. (1.107)

In fact,

〈x,Py〉π = ∑
i, j

xi pi jy jπi = ∑
i, j

xi p jiy jπ j = 〈Px,y〉π .

The converse is also true: equation (1.107) implies (1.100), since we can take as
x and y the vectors δ i and δ j with the only non-zero entries being 1 at positions i
and j, respectively, for all i, j = 1, . . . ,s.

This observation yields a benefit, since Hermitian matrices have all eigenvalues
real, and their eigenvectors are mutually orthogonal (relative to the scalar product
in question – in this instance, 〈 · , · 〉π ). We will use this in Section 1.12.

Remark 1.10.9 The concept of reversibility and time reversal will be particularly
helpful in a continuous-time setting of Chapter 2.
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(I.1) For h j
i = Pi(hit j) the equations are

h j
j = 1, h j

i = ∑
l∈I

pilh
j
l = (h jPT)i, i �= j,

where
h j = (h j

i , i ∈ I), with h j
j = 1.

Here, h j
i ≡ 1 is always a solution

1PT = 1, as (1PT)i = ∑
l

pil = 1 for all i ∈ I.

(I.2) For k j
i = Ei(time to hit j) the equations are

k j
j = 0, k j

i = 1+ ∑
l∈I, l �= j

pilk
j
l = 1+(k jPT)i, i �= j.

where
k j = (k j

i , i ∈ I), with k j
j = 0.

Here, taking 0 ·∞ = 0, we have k j
i = (1−δi j)∞ is always a

solution when the chain is irreducible.
These equations are produced by conditioning on the first jump.
The vectors h j and k j are labelled by the terminal states while
their entries h j

i and k j
i indicate the initial states The solution

we look for is identified as a minimal non-negative solution
satisfying the normalisation constraints h j

j = 1 and k j
j = 0.

(II.1) For
γk

i = Ek(time spent in i before returning to k)
the equations are

γk
k = 1, γk

i = ∑
l

γk
l pli, i �= k,

or
γk = γkP, when k is recurrent.

Here, conditioning is on the last jump, and the vectors γk are
labelled by starting states. The identification of the solution
is by the conditions γk

i ≥ 0 and γk
k = 1.

(II.2) Similarly, for an equilibrium distribution
(or more generally, an invariant measure),

π = πP.
The identification here is through the condition πi ≥ 0 and
∑i πi = 1.

(II.3) A solution to the detailed balance equations
πi pi j = π j p ji,

always produces an invariant measure. If in addition,
∑i πi = 1, it gives an equilibrium distribution. As the detailed
balance equations are usually easy to solve (when they have a
solution), they are a powerful tool which is always worth trying
when you need to find an equilibrium distribution.

Table 1.2
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It is now time to give a brief summary of essential results established so far
about the various equations emerging in the analysis of DTMCs. We have seen two
sets of equations: (I) for hitting probabilities hA

i and mean hitting times kA
i ; and

(II) for equilibrium distributions π = (πi) and expected times γk
i spent in state i

before returning to k. Although they are in a sense similar, there are also differences
between them which are important to remember. These are listed in Table 1.2.

1.11 Controlled and partially observed Markov chains

The Crying Control Theory
(From the series ‘Movies that never made it to the Big Screen’.)

We begin this section with a popular example of a controlled Markov chain.

Worked Example 1.11.1 Let m � 1 distinct objects be inspected in a random
order, one at a time, without return. One wishes to select the best object but can’t
take any previously rejected. By introducing a suitable Markov chain, argue that
your optimal strategy is to reject the initial k objects then take the first one better
than anything seen before and determine k = k(m). Check that m/k ≈ e for m large.

Solution Set X0 = 1 and

X1 =

⎧⎪⎨⎪⎩
m+1, if the first object is the best,

i, if the ith object is the first one to be better than

anything before,

X2 =

⎧⎪⎨⎪⎩
m+1, if the first or the X1th object is the best,

j, if the jth object is the first one after time X1 to be

better than anything before.

In general,

Xr =

⎧⎪⎨⎪⎩
m+1, if Xr−1 = m+1 or the Xr−1st object is the best,

j, if the jth object is the first one after Xr−1 to be

better than anything before.
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Then X1,X2, . . .,Xm =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2
3
...
m

m+1

(and Xn ≡ m+1 for n > m).

Also, Xn+1 > Xn ≥ n if Xn ≤ m, 1 ≤ n ≤ m.
A typical sample trajectory of (Xn) is given in Figure 1.20.

m+1
m

0 1 32 ...... ...

object
index

Fig. 1.20

For (Xn) to be a Markov chain, we should have the lack of memory in conditional
probabilities

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . ,X1 = i1,X0 = 1) = pi j.

With the help of some combinatorics,

P
(
i the (unique) best among {1, . . . , i}

)
=

(i−1)!
i!

=
1
i
,

and

P
(

j the best, i the second best among {1, . . . , j}
)

=
( j−2)!

j!
=

1
j( j−1)

.

Now

p1 j = P1(X1 = j) = P
(

j the best, 1 the second best among {1, . . . , j}
)

= 1
j( j−1) , 1 ≤ j ≤ m,

and

p1m+1 = P1(X1 = m+1) = P
(
1 the overall best

)
=

1
m

.
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Further,

P1
(
X2 = j|X1 = i

)
=

P1
(
X2 = j,X1 = i

)
P1
(
X1 = i

)
=

1

P
(
i the best, 1 the second best, among {1, . . . , i}

)
×P

(
j the best, i the second best, among{1, . . . , j};

1 the second best among{1, . . . , i}
)

=
1/ j( j−1) ·1/(i−1)

1/i(i−1)
=

i
j( j−1)

, 1 ≤ i < j ≤ m,

and

P1
(
X2 = m+1|X1 = i) =

P1
(
X2 = m+1,X1 = i

)
P1
(
X1 = i

)
=

P
(
1 the second best among {1, . . . , i}; i the absolute best

)
P
(
i the best, 1 second best, among {1, . . . , i}

)
=

1/m ·1/(i−1)
1/i(i−1)

=
i
m

, 1 < i ≤ m.

In general, for 1 ≤ i < j ≤ m,

pi j = P1
(
Xn+1 = j

∣∣Xn = i,Xn−1 = in−1, . . . ,X1 = i1
)

=
1/ j( j−1) ·1/(i−1) ·1/(in−1 −1) · · ·1/(i1 −1)

1/i(i−1) ·1/(in−1 −1) · · ·1/(i1 −1)
=

i
j( j−1)

,

for j = m+1:

pim+1 = P1
(
Xn+1 = m+1

∣∣Xn = i,Xn−1 = in−1, . . . ,X1 = i1
)

=
1/m ·1/(i−1) ·1/(in−1 −1) · · ·1/(i1 −1)

1/i(i−1) ·1/(in−1 −1) · · ·1/(i1 −1)
=

i
m

, 1 ≤ i ≤ m,

and, of course, pm+1m+1 = 1. The transition matrix is (m+1)× (m+1):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/1 ·2 1/2 ·3 . . . 1/(m−1)m 1/m
0 0 2/2 ·3 . . . 2/(m−1)m 2/m
0 0 0 . . . 3/(m−1)m 3/m
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1/m (m−1)/m
0 0 0 . . . 0 1
0 0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

1
2
3
...

m−1
m

m+1
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To determine where to stop, consider the decision rule

d( j) =

{
0 continue,

1 stop,
1 ≤ j ≤ m.

We have d(m) = 1, trivially. To set up d(m− 1), recall that state m− 1 means the
(m−1)st object is the best among {1, . . . ,m−1}. The probability that it is the best
overall is pm−1m+1 = (m− 1)/m and is bigger than (m− 1)/m(m− 1) = 1/m =
pm−1m pmm+1, the probability that the mth is the best overall. Hence, d(m−1) = 1.

Similarly, to determine d(m − 2), we compare pm−2m+1 = (m − 2)/m and
pm−2m pmm+1 + pm−2m−1 pm−1m+1 which equals

m−2
m(m−1)

+
m−2

(m−1)(m−2)
· m−1

m
=

m−2
m(m−1)

+
1
m

.

Equivalently, we compare

1 and
1

m−1
+

1
m−2

.

And so on. Clearly,

d(m) = d(m−1) = · · · = d(k +1) = 1, d(k) = · · · = d(1) = 0,

and k = k(m) is determined as the largest value for which

1
k

+ · · ·+ 1
m−1

> 1.

For m large, seek k such that

m∫
k

dy
1
y

= ln
(m

k

)
= 1,

i.e. m/k ≈ e and k ≈ m/e.

It is worth noting that the probability of the successful choice under the optimal
strategy equals 1/e = 0.3678 in the limit m→∞. Indeed, the probability of success,

Popt =
k(m)−1

m

m−1

∑
i=k(m)−1

1
i
≈ k(m)−1

m
ln

(
m−1

k(m)−1

)
≈ 1

e
= 0.3678

as k(m) ≈ m/e.
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Worked Example 1.11.2 Check that the optimal value k = k(m) satisfies the
bounds

m−1/2
e

+
1
2
− 3e−1

2(2m+3e−1)
≤ k ≤ m−1/2

e
+

3
2

.

Solution [Sketch] Use the following inequalities

1 ≤
m−1

∑
j=k−1

1
j
<
∫ m−1/2

k−3/2

dx
x

= ln

[
m−1/2
k−3/2

]
, (1.108)

and

1 ≥
m−1

∑
j=k

1
j
>
∫ m

k

dx
x

+
1
2

(
1
k
− 1

m

)
. (1.109)

Observe that bound (1.108) implies that

k <
m−1/2

e
+

3
2
,

whereas (1.109) implies that

e >
m
k

e(1/k−1/m)/2 ≥ m
k

[
1+

1
2

(
1
k
− 1

m

)]
.

Substituting for k its upper bound
m−1/2

e
+

3
2

yields the result.

Remark 1.11.3 Worked Example 1.11.1 is known in the literature as the Sec-
retary Problem. Other names are also used: a dowry problem, a beauty contest
problem and a Googol problem (the name for the number 10100, used long before
Google appeared). It has generated a noticeable literature as the problem provides
a direct challenge and is easy to state. For the historical background and relation to
other known problems, see T.S. Ferguson. “Who solved the secretary problem?”,
Statistical Science, 4 (1989), 282–296; J. Havil. “Optimal Choice”; in Gamma:
Exploring Euler’s Constant, Princeton University Press (2003), 34–138. We men-
tion also the following papers: Y.S. Chow, S. Moriguti, H. Robbins, S.M. Samuel.
“Optimal selection based on relative rank (the ‘Secretary problem’)”, Israel Journ.
Math., 2 (1964), 81–90; J.P. Gilbert, F. Mosteller. “Recognizing the maximum
of a sequence”, Journ. Amer. Statist. Assoc., 61 (1966), 35–73. In the last paper
an asymptotic formula is derived for the mean number of attempts in the above
scheme (that is, mean stopping time). The problem also admits various gener-
alisations, for instance when one takes into account a ‘satisfaction’ value which
attains a maximum when the overall best object had been selected, a value which
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is somewhat less if the selected object is the second in quality, and so on. See T.J.
Stewart. “The secretary problem with an unknown number of options.” Oper. Res.,
29 (1981), 130–145.

I claim not to have controlled events, but
confess plainly that events have controlled me.

A. Lincoln (1809–1865), US President

Worked Example 1.11.4 (The Secretary problem with two choices.) Suppose
two attempts are allowed, and you are successful if the best candidate is among
the two selected. Prove that, asymptotically as m → ∞, the probability of success
is 0.5910.

Solution An argument similar to that used above in Worked Example 1.11.1
shows that the optimal strategy lies within the class of strategies indexed by a
pair of natural numbers (r,s) (thresholds), where 1 < r < s ≤ m. These strate-
gies work as follows. First, we reject r − 1 initial objects. After that, we mark
the first object that is better than everyone earlier, and make a ‘conditional (or
tentative) offer’. This object is called the first candidate, or candidate one. If the
first candidate occurred before round (s− 1), we reject all objects seen after him
but prior to round (s− 1) (included). In this case we wait until an object appears,
after round (s − 1), who is better than everyone before him and select him (of
course, he has to be better than the first candidate). This is called the second
candidate, or candidate two. If candidate two does not appear, the choice goes
to the first candidate. If the first candidate occurred after round s then we sim-
ply wait for a better object, and our choice, naturally, would go to him. In the
absence of the second candidate we are forced to accept candidate one, and if
the first candidate does not occur then we concede a defeat and do not make
choice.

To compute the probability of success with the threshold strategy (r,s), the event
that the choice is a success is partitioned into three pairwise disjoint events:

(a) the first candidate is the best among all m (in this case the second choice is
not made);

(b) the second candidate is the best among all m, and no choice has been made
before s−1 (included);

(c) the second candidate is the best among all m, and the first choice has been
used in one of the rounds r,r +1, . . . ,s−1.
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It is possible to show that the probability of the events (a), (b) and (c) are

P(a) =

⎧⎪⎨⎪⎩
r−1

m

(
1

r−1
+

1
r

+ · · ·+ 1
m−1

)
, if r > 1,

1
m

, if r = 1,

P(b) =
r−1

m

m

∑
v=s+1

v−1

∑
u=s

1
(u−1)(v−1)

,

P(c) =
s− r

m

m

∑
v=s

1
v−1

.

Remember too that

P
(
success with (r,s)

)
= P(a)+P(b)+P(c).

We evaluate in detail only the probability P(b): this case is the most involved.
Every term in the sum in the right-hand side for P(b) can be written as

r−1
u−1

× 1
u
× u

v−1
× 1

m
= P(I)×P(II)×P(III)×P(IV).

Here

P(I) = P
(
no candidate appears between rounds r and u−1

)
,

P(II) = P
(
a candidate appears in round u

)
,

P(III) = P
(
no candidate appears between u+1 and v−1

)
,

P(IV) = P
(
a global leader occurs in round v

)
.

The above formulas are computationally rather cumbersome. However, assume
that m and r are large (and hence so is s). Then

P(a) ≈ r−1
m

ln

(
m−1
r−2

)
.

Next, applying a similar approximation to the internal sum in the expression for
P(b), we get

P(b) ≈ r−1
m

m

∑
v=s+1

1
v−1

ln

(
v−2
s−2

)
.

Replacing the sum by an integral, we get that

P(b) ≈ r
m

∫ m

s

1
v

ln
(v

s

)
dv ≈ r

2m

(
ln

m
s

)2
.

The similar approximation for P(c) is that P(c) ≈
(

s− r
m

)
ln

m
s
.
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To find the asymptotic optimal value of r and s, set r = αm and s = βm and
maximise in 0 ≤ α ≤ β ≤ 1. Then

P
(
success with (r,s)

)
≈ α ln(1/α)+(α/2)

[
ln(1/β )

]2 +(β −α) ln(1/β ).

Differentiating with respect to α and β and equating the derivatives to zero, we get
two pairs of roots. One pair gives β ∗ = e−1, and α∗ = e−3/2, with the optimal value
≈ e−1 + e−3/2 ≈ 0.5910.

The other pair of roots yields α = β = e−
√

2, which gives the best probability
under a strategy with (s−r)/m≈ 0. For m large it yields the value ≈ e−

√
2
(√

2+1
)

≈ 0.5860. This is only marginally worse than the first pair (which is an overall
optimum).

For finite m the computations may be done numerically. In the table below the
optimal r and s and the corresponding probabilities of success are listed for m =
5,10,20, . . . ,100,∞ :

m ropt sopt Popt

5 2 3 0.70833
10 3 4 0.64632
20 5 8 0.61781
30 7 12 0.60829

m ropt sopt Popt

40 10 16 0.60386
50 12 19 0.60143
100 23 38 0.59617
∞ m/e3/2 m/e 0.59100

We now pass to partially observed chains.

Worked Example 1.11.5 (i) Let J be a proper subset of the finite state space I of
an irreducible Markov chain (Xn), whose transition matrix P is partitioned as

P =
(

PJJ PJI\J

PI\JJ PI\JI\J

)
.

If only visits to states in J are recorded, we see a J-valued Markov chain (X̃n);
show that its transition matrix is

P̃ = PJJ +PJI\J ∑
n≥0

(
PI\JI\J

)n
PI\JJ

= PJJ +PJI\J
(

II\J −PI\JI\J
)−1

PI\JJ,

where II\J is the unit matrix with rows and columns labeled by i, j ∈ I \ J.

(ii) The local MP Bill Sykes spends his time in London in the House of Com-
mons (C), in his flat (F), in the bar (B) or with his girlfriend (G). Each hour, he
moves from one to another according to the transition matrix P, though his wife
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(who knows nothing of his girlfriend) believes that his movements are governed by
transition matrix PW :

P =

⎛⎜⎜⎝
C F B G

C 1/3 1/3 1/3 0
F 0 1/3 1/3 1/3
B 1/3 0 1/3 1/3
G 1/3 1/3 0 1/3

⎞⎟⎟⎠, PW =

⎛⎝
C F B

C 1/3 1/3 1/3
F 1/3 1/3 1/3
B 1/3 1/3 1/3

⎞⎠.

The public only sees Bill when he is in J = {C,F,B}; calculate the transition matrix
P̃ which they believe controls his movements.

Each time Bill moves, in the public eye, to a new location, he calls his
wife’s mobile phone number; write down the transition matrix that governs the
sequence of locations from which the public Bill phones, and calculate its invariant
distribution.

Bill’s wife notes down the location of each of his calls, and is getting suspicious –
he does not come to his flat often enough. Confronted, Bill swears his fidelity and
resolves to dump his troublesome transition matrix, choosing instead

P∗ =

⎛⎜⎜⎝
C F B G

C 1/4 1/4 1/2 0
F 1/2 1/4 1/4 0
B 0 3/8 1/8 1/2
G 2/10 1/10 1/10 6/10

⎞⎟⎟⎠
and still insisting that his moves are governed by PW . Will this deal with his wife’s
suspicions? Explain your answer.

Solution (i) Compare with Example 1.4.4. To verify that P̃ = PJJ + PJI\J(I −
PI\JI\J)−1PI\JJ , write

P

(
X̃1 = j

∣∣X̃0 = i
)

= pi j + ∑
n≥2

P
(
Xn = j, Xr �∈ J for r = 1, . . . ,n−1

∣∣X0 = i
)

= pi j + ∑
n≥0

∑
k �∈J

∑
l �∈J

pik
[
(PI\JI\J)n

]
kl pl j, i, j ∈ J.

(ii) By the first part, with J = {C,F,B}, we have

P̃ = PJJ +PJI\J(I−PI\JI\J)−1PI\JJ =

⎛⎝1/3 1/3 1/3
1/6 1/2 1/3
1/2 1/6 1/3

⎞⎠ .
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Next, the transition matrix for calls from C, F and B is⎛⎝ 0 1/2 1/2
1/3 0 2/3
3/4 1/4 0

⎞⎠ ;

its invariant distribution π = (πC,πF ,πB) satisfies

πC =
1
3

πF +
3
4

πB, πF =
1
2

πC +
1
4

πB, πB =
1
2

πC +
2
3

πF ,

and is uniquely determined

π =
(

4
11

,
3
11

,
4

11

)
.

Now, with P∗,

P̃∗ =

⎛⎝1/4 1/4 1/2
1/2 1/4 1/4
1/4 1/2 1/4

⎞⎠ ,

the invariant distribution for P̃∗ is

π∗ =
(

1
3
,
1
3
,
1
3

)
.

In other words, on average he is spending equal time in each of public states C, F
and B.

However, his wife can observe the following differences from PW :

(a) calls from B following calls from C are twice as frequent as calls from B
following calls from F ,

(b) he will phone on average 50/71 > 2/3 of the time whereas with PW it would
be 2/3. However, the difference is small and this method is not very practical.
Indeed, the invariant distribution π∗ = (π∗

C,π∗
F ,π∗

B,π∗
G) for P∗ obeys π∗P∗ = π∗, i.e.

π∗
C = π∗

C/4+π∗
F/2+π∗

G/5, i.e. π∗
C/4 = π∗

F/2+π∗
G/5,

π∗
F = π∗

C/4+π∗
F/4+π∗

B/8+π∗
G/10, i.e. π∗

F/4 = π∗
C/4+π∗

B/8+π∗
G/10,

π∗
B = π∗

C/2+π∗
F/4+π∗

B/8+π∗
G/10, i.e. π∗

B/8 = π∗
C/2+π∗

F/8+π∗
G/10,

π∗
G = π∗

B/2+π∗
G/5, i.e. π∗

G/5 = π∗
B/2.

It is again uniquely determined:

π∗
C =

28
71

, π∗
F =

34
71

, π∗
B =

4
71

, π∗
G =

5
71

.
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Hence, in the long term, the frequency of calls will be

28
71

× 3
4

+
34
71

× 3
4

+
4

71
× 3

8
+

5
71

× 6
10

=
51
71

.

Who can control his fate?
W. Shakespeare (1564–1616), English playwright and poet

1.12 Geometric algebra of Markov chains, I. Eigenvalues and spectral gaps

Theorem 1.9.3 provides some bounds for the speed of convergence to an equilib-
rium distribution. This theorem shows that the convergence happens exponentially
(or geometrically) fast in n, which is good news. However, the quantity (1−ρ)1/m

in (1.84) can be pretty close to 1, especially if we consider a natural sequence of
Markov chains on increasing state spaces I�.

An example of a situation where such a problem can arise is as follows. Consider
an �× � matrix A with entries ai j equal 0 or 1. The permanent of A is defined like
the determinant, but with signs omitted:

perA = ∑
σ

�

∏
i=1

aiσ(i)

where σ is a permutation of order �. Then perA equals the number of ‘per-
fect matches’ between points i ∈ {1, . . . , �} labelling the rows and j ∈ {1, . . . , �}
labelling the columns. A popular interpretation is that of a group of � boys and �

girls; the equation ai j = 1 means that girl i and boy j like each other, and ai j = 0
that they do not. Then perA counts the number of partnerships where each partner
in the pair likes the other. This is a computationally hard problem; the best cur-
rently available algorithms for calculating perA take of the order of �2� steps. A
stochastic method of computing perA involves an associated Markov chain, and it
is important to assess how rapidly it converges to its equilibrium distribution for
� large.

Example 1.12.1 Let � be a positive integer and place � points 0,1, . . ., �−1 around
a unit circle at the vertices of a regular �-gon. Consider a random walk (Xn) on
these points, where a particle jumps to one of its nearest neighbour sites with
probability 1/2.
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The transition matrix of this Markov chain

P =

⎛⎜⎜⎝
0 1/2 0 . . . 0 1/2

1/2 0 1/2 . . . 0 0
· · ·

1/2 0 0 . . . 1/2 0

⎞⎟⎟⎠ (1.110)

and has many zeros. In fact, for � even, the whole set of vertices is partitioned into
an ‘even’ subset, We = {0,2, . . . , �−2}, and an ‘odd’, Wo = {1,3, . . . , �−1}. These
form periodic subclasses: i.e., if you start at a vertex from the even subset, you will
be in the odd subset at all odd times and in the even subset at even times. That
is, for � even, the chain (Xn) is periodic, with two subclasses. For � odd, the first
power Pm with all positive entries is when m = �−1. Further, the minimal entry in
P�−1 is 1/2�−1, which gives the probability P0(X�−1 = 1) = P0(X�−1 = �− 1) (as
we can get from 0 to 1 or �− 1 in �− 1 steps only by travelling all the way along
in the corresponding direction).

It is obvious that for all �, the chain is irreducible and has a unique ED

π =
(

1
�
, . . . ,

1
�

)
=

1
�

1T, where 1 =

⎛⎜⎝1
...
1

⎞⎟⎠ . (1.111)

Moreover, P is reversible with this equilibrium distribution.

Thus, for � odd, the right-hand side of (1.84) will take the form(
1− 1

2�−1

)n/(�−1)

≈ exp

(
− n

2�−1(�−1)

)
. (1.112)
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That is, if we want uniformity in convergence when both �,n → ∞, we must ensure
that n

/
(2��) → ∞, i.e. n must grow faster than 2��. Is it a true bound?

To find out the answer, let us employ some algebra. Matrix (1.110) is Hermi-
tian: PT = P. Hence, it has � orthonormal eigenvectors forming a basis in the
�-dimensional real Euclidean space R

� (and the �-dimensional complex Euclidean
space C

�), and its eigenvalues are all real. The eigenvectors can be found by using
the elegant apparatus of a discrete Fourier transform. Namely, consider

ψp( j) =
1√
�

exp

(
2πip

j
�

)
, j, p = 0,1, . . . , �−1. (1.113)

Here j = 0,1, . . . , � − 1 is a discrete argument of these functions, while p =
0,1, . . . , �− 1 is a discrete parameter labeling the functions. Equivalently, we can

think of ψp as vectors from C
�, writing ψp =

⎛⎜⎝ ψp(0)
...

ψp(�−1)

⎞⎟⎠ (the entries here are

indexed by 0, . . ., �−1 instead of the traditional 1, . . ., �, to make the algebra more
transparent). So,

1

||

ψT
p =

(
1√
�

︷ ︸︸ ︷
e2πip·0/�, . . . ,

1√
�

e2πip(�−1)/�

)
, p = 0,1, . . . , �−1; (1.114)
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all our vectors feature the first entry 1/
√

�. So renormalising by this factor ensures
that the vectors are orthonormal:

〈
ψp,ψp′

〉
= δp,p′ =

{
1, p = p′,

0, p �= p′
. (1.115)

To check (1.115), write

〈
ψp,ψp′

〉
=

1
�

�−1

∑
j=0

ψp( j)ψp′( j) =
1
�

�−1

∑
j=0

exp

(
2πi

p− p′

�
j

)
.

When p = p′, the right-hand side is equal to (1/�)∑�−1
j=0 1 = 1. Otherwise, i.e. when

p �= p′, we have the sum of a geometric progression, with the complex denominator
exp [2πi(p− p′)/�]:

〈
ψp,ψp′

〉
=

1
�

exp [2πi(p− p′)�/�]−1
exp [2πi(p− p′)/�]−1

= 0,

as, in the numerator, exp [2πi(p− p′)�/�] = exp[2πi(p− p′)] = 1.

Now, we want to verify that the vectors ψp are eigenvectors of P:

(Pψp)( j) =
1
2

ψp( j−1)+
1
2

ψp( j +1)

=
1

2
√

�

(
e2πip( j−1)/� + e2πip( j+1)/�

)
=

1√
�

cos
(

2π
p
�

)
e2πip j/�

= cos
(

2π
p
�

)
ψp( j). (1.116)

Hence, Pψp = μpψp, and the eigenvalues are

μp = cos
(

2π
p
�

)
, p = 0,1, . . . , �−1. (1.117)

The first eigenvalue μ0 = 1, and the corresponding eigenvector ψ0 =
1√
�

1 is

proportional to the (transpose of the) equilibrium distribution π (compare (1.111)):

πT =
1√
�

ψ0.
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As mentioned before, the change of the normalisation is explained by differences
in requirements: on the one hand, we want ||ψ0||2 = 〈ψ0,ψ0〉 = 1, requiring ψp =
1√
�

1, and on the other, we need ∑ j π j = 〈πT,1〉 = 1, requiring πT =
1
�

1.

Back To The Fourier
(From the series ‘Movies that never made it to the Big Screen’.)

As a matter of fact, one can easily produce real eigenvectors of P (as expected,
since P is a real matrix). Note that the complex conjugate ψp coincides with ψ�−p,
p = 0,1, . . . , �−1. In fact,

ψp( j) =
1√
�

exp

(
−2πip

j
�

)
=

1√
�

exp

(
2πi−2πip

j
�

)
=

1√
�

exp

(
2πi(�− p)

j
�

)
= ψ�−p( j), j = 0,1, . . . , �−1.

The respective eigenvalues coincide: μp = μ�−p, as

cos
(

2π
p
�

)
= cos

(
2π −2π

p
�

)
, p = 0,1, . . . , �−1.

For p = 0 this is trivial, as ψT
0 =

1√
�

1 = ψ0
T is real. If � is even and p = �/2, the

vector ψp is again real: ψp( j) =
1√
�

eπi j = +1 or −1, depending on the parity of

j. In vector notation

ψ�/2 =
1√
�

1a, where 1a =

⎛⎜⎜⎜⎜⎜⎝
1
−1

...
1
−1

⎞⎟⎟⎟⎟⎟⎠ .

In other words, the vector 1a has entries alternating from 1 (for even labels
j = 0,2, . . . , �− 2) to −1 (for odd labels j = 1,3, . . . , �− 1). The corresponding
eigenvalue μ�/2 = cosπ = −1.

So, apart from p = 0 and p = �/2, for even �, the eigenvectors are grouped into
conjugate pairs, with the same eigenvalue. In other words, each of these eigenval-
ues has multiplicity two. Hence, we can produce the following real orthonormal
eigenvectors

1√
2

(ψp +ψp), with entries
2√
2�

cos

(
2π p

j
�

)
, j = 0, . . . , �−1,
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and

1

i
√

2
(ψp −ψp), with entries

2√
2�

sin

(
2π p

j
�

)
, j = 0, . . . , �−1,

where p = 1,2, . . . , �/2 − 1. For our purposes it matters little whether we use
complex or real eigenvectors; what is important is that they form a complete
orthonormal system (a basis).

Why such meticulous (although beautiful) algebra? Because we can represent
(the transpose of) an initial distribution row-vector λ = (λi) as

λ T =
�−1

∑
p=0

〈λ T,ψp〉ψp,

and write the row-vector λPn of probabilities P(Xn = i) as a linear combination:

(
λPn)T =

�−1

∑
p=0

〈λ T,ψp〉
[

cos

(
2π p
�

)]n

ψp. (1.118)

The term with p = 0 on the right-hand side of (1.118) has the cosine factor 1 and
is equal to

〈λ T,ψ0〉ψ0 =
1
�
〈λ T,1〉1 =

1
�

1 = πT, as 〈λ T,1〉 = ∑
i

λi = 1.

All other terms comprise factors μn
p = [cos(2π p/�)]n; if � is odd, all μp with p �= 0

lie strictly between −1 and 1 and hence the rest of the sum on the right-hand side
of (1.118) is suppressed as n → ∞:

(λPn)T ≈ πT, or λPn ≈ π. (1.119)

If � is even, we should also count the term with p = �/2: it comprises the cos
factor (−1)n and equals

1√
�
〈λ T,ψ�/2〉(−1)nψ�/2 =

1
�
〈λ T,1a〉 1a.

The last expression can be rewritten as(
Λev −Λod)αT, where Λev = ∑

i even
λi, Λod = ∑

i odd

λi, and αT =
1
�

1a.

In this case all μp with p �= 0, �/2 lie strictly between −1 and 1, and their
contribution is suppressed:(

λPn)T ≈ πT +(−1)n(Λev −Λod)αT, or λPn ≈ π +(−1)n(Λev −Λod)α .

(1.120)
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Note that Λev + Λod = 〈λ T,1〉 = 1, and for λ = π , the invariant distribution,
Λev = Λod = 1/2 (cancelling the difference Λev−Λod). On the other hand, suppose
that Λev = 1 and Λod = 0; i.e., the initial distribution λ is concentrated on the even
subclass. Then, for n even,

(
λPn)T ≈ 2

�
1ev, where 1ev =

⎛⎜⎜⎜⎜⎜⎝
1
0
...
1
0

⎞⎟⎟⎟⎟⎟⎠ .

In other words, if � is even and λ is concentrated on the even periodic subclass,
then, as n = 2N → ∞, the vector

(
λPn

)T
approaches a uniform distribution on

the even subclass. Similarly, as n = 2N + 1 → ∞, the vector
(
λPn

)T
approaches

a uniform distribution on the odd periodic subclass. The picture for � even and λ
concentrated on the odd subclass is symmetric.

Now we can assess the speed of convergence of the approximations in (1.119)
and (1.120) quite accurately. It is convenient to introduce a ‘spectral gap’ measur-
ing the distance from the points ±1 to the absolute values of the μps:

δ (�) = min
[∣∣1−|λp|

∣∣ : p = 1,2, . . . with 2p < �
]
.

Then, for � odd, δ (�) is attained at p = (�±1)/2:

δ (�) = 1+ cos(π(�±1)/�) =
π2

2�2 +O(1/�4), (1.121)

and (
λPn)T = πT +O(�e−nδ (�)

), or λPn = π +O(�e−nδ (�)
). (1.122)

In other words, we have convergence to equilibrium as �→ ∞ if n grows faster than
�2 ln�. This is much less stringent a restriction, compared with (1.112).

Similarly, for � even, δ (�) is attained at p = 1 and p = �/2±1:

δ (�) = 1− cos(2π/�) = 1+ cos(π ±2π/�) ≈ 2π2

�2 +O(1/�4), (1.123)

and

λPn = π +(−1)n(Λev −Λod)α +O(�e−nδ (�)
), (1.124)

which requires the same order of growth of n with �.
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It is instructive to have a look at the matrix L = I−P:

L = I−P =

⎛⎜⎜⎝
1 −1/2 0 . . . 0 −1/2

−1/2 1 −1/2 . . . 0 0
· · ·

−1/2 0 0 . . . −1/2 1

⎞⎟⎟⎠ . (1.125)

This acts on the vector ψ =

⎛⎜⎝ ψ0
...

ψ�−1

⎞⎟⎠ via

(Lψ)i = ψi −
1
2

(ψi−1 mod� +ψi+1 mod�) , i = 0,1, . . . , �−1, (1.126)

which can be viewed as a discrete version of the second derivative map (with the
minus sign and the coefficient 1/2 in front):

−1
2

d2

dx2 : f (x) �→ −(1/2) f ′′(x). (1.127)

The expression (1.127) defines a linear map on the space of twice-differentiable
functions f (x), on the real line R or on an interval, say [0,2π]. In the latter case,
one usually considers the action of the map on functions satisfying a boundary
condition, say, f (0) = f (2π) and f ′(0) = f ′(2π); this means that the endpoints 0
and 2π are ‘merged’, and the interval is turned into a unit circle. In our example,



1.12 Geometric algebra of Markov chains, I 107

by considering points mod�, we merge vertices 0 and �. In the multi-dimensional
case, where functions depend on the variables x1, . . .,xd , we replace (1.127) by

f (x1, . . . ,xd) �→ −1
2

d

∑
k=1

∂ 2

∂x2
k

f (x1, . . . ,xd). (1.128)

This is called the Laplace operator, or the Laplacian; a standard notation used for
the right-hand side is −(1/2)Δ f (x1, . . . ,xd).

For these reasons, we call the matrix L in (1.125) the discrete Laplacian on
the unit circle. From the definition we see that L is Hermitian. Moreover, the
eigenvectors of L are precisely ψ0, . . . , ψ�−1, and the eigenvalues are of the form
βp = 1−μp:

βp = 1− cos
(

2π
p
�

)
, p = 0,1, . . . , �−1. (1.129)

Note that β0 = 0 and β1 = 1 − μ1, the distance from μ0 = 1 to the rest of the
eigenvalues of P. As all eigenvalues βp ≥ 0 (and βp > 0 for p ≥ 1), the matrix L
is non-negative definite. The discrete Laplacian will be studied in more detail in
Section 1.14.

μ And �’s Wedding
(From the series ‘Movies that never made it to the Big Screen’.)

Example 1.12.2 (The classical Ehrenfest urn problem) Suppose we have d distinct
objects (for instance, balls with numbers 1, . . . ,d) all of which are painted black and
white. The balls are put in a box (or an urn). We take a ball from the box at random,
change its colour and put it back. The number of states of this system is 2d (each
ball can be black or white). The model can be described as a nearest neighbour
random walk on a d-dimensional binary cube, with the number of vertices 2d and
the number of edges d2d−1. The vertices (states) are labeled by binary ‘strings’ α
of length d. Thus: α = (α1, . . . ,αd)∈ {0,1}d , with α1, . . . ,αd = 0,1. The transition
matrix P = (pi j) has

pα,α ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
d
, if α and α ′ are nearest neighbours,

i.e. α ′ is obtained from α by changing a single entry j

(from α j = 0 to α ′
j = 1 or from α j = 1 to α ′

j = 0),

j = 1, . . . ,d,

0, otherwise, i.e. when either, α and α ′ differ at more

than one digit, or coincide.

(1.130)
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Here the invariant distribution is uniform: πα = 1/2d , which gives an eigenvector
of P, with the eigenvalue μ0 = 1. Again, all eigenvalues 1 = μ0 ≥ ·· · ≥ μ2d−1 can
be computed explicitly (though this is more difficult). The answer is that there are
d +1 distinct values of the form

1− 2 j
d

, 0 ≤ j ≤ d, (1.131)

with geometric multiplicity (
d
j

)
. (1.132)

(The definitions and properties of algebraic and geometric multiplicities of char-
acteristic roots and eigenvalues are discussed below.) To prove the above fact,
consider the adjacency matrix Ad of the form d ×P. The matrix Ad has all entries
0,1 and is a self-adjoint 2d ×2d matrix defined, recursively, by

A0 = (0) (1×1),

and for d ≥ 1 by

Ad =
(

Ad−1 Jd−1

Jd−1 Ad−1

)
.

Here Jd−1 is a 2d−1 × 2d−1 binary matrix written as the incidence matrix corre-
sponding to the bijective vertex suspensed between two copies of Ad−1: see Figure
1.19. We see that Ad is a partitioned matrix (it has non-0 entries whose blocks com-
mute between themselves). Then the characteristic polynomial Dd(μ) = det(μId −
Ad) is D0(μ) = μ and for d ≥ 1:

Dd(μ) = det

(
μId−1 −Ad−1 −Jd−1

−Jd−1 μId−1 −Ad−1

)
.

This can be calculated as a determinant of a determinant, bearing in mind that
J2

d−1 = Id−1:

Dd(μ) = det
[
(μId−1 −Ad−1)

2 − Id−1

]
= det [(μ −1)Id−1 −Ad−1] [(μ +1)Id−1 −Ad−1]
= Dd−1(μ −1)Dd−1(μ +1).

Iterating yields

Dd(μ) =
d

∏
j=0

(μ −d +2 j)m(d, j),
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whence the eigenvalues of Ad are d − 2 j, j = 0, . . . ,d, and those of P = d−1Ad

are given by (1.131). To calculate the multiplicities m(d, j), again use the above
recursion:

d

∏
j=0

(μ −d +2 j)m(d, j)

=
d−1

∏
j=0

(μ −1−d +1+2 j)m(d−1, j)
d−1

∏
j=0

(μ +1−d +1+2 j)m(d−1, j)

=
d−1

∏
j=0

(μ −d +2 j)m(d−1, j)(μ −d +2( j +1))m(d−1, j)

=
d

∏
j=0

(μ −d +2 j)m(d−1, j)+m(d−1, j−1),

where

m(d −1, j) = 0 if j < 0 or j > d −1.

Therefore,

m(d, j) = m(d −1, j)+m(d−1, j−1), implying that m(d, j) =
(

d
j

)
.

Thus, the algebraic and geometric multiplicity of eigenvalue d − 2 j of Ad is as in
(1.132). (This proof was supplied by David M.R. Jackson.)

The chain with transition probabilities (1.130) is irreducible and periodic, of
period 2, which agrees with the fact that the last eigenvalue μ2d−1 = −1. To obtain
an aperiodic chain, it is convenient to change the model by allowing the walk to stay
in place with probability 1/(d + 1), the remaining probability d/(d + 1) is again
split equally between d nearest neighbours. In this modified form, the example will
be commented on in the next section.

Examples 1.12.1 and 1.12.2 prepare us for a discussion of the general spec-
tral properties of a transition matrix. (Many properties stated below hold for a
general matrix M with non-negative elements.) Suppose P is an �× � transition
matrix. One can consider its right action, such as λ �→ λP, where P acts on �-
dimensional row vectors λ = (λ1, . . . ,λ�), and the left action, x �→ Px, where it

acts on �-dimensional column vectors x =

⎛⎜⎝x1
...

x�

⎞⎟⎠; in each case the vectors may be

real or complex. Of course, the right action of P corresponds to the left action of
PT, the transposed matrix, and vice versa. (But PT is not necessarily a stochastic
matrix.) In what follows, while speaking of eigenvalues and eigenvectors, we mean
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the right action of the matrix involved. Thus, an eigenvalue of P is a number μ such
that yTP = μyT for some �-dimensional row-vector yT. Similarly, an eigenvalue of
PT is a number μ such that yTPT = μyT for some row-vector yT; evidently, the
equality yTPT = μyT is equivalent to Py = μy. In both cases, μ and y may be
complex.

The spectrum of a matrix P is defined as the set of its eigenvalues. Of course,
every eigenvalue is a root of the characteristic equation det(μI−P) = 0; moreover,
every root is an eigenvalue. The determinant det(μI−P) = (−1)�det(P−μI) is a
polynomial of degree � (called the characteristic polynomial of the matrix P), hence
it has � roots, some of which may be complex (despite the fact the coefficients of
the polynomial are real). We know that every equilibrium distribution π is an eigen-
vector with the eigenvalue 1, as the invariance equation πP = π tells us precisely
that. Next, if P is irreducible, it has a unique equilibrium distribution; in general,
for every closed communicating class, we have a unique equilibrium distribution
supported by this class (and any ED is a convex linear combination of those). So,
1 is always an eigenvalue; the tradition is to assign to it the label 0: μ0 = 1.

Similarly, the spectrum of a matrix PT is defined as the set of its eigenvalues.
We also know that PT has always eigenvalue 1: the corresponding eigenvector is
1T = (1, . . . ,1). Indeed, 1TPT = (P1)T = 1T, as P1 = 1 (see (1.3)). In fact, the roots
of the characteristic equations for P and PT are the same since the polynomials
coincide: det(μI−P) = det(μI−P)T = det(μI−PT). So, the spectra of P and PT

coincide.

A spectre is haunting Europe.
K. Marx (1818–1883), German philosopher

What is the difference between the roots of the characteristic equation (or,
equivalently, the roots of the characteristic polynomial) and the eigenvalues? The
short answer is: multiplicity. Suppose that the roots of the characteristic poly-
nomial det(μI − P) are μ0, . . .,μ�−1. We then have the product decomposition

det(μI− P) =
�−1
∏

p=0
(μ − μp). But the roots may have multiplicities, so it is also

convenient to write det (μI−P) = ∏
p
(μ −μp)αp where the product is over the dis-

tinct roots, or equivalently, over the distinct eigenvalues. Here, one distinguishes
between the algebraic multiplicity αp of the root μp and the geometric multiplicity
of the eigenvalue μp: the latter equals the number of linearly independent vectors
y such that yP = μpy (that is, the dimension of the eigenspace E(μp) ⊆ C

� of
the eigenvalue μp). The algebraic multiplicity is always greater than or equal to
the geometric one: αp ≥ dim E(μp). But if μp is a root of det(μI−P) (i.e. has
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multiplicity αp ≥ 1) then dimE(μp) ≥ 1, i.e. there exists an eigenvector with the
eigenvalue μp. Therefore, the matrix P may have less than � linearly independent
eigenvectors, but their number is always greater than or equal to the number of
distinct roots.

The same is of course true for PT. Moreover, both the algebraic and geometric
multiplicities of the roots μp are the same for both matrices P and PT. As a result,
the number of linearly independent eigenvectors for P and PT is the same. To put
it differently, the spectra of P and PT coincide even when we take into account the
multiplicities. Indeed, the last fact holds for any real matrix M.

If P is Hermitian (i.e. P = PT) then the geometric multiplicities coincide with
the algebraic ones. In fact, in this case P has an orthonormal basis of � eigenvec-
tors. Furthermore, in this case all the eigenvalues (or, equivalently, all roots of the
characteristic equation are real). In other words, the spectrum of P is a subset of
real line R.

We will do what we always do: raise EVAT, the eigenvalue added tax.
(From the series ‘When they go political’.)

Also, if det(μI−P) has pairwise distinct roots then it has � linearly independent
eigenvectors.

From now on we will assume that P is irreducible; otherwise we have an invari-
ant subspace for every closed communicating class and can consider the action of
P on each subspace. It is also useful to note that the row vector representing the
indicator of each closed communicating class (with entries 1 over the class and 0
outside) will be invariant for PT . The matrix norm ||P|| mentioned below is defined
in a standard fashion:

||P|| = sup
[
||xTP|| : row vector xT ∈ R

�, ||x|| = 1
]

= sup

[
||xTP||
||x|| : row vector xT ∈ R

�, x �= 0
]
.

Here ||x|| = (〈x,x〉)1/2 =
(
∑�

i=1 |xi|2
)1/2

, the standard Euclidean norm of a vector,
generated by the standard scalar product in R

� or C
�.

In Example 1.12.1, we saw that the spectrum of the transition matrix (1.110)
lies in the interval [−1,1], between points μ0 = 1 and −1. It turns out that this is a
general property of transition matrices. More precisely, the eigenvalues of P may
be complex, but they must lie within a complex circle of radius 1 centred at the
origin. The formal statement is as follows.
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Theorem 1.12.3 Let P be an �× � irreducible stochastic matrix. Then:

(a) μ0 = 1 is always an eigenvalue of P and PT, its algebraic and geometric
dimensions equal 1, and the corresponding eigenspace of P is generated
by the equilibrium distribution π , while the corresponding eigenspace of
PT is generated by the vector 1T. The norm ||P|| = ||PT|| equals 1 and all
eigenvalues μp �= μ0 satisfy |μp| ≤ 1, i.e. lie within the closed unit circle in
the complex plane C.

(b) If P is aperiodic, then all the eigenvalues μp �= μ0 have |μp| < 1, i.e. lie
inside the open unit circle in C. Conversely, if all the eigenvalues μp �= μ0

have |μp| < 1, the chain is aperiodic.

This is a particular case of the so-called Perron–Frobenius Theorem, which can
be stated and proved for general matrices with non-negative entries: see Theorem
1.15.7. We are particularly interested in property (b), so we give a brief proof of this
statement. Suppose that P is irreducible and aperiodic. Then, according to Theorem
1.9.2, the vector λPn converges to the equilibrium distribution π , for any initial
distribution λ , in particular, for λ = δi, i = 1, . . . , �, where δi is a measure sitting
at state i. But the δis form an orthonormal basis in spaces of the �-dimensional row
vectors R

� and C
�:

δi = (0, . . . ,0,1,0, . . . ,0) (entry 1 in the ith place, zeros elsewhere).

Hence, the convergence takes place for any �-dimensional row-vector xT =
(x1, . . . ,x�), real or complex:

lim
n→∞

xTPn = lim
n→∞

�

∑
i=1

xiδiP
n =

�

∑
i=1

xiπ = 〈x,1〉π. (1.133)

Now, suppose that there exists a row eigenvector ψT, with an eigenvalue μ where
|μ| ≥ 1 and μ �= μ0 = 1. Then

ψT Pn = μnψT �→ 〈ψ ,1〉π,

which contradicts (1.133). Hence, there is no such eigenvector, and all eigenvalues
μ �= μ0 must have |μ| < 1.

Conversely, assume that for any eigenvalue μ �= μ0, the modulus |μ| < 1, but P
is periodic, i.e. has a periodic subclass, S1, . . . , Sk−1, of period k. Then, under the
matrix Pk, for all j = 1, . . . ,k−1, states from S j do not communicate with states
from outside S j. That is, under the k-step transition matrix Pk, each subclass S j

contains (possibly, coincides with) a closed communicating class, C j. Naturally, for
all j = 1, . . . ,k, the matrix Pk has an equilibrium distribution: that is, an invariant
stochastic row vector, concentrated on C j. Let us focus on j = 1: suppose that
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π(1) = (π(1)
i ) is an equilibrium distribution for Pk concentrated on C1. That is,

π(1)Pk = π(1), and entries π(1)
i = 0 for all i �∈ C1.

Next, the row vector π(1) is moved cyclically under the original matrix P and its
powers P2, . . .,Pk−1: the vector π( j) = π(1)P j−1 is supported by C j, and is again an
equilibrium distribution for Pk, j = 1, . . . ,k−1. But then take a kth root of unity, κ
(with κk = 1 but κ �= 1), and form the row vector

Π =
k

∑
j=1

κ− jπ( j). (1.134)

With

ΠP =
k−1

∑
j=1

κ− jπ( j+1) +π(1)κ−k = π(1) +κ
k

∑
j=2

κ− jπ( j) = κΠ,

we obtain an eigenvector of P, with the eigenvalue κ where κ �= 1, but |κ| = 1.
(And we could repeat the same procedure with all non-trivial kth roots of unity.)
But this contradicts the above assumption that all the eigenvalues μ of P, different
from μ0 = 1, have |μ| < 1. This completes the proof of property (b).

The minimal circle in the complex plane C centred at the origin and containing
all the eigenvalues of a matrix is called the spectral circle and its radius is called
the spectral radius. In other words, the spectral radius ρ(M) of a matrix M is
equal to the maximal modulus of an eigenvalue of M. So, according to statement
(a) above, the spectral radius ρ(P) of a transition matrix P equals 1 and coincides
with the norm ||P|| (in general, one can only say that the norm ||M|| ≥ ρ(M)).

. μ
0

1. .
0

κ
δ P)

|μ|<1_δ
(

( P).

.

.
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.
( )P

=

=1ρ
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and aperiodic

Fig. 1.24
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Next, the spectral gap of M is defined as the minimal value δ (M) of the difference
ρ(M)−|μ| for the eigenvalues μ with |μ| < ρ(M):

δ (M) = min [1−|μ| : μ eigenvalue with |μ| < ρ(M)] . (1.135)

According to statement (b) above, the spectral radius of an irreducible aperiodic
transition matrix P is attained by a sole eigenvalue μ0 = 1 with geometric mul-
tiplicity 1, excluding the possibility of there being an eigenvalue μ �= 1 with
|μ| = 1.

For an irreducible and aperiodic matrix P, the spectral gap gives the speed of
convergence of the row vectors λPn to the equilibrium distribution π and the speed
of convergence of the column vectors Pnx to the vector 〈x,πT〉1T. Here, the coeffi-
cient 〈x,πT〉= ∑�

i=1 πixi plays the same role as 〈x,1〉 in (1.133). This is particularly
evident when P has � linearly independent row eigenvectors ψT

0 = π , ψT
1 , . . . , ψT

�−1.
Then every �-dimensional row vector xT (real or complex) is written as a linear
combination ∑�−1

p=0 upψT
p . Hence,

xT Pn =
�−1

∑
p=0

upμn
pψT

p = u0π +
�−1

∑
p=1

upμn
pψT

p , (1.136)

and the remaining sum in the right-hand side of (1.136) has the norm∥∥∥∥∥�−1

∑
p=1

upμn
pψT

p

∥∥∥∥∥≤ (1−δ )n
�−1

∑
p=1

|up| ||ψp|| = O((1−δ (P))n) . (1.137)

Similarly, if PT has � linearly independent row eigenvectors φ T
0 = 1T, φ T

1 , . . . ,
φ T

�−1, then writing x = ∑�−1
p=0 vpφp yields

Pnx =
�−1

∑
p=0

vpμn
pφp = v01+

�−1

∑
p=1

vpμn
pφp,

∥∥∥∥∥�−1

∑
p=1

vpμn
pφp

∥∥∥∥∥≤ O((1−δ )n) ,

and δ = δ (PT) = δ (P).
From this point of view, a convenient class is formed by reversible stochas-

tic matrices. Suppose that an irreducible transition matrix P with an equilibrium
distribution π is reversible. We have seen in Worked Example 1.10.7 that this is
equivalent to the fact that the action of P (right or left) is Hermitian, with respect
to the tilted scalar product 〈 · , · 〉π :

〈x,y〉π =
�

∑
i=1

xiyiπi. (1.138)
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Moreover, the transposed matrix PT has the same property: its action (right or left)

is Hermitian with respect to 〈 · , · 〉π . In fact, let x =

⎛⎜⎝x1
...

x�

⎞⎟⎠, y =

⎛⎜⎝y1
...

y�

⎞⎟⎠ be a pair of

�-dimensional column vectors (real or complex). Then

〈PTx,y〉π =
〈(

xTP)T,y
〉

π =
�

∑
i, j=1

xi p jiy jπ j

=
�

∑
i, j=1

xi pi jy jπi (by reversibility)

= ∑
i

xiπi∑
j

pi jy j =
〈

x,
(
yTP
)T
〉

π

= 〈x,PTy〉π . (1.139)

In a similar fashion, one shows that

〈Px,y〉π =
〈(

xTPT)T
,y
〉

π
=
〈

x,
(
yTPT)T

〉
π

= 〈x,Py〉π . (1.140)

But this means that, for the both the right and left action of P, the adjoint (or
conjugate) matrix P∗, relative to 〈 · , · 〉π , coincides with P, i.e. P is Hermitian (i.e.
is self-adjoint) relative to 〈 · , · 〉π . The same holds also for PT, as claimed.

The tilted scalar product is non-degenerate (in the sense that 〈x,x〉π = 0 if
and only if x = 0 because all the entries πi > 0). Here, the standard theorem
is applicable, that every Hermitian matrix has an orthonormal eigenbasis, and
its spectrum is real (i.e. all eigenvalues are real). In our case it will imply that
the eigenvectors ψ0, ψ1, . . . , ψ�−1 can be made real (as ψ0 ∝ πT, the vector ψ0

can be made positive). And although the orthogonality is meant relative to a
scalar product 〈 · , · 〉π and is lost when we return to the standard scalar product
〈x,y〉 = ∑�

i=1 xiyi, linear independence still holds, and (1.136) and (1.137) remain
valid (with up = 〈x,ψp〉π ).

Summarising:

Theorem 1.12.4 Let P be an irreducible �× � stochastic matrix reversible relative
to its equilibrium distribution π . Then both P and its transpose PT are Hermitian
relative to the tilted scalar product 〈 · , · 〉π . Thus each of P and PT has � real eigen-
values, and their spectra coincide. Moreover, the eigenvalues of P and PT counted
with their multiplicities coincide. Arranging the eigenvalues μp in decreasing order,
we have:

μ0 = 1 > μ1 ≥ μ2 ≥ ·· · ≥ μ�−1 ≥−1. (1.141)
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If P is aperiodic then μ�−1(P) > −1, and the spectral gap δ = δ (P) = δ (PT) is
given by

δ = min
[
1−μ1,1−

∣∣μ�−1
∣∣] . (1.142)

In this case, (1.136), (1.137) imply that

λPn = π +O
(
(1−δ )n), (1.143)

for any initial distribution λ .

If P is periodic then μ�−1 = −1. In this case, P2 is reducible, with two closed
communicating classes, say C1 and C2, and and has equilibrium distributions π(1)

and π(2) = π(1)P concentrated on a single communicating class. The geometric
multiplicity of μ�−1 is 1, and the corresponding eigenvector is proportional to the
vector

Π = π(1)−π(2), (1.144)

cf. (1.120). Then, for all initial distributions λ = (λ1, . . . ,λ�),

λPn = π +(−1)n(Λ(1)−Λ(2))Π+O
(
(1−δ )n), (1.145)

and Λ(1) = ∑i∈C1
λi, Λ(2) = ∑i∈C2

λi.

Markov processes specialists do it openly in communicating classes.
(From the series ‘How they do it’.)

1.13 Geometric algebra of Markov chains, II. Random walks on graphs

Many ideas become more transparent when we restrict the presentation to the class
of random walks on graphs. The definition was given in Section 1.10; here we focus
on finite non-directed graphs without multiple edges and loops. In other words, the
connectedness vi j takes values 0 or 1; in the former case we find no edge joining
i and j, while in latter case a single edge is associated with two opposite arrows:
(i → j) and ( j → i). Examples 1.12.1 and 1.12.2 fall in this category. In addition,
the graphs in these examples feature constant valency: vi ≡ ∑ j vi j ≡ ∑i vi j ≡ v ≥ 1,
i.e., for every vertex i, there are v arrows going from i to the neighbouring vertices,
and v arrows issuing from these vertices and returning to i (v = 2 in Example 1.12.1
and v = d in Example 1.12.2). In general, the valency vi may depend on i.
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The graph may be drawn with non-directed links or two-way arrows. The ran-
dom walk on the graph was defined as a DTMC with (finite) state space G, the set
of vertices of the graph, and transition matrix P having entries

pi j = p ji = vi j/vi. (1.146)

We checked that

πi = vi

/
∑
j∈G

v j (1.147)

gives equilibrium probabilities (in other words, the vector πT is an eigenvector
for P in R

|G| or C
|G|, with the eigenvalue μ0 = 1). Here |G| stands for the total

number of vertices. Moreover, P is reversible relative to the equilibrium distribution
π = (πi): πi pi j = π j p ji, i, j ∈ G. If the valency vi is constant, the transition matrix
P = (pi j) is Hermitian, and the above equilibrium distribution π = (πi, i ∈ G) is
uniform: πi = 1/|G|. It was observed that in this case P has an orthonormal basis
of eigenvectors in R

|G| and all its eigenvalues are real. Next, according to Theorem
1.12.3, all the eigenvalues of P lie in the closed interval [−1,1]. In other words, the
spectrum of the matrix P is a subset of [−1,1], and μ0 = 1 is the right-most point
of the spectrum.

In general, the matrix P can be converted into Hermitian, by changing the
standard scalar product 〈 · , · 〉 in R

|G| into the tilted one:

〈x,y〉 = ∑
i∈G

xiyiπi.

So, for a general RW on a graph, the spectrum of P is still a subset of the interval
[−1,1], and includes μ0 = 1 as its right-most point.

If the graph under consideration is connected, the RW is irreducible, and vice
versa. See Figure 1.25a. In this case, the chain has a unique equilibrium distribu-
tion, and the geometric multiplicity of the eigenvalue μ0 = 1 is 1. In what follows
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restrict our attention to the irreducible case only. As in the previous section, we
will write the eigenvalues in the non-increasing order:

1 = μ0 > μ1 ≥ ·· · ≥ μ|G|−1 ≥−1. (1.148)

The point −1 may or may not belong to the spectrum of P: it depends on whether
the chain is periodic or not. It is possible to check that in our setting, the chain may
only have period 1 (aperiodic) or period 2 (two periodic subclasses). If −1 is an
eigenvalue of P, the graph is bipartite, i.e. the set of vertices G can be partitioned
into two disjoint subsets, G(1) and G(2), such that every edge of the graph joins a
vertex from G(1) and a vertex from G(2). In this case, the chain is periodic, and the
period is 2. See Figure 1.25b. Conversely, if the chain is periodic, of period 2, then
−1 is an eigenvalue. If the periodic subclasses are W1, and W2, then the eigenvector
with eigenvalue −1 is proportional to

1G1
−1G2

.

Here 1Gl
is the vector whose entries are equal to 1 for the states from Gl and to 0

for the states from the other class.
Therefore, if P is aperiodic, then the point −1 is not an eigenvalue, i.e. it does

not belong to the spectrum of P. Consequently, the spectral gap δ is calculated as

min
[

δ1,δ−1], where δ1 = 1−μ1, δ−1 = 1−
∣∣μ|G|−1

∣∣] . (1.149)

Let us go back to Example 1.12.1 and assume that � is odd; in this case P is
aperiodic, and

δ1 = 1−μ1, δ−1 = 1+ μ�−1. (1.150)

For any pair i, j of vertices of a regular �-gon, we can identify a geodesic from i to j,
i.e. the shortest paths going from i to j and formed by the arrows; because � is odd,
the geodesic is uniquely defined. For a RW on a general graph, again, a geodesic Γ
between two vertices (states) i and j is a path starting at i and ending at j, of shortest
length, i.e. with a minimal number of arrows in it. It may be non-unique, but we
select one such geodesic for any pair i, j ∈ G and denote it by Γi j ∼ (i0, i1, . . . , iL);
here i0 = i, iL = j, and L is the length of Γi j. Observe that the geodesic Γ ji does
not necessarily coincide with the geodesic Γi j traversed in the reverse order: the
choice of geodesics has to be judicious. The total collection of selected geodesics
is denoted by G .

It turns out that, for an irreducible Hermitian stochastic matrix P of the form
(1.146), reversible relative to the equilibrium distribution π of the form (1.147),
there is a useful inequality for δ1, called Poincaré’s inequality (or Poincaré’s
bound):

δ1 ≥
2E

D2
∗γ∗b

. (1.151)
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See Diaconis, P., Stroock, D. “Geometric bounds for eigenvalues of Markov
chains”. Ann. Appl. Probab., 1 (1991), 36–61. Here E is the total number of
(non-directed) edges in the graph. Next, D∗ is the maximal valency of any vertex.
Furthermore, γ∗ is the maximal number of edges in a geodesic across the diagram
(the diameter of the directed graph formed by the arrows). Finally, b is the maximal
cardinality of the bunch of geodesics including a given arrow

b = max
e=(i→ j)

[
number of geodesics Γ ∼ (i0, i1, . . . , iL) containing arrow e

]
.

(1.152)
In Example 1.12.1, with � odd,

E = �, D∗ = 2, γ∗ =
�−1

2
. (1.153)

To calculate b, we use the fact that the diagram is symmetric, and it does not matter
which arrow e one chooses. So, let e be the arrow 0 → �− 1. Suppose a geodesic
containing e starts at a vertex i to the right of 0. Then i ≤ (�− 3)/2, as the total
length of the geodesic could not exceed (�−1)/2. The geodesic could end in any
of the (�−1)/2− i points beyond (and including) �−1. Hence,

b = ∑
0≤i≤(�−3)/2

(�−1
2

− i
)

=
(�−1)2

4
− (�−1)(�−3)

8
=

�2 −1
8

. (1.154)

Now the bound (1.151) becomes

δ1 ≥
8�

(�−1)2(�+1)
, (1.155)

or δ1 ≥ 8/�2 as � → ∞. This is less accurate an estimate than (1.121), and the error
factor is 2π2/8 ≈ 2.

Further, a useful bound for δ−1 is as follows. Define a (directed) cycle as a closed
path, along (some) edges on our graph, such that it visits each of its vertices exactly
once, before returning to the starting point, with a fixed direction of inspection
(there are precisely two directions for a given collection of edges). In other words,
a cycle passes through a given edge at most once. It is convenient to fix a direction,
i.e. to distinguish between the clockwise and anti-clockwise inspections. Consider
a collection S of cycles, of odd length, one for each vertex i ∈ G, and that the
cycle Σ = Σi from S starts and ends at i. Denote by σ∗ the maximal length of (i.e.
the maximal number of links in) the cycle Σ. Next, let b∗ stand for the maximum
number of cycles from S containing a given edge:

b∗ = max
e=(i→ j)

[
number of cycles from S containing arrow e

]
. (1.156)
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Then

δ−1 ≥
2

D∗σ∗b∗
. (1.157)

When Harry Met Sigma
(From the series ‘Movies that never made it to the Big Screen’.)

In Example 1.12.1, with � odd, σ∗ = b∗ = �. From (1.156) we obtain

δ−1 ≥
1
�2 , (1.158)

which gives the right order in � but an incorrect constant.

In Example 1.12.2, in the original (periodic) setting, the last eigenvalue μ2d−1 =
−1. Here, we identify a path γα ,α ′ from α to α ′ by changing the entries where
α differs from α ′ to the complement mod2, moving from the left to the right, one
step at a time. (This choice makes life easier compared with the study of geodesics.)
Clearly, E = d2d−1, γ∗ = d, D∗ = d, and for this choice of paths, b = 2d−1. To see
this, consider an edge (w,z) with w,z differing in only one coordinate, say the jth.
A path γxy crossing over this edge can begin at any x which coincides with w in
coordinates after the ( j−1)st (so 2 j−1 choices) and ends in any y which coincides
with z in coordinates up to the jth (so 2d− j choices). Thus, there are 2d−1 paths γxy

crossing an edge. Estimate (1.151) gives

δ1 ≥
2
d2 . (1.159)

i.e. is off by a factor of d. A better bound is produced by Cheeger’s inequality, see
(1.163).

In the modified setting, the last eigenvalue μ2d−1 = −1+2/(d +1). Further, the
result of ’geometric evaluation’ of the gap from −1 is sharp:

δ modified
−1 ≥ 2

d +1
. (1.160)

We now pass to Cheeger’s inequality. Again consider the RW on a general non-
directed graph on the vertex set G, without multiple edges. Given a set S ⊂G define
a flow in the graph from S to its complement Sc = {1, . . . , �} \ S as the fraction of
the arrows leading from S to Sc:

Q
(
S,Sc)=

1
2E ∑

(i, j): i∈S, j∈Sc

1(pi j > 0) . (1.161)
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Here, as before, E is the number of (non-directed) edges in the graph, and 2E is
the total number of arrows. Next, set

h = min
S: 1≤|S|≤�/2

[
�

|S| Q(S,Sc)
]
. (1.162)

Cheeger’s inequality asserts that

h2

2
≤ δ1 ≤ 2h. (1.163)

In Example 1.12.1 with � odd, the minimum is achieved when S is a collection
of (�−1)/2 subsequent vertices of the �-gon, and

h =
2

�−1
. (1.164)

We see that in the Cheeger inequality, the lower bound gives the right order but the
constant is off by the factor π2.

In Example 1.12.2, in the original (periodic) setting, the minimum is achieved
by taking S to be the face of the cube, say S = {xT : x1 = 0}. This gives

h =
1
d
, (1.165)

and the Cheeger inequality becomes

1
2d2 ≤ δ1 ≤

2
d
. (1.166)

As λ1 = 1− 2/d in this case, the upper bound is sharp and the lower bound is of
the same order as in the Poincaré inequality, with a slightly overrated constant.

The constant in the Poincaré inequality is sensitive to changes in the structure of
the graph; this fact can be exploited in order to produce useful bounds. Below we
discuss one such bound based on a decomposition of the state space into ‘rarely
communicating’ subsets.

Let φ : I → R be an arbitrary test function. The expectation and variance of φ
with respect to the invariant distribution π are of course given by

Eπφ = ∑
i∈I

π(i)φ(i)

and

Varπφ = ∑
i∈I

π(i)(φ(i)−Eπφ)2.

The crucial rôle in the proof of the Poincaré and Cheeger bounds is played by the
so-called Dirichlet form (see (1.201) below) associated with φ and the transition
matrix P and defined as
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Eπ(φ) =
1
2 ∑

i, j∈I

(φ(i)−φ( j))2π(i)p(i, j).

The Poincaré inequality takes the form

Eπ(φ) ≥ λVarπφ (1.167)

and holds uniformly over all φ : I →R. The main point to know is that the constant
λ controls the rate of convergence of a Markov chain to the invariant distribution
π . To avoid technical problems associated with nearly periodic chains, assume that
loop probabilities are uniformly bounded from 0. Denote by p(n)(i) the row i of the

n-step transition matrix Pn = (p(n)
i j ), i ∈ I (which gives the distribution of the chain

when its initial state is i). Define the total variation distance

distTV

(
p(n)(i),π

)
:= ∑

j∈I

∣∣∣p(n)
i j −π j

∣∣∣ .
Assume that n ≥ n(i,ε) where n(i,ε) has a specific magnitude:

n(i,ε) = O

(
1
λ

(
ln

(
1

π(i)

)
+ ln

1
ε

))
.

Then

distTV

(
p(n)(i),π

)
≤ ε.

Here λ is a constant from (1.167). See Jerrum M., Son J-B., Tetali P., Vigoda
E. “Elementary bounds on Poincaré and log-Sobolev constants for decomposable
Markov chains”, Annals Appl. Probab., 14 (2004), 1741–1763.

In many natural cases the state space can be naturally split into several blocks in
such a way that transitions between blocks are rare compared with the transitions
inside these blocks. This simplifies the study of convergence to equilibrium. Let
I = I0∪·· ·∪ Im−1 be a decomposition of the state space into m disjoint sets. We use
the notation Zm = (0,1, . . . ,m−1). Next, define π(i) : Zm → [0,1] by

π(i) = ∑
j∈Ii

π( j) (1.168)

and introduce a new transition matrix P : Zm ×Zm → [0,1] by

p(i, j) = π(i)−1 ∑
k∈Ii,l∈I j

π(k)p(k, l). (1.169)

The Markov chain on the state space Zm and with transition probabilities P is the
projection Markov chain induced by the partition (Ii).
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Example 1.13.1 Check that the projection chain has π as a stationary distribution.

This follows from an obvious equality

∑
i

π(i)
1

π(i) ∑
k∈Ii,l∈I j

π(k)p(k, l) = ∑
l∈I j

π(l).

For each k ∈ Zm the restriction Markov chain on Ik has transition probabilities
Pk : Ik × Ik → [0,1] defined by

pk(i, j) =

⎧⎨⎩p(i, j), if i �= j,

1− ∑
l∈Ik\i

p(i, l), if i = j, i, j ∈ Ik. (1.170)

Example 1.13.2 Prove that both the projection and restriction chains inherit time-
reversibility from the original chain. Moreover, πk(i) = π(i)/π(k) is the stationary
distribution of the restriction chain.

Due to reversibility, for all i, j ∈ Ik

πk(i)pk(i, j) = πk( j)pk( j, i).

We require both the projection and the restriction chains to be irreducible. Hence,
the various stationary distributions π and π0, . . . ,πm−1 are unique.

Suppose that the projection chain and the various restriction chains satisfy
Poincaré inequalities with constant λ and λ0, . . . ,λm−1, respectively. Define λmin =
mini λi. Our goal is to obtain a Poincaré inequality for the original Markov chain,
with Poincaré constant λ = λ (λ ,λmin,γ), where γ is a further parameter

γ = max
i∈Zm

max
k∈Ii

∑
l∈I\Ii

p(k, l). (1.171)

Informally, γ is the probability of escape in one step from a current block of the
partition, maximized over all states.

Theorem 1.13.3 Consider a finite-state time-reversible Markov chain decomposed
into a projection chain and m restriction chains as above. Suppose the projection
chain satisfies a Poincaré inequality with constant λ , and the restriction chains
satisfy inequalities with uniform constant λmin. Let γ be defined as in (1.171). Then
the original Markov chain satisfies a Poincaré inequality with

λ = min

[
λ
3

,
λ λmin

3γ +λ

]
. (1.172)
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Proof Consider an arbitrary test function φ . Our starting point is the decomposition
of Varπφ with respect to the partition

Varπφ = ∑
i∈Zm

π(i)Varπiφ + ∑
i∈Zm

π(i)
(
Eπiφ −Eπφ

)2
. (1.173)

Similarly, for the Dirichlet form,

Eπ(φ) = ∑
i∈Zm

π(i)Eπi(φ)+
1
2 ∑

i, j∈Zm,i�= j

Ci j, (1.174)

where

Ci j = ∑
k∈Ii,l∈I j

π(k)p(k, l)(φ(k)−φ(l))2. (1.175)

In summations and so forth, the variables i and j always range over Zm. For all i, j
with i �= j and p(i, j) > 0, define π̂ j

i : Ii → [0,1] by

π̂ j
i (k) =

πi(k)∑l∈I j
p(k, l)

p(i, j)
. (1.176)

Note that π̂ j
i is a probability distribution on Ii.

The first term on the RHS of (1.173) we simply bound as

∑
i

π(i)Varπiφ ≤ ∑
i

1
λi

π(i)Eπi(φ)

≤ 1
λmin

∑
i

π(i)Eπi(φ). (1.177)

The second term we transform, starting with an application of the Poincaré
inequality for the projection chain,

∑
i

π(i)
(
Eπiφ −Eπφ

)2
≤ 1

2λ ∑
i�= j

π(i)p(i, j)
(
Eπiφ −Eπ j φ

)2

≤ 3

2λ ∑
i�= j

π(i)p(i, j)

×
[(

Eπiφ −Eπ̂ j
i
φ
)2

+
(
Eπ̂ j

i
φ −Eπ̂ i

j
φ
)2

+
(
Eπ̂ i

j
φ −Eπ j φ

)2]
=

3

2λ
[

Σ1 +Σ2 +Σ3
]
, (1.178)

where the terms Σ1, Σ2 and Σ3 are associated with corresponding sums, viz.,

Σ1 = ∑
i�= j

π(i)p(i, j)
(
Eπiφ −Eπ̂ j

i
φ
)2

.
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We proceed to bound Σ1,Σ2 and Σ3 separately, noting that Σ1 and Σ3 are equal,
owing to reversibility. For the second of these terms we have

Σ2 = ∑
i�= j

π(i)p(i, j)
[

∑
k∈Ii,l∈I j

π(k)p(k, l)
π(i)p(i, j)

(φ(k)−φ(l))
]2

(1.179)

≤ ∑
i�= j

π( j)p(i, j) ∑
k∈Ii,l∈I j

π(k)p(k, l)
π(i)p(i, j)

(φ(k)−φ(l))2 (1.180)

= ∑
i�= j

∑
k∈Ii,l∈I j

π(k)p(k, l)(φ(k)−φ(l))2 = ∑
i�= j

Ci j, (1.181)

where Ci j = ∑k∈Ii,l∈I j
π(k)p(k, l)(φ(k)−φ(l))2. Here, bound (1.179) uses the fact

that
π(i)p(i, j)
π(i)p(i, j)

is a joint distribution on Ii × I j whose marginals are π̂ j
i and π̂ i

j, and

(1.180) is just a Cauchy–Schwarz inequality, once we have observed that

∑
k∈Ii,l∈I j

π(k)p(k, l)
π(i)p(i, j)

= 1

by definition.
To estimate Σ1 we use the facts that Var ξ = Var (ξ −c) for any random variable

ξ and constant c, and write

Varπ̂ j
i
φ = ∑

k∈Ii

π̂ j
i (k)

(
φ(k)−Eπiφ

)2
−
(
Eπ̂ j

i
φ −Eπiφ

)2
, (1.182)

so that certainly (
Eπ̂ j

i
φ −Eπiφ

)2
≤ ∑

k∈Ii

π̂ j
i (k)

(
φ(k)−Eπiφ

)2
. (1.183)

Thus we have the bound

Σ1 ≤ ∑
i�= j

π(i)p(i, j) ∑
k∈Ii

π̂ j
i (k)

(
φ(k)−Eπiφ

)2

= ∑
i

π(i) ∑
k∈Ii

πi(k)
(

φ(k)−Eπiφ
)2

∑
j �=i

π̂ j
i (k)p(i, j)

πi(k)
(1.184)

= ∑
i

π(i) ∑
k∈Ii

πi(k)
(

φ(k)−Eπiφ
)2

∑
j �=i

p(k, I j)

≤ γ ∑
i

π(i)Varπiφ (1.185)

≤ γ
λmin

∑
i

π(i)Eπi(φ). (1.186)
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where p(k, I j) = ∑l∈I j
p(k, l). Note that (1.184) is based on the definition of π̂ j

i ,
(1.185) uses the definition of γ , and (1.186) is based on the Poincaré inequality for
the restriction chains.

Substituting (1.181) and (1.186) into (1.178), and recalling that Σ1 = Σ3, we have

∑
i

π(i)
(
Eπiφ −Eπφ

)2
≤ 3

2λ ∑
i�= j

Ci j +
3γ

λλmin
∑

i

π(i)Eπi(φ). (1.187)

Then substituting (1.173) and (1.187) into (1.175) yields

Varπφ ≤ 3

2λ ∑
i�= j

Ci j +
3γ +λ
λλmin

∑
i

π(i)Eπi(φ). (1.188)

Finally, comparing (1.187) with (1.174), we see that

Eπ(φ) ≥ λVarπφ ,

where λ is as in the statement of the theorem.

Example 1.13.4 Consider the symmetric random walk on the 2n vertex ‘pince-
nez’ graph in Figure 1.26 obtained by joining two disjoint n cycles by a single edge.
Suppose transitions within cycles occur with probability 1/3, while the unique tran-
sition between cycles happens with probability p ≤ 1/3. Loop probabilities are
symmetric, so the random walk is time-reversible and its stationary distribution is
uniform.

Now decompose the set of vertices (states) into two disjoint subsets, I0 and I1,
where I0 contains the n vertices in the first cycle and I1 contains the n vertices in
the second cycle. The spectral gap for each cycle considered in isolation is 2

3(1−
cos(2π/n)). Since 1− cosx ≥ 2x2/5 for 0 ≤ x ≤ π/2, we have that the spectral
gap for each restriction chain is atleast 16π2/15n2 (assuming n ≥ 4), so we may
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take λmin = 10n−2. The projection chain in this example is the symmetric two-
state chain with transition probability p/n between states, so we take λ = 2p/n.
Finally, γ = p. Hence, the Poincaré constant for the random walk on the pince-nez
equals

λ = min
[2p

3n
,

20
3n3 +2n2

]
. (1.189)

Hence, λ = O(n−3).

Example 1.13.5 (The one-dimensional Ising model) This example has origins in
lattice field theory (where it generated a substantial literature). Recently, it has
attracted considerable interest among computer scientists. The model can be set
on a general non-directed graph and covers a range of interesting (and complicat-
ing) phenomena including phase transitions and irreversibility. One considers spin
configurations obtained by assigning values ±1 to each vertex; in the case of a
finite graph, the total number of configurations equals 2|G| where |G| stands for
the cardinality of the vertex set. Here we will focus on a simple case where the
graph is a segment of a one-dimensional lattice {1, . . . ,n− 1}, with |G| = n− 1.
It is convenient to attach two additional endpoints 0 and n where the values are
kept constant and equal to 1. The space of configurations will consist of 2n−1

‘strings’
(
σ(1), . . . ,σ(n − 1)

)
where σ(i) = ±1, i = 1, . . . ,n − 1. We also use

the values σ(0) = σ(n) ≡ 1. The set of ‘extended’ strings σ =
(
σ(0), . . . ,σ(n)

)
still has cardinality 2n−1 and will play the rôle of the state space of a Markov
chain under consideration. In other words, in the current example, I = {σ}. See
Figure 1.27.

The Hamiltonian of the Ising system on the path is defined by

H(σ) =
n−1

∑
i=0

[1−σ(i)σ(i+1)]/2.
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In other words, there is a contribution of 1 from every pair of adjacent opposite
spins. We wish to sample configurations from the Boltzmann–Gibbs distribution

π(σ) =
1
Z

exp(−βH(σ)) (1.190)

on I where Z is the partition function and β is the inverse temperature, T−1.
One standard way to construct a Markov chain on I with stationary distribution

π is through Glauber dynamics. For i ∈ {1, . . . ,n− 1} and σ : {1, . . . ,n− 1} →
{−1,1}, let σi,+1 (resp. σi,−1) stand for the configurations that agrees with σ at all
vertices except possibly at vertex i, where σi,+1(i) = 1 (resp. σi,−1(i) = −1). The
transitions of the Markov chain are defined as follows.

(1) Select i ∈ {1, . . . ,n−1} uniformly at random.
(2) Let

p =
exp(−βH(σi,+1))

exp(−βH(σi,+1))+ exp(−βH(σi,−1))
.

Then with probability p, the new state is σi,+1, and with probability 1− p the new
state is σi,−1. For convenience, we imagine fixed boundary conditions at the extra
vertices 0 and n.

Henceforth we assume that n is even. Then the segment {1, . . . ,n− 1} has a
middle point n/2. We use this fact to form a partition of a set I into two disjoint
subsets I0 and I1. In other words, represent I as a disjoint union I0 ∪ I1, where I0

(resp. I1) is the set of all configuration with σ(n/2) = −1 (resp. σ(n/2) = 1).
It is useful to consider the restrictions of the Markov chain to I0 and I1, and the
corresponding projection chain (with two states). See Figure 1.28.

Then the spectral gap of the projection chain is λ ≥ 1
(coshβ )2n

. The parameter

γ satisfies γ ≤ 1

(1+ e−2β )n
. So, denoting by λk the spectral gap of the Ising system

on {0,1, . . . ,k}, we have the recurrence

. . . . . . . . .
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λk ≥ min
[ 1

3(coshβ )2n
,

λ[k/2]

1+3/4(e2β +1)

]
. (1.191)

This has the solution

λn = O(n−c), c = 1+ log2

[
1+

3
4
(e2β +1)

]
.

In particular, for low temperature T , we obtain that the number of steps for
Glauber dynamics to reproduce the unique invariant distribution is

N ∝ n2log2e/T .

Ernst Ising (1900–1998) was a student of W. Lenz in Hamburg. In 1920 Lenz
proposed a model of ferromagnetism where particles are attached to sites of a crys-
tal lattice and can have two values of a ‘magnetic spin’: ±1. Two particles attached
to neighbouring sites are interacting; the interaction depends on the signs of their
spins and may favour them to be the same (a ‘ferromagnetic system’) or to be
opposite (an ‘anti-ferromagnetic system’). Lenz believed that the model could be
‘solved’, in the sense that the probability distribution (1.190) (or at least some of
its vital characteristics) can be calculated, and suggested that Ising find a solution.

And Ising promptly did find a solution, in the case of a one-dimensional lattice
I ⊂ Z (one-dimensional magnets). Ising’s solution was the main part of his PhD
Thesis (1924), and it was based on a straightforward application of the Perron–
Frobenius Theorem (see Theorem 1.15.7).

However, for 20 years attempts to reach a solution for multi-dimensional model
failed, although the Dutch physicists Kramers and Wannier calculated the numer-
ical value for the so-called ‘critical’ temperature of the two-dimensional Ising
model. The exact and complete solution in two dimensions was first given by
the Norwegian-born American chemist L. Onsager in 1944 and turned out to be
very complicated, but at the same time inspiring. Further attempts in dimensions
three and higher stumbled, but generated a brilliant literature which influenced
many areas of mathematics and physics (notably, the theory of Markov ran-
dom fields, where a one-dimensional time is replaced by a multi-dimensional
‘argument’).

The term ‘Ising model’ was coined in a 1936 paper “On Ising’s model of fer-
romagnetism” by R. Peierls, a prominent German physicist who moved to Britain
in the 1930s. Each year between 500 and 800 papers are published that invoke the
Ising model to address problems in such diverse fields as neural networks, machine
vision, protein folding, biological membranes and social behaviour.

Meanwhile Ising got married and began a teaching career at high schools in Ger-
many. He was dismissed when the Nazis came into power in 1933, but from 1934
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to 1938 managed to keep a job as a teacher and headmaster of a Jewish board-
ing school near Berlin. In this period the Isings found themselves living near to
Albert Einstein’s summer house (abandoned by the owners as the Einsteins moved
to America in 1933 and used for the school’s needs); Ising enjoyed telling how he
took his daily baths at the Einsteins’ because there was no bathtub in his place.

In November 1938, the school was destroyed by the Nazis, and soon after the
Isings were forced to leave Germany. In 1939 they fled to Luxembourg with plans
to emigrate to the US as soon as possible; at the end of that year their only son
Thomas was born. However, the Germans invaded Luxembourg in May 1940, and
the US Consulate was closed when the Isings’ visas were about to be granted.
A year later most Jews in Luxembourg were rounded up. Ising and other men
who were married to non-Jews were spared but forced to work on dismantling
the Maginot Line railroad in Lorraine. His wife Johanna worked at menial jobs,
struggling to survive. This continued for the next four years.

The Isings finally got to the US in 1947, and from 1948–1976 Ising taught
physics and mathematics at Bradley University, Peoria, Illinois. He received a num-
ber of awards and honorary titles, but never returned to his early research. In fact,
the list of his published papers in physics consists of three titles: his 1924 PhD The-
sis, a short 1925 paper (first quoted by W. Heisenberg in 1928 and generating 603
citations between 1975 and 2001), and a beautifully written article “Goethe as a
Physicist”, American Journal of Physics 18 (1950), 235–236. According to Ising’s
own account, it was not until 1949 that he found out from the scientific literature
that his model had become widely known!

1.14 Geometric algebra of Markov chains, III. The Poincaré and Cheeger
bounds

Manhattan Markov Mystery
(From the series ‘Movies that never made it to the Big Screen’.)

Proof of Poincaré’s inequality. It is convenient to prove a generalisation of bound
(1.151) that holds for an irreducible reversible transition matrix P which is not
necessarily Hermitian. Nevertheless, as was discussed in Section 1.12, due to
reversibility, both P and PT define Hermitian transformations in R

� and C
�,

equipped with the tilted scalar product 〈 · , · 〉π ; see (1.138). As a result, P and
PT have orthonormal eigenbases relative to 〈 · , · 〉π . Next, P and PT have the
same real spectrum, and their eigenvalues μp, written with their multiplicities and
in the decreasing order, satisfy (1.148). Then the Laplacians L(P) = I − P and
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L(PT) = I−PT = L(P)T, with the same eigenvectors as P and PT, respectively,
have eigenvalues βp = 1−μp; when counted with their multiplicities and arranged
in increasing order, the eigenvalues satisfy

β0 = 0 < β1 = δ1 ≤ ·· · ≤ β�−1 ≤ 2. (1.192)

As follows from (1.192), L(P) and L(PT) define Hermitian, non-negative definite
transformations in R

� and C
�, relative to the tilted scalar product 〈 · , · 〉π . The

eigenvector for L(P) with the smallest eigenvalue 0 is π; for L(PT) it is 1T.
The general Poincaré bound, for δ1, is as follows. Set

ri j = πi pi j, i, j = 1, . . . , �. (1.193)

A helpful property here is the symmetry: ri j = r ji, valid due to reversibility. Next,
for all i, j = 1, . . . , �, we fix a path Γi j = (i0 → i1 → . . . → im), across the diagram,
starting at i and ending at j, where every arrow enters not more than once. That
is, i0 = i, im = j, pis,is+1 > 0 for all s = 0, . . . ,m− 1, and every arrow ẽ = (̃i → j̃)
appears at most once among the edges es = (is → is+1)s. Owing to irreducibility,
such a path always exists. (In our previous formulation, it was a geodesic from i
to j.) Denote the collection of selected paths by G and set

|Γi j| =
m−1

∑
s=0

1
risis+1

, Γi j ∈ G . (1.194)

In this setting, the Poincaré inequality takes the form

δ1 ≥
(

max
ê=(̂i→ ĵ)

[
∑

Γi j∈G

1(Γi j � ê) |Γi j|πiπ j

])−1

. (1.195)

The RHS in (1.195) is sensitive to the choice of paths Γi j (as we mentioned on
page 118, an appropriate choice was a geodesic). In general, the RHS measures a
‘degree of irreducibility’ of the matrix P; a shrewd choice of the set G can prove

very helpful. In the case of a uniform equilibrium distribution π =
1
�

1T, the RHS

of (1.195) coincides with that of (1.151).
In the course of the proof of (1.195), it will be convenient to work with the

Laplacian L(P); for brevity we denote it simply by L. (The convenience of L(P)
is related to the fact that the eigenvector with the lowest eigenvalue for L(P)T

is 1T). The eigenvalue δ1 can be characterised as the lowest eigenvalue of the
matrix L when its action is restricted to the orthocomplement of the vector 1.
(The term ‘orthogonality’ and all related concepts below refer to the tilted scalar
product 〈 · , · 〉π .) The powerful tool here is the so-called variational characteri-
sation (or minimax characterisation) of the eigenvalues of a Hermitian matrix, aka
the Courant–Fisher Theorem. In fact, it is a generalisation of an earlier statement,
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often called the Rayleigh–Ritz Theorem, which suffices for our purpose. Accord-
ing to the Rayleigh–Ritz Theorem, the eigenvalue δ1 forms the solution of the
minimisation problem in terms of values 〈Lx,x〉π , ||x||π = 〈x,x〉π and 〈x,1〉π :

δ1 = min [〈Lx,x〉π : ||x||π = 1, 〈x,1〉π = 0 ]

= min

[
〈Lx,x〉π

||x||2π
: x �= 0, 〈x,1〉π = 0

]
. (1.196)

In our situation, the handy formula

〈Lx,x〉π =
1
2

�

∑
i, j=1

(xi − x j)2ri j, x =

⎛⎜⎝x1
...

x�

⎞⎟⎠ ∈ R
�, (1.197)

is deduced from the definitions L = I−PT and ri j = πi pi j. Observe that the RHS
of (1.197) does not change when we transform x �→ x+ c1, i.e. add a constant c to
the entries x1, . . . , x�. But this operation naturally produces, from a general vector
x, a vector orthogonal to 1:

〈x+ c1,1〉π = 0 if and only if c = − 〈x,1〉π

〈1,1〉π
. (1.198)

On the other hand, for a real vector x with 〈x,1〉π = 0,

||x||2π =
1
2

�

∑
i, j=1

(xi − x j)2πiπ j. (1.199)

Again, this is not affected by adding a constant to the entries. So (1.196) can be
written as

δ1 = min

⎡⎢⎣〈φ ,Lφ〉π

||φ ||2π
: φ =

⎛⎜⎝φ1
...

φ�

⎞⎟⎠ ∈ R
�, φ �∝ 1

⎤⎥⎦
= min

[
E (φ)
V (φ)

: φ real non-constant

]
. (1.200)

Here the vector φ is identified by a function φ : i �→ φ(i), where φ(i) = φi, i =
1, . . . , � (the vector φ will play the role of a ‘potential’ function). Next,

E (φ) =
1
2

�

∑
i, j=1

(φ(i)−φ( j))2ri j, (1.201)

and

V (φ) =
1
2

�

∑
i, j=1

(φ(i)−φ( j))2πiπ j. (1.202)
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With (1.200) to hand, we can easily prove (1.195). For, for all i, j = 1, . . . , �,
write the sum along path Γi j

φ(i)−φ( j) =
�−1

∑
r=1

(φ(ir+1)−φ(ir)) = ∑
e∈Γi j

φ(e),

where, for arrow e = (is → is+1), φ(e) is defined as the difference φ(is+1)−φ(is).
Then re-write (1.202) as

V (φ) =
1
2

�

∑
i, j=1

[
∑

e=(is→is+1)∈Γi j

(risis+1

risis+1

)1/2
φ(e)

]2

πiπ j, (1.203)

and apply the Cauchy–Schwarz inequality to the internal sum[
∑

e=(is→is+1)∈Γi j

(risis+1

risis+1

)1/2
φ(e)

]2

≤ |Γi j|∑e=(is→is+1)∈Γi j
risis+1(φ(e))2.

So that

V (φ) ≤ 1
2 ∑�

i, j=1πiπ j|Γi j|∑e=(is→is+1)∈Γi j
risis+1φ(e)2

=
1
2 ∑ê=(̂i→ ĵ)rî, ĵ(φ(ê))2∑Γi j: Γi j�ê

|Γi j|πiπ j

≤ E (φ)max
ê

∑
Γi j: Γi j�ê

|Γi j|πiπ j. (1.204)

After taking maximums over ê, and using (1.196), this implies (1.195).

Proof of bound (1.157). As before, we will prove a more general inequality. Let
again P be irreducible and aperiodic. We know that −1 is not an eigenvalue of P
(and what we try to do is separate the eigenvalues from −1). In a sense, δ−1 = 1+
μ�−1 measures how ‘far’ our DTMC is from a periodic one, of period 2 (where −1
is an eigenvalue). A periodic DTMC must have a bipartite diagram, where the state
space is divided into two subsets such that all arrows go from one subset to the
other. This means that every loop in the periodic case must have an even number
of arrows.

This explains why, for an aperiodic P, we select, for all states i = 1, . . . , �, a
simple loop Σi = (i0 → i1 → ·· · → im−1 → im), with an odd number m of edges,
visiting i = i0 = im. As before, let S denote the set of selected loops. Similarly to
(1.194), define the weight of a loop by

|Σi|Q =
m−1

∑
s=0

1
risis+1

, Σi ∈ S . (1.205)
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In this setting, the bound for δ−1 becomes

δ−1 ≥ 2

(
max

ê=(̂i→ ĵ)

[
∑

Σi∈S

1(Σi � ê) |Σi|Qπi

])−1

(1.206)

and will again depend on the choice of set S .

To prove (1.206), we begin with the following straightforward identity

1
2

�

∑
i, j=1

(φ(i)+φ( j))2ri j =
�

∑
i=1

(φ(i))2πi +
�

∑
i, j=1

φ(i)φ( j)ri j

= Eπφ 2 + 〈φ ,Pφ〉π , (1.207)

where Eπ stands for the expectation relative to the equilibrium distribution π , and

the function φ : i �→ φ(i) has been identified with the vector φ =

⎛⎜⎝φ1
...

φ�

⎞⎟⎠, where

φi = φ(i) (a trick we introduced before). Then, if Σi is a loop starting and ending at
i, we write

φ(i) =
1
2

[(
φ(i0)+φ(i1)

)
−
(
φ(i1)+φ(i2)

)
+ · · ·+

(
φ(im−1)+φ(im)

)]
;

the fact that m is odd helps here. Then, as in the proof of Poincaré’s bound, the
Cauchy–Schwarz inequality will come into play, with:

Eπφ 2 =
1
4

�

∑
i=1

πi

(
∑

e=(is→is+1)∈Σi

(−1)s
√

risis+1

risis+1

[
φ(is)+φ(is+1)

])2

≤ 1
4

�

∑
i=1

πi |Σi|Q ∑
e=(is→is+1)∈Σi

risis+1

[
φ(is)+φ(is+1)

]2
(by CS)

=
1
4 ∑

ê=(̂i→ ĵ)

[
φ (̂i)+φ( ĵ)

]2
rî ĵ ∑

Σi: Σi�ê

|Σi|Qπi

= (1/2)
(
Eπφ 2 + 〈φ ,Pφ〉π

)
∑

Σi: Σi�ê

|Σi|Qπi (according to (1.207).

Taking maximums yields

Eπφ 2 ≤ 1
2

(
Eπφ 2 + 〈φ ,Pφ〉π

)(
max

ê

[
∑

Σi: Σi�ê

|Σi|Qπi : Σi ∈ S

])
. (1.208)
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Next, dividing by Eπφ 2 = ||φ ||2π gives

〈φ ,Pφ〉π

||φ ||2π
≥−1+2

(
max

ê

[
∑

Σi: Σi�ê

|Σi|Qπi : Σi ∈ S

])−1

,

and the Rayleigh–Ritz minimax characterisation (1.148) yields bound (1.206).

When you need to prove you’re right, use integration by parts.
If it doesn’t work, use the Cauchy–Schwarz inequality.

(From the series ‘Thus spoke Superviser’.)

Proof of Cheeger’s inequality Again, it is instructive to prove the inequality in
a more general form than (1.163), assuming that P = (pi j) is irreducible and
reversible, relative to an arbitrary positive equilibrium distribution π = (πi) and
considering symmetric weights (1.194). Now, extending (1.163), for a set of states
S ⊂ {1, . . . , �}, we define the generalised flow Q

(
S,Sc

)
generated by a reversible

(π , P) chain in equilibrium, between S and Sc, by

Q
(
S,Sc)= ∑

(i, j); i∈S, j∈Sc

ri j, (1.209)

and then set

h = min
S: 0<π(S)≤1/2

[
1

π(S)
Q(S,Sc)

]
, (1.210)

where

π(S) = ∑
i∈S

πi. (1.211)

In this more general setting, Cheeger’s inequality still asserts that

h2

2
≤ δ1 ≤ 2h. (1.212)

The upper bound in (1.212) is straightforward. For, given a set of states S ⊂
{1, . . . , �}, with 0 ≤ π(S) = ∑i∈S πi ≤ 1/2, set

ψS(i) =

{
π(Sc), i ∈ S,

−π(S), i ∈ Sc
. (1.213)

Using again (1.200) we obtain

δ1(P) ≤ E (ψS)
V (ψS)

=
Q(S,Sc)

π(S)π(Sc)
≤ 2

Q(S,Sc)
π(S)

.

This implies that δ1 ≤ 2h. The lower bound in (1.212) is more tricky and based on
two remarks.
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Remark 1.14.1 Given a real function ψ : i ∈ {1, . . . , �} �→ ψ(i), let ψ+(i) =
max[ψ(i),0] = ψ(i) ∨ 0 and set S+(ψ) = {i ∈ S : ψ(i) > 0}. Assume that
S+(ψ) �= /0.

Owing to (1.197) and (1.201), we can write E (ψ) = 〈Lψ ,ψ〉 and E (ψ+) =
〈Lψ+,ψ+〉. Here we again use the notation ψ and ψ+ for �-dimensional vectors⎛⎜⎝ψ1

...
ψ�

⎞⎟⎠ and

⎛⎜⎝ψ+
1
...

ψ+
�

⎞⎟⎠, where ψi = ψ(i) and ψ+
i = ψ(i)+, i = 1, . . . , �. Now, assume

that, for some λ ≥ 0, the following inequality holds true:

(Lψ)i ≤ λψi, for i ∈ S+(ψ).

Then the norm ||ψ+||π =
(
∑�

i=1 (ψi ∨0)2πi
)1/2

satisfies

λ ||ψ+||2π ≥ E (ψ+). (1.214)

Indeed,

λ ||ψ+||2π ≥ 〈Lψ+,ψ〉π =
1
2

�

∑
i, j=1

(ψ+
i −ψ+

j )(ψi −ψ j)ri j, (1.215)

and the RHS of (1.215) is, rather surprisingly,

≥ 〈Lψ+,ψ+〉π = E (ψ+).

In fact, the last inequality follows from an elementary bound

(ψ+
i −ψ+

j )(ψi −ψ j) ≥ (ψ+
i −ψ+

j )2.

Remark 1.14.2 In the above notation, for all ψ =

⎛⎜⎝ψ1
...

ψ�

⎞⎟⎠,

E (ψ+) =
1
2

�

∑
i, j=1

(ψ+
i −ψ+

j )2ri j ≥
1
2

(h(ψ))2||ψ+||2π . (1.216)

Here

h(ψ) = inf

[
Q(S,Sc)

π(S)
: /0 �= S ⊂ S+(ψ)

]
. (1.217)

To prove bound (1.216), we assume, without loss of generality, that entries ψi ≥
0, for all i = 1, . . . , �. By Cauchy–Schwarz,
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�

∑
i, j=1

|ψ2
i −ψ2

j |ri j ≤
√

2E (ψ)1/2

(
�

∑
i, j=1

(ψi +ψ j)2ri j

)1/2

≤ 23/2E (ψ)1/2||ψ ||π . (1.218)

The LHS of (1.218) can be written as

2
�

∑
i, j=1

1(ψ j > ψi)(ψ( j)2 −ψ(i)2)ri j = 4
�

∑
i, j=1

1(ψ j > ψi)ri j

∫ ψ j

ψi

tdt

= 4
∫ ∞

0
t ∑

i, j:ψi≤t<ψ j

ri j dt. (1.219)

Now, observe that

�

∑
i, j=1

1(ψi ≤ t < ψ j)ri j = Q(St ,St c), (1.220)

for St(= St(ψ)) = {i : ψi > t} ⊆ S+(ψ). Combining (1.214) and (1.216) yields

RHS of (1.218) ≥ 4h(ψ)
∫ ∞

0
π(St) tdt = 2 h(ψ)||ψ ||2π ,

i.e. the bound

λ ≥ 1
2
(h(ψ))2. (1.221)

We may now finish with the lower Cheeger bound δ1 ≥ h2/2. In view of (1.214),
(1.216) and (1.217), if (Lψ)i ≤ λψi for all i ∈ S+(ψ), then (1.221) holds. Then
take λ = δ1, and let ψT be a normalised row eigenvector of LT with the eigenvalue
δ1: ψTLT = δ1ψT , i.e. Lψ = δ1ψ , where ||ψ ||π = 1. We know that column vectors
ψ and 1 are π-orthogonal, i.e. the π-mean of ψ vanishes: ∑�

i=1 ψiπi = 0. Hence,
we can always arrange that 0 < π(S+(ψ))≤ 1/2 and therefore h(ψ)≥ h. Then the
bound δ1≥h2/2 follows from (1.221), with this choice of value λ and vector ψ .

The story we tell at the end of this section has a double moral. One is that a good
command of calculus is vital (as has already been manifested in the proofs given
in this section). The other (mainly for present or future lecturers) is that delivering
dull lectures can be risky. The story comes from the life of the Russian physicist
Igor Tamm (1895–1971), Nobel Prize winner in Physics (1958), and a close per-
sonal friend of N. Bohr, P. Dirac, R. Peierls and many others. Tamm got to be
an extremely popular and respected figure in the Soviet and international physics
community; there was a joke that if there is a unit of honesty it is the tamm. Igor
Tamm was born in Vladivostock (in the Russian Far East) and begun his under-
graduate studies at the University of Edinburgh where he read mathematics. After
he returned to spend the summer of 1914 in Russia he was unable to continue
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his studies because of the outbreak of World War I. He managed to complete his
course at Moscow University and for several years taught mathematics in differ-
ent places. This covered the period of the civil war in Russia (1918–1920) when
there were acute shortages of food and clothes. People often resorted to bartering
garments for food. Once Tamm travelled to a place near the city of Odessa (now
in Southern Ukraine) to get some food for a bag of clothing. The military situation
in the region was unstable, the main battles being fought between Reds (followers
of the Bolsheviks) and Whites (aiming to restore some form of the old regime),
but a mishmash of other forces was also active, including the so-called Greens (not
to be confused with modern political and social movements known by the same
name). The Greens opposed both the Reds and the Whites (as well as any other
other side taking part in the Civil War), and their aim was to establish a ‘proper
peasant power’ (some modern historians consider them as brave fighters for the
Ukrainian statehood). One of their slogans was “Beat the reds until they become
white, and the whites until they become red”. The Greens’ tactic was to attack soft
spots in the rear of either of the main forces, get a quick bounty and disappear.

Tamm was caught in a sudden attack by the Greens and brought before their
commander as a suspect. The picturesquely dressed commander was a bear of a
man of approximately the same age as Tamm, wearing, in accordance with the
customs of the time, a pair of big Mauser handguns on his belt, his chest crossed
with machine-gun bands. His deputy reported that Tamm was arrested as a Bol-
shevik agitator and should be immediately shot. Tamm protested that he was no
political activist, but a professor of mathematics. Unexpectedly, the commander
ordered everybody but Tamm to leave. Then he said to Tamm: “Fine. If you’re a
mathematician, write down the remainder term in the Maclaurin form of the Tay-
lor series.” Without blinking, Tamm gave him the answer and commented that the
question was rather trivial. The commander was pleased and immediately ordered
Tamm to be freed and allowed to go back to Odessa. It turned out that he was a
former maths student but found courses too boring.

1.15 Large deviations for discrete-time Markov chains

. . . do not let it pass, but instantly check them;
you do not know where deviation from truth will end.

S. Johnson (1709–1784), English lexicographer and playwright

Large deviation theory describes rare events, with small probabilities. Formally,
it is an asymptotical theory, dealing with events An such that P(An) → 0 as n → ∞.



1.15 Large deviations for discrete-time Markov chains 139

A typical example of such an event where a random variable Yn takes increasingly
large values is {Yn ≥ n(μ + a)}, EYn = nμ , a > 0 (by passing from Yn to −Yn,
we can extend this to increasingly large negative values). The form of the RV Yn

may vary; it is natural to begin with an example where Yn = Z1 + · · ·+ Zn is the
sum of n IID copies of a RV Z. Assuming, for simplicity, that the RVs Zi take
finitely many values z (more than one), we know that if EZ = EZi = μ and VarZ =
VarZi = σ2 > 0 then, as n → ∞, the averaged sum Yn/n converges to μ (the weak
and strong laws of large numbers), and the RV (Yn − nμ)/σ

√
n has in the limit

the normal distribution N(0,1) (the local and integral Central Limit Theorem).
However, neither of these statements tells us much about the probability P(Yn >

n(μ +a)) where a > 0. For instance, the Chebyshev inequality

P(Yn > n(μ +a)) ≤
(
VarZ1

)/
na2

guarantees that P(Yn > n(μ + a)) converges to 0 in the limit, but how fast? If Z1,
Z2, . . . take two values, ±1 say, we can try to use the precise formula

P(Yn = m) =
(

n
(n+m)/2

)
p(n+m)/2(1− p)(n−m)/2,

with p = P(Z1 = 1), m = 0,±1, . . . ,±n, but it is tedious. To cover a decently general
case, we need different techniques.

It turns out that the answer is quite simple. Consider the moment-generating
function (MGF) of Yn: EeθYn = (EeθZ)n. Here, EeθZ = ∑k eθk

P (Z = k), is the
MGF of the variable Z: it represents a finite sum of exponentials. Any MGF is
a convex function (owing to Jensen’s inequality or just by differentiation, viz.
d2

dθ 2 E
θZ = EZ2eθZ > 0). Under our assumption, EeθZ and EeθYn are finite for

all real θ ∈ R. (They are also obviously positive for all θ ∈ R.) Take the logarithm
of EeθYn and divide by n:

1
n

lnEeθYn = lnEeθZ := Λ(θ). (1.222)

This is again a convex function of θ ; the shortest way to see it is as follows. Take
the derivatives

d
dθ

Λ(θ) =
EZeθZ

EeθZ ,
d2

dθ 2 Λ(θ) =

[
EeθZ

EZ2eθZ −
(
EZeθZ

)2
]

(EeθZ)2 .

It is convenient to write the second derivative in the form of a variance[
EeθZ

EZ2eθZ −
(
EZeθZ

)2
]

(EeθZ)2 = EZ̃2
1 −
(
EZ̃1
)2 = Var Z̃1 > 0. (1.223)

Here Z̃1 is a random variable taking the same values as Z, but with ‘tilted’
probabilities
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Fig. 1.29

P(Z̃1 = z) =
eθz

P(Z = z)
EeθZ .

(So that ∑z P(Z̃1 = z) =
1

EeθZ ∑z
eθz

P(Z = z) = 1, and moments EZ̃n
1 =

1
EeθZ ∑z

zneθz =
EZneθZ

EeθZ , n = 1,2, . . ..) Now, make the other simplifying assump-

tion, that Z takes both positive and negative values, so that the sum EeθZ =
∑z eθz

P(Z = z) includes both positive and negative exponentials. Let z+ > 0 be
the maximal and z− < 0 the minimal attained value of Z. The graph of the function
Λ(θ) looks like a hyperbola passing through the origin: see Figure 1.29.

Dracula’s bloody θs
(From the series ‘Movies that never made it to the Big Screen’.)

Next, consider the so-called Legendre transform (also called Legendre–Fenchel
or, in the context of large deviations, Legendre–Cramér transform):

Λ∗(x) = max
[
θx−Λ(θ), θ ∈ R

]
= −ln

(
min

[
e−θx

EeθZ : θ ∈ R

])
, x ∈ R.

(1.224)
The meaning of this operation is that the value Λ∗(x) is attained at the point θ ∗ =
θ ∗(x) where the derivative Λ′(θ ∗) = x; in our situation, where Z takes finitely many
values, both negative and positive, such a point exists and is unique for z− ≤ x ≤ z+

(with the agreement that θ ∗(z±) = ±∞), and

Λ∗(x) = θ ∗x−Λ(θ ∗).

See Figure 1.30.
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However, for x < z− and x > z+, no such point exists θ ∗, and for such x we set
Λ∗(x) = +∞. At x = z− and x = z+, we observe, from a direct calculation, that
Λ∗(z±) = − ln P(Z = z±). See Figure 1.31.

As we will see, for all a > 0, the asymptotics of the probability P(Yn > n(μ +a))
are exponential, with negative exponent Λ∗(a):

lim
n→∞

1
n

lnP(Yn > n(μ +a)) = −Λ∗(μ +a). (1.225)

In particular, for μ + a ≥ z+, i.e. a ≥ z+ − μ , the probability P(Yn > n(μ + a))
vanishes for all n, and the limit in (1.225) equals −∞, in agreement with the

above setting. By the same token, the limit lim
n→∞

1
n

lnP(Yn < n(μ − a)) equals

Λ∗(μ −a).
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From now on we will assume that 0 < a < z+ − μ . The proof of (1.225) needs
to check two opposite bounds. One is simple, based on the Chernoff inequality: for
all real-valued random variables U with a finite MGF EeθU and for all θ ≥ 0,

P(U > b) ≤ 1
eθb EeθU . (1.226)

In fact, it is simply the Markov inequality for the RV eθU : the probability P(U >

b) = P(eθU > eθb)≤EeθU
/

eθb. Replacing U with Yn and minimising in θ ≥ 0, we
obtain

P(Yn > nμ +na) ≤ exp

(
nmin

[
1
n

lnEeθYn −θ(μ +a) : θ ≥ 0

])
.

For a > 0, the minimum over θ ∈ R is attained at θ ≥ 0. This yields that
1
n

lnP(Yn > n(μ +a)) ≤−Λ∗(μ +a) and hence

limsup
n→∞

[1
n

lnP(Yn > n(μ +a))
]
≤−Λ∗(μ +a). (1.227)

To finish the proof of (1.225), we now want the opposite inequality:

liminf
n→∞

[1
n

lnP(Yn > n(μ +a))
]
≥−Λ∗(μ +a) (1.228)

This requires some analytical considerations.

In Algebra, the equality A = B is usually a triviality.
In Analysis, it is the consequence of two opposite inequalities,

one of which is usually not hard, but the other requires a lot of work.
(From the series ‘Thus spoke Superviser’.)

First, note that, given x ∈ R, the Legendre transform Λ∗(x) equals − lnEeθ ∗(Z−x)

= θ ∗x− lnEeθ ∗Z , for the optimiser θ ∗(= θ ∗(x)); see Figure 1.30. Next, pass to the
IID copies Z̃1, Z̃2, . . . of the tilted RVs Z̃, with P(Z̃i = z) = P(Z̃ = z) = eθ ∗z

P(Z =
z)
/
Eeθ ∗Z . Then write

P(Yn > nx) = ∑
z1,...,zn

1
(
z1 + · · ·+ zn > nx

)
P(Z = z1) · · ·P(Zn = zn)

=
(
Eeθ ∗Z

)n

∑
z1,...,zn

1
(
∑zi > nx

)
e−θ ∗(∑zi)

n

∏
i=1

P(Z̃i = zi).
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Now, if both x,θ ∗ > 0, then, given any ε > 0, the right hand side is

≥
(
Eeθ ∗Z

)n

∑
z1,...,zn

1

(
nx(1+ ε) ≥

n

∑
i=1

zi > nx

)
e−θ ∗(∑zi)

n

∏
i=1

P(Z̃i = zi)

≥ e−nθ ∗x(1+ε)
(
Eeθ ∗Z

)n

∑
z1,...,zn

1

(
nx(1+ ε) ≥

n

∑
i=1

zi > nx

)
n

∏
i=1

P(Z̃i = zi)

= e−nθ ∗x(1+ε)
(
Eeθ ∗Z

)n
P(nx(1+ ε) ≥

n

∑
i=1

Z̃i > nx). (1.229)

Observe that the expectation

E
(
Z̃ − x

)
=

1
Eeθ ∗Z E(Z − x)eθ ∗Z = 0, i.e. EZ̃ = x. (1.230)

In fact,

E
(
Z̃ − x

)
=

d
dθ

Eeθ(Z−x)
∣∣∣
θ=θ ∗

= 0,

as θ ∗ corresponds to the maximum point of lnEeθZ −θx.
Now, the probability on the right hand side of (1.229) is nothing but

P

(
0 <

Z̃1 + · · ·+ Z̃n −nx
σ̃
√

n
≤ εx

√
n

σ̃

)
,

which, by the Central Limit Theorem, tends to

1√
2π

∫ ∞

0
e−y2/2dy =

1
2
.

Hence, if x,θ ∗ > 0 then for all ε > 0,

liminf
n→∞

[1
n

lnP

(
1
n

Yn > x

)]
≥−θ ∗x(1+ ε)+ lnEeθ ∗Z,

or, letting ε → 0,

liminf
n→∞

[1
n

lnP

(
1
n

Yn > x

)]
≥−θ ∗x+ lnEeθ ∗Z = −Λ∗(x). (1.231)

Next, the condition that x > 0 and θ ∗ > 0 implies that x > μ = EZ. Hence, we can
take x = μ +a, with 0 < a < z+−μ , and (1.228) follows from (1.231).

In general, the large deviation technique is suitable for working with closed
as well as open sets. Here we should be careful because the Legendre transform
Λ∗(θ), as we saw, is not continuous in θ ∈ R (it may jump to +∞). Still, Λ∗

is a convex and lower semi-continuous function. That is, Λ∗(qx1 + (1− q)x2) ≤
qΛ∗(x1) + (1 − q)Λ∗(x2) for all x1,x2 ∈ R and 0 < q < 1, and if xn → x then
Λ∗(x) ≥ limsupΛ∗(xn). The apparatus of large deviation theory always takes into
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account this property. The principal theorem, for the sum Yn = ∑n
i=1 Zi of IID

summands Z1, Z2, . . . , is often called Cramér’s Theorem

Theorem 1.15.1 For all closed sets F ⊂ R

limsup
n→∞

[1
n

lnP

(
Yn

n
∈ F

)]
≤− inf

[
Λ∗(x) : x ∈ F

]
, (1.232)

while for all open sets G ⊂ R

liminf
n→∞

[1
n

lnP

(
Yn

n
∈ G

)]
≥− inf

[
Λ∗(x) : x ∈ G

]
. (1.233)

As an example, assume again that the Zis take finitely many values and consider
as the set F the closed semi-infinite interval [z+,+∞) where z+ is the maximal
value attained by the RV Zi. Then the probability P(Yn ∈ F) = P(Z1 = · · · = Zn =
z+) = (P(Z = z+))n, and the limit in the left hand side of (1.232) equals lnP(Z =
z+) which coincides with Λ∗(z+); see Figure 1.31.

Example 1.15.2 More precisely, suppose that Z takes value 0 with probability
q = 1− p and value 1 with probability p. Here,

EeθZ = 1− p+ peθ , and Λ(θ) = ln(1− p+ peθ ).

We know that to calculate the Legendre transform, we have to solve the equation
x = Λ′(θ ∗) and then to calculate xθ ∗ −Λ(θ ∗). We saw that this recipe works when
0 ≤ x ≤ 1; here,

θ ∗ = ln
(x(1− p)

(1− x)p

)
, and Λ∗ = x ln

( x
p

)
+(1− x) ln

( 1− x
1− p

)
. (1.234)

For x < 0 or x > 1, Λ∗(x) = +∞.

Expression (1.234) was spotted in Volume 1, p. 83. It is the relative entropy of the
two-point probability distribution (1− p, p) on {0,1} with respect to the distribu-
tion (1−x,x); it is clear that Λ∗(p) = 0. Thus, for the sum Yn = ∑n

i=1Zi of IID RVs
Zi ∼ Z, Cramér Theorem’s gives:

(a) for all closed sets F ⊂ R:

lim
n→∞

1
n

lnP(Yn ∈ F)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
= −∞, if F ⊆ (−∞,0)∪ (1,+∞),

≤−Λ∗(a), if a = minx∈F x ∈ (p,1],

≤−Λ∗(a), if a = maxx∈F x ∈ [0, p),

≤ 0, if F � p,
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(b) for all open sets G ⊂ R:

lim
n→∞

1
n

lnP(Yn ∈ G)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
≥−∞, if G ⊆ (−∞,0]∪ [1,+∞),

≥−Λ∗(a), if a = infx∈G x ∈ (p,1],

≥−Λ∗(a), if a = supx∈G x ∈ [0, p),

0, if G � p.

For F = [x,∞) and G = (x,∞), with p < x ≤ 1, we obtain, by continuity of Λ∗

on [0,1]:

P(Yn > nx) =
(

x
p

)−nx( 1− x
1− p

)−n(1−x)

exp (o(nmax[x,1− x])) , p < x ≤ 1.

The aforementioned exact calculation, based on Stirling’s formula, gives

P(Yn > nx) =
1√

2πnx(1− x)

(
x
p

)−nx( 1− x
1− p

)−n(1−x)

×[
1+O

(
1

nmax[x,1− x]

)]
, p < x ≤ 1. (1.235)

This argument can be extended to the case of the sum Yn = ∑n
i=1Zi where RVs

Zi ∼ Z, independently, and Z takes a finite number of distinct values, say z1, . . . ,zl ,
with probabilities p1, . . ., pl . In fact, it turns out to be more convenient to work
with l-dimensional vectors Ui ∼ U. Here Ui = (Ui,1, . . . ,Ui,l) and U = (U1, . . . ,Ul),
where Uk = 1 if Z = jk and Uk = 0 if Z �= jk, and similarly, Ui,k = 1 if Zi = zk and
Ui,k = 0 if Zi �= zk. Then the sum of the vectors Yn = ∑n

i=1 Ui counts the numbers
of appearances of every value zk, from which we can reconstruct the original sum:
Yn = ∑n

i=1 ∑l
k=1 zkUi,k. Then we consider the joint MGF

Ee〈θ ,Z〉 = E

[
exp

(
l

∑
k=1

θkZk

)]
, θ = (θ1, . . . ,θl),

and its logarithm Λ(θ) = lnEe〈θ ,Z〉. Similarly to the ‘scalar’ Legendre transform,
one introduces the vector version:

Λ∗(x) = sup [〈θ ,x〉−Λ(θ)] .

The analogue of (1.234) identifies the relative entropy of the probability distribu-
tion (p j) with respect to a ‘test’ one (x j), with x j ≥ 0 and ∑ j x j = 1. More precisely,
the Legendre transform Λ∗ will be a function of a vector x ∈ S

l

Λ∗(x) =

⎧⎪⎨⎪⎩
l

∑
j=1

x j ln
x j

p j
, x ∈ S

l,

+∞, x ∈ R
l \S

l .

(1.236)
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Here S
l stands for the l-dimensional simplex of stochastic vectors: S

l = {x : x j ≥
0, x1 + · · ·+ xl = 1}. The statement of Cramér Theorem’s remains valid and this
provides vector analogues of the ‘scalar’ formulas.

Example 1.15.3 Consider the MGF of a Gaussian RV Z:

EeθZ = exp

(
θ μ +

1
2

θ 2σ2
)

, with Λ(θ) = ln
(
EeθZ)= θ μ +

1
2

θ 2σ2.

To calculate the Legendre transform Λ∗(x), equate

x = Λ′(θ ∗) = μ +θ ∗σ2, i.e., θ ∗ =
x−μ

σ2 .

Λ∗(x) = xθ ∗ −Λ(θ ∗) = x
x−μ

σ2 −μ
x−μ

σ2 − 1
2

(
x−μ

σ2

)2

σ2 =
1
2

(x−μ)2

σ2 .

(1.237)
This is a ‘nice’ function: infinitely differentiable for all x ∈ R, strictly increasing
for x > μ and strictly decreasing for x < μ , with the mimimum at x = μ , the mean
of the RV Z.

Then, by Cramér Theorem’s, for the sum Yn = ∑n
i=1 Zi of IID Gaussian RVs,

Zi ∼ N(μ,σ 2), for all closed F ⊂ (μ,∞),

limsup
n→∞

[1
n

lnP

(
1
n

Yn ∈ F

)]
≤− (x∗−−μ)2

2σ2 ,

where x∗− is the left-most point of F : x∗− = min [x : x ∈ F ]. Similarly, for all open
G ⊂ (μ,∞),

liminf
n→∞

[1
n

lnP

(
1
n

Yn ∈ G

)]
≥− (y∗+−μ)2

2σ2 ,

where y∗+ is the right-most point of R\G: y∗− = max[x : x �∈ G]. For F = [μ +a,∞)
and G = (μ +a,∞), x∗− = y∗+ = μ +a, and we obtain that

P(Yn > n(μ +a)) = P(Yn ≥ n(μ +a)) ≈ e−na2/2σ2
.

In fact, a direct calculation, taking into account that Yn ∼ N(nμ,nσ 2), yields:

P(Yn > n(μ +a)) =
1√

2πσ

∫ ∞

a
√

n
e−x2/2σ2

dx

=
1√

2πna

[
1+O

(
1√
na

)]
e−na2/2σ2

.
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The last formula follows from the double inequality

1
a+a−1 e−a2/2 ≤

∫ ∞

a
e−x2/2dx ≤ 1

a
e−a2/2; (1.238)

which is one of a series of useful bounds for Gaussian integrals.

Example 1.15.4 For a Poisson RV Z ∼ Po(λ ), the MGF becomes

EeθZ = exp
[
λ
(

eθ −1
)]

, with Λ(θ) = ln(EeθZ) = λ
(

eθ −1
)

.

As before, given x, we want to calculate θ ∗ such that x = Λ′(θ ∗); as Λ increases
with θ , the value x should be positive. So

θ ∗ = ln
( x

λ

)
, and Λ∗(x) =

{
+∞, x ≤ 0,

x
(

ln
( x

λ
)
−1
)

+λ , x > 0.
(1.239)

Here Λ∗(0+) = λ , and Λ∗(λ ) = 0. Thus, again, Cramér Theorem’s yields that the

sum Yn =
n
∑

i=1
Zi of IID RVs Zi ∼ Po(λ ) has, for x > λ ,

P(Yn > nx) ≈
( x

λ

)−nx
exp (n(x−λ )).

As before, a more accurate approximation can be produced by invoking the fact
that Yn ∼ Po(nλ ):

P(Yn > nx) = ∑
j>nx

(nλ ) j

j!
e−nλ =

(nλ )[nx]+1

([nx]+1)!
e−nλ+o(nx)

=
1√

2π([nx]+1)

( x
λ

)−[nx]−1
en(x−λ )

(
1+O

(
1
nx

))
.

Here, at the last step, we applied Stirling’s formula. Note that the exponential term
is suppressed by the term x−nx.

Example 1.15.5 For an exponential RV Z ∼ Exp(λ ):

EeθZ =
λ

λ −θ
, with Λ(θ) = lnE(eθZ) = ln

( λ
λ −θ

)
, θ < λ .

Here, again, for x > 0:

θ ∗ =
x−λ

x
, and Λ∗(x) =

x
λ
−1− ln

x
λ

, with Λ∗(0+) = +∞, (1.240)
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and Λ∗(x) = +∞ for x≤ 0. So, for Yn = ∑n
i=1 Zi, where Zi ∼ Exp(λ ), independently,

Cramér’s Theorem results in

P(Yn > nx) =
( x

λ

)n
exp

[
−n
( x

λ
−1
)

+o(n)
]
.

. . . that we should . . . transform ourselves into beasts.
W. Shakespeare (1564–1616), English playwright and poet

The importance of Cramér Theorem’s lies in serving as a starting point of a
fruitful theory covering a large variety of situations. The mathematical backbone
here is provided by the so-called Gärtner–Ellis Theorem. In a non-general form,
but convenient for our applications, this theorem states:

Theorem 1.15.6 Consider an arbitrary sequence of vector-valued RVs Un =
(U1n, . . . ,Udn), n = 1,2, . . . . Assume that there exists a limit

Λ(θ) = lim
n→∞

[1
n

ln
(
Een〈θ ,Un〉)], θ = (θ1, . . . ,θd) ∈ R

d , (1.241)

which is finite for θ in a neighbourhood of the origin θ = 0 and continuous-
differentiable in θ everywhere where it is finite. Then, denoting, as before, by Λ∗

the Legendre transform,

Λ∗(x) = sup
[
〈θ ,x〉−Λ(θ) : θ ∈ R

d , Λ(θ) < ∞
]
,

equations (1.232) and (1.233) hold true (where F is a closed and G is an open
subset of R

d):

limsup
n→∞

[1
n

ln
(
P(Un ∈ F)

)]
≤− inf

[
Λ∗(x) : x ∈ F

]
, (1.242)

while for all open sets G ⊂ R,

liminf
n→∞

[1
n

ln
(
P(Un ∈ G)

)]
≥− inf

[
Λ∗(x) : x ∈ G

]
. (1.243)

Condition (1.241) is obviously fulfilled when Un = (Z1 + · · ·+Zn)/n where Z1,
Z2, . . . are IID random vectors. In general, condition (1.241) is non-trivial, and
the calculation of the functions Λ and Λ∗ is challenging. In popular terminology,
one says that the sequence (Un) satisfies the large deviation principle if relations
(1.242) and (1.243) hold true. In this situation Λ∗ is called the large deviation rate
function.
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We will analyse the case where a random vector Un has

Ujn =
1
n

n

∑
i=1

1(Xi = j), j = 1, . . . , �, (1.244)

where (Xn) is an irreducible and aperiodic DTMC, with finite state space I =
{1, . . . , �}. In other words, Ujn represents the portion of time spent in state j ∈ I
between times 1 and n. In general, this RV follows a complicated distribution, but
we know that the (weak and strong) Laws of Large Numbers hold: 1

n ∑n−1
i=0 1(Xi = j)

converges to π j, the equilibrium probability (see Theorem 1.5.2). The original
proof appeared in K. Duffy and A.P. Metcalfe. “The large deviations of estimating
rate functions”. J. Appl. Prob., 42 (2005), 267–274.

A useful statement is the Perron–Frobenius Theorem for non-negative matrices.
It generalises Theorem 1.12.3 as follows.

Theorem 1.15.7 Let R be an �× � matrix with non-negative entries ri j.

(a) Suppose that the following irreducibility condition holds: for all i, j = 1, . . . , �,
there exists s(= s(i, j)) such that r(s)

i j , the (i, j)th entry of the sth power Rs of

R, is positive: r(s)
i j > 0. Then the norm ||R|| equals the spectral radius ρ(R) and

is always an eigenvalue of R and RT. Denoting ||R|| = ρ(R) = μ0, the alge-
braic and geometric dimensions of the eigenvalue μ0 are equal to 1, and the

corresponding eigenspaces of R and RT are generated by vectors ψ(0) =

⎛⎜⎜⎝
ψ(0)

1
...

ψ(0)
�

⎞⎟⎟⎠
and φ (0) =

⎛⎜⎜⎝
φ (0)

1
...

φ (0)
�

⎞⎟⎟⎠ with strictly positive components ψ(0)
i ,φ (0)

i > 0, i = 1, . . . , �.

(b) If there exists an s such that p(s)
i j > 0 for all i, j = 1, . . . , �, then all other eigen-

values μp �= μ0 of R and RT satisfy |μp| ≤ μ0(1−δ ), i.e. lie within a closed circle
of radius μ0(1−δ ) < μ0 around the origin in the complex plane C, where μ0δ > 0
is the spectral gap.

Moreover, for all vectors x =

⎛⎜⎝x1
...

x�

⎞⎟⎠ ∈ R
�,

xTRn = μn
0

[
〈x,φ (0)〉ψ(0)T

+O((1−δ )n)
]
. (1.245)
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It is natural to claim that the matrix R is irreducible when it satisfies the condi-
tion that for all (i, j) there exists s = s(i, j) such that r(s)

i j > 0, and irreducible and

aperiodic when there exists s such that for all (i, j), r(s)
i j > 0.

An elegant trick allows converting an irreducible and aperiodic matrix R = (ri j)
with non-negative entries into a stochastic matrix P̃ = (p̃i j) (also irreducible and
aperiodic): simply set

p̃i j =
1
μ0

(
φ (0)

i

)−1
ri jφ

(0)
j , i, j = 1, . . . , �. (1.246)

Then the (unique) equilibrium distribution π̃ for P̃ will have probabilities

π̃i =
1

〈ψ(0),φ (0)〉 ψ(0)
i φ (0)

i , i = 1, . . . , �. (1.247)

In our case of an irreducible and aperiodic Markov chain (Xn), with states 1, . . . , �

and transition matrix P = (pi j), we consider a family of matrices Rθ of the form

Rθ = (pi je
〈θ ,f( j)〉), i, j = 1, . . . , �. (1.248)

Here, for all j = 1, . . . , �, f( j) =

⎛⎜⎝ f1( j)
...

f�( j)

⎞⎟⎠∈R
� is a real-valued vector, of dimension

�, and so is θ . Clearly, the matrix (1.248) exhibits non-negative entries, and it is
irreducible and aperiodic. Denote, as before, by μ0(θ) the maximal eigenvalue
of Rθ and RT

θ ; we know that μ0(θ) = ||Rθ || = ||RT
θ ||, and μ0 has multiplicity 1.

It is also known that μ0(θ) is infinite-differentiable with respect to θ ∈ R
�. Let

again ψ(0)T
= ψ(0)

θ
T

be the corresponding row eigenvector of Rθ and φ (0)T
= φ (0)

θ
T

be the corresponding row eigenvector of RT
θ , with positive entries ψ(0)

j , φ (0)
j > 0,

j = 1, . . . , �.

Lemma 1.15.8 Consider an irreducible and aperiodic DTMC (Xn) with states
1, . . . , � and row vector of initial probabilities λ = (λ ( j)). Fix a collection of vec-
tors f( j) ∈ R

�, j = 1, . . . , � and form random vectors f(Xn), n = 0,1, . . .. Then the
sequence of sums

Vn =
1
n

n

∑
i=1

f(Xi), n = 1,2, . . . , (1.249)

satisfies the large deviation principle. More precisely, for all θ = (θ1, . . . ,θ�) ∈ R
�,

there exists a limit

lim
n→∞

1
n

[
ln
(
Eλ en〈θ ,Vn〉)]= ln

(
μ0(θ)

)
, (1.250)
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and the Gärtner–Ellis Theorem implies the large deviation principle for (Vn). Here
Eλ stands for the expectation with respect to the distribution of the DTMC (Xn)
with initial probability row vector λ .

Consequently, the large deviation rate function is

Λ∗(x) = sup
θ∈R�

[〈x,θ〉− ln
(
μ0(θ)

)
], x ∈ R

�, (1.251)

regardless of the choice of initial distribution λ .

Proof To check (1.250), we write the expectation Eλ

[
en〈θ ,Vn〉

]
as a sum over the

sample values (or more briefly, samples) of X0, . . . , Xn:

Eλ en〈θ ,Vn〉 = ∑
j0,..., jn

λ ( j0)p j0 j1e〈θ ,f( j1)〉 · · · p jn−1 jne〈θ ,f( jn)〉 =
�

∑
j=1

(
λ (Rθ )n)

j

= (λRn
θ 1) = μ0(θ)n

[
〈λ T,φ (0)〉ψ(0)T

+O((1−δ )n)
]
. (1.252)

The last equality in (1.252) holds because of Theorem 1.15.7. Now, it remains to
take the logarithm and divide by n, and (1.250) follows.

In the case where the vector f( j) has the entry 1 in position j and all other entries
0, the task of calculating Λ∗(x) is made easier by the following.

Lemma 1.15.9 Suppose that the vector f( j) =

⎛⎜⎜⎜⎜⎜⎜⎝
0
...
1
...
0

⎞⎟⎟⎟⎟⎟⎟⎠, with entry j equal to 1 and all

other entries equal to 0, j = 1, . . . , �. Then Λ∗(x) equals +∞ unless the vector x =⎛⎜⎝x1
...

x�

⎞⎟⎠ has x1, . . . ,x� ≥ 0 and x1 + · · ·+x� = 1. For x satisfying the above conditions,

Λ∗(x) = sup

⎡⎢⎣ �

∑
j=1

x jln

(
u j

(uTP) j

)
: u =

⎛⎜⎝u1
...

u�

⎞⎟⎠ , u1, . . . ,u� > 0

⎤⎥⎦ . (1.253)

Here P is the transition matrix of the DTMC (Xn).

Proof First, consider the simplex of stochastic vectors S� ⊂ R
� formed by the

vectors x∈R
� with x j ≥ 0, and ∑�

j=1 x j = 1. The complement R
�\S� is an open set.
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By Lemma 1.15.8, we can use the large deviation principle for the sequence of

random vectors Vn =

⎛⎜⎝V1n
...

V�n

⎞⎟⎠, where Vjn = 1
n ∑n

i=1 1(Xi = j),

liminf
n→∞

1
n

[
ln
(
P(Vn �∈ S�)

)]
≥− inf

[
Λ∗(x) : x ∈ R

� \S�

]
. (1.254)

Observe that, for all n, the probability in the LHS of (1.254) equals 0, as Vn takes
values from S� only. Hence, the logarithm in the LHS is equal to −∞, and so is the
RHS. That is,

inf
[
Λ∗(x) : x ∈ R

� \S�

]
= +∞,

i.e. Λ∗(x) ≡ +∞ on R
� \S�.

Henceforth, assume that x ∈ S�. To begin with, we check the inequality

Λ∗(x) ≥ sup

⎡⎢⎣ �

∑
j=1

x j ln
( u j

(uTP) j

)
: u =

⎛⎜⎝u1
...

u�

⎞⎟⎠ , u1, . . . ,u� > 0

⎤⎥⎦ . (1.255)

Given the vector u ∈ R
� with strictly positive entries u1, . . . , u�, set:

θ ∗
j = ln

( u j

(uTP) j

)
, j = 1, . . . , �, with 〈x,θ ∗〉 =

�

∑
j=1

x j ln

(
u j(

uTP
)

j

)
, (1.256)

and consider the matrix R (= Rθ ∗) with non-negative entries pi je
θ ∗

j , i, j = 1, . . . , �.
The matrix R is irreducible and aperiodic, hence Theorem 1.15.7 is applicable.

It turns out that uT is the eigenvector of R with eigenvalue 1:

uTR = uT, i.e. uTRn = u for all n ≥ 1. (1.257)

In fact, for all j = 1, . . . , �,

�

∑
i=1

ui pi j eθ ∗
j =

�

∑
i=1

ui pi j
u j(

uTP
)

j

=
(
uTP
)

j

u j(
uTP
)

j

= u j.

If the maximal eigenvalue μ0(θ ∗) of R is greater than 1, we obtain a contradiction:

the corresponding eigenvectors ψ(0)T
and φ (0)T

have strictly positive components,
and we should get the equality

uTRn =
(
μ0(θ ∗)

)n
[
〈u,φ (0)〉ψ(0)T

+O((1−δ )n)
]
. (1.258)

Since the scalar product 〈u,φ (0)〉 of two positive vectors is > 0, equation (1.258)
clashes with (1.257). The only possibility is that μ0(θ ∗) = 1, in which case
u = ψ(0).
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Therefore, ln
(
μ0(θ ∗)

)
= 0, and

Λ∗(x) = sup
[
〈x,θ〉− ln μ0(θ) : θ ∈ R

�
]
≥ 〈x,θ ∗〉 =

�

∑
j=1

x j ln

(
u j(

uTP
)

j

)
.

(1.259)
Taking the supremum of the RHS of (1.259) over positive vectors u yields (1.255).

It remains to verify the opposite inequality to (1.255)

Λ∗(x) ≤ sup

⎡⎢⎣ �

∑
j=1

x j ln

(
u j

(uTP) j

)
: u =

⎛⎜⎝u1
...

u�

⎞⎟⎠ , u1, . . . ,u� > 0

⎤⎥⎦ . (1.260)

Recall, for all x ∈ R
�, the value Λ∗(x) equals sup

[
〈x,θ〉− ln

(
μ0(θ)

)
: θ ∈ R

�
]
;

see (1.251). Hence, it suffices to check that, for all x, θ ∈ R
�, there exists a row

vector uT with positive entries u1, · · ·,u� such that

〈x,θ〉− ln
(
μ0(θ)

)
≤

�

∑
j=1

x j ln

[
u j(

uTP
)

j

]
. (1.261)

But such a vector u is obvious: it is the eigenvector ψ(0)T
of Rθ with the maximal

eigenvalue μ0(θ). Indeed, for u = ψ(0), uTRθ = μ0(θ)uT, i.e.

�

∑
j=1

x j ln

[(
uTRθ

)
j

u j

]
=

�

∑
j=1

x j ln
(
μ0(θ)

)
= ln

(
μ0(θ)

)
, (1.262)

as the sum ∑�
j=1 x j = 1.

But the RHS of (1.262) equals

〈x,θ〉+
�

∑
j=1

x j ln

[(
uTP
)

j

u j

]
= 〈x,θ〉−

�

∑
j=1

x j ln

[
u j(

uTP
)

j

]
. (1.263)

Combining (1.263) with (1.262) we achieve the equality in (1.261). This completes
the proof of (1.253).

Example 1.15.10 Lemma 1.15.9 will enable us to calculate Λ∗(x) explicitly in the
case of a two-state irreducible aperiodic Markov chain. Here, the transition matrix
P takes the form

P =
(

1−α α
β 1−β

)
, (1.264)

where α ,β ∈ (0,1). The equilibrium distribution π = (π1,π2) exhibits the form

π1 =
β

α +β
, π2 =

α
α +β

. (1.265)
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The eigenvalues of the matrix

Rθ =
(

(1−α)eθ1 αeθ2

βeθ1 (1−β )eθ2

)
, θ =

(
θ1

θ2

)
,

are easy to find, and the maximal one is

μ0(θ) =
1
2

(
(1−α)eθ1 +(1−β )eθ2

+
√

4(α +β −1)+((1−α)eθ1 +(1−β )eθ2)2
)
. (1.266)

To calculate the Legendre transform Λ∗(x), where x =
(

x1

x2

)
, we apply Lemma

1.15.9. We can assume that x1,x2 ≥ 0 and (x1 + x2) = 1. Set: x1 = 1− c, x2 = c,
0 ≤ c ≤ 1. The terms

x1 ln
( u1(

uTP
)

1

)
+ x2 ln

( u2(
uTP
)

2

)
from the RHS of (1.253) takes the form

−(1− c) ln(1−α +βK)− c ln
(

1−β − α
K

)
, where K =

u2

u1
. (1.267)

Maximising in K yields, for 0 < c < 1:

Λ∗(x) =
1

2β (1−β )(1− c)
×
(
−αβ (1−2c)

+
√

(αβ (1−2c))2 +4αβc(1−α)(1−β )(1− c)
)
, (1.268)

and

Λ∗(x) =

{
− ln(1−β ), c = 1,

− ln(1−α), c = 0.
(1.269)

A direct, but somewhat tedious, calculation shows that Λ∗(x) = 0 if and only if
x1 = π1, x2 = π2.

In the particular case where α + β = 1, the DTMC (Xn, n ≥ 1) becomes a
sequence of IID RVs. In this case,

Λ(θ) = βeθ1 +αeθ2 , (1.270)

and the Legendre transform Λ∗(x), x =
(

x1

x2

)
, was commented on at the beginning

of this section. See Figure 1.32.
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1.16 Examination questions on discrete-time Markov chains

O! many a shaft, at random sent,
Find mark the archer little meant,

And many a word, at random spoken,
May soothe or wound a heart that’s broken.

Walter Scott (1771–1832), Scottish writer and poet

Question 1.16.1 (Markov chains, Part IB, 1991, 108D)
For a finite irreducible Markov chain, what is the relationship between the
equilibrium probability distribution and the mean recurrence time of states?

A particle moves on the 2n vertices of the hypercube {0,1}n in the following
way: at each step the particle is equally likely to move to each of n adjacent vertices,
independently of its past motion. (Two vertices are adjacent if the Euclidean dis-
tance between them is 1.) The initial vertex occupied by the particle is (0,0, . . . ,0).
Calculate the expected number of steps until the particle

(a) first returns to (0,0, . . . ,0),
(b) first visits (0,0, . . . ,0,1),
(c) first visits (0,0, . . . ,0,1,1).

Solution Use the symmetry of the problem. The invariant probabilities are
π(x) = (1/2n), for all x ∈ {0,1}n. For a finite irreducible Markov chain, the mean
recurrence time mx to state x is

mx =
1

π(x)
.
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Thus the expected number of steps until the particle first returns to 0 = (0,0, . . . ,0)
is 2n.

Also,

2n = m0 = 1+
n

∑
i=1

(1
n

E(time to hit 0 | initial state ei )
)

= 1+E(time to hit en | initial state 0) ,

where ei = (0,0, . . . ,0,1,0, . . . ,0) (i.e. 1 in position i, elsewhere 0). Thus

E(time to hit en | initial state 0) = 2n −1.

Similarly, considering the first two steps from the initial state

2n = 2+
1
n2 [n ·0+n(n−1)E(time to hit 0 | initial state (0, . . . ,0,1,1))] .

Next,

E(time to hit 0 | initial state (0, . . . ,0,1,1))

= E(time to hit (0, . . . ,0,1,1) | initial state 0) .

Denoting the last expected value by A, we have

2n = 2+
(

n−1
n

)
A,

whence

A = (2n −2)
n

n−1
.

Question 1.16.2 (Markov chains, Part IB, 1991, 307D)
Three girls A, B and C are playing table tennis. In each game, two of the girls play
against each other and the third girl does not play. The winner of any given game
n plays again in game n+1. The probability that girl x will beat girl y in any game
that they play against each other is sx/(sx +sy) for x,y ∈ {A,B,C}, x �= y, where sA,
sB, sC represent the playing strengths of the three girls.

In what proportion of games does each girl play, in the long run?

Solution Compare with Worked Example 1.1.13. The invariant probability distri-
bution solving πP = π is found from the detailed balance equations

π(x) =
1
2

(sA + sB + sC − sx

sA + sB + sC

)
, x = A,B,C.
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For example,

π(A)pAB =
1
2

( sB + sC

sA + sB + sC

sC

sB + sC

)
= π(B)pBA.

Thus, the girl x plays in a proportion of games 1−π(x), i.e.

1
2

(sA + sB + sC + sx

sA + sB + sC

)
.

Question 1.16.3 (Markov chains, Part IB, 1991, 408D)
Let (Zn,n = 0,1, . . .) be a sequence of discrete random variables. What is meant by
saying that (Zn,n = 0,1, . . .) is a Markov chain?

The Markov chain (Xn,n = 0,1, . . .) features initial state X0 = 0 and transition
probabilities

P(i, i+1) = p, P(i, i−1) = q, (i ∈ Z)

where p+q = 1. Let Yn = |Xn|. Show that (Yn,n = 0,1, . . .) is a Markov chain and
find its transition probabilities.

Solution We see Y0 = 0. Clearly, if Yn = i then Yn+1 = i± 1, i ≥ 1, and if Yn = 0,
Yn+1 = 1. Consider the conditional probability

P(Yn+1 = i+1 | Yn = i,Yn−1 = yn−1, . . . ,Y0 = y0 = 0),

with i > 0. If i = 0 this probability equals 1 and does not depend on y1, . . . ,yn−1.
Denote by A the event in the condition

A = {Yn = i,Yn−1 = yn−1, . . . ,Y0 = y0 = 0}

and by A+ and A− the intersections of A with the events {Xn > 0} and {Xn < 0}:

A+ = {Yn = i,Yn−1 = yn−1, . . . ,Y0 = y0 = 0, Xn > 0},
A− = {Yn = i,Yn−1 = yn−1, . . . ,Y0 = y0 = 0, Xn < 0}.

Then P(Yn+1 = i+1|A) is represented as

P(Xn+1 = i+1 | A+)P(Xn > 0|A)+P(Xn+1 = −i−1 | A−)P(Xn < 0|A)

= pP(Xn > 0 | A)+qP(Xn < 0 | A).

Now, each sample path from X0 = 0 to Xn = i has a mirror replica from X0 = 0
to Xn = −i, with the same Y0, . . .,Yn. For each such pair of paths we have

P
X
0 (path) =

pi

qi P
X
0 (replica).
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This is because the probability of ‘loops’ occurring along the path (between the
first and last time the X-chain is in a given state) is the same in both paths, and
the only difference in probabilities arises when the chain moves from a state to its
neighbour (in the corresponding direction) between loops.

Therefore,

P(A) = P(path)+P(replica) = P(path)
(

1+
qi

pi

)
,

and

P(Xn > 0 | A) =
P(path)

P(path)+P(replica)
=

pi

qi + pi ,

P(Xn < 0 | A) =
qi

qi + pi .

Then the probabilities

P(Yn+1 = i+1 | A) =
( pi+1 +qi+1

pi +qi

)
and

P(Yn+1 = i−1|A) = 1−
( pi+1 +qi+1

pi +qi

)
do not depend on y1, . . . , yn−1. Hence, (Yn,n = 0,1, . . .) is a Markov chain, with the
above transition probabilities.

Question 1.16.4 (Markov chains, Part IB, 1992, 108B)
A frog is trapped in a bank vault, whose floor is divided into N squares num-
bered from 1 to N. Let Xn denote the number of the square in which the frog is
sitting at time n; the sequence (Xn)n≥0 may be taken to be an irreducible Markov
chain with transition probabilities pi j (1 ≤ i, j ≤ N). A movement-sensitive cam-
era photographs the vault immediately after the frog has jumped from one square to
another, but not at any other time. Let Yn denote the number of the square occupied
by the frog in the nth photograph. Show that (Yn) is also an irreducible Markov
chain, and determine its transition probabilities. If (π1, . . . ,πN) is the invariant
distribution for the chain (Xn), determine that for the chain (Yn), and also the
average number of photographs taken per unit time.

Now suppose that N = 9, the squares are arranged in a 3×3 array

1 2 3
4 5 6
7 8 9



1.16 Examination questions on discrete-time Markov chains 159

and that in each unit of time the frog is equally likely to remain where it is or jump
to any of the adjacent squares (either orthogonally or diagonally; thus, for example,
p2 j = 1/6 for all j ≤ 6). Find the equilibrium probability distribution for the chain
(Xn) and the average number of photographs taken per unit time.

Solution Observe that each pii < 1; otherwise the chain would have been reducible.
Suppose that Yn = Xm, i.e. the nth photograph is taken at time m. Then for all j �= i,
the conditional probability P(Yn+1 = j|Yn = i,Yn−1 = in−1, . . . ,Y0 = i0) is written as

P(Xm+1 = j|Xm = i)+P(Xm+1 = i,Xm+2 = j|Xm = i)+ · · ·
= pi j + pii pi j + p2

ii pi j + · · · = pi j(1− pii)−1 := qi j,

and qii := P(Yn+1 = i|Yn = i) = 0. As this is independent of n and of the values of
Yl for l < n, we have that Yn is a Markov chain with transition matrix⎛⎜⎜⎝

0 p12/(1− p11) p13/(1− p11) . . . p1N/(1− p11)
p21/(1− p22) 0 p23/(1− p22) . . . p2N/(1− p22)

. . . . . . . . . . . . . . .

pN1/(1− pNN) pN2/(1− pNN) pN3/(1− pNN) . . . 0

⎞⎟⎟⎠ .

Furthermore, the chain Yn is irreducible: for j �= i it is possible to move from state
i to j by the same sequence of jumps as in the chain Xn (and from i to i by jumping
away from i and then back).

Next,

P(photo at time n+1|Xn = i) = 1− pii.

Hence, in equilibrium, the average number of photographs in the unit time equals

P(photo in a unit time interval) =
N

∑
i=1

πi(1− pii) = 1−∑
i

πi pii.

The invariant distribution for Yn has values

νi =
[

πi(1− pii)
1−∑N

k=1 πk pkk

]
, 1 ≤ i ≤ N.

In fact,

∑
i

νiqi j = ∑
i:i�= j

[
πi(1− pii)

1−∑N
k=1 πk pkk

]
pi j

1− pii

= ∑
i�= j

[
πi pi j

1−∑N
k=1 πk pkk

]
=
[

π j(1− p j j)
1−∑N

k=1 πk pkk

]
= ν j.
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In the given example, π1 = π3 = π7 = π9 and π2 = π4 = π6 = π8 by symmetry.
Then the invariance equations become

π1 = 1
4 π1 +2× 1

6 π2 + 1
9 π5,

π2 = 2× 1
4 π1 +3× 1

6 π2 + 1
9 π5,

π5 = 4× 1
4 π1 +4× 1

6 π2 + 1
9 π5.

Together with 4π1 +4π2 +π5 = 1 this yields

π1 =
4

49
, π2 =

6
49

, π5 =
9

49
.

The average number of photographs per unit time is then

1−
9

∑
i=1

πi pii = 1−9
1

49
=

40
49

.

Question 1.16.5 (Markov chains, Part IB, 1992, 308B)
A snail crawls on an infinite fence, which may be taken to be a lattice with vertices
at the points of Z×{0,1,2}. From a vertex of type (n,2), the snail crawls left
or right (that is, to (n− 1,2) or (n + 1,2)) with equal probability. From one of
type (n,1), it crawls up to (n,2) with probability 1/2, and in any of the other
three directions with probability 1/6. From (n,0), it necessarily moves to the left
if n is even, and to the right if n is odd. Classify the states of the Markov chain
corresponding to the sequence of vertices visited by the snail. If it starts at (0,1),
what is the probability that it eventually reaches a positive recurrent state? What is
the probability that it eventually visits (0,0)?

Solution The states (n,2), n ∈ Z, form a closed communicating class and are all
null recurrent. For each n, the pair of states (2n − 1,0) and (2n,0) is a closed
communicating class, hence all these states are positive recurrent. Finally, every
state (n,1) is transient: p(n,1)(n,2) > 0, but there is no return from level 2 to level 1.

Suppose the snail starts on level 1 and consider the probability
P(i,1)(eventually reaches level 0). It equals

∑
n≥0

P(i,1)(stays on level 1 for n steps, then moves to level 0)

= ∑
n≥0

(
1
3

)n 1
6

=
1
6

(
1− 1

3

)−1

=
1
4
.
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The snail will eventually visit (0,0) if and only if it eventually crawls down from
either (0,1) or (−1,1). Denote

hi = P(eventually visits (0,0)| currently at (i,1)).

Then h−1 = h0 (in general, by symmetry h−i = hi−1) and

h0 = 1
6 + 1

6 h0 + 1
6 h1,

hn = 1
6 hn−1 + 1

6 hn+1, n ≥ 1.
.

Substituting hn = Atn in the second equation gives t2−6t +1 = 0, i.e. t = 3±2
√

2.
As hn ≤ 1, we obtain that hn = A(3− 2

√
2)n. From the first equation A = h0 =

1/(2(1+
√

2)) = (
√

2−1)/2.

Hold infinity in the palm of your hand . . .
W. Blake (1757–1827), English poet and artist

Question 1.16.6 (Markov chains, Part IB, 1992, 408D)
Two particles A and B move randomly, at times t = 1,2, . . . on the set M =
{1, . . . ,m}, m ≥ 3, reflecting from the boundary and preserving the order of their
positions XA(t) and XB(t) (so that XA(t) ≤ XB(t)) according to the following rules.

(a) If the distance between them is greater than 1 then at the next time they proceed
independently according to the following criteria.

(i) When a particle is not in a border site, 1 or m, it jumps to one of its nearest
neighbours with probability 1/2.

(ii) When a particle is in a border site, it either jumps to its nearest neighbour
in M or remains at the same position, again with probability 1/2.

(b) If they meet each other or are at distance one, they modify their behaviour. They
both keep their positions if the jumps attempted would lead to interchanging their
order, i.e. to the inequality XA > XB. (The probabilities of attempts are as before and
the attempts are independent.) Otherwise they proceed according to their attempted
moves.

Determine the state space of the Markov chain formed by the pair (XA(t),XB(t))
and find its invariant distribution. Is the chain reversible?

Solution The above description determines a finite irreducible Markov chain (with
a single communicating class), on the state space

S = {(nA,nB) : 1 ≤ nA ≤ nB ≤ m},
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with with total number of states m(m + 1)/2. Indeed, p(m)
(nA,nB),(n′A,n′B) > 0 for all

(nA,nB),(n′A,n′B) ∈ S . Thus it has a unique equilibrium distribution.

Furthermore, the transition matrix is symmetric: p(nA,nB),(n′A,n′B) = p(n′A,n′B),(nA,nB)
for all (nA,nB),(n′A,n′B) ∈ S . In fact, each of these probabilities is either 0 or
1/4 or, in the case (nA,nB) = (n′A,n′B) = (1,1) or (nA,nB) = (n′A,n′B) = (m,m),
1/2. Therefore, the equilibrium distribution is equiprobable on S , and the chain is
reversible.

Question 1.16.7 (Markov chains, Part IB, 1993, 501K)
Consider the 7×7 transition matrix from Worked Example 1.2.8. Find all recurrent
states of the associated discrete time Markov chain.

Let pn
i j denote the i, j-entry in Pn. Determine the pairs (i, j) for which the limit

lim
n→∞

pn
i j exists and find for these pairs the limiting values.

Solution See Worked Example 1.2.8. A simpler way is to use the theorem: If P is
irreducible and aperiodic and has invariant distribution π then p(n)

i j → π j for all i, j.

In fact, for the closed class {1,2,6,7}, the invariant distribution is π =(
1
5
,

3
10

,
1
5
,

3
10

)
. This gives the limit lim

n→∞
p(n)

i j for i, j ∈ {1,2,6,7}; for i = 3 it has

to be divided by 2.

Question 1.16.8 (Markov chains, Part IB, 1993, 502K)
In the setting of Worked Example 1.3.2, suppose the particle starts at a corner A:
see Figure 1.8.

(i) Find the average time taken to return to A;

(ii) the expected number of visits to the central vertex C before it returns to A.

Solution See Worked Example 1.3.2 (see also Figure 1.8). For part (i), use the theo-
rem: For an irreducible Markov chain with equilibrium distribution π , the expected
return time to state i equals 1/πi.

Here πA = 3/(18+6) = 1/8, and the answer is 8.

For part (ii) use the theorem: For an irreducible Markov chain with invariant
distribution π , the expected number of visits to state j before first return to i equals
π j/πi.

Here πC = 1/4, and the answer is 2.

[Poisson processes will be properly introduced in Chapter 2. However, the
following problem could be easily solved now if the definition is familiar.]
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Question 1.16.9 (Markov chains, Part IB, 1993, 503K)
Suppose that (Xt)t≥0 and (Yt)t≥0 are independent Poisson processes, both of rate
λ . Consider the difference Wt = Xt −Yt . Let J1 denote the first jump time of the
process Wt . What is the joint distribution of J1 and WJ1?

Let M and N be positive integers. Find the probability that (Wt)t≥0 hits level N
before level −M.

Show that the average time taken by (Wt)t≥0 to hit the set {−M,N} is (MN/2λ ).

Solution From the construction, J1 is an exponential random variable, WJ1 takes
values ±1 with probability 1/2, and J1 and WJ1 are independent. Also, (Wt) is a
continuous-time Markov chain on Z, the integer lattice, with holding rate 2λ , and
the corresponding jump chain is the simple symmetric random walk.

Hence, if hi = Pi(hit N before −M) then

hi =
1
2

hi−1 +
1
2

hi+1, h−M = 0, hN = 1.

The general form hi = A+Bi yields h0 = M/(M +N).
Similarly, if ki = Ei(hit N or −M) then

ki =
1

2λ
+

1
2

ki−1 +
1
2

ki+1, k−M = kN = 0.

The general form ki = A+Bi+Ci2 yields ki = (MN/2λ )+(N−M)i/2λ −(i2/2λ ),
and k0 = (MN/2λ ).

Question 1.16.10 (Markov chains, Part IB, 1994, 501D)
Let (Xn)n≥0 and (Yn)n≥0 be independent simple random walks on the integers
starting from x and y, respectively. At each step (Xn)n≥0 moves to the right with
probability p, to the left with probability 1− p. For (Yn)n≥0 the corresponding prob-
abilities are q and 1−q. Find, for all integers x, y and p, q in (0,1), the probability
α(x,y, p,q) that Xn = Yn for some n ≥ 0.

Solution As Xn = Yn if and only if Xn −Yn = 0, it is convenient to consider Wn =
Xn −Yn, which is a random walk on Z with transition probabilities

pi j =

⎧⎨⎩
p(1−q), if j− i = 2,

pq+(1− p)(1−q), if j− i = 0,

(1− p)q, if j− i = −2.

Therefore, Px,y(Xn = Yn) = Px−y(Wn hits 0) = 0 for |x− y| odd. For x− y = 2k,
denote this probability by hk. The equations become

hk = (1− p)qhk−1 +
(

pq+(1− p)(1−q)
)
hk + p(1−q)hk+1,
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or

hk =
( (1− p)q

p+q−2pq

)
hk−1 +

( p(1−q)
p+q−2pq

)
hk+1, k ∈ Z,

with h0 = 1. Of course, we are interested in the minimal non-negative solution.
First, consider k ≥ 0. The recursion

(hk,hk+1) = (hk−1,hk)
(

0 −(1− p)q
/
(p(1−q))

1 (p+q−2pq)
/
(p(1−q))

)
has the eigenvalues 1 and q(1 − p)/(p(1 − q)), and hence admits the general
solution

hk = A+B

(
q(1− p)
p(1−q)

)k

, if p �= q

and

hk = A+Bk, if p = q.

If p ≤ q then q(1− p)/(p(1− q)) ≥ 1, and the minimal non-negative solution is
with A = 1, B = 0: hk ≡ 1. If p > q then q(1− p)/(p(1−q)) < 1, and the minimal
non-negative solution is with A = 0, B = 1:

hk =
(

q(1− p)
p(1−q)

)k

.

For k ≤ 0 the answer is symmetric: if q ≤ p then hk ≡ 1 and if q > p then

hk =
(

p(1−q)
q(1− p)

)k

.

The answer for α(x,y, p,q) is obtained by substitution.

Question 1.16.11 (Markov chains, Part IIA, 1994, A101K)
Let (Xn)n≥0, (Yn)n≥0 and (Zn)n≥0 be simple symmetric random walks on the inte-
gers. Then Vn = (Xn,Yn,Zn) is a Markov chain. What are the transition probabilities
for this chain?

Show that, with probability 1, (Vn)n≥0 visits (0,0,0) only finitely many times.

Solution The transition probabilities for (Vn) are

p(i, j,k)(l,m,n) =
1/8, if |i− l| = | j−m| = |k−n| = 1,

0, otherwise.
,

and we aim to show that

∑
n≥0

p(n)
(0,0,0)(0,0,0) < ∞.
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As before, p(n)
(0,0,0)(0,0,0) = 0 when n is odd. Furthermore, p(2n)

(0,0,0)(0,0,0) =
(

p(2n)
00

)3

where p(2n)
00 is as in worked Example 1.6.4. Hence,

(
p(2n)

00

)3
≈ (πn)−3/2, and the

series converges. So, (Vn) is transient; hence the answer.

Question 1.16.12 (Markov chains, Part IB, 1995, 501G)
Consider a discrete time Markov chain with state space {0,1,2,3} and transition
matrix ⎛⎜⎜⎝

1/3 2/3 0 0
7/16 1/4 5/16 0
1/6 1/6 1/6 1/2
1/2 1/6 1/6 1/6

⎞⎟⎟⎠ .

Suppose the chain starts in state 0. Determine the expected number of transitions
until the chain enters state 3 for the first time.

Determine the probability that the chain enters state 2 for the first time on the
nth transition.

Solution Set

ki = Ei
(
number of steps to hit 3

)
.

The equations are

k0 = 1+
1
3

k0 +
2
3

k1,

k1 = 1+
7
16

k0 +
1
4

k1 +
5
16

k2,

k2 = 1+
1
6

(k0 + k1 + k2),

whence

k0 =
77
6

, k1 =
34
3

, k2 =
181
30

.

Furthermore, from 0 the chain can only enter state 2 via 1. This suggests we
consider the reduced chain, with the transition matrix

P =

⎛⎝ 1/3 2/3 0
7/16 1/4 5/16

0 0 1

⎞⎠ .

The eigenvalues are 1, 5/6 and −1/4. Hence,

p(n)
02 = P0(T2 ≤ n) = A+B

(
5
6

)n

+C

(
−1
4

)n

,
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and

P0(T2 = n) = p(n)
02 − p(n−1)

02 = α
(

5
6

)n

+β
(
−1
4

)n

, n ≥ 1.

with boundary conditions

n = 1 :
5
6

α − 1
4

β = 0,

and

n = 2 :
25
36

α +
1

16
β =

5
24

,

giving α = 3/13, β = 10/13. The answer is

3
13

(
5
6

)n

+
10
13

(
−1
4

)n

, n ≥ 1.

Question 1.16.13 (Markov chains, Part IB, 1995, 502G)
A sequence of random convex polygons is generated by the following scheme.
At each stage, the current polygon is divided into two polygons by choosing two
distinct edges at random and joining their midpoints; one of these polygons is cho-
sen at random as the current polygon for the next stage. For every choice, each
possible outcome is equally likely and all choices are made independently. For
n = 0,1,2, . . ., let Xn + 3 be the number of edges of the polygon at the nth stage,
so that Xn takes non-negative integer values. Determine the transition matrix of the
Markov chain {Xn,n ≥ 0}.

Explain why lim
n→∞

P(Xn = i) exists and is independent of the number of edges of

the initial polygon and determine this limit for each i = 0,1,2, . . ..

Solution If the current polygon is a triangle, the next one will be a triangle or
a quadrilateral with probability 1/2. If the current polygon is a quadrilateral, the
next one will be a triangle, a quadrilateral or a pentagon, each with probability 1/3.
Similarly, from a pentagon we can obtain a triangle, a quadrilateral, a pentagon or
a hexagon, each with probability 1/4. This suggests that the transition matrix, for

Xn = (number of edges − 3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0
1
2
...

, n = 1,2, . . . ,
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is ⎛⎜⎜⎜⎝
1/2 1/2 0 0 0 . . .

1/3 1/3 1/3 0
. . . . . .

1/4 1/4 1/4 1/4 0 . . .

. . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎠ .

In fact, if Xn = m, i.e. the nth polygon has m + 3 edges, then the number of

choices is

(
m+3

2

)
=
((m+3)(m+2)

2

)
. If we pick adjacent edges i and i + 1

mod m (m+3 choices) then the next polygon may be a triangle (with Xn+1 = 0) or
an m+4-gon (with Xn+1 = m+1). Then

P(Xn+1 = 0 | Xn = m) = P(Xn+1 = m+1 | Xn = m)

=
1
2
(m+3)

2
(m+3)(m+2)

=
1

m+2
.

In general, if we pick edges i and i+s mod m, with s−1 edges between them, (still
m + 3 choices) then the next polygon may be an s + 2-gon (with Xn+1 = s− 1) or
an m+5− s-gon (with Xn+1 = m+2− s), 1 ≤ s ≤ (m+3)/2. Then

P(Xn+1 = s−1 | Xn = m) = P(Xn+1 = m+2− s | Xn = m)

=
1
2
(m+3)

2
(m+3)(m+2)

=
1

m+2
.

[For m odd, the middle value s = (m + 3)/2 produces the same probability
1/(m+2) for P(Xn+1 = s−1 | Xn = m).] This justifies the claim.

The above matrix is irreducible, as pi j = 1/(i + 2) > 0 for j ≤ i + 1 and

p( j−i−1)
i j ≥ pii+1 pi+1i+2 · · · p j−1 j > 0 for j > i+1. It is aperiodic as pii > 0. Hence, it

has at most one equilibrium distribution π = {πi}, with πP = π , and π j = lim
n→∞

p(n)
i j

for all i, j ∈ I. To solve πP = π , write

π0 =
1
2

π0 +
1
3

π1 +
1
4

π2 + · · · = π1,

and

πi =
1

i+1
πi−1 +

1
i+2

πi + · · · = 1
i+1

πi−1 +πi+1, i ≥ 1,

i.e. πi+1 = πi −πi−1/(i+1). This yields

π2 = π1 −
1
2

π0 =
1
2

π0,

and

π3 = π2 −
1
3

π1 =
1
3!

π0.
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Make the induction hypothesis πi = π0/i!. Then

πi+1 = π0

(
1
i!
− 1

i+1
1

(i−1)!

)
=

π0

(i+1)!
(i+1− i) =

π0

(i+1)!
.

Hence, π0 = e−1 and πi = 1/(i!e), i.e. π is a Poisson distribution of mean 1.

Leo Tolstoy, in the novel The Evil, writes that most implacable conservatives
are not some old retired generals but young immature enthusiasts: deprived of
their own ideas and personal lifestyle, they hang on someone else’s experience
and defend it with bureaucratic zeal from any change.

Question 1.16.14 (Markov chains, Part IIA, 1995, A201M)
Suppose that an examiner has to mark a very large number of answers. Each
answer, independently of the others, is correct with probability p and incorrect
with probability 1− p. The examiner has two marking strategies. His first strat-
egy (which he uses initially) is to examine every answer, giving correct answers
full marks and incorrect answers zero marks. His second strategy is less accu-
rate; for each answer, he either, with probability q and independent of previous
choices, marks it as before (giving full marks for a correct answer and zero for
an incorrect one); or, with probability 1−q, gives it full marks without looking at
it. He changes from the first strategy to the second when he observes n consecu-
tive correct answers, and from the second strategy to the first when he discovers
an incorrect answer. Model this process as a Markov chain. Calculate the long-
term proportion of questions that the examiner looks at properly, and the long-term
proportion of incorrect answers which obtain full marks.

Solution The states are 0,1, . . . , n. In state i < n the examiner observed i subsequent
correct answers, and he uses strategy 1. In state n he either observed n correct
answers and uses strategy 1 or he uses strategy 2 and has not observed an incorrect
answer so far. This leads to the transition matrix

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− p p 0 0 0 . . . 0 0

1− p 0 p
. . . . . . . . . 0 0

1− p 0 0 p
. . . . . . 0 0

. . . . . . . . . . . .
. . . . . . . . . . . .

1− p 0 0 0 0 . . . 0 p
q(1− p) 0 0 0 0 . . . 0 1−q(1− p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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The invariance equations πP = π read

π0 = (1− p) ∑
0≤ j≤n−1

π j +q(1− p)πn,

πi = pπi−1, 1 ≤ i ≤ n−1,

πn = pπn−1 +(1−q(1− p))πn,

and give

π =
q(1− p)

q(1− pn)+ pn

(
1, p, . . . , pn−1,

pn

q(1− p)

)
.

Hence, the long-term proportion of properly inspected questions equals

n−1

∑
i=0

πi +πnq =
(

q
pn(1−q)+q

)
,

and that of incorrectly marked

πn(1−q)(1− p) =
(

pn(1−q)(1− p)
pn(1−q)+q

)
.

Naturam expellas . . . tamen usque recurret.
(You may drive out nature . . . yet she will be constantly coming back.)

Horace (65–8 BC), Roman poet

Question 1.16.15 (Markov chains, Part IB, 1996, 501G)
An irreducible Markov chain, with states 0,1, . . . ,n, has transition matrix P =
(p(i, j)). Starting at state a, it is impossible to reach state c without first visiting
state b. Further,

p(b,c) = p
p(b,a) = 1− p
p(b, j) = 0 for j �= a,c.

Let γ j
i denote the expected number of steps to reach state j for the first time, starting

in state i. Find an expression for γc
a in terms of γb

a .
A coin with probability p of heads is tossed repeatedly. Calculate:

(i) the expected number of tosses until a run of k consecutive heads occurs;
(ii) the long-run proportion of heads which occur within runs of k or more

consecutive heads.
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Solution By the strong Markov property

γc
a = pγb

a +(1− p)(γb
a + γc

a)+1 = γb
a +(1− p)γc

a +1,

whence

γc
a =

1
p

(γb
a +1).

Next, (i) let the state of the Markov chain be the number of tosses since the last
tail. Then

γk
0 =

1
p

(γk−1
0 +1) =

1
p

+
1
p2 (γk−2

0 +1)

=
1
p

+
1
p2 + · · ·+ γ1

0

pk−1 =
1
p

+
1
p2 + · · ·+ 1

pk =
1− pk

pk(1− p)
.

Now, (ii) consider subsequent independent ‘blocks’ of trials formed by k or more
consecutive heads followed by a tail. Within a single block, the expected number
of heads equals

k +(pq)+2p2q+3p3q+ · · · = k +
p

1− p
.

The expected length of a block is

γk
0 +1+

p
1− p

= 1+
1− pk

pk(1− p)
+

p
1− p

.

Indeed, the term γk
0 is the mean number of tosses before k consecutive heads are

observed, p/(1− p) is the mean number of additional heads before the first tail
appears, and 1 is the contribution of this first tail. Then, by the strong Law of Large
Numbers, the long-run proportion of heads occurring within a block equals(

k + p/(1− p)
1+(1− pk)/(pk(1− p))+ p/(1− p)

)
= (k (1− p)+ p) pk.

Question 1.16.16 (Markov chains, Part IB, 1996, 504G)
The Markov chain (Xn)n≥0 has initial state X0 = 0 and transition probabilities

P(i, i+1) = p, P(i, i−1) = q (i ∈ Z)

where p+q = 1. Let

Mn = max
0≤r≤n

{Xr} and Yn = Mn −Xn.
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In each of the following cases determine whether or not (Zn)n≥0 is a Markov chain,
and if it is, find its transition probabilities:

(i) Zn = Mn; (ii) Zn = Yn.

Solution (i) Zn = Mn is not a Markov chain, since, e.g.

P(M4 = 2|M3 = 1,M2 = 0,M1 = 0,M0 = 0) = p

> P(M4 = 2|M3 = 1,M2 = 1,M1 = 1,M0 = 0) = p2.

(ii) But Zn = Yn is a Markov chain, since

P(Yn = yn|Yn−1 = yn−1, . . . ,Y1 = y1,Y0 = 0)

=

⎧⎪⎨⎪⎩
q, if yn = yn−1 +1,

p, if yn = yn−1 −1 and yn−1 > 0,

p, if yn = yn−1 = 0,

which does not depend on y1, . . . , yn−2.

Question 1.16.17 (Markov chains, Part IIA, 1996, A301E
(i) A random sequence of non-negative integers (Fn)n≥0 is obtained by setting F0 =
0 and F1 = 1 and, once F0, . . . ,Fn are known, taking Fn+1 to be either the sum or the
difference of Fn and Fn−1, each with probability 1/2. Is (Fn)n≥0 a Markov chain?

By considering the Markov chain Xn = (Fn−1,Fn), find the probability that
(Fn)n≥0 reaches 3 before first returning to 0.

(ii) Draw enough of the flow diagram for (Xn)n≥0 to observe a general pat-
tern. Hence, using the strong Markov property, show that the hitting probability
for (1,1), starting from (1,2), is (3−

√
5)/2.

Not wrung from speculation and subtleties,
but from common sense and observation.

T. Browne (1605–1682), English author and physician

Solution See Figure 1.33.

We have that (Fn) is not a Markov chain, since Fn+1 depends on Fn and Fn−1; but
the pair (Fn−1,Fn) is. The initial part of Figure 1.33 shows that the level Fn = 3 can
be reached from (F0,F1) = (0,1) either at (2,3) or (1,3). To hit this level before
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..

...

.

.

(1,0)

(1,1)
(1,2)(2,1)

(2,3)

.

.
...

(1,3)

. ... .
(3,2)

..

(3,1)

..
(0,1)

(1,1)

(1,2)

(2,3)

(0,1)

(2,1)

.

.
(1,3)

(1,2)

(0,1)

(3,5)

Fig. 1.33

visiting level Fn = 0 (i.e. (1,0)), we have two straight paths, supplemented with a
number of adjacent triangular cycles. The first possibility gives the probability

1 · 1
2
· 1

2

(
1+

1
8

+
1
82 + · · ·

)
=

2
7
,

and the second

1 · 1
2
· 1

2
· 1

2

(
1+

1
8

+
1
82 + · · ·

)
=

1
7
,

which adds up to 3/7.
Observe a triangular ‘pattern’ emerging from Figure 1.33, with tree-like sym-

metries. In particular,

P(1,2)
(
hit (1,1)

)
= P(2,3)

(
hit (1,2)

)
= P(1,3)

(
hit (2,1)

)
:= p

and

P(2,1)
(
hit (1,1)

)
= P(3,2)

(
hit (2,1)

)
:= p′.

Obviously, 0 < p, p′ < 1. Conditioning on the first jump, by the strong Markov
property, we can write

p =
1
2

p′ +
1
2

P(2,3)
(
hit (1,1)

)
=

1
2

p′ +
1
2

p2,

and

p′ =
1
2

+
1
2

P(1,3)
(
hit (1,1)

)
=

1
2

+
1
2

pp′ whence p′ =
1

2− p
.

This yields

p =
1

2(2− p)
+

1
2

p2, i.e. p3 −4p2 +4p−1 = (p−1)(p2 −3p+1) = 0.



1.16 Examination questions on discrete-time Markov chains 173

The roots are p = 1 and 3±
√

5
2 . We are interested in the minimal non-negative root,

i.e. p = 3−
√

5
2 . Consequently, p′ = 2

1+
√

5
.

Question 1.16.18 (Markov chains, Part IB, 1997, 503G)
A flea hops at random on the vertices of a triangle; each hop is from the currently
occupied vertex to one of the other two vertices each with probability 1/2. Find the
probability that the flea is back where it started after n hops.

A second flea also hops about on the vertices of a triangle, but this flea is twice as
likely to jump clockwise as anticlockwise. What is the probability that this second
flea is back where it started after n hops?

Solution The transition matrix for the first flea is

P =

⎛⎝ 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

⎞⎠ .

By symmetry, all diagonal entries p(n)
ii are equal, and all off-diagonal ones p(n)

i j are
equal. Hence, consider a reduced chain, with two states, 1 and 0 (not 1), and the
transition matrix

P̃ =
(

0 1
1/2 1/2

)
.

Then p(n)
11 = p̃(n)

11 . The eigenvalues of P̃ are 1 and −1/2, and

p(n)
11 = A+B

(
−1
2

)n

,

with A+B = 1, A−B/2 = 0. This yields A = 1/3, B = 2/3 and

p(n)
ii =

1
3

+
2
3

(
−1
2

)n

.

For the second flea,

P =

⎛⎝ 0 1/3 2/3
2/3 0 1/3
1/3 2/3 0

⎞⎠ ,

with the eigenvalues

1,
−1
2

± i

√
3

6
=

−1√
3

e±iπ/6.
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Then

p(n)
11 = α +

(
−1√

3

)n(
β cos

πn
6

+ γ sin
πn
6

)
.

The constant α = 1/3, as p(n)
11 → π1, and π = (1/3,1/3,1/3) is the (unique) equi-

librium distribution. The constants β and γ are then calculated from the equations
for n = 0 and n = 1

α +β + γ = 1, α − 1√
3

(
β
√

3
2

+ γ
1
2

)
= 0.

This gives α = 1/3,β = 2/3 and γ = 0, with

p(n)
11 =

1
3

+
2
3

(
−1√

3

)n

cos
πn
6

.

Question 1.16.19 (Markov chains, Part IB, 1997, 504G)
In a simplified computer game, an icon moves at random on an N×N lattice (where
N ≥ 2), according to the following rules. Let (Xn,Yn) be the position of the icon
after n steps, where Xn and Yn each has possible values 0, 1, . . . , N − 1. At step
n+1, each of the following four possibilities has probability 1/4:

(a) Xn+1 = Xn +1 (mod) N, Yn+1 = Yn;
(b) Xn+1 = Xn −1 (mod) N, Yn+1 = Yn;
(c) Xn+1 = Xn, Yn+1 = Yn +1, (mod) N;
(d) Xn+1 = Xn, Yn+1 = Yn −1, (mod) N;

.

Calculate:

(i) the expected number of steps to return to (1,1) starting from (1,1);
(ii) the expected number of steps to reach (1,1) starting from (0,1).

Solution The chain is the random walk on the plane graph, with N2 vertices that
are integer lattice sites (i, j), i, j = 0,1,2, . . . ,N − 1, and edges joining a site with
its four neighbours, with the agreement that site (i,0) neighbours site (i,N−1) and
(0, j) neighbours site (N −1, j) (periodic boundary conditions). From the detailed
balance equations, the uniform distribution π with

π(i, j) =
1

N2
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is invariant. As the graph is connected, the chain is irreducible. Hence, it is positive
recurrent, and π is the only equilibrium distribution. Then:

(i) The expected number m(i, j) of steps to return to (i, j) starting from (i, j) is
1/π(i, j) = N2 (see Theorem 1.7.8).

ii) By symmetry and the strong Markov property,

m(i, j) = 1+E(i−1, j)(time to hit (i, j)),

whence

E(0,1)(time to hit (1,1)) = N2 −1.

Question 1.16.20 (Markov chains, Part IIA, 1997, A201J)
(i) In the Figure 1.34 five numbered rat cages are joined by tunnels. The lines
represent tunnels which may be traversed by a rat in either direction, and the arrows
represent tunnels having flaps which prevent travel in the opposite direction. A rat
runs about the maze, choosing randomly as follows: from each cage the rat chooses
a random exit, and at each junction marked • the rat picks a random direction
(including possibly the tunnel just traversed, unless prevented by a flap). Let Xn

be the number of the nth cage visited. Obtain the transition matrix of the chain
X = (Xn).

(ii) Classify (giving reasons) each state of the chain in (i), using, where appropri-
ate, the terms absorbing, aperiodic, non-essential, recurrent, null recurrent, positive
recurrent.

Calculate the mean return time of each state.

If the rat begins in cage 3, find the probability that it ends in cage 1.

1 2

3 4

5

Fig. 1.34
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Solution (i) The transition matrix is the 5×5 matrix

P =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0

4/9 1/9 1/9 1/6 1/6
1/6 1/6 1/6 1/4 1/4
0 0 0 1/2 1/2
0 0 0 1/2 1/2

⎞⎟⎟⎟⎟⎠ .

(ii) From Figure 1.34 and the matrix P we conclude that

state 1 is absorbing,
states 2 and 3 are non-essential and aperiodic,
states 4 and 5 are positive recurrent and aperiodic.

The mean return times are

m1 = 1, m2 = m3 = ∞, m4 = m5 = 2.

Finally, for hk = Pk(hit 1)

h3 =
1
6

+
1
6

h2 +
1
6

h3,

and

h2 =
4
9

+
1
9

h2 +
1
9

h3,

with h2 = 7/13, h3 = 4/13.

A Countably Many and One Nights
(From the series ‘Movies that never made it to the Big Screen’.)

Question 1.16.21 (Markov chains, Part IIA, 1997, A301J)
(i) A flea performs a random walk on the integers {. . . ,−1,0,1, . . .}. At each jump,
it moves rightwards one step with probability p, and otherwise leftwards two steps.
Let Tn be the time taken to reach the position n (≥ 0) for the first time, starting
from zero. Show that the probability-generating function φn(s) = ∑k sk

P(Tn = k)
satisfies φn(s) = {φ(s)}n, where φ(s) = φ1(s) and −1 < s ≤ 1.

(ii) Deduce that if p ≥ 2/3, then with probability 1, the flea is bound to visit the
integer 1.

Under this condition, find the mean number of steps before the flea visits 1.
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Solution (i) One can write

Tn =
n

∑
k=1

τk

where τk is the time between the first hit of k−1 and the first hit of k. By the strong
Markov property, τk ∼ T1, the hitting time of 1 (starting from 0). Then, by using
the space-homogeneity of transitions, for all s ∈ (0,1],

E0sTn = E0
(
sτ1E

(
eτ2+...+τn

∣∣τ1
))

= φ1(s)E0sTn−1 = (φ1(s))
n .

This calculation is carried regardless of whether P0(T1 = ∞) is 0 or positive. The
only difference is that in the second case the limiting value

Φ := φ1(s)
∣∣
s→1− = P0(T1 < ∞) < 1.

(ii) For φ(s) = φ1(s), conditional on the first jump,

φ(s) = ps+(1− p)sφ3(s) = ps+(1− p)s
(
φ(s)

)3
.

Then the value Φ satisfies

(1− p)Φ3 −Φ+ p = (Φ−1)((1− p)Φ2 +(1− p)Φ− p) = 0.

The roots are

Φ = 1,
−(1− p)±

√
(1− p)2 +4p(1− p)

2(1− p)
.

For p ≥ 2/3, the last two roots are ≥ 1 in the absolute value; hence Φ = 1 and so
T1 < ∞ with probability 1.

Finally, set

M := φ ′
1(s)
∣∣
s→1− = E T1.

Then

(1− p)Φ3 +3(1− p)Φ2M−M + p = 0.

For p > 2/3, substituting Φ = 1 yields

M =
1

3p−2
.

In particular, this argument proves that M = ∞ for p = 2/3.
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Question 1.16.22 (Markov chains, Part IIA, 1998, A101E)
Two independent sequences of observations, Y1,Y2, . . . and Z1,Z2, . . . come from
some laboratory. They represent independent Bernoulli trials, i.e. random variables
taking values 1 and 0, with unknown success probabilities

p = P(Yi = 1) = 1−P(Yi = 0) and q = P(Zi = 1) = 1−P(Zi = 0), i ≥ 1,

where 0 < p < 1 and 0 < q < 1. To decide whether p > q or q > p we use the
following test: choose some positive integer M, and stop taking observations at the
first time n at which either

Y1 + · · ·+Yn − (Z1 + · · ·+Zn) = M

or

Y1 + · · ·+Yn − (Z1 + · · ·+Zn) = −M;

in the former case we decide that p > q and in the latter case that p < q. Show that,
if p > q, the probability of an error (that is, deciding p < q) is (1 + λ M)−1, where
λ = p(1−q)q−1(1− p)−1.

Solution We introduce a Markov chain Xn = (Y1 − Z1) + · · · + (Yn − Zn) on
{−M, . . . ,M}, with transition probabilities

pii+1 = p(1−q), pii−1 = q(1− p), pii = pq+(1− p)(1−q),
i = −M +1, . . . ,M−1,

and −M and M being absorbing states. We want to compute h0 where hi =
Pi(hit −M before M). The equations are

h−M = 1,

hi = q(1− p)hi−1 +(pq+(1− p)(1−q))hi + p(1−q)hi+1,

−M < i < M,

hM = 0.

For ui = hi+1 −hi the equations become

ui =
1
λ

ui−1 = · · · =
(

1
λ

)i+M

u−M,

where λ = p(1−q)
/

q(1− p). Then

hi+1 −1 = u−M

i+M

∑
j=0

1
λ j =

(
λ −1/λ i+M

λ −1

)
u−M.
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At i = M−1:

−1 =
1−1/λ 2M

1−1/λ
u−M

whence

u−M = − 1−1/λ
1−1/λ 2M .

Then

h0 = 1− 1−1/λ M

1−1/λ 2M =
λ M −1
λ 2M −1

=
1

1+λ M .

Question 1.16.23 (Markov chains, Part IIA, 1998, A201E)
The vertices in the following graph represent light bulbs (see Figure 1.35). Only
one bulb may light at any one time.

Let Xn denote the light bulb that is alight at time n ≥ 0. The process evolves
as follows. If Xn = i, the light bulb which will be alight at time n + 1 is chosen
with equal probabilities among the vertices that are connected to i by an edge. For
example, if C is alight at time n, one of R1, R4, L1, L4 will be alight at time n + 1,
each with probability 1/4. Show that P(Xn = L1) converges to a limit as n → ∞ and
determine the value of this limit.

When X0 = C, find the expected number of times R1 will light before the first
time C lights again.

Now suppose that the amount of time a light bulb lights on each occasion is not
1, as above, but an exponential random variable with mean 2/7, and the successive
lighting times are independent. If C is alight at time t = 0, find the expected amount
of time the part of the network to the right of C is alight before C lights again.

CL R

LL

L L R R

RR1 12 2

3 344

Fig. 1.35
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Solution The Markov chain in question is the random walk on a finite graph. It is
reversible relative to the equilibrium distribution π = (πi) where

πi = vi

/
∑

j

v j

and vi is the valence of vertex i (Theorem 1.10.5). In the example

πC =
1
8
, πL = πR =

1
16

, πLk = πRk =
3
32

, 1 ≤ k ≤ 4.

Because the graph is connected, the chain is irreducible, and the cycles of length
2 and 3 (co-prime), it is aperiodic. Then, as n → ∞, the n-step transition probability
p(n)

i j converges to π j and also the probability P(Xn = j) converges to π j, for all
states i, j and initial distribution λ (Theorem 1.9.1). Hence, P(Xn = L1) → 3/32.

Next, the chain is positive recurrent. Then the expected number in question is γC
R1

= πR1/πC = 3/4. This follows from Theorem 1.7.7, that in an irreducible positive
recurrent Markov chain with an equilibrium distribution π , γk

j = π j/πk.
The final part of the question contains a reference to a continuous-time model.

But because the holding time rates are all 2/7, the answer is straightforward:(
γC

R1
+ γC

R2
+ γC

R3
+ γC

R4
+ γC

R

) 2
7

= 1.

Alternatively, the mean return time mC to state C in an irreducible positive recurrent
chain equals 1/πC = 8 (Theorem 1.7.8). Then the mean return time for a discrete
time chain

EC(time spent out of C before returning to C) = 7.

The figure is symmetric; hence

EC(time spent to the right of C before returning to C) =
7
2
.

which gives the above answer 1 for the continuous-time chain.

Question 1.16.24 (Markov chains, Part IIA, 1999, A201E)
Consider a Markov chain on the set I = {0,1,2, . . .} with transition probabilities
pi,i+1 = ai, pi,0 = 1−ai, for i ≥ 0, where (ai) is a sequence of constants satisfying
0 < ai < 1 for all i. Let b0 = 1, bi = a0a1 . . .ai−1 for i ≥ 1. Show that the chain is:

(a) recurrent if and only if bi → 0 as i → ∞;

(b) positive recurrent if and only if ∑i bi < ∞, and write down the invariant
distribution if the latter condition holds.
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Solution As the chain is irreducible, we can focus on a fixed state, say 0. Let T
be the first passage time for state 0: T = inf {n ≥ 1 : Xn = 0}. First, we have to
analyse P0(T < ∞). Write

P0(T > n) = a0a1 . . .an−1 = bn,

and

P0(T < ∞) = lim
n→∞

P0(T ≤ n) = 1− lim
n→∞

P0(T > n) = 1, iff bn → 0.

Hence, 0 is a recurrent state if and only if bn → 0, otherwise it is transient.
Next,

E0T = ∑
n≥0

P0(T > n) = ∑
n≥0

bn,

and the chain is positive recurrent if and only if ∑bn < ∞.
The invariance equations are

π0 = ∑
l≥0

πk(1−ak),πi = πi−1ai−1, i ≥ 1,

whence

πn = π0bn and π0 =

(
∑
i≥0

bn

)−1

.

Question 1.16.25 (Markov chains, Part IIA, 1999, A401E)
Give some examples of reversible Markov chains.

Solution Not every chain is reversible: a straightforward example is where the
matrix P is of finite size ≥ 3 and double-stochastic (with the sums along both the
rows and columns equal to 1) and π the uniform distribution, but P �= PT. Namely

P =

⎛⎝1/4 1/4 1/2
0 1/2 1/2

3/4 1/4 0

⎞⎠ .

On the other hand, there are entire classes of Markov chains which are reversible:

(a) All 2×2 chains.
(b) Finite chains with PT = P: here P is double-stochastic, the uniform

distribution π is invariant and π and P are in detailed balance.
(c) Random walks on (finite) non-oriented graphs, with

pi j =
1
vi

1(i and j are connected)
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and

π j = v j

/
∑

i

vi

where vi is the valency of vertex i (the number of incident edges).

(d) Birth–death processes, with jump probabilities pii+1 = pi, pii−1 = qi = 1−
pi and the sum

B = 1+
p0

q1
+

p0

q1

p1

q2
+

p0

q1

p1

q2

p2

q3
+ · · · < ∞.

Here π0 = B−1,

πi = B−1 p0

q1
· · · pi

qi+1
, i ≥ 1,

and π is in detailed balance with the transition matrix.

Question 1.16.26 (Markov chains, Part IIA, 2000, A101E and Part IIB, 2000,
B101E)
A particle performs a random walk on {0,1,2, . . .}. If it is at position m ≥ 1 at time
n, it moves (at time n+1) one step to the left with probability p, one step to the right
with probability r, or it remains at the same place with probability q = 1− p− r.
If it is at position 0, it moves one step rightwards with probability r, or otherwise
remains at 0. Show that the chain is positive recurrent when p > r, and derive the
invariant distribution in this case. Determine for which values of p, q, r the chain
is null recurrent or transient.

Solution The chain is transient when 0 < p < r, null recurrent when p = r > 0, and
positive recurrent when p > r > 0 (it is trivially positive recurrent when r = 0 and
transient when p = 0,r > 0). For positive recurrence, the detailed balance equations

λir = λi+1 p

determine the invariant measure λi =
(
r/p
)i

which is normalizable if and only if
r < p, with

πi =
( r

p

)i(
1− r

p

)
.

To determine null recurrence and transience, consider the hitting probability hi =
P(hit 0|X0 = i). The equations are
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h0 = 1, (p+ r)hi = rhi+1 + phi−1, i ≥ 1,

and have the minimal non-negative solution

hi =
( p

r

)i
, i ≥ 0, if p < r,

and

hi ≡ 1, i ≥ 0, if p ≥ r > 0.

But

P0(T0 < ∞) = (1− r) P0(T0 < ∞)+ rh1, i.e. P0(T0 < ∞) = h1,

which gives the answer.

Question 1.16.27 (Markov chains, Part IIA, 2000, A201E, first half)
A black dog and a white dog are inseparable companions, and are the hosts for
N fleas in all. At each epoch of time exactly one flea jumps to the other dog; the
jumping flea is chosen uniformly at random from N available, each choice being
independent of all earlier choices. Let Xn be the number of fleas on the black dog
after n epoch of time.

Show that X = {Xn : n ≥ 0} is a Markov chain and write down its transition
probabilities. Show that the invariant (or ‘stationary’) distribution is given by

πk =
(

N
k

)(
1
2

)N

, k = 0,1,2, . . . ,N.

Solution We have: pi,i+1 = (N− i)/N, pi,i−1 = i/N. This is a Markov chain, owing
to independence of choice for the jumping flea of previous events. The detailed bal-
ance equations πi pi,i+1 = πi+1 pi+1,i are solved by πi+1 = πi(N − i)/(i+1), which
yields

πN =
1×2×·· ·× (N −1)×N
N × (N −1)×·· ·×2×1

π0 =
N!
N!

π0 = π0.

So for some 0 < M < N

πM =
N − (M−1)

M
πM−1 =

(N − (M−1))× (N − (M−2))×·· ·×N
M× (M−1)×·· ·× (M−1)

π0

=
N!

(N −M)!M!
π0 =

(
N
M

)
π0.

The condition ∑i πi = π0

[
∑i

(
N
i

)]
= 1 implies π0 = 2−N , and
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πi = 2−N
(

N
i

)
, i = 0,1, . . . ,N.

That is, the invariant distribution is binomial: Bin (N,1/2).

A Delicate Detailed Balance
(From the series ‘Movies that never made it to the Big Screen’.)

Question 1.16.28 (Markov chains, Part IIA, 2001, A101D and Part IIB, 2001,
B101D)
A finite connected graph G has vertex set V and edge set E, and has neither loops
nor multiple edges. A particle performs a random walk on V , moving at each step
to a randomly chosen neighbour of the current position, each such neighbour being
picked with equal probability, independently of all previous moves. Show that the
unique invariant distribution is given by πv = dv/(2|E|) where dv is the degree of
vertex v.

A rook performs a random walk on a chessboard; at each step, it is equally likely
to make any of the moves which are legal for a rook. What is the mean recurrence
time of a corner square? (You should give a clear statement of any general theorem
used.) [A chessboard is an 8× 8 square grid. A legal move is one of any length
parallel to the axes.]

Solution As G is connected, the chain is finite and irreducible, i.e. positive recur-
rent. Hence, it has a unique invariant (equilibrium) distribution. The distribution
πv = dv/(2|E|) satisfies the detailed balance equations, as dvdv,v′/dv = dv′dv′v/dv′

for all v,v′ ∈ V . Hence, it is invariant, and the chain is reversible. So, πv is the
unique invariant distribution.

In the last part, we use the theorem that in a positive recurrent chain, with the
invariant distribution π , 1/πk gives mk, the mean return time to k. For the rook at a
chessboard corner, or any other of the 64 squares, dv = 2× 7 = 14,v ∈ V . Hence,
|E| = 64×14/2,

πcorner =
14

64 ·14
=

1
64

, mcorner = 64.
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Continuous-time Markov chains

2.1 Q-matrices and transition matrices

Markov processes specialists like to do it with chains.
(From the series ‘How they do it’.)

Definition 2.1.1 A Q-matrix on a finite or countable state space I is a real-valued
matrix (qi j, i, j ∈ I) with:

non-positive diagonal entries qii ≤ 0, i ∈ I,

non-negative off-diagonal entries qi j ≥ 0, i �= j, i, j ∈ I,

the row zero-sum condition: −qii = ∑ j∈I: j �=i qi j, i.e. ∑ j qi j = 0 for all i ∈ I.

For i �= j, the value qi j represents the jump, or transition rate from state i to j.
The value −qii = ∑ j: j �=i qi j is denoted by qi (we will see that it represents the total
jump, or exit rate from state i). A Q-matrix will be denoted by Q (a common abuse
of notation). As in Chapter 1, we will denote by I the unit matrix.

In a general theory of countable continuous-time Markov chains, the row zero-
sum condition ∑ j∈I: j �=i qi j =−qii presumes that the series ∑ j: j �=i qi j < ∞. However,
a substantial part of the theory can be developed when the equality in this condition
is relaxed to the upper bound ∑ j qi j ≤ 0, i.e. qi ≥ ∑ j: j �=i qi j for all i ∈ I. Then
a Q-matrix satisfying the row zero-sum condition is called conservative; we will
omit this term in the present volume, as we will not consider non-conservative
Q-matrices.

As before, a Q-matrix generates a diagram, with an arrow i → j if and only if
qi j > 0; see Figure 2.1a.

185
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.
.
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Fig. 2.1

Example 2.1.2 The zero matrix is a Q-matrix:

Q =

⎛⎜⎜⎝
0 · · · 0
0 · · · 0

· · ·
0 · · · 0

⎞⎟⎟⎠ .

The corresponding diagram has no arrows (i.e. consists of isolated points).

Example 2.1.3 A general 2×2 Q-matrix has the form(
−α α
β −β

)
, with α ,β ≥ 0;

see Figure 2.1b.

In some important examples in this chapter, the Q-matrix will indeed be infinite.
However, for a while we focus on finite matrices. An interesting matrix function is
the matrix exponent etQ = exp(tQ):

etQ = I+ ∑
k≥1

(tQ)k

k!
= ∑

k≥0

(tQ)k

k!
, i.e.

(
etQ)

i j = ∑
k≥0

tk(Qk)i j

k!
. (2.1)

Here, we use a standard agreement that for k = 0, Q0 = I, the unit matrix, and
0! = 1.

For a finite matrix Q, the parameter t in (2.1) can be any real number, although
in applications to continuous-time Markov chains we will assume that t ≥ 0. Why
does series (2.1) converge? This holds because the matrix norm

||etQ|| =

∣∣∣∣∣
∣∣∣∣∣∑k≥0

(tQ)k

k!

∣∣∣∣∣
∣∣∣∣∣≤ ∑

k≥0

||(tQ)k||
k!

≤ ∑
k≥0

|t|k||Q||k
k!

= exp
(
|t| ||Q||

)
< ∞.



2.1 Q-matrices and transition matrices 187

Basic facts about etQ which follow immediately from the definition are:

(i) etQesQ = esQetQ = e(t+s)Q, s, t ∈ R (in particular, e−tQ =
(
etQ
)−1

).

This property is an extension of the standard multiplicative property of a scalar
exponential function x �→ exa: e(x+y)a = exaeya = eyaexa.

(ii) etQ depends continuously (in fact, differentiably) on t ∈ R, with e0·Q = I.
More precisely,

d
dt

etQ = QetQ = etQQ, t ∈ R

i.e.
d
dt

(
etQ)

i j =
(
QetQ)

i j =
(
etQQ

)
i j .

Furthermore, for all n = 0,1, . . .,

dn

dtn etQ = QnetQ = etQQn, t ∈ R.

This is again an extension of the standard equation for a scalar exponential:
d

dx
exa = aexa = exaa, x ∈ R.

(iii) detetQ = et(tr Q), t ∈ R (this is a bit more tricky: the proof is given after
Remark 2.1.12).

We spell out properties (i) and (ii), for t,s ≥ 0 now.

Theorem 2.1.4 Let Q be a finite Q-matrix. The family of matrices

P(t) = etQ, t ≥ 0, (2.2)

satisfies the following properties.

(a) The semigroup property

P(t + s) = P(s)P(t), s, t ≥ 0. (2.3)

(b) P(t) is the only solution to

d
dt

P(t) = P(t)Q, t ≥ 0, the forward equation,

d
dt

P(t) = QP(t), t ≥ 0, the backward equation,

(2.4)

with P(0) = I.
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(c) For all n = 0,1,2, . . .,

dn

dtn P(t) = P(t)Qn = QnP(t); in particular,
dn

dtn P(t)
∣∣∣
t=0

= Qn. (2.5)

Proof Property (a) follows directly from the definition of the matrix exponent, if
we use the binomial expansion

((t + s)Q)k = (t + s)kQk =
k

∑
l=0

(
k
l

)
tlsk−lQk =

k

∑
l=0

(
k
l

)
(tQ)l(sQ)k−l.

Property (c) can be proven by iterating (2.4):

dn

dtn P(t) =
dn−1

dtn−1

(
d
dt

P(t)
)

=
(

dn−1

dtn−1 P(t)
)

Q = · · · = P(t)Qn = QnP(t).

Therefore, we only prove assertion (b). Write

d
dt

P(t) =
d
dt ∑

k≥0

tkQk

k!
= ∑

k≥1

tk−1Qk

(k−1)!

= Q ∑
k≥1

(tQ)k−1

(k−1)!
= QP(t) = P(t)Q. (2.6)

Note that (2.6) also holds for e−tQ: thus
d
dt

e−tQ = −e−tQQ = −Qe−tQ.

The initial condition P(0) = I is also verified straight away: for t = 0 all terms
in (2.1) vanish, except for k = 0.

To show uniqueness, let M(t) be any solution to

d
dt

M(t) = M(t)Q, with M(0) = I.

Then take

d
dt

(
M(t)e−tQ) =

(
d
dt

M(t)
)

e−tQ +M(t)
d
dt

e−tQ

= M(t)Qe−tQ +M(t)
(
−Qe−tQ)= 0. (2.7)

Hence, M(t)e−tQ does not change with t, and it is I at t = 0. Therefore,
M(t)e−tQ ≡ I and

M(t) = etQ.

The same argument works with
d
dt

M(t) = QM(t).

Remark 2.1.5 For a finite Q-matrix, (2.3) holds for all t,s ∈ R (and is in fact, a
group property). Also note that in the proof of uniqueness of the solution to the
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forward and backward equation, we used e−tQ, i.e. inverting the sign of tQ; see
(2.7). However, we need a non-negative t in the following important result.

Theorem 2.1.6 For a finite matrix Q, P(t) = etQ is a stochastic matrix for all t ≥ 0
if and only if Q is a Q-matrix.

That is, P(t) contains only strictly positive entries and all rows sum to 1:

pi j ≥ 0, and ∑
j

pi j(t) = 1. (2.8)

Proof Start with the if part of the theorem. That is, suppose that Q is a Q-matrix.
First, assume that t is small and positive. Then

P(t) = I+ tQ+o(t), i.e. pi j(t) = δi j + tqi j +o(t).

Hence, for small t > 0,

pii(t) > 0, and pi j(t) > 0 for i �= j whenever qi j > 0.

Next, if qi j = 0 then

pi j(t) = δi j +
1
2

t2q(2)
i j +o(t2),

where q(2)
i j is the (i, j)th entry of Q2. Observe that

q(2)
i j = ∑k

qikqk j ≥ 0,

as the sum ∑k qikqk j does not have negative summands (they only could come from
k = i or k = j, but then qi j = 0 cancels them out).

So, if qi j = 0 then, for small t > 0,

pi j(t) > 0 whenever q(2)
i j > 0.

Continuing in the same fashion, it is not difficult to deduce that, for small t > 0,

pi j(t) > 0 whenever, for some n, entry q(n)
i j of matrix Qn is > 0.

..

. k

i j

Fig. 2.2
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The condition that entry q(n)
i j > 0 for a given n means that, in the arrow diagram,

there exists a directed path i = k0 → k1 →·· ·→ kn−1 → kn = j from i to j, of length
n. In other words, state i communicates with j.

What if q(n)
i j ≡ 0 for all n? Then i does not communicate with j, and pi j(t) ≡ 0.

In any case, we have that, for small t > 0,

pi j(t) ≥ 0, for all states i, j.

Finally, as Q has 0 row sums, so does the matrix Qn for each n ≥ 1:

∑
j

q(n)
i j = ∑

j,l

q(n−1)
il ql j = ∑

l

q(n−1)
il

(
∑

j

ql j

)
= 0. (2.9)

Then P(t) has row sums 1, for all t ∈ R :

P(t) = I + ∑
k≥1

tk

k!
Qk.

row sum 1 row sum 0
.

Thus, for t > 0 small, we have established that P(t) is a stochastic matrix. This
remains true for a general t > 0: by the semigroup property we can write

P(t) = P
( t

n

)
· · ·P

( t
n

)
(n times) =

[
P
( t

n

)]n
.

Then we use the fact that a power of stochastic matrix will be a stochastic matrix
too. This finishes the proof of the ‘if’ part of Theorem 2.1.6.

Conversely, if P(t) has row sums 1 for all t ≥ 0, then

0 =
d
dt ∑j

pi j(t) = ∑
j

d
dt

pi j(t) = ∑
j

(QP(t))i j .

At t = 0, with P(0) = I, this yields

∑
j

qi j = 0.

Similarly, if, for some i �= j, the entry pi j(t) ≥ 0 for all t ≥ 0, then qi j ≥ 0. This
means that Q is a Q-matrix, yielding the ‘only if’ part and completing the proof of
Theorem 2.1.6.

Example 2.1.7 For the zero Q-matrix, trivially,

P(t) ≡ I.
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Example 2.1.8 Now consider a general 2×2 Q-matrix(
−α α
β −β

)
, α ,β ≥ 0. (2.10)

The eigenvalues κ1,2 of the matrix are the roots of

det

(
−κ −α α

β −κ −β

)
= (κ +α)(κ +β )−αβ = κ(α +β +κ) = 0,

i.e.

κ1 = 0, κ2 = −(α +β ).

The matrix is diagonalisable: Q = UDU−1, where

D =
(

0 0
0 −α −β

)
. (2.11)

So,

P(t) = ∑
k≥0

tk

k!
Qk = ∑

k≥0

tk

k!
UDkU−1 = U ∑

k≥0

tk

k!
DkU−1 = UetDU−1

= U

(
1 0
0 e−t(α+β )

)
U−1.

If α = β = 0, then P(t) ≡ I. Otherwise its each entry follows the form

pi j(t) = A+Be−(α+β )t ,

with

pi j(0) = A+B = δi j

and
d
dt

pi j(t)
∣∣∣
t=0

= −(α +β )B = qi j.

For instance, for the top left entry,

A+B = 1, −(α +β )B = −α ,

and

A =
β

α +β
, B =

α
α +β

.

In fact, the whole matrix is given by

P(t) =

⎛⎜⎜⎝
β

α +β
+

α
α +β

e−(α+β )t α
α +β

− α
α +β

e−(α+β )t

β
α +β

− β
α +β

e−(α+β )t α
α +β

+
β

α +β
e−(α+β )t

⎞⎟⎟⎠ ; (2.12)
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1 2

3

1 2

1

1 1

21

.

..

Fig. 2.3

as t → ∞ it converges to ⎛⎜⎜⎝
β

α +β
α

α +β
β

α +β
α

α +β

⎞⎟⎟⎠ .

Example 2.1.9 Consider a 3×3 Q-matrix

Q =

⎛⎝ −1 1/2 1/2
1 −2 1
0 1 −1

⎞⎠ , with Q2 =

⎛⎝ 3/2 −1 −1/2
−3 11/2 −5/2
1 −3 2

⎞⎠ .

The characteristic equation is

det

⎛⎝ −1−κ 1/2 1/2
1 −2−κ 1
0 1 −1−κ

⎞⎠
= −(κ +1)2(κ +2)+

1
2

+(1+κ)
1
2

+1+κ

= (κ +1)
(
−(κ +1)(κ +2)+

1
2

+1

)
+

1
2

= (κ +1)
(
−κ2 −3κ −2+

3
2

)
+

1
2

= κ
(
−κ2 −4κ − 7

2

)
= 0,

with the eigenvalues

κ1 = 0, κ± = −2± 1√
2

< 0.
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Then

pi j(t) = A+Be−(2−1/
√

2)t +Ce−(2+1/
√

2)t , i, j = 1,2,3, t ≥ 0,

where the constants A, B, C depend on i, j and obey

A+B+C = δi j, as P(0) = I,

−B

(
2− 1√

2

)
−C

(
2+

1√
2

)
= qi j, as

d
dt

P(0) = Q,

B

(
2− 1√

2

)2

+C

(
2+

1√
2

)2

= q(2)
i j , as

d2

dt2 P(0) = Q(2).

For instance, for p11(t),

A =
2
7
, B =

5+3
√

2
14

, C =
5−3

√
2

14
,

and p11(t) → 2/7 as t → ∞.

Example 2.1.10 It is easy to give an example of a Q-matrix with multiple roots of
the characteristic equation det (Q−μI) = 0, viz.⎛⎜⎜⎝

−2 1 1 0
1 −2 1 0
0 1 −2 1
1 0 1 −2

⎞⎟⎟⎠ .

Here the roots are 0, −2, −3; the last of these has algebraic multiplicity 2, but the
geometric multiplicity of each eigenvalue is 1. As a result, the entries pi j(t) of the
transition matrix P(t) = etQ are given by the formula

pi j(t) = Ai j +Bi je
−2t +(Ci j +Di jt)e−3t , i, j = 1,2,3,4,

where Ai j, Bi j, Ci j and Di j are constants. To find them, we require (2.5) with k =
0,1,2,3. The resulting matrix P(t) is

1
18

⎛⎜⎜⎝
4+6te−3t +14e−3t −14e−3t +9e−2t +5−6te−3t

4+6te−3t −4e−3t 5+4e−3t +9e−2t −6te−3t

−4e−3t +4−12te−3t −9e−2t +5+12te−3t +4e−3t

4+6te−3t −4e−3t 4e−3t −9e−2t +5−6te−3t

−6e−3t +6 6e−3t −9e−2t +3
−6e−3t +6 6e−3t −9e−2t +3
6+12e−3t −12e−3t +9e−2t +3
−6+6e−3t 3+6e−3t +9e−2t

⎞⎟⎟⎠
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Remark 2.1.11 The square Q2 of a Q-matrix does not necessarily give a Q-matrix
(nor are other powers Qn). For example, in the 2×2 case:(

−α α
β −β

)2

=
(

α2 +αβ −α2 −αβ
−αβ −β 2 αβ +β 2

)
.

This gives a Q-matrix if and only if α = β = 0, i.e. Q = 0. See also Example 2.1.9
above. However, the sum of the elements along a row in the matrix Qn is always
zero, and we used this property in the proof of Theorem 2.1.6 (see (2.8)). In fact,
the structure of the matrix Qn can be captured from the arrow diagram representing
the original Q-matrix Q. So, to calculate the entry q(2)

i j , we consider all paths of
length 2 i → k → j, multiply qik and qk j along each of these paths and sum the
products. Then for Q3 take all paths of length 3, and so on.

On the other hand, for all a ≥ 0, the scalar multiple aQ of a Q-matrix forms
a Q-matrix. Also, the sum Q1 + Q2 of Q-matrices is a Q-matrix (and hence any
linear combination a1Q1 +a2Q2, or, more generally, ∑n

j=1 a jQ j, with non-negative
coefficients a j).

Remark 2.1.12 Given a Q-matrix and any t > 0, P(t) = etQ is a stochastic matrix
by Theorem 2.1.6. Therefore, there exists a discrete-time Markov chain for which
P(t) is the transition matrix.

However, it is not true that any transition matrix P can be written as etQ for some
Q-matrix and some t ≥ 0. Here, property (iii) above, detetQ = et(tr Q), can help. For
example, the transition matrices

(
0 1

1/2 1/2

)
and

⎛⎝ 1 0 0
1 0 0
0 1 0

⎞⎠
cannot be written as etQ since their determinants are zero or negative, while
et(tr Q) > 0.

Now, using the semigroup property to prove that detetQ = et(tr Q),

dete(t+s)Q = det
(
esQetQ)=

(
detesQ)(detetQ).

Next, detetQ is continuous (and even differentiable) in t, with dete0·Q = detI = 1.
Hence, det etQ = etq for some q ∈ R. Finally, to find q, we observe that

q =
d
dt

detetQ
∣∣∣
t=0

=
d
dt

det(I+ tQ)
∣∣∣
t=0

.

That is, q is the first-order coefficient of the polynomial det(I + tQ) which is
precisely tr Q. Note that unless Q = 0, detetQ → 0 as t → ∞.
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In other cases, a more involved analysis is needed. For instance, take the
transition matrix

P =

⎛⎝ 0 1 0
0 0 1
1 0 0

⎞⎠ .

Suppose it can be written as etQ. Then consider the transition matrix P′ = etQ/m;
we will see that (P′)m = P. It is easy to find a transition matrix

P′ =

⎛⎝ 0 0 1
1 0 0
0 1 0

⎞⎠
such that (P′)2 = P. But this is impossible for m = 3 (the matrix P contains too
many 0s). Indeed, the matrix P describes deterministic movements. This implies
that P′ should be deterministic as well. However, none of the six permutation
matrices for 3 states satisfy this condition. Thus, the above matrix P cannot be
represented as etQ.

Remark 2.1.13 A general multiplicativity property of matrix exponents is that

eQ1+Q2 = eQ1eQ2 = eQ2eQ1 (2.13)

if and only if matrices Q1 and Q2 commute, i.e. Q1Q2 = Q2Q1. This implies the
semigroup property e(s+t)Q = esQ+tQ = esQetQ, as (sQ) and (tQ) commute.

Equation (2.13) is again verified by a direct calculation. Thus, if Q1Q2 = Q2Q1

then we can write the binomial matrix expansion:

(Q1 +Q2)n =
n

∑
k=0

n!
k!(n− k)!

Qk
1Qn−k

2 =
n

∑
k=0

n!
k!(n− k)!

Qk
2Qn−k

1 . (2.14)

As in the scalar case, the product of matrix series(
∑
k≥0

(Q1)k

k!

)(
∑
l≥0

(Q2)l

l!

)

can then be nicely rearranged into the series ∑n≥0
(Q1+Q2)n

n! , giving eQ1+Q2 . How-
ever, without assuming that Q1Q2 = Q2Q1, expansion (2.14) will be replaced by a
sum of intermittent products of Q1s and Q2s, and (2.13) will not hold.
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2.2 Continuous-time Markov chains: definitions and basic constructions

The Markov Chain Saw Massacre
(From the series ‘Movies that never made it to the Big Screen’.)

Definition 2.2.1 A continuous-time Markov chain (CTMC) with a (finite) Q-matrix
Q and initial distribution λ is a family of random variables (Xt , t ≥ 0) with values
in a set I such that:

(a) P(X0 = i) = λi;
(b) for all 0 < t1 < t2 < · · · < tn and states i0, . . ., in ∈ I, we have

P(X0 = i0,Xt1 = i1, . . . ,Xtn = in) =

λi0 pi0i1(t1)pi1i2(t2 − t1) . . . pin−1in(tn − tn−1), (2.15)

where pi j(t) are the entries of the matrix P(t) = etQ.

A typical sample path (trajectory) of (Xt) is shown in Figure 2.4.
We will see that a sample path (a) spends a random time ∼ Exp (qi) in state i

and then (b) jumps to j �= i with probability qi j/qi. See Property (IX) on page 200.
A standard agreement is that the trajectories of a CTMC are right-continuous.

This means that with probability 1, for all t ≥ 0,

lim
h↘0

Xt+h = Xt .

However, whenever it bears little importance (which will be often the case), we
draw trajectories of a DTMC as ‘fully continuous’ broken lines.

It is important to understand that the event {X0 = i0,Xt1 = i1, . . . ,Xtn = in} in
(2.15) includes all sample trajectories passing through states i0, i1, . . . , in at times
t0 = 0, t1, . . ., tn; their behaviour between these times can be arbitrary, as illustrated
in Figure 2.5.

The matrix Q is often called the generator (matrix) of the continuous-time
Markov chain (Xt). The chain is called a (λ ,Q) Markov chain with continuous time

time
0 t t t1 2 n

i
0

i1 i2

i n

Fig. 2.4
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and generator Q. As in the case of discrete-time Markov chains (DTMCs), we will
often work with chains starting from a single state, where λ = δi. Such a chain is
called a (δi,Q) CTMC.

Definition 2.2.1 implies the following properties:

Property I The matrix P(t) = (pi j(t)) is called the transition matrix in time t. It
describes the conditional probabilities

pi j(t) = P
(
Xt = j

∣∣X0 = i
)

= P
(
Xt+s = j

∣∣Xs = i
)
. (2.16)

In terms of trajectories, pi j(t) gives the total probability of all paths leading
from i to j in time t. See Figure 2.6.

Property II The lack of memory in conditional probabilities:

P
(
Xtn = j

∣∣Xtn−1 = i,Xtn−2 = in−2, . . . ,X0 = i0
)

= P
(
Xtn = j

∣∣Xtn−1 = i
)

= pi j(tn − tn−1). (2.17)

That is, the conditional probability

P
(
Xtn = j

∣∣Xtn−1 = i,Xtn−2 = in−2, . . . ,X0 = i0
)

does not depend on t1, . . ., tn−1 and i0, i1, . . ., in−2.
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time
0 t

i futurepast

present

.

Fig. 2.7

To prove (2.17), use the definition of conditional probability

P
(
Xtn = j

∣∣Xtn−1 = i,Xtn−2 = in−2, . . . ,X0 = i0
)

=
P
(
X0 = i0, . . . ,Xtn−1 = i,Xtn = j

)
P
(
X0 = i0, . . . ,Xtn−1 = i

)
and substitute (2.15).

Property III The unconditional probability

P(Xt = j) = ∑
i

λi pi j(t) = (λP(t)) j (2.18)

describes the total probability of the set of trajectories in state j at time t;
see Figure 2.6.

Property IV As in the discrete-time case, the Markov property holds, yielding
conditional independence of the past and future, given the present state.

Theorem 2.2.2 Let (Xt) be a (λ ,Q)-CTMC. Then, for all given time t > 0 and
state i ∈ I, conditional on the event {Xt = i}, the future states (Xt+s,s ≥ 0) do not
depend on past states (Xs,0 ≤ s < t), and (Xt+s) is a (δi,Q)-CTMC.

Property V We say that λ = π is an equilibrium distribution if and only if
P(Xt = j) = π j for all t ∈ R, j ∈ I, i.e. πP(t) ≡ π . That is, the row vector
π is annihilated by the matrix Q:

0 =
d
dt

πP(t) = π
d
dt

P(t) = πP(t)Q,

0 = πP(t)Q
∣∣
t=0 = πQ. (2.19)

In other words, π is a row eigenvector of Q with the eigenvalue zero.
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Property VI In fact, every (finite) Q-matrix harbours an equilibrium distribution,
i.e. a row eigenvector π = (πi), with the eigenvalue zero, which con-
tains non-negative entries and where ∑i πi = 1. In particular, every finite
Q-matrix features 0 as an eigenvalue.

Property VII As in the discrete time case, if

P(t) → Π =

π(1)

π(2)

. . .

π(m)

⎛⎜⎜⎝
−−−
−−−
−−−
−−−

⎞⎟⎟⎠ ,

then each row π(i) in P(t) makes up an equilibrium distribution

π(i)P(t) =
(
ΠP(t)

)(i) =
(

lim
τ→∞

P(τ)P(t)
)(i)

=
(

lim
τ→∞

P(τ + t)
)(i)

= π(i). (2.20)

See Theorem 2.8.1 below.

For instance, in Example 2.1.3, if α +β > 0 then

π =
(

β
α +β

,
α

α +β

)
(2.21)

is the (unique) equilibrium distribution. But for α = β = 0, P(t) ≡ I and every
vector becomes invariant.

Property VIII As in the discrete-time case, we can define the strong Markov prop-
erty. Call a random variable T with values in [0,∞] a stopping time if for all
t > 0 the event {T < t} is determined by (Xτ : 0 ≤ τ < t). In other words,
the indicator 1(T < t) is a function of (Xτ : 0 ≤ τ < t) only.

Once Upon A Stopping Time
(From the series ‘Movies that never made it to the Big Screen.’)

An example of a stopping time is again the hitting time, of a subset of states
A ⊂ I

HA = inf [s ≥ 0 : Xs ∈ A]. (2.22)

In fact, the indicator

1(HA < t) = 1(there exists s ∈ [0, t) such that Xs ∈ A)

depends on (Xτ ,0 ≤ τ < t).
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As with DTMCs, we will be particularly interested in the hitting time of a given
state i (the passage time to i, or, when the initial state in i itself, the return time):

Hi = inf [s ≥ 0 : Xs = i], (2.23)

Theorem 2.2.3 Let (Xt) be a (λ ,Q)-CTMC and T be a stopping time. Then, for
all states i, conditional on the event {T < ∞, XT = i}, future states (Xt+T , t > 0) do
not depend on past states (Xt ,0 ≤ t < T ), and (Xt+T , t ≥ 0) is (δi,Q)-CTMC.

Figure 2.8 addresses the case where T = Hi, the passage time to state i.

A Passage Time To India
(From the series ‘Movies that never made it to the Big Screen.’)

(IX) A CTMC (Xt) with generator Q illustrates the following property: given that
Xt = i, with qi =−qii > 0, the residual holding time Ri at state i follows an
exponential distribution, of rate qi = −qii:

P(Ri ≥ τ|Xt = i) = P(Xt+s = i for all 0 ≤ s < τ|Xt = i) = e−qiτ .

Further, at time t + Ri, the chain jumps to state j with probability p̂i j =
qi j/qi:

P(Xt+Ri = j|Xt = i) =
qi j

qi
. (2.24)

This property will be verified later on. A state i with qi = 0 gets qi j = 0 for all j;
such a state is called absorbing. The corresponding arrow diagram does not contain
arrows going out of i.
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Remark 2.2.4 As in the discrete-time case, Definition 2.2.1 specifies a so-called
time-homogeneous (or, more briefly homogeneous) Markov chain. Here the proba-
bilities pi j(t) depend only on the time t in which a transition from i to j is required.
In a more general case of inhomogeneous chains, one has to deal with a transition
probability pi j(s, t + s) that the state at time t + s is j, given that the state at time s
is i, t,s > 0. Examples of such chains will appear in Section 2.4.

Worked Example 2.2.5 A virus exists in N + 1 strains 0, . . . ,N. It keeps its
strain for a random time ∼ Exp(λ ) then mutates to one of the remaining strains,
equiprobably. Find the probability that the strain at time t is the same as the initial
strain

P
(
at time t the same strain as at time 0

)
.

Solution Due to symmetry,

qi := −qii = λ ; qi j =
λ
N

, 1 ≤ i, j ≤ N +1, i �= j,

and

Q =

⎛⎜⎜⎝
−λ λ/N · · · λ/N
λ/N −λ · · · λ/N

· · · · · ·
λ/N λ/N · · · −λ

⎞⎟⎟⎠ .

We want to compute pii(t) = (etQ)ii. Clearly, pii(t) = p11(t) for all i, t ∈ R, again
by symmetry.

Consider a reduced (2×2) Q-matrix, over states 0 and 1:

Q̃ =
(

−λ λ
λ/N −λ/N

)
.
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The matrix Q̃ has eigenvalues 0 and μ = −λ (N + 1)/N, and is diagonalisable, its
row eigenvectors being

(1 ,1) and (N, −1).

Hence,

p11(t) =
(
etQ̃)

11 = A+Bexp

[
−λ (N +1)

N
t

]
.

As in Example 2.1.3, we seek solutions of the form A+Beμt . We obtain

A =
1

N +1
, B =

N
N +1

,

and

p11(t) =
1

N +1
+
(

N
N +1

)
exp

[
−λ (N +1)

N
t

]
= pii(t).

By symmetry,

pi j(t) =
1
N

[1− pii(t)]

=
1

N +1
−
(

1
N +1

)
exp

[
− λ (N +1)

N
t

]
, i �= j.

We conclude that

pi j(t) −→
1

N +1
as t → ∞ (equidistribution).

Worked Example 2.2.6 A flea jumps clockwise on the vertices of a triangle ABC;
the holding times are independent exponential random variables of rate 1. Find the
eigenvalues of the corresponding Q-matrix and express the transition probabilities
pxy(t), t ≥ 0, x,y = A,B,C, in terms of these roots. Deduce the formulas for the
sums

S0(t) = ∑
n≥0

t3n

(3n)!
, S1(t) = ∑

n≥0

t3n+1

(3n+1)!
, S2(t) = ∑

n≥0

t3n+2

(3n+2)!
,

in terms of the functions et ,e−t/2, cos(
√

3t/2) and sin(
√

3t/2).
Find the limits

lim
t→∞

e−tS j(t), j = 0,1,2 .

What is the connection between the decompositions

et = S0(t)+S1(t)+S2(t)

and et = (cosh t + sinh t)?
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Solution The Q-matrix has the characteristic polynomial

det

⎛⎝ −1−κ 1 0
0 −1−κ 1
1 0 −1−κ

⎞⎠= (−κ −1)3 +1 = −κ(κ2 +3κ +3).

The roots (eigenvalues), one real and two complex, are

κ = 0, −3
2
± i

√
3

2
.

The diagonal transition probabilities are

pxx(t) = a+ e−3t/2

(
bcos

(√
3

2
t

)
+ csin

(√
3

2
t

))
, x = A,B,C,

with

a = pxx(∞) =
1
3

(as π = (1/3,1/3,1/3)),

a+b = pxx(0) = 1, whence b = 2/3,

−3
2

b+
√

3
2

c = ṗxx(0) = qxx = −1, whence c = 0.

At the same time,

pxx(t) = ∑
n≥0

e−t t3n

(3n)!
, x = A,B,C.

So,

S0(t) = ∑
n≥0

t3n

(3n)!
=

1
3

et +
2
3

e−t/2 cos

(√
3

2
t

)
.

Similarly, the probabilities pAB(t) = pBC(t) = pCA(t) equal

1
3
− 1

3
e−3t/2 cos

(√
3

2
t

)
+

1√
3

e−3t/2 sin

(√
3

2
t

)
,

whence S1(t) = ∑
n≥0

t3n+1

(3n+1)!
is equal to

1
3

et − 1
3

e−t/2 cos

(√
3

2
t

)
+

1√
3

e−t/2 sin

(√
3

2
t

)
.

Finally, the probabilities pAC(t) = pBA(t) = pCB(t) equal

∑
n≥0

e−t t3n+2

(3n+2)!
=

1
3
− 1

3
e−3t/2 cos

(√
3

2
t

)
− 1√

3
e−3t/2 sin

(√
3

2
t

)
,
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and S2(t) = ∑
n≥0

t3n+2

(3n+2)!
equals

1
3

et − 1
3

e−t/2 cos

(√
3

2
t

)
− 1√

3
e−t/2 sin

(√
3

2
t

)
.

The limits

lim
t→∞

e−tS j(t) =
1
3
, j = 0,1,2,

give the equilibrium distribution π = (1/3,1/3,1/3).

The decomposition et = (cosh t + sinh t) arises when we consider the Markov
chain with the Q-matrix (

−1 1
1 −1

)
,

which is a ‘reduced’ version of the above chain.

Example 2.2.7 Consider an N ×N Q-matrix of the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

−λ λ 0 . . . 0 0
0 −λ λ . . . 0 0
0 0 −λ . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . −λ λ
0 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= λ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 1
0 0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.25)
See Figure 2.10. Here the state N is absorbing: qNi ≡ 0, or, equivalently, qNN =
−qN = 0. Next, all matrices Qk are upper triangular (as there is no arrow j−1← j).

Hence, so is etQ. The forward equation
d
dt

P(t) = P(t)Q and the initial condition

P(0) = I read

d
dt

pii = −λ pii, pii(0) = 1, 1 ≤ i < N,

d
dt

pi j = −λ pi j +λ pi j−1, pi j(0) = 0, 1 ≤ i < j < N,

d
dt

piN = λ piN−1, piN(0) = 0, 1 ≤ i < N,

d
dt

pNN = 0, pNN(0) = 1,
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1 2 N _1 N 

(absorbing)

. . . . . . . .

Fig. 2.10

Because, clearly, pi j(t) = 0 for all i > j, the equations admit the following
recursive solution

d
dt

pii = −λ pii : pii(t) = e−λ t , for 1 ≤ i < N,

d
dt

pii+1 = −λ pii+1 +λe−λ t : pii+1(t) = λ te−λ t , for 1 ≤ i < N,

d
dt

pii+2 = −λ pii+2 +λ 2te−λ t : pii+2(t) =
(λ t)2

2
e−λ t , for 0 ≤ i < N −1,

and so on. In general,

pi j(t) =
(

(λ t) j−i

( j− i)!

)
e−λ t , for 1 ≤ i < j < N −1,

and

piN(t) = 1−
N−i−1

∑
l=0

(λ t)l

l!
e−λ t , for 0 ≤ i < N;

finally,

pNN ≡ 1.

In the matrix form

P(t) = etQ =

⎛⎜⎜⎜⎜⎜⎝
e−λ t (λ t) e−λ t (λ t)2e−λ t/2! . . . ∑

l≥N−1

(λ t)le−λ t/l!

0 e−λ t (λ t)e−λ t . . . ∑
l≥N−2

(λ t)le−λ t/l!

. . . . . . . . . . . . . . .

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .

(2.26)

We see that, as t → ∞,

pi j(t) → 0 for all 0 ≤ i < j < N and piN(t) → 1 for all 0 ≤ i < N.
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time
1
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N N

0

Fig. 2.11

That is,

lim
t→∞

pi j(t) = δ jN i.e. P(t) →

⎛⎜⎜⎝
0 0 0 · · · 1
0 0 0 · · · 1
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

⎞⎟⎟⎠
∼ δN

∼ δN
...

∼ δN

,

where δN forms the probability distribution concentrated at state N. The chain
eventually ends up in state N.

A useful observation is that an absorbing state, with qi = 0, has pii(t) ≡ 1 for all
t ∈ R

+ (and vice versa).
Typical trajectories of the

(
δ (0),Q

)
continuous-time Markov chain are shown in

Figure 2.11. They all jump upwards by one unit and, as was noted, eventually reach
level N where they stay forever.

Example 2.2.8 If we modify the Q-matrix to⎛⎜⎜⎜⎜⎜⎜⎜⎝

−λ λ 0 . . . 0 0
0 −λ λ . . . 0 0
0 0 −λ . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . −λ λ
λ 0 0 . . . 0 −λ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= λ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
0 0 −1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 1
1 0 0 . . . 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(2.27)
it will generate a cycle, as shown in Figure 2.12.

Here, the matrix P(t) = etQ will exhibit a cyclic structure: for all i, j, l,

pi j(t) = pi+l, j+l (addition mod N).

In fact, summing up the transition probabilities for all the states which are ‘pro-
jected’ into j when the circle is produced from the real line, one obtains the
answer
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2N 
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Fig. 2.12

pi j(t) = p1, j+1−i(t) = ∑
l≥0

(λ t) j−i+lN

( j− i+ lN)!
e−λ t , 1 ≤ i ≤ j ≤ N,

and

pi j(t) = p1,N+ j−i+1(t), 1 ≤ j < i ≤ N.

As t → ∞, pi j(t)→ 1/N, giving the uniform distribution. This makes up the unique
solution of πQ = 0 with πi > 0, and ∑N

i=1 πi = 1.

Example 2.2.9 Many properties observed so far can be extended to infinite
matrices without much difficulty. For example, consider an infinite Q-matrix

Q =

⎛⎜⎜⎜⎜⎜⎝
−λ λ 0 0 . . .

0 −λ λ 0
. . .

0 0 −λ λ . . .

. . .
. . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠= λ

⎛⎜⎜⎜⎜⎜⎝
−1 1 0 0 . . .

0 −1 1 0
. . .

0 0 −1 1
. . .

. . .
. . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ , (2.28)

with the diagram in Figure 2.13.

. . .
_1 nn . . .

λ λ λ

210 .....

Fig. 2.13
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Here again, the matrix Qk is upper triangular for all k = 0,1, . . ., and so is the
matrix exponent

P(t) = etQ = ∑
k≥0

tkQk

k!
, t ≥ 0. (2.29)

We may not be sure about elements pii+l(t) with l ≥ 0, but entries pii−l(t) clearly
equal 0:

P(t) =

⎛⎜⎜⎜⎝
p00(t) p01(t) p02(t) · · ·

0 p11(t) p12(t) · · ·
0 0 p22(t) · · ·

0 . . .

⎞⎟⎟⎟⎠ .

To find the entries pii+l(t), we can use the forward or backward equation

d
dt

P(t) = P(t)Q or
d
dt

P(t) = QP(t), (2.30)

with the initial condition P(0) = I. For l = 0 (diagonal entries), the equations
become

d
dt

pii = −λ pii(t), pii(0) = 1,

whence

pii(t) = e−λ t for all i = 0,1, . . . and t ≥ 0. (2.31)

For l = 1 (one step above the main diagonal), we see

d
dt

pii+1 = −λ pii+1(t)+λ pii(t) (forward),

d
dt

pii+1 = −λ pii+1(t)+λ pi+1i+1(t) (backward),

whence

pii+1(t) = λ t e−λ t for all i = 0,1, . . . , and t ≥ 0. (2.32)

In general, for all l = 0,1, . . .:

d
dt

pii+l = −λ pii+l(t)+λ pii+l−1(t) (forward),

d
dt

pii+l = −λ pii+l(t)+λ pi+1i+l(t) (backward),

yielding

pii+l(t) =
(λ t)l

l!
e−λ t for all i = 0,1, . . . , and t ≥ 0. (2.33)
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time
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1
2

.
N ..

Fig. 2.14

Finally, as transitions i → j for j < i are impossible:

pii−l(t) = 0, for all i = 0,1, . . . , l = 1,2, . . . and t ≥ 0. (2.34)

In matrix form

P(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
e−λ t λ t

1
e−λ t (λ t)2

2!
e−λ t . . .

0 e−λ t λ t
1

e−λ t . . .

0 0 e−λ t . . .

. . .
. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎝
Poisson (λ t)
0 Poisson (λ t)
0 0 Poisson (λ t)
. . . . . .

⎞⎟⎟⎠ .

(2.35)
Equivalently, we could have arrived at the same result by taking the limit

P(t) = etQ = lim
N→∞

etQ(N)
, t ≥ 0, (2.36)

where the matrices Q(N) and p(N)(t) = etQ(N)
were seen in (2.25) and (2.27).

Matrices P(t), t ≥ 0, defined by (2.35) satisfy the properties listed in Theorem
2.1.4 above. Obviously, each P(t) constitutes a stochastic matrix defining a col-
lection of transition probabilities on Z+. We could repeat Definition 2.2.1, with
I = Z+ = {0,1, . . .} and an (infinite) transition probability matrix P(t) as specified
in (2.35). Typical trajectories of the

(
δ (0),Q

)
Markov chain (starting at state 0) will

appear as in Figure 2.14. The paths jump upwards by one and increase indefinitely
over time.

So, in summary:

Theorem 2.2.10 Let Q be of the form (2.28). The family of matrices P(t) from
(2.35) satisfies (2.29) and (2.36) and features the following properties:



210 Continuous-time Markov chains

(a) the semigroup property

P(t + s) = P(s)P(t), s, t ≥ 0; (2.37)

(b) that P(t) is the only solution to

d
dt

P(t) = P(t)Q, t ≥ 0, the forward equation,

d
dt

P(t) = QP(t), t ≥ 0, the backward equation,
(2.38)

with P(0) = I;
(c) for all k = 1,2, . . . ,

dk

dtk P(t)
∣∣∣
t=0

= Qk. (2.39)

The backward and forward equations are often called the Kolmogorov equations,
after Andrey Nikolaievich Kolmogorov (1903–1987), the great Russian math-
ematician who made important contributions to many areas of theoretical and
applied mathematics. Kolmogorov is credited with providing a rigorous foundation
for the whole of probability theory, and for more than 50 years was the recognised
leader of the Soviet mathematics community. Unlike other Soviet mathematicians
and physicists of the period, he never held particularly high administrative posi-
tions and did not participate directly in nuclear or space programmes. However, he
had an unquestionable moral authority on many issues beyond mathematics and
was greatly admired as an intellectual icon nationwide as well as internationally.

Another name mentioned in this context is William Feller (1906–1970), a
famous Yugoslav-born American mathematician who greatly clarified the rôle of
the forward and backward equations and helped to build a unified view of prob-
ability theory and its numerous applications. He wrote a classic book in two
volumes (Wiley, 1968, 1971) which remains recommended reading for students
in probability.

2.3 The Poisson process

The Poisson Adventure
(From the series ‘Movies that never made it to the Big Screen’.)

The Poisson process is precisely that introduced in Example 2.2.9 above. In view
of its importance, we introduce some special notation.

Definition 2.3.1 Fix λ > 0. A family of random variables (Nt , t ≥ 0) with values
in Z+ = {0,1, . . .} is called a Poisson process of rate (or intensity) λ if
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(i) N0 = 0,

(ii) for all 0 < t1 < t2 < · · · < tn and non-negative integers i1, . . ., in ∈ I

P(Nt1 = i1, . . . ,Ntn = in) = p0i1(t1)pi1i2(t2−t1) · · · pin−1in(tn−tn−1), (2.40)

the pi j(t) being the entries of the matrix P(t) = etQ specified in (2.35).

For brevity, we refer to the Poisson process of rate λ as PP(λ ); its distribution
will be denoted simply by P (rather than P0). We see that PP(λ ) is a process with
piecewise constant, non-decreasing (right-continuous) sample trajectories Nt , t ≥ 0,
starting at 0 and jumping by 1. Various aspects of the sample behaviour of the
process are featured in Figures 2.15–2.29.

Equation (2.40) implies that a Poisson process has independent incre-
ments Nt j+1 − Nt j over disjoint intervals (t j, t j+1) which are distributed
as Po (λ (t j+1 − t j)). In fact, setting t0 = 0 and i0 = 0, the probability
P(Nt1 = i1, . . . ,Ntn = in) coincides with

P
(
Nt1 −Nt0 = i1 − i0, . . . ,Ntn −Ntn−1 = in − in−1

)
,

the probability of observing a prescribed succession of increments. Then, repeating
Definition 2.3.1, we see that for 0 = t0 < t1 < · · · < tn and 0 = i0, i1, · · ·, in ∈ Z+

P
(
Nt1 −Nt0 = i1 − i0, . . . ,Ntn −Ntn−1 = in − in−1

)
=

⎧⎪⎨⎪⎩
n−1
∏

k=0

(
λ (tk+1 − tk)

)ik+1−ik(
ik+1 − ik

)
!

e−λ (tk+1−tk), if 0 ≤ i1 ≤ ·· · ≤ in,

0, otherwise.

(2.41)

Conversely, property (2.41) implies (2.40). This fact will prove important for our
understanding of Poisson processes.

t

_ Nt0
Nt 1

1 2
t

Nt 2
N_

t 1

t
3

0 = t0 .  .  .

.  .  .

t
n 

N t 3

_ N
t2

Fig. 2.15



212 Continuous-time Markov chains

Before we move further, recall some basic properties of the exponential distri-
butions Exp(λ ).

(a) The PDF

f (x) = λe−λx1(x > 0).

(b) The CDF

F(x) := P(X < x) =
∫ x

−∞
f (y)dy =

(
1− e−λx

)
×1(x > 0).

(c) The tail probability

1−F(x) = P(X ≥ x) =
{

e−λx, x > 0,

1, x ≤ 0.

(d) The mean value

EX =
∫ ∞

0
x f (x)dx = λ−1.

(e) The variance

E(X −EX)2 =
∫ ∞

0
dx
(
x−λ−1)2

f (x) = λ−2.

(f) If X1 ∼ Exp(λ1), . . .,Xn ∼ Exp(λn), independently. Then

W = min [X1, . . . ,Xn] ∼ Exp

(
n

∑
i=1

λi

)
.

In fact,

P(W > x) = P(Xi > x, 1 ≤ i ≤ n) =
n

∏
i=1

P(Xi > x) =
n

∏
i=1

e−λix.

(g) If X1 ∼ Exp(λ1), . . .,Xn ∼ Exp(λn), independently, then

Z = X1 + · · ·+Xn ∼ Gam(n,λ ),

with the PDF

fZ(x) =
[

λ nxn−1

(n−1)!

]
e−λx1(x > 0).

(h) The memoryless property:

P
(
X > t + s

∣∣X > s
)

=
e−λ (t+s)

e−λ s
= e−λ t = P(X > t) for all t,s > 0.

That is, if the lifetime (or the holding time) has exceeded the value s then,
conditionally, the residual lifetime X − s is still Exp(λ ).

From now on we write variously Nt and N(t) whichever notation for the Poisson
process PP(λ ) would be more suitable. The main result of this section is
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Fig. 2.16

Theorem 2.3.2 The Poisson process PP(λ ) can be characterised in three equivalent
ways: a process taking values in Z+ = {0,1, . . .}, with N0 = 0 and:

(a) satisfying (2.40), where P(t) = (pi j(t)), t ≥ 0, is the stochastic matrix given
in (2.35); equivalently, as a process with independent Poisson distributed
increments:

N(tk)−N(tk−1)∼ Po (λ (tk−tk−1)), for all 0 = t0 < t1 < · · ·< tn; (2.42)

or

(b) with independent increments N(t1)−N(t0), . . .,N(tn)−N(tn−1), for all 0 =
t0 < t1 < · · ·< tn, and the following infinitesimal probabilities: for all t ≥ 0,
as h ↘ 0

P
(
N(t +h)−N(t) = 0

)
= 1−λh+o(h),

P
(
N(t +h)−N(t) = 1

)
= λh+o(h),

P
(
N(t +h)−N(t) ≥ 2

)
= o(h),

⎫⎪⎬⎪⎭ (2.43)

where terms o(h) do not depend on t;

or

(c) spending a random time Si ∼ Exp(λ ) in each state i independently, and
then jumping to i+1, i = 0,1, . . ..

We say that (a) forms the definition (or characterisation) via independent Poisso-
nian increments, (b) via infinitesimal probabilities and (c) via exponential holding
times.

.
t t + h

Fig. 2.17
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Proof of Theorem 2.3.2 The part (a) ⇒ (b) is straightforward. For, from (a)

P
(
Nt+h −Nt = �

)
=

[
(λh)�

�!

]
e−λh

=
{

e−λh = 1−λh+o(h), � = 0,

(λh)e−λh = λh+o(h), � = 1,

and

P
(
Nt+h −Nt ≥ 2

)
= 1−P

(
Nt+h −Nt = 0 or 1

)
= 1− (1−λh+λh+o(h)) = o(h).

This yields (b).

(b) ⇒ (c) proves more involved. First check that no double jump exists, i.e.

P
(
no jump of size ≥ 2 occurs in (0, t]

)
= P

(
no such jump occurs in

(
k−1

m
t,

k
m

t

]
for all k = 1, . . . ,m

)
=

m

∏
k=1

P

(
no such jump occurs in

(
k−1

m
t,

k
m

t

] )
, by (b),

≥ ∏
k

P

(
no jump at all or a single jump of size 1 in

(
k−1

m
t,

k
m

t

] )
=
(

1−λ
t
m

+λ
t
m

+o
( t

m

))m

=
(

1+o
( t

m

))m
→ 1 as m → ∞.

This is true for all t > 0, so

P
(
no jump of size ≥ 2 ever

)
= 1.

Next, check that for all t, s > 0:

P
(
Nt+s −Ns = 0

)
= e−λ t .
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In fact, as before

P
(
Nt+s −Ns = 0

)
= P
(
no jump in (s, t + s]

)
= P

(
no jump in

(
s+

k−1
m

t, s+
k
m

t

]
for all k = 1, . . . ,m

)
=

m

∏
1

P

(
no jump in

(
s+

k−1
m

t, s+
k
m

t

])
by (b)

=
(

1−λ
t
m

+o
( t

m

))m
→ e−λ t as m → ∞.

Now introduce holding times

S0 = sup[t ≥ 0 : N(t) = 0],

S1 = sup[t ≥ 0 : N(S0 + t) = 1]

and so on. Then the times of jump can be written

S0 (= H1, the hitting time of state 1)
S0 +S1 (= H2, the hitting time of state 2)

...
S0 + · · ·+Sk−1 (= Hk, the hitting time of state k)

...
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Further, take n pairwise disjoint intervals [t1, t1 + h1), . . ., [tn, tn + hn), with 0 =
t0 < t1 < t1 +h1 < t2 < · · · < tn−1 +hn−1 < tn, and consider the probability

P
(
t1 < H1 ≤ t1 +h1, . . . , tn < Hn ≤ tn +hn

)
= P
(
N(t1) = 0, N(t1 +h1)−N(t1) = 1, N(t2)−N(t1 +h1) = 0,

· · · , N(tn)−N(tn−1 +hn−1) = 0, N(tn +hn)−N(tn) = 1
)

= P(N(t1) = 0)P(N(t1 +h1)−N(t1) = 1)P(N(t2)−N(t1 +h1) = 0)

×·· ·×P(N(tn)−N(tn−1 +hn−1) = 0)P(N(tn +hn)−N(tn) = 1)

= e−λ t1(λh1 +o(h1))e−λ (t2−t1−h1)

×·· ·× e−λ (tn−tn−1−hn−1) (λhn +o(hn))

Divide by h1 ×·· ·×hn and let hk → 0. Then

the LHS → the joint PDF fH1,...,Hn(t1, · · · , tn),

and

the RHS → (e−λ t1λ )
[
e−λ (t2−t1)λ

]
· · ·
[
e−λ (tn−tn−1)λ

]
.

Thus,

fH1, ...,Hn(t1, · · · , tn) =
n

∏
k=1

(
λ exp

[
−λ (tk − tk−1)

])
1(0 < t1 < · · · < tn)

= λ ne−λ tn1(0 < t1 < · · · < tn).

Now,

S0 = H1, S2 = H2 −H1, . . . , Sn−1 = Hn −Hn−1.

The change of variables

s0 = t1, s1 = t2 − t1, . . . , sn−1 = tn − tn−1

gives

the Jacobian

(
∂ (s0, . . . ,sn−1)

∂ (t1, . . . , tn)

)
= 1

=
(

∂ (t1, . . . , tn)
∂ (s0, . . . ,sn−1)

)
, the inverse Jacobian .

Thus the joint PDF

fS0, ...,Sn−1(s0, . . . ,sn−1) = fH1, ...,Hn(s0,s0 + s1, . . . ,s0 + · · ·+ sn−1)

=
n−1

∏
k=0

[
λe−λ sk 1(sk > 0)

]
=

n−1

∏
0

fSk(sk).

So, S0,S1, . . . are Exp(λ ), independently, which gives (c).
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Finally, (c) ⇒ (a). To check the following equality,

P
(
N(t1)−N(0) = �1, N(t2)−N(t1) = �2, . . . ,N(tn)−N(tn−1) = �n

)
=

n

∏
1

(λ (tk − tk−1))�k

�k!
e−λ tn (by independent increments),

we use induction on n. The first step is n = 1, and we set t1 = t, �1 = �. With
H� = S0 + · · ·+S�−1, write

P
(
N(t) = �

)
= P
(
H� < t < H� +S�

)
by (c),

and use the fact that H� ∼ Gam(�,λ ), with fH�
(x) = λ �x�−1 e−λx/(�−1)!, x > 0:

P
(
N(t) = �

)
=

t∫
0

fH�
(x)P(S� > t − x) dx =

t∫
0

λ �x�−1

(�−1)!
e−λx e−λ (t−x)dx

=
λ �e−λ t

(�−1)!

t∫
0

x�−1dx =
(λ t)�

�!
e−λ t . (2.44)

Finally, to make the induction step from n− 1 to n, it suffices to prove that the
conditional probability

P
(
N(tn)−N(tn−1) = �n

∣∣ N(tk)−N(tk−1) = �k , 1 ≤ k ≤ n−1
)

= P
(
N(tn − tn−1) = �n

)
=
[
(λ (tn − tn−1))�n

�n!

]
e−λ (tn−tn−1). (2.45)
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But thanks to the memoryless property of the holding time

S�1+···+�n−1 ∼ Exp(λ ),

this process thus yields (a).

Comparing the above definitions (a)–(c) leads to the following insightful repre-
sentation of the Poisson probability as an integral over subsequent jump times: for
all t,s > 0 and n, i = 0,1, . . .

(λ t)n

n!
e−λ t = p0n(t) = P(Nt = n)

= pii+n(t) = P(Nt+s −Ns = n|Ns = i)

= P(Nt+s −Ns = n)

= e−λ tλ n

t∫
0

t∫
0

· · ·
t∫

0

1(t1 < · · · < tn) dtn dtn−1 · · ·dt2 dt1

=
t∫

0

tn∫
0

· · ·
t2∫

0

λ exp
(
−λ t1

)︸ ︷︷ ︸
first jump between 0 and t at t1

×
(
λ exp

[
−λ (t2 − t1)

])︸ ︷︷ ︸
second jump between 0 and t at t2

× ·· ·

×
(
λ exp

[
−λ (tn − tn−1)

])︸ ︷︷ ︸
nth jump between 0 and t at tn

× exp
[
−λ (t − tn)

]︸ ︷︷ ︸
no jump between tn and t

dt1 dt2 · · ·dtn−1 dtn. (2.46)
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An alternative representation comes in terms of the times sk = t − tk between tk,
the point of the kth jump, and t:

(λ t)n

n!
e−λ t =

t∫
0

s1∫
0

· · ·
sn−1∫
0

λ exp
[
−λ (t − s1)

]
×
(
λ exp

[
−λ (s1 − s2)

])
× ·· ·

×
(
λ exp

[
−λ (sn−1 − sn)

])
×exp

(
−λ sn

)
dsn dsn−1 · · ·ds2 ds1. (2.47)

It is also useful to know that the Poisson process PP(λ )
(
N(λ )

t

)
is obtained from

PP(1)
(
N(1)

t

)
by the time change(

N(1)
λ t

)
∼
(
N(λ )

t

)
. (2.48)
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Combining these definitions will allow us to establish a number of properties
of Poisson processes. On the other hand, more general models arise in natural
generalisations of these properties.

As a continuous-time Markov chain, a Poisson process satisfies the Markov and
strong Markov properties. Because of a particular character of a Poisson process,
these properties take a special form:

Theorem 2.3.3 (The Markov property of a Poisson process of rate λ PP(λ )) For
all t > 0, the past (Nτ : 0 ≤ τ < t) is independent of the future (Nt+s −Nt : s ≥ 0).
Furthermore, process (Nt+s−Nt : s≥ 0)∼ (Ns, s≥ 0). In other words, for all t > 0
the process after time t and counted from the level Nt remains a PP(λ ) independent
of its past history (Nτ : 0 ≤ τ < t).

Observe that the RV SN(t) = HN(t)+1 −HN(t) (the holding time covering point t)
is not exponentialy distributed (the so-called inspection paradox, see below).

Theorem 2.3.4 (The strong Markov property, with the stopping time Hk (the time
of the kth jump)) The past (Ns : 0 ≤ s < Hk) is independent of the future (NHk+s −
k : s ≥ 0). Furthermore, the process (NHk+s − k : s ≥ 0) ∼ (Ns, s ≥ 0). In other
words, the process observed from time Hk and counted from the level k is a PP(λ )
independent of its past (Ns : 0 ≤ s < Hk).

We skip the proof of Theorem 2.3.4; notice only that the memoryless property
of the exponential distribution plays an important role here.
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It is instructive to compare graphically the Markov and the strong Markov
properties for the Poisson process PP(λ ) (Nt):

Markov: for all τ > 0
strong Markov:

for all k = 1,2, . . .

(Nt ,0 ≤ t ≤ τ) (past) (Nt ,0 ≤ t ≤ Hk) (past)
is independent
of the future

(Nτ+t −Nτ , t ≥ 0)
∼ PP (λ )

(NHk+t − k, t ≥ 0)
∼ PP (λ )

Markov and Strong Markov Private Property
(From the series ‘Movies that never made it to the Big Screen’.)

Our next result concerns the sum of independent Poisson processes.
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Theorem 2.3.5 Let (N1
t ) and (N2

t ) be two independent PP(λ ) and PP(μ). Then,
for Nt = N1

t +N2
t ,

(Nt) ∼ PP (λ + μ). (2.49)

Proof Both Poisson processes (Ni
t ) feature independent increments. Hence, so does

(Nt). Then consider definition (b): the increment

Nt+h −Nt = ∑
i=1,2

(Ni
t+h −Ni

t )

=

⎧⎨⎩
0 if and only if Ni

t+h −Ni
t = 0, i = 1,2

1 if and only if one Ni
t+h −Ni

t = 0, the other = 1,
≥ 2 otherwise,

with probabilities

0 : (1−λh)(1−μh)+o(h) = 1− (λ + μ)h+o(h),
1 : λh(1−μh)+(1−λh)μh+o(h) = (λ + μ)h+o(h)
≥ 2 : o(h).

.
So, (Nt) ∼ PP(λ + μ).

This result should not be too surprising as the sum of independent Poisson ran-
dom variables forms another Poisson variable. Adding Poisson processes can also
be described as an operation of superposition: we count, in the appropriate order, all
jumps in several processes. An ‘inverse’ operation can be described as ‘thinning’.

Theorem 2.3.6 Let (Nt) ∼ PP(λ ) and 0 < p < 1. Let (Mt) be the process where
each jump in (Nt) is allowed with probability p, otherwise discarded (a thinned or
slowed process). Then

(Mt) ∼ PP(pλ ). (2.50)

Proof Use definition (c): consider the holding times SM
0 ,SM

1 , . . . in the process (Mt).
The MGF equals

E
[
esSM

0
]

= E
[
E
(
esSM

0
∣∣number of discards

)]
= ∑

k≥0

(1− p)k pE
(
esSM

0
∣∣ number of discards = k

)
= ∑

k≥0

(1− p)k p
(
E
[
esSN

0
])k+1

=
p

1− p ∑
k≥0

(
(1− p)

λ
λ − s

)k+1

=
p

1− p

(
(1− p)λ/(λ − s)

1− (1− p)λ/(λ − s)

)
=

pλ
pλ − s

.
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We immediately deduce that SM
0 ∼ Exp(pλ ). Similarly, SM

1 ,SM
2 , · · · ∼ Exp(pλ ).

The independence follows obviously. So, (Mt) ∼ PP(λ p).

Summarising, both operations (adding independent Poisson processes and thin-
ning one Poisson process) still leaves us in the class of Poisson processes; this plays
an important rôle in a number of applications; see below.

Theorem 2.3.7 Let (Nt)∼ PP(λ ). Then for all s, t > 0 and m = 1,2, . . ., conditional
on Nt+s−Ns = m, the jump points J1 = J1(s, t), . . . ,Jm = Jm(s, t) in (s,s+ t) exhibit
the joint PDF

fJ1,...,Jm

(
x1, . . . ,xm

∣∣m jumps in total in (s,s+ t)
)

=
(m!

tm

)
1
(
s < x1 < · · · < xm < t + s

)
. (2.51)

That is, ‘conditional’ RVs(
J1, · · · ,Jm

∣∣ m jumps in interval (s,s+ t)
)

are obtained by throwing m uniform IID points on the interval (s,s+ t) and listing
them in the increasing order.

In particular, conditional on m = 1 (a single jump), the point J1 is distributed
U(s,s+ t).

Proof Use definition (b): for all s < x1 < · · · < xm < (t + s) and small hi

P
(
xi < Ji < xi +hi, 1 ≤ i ≤ m; m points in total in (s,s+ t)

)
= P
(
Nxk −Nxk−1+hk−1 = 0,Nxk+hk −Nxk = 1,1 ≤ k ≤ m

(with x0 +h0 = s), Nt+s −Nxm+hm = 0
)

= e−λ (x1−s)(λh1)e−λ (x2−x1−h1)(λh2)×·· ·× (λhm)e−λ (t+s−xm−hm)

=

(
m

∏
i=1

e−λ (xi−xi−1−hi−1)(λhi)

)
× e−λ (t+s−xm−hm).
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Next,

P
(
m jump points in total in (s,s+ t)

)
= P(Nt+s −Ns = m) =

(
λ mtm

m!

)
e−λ t .

Divide by h1h2 . . .hm, and let hi → 0:

fJ1,...,Jm

(
x1, . . . ,xm

∣∣ m in all
)

=
m!
tm .

And if 1(s < x1 < · · · < xm < s + t) = 0, then fJ1,...,Jm

(
x1, . . . ,xm

∣∣ m in all
)

= 0.

Worked Example 2.3.8 Guillemots and puffins arrive to make their nests at a
cliff. Arrivals of the two species are independent, as are arrivals of each species
in disjoint intervals. It is observed that in any small interval, of length h say, the
probability that no guillemots arrive is 1−λh+o(h); and that one guillemot arrives
with probability λh + o(h). The corresponding probabilities for puffins are 1 −
μh + o(h) and μh + o(h). Determine from first principles the distribution of the
total number of birds arriving in an interval of length t.

What is the probability that the first three birds to arrive are all puffins?
Suppose that by time t, just one guillemot and one puffin have arrived. What is

the probability that both arrived by time s, for s ≤ t.
What is the probability that the puffin arrived first?

Solution By independence,

P
(
no birds in (t, t +h)

)
= (1−λh+o(h))(1−μh+o(h)) = 1− (λ + μ)h+o(h).

Also,

P
(
one bird in (t, t +h))

)
= (1−λh+o(h))(μh+o(h))+(λh+o(h))(1−μh+o(h))

= (λ + μ)h+o(h),

and

P
(
two or more birds in (t, t +h))

)
= o(h).
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Let (Zt) be the superposition of the two processes and pi j(t) stand for Pi
(
Zt = j

)
.

Set ν = λ + μ . Still by independence,

p00(t +h) = p00(t)(1−νh+o(h)), implying that
d
dt

p00(t) = −ν p00(t),

whence p00(t) = e−νt (as p00(0+) = 1). Similarly,

p0i(t +h) = p0i−1(t)(νh+o(h))+ p0i(t)(1−νh+o(h)),

implying that
d
dt

p0i(t) = ν(p0i−1(t)− p0i(t)),

whence p0i(t) = e−νt(νt)i/i!. That is, (Zt) is Poisson, of rate λ + μ .
Next,

P
(
a puffin in (t, t +h)

∣∣ one bird in (t, t +h)
)

=
μ

λ + μ
+o(1).

Thus,

P
(
1st three birds are puffins

)
=
(

μ
λ + μ

)3

,

as the arrival times are irrelevant.
Further,

P
(
both birds arrive before s

∣∣ one bird of each type lands before t
)

=
e−ν(t−s) e−νs(νs)22λ μ/(ν2)

e−νt(νt)22λ μ/(ν2)
=

s2

t2 .

Finally,

P
(
puffin arrives first

∣∣ one bird of each type lands before t
)

=
e−νt(νt)2λ μ/(ν2)
e−νt(νt)22λ μ/(ν2)

=
1
2
.

We now pass to the analysis of the asymptotic properties of Poisson processes.
This will lead us to the important concepts of explosion in a CTMC.

Theorem 2.3.9 In the Poisson process PP(λ ) (Nt):

Nt ↗ ∞ and Hn = inf [t ≥ 0 : Nt = n] ↗ ∞ a.s.

That is,

lim
t→∞

Nt = lim
n→∞

Hn = ∞ with probability 1.
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Proof Begin with the hitting times Hn = S0 + · · ·+ Sn−1; recall, Si ∼ Exp (λ ),
independently. So, Hn+1 > Hn, i.e. Hn monotonically increases with n. Thus, either
Hn ↗ ∞ or Hn remains bounded. Our goal is to check that

P
(
Hn remains bounded

)
= P

(
∑
k≥0

Sk < ∞

)
= 0.

The event
{

∑k≥0 Sk < ∞
}

means ‘explosion’. See Figure 2.28.

A comprehensible argument runs as follow. Set

Texplo = ∑
k≥0

Sk = lim
K→∞

K

∑
k=0

Sk = lim
K→∞

HK+1

and use the MGF E
[
eθTexplo

]
, for θ = −1. Formally, the random variable e−Texplo is

defined as the limit

lim
K→∞

exp

[
−

K

∑
k=0

Sk

]
= lim

K→∞

K

∏
k=0

e−Sk .

The convergence is monotone, and the variable e−Texplo is confined between 0 and 1
and equals 0 whenever Texplo = ∞. Consequently, the expectation E

[
e−Texplo

]
should

be understood as E
[
e−Texplo1(Texplo < ∞)

]
. On the other hand,

E
[
e−Texplo

]
= lim

K→∞
E

(
K

∏
k=0

e−Sk

)
,

by the monotone convergence theorem (one can also invoke the bounded conver-
gence theorem, otherwise known as Lebesgue’s dominated convergence theorem).
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Because of the independence of S0,S1, . . .,

E

(
K

∏
k=0

e−Sk

)
=

K

∏
k=0

E
[
e−Sk

]
=
(

λ
λ +1

)K

,

which tends to 0 as K → ∞. Thus,

E
[
e−Texplo

]
= 0.

We conclude that, with probability 1, the variable e−Texplo equals 0 and hence
Texplo = ∞, meaning that the series ∑k Sk diverges and Nn ↗ ∞:

P

(
∑
k≥0

Sk = ∞

)
= P

(
lim
n→∞

Hn = ∞
)

= 1.

Next, similarly, either Nt ↗ ∞ or Nt remains bounded (actually not changing
after a certain (random) time). In other words, the event {Nt �→ ∞} coincides with
the events

{for some t > 0: Nt+s ≡ Nt for all s > 0} =

{
∑
k

Lk < ∞

}
.

Here Lk = Nk+1 −Nk represents the increment over a unit time interval [k,k + 1);
we know that Lk ∼ Po(1), independently, k = 0,1, . . .. The MGF E

[
eθLk
]

=
exp

(
eθ −1

)
.

Mimicking the above argument, set U = ∑k Lk and use the MGF E
[
e−U
]
.

Arguing as before,

E
[
e−U]= lim

K→∞

[
exp

(
e−1 −1

)]K
= 0,

which implies that, with probability 1, the variable e−U equals 0 and that U = ∞,
meaning that the series ∑k Lk diverges and Nt ↗ ∞.

We conclude this section with a brief discussion of the so-called inspection
paradox for a Poisson process.

Consider the length SN(t) of the holding interval containing the time-point t. It
follows this distribution function:

P(SN(t) ≤ x) = 1−
(
1+λmin[t,x]

)
e−λx, x ≥ 0, (2.52)

with the expected value

E
[
SN(t)

]
=
∫ ∞

0
(1+λ min[t,x])e−λxdx = (2− e−λ t)/λ . (2.53)

The key remark here lies in that SN(t) ∼
(

min[t,S−]+S+
)

where S± ∼ Exp(λ ),
independently.
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In particular, the tail probability forms a cut-off exponential: for all y > 0,

P
(
min[t,S−] > y

)
= 1(0 < y < t)e−λy, (2.54)

which yields

E
(
min[t,S−]

)
=
∫ ∞

0
P
(
min[t,S−] > y

)
dy =

∫ t

0
e−λydy =

1
λ
(
1− e−λ t).

It also gives the convolution formula

FSN(t) (x) = P(SN(t) ≤ x) =
∫ x

0
P(min[t,S−] ≤ x− s)

(
λe−λ s) ds

= λ
∫ (x−t)+

0
e−λ sds+λ

∫ x

(x−t)+

(
1− e−λ (x−s)

)
e−λ sds

= λ
∫ x

0
e−λ sds−λe−λx

∫ x

(x−t)+
ds

= 1− e−λx −λe−λx[x− (x− t)+
]

where (x− t)+ = max[x− t,0]. As x− (x− t)+ = min[x, t], we obtain (2.52).
For the expected value:

E
[
SN(t)

]
= E
[

min[t,S−]
]
+E
[
S+]=

1
λ
(
1− e−λ t)+ 1

λ
=

2− e−λ t

λ
,

which yields (2.53).
It is worth noting that, as t → ∞, the tail probability

P(SN(t) > x) =
(
1+λmin[t,x]

)
e−λx → (1+λx)e−λx, x > 0. (2.55)

The RHS of (2.55) is the tail probability of the Gam(2,λ ) distribution. The
corresponding PDF is

fGam (2,λ )(x) = λ 2xe−λx1(x > 0).



2.3 The Poisson process 229

In other words, the random variable SN(t) converges in distribution to the sum of
two IID Exp(λ ) random varaibles. Clearly, one of them can be identified with S+,
the other with S−. Also observe that for 0 < t < ∞,

e−λx <
(
1+λmin[t,x]

)
e−λx < (1+λx)e−λx,

i.e. the tail probabilities satisfy

P(S+ ≥ x) < P
(
SN(t) > x

)
< P(S+ +S− > x), x > 0.

In this situation, one says that SN(t) is stochastically larger than S+, but stochasti-
cally smaller than (S− + S+). It is a specific example of stochastic order between
random variables where X ≺ Y means that the cumulative distribution functions
FX(t) and FY (t) and tail probabilities FX(t) and FY (t) satisfy

FX(t) = P(X ≤ t) ≥ P(Y ≤ x) = FY (t), t ∈ R,

or

FX(t) = P(X > t) ≤ P(Y > t) = FY (t), t ∈ R.

The inspection paradox has attracted a lot of attention in the literature. Perhaps
the most spectacular attempts to exploit it are related to the search for UFOs and
extra-terrestrial civilisations.

Worked Example 2.3.10 A Poisson process of rate λ is observed by someone
who believes that the first holding time is longer than all subsequent times. How
long on average will it take before the observer is proved wrong?

Solution The observer detects the first holding time J1; to prove that he is wrong,
one must wait for a holding time which is at least of the same length. Given that
J1 = s, the conditional expected time till such an event becomes s+ET (s) where

T (s) = inf {t ≥ s : Nt = Nt−s}.

For ET (s) we have the equation

ET (s) = se−λ s +
s∫

0

da (a+ET (s))λe−λa

obtained by conditioning on the first jump. Hence,

ET (s) = (eλ s −1)/λ .
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Then the mean time until one sees the holding time greater or equal to J1 is given by

∞∫
0

λe−λ s

(
s+

eλ s −1
λ

)
ds = ∞.

Worked Example 2.3.11 (i) In each of the following cases, the state space
I and non-zero transition rates qi j (i �= j) of a continuous-time Markov chain are
given. Determine in which cases the chain is explosive.

(a) I = {1,2,3, . . .}, qi,i+1 = i2, i ∈ I,
(b) I = Z, qi,i+1 = qi,i−1 = 2i, i ∈ I.

(ii) Children arrive at a see-saw according to a Poisson process of rate 1.
Initially there are no children. The first child to arrive waits at the see-saw. When
the second child arrives, they play on the see-saw. When the third child arrives, they
all decide to go and play on the merry-go-round. The cycle then repeats. Show that
the number of children at the see-saw evolves as a Markov chain and determine its
generator matrix. Find the probability that there are no children at the see-saw at
time t.

Hence obtain the identity

∞

∑
n=0

e−t t3n

(3n)!
=

1
3

+
2
3

e−3t/2 cos

(√
3

2
t

)
.

Solution (i) (a) The worst case surfaces when X0 = 1. The nth holding time
Jn ∼ Exp(n2). So, the expected time till explosion is

E

(
∑
n

Jn

)
= ∑

n
EJn = ∑

n

1
n2 < ∞,

and the chain is explosive.
(b) The jump chain is the simple symmetric random walk on Z which is recurrent

and visits 0 infinitely often. Denote the holding times on successive visits to 0 by
T1, T2, . . .. Then Ti ∼ Exp(2), independently, and P(∑i Ti = ∞) = 1. The explosion
time exceeds ∑i Ti, hence the chain is non-explosive.

(ii) Owing to Poisson arrival, the number of children at the see-saw is a three-
state Markov chain with generator (Q-matrix)

Q =

⎛⎝ −1 1 0
0 −1 1
1 0 −1

⎞⎠ .
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To find p00(t), compute

det(κI−Q) = det

⎛⎝ κ +1 −1 0
0 κ +1 −1
−1 0 κ +1

⎞⎠= (κ +1)3 −1 = κ(κ2 +3κ +3).

So, the eigenvalues of Q are 0 and −3/2±
√

3i/2. By a standard diagonalization
argument

p00(t) = A+ e−
3
2 t

(
Bcos

(√
3

2
t

)
+C sin

(√
3

2
t

))
for some constants A,B,C. Observe that

1
3

= p00(∞) = A,1 = p00(0) = A+B,

−1 = q00 =
d
dt

p00(0) = −3
2

B+
√

3
2

C,

implying B = 2/3 and C = 0. We conclude that

p00(t) =
1
3

+
2
3

e−
3
2 t cos

(√
3

2
t

)
.

Alternatively, since the see-saw gets vacant exactly when the total number of
arrivals is a multiple of 3,

p00(t) =
∞

∑
n=0

e−t t3n

(3n)!
.

This yields the identity.

2.4 Inhomogeneous Poisson process

. . . and since a woman must wear chains,
I would have the pleasure of hearing ’em rattle a bit.

G. Farquhar (1678–1707), Irish dramatist

The concept of a Poisson process turns out to be extremely fruitful and leads to
numerous generalisations.

We begin with inhomogeneous Poisson processes (IPP). Here we generalise
definitions (a) (independent Poisson distributed increments) and (b) (infinitesimal
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probabilities) established in Theorem 2.3.2. It is convenient to start with character-
isation (b): here we simply replace the constant rate λ by λ (t), the rate varying in
time.

P
(
no jump in (t, t +h)

)
= 1−λ (t)h+o(h)

P
(
one jump in (t, t +h)

)
= λ (t)h+o(h)

P
(
two or more jumps in (t, t +h)

)
= o(h).

(2.56)

We keep the assumption of the increments over non-overlapping time intervals
being independent.

Characterisation (a) can also be re-phrased in a straightforward manner: for all
s, t > 0,

number of jumps in (s, t + s) ∼ Po (Λ(s, t + s)), (2.57)

independently for non-overlapping intervals. Here

Λ(s, t + s) =
∫ s+t

s
λ (u)du (previouslyλ t 1(s > 0))

= E
(
number of jumps in(s,s+ t)

)
.

We assumed here that Λ(s, t) is finite for all 0 < s < t < ∞.
We call this process an inhomogeneous Poisson process of rate λ (t) (an

IPP(λ (t)) for short). Formally,

Definition 2.4.1 An IPP of rate λ (t), t > 0, is a non-decreasing process (Nt , t ≥ 0)
with values in Z+ and N0 = 0 satisfying the following equivalent properties (a) and
(b).

(a) The process has independent increments N(t j+1)−N(t j)∼ Po(Λ(t j, t j+1))
over disjoint time intervals. That is, for all 0 = t0 < t1 < · · · < tn and 0 =
i0, i1, . . ., in ∈ Z+:
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P
(
Nt1 −Nt0 = i1 − i0, . . . ,N(tn)−N(tn−1) = in − in−1

)
=

⎧⎪⎪⎨⎪⎪⎩
n−1
∏

k=0

(
Λ(tk, tk+1)

)ik+1−ik(
ik+1 − ik

)
!

exp

(
−
∫ tn

t0
λ (u) du

)
, if 0 ≤ i1 ≤ ·· · ≤ in,

0, otherwise.

(2.58)

(b) The process has independent increments over disjoint time intervals, and
obeys the following asymptotics as h → 0+:

P(Nt+h −Nt = 0) = 1−λ (t)h+o(h),
P(Nt+h −Nt = 1) = λ (t)h+o(h),

P(Nt+h −Nt > 1) = o(h).

⎫⎬⎭ (2.59)

As in the case of a homogeneous Poisson process, P stands for the distribution
of an IPP (λ (t)).

The characterisation of an inhomogeneous Poisson process IPP(λ (t)) via part
(c) from Theorem 2.3.2 does not feel so natural as it needs more substantial
changes. For example, inhomogeneous Poisson processes exhibit non-independent
and non-exponential holding times. In fact, for all s > 0 and n ≥ 1, the conditional
probability satisfies

P
(
Sn = ∞

∣∣Hn = S0 + · · ·+Sn−1 = s
)

= e−Λ(s,∞), (2.60)

where

Λ(s,∞) =
∫ ∞

s
λ (u) du.

That is, if Λ(s,∞) < ∞, the process will ‘stagnate’ with the positive probabil-
ity exp

[
−Λ(s,∞)

]
. This means that, with positive probability, only finitely many

jumps will occur on the whole time interval (0,∞). (This does not take place for a
homogeneous Poisson process.)

Next, the conditional PDF

fSn|Hn−1

(
x
∣∣Hn−1 = s, Sn < ∞

)
= λ (s+ x)

[
e−Λ(s,s+x)

1− e−Λ(s,∞)

]
, x > 0; (2.61)
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when Λ(s,∞) = ∞, the probability P(Sn < ∞) = 1 and the denominator 1 −
e−Λ(s,∞) ≡ 1. In this case the inequality Sn < ∞ can be omitted from the condi-
tion. It is easy to see that, assuming the local rate λ (t) to be differentiable in

t, the PDF fSn|Hn−1
does not depend on s (e.g. satisfies

∂
∂ s

fSn|Hn−1
(x|s) = 0) if

and only if λ (u) ≡ λ (that is, the inhomogeneous Poisson process turns out to
be homogeneous).

An inhomogeneous Poisson process provides an example of an inhomogeneous
CTMC where the transition rates, and hence transition probabilities, vary with the
time. More precisely, the transition probability

P(Nt+s = i+ k|Nt = i) = p0k(t, t + s) =
(

(Λ(t, t + s))k

k!

)
exp (−Λ(t, t + s)) .

(2.62)
Conventionally, the arrow diagram of an inhomogeneous Poisson process

IPP(λ (t)) is drawn as in Figure 2.32.
If Λ(s,s + t) = ∞, we see an accumulation of jump points in interval (s,s + t)

(explosion). We will explore these ‘pathologies’ in more detail for other classes of
CTMCs.

Worked Example 2.4.2 The fire alarm in a University building on Martingale
Close is set off at random times:

P (alarm in (u,u+h)) = λ (u)h+o(h).

The rate λ (u) may vary with u. Let Nt be the number of alarms by time t. Show,
by introducing reasonable additional assumptions, that

pi(t) = P(Nt = i)

obeys

·
p0 (t) = −λ (t)p0(t),
·
pi (t) = λ (t)(pi−1(t)− pi(t)), i ≥ 1,
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and check that Nt ∼ Po(Λ(t)), with

Λ(t) =
∫ t

0
λ (u) du.

Solution Assume N0 = 0, λ is continuous, and for all t ≥ 0, i =
0
1
...

and h ↘ 0:

P(Nt+h −Nt = 0 | Nt = i) = 1−λ (t)h+o(h),

P(Nt+h −Nt = 1 | Nt = i) = λ (t)h+o(h),

and

P(Nt+h −Nt > 1 | Nt = i) = o(h).

Then

pi(t +h) = P(Nt+h = i) = P(Nt = Nt+h = i)

+P(Nt = Nt+h −1 = i−1)+o(h)

= pi(t)P(Nt+h −Nt = 0|Nt = i)

+pi−1(t)P(Nt+h −Nt = 1|Nt = i−1)+o(h)

= pi(t)(1−λ (t)h)+ pi−1(t)λ (t)h+o(h)

and
1
h

(pi(t +h)− pi(t)) = −λ (t)(pi(t)− pi−1(t))+o(1).

Letting h → 0 yields

d
dt

pi(t) = −λ (t)(pi(t)− pi−1(t)),

Also, pi(0) = δi0.
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The solution of the system takes the form

pi(t) =
(Λ(t))i

i!
e−Λ(t), by induction.

In fact, (Nt) constitutes an inhomogeneous Poisson process IPP(λ (t)), as the
increments Nt+s − Ns ∼ Po(Λ(s, t)), independently over non-overlapping time
intervals. Here

Λ(s, t) =
∫ t

s
λ (u) du.

Example 2.4.3 It is instructive to understand that an inhomogeneous Poisson
process IPP(λ (t)) can be produced by a time change

t �→ Λ(0, t) =
∫ t

0
λ (u) du (2.63)

from a Poisson process of constant rate 1. This means the following. Assume that
λ (t) is a continuous positive function such that

∫ ∞
0 λ (t) dt = ∞. Let (Nt) be a

Poisson process PP(1). Set

NIH
t = NΛ(0,t), t > 0.

Then
(
NIH

t

)
is an inhomogeneous Poisson process IPP(λ (t)). In particular, a

homogeneous process PP(λ ) results from the time change t �→ λ t.

The simplest way to check this fact is by using the infinitesimal definition (b):
the image of the Poisson process PP(1) under the suggested time change feartures
independent increments over disjoint intervals, and probabilities 1−λ (t)h + o(h)
and λ (t)h+o(h) of observing no jump or a single jump over the increment [t, t +h)
when h ↘ 0.

Example 2.4.4 (Record processes) Inhomogeneous Poisson processes play an
important rôle in a variety of applications (physics, technology, biology), where
the lifetime distribution does depend on the current position on the time axis. We
show here one particular application of inhomogeneous Poisson processes related
to record values, or records. Let X1,X2, . . . be a sequence of independent random
variables with continuous and strictly increasing distribution function F . We say
that Xn is a record value, if

Xn > max{X1, . . . ,Xn−1}.
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Then the sequence of record values forms an inhomogeneous Poisson process;
we want to determine its intensity.

First, consider the distribution function of the RV F(X1): for all 0 < x < 1

FF(X1)(x) = P(F(X1) ≤ x) = P
(
X1 ≤ F−1(x)

)
= F

(
F−1(x)

)
= x, (2.64)

where F−1 stands for the inverse of F (which exists under the assumptions on F).
Then −ln(1−F(X1)) ∼ Exp(1).

Now let V R
n be the subsequent record values:

V R
0 = 0, V R

1 = X1, V R
2 = ∑

k>1

Xk1(X2, . . . ,Xk−1 < X1 < Xk), etc. (2.65)

Consider the record process (Rt)

Rt = number of
{

n ≥ 1 : V R
n ≤ t

}
, t > 0. (2.66)

The pattern of producing a new record arises as follows. Suppose we look at a
sequence of n previous record values x1 < · · · < xn achieved by X1, . . . , Xkn . Then
we either find Xkn+1 > xn or we see a number m ≥ 1 of unsuccessful attempts on
Xkn+1, . . .,Xkn+m and then obtain Xkn+m+1 > xn. Hence,

P
(
a new record > xn + y

∣∣ previous records x1 < · · · < xn
)

= ∑
m≥0

F(xn)m(1−F(xn + y)) =
1−F(xn + y)

1−F(xn)
,

regardless of n and x1, . . .,xn−1.
In the particular case where F(x) = 1− e−x, we obtain, for the nth holding time

SR
n = V R

n −V R
n−1:

P
(
SR

n > y
∣∣V R

n−1 = x, . . . ,V R
1 = x1

)
=

e−(x+y)

e−x = e−y.

That is, SR
n ∼Exp(1), independently of SR

0 , . . .,SR
n−1. Hence, (Rt) is Poisson process

PP(1).
For a general F , the above probability becomes

1−F(x+ y)
1−F(x)

= e−(Λ(x+y)−Λ(x)) = exp

(
−
∫ x+y

x
λ (s) ds

)
.



238 Continuous-time Markov chains

Here

Λ(t) =
∫ t

0
λ (s) ds = −ln[1−F(t)], with λ (t) =

f (t)
1−F(t)

,

where f (t) = F ′(t) is the probability density function of X1. Hence, (Rt) forms
an inhomogeneous Poisson process, with rate λ (t). It is mapped to the Poisson
process of rate 1 by replacing Xi ∼ F with −ln(1−F(Xi)) ∼ Exp(1).

It was already mentioned that important contributions to the theory of Markov
chains (and more general random processes) were made by Joseph Doob
(1910–2004) and William Feller (1906–1970), two famous American mathemati-
cians of the 1930–1960s. Both Doob and Feller were of Eastern European origin
and both were more than ordinary personalities, with a strong sense of humour
and leadership qualities. Below, we present a folklore account of the origin of the
term ‘random variable’ that is repeatedly used in this volume (as well as in Vol.
1). The term acquired popularity in the Western literature in the late 1940s, when
both Doob and Feller were working on their respective monographs, which shaped
the theory of random processes as we know it nowadays. (In the English language
literature, the term ‘random variable’ can be traced to a paper by A. Winter “On
analytic convolutions of Bernoulli distributions”, American Journ. Math., 56
(1934), 659–663, but Cantelli has already used it in Italian in 1916.) According
to an account by Doob, he and Feller had an argument. Feller “asserted that
everyone said ‘random variable’ while Doob asserted that everyone said ‘chance
variable’. The issue was decided by a stochastic procedure: they tossed a coin, and
Feller won.” However, Doob entitled his book Stochastic Processes, not ‘Random
Processes’ (apparently their gentleman’s agreement did not go beyond the concept
of a single variable). It must be said that the Russian (Soviet) school of probability
used, painlessly, the commonly accepted term ‘sluchainaya velichina’ from the
mid-1920s. This term somehow combines both versions of its English counterpart;
it could also be the case that Kolmogorov was a unique leader of the Russian
probability community, and his verdict was final. (However, in our opinion, a
drawback of the Russian terminology is the use of the term ‘dispersion’ for the
variance. This creates a confusion as in physics this term is used widely and has a
different meaning.)

On a more serious tone, Doob is credited by some specialists with introducing
the term ‘Markov chain’, in “Topics in the theory of Markov chains”, Transactions
of the AMS, 52 (1942), 37–64. However, Kolmogorov introduced the term in
German in 1936 and in Russian in 1938, both times in the titles of his papers,
whereas W. Döblin did it in French in 1937. In the opinion of Russian historians of
mathematics, the term ‘Markov chain’ was proposed by J. Hadamard, the famous
French mathematician, in the 1920s, although the word ‘chain’ can be found in
Markov’s original works.
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Markov himself was the first to use the term ‘probability density’ (obviously, in
Russian).

Doob’s name is a modification of ‘Dub’ which in Czech (and other Slavic lan-
guages) means ‘oak’. His father changed it when the family emigrated to the USA,
to avoid jokes and being teased. Amongst probabilists, Doob is widely remem-
bered, inter alia, for his perhaps unique quality of making no mistakes in his papers
or books. For example, in the above-mentioned volume, not a single mistake has
been found, not even a typo, to the amazement of the Russian translators and many
other assiduous readers.

This did not happen with Feller’s book. His highly acclaimed and hugely
influential two-volume monograph An Introduction to Probability Theory and its
Applications (Wiley 1968, 1971) contained a number of errors (most of which were
correctable and many of which were corrected by the author in later editions). In
the 1960s it attracted the attention of writers to, and readers of, a mural newspa-
per at the Department of Mechanics and Mathematics, Moscow State University.
The newspaper was called, in Soviet traditions, ‘For an Advanced Department’; it
appeared periodically and was officially recognised as an opinion channel approved
by the Departmental Chairmanship, the local Communist Party Bureau and the
local Trade Union Committee (of these three bodies, only the first survives at the
present time; the newspaper publication was stopped in 1990). Articles were typed
on a typewriter and sometimes handwritten and glued to a broadsheet of thick white
paper (the original destination of such large sheets of paper was technical drawings,
and they were produced in large quantities for the needs of the Soviet industry). At
periods of political ‘thaws’, newspaper editors might be able to allow authors to
adopt a somewhat flirtatious attitude presented as a ‘socialist satire and humour’
and aiming, officially, to ‘remove existing deficiencies hindering our progress’,
and, unofficially, to amuse (and attract) readers. Indeed, many mathematicians and
other academics rarely missed an opportunity to see a fresh issue of the mural news-
paper; many travelled for hours, from regions around Moscow (we suppose it was
an equivalent of a society website nowadays). Some articles caused considerable
professional or social controversy, and exerted a protracted impact on mathemat-
ical life in Moscow and beyond. One series of (anonymous) articles appeared in
the paper a dozen or so times; its running title was clearly mocking the Cold War
rhetoric dominating the Soviet press of the time. In a loose translation from Rus-
sian, the title read ‘A fresh error of the American author’, and it always started with
the sentence: “Our readers discovered yet another error by the American author
Feller.” In the Russian volume of memoirs Kolmogorov in Recollections of his
Students (A.N. Shiryaiev, N.G. Khimchenko, Eds). Moscow: MCCME, 2006, this
episode is described slightly differently, although the two accounts presented also
differ from each other.
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2.5 Birth-and-death process. Explosion

And such a yell was there,
Of sudden and portentous birth,
As if men fought upon the earth,

And fiends in upper air.
W. Scott (1771–1832), Scottish writer and poet

Another useful generalisation of Poisson processes is when we take independent
holding times

Sk ∼ Exp(λk), (2.67)

with λk ≥ 0 depending on state k. (If λk = 0, the state becomes absorbing,
with Sk = ∞. The process stops developing further after entering such a state.)
This generalisation yields a birth process of rates (λk) (BP(λk) for short). See
Figure 2.34.

As a CTMC, a birth process BP(λi) operates over the state space Z+ and with
the Q-matrix

Q =

⎛⎜⎜⎜⎜⎜⎝
−λ0 λ0 0 0 . . .

0 −λ1 λ1 0
. . .

0 0 −λ2 λ2
. . .

. . .
. . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ . (2.68)

We can hope that, as in the case of a Poisson process PP(λ ), the matrix exponent

P(t) = etQ = ∑
k≥0

(tQ)k

k!

will give the transition probabilities of this process. However, it proves convenient
to start with a definition of the last two characterisations, which extends that of the
corresponding features of a Poisson process PP(λ ).

. . . . ..  .  .
0 1 2

λ λ λ0 1 k

k

Fig. 2.34
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Definition 2.5.1 Let λ0, λ1, . . . be a collection of non-negative numbers. A birth
process of rates λ0,λ1, . . ., starting from state i0 ∈ Z+ is a non-decreasing pro-
cess (NB

t , t ≥ 0) with NB
0 = i0 and with values i ∈ Z+, i ≥ i0, characterised in the

following two ways:

(b) as a process such that, for all t > 0 and i ∈ Z+, conditional on NB
t = k, the

increment (NB
t+h −NB

t ) over a future time interval [t, t +h) is conditionally
independent of the past (NB

s ,0≤ s < t), and with the following infinitesimal
probabilities:

P
(
NB

t+h = k
∣∣ NB

t = k
)

= 1−λkh+o(h),
P
(
NB

t+h = k +1
∣∣ NB

t = k
)

= λkh+o(h),
P
(
NB

t+h > k +1
∣∣ NB

t = k
)

= o(h),

⎫⎪⎬⎪⎭ (2.69)

where the remainders may depend on k but not on t;

(c) as a process that

(i) spends a random time ∼ Exp(λk) in a state k ≥ i0 with rate λk > 0,
independently of the previous history, and then jumps to k +1, or

(ii) stays forever in this state if λk = 0, independently of the previous
history.

Clearly, these characterisations follow properties (b) and (c) of a Poisson process
PP(λ ). In future, we will assume that all λk > 0 (no absorbing states).

In applications, a birth process BP(λk) often represents the size of a grow-
ing population (e.g. of living organisms or physical particles), growing at a rate
depending on the state the process is in at a given point t in time.

N
0

0

S k ~ Exp (

Nt

λk)

Fig. 2.35
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We now turn to the first characterisation (a) of a birth process. It is natural
to assume that the matrix Q would lead to an upper-triangular matrix exponent
P(t) = etQ:

P(t) = etQ =

⎛⎜⎜⎜⎝
p00(t) p01(t) p02(t) · · ·

0 p11(t) p12(t) · · ·
0 0 p22(t) · · ·

0 . . .

⎞⎟⎟⎟⎠ , (2.70)

with P(0) = I. To find the matrix P(t), we can again use the forward and backward
equations

d
dt

P = PQ = QP, with P(0) = I

(the argument t ≥ 0 will often be omitted). The equations for a given entry are

d
dt

pi j = −λ j pi j +λ j−1 pi j−1 (forward)

= −λi pi j +λi pi+1 j (backward),
pi j(0) = δi j, i ≤ j. (2.71)

The assumption of upper triangularity of P(t) allows us to solve these equations.
For example, consider the forward equations. Here, on the main diagonal we find

d
dt

pii = −λi pii, pii(0) = 1 ⇒ pii(t) = e−λit , t ≥ 0.

Then, one step above the main diagonal:

d
dt

pii+1 = −λi+1 pii+1 +λi pii, pii+1(0) = 0

⇒ pii+1 =
λi

λi+1 −λi

(
e−λit − e−λi+1t

)
=

λi

λi+1 −λi
e−λit

(
1− e−(λi+1−λi)t

)
, λi �= λi+1, t ≥ 0.

We see that pii+1(t) > 0 and becomes λ te−λ t when λi,λi+1 approach λ .
Next, two steps above the main diagonal:

d
dt

pii+2 = −λi+2 pii+2 +λi+1 pii+1, pii+2(0) = 0

⇒ pii+2 =
λi

λi+1 −λi

[
e−λit

λi+2 −λi
− e−λi+1t

λi+2 −λi+1
+ e−λi+2t

×
(

−1
λi+2 −λi

+
1

λi+2 −λi+1

)]
,

λi �= λi+1 �= λi+2 �= λi, t ≥ 0.
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Again: pii+2(t) > 0 and tends to
(λ t)2

2
e−λ t as λi,λi+1,λi+2 approach λ , and so on.

An elegant way of solving both forward and backward equations is to use
characterisation (c) from Definition 2.5.1 above. That is, we write

pii(t) = e−λit (no jump up to time t), (2.72)

pii+1(t) =
t∫

0

λi e−λit1 e−λi+1(t−t1)dt1

=
t∫

0

λi e−λi(t−s1) e−λi+1s1ds1 (a single jump up to time t), (2.73)

pii+2(t) =
t∫

0

t∫
0

λi e−λit1λi+1 e−λi+1(t2−t1) e−λi+2(t−t2)1(t1 < t2) dt2 dt1

=
t∫

0

t2∫
0

λie
−λit1λi+1 e−λi+1(t2−t1) e−λi+2(t−t2)dt1 dt2

=
t∫

0

s1∫
0

λie
−λi(t−s1)λi+1 e−λi+1(s1−s2) e−λi+2s2ds2 ds1

(precisely two jumps up to time t), (2.74)

and so on. The solution for pii+n becomes

pii+n(t)

=
t∫

0

· · ·
t∫

0

λi e−λit1 λi+1 e−λi+1(t2−t1) · · ·λi+n−1 e−λi+n−1(tn−tn−1)

× e−λi+n(t−tn)1(t1 < · · · < tn)dtn · · ·dt1 (2.75)

=
t∫

0

· · ·
t2∫

0

λi e−λit1 · · ·λi+n−1 e−λi+n−1(tn−tn−1) e−λi+n(t−tn)dt1 · · ·dtn

=
t∫

0

· · ·
sn−1∫
0

λi e−λi(t−s1) · · ·λi+n−1 e−λi+n−1(sn−1−sn) e−λi+nsndsn · · ·ds1,

(precisely n jumps up to time t), (2.76)

and so on. Here, the version of the integrand in the variables 0 < t1 < · · · < tn < t
(times of jumps) is suitable for checking the forward equations and the version in



244 Continuous-time Markov chains

i

. ..
t

1
t

2
t n 1_0

i 1+
. . .

i + _n 1 i+ n

tt n

n1s s

Fig. 2.36

variables sl = t − tl (times from the jumps till t, the transition time) for checking
the backward equations. Observe that formulas (2.72)–(2.75) do not require that
λi = λi+1. But, when all the λis coincide, we obtain (2.46)–(2.47). The development
of the sample path of a birth process BP(λk) is outlined in Figure 2.36.

Worked Example 2.5.2 (Continued from Worked Example 2.4.2) A different
alarm is set in a University building on Quantum Road: for all t ≥ 0, i = 0,1, . . .,
and h ↘ 0

P(Mt+h −Mt = 0|Mt = i) = 1−λih+o(h),

P(Mt+h −Mt = 1|Mt = i) = λih+o(h),

P(Mt+h −Mt > 1|Mt = i) = o(h).

Find the equations for Pi(t) = P(Mt = i). Check that for λi = α i+β ,

m(t) = EMt =
β
α

(eαt −1)

and find VarMt .

Solution With M0 = 0, (Mt) represents a birth process BP(λi) (with birth rates λi).
The equations are

d
dt

p0 = −λ0 p0

d
dt

pi = λi−1 pi−1 −λi pi, i ≥ 1.

For λi = α i+β the process is non-explosive. Consider the probability generating
function

G(s, t) = ∑
i≥0

si pi(t),



2.5 Birth-and-death process. Explosion 245

with

G(1, t) = 1 (non-explosive), and
∂
∂ s

G(s, t) = ∑
i≥1

isi−1 pi(t).

Then
∂
∂ t

G(s, t) = (s−1)βG(s, t)+ s(s−1)α
∂
∂ s

G(s, t).

and for m(t) =
∂
∂ s

G(s, t)
∣∣∣∣
s=1

,

dm
dt

= αm(t)+β , m(0) = 0.

This implies m(t) = β
α (eαt −1).

Finally, consider

v(t) = E[Mt(Mt −1)] =
∂ 2

∂ s2 G(s, t)
∣∣∣∣
s=1

,

with

VarMt = v(t)+m(t)−m(t)2.

Then

v̇(t) = 2αv(t)+(2α +2β )m(t),v(0) = 0.

This implies

v(t) =
(α +β )β

α2

(
eαt −1

)2

and

VarMt =
β
α

eαt(eαt −1).

A birth process with ‘linear’ rates λk = αk+β is called the Yule–Furry process;
it finds several practical applications.

Million Dollar β
(From the series ‘Movies that never made it to the Big Screen’.)

Next, we briefly discuss the possibility of explosions, that is, infinitely many
jumps (i.e. indefinitely growing paths) in a finite time interval; see Figure 2.28.
We have seen that when λk ≡ λ > 0 (i.e. for a Poisson process (NB

t )), then
P
(
∑k≥0 Sk < ∞

)
, which is the probability of an explosion in a finite time, equals 0.

Now, a more general result.
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Theorem 2.5.3 For the birth process BP(λk), with rates λk > 0, the following
dichotomy holds:

(i) if ∑k

(
1
λk

)
= ∞, no explosion: P(∑k Sk < ∞) = 0; (2.77)

(ii) if ∑k

(
1
λk

)
< ∞, explosion: P(∑k Sk < ∞) = 1. (2.78)

Proof (i) Following the proof of Theorem 2.3.9, set Texplo = ∑k Sk and consider the
MGF E(e−Texplo). Using again monotone convergence of the partial sums ∑K

k=0 Sk ↗
Texplo and independence of the holding times S0,S1, . . ., write:

E(e−Texplo) = lim
K→∞

K

∏
k=0

Ee−Sk = lim
K→∞

K

∏
k=0

λk

λk +1
= lim

K→∞

[
K

∏
k=0

(1+1/λk)

]−1

.

Observe that the last product ∏K
k=0(1 + 1/λk) increases with K. By using an

elementary bound

K

∏
k=0

(
1+

1
λk

)
= 1+

K

∑
k=0

1
λk

+
K

∑
k1,k2=0

1
λk1

1
λk2

+ · · · ≥
K

∑
k=0

1
λk

,

we conclude that

lim
K→∞

[
K

∏
k=0

(1+1/λk)

]−1

≤
(

K

∑
k

1/λk

)−1

= 0,

that is,

E(e−Texplo) = 0.

Again as in the proof of Theorem 2.3.9, we deduce that e−Texplo = 0 and Texplo = ∞
with probability 1, meaning (2.77).

(ii) The random variable Texplo takes values in [0,∞) and, possibly the value +∞.
However, the expectation

E(Texplo) = lim
K→∞

E

K

∑
k=0

Sk = ∑
k

λ−1
k < ∞,

by the monotone convergence theorem. We conclude that value +∞ is taken with
probability 0, that is, (2.78) holds.

Remark 2.5.4 Theorem 2.5.3 considers explosions from the initial state 0. How-
ever, the conclusion holds if we start from an arbitrary state i, as it simply means
that the event {Texplo < ∞} coincides with

{
∑k≥i Sk

}
.

Therefore, the result remains true for any initial distribution.
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Definition 2.5.5 In case (i) in Theorem 2.5.3 (i.e. under condition (2.77)), we call
the birth process BP(λk) (or the matrix Q from (2.68)) non-explosive. In case (ii)
(i.e. under condition (2.78)), we call it explosive.

For a non-explosive birth process BP(λk), where ∑k λ−1
k = ∞: the for-

ward/backward equations (2.71) possess a unique solution P(t) = (pi j(t)), for all
t ≥ 0, given by (2.72)–(2.75), and such that

0 < pi j(t) < 1, i ≤ j, and ∑
j≥i

pi j(t) = 1, i = 0,1, · · · , for all t ≥ 0. (2.79)

In this case the matrix P(t) = (pi j(t)) forms a ‘genuine’ transition matrix for all
t ≥ 0. (Some authors use the term an ‘honest’ transition matrix). In addition, the
family of matrices P(t) exhibits the semigroup property P(t +s) = P(t)P(s), for all
t,s ≥ 0. We see a ‘nice’ situation, where the process is determined by its Q-matrix
(and the initial distribution).

[This is] what I understand by ‘philosopher’: a terrible
explosive in the presence of which everything is in danger.

F. Nietzsche (1844–1900), German philosopher

But for an explosive birth process BP(λk), the situation turns more complicated.
The solution P(t) = (pi j(t)) to problems (2.71) specified in (2.72)–(2.75) does not
yield ∑ j≥i pi j(t) = 1; on the contrary, ∑ j≥i pi j(t) < 1 for all t > 0 and i = 0,1, . . ..
Still, this solution remains rather special: it is minimal, in the sense that for any

family of matrices R(t) = (ri j(t)) satisfying
d
dt

R = RQ = QR, with R(0) = I, the

entries ri j(t) obey ri j(t) ≥ pi j(t), for all t > 0 and i, j = 0,1, . . .. The minimality
property follows from our assumption that the matrix P(t) is upper-triangular. The
minimal solution still offers some nice properties: for instance, it can be written as

P(t) = etQ = ∑
k≥0

(tQ)k

k!
and P(t) = lim

n→∞
etQ(n), (2.80)

with Q(n) an n×n modification (a ‘truncation’) of the matrix Q applied in (2.69).
It also presents the semigroup property P(t + s) = P(t)P(s), for all t,s ≥ 0.

In the non-explosive case, the minimal solution is formed by stochastic matrices
P(t), where (2.79) hold true, and there is no place for other solutions. However, in
an explosive case, when the minimal solution does not yield stochastic matrices,
it opens a Pandora’s box of surprises, perhaps interesting, but rather unsettling. In
this volume, we will not discuss this issue in detail: see, for example, the following
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papers: Karlin, S. & McGregor, J. “The classification of birth and death processes.”
Trans. Amer. Math. Soc., 86 (1957), 366–400; Ledermann, W. & Reuter, G.E.H.
“Spectral theory for the differential equations of simple birth and death processes.”
Philos. Trans. Roy. Soc. London. Ser. A. 246 (1954), 321–369; Reuter, G.E.H. &
Ledermann, W. “On the differential equations for the transition probabilities of
Markov processes with enumerably many states.” Proc. Cambridge Philos. Soc. 49
(1953), 247–262.

For a non-explosive birth-and-death process we observe Pi(Texplo = +∞) = 1,
for all states i ∈ Z+.

Anyone can stop a man’s life, but no one
his death: a thousand doors open to it.

Seneca (4B.C.–65A.D.), Roman philosopher

The next class of processes to mention are called continuous-time random
walks (CTRWs) on Z

d . Consider first the one-dimensional case, where d = 1. The
corresponding diagram is given in Figure 2.37.

If λi = μi, the RW is called symmetric; if λi ≡ λ and μi ≡ μ , the RW is called
homogeneous (more precisely, space-homogeneous).

The Q-matrix here becomes double-infinite in both directions

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . . . . .

. . . μi−1 −(λi−1 + μi−1) λi−1 0 . . .
. . .

. . . 0 μi −(λi + μi) λi 0
. . .

. . . . . . 0 μi+1 −(λi+1 + μi+1) λi+1
. . .

. . . . . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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d=2 : d = 3 :

. i_= ( i1 , i2 )

i_= (
1

i , i2 i,
3
)

Fig. 2.38

In the two-dimensional case (d = 2), the states become sites i = (i1, i2), i1, i2 ∈Z:
see Figure 2.38. Here we mainly concentrate on the homogeneous and symmetric
case, where

qi := −qii ≡ q > 0, i = (i1, i2) ∈ Z
2,

and

qii′ =
q
4

if the site i′ sits next to i, i.e. i′ = (i1 ±1, i2) or (i1, i2 ±1).

For a homogeneous and symmetric continuous time random walk in d = 3 there
exist six possibilities:

qii′ =
q
6

for i′ next to i = (i1, i2, i3).

The general case of Z
d , d ≥ 1, should be considered similarly. Here, the entries

of the Q-matrix are labelled by sites i ∈ Z
d :

qi = −qii = 1, qi j =
(

1
2d

)
1
(
|| i− j || = 1

)
for i �= j, i, j ∈ Z

d .

Again, in a more general model the exit rate qi may depend on i ∈ Z
d .
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2.6 Continuous-time Markov chains with countably many states

Countably Many Dalmatians
(From the series ‘Movies that never made it to the Big Screen’.)

We now find ourselves in a position to introduce general continuous-time Markov
chains with (at most) countably many states (in different terminology, continuous-
time denumerable Markov chains). This will include CTMCs with finitely many
states as a special case. We will continue our hands-on approach and provide only
proofs which we think are appropriate in terms of level.

The state space remains denoted by I; we deal with Q-matrices Q = (qi j) whose
entries qi j are labelled by pairs of states i, j ∈ I. The conditions stay the same (Q
contains non-negative off-diagonal terms and is conservative):

the off-diagonal entry qi j ≥ 0 for all pair i �= j ∈ I, (2.81)

and

−∞ < qii ≤ 0, qi := −qii = ∑
j∈I: j �=i

qi j for all i ∈ I. (2.82)

Recall, for all j �= i, the entry qi j represents the transition rate from i to j, and for
all i ∈ I, the value qi gives a total exit rate from state i.

In addition, we will assume that convergence of the series ∑ j: j �=i qi j happens
uniformly (although, admittedly, the general statements below do not require such
a restriction). The uniform convergence means that states i ∈ I can be enumerated
as, say j0, j1, j2, . . ., in such a way that the tail of the series, formed by summands
q jl jk with large labels k, gets uniformly small:

lim
n→∞

sup

[
∑

k: | jk− jl |>n

q jl jk : jl ∈ I

]
= 0. (2.83)

Most of the time, the particular order of summation in (2.83) will not be necessary,
and the series ∑ j∈I may be understood in any order of summation.

Our strategy basically has not changed: we treat Q as a generator, and want
to construct a semigroup (P(t), t ≥ 0) of transition matrices P(t) = (pi j(t)), with
P(0) = I, associated with Q, and study properties of the corresponding continuous
time Markov chain. When possible, we used the matrix exponent; and the helpful
tool of a pair of forward/backward equations

d
dt

P = PQ = QP, with P(0) = I, (2.84)
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or, for individual entries,

d
dt

pi j = ∑
k

pikqk j (forward),

= ∑
k

qik pk j (backward),
pi j(0) = δi j.

We saw that for finite matrices, (2.84) exhibits a unique solution,

P(t) = etQ = ∑
k≥0

(tQ)k

k!
, t ≥ 0, (2.85)

and it was composed of stochastic matrices. We were thinking of possible general-
isations of this fact to an infinite case. In the countable case, more precisely, in the
case of a birth process BP(λk), we noted in Section 2.5 that the solution can give a
sub-stochastic matrix, which leads to explosion; a way out was to extend the state
space, by adding an absorbing state ∞. We then discussed the more general model
of a birth-and-death process BDP(λk,μk).

In this section, we continue with general theorems (Theorems 2.6.1–2.6.11)
given without proof (see, e.g., Bharucha-Reid, 1960, Kemeny, Snell and Knapp,
1966 and original papers quoted therein). In these statements, Q is assumed to be
a Q-matrix satisfying (2.81)–(2.83).

Theorem 2.6.1 The forward and backward equations (2.84) always give a solution
P(t), t ≥ 0, satisfying the semigroup property

P(t + s) = P(t)P(s), t,s ≥ 0. (2.86)

In general, matrices P(t) = (pi j(t)) will only be sub-stochastic: for all t > 0,

pi j(t) ≥ 0, for all i, j ∈ I, and ∑
j∈I

pi j(t) ≤ 1, for all i ∈ I. (2.87)

Such a solution is in general not unique, and the forward and backward equations
will generally differ in their sets of solutions.

However, there always exists a unique minimal sub-stochastic solution Pmin(t) =(
pmin

i j (t)
)

to (2.84), satisfying (2.87). Minimality means that for all non-negative

solutions R(t) = (ri j(t)), t ≥ 0,

pmin
i j (t) ≤ ri j(t). (2.88)

The minimal sub-stochastic solution is given by

Pmin(t) = lim
n→∞

etQ(n) := etQ,
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where the Q-matrix Q(n) =
(
q jl jk(n)

)
is an n×n truncation of Q, viz.

q jl jk(n) = q jl jk , for l,k = 0, . . . ,n−1, with jl �= jk;

q jl jl (n) = − ∑
0≤k<n: jk �= jl

q jl jk for l,k = 0, . . . ,n−1.

Here we use the same enumeration of states i ∈ I as in (2.83).
Finally, the minimal solution posseses the semigroup property (2.86).

Thus if we face a case where the minimal solution is formed by stochastic matri-

ces Pmin(t) =
(

pmin
i j (t)

)
, t > 0, with ∑ j∈I pmin

i j (t) = 1 for all t > 0 and i ∈ I, then

the issue of sub-stochasticity goes, as Pmin(t) will be the only solution to (2.84).
(More precisely, any sub-stochastic solution P(t) equals Pmin(t) and hence will be
stochastic.)

A useful specification of the minimal solution turns out to be that pmin
i j (t) can be

written as a series over the number of jumps performed by the chain in the time
interval (0, t).

Theorem 2.6.2 For the minimal solution Pmin(t) =
(

pmin
i j (t)

)
, the following

representation holds true: for all t > 0 and i, j ∈ I,

pmin
i j (t) = e−tqi1(i = j) (no jump)

+ 1(i �= j)1(qi > 0)
t∫

0

e−t1qi qi j e−(t−t1)q j dt1 (one jump)

+ 1(qi > 0) ∑
k∈I

1(k �= i, j)1(qk > 0)
t∫

0

t∫
0

e−t1qi

× qik e−(t2−t1)qk qk j e−(t−t2)q j 1(t1 < t2)dt2 dt1 (two jumps)

+ · · · .
(2.89)

A general term in the RHS of (2.89) equates to a sum over sequences of jumps
through states i = i0, i1, . . . , in = j, where il �= il−1, and takes the form

∑
i=i0,...,in= j

n−1

∏
l=0

1(ql > 0, il+1 �= il)
t∫

0

· · ·
t∫

tn−1

exp [−(t − tn)qin ]

× ∏
k:n→1

(
qik−1ik exp

[
−qik−1(tk − tk−1)

])
dt1 · · ·dtn

= ∑
i=i0,...,in= j

n−1

∏
l=0

1(ql > 0, il+1 �= il)
t∫

0

· · ·
sn−1∫
0

exp [−(t − s1)qi0 ]

× ∏
k: 1→n

(
qik−1ik exp

[
− (sk − sk+1)qik

])
dsn · · ·ds1

(2.90)
with t0 = 0 and sn+1 = 0, and after changing variables with t1 = t − s1, t2 = t − s2,

etc.
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As before, (2.89) and (2.90) yield an important ‘step-by-step description’ of the
entries pmin

i j (t), which helps represent the ‘contribution’ to a given entry coming
from various trajectories of the chain; see Figure 2.39. This representation will
form the basis for our definitions and constructions. It is worth remarking that
(2.89) and (2.90) provide generalisations of (2.46)–(2.47); this emphasizes the role
played by the Poisson process in various constructions below.

We will bear in mind two situations. A ‘nice’ situation like the one mentioned
before, where the minimal solution Pmin(t) =

(
pmin

i j (t)
)

, t > 0, described in (2.87)

is formed by stochastic matrices. Then the entry pmin
i j (t) can be taken as the tran-

sition probability from i to j in time t. We call this case ‘non-explosive’, as the
CTMC (Xt) defined by transition matrices Pmin(t) ‘lives’ forever in the original
state space I. A complication arises when the matrices Pmin(t) stop being stochas-
tic. Then we add an absorbing state at ∞ and consider a ‘minimal’ CTMC with
state space I = I ∪{∞}. This will equip us with a ‘first’ definition of a CTMC in
terms of transition probabilities. See Definition 2.6.3 below.

We see that the minimal solution Pmin(t) leads to a minimal CTMC with gener-
ator matrix Q and an added absorbing state at ∞; in the ‘nice’ situation where the
minimal solution was stochastic, the added state was not needed, and we considered
a CTMC on the original state space I.

It is worth mentioning that if the situation ceases to be ‘nice’, i.e. with a non-
stochastic minimal solution, then a sub-stochastic solution to one or both equations
in (2.84) is not unique. Other solutions P(t) may be stochastic. However, in general,
another complication arises: the forward and the backward equations may yield
different sets of solutions.

So, the variety of cases turns out to be quite wide. There exist general conditions
on Q guaranteeing that the minimal solution Pmin(t) to (2.84) is formed by stochas-
tic matrices. These conditions prove rather complicated (and sometimes lack a clear
‘physical sense’); one such condition is quoted in Question 2.10.17 at the end of
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this chapter. For the rest of this section, we omit the superscript ‘min’ and denote
the minimal solution simply by P(t) = (pi j(t)); it satisfies the semigroup property
(2.86) thanks to Theorem 2.6.1. Definition 2.6.3 specifies what we understand by
a CTMC on a general finite or countable state space I, with a generator Q and an
initial probability distribution λ .

Definition 2.6.3 A CTMC with initial distribution λ and generator Q (briefly, a
(λ ,Q)-CTMC), on a finite or countable state space I, is a family (Xt , t ≥ 0) of RVs
with values in I = I ∪{∞} such that for all i ∈ I, P(X0 = i) = λi, and the following
property holds.

For all n = 1,2, . . ., time points 0 = t0 < t1 < · · ·< tn and states i0, . . . , in ∈ I,

P
(
X0 = i0,Xt1 = ii, . . . ,Xtn = in

)
= λi0

n

∏
k=1

pik−1ik(tk − tk−1). (2.91)

Moreover, for all extended sequences of time points tn < tn+1 < · · · < tn+l ,

P
(
X0 = i0,Xt1 = i1, . . . ,Xtn = in,Xtn+1 = · · · = Xtn+l = ∞

)
= λi0

n

∏
k=1

pik−1ik(tk − tk−1)

(
1−∑

j∈I

pin j(tn+1 − tn)

)
. (2.92)

Here pi j(t) is defined in (2.89)–(2.90). Remember that matrices P(t) = (pi j(t)),
t ≥ 0, give the minimal sub-stochastic solution to (2.84) described in Theorems
2.6.1 and 2.6.2.

As in the discrete-time case, we deduce from Definition 2.6.3 that pi j(t) gives in
fact the transition probability in (Xt) from state i to j in time t, i.e. the conditional
probability P(Xs+t = j|Xs = i). Furthermore, the difference 1−∑ j pi j(t) provides
the transition probability from i to ∞ in time t; i.e., the conditional probability
P(Xs+t = ∞|Xs = i); this represents the probability of explosion in time t from state
i. Finally, by definition, P(Xs+t = ∞ | Xs = ∞) ≡ 1.

By analogy with the case of an explosive birth or birth-and-death process, one
would suggest that Definition 2.6.3 specifies a minimal chain with given λ and Q.

As in similar definitions above, we have defined what is often called a homo-
geneous Markov chain, where transition probabilities pi j(t) depend only on the
lapsed time, not on the position of the pair s, t + s on the time half-axis. A
more general class includes inhomogeneous chains, one such example being an
inhomogeneous Poisson process IPP(λ (t)) as discussed in Section 2.4.

In what follows the sums ∑i and ∑ j are understood as ∑i∈I and ∑ j∈I , without
reference to a particular order of summation. Also, expressions like ‘for all states
i’, or briefly, ‘for all i’ mean for all states i ∈ I.
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Definition 2.6.4 We call a (λ ,Q) CTMC (Xt) (or generator matrix Q) non-
explosive if for all i and t ≥ 0

∑
j

pi j(t) = 1, (2.93)

i.e. matrices P(t) are stochastic. Otherwise (Xt) is called explosive.

For non-explosive chains all probabilities (2.92) are zeros. That is, we do not
need the state ∞: the chain started from any state i remains in I for all times. Thus
we can use

Definition 2.6.5 Assume that Q is non-explosive, in the sense of Definition 2.6.3.
We define the following properties.

(b) For all states i �= j, time point t ≥ 0, and h ↘ 0+, the conditional
probabilities have the following asymptotics:

P
(
Xt+s has no jump for 0 < s < h∣∣ Xt = i, plus a past history prior time t

)
= 1−qih+o(h) = 1+qiih+o(h),

⎫⎬⎭ (2.94)

which specifies qi = −qii as the rate of leaving state i, and

P
(
Xt+s has a single jump i → j for 0 < s < h∣∣ Xt = i, plus a past history prior time t

)
= qi jh+o(h),

}
(2.95)

which specifies qi j as the rate of leaving state i for j. Essentially, (2.94) and
(2.95) mean that

P
(
Xt+s = j

∣∣ Xt = i, plus a past history prior time t
)

=

{
1−qih+o(h), j = i,

qi jh+o(h), j �= i,

regardless of the past history.

(c) For all i with qi > 0, conditional on X0 = i, process (Xt) spends at state i a
random time ∼ Exp(qi) then jumps to state j �= i with probability

p̂i j =
qi j

qi
. (2.96)

Then if J1 is the time of jump, process XJ1+t behaves as (Xt) conditional on
X0 = j, and so on. If qi = 0, then, conditional on X0 = i, process (Xt) stays
at state i forever.
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In (b), the euphemism ‘past history’ means any event generated by random vari-
ables Xs when s varies within a specified range of values: 0 ≤ s < t in property (b),
and 0 ≤ s < Hi

k in property (c), where Hi
k is the kth hitting time of state i. There is

also a subtlety as to whether the remainder terms o(h) in (b) depend on i, j and t; we
will not go into further detail here. However, under appropriate specific conditions
on terms o(h) in property (b) one can prove:

Theorem 2.6.6 For a non-explosive chain, the above characterisations from
Definitions 2.6.3 and 2.6.5 are equivalent.

Finally, it is convenient to characterise the case of explosion in terms of jump
times J0,J1,J2, · · ·. These are defined by

J0 = 0, J1 = inf [t > 0 : Xt �= X0], J2 = inf [t > J1 : Xt �= XJ1 ], . . . . (2.97)

Definition 2.6.7 We say that (λ ,Q) CTMC (Xt) is non-explosive, if, for all states
i, conditional on X0 = i, with probability 1, the jump times Jn increase to +∞:

Pi

(
lim
n→∞

Jn = ∞
)

= 1.

Otherwise, when Pi

(
lim
n→∞

Jn = ∞
)

< 1, i.e., Pi

(
lim
n→∞

Jn < ∞
)

> 0, the state i is

called explosive (in (Xt)). The types of sample paths of a CTMC are outlined in
Figure 2.40.

Theorem 2.6.8 The definitions of explosiveness in Definitions 2.6.4 and 2.6.7 are
equivalent.

In sum, we could envisage three types of behaviour of a trajectory of a CTMC:
regular, absorbing, and explosive. As was said above, the latter is also converted
into absorbing, by adding state ∞.
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As in the discrete-time case, single-time probabilities P(Xt = i) form a vector
obtained from λ = (λi) by the action of a transition matrix P(t): for all t ≥ 0 and
states j

P(Xt = j) =
(
λP(t)

)
j = ∑

i

λi pi j(t). (2.98)

In future, we set

P̂ = (p̂i j), where p̂i j =

{
qi j/qi, j �= i,

0, j = i.
(2.99)

Assuming that qi > 0 for all i, we obtain a correctly defined stochastic matrix P̂
with diagonal entries zero. The matrix P̂ defines the jump chain for CTMC (Xt).
More precisely, it is the (λ , P̂) DTMC (Yn) (some authors call it an embedded jump
chain, as it follows the jumps in the original CTMC (Xt)). The term ‘embedded’ is
significant here: chain (Yn) is coupled to (Xt), i.e. its trajectory is constructed from
that of (Xt).

Physically speaking, (Yn) is an observation of jumps in (Xt). Formally,

Yn = XJn , where 0 = J0 < J1 < · · · are jump times in (Xt). (2.100)

Observe that the sample trajectory of the jump chain (Yn) can always be continued
indefinitely in the discrete time n = 0,1, . . .; it is insensitive to the question of
explosiveness.

. . .
0

continuous
time

discrete
time

X t

0

.
.

. .. .
.. . .

Yn

(jumps)

Fig. 2.41
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We would like to rewrite (2.89) in terms of jump probabilities p̂i j:

pi j(t) = e−tqi1(i = j)+1(i �= j)
t∫

0

qie
−t1qi p̂i j e−(t−t1)q j dt1

+∑
k

1(qi > 0,k �= i, j)
t∫

0

t−1∫
0

qie
−t1qi p̂ikqke−(t2−t1)qk p̂k je

−(t−t2)q j dt2dt1 + · · · ,

(2.101)

with a general term

t∫
0

t∫
t1

· · ·
t∫

tn−1

n

∏
k=1

(
qik−1 exp

[
− (tk − tk−1)qik−1

])
p̂ik−1ik

×exp [−(t − tn)qin ]dtn · · ·dt1, (2.102)

where t0 = 0. See Figure 2.42.
We repeat that (2.101), (2.102) give a ‘constructive view’ on how probabil-

ity pi j(t) is ‘built up’ from contributions from various trajectories. An approach
emerging from these considerations was developed in the 1920s and 30s by a
number of mathematicians, notably by Kolmogorov and Lévy. It was strongly
advocated by Doob who tirelessly stressed that a random process should be treated
as a probability distribution on the set of its sample paths.

Definition 2.6.9 Let (Xt) be a non-explosive CTMC. A probability distribution
λ = (λi) on I is called an invariant, or stationary, or equilibrium, distribution (ED)
for (Xt) if for all t ≥ 0 and states j,

P(Xt = j) = λ j, i.e. λP(t) = λ . (2.103)
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If we only have λi ≥ 0 but not ∑i λi = 1, we say λ is an invariant measure (IM)
for (Xt). If ∑i λi < ∞ then

πi = λi

(
∑

j

λ j

)−1

yields an ED π = (πi).

Remark 2.6.10 For a minimal explosive chain, the definition only makes sense if
distribution π is concentrated at the absorbing state ∞, although one can still think
of a measure λ , with ∑i λi = ∞, satisfying (2.103). We avoid this avenue by always
assuming that the chain is non-explosive when speaking of invariant measures and
equilibrium distributions.

Theorem 2.6.11 Assume that (Xt) is a non-explosive CTMC with generator Q.
Then λ = (λi) is an IM for (Xt) if and only if for all j,

∑
i

λiqi j = 0, i.e. the vector λQ = 0. (2.104)

Remark 2.6.12 The statement of Theorem 2.6.11 for finite continuous time
Markov chains was proved in (2.19), but we have extended it now to a gen-
eral non-explosive case. The argument in (2.19) would not work for an explosive
chain. More precisely, in the case of an explosive chain one cannot guarantee that
d
dt

(λP(t)) = 0, although it is true that
d
dt

P(t) = QP(t) = P(t)Q.

Theorem 2.6.13 Assume that (Xt) is a non-explosive continuous time Markov
chain with generator Q and that qi > 0 for all i. Let λ = (λi) be an invariant measure
for (Xt). Then μ = (μi) is an invariant measure for the jump chain (Yn), where

μi = λiqi = −λiqii. (2.105)

Conversely, if μ is an IM for (Yn) then λ determined from (2.105) is an invariant
measure for (Xt).

Proof Write the equation μP̂ = μ as μP̂−μ = 0, or(
μP̂−μ

)
j = ∑

i:i�= j

μi
qi j

qi
−μ j = ∑

i

μi

[
(1−δi j)

qi j

qi
−δi j

]

= ∑
i

μi

⎡⎢⎢⎢⎣qi j

qi
−δi j

(
1+

qi j

qi

)
︸ ︷︷ ︸

0

⎤⎥⎥⎥⎦ = ∑
i

λiqi j =
(
λQ
)

j .

The LHS is zero if and only if the RHS is.
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So, if λ is an invariant measure for a non-explosive CTMC (Xt), with ∑λiqi < ∞,
and μi = λiqi, then π̂ = (π̂i) is an equilibrium distribution for (Yn) where

π̂i =
μi

∑
j

μ j
=

λiqi

∑
j

λ jq j
. (2.106)

Definition 2.6.14 Let (Xt) be a (λ ,Q) CTMC (possibly explosive). We say that
states i, j communicate in (Xt) if and only if i, j communicate in the jump chain
(Yn). Thus, the class division in both (Xt) and (Yn) is the same. In particular, we
say that (λ ,Q) CTMC (Xt) (or its generator Q) is irreducible if it has a unique
communicating class, coinciding with the whole space I.

Members of all communicating classes, unite!
(From the series ‘When they go political’.)

Theorem 2.6.15 Let (Xt) be a (λ ,Q) CTMC (possibly explosive). Then states
i, j communicate in (Xt) if and only if one of the following equivalent conditions
holds:

(a) qi0i1 · · ·qin−1in > 0 for some states i = i0, i1, . . . , in = j; (2.107)

(b) pi j(t) > 0 for all t > 0. (2.108)

Proof (b) =⇒ (a). If (b) holds then i and j communicate in (Yn), hence i and j
communicate in (Xt). Then pi0i1(t) · · · pin−1in(t) > 0 for all t > 0 and some path
i = i0, i1, . . . , in = j. Hence, qi0i1 · · ·qin−1in > 0. This yields (a).

(a) =⇒ (b). If (a) holds, then for all pairs ik−1ik and any t > 0:

pik−1ik(t) > P
(
a single jump in (0, t); Xt = ik

∣∣X0 = ik−1
)

=
t∫

0

qik−1 exp
(
−qik−1s

)︸ ︷︷ ︸
1st jump at s

qik−1ik

qik−1︸ ︷︷ ︸
jump ik−1 → ik

exp(−qik(t − s))︸ ︷︷ ︸
no jump in (s, t)

ds > 0.

0

k 1_i i k

ts

Fig. 2.43
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Then

pi j(t) > pi0i1

( t
n

)
· · · pin−1in

( t
n

)
> 0,

which implies (b).

States of all classes, communicate!
(From the series ‘When they go political.’)

A general countable CTMC (explosive or not) possesses the Markov and strong
Markov properties in exactly the same form as stated in Theorems 2.2.2 and 2.2.3
for a finite CTMC. However, manipulations with states can destroy the Markov
property. For example, glueing (merging) several states of a chain (DTMC or
CTMC) into a single state may or may not produce a Markov chain.

Worked Example 2.6.16 (i) Consider the continuous-time Markov chain (Xt)t≥0

with state space {1,2,3,4} and Q-matrix

Q =

⎛⎜⎜⎝
−2 0 0 2
1 −3 2 0
0 2 −2 0
1 5 2 −8

⎞⎟⎟⎠ .

Set

Yt =

{
Xt if Xt ∈ {1,2,3},
2 if Xt = 4

and

Zt =

{
Xt if Xt ∈ {1,2,3},
1 if Xt = 4

.

Determine which, if any, of the processes (Yt)t≥0 and (Zt)t≥0 are Markov chains.
(ii) Find an invariant distribution for the chain (Xt)t≥0 given in Part (i). Suppose

X0 = 1. Find, for all t ≥ 0, the probability that Xt = 1.

Solution (i) The passage from (Xt) to (Yt) consists in merging states 2 and 4 into a
single state, say 2∗4; see Figure 2.44. It is clear that in order to prove that (Yt) is a
Markov chain, we only need to check that the holding time JY (2∗4) at state 2∗4
is exponential (an educated guess is that it is Exp(3)). In chain (Xt) the holding
time JX(2) at state 2 is Exp(3) and the holding time JX(4) at state 4 is Exp(8).
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34
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1 2 22

Xt( )

tY( )

Fig. 2.44

Let HY
n (2∗4) be the nth hitting time of merged state 2∗4 in (Yt), then XHY

n (2∗4), the
state of chain (Xt) at time HY

n (2∗4), will be either 2 or 4. Thus,

P(JY
n (2∗4) > x) = P

(
JY

n (2∗4) > x,XHY
n (2∗4) = 2

)
+P
(
JY

n (2∗4) > x,XHY
n (2∗4) = 4

)
.

The fact that JY
n (2 ∗ 4) > x means that (Yt) didn’t jump in the time interval(

HY
n (2∗4),HY

n (2∗4)+ x
)
. But if XHY

n (2∗4) = 2, this means that Xt didn’t jump in(
HY

n (2∗4),HY
n (2∗4)+ x

)
. Correspondingly,

P
(
JY

n (2∗4) > x,XHY
n (2∗4) = 2

)
= P

(
XHY

n (2∗4) = 2
)
P
(
JY

n (2∗4) > x
∣∣XHY

n (2∗4) = 2
)

= P
(
XHY

n (2∗4) = 2
)

×P
(
Xt didn’t jump in

(
HY

n (2∗4),HY
n (2∗4)+ x

)∣∣XHY
n (2∗4) = 2

)
= P

(
XHY

n (2∗4) = 2
)

e−3x.

Similarly,

P
(
JY

n (2∗4) > x,XHY
n (2∗4) = 4

)
= P

(
XHY

n (2∗4) = 4
)

×
[
P
(
Xt didn’t jump in

(
HY

n (2∗4),HY
n (2∗4)+ x

)∣∣XHY
n (2∗4) = 4

)
+P
(
Xt had a single jump 4 → 2

in
(
HY

n (2∗4),HY
n (2∗4)+ x

)∣∣XHY
n (2∗4) = 4

)]
.
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The sum in the square brackets equals

e−8x +
x∫

0

ds
(
8e−8s) 5

8
e−3(x−s) = e−8x +5e−3x

x∫
0

dse−5x

= e−8x + e−3x (1− e−5x) = e−3x.

Hence,

P(JY
n (2∗4) > x) = e−3x[

P
(
XHY

n (2∗4) = 2
)
+P
(
XHY

n (2∗4) = 4
)]

= e−3x,

as the sum P
(
XHY

n (2∗4) = 2
)
+P
(
XHY

n (2∗4) = 4
)

equals 1.

So, (Yt) is a Markov chain; its Q-matrix is

QY =

⎛⎝ −2 2 0
1 −3 2
0 2 −2

⎞⎠ 1
2∗4

3
.

Analysing the above argument, this fact holds because in chain (Xt), the jump rates
from state 2 to states 1 and 3 are the same as from state 4 to states 1 and 3 (the
jump from 4 to 2 is discarded when we pass from (Xt) to (Yt)).

In contrast, (Zt) is not a Markov chain, since the above property does not hold
for states 1 and 4. In fact, given s, t > 0, start both processes (Zt) and (Xt) from
state 2. We can write

P
(
Zt+s = 3

∣∣Zs = 1∗4,Z0 = 2
)

=
P
(
Zt+s = 3,Zs = 1∗4

∣∣Z0 = 2
)

P
(
Zs = 1∗4

∣∣Z0 = 2
)

=
P
(
Xt+s = 3,Xs = 1

∣∣X0 = 2
)
+P
(
Xt+s = 3,Xs = 4|X0 = 2

)
P
(
Xs = 1

∣∣X0 = 2
)
+P
(
Xs = 4

∣∣X0 = 2
)

=
P
(
Xs = 1|X0 = 2

)
P
(
Xt = 3|X0 = 1

)
P(Xs = 1|X0 = 2)+P(Xs = 4|X0 = 2)

+
P(Xs = 4|X0 = 2)P

(
Xt = 3|X0 = 4

)
P
(
Xs = 1|X0 = 2

)
+P
(
Xs = 4|X0 = 2

)
=

P
(
Xt = 3|X0 = 1

)
1+q

+
P
(
Xt = 3|X0 = 4

)
1+q−1 .

Here q stands for the ratio:

q =
P
(
Xs = 4|X0 = 2

)
P
(
Xs = 1|X0 = 2

) =

(
esQ
)

24(
esQ
)

21

.
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Similarly, starting both (Zt) and (Xt) from state 3,

P
(
Zt+s = 3

∣∣Zs = 1∗4,Z0 = 3
)

=
P
(
Zt+s = 3,Zs = 1∗4

∣∣Z0 = 3
)

P
(
Zs = 1∗4

∣∣Z0 = 3
)

=
P
(
Xt = 3|X0 = 1

)
1+ r

+
P
(
Xt = 3|X0 = 4

)
1+ r−1 ,

where

r =
P
(
Xs = 4|X0 = 3

)
P
(
Xs = 1|X0 = 3

) =

(
esQ
)

34(
esQ
)

31

.

But the ratios q and r are not identically equal:(
esQ
)

24(
esQ
)

21

�≡
(
esQ
)

34(
esQ
)

31

,

which implies that the conditional probability P
(
Zt+s = 3

∣∣Zs = 1 ∗ 4,Z0 = i
)

still
depends on i, i.e. condition Z0 = i cannot be dropped.

To show that q �≡ r, consider the case of small s: s → 0+. It is useful to calculate

Q2 =

⎛⎜⎜⎝
6 10 4 −20
−5 13 −10 2
2 −10 8 0
−5 −51 −10 66

⎞⎟⎟⎠ and Q3 =

⎛⎜⎜⎝
−22 −122 −28 172
25 −49 50 −26
−14 46 −36 4
25 463 50 −538

⎞⎟⎟⎠ ,

(in reality, we will only need entries Q21,
(
Q2
)

31,
(
Q2
)

31 and
(
Q3
)

34 which can be
computed straightaway). In fact, the entries

(
esQ)

i j = ∑
k≥0

sk

k!

(
Qk)

i j → δi j, s → 0+ .

More precisely,
(
esQ
)

34,
(
esQ
)

31,
(
esQ
)

24 and
(
esQ
)

21 have the following leading
terms: (

esQ)
34 =

s3

3!

(
Q3)

34 +O(s4) =
s3

3!
×4+O(s4)(

esQ)
31 =

s2

2!

(
Q2)

31 +O(s3) =
s2

2!
×2+O(s3),(

esQ)
24 =

s2

2!

(
Q2)

24 +O(s3) =
s2

2!
×2+O(s3),(

esQ)
21 =

s
1!

Q21 +O(s2) =
s
1!

×1+O(s2).
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This yields

q ≈ s, r ≈ 2
3

s,

verifying the above claim.

(ii) The detailed balance equations for chain (Yt) are

2λ1 = λ2∗4, λ2∗4 = λ3.

The (unique) normalised solution is λ = (1/5,2/5,2/5) which is the equilibrium
distribution for (Yt). Then the ED π for (Xt) has π1 = λ1, π3 = λ3, and π2 + π4 =
λ2∗4. In fact, it is easy to see that

π =
(

1
5
,

7
20

,
2
5
,

1
20

)
.

Finally, observe that P(Xt = 1|X0 = 1) = P1(Yt = 1|Y0 = 1), as state 1 is identical in
both chains (Xt) and (Yt). The QY -matrix eigenvalues for chain (Yt) are solutions to

det

⎛⎝ −2−μ 2 0
1 −3−μ 2
0 2 −2−μ

⎞⎠= 0

and are 0, −2 and −5. So, by a standard diagonalization argument, entry pY
11(t) of

the transition matrix PY (t) = exp
(
tQY
)

is of the form

pY
11(t) = A+Be−2t +Ce−5t , t ≥ 0.

Constants A, B and C satisfy

A+B+C = pY
11(0) = 1, −2B−5C =

d
dt

pY
11(0) = −2, A = pY

11(∞) =
1
5
,

whence B = 2/3, C = 2/15. The final answer is

P(Xt = 1|X0 = 1) = P(Yt = 1|Y0 = 1) =
1
5

+
2
3

e−2t +
2

15
e−5t .
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2.7 Hitting times and probabilities. Recurrence and transience

The workers have nothing to lose
. . . but their chains.

K. Marx (1818–1883), German philosopher

We begin this section with the following

Definition 2.7.1 Let (Xt) be a (λ ,Q) CTMC (possibly explosive). Given a set of
states A ⊂ I, we define the hitting time HA (of set A in chain (Xt)) by

HA =
{

inf [t ≥ 0 : Xt ∈ A], if Xt ∈ A for some t ≥ 0,
∞ if Xt �∈ A for all t ≥ 0.

(2.109)

To stress connections with (Xt) and (Yn), we often use the notation HA
X and HA

Y .

Next, we repeat the definition of jump times:

Definition 2.7.2 The times of subsequent jumps in (Xt) are defined by

J0 = 0, J1 = inf [t > 0 : Xt �= X0], J2 = inf [t > J1 : Xt �= XJ1 ], . . . . (2.110)

To stress their origin we often write JX
1 ,JX

2 , . . ..

For (Xt) non-explosive, obviously,

HA
X < ∞ if and only if HA

Y < ∞; in fact, HA
X = JX

HA
Y
. (2.111)

Then the hitting probabilities hA
i (of set A from state i in chain (Xt)) are defined in

the same way as for the discrete time case:

hA
i = Pi(HA

X < ∞) = P(HA
X < ∞|X0 = i) = P(HA

Y < ∞|Y0 = i). (2.112)

As in preceding sections, Pi stands for the probability distribution of the CTMC
with initial distribution δi, i.e. starting from state i. Similarly, Ei denotes the
expectation relative to Pi.

Consider the column vector hA = (hA
i ) formed by the hitting probabilities of the

set A from various initial states.

Theorem 2.7.3 Let (Xt) be a (λ ,Q) CTMC (possibly explosive). Assume that
qi > 0 for all states i. The vector hA gives the minimal non-negative solution to the
following equations: ⎧⎨⎩

hA
i = 1, i ∈ A,

(QhA)i = ∑
j

qi jh
A
j = 0, i �∈ A. (2.113)
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Proof The case i ∈ A is obvious: hA
i = Pi(hit A) = 1. So, let i �∈ A. Then in the

(δi, P̂) jump chain (Yn), by conditioning on the first jump,

hA
i = ∑

j: j �=i

(
qi j

qi

)
hA

j , i.e. −qiih
A
i = ∑

j �=i

qi jh
A
j , or (QhA)i = 0.

Thus, hA always yields a non-negative solution. Minimality is proven exactly as in
the discrete-time case.

Remark 2.7.4 Observe that hi ≡ 1, i.e. the vector h = 1 is always a non-negative
solution, as for all i,

(Q1)i = ∑
j

qi j = 0

(the sum along row i of Q). But it is not always minimal.

Definition 2.7.5 Next, we define the mean hitting times:

kA
i = EiH

A
X = E

(
HA

X

∣∣X0 = i
)
. (2.114)

Note that kA
i can be infinite.

Theorem 2.7.6 Let (Xt) be a (λ ,Q) continuous time Markov chain (possibly
explosive). Assume that qi > 0 for all states i. The column vector kA gives the
minimal non-negative solution (possibly with some entries kA

i = +∞) to⎧⎪⎨⎪⎩
kA

i = 0, i ∈ A,

kA
i =

1
qi

+ ∑
j:�=i

(
qi j

qi

)
kA

j =
1
qi

+(P̂kA)i, i �∈ A. (2.115)

If kA
i < +∞ for all i, then kA = (kA

i ) solves⎧⎪⎨⎪⎩
kA

i = 0, i ∈ A,

∑
j

qi jkA
j =
(
QkA

)
i = −1, i �∈ A.

(2.116)

Proof The equality kA
i = 0 for i ∈ A holds trivially. If X0 = i �∈ A then the hitting

time HA
X ≥ JX

1 , the time of the first jump in (Xt). Conditional on the first jump
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kA
i = E

[
Ei
(
HA

X

∣∣position after JX
1

)]
= E

[
Ei
(
JX

1 +(HA
X − JX

1 )
∣∣position after JX

1

)]
= q−1

i + ∑
j: j �=i

qi jq
−1
i E jH

A
X (by the strong Markov property)

= q−1
i + ∑

j: j �=i

p̂i jk
A
j .

This yields (2.115). If we know that all entries kA
i < ∞, we can transfer terms from

the LHS to the RHS and vice versa. Multiplying by qi this leads to (2.116).
To prove minimality, let g = (gi) be any solution. Then gi = kA

i = 0 for i ∈ A.
For i �= A, let J0 = 0 and J1,J2, . . . be the times of subsequent jumps. (The index
X referring to (Xt) will be now omitted.) Divide by qi, rearrange and iterate the
equation. We obtain that

gi = q−1
i + ∑

j/∈A

p̂i jg j

= Ei(J1 − J0)+ ∑
j/∈A

p̂i j

(
q−1

j + ∑
k/∈A

p̂ jkgk

)

= Ei
[
(J1 − J0)1(HA

Y ≥ 1)
]
+Ei

[
(J2 − J1)1(HA

Y ≥ 2)
]

+ ∑
j,k/∈A

p̂i j p̂ jkgk

= · · ·
= Ei

[
(J1 − J0)1(HA

Y ≥ 1)
]
+Ei

[
(J2 − J1)1(HA

Y ≥ 2)
]

+ · · ·

+Ei
[
(Jn − Jn−1)1(HA

Y ≥ n)
]

+ ∑
j1,..., jn /∈A

p̂i j1 ∏
1≤l<n

p̂ jl jl+1g jn

=
n

∑
k=1

Ei
[
(Jk − Jk−1)1(HA

Y ≥ k)
]

+ ∑
j1,..., jn /∈A

p̂i j1 ∏
1≤l<n

p̂ jl jl+1g jn .

If g ≥ 0 then, for all n, the last sum is ≥ 0. Then, with HA
Y ∧n = min

[
n,HA

Y

]
,

gi ≥
n

∑
k=1

Ei
[
(Jk − Jk−1)1(HA

Y ≥ k)
]
= Ei

⎡⎣HA
Y ∧n

∑
k=1

(Jk − Jk−1)

⎤⎦
= EiJHA

Y ∧n ↗ EiJHA
Y

= EiH
A
X = kA

i , as n → ∞.

Remark 2.7.7 In some chains, the mean times come out as

kA
i =

{
0, i ∈ A,

+∞, i /∈ A
. (2.117)
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Compare with Example 1.3.5. Then (2.117) will satisfy (2.115); formally, it will
give a non-negative solution. Conversely, if any non-negative solution to (2.115) is
of the form (2.117) then the mean times EiHA

X ≡ +∞, i /∈ A.

Definition 2.7.8 Let (Xt) be a (λ ,Q) CTMC (possibly explosive). We describe

state i as

{
recurrent (R)
transient (T)

in chain (Xt) if

Pi
(

sup[t ≥ 0 : Xt = i] = ∞
)

= Pi
(
i visited in (Xt) at arbitrarily large times

)
=
{

1
0

. (2.118)

Remark 2.7.9 If (Xt) explodes from state i then i is transient.

Theorem 2.7.10 Let (Xt) be a (λ ,Q) CTMC (possibly explosive). Assume that
qi > 0 for all states i. Then:

(i) each state i is recurrent or transient in (Xt) and (Yn) at the same time;
(ii) each state must be either recurrent or transient in (Xt);

(iii) recurrence and transience represent class properties in (Xt).

Proof (i) Let state i be recurrent in (Yn). Then, starting from i, Yn = XJn = i
infinitely often. Then (Xt) does not explode from i (the explosion time would
contain infinitely many holding times at i):

Pi(Texplo < ∞) ≤ Pi

(
∑
k≥1

S(i)
k < ∞

)
= 0

as

S(i)
1 , S(i)

2 , . . . ∼ Exp (qi), independently.

We deduce that Pi(Jn ↗ ∞) = 1. Also, Yn = XJn = i infinitely often. It then
follows that Xt = i for indefinitely large t. Hence, i is recurrent in (Xt), and state i
will be revisited.

Now let state i be transient in (Yn). Then, with X0 = Y0 = i:

Pi(n = sup[n : Yn = i] < ∞) = 1.

But this can be written as

Pi(t = sup[t : Xt = i] = Jn+1 < ∞).

Thus, i is transient in (Xt), and (i) is proved.

(ii) This statement follows from (i), as it holds for (Yn).
(iii) The same argument works, as (ii) also applies.
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Theorem 2.7.11 Let (Xt) be a (λ ,Q) CTMC (possibly explosive). Given state i,
the following dichotomy holds. Either

(i) qi = 0 (absorption) or Pi(T X
i < ∞) = 1. In the latter case i is R, and∫ ∞

0
pii(t)dt = ∞,

where

T X
i = inf [ t ≥ J1 : Xt = i ], the return time to i in (Xt), (2.119)

(ii) or qi > 0 and Pi(T X
i < ∞) < 1; then i is T, and∫ ∞

0
pii(t)dt < ∞,

where T X
i is defined in (2.119).

Proof The case qi = 0 should be obvious, so suppose that qi > 0. Then, for TY
i the

return time to i in (Yn), events {T X
i < ∞} = {TY

i < ∞}, and

Pi(T X
i < ∞) = Pi(TY

i < ∞).

By Theorem 2.7.10(i), state i is recurrent if and only if Pi(T X
i < ∞) = 1 (and hence

transient if and only if Pi(T X
i < ∞) < 1).

Finally,∫ ∞

0
pii(t)dt =

∫ ∞

0
Ei
[
1(Xt = i)

]
dt = Ei

[∫ ∞

0
1(Xt = i)dt

]
= Ei

[
∑
n

(Jn+1 − Jn) 1(Yn = i)
]

= ∑
n

E (S(i)
n
∣∣Yn = i) Pi(Yn = i)

=
1
qi

∑
n

P(Yn = i)

=
1
qi

∑
n

p̂(n)
ii .

We deduce that
∫ ∞

0
pii(t) dt = ∞ if and only if ∑n p̂(n)

ii = ∞. This proves the

theorem.

Remark 2.7.12 As in the discrete time case, if the hitting probability h{i}
j =

P j (hit i) = 1 for all j �= i, state i will be recurrent. Otherwise, state i may be

recurrent or transient (it is transient if h(i)
j < 1 for some j �= i and the chain is

irreducible). More precisely,
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i i

0 =J
0

J
1

J
2

Ti
X

i

t

Fig. 2.45

Pi
(
Ti < ∞

)
= ∑

j: j �=i

p̂i jh
(i)
j

{
= 1, if h(i)

j ≡ 1, for all j �= i,

< 1, if p̂i jh
(i)
j < p̂i j for some j �= i.

In fact, if the chain is irreducible and h{i}
j < 1 for some j �= i, then we can take n

such that p̂(n)
i j > 0. Writing

Pi
(
i visited at indefinitely large times

)
≤ ∑

l

p̂(n)
il h{i}

l

< ∑
l

p̂(n)
il = 1 (as h{i}

j < 1),

we see that in this case i is transient.

Recurrence and transience may be detected from a discrete-time sampling of
(Xt) at the ‘spacing’ h:

Zn = Xnh, n = 0,1, . . . ; (Zn) forms a (λ ,P(h)) DTMC. (2.120)

We call (Zn) the embedded h-spacing DTMC for (Xt).

Theorem 2.7.13 For all h > 0, with Zn = Xnh, a state i is R in (Xt) if and only if i
is R in (Zn). Hence, i is T in (Xt) if and only if it is T in (Zn).

Proof If i is transient for (Xt), it is transient for (Zn), trivially. Conversely, let i be
recurrent for (Xt). Then, for nh < t < (n+1)h:

pii((n+1)h) ≥ pii(t)e−qih

= Pi(Xt = i and no jump in(t, t +h)).

Consequently,
∞∫

0

pii(t) dt ≤ heqih ∑
n≥1

pii(nh),

and i is recurrent for (Zn).
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Definition 2.7.14 Suppose that the (λ ,Q) CTMC (Xt) is irreducible. We call (Xt)
(or its Q-matrix Q) recurrent (R) if every state i is recurrent and transient (T) if
every state i is transient this property holds for every state i.

Theorem 2.7.15 Let Q be irreducible and recurrent. Then the invariant measure
λi, with λQ = 0, is unique up to scalar factors.

Proof Excluding the trivial case where the chain contains a single absorbing state
and assuming qi > 0 for all i, the jump chain transition matrix P̂ = (qi j/qi, i �= j)
is recurrent.

Then, from Theorem 1.7.5, all invariant measures μ = (μi) for (Yn) become
proportional. Thus, all IMs λ = (λi) for (Xt), with λi = μi/qi, will be proportional
as well.

Theorem 2.7.16 Let CTMC (Xt) be irreducible. Then if (Xt) is R it is non-
explosive, i.e. if J1 < J2 < · · · make up the jump times, then for all states i,

Pi

(
lim
n→∞

Jn = ∞
)

= 1.

Proof For any given state i, the jump chain (Yn) keeps returning to i. Let S(i)
0 ,

S(i)
1 , . . . be the successive holding times at i. Then

lim
n→∞

Jn ≥ lim
n→∞

(
S(i)

1 + · · ·+S(i)
n

)
= ∞ a.s.

as the (S(i)
k ) are IID ∼ Exp(qi).

From now on, until the end of Section 2.7, we assume that (Xt) is irreducible,
with all qi > 0. So, if (Xt) is recurrent, it will be non-explosive.

Recall that a state i is recurrent if and only if Pi(Ti < ∞) = 1, so it is revisited for
indefinitely large times.
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Definition 2.7.17 We say a state i is positive recurrent (PR) in a CTMC (Xt), if

mi = EiTi < ∞, (2.121)

and null-recurrent (NR), if

Pi(Ti < ∞) = 1, but mi = ∞. (2.122)

Recall that Ei stands for the expectation under the probability distribution Pi of
the CTMC starting from state i. As we will see from Theorem 2.7.18 below, if a
chain is irreducible and recurrent, then we have a dichotomy: either all states are
positive recurrent or all states are null recurrent. In the first case we say that the
chain (or its generator matrix) is positive recurrent and in the second case that it is
null recurrent.

Theorem 2.7.18 Let (Xt) be an irreducible and recurrent (λ ,Q) CTMC. Then:

(i) either every state i is PR or every state i is NR;
(ii) or Q is PR if and only if it has a (unique) equilibrium distribution π = (πi),

in which case

πi > 0 and mi =
1

πiqi
for all i. (2.123)

Proof Given state i, split the mean value mi according to the outcome of the first
jump:

mi = mean return time to i

= mean holding time at i

+ ∑
j: j �=i

(mean time spent at j before returning to i) .

The first summand equals q−1
i . So, set γi = 1/qi and for j �= i write:

γ j = Ei (time spent at j before returning to i)

= Ei

[ ∫ Ti

J1

1(Xt = j) dt

]
=

∫ ∞

0
Ei1(Xt = j,J1 < t < Ti) dt. (2.124)

Then

mi = ∑
j

γ j =
1
qi

+ ∑
j: j �=i

γ j

{
< ∞, if state i is positive recurrent,
= ∞, if state i is null recurrent.

This determines a vector γ = (γ j); to stress that it depends on the choice of
reference point i, we will sometimes write γ i = (γ i

j).
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Next, if TY
i is the return time to i in the jump chain (Yn) then

γ j = Ei

[
∑
n≥0

(Jn+1 − Jn)1(Yn = j,n < TY
i )

]
= ∑

n≥0

Ei
[
(Jn+1 − Jn)|Yn = j]︸ ︷︷ ︸

q−1
j

Pi(Yn = j,1 ≤ n < TY
i )︸ ︷︷ ︸

Ei1(Yn = j,1 ≤ n < TY
i )

=
(

1
q j

)
Ei

[
∑
n≥1

1(Yn = j,1 ≤ n < TY
i )

]

=
(

1
q j

)
Ei

[
TY

i −1

∑
n=1

1(Yn = j)

]
:=

γ̂ j

q j
.

Here we have set γ̂i = 1, and for j �= i

γ̂ j = Ei

[
TY

i −1

∑
n=1

1(Yn = j)

]
= Ei

(
time spent at j in (Yn) before returning to i

)
= Ei

(
number of visits to j before returning to i

)
, (2.125)

cf. equation (1.52). This defines the vector γ̂ = (γ̂ j, j ∈ I); to stress its dependence
on the choice of reference point i, we may write γ̂ i = (γ̂ i

j).
Now, if the chain (Xt) is recurrent, then so is (Yn). Then, from Theorem 1.7.4,

for all states i, the vector γ̂ i = (γ̂ i
j) gives an invariant measure for the chain (Yn)

with 0 < γ̂ i
j < ∞ for all j. Next, all IMs for (Yn) are proportional to γ̂ i. Then γ i =

(γ i
j), with γ i

j = γ̂ i
j/q j, gives an IM for the chain (Xt); all such IMs being again

proportional to γ i. (In particular, the vector γ i = γ̂ i
k × γk, for all states i,k.)

Furthermore, if the state i is positive recurrent, then

mi = ∑
j

γ i
j < ∞.

But then

mk = ∑
j

γk
j < ∞, for all k,

i.e. all states become positive recurrent. Similarly, if i is null recurrent, then that
applies to all states k. We deduce that positive recurrence and null recurrence form
class properties. Hence (i).

Also, if Q is positive recurrent, then

πi =
γi

∑
j

γ j
=

1
qimi

yields a (unique) equilibrium distribution π.
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Obviously, πi > 0, for all states i. Moreover, γk = mkπ , i.e.

Ek
(
time spent at j before returning to k

)
=

π j

πkqk
, (2.126)

cf. equation (1.60).
Conversely, if (Xt) features an ED π then all invariant measures λ = (λi) have

∑ j λ j < ∞. So, for all states i, the vector γ i = (γ i
j) yields mi = ∑ j γ i

j < ∞. So, i is
positive recurrent. This proves (ii).

It is now time to give a concise summary of recurrence and transience properties
of CTMCs.

(I) Irreducible CTMCs with more than one state show rates qi > 0 for all states i
(no absorption).

(II) Non-explosive irreducible CTMCs can be transient or recurrent:

(i) transience: Pi
(
return time Ti < ∞

)
< 1, i.e. Pi

(
Ti = ∞

)
> 0, for all i.

Equivalently: Pi
(
i is not visited in (Xt) after some finite time

)
= 1

and
∫ ∞

0 pii(t) dt < ∞, for all i. Equivalently: h{i}
j = P j (hit i) < 1,

for some j and i.
(ii) recurrence: Pi

(
return time Ti < ∞

)
= 1, i.e. Pi

(
Ti = ∞

)
= 0, for

all i. Equivalently: Pi
(
i visited in (Xt) at arbitrarily large times

)
=

1 and
∫ ∞

0 pii(t) dt = ∞, for all i. Equivalently: h{i}
j = P j (hit i) =

1, for all j and i. In this case, for all i, the vector γ i = (γ i
j) from

(2.123) satisfies 0 < γ i
j < ∞ and gives an invariant measure for (Xt),

all such invariant measures being of the form αγ i. In particular,
γk = (γ̂ i

k)
−1 × γ i, for all i,k.

(III) Next, an irreducible recurrent CTMC can be:

(i) null recurrent: mi = Ei(return time Ti) = ∞, for all i; in this case
no invariant measure λ = (λi) with ∑ j λ j < ∞ exists. Hence, there
is no equilibrium distribution.

(ii) positive recurrent: mi < ∞, for all i; in this case any invariant
measure λ = (λi) presents ∑ j λ j < ∞, and a unique equilibrium

distribution π = (πi) exists, where πi =
λi

∑ j λ j
> 0. In this case, the

vector γk = mkπ . Furthermore,

EiTi =
1

πiqi
, and Ei(time at j before Ti) =

πk

πiqi
, for all i,k.

Finite irreducible CTMCs are always positive recurrent.

(IV) Explosive irreducible CTMCs are always transient.
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Before we discuss some examples, let us present without proof a useful result
about the long-run, or long-term, proportion for CTMCs. Here, we use the notation
a.s.→ for convergence with probability 1 (relative to the probability distribution P of
the (λ ,Q) Markov chain; cf. Theorem 2.8.6 below).

Theorem 2.7.19 Let (Xt) be a (λ ,Q) irreducible positive recurrent CTMC with
an equilibrium distribution π = (πi). Then, for all states i, as t → ∞,

1
t

t∫
0

1(Xs = i) ds = fraction of time at i in (0, t)

a.s.→ πi =
1

miqi
=

mean holding time at i
mean return time to i

.

(2.127)

Also, the expected value(
1
t

)
E

∫ t

0
1(Xs = i) ds =

1
t

∫ t

0
P(Xs = i) ds → πi. (2.128)

In particular, for an (δi,Q) irreducible positive recurrent CTMC:(
1
t

)
Ei

∫ t

0
1(Xs = i) ds =

1
t

∫ t

0
pii(s) ds → πi, (2.129)

emphasizing the divergent character of the integral
∫ ∞

0
pii(s) ds.

Remark 2.7.20 Equation (2.128) can be derived from the statement of Theorem
2.8.1 below; see (2.134).

Remember this: if something possesses a frequency,
then it will eventually occur with that frequency.

(From the series ‘Thus spoke Superviser’.)

Worked Example 2.7.21 (i) Consider the continuous-time Markov chain (Xt)t≥0

on {1,2,3,4,5,6,7} with generator matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−6 2 0 0 0 4 0
2 −3 0 0 0 1 0
0 1 −5 1 2 0 1
0 0 0 0 0 0 0
0 2 2 0 −6 0 2
1 2 0 0 0 −3 0
0 0 1 0 1 0 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Compute the probability that Xt , starting from state 3, hits state 2 eventually.

Deduce that

lim
t→∞

P
(
Xt = 2

∣∣X0 = 3
)

=
4

15
.

(ii) A colony of cells contains immature and mature cells. Each immature cell,
after an exponential time of parameter 2, becomes a mature cell. Each mature cell
after, an exponential time of parameter 3, divides into two immature cells. Sup-
pose we begin with one immature cell and let n(t) denote the expected number of
immature cells at time t. Show that

n(t) = (4et +3e−6t)/7.

Solution (i) States 1,2,6 form a closed communicating class: once (Xt) enters
it, Xt stays there forever. Another closed communicating class consists of state 4;
states 3,5,7 form an open communicating class. From 3 one can enter {1,2,6}
only via state 2. See Figure 2.47.

Set hi = Pi(hit 2). Then

5h3 = 1+2h5 +h7, 2h7 = h3 +h5, and 6h5 = 2+2h3 +2h7,

so

10h3 = 2+4h5 +h3 +h5, 6h5 = 2+2h3 +h3 +h5,

and

9h3 = 2+5h5, 5h5 = 2+3h3,

or

9h3 = 4+3h3, 6h3 = 4, and h3 =
2
3
.

1

4

5

7

6

2

2

3

2 2
1

11
2

1
12

2
4
1

1
2

Fig. 2.47
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By symmetry, the jump chain on {1,2,6} takes the invariant measure (1,1,1),
so (Xt)t≥0 follows the invariant distribution (1/5,2/5,2/5). Hence, by standard
arguments,

lim
t→∞

P(Xt = 2 | X0 = 3) = h3π2 =
4
15

.

(ii) Let m(t) denote the expected number of immature cells at the time t when
we start with one mature cell at time 0. By conditioning on the first event, with n(t)
being the number of immature cells at time t,

n(t) = e−2t +
t∫

0

2e−2sm(t − s) ds, and m(t) =
t∫

0

3e−3s2n(t − s) ds.

So

e2tn(t) = 1+
t∫

0

2e2um(u) du, and e3tm(t) =
t∫

0

6e3un(u) du.

Differentiating yields

dn
dt

+2n = 2m, and
dm
dt

+3m = 6n,

whence
d2n
dt2 +2

dn
dt

= 2
dm
dt

= 12n−6m = 12n−3
dn
dt

−6n.

Thus,

d2n
dt2 +5

dn
dt

−6n = 0, with n(0) = 1,
dn
dt

(0) = −2.

Hence

n(t) = Aet +Be−6t , where 1 = A+B, −2 = A−6B.

Then

−2 = A−6+6A i.e., 7A = 4, whence A =
4
7

and B =
3
7
.

Worked Example 2.7.22 (See W. Kager. “Reflected Brownian motion in generic
triangles and wedges”, math-PR/0410007; submitted to Stoch. Processes
Appl.) A particle performs a continuous-time nearest neighbour random walk on
an equilateral triangular lattice inside an angle π/3, starting from the corner. The
jump rates are 1/3 from the corner and 1/6 in each of the six directions if the parti-
cle sits inside the angle. However, if the particle is located on the edge of the angle,
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1/3

1/6 1/6

1/6

1/3 1/61/6
1/6

1/3 1/3

1/61/6

1/6 1/6

1/6 1/6

Fig. 2.48

the rate is 1/3 along the edge away from the corner and 1/6 to each of the three
other neighbouring sites in the angle. See Figure 2.48 where a typical trajectory is
also shown.

The particle position at time t ≥ 0 is determined by its vertical level Vt and its
horizontal position Gt ; if Vt = k then Gt = 0, . . . ,k. Here 1, . . . ,k−1 are positions
inside, and 0 and k positions on the edge of the angle, at vertical level k.

Let JV
1 , JV

2 , . . . be the times of subsequent jumps of the process (Vt) and consider
embedded discrete-time processes

Y in
n =

(
Ĝin

n ,V̂n
)

and Y out
n =

(
Ĝout

n ,V̂n
)

where (a) V̂n is the vertical level immediately after time JV
n , (b) Ĝin

n is the horizontal
position immediately after time JV

n , (c) Ĝout
n is the horizontal position immediately

before time JV
n+1.

We first remark that (Y in
n ) and (Y out

n ) are Markov chains. Indeed, (Y in
n ) is a

Markov chain because the probability of transition from Y in
n−1 = (in−1,kn−1) to

Y in
n = (in,kn), is completely determined by the pair (in−1,kn−1) and does not

depend on the previous values Y in
n−1, Y in

n−2, . . . Similarly for (Y out
n ). Observe that

V̂n = V̂n−1 ±1, i.e. we always jump to nearest neigbour vertical levels.



280 Continuous-time Markov chains

Next, we want to check that (V̂n) is a Markov chain with transition probabilities

P
(
V̂n = k +1

∣∣V̂n−1 = k) =
k +2

2(k +1)
,

P
(
V̂n = k−1

∣∣V̂n−1 = k) =
k

2(k +1)
,

and (Vt) is a continuous-time Markov chain with rates

qkk−1 =
k

3(k +1)
, qkk = − 2

3
, qkk+1 =

k +2
3(k +1)

.

To verify this fact, we will use the following property of the model which we will
prove later. Assume that, conditional on V̂n = k and previously passed vertical lev-
els, the horisontal positions Ĝin

n and Ĝout
n are uniformly distributed on {0, . . . ,k},

i.e. for all attainable values k, kn−1, . . ., k1 and for all i = 0, . . . ,k

P
(
Ĝin

n = i
∣∣V̂n = k,V̂n−1 = kn−1, . . . ,V̂1 = k1,V̂0 = k0

)
= P
(
Ĝout

n = i
∣∣V̂n = k,V̂n−1 = kn−1, . . . ,V̂1 = k1,V̂0 = k0

)
=

1
k +1

. (2.130)

In fact, owing to (2.130), we can write

P
(
V̂n = i

∣∣V̂n−1 = kn−1, . . . ,V̂0 = 0
)

=
kn−1

∑
j=0

P
(
V̂n = k, Ĝout

n−1 = j
∣∣V̂n−1 = kn−1, . . . ,V̂0 = 0

)
=

1
kn−1 +1

×
kn−1

∑
j=0

P
(
V̂n = k

∣∣ Ĝout
n−1 = j,V̂n−1 = kn−1, . . . ,V̂0 = 0

)
.

Next,

P
(
V̂n = k

∣∣ Ĝout
n−1 = j,V̂n−1 = kn−1, . . . ,V̂0 = 0

)
=

⎧⎨⎩
3/4, if j = 0 or kn−1 and k = kn−1 +1,
1/4, if j = 0 or kn−1 and k = kn−1 −1,
1/2, if j = 1, . . ., kn−1 −1.

Here we used the jump probabilities {1/4,1/4,1/4,1/4} and {1/2,1/4,1/4}
emerging from rates {1/6,1/6,1/6,1/6,1/6,1/6} and {1/3,1/6,1/6,1/6} after
discarding the rates in the horizontal directions. See Figure 2.49.

This yields

P
(
V̂n = k +1

∣∣V̂n−1 = k, . . . ,V̂0 = 0) =
1
2
× k +2

k +1
,
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and

P
(
V̂n = k−1

∣∣V̂n−1 = k, . . . ,V̂0 = 0) =
1
2
× k

k +1
,

i.e. (V̂n) is indeed a Markov chain as suggested.
Consequently, (Vt) is a continuous-time Markov chain. The holding times are

Exp(2/3), and rates

qkl =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
3
× k +2

k +1
, if l = k +1,

1
3
× k

k +1
, if l = k−1,

−2
3
, if l = k,

k ≥ 1,

and q01 = −q00 = 2/3. See Figure 2.50.
Further, introduce the hitting probabilities

hi = P
(
V̂n hits 0

∣∣ V̂0 = i
)
, i = 0,1, . . . ,

with h0 = 1. If we show that h1 < 1, it will obviously imply that

P
(
V̂n returns 0

∣∣ V̂0 = 0
)

< 1,

i.e. that 0 is a transient state. As (V̂n) is irreducible, it will be transient.
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To this end, consider the hitting probability equations

hk =
1
2
×
(

k
k +1

)
hk−1 +

1
2
×
(

k +2
k +1

)
hk+1, k ≥ 1,

and re-write them in terms of the differences

uk = hk−1 −hk.

We obtain uk+1 = k uk/(k +2), i.e.

uk =
(k−1) · · ·1
(k +1)k · · ·3u1 =

2
k(k +1)

u1.

Then, as usual,

hk = −uk −·· ·− u1 +1

= 1− (1−h1)

[
1+2

k

∑
l=2

1
(l +1)l

]

= 1−2(1−h1)
k

∑
l=1

1
l(l +1)

,

and the minimal solution is given by

hk = 1−
k

∑
l=1

1
l(l +1)

/
∞

∑
m=1

1
m(m+1)

, k ≥ 1.

Hence,

h1 = 1−
(

1
2

/
∑

m≥1

1
m(m+1)

)
< 1.

Thus (V̂n) is transient. As it is the jump chain for (Vt), we deduce that (Vt) is also
transient.

Finally, we have to prove property (2.130) for chains (Y in
n ) and (Y out

n ). To prove
this, we use induction in n: for n = 1 the assertion holds for Ĝout

n trivially and Ĝin
n

because the transition probabilities from the corner equal 1/2. Next, write

P
(
Ĝin

n = i
∣∣V̂n = k,V̂n−1 = kn−1, . . . ,V̂1 = k1,V̂0 = 0

)
=

P
(
Y in

n = (i,k)
∣∣V̂n−1 = kn−1, . . . ,V̂1 = k1,V̂0 = 0

)
P
(
V̂n = k

∣∣V̂n−1 = kn−1, . . . ,V̂0 = 0
) . (2.131)

To complete the induction for Ĝin
n it suffices to check that the numerator

P
(
Y in

n = (i,k)
∣∣V̂n−1 = kn−1, . . . ,V̂0 = 0

)
(2.132)

does not depend on i = 0, . . . ,kn−1.
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As was observed above, the value k may arise from kn−1 + 1 or kn−1 −1. Write
(2.131) as the sum

kn−1

∑
j=0

P
(
Yn = (i,k), Ĝout

n−1 = j
∣∣V̂n−1 = kn−1, . . . ,V̂0 = 0

)
. (2.133)

By the induction hypothesis, the conditional distribution of Ĝout
n−1 is uniform.

Next, observe that the number of non-zero summands in (2.133) will be one or
two, depending on i. However, the coefficients will adjust it to make the sum
independent of i. More precisely, arguing as above, the sum (2.133) equals

P
(
V̂n−1 = kn−1, . . . ,V̂0 = 0

)

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2
× 1

kn−1 +1
, if k = kn−1 +1 and i = 0 or k,(

1
4

+
1
4

)
× 1

kn−1 +1
, if k = kn−1 +1 and i = 1, . . . ,k−1,(

1
4

+
1
4

)
× 1

kn−1 +1
, if k = kn−1 −1 and i = 0, . . . ,k.

We see that indeed probability (2.131) does not depend on i which proves that

P
(
Ĝin

n = i
∣∣V̂n = k,V̂n−1 = kn−1, . . . ,V̂1 = k1,V̂0 = k0

)
=

1
k +1

, i = 0, . . . ,k.

To finish the proof, we need to reproduce a similar equality for Ĝout
n . But between

times JV
n and JV

n+1 the random walk jumps in the horizontal direction only, keep-
ing the vertical level kn = k intact. These jumps happen at the same rate 1/6 and
preserve the uniform distribution. (The horizontal random walk is reversible, and
the uniform distribution is in detailed balance with the family of constant rates).
Hence, the conditional distribution of Ĝout

n also proves uniform.

2.8 Convergence to an equilibrium distribution. Reversibility

Action is transitory,– a step, a blow,
The motion of a muscle, this way or that–. . .

Suffering is permanent, obscure and dark,
And shares the nature of infinity.

W. Wordsworth (1770–1850), English poet

Throughout this section we assume that a CTMC (Xt) under consideration is
irreducible and non-explosive. We begin with a continuous-time analogue of
Theorem 1.9.2.
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Theorem 2.8.1 An irreducible positive recurrent CTMC (Xt) has

pi j(t) → π j for all states i, j as t → ∞. (2.134)

In other words, the transition matrix P(t) converges, as t → ∞, to a matrix with
constant entries along the columns and whose rows repeat the vector π:

P(t) → Π =

⎛⎜⎜⎜⎜⎝
−− −− −−

...
−− −− −−

...

⎞⎟⎟⎟⎟⎠
π

π .

Here π = (πi) forms the (unique) equilibrium distribution of the chain.

Proof Omitted: it is essentially similar to that of Theorem 1.9.2.

Remark 2.8.2 Comparing with the corresponding DTMC result (Theorem 1.9.1),
observe that no aperiodicity condition is mentioned here. In fact, any CTMC (Xt)
will be aperiodic. Moreover, for all h > 0, the h-spacing imbedded DTMC (Zn) will
always be aperiodic, where Zn = Xnh. Consequently, if π makes up an ED for the
h-spacing chain (Zn) then it also does for CTMC (Xt), and if we see convergence
P(nh) → Π as n → ∞ then convergence P(t) → Π as t → ∞ follows.

On the other hand, the jump chain (Yn) could be periodic, viz.

P̂ =
(

0 1
1 0

)
, with P̂2n = I, P̂2n+1 = P̂.

Clearly, the power P̂n does not converge as n → ∞. Still, in continuous time, the

chain has the generator Q =
(

−α α
β −β

)
, and the transition matrix

P(t) =

⎛⎜⎜⎝
β

α +β
+

α
α +β

e−(α+β )t α
α +β

− α
α +β

e−(α+β )t

β
α +β

− β
α +β

e−(α+β )t α
α +β

+
β

α +β
e−(α+β )t

⎞⎟⎟⎠
→ Π =

⎛⎜⎜⎝
β

α +β
α

α +β
β

α +β
α

α +β

⎞⎟⎟⎠ , as t → ∞.

See Figure 2.51.

Remark 2.8.3 An easy observation arises as follows. Assume that, for an irre-
ducible positive recurrent CTMC (Xt), a limiting matrix Π = (πi j) exists and is
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stochastic (this is a part of the statement of Theorem 2.8.1). Then the rows of Π
must give exactly the equilibrium distribution for chain (Xt). In fact, for all t ≥ 0,

ΠP(t) = lim
s→∞

P(s)P(t) = lim
s→∞

P(s+ t) = Π,

and

Π
d
dt

P(t) = ΠQP(t) = 0.

For t = 0 this gives ΠQ = 0. So, every row of the limiting matrix Π is an equi-
librium distribution for Q. For an irreducible positive recurrent chain there exists
a unique equilibrium distribution π , so all rows equal π . Conversely, suppose that,
for a CTMC (Xt), the transition matrix P(t) converges, as t → ∞, to a limiting
stochastic matrix P(∞) whose rows are repetitions of a stochastic vector π . Then π
forms the unique ED, and the chain exhibits a unique closed communicating class
where it achieves positive recurrence.

Remark 2.8.4 For a transient or null recurrent irreducible CTMC, lim
t→∞

P(t) = 0,

the zero matrix. Compare with Remark 1.9.5.

Definition 2.8.5 A non-explosive (λ ,Q) CTMC (Xt) is called reversible if, for
all T > 0, n = 1,2, . . ., and time points 0 = t0 < t1 < · · · < tn = T , the joint dis-
tribution of random variables X0 = Xt0 ,Xt1 , . . . ,Xtn = XT matches that of XT =
XT−t0 ,XT−t1 , . . . ,XT−tn = X0. That is, for all states i0, . . . , in,

P
(
X0 = i0,Xt1 = i1, . . . ,XT = in

)
= P
(
X0 = in, . . . ,XT−t1 = i1,XT = i0

)
. (2.135)

In short,

(Xt ,0 ≤ t ≤ T ) ∼ (XT−t ,0 ≤ t ≤ T ), (2.136)

In other words, on any interval [0,T ], the process stays stochastically the same,
regardless of the direction of time.
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If we prefer to work in the original ‘direct’ time, then (2.135) and (2.136) mean
that the ‘mirror image’ of a sample path carries the same weight as the original
path: see Figure 2.53.

In general, the RHS of (2.136) defines the distribution of a time reversal process
(XTR

t ,0 ≤ t ≤ T ) (about point T ):

P
(
XTR

0 = i0,X
TR
t1 = i1, . . . ,X

TR
T = in

)
= P

(
X0 = in, . . . ,XT−t1 = i1,XT = i0

)
, (2.137)

and reversibility means that (Xt ,0 ≤ t ≤ T ) ∼ (XT−t ,0 ≤ t ≤ T ), for all T > 0. As
we will see shortly, reversibility implies that the vector λQ = 0, i.e. λ = π , the equi-
librium distribution of the chain (as with DTMCs). But (again as in the discrete-
time case), it means the stronger property, that λ is in a detailed balance with Q.

Theorem 2.8.6 A non-explosive (λ ,Q) CTMC (Xt) is reversible if and only if the
following detailed balance equations hold

λiqi j = λ jq ji, for all states i, j where i �= j. (2.138)

Proof (a) The if part: suppose the detailed balance equations (DBEs) hold
(trivially, (2.138) always holds for i = j). Then λ forms an ED: for all states j,

(λQ) j = ∑
i

λiqi j = λ j ∑
i

q ji = 0 (the sum along row i) (2.139)



2.8 Convergence to an equilibrium distribution. Reversibility 287

Also, by induction, the DBEs hold for all powers of Q

λiq
(k)
i j = λi ∑

l

qilq
(k−1)
l j = ∑

l

qliλlq
(k−1)
l j = ∑

l

q(k−1)
jl qliλ j = λ jq

(k)
ji .

This fact immediately implies that in the case of a finite CTMC, the DBEs hold for

transition probability matrices P(t) = etQ = ∑k≥0

(tQ)k

k!
: for all t > 0,

λi pi j(t) = λ j p ji(t), for all states i, j. (2.140)

For a general non-explosive chain, we go back to (2.89) and use (2.139) to check
that the equality holds for every summand (2.90):

πi ∑
i=i0,...,in= j

n−1

∏
l=0

1(ql > 0, il+1 �= il)
t∫

0

· · ·
sn−1∫
0

exp [−(t − s1)qi0 ]

× ∏
k: 1→n

(
qik−1ik exp

[
− (sk − sk+1)qik

])
dsn · · ·ds1

= ∑
j= j0,..., jn=i

n−1

∏
l=0

1(ql > 0, jl+1 �= jl)
t∫

0

· · ·
t2∫

0

exp [−(t − tn)q jn ]

× ∏
k: n→1

(
q jk−1 jk exp

[
−q jk(tk − tk−1)

])
dt1 · · ·dtnπ j

The argument is then extended to the whole sum (2.89) again leading to (2.140).
Now we want to check (2.135): for all 0 = t0 < t1 < · · · < tn < tn+1 = T and

states i0, i1, . . . , in+1,

P
(
Xtk = ik, 0 ≤ k ≤ n

)
= P
(
XT−tk = ik, n ≥ k ≥ 0

)
. (2.141)

By using (2.140),

the LHS of (2.141) = λi0 pi0i1(t1 − t0)pi1i2(t2 − t1) · · · pin−1in(tn − tn−1)

= pi1i0(t1 − t0)λi1 pi1i2(t2 − t1) · · · pin−1in(tn − tn−1)

= · · ·
= pi1i0(t1 − t0)pi2i1(t2 − t1) · · · pinin−1(tn − tn−1)λin .

Re-arrange the RHS:

λin pinin−1(tn − tn−1) · · · pi1i0(t1 − t0) = P
(
XT−tk = ik, n ≥ k ≥ 0

)
.

(b) The only if part: suppose (2.135) holds. For n = 1 and i0 = i, j0 = j, this
yields (2.140):

λi pi j(T ) = λ j p ji(T ).

Differentiate in T and set T = 0, with
d
dt

pi j(0) = qi j, to get (2.138).
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Remark 2.8.7 As in the discrete-time setting, the detailed balance equations
make a convenient tool to find an equilibrium distribution (or more generally, an
invariant measure). Hence, if you cannot find an ED (or an invariant measure)
from λQ = 0, try the DBEs. If you succeed, you achieve two goals: finding an
invariant measure (and getting an ED by normalising when possible), and proving
reversibility.

Example 2.8.8 What if the DBEs fail to hold for a given CTMC (Xt)? Then the
time reversal process (XTR

t ,0 ≤ t ≤ T ) differs from the original chain (Xt ,0 ≤ t ≤
T ). Still, the process (XTR

t ,0 ≤ t ≤ T ) remains a CTMC, albeit inhomogeneous,
with transition probabilities pTR

i j (t, t +s) depending on ‘initial’ and ‘terminal’ times
t, t + s. In other words, these probabilities require knowledge of initial time t and
lapsed time s (as in an inhomogeneous Poisson process IPP(λ (t)) from Section
2.4; see (2.62)). More precisely, for all 0 = t0 < t1 < · · · < tn < t < t + s < T and
states i0, . . . , in, i, j, the conditional probability

P
(
XTR

t+s = j |XTR
t = i and Xtk = i+ k, 0 ≤ k ≤ n

)
= P
(
XTR

t+s = j|XTR
t = i

)
=

P(XT−t−s = j)
P(XT−t = i)

p ji(s) := pTR
i j (t, t + s). (2.142)

Here, pi j(s) is the transition probability for the original CTMC (Xt).

Further, if the chain (Xt) is in equilibrium, then P(XT−t−s = j) = π j,
P(XT−t = i) = πi, and pTR

i j (t, t + s) = π j p ji(s)/πi loses its dependence on t. This
means that (XTR

t ) would be a homogeneous CTMC in equilibrium, with transition
matrix PTR(t) = (π j p ji(t)/πi) (note that the sum over j equals 1). Obviously, the
generator QTR = (π jq ji/πi) (with the sum over j equal to 0). See Worked Exam-
ple 1.10.7. However, to guarantee that chain (XTR

t ) remains the same as (Xt), we
need a stronger property of detailed balance, which will result in QTR = Q and
PTR(t) = P(t) for all t > 0.

It is also instructive to see that the DBEs (2.138) are equivalent to the fact that
Q is self-adjoint relative to the scalar product 〈 · , · 〉π .

Example 2.8.9 A birth-and-death process (BDP), when it is positive recurrent, is
reversible. In fact, the DBEs for such processes can be easily solved recursively.
Indeed, in a BDP(λ j,μk):

q j j+1 = λ j, q j+1 j = μ j+1, j = 0,1, . . . . (2.143)
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Here, the equations become

π0λ0 = π1μ1, π1λ1 = π2μ2, . . . , (2.144)

whence

π1 =
λ0

μ1
π0, π2 =

λ0λ1

μ1μ2
π0, . . . , πi =

λ0 . . .λi−1

μ1 . . .μi
π0, . . . . (2.145)

We see that if the series emerging from (2.145) converges, i.e.

∑
n≥1

∏
1≤ j≤n

λ j−1

μ j
< ∞, (2.146)

then the solution πi is given by

π0 =

(
1+ ∑

n≥1
∏

1≤ j≤n

λ j−1

μ j

)−1

,

πi =
λ0 · · ·λi−1

μ1 · · ·μi

(
1+ ∑

n≥1
∏

1≤ j≤n

λ j−1

μ j

)−1

, i ≥ 1.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.147)

Remark 2.8.10 Solving the detailed balance equations for a birth-and-death
process is only a half of the job. We also must guarantee that BDP(λk,μk) is non-
explosive: only then solution (2.147) will give a genuine equilibrium distribution
and hence define a CTMC which is reversible. An elegant necessary and suffi-
cient condition for BDP(λk,μk) to be positive recurrent and hence reversible is that
(2.147) is complemented by a certain divergence requirement:

∑
n≥1

∏
1≤ j≤n

λ j−1

μ j
< ∞, and ∑

n≥1

1
λn

∏
1≤ j≤n

μ j

λ j−1
= ∞. (2.148)

So, it is under condition (2.148) that measure the π = (πi) from (2.147) is an ED
for BDP(λk,μk). We are not going to prove this, but note that

∑
n≥1

∏
1≤ j≤n

λ j−1

μ j
= ∞, and ∑

n≥1

1
λn

∏
1≤ j≤n

μ j

λ j−1
= ∞ (2.149)

constitutes a necessary and sufficient condition for BDP(λk,μk) to be null recur-
rent, and

∑
n≥1

1
λn

∏
1≤ j≤n

λ j−1

μ j
= ∞, and ∑

n≥1
∏

1≤ j≤n

μ j

λ j−1
< ∞ (2.150)

forms a necessary and sufficient condition for BDP(λk,μk) to be transient (which
includes the possibility to be explosive). See S. Karlin, 1968.
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If λi ≡ λ and μi ≡ μ , the birth-and-death process is homogeneous; in this case it
will always be non-explosive. Then condition (2.146) is equivalent to λ < μ; under
this condition the process will be positive recurrent and reversible. If λ = μ , the
process will be null recurrent, and if λ > μ , transient.

Birth-and-death processes display the following surprising result.

Theorem 2.8.11 Assume that condition (2.148) holds and let (Xt) be the non-
explosive, positive recurrent and reversible BDP(λi,μi), with equilibrium distribu-
tion π given by (2.147). Consider the process in equilibrium (i.e. with X0 ∼ π) and
write

Xt = X0 +Bt −Dt , t > 0, (2.151)

where processes (Bt) and (Dt) give the birth and death accounts of (Xt). (That is,
the process (Bt) increases by one every time a jump up in (Xt) occurs while (Dt)
increases by one every time there is a jump down in (Xt).) Then

(Bt) ∼ (Dt). (2.152)

This appears surprising because (Bt) is associated with rates λi and (Dt) with
rates μi, which can be completely different.

Proof We know that (Xt) is reversible, i.e. (Xt) ∼
(
XTR

t

)
, with

(
XTR

t

)
being the

original process (Xt) viewed in reversed time. But, in reversed time, the jumps up
become jumps down. In other words,

(Bt) ∼
(
DTR

t

)
, the death account in

(
XTR

t

)
,

and

(Dt) ∼
(
BTR

t

)
, the birth account in

(
XTR

t

)
.
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But
(
DTR

t

)
∼ (Dt) and

(
BTR

t

)
∼ (Bt) by reversibility. Combine all equivalences:

(Bt) ∼
(
DTR

t

)
∼ (Dt) ∼

(
BTR

t

)
∼ (Bt).

This yields (2.152).

The point here lies in that processes (Bt) and (Dt) are not independent; in
general, neither of them need even be Markov (although when λi ≡ λ , process
(Bt) becomes Poisson PP(λ )). However, the equilibrium distribution π provides a
delicate link between the two which results in the identity of their distributions.

Remark 2.8.12 Theorem 2.8.11 plays a big rôle in queueing theory. Here a jump in
(Bt) is interpreted as the arrival of a new task (alternatively, a client or a customer)
in a Markovian queue, while a jump in (Dt) as the departure (of a fully served task,
client or customer). Then Xt represents the queue size (or length) at time t, i.e. the
number of customers in the system (including the one(s) currently being served).
In this context, the assertion of Theorem 2.8.11 says that the arrival process in the
queue is stochastically equivalent to the departure process. See Section 2.9.

2.9 Applications to queueing theory. Markovian queues

A Room With A Queue
(From the series ‘Movies that never made it to the Big Screen’.)

In this section we focus on various popular Markovian queueing models. All of
these models, except for one, will be ‘genuine’ birth-and-death processes, where
the state space I is the set of non-negative integers Z+ = {0,1, . . .} and where the
jump rate to the right will remain a constant, qii+1 ≡ λ , while the jump rate qii−1 to
the left will depend on i. The remaining model forms a simplification of this where
the state space is reduced to a finite set {0,1, . . . ,c} for some positive integer c. As
a result, the rates qii+1 = λ for i = 0,1, . . . ,c−1, but the rate qcc+1 and subsequent
jump rates to the right vanish (in some aspects, it makes things more complicated).
We can say that the former models operate with an infinite buffer while the latter
work with a finite buffer.

First, consider models with an infinite buffer: see Figure 2.55.
As was mentioned, the jump rate to the left qii−1 = μi, i ≥ 1, may vary; popular

examples being:

(a) μi ≡ μ , a constant;
(b) μi = iμ , μi proportional to i;
(c) μi = μmin

[
i,r
]

with μ and r both constants.
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To start with, let us assume that the chain begins at time 0 from state 0 (in most
cases it will not matter).

Model (a) corresponds to the so-called M/M/1/∞ queue: Markov arrival, Markov
service, a single server, an infinite-size buffer. When it does not create a confusion,
the last symbol ∞ is often omitted, and one uses the simplified notation M/M/1.

In this model, customers join the queue in a process (A(t)) ∼ PP(λ ) and are
served one by one (you may think of a village barber shop with an unlimited wait-
ing space; the shop opens at time 0 with no customers). We call λ the arrival rate.
The service times are IID Exp(μ). After service, the customer leaves the system
(and never comes back) while the server immediately starts dealing with the next
customer (if any are in the queue) or stays idle until the next customer arrives. The
order in which customers are served is usually supposed to be FCFS (First Come
First Served), relative to customers’ arrival times; an alternative notation is FIFO
(First In First Out). However, for a number of important questions (although not
always) it does not matter.

We find interest in the process (Q(t), t ≥ 0) representing the queue length (queue
size); that is, the number of customers N(t) in the queue at time t ≥ 0 (including
the customer currently being served). A convenient formula for expressing this is:

Q(t) = A(t)−D(t), t ≥ 0. (2.153)

Here A(t) ∼ Po(λ t) gives the number of customers arrived by time t, and D(t) the
number of customers served by then.

We see that Q(t) jumps up when a new customer arrives and down when the
served customer leaves. Then (Q(t)) constitutes a birth-and-death process, with
the generator

Q =

⎛⎜⎜⎜⎜⎜⎝
−λ λ 0 0 . . .

μ −(λ + μ) λ 0
. . .

0 μ −(λ + μ) λ . . .

. . .
. . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ . (2.154)
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Model (b) corresponds to the so-called M/M/∞ queue (Markov arrival, Markov
service, infinitely many servers). Customers again arrive in a process (A(t)) ∼
PP(λ ), but upon arrival each of them gets a ‘personal’ server to be taken care
of immediately. As before, the service times of customers are IID Exp(μ). Once
again, (Q(t)) is a birth-and-death process. Here, for i customers with remaining
service times S(1), . . .,S(i) in the system, the jump i → i−1 occurs at rate iμ , as the
time of a potential jump is

min
[
S(1), . . .S(i)

]
∼ Exp(iμ). (2.155)

If no new customer arrives during this time, we replace the rate iμ by (i− 1)μ ,
otherwise (i.e. if the new customer comes before jump i → i−1), we replace i by
i+1, by virtue of the memoryless property of exponential distributions.

The corresponding generator is

Q =

⎛⎜⎜⎜⎜⎜⎝
−λ λ 0 0 . . .

μ −(λ + μ) λ 0
. . .

0 2μ −(λ +2μ) λ . . .

. . .
. . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎠ . (2.156)

Model (c) describes an r-server queue M/M/r/∞ (or, in the simplified notation,
M/M/r). Here, the barber shop employs r hairdressers: all are busy if Q(t) ≥ r, but
otherwise (i.e. when 0 ≤ Q(t) < r), (r−Q(t)) of them sit idle.

In all models, because of (2.153), the sample trajectory Q(t) stays below A(t).
We begin our analysis with (and spend most of the time on) model (a). The cor-

responding CTMC is called the M/M/1 chain. Consider the probabilities of hitting
state 0 from state i:

hi = Pi
(
hit 0

)
, i ≥ 0. (2.157)

Then h0 = 1 and (hQ) j = 0 for all j ≥ 1. That is

h0 = 1, (λ + μ)hi = λhi+1 + μhi−1, i ≥ 1. (2.158)

The general solution to (2.158) is given as

hi =

⎧⎨⎩ A+B
(μ

λ

)i
, if λ �= μ,

A+Bi, if λ = μ.

We see that if the arrival rate does not exceed the service rate: λ ≤ μ , then the
minimal non-negative solution to (2.158) must have B = 0, A = 1:

hi ≡ 1, i ≥ 0,



294 Continuous-time Markov chains

A (t)

Q (t)

Fig. 2.56

and the M/M/1 chain is recurrent. But if λ > μ then A = 0 and B = 1:

hi =
(μ

λ

)i
, i ≥ 0, (2.159)

and the chain is transient. It means that the process drifts towards +∞ (an
indefinitely growing queue)

Pi

(
lim
t→∞

Q(t) = +∞
)

= 1.

To find the equilibrium distribution, attempt the DBEs; that is πiλ = πi+1μ ,
i ≥ 0, i.e.

πi+1 =
(

λ
μ

)
πi = · · · =

(
λ
μ

)i

π0.

The normalising condition

1 = ∑
i≥0

πi = π0 ∑
i≥0

(
λ
μ

)i

= π0

(
1− λ

μ

)−1

= 1

yields that for all i = 0,1, · · ·

πi = (1−ρ)ρ i, where ρ =
λ
μ

. (2.160)

Let us summarise.

Theorem 2.9.1 For λ < μ , i.e., ρ < 1, the M/M/1 chain is positive recurrent
and reversible, with a geometric equilibrium distribution π = (πi), as in equation
(2.160). Hence, it converges to the equilibrium:

lim
t→∞

P
(
Q(t) = j

)
= (1−ρ)ρ j, (2.161)

regardless of the initial distribution.
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Also, the mean return time to 0

m0 =
1

π0q0
=

μ
λ (μ −λ )

(2.162)

gives the mean time of the server’s cycle (idle plus busy period). See Figure 2.57.
Then the mean busy period

m0 −
1
λ

=
μ

λ (μ −λ )
− 1

λ
=

1
μ −λ

. (2.163)

Finally, the mean waiting time of a customer in equilibrium

E W = E
[
E
(
W
∣∣Q)]= ∑

i≥0

E
(
W
∣∣Q = i

)
πi

= ∑
i≥0

i
μ

(1−ρ)ρ i =
λ

μ(μ −λ )
, (2.164)

and the mean sojourn time (waiting plus service)

EW +
1
μ

=
1

μ −λ
(2.165)

(which equals the mean length of the busy period).
The condition λ < μ , or ρ < 1, offers a transparent meaning: the arrival at the

queue is overpowered by the service. In other words, if the expected inter-arrival
time 1/λ , amounts to less than the expected length of the service time 1/μ then
the M/M/1/∞ queue becomes ‘stable’ and reaches an equilibrium from any ini-
tial distribution. Or, to put it differently, stability in mean implies stability almost
surely.

Now, the most surprising fact arises as a corollary of Theorem 2.8.11.

Theorem 2.9.2 Suppose that ρ < 1 and consider the M/M/1 chain (Q(t)) in
equilibrium. Then:

(i) In the representation

Q(t) = Q(0)+A(t)−D(t), (2.166)
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the departure process (D(t)) ∼ (A(t)), the arrival process. In other words,
(D(t)) ∼ PP(λ ).

(ii) For all T > 0, (Q(t + T ), t ≥ 0), the queue size process after time T is
independent of the process (D(t), 0 ≤ t < T ) counting departures prior to
time T .

Again, the surprise lies in that (D(t)) is associated with the rate λ , not μ , and, in
addition, that the queue after a given time evolves independently of the departure
process prior to this time. (So, for instance, if you previously observed a number of
rare departures, it tells you nothing about how low the queue level drops at present,
let alone how high it will be in the future. The explanation proves the same: in
equilibrium, processes (At) and (Dt) are dependent in a specific way, which creates
delicate phenomena (e.g. Qt = Q0 +At −Dt is always non-negative).

Proof The statement (i) follows formally from Theorem 2.8.11. Recall, the key
point in the proof of that theorem was twofold: (i) that process (Q(t)) under the
condition λ < μ is reversible; and (ii) the fact that the jumps up of trajectory Q(t)
become jumps down when we reverse the time. In other words, (i) if (Q̃t) is the
reverse process of (Qt), relative to time T , with

Q̃t = QT−t , and Q̃t = Q̃0 + Ãt −DTR
t , t ≥ 0,

then (Q̃t) ∼ (Qt). Next, (ii), the number of jumps, in (0,T ), in the processes (Ãt)
and (Dt) will be the same (as well as the number of jumps, in (0,T ), in processes
(DTR

t ) and (At)). Finally, given that the number of jumps, in (0,T ), in (Ãt) and

(Dt) equals n, the jump times HÃ
1 , HÃ

2 , . . . (arrivals in (Ãt , 0 ≤ t < T )) are related
to the jump times HD

1 , HD
2 , . . . (departures in (Dt , 0 ≤ t < T )) by the ‘conditional’

equation (
HD

1 , . . . ,HD
n

∣∣ n jumps in (Dt) on [0,T )
)

=
(
T −HÃ

n , . . . ,T −HÃ
1

∣∣ n jumps in (Ãt) on [0,T )
)
.

Also, the sample trajectory (Qt+T , t ≥ 0) is mirrored by a trajectory of (Q̃t , t ≤ 0).
See Figure 2.58.

But in (Q̃t), the future arrivals (Ãt , t ≥ 0) are independent of the past queue size
(Q̃t , t ≤ 0) (as usual, we set here Ã0 = 0). Hence, in the original M/M/1 chain
(Qt), the present and future queue size (Qt+T , t ≥ 0) are independent of the past
departures (D(t), 0 ≤ t < T ).

Theorem 2.9.2 is known as Burke’s Theorem. It plays an important role in the
theory of queueing networks where customers travel from one node (station) to the
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other and join various queues along their paths. In turn, the theory of queueing net-
works underpins a number of applications, notably telecommunications, computer
networks and transport network research.

For λ = μ , i.e., ρ = 1, the M/M/1 chain will be null recurrent. In fact, if (πi) is
an invariant measure, then

π0 = π1, 2πi = πi−1 +πi+1, i ≥ 1.

Hence πi = πi+1, i ≥ 0 (i.e. the measure (πi) satisfies the DBEs). So, ∑i πi = ∞
unless πi ≡ 0. In this case, Pi

(
lim
t→∞

N(t) = +∞
)

= 0 but the process lacks an equi-

librium distribution, and the queue size oscillates between 0 and ∞. For λ > μ , i.e.,
ρ > 1, the M/M/1 chain turns transient and grows indefinitely:

P

(
lim
t→∞

Qt = ∞
)

= 1, i.e. Qt
a.s.→ ∞, as t → ∞. (2.167)

ρ and His Brothers
(From the series ‘Movies that never made it to the Big Screen’.)

The analysis of models (b) and (c) moves along similar lines. The M/M/∞ model,
with infinitely many servers, is relatively straightforward. Here, the DBEs are
given by

λπi−1 = iμπi, i = 1,2, . . . ,
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implying

πi =
(

ρ i

i!

)
π0 and π0 =

(
∑
i≥0

ρ i

i!

)−1

= e−ρ , ρ =
λ
μ

.

In other words, the equilibrium distribution π = (πi) is Poisson, with parameter ρ:
for all i = 0,1, . . .

πi =
(

ρ i

i!

)
e−ρ . (2.168)

We see that, regardless of the values λ (the arrival rate) and μ (the service
rate per customer), the M/M/∞ chain remains positive recurrent and (obviously)
irreducible. Hence, we have the convergence

lim
t→∞

P(Qt = i) = πi,

regardless of the initial distribution.
So, the M/M/∞ queue always stays stable, for all λ , μ > 0.
Burke’s theorem is extended to this model in a straightforward way. As a result,

we obtain that, in equilibrium,

(i) the arrival process (At) and the departure process (Dt) forming the repre-
sentation

Qt = Q0 +At −Dt

are stochastically equivalent: (At) ∼ (Dt) ∼ PP(λ ), and
(ii) for all T > 0, (Qt+T , t ≥ 0), the queue size at and after time T , is

independent of the departure process (Dt , 0 ≤ t < T ) prior to time T .

Finally, the M/M/r/∞ chain features the DBEs

λπi−1 = iμπi, i = 1, . . . ,r,

λπi = rμπi+1, i = r,r +1, . . . ,
(2.169)

with the sole solution

πi =

⎧⎪⎪⎨⎪⎪⎩
(

ρ i

i!

)
π0, i = 1, . . . ,r,(

ρr

r!

) (
ρ i−r

ri−r

)
π0, i = r +1, . . . ,

ρ =
λ
μ

. (2.170)

We see that when ρ < r, the series ∑ j≥1 (ρ/r) j < ∞, and we have a correctly
defined ED π = (πi). Namely,

π0 =

(
1+

r

∑
i=1

ρ i

i!
+

ρr

r! ∑
j≥1

ρ j

r j

)−1

=

[
r−1

∑
i=0

ρ i

i!
+
(

ρr

r!

) (
1

1−ρ/r

)]−1

,
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and πi, i ≥ 1, are given by (2.170). Alternatively, for all i = 0,1, . . .,

πi =

[
r−1

∑
k=0

ρk

k!
+

ρr

r!

(
1− ρ

r

)−1
]−1(

ρ i∧r

(i∧ r)!

)(ρ
r

)(i−r)∧0
. (2.171)

Here, as before, a∧b stands for the minimum min[a,b].
Conditions ρ < r, or λ < rμ , mean the same: the system, on average, is able to

cope with the arriving customers.
Consequently, for ρ < r, the M/M/r/∞ chain is positive recurrent and reversible.

Again, it is obviously irreducible. In addition, Burke’s theorem still holds.
Therefore,

Theorem 2.9.3 Suppose that λ < rμ , i.e., ρ < r. Then the M/M/r/∞ chain (Q(t)) is
positive recurrent and reversible, with equilibrium distribution π given by (2.170),
(2.171). Therefore, for all initial distributions,

lim
t→∞

P(Q(t) = i) = πi, i = 0,1, . . . .

Next, in the representation

Q(t) = Q(0)+A(t)−D(t),

with Q(0) ∼ π , the departure process (D(t)) is stochastically equivalent to (A(t)),
the arrival process. In other words, in equilibrium, (D(t)) ∼ PP(λ ). Finally, for all
T > 0, (Q(t + T ), t ≥ 0), the queue process after time T is independent of the
process (D(t), 0 ≤ t < T ), counting departures before time T .

Formulas analogous to (2.161)–(2.164) can be established for both M/M/∞ and
M/M/r/∞ models; we omit the details.

So far we have considered models with infinite buffers: here all customers are
admitted to the system (but in general will have to wait for service, sometimes
in a long queue). In models with a finite buffer, the customers are not allowed in
(or considered ‘lost’) when the buffer gets full. These models are also called loss
models. The notation here is M/M/r/c: Markov arrival, Markov service, r servers
and a buffer of size c ≥ r (in other words, the number of waiting places is c− r).
So, we speak here about M/M/r/c chains. Thus the queue size Q(t), i.e. the number
of customers in the system, at time t, satisfies 0 ≤ Q(t) ≤ c; if 0 ≤ Q(t) ≤ r then
all customers are being served, while if Q(t) ≥ r then r customers are served and
Q(t)− r are waiting for service.

Consider the arrival process of admitted customers which is denoted, for simplic-
ity, by the same symbol (At). It constitutes a process ‘embedded’ in the ‘nominal’
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arrival Poisson process (N(t)) (which is also called an exogeneous arrival process).
More precisely, a customer arriving in (N(t)) is admitted if and only if, at the time
of arrival, Q(t) < c.

The diagram of a M/M/r/c chain is shown in Figure 2.59.

A simple case is where r = c = 1 (a single server, no waiting place). Here, Q(t)
takes two values: 0 (an idle server) and 1 (a busy server). The chain starting from,
say, the empty state, with Q(0) = 0, spends a random holding time S0 ∼ Exp(λ )
in this state then jumps to state 1. After the holding time S1 ∼ Exp(μ), the chain
jumps back to state 0, and so on.

Here, the DBEs are

λπ0 = μπ1, implying that

π0 =
μ

λ + μ
, and π1 =

λ
λ + μ

. (2.172)

The jump up process (A(t)), counting admitted arrivals in the M/M/1/1 chain,
spends in each state i = 1,2 . . . a holding time SA

i set as the sum Li +Ri of indepen-
dent summands, Li ∼ Exp(μ) (the service length of the ith admitted customer) and
Ri ∼ Exp(λ ) (the time till the next arrival); after that A(t) jumps to i+1. The PDF
fSA

i
of the random variable SA

i , i ≥ 1, is found by the convolution formula
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fSA
i
(x) =

∫ x

0
fLi(y) fRi(x− y) dy

=
∫ x

0
μe−μyλe−λ (x−y)dy = λ μe−λx

∫ x

0
e(λ−μ)ydy

=

⎧⎨⎩
λ μ

λ −μ
(
e−μx − e−λx), λ �= μ,

λ 2xe−λx, λ = μ.
(2.173)

The initial holding time is an exception: SA
0 ∼ Exp(λ ) (the time till the first arrival

in the empty queue). Holding times SA
0 ,SA

1 , . . . are, obviously, independent. The
process (A(t)) is not Markov, but belongs to the class of renewal processes which
possess many properties similar to CTMCs; we will investigate these processes in
a subsequent volume.

Similarly, the jump down process (D(t)) counting departures in the loss chain
M/M/1/1 spends in each state i = 0,1,2, . . . a holding time SD

i which is the sum
Ri +Li+1; the PDF of the RV SD

i coincides with that of SA
i and is given by (2.173).

(Here, SD
0 is no exception.) Again, (D(t)) forms a renewal process. Note though

that (A(t)) and (D(t)) are dependent (e.g. the term Ri contributes to both holding
times SA

i and SD
i ).

The key argument from the proof of Burke’s theorem, obviously, remains appli-
cable here: you can repeat, without any notable change, the proof of Theorem
2.9.2(i) for an M/M/1/1 chain. Thus, in equilibrium, the admitted arrival pro-
cess (A(t)) and the departure process (D(t)) are stochastically equivalent. In fact,
each of these processes in equilibrium represents a stationary version of the same
renewal process, determined by the holding time PDF of the form (2.173), com-
mon for both of them. However, they remain dependent as the above correlation
between SA

i and SD
i also appears in equilibrium.

Formulas similar to (2.168) can be derived for a general M/M/r/c chain. In fact,
the DBEs, with r ≤ c, generalise to

λπ0 = μπ1, . . . , λπr−1 = rμπr+1, . . . ,

λπr = rμπr, . . . λπc−1 = rμπc.

These equations can be easily solved. For instance, for r = c

πi =
(

ρ i

i!

)
π0, i = 0, . . . ,r, whence π0 =

(
r

∑
i=0

ρ i

i!

)−1

,

where, as before, ρ = λ/μ . Therefore, for all i = 0,1, . . . ,r,

πi =

(
r

∑
i=0

ρ i

i!

)−1(
ρ i

i!

)
. (2.174)
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These expressions are known as Erlang’s formulas. For r < c

πi =

(
r

∑
i=0

ρ i

i!
+

ρr

r!

c−r

∑
i=1

ρ i

ri

)−1

×

⎧⎪⎪⎨⎪⎪⎩
(

ρ i

i!

)
, i = 0, . . . ,r,(

ρ i

r!ri−r

)
, i = r +1, . . . ,c.

(2.175)

Again, the first half of Burke’s theorem holds true. Summarising, we obtain

Theorem 2.9.4 Let (Q(t)) be an M/M/r/c chain, with Q(t) = Q(0)+ A(t)−D(t)
where (A(t)) is the admitted arrival process and (D(t)) is the departure process.
Then:

(i) (Q(t)) is positive recurrent and reversible, with equilibrium distribution
π = (πi) of the form (2.175), and the distribution of Q(t) converges to π:
for all i = 0, . . . ,c and initial distributions,

lim
t→∞

P(Q(t) = i) = πi;

(ii) in equilibrium, (A(t)) ∼ (D(t)).

However, the independence property manifested, for M/M/1/∞ chains, Theorem
2.9.2 (ii), is absent here. This is because the future admitted arrival process
(A(t +T )−A(T ), t ≥ 0) is correlated with Q(T ), the queue size at time T .

The final theorem of this section, Theorem 2.9.5, describes the long-term pro-
portion formulas for Markovian queues (stated without proof). The assertion of
Theorem 2.9.5 is, of course, a corollary of Theorem 2.7.19.

Theorem 2.9.5 Set ρ = λ/μ . In the M/M/1/∞ chain with ρ = λ/μ < 1 and in the
M/M/r/∞ chain with ρ = λ/μ < r, for all i = 0,1, . . . ,

1
t

∫ t

0
1(Qs = i) ds

a.s.→ πi, (2.176)

where the equilibrium probability πi is determined in (2.160) and (2.171), respec-
tively. In the M/M/∞ system and in the M/M/r/c chain, with r ≤ c, for all
λ ,μ > 0 and i = 0,1, . . . ,c, relation (2.176) holds for the equilibrium probability
πi determined in (2.168), (2.174) and (2.175), respectively.

Worked Example 2.9.6 Customers arrive in a barber’s shop according to a Poisson
process of rate λ > 0. The shop has s barbers and N waiting places; each barber
works (on a single customer) provided that there is a customer to serve, and any
customer arriving when the shop is full (i.e. the numbers of customers present
is N + s) is not admitted and never returns. Every admitted customer waits in the
queue and is then served, on a first-come-first-served order (say), the service taking
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an exponential time of rate μ > 0; the service times of admitted customers are
independent. After completing the hair cut, the customer leaves the shop and never
returns.

Set up a Markov chain model for the number Xt of customers in the shop at time
t ≥ 0. Calculate the equilibrium distribution π of this chain and explain why it is
unique. Show that (Xt) in equilibrium is reversible, i.e. for all T > 0, (Xt ,0≤ t ≤ T )
has the same distribution as (Yt ,0 ≤ t ≤ T ) where Yt = XT−t , and X0 ∼ π .

Solution The chain (Xt) represents a birth-and-death process on the state space
{0,1, . . . ,N + s}, with the rates

qii+1 = λ , qii−1 =
{

μi for i = 1, . . . ,s,
μs for i = s+1, . . . ,s+N.

See Figure 2.61.

We have used here the fact that if Xk ∼ Exp (θk) are IID variables, then

min(X1, . . . ,Xl) ∼ Exp

(
l

∑
k=1

θk

)
.

So, the generator is an (N + s+1)× (N + s+1) matrix given by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2 . . . s . . . N + s

−λ λ 0 . . . 0 0 . . . 0 0
μ −(λ + μ) λ . . . 0 0 . . . 0 0
0 2μ −(λ +2μ) . . . 0 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −(λ + sμ) λ . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 0 . . . sμ −sμ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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The chain is obviously irreducible, hence there exists a unique equilibrium
distribution. To find it, try the DBEs

πiqii+1 = πi+1qi+1i, 0 ≤ i < N + s.

More precisely, we have

π0λ = π1μ, . . . , πs−1λ = sπsμ,

πsλ = sπs+1μ, . . . , πN+s−1λ = sπN+sμ.

These equations have a unique normalised solution

πn = π0 ×

⎧⎪⎪⎨⎪⎪⎩
λ n

n!μn , for n = 1, . . . ,s,

λ n

s!sn−sμn , for n = s+1, . . . ,s+N,

where

π0 =

(
s

∑
l=0

λ l

l!μ l +
λ s

s!μs

N

∑
l=1

λ l

μ l

)−1

.

The fact that (Xt ,0 ≤ t ≤ T ) has the same distribution as (Yt ,0 ≤ t ≤ T ) where
Yt = XT−t , is now checked in the standard way. So, chain (Xt) is reversible if and
only if it is in its (unique) equilibrium regime.

Worked Example 2.9.7 Consider a queue with a Poisson arrival of rate λ and IID
exponential service times, of rate μ . The queue is modified in such a way that after
being served, a customer goes away with probability (1− p) and joins the queue
with probability p, 0 < p < 1. Argue that the modified queue is equivalent to an
M/M/1 queue and determine the condition for positive recurrence. Calculate the
probability that the queue is empty in equilibrium.

Solution (sketch) Let Qt be the number of customers in the queue at time t. Then
Qt ∼ Q̃t where Q̃t stands for the number of customers in the M/M/1 queue with
arrival rate λ and service rate μ(1 − p) (provided that we start both processes
from the same initial distribution). A straightforward argument here is as follows.
We may think that the customer returning to the queue goes straight back to ser-
vice, simply continuing his previous service time. Then the total time S̃ in service
for a single customer will be the sum of a random number N of IID exponential
variables, where (N−1) ∼ Geom(1− p). This has the moment-generating function
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Eexp
(

θ S̃
)

= E

(
E

[
exp
(

θ S̃
)∣∣N])

= ∑
n≥1

P(N = n)E
[
exp (θStot)

∣∣N = n
]

= ∑
n≥1

(1− p)pn−1
(

μ
μ −θ

)n

=
1− p

p ∑
n≥1

(
pμ

μ −θ

)n

=
1− p

p
pμ

μ −θ

/(
1− pμ

μ −θ

)
=

(1− p)μ
μ −θ

/
(1− p)μ −θ

μ −θ
,

=
(1− p)μ

(1− p)μ −θ
.

which corresponds to the distribution Exp [(1− p)μ]. Hence, positive recurrence
holds when λ < (1− p)μ , and in equilibrium, the probability P(Qt = 0) = 1−
λ/[(1− p)μ].

Probable impossibilities are to be preferred
to improbable possibilities.

Aristotle (384–322BC), Greek philosopher

In Volume 1 we touched on the theory of discrete-time branching processes. The
basic model was where particles or living organisms divide and produce a num-
ber of descendents, or offspring. There exists a continuous-time counterpart of the
theory; its basics are encapsulated below.

Suppose that a cell has been placed in a biological solution at time t = 0. After
an exponential time of rate μ it is divided producing k cells with probability pk,
k = 0,1, . . ., with the mean value ρ = ∑k≥1 kpk (k = 0 means that the cell dies).
The same mechanism is applied to each of the living cells, independently.

Let Mt be the number of living cells in the solution by time t > 0. We will prove
that EMt = exp

[
tμ(ρ −1)

]
. To this end, set g(t) = EMt and apply conditioning:

g(t +u) = E
[
E
(
Mt+u

∣∣Mu
)]

= ∑
k≥1

(
kEMt

)
P(Mu = k)

=
(
E Mt

)
∑
k≥1

kP(Mu = k)

= E [Mt ] E [Mu] = g(t)g(u).

Next, for t near 0, again by conditioning:

g(t) = 1−μt + μtρ +o(t) = 1+ μt
(
ρ −1

)
+o(t).
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We see that the function g(t) is differentiable at t = 0, positive for t > 0 (since
g(t) > P

(
no division in (0, t)

)
= e−μt), satisfies the multiplicativity equation

g(t +u) = g(t)g(u), t,u ≥ 0,

and is differentiable at zero. Then g(t) = eαt , t ≥ 0, for some α ∈ R. Finally, α =
μ(ρ −1).

In a similar fashion, one can derive the differential equation for φt(s) = EsMt ,
the probability generating function of Mt . In fact, φt(s) satisfies the following
differential equation

d
dt

φt(s) = μ

(
−φt(s)+ ∑

k≥0

pk
[
φt(s)

]k)
, with φ0(s) = s. (2.177)

Indeed,

φt+h(s) = φh
[
φt(s)

]
, t,h ≥ 0.

For h near 0:

φh(s) = (1−μh)s+ μh ∑
k≥0

pksk +o(h),

and

φt+h(s) = (1−μh)φt(s)+ μh ∑
k≥0

pk
[
φt(s)

]k +o(h),

i.e.

φt+h(s)−φt(s) = hμ

(
−φt(s)+ ∑

k≥0

pk
[
φt(s)

]k)+o(h).

Dividing by h and letting h → 0 yields (2.177), the initial condition φ0(s) = s being
straightforward.

Branching processes produce examples of birth-and-death processes that are not
Poisson. For instance, assume that each cell divides into two cells (p2 = 1). Let
Nt = Mt −1 be the number of cells produced in the solution by time t. It turns out
that Nt has a geometric distribution. In fact,

P(Nt = 0) = P
(
no division in (0, t)

)
= e−μt ,

P(Nt = 1) = P
(
a single division in (0, t)

)
=

∫ t

0
μe−μs e−2μ(t−s)ds = e−2μt(eμt −1

)
,
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and in general

P(Nt = n) = P
(
n divisions in (0, t)

)
=

∫ t

0

∫ t

s1

· · ·
∫ t

sn−1

μe−μs1(2μ)e−2μ(s2−s1)

×·· ·
×(nμ)e−nμ(sn−sn−1) e−(n+1)μ(t−sn)dsn · · ·ds1

= n!e−(n+1)μt
∫ t

0
· · ·
∫ t

0
μneμ(s1+···+sn)

×1
(
s1 < · · · < sn

)
dsn · · ·ds1

= n!e−(n+1)μt
(∫ t

0
μeμsds

)n/
n! = e−(n+1)μt(eμt −1

)n
.

This indicates that, indeed, (Nt) does not constitute an inhomogeneous Poisson
process. Alternatively, the infinitesimal probability of a jump

P
(
Nt+h −Nt = 1

∣∣Nt = k) = μkh+o(h)

depends on k, the value of Nt , whereas in an inhomogeneous Poisson process it
should be of the form λ (t)h+o(h) regardless of k.

Example 2.9.8 We continue the previous theme and find an explicit representation
of φt(s) in the case of the quadratic function in (2.177). For p2 = 1, integrating the
equation

dφt(s)
dt

= −μφt(s)+ μφt(s)2, φ0(s) = s,

we get

φt(s) =
s

eμt − (eμt −1)s
, −1 ≤ s ≤ 1.

For p0 = 1/3, p2 = 2/3, integrating the equation

dφt(s)
dt

=
μ
3
−μφt(s)+

2μ
3

φt(s)2, φ0(s) = s,

we get for s ∈ (−1,1)

φt(s) =
(s−1)eμt/3 − (2s−1)
2(s−1)eμt/3 − (2s−1)

, with φt(s) →
1
2

as t → ∞.

In the case of a general quadratic polynomial, we write (2.177) in the form

d
dt

φt(s) = μ p2(φt(s)−λ1)(φt(s)−λ2), φ0(s) = s, −1 < s < 1,
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λ1 and λ2 being the roots of

x = p0 + p1x+ p2x2;

one root always equals 1. Without loss of generality we assume that λ1 ≤ λ2.

Case (a): super-critical. Here λ2 = 1 and 0 < λ1 < 1. We see that in this case
λ1 = πext, the probability of eventual extinction.

Case (b): critical. Here λ1 = λ2 = 1.
Case (c): sub-critical. Here λ1 = 1, λ2 > 1.

In cases (a) and (c)

φt(s) =
λ1(s−λ2)−λ2(s−λ1)e−μ p2(λ2−λ1)t

(s−λ2)− (s−λ1)e−μ p2(λ2−λ1)t
, t ≥ 0, −1 < s < 1.

We see that

lim
t→∞

φt(s) = λ1 =
{

πext, in case (a),
1, in case (c),

and convergence happens exponentially fast.
In case (b):

φt(s) = 1− 1− s
1+(1− s)μt(1− p1)/2

, t ≥ 0, −1 < s < 1.

Here,

lim
t→∞

φt(s) = 1,

and convergence is inverse power-like:
(
φt(s)−1

)
≈ O(1/t).

2.10 Examination questions on continuous-time Markov chains

The ν-dity of the Bad, the π-ty of the Good
(Or the Other way Around)

(From the series ‘Movies that never made it to the Big Screen’.)

Question 2.10.1 (Markov chains, Part IB, 1994, 504D)
(i) Consider the four-state continuous-time Markov chain with states 1, 2, 3, 4 and
the generator matrix

Q =

⎛⎜⎜⎝
−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

⎞⎟⎟⎠ .
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Draw the figure associated with this chain. The chain begins at state 1. Find the
probability that it is in state 1 at time t.

(ii) Consider now the five-state chain with states 1, 2, 3, 4 and 5, and the
generator matrix

Q =

⎛⎜⎜⎜⎜⎝
−3 1 0 1 1
1 −3 1 0 1
0 1 −3 1 1
1 0 1 −3 1
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ .

The chain starts at state 1. By relating this matrix to the one previously considered,
find the probability that it is in state 1 at time t.

Solution (i) The chain on four states behaves as a pair of independent Markov
chains (Xt) and (Yt), each with two states, say 0 and 1, and the generator matrix

Q =
(

−1 1
1 −1

)
.

One can think about a pair (Xt ,Yt) moving around the corners of a square [−1,1]2

with equal chances of visiting each of the two neighbouring corners. Hence, the
probability in question is written

(p11(t))
2 =
(
A+B−2t)2

.

From the conditions at t = 0 and t → ∞, A = B = 1/2. This yields the answer(
1+ e−2t

)2/
4.

(ii) The new chain adds the absorbing state 5, with absorption rate 1. Hence,

P(not in state 5 at time t) = e−t ,

regardless of the initial distribution λ . Then, by independence,

P(in the same state at time t as at time 0) =
(

e−t

4

)(
1+ e−2t)2

.

Question 2.10.2 (Markov chains, Part IIA, 1994, A201K)
(i) Consider a random walk (Xn)n≥0 on the graph shown in Figure 2.62.

At each step this process moves to a neighbouring vertex, with equal probability
for each, and independently of past moves: thus from C it moves to A, B, D or
E, each with probability 1/4. Stating clearly any general theorems to which you
appeal, show that P(Xn = A) converges as n → ∞, and determine its limit.



310 Continuous-time Markov chains

A C B

E
D

G

I

FH

Fig. 2.62

(ii) Find for the random walk (Xn)n≥0 defined in (i) the expected number of visits
to C, starting from A, before the first return to A.

Let now (Zt)t≥0 be a continuous-time Markov chain on the graph of (i) with
Q-matrix given by

qi j =
{

1 if (i, j) is an edge,
0 otherwise.

Let S denote the total time spent by (Zt)t≥0 in {C,E}, starting from B, before it
first returns to B. Show that S follows an exponential distribution and determine its
parameter.

Solution (i) For an irreducible aperiodic Markov chain with an invariant distribu-
tion π ,

Pλ (Xn = j) → π j, n → ∞,

for all states j, regardless of the initial distribution λ . In the example, the Markov
chain represents the random walk on a graph. It is irreducible and aperiodic (all
cycles being of co-prime lengths), and with equilibrium distribution π such that
πi = vi

/
∑k vk where v j is the valency of the vertex j. As the total valency ∑k vk =

28, lim
n→∞

P(Xn = A) = 2/28 = 1/14.

(ii) For an irreducible aperiodic Markov chain with an ED π ,

Ei
(
number of visits to j before returning to i

)
=

π j

πi
,

which yields the answer vC/vA = 2.
Using symmetry, it helps to consider an aggregated chain with the states

B,(C,E),(A,F),D,(I,G),H. Then all rates (C,E) → B, (C,E) → (A,F) and
(C,E) → D equal 1. Hence, for (Zt)t≥0, the time spent on each visit to (C,E)
becomes exponential, of rate ρ = 3. On each visit, there arises a probability 1/3 of
returning to B. This means the number of visits to (C,E) before returning to B is
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geometric, with parameter q = 1/3. The sum of a geometric number of indepen-
dent exponential random variables takes an exponential distribution of rate qρ , as,
e.g., the moment-generating function

Eexp

(
θ

N

∑
i=1

Xi

)
= ∑

n≥1

(1−q)n−1q

(
ρ

ρ −θ

)n

=
qρ

qρ −θ
.

Hence, S follows the exponential distribution, of rate 1.

Question 2.10.3 (Markov chains, Part IIA, 1994, A301K)
(i) A continuous-time Markov chain (Xt)t≥0 with state space {1,2,3,4,5} is
governed by the following generator matrix

Q =

⎛⎜⎜⎜⎜⎝
−3 1 0 1 1
1 −3 1 0 1
0 1 −3 1 1
1 0 1 −3 1
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ .

In the case X0 = 1, find the probability that Xt = 2 for some t ≥ 0.

(ii) For the chain described in (i), assuming that X0 �= 5, find the probability that
(Xt)t≥0 eventually visits every state.

Solution (i) From the description of the chain, the equations for hi = Pi(hit 2) are

h2 = 1, h1 = h3 =
1
3

+
1
3

h4, h4 =
2
3

h1,

resulting in h1 = 3/7 and h4 = 2/7. By symmetry, Pi(hit j) = 3/7 for any pair of
adjacent and 2/7 for any pair of opposite corners i, j.

(ii) The condition on the initial distribution λ means λ5 = 0. By symmetry, for
any such λ ,

P(visit every state) = P1(visit every state),

which in turn equals

P1(hit 2,3 and 4) = 1−P1 ({avoid 2}∪{avoid 3}∪{avoid 4}) .

By the inclusion–exclusion formula, the last term may be written

P1

(
4⋃

i=2

{avoid i}
)

= P1 ({avoid 2})+P1 ({avoid 3})+P1 ({avoid 4})

−P1 ({avoid 2 and 3})−P1 ({avoid 2 and 4})
−P1 ({avoid 3 and 4})+P1 ({avoid 2, 3 and 4}) .
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By (i), P1 ({avoid j}) = 4/7 for j = 2,4 and 5/7 for j = 3.

Next,

P1(hit 2 or 4) = 2/3 and P1(avoid 2 and 4) =
1
3
.

Then for the hitting probability h{3,4}
i := Pi(hit 3 or 4) we obtain

h{3,4}
1 =

1
3

+
1
3

h3,4
2 and h{3,4}

1 = h{3,4}
2 ,

again, by symmetry. Hence h{3,4}
1 = 1/2 and

P1 ({avoid 2 and 3}) =
1
2

= P1 ({avoid 3 and 4}) .

Finally,

P1 ({avoid 2, 3 and 4}) = P1 ({go straight to 5}) = 1/3.

Collecting all terms,

P1

(
4⋃

i=2

{avoid i}
)

=
4
7

+
5
7

+
4
7
− 1

3
− 1

2
− 1

2
+

1
3

=
6
7
,

and so,

P1(visit every state) = 1/7.

Question 2.10.4 (Markov chains, Part IB, 1995, 503G)
A spider climbs a vertical spout of height a at unit speed. At the times of a Poisson
process, with rate λ per unit time, down comes the rain and washes the spider out.
When rain begins, the spider is washed instantaneously to the bottom and straight
away, starts to climb the spout again. Suppose that the spider initially sits at the
bottom of the spout. Let T represent the time when it reaches the top and let N be
the number of times it is washed back down before it gets to the top. For θ ≥ 0 and
0 ≤ z ≤ 1, show that

E

(
e−θT zN

)
=

(λ +θ)e−(λ+θ)a

λ +θ −λ z
(
1− e−(λ+θ)a

) .

By first calculating E
(
e−θT

∣∣N = n
)
, or otherwise, determine E

(
T
∣∣N = n

)
for

each n = 0,1,2, . . ..
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Solution Let J1 be the time of the first rain. Write

g = E
(
e−θT zN)=

∫ ∞

0
λe−λ s

E

(
e−θT zN

∣∣J1 = s
)

ds

=
∫ ∞

a
λe−λ s e−θads+

⎛⎝ a∫
0

λe−λ s e−θszds

⎞⎠ g

= e−(λ+θ)a + zg
λ

λ +θ

(
1− e−(λ+θ)a

)
.

Thus,

g = e−(λ+θ)a
(

1− λ z
λ +θ

(
1− e−(λ+θ)a

))−1

.

Then E
(
e−θT 1(N = n)

)
is the coefficient at zn in the expansion of g

E

(
e−θT 1(N = n)

)
= e−(λ+θ)a

[
λ

λ +θ

(
1− e−(λ+θ)a

)]n

,

and P(N = n) is obtained when we set θ = 0

P(N = n) = e−λa
(

1− e−λa
)n

.

Next, define

gn = E

(
e−θT

∣∣N = n
)

= e−θa

[
λ
(
1− e−(λ+θ)a

)
(λ +θ)

(
1− e−λa

)]n

.

Then

d
dθ

gn = −agn +ne−θa

[
λ
(
1− e−(λ+θ)a

)
(λ +θ)

(
1− e−λa

)]n−1

×
[
− λ

(λ +θ)2

(
1− e(λ+θ)a

1− e−λa

)
+

λae−(λ+θ)a

(λ +θ)
(
1− e−λa

)] .

To find E(T |N = n) we again set θ = 0

E(T |N = n) = − d
dθ

gn

∣∣∣∣
θ=0

= a+n

(
1
λ
− a

eλa −1

)
.

Question 2.10.5 (Markov chains, Part IB, 1995, 504G)
Between each pair of the cities A, B and C there is telephone line which may be
put out of action by snowstorms. Snowstorms happen according to a Poisson pro-
cess, with rate 8 per unit time, and when one occurs, each telephone line is put out
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of action independently, with probability 1/2. When a line is out of action, it takes
a random length of time to be repaired; the duration of this repair time has expo-
nential distribution with mean 1/14 and all repairs are carried out independently.
Let {Xt , t ≥ 0} be a continuous-time Markov chain, where Xt represents the num-
ber of lines out of action at time t. Determine the expected holding times in each
state and hence, or otherwise, determine the Q-matrix of {Xt , t ≥ 0}.

Determine the long-run proportion of time when all pairs of cities may com-
municate, assuming that messages may be passed through the third city, if
necessary.

Solution The states of the Markov chain are 0, 1, 2, 3 (the number of lines not in
action), and the mean holding times are 1/7, 1/20, 1/32 and 1/42. The generator
matrix is given by

Q =

⎛⎜⎜⎝
−7 3 3 1
14 −20 4 2
0 28 −32 4
0 0 42 −42

⎞⎟⎟⎠ .

The invariant distribution π = (π0,π1,π3,π4) is unique and satisfies πQ = 0, i.e.

−7π0 +14π1 = 0,

3π0 −20π1 +28π2 = 0,

3π0 +4π1 −32π2 +42π3 = 0,

π0 +2π1 +4π2 −42π3 = 0.

This gives

π0 =
28
51

, π1 =
14
51

, π2 =
7
51

, π0 =
2

51
.

Thus the long-time proportion in question equals π0 +π1 = 14/17.

Question 2.10.6 (Part II, 314B, 1992, Stochastic Processes)
Consider a queueing system with one server in which there is a room for at most
one customer to wait in addition to the customer being served. Arriving customers
who find the waiting room full do not enter the system. The times between arrivals
of customers are independent exponential random variables of parameter λ and the
service times are independent exponential random variables of parameter μ . Write
down the Q-matrix of the continuous-time Markov chain X(t) where X(t) is the
number of customers in the system at time t.

Evaluate lim
t→∞

P(X(t) = j) for j = 0,1,2.

In the case λ = μ , calculate P(X(t) = 0|X(0) = 0) for all t ≥ 0.
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Solution Following common practice, we model the queue as a Markov chain with
the following generator matrix

Q =

⎛⎝ −λ λ 0
μ −λ −μ λ
0 μ −μ

⎞⎠ .

To find the invariant distribution, solve for π = (π0,π1,π2) with πi ≥ 0

πQ = 0, π0 +π1 +π2 = 1.

Then

λπ0 = μπ1, λπ1 = μπ2,

and π ∝ (1,λ/μ,λ 2/μ2), i.e.

π =
(

1,
λ
μ

,
λ 2

μ2

)/(
1+

λ
μ

+
λ 2

μ2

)
.

Further, by standard results, for j = 0,1,2,

lim
t→∞

P(X(t) = j) = π j =
(

λ
μ

) j
/(

1+
λ
μ

+
λ 2

μ2

)
.

Next, in the case λ = μ consider first the case λ = 1. Here

Q =

⎛⎝ −1 1 0
1 −2 1
0 1 −1

⎞⎠ .

To find the eigenvalues solve

0 = det(νI−Q)

= (ν +1)2(ν +2)−2(ν +1)

= ν(ν +1)(ν +3).

Hence, obtain the eigenvalues ν0 = 0, ν1 = −1 and ν2 = −3. By the general result

p(t) := P(X(t) = 0|X(0) = 0) = π0 +Aeν1t +Beν2t , t ≥ 0,
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we have

p(t) =
1
3

+Ae−t +Be−3t .

But p(0) = 1 and
d
dt

p(0) = −1. So

1 =
1
3

+A+B, −1 = −A−3B,

1 = 2A, A =
1
2
, B =

1
6
.

Thus

p(t) =
1
3

+
1
2

e−t +
1
6

e−3t .

Alternatively, one can solve the backward or forward equations.

Man’s unhappiness, as I construe, comes of his greatness;
it is because there is Infinite in him,

which with all his
cunning he cannot quite bury under the Finite.

T. Carlyle (1795–1881), English poet and writer

Question 2.10.7 (Markov chains, Part IIA, 1995, A301M)
(i) Suppose that buses arrive at a bus-stop as a Poisson process {Xt}t≥0 of param-
eter λ per hour, and that after an hour exactly n buses have arrived. Calculate the
conditional probabilities P(Xt = k|X1 = n) that exactly k buses, 0 ≤ k ≤ n, have
arrived at the bus-stop by time t, 0 ≤ t ≤ 1, given that n have arrived by time 1.

(ii) Consider a continuous time Markov chain {Xt}t≥0 with two states, 0 and 1.
For each t ≥ 0 and i, j ∈ {0,1}, let pi j(t) = P(Xt = j|X0 = i). Suppose that for some
T > 0 the matrix P(T ) has the form

P(T ) =
(

α 1−α
1−α α

)
.

Prove that 1/2 < α ≤ 1, and compute P(t) for all t ≥ 0.
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Solution (i) The conditional probability P(Xt = k|X1 = n) equals

P(Xt = k,X1 = n)
P(X1 = n)

=
P(Xt = k)P(X1 = n|Xt = k)

P(X1 = n)

=
P(Xt = k)P(X1−t = n− k)

P(X1 = n)
(by the Markov property)

=

[
e−λ t(λ t)k/k!

] [
e−λ (1−t)

(
λ (1− t)

)n−k
/(n− k)!

]
e−λ λ n/n!

=
(

n
k

)
tk(1− t)n−k.

That is, the conditional probabilities are binomial.

(ii) Write eT Q = P(T ) where Q =
(

−λ0 λ0

λ1 −λ1

)
is the Q-matrix, with

λ0,λ1 ≥ 0. If λ0 = λ1 = 0, then Q becomes the zero matrix, eT Q the unit matrix,
and α = 1 > 1/2.

Thus, we can assume that λ0 + λ1 > 0. Then the eigenvalues of Q equal 0 and
−
(
λ0 +λ1

)
, and the equations for the diagonal entries read

α = p00(T ) =
λ1

λ0 +λ1
+

λ0

λ0 +λ1
e−(λ0+λ1)T ,

and

α = p11(T ) =
λ0

λ0 +λ1
+

λ1

λ0 +λ1
e−(λ0+λ1)T .

We obtain that λ0 = λ1 = λ , i.e.

α =
1
2

+
1
2

e−2λT ,

whence α ∈ (1/2,1).
For general t > 0

p00(t) =
1
2

+
1
2

e−2λ t =
1
2

+
1
2

(2α −1)t/T ;

other entries being calculated similarly.

Question 2.10.8 (Markov chains, Part IB, 1996, 502G)
Patients arrive at a hospital department according to a Poisson process of rate λ .
There are plenty of junior doctors, and an arriving patient is immediately seen by
one of them. The doctor takes a random time (with mean μ−1) to deal with the
patient, after which the patient leaves the hospital with probability 1−α , but with
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probability α is referred to the consultant in charge of the department. The patients
queue for the attention of the consultant, who takes a random time (with mean
ν−1) to deal with each one. After being seen by the consultant, the patient leaves
the hospital.

Show how, under appropriate assumptions (which should be stated), the situation
may be formulated as a continuous-time Markov chain with state (r,s), where r is
the number of junior doctors busy and s the number of patients referred to the
consultant and still in the hospital. Describe the Q-matrix of the Markov chain.

Let π(r,s) be the limit, as t → ∞, of the probability of the chain being in state
(r,s) at time t. Write down the equations which the π(r,s) must satisfy, and show
that these are satisfied by

π(r,s) =
e−β β r

r!
(1− γ)γs,

for suitable positive values of β and γ , if λα < ν .

Solution Assume that the times taken by doctors and the consultant to see patients
are exponential and independent of each other and of the Poisson arrival process.
Then, by the memoryless property of the exponential distribution, the pair (r,s)
forms the state of a Markov chain whose generator matrix Q =

(
q(r,s)(r′,s′)

)
contains

the following non-zero off-diagonal entries

q(r,s)(r+1,s) = λ , r,s ≥ 0,

q(r,s)(r−1,s) = rμ(1−α), r ≥ 1, s ≥ 0,

q(r,s)(r−1,s+1) = rμα , r ≥ 1, s ≥ 0,

q(r,s)(r,s−1) = ν , r ≥ 0, s ≥ 1.

The invariance equations πQ = 0, for π = (π(r,s)), are specified as

π(r,s)
[
λ + rμ +ν1(s ≥ 1)

]
= π(r−1,s)λ1(r ≥ 1)

+π(r+1,s−1)(r +1)μα1(s ≥ 1)

+π(r+1,s)(r +1)μ(1−α)

+π(r,s+1)ν .

Substituting the suggested form yields

e−β β r

r!
(1− γ)γs(λ + rμ +ν1(s ≥ 1)

)
= e−β β r

r!
(1− γ)γs

×
(

r
β

λ +
β

r +1
1
γ

(r +1)μα1(s ≥ 1)+
β

r +1
(r +1)μ(1−α)+ γν

)
.
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We see that equality holds with β = λ/μ and γ = λα/ν . To obtain an equilibrium
distribution, it must be assumed that γ < 1.

Question 2.10.9 (Markov chains, Part IB, 1996, 503G)
Suppose that (X(t), t ≥ 0) is a continuous-time Markov chain taking values in
{0,1,2, . . .}. Define the jump chain. Describe a method of using the jump chain
to construct a sample path of X(t).

A population of individuals is subject to immigration and threat of total extermi-
nation. The number of individuals in the population at time t is a continuous-time
Markov chain. For n individuals in the population at time t then, in the short time
interval (t, t +h):

(a) the probability that they are joined by a new member is h/(n+2)+o(h);
(b) the probability that they are exterminated is h/(n+2)(n+1)+o(h);
(c) the probability that more than one incident of either kind happens is o(h).

Is state 0 recurrent? Are the other states recurrent? Justify your answers.

Solution The jump chain is made by the discrete time Markov chain observed at
the times of jumps of (X(t)). If (X(t)) operates under the Q-matrix (qi j) then the
jump chain exhibits transition probabilities p̂i j = −qi j/qii, j �= i. A sample path
of (X(t)) is then constructed by iterating the following rule: the chain spends a
random time Li ∼ Exp(−qii) in state i, independently of the history, then jumps to
state j �= i with probability −qi j/qii.

In the example given, the jump chain transition probabilities are given by⎧⎪⎨⎪⎩
p̂n,n+1 =

n+1
n+2

,

p̂n,0 =
1

n+2
.

A state i ≥ 0 achieves recurrence in the continuous-time chain if and only if it does
in the jump chain. In the jump chain this means that the return probability to state
i is 1, i.e. Pi(Ti < ∞) = 1. For i = 0

P0
(
n subsequent steps up

)
=

2
3

3
4
· · · n+1

n+2
=

2
n+2

→ 0 as k → ∞.

Hence,

P0(Ti < n) = 1− 2
n+2

→ 1, as n → ∞,

and the return probability to 0 equals 1. So, 0 gets to be a recurrent state in the
jump chain and hence also in the continuous-time one. Recurrence being a class
property, when the chain is irreducible, every state is recurrent.
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This method is, to define as the number of a class
the class of all classes similar to the given class.

B. Russell (1872–1970), English mathematician and philosopher

Question 2.10.10 (Markov chains, Part IIA, 1996, A101E)
(i) Let S and T be independent exponential random variables of parameters α and
β respectively. Set M = min{S,T}. Determine the distribution of M and show that
M is independent of the event {S < T}.

(ii) Customers enter a supermarket as a Poisson process of rate 2. There are two
salesmen near the door who offer passing customers samples of a new product.
Each customer takes an exponential time of parameter 1 to think about the new
product, and during this time occupies the full attention of one salesman. Hav-
ing tried the product, customers proceed into the store and leave by another door.
When both salesmen are occupied, customers walk straight in. Assuming that both
salesmen are free at time 0, find the probability that both end up busy at a later
time t.

Solution (i) We see that

P(M > t) = P(S > t)P(T > t) = e−(α+β )t , t ≥ 0.

Hence, M ∼ Exp(α +β ). Next,

P(S < T, M > t) = P(t < S < T )

=
∞∫

t

αe−αx e−βxdx =
α

α +β
e−(α+β )t .

On the other hand, at t = 0,

P(S < T ) =
α

α +β
,

and so

P(S < T, M > t) = P(S < T )P(M > t),

which implies independence.

(ii) There are three states: 0 (both salesmen are free), 1 (one busy, one free) and
2 (both busy). The non-zero jump rates are given as

q01 = λ , q10 = μ, q12 = λ , q21 = 2μ,
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with λ = 2, μ = 1. This leads to the generator matrix

Q =

⎛⎝ −2 2 0
1 −3 2
0 2 −2

⎞⎠ ,

with the eigenvalues 0, −2, −5. It is easy to compute that q(2)
00 = 6. Then

p00(t) = A+Be−2t +Ce−5t , t ≥ 0,

where

A+B+C = 1,

−2B−5C = −2,

4B+25C = 6.

Hence, A = 1/5, B = 2/3, C = 2/15, and

P0(both free at time t) =
1
5

+
2
3

e−2t +
2

15
e−5t ,

P0(both busy at time t) =
2
5
− 2

3
e−2t +

4
15

e−5t .

Question 2.10.11 (Markov chains, Part IIA, 1996, A201E)
(i) Let (Xt)t≥0 be an irreducible non-explosive continuous-time Markov chain with
Q-matrix Q = (qi j : i, j ∈ I) and suppose that (Xt)t≥0 has an invariant measure
ν = (νi : i ∈ I). Denote the associated jump chain by (Yn)n≥0. Fix h > 0 and set
Zn = Xnh. Explain how the transition matrices for the discrete time Markov chains
(Yn)n≥0 and (Zn)n≥0 are related to Q, and how their invariant measures are related
to ν .

(ii): (a) In the case where (Xt)t≥0 is recurrent, show that (Zn)n≥0 is also recurrent.
(b) In the case where the state space is Z+, and where qii = −λ , qii+1 = λ , find

the transition probabilities for (Zn)n≥0.
(c) In the case where the state space is Z, and where

qii−1 = i2 +1, qii = −2(i2 +1), qii+1 = i2 +1,

determine whether (Xt)t≥0 is positive recurrent.

Solution (i) If ν is an invariant measure for a non-explosive CTMC (Xt), then
νQ = 0. (Compare with Theorem 2.6.11.) Next,
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• the transition matrix for (Yn) is expressed as P̂ = (p̂i j), with p̂i j = −qi j/qii

for j �= i and p̂ii = 0, and
• the transition matrix for (Zn) gets to be P(h) = ehQ. Then the IM for (Yn)

becomes μ = (μi), with

μi = −νiqii,

and that for (Zn) is simply ν .

In fact,

• −qii(p̂i j −δi j) = qi j for all states i, j, and hence

(μ(P̂− I)) j = ∑
i

μi(p̂i j −δi j)

= ∑
i

νiqi(p̂i j −δi j)

= ∑
i

νiqi j = (νQ) j = 0,

•

(νP(h)) j = ∑
k≥0

hk

k!
(νQk) j = ν j.

(ii)(a) As i is recurrent for (Xt),
∫ ∞

0 dt pii(t) = ∞. Next, if nh ≤ t < (n+1)h then,
by the Markov property,

pii((n+1)h) ≥ e−qih pii(t) and so ∑
n≥1

pii(nh) ≥ h−1 e−qih

∞∫
0

pii(t)dt.

Hence, ∑n≥1 pii(nh) = ∞, with i recurrent for (Zn).
(b) Here, Q forms the generator matrix of a Poisson process (Nt) of rate λ .

Hence, the transition matrix P(h) = ehQ for Zn turns into the upper-triangular
matrix for increments of (Nt) in time h

P(h) =

⎛⎜⎜⎜⎝
e−hλ (hλ )e−hλ (hλ )2e−hλ /2! (hλ )3e−hλ /3! . . .

0 e−hλ (hλ )e−hλ (hλ )2e−hλ /2! . . .

0 0 e−hλ (hλ )e−hλ . . .
. . . . . . . . . . . . . . .

⎞⎟⎟⎟⎠ .

(c) Here, (Yn) constitutes the symmetric nearest-neighbour random walk on Z

that is null-recurrent. All invariant measures for (Yn) are proportional to μ = (μi)
with μi ≡ 1. Then any invariant measure for (Xt) will be proportional to ν = (νi)
where νi = −μi/qii = 1/2(i2 + 1). As ∑i∈Z νi remains finite, the chain (Xt) is
positive recurrent.
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Remark 2.10.12 It is known that

∞

∑
i=0

1
i2 +1

=
1
2

+
π
2

coth(π).

Hence, ∑i∈Z νi = π cothπ .

Question 2.10.13 (Markov chains, Part IB, 1997, 502G)
Customers join a queue according to a Poisson process with rate λ . The service
time of each customer is an exponential random variable with mean μ−1, where
λ < μ; the service times are mutually independent, and independent of the arrival
times.

(i) Quoting carefully any general theorems to which you appeal, show that the
probability of there being n or more customers in the queue at time t converges to
(λ/μ)n, as t → ∞.

(ii) If the initial distribution is invariant, calculate the expected time until the
queue becomes first empty.

Solution The number of customers in the above queue represents an irreducible
birth-and-death process (Xt) with qii+1 = λ , qii−1 = μ . From the detailed bal-
ance equations, an equilibrium distribution is geometric πi = (1 − λ/μ)(λ/μ)i

(since λ < μ). Thus the chain is positive recurrent, with π the only equilibrium
distribution. Theorem 2.8.1 states:

For an irreducible positive recurrent continuous-time Markov chain, pi j(t)→ π j

as t → ∞.

(i) Hence, regardless of the initial distribution, for all n = 1,2, . . .,

P(Xt ≤ n−1) →
(

1− λ
μ

)
∑

0≤i≤n−1

(
λ
μ

)i

= 1−
(

λ
μ

)n

,

and

P(Xt ≥ n) →
(

λ
μ

)n

.

(ii) Setting ki = Ei(hit 0) and conditioning on the first jump, we find the
following equations:

k0 = 0, ki =
1

λ + μ
+

λ
λ + μ

ki+1 +
μ

λ + μ
ki−1, i ≥ 1,
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and we are interested in the minimal non-negative solution. It is given by ki =
i/(μ −λ ), and hence

∑
i≥1

πiki =
(

1− λ
μ

)
∑
i≥1

(
λ
μ

)i i
μ −λ

=
λ

(μ −λ )2 .

Question 2.10.14 (Markov chains, Part IIA, 1997, A101J)
(i) Consider a birth-and-death process X(t) with birth rates (λk) and death rates
(μk) where μ0 = 0. Assume that the process does not explode. Write down the
forward equations for the probabilities pk(t) = P(X(t) = k), and deduce that the
probability-generating function g(s, t) = EsX(t) satisfies

∂g
∂ t

= (s−1)
(

Λ(s)− 1
s

M(s)
)

, −1 < s ≤ 1,

where Λ(s) = ∑k λk pk(t)sk and M(s) = ∑k μk pk(t)sk.
(ii) A community holds insufficient food resources to support more than N

individuals. For k members at time t, a new member joins with probability
λ (N − k)h + o(h) during the time interval (t, t + h), independently of the past
history. Each member departs during this interval with probability μh + o(h),
independently of all other members and of the past history.

Write down the generator of the associated Markov chain X(t), and show that

∂g
∂ t

= (s−1)
(

λNg− (λ s+ μ)
∂g
∂ s

)
, −1 < s ≤ 1.

Assume that X(0) = 0. Find a function h(t) such that g(s, t) = (1−h(t)+ sh(t))N

solves the above equation, and hence find the distribution of X(t).

Solution (i) The forward equations for the transition probabilities pk(t) are

d
dt

pk = −(λk + μk)pk +λk−1 pk−1 + μk+1 pk+1, k ≥ 0,

with λ−1 = 0.
For g(s, t) = EsX(t) = ∑k sk pk(t):

∑
k

sk d
dt

pk = ∑
k

(−(λk + μk)pk +λk−1 pk−1 + μk+1 pk+1)sk,

whence

∂g
∂ t

= −Λ−M + sΛ+
1
s

M = (s−1)
(

Λ− 1
s

M

)
, −1 < s ≤ 1,
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as required. If the process does not explode, the equations hold for all t ≥ 0.
(ii) Here, the rates are

λk = λ (N − k), μk = μk, k = 0,1, . . . ,N.

Consequently,

Λ(s) =
N

∑
k=0

λ (N − k)pksk = λNg−λ s
∂g
∂ s

,

and

M(s) = μ
N

∑
k=0

k pksk = μs
∂g
∂ s

.

Then from part (i)

∂g
∂ t

= (s−1)
(

λNg− (μ +λ s)
∂g
∂ s

)
.

Substituting g(s, t) = (1−h(t)+ sh(t))N , we obtain

ḣ = λ (1−h+ sh)−h(μ +λ s),

or, subsequently,

ḣ+(λ + μ)h−λ = 0, h =
λ

λ + μ
+ ce−(λ+μ)t .

With h(0) = 0, we have

h =
λ

λ + μ
(
1− e−(λ+μ)t).

We see that X(t) ∼ Bin(N,h(t)), as

EsX(t) = ∑
0≤r≤N

(
N
r

)
srhr(1−h)N−r =

(
(s−1)h(t)+1

)N
,

as suggested.

Question 2.10.15 (Markov chains, Part IIA, 1998, A301E)
(i) The Russian ice-hockey team plays the Canadian team in the Olympic finals.
Suppose that Russian goals occur according to a Poisson process with rate r > 0
and Canadian goals to a Poisson process with rate c > 0, independently of Russian
goals. Let X be the number of goals scored by the Russians before Canada scores.
Suppose that play continues forever. Find P(X = k), k = 0,1, . . ..
[Hint. Use the following formula, which we give without proof:

∫ ∞
0 ske−sds = k!]
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(ii) (a) In the model of (i), now suppose that play continues only until time t = 1.
What is P(X = 1)?

(b) Suppose that by time t = 1 Russia has scored once. What is the expected
value of the time at which the first goal of the game occurred?

Solution (i) If T gives the time of the first Canadian goal then T ∼ Exp(c), inde-
pendently of {R(t), t ≥ 0}, the Poisson process PP(r) of Russian goals. Then, for
k = 0,1, . . .,

P(X = k) = P(R(T ) = k)

= c
∫
0

∞
e−ct

P(R(T ) = k|T = t) dt = c
∫
0

∞
e−ct

P(R(t) = k) dt

=
crk

k!

∫ ∞

0
e−cttke−rtdt =

crk

k!(r + c)k+1

∞∫
0

e−ttkdt

=
c

(r + c)
rk

(r + c)k .

(ii)(a) Write P(1) for the probability in question. Then

P(1) = P(R(1) = 1, T > 1)+P(R(1) = 1, T ≤ 1)

= P(R(1) = 1)P(T > 1)+ c

1∫
0

e−ct
P(R(t) = 1|T = t) dt

= re−re−c + rc

1∫
0

te−(r+c)tdt

= re−(r+c) +
rc

(r + c)2

r+c∫
0

t1e−t1dt1 (where t1 = (r + c)t)

= re−(r+c) +
rc

(r + c)2

[
1− (r + c+1)e−(r+c)

]
.

(b) Let S stand for the time of the first Russian goal and, as before, T for the
time of the first Canadian goal. Then, conditional on R(1) = 1, S ∼ U(0,1). This
implies

P(min(S,T ) ≥ t|R(1) = 1) = (1− t) e−ct , 0 < t < 1.

Hence, the conditional density fmin(S,T )|R(1)=1 of min(S,T ) equals

e−ct + c(1− t) e−ct = e−ct(1+ c(1− t)), 0 < t < 1,
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and the conditional mean

E [min(S,T )|R(1) = 1] =
1∫

0

te−ct(1+ c(1− t)) dt =
1
c2 (e−c −1+ c).

The KGB’s π’s and the FBI’s κ’s
(From the series ‘Movies that never made it to the Big Screen’.)

Question 2.10.16 (Markov chains, Part IIA, 1999, A301E and Part IIB, 1999,
B301E)
(i) Consider a Poisson process N with rate λ . Conditional on the event {N(t) = 1},
show that the unique arrival time T of the process in the interval (0, t] is uniformly
distributed on this interval.

(ii) The rubbish bins of a certain Canadian campsite are renowned amongst bears
for their tasty morsels. Bears arrive in the campsite at the times of a Poisson process
with rate λ . After arrival, the mth bear spends a time Rm roaming for a bin, followed
by a time Sm raiding it. The vectors (Rm,Sm), m ≥ 1, are independent random vec-
tors with the same (joint) distribution. Let U(t) and V (t) be the numbers of roaming
and raiding bears, respectively, at time t, and assume that U(0) = V (0) = 0.

Let α (respectively β ) be the probability that a bear arriving at some time T ,
chosen uniformly at random from the interval (0, t), is roaming (respectively, raid-
ing) at time t. Compute P(U(t) = u,V (t) = v) in terms of α and β , and hence
show that U(t) and V (t) form independent random variables, each with a Poisson
distribution.

Show that E(U(t)) → λER1 as t → ∞.

[Hint. Conditional on {N(t) = m}, the first m arrival times have the same joint
distribution as that of the order statistics of m independent random variables which
are uniformly distributed on the interval (0, t).]

Solution (i) The condition N(t) = 1 means there was a single arrival in the interval
(0, t]. Let the arrival time be T . Then, for all 0 ≤ a ≤ t:

P(T ≤ a|N(t) = 1) = P(N(a) = 1|N(t) = 1)

=
P(N(a) = 1,N(t)−N(a) = 0)

P(N(t) = 1)

=
λae−λa e−λ (t−a)

λ te−λ t
=

a
t
.

So, T ∼ U(0, t).
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(ii) The arrival times of bears in (0, t], conditional on the event {N(t) = n}, make
up independent, uniformly distributed points in (0, t], the corresponding vectors
(Rm,Sm), 1 ≤ m ≤ n, being independent and identically distributed. Hence, at time
t each bear is roaming with probability α , raiding with probability β or has left
with probability 1−α −β , independently. By definition,⎧⎨⎩

α = P(R1 ≥ t −T ),
β = P(R1 < t −T ≤ R1 +S1),

1−α −β = P(t −T > R1 +S1),

where T ∼ U(0, t), independently of (R1,S1). We see that, for all non-negative
integers u,v with u+ v ≤ n, the conditional probability

P(U(t) = u, V (t) = v|N(t) = n) =
n!αuβ v(1−α −β )n−u−v

u!v!(n−u− v)!
.

Then the unconditional probability P(U(t) = u, V (t) = v) equals

∑
n≥u+v

P(U(t) = u, V (t) = v|N(t) = n)P(N(t) = n)

= ∑
n≥u+v

(
n!αuβ v(1−α −β )n−u−v

u!v!(n−u− v)!

)(
(λ t)ne−λ t

n!

)

=

(
(αλ t)ue−αλ t

u!

)(
(βλ t)ve−βλ t

v!

)

× ∑
n≥u+v

(
(1−α −β )λ t

)n−u−v

(n−u− v)!
e−(1−α−β )λ t

=

(
(αλ t)ue−αλ t

u!

)(
(βλ t)ve−βλ t

v!

)
.

Thus, U(t) and V (t) represent independent Poisson random variables, with means
αλ t and βλ t, respectively.

Now,

α =
t∫

0

P(R1 ≥ t − r) dr
1
t

=
1
t

t∫
0

P(R1 ≥ r) dr.

So,

lim
t→∞

αt =
∞∫

0

P(R1 ≥ r) dr = ER1,
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and

lim
t→∞

EU(t) = λER1.

Question 2.10.17 (Part II, 213B, 1991, Stochastic Processes, modified)
Suppose that λi (i ≥ 0) and μi (i ≥ 0) are positive constants. Let

Q =
(
qi j : i, j ≥ 0

)
be the generator matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−λ0 λ0 0 0 0 ·
μ0 −(M0 +λ1) λ1 0 0 ·
μ0 μ1 −(M1 +λ2) λ2 0 ·
μ0 μ1 μ2 −(M2 +λ3) λ3 ·
· · · · · ·
· · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where, for i ≥ 0, Mi = μ0 + μ1 + · · ·+ μi. Prove that the minimal Markov chain
associated with Q is regular (non-explosive) if and only if

∑
j≥1

1
λ j

j−1

∏
k=0

(
1+

Mk

λk

)
= ∞.

You may use, without proof, the following fact: a continuous-time Markov chain
(Xt) (or its generator matrix Q) is non-explosive if and only if the system

Qz = θz, z = (zi), zi ≥ 0, i = 0,1, . . . ,

has no bounded non-trivial solution for some θ > 0 (and hence for all θ > 0).

[Hint. For x > 0 and y > 0, 1+ x+ y ≤ (1+ x)ey.]

Solution A standard result says that X(t) is regular if and only if the system

Qz = θz

exhibits no bounded non-trivial solution. So, solving

i = 0 : −λ0z0 +λ0z1 = θz0,

i ≥ 1 : μ0z0 + μ1z1 + · · ·+ μi−1zi−1 − (Mi−1 +λi)zi +λizi+1 = θzi,

i.e.
i−1

∑
i=0

μizi − (Mi−1 +θ +λi)zi +λizi+1 = 0. (2.178)
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Suppose i ≥ 1. Write

i−1

∑
j=0

μ jz j − (Mi−1 +θ +λi)zi +λizi+1 = 0,

and
i−2

∑
j=0

μ jz j − (Mi−2 +θ +λi−1)zi−1 +λi−1zi = 0.

Subtracting yields

(μi−1 +Mi−2 +θ +λi−1)zi−1 − (Mi−1 +θ +λi)zi +λizi+1 −λi−1zi = 0,

and after re-arranging

(Mi−1 +θ +λi−1)(zi−1 − zi)+λi(zi+1 − zi) = 0.

Then

zi+1 − zi =
Mi−1 +θ +λi−1

λi
(zi − zi−1)

= . . .

=
i

∏
k=1

Mk−1 +θ +λk−1

λk
(z1 − z0).

Using (2.178), z1 − z0 =
θz0

λ0
, and hence

zi+1 − zi =
θz0

λ0

i

∏
k=1

Mk−1 +θ +λk−1

λk
.

Then

zi+1 = z0

(
1+

θ
λ0

i

∑
j=1

j

∏
k=1

Mk−1 +θ +λk−1

λk

)
.

The solution is bounded and non-trivial if and only if

1
λ0

∑
j≥1

j

∏
k=1

Mk−1 +λk−1 +θ
λk

< ∞,

that is,

∑
j≥1

1
λ j

j−1

∏
k=0

Mk +λk +θ
λk

< ∞.
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If this holds for some θ > 0 then, clearly,

∑
j

1
λ j

j−1

∏
k=0

(
1+

Mk

λk

)
< ∞.

Conversely, if the last inequality holds then ∑ j
1
λ j

< ∞.

Finally, as 1+ x+ y < (1+ x)ey, this implies that

∑
j

1
λ j

j−1

∏
k=0

(
1+

Mk +θ
λk

)
≤ ∑

j

1
λ j

j−1

∏
k=0

(
1+

Mk

λk

)
e

θ ∑
i

1/λi
< ∞.

The fact that was quoted in the above problem is as follows.

Theorem 2.10.18 Let (Xt) be a CTMC with a generator matrix Q and write T =
Texplo for the explosion time of (Xt). Fix θ > 0 and set zi = Ei

(
e−θT

)
. Then the

column vector z with entries zi, i ∈ I, satisfies:

(i) |zi| < 1 for all i,
(ii) Qz = θz.

Moreover, z gives a maximal solution; that is, if z̃ = (z̃i, i ∈ I) is any solution to (i)
and (ii), then

z̃i ≤ zi, for all i ∈ I.

This theorem implies that for each θ > 0 the following conditions are equivalent:

(a) Q is non-explosive;
(b) Qz = θz and |zi| < 1 for all i implies z = 0.

Proof By the Markov property of the jump chain at time n = 1, conditional on
XJ1 = k

Ei

(
e−θTexplo

∣∣XJ1 = k
)

=
∫ ∞

0
e−θuqie

−qiu du Ek

(
e
−θTexplo

)
=

qizk

qi +θ
,

and

zi = ∑
k �=i

qi p̂ikzk

qi +θ
. (2.179)

Recall that qi = −qii and qi p̂ik = qik. Then (2.179) is equivalent to

θzi = ∑
i

qikzk.
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Now suppose that z̃ also satisfies (i) and (ii). Then the induction argument implies

z̃i ≤ Ei

(
e−θJn

)
. (2.180)

Indeed, (i) implies (2.180) for n = 0 and using (2.180) for n one gets it for n+1 :

z̃i = ∑
k �=i

qi p̂ikz̃k

qi +θ
≤ ∑

k �=i

qi p̂ik

qi +θ
Ek

(
e−θJn

)
= Ei

(
e−θJn+1

)
.

By the monotone convergence theorem,

lim
n→∞

Ei

(
e−θJn+1

)
= Ei

(
e
−θTexplo

)
.

So z̃i ≤ zi.

Question 2.10.19 (Markov chains, Part IIA, 2000, A201E, part (ii))
The office of the Chair of the Department contains computer-controlled equipment
which behaves erratically. If the window blind is down at time n, the computer
raises it at time n + 1 with probability β1; if the blind is up at time n, it is lowered
with probability β2. If the light is off at time n, the computer switches it on at time
n+1 with probability λ1; if it is on, it switches off with probability λ2. Changes in
the states of blind and light are independent of one another and of earlier states.

The Chairman enters the room at time 0 and finds the blind down and light
off. What is the probability that the blind and light occupy the same states on his
departure at time n?

Determine the long run average amount of time for which both the blind is down
and the light is off.

Solution For the blind, the states are written as D (down) and U (up), and the
transition matrix (

1−β1 β1

β2 1−β2

)
.

Hence, the n-step transition probability

p(n)
DD(n) =

β2

β1 +β2
+

β1

β1 +β2

(
1−β1 −β2

)n
;

similar formulas hold for p(n)
DU, p(n)

UD and p(n)
UU. The equilibrium distribution is given

by πbl = (πbl
D ,πbl

U ) is given by

πbl
D =

β2

β1 +β2
, πbl

U =
β1

β1 +β2
.
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Similar formulas hold for the ED π li = (π li
on,π li

off) for the light (with λ instead
of β ). Finally, because of independence, we find that the joint transition probabili-
ties are the products, viz.:

p(n)
(D,On)(D,On) =

[
β2

β1 +β2
+

β1

β1 +β2

(
1−β1 −β2

)n
]

×
[

λ2

λ1 +λ2
+

λ1

λ1 +λ2

(
1−λ1 −λ2

)n
]

,

as well as joint equilibrium probabilities, viz.:

πbl,li
U,Off =

β1

β1 +β2

λ1

λ1 +λ2
.

Similarly, for the long run average amount, the answer becomes

β2

(β1 +β2)
λ2

(λ1 +λ2)
.

Question 2.10.20 (Markov chains, Part IIA, 2000, A301E and Part IIB, 2000,
B301E)
The Quality Assurance Agency for Higher Education has sent a team to investigate
the teaching of mathematics at University of Camford. As the visit progresses, the
team keeps a count of the number of complaints which it has received. We assume
that, during the time interval (t, t + h), a new complaint is made with probability
λh + o(h), while any given existing complaint is found groundless and removed
from the list with probability μh+o(h). Under reasonable conditions to be stated,
show that the number C(t) of active complains at time t constitutes a birth-and-
death process with birth rates λn = λ and death rates μn = nμ .

Derive, but do not solve, the forward system of equations for the probabilities
pn(t) = P(C(t) = n). Show that m(t) = EC(t) satisfies the differential equation
m′(t) = λ −μm(t), and find m(t) subject to the initial condition m(0) = 1.

Find the invariant distribution of the process.

Solution Assume that individual departures are independent of each other and
that arrivals and departures independent from each other. Then the conditional
probability

P
(
C(t +h)−C(t) = −1

∣∣C(t) = n
)

= μnh+o(h),
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as the first departure corresponds to the minimum of n independent exponential
random variables, i.e. occurs at an exponential time with rate μn. Then the forward

equations
d
dt

P(t) = P(t)Q become

d
dt

p0 = −λ p0 + μ p1,

d
dt

pn = λ pn−1 − (λ + μn)pn + μ(n+1)pn+1, n ≥ 1,

with the generator matrix

Q =

⎛⎜⎜⎝
−λ λ 0 0 . . .

μ −(λ + μ) λ 0 . . .

0 2μ −(λ +2μ) λ . . .

. . . . . . . . . . . . . . .

⎞⎟⎟⎠ ,

and the equation for the invariant distribution π is πQ = 0.
We can also try the detailed balance equations

πi−1λ = πiiμ, i ≥ 1,

giving

πi =
(

λ
μi

)
πi−1 = · · · =

(
λ
μ

)i π0

i!
.

That is, π0 = e−λ/μ and thus π ∼ Po (λ/μ). For m(t), the equation is

d
dt

m(t) = λ −μm(t), m(0) = 1,

whence

m(t) =
λ
μ

+
(

1− λ
μ

)
e−μt .

Markov processes specialists like to do it in a transient state.
(From the series How they do it.)

Question 2.10.21 (Markov chains, Part IIA, 2001, A301D and Part IIB, 2001,
B301D)
Let X be a continuous-time Markov chain on the state space I = {1,2} with
generator matrix

Q =
(

−β β
γ −γ

)
, where β ,γ > 0.
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Show that the transition semigroup P(t) = exp (tQ) is given by

P(t) = (β + γ)−1
(

γ +βh(t) β (1−h(t))
γ(1−h(t)) β + γh(t)

)
,

where h(t) = e−t(β+γ).

Solution The shortest way is to check that the matrix P(t) satisfies the equations
P′(t) = P(t)Q = QP(t) and invoke the theorem of uniqueness of the solution.

Question 2.10.22 (Stochastic Processes, Part II, 213G, 1993)
Jobs arrive according to a Poisson process of rate λ > 0. They get processed indi-
vidually, by a single processor, the processing times being independent random
variables, each with the exponential distribution of parameter ν > 0. After process-
ing, a job either leaves the system with probability p, 0 < p < 1, or, with probability
1− p, it is split into two separate jobs which are both sent to join the queue for
processing again. Let X(t) denote the number of jobs in the system at time t.

In the case 1 + λ/ν < 2p, evaluate lim
t→∞

P(X(t) = j), j = 0,1, . . ., and find the

expected time that the processor remains busy between two successive idle periods.
What happens if 1+λ/ν ≥ 2p?

Solution In this situation,

λ0 = λ and λi = λ +qν , μi = pν , i ≥ 1,

where q = 1− p, so γi =
λ
pν

α i−1, i ≥ 1, where α =
λ +qν

pν
.

If 1+λ/ν < 2p then α < 1, so

m = 1+
λ

pν(1−α)
< ∞ and P(X(t) = j) → γ j/m, as t → ∞.

The expected return time to 0 in this case is 1/(λπ0) = m/λ so the mean length
of the busy periods will be

(m−1)
λ

=
1

pν(1−α)
=

1
(2p−1)ν −λ

.

If 1+λ/ν ≥ 2p, the chain turns either null-recurrent or transient, so P(X(t) = i)→
0 and the mean length of the busy period becomes infinite.

Question 2.10.23 (Applied Probability, Part II, B208D, 1996)
(a) Let W (t) be the number of wasps which have landed in a bowl of soup during
the time interval (0, t], and assume that the chance of an arrival during the interval
(u,u + h) is λ (u)h + o(h) for some given function λ . Give a clear statement of
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any extra assumptions needed in order to set up W as an inhomogeneous Poisson
process with rate function λ . Show that W (t) exhibits the Poisson distribution with
mean

∫ t
0 λ (u)du.

(b) Offers X1, X2, . . . are received in sequence for the purchase of a house.
Assume that the Xi are independent random variables with common density func-
tion f and distribution function F . Declare Xn to be a record value if either n = 1
or Xn > Xi for all i < n. Find the probability that Xn represents a record value. Find
also an estimate for the probability of such a record value lying in (u,u+h) where
h is small. Neglecting all terms which are o(h), for h small, find the probability that
(u,u+h) contains a record value. Deduce that the number R(t) of record values in
(0, t] has mean −ln(1−F(t)), if F(t) < 1.

Solution (a) Suppose that λ is a ‘nice’ function (e.g. bounded and integrable on
every interval (0, t)). The assumptions on the process (W (t)) which we will use
are: W (0) = 0, and, for all t > 0:

(i) the probability P(W (u + h)−W (u) = 1) of a single arrival in (u,u + h) is
λ (u)h+o(h), uniformly in u ∈ (0, t);

(ii) the probability P(W (u+h)−W (u) ≥ 2) of a multiple arrival in (u,u+h) is
o(h) uniformly in u ∈ (0, t);

(iii) the increments W (t1)−W (t0), . . ., W (tn)−W (tn−1) are independent, for all
time points 0 = t0 < t1 < · · · < tn = t; i.e., for all k1, . . . ,kn = 0,1, . . .,

P
(
W (t j)−W (t j−1) = k j, 1 ≤ j ≤ n

)
=

n

∏
j=1

P
(
W (t j)−W (t j−1) = k j

)
.

Under these assumptions, W (t)∼ Po(Λ(t)) where Λ(t) =
∫ t

0λ (u) du. In fact, the
moment-generating function Mt(θ) = EeθW (t) is represented as

Mt(θ) = Eexp
(
θ
[
W (t1)−W (t0)

]
+ · · ·+θ

[
W (tn)−W (tn−1)

])
=

n

∏
j=1

Eexp
(
θ
[
W (t j)−W (t j−1)

])
,
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and as n → ∞ and max[t j − t j−1] → 0, for any given θ ,

n

∏
j=1

Eexp
(
θ
[
W (t j)−W (t j−1)

])
=

n

∏
j=1

[
1−λ (t j−1)(t j − t j−1)+ eθ λ (t j−1)(t j − t j−1)+o(t j − t j−1)

]
=

n

∏
j=1

[
1+(eθ −1)λ (t j−1)(t j − t j−1)+o(t j − t j−1)

]
=

n

∏
j=1

exp
[
(eθ −1)λ (t j−1)(t j − t j−1)+o(t j − t j−1)

]
→ exp

[
(eθ −1)

∫ t

0
λ (u) du

]
.

Hence, Mt(θ) = exp
[(

eθ − 1
)
Λ(t)

]
, and W (t) is a Poisson random variable

Po(Λ(t)) for all t > 0. In a similar fashion, one can show that W (t + s)−W (s) ∼
Po(Λ(t + s)−Λ(s)). Then the family (W (t), t ≥ 0) is an IPP (λ (t)).

(b) For n = 1, P
(
X1 is a record value

)
= 1, by definition. For n > 1, use

conditional expectation, given a value of Xn:

P
(
Xn is a record value

)
= P(Xn > Xi for all i = 1, . . . ,n−1)

= E1(Xn > Xi for all i = 1, . . . ,n−1)

= E
(
E
[
1
(
Xn > Xi for all i = 1, . . . ,n−1

)∣∣Xn
])

=
∫ +∞

0
f (x)F(x)n−1dx.

Next,

P
(
Xn is a record value and Xn ∈ (u,u+h)

)
=
∫ u+h

u
f (x)F(x)n−1dx = f (u)F(u)n−1h+o(h),

and

h min
[

f (x)F(x)n−1 : u ≤ x ≤ u+h
]

≤ P
(
Xn is a record value and Xn ∈ (u,u+h)

)
≤ h max

[
f (x)F(x)n−1 : u ≤ x ≤ u+h

]
.
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To find the main contributing term in the probability that (u,u+h) contains a record
value, write:

P
(
(u,u+h) contains a record value

)
= P(u < X1 < u+h)

+∑
n>1

P
(
Xn is a record value and u < Xn < u+h

)
+o(h)

= h
[

f (u)+ ∑
n>1

f (u)F(u)n−1]+o(h) =
h f (u)

1−F(u)
+o(h).

We conclude that the process of records (R(t)) is IPP(λ (t)) where rate λ (t) =
f (u)

/
(1−F(u)).

Then the expectation

ER(t) = the mean number of record values in (0, t)

=
∫ t

0
λ (u) du =

∫ t

0

f (u)
1−F(u)

du =
∫ t

0

dF(u)
1−F(u)

=
∫ t

0
dln[1−F(u)] = −ln[1−F(t)]

provided that F(t) < 1. We use the fact that F(0) = 0, hence ln
[
1−F(0)

]
= 0,

because F has a density f concentrated on (0,+∞).

Question 2.10.24 (Applied Probability, Part II, B309D, 1996)
Customers arrive in a cake shop in the manner of a Poisson process with rate λ .
The single server is ambidextrous and can serve people in batches of two (one with
each hand). That is, at the beginning of each service period, she attends the next two
people waiting; if there is only one waiting, this customer is served alone. Service
periods S are independent random variables having common moment generating
function M(θ) = Eexp(θS). Let Qn be the number of people in shop immediately
after the completion of the nth service period. Express Qn+1 in the form

Qn+1 = An +Qn −h(Qn)

for an appropriate random variable An to be defined, where h(x) = min{2,x}. Show
that Q = (Qn : n ≥ 1) is a Markov chain, and find an expression for E sAn , |s| ≤ 1.

If Q has stationary distribution π = (πi : i ≥ 0) with generating function G(s) =
∑i πisi, show that

s2G(s) = M(λ (s−1))

{
G(s)+

2

∑
i=0

(s2 − si)πi

}
, |s| ≤ 1.
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When service times are exponentially distributed with parameter 1, show that

G(s) = (1−α)
/
(1−αs),

where α = 2/(1+
√

5).

Solution Let An be the number of customers arriving in the nth service period
and Sn be the duration of the nth service period, with the cumulative distribution
function FS(t) = P(Sn < t) and moment-generating function M(θ) = EeθSn . Then,
conditional on Sn = t, the variable An has the Poisson distribution Po(λ t). Thus,
the probability-generating function

φAn(s) = E sAn = E
[
E
(
sAn |Sn

)]
=

∫ +∞

0

+∞

∑
m=0

sm (λ t)m

m!
e−λ tdFS(t)

=
∫ +∞

0
eλ t(s−1)dFS(t) = M(λ (s−1)),

which determines the distribution of An uniquely. Further, the random variables
A1,A2, . . . are IID. Next, from the description of the queue,

Qn+1 = An +Qn −h(Qn), with h(Qn) = min[2,Qn],

where An is independent of Qn (in fact, of the whole sequence Q1, . . .,Qn−1).
Therefore, (Qn) is a discrete-time Markov chain.

Moreover, if π = (πn) is a stationary distribution then, in equilibrium,

G(s) = E sQn+1 = E sAnE sQn−h(Qn)

= M(λ (s−1))

(
π0 +π1 +π2 +

+∞

∑
i=3

πis
i−2

)
,

and

s2G(s) = M(λ (s−1))

(
π0s2 +π1s2 +

+∞

∑
i=2

πis
i

)
= M(λ (s−1))

[
(s2 −1)π0 +(s2 − s)π1 +(s2 − s2)π2 +G(s)

]
= M(λ (s−1))

{
G(s)+

2

∑
i=0

(s2 − si)πi

}
,

as required.

Now assume that Sn ∼ Exp(μ), with M(θ) =
μ

μ −θ
. Then, with ρ =

λ
μ

,

M(λ (s−1)) =
μ

μ +λ −λ s
=

1
1+ρ −ρs

.
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Therefore,

G(s) =
1

(1+ρ −ρs)s2

[
G(s)+(s2 −1)π0 +(s2 − s)π1

]
.

Following the suggested form of G(s), set G(s) =
π0

1−αs
with π1 = απ0. In fact,

this corresponds to a geometric equilibrium distribution, with πi = α iπ0, i ≥ 1, and
π0 = 1−α . Then we obtain

π0

1−αs
=

1
(1+ρ −ρs)s2

[ π0

1−αs
+(s2 −1)π0 +(s2 − s)απ0

]
,

or

1 =
1

(1+ρ −ρs)s2

{
1+(1−αs)

[
s2 −1+α(s2 − s)

]}
=

1
1+ρ −ρs

(
1−αs+α −α2s+α2).

Equating coefficients in the 0th and 1st order terms in s yields a pair of (identical)
relations

1+ρ = 1+α +α2, and ρs = αs+α2s,

whence

α =
−1+

√
1+4ρ

2
.

Clearly, we need α < 1, that is, ρ < 2 (which is a necessary and sufficient condition
for existence (and uniqueness) of an ED). For λ = μ , we have ρ = 1, and

α =
√

5−1
2

, and π0 = 1−α .

Question 2.10.25 (Applied Probability, Part II, B411D, 1996)
A single bar contains N stools. Individuals enter the bar in the manner of a Poisson
process with rate λ . If a stool does remains free, then an arriving customer sits
on it. If none do, then the individual goes elsewhere. Customers stay in the bar
for independent times exponentially distributed with parameter μ . Calculate the
probability that an arriving customer finds no available stool, when the system is
in equilibrium.

When the system is in equilibrium, describe the departure process of customers
(not counting those who failed to find a vacant stool).
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Solution The system is described by a birth-and-death process on {0,1, . . . ,N},
which is a reversible CTMC. The detailed balance equations are

π0λ = π1μ, . . . ,πN−1λ = πN μ,

and are solved recurrently:

πN−1 =
μ
λ

πN , . . . ,π0 =
(μ

λ

)N
πN .

Then

πN =
[

1+
μ
λ

+ · · ·+
(μ

λ

)N
]−1

.

The departure process from the system is Poisson, of rate λ . This is Burke’s
Theorem for the loss M/M/1/N system.

All argument is against it, but all belief is for it.
(On the appearance of the spirit of a person after death)

S. Johnson (1709–1784), English lexicographer and playwright

Question 2.10.26 (Applied Probability, Part II, B412J, 1997)
Describe the application of both discrete-time and continuous-time Markov chains
to the single-server queue. Include discussions of the existence of an equilibrium
queue length, together with calculation of quantities pertaining to the queue in
equilibrium.

Solution (1) The M/M/1 queue. This is the simplest example: the inter-arrival
times are IID (Expλ ) and the service times IID (Exp μ). Here Xt , the number of
customers in the system at time t forms a continuous-time Markov chain on Z+ =
{0,1, . . .} (a birth-death process). The rates are qii+1 = λ , i ≥ 0, and qii−1 = μ ,
i ≥ 1. If

ρ =
λ
μ

⎧⎨⎩
>

=
<

1, the chain is

⎧⎨⎩
transient,
null-recurrent,
positive-recurrent.

If ρ < 1, the equilibrium distribution is geometric:

πi = ρ i(1−ρ), i ≥ 0.
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(2) The M/G/1 queue. Here, the inter-arrival times An are IID Exp(λ ) and service
times Sn are IID with a given distribution. The number Xn of customers in the queue
at the time just after the nth departure forms a discrete-time Markov chain:

Xn+1 = Xn +Yn+1 −1(Xn ≥ 1). (2.181)

Here, Yn is the number of arrivals during the nth service time; Yn is independent of
Xn and, conditional on Sn = s, Yn ∼ Po(λ s). The PGF

φY (z) = EzY = E
[
E
(
zY
∣∣S)]= E

(
eλ (z−1)S

)
= MS(λ (z−1)).

This yields that EY = λES which is again denoted by ρ .

Lemma 2.10.27 If ρ = EY < 1, the chain (Xn) is positive recurrent.

Proof Iterating (2.181), we have:

Xn = X0 +Y1 +Y2 + · · ·+Yn −n+Zn

where Zn is the number of visits to 0 by time n. Assuming X0 = 0,

E
(
Zn
/

n
)

= 1− E

(
n

∑
i=1

Yi

)/
n

= 1 − ρ + E
(
Xn
/

n
)
≥ 1−ρ > 0.

We see that EZn/n → 1/m0 where

m0 = E0(return time to 0) < ∞.

Hence, state 0 is positive recurrent. As the chain (Xn) is irreducible, it is positive
recurrent. Hence, (Xn) has a unique invariant distribution.

Lemma 2.10.28 In equilibrium, π0 = 1−ρ and

GX(z) =
(1−ρ)(1− z)GY (z)

GY (z)− z
=

(1−ρ)(1− z)MS(λ (z−1))
MS(λ (z−1))− z

.

Proof In equilibrium, Xn+1 ∼ Xn. Using this fact and the above equation, write

zGX(z) = zEzX = EzX+1 = E

(
zY zX+1(X=0)

)
= GY (z)EzX+1(X=0) = GY (z)(π0z+GX(z)−π0),

whence

GX(z) =
π0(1− z)GY (z)

GY (z)− z
.
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As z → 1,

1 = π0 lim
z→0

1− z
GY (z)− z

=
π0

1−EY
.

By L’Hopital’s rule, this equals π0/(1−π0). Therefore, π0 = 1−ρ .

(3) The G/M/1 queue. Now suppose inter-arrival times An are IID with a given
distribution, and service times Sn are IID (Exp μ). Let Xn be the number of
customers in the queue just before the nth arrival. Then (Xn) is a Markov chain:

Xn+1 = max
[
Xn −Yn +1,0

]
,

where Yn stands for the number of customers served during the nth interarrival time.
Again Yn is independent of Xn. Next, conditional on An = t, Yn ∼ Po(μt).

Using the same argument as before, one has:

GY (z) = MA(μ(z−1)), and EY = μEA = 1/ρ.

Theorem 2.10.29 If ρ < 1, Xn is positive recurrent with equilibrium distribution
πi = (1−η)η i where η is the unique root in (0,1) of η = GY (η).

Proof We have GY (0) = P(Y = 0) > 0 and GY (1) = 1. Next, G′
Y (1) = EY = 1/ρ >

1. Also, G′′(z) > 0, i.e., GY is a convex function. Hence, equation η = GY (η) has
a unique solution in (0,1). Further, P(Xn+1 = k) = P(Xn −Yn = k−1).
If π = (πi) is an equilibrium distribution then

πk = ∑
i≥0

πk+i−1 pi,

where

pi = P(i services during a typical inter-arrival time);

substituting πi = η i(1−η) gives

(1−η)ηk = ∑
i≥0

(1−η)ηk+i−1 pi.

Equivalently,

ηk = ∑
i≥0

ηk+i−1 pi, i.e. η = ∑
i≥0

η i pi = GY (η).

Question 2.10.30 (Applied Probability, Part II, B209E, 1998) (modified)
The following assertion is known as the Key Renewal Theorem for a discrete time
renewal process.
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Let S1, S2, . . . be IID positive integer-valued random variables with pk = P(S1 = k)
and set

J0 = 0, Jn = S1 + · · ·+Sn, n ≥ 1,

and

Xn = k if Jk ≤ n < Jk+1, An = {n = Jk for some k}, n = 0,1, . . . .

That is, An = {n represents a time of renewal}. Assume that the greatest common
divisor gcd (k : pk > 0) = 1. Then

lim
n→∞

P(An) =
1

E[S1]
.

(a) Prove the above assertion.
(b) How long on average must one wait to see the pattern 000100 in a random
sequence of binary digits?

Solution (a) Consider the Markov chain (Yn) on {0,1, . . .}

Yn = inf {m ≥ 0 : m+n = Jk for some k},
= time from n until next renewal, n = 1,2, . . . .

The transition probabilities are given by

P(Yn+1 = i|Yn = 0) = pi+1, i ≥ 0,

P(Yn+1 = i−1|Yn = i) = 1, i ≥ 1.

The chain becomes irreducible and aperiodic, owing to the condition that gcd (k :
pk > 0) = 1. It follows a unique equilibrium distribution

π0 =
1

E[S1]
, πk =

1
E[S1]

∑
i>k

pi, k ≥ 1,

and hence is positive recurrent. Then, as n → ∞,

P(An) = P(Yn = 0) → π0 =
1

E[S1]
.

(b) Let renewals occur when non-overlapping strings 000100 are produced. The
probability that such a string appears by time n ≥ 6 equals 1/26. On the other hand,

1
26 = P(An)+P(An−4)

1
24 +P(An−5)

1
25 .

According to the Key Renewal Theorem, as n → ∞, the right-hand side tends to

1
E[S1]

(
1+

1
24 +

1
25

)
,
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whence E [S1] = 70. In a general case where 1 occurs with probability p and 0 with
probability q,

E [S1] =
1

q5 p
(1+q3 p+q4 p).

For more results on similar problems, see: G. Blom, D. Thorburn. How many
random digits are required until given sequences are obtained? Journ. Appl.
Probab., 19 (1982), 518–531.

Question 2.10.31 (Applied Probability, Part II, B412E, 1998)
Consider an epidemic model (St , It ,Rt)t≥0 in a large population of size N = St +It +
Rt , where St denotes the number of susceptible individuals, It denotes the number
infected, and Rt denotes the number which have recovered or died. Suppose that
(St , It)t≥0 evolves as a Markov chain for which the non-zero transition rates are
given by

q(s,i)(s−1,i+1) = λ(s,i) > 0, for s ≥ 1, i ≥ 1,

q(s,i)(s,i−1) = μi > 0, for s ≥ 1, i ≥ 1,

and assume that S0 = N −1, I0 = 1.

(i) Show that (Rt)t≥0 eventually becomes constant and, for the final value R∞,
that P(R∞ > r) increases as the infection rate λ(s,i) rises, for all r ≥ 0.

(ii) In the standard epidemic model one takes

λ(s,i) = iλ
s
N

, μi = iμ for some constants λ ,μ > 0.

Give a justification for this choice of rates.
(iii) Show, in precise terms which you should make explicit, that in the limit as

N → ∞, a standard epidemic beginning with one infected individual affects
a positive proportion of the population if and only if λ > μ .

Solution (i) The transition rates guarantee that the sum St + It remains non-
increasing in t. Hence, Rt will be non-decreasing. In addition, Rt is bounded from
above: Rt ≤ N. Hence, Rt ↗ R∞, almost surely.

Lemma 2.10.32 If λ̃(s,i) ≥ λ(s,i) for all (s, i) then

P

(
R̃∞ ≥ r

)
≥ P(R∞ ≥ r) for all r > 0.

Proof Consider the jump chain on Z+×Z+ (a lattice quarter-plane), with a sample
trajectory like that in Figure 2.63.
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N

N _S (= I R+ )

Fig. 2.63

μ/(λ+μ)λ/(λ+μ)

λ/(λ+μ) μ/(λ+μ)
∼ ∼ ∼

0 1

Fig. 2.64

Here, with probability λ(s,i)/(λ(s,i) + μi), the particle jumps one unit up and one to
the right. With probability μi/(λ(s,i) + μi) it drops one unit down.

We can run the two chains corresponding to {λ(s,i)} and {λ̃(s,i)} jointly, by using
U(0,1)-IID random variables to determine transitions as shown in Figure 2.64.
(This gives yet another example of coupling of random processes.)
Then the tilde-chain always jumps up and to the right whenever the original chain
does. Hence, the trajectories of the tilde-chain lie above those of the original one.
As Ĩ∞ = I∞ = 0, the ultimate state R̃∞ ≥ R∞. Hence, the assertion of the lemma.

(ii) The choice

λ(s,i) = iλ
s
N

, μi = iμ

means that each infected individual contacts every other at rate λ and recovers or
dies at rate μ .

(iii) We begin with

Theorem 2.10.33 (a) If λ ≤ μ then for all ε > 0

P(R∞ > εN) → 0 as N → ∞.
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N_1)μ (N_1)λ Nμ

0 N

(

N 1_1

μ λ .  .  .

Fig. 2.65
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3
.  .  .

Fig. 2.66

(b) If λ > μ and we choose ε,δ > 0 so that λ (1− ε)(1−δ ) = μ then

P(R∞ > εN) ≥ δ , for all N.

Proof (a) Suppose λ ≤ μ . Take λ̃(s,i) = λ i ≥ λ si/N in the above lemma. The

continuous-time chain (Ĩt) represents a birth-and-death process on {0, . . . ,N} with
the rates presented in Figure 2.64.

That is, the jump tilde-chain constitutes a random walk with a non-positive drift.
Then, for all ε > 0, as N → ∞,

P(R∞ ≥ εN) ≤ P

(
R̃∞ ≥ εN

)
≤ P(number of jumps to the right ≥ εN) → 0.

(b) Now suppose that λ (1− ε)(1−δ ) = μ for some ε,δ > 0. Set

λ̃(s,i) = min
{ s

N
,1− ε

}
λ i ≤ λ

s
N

i.

Then, as long as S̃t ≥ N(1− ε), (Ĩt) forms a birth-and-death process with the rates
presented in Figure 2.66 where ν = λ (1− ε). So, for all N,

P(R∞ ≤ εN) ≤ P

(
R̃∞ ≤ εN

)
≤ P

(
S̃∞ ≥ (1− ε)N, number of deaths ≤ εN

)
≤ P1(hit 0) = μ/ν .
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Thus,

P(R∞ > εN) ≥ 1− μ
ν

=
λ (1− ε)−λ (1− ε)(1−δ )

λ (1− ε)
= δ .

And now, a concise summary of the Non-Euclidean Geometry
and its physical application and Einstein’s Special Relativity

Theory, all in one sentence. A half of a cottage π
plus a half of a fish π plus a half of shepherd’s π

plus a half of a steak and kidney π will not
make a full turn, but four pints might.

(From the series ‘Thus spoke Superviser’.)
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Statistics of discrete-time Markov chains

3.1 Introduction

Where are the weapons of math distraction?
(From the series ‘When they go political’.)

In this chapter we present some important facts about the statistics of discrete-time
Markov chains (DTMC) with finitely many states. The basic question arises from
observing a sample

x = xn =

⎛⎜⎝ x0
...

xn

⎞⎟⎠ ∈ In+1, (3.1)

from a DTMC (Xm), with an unknown distribution, over n + 1 subsequent time
points 0, . . . ,n: what we can say about this distribution? Typically, we are inter-
ested in parameter estimation, where the distribution P

θ of the chain depends on
a (scalar, or multi-dimensional) parameter θ , varying within a given (discrete or
continuous) set Θ (in the continuous case, a subset on the line R or in a Euclidean
space of a higher dimension). More precisely, in the DTMC setting, the transition
probability matrix P

θ , and, in some cases, also the initial probability vector λ θ ,
depend on θ , in the sense that the transition probabilities pθ

i j, and initial probabili-
ties λ θ

j , are functions of θ ∈ Θ. For definiteness, we assume the (finite) state space
I of the chain as fixed, and s will stand for the number of states |I|. Frequently,
λ θ coincides with an equilibrium distribution πθ , so that P

θ describes the chain
in equilibrium. To further simplify the matter, we often take Pθ as irreducible and
aperiodic for all θ ∈Θ, so that the chain follows the unique equilibrium distribution
πθ , with πθ = πθ Pθ , and exhibits a geometric convergence to πθ , regardless of the
initial probability vector (see Section 1.9, in particular, Theorems 1.9.2 and 1.9.3).

349
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To this end, we introduce the special notation P IA (see (3.10)). The assumption
of irreducibility and aperiodicity will become particularly useful when we look at
large samples (with n → ∞).

As in the case of independent samples, we want to estimate θ from x, i.e. to
produce a function θ̂(x) (or a sequence of functions θ̂n(xn)), called an estimator,
which provides a good approximation for θ . Here, we expect to be able to improve
the quality of approximation when n grows to infinity. However, if we get restricted
to a ‘small’, or ‘moderate’ sample size, asymptotical methods should be replaced
by more appropriate ones.

For example, in the hypothesis testing approach, we wish to make a judgement
about whether θ takes a particular value θ 0 (or is close to it), where θ 0 has been
singled out from set Θ as a result of, say, some external information. This specifies
a simple null hypothesis, H0 : θ = θ 0. Again, in the simplest case, we compare it
to a simple alternative, H1 : θ = θ 1 where θ 1 represents another singled out value.
Conveniently, the Neyman–Pearson Lemma is applicable in the case of a Markov
chain, and we can work with the likelihood ratio

fX(x,θ 1)
fX(x,θ 0)

.

Here fX(x,θ) stands for the probability mass assigned to (or the likelihood of) the
sample x. We will consider two types of likelihood:

fX(x,θ) = LX(x,θ) (a full likelihood),

and

fX(x,θ) = lX(x,θ) (a reduced likelihood).

More precisely,

LX(x,θ) = P
θ (X0 = x0, . . . ,Xn = xn) = λ θ

x0
pθ

x0x1
· · · pθ

xn−1xn
, (3.2)

which corresponds to a chain with an initial distribution λ θ , and

lX(x,θ) = P
θ(X1 = x1, . . . ,Xn = xn

∣∣ X0 = x0
)

= pθ
x0x1

· · · pθ
xn−1xn

, (3.3)

which corresponds to a chain starting from the state x0. Here X (= X(n)) stands for
a random sample from the chain (Xm) observed between times 0 and n:

X =

⎛⎜⎝ X0
...

Xn

⎞⎟⎠ . (3.4)

So, the likelihood function (3.2) corresponds to the probability distribution P
θ of

the DTMC with an initial vector λ θ , whereas (3.3) gives the conditional probability
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P
θ (X1 = x1, . . . ,Xn = xn | X0 = x0). As explained, we will often assume that in the

case of likelihood (3.2), the chain sets in equilibrium, i.e. λ θ coincides with an
equilibrium distribution πθ , for which πθ = πθ Pθ .

Then the likelihood ratio takes the form

LX(x,θ 1)
LX(x,θ 0)

or
lX(x,θ 1)
lX(x,θ 0)

.

The Neyman–Pearson Lemma says that, for all k > 0, the test with the critical
region

Ck =
{

x : fX(x,θ 1) > k fX(x,θ 0)
}

forms the most powerful among all tests of the null hypothesis H0: θ = θ 0 against
the alternative H1: θ = θ 1, of size

αk = ∑
x∈Ck

P
θ 0

(x).

That is, for any test C ∗ with

α∗ = ∑
x∈C ∗

P
θ 0

(x) ≤ αk,

the power β ∗ ≤ βk, where

β ∗ = ∑
x∈C ∗

P
θ 1

(x), βk = ∑
x∈Ck

P
θ 1

(x).

Observe the insensitivity of the Neyman–Pearson Lemma to the nature of the
parameter(s) θ . For instance, θ may be identified with the matrix of transition
probabilities P = (pi j); see (3.7). In this situation we would test the null hypothesis
H0 that the chain possesses a given transition probability matrix P0 against the
alternative H1 that another transition matrix P1 applies.

In a more general situation, with a simple null hypothesis: θ = θ 0, but a com-
posite alternative hypothesis (viz., θ ∈ Θ0 ⊂ Θ where θ 0 ∈ Θ0), we may hope to
benefit from a generalised likelihood ratio test, which belongs to the category of
goodness-of-fit tests; see Volume 1, page 256. Here, one considers the ratio

max
[

fX(x,ϑ) : ϑ ∈ Θ0
]

fX(x,θ 0)

and rejects the null hypothesis when it gets large. Equivalently, passing to
logarithms, we are interested in the difference

maxln
[

fX(x,ϑ) : ϑ ∈ Θ0
]
− ln fX(x,θ 0).
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λ B

λ A
+ λ B

1 p
AA+ p

AB ==

p
AB

λ p
AAA

p

1 p
BA+

p

p
BB

BA

BB

=1

λA

p

p
BA

AB

Fig. 3.1

To reach a correct conclusion, we would like to know the distribution of this statis-
tic; in Volume 1 it was stated that in the case of IID samples this distribution
is asymptotically χ2 (Wilks’ Theorem). But with Markov chains, an additional
investigation into this matter is needed.

An important case arises where θ constitutes the whole pair (λ ,P) (an initial
vector and a transition matrix). In a sense, this case falls into the category of non-
parametric estimation. For example, if the chain can take two states, say A and

B, then λ = (λA,λB) and P =
(

pAA pAB

pBA pBB

)
, where λA and λB = 1− λA lie in

[0,1], as well as pAA, pAB = 1− pAA and pBA, pBB = 1− pBA. We may think that
(i) the vector λ = (λA,λB) runs over a segment Σ of a straight line in a non-
negative quadrant of the plane R

2, (ii) the transition matrix P expands over a
Cartesian product of two segments, ΣA and ΣB in a non-negative orthant in R

4.
On the whole, the locus of the parameter (λ ,P) traces a three-dimensional cube
in R

6, and (say) λA, pAA, pBA ∈ [0,1] make up independent co-ordinates on Θ. See
Figure 3.1.

In general, θ = (λ ,P) will be a multi-dimensional parameter. Assume, for defi-
niteness, that the state space I is the set {1, . . . ,s}; then pairs (λ ,P) lie in a subset
R of the non-negative orthant in the Euclidean space R

M where the dimension
M = s+s2 (s for the number of entries λ j and s2 for the number of entries pi j). More
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precisely, R(= Rs) forms a (closed) set, of dimension s−1+ s(s−1) = s2 −1, as
we must take into account the linear constraints ∑s

k=1 λk = ∑s
k=1 pik = 1:

R = Rs =

{
(λ ,P) : λ = (λ j), P = (pi j),

s

∑
k=1

λk = 1, λ j ≥ 0,
s

∑
k=1

pik = 1, pi j ≥ 0, for all i, j = 1, . . . ,s

}
.

(3.5)

Geometrically, R is produced by the Cartesian product of s + 1 simplexes, each
simplex being of dimension (s−1). A simplex of dimension s is a set of points y ∈
R

s forming the locus for the inequalities y1 ≥ 0, . . ., ys ≥ 0, and (y1 + · · ·+ys)≤ a,
for some a > 0.

The interior of the set R is denoted by R int (= R int
s ) and is obtained when all

inequalities are strict:

R int (= R int
s ) =

{
(λ ,P) : λ = (λ j), P = (pi j),

s

∑
k=1

λk = 1, λ j > 0,
s

∑
k=1

pik = 1, pi j > 0, for all i, j = 1, . . . ,s

}
.

(3.6)

If we discard the initial distribution λ , the dimension of the set is reduced to
s2 − s; in this case we will use the notation P = Ps and P int = P int

s :

P(= Ps) =

{
P = (pi j) :

s

∑
l=1

pil = 1, pi j ≥ 0, for all i, j = 1, . . . ,s

}
(3.7)

and

P int(= P int
s ) =

{
P = (pi j) :

s

∑
l=1

pil = 1, pi j > 0, for all i, j = 1, . . . ,s

}
. (3.8)

So, P is given by the Cartesian product of s simplexes each of dimension s−1. The
structure of the above set R can be illustrated by means of the two-fold Cartesian
product representation

R = S×P

where S (= Ss) represents the simplex of stochastic vectors in R
s

Ss =

{
λ = (λ j) : λ j ≥ 0, j = 1, . . . ,s,

s

∑
l=1

λl = 1

}
.
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Both sets R and P can be endowed with a distance generated by the Euclidean
metrics in R

s2−1 and R
s2−s, correspondingly:

dist
(
(λ ,P),(λ ′,P′)

)
=
([

dist
(
λ ,λ ′)]2 +

[
dist

(
P,P′)]2)1/2

,

where

dist
(
λ ,λ ′)=

[
s

∑
j=1

(λ j −λ ′
j)

2

]1/2

, dist
(
P,P′)=

[
s

∑
i, j=1

(pi j − p′i j)
2

]1/2

,

and λ = (λ j), λ ′ = (λ ′
j), and P = (pi j), P′ = (p′i j).

Remark 3.1.1 Observe that if (λ ,P) ∈R int (or P ∈P int) then P = (pi j) becomes
irreducible and aperiodic and hence features a unique equilibrium distribution π =
(π j), with π = πP. Furthermore, in this case the matrix Pn =

(
p(n)

i j

)
converges to⎛⎜⎝ π1 . . . πs

... · · ·
...

π1 . . . πs

⎞⎟⎠, as n → ∞. Moreover,

∣∣∣p(n)
i j −π j

∣∣∣≤ (1−ρ)n− 1, (3.9)

where ρ = min
[
pi j : i, j = 1, . . . ,s

]
, with 0 < ρ < 1. See (1.84). We can express

this fact as

P int ⊂ P IA, where P IA =
{

P ∈ P : P irreducible and aperiodic
}

.

The set P IA will remain of considerable interest in this chapter. It can be
specified as follows:

P IA =
{

P ∈ P : min
[
p(m)

i j : i, j = 1, . . . ,s
]
> 0 for some m ≥ 1

}
. (3.10)

Remark 3.1.2 Depending on the particular problem, we may need to deal with
other subsets of sets R and P . This will be particularly relevant in Sections 3.7
and 3.8. For example, we may know a priori that our Markov chain cannot preserve
its current state, i.e. that it always jumps away from it. In other words, the transition
matrix P contains zeros on its main diagonal. In this case we can restrict ourselves
to matrices P∈Poff−diag where Poff−diag ⊂P makes up a closed set of dimension
s2 −2s:

Poff−diag =
{

P ∈ P : pii = 0, for all i = 1, . . . ,s
}
. (3.11)

In the case s = 2 (a two-state DTMC), we see that

P int = P IA.
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On the other hand, the set Poff−diag from (3.11) is reduced to a single point. In
fact, in this case the whole set P becomes a square, of relatively simple structure,
as Worked Example 3.1.3 shows.

Another type of stochastic matrix we will refer to later in this chapter are the
Hermitian, or symmetric, transition matrices P = (pi j), with pi j = p ji. Here we
use the notation Psymm ⊂ P:

Psymm =
{

P = (pi j) ∈ P : pi j = p ji, i, j = 1, . . . ,s
}
. (3.12)

The matrix P ∈ Psymm presents an obvious equilibrium distribution π with entries
πi = 1/s, i = 1, . . . ,s.

Worked Example 3.1.3 Let I be {1,2} and P be a 2×2 transition matrix:

P =
(

1− p p
q 1−q

)
,

where 0 ≤ p, q ≤ 1. Prove that P is irreducible and aperiodic if and only if 0 <

pq < 1. In other words, the set of irreducible and aperiodic matrices is described
by the condition 0 < p, q < 1. Give a description of the communicating classes of
the matrix P when the product pq = 0 or pq = 1. When is P periodic?

Solution By definition, P will be irreducible for 0 < p, q < 1, as both states
communicate and hence form a single (closed) communicating class. Aperiodicity
arises from all transition probabilities being strictly positive.

On the other hand, suppose that the product pq = 0, so either p vanishes, or q, or
both. If p = q = 0 then P = I, and each state forms a closed communicating class.
If p = 0 but q > 0 then state 1 becomes a closed and state 2 an open communicating
class. If q = 0 but p > 0 then the converse applies. If p = q = 1, the chain is irre-
ducible but periodic, with period 2. Thus, P proves to be irreducible and aperiodic
only if 0 < pq < 1.

It is convenient to fix a Lebesgue measure on the sets R and P from (3.5),
(3.7), which will allow us to integrate and consider probability density functions
on R and P . By the nature of the Lebesgue measure, it will be supported by the
interiors R int and P int specified in (3.6), (3.8). We denote an integral with respect

to this measure by
∫

dλ × dP (or
∫

dP when λ is discarded); it will be given by

the natural volume (or area) on R and P .
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To be more specific, we should fix independent coordinates on R and P . For
example, we can write

dλ ×dP = ∏
1≤ j≤s−1

dλ j × ∏
1≤i≤s

∏
1≤ j≤s−1

dpi j or dP = ∏
1≤i≤s

∏
1≤ j≤s−1

dpi j, (3.13)

which corresponds to omitting the ‘last’ entries λs and pis as they linearly depend
on the rest. Of course, here a purely subjective choice is made. In a similar way, the
Lebesgue measure can be defined on the set Poff−diag (see (3.11) and other subsets
of R and P .

Before we proceed further, it would be appropriate to comment on the contents
of the current chapter. Its character differs from Chapters 1 and 2. Our original
idea was to focus mainly on statistical methods specific to Markov chains. In our
view, the statistics of Markov chains have been shaped during recent years by the
theory of so-called hidden Markov models. They proved extremely successful in
a variety of applications such as genome analysis. However, as some of the topics
and methods discussed in Chapter 3 extend far beyond Markov chain theory, their
role in this book extends to providing a ‘training’ ground for further chapters.

Also, formally speaking, the material of this chapter has not so far been taught
in Cambridge. We have taught various parts of this material elsewhere or followed
lectures and example classes given by other colleagues. Consequently, most prob-
lems in this chapter are not from the Cambridge Mathematical Tripos. However, we
wished to follow the same plan as in other chapters, by setting problems and exam-
ples at the level which, in our opinion, would correspond to Cambridge standards.

Sometimes, in the process of studying the statistical properties of Markov
chains we can directly rely on facts and/or methods from the basic Statistics
course which focused on IID samples; see Chapters 3 and 4 of Volume 1. But
more often than not we will face the task of developing more general methods.
This forms the principal line of presentation in this chapter. Moreover, most of the
methods emerging for Markov chains will be applicable in much wider contexts
in Statistics of Random Processes and Fields. This discipline finds a broad range
of applications, including economics, finance, telecommunication and image
processing, to name a few. Learning these methods in the relatively simple case of
Markov chains should prepare the interested reader to move further, by working
on specialised books and articles. On the other hand, at our present level we will
be able to prove formally some important facts which were used without proof in
Volume 1: the amount of work for writing these proofs in the IID case comes to
almost the same as in the Markov (or even a more general) case. We hope this will
bring additional benefits to the interested reader.
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3.2 Likelihood functions, 1. Maximum likelihood estimators

The Age of Inference
(From the series ‘Movies that never made it to the Big Screen’.)

The structure of the likelihood functions (3.2) and (3.3) is clarified when we intro-
duce the statistic ni j(x), for all i, j ∈ I = {1, . . . ,s}, the occurrence number of
transition i → j in a sample x:

ni j(x) =
n

∑
m=1

1(xm−1 = i,xm = j),

the number of pairs (xm−1,xm) with xm−1 = i, xm = j.
(3.14)

Then the likelihood functions Lθ (x) and lθ (x) in (3.2) and (3.3) are written as

L(x,θ) = λ θ
x0 ∏

1≤i, j≤s

(
pθ

i j

)ni j (full), and l(x,θ) = ∏
1≤i, j≤s

(
pθ

i j

)ni j (reduced). (3.15)

From now on, the argument x in ni j(x) and subscript X in LX(x,θ) and lX(x,θ)
will be omitted. Observe that ∑1≤i, j≤s ni j = n.

In this regard, the following definition seems natural. We call a function T (x)
(in general, with vector values) a sufficient statistic (for θ ) if, for all samples x, the
conditional probability P

θ (X = x|T (X) = t) does not depend on θ ∈ Θ, where t
stands for the value of the statistic T at x: t = T (x). Formally,

P
θ1(X = x | T (X) = t) = P

θ2(X = x | T (X) = t), for all θ1,θ2 ∈ Θ. (3.16)

Then the factorisation criterion holds: T is sufficient for θ if and only if the like-
lihood fX(x,θ) can be written as a product g(T (x),θ)h(x) for some functions g
and h where h(x) does not depend on θ . The proof repeats that given for (discrete)
IID samples (see Volume 1, page 211).

Example 3.2.1 A sufficient statistic (actually a vector), in the case of likelihoods
(3.2) is given by

(
x0,{ni j}

)
(or {ni j} and in the case of (3.3)) where {ni j} is the

collection of occurrence numbers in x.

Another property worth mentioning is unbiasedness. An estimator θ̂(x) of the
parameter θ is called unbiased, if, for all θ ∈ Θ, the expected value E

θ θ̂(X) under
the probability distribution P

θ coincides with θ . This definition applies equally
when θ is a scalar or a multi-dimensional parameter.

Example 3.2.2 Consider the likelihood (3.15), where λ θ = πθ , the equilibrium
distribution for the transition matrix Pθ . We will assume that the whole matrix P
forms the parameter θ = P, and omit the superscript θ from the notation P

θ and
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E
θ . Then ni j/n provides an unbiased estimator for the probability P(Xk−1 = i,Xk =

j) = πi pi j. In fact,

E

[
ni j(X)

n

]
=

(
1
n

)
E

[
n

∑
k=1

1(Xk−1 = i,Xk = j)

]

=
1
n

n

∑
k=1

E [1(Xk−1 = i,Xk = j)]

=
1
n

n

∑
k=1

P(Xk−1 = i,Xk = j)

= πi pi j. (3.17)

We know, from the statistics of IID samples, that a powerful technique lies in
considering maximum likelihood estimators (MLEs). This also works for Markov
chain samples. However, one should be careful: even the definition of an MLE may
require a subtle analysis.

The definition of a MLE for Markov samples proves similar to that for IID
samples: a MLE θ ∗(x) for a parameter θ satisfies

θ ∗(x) =

⎧⎨⎩
argmax

θ
L(x,θ) (full likelihood),

argmax
θ

l(x,θ) (reduced likelihood).
(3.18)

As in the case of IID samples, it often turns out more convenient to maximise
the log-likelihoods L (x,θ) = lnL(x,θ) and �(x,θ) = lnl(x,θ). In this section,
the parameter θ is taken to be the whole transition matrix P, and the initial vec-
tor λ coincides with π , the equilibrium distribution. Thus, the full likelihood is
defined by

L(x;P) = πx0

n

∏
k=1

pxk−1xk , (3.19)

and the corresponding log-likelihood by

L (x,P) = lnπx0 +
n

∑
k=1

lnpxk−1xk , (3.20)

where π = (πi, i ∈ I) constitutes the equilibrium distribution for the matrix P. The
reduced likelihood is given by

l(x,P) =
n

∏
k=1

pxk−1xk , (3.21)
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and its log-likelihood as

�(x,P) =
n

∑
k=1

lnpxk−1xk . (3.22)

For instance, in the context of Worked Example 3.1.3, the transition matrix is

P =
(

1− p p
q 1−q

)
, so pii =

{
1− p, i = 0,

1−q, i = 1,
where 0 ≤ p, q ≤ 1, (3.23)

and the equilibrium distribution π = (π0,π1) is

π0 =
q

p+q
, π1 =

p
p+q

. (3.24)

Sample vectors x show all entries x j = 0 or 1, 0 ≤ j ≤ n. Then (3.19) becomes

L =
(

1
p+q

)
px0+n01(1− p)n00q1−x0+n10(1−q)n11 (3.25)

while (3.21) reads

l = pn01(1− p)n00qn10(1−q)n11 . (3.26)

For brevity, the reference to argument x and/or parameter P in L(x,P), and l(x,P)
is often omitted.

Worked Example 3.2.3 (i) Let (Xm) be a two-state DTMC in equilibrium, with
stochastic matrix P of transition probabilities (see (3.23)), where 0 < q, p < 1.
Calculate the covariance Cov(Xj,Xj+1) = E(XjXj+1) − E(Xj)E(Xj+1) and the
correlation coefficient

ρ = Corr(Xj,Xj+1) =
Cov (Xj,Xj+1)√
VarXj

√
VarXj+1

, (3.27)

as functions of q and p.

In some applications, parameters of interest could be p + q and σ = |p− q|;
re-write matrix P in terms of parameters p+q and σ .

(ii) Prove that Cov(Xj,Xj+k) = ρk, for all k ≥ 1.

Solution (i) The equilibrium distribution π takes the form

π0 =
q

p+q
, π1 =

p
p+q

,
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which can be readily verified. Then

Cov(Xj,Xj+1) = E(XjXj+1)−E(Xj)E(Xj+1)

= P(Xj = Xj+1 = 1)−P(Xj = 1) P(Xj+1 = 1)

= π1 p11 −π2
1

=
p

p+q
(1−q)− p2

(p+q)2 =
pq

(p+q)2 (1− p−q).

Next,

VarXj = E(X2
j )−

(
E(Xj)

)2 = E(Xj)−
(
E(Xj)

)2 = π1 −π2
1

=
p

p+q
− p2

(p+q)2 =
pq

(p+q)2 ,

which is also equal to Var Xj+1 as the chain sits in equilibrium. So,√
VarXj

√
VarXj+1 = pq

/
(p+q)2 = π1 −π2

1 ,

and

ρ = Corr(Xj,Xj+1) = 1− p−q.

Then: (a) if p > q then σ = p−q, and

P =

⎛⎜⎝ 1+ρ −σ
2

1−ρ +σ
2

1−ρ −σ
2

1+ρ +σ
2

⎞⎟⎠ and π =
(

1−ρ −σ
2(1−ρ)

,
1−ρ +σ
2(1−ρ)

)
;

(b) if p < q then σ = q − p, and the matrix P is obtained from the former by
swapping the rows and π by exchanging the entries.

(ii) Such direct calculations happen to be cumbersome and most often lead to
hard-to-detect errors. To circumvent this obstacle, observe that the characteristic
polynomial det

(
P−κI

)
of matrix P from (3.23) reads

(1− p−κ)(1−q−κ)− pq

with roots κ = 1 and κ = 1− p− q = ρ, being the eigenvalues of P. In addition,
we know that π = (π0,π1) forms the row eigenvector of P corresponding to the
eigenvalue 1. In other words, the expression

Corr(Xj,Xj+1) =
π1 p11 −π2

1

π1 −π2
1

= 1− p−q

involving (a) the bottom right entry p11 of matrix P and (b) the right entry π1 of the
row eigenvector π with eigenvalue 1, yields the other eigenvalue of P. This holds
for any 2×2 stochastic matrix P.
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Now, obviously,

Corr(Xj,Xj+k) =
Cov(Xj,Xj+k)

VarXj
=

π1 p(k)
11 −π2

1

π1 −π2
1

,

where p(k)
11 makes up the bottom right entry of the stochastic matrix Pk, the vector

π again being the eigenvector of Pk with the eigenvalue 1. Thus, Corr(Xj,Xj+k)
must be equal to the other eigenvalue of Pk, the latter being nothing but ρk.

We proceed with a discussion of the correctness of the definition of the MLE as
a solution to the maximum likelihood equation (3.18). For definiteness, assume that
the parameter θ is P, the transition matrix. It is represented by a point in the set
P determined in (3.7). Recall the assumption that the matrix P is irreducible and
aperiodic: P ∈ P IA.

We have seen earlier that the MLE p∗i j of the transition probability pi j in reduced
likelihood l(x,P) is easily derived:

p∗00 =
n00

n00 +n01
, p∗01 =

n01

n00 +n01
, p∗10 =

n10

n10 +n11
, p∗11 =

n11

n10 +n11
.

However, the analysis of the MLE in full likelihood L(x,P) turns out to be far more
involved, and at present has been formally completed only for a DTMC with two
states. We present the related calculations in Example 3.2.4.

Example 3.2.4 Consider a two-state DTMC in equilibrium, with transition matrix
P as in (3.23), where q + p > 0. This leads to the unique equilibrium distribu-
tion specified in (3.24). We assume that n > 1: that is, we consider at least three
observations. In terms of the occurrence numbers, n00 +n01 +n10 +n11 > 1.

To find a MLE of θ = P for the likelihood L in (3.25), we need to find a maxi-
mum point P of the RHS in (3.25) in p and q, 0 ≤ p,q ≤ 1, p + q > 0. We begin
with a degenerate case where n00(x0 + n01)(1− x0 + n10)n11 = 0: that is, at least
one transition did not occur in x.

First, assume that x0 + n01 = 0. Then, clearly, x j = 0 for all j = 0, . . . ,n, hence
n00 = n, 1− x0 +n10 = 1, n11 = 0, and

Lθ =
q

p+q
(1− p)n.

Obviously, p = 0 yields a maximum value Lθ = 1, for all 0 < q < 1. In other words,
the MLE turns out non-unique with the form

P =
(

1 0
q 1−q

)
, 0 < q < 1, (3.28)

which specifies 0 as an absorbing state. The symmetric case 1− x0 + n10 = 0 is
treated in the same fashion.
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If (x0 +n01)(1−x0 +n10) > 0, but n00 = n11 = 0, then the (unique) MLE is found
at p = q = 1

P =
(

0 1
1 0

)
(3.29)

(a deterministic jump to the other state).
Next, assume that (x0 +n01)(1− x0 +n10) > 0, but n00 = 0 and n11 ≥ 1. Then

Lθ =
1

p+q
px0+n01 q1−x0+n10(1−q)n11 .

We easily see that to get a maximum of Lθ , we should take the greatest possible
value of p, i.e. p = 1. Next, the maximum in q does not occur at the boundary value
q = 0 or 1, where Lθ vanishes, but at an interior point q ∈ (0,1). To find this point,
take the logarithm lnLθ , substitute p = 1 and differentiate with respect to q:

∂
∂q

L θ
∣∣∣∣

p=1
=

∂
∂q

lnLθ
∣∣∣∣

p=1
= − 1

1+q
+

1− x0 +n10

q
− n11

1−q
. (3.30)

The equation ∂ lnLθ /∂q
∣∣

p=1 = 0 yields a quadratic equation for q:

−(n10 +n11 − x0)q2 − (1+n11)q+1− x0 +n10 = 0,

with the solutions

q± =
−(n11 +1)±

√
(n11 +1)2 +4(n10 +n11 − x0)(1− x0 +n10)

2(n10 +n11 − x0)
, (3.31)

of which we take q+, with the + sign in front of the square root. So, in the case
under consideration, the MLE becomes unique:

P =
(

0 1
q+ 1−q+

)
. (3.32)

The symmetric case where n11 = 0 and n00 ≥ 1 is analysed similarly.
Now consider the general case where n00(x0 + n01)(1− x0 + n10)n11 > 0. The

full likelihood function

(p,q) �→ the RHS of (3.25)

is continuous on [0,1]× [0,1]\{(0;0)}, the closed unit square less the origin, and
is extended by continuity to the value 0 at the origin. On the boundary ∂

(
[0,1]×

[0,1]
)

= {0 ≤ p,q ≤ 1 : p(1− p)q(1−q) = 0}, this function drops to 0, hence its
maximum lies in the open square (0,1)× (0,1).

Furthermore, if we show that the stationarity equations

∂
∂ p

L θ =
∂
∂q

L θ = 0
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exhibit a unique solution (in (0,1)× (0,1)) then they will yield a (unique) global
maximum, i.e. the (uniquely determined) MLE.

So, take the logarithm and differentiate. The stationarity equations read

x0 +n01

p
− n00

1− p
=

1
p+q

=
1− x0 +n10

q
− n11

1−q
, (3.33)

or, equivalently,

(x0 +n01 −1+n00)p2 −
[
x0 +n01 −1

−(x0 +n01 +n00)q
]

p− (x0 +n10)q = 0,
(3.34)

(−x0 +n10 +n11)q2 −
[
− x0 +n10

−(1− x0 +n10 +n11)p
]
q− (1− x0 +n10) p = 0.

(3.35)

Writing these equations in the standard notation

Ap2 +Bpq+Cq2 +Dp+Eq+F = 0,

one observes that B2 > 4AC (which equals 0 in both equations); this fact indicates
that each of the equations defines a hyperbola in the (p,q)-plane. It suffices to
establish that these hyperbolas cannot have more than one common point in the
open square (0,1)× (0,1) (they exhibit at least one point of intersection as the
maximum of L is achieved in (0,1)× (0,1)).

As a first useful remark notice that only one branch of each of the hyperbolas
crosses (0,1)× (0,1). In fact, assuming that x0 +n01 +n00 > 1, the equation (3.34)
is solved, for p, by

p± =
1

2(x0 +n01 −1+n00)

[
x0 +n01 −1− (x0 +n01 +n00)q

±
((

x0 +n01 −1− (x0 +n01 +n00)q
)2

+4(x0 +n01 −1+n00)(x0 +n10)q
)1/2]

=
−b±

√
b2 −4ac

2a
, (3.36)

where
a = x0 +n01 −1+n00,

b = −
(

x0 +n01 −1− (x0 +n01 +n00)q
)
,

c = −(x0 +n10)q.

⎫⎪⎬⎪⎭ (3.37)

To check this remark, suppose that 0 < q < 1. Then the coefficients a, b, c in (3.36),
(3.37) satisfy the following inequalities.
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(a) The discriminant b2 −4ac is non-negative. This holds because n10 +n01 ≥
1.

(b) The plus-solution p+ =
(
−b+

√
b2 −4ac

)/
(2a) from (3.36) lies in (0,1),

or, equivalently, 0 < −b +
√

b2 −4ac < 2a. The left bound here is true as
4ac < 0, while the right bound holds because q is chosen to be > 0.

(c) The minus-solution p− =
(
− b −

√
b2 −4ac

)/
(2a) from (3.36) is ≤ 0,

which is straightforward to show.

This yields a unique solution in p for any q ∈ (0,1) for equation (3.34) when x0 +
n01 + n00 > 1, meaning that the first hyperbola features a single branch crossing
the open square (0,1)×(0,1). A similar argument works for the second hyperbola,
under the assumption that −x0 +n10 +n11 > 0.

Thus, we set

g(q) =
−b+

√
b2 −4ac

2a
, with g(q) ∈ (0,1) for 0 < q < 1,

and define h(p) in a symmetric fashion, via the equation (3.35). We are interested
in the solution (p∗,q∗), 0 < p∗,q∗ < 1, to

p∗ = g(q∗), q∗ = h(p∗), or p∗ = g◦h(p∗), q∗ = h◦g(q∗). (3.38)

It is possible to specify two open sub-intervals J,K ⊂ (0,1), where the values of
p∗ and q∗ can be confined in terms of the coefficients in (3.34)–(3.37):

J =
(

x0 +n01 −1
x0 +n01 −1+n00

,
x0 +n01

x0 +n01 +n00

)
and

K =
(

−x0 +n10

−x0 +n10 +n11
,

1− x0 +n10

1− x0 +n10 +n11

)
.

So, we claim that

(i) if p ∈ (0,1), then h(p) ∈ K,
(ii) if q ∈ (0,1), then g(q)∈ J, which implies that solutions to (3.38) must obey

(p∗,q∗) ∈ J×K. (3.39)

To verify (i), pick p̃ ∈ (0,1) and set q̃ = h(p̃) and r = p̃/(p̃+ q̃), with 0 < q̃ < 1
and 0 < r < 1. Observe that p̃, q̃ and r obey the RHS of (3.33), viz.

1− r
q̃

=
1− x0 +n10

q̃
− n11

1− q̃
,

whence

q̃ =
−x0 +n10 + r

−x0 +n10 +n11 + r
∈ K.

A similar argument yields (ii).
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Next, we should check that, unless n01 = 1− x0 or n10 = x0, the following two
assertions hold true:

(iii) if p ∈ (0,1), then h′(p) ∈ (0,1),
(iv) if q ∈ (0,1), then g′(q) ∈ (0,1).

To check (iv), we differentiate, in q, (3.34):

g′(q) =
x0 +n01 − (x0 +n01 +n00)g(q)

2g(q)(x0 +n01 +n00 −1)+(x0 +n01 +n00)q− (x0 +n01 −1)
.

Then pick q̃ ∈ (0,1) and assume that g′(q̃) �∈ (0,1); that is, 1
/

g′(q̃) ≤ 1, or,
equivalently,

2g(q̃)(x0 +n01 +n00 −1)+(x0 +n01 +n00)q̃− (x0 +n01 −1)
≤ x0 +n01 − (x0 +n01 +n00)g(q̃).

Owing to the fact that g(q̃) ∈ J, we see that

2(x0 +n01 −1)(x0 +n01 +n00 −1)
x0 +n01 +n00 −1

+(x0 +n01 +n00)q̃− (x0 +n01 −1)

≤ x0 +n01 −
(x0 +n01 +n00)(x0 +n01 −1)

x0 +n01 +n00 −1
,

or equivalently,

(x0 +n01 +n00)q̃+(x0 +n01 −1) ≤ n00

x0 +n01 +n00 −1
.

So, unless x0 + n01 = 1, the LHS remains > 1, which leads to a contradiction.
Thus, assertion (iv) holds whenever n01 > 1− x0. In a similar way, assertion (iii)
holds whenever 1− x0 +n10 > 1, i.e. n10 > x0.

One can now finish the analysis of (3.33), (3.34) and (3.35). To start with, let
x0 +n01 and 1−x0 +n10 be > 1. Assume two distinct solutions of (3.38) are found,
(p∗1,q

∗
1) and (p∗2,q

∗
2), both from (0,1)× (0,1): in fact, from J × K (cf. (3.39)).

Suppose, for example, that p∗1 < p∗2. Then applying Rolle’s Theorem yields that
there exists p̃ ∈ J with

g′(h(p̃))h′(p̃) = 1.

But this contradicts the fact that both h′(p̃) and g′(h(p̃)) are < 1. The case
where q∗1 < q∗2 is treated in a similar fashion. Thus, in the case where x0 + n01 >

1 and 1 − x0 + n10 > 1, (3.33), (3.34) and (3.35) have a unique solution in
(0,1)× (0,1).

It remains to consider border cases where x0 + n01 or 1− x0 + n10 equal 1. For
x0 + n01 = 1, the value 1− x0 + n10 equals 1 or 2 (the possibility 1− x0 + n10 = 0
was considered earlier). The above argument then should be modified and becomes
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somewhat longer and technically more involved, although follows the same idea.
We omit this case from the discussion.

Unfortunately, there exists no convenient formula for the MLE

Pθ =
(

1− p∗ p∗

q∗ 1−q∗

)
in a general situation. A number of authors have produced results of numerical
calculations, for different examples of sample vector x. For instance, with n = 15
and xT = (0111001010000101), the MLE in the full likelihood is p∗ = 0.5329,
q∗ = 0.6893, whereas the MLE in the reduced likelihood p∗ = 5/9 = 0.5556, q∗ =
2/3 = 0.6667.

We want to stress that, although the example of a two-state DTMC remains very
basic, the above analysis of the MLEs appeared in the literature only recently; see
S. Bisgaard and L.E. Travis. “Existence and uniqueness of the solution of the like-
lihood equations for binary Markov chains”, Statistics and Probability Letters, 12
(1991), 29–35. Furthermore, prior to this publication, several conflicting statements
had been made in the literature about the nature of the MLEs for a DTMC with two
states. A quotation from the above paper reads: “It is . . . perhaps disheartening, that
this simplest example . . . requires a very careful enumeration of special cases to
establish the existence and uniqueness of [a solution to] the likelihood equations.
More complicated Markov chains may be even more mischievous.”

3.3 Consistency of estimators. Various forms of convergence

Consistency is too weak a property
to be of much interest in itself.

E.H. Lehmann (1917–), American statistician

This section of the book deals with an issue that has a flavour that is definitely
more probabilistic than statistical, and that will reappear in a number of chapters in
a later volume. Nevertheless, we believe we should introduce the relevant concepts
here. One nice property of MLEs which we mentioned before is consistency. An
estimator θ̂n(xn) of parameter θ is called consistent if it converges to the ‘true’
value of the parameter as the size of the sample goes to infinity:

lim
n→∞

θ̂n(Xn) = θ . (3.40)
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There lies a subtle point about the limit here. The sample Xn =

⎛⎜⎝ X0
...

Xn

⎞⎟⎠ is random,

and its distribution P
θ depends on θ ∈Θ (and is defined by the transition matrix Pθ

or by a pair (λ θ ,Pθ )). So, we need to specify the form of convergence. Two specific
forms of convergence will be discussed in this section: convergence in probability
and convergence almost surely, or with probability 1. They prove popular in several
areas of probability and measure theory and constantly appear in various chapters
of the dynamical systems, random processes and fields, theoretical statistics and
functional analysis literature.

Correspondingly, one calls an estimator θ̂n(xn) of the parameter θ (i) consistent
in probability, for a set Θ0 ⊆ Θ, if, for all θ ∈ Θ0, the limit in (3.40) holds in
probability, and (ii) consistent almost surely, or with probability 1, if the limit holds
almost surely, or with probability 1. As a set Θ0 we will take all values of θ for
which the transition matrix P

θ is irreducible and aperiodic.
The basic definitions here are as follows:

Definition 3.3.1 A sequence of random variables Un converges in probability, as
n → ∞, to a constant v, if for all ε > 0,

lim
n→∞

P(|Un − v| ≥ ε) = 0, i.e. lim
n→∞

P(|Un − v| < ε) = 1. (3.41)

More generally, Un converge in probability to a random variable V if, for all ε > 0,

lim
n→∞

P(|Un −V | ≥ ε) = 0, i.e. lim
n→∞

P(|Un −V | < ε) = 1. (3.42)

Convergence in probability is denoted by Un
P−→ v and Un

P−→V .

In Volume 1, Section 1.6, we saw that the weak Law of Large Numbers
corresponds to convergence in probability

1
n

n

∑
k=1

Xk
P−→ μ

for a sum of IID RVs X1, X2, . . . with finite mean μ = EXk and finite variance
VarXk = σ2. This follows from the Chebyshev inequality:
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P

( ∣∣∣∣∣1n ∑
1≤k≤n

Xk −μ

∣∣∣∣∣≥ ε

)
= P

(
1
n

∣∣∣∣∣ ∑
1≤k≤n

Xk −nμ

∣∣∣∣∣≥ ε

)

≤
(

1
n2ε2

)
E

(
∑

1≤k≤n

Xk −nμ

)2

=
(

1
n2ε2

)
Var

(
∑

1≤k≤n

Xk

)

=
(

1
n2ε2

)
∑

1≤k≤n

Var Xk =
σ2

nε2 . (3.43)

Worked Example 3.3.2 Let (Xm) be a Markov chain. Subject to suitable assump-
tions, state and prove the weak Law of Large Numbers for ∑1≤k≤n Xk. Your
assumptions should include, but not be reduced to, the case where (Xn) are
independent random variables.

Solution It is tempting to build an argument similar to the above when (Xm) is a
Markov chain. Assume that the chain runs over a finite state space I with the total
number of states |I|= s, transition matrix P = (pi j) and initial distribution λ = (λi).
What shall we take as the value of μ? As a constant independent of m, it should be
the mean value E(Xk) in equilibrium:

μ = μeq = ∑
j∈I

jπ j, (3.44)

where π = (πi) represents an equilibrium distribution for the chain. It helps to
assume that the chain is irreducible and aperiodic. Then the equilibrium distribu-
tion becomes unique and the chain approaches it with time: P(Xn = j | X0 = i) =
p(n)

i j → π j and P(Xn = j) = (λPn) j → π j as n → ∞, for all i, j ∈ I and initial proba-
bility vector λ . Moreover, the convergence happens geometrically (exponentially)
fast:

p(n)
i j = π j +ψi, j(n), where

∣∣ψi, j(n)
∣∣≤ (1−ρ)n−1; (3.45)

cf. (1.84) in Theorem 1.9.3.
This of course covers the case of independent random variables (where the

matrix P simply consists of repeated rows coinciding with π), but is not reduced to
this case alone.

As before, by Chebyshev,

P

(∣∣∣∣∣ 1
n ∑

1≤k≤n

Xk −μ

∣∣∣∣∣≥ ε

)
≤
(

1
n2ε2

)
E

[
∑

1≤k≤n

Xk −nμ

]2

, (3.46)



3.3 Consistency of estimators. Various forms of convergence 369

and it suffices to check that the expectation of the square of the sum in the RHS is
≤ α2n + β , where the constants α and β do not depend on n (in the case of IID
RVs we find equality, with α = σ ).

Write

E

[
∑

1≤k≤n

Xk −nμ

]2

= E

[
∑

1≤k≤n

(Xk −μ)

]2

and expand:

E

[
∑

1≤k≤n

(Xk −μ)

]2

= E

[
∑

1≤k≤n

(Xk −μ)2

]

+E

[
∑

1≤k1,k2≤n

1(k1 �= k2)(Xk1 −μ)(Xk2 −μ)

]
. (3.47)

The first sum is represented as

Σ1 = ∑
1≤k≤n

E(Xk −μ)2.

When the chain sits in equilibrium, λ = π and E(Xk − μ)2 does not depend on k
and gives the variance of Xk. Then

Σ1 = nσ 2
eq, where σ 2

eq = VarXk = ∑
j∈I

( j−μ)2π j.

In the general case, it will still be O(n). Indeed,

E(Xk −μ)2 = ∑
j∈I

( j−μ)2
P(Xk = j) = ∑

j∈I

( j−μ)2(λPk) j

= ∑
j∈I

( j−μ)2 ∑
i∈I

λi p
(k)
i j = ∑

j∈I

( j−μ)2 ∑
i∈I

λi[π j +ψi, j(k)]

= ∑
j∈I

( j−μ)2π j ∑
i∈I

λi +∑
j∈I

( j−μ)2 ∑
i∈I

λiψi, j(k)

≤ σ2
eq + s(1−ρ)k−1A2

1,

with

A1 = max[| j−μ| : j ∈ I].

Denote α2
1 = σ2

eq, and

β = A2
1s ∑

k≥1

(1−ρ)k−1 =
A2

1s
ρ

.

Then

Σ1 ≤ α2
1 n+β . (3.48)
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Next, the second sum

Σ2 = ∑
1≤k1,k2≤n

1(k1 �= k2)E [(Xk1 −μ)(Xk2 −μ)]

= 2 ∑
1≤k≤n

∑
l≥1

1(1 ≤ k + l ≤ n)E [(Xk −μ)(Xk+l −μ)] .

The general summand here is expressed as

E [(Xk −μ)(Xk+l −μ)] = ∑
i, j∈I

(i−μ)( j−μ)P(Xk = i,Xk+l = j)

= ∑
i, j∈I

(i−μ)( j−μ)(λPk)i p
(l)
i j

= ∑
i, j∈I

(i−μ)( j−μ)(λPk)i[π j +ψi j(l)]

= ∑
i∈I

(i−μ)(λPk)i ∑
j∈I

( j−μ)π j

+ ∑
i, j∈I

(i−μ)( j−μ)(λPk)iψi j(l).

Observe that ∑ j∈I( j−μ)π j = ∑ j∈I jπ j −μ = 0, by the choice of μ . Thus,∣∣∣ E [(Xk −μ)(Xk+l −μ)]
∣∣∣≤ A2

1(1−ρ)l−1,

and

|Σ2| ≤ 2n ∑
l>1

∣∣∣ E [(Xk −μ)(Xk+l −μ)]
∣∣∣≤ nα2

2 , (3.49)

where α2
2 = 2A2

1s/ρ. Hence,

E

(
∑

1≤k≤n

Xk −nμ

)2

≤ (α2
1 +α2

2 )n+β ,

as required, where α1, α2 and β have been specified above. This establishes the

weak Law of Large Numbers ∑
1≤k≤n

Xk

/
n

P−→ μ .

Definition 3.3.3 Random variables Un converge almost surely, or with probability
1, as n → ∞, to a constant v, if

P

(
lim
n→∞

Un = v
)

= P

(
lim
n→∞

|Un − v| = 0
)

= 1. (3.50)

In other words, the set of outcomes where convergence Un → v fails has probability
zero.
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As before, this definition is immediately extended to a more general situation of
convergence to a random variable. Namely, Un converge almost surely (AS) to a
random variable V , if

P

(
lim
n→∞

Un = V
)

= P

(
lim
n→∞

|Un −V | = 0
)

= 1. (3.51)

Recall that AS convergence is denoted by Un
a.s.−→ v and Un

a.s.−→V .

A straightforward example where convergence holds not everywhere but only
almost surely is provided by the sequence of functions Un(x) = (−x)n, where x
forms a point of the unit segment [0,1], i.e. 0 ≤ x ≤ 1. As n → ∞, Un(x) → 0
for 0 ≤ x < 1, but not for x = 1. So, if we consider a uniform distribution on the
unit segment, then convergence Un → 0 happens with probability 1, but not every-
where. Clearly, the uniform distribution can be replaced here by any probability
distribution on [0,1] provided that it is determined by a PDF f (x), 0 ≤ x ≤ 1.

In fact, if the probability distribution P is concentrated on a finite or a count-
able set of outcomes, the concept of AS convergence is not needed. In this case,
from the very beginning we can assume that all outcomes under consideration arise
with strictly positive probabilities, and AS convergence reduces to convergence
everywhere. The concept of AS convergence becomes important when the set of
outcomes constitutes a continuum, although the variables Un under consideration
may take finitely many values (for instance, only 0 and 1). From this point of view,
the above example of a unit segment with a uniform distribution turns out partic-
ularly convenient. This distribution corresponds to the famous Lebesgue measure
on [0,1], an object attentively studied in analysis.

This book does not assume any knowledge of measure theory, although clearly,
such knowledge, however partial, would definitely help the reader. In other words,
we avoid explicit references to such concepts as measurability and integrabil-
ity. Instead, we declare that all ‘abstract’ events and random variables we work
with happen to be (Lebesgue) measurable, and ditto their complements and their
(countable) unions and intersections. Moreover, we will not mention this in future
(as in fact we have not in the past). A helpful result, given without proof, is
the so-called Luzin theorem: A measurable function (on [0,1]) is one which can
be converted into a continuous function by alteration on a set of points carry-
ing an arbitrarily small probability. In particular, a measurable subset (of [0,1])
is one whose indicator function can be converted into a continuous function by
altering it on a set of points carrying an arbitrarily small probability. (Nikolai
Luzin was a leader of the Moscow school of real analysis in the 1910–1930s,
where a number of prominent mathematicians started their careers, including
Kolmogorov.)
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Physically, the concept of AS convergence can be difficult to grasp, especially
at the first attempt. This results from the concept involving two evasive objects:
a sequence of RVs (Un) which is usually not given explicitly (because it may be
cumbersome) and an event of probability zero where convergence Un → v or Un →
V fails. Here, a helpful theorem is named after Yegorov (another patriarch of the
Moscow mathematics school of the 1900–1920s): AS convergence Un →V holds if
and only if for all δ > 0, there exists an event Aδ , of probability at least 1−δ , such
that Un −V converges to 0 uniformly on Aδ : sup

[∣∣Un(x)−V (x) : x ∈ Aδ
∣∣]→ 0, as

n → ∞.
Yegorov’s life ended in a tragedy. In 1930 he was dismissed from his position of

the Head of the Institute of Mathematics of the Moscow State University. Shortly
after Yegorov was arrested by the Soviet authorities and spent several months in
harsh conditions in jail. (He often showed his opposition to the official ideology
and was an active member of a spiritual minority movement in Russian Orthodoxy,
which did not go well with the authorities at a time of fierce anti-religious cam-
pains.) Yegorov was lucky to receive a relatively mild sentence: he was exiled to
Kazan, a town on the Volga river some 250 miles from Moscow. Kazan was then
(as now) the capital of the Tatar Republic, a part of the Russian Federation, and
got its fame from its University where, in the 19th century, Lobachevsky taught
geometry and Lenin studied law (and was expelled from, after a student revolt).
However, he continued to remonstrate with the authorities and died in 1931 as a
result of a hunger strike which aggravated already serious health problems. Yet
local mathematics enthusiasts managed to have him buried in a central cemetery,
next to Lobachevsky.

We provide a short proof of Yegorov’s theorem, starting with the if part:
assume that the above property is satisfied for all δ > 0 and take a sequence
δn = 1/n2. Then the complement Ac

1/n2 of the event A1/n2 happens with probabil-

ity P

(
Ac

1/n2

)
≤ 1/n2. Hence, the union Bm =

⋃
n≥m Ac

1/n2 occurs with probability

P(Bm)≤ ∑n≥m 1/n2 → 0, as m → ∞. In addition, events Bm decrease in probability
as n increases: Bm+1 ⊆ Bm. So, the intersection B =

⋂
m Bm must have P(B) = 0,

since P(B) ≤ P(Bm), for all m. This intersection consists of points belonging to
infinitely many events Ac

1/n2 : therefore the complement Bc is formed by points
belonging to only finitely many events Ac

1/n2 . In other words, Bc consists of points
belonging to A1/n2 for all n large enough. Thus, for all point x from Bc,

|Un(x)−V (x)| ≤ 1
n2 for all n, beginning with some n0(x).

Therefore, on Bc,

lim
n→∞

Un = V.
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But Bc arises with probability 1−P(B) = 1, so the convergence Un → V happens
almost surely.

The proof of the only if part is more subtle; it is an epitome of AS convergence.
Assume that Un → V almost surely. Let Am

n be the event where |Ui −V | ≤ 1/m
for all i ≥ n. By definition, events Am

n increase in probability with n (for m
fixed): Am

n ⊆ Am
n+1. Hence, P(Am

n ) ≤ P
(
Am

n+1

)
. The union Am =

⋃
n≥1 Am

n repre-
sents the event where |Un −V | ≤ 1/m for all n large enough, and probability
P(Am) = lim

n→∞
P(Am

n ). Therefore, for all m ≥ 1 and δ > 0, there exists n0(m,δ )

such that P

(
Am \Am

n0(m,δ )

)
< δ/2m. Then we set

Aδ =
⋂

m≥1

Am
n0(m,δ ).

If x ∈ Aδ then, by definition, for all m ≥ 1, |Ui(x)−V (x)| ≤ 1/m when i ≥
n0(m,δ ). That is, |Un −V | converges to 0 uniformly on Aδ . Next, P(Am) = 1 as
Un →V almost surely (for the first time using this condition in the current proof).
Hence, for the complement Bm

n0(m,δ ) =
(
Am

n0(m,δ )

)c
we can write

P

(
Bm

n0(m,δ )

)
= P

(
Am \Am

n0(m,δ )

)
<

δ
2m .

But we want to assess P(Aδ ), so, for the complement Bδ = Ac
δ ,

P(Bδ ) = P

(⋃
m≥1

Bm
n0(m,δ )

)
≤ ∑

m≥1

P

(
Am \Am

n0(m,δ )

)
< ∑

m≥1

δ
2m = δ .

This completes the proof.

The spirit of Yegorov’s theorem clarifies the relation between convergence in
probability and AS convergence. Namely, the theorem implies that if {Un} con-
verges to V almost surely then it does so in probability. For the proof, let B be the
set of probability 0 where convergence fails. Given δ > 0, set:

Bk(δ ) = the event where |Uk −V | > δ ,

Cn(δ ) =
⋃
k≥n

Bk(δ ) = the event where |Uk −V | > δ , for some k ≥ n,

R(δ ) =
⋂
n≥1

Cn(δ ) = the event where |Uk −V | > δ , for infinitely many k.

Then we see:

(i) R(δ ) ⊆ B, and so P(R(δ )) = 0;
(ii) P(R(δ )) = lim

n→∞
P(Cn(δ )), as Cn+1(δ ) ⊆Cn+1(δ ). Hence, P(Cn(δ )) → 0;
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(iii) Bn(δ )⊆Cn(δ ), so P(Bn(δ ))→ 0, as n→∞, which establishes convergence
in probability.

However, the inverse implication does not hold; see Examples 3.3.4 and 3.3.5
below.

Example 3.3.4 The following popular class of examples shows that a sequence of
random variables converging in probability does not necessarily converge almost
surely. Consider the unit segment [0,1) with a uniform distribution, and let

Uk,i =

⎧⎨⎩ 1, if

(
i−1

k

)
≤ x <

i
k

,

0, otherwise,
where i = 1, . . . ,k, k = 1,2, . . . .

Next, consider the sequence

U1,1,U2,1,U2,2,U3,1,U3,2,U3,3,U4,1, . . . .

This sequence converges to 0 in probability, since for all 0 < ε < 1,

P(|Uk,i| > ε) = P (Uk,i = 1) =
1
k
→ 0 as k → ∞.

However, the sequence does not converge to 0 almost surely. In fact, it does not
converge to 0 at any given point x, and it does not converge almost surely at all.
Indeed, for all x ∈ [0,1) and k ≥ 1, there exists i such that Uk,i(x) = 1.

This example admits an interesting and far-reaching interpretation. Consider a
fair coin-flipping: after an initial toss we observe two outcomes: 1 (heads) and 0
(tails), after two tosses four outcomes: 11, 10, 01 and 00, after three - eight, and so
on. Then set

Y1 ≡ 1,

Y2 = 1(the first flip is 1), Y3 = 1(the first flip is 0),
Y4 = 1(the first 2 flips are 11), Y5 = 1(the first 2 flips are 10),
Y6 = 1(the first 2 flips are 01), Y7 = 1(the first 2 flips are 00),

Y8 = 1(the first 3 flips are 111), Y9 = 1(the first 3 flips are 110),

and so on. In other words, we first list all possible outcomes of arbitrarily (but
finitely) many flips in a certain order and then set Yn to be the indicator of the
outcome with the order number n. We order as follows. (i) We place the outcomes
of n flips (that is, strings of 1s and 0s of length n) before the outcomes of n + 1
tosses. (ii) For a fixed length n, we order the outcomes of n flips lexicographically,
beginning with 11 . . .11 followed by 11 . . .10 then by 11 . . .01, and so on.
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Thus, a general member of the sequence, Yn, gives the indicator of the
(
n −

2m(n) +1
)
st outcome of

[
log2n

]
flips, where m(n) =

[
log2n

]
stands for the integer

part of log2n. In other words, we partition the natural numbers n = 1,2, . . . into
disjoint ‘blocks’, the mth block beginning with 2m and ending with 2m+1 −1 (both
included), m = 1,2, . . .. Next, we assign to number the n from the mth block the
(n−2m +1)st binary string of length m and set Yn to be the indicator of exactly the
outcome assigned. Then the sequence (Yn) converges to 0 in probability. Indeed,
for all ε > 0,

P(|Yn| ≥ ε) = P(Yn = 1) =
1

2[log2n] → 0, as n → ∞.

However, the random variables Yn do not converge to 0 almost surely. In fact, Yn

should be formally considered as a function of an outcome of infinitely many flips,
which depends only on the first m(n) = [log2n] tosses. An outcome of infinitely
many flips would be an infinite string of 1s and 0s, and these strings (there are a
continuum of them) fill a unit segment [0,1], endowed with a uniform probability
distribution (which is the Lebesgue measure on [0,1]). The correspondence x ↔
(α1α2 . . .) between a point x ∈ [0,1] and a binary sequence (α1α2 . . .), with α j = 0
or 1, is established via the binary representation (or binary decomposition) of x:
x = ∑ j≥1 α j/2 j. Then Yn(x) = 1 for x lying in a segment of length 2−m(n) between
the points (n−m(n))2−m(n) and (n−m(n)+ 1)2−m(n), and Yn(x) = 0 for x ∈ [0,1]
lying outside this segment. See Figure 3.2.

More precisely and to be formally correct, we have to add to the unit segment
countably many points, as we face a problem with diadic numbers x ∈ (0,1), such
as x = 1/2 or x = 3/4, or in general x = k/2m, where 1 ≤ k ≤ 2m −1, m = 1,2, . . .

(precisely the points where vertical bits appear on the graphs in the diagram.)
Thus, if x is diadic then there exists j0 such that coefficient α j0 = 1, but α j ≡ 0

0 11 /2 1 2

Y1 Y
2

Y3

1

1/4 1/2 1/2 3

/

/4

1
Y4 Y

5 6
Y Y

7

0 1 0 1

0 1 0 1 0 1 0 1

Fig. 3.2
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for all j > j0. However, such an x can also be represented as a sum = ∑ j≥1 α ′
j/2 j

where α ′
j0 = 0 and α ′

j ≡ 1 for all j > j0. But this ambiguity does not affect the
construction, as every single point carries Lebesgue measure 0.

Pictorially, we take a step-function over an interval

(
0,

1
2m

)
of length 1/2m,

then move the interval to the right, with step 1/2m, until it occupies the rightmost
position (it takes exactly 2m moves). Then we divide the length by two and repeat
the motion.

Anyway, in this picture convergence almost surely means that, apart from a set
of Lebesgue measure 0, Yn(x) = 0 for all n large enough. But actually quite the
opposite comes to be true: if x ∈ [0,1] is not a diadic number then Yn(x) = 1 for
(some) indefinitely large n. This happens because, for all m, the point x will sooner

or later be covered by an open interval

(
k

2m ,
k +1
2m

)
of length 2−m.

Coin-tossing is an example of a DTMC, with two states and all transition prob-
abilities 1/2; hence we can identify the Lebesgue measure on [0,1] with P1/2,1/2.
But a similar construction works if we consider a general two-state DTMC (Xn) in
equilibrium, with transition matrix (3.9), where 0 < p,q < 1. The difference lies
in that, if p �= 1/2 �= q, then, instead of a ‘nice’ uniform distribution on the unit
segment, we find a ‘singular’ measure Pp,q generated by the Markov chain. The
‘singularity’ means that there exists a partition of the unit segment into disjoint
sets A and B (i.e. a representation [0,1] = A∪B, with A∩B = /0) such that both
probabilities P1/2,1/2(B) and Pp,q(A) vanish. This picture is not made easier by
assuming that p + q = 1 (in which case (Xn) forms an IID sequence). In fact, the
measures Pp,q and Pp′,q′ become mutually singular in the above sense whenever
(p,q) �= (p′,q′).

However, measures Pp,q on [0,1] prove no less ‘physical’ than the Lebesgue
measure P1/2,1/2: they arise in a growing variety of situations in theory and
applications.

Example 3.3.5 A shorter, but perhaps less instructive, example where convergence
in probability does not imply almost sure convergence emerges with a sequence of
independent, but not IID, random variables, X1, X2, . . .. Set

pn = P(Xn = 1) = 1−P(Xn = 0)

and assume that pn → 0 but ∑n pn = ∞. Then, as before, P(|Xn| ≥ ε) = pn →
0. However, the Borel–Cantelli lemma guarantees that Xn does not converge to 0
almost surely.

We will involve the above facts in an analysis of maximum-likelihood estima-
tors. Recall, an MLE θ ∗ = θ ∗

n (x) is defined as the value maximising L(x,θ) or
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l(x,θ) in θ ∈ Θ (see (3.18)). Equivalently, we will maximise the corresponding
log-likelihoods L (x,θ) = lnL(x,θ) or �(x,θ) = lnl(x,θ):

θ̂ ∗ = argmax
[
L (x,θ), θ ∈ Θ

]
, or θ̂ ∗ = argmax

[
�(x,θ), θ ∈ Θ

]
. (3.52)

Till the end of this section, Θ will stand for an arbitrary domain in R
M , where

the dimension M ≤ s2−1 (cf. (3.5)). Particular cases to note will be where Θ = R,
a set of dimension s2 − 1, as in (3.5), or Θ = P , a set of dimension s2 − s, as in
(3.7). Assume that probabilities pθ

i j depend upon θ ∈ Θ smoothly, and consider the
equations

∂
∂θ

L (x,θ) =
(

1
πθ

x0

)
∂

∂θ
πθ

x0
+

n

∑
k=1

(
1

pθ
xk−1xk

)
∂

∂θ
pθ

xk−1xk

=
(

1
πθ

x0

)
∂

∂θ
πθ

x0
+∑

i, j

ni j (x)
1

pθ
i j

∂
∂θ

pθ
i j = 0, (3.53)

and

∂
∂θ

�(x,θ) =
n

∑
k=1

(
1

pθ
xk−1xk

)
∂

∂θ
pθ

xk−1xk
= ∑

i, j

ni j(x)

(
1

pθ
i j

)
∂

∂θ
pθ

i j = 0. (3.54)

Equation (3.53) and (3.54) are often called, somewhat misleadingly, the maximum
likelihood equations; in reality their solutions may provide a point of minimum
not maximum of the likelihood functions. The latter cases should be excluded
(see below), though in practice they seldom occur. Here ∂

/
∂θ means the partial

derivative in θ (the gradient vector for a multi-dimensional parameter).
Suppose that (3.53) or (3.54) gives a unique solution θ̂ = θ̂(x) ∈ Θ and θ̂

determines a local maximum of L (x,θ) or �(x,θ), i.e. the second derivative

∂ 2

∂θ 2 L (x,θ)
∣∣∣∣
θ=θ̂

≤ 0 or
∂ 2

∂θ 2 �(x,θ)
∣∣∣∣
θ=θ̂

≤ 0.

If θ is multi-dimensional, the operation ∂ 2
/

∂θ 2 produces the matrix of sec-
ond derivatives. In this case, the above matrices will be non-positive. Under these
conditions, either θ̂ ∗ = θ̂ or θ̂ ∗ is attained at the boundary of the set Θ.

The analysis of the MLE for the log-likelihood �θ in (3.22) is straightforward.

Worked Example 3.3.6 (i) Let (Xm) be a DTMC, with state space I = {1, . . . ,s}
and unknown transition matrix P = (pi j). Show that the MLE of θ = P for the
likelihood lθ is given by the normalised occurrence number
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p∗i j =
ni j

∑
1≤ j≤s

ni j
, (3.55)

where ni j is defined as in (3.16).
(ii) Making the necessary assumptions on the matrix P and its equilibrium dis-

tribution π , state the consistency property of an estimator as in (3.55), in the sense
of convergence in probability. Relating this convergence with a weak Law of Large
Numbers, prove the above consistency property with the help of the Chebyshev or
Markov inequality.

Solution (i) In this example, Θ = P where set P is defined as in (3.7). We will
work with (3.54), towards a solution of the maximisation problem

max
P=(pi j)

�θ (x,P) = ∑
1≤i, j≤s

ni jln(pi j)

subject to

pi j ≥ 0, ∑
1≤k≤s

pik = 1, for all 1 ≤ i, j ≤ s.

The Lagrangian reads

∑
i, j

ni jln(pi j)+∑
i

λi

(
∑

j

pi j −1

)
,

to be maximised in pi j for pi j ≥ 0 (here λ1, . . ., λs are Lagrange multipliers to be
adjusted to satisfy the constraints ∑1≤k≤s pik = 1, 1 ≤ i ≤ s.) To find the maximisers
of the Lagrangian, differentiate in pi j and equate the derivative with zero:

ni j

pi j
+λi = 0, whence pi j = −ni j

λi
, 1 ≤ i, j ≤ s.

Adjusting the constraints yields

λi = − ∑
1≤k≤s

nik, i.e. p∗i j =
ni j

∑
1≤k≤s

nik
,

as required.
(ii) The consistency property in question is written as

ni j

/
∑1≤k≤s

nik
P−→ pi j

and means that, for all ε > 0,

lim
n→∞

P

( ∣∣∣ni j

/
∑1≤k≤s

nik − pi j

∣∣∣≥ ε
)
→ 0.



3.3 Consistency of estimators. Various forms of convergence 379

This will follow if we can prove that, for all 1 ≤ i, j ≤ s, ni j
/

n
P−→ πi pi j. More

precisely, for all ε > 0

lim
n→∞

P

(∣∣∣ni j

n
−πi pi j

∣∣∣≥ ε
)
→ 0. (3.56)

So, we need a unique equilibrium distribution π = (π1, . . . ,πs), with all entries
πi > 0. We may naturally assume that P is irreducible and aperiodic, in which case
the above properties hold, and also

lim
n→∞

Pn → Π, where Π =

⎛⎜⎝ π1 . . . πs
... · · ·

...
π1 . . . πs

⎞⎟⎠ .

Moreover, taking, for simplicity, that ρ := min
[
pi j
]
> 0, the convergence happens

geometrically (exponentially) fast: see (3.45).
Write

ni j(X) =
n

∑
k=1

1(Xk−1 = i,Xk = j), (3.57)

where X =

⎛⎜⎜⎜⎝
X0

X1
...

Xn

⎞⎟⎟⎟⎠ constitutes a random sample of the chain. Then convergence

in probability ni j(X)
/

n
P−→ πi pi j becomes a weak Law of Large Numbers. First,

write it in the equivalent form
1
n

[
ni j(X)−nπi pi j

] P−→ 0, or

P

( ∣∣∣∣∣1n n

∑
k=1

Ik

∣∣∣∣∣≥ ε

)
→ 0, as n → ∞, for all ε > 0. (3.58)

Here, for short,

Ik = 1(Xk−1 = i,Xk = j)−πi pi j, (3.59)

with

E[Ik] =
s

∑
xk−1,xk=1

[
δxk−1,iδxk, j −πi pi j

]
πxk−1 pxk−1xk = 0, (3.60)

where δ·,· is the Kronecker delta. In fact, due to the stationarity of the chain (Xm),
the random varibles I1, . . ., In are identically distributed, although not independent.
We re-write (3.60) as

s

∑
xk−1,xk=1

Jxk−1,xk πxk−1 pxk−1xk = 0, where Juv = δu,iδv, j −πi pi j. (3.61)
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Then we make use of the Markov inequality: for all random variable Y ≥ 0 and
for all ε > 0, the probability P(Y ≥ ε) ≤ EY 2/ε2. Substituting

Y =

∣∣∣∣∣ ∑
1≤k≤m

(Ik −πi pi j)

∣∣∣∣∣
yields

P

(∣∣∣∣(1
n

)
ni j(X)−πi pi j

∣∣∣∣≥ ε
)

= P

(
1
n

∣∣∣∣∣ ∑
1≤k≤n

Ik

∣∣∣∣∣≥ ε

)

≤
(

1
n2ε2

)
E

[
∑

1≤k≤n

Ik

]2

. (3.62)

Suppose we manage to establish an inequality

E

[
∑

1≤k≤n

Ik

]2

≤Cn, (3.63)

with C a constant independent of n. This would yield

RHS of (3.62) ≤ C
nε2 → 0, as n → ∞, for all ε > 0,

i.e. (3.58).
So, we wish to prove (3.63). Expand the square of the sum in the parentheses

in the RHS of (3.63), by grouping together the terms I2
k and cross-products Ik1Ik2 .

Using additivity of expectation, we find

E

[
∑

1≤k≤n

Ik

]2

= ∑
1≤k≤n

E[I2
k ]+ ∑

1≤k1,k2≤n

1(k1 �= k2)E
(
Ik1Ik2

)
. (3.64)

The first sum in the RHS of (3.64) equals nE[I2
1 ], because the random variables

Ik are identically distributed. In the second sum, the term E
[
Ik1Ik2

]
depends on

the difference k1 − k2 only. This suggests using a summation over k = k1 and l =
|k1 − k2|. The second sum is re-written as

2 ∑
1≤k≤n

∑
0<l≤n−k

E
[
IkIk+l

]
.

and, in the absolute value, turns out less than or equal to

2n ∑
1<l<∞

∣∣∣E[I1Il
]∣∣∣. (3.65)

Thus, we aim to verify that the series in (3.65) converges. The bound in (3.45)
plays the instrumental rôle here.
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The idea is to check that, for l large, the expected value of the product gets close
to the product of the expected values

E
[
I1Il
]
≈ E[I1]E[Il] =

(
E[I1]

)2 = 0, (3.66)

as the factor E[I1] vanishes; see (3.60).

To make this approximate equality precise, write down the general term E
[
I1Il
]

as

Σl = ∑
x0,x1,xl−1,xl

πx0 px0x1 p(l−1)
x1xl−1 pxl−1xl Jx0,x1 Jxl−1xl ,

where Juv was determined in (3.61). By (3.57)

Σl = ∑
x0,x1,xl−1,xl

πx0 px0x1

[
πxl−1 +ψx1,xl−1(l −1)

]
pxl−1xl Jx0,x1 Jxl−1,xl

= ∑
x0,x1

πx0 px0x1 Jx0,x1 ∑
xl−1,xl

πxl−1 pxl−1xl Jxl−1,xl

+ ∑
x0,x1,xl−1,xl

πx0 px0x1 ψx1,xl−1(l −1) pxl−1xl Jx0,x1 Jxl−1,xl . (3.67)

According to (3.60), the sum

∑
x0,x1

πx0 px0x1 Jx0,x1 = ∑
x0,x1

πx0 px0x1 δx0,iδx1, j −πi pi j = 0.

Hence, in the RHS of (3.67) only the second term survives, with, according to
(3.45), an absolute value less than or equal to

(1−ρ)l−1 ∑
x0,x1,xl−1,xl

πx0 px0x1 Jx0x1 pxl−1xl Jxl−1xl ≤ A2s(1−ρ)l−1. (3.68)

Here, and below,

A =
[
(1−πi pi j)∨ (πi pi j)

]
. (3.69)

Altogether, this implies that∣∣∣E[I1Il
]∣∣∣≤ the RHS of (3.68),
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which justifies (3.66). Then for the series in (3.65) we obtain

∑
1<l<∞

∣∣∣E[I1Il
]∣∣∣≤ A2s

ρ
.

Hence, we can bound the LHS in (3.64):

E

[
∑

1≤k≤n

Ik

]2

≤ n
2A2s

ρ
.

This proves (3.63) and completes the derivation of (3.56). Hence, the MLE (3.55)
achieves consistency in the sense of convergence in probability.

Worked Example 3.3.7 Making the necessary assumptions on a DTMC (Xm) on
I = {1, . . . ,s}, state and prove that the MLE (3.55) is consistent in the sense of AS
convergence.

Solution The consistency property means that, as n → ∞,

ni j

∑
1≤ j≤s

ni j

a.s.−→ pi j,

the ‘true’ value of the parameter. This will follow if we prove that

1
n

ni j → πi pi j,
1
n ∑

1≤ j≤s

ni j → ∑
1≤ j≤s

πi pi j = πi, (3.70)

where πi represents the stationary (invariant) probability. Various forms of conver-
gence exist; we choose almost sure convergence, or convergence with probability
1, with respect to π , the equilibrium probability distribution of the Markov chain
(Xm) with the (unknown) transition matrix P.

So, we seek a unique equilibrium distribution π = (π1, . . . ,πs), with all entries
πi > 0. Naturally, we assume that P is irreducible and aperiodic, in which case the
above properties hold, and also

lim
n→∞

Pn → Π, where Π =

⎛⎜⎝ π1 . . . πs
... · · ·

...
π1 . . . πs

⎞⎟⎠ .

Moreover, assuming, for simplicity, that ρ := min
[
pi j
]
> 0, the convergence will

be geometrically (exponentially) fast: the entries p(n)
i j of Pn satisfy

p(n)
i j = π j +ψi, j(n), where

∣∣ψi, j(n)
∣∣≤ (1−ρ)n−1. (3.71)
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Write

ni j(X) =
n

∑
m=1

1(Xm−1 = i,Xm = j),

where X0, . . . ,Xn form the entries of a random sample vector X. Then almost sure
convergence ni j(X)

/
n → πi pi j becomes a strong Law of Large Numbers, and the

first step is to write it in an equivalent form
1
n

[
ni j(X)−nπi pi j

]
→ 0, or

1
n

n

∑
m=1

Im → 0, almost surely.

Here, for short,

Im = 1(Xm−1 = i,Xm = j)−πi pi j, (3.72)

with

E[Im] =
s

∑
xm−1,xm=1

[
δxm−1,i δxm, j −πi pi j

]
πxm−1 pxm−1xm = 0, (3.73)

where δ·,· is the Kronecker delta. In fact, due to the stationarity of the chain (Xm),
the RVs I1, . . ., In are identically distributed, although not independent.

Then we make use of the Markov inequality: for all random variables Y ≥ 0 and
for all ε > 0, the probability P(Y ≥ ε) ≤ EY 4/ε4 (note the power 4, instead of the
‘traditional’ 2, with P(Y ≥ ε) ≤ EY 2/ε2). Substituting

Y =

∣∣∣∣∣ ∑
1≤m≤n

(Im −πi pi j)

∣∣∣∣∣
yields

P

(∣∣∣∣(1
n

)
ni j(X)−πi pi j

∣∣∣∣≥ ε
)

= P

(
1
n

∣∣∣∣∣ ∑
1≤k≤n

Ik

∣∣∣∣∣≥ ε

)

≤ 1
n4ε4 E

[
∑

1≤k≤n

Ik

]4

. (3.74)

Suppose we manage to establish an inequality

the RHS of (3.74) ≤Cn2, (3.75)

with C a constant independent of n. Then, with ε = 1/n1/8, we will find that

P

(∣∣∣∣(1
n

)
ni j(X)−πi pi j

∣∣∣∣≥ 1

n1/8

)
≤ Cn2

n4 n−1/2
= C

(
1

n3/2

)
.
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The series ∑n n−3/2 converges. Then, by the Borel–Cantelli Lemma (see Volume 1,
page 132), with probability 1, the event{∣∣∣∣(1

n

)
ni j(X)−πi pi j

∣∣∣∣≥ 1

n1/8

}
occurs for only finitely many n. In other words, with probability 1, the inequality∣∣∣∣(1

n

)
ni j(X)−πi pi j

∣∣∣∣< 1

n1/8

holds for all n large enough. The latter fact yields the almost sure convergence in
(3.70).

To prove (3.75), expand the fourth power of the sum in the square brackets in
the RHS of (3.74), by grouping together the terms I4

k and cross-products Ik1I3
k2

and
I2
k1

I2
k2

. Using additivity of expectation, we may write

E

[
∑

1≤k≤n

Ik

]4

= ∑
1≤k≤n

E[I4
k ]+ ∑

1≤k1,k2≤n

1(k1 �= k2)E
[
Ik1I3

k2

]
+ ∑

1≤k1,k2≤n

1(k1 �= k2)E
[
I2
k1

I2
k2

]
+ ∑

1≤k1,k2,k3≤n

1(k1 �= k2 �= k3 �= k1)E
[
Ik1Ik2I2

k3

]
+ ∑

1≤k1,k2,k3,k4≤n

1(kα �= kβ , for all α �= β )E [Ik1Ik2Ik3Ik4 ] (3.76)

for all α ,β ∈ {1,2,3,4}. Anticipating the result of the forthcoming argument, the
first and second sums in the RHS are O(n), but the third, fourth and fifth amount
to O(n2). The bound (3.71) will be instrumental in assessing the sums in the sec-
ond, fourth and fifth lines in (3.76). Indeed, the first sum in the RHS of (3.76)
equals nE[I4

1 ], because the random variables Ik are identically distributed. In the
next two sums, the terms E

[
Ik1I3

k2

]
and E

[
I2
k1

I2
k2

]
depend on the difference k1 − k2

only. This suggests using summations over k = k1 and l = |k1 − k2|. The second
sum is rewritten as

∑
1≤k≤n

∑
0<l≤n−k

[
E
(
IkI3

k+l

)
+E
(
I3
k Ik+l

)]
and, in the absolute value, comes out less than or equal to

n ∑
1<l<∞

∣∣∣E(I1I3
l + I3

1 Il
)∣∣∣. (3.77)
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Thus, our aim with second sum in the RHS of (3.76) will be to check that the series
in (3.77) converges.

The third sum in the RHS of (3.76) is non-negative, being formed by non-
negative summands. It will at most be

n(n−1) max
[
E
(
I2
1 I2

l

)
; l > 1

]
≤ n2[(1−πi pi j)2 ∨ (πi pi j)2]2, (3.78)

which gets as good as can be assessed in terms of a power of n. Here, a∨ b =
max(a,b), and the latter bound in (3.78) follows from the formula

E
(
I2
1 I2

l

)
= ∑

x0,x1,xl−1,xl

πx0 px0x1 p(l−1)
x1xl−1 pxl−1xl J2

x0,x1
J2

xl−1,xl
, (3.79)

where Ju,v = δuiδv j −πi pi j.

The argument for the fourth and the fifth lines in the RHS of (3.76) elaborates
that used to bound the series in (3.77). So, we deal with (3.77) first. The idea is to
check that, for l large, the expected value of the product approximates the product
of the expected values

E
[
I1I3

l

]
≈ E[I1]E[I3

l ] and E
[
I3
l Il
]
≈ E[I3

l ]E[I1]. (3.80)

Of course, both products of the expected values coincide:

E[I1]E[I3
l ] = E[I3

1 ]E[Il] = E[I1]E[I3
1 ],

and becomes 0 as the factor E[I1] vanishes; see (3.73).

To make the first relation in (3.80) precise, write down the general term E
[
I1I3

l

]
in the series (3.77) as

∑
x0,x1,xl−1,xl

πx0 px0x1 p(l−1)
x1xl−1 pxl−1xl Jx0,x1 J3

xl−1,xl

and use (3.71) to specify it in the form

∑
x0,x1,xl−1,xl

πx0 px0x1

[
πxl−1 +ψx1,xl−1(l −1)

]
pxl−1xl Jx0,x1 J3

xl−1,xl

= ∑
x0,x1

πx0 px0x1 Jx0,x1 ∑
xl−1,xl

πxl−1 pxl−1xl J3
xl−1,xl

+ ∑
x0,x1,xl−1,xl

πx0 px0x1 ψx1,xl−1(l −1) pxl−1xl Jx0,x1 J3
xl−1,xl

. (3.81)

According to (3.73), the sum

∑
x0,x1

πx0 px0x1 Jx0,x1 = ∑
x0,x1

πx0 px0x1 δx0,i δx1, j −πi pi j = 0.
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Hence, in the RHS of (3.81) only the second term survives, and, according to
(3.71), its absolute value is bounded by

(1−ρ)l−1 ∑
x0,x1,xl−1,xl

πx0 px0x1 Jx0x1 pxl−1xl Jxl−1,xl ≤ A2s(1−ρ)l−1. (3.82)

Here, and below,

A =
[
(1−πi pi j)∨ (πi pi j)

]
. (3.83)

Altogether, this implies that∣∣∣E(I1I3
l

)∣∣∣≤ the RHS of (3.68),

which justifies the first relation in (3.80). Similarly,∣∣∣E(I3
1 Il
)∣∣∣≤ the RHS of (3.82),

which explains the second relation in (3.80). For future use, an analogous bound

holds, of course, for
∣∣∣E(I3

1 Il
)∣∣∣:∣∣∣E(I3

1 Il
)∣∣∣≤ A2s(1−ρ)l−1. (3.84)

For the expression (3.77) we obtain an upper bound as follows:

(3.77) ≤
(

A2s
ρ

n

)
,

confirming that the second sum in the RHS of (3.76) is O(n).
As was said, the two last lines, the fourth and fifth, in the RHS of (3.76) are

assessed by a similar argument. We discuss in detail the bound for the latter sum,
which is technically more involved. The term E [Ik1Ik2Ik3Ik4 ] is not changed under
permutation of the indexes kα . Furthermore, it depends only on the pair-wise dif-
ferences kα − kβ , and so we set k1 = k, k2 = k1 + l1, k3 = k2 + l2, k4 = k3 + l3 and
evaluate the fifth line as

4!

(
∑

1≤k1<k2<k3<k4≤n

E [Ik1Ik2Ik3Ik4 ]

)
= 4! ∑

1≤k<n
∑

l1,l2,l3≥1

1(k + l1 + l2 + l3 ≤ n)E
(

IkIk+l1Ik+l1+l2Ik+l1+l2+l3

)
. (3.85)

The idea being to write a representation similar to (3.80): if lα equates to the
maximum distance among l1, l2 and l3, and lα large, then

E(Ik1Ik2Ik3Ik4) ≈ E

[
∏

β≤α
Ikβ

]
E

[
∏

β>α
Ikβ

]
. (3.86)
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We will use the fact that if the maximum distance lα coincides with l1 or l3 then one

of the factors E

[
∏β≤α Ikβ

]
or E

[
∏β>α Ikβ

]
, reduces to a ‘single’ expectation EIk1 ,

and hence vanishes. Then, of course, the product in the RHS of (3.86) becomes
zero, the ‘worst’ case being where lα = l2 (see below).

More precisely, assuming max[l1, l2, l3] is large, then

E [Ik1Ik2Ik3Ik4 ] ≈

⎧⎨⎩
E[Ik1 ]E [Ik2Ik3Ik4 ] = 0, if l1 > l2, l3,

E [Ik1Ik2 ]E [Ik3Ik4 ] , if l2 > l1, l3,
E [Ik1Ik2Ik3 ]E[Ik4 ] = 0, if l3 > l1, l2.

Correspondingly, the sum in the RHS of (3.85) splits into seven sums

∑
1≤k<n

(
∑

l1>l2, l3≥1

+ ∑
l2>l1, l3≥1

+ ∑
l3>l1, l2≥1

)

+ ∑
1≤k<n

(
∑

l1=l2>l3≥1

+ ∑
l1=l3>l2≥1

+ ∑
l2=l3>l3≥1

+ ∑
l1=l2=l3≥1

)
. (3.87)

The sums in the second line turn out of a lesser order, and we mainly focus on the
sums from the first line. The general term in every sum from (3.87) is written as

∑ πxk1−1 pxk1−1xk1
Jxk−1,xk1

pl1−1
xk1 xk2−1

pxk2−1xk2
Jxk2−1,xk2

pl2−1
xk2 xk3−1

pxk3−1xk3
Jxk3−1,xk3

pl3−1
xk3 xk4−1

pxk4−1xk4
Jxk4−1,xk4

. (3.88)

Here the summation is accumulated over the states xk1−1,xk1 ,xk2−1,xk2 ,xk3−1,

xk3 ,xk4−1,xk4 running between 1 and s. When the maximum distance lα is achieved

for α = 1 or α = 3, we write p(lα−1)
xkα−1 xkα−1 = πxkα +ψxkα−1 ,xkα−1(lα −1), and split the

sum (3.88) as was done in (3.81).

Then for the the first and the third sum in (3.87) we obtain the bound∣∣∣∣∣ ∑
1≤k<n

∑
l1>l2, l3≥1

∣∣∣∣∣ ,
∣∣∣∣∣ ∑
1≤k<n

∑
l3>l1, l2≥1

∣∣∣∣∣≤ nA4sB2
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where A was determined in (3.83), and

B2 = ∑
l1≥2

(1−ρ)l1−1(l1 −1)2.

We see that the first and the third sum in (3.87) remain O(n).
In the second sum, writing p(l1−1)

xk1 xk2−1 = πxk1
+ ψxk1 ,xk2−1(l1 − 1) and p(l3−1)

xk3 xk4−1 =
πxk4−1 +ψxk3 ,xk4−1(l3 −1) gives only that∣∣∣∣∣ ∑

1≤k<n
∑

l1>l2, l3≥1

1(k + l1 + l2 + l3 ≤ n)E
(

IkIk+l1Ik+l1+l2Ik+l1+l2+l3

)∣∣∣∣∣
≤ As2 ∑

1≤k<n
∑

l1>l2, l3≥1

1(k + l1 + l2 + l3 ≤ n)(1−ρ)l1−1(1−ρ)l3−1

≤ A

(
s2

ρ2

)
∑

1≤k<n

(n− k) = A

(
s2

ρ2

)
n(n−1)

2
.

This confirms the claim that the last line in the RHS of (3.76) comes to O(n2). The
fourth line in the RHS of (3.76) is estimated in a similar fashion. This yields (3.75)
and completes the proof of (3.70).

We conclude that the setting for Markov chains turns out in many aspects similar
to that for IID observations; the big difference being of course that the likelihood
contains a product of factors connecting pairs of subsequent states:

lθ (x,θ) = P
θ (X1 = x1, . . . ,Xn = xn|X0 = x0)

= pθ
x0x1

· · · pθ
xn−1xn

, x =

⎛⎜⎝ x0
...

xn

⎞⎟⎠ . (3.89)

For the remainder of this section we assume the following condition.

Condition 3.3.8 If pθ
i j = 0 for some states i, j ∈ I then this equality holds for all

θ ∈ Θ. Therefore, if, for a given x, the (reduced) likelihood l(x,θ) happens to be
strictly positive for some value θ ∈ Θ, it will remain so for every θ ∈ Θ. Then the
set of samples x with l(x,θ) = 0 can be discarded once and for all. It obviously
occurs with probability 0 under the Markov chain distribution P

θ , for all θ ∈ Θ.
The remaining set of pairs (i, j) for which pθ

i j > 0, θ ∈ Θ, is denoted by D; we
assume that for all (i, j) ∈ D, the transition probabilities pθ

i j will be continuously
differentiable in θ ∈ Θ.

We finish this section with a result showing that the log-likelihood ratios
themselves satisfy the strong Law of Large Numbers.
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Theorem 3.3.9 Assume that the transition matrix Pθ = (pθ
i j, i, j ∈ I), θ ∈ Θ,

satisfies Condition 3.3.8. Then, for all θ ∈ Θ and for all initial distributions λ ,
as n → ∞, the following convergence takes place with P

λ ,θ -probability 1:(
1
n

)
lθ (X) a.s.−→ E

θ
eq

[
ln(pθ

X0X1
)
]
= ∑

(i, j)∈D

πθ
i pθ

i jln(pθ
i j). (3.90)

Here and below, P
λ ,θ stands for the probability distribution of the DTMC with

initial vector λ and transition matrix P
θ , and E

θ
eq for the expectation with respect

to the equilibrium measure πθ .
Moreover, a similar fact holds for a general function g(i, j), (i, j) ∈ D. Define

the random variables Gk = g(Xk−1,Xk). Then, as n → ∞, for all θ ∈ Θ and for all
initial distributions λ , the sum ∑n

k=1 Gk
/

n converges with P
λ ,θ -probability 1:

1
n

n

∑
k=1

Gk
a.s.−→ E

θ
eq[G1] = ∑

i, j∈D

πθ
i pθ

i j g(i, j). (3.91)

The sum in the RHS of (3.91) can be extended to all i, j ∈ I, with the standard
agreement that pθ

i jln(pθ
i j) = 0 when pθ

i j = 0. The quantity

− ∑
i, j∈I

πθ
i pθ

i jln(pθ
i j)

is called the entropy (or entropy rate) of the DTMC (Xm) and plays an important
rôle in many applications. Under our assumption that (Xm) is irreducible and ape-
riodic, it remains strictly positive, which yields that the expectation in the RHS of
(3.91) is strictly negative for the function g(i, j) = lnpθ

i j.
Another example of the sum ∑n

k=1 g(Xk−1,Xk) would be the sum of indicators
1(Xk−1 = i,Xk = j) in (3.59). But the function g may depend on a single variable:
e.g. for I ⊂R and g(i, j) = j we observe that Gk = Xk, the value of the chain at time
k. Equations (3.90) and (3.91) in this case become a strong Law of Large Numbers
for the DTMC (Xm, 0 ≤ m ≤ n): as n → ∞,

1
n

n

∑
k=1

Xk
a.s.−→ E

θ
eq[X1] = ∑

x∈I

x πθ
x . (3.92)

It is worth noting that in general, the sequence of random variables Gk =
g(Xk−1,Xk) does not form a Markov chain or a higher-order Markov chain. How-
ever, it represents a function of a DTMC (Xm) which exhibits an exponential decay
of correlations: this property plays a key part in the proof. We will not give here
the proof of Theorem 3.3.9, as it follows the same argument(s) as earlier in this
section.
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3.4 Likelihood functions, 2. Whittle’s formula

With the rigour of calculus
And the vigour of art
Let always Statistics

Be charming and smart!
Student folklore

A general approach to maximum-likelihood estimation of the transition probabili-
ties of a DTMC is based on the so-called Whittle formula, which forms the subject
of this section. To avoid confusion, we change some parts of the notation used so
far. We will also follow terminology introduced in earlier works on this topics.

Let x =

⎛⎜⎝ x0
...

xn

⎞⎟⎠ ∈ In+1 be a sample from a finite-state DTMC (Xm), with

transition matrix P = (pi j) and initial distribution λ = (λi).
Let fi j(x) be the number of transitions i → j in x, i.e. the the number of times

m, 0 ≤ m < n, for which xm = i and xm+1 = j. (In preceding sections, this quantity
was denoted by ni j.) Set fi+ = ∑ j fi j and f+i(x) = ∑ j f ji(x); the values fi+ and
f+i give the number of entrances to, and exits from, state i, in x. We therefore
get a matrix-valued function x �→ F(x) = ( fi j(x)). The matrix F(x) is called the
transition count (in a given sample x). For a random sample X, we obtain a random
matrix, F(X) =

(
fi j(X)

)
. It is also useful to adopt a reversed view:

Definition 3.4.1 Let x,y ∈ I be a pair of distinct states (x �= y). Let F =
(

fi j, i, j ∈
I
)

be a matrix, with non-negative integer entries. We say that F gives an n-step
transition count, for an initial state x and terminal state y, if (i) the sum ∑s

i, j=1 fi j =
n, and, (ii) with the previous notation fi+ = ∑ j fi j and f+i = ∑ j f ji,

fi+− f+i = 0, for all i ∈ I, except for i = x and i = y,
where fx+− f+x = 1 and fy+− f+y = −1.

(3.93)

For x = y, this definition is slightly modified: fi+ − f+i = 0 for all i ∈ I, and in
addition, fx+ ≥ 1 and f+x ≥ 1. See Figure 3.4. So, excluding the initial and final
states, transitions from any given state match the transitions to that state. However,
for distinct initial and final states, moves from the initial state exceed those to it by
1 and moves from the final state amount to one fewer than moves to it. When the
chain finishes back at its original state, transitions from any state equate those to it.
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Worked Example 3.4.2 Let x ∈ I be fixed. Suppose that the non-negative integer
matrix F = ( fi j, i, j ∈ I) satisfies the property

fi+− f+i = δix −δiy, i = 1, . . . ,s, (3.94)

for some given y = 1, . . . ,s. Prove that y is the only point from I for which (3.94)
holds.

Solution We provide a proof by contradiction. Assume that y and w both satisfy
(3.94). If x �= y, then

fy+− f+y = δyx −δyy = −1, and fy+− f+y = δyx −δyw = −δyw,

which implies y = w. If x = y, then

fi+− f+i = δix −δix = 0, and fi+− f+i = δix −δiw, i = 1, . . . ,s.

Thus,

δix = δiw,

and w = x = y.

We are interested in determining exactly how many trajectories prove compatible
with a given (consistent) transition count.

Example 3.4.3 Let I = {1,2,3} and consider the matrix

F =

⎛⎝ 0 1 1
0 0 1
1 0 0

⎞⎠ .

This gives a 4-step transition count, for an initial state 1 and a terminal state 3.



392 Statistics of discrete-time Markov chains

Recall the probability distributions of a DTMC (Xm) takes the form

P(X1 = x1, . . . ,Xn = xn | X0 = x0) =
s

∏
i, j∈I

p
fi j
i j ,

P(X0 = x0, . . . ,Xn = xn) = λx0 ∏
i, j∈I

p
fi j
i j ,

which implies that the transition count F(X), on its own or together with the initial
state x0, forms a sufficient statistic. To find the distribution of statistic F(X) (that is,
the joint distribution of the entries fi j(X)), we need to count the number of samples
x following a trajectory compatible with a given n-step transition count F .

To this end, given x,y ∈ I, let F = ( fi j) be an n-step transition count with

x0 = x and xn = y, and denote by N(n)
xy (F) the number of samples x ∈ In+1 such

that F = F(x). Some straightforward (although tedious) combinatorics performed
below results in the formula

N(n)
xy (F) =

⎛⎜⎝∏
i

fi+!

∏
i j

fi j!

⎞⎟⎠ ϕ−
(x,y). (3.95)

Here ϕ−
(x,y) stands for the (x,y)th cofactor in the matrix F− = ( f−i j ) which we

determine below:

ϕ−
(x,y) = (−1)x+y (det( f−i j )i�=x, j �=y

)
. (3.96)

Entries f−i j of F− are given by

f−i j =
{

δi j − fi j/ fi+, if fi+ > 0,

δi j, if fi+ = 0,
i, j = 1, . . .s. (3.97)

Equation (3.95) means that, given an n-step transition count F = ( fi j) with x0 =
x, xn = y, the conditional probability that F(X) = F , given that X0 = x and Xn = y,
becomes

P

(
F(X) = F

∣∣ X0 = x,Xn = y
)

= ∏
i

fi+!∏
i j

(
p

fi j
i j

fi j!

)
ϕ−

(x,y); (3.98)

likewise for the conditional probability

P

(
Xn = y,F(X) = F

∣∣ X0 = x
)

= p(n)
xy ∏

i
fi+!∏

i j

(
p

fi j
i j

fi j!

)
ϕ−

(x,y), (3.99)

and for the unconditional probability

P

(
X0 = x,Xn = y,F(X) = F

)
= λx p(n)

xy ∏
i

fi+!∏
i j

(
p

fi j
i j

fi j!

)
ϕ−

(x,y). (3.100)



3.4 Likelihood functions, 2. Whittle’s formula 393

Here p(n)
xy represents the n-step transition probability, from x to y. Equations (3.98)–

(3.100) are called Whittle’s formulas.

Example 3.4.4 For the matrix F from Example 3.4.3, Whittle’s formula gives

N(4)
13 = 2! det

(
−1/2 −1/2

1 −1

)
= 2.

On the other hand, N(4)
23 = N(4)

33 = 0 because the transition count F is not compatible
with any of the pairs (2,3) and (3,3). Hence, Whittle’s formula cannot apply for
these pairs.

This brings us to the following

Definition 3.4.5 Let x,y ∈ I be given states (not necessarily distinct), and n an
integer ≥ 1. Denote by B(n,x,y) the set of matrices F = ( fi j) with integer elements
fi j, i, j ∈ I, such that

(i) the sum ∑i, j∈I fi j = n,
(ii) fi+− f+i = δix −δiy, i ∈ I, and, if x = y, fx+ ≥ 1 and f+x ≥ 1.

In other words, the matrices F ∈ B(n,x,y) give n-step transition counts with
x0 = x and xn = y. Next, set B(n,x) =

⋃
y∈IB(n,x,y), which gives all n-step tran-

sition counts with x0 = x. (Observe that, given x, the sets B(n,x,y) must be disjoint
for different y ∈ I.)

Now let P = (pi j, i, j ∈ I) be a transition matrix. A Whittle distribution with
parameters (P,n,x,y) is a probability distribution on B(n,x,y) which assigns to
F ∈ B(n,x,y) the probability

υ(F) = ∏
i

fi+!∏
i j

(
p

fi j
i j

fi j!

)
ϕ−

(x,y). (3.101)

Next, a Whittle distribution with parameters (P,n,x) constitutes a probability
distribution on B(n,x) assigning to F ∈ B(n,x,y) the probability

ϒ(F) = p(n)
xy ∏

i
fi+!∏

i j

(
p

fi j
i j

fi j!

)
ϕ−

(x,y). (3.102)

That is, the conditional probability ϒ(F | B(n,x,y)) equals υ(F), for F ∈
B(n,x,y).

Proof of formula (3.95) The proof goes by induction in n. Equation (3.95) holds
for n = 1 (in this case both sides of (3.95) give 1). Assume it holds for n − 1.
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Denote by G(k,m) the matrix obtained from G = (Gi j) when its (k,m)th entry is
diminished by 1: G(k,m) = G−E(k,m) where (E(k,m))i j = δk,iδ j,m. Then clearly,
for F = ( fi j),

N(n)
kl (F) =

s

∑
m=1

1( fkm > 0)N(n−1)
ml (F(k,m)). (3.103)

Hence it suffices to show that the expressions ϕ−
(k,l) in the right-hand side of

(3.95) satisfy a similar relation, viz.,

ϕ−
(k,l) =

s

∑
m=1

1( fkm > 0)
(

fkm

fk+

)(
ϕ−(k,m)

)
(m,l). (3.104)

Here and below,
(
ϕ−(k,m)

)
(m,l) stands for the (m, l)th cofactor in matrix F−(k,m).

Since F−(k,m) and F− agree outside the mth column, the cofactors coincide:(
ϕ−(k,m)

)
(m,l) = ϕ−

(m,l). This fact, together with definition (3.96), implies that
(3.104) is equivalent to

s

∑
m=1

[
δk,m −

(
fk,m

fk+

)
1( fkm > 0)

]
ϕ−

(m,l) = 0. (3.105)

Since ∑s
m=1 f−kmϕ−

(m,l) = δk,l det F−, equation (3.105) follows immediately for the

case where k �= l. Thus, we need only show that detF− = 0 if k = l. Suppose for
notational convenience that fi+ = f+i, is positive for i ≤ r and zero for i > r. Then
F presents the form

F =
(

A 0
0 0

)
, (3.106)

where A forms an r× r matrix. By Definition (3.97),

F− =
(

A− 0
0 I

)
, (3.107)

where the rows of A− sum to 0. Thus detF− = detA− = 0. (If k �= l, F− may
become non-singular.)

An interesting question arises in calculating the moments of the Whittle dis-
tribution. Take I = {1, . . . ,s}. Let B = (bi j) be an s× s matrix with eigenvalues
μ1, . . . ,μs, which we assume at the moment to be distinct. Let g(x) be an arbitrary
polynomial of degree n and let g(B) be the corresponding matrix polynomial. The
well-known Sylvester theorem states that



3.4 Likelihood functions, 2. Whittle’s formula 395

g(B) = ∑
k∈I

g(μk)B(k), (3.108)

where matrices B(k) are defined by the expression

B(k) =
∏

i∈I: i�=k

(
μiI−B

)
∏

i∈I: i�=k
(μi −μk)

, k ∈ I. (3.109)

The matrix B(k) forms the rank 1 (non-orthogonal) projection onto the 1-
dimensional subspace generated by the eigenvector of B corresponding to the kth
eigenvalue μk; the projection is performed along the hyperplane spanned by the
remaining eigenvectors. The matrices B(k) are idempotent, with(

B(k)
)2 = B(k), and B(k)B(k′) = 0, k �= k′, k,k′ ∈ I.

Observe that the matrix B(1) is an s× s matrix each row of which is the invariant
vector π defined by the relation π = πP. An analogue of (3.108) also holds in the
case of multiple eigenvalues, although (3.109) will then include the derivatives of
polynomial g. We omit the details.

Theorem 3.4.6 If an s× s random matrix F follows the Whittle distribution with
parameters (P,n,x), then the expected value of its (α ,β )th entry is given by

Eαβ (n,x) =
n−1

∑
m=0

p(m)
xα pαβ , α ,β ,x ∈ I, n = 1,2,3, . . . (3.110)

where p(m)
xα appears as the (x,α)th entry of the m-step transition matrix Pm.

Furthermore, suppose the matrix P is irreducible and aperiodic, with distinct eigen-
values, say 1 = μ1 > |μ2|, . . . , |μs|. Then the expected value Eαβ (n,x) admits the
representation

Eαβ (n,x) = pαβ

(
nπα + ∑

2≤k≤s

(
1−μn

k

1−μk

)
(p(k))xα

)
. (3.111)

Here, (p(k))xα makes up the (x,α)th entry of the matrix P(k) defined by (3.109),
for B = P:

P(k) =
∏i∈I: i�=k

(
μiI−P

)
∏i�=k(μi −μk)

, k = 1, . . . ,s.

Proof Let Nα,β (n,x) be the random number of transitions α → β in the ran-
dom matrix F, or, equivalently, in a sample X with distribution P

(
·
∣∣X0 = x

)
.
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Let the first transition in X be x → k, k ∈ I. Then Nαβ (n,x) satisfies the
equations

Nαβ (n,x) = δx,α δk,β +Nα,β (n−1,k), n ≥ 2, (3.112)

and

Nαβ (1,x) = δx,α δk,β , k ∈ I. (3.113)

Thus, Eαβ (n,x) satisfies the equations

Eαβ (n,x) = pxβ δx,α +
s

∑
k=1

pxk Eαβ (n−1,k), n ≥ 2,

and

Eαβ (1,x) = pxβ δx,α . (3.114)

We shall prove inductively that

Eαβ (n,x) =
n−1

∑
m=0

p(m)
xα pαβ . (3.115)

Since δx,α pαβ = δx,α pxβ , equation (3.115) is satisfied by (3.114) for n = 1. Then,
using (3.115)

Eαβ (n+1,x) = pxβ δx,α +
s

∑
k=1

pxk

n−1

∑
m=0

p(m)
kα pαβ

= pxβ δx,α +
n−1

∑
m=0

p(m+1)
xα pαβ

=
n

∑
m=0

p(m)
xα pαβ , (3.116)

establishing the induction step.
If all the eigenvalues μk of P are distinct, Sylvester’s theorem yields

p(m)
xα =

s

∑
k=1

μm
k (p(k))xα , m = 0,1, . . . . (3.117)

Arranging the eigenvalues so that 1 = μ1 > |μ2|, . . . , |μs| allows to write (3.116) as

Eαβ (n,x) =
n−1

∑
m=0

s

∑
k=1

μm
k (p(k))xα pαβ

= pαβ

(
nπα +

s

∑
k=2

(
1−μn

k

1−μk

)
(p(k))xα

)
.
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Theorem 3.4.7 If a random matrix F adheres to the Whittle distribution with
parameter (P,n,x), then, for all α , β , γ , δ ∈ I, the covariance between the (α ,β )th
and the (γ,δ )th entries of F is given by

Cα,β ;γ,δ (n,x) = Eαβ (1,x)
[
δα,γ δβ ,δ −Eγδ (1,x)

]
, n = 1.

Cα,β ;γ,δ (n,x) = Eαβ (n,x)
[
δα,γ δβ ,δ −Eγδ (n,x)

]
+

n−1

∑
m=1

[
p(n−1−m)

xα pαβ Eγδ (m,β )

+p(n−m−1)
xγ pγδ Eαβ (m,δ )

]
, n ≥ 2. (3.118)

If P happens to be irreducible and aperiodic and with distinct eigenvalues
μ1, . . . ,μs, then the covariance between the (α ,β )th and the (γ,δ )th entries of F
from the second equation in (3.118) above admits the representation

Cα,β ;γ,δ (n,x)

= pαβ δα,γ δβ ,δ

(
nπα +

s

∑
k=2

(
1−μn

k

1−μk

)
(p(k))xα

)

−pαβ pγδ

{
n

(
s

∑
k=2

(
1−μn

k

1−μk

)[
πα (p(k))xγ +πγ (p(k))xα

])

+
s

∑
k=2

s

∑
k′=2

(
1−μn

k

1−μk

)(
1−μn

k′

1−μk′

)
(p(k))xα (p(k′))xγ

−
(
−nπα πγ +

s

∑
k=2

(
n−1−nμk + μ2

k

(1−μk)2

)

×
[
πα ((p(k))xγ +(p(k))βγ)+πγ ((p(k))xα +(p(k))δα)

])

+
s

∑
k=2

(
1−nμn−1

k +(n−1)μ2
k

(1−μ2
k )

)
[
(p(k))xα p(k))βγ +(p(k))xγ(p(k))δα

]
+

s

∑
k=2

s

∑
k′=2,k′ �=k

(
(p(k))xα (p(k′))βγ +(p(k))xγ (p(k′))δα

1−μk′

)

×
[(

1−μn−1
k

1−μk

)
−
(

μk′(μn−1
k −μn−1

k′ )
μk −μk′

)]}
. (3.119)



398 Statistics of discrete-time Markov chains

Proof Step 1. Let, as before, Nα,β (n,x) be the number of transitions from state
α → β in X, and assume that the first transition is x → k. Then

Nα,β (n,x)Nγ,δ (n,x) = δα,γ δβ ,δ δα,x δβ ,k, for n = 1.

Nα,β (n,x)Nγ,δ (n,x)

= δα,γ δβ ,δ δα,x δβ ,k +δx,γ δk,δ Nα,β (n−1,k)

+δx,α δk,β Nγ,δ (n−1,k)+Nα,β (n−1,k)Nγ,δ (n−1,k), for n ≥ 2.

Furthermore, the ‘mixed’ second moment

σα,β ;γ,δ (n,x) := E
[
Nα,β (n,x)Nγ,δ (n,x)

]
satisfies the relations

σα,β ;γ,δ (n,x) = δα,γ δβ ,δ δα,x pxβ +δx,γ px,δ Eα,β (n−1,δ )

+δx,α pxβ Eγδ (n−1,β )+
s

∑
k=1

pxk σα,β ;γ,δ (n−1,k), for n ≥ 2,

σαβγδ (n,x) = δαγ ;δβδ δαx pxβ , for n = 1.

Step 2. Next, we show that

σα,β ;γ,δ (n,x) = δα,γ δβ ,δ Eα,β (n,x)

+
n−1

∑
k=1

[
p(n−1−k)

xα pαβ Eγ,δ (k,β )+ p(n−1−k)
xγ pγδ Eα,β (k,δ )

]
, n ≥ 2,

σα,β ;γ,δ (n,x) = δαγ δβ ,δ Eα,β (1,s), n = 1,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.120)

after which (3.118) follows.

The case n ≥ 2 will again be proved by induction. For n = 2, equation (3.120) is
easily verified. To make the inductive step from n to n+1, write

σα,β ;γ,δ (n+1,x)

= δα,γ δβ ,δ δα,x pxβ +δx,γ pxδ Eα,β (n,δ )+δx,α pxβ Eγ,δ (n,β )

+
s

∑
k=1

pxk

(
δα,γ δβ ,δ

n−1

∑
m=1

p(m)
kα pαβ
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+
n−1

∑
m=1

[
p(n−1−m)

kα pαβ Eγ,δ (m,β )+ p(n−1−m)
kγ pγδ Eα,β (m,δ )

])
= δα,γδβ ,δ δα,x pxβ +δx,γ pxδ Eα,β (n,δ )+δx,α pxβ Eγ,δ (n,β )

+δα,γ δβ ,δ

n−1

∑
m=0

p(m+1)
xα pαβ

+
n−1

∑
m=0

[
p(n−m)

xα pαβ Eγ,δ (m,β )+ p(n−m)
xγ pγδ Eα,β (m,δ )

]
= δα,γ δβ ,δ Eα,β (n+1,x)

+
n

∑
m=1

[
p(n−m)

xα pαβ Eγδ (m,β )+ p(n−m)
xγ pγδ Eα,β (m,δ )

]
.

Step 3. Finally, suppose matrix P is irreducible and aperiodic and has distinct
eigenvalues. Then we have for the covariance Cα,β ,γ,δ (n,x):

Cα,β ;γ,δ (n,x) = pαβ

[
nπα +

s

∑
k=2

(
1−μn

k

1−μk

)
(p(k))xα

]
×
(

δα,γδβ ,δ − pγδ

[
nπγ +

s

∑
k=2

(
1−μn

k

1−μk

)
(p(k))xγ

])

+pαβ pγδ

n−1

∑
m=1

s

∑
k=2

μ(n−1−m)
k

[
(p(k))xα

(
mπγ +

s

∑
k′=2

(
1−μm

k′

1−μk′

)
pβγ(k

′)

)

+(p(k))xγ

(
mπα +

s

∑
k′=2

(
1−μm

k′

1−μk′

)
pδα(k′)

)]
.

At the end, we invoke four relations:

n−1

∑
m=1

mμ(n−1−m)
k =

n−1−nμk + μn
k

(1−μk)2 , k = 2, . . . ,s,

n−1

∑
m=1

(1−μm
k ) =

n−1−nμk + μn
k

1−μk
, k = 2, . . . ,s,

n−1

∑
m=1

μ(n−1−m)
k (1−μm

k′ ) =
1−μn−1

k

1−μk
− μk′(μn−1

k −μn−1
k′ )

μk −μk′
,

k,k′ = 2, . . . ,s, k′ �= k,
n−1

∑
m=1

μ(n−1−m)
k (1−μm

k ) =
1−nμn−1

k +(n−1)μn
k

1−μk
, k = 2, . . . ,s.

(3.121)

and deduce (3.118).
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We note that (3.111) implies that as n → ∞,

Eα,β (n,x) ≈ pαβ

[
nπα +

s

∑
k=2

(p(k))xα

1−μk

]
. (3.122)

Similarly, from (3.118) one deduces that as n → ∞,

Cα,β ,γ,δ (n,x)

≈ n

[
πα pαβ δα,γ δβ ,δ −πα pαβ πγ pγδ

+pαβ pγδ

s

∑
k=2

πα(p(k))βγ +πγ(p(k))δα

1−μk

]

+pαβ δαγ δβδ

s

∑
k=2

(p(k))xα

1−μk

−pαβ pγδ

[
s

∑
k=2

πα((p(k))xγ +(p(k))βγ)+πγ((p(k))xα +(p(k))δα)
(1−μk)2

−
s

∑
k,k′=2

(p(k))xα(p(k))βγ +(p(k))xγ(p(k))δα − (p(k))xα(p(k))xγ

(1−μk)(1−μk′)

]
. (3.123)

Worked Example 3.4.8 Check that for the 2×2 transition matrix

P =
(

1− p p
q 1−q

)
, 0 ≤ p, q ≤ 1,

Sylvester’s theorem leads to the spectral decomposition

P =
(

q/(p+q) p/(p+q)
q/(p+q) p/(p+q)

)
+(1− p−q)

(
p/(p+q) −p/(p+q)
−q/(p+q) q/(p+q)

)
.

Derive expressions for entries of the m-step transition matrix Pm:

p(m)
12 = p

m−1

∑
k=1

(1− p−q)k, p(m)
21 = q

m−1

∑
k=1

(1− p−q)k, (3.124)

and similar formulas for p(m)
11 and p(m)

22 . Here m = 1,2, . . ..

Solution We immediately get

π =
(

q
p+q

,
p

p+q

)
.
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Then for the matrix Pm:

Pm =
(

q/(p+q) p/(p+q)
q/(p+q) p/(p+q)

)
+ (1− p−q)m

(
p/(p+q) −p/(p+q)
−p/(p+q) q/(p+q)

)
.

This yields, in addition to (3.124),

p(m)
12 = p

(
1− (1− p−q)m

1− (1− p−q)

)
, and p(m)

21 = q

(
1− (1− p−q)m

1− (1− p−q)

)
.

A detailed account of properties of Whittle’s distribution can be found in P.
Billingsley, “Statistical methods in Markov chains”, Annals Math. Statist., 32
(1961), 12–40.

3.5 Bayesian analysis of Markov chains: prior and posterior distributions

Bayesian Instincts, 2
The Last of the Bayesians

The Statsman Who Started as a Frequentist
But Came Back as a Bayesian

(From the series ‘Movies that never made it to the Big Screen’.)

In the case of a Bayesian set-up, an unknown parameter θ is considered as random,
with a given prior distribution Πprior. Again, we will focus in this section on the
extreme case where θ is a pair (λ ,P) varying within the set R defined in (3.5) or
θ is reduced to matrix P, varying within the set P defined in (3.7). The question
is what we should take as a ‘natural’ probability distribution, Πprior, of θ .

In many applications, one assumes that Πprior is a product of Dirichlet distri-
butions (or even more generally, a Liouville distributions). Formally, in the case
θ = (λ ,P), Πprior is determined by the probability density function πprior(λ ,P),
relative to the Lebesgue measure dλ × dP, on the set R from (3.5). See the first
equation in (3.13). The PDF in question has the form of the product: πprior(λ ,P) =
πprior

in (λ )πprior
tr (P) where πprior

in (λ ) is the joint PDF for entries λ j of the initial vector

λ , and πprior
tr (P) is the joint PDF for entries pi j of the transition matrix P. Further,

πprior
in (λ ) = Γ

(
∑
k∈I

bk

)
∏
j∈I

λ b j−1
j

Γ(b j)
λ b j−1

j , λ = (λ j), (3.125)

πprior
tr (P) = ∏

i∈I
Γ

(
∑
k∈I

aik

)
∏
j∈I

p
ai j−1
i j

Γ(ai j)
, P = (pi j). (3.126)
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Here, parameters b j and ai j are positive numbers, i, j ∈ I. Formulas (3.125) and
(3.126) should be treated with a reservation, as entries λ j and pi j satisfy the rela-
tions ∑λ j = 1 and ∑ j pi j = 1, for all i ∈ I, and hence are not linearly independent.

This means that PDFs πprior
in (λ ) and πprior

tr (P) should be considered in linearly inde-
pendent variables (when one excludes one entry in the vector λ and one entry in
each row of the matrix P). Recall that the same comment was made when we
defined Lebesgue measures in (3.13).

As is plain to see, the PDF πprior
in (λ ) in (3.125) is of the same type as the joint

PDF of entries of a single row of the transition matrix P. Thus, we will focus on
studying the PDF πprior(P) = πprior

tr (P) from (3.126), omitting the subscript tr. In
other words, we consider the case where θ = P varies within the set P defined in
(3.7), or even within its interior P int from (3.8). As was noted in Remark 3.1.1, if
P ∈ P int then it is irreducible and aperiodic and hence has a unique equilibrium
distribution π .

For a detailed review of Liouville distributions, see R.D. Gupta and D.S.P.
Richards, “Multivariate Liouville distributions”, Journ. Multivariate Anal., 23
(1987), 233–256.

Example 3.5.1 Recall (cf. Question 1.16.1), for a chain with two states {1,2}, the

matrix P =
(

1− p p
q 1−q

)
is identified with the pair (p,q), and the set P can be

thought of as a closed unit square [0,1]× [0,1]. For the PDF (3.126) we then obtain

πprior(p,q)

=
Γ(a11 +a12)
Γ(a11)Γ(a12)

Γ(a21 +a22)
Γ(a21)Γ(a22)

(1− p)a11−1 pa12−1qa21−1(1−q)a22−1. (3.127)

Remembering that 1
/

B(α ,β ) = Γ(α +β )
/

Γ(α)Γ(β ), (3.127) is a product of two
Beta-PDFs,

1
B(a11,a12)

(1− p)a11−1 pa12−1, 0 < p < 1,

and
1

B(a21,a22)
qa21−1(1−q)a22−1, 0 < q < 1.

It is easy to compute all moments of matrix elements. Say,

E[p11] =
Γ(a11 +a12)Γ(a21 +a22)

Γ(a11)Γ(a12)Γ(a21)Γ(a22)
B(a11 +1,a12)B(a21,a22)

=
a11

a11 +a12
,

etc. See Worked Example 3.5.4 for details.
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Reflecting the above fact, the distributions Πprior with PDF πprior(P) as in (3.126)
are sometimes called products of multivariate Beta-distributions.

An important role is played by the so-called Dirichlet integral formula. It states
the following well-known fact from analysis:

∫
. . .
∫

An

xa1−1
1 · · ·xan−1

n

(
1−

n

∑
i=1

xi

)an+1−1

dx1 · · ·dxn

=
Γ(a1) · · ·Γ(an+1)

Γ(a1 + · · ·+an+1)
. (3.128)

Here the domain of integration is

An =

{
(x1, . . . ,xn) : x1, . . . ,xn ≥ 0,

n

∑
i=1

xi ≤ 1

}
⊂ R

n,

and a1, . . . ,an+1 are positive numbers. The analytic proof of (3.128) is rather
tedious. A more transparent proof is provided by probabilistic methods.

Conside therefore IID RVs Yk ∼ Γ(ak,1). The joint PDF fY1,...,Yn+1 of Y1, . . ., Yn+1

is a product:

fY1,...,Yn+1(y1, . . . ,yn+1) =
e−(y1+···+yn+1)

Γ(a1) . . .Γ(an+1)
ya1−1

1 · · ·yan+1−1
n+1 ,

y1, . . . ,yn+1 ≥ 0. (3.129)

It is convenient to use the following change of variables:

V1 = Y1, V2 = Y2, . . . , Vn = Yn, Vn+1 = Y1 + · · ·+Yn+1

and

X1 =
V1

Vn+1
, . . . , Xn =

Vn

Vn+1
, Xn+1 = Vn+1.

Then the joint PDF fV1,...,Vn+1 of V1, . . ., Vn+1 is calculated as

fV1,...,Vn+1(v1, . . . ,vn+1)

=
e−vn+1va1−1

1 · · ·van−1
n

Γ(a1) · · ·Γ(an+1)

(
vn+1 −

n

∑
i=1

vi

)an+1−1

×1

(
vn+1 ≥

n

∑
i=1

vi

)
, v1, . . . ,vn > 0. (3.130)
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The Jacobian

∂ (v1, . . . ,vn+1)
∂ (x1, . . . ,xn+1)

= det

⎛⎜⎜⎜⎜⎜⎝
xn+1 0 0 0 . . . 0 x1

0 xn+1 0 0 . . . 0 x2

0 0 xn+1 0 . . . 0 x3
...

...
...

... . . .
...

...
0 0 0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎠
equals xn

n+1. We then obtain the following formula for the joint PDF fX1,...,Xn+1 of
variables X1, . . ., Xn+1:

fX1,...,Xn+1(x1, . . . ,xn+1)

=
e−xn+1xa1+···+an+1−1

n+1 xa1−1
1 . . .xan−1

n

Γ(a1) . . .Γ(an+1)

(
1−

n

∑
i=1

xi

)an+1−1

. (3.131)

Now, integrating in the variable xn+1 yields the joint PDF fX1,...,Xn(x1, . . . ,xn) of
RVs X1, . . ., Xn. Direct calculation gives for fX1,...,Xn(x1, . . . ,xn) the expression

Γ(a1 + · · ·+an+1)
Γ(a1) · · ·Γ(an+1)

xa1−1
1 · · ·xan−1

n

(
1−

n

∑
i=1

xi

)an+1−1

. (3.132)

The proof of (3.128) is concluded by observing that (3.132) defines a PDF (that is,
a non-negative function, with integral 1).

Definition 3.5.2 Given a1, . . . , an+1 > 0, the PDF

f (x1, . . . ,xn)

=
Γ(a1 + · · ·+an+1)
Γ(a1) · · ·Γ(an+1)

xa1−1
1 · · ·xan−1

n

×
(

1−
n

∑
i=1

xi

)an+1−1

1

(
n

∑
i=1

xi < 1

)
, x1, . . . ,xn > 0, (3.133)

is called a Dirichlet PDF: we denote it by f Dir(x1, . . . ,xn). A vector X of RVs X1,
. . ., Xn with joint PDF f Dir(x1, . . . ,xn) is said to have a Dirichlet distribution with
(vector) parameter a, or briefly, Dir(a), and we write:
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X =

⎛⎜⎝ X1
...

Xn

⎞⎟⎠∼ Dir(a), where a =

⎛⎜⎜⎜⎝
a1
...

an

an+1

⎞⎟⎟⎟⎠ .

Revisiting (3.126), we see that the joint PDF πprior(P), with parameters ai j, i, j ∈
I, is the product, over i ∈ I, of Dirichlet PDFs Dir(ai), with vectors ai = (ai j, j ∈ I).
Furthermore, the factor

Γ

(
∑
k∈I

aik

)
∏
j∈I

p
ai j−1
i j

Γ(ai j)

in this product describes the joint PDF of the entries pi j, j ∈ I, of row i of the
transition matrix P = (pi j).

Dirichlet’s formula implies a more general Liouville formula:∫
. . .
∫

{xi≥0, x1+···+xn<h}

g(x1 + · · ·+ xn)xa1−1
1 · · ·xan−1

n dx1 · · ·dxn

=
Γ(a1) · · ·Γ(an+1)

Γ(a1 + · · ·+an+1)

∫ h

0
g(t)ta1+···+an−1dt (3.134)

valid for any function g for which the integral in the RHS is correctly defined.

Worked Example 3.5.3 (a) Consider the Liouville distribution, Liouv(g,h), with
joint PDF

f Liouv(x1, . . . ,xn) = Cg(x1 + · · ·+ xn)x
a1−1
1 · · ·xan−1

n

×1(x1 + · · ·+ xn ≤ h), x1, . . . ,xn ≥ 0, a1, . . . ,an > 0. (3.135)

Here g(s), s > 0, is a given function, h > 0 is a parameter, and C > 0 is the normal-
izing constant, chosen so that

∫
Rn f Liouv(x1, . . . ,xn)dx1 · · ·dxn = 1. Check that PDF

(3.135) coincides with Dirichlet’s distribution, Dir(a), with PDF

f Dir(x1, . . . ,xn) =
Γ
(

∑n+1
j=1 a j

)
∏n+1

j=1 Γ(a j)
xa1−1

1 · · ·xan−1
n

×
(
1−∑n

i=1 xi
)an+1−1

1
(
∑n

j=1 x j ≤ 1
)

, x1, . . . ,xn ≥ 0, (3.136)

if we set h = 1 and g(s) = (1− s)an+1−1. Here, a = (a1, . . . ,an,an+1).
(b) Deduce Liouville’s formula (3.134) from Dirichlet’s formula (3.128).
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Solution (a) Equation (3.132) follows from (3.131), with h and g as indi-
cated, by a direct substitution. The value of the corresponding constant C equals
Γ(a1 + · · ·+an+1)
Γ(a1) · · ·Γ(an+1)

by the earlier calculation.

(b) The integral (3.134) equals∫ h

0
g(t)

∫
{x1+···+xn=t}

xa1−1
1 · · ·xan−1

n dx1 · · ·dxn−1dt

=
∫ h

0
g(t)

∫{
n−1
∑
j=1

x j≤t

}xa1−1
1 · · ·xan−1−1

n−1

(
t −

n−1

∑
j=1

x j

)an−1

dx1 · · ·dxn−1dt.

In the variables

y1 =
x1

t
, . . . ,yn−1 =

xn−1

t
,

this integral takes the form∫ h

0
g(t)ta1+···+an−1

×

⎡⎢⎣ ∫
{∑n−1

j=1 y j≤1}
ya1−1

1 · · ·yan−1−1
n−1

(
1−

n−1

∑
j=1

y j

)an−1

dy1 · · ·dyn−1

⎤⎥⎦dt.

By (3.128), the internal integral in the square brackets equals

Γ(a1) · · ·Γ(an)
Γ(a1 + · · ·+an)

,

which completes the solution.

Worked Example 3.5.4 The moments of the Dirichlet distribution are defined by

E
(
Xα1

1 · · ·Xαn
n

)
=
∫

An
xα1

1 · · ·xαn
n f Dir(x1, . . . ,xn) dx1 · · ·dxn.

Prove that for all α1 > −a1, . . . ,αn > −an

E
(
Xα1

1 · · ·Xαn
n

)
=

Γ

(
n+1
∑
j=1

a j

)

Γ

(
n+1
∑
j=1

a j +
n
∑

k=1
αk

) n

∏
i=1

Γ(ai +αi)
Γ(ai)

. (3.137)
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In particular,

E(Xk) =
ak

a
, EX2

k =
ak(ak +1)
a(a+1)

, Var Xk =
ak(a−ak)
a2(a+1)

(3.138)

and

E(X1 · · ·Xn) =
n

∏
i=1

ai

ai + i−1
, E(XkXl) =

akal

a(a+1)
. (3.139)

where a = a1 + · · ·+an+1.

Solution Write

E
(
Xα1

1 · · ·Xαn
n

)
=

Γ(a1 + · · ·+an+1)
Γ(a1) · · ·Γ(an+1)

×
∫

· · ·
∫

An

xa1+α1−1
1 · · ·xan+αn−1

n

(
1−

n

∑
i=1

xi

)an+1−1

dx1 · · ·dxn.

with An = {xi ≥ 0, ∑n
i=1 xi ≤ 1} and apply Dirichlet’s integral formula. This yields

E
(
Xα1

1 · · ·Xαn
n

)
=

Γ
(

∑n+1
j=1 a j

)
Γ(a1) · · ·Γ(an+1)

Γ(a1 +α1) · · ·Γ(a1 +αn)Γ(an+1)

Γ
(

∑n+1
j=1 a j +∑n

j=1 α j

)
=

Γ
(

∑n+1
j=1 a j

)
Γ
(

∑n+1
j=1 a j +∑n

j=1 α j

) n

∏
i=1

Γ(ai +αi)
Γ(ai)

.

Worked Example 3.5.5 Verify that the mean value Ei, j and the variance Vi, j of the
(i, j) entry of the transition matrix, under the distribution with joint PDF (3.126)
are given by

Ei, j =
ai j

∑k aik
, Vi, j =

ai j (∑k aik −ai j)

(∑k aik)
2 (∑k aik +1)

. (3.140)

Verify that the covariance of the (i, j) and (i, j′) entries is

Ci, j;i, j′ = − ai jai j′

(∑k aik)
2 (∑k aik +1)

. (3.141)

Solution The result follows immediately from (3.138)–(3.139). For additional
details see Martin, 1967.
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Worked Example 3.5.6 Let Sn+1 = Y1 + · · · + Yn+1, where Yk ∼ Gam(ak,1),
independently, and a = a1 + · · ·+an+1.

(a) Prove that

Xk =
Yk

Sn+1
∼ Bet(ak,a−ak). (3.142)

(b) For the joint distribution prove that(
Xk

Xl

)
∼ Dir

⎛⎝ ak

al

a−ak −al

⎞⎠ .

(c) For a symmetric Dirichlet distribution Dir(a, . . . ,a) prove that

Xi ∼ Bet(a,na), i = 1, . . . ,n. (3.143)

Here Bet(α ,β ) stands for the Beta-distribution.

Solution (Sketch) For parts (a) and (b), make the following change of variables

Xl =
Yl

Sn+1
, l = 1, . . . ,n, Xn+1 = Sn+1,

and integrate with respect to redundant variables. In this way the joint PDF of x1

and x2 can be written as

fX1,X2(x1,x2) = Cxa1−1
1 xa2−1

2 (1− x1 − x2)an+1−1

×
∫

An−2

xa3−1
3 · · ·xan−1

n

(
1− ∑n

i=3 xi

1− x1 − x2

)an+1−1
dx3 · · ·dxn

where

An−2 =
{

x3, . . . ,xn ≥ 0,∑n
i=3 xi ≤ 1− x1 − x2

}
and C is a normalizing constant needed to make the integral of fX1,X2 in dx1dx2

equal to 1. Introducing new variables vi = xi/(1 − x1 − x2), i = 3, . . . ,n and
computing the integral by Dirichlet formula (3.128), one obtains assertion (b).

(c) Similarly, the marginal PDF fX1(x1) of X1 is

Cxa−1
1 (1− x1)a−1

∫
An

xa−1
2 · · ·xa−1

n

(
1− ∑n

i=2 xi

1− x1

)a−1
dx2 · · ·dxn

=
1

B(a,na)
xa−1

1 (1− x1)na−1.

Here, as usual, B(a,na) = Γ(a)Γ(na)
/

Γ((n + 1)a) stands for the Beta-function.
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Worked Example 3.5.7 (a) Let

⎛⎜⎝ X1
...

Xn

⎞⎟⎠ ∼ Dir

⎛⎜⎜⎜⎝
a1
...

an

an+1

⎞⎟⎟⎟⎠. Prove that for the

sum Y = X1 + · · ·+Xn,

Y ∼ Bet (a1 + · · ·+an,an+1). (3.144)

(b) Prove that for the vector Xk =

⎛⎜⎝ X1
...

Xk

⎞⎟⎠ with k < n,

Xk ∼ Dir

⎛⎜⎜⎜⎝
a1
...

ak

ak+1 + · · ·+an+1

⎞⎟⎟⎟⎠ . (3.145)

(c) Set Y1 = X1 + · · ·+Xn1 , Y2 = Xn1+1 + · · ·+Xn1+n2 , . . ., Yk = Xn1+···+nk−1+1 + · · ·+
Xn1+···+nk . Then show

Yk =

⎛⎜⎝ Y1
...

Yk

⎞⎟⎠∼ Dir

⎛⎜⎜⎜⎝
a(1)

...
a(k)

a(k +1)

⎞⎟⎟⎟⎠ , (3.146)

where
a(1) = a1 + · · ·+an1 ,

. . .

a(k) = an1+n2+···+nk−1+1 + · · ·+an1+···+nk ,

a(k +1) = an1+n2+···+nk+1 + · · ·+an+1.

(3.147)

Solution (Sketch) For part (a), apply Dirichlet’s formula (3.134) with g(t) = (1−
t)an+1−1. For part (b), use the same calculation as in Worked Example 3.5.6. In part
(c), the joint PDF fY1,...,Yk(t1, . . . , tk) is proportional to

ta(1)−1
1 · · ·ta(k+1)−1

k+1

where t1 + · · ·+ tk+1 = 1. That is, Yk has the Dirichlet distribution with parameters
a(1), . . . ,a(k +1).

In Volume 1, we discussed the issue of conjugacy of a given family (or class)
of distributions. The meaning of this concept is that if the prior distribution Πprior

is from a given class (described by one or several parameters), then the posterior
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distribution, given sample vector x, is from the same family (class). In this case we
only have to indicate how the parameters of the posterior distribution are calculated
as functions of the sample vector and the parameters of the prior distribution. Recall
that, if the prior distribution has PDF πprior(θ), θ ∈ Θ, and the likelihood of a
sample vector x is L(x;θ) or l(x;θ), then the posterior PDF is determined by

πpost(θ |x) ∝ πprior(θ)L(x;θ), or πpost(θ |x) ∝ πprior(θ) l(x;θ).

Here the proportionality coefficient is fixed by the condition that the integral of
πpost(θ |x) equals 1. The parameter θ may be a scalar or a vector; the case of max-
imum uncertainty which we analysed at some length in previous sections is where
θ = (λ ,P) ∈ R or θ = P ∈ P .

Worked Example 3.5.8 Let X1, . . . ,Xn be IID RVs with values k ∈ {1, . . . ,κ} and
common marginal probabilities

θk = P(X = k).

Suppose that the vector θ =

⎛⎜⎝ θ1
...

θκ

⎞⎟⎠ is random, with Dirichlet distribution

Dir

⎛⎜⎝ a1
...

aκ

⎞⎟⎠. Then, given a sample vector x =

⎛⎜⎝ x1
...

xn

⎞⎟⎠, the posterior distribu-

tion of θ is Dir

⎛⎜⎝ n1 +a1
...

nκ +aκ

⎞⎟⎠, where nk stands for the cardinality of {i : i =

1, . . . ,n, xi = k}.

In particular, the posterior mean value of the RV θk equals the ratio (nk +
ak)
/
(n+a) where a = ∑κ

k=1 ak.

Solution (Sketch) This follows immediately from (3.138).

Worked Example 3.5.9 Consider a DTMC on a given finite state space I =
{1, . . . ,s}, where the transition matrix P is chosen randomly, with PDF πprior(P)
for P ∈P int, and P int is the interior of the set of dimension s(s−1), determined in
(3.8). Verify that the family of Dirichlet PDFs given by (3.126) is conjugate rela-

tive to the reduced likelihood l(x;P) = ∏s
i, j=1 p

ni j(x)
i j . That is, check that if πprior(P)
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is of the form (3.126) with a given collection of values ai j > 0, then the posterior
density πpost(P|x) defined by

πpost(P|x) ∝ l(x,P)πprior(P)

again has the form

πpost(P|x) = ∏
i∈I

Γ

(
∑
k∈I

a′ik

)
∏
j∈I

p
a′i j−1
i j

Γ(a′i j)
. (3.148)

Determine the value a′i j as a function of ai j and x.

Solution (Sketch) Use the fact that a′ik = aik +nik where nik is the transition count
defined in (3.14).

Worked Example 3.5.10 Assume that a distribution of the 2 × 2 transition

matrix P =
(

1− p p
q 1−q

)
from Example 3.5.1 is the product of two Beta

distributions, with the PDF

f (p,q) =
pα−1(1− p)β−1qγ−1(1−q)δ−1

B(α ,β )B(γ,δ )
, 0 < p,q < 1, (3.149)

where α , β , γ , δ > 0. Write, alternatively, P =
(

1− p12 p12

p21 1− p21

)
.

(a) Check that the mean E
[
p(m)

12

]
of the matrix element p(m)

12 = (Pm)12 equals

α
β +α

m−1

∑
k=0

k

∑
l=0

(
k
l

)
(−1)l (β )k−l(γ)l

(β +α +1)k−l(γ +δ )l
, m = 1,2, . . . , (3.150)

where (x)k = Γ(x + k)/Γ(x) = x(x + 1) · · ·(x + k− 1) is the Pochhammer symbol.

Next, verify that the mean value E
[
p(m)

21

]
of the entry p(m)

21 = (Pm)21 is given by

E
[
p(m)

21

]
=

m−1

∑
k=0

k

∑
l=0

(
k
l

)
(−1)l (β )k−l(γ)l+1

(α +β )k−l(γ +δ )l+1
, m = 1,2, . . . , (3.151)

and that the mean value E
[
p(m)

12 p(m)
21

]
equals

α
β +α

m−1

∑
j,k=0

j+k

∑
l=0

(
j + k

l

)
(−1)l (β ) j+k−l(γ)l+1

(α +β +1) j+k−l(γ +δ )l+1
. (3.152)
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(b) The entries π1 and π2 of the equilibrium distribution π of the matrix P
become random variables. Check that the mean values E[π1] and E[π2] are given by

E[π1] =
∞

∑
k=0

k

∑
l=0

(
k
l

)
(−1)l (β )k−l(γ)l+1

(α +β )k−l(γ +δ )l+1
,

E[π2] =
α

β +α

∞

∑
k=0

k

∑
l=0

(
k
l

)
(−1)l (β )k−l(γ)l

(α +β +1)k−l(γ +δ )l
.

(3.153)

Solution (Sketch) (a) It has been proved in Worked Example 3.4.8 that

p(m)
12 = p

1− (1− p−q)m

1− (1− p−q)
= p

m−1

∑
k=0

(1− p−q)k.

Expand the factor (1− p− q)k as
m
∑

l=0

(
k
l

)
(−1)lql(1− p)k−l , and use indepen-

dence of p12 and p21 to obtain the representation

E
[
p(m)

12

]
=

m−1

∑
k=0

k

∑
l=0

(
k
l

)
(−1)l

E[ql]E[p(1− p)k−l].

Next, the product E[ql]E[p(1− p)k−l] equals the ratio

B(α +1,β + k− l)B(γ + l,δ )
B(α ,β )B(γ,δ )

.

Substituting the corresponding Gamma-functions, we obtain (3.150). Similarly, we
obtain the expression (3.151) for E[p(m)

21

]
. Next, expanding

pmqm = pq
m−1

∑
k, j=0

(1− p−q) j+k

we obtain the formula (3.152) for E
[
p(m)

12 p(m)
21

]
.

Equation (3.153) then emerges in the limit m → ∞. Note an analytical remark:
the series in (3.153) converge only conditionally, not absolutely. See again Martin,
1967.

Worked Example 3.5.11 Let (Xm) be a two-state DTMC, with two states. Suppose

that the transition matrix P =
(

1− p p
q 1−q

)
of the chain (Xm) is random and

distributed with the product-PDF f as in (3.149), with positive parameters α , β , γ ,
δ . Next, assume that we are given a reward matrix

R =
(
ri j
)

=
(

a b
c d

)
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where the entries ri j = a,b,c,d ∈ R indicate the reward earned when the DTMC
(Xm) makes a transition from state i to state j.

Define the average discounted reward vector

(
V1(P)
V2(P)

)
with entries

Vi(P) = ∑
n≥0

ρn
2

∑
j,k=1

p(n)
i j p jkr jk, i = 1,2,

where ρ ∈ [0,1/2) is a discount factor. As the transition matrix P is assumed to be
random, the entries V1(P) and V2(P) are also random variables.

Prove the relations

E[V1] =
βa+αb

(1−ρ)(α +β )
+

αρ
(1−ρ)(α +β )

× ∑
k≥0

k

∑
l=0

(
k
l

)
ρk(−1)l (β )k−l(γ)l

(α +β +1)k−l(γ +δ )l

×
[
(γ + l)c+δd

γ +δ + l
− a(β + k− l)+b(α +1)

α +β +1+ k− l

]
, (3.154)

and

E[V2] =
γc+δd

(1−ρ)(γ +δ )
+

ρ
1−ρ

× ∑
k≥0

k

∑
l=0

(
k
l

)
ρk(−1)l (β )k−l(γ)l+1

(α +β )k−l(γ +δ )l+1

×
[

a(β + k− l)+bα
α +β + k− l

− c(γ + l +1)+dδ
γ +δ + l +1

]
. (3.155)

Solution Let M stand for the parameter matrix:

M =
(

α β
γ δ

)
and write EM for the expectation with respect to the PDF f (p,q) from (3.149), with
parameters identified in matrix M. Next, set

Si j(M) = ∑
m≥1

ρm
EM
[
p(m)

i j

]
, i, j = 1,2.

Then for Si j(M) one can write down series in terms of the entries of M, viz.,

S12(M) =
α

α +β ∑
m≥1

m

∑
k=0

ρm
k

∑
l=0

(
k
l

)
(−1)l (β )k−l(γ)l

(α +β +1)k−l(γ +δ )l
,
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or, changing the order of the first two summations,

S12(M) =
αρ

(1−ρ)(α +β ) ∑
k≥0

k

∑
l=0

(
k
l

)
ρk(−1)l (β )k−l(γ)l

(α +β +1)k−l(γ +δ )l
.

(3.156)
Similarly,

S21(M) =
ρ

1−ρ ∑
k≥0

k

∑
l=0

(
k
l

)
ρk(−1)l (β )k−l(γ)l+1

(α +β )k−l(γ +δ )l+1
. (3.157)

It can be shown that the series (3.156), (3.157) converge absolutely for ρ < 1/2.
Moreover,

S11(M) = ∑
m≥1

ρm
(

1−EM
[
pm

12

])
=

ρ
1−ρ

−S12(M), (3.158)

and similarly,

S22(M) =
ρ

1−ρ
−S21(M). (3.159)

Further, denote by Ti j(M), i, j = 1,2, the matrix obtained when the (i, j)th entry
of M increases by 1:

T11(M) =
(

α +1 β
γ δ

)
, T12(M) =

(
α β +1
γ δ

)
,

and so on, and write ETi j(M) for the expectation under the PDF as in (3.149), but
with parameters identified in the matrix Ti j(M). Then the following equality holds:

EM[Vi] =
2

∑
k=1

EM[pik]rik +
2

∑
j,k=1

Si j(Tjk(M))EM[p jk]r jk, i = 1,2, (3.160)

where Si j(Tjk(M)) is determined by the same formulas (3.156)–(3.159), with M
replaced by the matrix Tjk(M).

This is the crucial equation. Substituting into (3.160) the expressions for
Si j(Tjk(M)) and re-arranging terms in a suitable manner eventually leads to (3.154)
and (3.155). For instance,
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EM[V1] =
β

α +β
a+

α
α +β

b+
(

ρ
1−ρ

−S12(T11(M))
)

β
α +β

a

+
(

ρ
1−ρ

−S12(T12(M))
)

α
α +β

b

+S12(T21(M))
δ

γ +δ
c+S12(T22(M))

γ
γ +δ

d

=
βa+αb

(1−ρ)(α +β )
+

αρ
(1−ρ)(α +β )

× ∑
k≥0

k

∑
l=0

(
k
l

)
ρk(−1)l (β )k−l(γ)l

(α +β +1)k−l(γ +δ )l

×[Alc+Bld −Cla−Dlb] ,

and a simple calculation shows that

Al =
γ + l

γ +δ + l
, B =

δ
γ +δ + l

,

C =
β + k− l

α +β +1+ k− l
, D =

α +1
α +β +1+ k− l

,

which yields (3.154).

3.6 Elements of control and information theory

We begin with two examples referring to the Secretary problem (see Section 1.11).

Worked Example 3.6.1 Let X1, . . ., Xm be independent and identically distributed
random variables, Xj ∼U(0,1). (We may think that Xj represents a ‘quality’ of an
object j drawn at random from an ‘unlimited population’, without replacement.) As
in Worked Example 1.11.1, we consider a single-choice Secretary problem, aiming
to select the object of highest quality, by comparing the currently emerging object
with the preceding ones, with no possibility to return to previously rejected objects.
Recall that in Section 1.11 the final (and relatively simple) answers for the proba-
bility emerged in the limit m→∞. For example, allowing two choices increases the
probability of success from 0.3678 to 0.5910. Here we consider the single-choice
case with fully known distribution and specify the optimal strategy. As we shall see
in Worked Example 3.6.2, this information increases the probability of success to
0.5802, which is only marginally lower than 0.5910.

Solution It is not hard to convince oneself that for each i = 1, . . . ,m there exists
an optimal threshold value bi ∈ (0,1) such that at draw m − i + 1 one should
select the emerging object if Xm−i+1 = max[Xl : 1 ≤ l ≤ m − i + 1] > bi and
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reject it if Xm−i+1 < bi or Xm−i+1 < max[Xl : 1 ≤ l ≤ m− i]. (In the case where
Xm−i+1 = max[Xl : 1 ≤ l ≤ m − i + 1] = bi, any of the two decisions leads to
the same probability of success). Indeed, b1 = 0 (which means you take the last
emerging object if it appears to be the global maximum and you haven’t made the
choice before), whereas b2 = 1/2 (which is the median of the uniform distribution
U(0,1)). The remaining bi will be > 1/2 (they will monotonically increase with i);
to calculate them exactly we will use the above indifference condition.

Suppose that we have not made a selection by the (m− i)th draw and Xm−i+1 =
max[Xl : 1 ≤ l ≤ m− i + 1] (in which case we call object m− i + 1 a candidate).
There are i−1 draws left. Then x = bi is the solution to

xi−1 =
i−1

∑
j=1

(
i−1

j

)
1
j
xi−1− j(1− x) j.

Indeed, if we stop (make a selection), the chance of success equals xi−1. If we
continue, then j ≤ i− 1 values bigger than x may appear. If we stop at the first
appearance of such a value, the probability that it is the absolute maximum is 1/ j
due to symmetry. For i = 2 we get x = 1− x, or x = 1/2. Thus b2 = 1/2, as stated.
For i = 3, after simplifying, we get 5x2 −2x−1 = 0, or

x = b3 = (1+
√

6)/5 ≈ 0.6899

For modest values of i+1 one can find bi+1 numerically:

i+1 bi+1

2 0.5000000
3 0.68989795
4 0.77584508
5 0.82458958
6 0.85594922
10 0.91604417
15 0.94482887

i+1 bi+1

20 0.95891663
25 0.96727367
30 0.97280561
35 0.97672783
40 0.97967655
45 0.98195608
50 0.98377582

Note that the optimal threshold bi does not depend on m > i.

The General Secretary Problem
(From the series ‘Movies that never made it to the Big Screen’.)

Worked Example 3.6.2 Continuing the previous example, let us fix a strategy (not
necessary the optimal) with thresholds d1 ≥ d2 ≥ d3 · · · ≥ dm, where 0 ≤ di ≤ 1.
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That is, we select the first object whose quality Xj gives the maximum max[Xl :
1 ≤ l ≤ j] and exceeds d j. Prove that the probability of success at the first draw
equals

P(1) =
1−dm

1

m
,

whereas the probability of success P(r +1) at draw r +1 is given by

P(r +1) =
r

∑
i=1

dr
i

r(m− r)
−

r

∑
i=1

dm
i

m(m− r)
−

dm
r+1

m
, 1 ≤ r ≤ m−1.

Solution The expression for P(1) is straightforward: 1− dm
1 gives the probability

that at least one of the objects has quality at least d1 and 1/m the conditional proba-
bility that, given the above event, the best quality is X1 (by symmetry). For a general
r, we take i, 1 ≤ i ≤ r, and consider the probability that the first r draws resulted
in no selection, and that the (globally) best object is among the remaining m− r
draws. Equivalently, this the probability that, for all i = 1, . . . ,r such that the quality
Xi is the highest among X1, . . ., Xr, we have that Xi < di and Xi < max[X1, . . . ,Xm].
As before, the probability of the event Xi = max[X1, . . . ,Xr] ≤ di equals dr

i /r.

Within this event, it is possible that there will be no selection, when Xi is the
global maximum max[X1, . . . ,Xm]. The probability that Xi = max[X1, . . . ,Xm] < di

equals dm
i /m. Therefore, the difference dr

i /r − dm
i /m gives the probability of the

event that (i) Xi < di, (ii) Xi = max[X1, . . . ,Xr] and (iii) Xi < max[X1, . . . ,Xm]. Since
the thresholds d1, . . ., dm have been chosen monotone decreasing, within the last
event, no Xl with l < i could be larger than dl . Summing the differences dr

i /r −
dm

i /m over 1 ≤ i ≤ r yields the probability that no selection has been made among
the first r draws and that the best quality object is among the last m− r draws.

Given this information, the probability that the (r+1)st quality Xr+1 is the global
maximum equals

1
m− r

r

∑
i=1

(dr
i /r−dm

i /m).

This expression gives the probability that no selection occurred among the first r
draws, and that Xr+1 = max[X1, . . . ,Xm]; that is, Xr+1 is the globally highest quality.
If we choose the (r +1)st object when Xr+1 yields the globally highest quality, we
succeed. But there is a chance that we do not take the (r + 1)st object, when it is
globally the best, and this probability is equal to dm

r+1/m. This must be subtracted,
and we obtain the equation for P(r +1).
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Under the optimal strategy, where di = bm−i+1, i = 1, . . . ,m, we obtain the
optimal probability Popt(success):

Popt(success) =
1−bm

m

m

+
m

∑
r=2

[
r−1

∑
i=1

br−1
m−i+1

(r−1)(m− r +1)
−

r−1

∑
i=1

bm
m−i+1

m(m− r +1)
−

bm
m−r+1

m

]
.

The table below shows these probabilities for a sample of values of m.

m Popt

2 0.75000
3 0.684293
4 0.655396
5 0.639194

10 0.608699

m Popt

20 0.594200
30 0.589472
40 0.587126
50 0.585725
∞ 0.580164

Secretaries do it without any problem.
(From the series ‘How they do it’.)

In the remaining part of this section we discuss connections between statistics and
the information theory. Some of this material will be used in Section 3.8. We will
abbreviate probability density function by PDF and probability mass function by
PMF. The former refers to continuous RVs and the latter to discrete ones, but we
will succeed in treating both simultaneously.

Definition 3.6.3 Let X be a RV with PMF/PDF f (x;θ), x ∈ R, depending on a
parameter θ ∈Θ. Suppose that Θ is an interval of the real line R and all PMFs/PDFs
f (x;θ) have the same support set S ⊆ R which is a finite or countable discrete set
in the case of a PMF or an interval in the case of a PDF. (That is, for all θ ∈ Θ,
f (x;θ) > 0 iff x ∈ S.) Suppose that f (x;θ) depends smoothly on θ ∈ Θ. The score
(of X) is the RV V (X ;θ) dependent on the random argument X :

V (X ;θ) =
∂

∂θ
ln f (X ;θ). (3.161)

Under mild assumptions, we have that

EθV (X ;θ) =

⎧⎪⎨⎪⎩
∑

x∈S

f (x;θ)
∂ ln f (x;θ)

∂θ∫
S

f (x;θ)
∂ ln f (x;θ)

∂θ
dx

= 0.
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(It suffices to write ∂
[
ln f (x;θ)

]/
∂θ =

[
∂ f (x;θ)

/
∂θ
]/

f (x;θ) and carry the

derivative ∂
/

∂θ outside the sum/integral.) The Fisher information (contained in
X under the distribution with the PMF/PDF f (x;θ ) is the value J(θ) defined by

J(θ) = Eθ
(
V (X ;θ)

)2 =

⎧⎪⎪⎨⎪⎪⎩
∑

x∈S

f (x;θ)
(

∂
∂θ

f (x;θ)
)2

,∫
S

f (x;θ)
(

∂
∂θ

f (x;θ)
)2

dx.

(3.162)

In other words, J(θ) = VarθV (X ;θ).

A similar definition can be introduced in a more general case where θ ∈ Θ ⊆ R
d

and x is replaced by a vector x ∈ R
n. (For example, a multivariate normal den-

sity with unknown mean and covariance matrix corresponds with S = R
n and

θ = (μ,Σ) ∈ R
n+n(n+1)/2.) Here, instead of a scalar quantity, we speak of a Fisher

information matrix J(θ) = (Ji j(θ)), where

Ji j(θ) = E
[
Vi(X;θ)Vj(X;θ)

]
=

⎧⎪⎪⎨⎪⎪⎩
∑

x∈S

f (x;θ)
(

∂
∂θi

f (x;θ)
∂

∂θ j
f (x;θ)

)
,∫

S

f (x;θ)
(

∂
∂θi

f (x;θ)
∂

∂θ j
f (x;θ)

)
dx,

(3.163)

for i, j = 1, . . . ,d. Here V(X;θ) =

⎛⎜⎝ V1(X;θ)
...

Vd(X;θ)

⎞⎟⎠ is a vector score:

Vi(X;θ) =
∂

∂θi
ln f (X;θ), i = 1, . . . ,d. (3.164)

As before, under mild assumptions, the mean values EVi(X;θ) = 0, and the
entry Ji j(θ) is identified as the covariance of Vi(X;θ) and Vj(X;θ): Ji j(θ) =
Cov

[
Vi(X;θ),Vj(X;θ)

]
.

We will refer below to Definitions (3.161)–(3.162) as a ‘scalar case’ and to
(3.163)–(3.164) as a ‘vector case’.

Definition 3.6.4 Let f0 and f1 be two PMFs/PDFs, on R or R
n. Set:

D( f1 || f0) =

⎧⎪⎪⎨⎪⎪⎩
∑ 1( f1(x) > 0) f1(x)ln

f1(x)
f0(x)

,∫
1( f1(x) > 0) f1(x)ln

f1(x)
f0(x)

dx.
(3.165)
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The quantity D( f1 || f0) is called variously the Kullback (or Kullback–Leibler) dis-
tance from f1 to f0 or the Kullback divergence (or information divergence)
between f1 and f0. Yet another popular term is the relative entropy of f1 relative to
f0. We will often call it briefly the divergence.

In this definition we set f1(x)ln
[

f1(x)
/

f0(x)
]
= +∞ if f0(x) = 0 and f1(x) > 0,

so D( f1 || f0) may take value +∞. If f0 and f1 have the same support set S ⊆ R or
R

d (so that f0(x) > 0 if and only if x ∈ S and f1(x) > 0 if and only if x ∈ S) then
the summation/integration in the RHS of (3.163) is carried out precisely on S. (The
nature of the support set S is not important: the definition works when f0 and f1 are
PMFs/PDFs on any given set.) The indicator function 1( f1(x) > 0) can be omitted
if we adopt the standard agreement that 0ln0 = 0 (extension by continuity).

The term ‘distance’ is rather misleading here: the quantity D( f1 || f0) does not
satisfy the symmetry property or triangle inequality. That is, there are examples
where D( f1 || f0) �= D( f0 || f1) and D( f2 || f0) > D( f2 || f1)+D( f1 || f0): see below.
However, this concept has a profound geometric meaning, and the term ‘distance’
is widely used.

Divergence of Character and the Extinction of Less-improved Forms.
C.R. Darwin (1809–1892), English naturalist

The connection between the Fisher information and the Kullback–Leibler distance
is established in the following

Lemma 3.6.5 Assume Definition 3.6.3. Then, in the scalar case, the following
property holds true: the divergence between PMFs/PDFs f ( · ; θ̃) and f ( · ;θ),
θ , θ̃ ∈ Θ, satisfies

lim
θ̃→θ

D
(

f ( · ; θ̃) || f ( · ;θ)
)

(θ̃ −θ)2
=

1
2

J(θ), (3.166)

or, equivalently, with δ → 0, for all θ ∈ Θ,

D
(

f ( · ;θ +δ
)
|| f ( · ;θ)) =

1
2

J(θ)δ 2 +o(δ 2). (3.167)

Similarly, in the vector case, where δ ∈ R
d has ||δ || → 0, for all θ ∈ Θ, the

divergence obeys

D
(

f ( · ;θ +δ ) || f ( · ;θ)
)

=
1
2

〈
δ ,J(θ)δ

〉
+o(||δ ||2). (3.168)
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Proof (For the scalar PMF case with finitely many outcomes only.) Assume that
set S is finite. Perform the standard Taylor expansion, using ln(1+ ε) = ε +o(ε):

D
(

f ( · ;θ +δ ) || f ( · ;θ)
)

= ∑
x∈S

f (x;θ +δ )ln
f (x;θ +δ )

f (x;θ)

= ∑
x∈S

[
f (x;θ)+δ

∂
∂θ

f (x;θ)+o(δ )
]

ln
f (x;θ)+δ

∂
∂θ

f (x;θ)+o(δ )

f (x;θ)

= ∑
x∈S

[
f (x;θ)+δ

∂
∂θ

f (x;θ)+o(δ )
]

×
[

δ
∂ f (x;θ)/∂θ

f (x;θ)
+δ 2 ∂ 2 f (x;θ)/∂θ 2

2 f (x;θ)
−δ 2

(
∂ f (x;θ)/∂θ

)2

2 f (x;θ)2 +o(δ 2)

]

= ∑
x∈S

[
δ

∂ f (x;θ)
∂θ

+
δ 2

2
∂ 2 f (x;θ)

∂θ 2 +

(
∂ f (x;θ)/∂θ

)2

f (x;θ)

(
−δ 2

2
+δ 2

)
+o(δ 2)

]
.

The sums of ∂ f (x;θ)/∂θ and ∂ 2 f (x;θ)/∂θ 2 vanish. (As before, the derivatives

∂/∂θ and ∂ 2/∂θ 2 can be taken out of the sum.) The term

(
∂ f (x;θ)/∂θ

)2

f (x;θ)
yields

the result.

Lemma 3.6.6 (Gibbs’ inequality) The Kullback–Leibler distance D( f1 || f0)
defined in (3.165) is non-negative:

D( f1 || f0) ≥ 0. (3.169)

The equality holds if and only if the two PMFs/PDFs coincide.

Proof We use an elementary inequality lny ≤ y−1, y > 0, with equality if and only
if y = 1. Substituting f0(x)/ f1(x) for y yields

−D( f1 || f0) ≤

⎧⎪⎪⎨⎪⎪⎩
∑ 1( f1(x) > 0) f1(x)

(
f0(x)
f1(x)

−1

)
∫

1( f1(x) > 0) f1(x)
(

f0(x)
f1(x)

−1

)
dx

=

{ ∑ 1( f1(x) > 0)( f0(x)− f1(x))∫
1( f1(x) > 0)( f0(x)− f1(x)) dx

≤ 1−1 = 0.

The equality occurs if and only if the term 1( f1(x) > 0)
f0(x)
f1(x)

≡ 1( f1(x) > 0) which

means precisely that the two PMFs/PDFs coincide.
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The Kullback–Leibler distance emerges naturally in the context of hypothesis

testing. Let X =

⎛⎜⎝ X1
...

Xn

⎞⎟⎠ be a random vector with IID entries taking values from

a finite set S. Suppose that we test the null hypothesis that Xm ∼ f0 versus the
alternative that Xm ∼ f1 where f0 and f1 are two given PMFs on R. Given a sample

vector x =

⎛⎜⎝ x1
...

xn

⎞⎟⎠, we count the empirical distribution formed by frequencies

p̂x(b) =
1
n

n

∑
i=1

1(xi = b), b ∈ S. (3.170)

Then the log-likelihood ratio can be written as

ln
f1(x1) · · · f1(xn)
f0(x1) · · · f0(xn)

=
n

∑
i=1

ln
f1(xi)
f0(xi)

= ∑
b∈S

np̂x(b)ln
f1(b)p̂x(b)
f0(b)p̂x(b)

= n
[
D
(

p̂x || f0
)
−D
(

p̂x || f1
)]

. (3.171)

Let us calculate some of the most frequent examples.

Example 3.6.7 (a) Let f0 and f1 be two Poisson PMFs, on Z+ = {0,1, . . .}:

f0(n) =
λ n

0 e−λ0

n!
, f1(n) =

λ n
1 e−λ1

n!
, n ∈ Z+.

Then

D( f1 || f0) = ∑
n≥0

λ n
1 e−λ1

n!

(
nlnλ1 −λ1 −nlnλ0 +λ0

)
= λ1ln

λ1

λ0
+
(
λ0 −λ1

)
= λ0

(
rlnr +1− r

)
, r =

λ1

λ0
. (3.172)

(b) If f0 and f1 are geometric PMFs on Z+, with

f0(n) = p0(1− p0)n, f1(n) = p1(1− p1)n, n ∈ Z+,
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then

D( f1 || f0) = ∑
n≥0

p1(1− p1)n
[

nln
1− p1

1− p0
+ ln

p1

p0

]
=

1− p1

p1
ln

1− p1

1− p0
+ ln

p1

p0

=
1
p1

D(p1,1− p1||p0,1− p0). (3.173)

(c) Assume that f0 and f1 are binomial PMFs, on {0,1, . . . ,n}:

f0(k) =
(

n
k

)
pk

0(1− p0)n−k, f1(k) =
(

n
k

)
pk

1(1− p1)n−k, k = 0,1, . . . ,n.

Then

D( f1 || f0) =
n

∑
k=0

(
n
k

)
pk

1(1− p1)n−k
[

kln
p1

p0
+(n− k)ln

1− p1

1− p0

]
= n

[
p1ln

p1

p0
+(1− p1)ln

1− p1

1− p0

]
= nD

(
p1,1− p1||p0,1− p0

)
. (3.174)

(d) Let f0 and f1 be two negative binomial PMFs on Z+: f0 ∼ NegBin(p0,k)
and f1 ∼ NegBin(p1,k):

f0(n) =
(

n+ k−1
n

)
pk

i (1− pi)n, n = 0,1, . . . , i = 0,1.

Then

D( f1 || f0) = ∑
n≥0

(
n+ k−1

k−1

)
pk

1(1− p1)n
[

kln
p1

p0
+nln

1− p1

1− p0

]
= kln

p1

p0
+

k(1− p1)
p1

ln
1− p1

1− p0

=
k
p1

D(p1,1− p1||p0,1− p0). (3.175)

(e) Now suppose that f0 and f1 are two (discrete) uniform PMFs: f0 ∼ U [1,n0]
and f1 ∼ U [1,n1]:

f0(k) =
1
n0

, k = 1, . . . ,n0, f0(k) =
1
n1

, k = 1, . . . ,n1.

Then, according to the definition, D( f1 || f0) = +∞ if n1 > n0. For n1 ≤ n0,

D( f1 || f0) =
n1

∑
k=0

1
n1

ln
n0

n1
= ln

n0

n1
. (3.176)

We proceed with continuous random variables:
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Example 3.6.8 (a) Let f0 and f1 be two exponential PDFs, on R+ = (0,+∞):

f0 = λ0e−λ0x1(x > 0), f1 = λ1e−λ1x1(x > 0).

Then

D( f1 || f0) =
∫ ∞

0
λ1e−λ1x

[(
λ0 −λ1

)
x+ ln

λ1

λ0

]
dx

=
λ0 −λ1

λ1
+ ln

λ1

λ0

= r−1− lnr, where r =
λ0

λ1
. (3.177)

Extending this calculation to the case where f0 ∼ Gam(α ,λ0) and f1 ∼
Gam(α ,λ1) yields

D( f1 || f0) = α
(

ln
λ1

λ0
+

λ0 −λ1

λ1

)
. (3.178)

(b) Assume that f0 and f1 are two normal PDFs. First, consider the simple case
where f0 ∼N(μ0,σ2) and f1 ∼N(μ1,σ2) (different means but the same variance),
μ0,μ1 ∈ R, σ 2 > 0. Here,

D( f1 || f0) =
1√

2πσ

∫
e−(x−μ1)2/(2σ2)

[(
x−μ0

)2 −
(
x−μ1

)2]
2σ2 dx

=
1√

2πσ

∫
e−(x−μ1)2/(2σ2)

[
x−μ1 +

(
μ1 −μ0

)]2
2σ2 dx− 1

2σ2

=
1

2σ2 +

(
μ1 −μ0

)2

2σ2 − 1
2σ2

=

(
μ1 −μ0

)2

2σ2 . (3.179)

Note that in this case D( f1 || f0) = D( f0 || f1).
Now suppose that f0 and f1 are general normal multivariate PDFs: f0 ∼

N(μ0,Σ0) and f1 ∼ N(μ1,Σ1) where μ0,μ1 ∈ R
n, and Σ0, Σ1 are two n× n real

positive-definite invertible matrices. Recall the form of the multivariate normal
PDF:

fi(x) =
exp

[
−1

2

〈
x−μi,Σ−1

i (x−μi)
〉]

(2π)n/2
(
detΣi

)1/2
, x ∈ R

n, i = 0,1.
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Then, following the same lines as before, after some calculations, one obtains

D( f1 || f0) =
1
2

[
ln

detΣ0

detΣ1
+ tr

(
Σ1Σ−1

0 − I
)
+
〈
μ1 −μ0,Σ−1

0

(
μ1 −μ0

)〉]
, (3.180)

where, as before, I is the n×n unit matrix. So, in the case where Σ0 = Σ1 = Σ, we
have

D( f1 || f0) =
1
2

〈
μ1 −μ0,Σ−1(μ1 −μ0

)〉
, (3.181)

generalising (3.179). On the other hand, for μ0 = μ1 and general Σ0, Σ1,

D( f1 || f0) =
1
2

[
tr
(
Σ1Σ−1

0

)
− ln

(
det
(
Σ1Σ−1

0

))
−n
]
. (3.182)

(c) A more challenging example is of two Cauchy distributions: f0 ∼ Ca(α0,τ)
and f1 ∼ Ca(α1,τ). Here

f0(x) =
τ

π
[
(x−α0)2 + τ2

] , f1(x) =
τ

π
[
(x−α1)2 + τ2

] , x ∈ R,

D( f1 || f0) = ln

(
1+

(α1 −α0)2

4τ2

)
. (3.183)

In fact, the change of variables x �→ x−α1 leads to the representation

D( f1 || f0) =
τ
π

∫
1

x2 + τ2 ln
x2 + τ2

(x−α)2 + τ2 dx := g(α),

where α = α1 −α0. Differentiating this integral in α yields

g ′(α) = −2τ
π

∫
x−α

(x2 + τ2)
[
(x−α)2 + τ2

] dx.

The integrand in the RHS is a rational function, with two poles (zeroes of the
denominator) in the upper complex half-plane, at x = iτ and x = α + iτ . A standard
integration procedure then yields

g ′(α) = 4iτ
[

iτ −α
2iτ(α2 −2iατ)

+
iτ

2iτ(α2 +2iατ)

]
=

2α
α2 +4τ2 .

Integrating the last expression in α , with g(0) = 0, we obtain (3.183).
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Worked Example 3.6.9 (The log-sum inequality) Let a1,a2, . . . and b1,b2, . . . be
non-negative numbers, with ∑i bi < ∞. Prove that

∑
i

1(ai > 0)ai ln
ai

bi
≥
(

∑
i

ai

)
ln

∑
i

ai

∑
i

bi
, (3.184)

with equality if and only if ai ≡ bi.

Solution Without loss of generality, we assume that all numbers are strictly
positive. Use Jensen’s inequality for a strictly convex function φ(t) = tlnt, t > 0:

∑
i

λiφ(ti) ≥ φ

(
∑

i

λiti

)
with λi = bi

/(
∑ j b j

)
and ti = ai/bi, to obtain

∑
i

1(ai > 0)
ai

∑ j b j
ln

ai

bi
≥ ∑

i

ai

∑ j b j
ln∑

i

ai

∑ j b j
.

Because of the strict convexity, equality holds iff ai ≡ bi.

The Gibbs inequality (Lemma 3.6.6) states that D( f1 || f0) is non-negative (see
(3.169)). Lemma 3.6.10 gives a more precise bound. Define

|| f1 − f0||1 =

{
∑ | f1(x)− f0(x)|,∫
| f1(x)− f0(x)|dx.

(3.185)

Lemma 3.6.10 The Kullback–Leibler distance satisfies

D( f1 || f0) ≥
1
4
|| f1 − f0||21. (3.186)

Proof (For the discrete case only; the proof for the continuous case is a mere
repetition.) The first step is to show that

D( f1 || f0) ≥−2ln
[
∑ f1(x)1/2 f0(x)1/2

]
. (3.187)

(Here the summation is restricted to points x = xi where f1(x) > 0, and the indi-
cator 1( f1(x) > 0) is omitted. The same agreement is used in various summations
below.) To this end, we write

D( f1 || f0) = 2 ∑
[

f1(x)1/2 f1(x)1/2]ln[ f1(x)
f0(x)

]1/2

= 2
[
∑ f1(x)1/2

]
∑ f1(x)1/2 f1(x)1/2ln

[
( f1(x)/ f0(x))1/2] 1

∑ f1(x)1/2
.
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Next, we use the log-sum inequality (3.184) with

ai =
f1(xi)1/2 f1(xi)1/2

∑ j f1(x j)1/2

and

bi =
f1(xi)1/2 f0(xi)1/2

∑ j f1(x j)1/2
.

This yields (3.187).
Next, we use, as in the proof of Lemma 3.6.6, the inequality lny ≤ y−1, y > 0,

to show that

−2ln
[
∑ f1(x)1/2 f0(x)1/2

]
≥ ∑

[
f1(x)1/2 − f0(x)1/2]2.

Finally, we check that

∑
[

f1(x)1/2 − f0(x)1/2
]2

≥ 1
4

[
∑ | f1(x)− f0(x)|

]2
.

In fact, by the Cauchy–Schwarz inequality[
∑ | f1(x)− f0(x)|

]2
=
(
∑
∣∣∣ f1(x)1/2 − f0(x)1/2

∣∣∣[ f1(x)1/2 + f0(x)1/2
])2

≤ ∑
∣∣∣ f1(x)1/2 − f0(x)1/2

∣∣∣2 ∑
[

f1(x)1/2 + f0(x)1/2
]2

.

Then, by expanding the square, one checks that the second sum ≤ 4. This yields
(3.186).

In fact, a more elaborate argument shows that the constant 1/4 in (3.186) can be
replaced by 1/(2ln2).

Lemma 3.6.11 (Additivity property of the Kullback–Leibler distance) (a) Let

X =

⎛⎜⎝ X1
...

Xn

⎞⎟⎠ and Y =

⎛⎜⎝ Y1
...

Yn

⎞⎟⎠ be two random vectors, each with independent

entries, where Xi ∼ f (i)
0 and Yi ∼ f (i)

1 . Then

D
(

fY || fX
)

=
n

∑
i=1

D
(

f (i)
1 || f (i)

0

)
. (3.188)

(b) Let (Xm) and (Ym) be two Markov chains on the same (finite) state space I,

with transition matrices P(0) = (p(0)
i j ) and P(1) = (p(1)

i j ), respectively. Assume that
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the chain (Xm) has initial probabilities λi = P(X1 = i) whereas (Yi) is in equilib-

rium, with P(Ym = i) = πi and π j = ∑i∈I πi p
(1)
i j , i, j ∈ I. As above, let fX and fY

stand for the PMFs of the sample vectors X and Y. Then

D
(

fY || fX
)

= D(π ||λ )+(n−1)Eπ

(
P(1)||P(0)

)
, (3.189)

where π = (πi), λ = (λi) and

Eπ

(
P(1)||P(0)

)
= ∑

i, j∈I

πi p
(1)
i j ln

p(1)
i j

p(0)
i j

. (3.190)

Proof (a) Straightforward, by expanding the logarithm.

(b) Similarly, with x =

⎛⎜⎝ x1
...

xn

⎞⎟⎠ ∈ In:

D
(

fY || fX
)

= ∑
x

P(Y = x)ln
P(Y = x)
P(X = x)

= ∑
x

(
πx1

n−1

∏
l=1

p(1)
xlxl+1

)
ln

πx1

n−1
∏
l=1

p(1)
xlxl+1

λx1

n−1
∏
l=1

p(0)
xlxl+1

= ∑
x

πx1

n−1

∏
l=1

p(1)
xlxl+1

[
ln

πx1

λx1

+
n−1

∑
l=1

ln
p(1)

xlxl+1

p(0)
xlxl+1

]

= ∑
i∈I

πiln
πi

λi
+(n−1) ∑

i, j∈I

πi p
(1)
i j ln

p(1)
i j

p(0)
i j

,

which yields (3.189).

Remark 3.6.12 The quantity Eπ
(
P(1)||P(0)

)
in (3.190) can be written as the

expected value:

Eπ

(
P(1)||P(0)

)
= ∑

i, j∈I

P(Ym = i,Ym+1 = j)ln
p(1)

i j

p(0)
i j

= EYm,Ym+1 ln
p(1)

YmYm+1

p(0)
YmYm+1

; (3.191)

it does not depend on m as the chain (Ym) is in equilibrium. Equivalently, let p(0)
i

and p(1)
i denote the probability distributions on I represented by the ith row of



3.6 Elements of control and information theory 429

matrices P(0) and P(1), respectively. Then the Kullback divergence D
(
p(1)

i ||p(0)
i

)
,

considered as a function on I, is defined via

K : i ∈ I �→ D
(
p(1)

i ||p(0)
i

)
.

Then Eπ
(
P(1)||P(0)

)
represents the expectation of K considered as a random

variable with the probability distribution π = (πi):

Eπ

(
P(1)||P(0)

)
= ∑

i∈I

πiD
(
p(1)

i ||p(0)
i

)
= EπK, (3.192)

which is simply another form of (3.191).

A useful fact is the chain rule: let pX1,X2 stand for the joint distribution of X1 and
X2 and pY1,Y2 for that of Y1 and Y2; in the notation of Lemma 3.6.11(b),{

pX1,X2(i, j) = P(X1 = i,X2 = j) = λi p
(0)
i j ,

pY1,Y2(i, j) = P(Y1 = i,Y2 = j) = πi p
(1)
i j ,

i, j ∈ I.

Then

D
(

pY1,Y2 || pX1,X2

)
= ∑

i, j∈I

pY1,Y2(i, j)ln
pY1,Y2(i, j)
pX1,X2(i, j)

= ∑
i, j∈I

πi p
(1)
i j ln

πi p
(1)
i j

λi p
(0)
i j

= ∑
i, j∈I

πi p
(1)
i j

[
ln

πi

λi
+ ln

p(1)
i j

p(0)
i j

]
= D(π ||λ )+Eπ

(
P(1)||P(0)

)
. (3.193)

We can write this in a general form:

Lemma 3.6.13 (The chain rule for the Kullback–Leibler distance) Let X1, X2 and
Y1, Y2 be two pairs of random variables, where X1, Y1 take values in a set S1 and
X2, Y2 in a set S2. Let fX1,X2 and fY1,Y2 stand for the joint PMFs/PDFs of X1 and
X2 and of Y1 and Y2, and fX1 and fY1 for the marginal PMFs/PDFs of X1 and Y1,
respectively. Furthermore, let fX2|X1

and fY2|Y1
denote the conditional PMFs/PDFs

of X2 given X1 and of Y2 given Y1, respectively. Then

D
(

fY1,Y2 || fX1,X2

)
= D

(
fX1 || fY1

)
+D fY1

(
fY2|Y1

|| fX2|X1

)
, (3.194)
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where

D fY1

(
fY2|Y1

|| fX2|X1

)

=

⎧⎪⎪⎨⎪⎪⎩
∑

y1∈S1

fY1(y1) ∑
y2∈S2

fY2|Y1
(y2|y1) ln

fY2|Y1
(y2|y1)

fX2|X1
(y2|y1)∫

S1

fY1(y1)
∫

S2

fY2|Y1
(y2|y1) ln

fY2|Y1
(y2|y1)

fX2|X1
(y2|y1)

dy2dy1

≥ 0, (3.195)

with equality if and only if fY2|Y1
= fX2|X1

.

This brings us to a generalisation of Definition 3.6.4:

Definition 3.6.14 The quantity D fY1

(
fY2|Y1

|| fX2|X1

)
in (3.195) is called the

conditional Kullback divergence.

We can now extend (3.188) the case of general random vectors X and Y:

D
(

fY || fX
)

= D( fY1 || fX1)+D fY1

(
fY2|Y1

|| fX2|X1

)
+ · · ·+D fY1,...,Yn−1

(
fYn|Y1,...,Yn−1

|| fXn|X1,...,Xn−1

)
. (3.196)

Suppose that PMFs f0 and f1 are written as convex linear combinations:

f0(x) = λg0(x)+(1−λ )h0(x), and f1(x) = λg1(x)+(1−λ )h1(x), (3.197)

where 0 < λ < 1 and gi and hi, i = 0,1, are PMFs/PDFs, on the same set.

Lemma 3.6.15 (Joint convexity of the Kullback–Leibler distance) The following
inequality holds true:

D
(

λg1 +(1−λ )h1 ||λg0 +(1−λ )h0

)
≤ λD

(
g1 ||g0

)
+(1−λ )D

(
h1 ||h0

)
.

(3.198)

Proof Using the log-sum inequality we get[
λg1(x)+(1−λ )h1(x)

]
ln

λg1(x)+(1−λ )h1(x)
λg0(x)+(1−λ )h0(x)

d

≤ λg1(x)ln
g1(x)
g0(x)

+(1−λ )h1(x)ln
h1(x)
h0(x)

.

Summing up/integrating yields (3.198).

Remark 3.6.16 The convex linear combinations

f0(x) = λg0(x)+(1−λ )h0(x) and f1(x) = λg1(x)+(1−λ )h1(x)
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have a transparent probabilistic meaning: consider a random variable U with two
values, say 1 and 2, taken with probabilities λ and 1−λ . Then consider U jointly
with a random variable X such that the PMF/PDF of X conditional on U = 1 is g0

and conditional on U = 2 is h0. The unconditional PMF/PDF of X will coincide
with f0. A similar coupling can be performed when we use g1 instead of g0 and h1

instead of h0; the emerging random variable Y will have the PMF/PDF f1. Then
(3.198) takes the form

D( fY || fX) ≤ D fU ( fY |U || fX |U) (3.199)

and can be extended to the case of a general random variable U .

The next property of the Kullback–Leibler distance is called the data processing
inequality. Suppose that random variables X and Y , with values in set S are trans-
formed by a transition function with values p(x,y); in the case of PMFs we talk
about a transition matrix (pxy). That is, we assume that

∑
y

pxy = 1 and
∫

p(x,y) dy = 1

and pass from X and Y to random variables X ′ and Y ′, where the PMFs/PDFs fX ′

and fY ′ are related to fX and fY by

fX ′(y) =

{
∑x∈S fX(x)pxy,∫

S

fX(x)p(x,y) dx,
fY ′(y) =

{
∑x∈S fY (x)pxy,∫

S

fY (x)p(x,y) dx.
(3.200)

This operation is termed ‘processing’ and includes ‘merging’ several values x1,
. . ., xl together (when, for a given y, pxy = 1 for x = x1, . . . ,xl) and other types of
‘massaging’ data represented by X and Y . Lemma 3.6.17 below shows that any
such operation cannot result in increasing the divergence.

Call Back and Libel’er
(From the series ‘Movies that never made it to the Big Screen’.)

Lemma 3.6.17 (Data processing inequality for the Kullback–Leibler distance)
Under the above transformation, the Kullback divergence decreases:

D( fY ′ || fX ′) ≤ D( fY || fX) (3.201)

Proof We use the chain rule (3.194):

D
(

fY,Y ′ || fX ,X ′
)

= D
(

fY || fX
)
+D fY

(
fY ′|Y || fX ′|X

)
= D

(
fY ′ || fX ′

)
+D fY ′

(
fY |Y ′ || fX |X ′

)
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But fX ′|X and fY ′|Y coincide, by construction:

fX ′|X(y|x) = fY ′|Y (y|x) =
{

pxy,

p(x,y).

So, the conditional divergence D fY

(
fY ′|Y || fX ′|X

)
vanishes:

D fY

(
fY ′|Y || fX ′|X

)
= 0.

At the same time, D fY ′

(
fY |Y ′ || fX |X ′

)
≥ 0. This yields (3.201).

We also see when the equality in (3.201) is attained: this happens iff
D fY ′

(
fY |Y ′ || fX |X ′

)
= 0; that is,

fY |Y ′ = fX |X ′ . (3.202)

In words, data processing does not change the Kullback–Leibler distance if and
only if the conditional PMF/PDF of Y , given that Y ′ = y, and that of X , given that
X ′ = y, coincide (for almost all y under the PMF/PDF fY ′). This can be expressed
as a sufficiency property of the processing transformation, relative to the pair of
variables X and Y , which is a generalisation of the concept of a sufficient statistic.

Worked Example 3.6.18 Let (Xm) be a DTMC with an initial distribution λ
and a transition matrix P. Prove that D( fXm ||π) decreases with m where π is an
equilibrium distribution for P.

Solution More generally, let (Xm) and (Ym) be a two DTMCs with the same
transition matrix P. Then the distance between PMFs fYm and fXm decreases with m:

D( fYm+1 || fXm+1) ≤ D( fYm || fXm).

This follows immediately from Lemma 3.6.17.

We conclude our discussion of properties of the Kullback–Leibler distance with
monotonicity in the case of parametric families with a monotone likelihood ratio.
A family of PMFs/PDFs f ( · ;θ), θ ∈ Θ, is said to have a monotone likelihood
ratio (MLR) if there exists an order ≺ on set Θ such that for θ1 ≺ θ2 the ratio

Λθ1,θ2 =
f (x;θ1)
f (x;θ2)

= gθ1,θ2(T (x)). (3.203)

where T is a real-valued statistic and gθ1,θ2(y) is a monotone non-decreasing
function (of a real variable y). See Volume 1, page 249.
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Lemma 3.6.19 Suppose that PMFs/PDFs f ( · ;θ), θ ∈ Θ, form a family with an
MLR. Then, for all θ1,θ2,θ3 ∈ Θ with θ1 ≺ θ2 ≺ θ3,

D( f ( · ;θ3) || f ( · ;θ2)) ≤ D( f ( · θ3) || f ( · ;θ1)). (3.204)

The proof is based on the concept of convex order between random variables
(or their distributions). This topic (important in a number of applications) will be
discussed in a later volume.

Solomon Kullback (1903–1994) began his career as a high school teacher in his
native New York but soon moved to the US Army’s Signal Intelligence Service
(SIS). He went on to a long and distinguished career at the SIS and its eventual
successor, the National Security Agency (NSA). In the late 1950s Kullback became
the Chief Scientist at the NSA until his retirement in 1962. After that he took a
position at the Georgetown University. In 1942, Major Kullback was sent to Britain
to learn how at Bletchley Park the British were producing intelligence by exploiting
the German Enigma machine. He contributed to the Bletchley Park team efforts and
after his return to the States was made the head of the Japanese section at the NSA.
He was very much liked by colleagues both in academia and special services for
being “totally guileless, you always knew where you stood with him.”

Richard Leibler (1914–2003) was an American mathematician and cryptogra-
pher. He took part in World War II, in the Iwo Jima and Okinawa invasions.
His most distinguished periods were with the Institute for Defense Analysis at
Princeton and the NSA. He is credited with the programme that enabled the NSA
team to solve previously undecipherable Soviet espionage messages in the project
codenamed VENONA.

The paper, S. Kullback, R.A. Leibler, “On information and sufficiency”, Annals
of Mathematical Statistics, 22 (1951), 79–86, where the concept of information
divergence was formulated, was perhaps the most famous of the authors’ academic
achievements. The paper appeared at the height of the Cold War and was imme-
diately noticed by the Soviets who had their own powerful cryptography division
associated with special services. It has to be said that the control of publications
in the Soviet system was (apparently) much tighter, and a paper written by authors
of status similar to that of Kullback and Leibler had a little chance of being pub-
lished in an open academic source. However, the Soviets had a developed network
of ‘secret’ journals and periodicals accessible only to members of certain depart-
ments (carefully vetted at, and through, the time of their employment). It was even
possible to obtain PhD or DSci degrees or to get elected into the membership of
the USSR Academy of Sciences with few or no publications accessible to the gen-
eral public. (Such members were often called ‘closed’ or ‘secret’ Academicians;
Sakharov was the most famous example of them.)
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3.7 Hidden Markov models, 1. State estimation for Markov chains

We now begin discussing the topic of hidden Markov models (HMMs). Con-
sider the following situation. There is a discrete-time Markov chain, (Xm), on a
state space I, say I = {1, . . . ,s}, with a (fully or partially) unknown initial dis-
tribution λ = (λi) and a (fully or partially) unknown transition matrix P = (pi j),
i, j = 1, . . . ,s. In addition, the chain is not fully observable. For example, one may
observe values Xnk only at some selected times n1, n2, . . . , or one can only record
values b(X1), b(X2), . . ., where b : I → K is an unknown function of a state, pos-
sibly random, with values in a new ‘alphabet’ K = {1, . . . ,κ} (an unknown we
know we don’t know). In applications, typically, κ < s, and the function b is a
many-to-one. In an ‘unrestricted’ problem, the pair (λ ,P) runs over the full set R
(see (3.5)) or over its subset R int (see (3.6)). If we discard the initial distribution λ
(viz., consider a stationary DTMC, with an equilibrium disribution π) then it will
be convenient to assume that P ∈PIA. However, we may have a priori information
about (λ ,P), for instance, that the matrix P is off-diagonal (i.e. P ∈ Poff−diag; cf.
(3.11)) or P is Hermitian (i.e. P ∈ Psymm; cf. (3.12)). The function b may also be
specified to a certain degree, which extracts a (known) class of functions (e.g. for
s = κ , b may be a permutation). In this case we will have a restricted problem.

Another example is where the chain is observed accurately, but not all the time:
we only see its states at (integer) times t0, . . ., tm where 0≤ t0 < · · ·< tm and tm > m.
There may occur a situation where we have to combine the two problems, but for
simplicity we will treat them separately.

The task is to estimate λ and P from a recorded string of observed values σ0 =
b(X0), . . ., σn = b(Xn) or from a given sequence of states xn1 , xn2 , . . ., xnm .

Example 3.7.1 You observe a string σ =

⎛⎜⎝ σ0
...

σn

⎞⎟⎠ of 0s and 1s. You suspect that

it gives a record of (a function of) a Markov chain (Xm) with three states, say A, B

and C: σm = b(xm), with X =

⎛⎜⎝ X0
...

Xn

⎞⎟⎠, x =

⎛⎜⎝ x0
...

xn

⎞⎟⎠. You think that the chain is

symmetric, i.e. its transition matrix P = (pi j), i, j = A,B,C, is

P =

⎛⎝ 1−2p p p
p 1−2p p
p p 1−2p

⎞⎠ , with 0 ≤ p ≤ 1
2
.

There are several possibilities you can think of as to what function b may be: (a)
on a pair of states b equals 0, say, b(A) = b(B) = 0, and on the remaining state
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it equals 1: b(C) = 1, or vice versa;, (b) on a pair of states b is equal to 0 with
probability q and 1 with probability 1− q, whereas on the remaining state b is 1
with probability 1 (or, alternatively, 0 with probability 1); (c) each of b(A), b(B) and
b(C) takes value 0 with probabilities qA, qB and qC, or 1 with probability 1− qA,
1− qB and 1− qC, independently. Altogether you have 2 possibilities for a non-
random model (option (a)), 4 possibilities for a semi-random model (option (b)),
and (essentially) 1 possibility for a fully random model (option (c)). You also have
a reason to believe that the chain is stationary, i.e. λ is the equilibrium distribution
π = (1/3,1/3,1/3).

In sum, the transition matrix P is specified by a parameter p running over the
interval [0,1/2], and for q we have the above possibilities (a), (b) and (c). A triple
(π,P,b) in the context of this example is considered as a ‘model’; in the case of
a random function b it may be convenient to speak of a triple (π,P,Q) where Q
represents the collection of probabilities for random variables b(X0), . . ., b(Xn).

For example, the states A, B and C may correspond to some consonants in an
(idealised) problem of automated speech recognition. Some of these consonants
may be clearly recognised from their spectrograms while others are more difficult
to separate from each other.

Suppose you want to compare two particular families of models:
(i) the family of models with a deterministic (i.e. non-random) function b,

denoted by Zdet = (π,P,bdet), where

bdet(A) = bdet(B) = 1, and bdet(C) = 0;

and
(ii) a fully random model, denoted by Zran = (π,P,Q), where

bran( � ) =
{

1, with probability q�,
0, with probability 1−q�,

, � = A,B,C, independently,

and qA = qB = q1, qC = q2.
So, we compute the aggregated likelihoods:

Ldet(σ ;Zdet)

= ∑
x

n

∏
i=1

pxi−1xi

[
1(σi = 1,xi = A or B)+1(σi = 0,xi = C)

]
(3.205)

and

Lran(σ ;Zran) = ∑
x

n

∏
i=1

pxi−1xi

(
1(σi = 0)

[
(1−q1)1(xi = A or B)

+(1−q2)1(xi = C)
]
+1(σi = 1)

[
q11(xi = A or B)+q21(xi = C)

])
. (3.206)
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(We dropped the factor πx0 in the RHS of (3.205) and (3.206) as it equals 1/3 and
plays no role in the analysis.) For a given σ , the function Ldet is a polynomial, of
degree n, of the variable p ∈ [0,1/2], while Lran is a polynomial in the variables
p ∈ [0,1/2] and q1,q2 ∈ [0,1]. Of course, if there is no additional restriction on q1

and q2, then the polynomial Lran is a continuation of Ldet (or, if you like, Ldet is a
restriction of Lran at q1 = 1, q2 = 0). However, if there is an additional condition,
for instance, q1,q2 ∈ (q−,q+) ⊂ [0,1], then comparing two polynomials becomes
non-trivial.

So, we maximise both polynomials, obtaining optimal models

Z∗
det(σ) = argmax

p
Ldet(σ ;Zdet) and Z∗

ran(σ) = argmax
p,q1,q2

Lran(σ ;Zran). (3.207)

Then we compare optimal values

Ldet(σ ;Zdet) and Lran(σ ;Zran);

the maximum of the two specifies the better fit (for a given string σ ). A similar
procedure can be performed for any choice of the above types (a)–(c) of function b.

Remark 3.7.2 It is important to take into account that models with too many
parameters (e.g. an arbitrary s× s transition matrix P and an arbitrary collection
of probabilities Q) may result in an ‘overfitted’ model Z∗(σ); this may generate
an unwanted instability, where Z∗(σ) changes drastically with the string σ . This
makes it desirable to use any ‘side information’ available on a possible model, to
include it in the maximisation problems for the likelihoods.

Example 3.7.3 Consider a discrete-time Markov chain (Xm) with 3 states and
3×3 transition matrix P = (pi j). It is known that diagonal transition probabilities
vanish: pii = 0, i = 1,2,3. Further, suppose we know that at the initial time X0 = 1,
and at time 4, X4 = 3, but do not know states at times 1, 2 and 3. Write down
the aggregated likelihood as the sum of the likelihoods over sample vectors x =⎛⎜⎝ x0

...
x4

⎞⎟⎠ ∈ {1,2,3}5 compatible with this restriction (i.e. with x0 = 1, x4 = 3):

L(P|X0 = 1,X4 = 3) = p(4)
13

= p2
12 p21 p23 + p13 p31 p12 p23 + p12 p23 p31 p13 + p12 p2

23 p32 + p2
13 p32 p21; (3.208)

this is a polynomial function in the variables pi j. Following the maximum likeli-
hood philosophy, we would like to maximise L(P|X0 = 1,X4 = 3) in P = (pi j) over
the set Poff−diag; see (3.11). The maximum likelihood estimator P∗

ML can be at an
internal point or on the boundary. In general, the problem of finding the exact MLE
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becomes computationally difficult; a number of other factors also interfere which
makes it desirable to develop ‘reasonable’ approximative methods.

As will be shown, the problem of constructing an approximation to estimators
of transition probabilities pi j, 1 ≤ i, j ≤ 3, can be (reasonably) solved by iterations
of a certain transformation. More precisely, set:

p̂i j =
pi j

∂
∂ pi j

L(P|X0 = 1,X4 = 3)

Ξ(P|X0 = 1,X4 = 3)
, 1 ≤ i, j ≤ 3. (3.209)

where the denominator is given by

Ξ(P|X0 = 1,X4 = 3) =
3

∑
k=1

pik
∂

∂ pik
L(P|X0 = 1,X4 = 3)

= 2p2
12 p21 p23 + p12 p2

23 p32 +2p13 p31 p12 p23

+2p12 p23 p31 p13 +2p2
13 p32 p21. (3.210)

In particular,

p̂12 =
2p2

12 p21 p23 + p12 p2
23 p32 + p13 p31 p12 p23 + p12 p23 p31 p13

Ξ(P|X0 = 1,X4 = 3)
,

p̂13 =
p13 p31 p12 p23 + p12 p23 p31 p13 +2p2

13 p32 p21

Ξ(P|X0 = 1,X4 = 3)
,

and so on. Iterations of this transformation provide a solution within a reasonable
margin.

Examples 3.7.1 and 3.7.3 outline the main directions of our investigation. See
also Koski, 2001. One direction is related to ‘noisy’ observations where we have
records of all states subsequently taken by the chain, albeit subject to noise which
results in an aggregation of states. We call this an HMM filtration problem. The sec-
ond direction is when the chain is available for observation only at some selected
times. We call it an HMM interpolation problem. The methods used in these cases
bear some similarities, but also differ in some essential aspects.

Consider first a general set-up for the HMM filtration problem. We are given

a vector of observed values σ =

⎛⎜⎝ σ0
...

σn

⎞⎟⎠, called a training sequence, where

σ0, . . ., σn take values in {1, . . . ,κ}. This means we know that the event{
σ0 = b(X0), . . . ,σn = b(Xn)

}
occurred. However, b remains an unknown func-

tion {1, . . . ,s}→ {1, . . . ,κ}, possibly random. More precisely, we will assume that
for all x,
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the values b(Xi) are conditionally independent, given that X = x, (3.211)

and set

P(b(Xi) = k|Xi = j) = q jk, j = 1, . . . ,s, k = 1, . . . ,κ, (3.212)

where q jk ≥ 0, ∑κ
k=1 q jk = 1 for all j ∈ I. The case of a non-random function b

occurs when q jk equals 0 or 1 (obviously, not more than one q jk can equal 1 for a
given j). In the case of a ‘perfect’ observation, we would have s = κ and qi j = δi j.

In general, the collection of probabilities q jk is denoted by Q (from the defini-
tion, it forms an s×κ stochastic matrix). We call them noise probabilities and refer
to the triple (λ ,P,Q) as a (hidden Markov) model (with a memoryless noise) and
denote it, as before, by Z.

We assume that there has been given a set Z of models (that is, triples Z =
(λ ,P,Q)), and all considerations are reduced to this set Z . The ‘largest’ such set
will correspond to an ‘unrestricted’ situation.

The HMM filtration problem (also known in the literature as a learning, or train-
ing, or estimation, problem for an HMM with noise) is to find a ‘most likely’
model, Z∗ = (λ ∗,P∗,Q∗), maximising the aggregated likelihood function L(σ ;Z)
in Z ∈ Z for given σ :

L(σ ;Z) := P(b(X;Z) = σ) = ∑
x

P(X = x;Z)
n

∏
i=0

qxiσi

= ∑
x

λx0qx0σ0

n

∏
i=1

pxi−1xiqxiσi . (3.213)

Here and below, P( · ;Z) stands for the probability distribution generated by the
model Z (that is, by a (λ ,P) DTMC for X, independent observations b(Xj) with
noise probabilities Q = (q jk)). Sometimes we also use the alternative notation PZ .

Therefore, we are interested in a triple Z∗
ML = (λ ∗

ML,P∗
ML,Q∗

ML) defined by

Z∗
ML = argmax

Z∈Z
P(b(X) = σ ;Z) , (3.214)

where b(X) stands for the (random) vector

⎛⎜⎝ b(X0)
...

b(Xn)

⎞⎟⎠. (The subscript ML refers

to maximum likelihood.)
In practice, finding the minimiser Z∗ in (3.214) is often difficult, particularly

when the numbers s and κ are large and the set Z carries numerous constraints.
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Unsuprisingly therefore, there is a substantial literature discussing various algo-
rithmic methods giving approximations to the value Z∗. This is the subject of the
current and next sections.

Example 3.7.4 An unrestricted HMM filtration problem arises when the pair
(λ ,P) runs over the set R defined in (3.5) and the matrix Q over the set Ps,κ
of dimension s(κ −1)

Ps,κ =
{

Q = (q jk) : q jk ≥ 0,
κ

∑
k=1

q jk = 1

}
.

Correspondingly, we set

U = Rs ×Ps,κ = Λs ×Ps ×Ps,κ (3.215)

and bear in mind that the unrestricted problem corresponds to Z ∈ U . The unre-
stricted stationary HMM filtration problem would correspond to the pair (π,P),
with the matrix P running over set P int from (3.8), and the matrix Q running
over Ps,κ .

In the unrestricted problem, the set U can be endowed with a distance, by setting

dist (Z,Z′) =

[
∑

j

(λ j −λ ′
j)

2 +∑
i, j

(pi j − p′i j)
2 +∑

j,k

(q jk −q′jk)
2

]1/2

,

where Z = (λ ,P,Q), Z′ = (λ ′,P′,Q′) and λ = (λ j), P = (pi j), Q = (q jk), λ ′ = (λ ′
j),

P′ = (p′i j), Q′ = (q′jk). In other words, this is the Euclidean distance in R
s(s+1+κ)

restricted upon U . We will use this distance in Section 3.9.

An example of a restricted HMM filtration problem arises when the matrix P
runs over the set Poff−diag in (3.11) or the set Psymm in (3.12). In the first case,
Z = Λ×Poff−diag ×Ps,κ , and in the second, Z = Λ×Psymm ×Ps,κ .

We will work with sample vectors x =

⎛⎜⎝ x0
...

xn

⎞⎟⎠which have positive probabilities

P(X = x;Z), under a given model Z; a natural assumption which we will follow
throughout is that the set of these vectors, X ⊆ In, is the same for all models
Z ∈ Z under consideration. For instance, consider the above case of a restricted
filtration problem, where P ∈ Poff−diag, i.e. the transition matrix P = (pi j) of the
Markov chain does not permit a repetition of states (that is, features pii = 0 for all
state i = 1, . . . ,s) but allows all other transitions for any model Z = (λ ,P,Q) ∈ Z
(see 3.7.3). In this case, X consists of all vectors x ∈ In with xi−1 �= xi, i = 1, . . . ,n.
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Moreover, we assume that for all Z ∈ Z and a training sequence σ occurring as
a value b(X) (i.e. with P

(
b(X) = σ ;Z

)
> 0),

P
(
X = x

∣∣b(X) = σ ;Z
)

> 0 if and only if x ∈ X . (3.216)

Next, let t be the cardinality of X . It is convenient to enumerate strings x ∈ X

by l = 1, . . . , t (in any order) and write x(l) =

⎛⎜⎝ x0(l)
...

xn(l)

⎞⎟⎠ for the lth string. Then,

given Z = (λ ,P,Q), set

ul(σ ;Z) = P

(
b(X) = σ ,X = x(l);Z

)
= λx0(l)qx0(l)σ0

n

∏
j=1

px j−1(l)x j(l)qx j(l)σ j
. (3.217)

That is, ul(σ ;Z) gives the probability of the intersection

{X = x(l)}∩{b(X) = σ},

in model Z.

Theorem 3.7.5 Assume that we are given a model Z ∈ U and a training sequence
σ such that ul(σ ;Z) > 0 for at least one l (that is, P

(
b(X) = σ ;Z

)
> 0). Then,

under the assumption (3.216), for all Ẑ ∈ U ,

ln
P

(
b(X) = σ ; Ẑ

)
P

(
b(X) = σ ;Z

) ≥ U(Z,Z;σ)−U(Z, Ẑ;σ)

P

(
b(X) = σ ;Z

) , (3.218)

where

U(Z,Z;σ) =
t

∑
l=1

[
−ul(σ ;Z) lnul(σ ;Z)

]
, (3.219)

and

U(Z, Ẑ;σ) =
t

∑
l=1

[
−ul(σ ;Z) lnul(σ ; Ẑ)

]
. (3.220)

Here we follow an agreement that

−ul(σ ;Z) lnul(σ ;Z) = 0 when ul(σ ;Z) = 0,
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and

−ul(σ ;Z) lnul(σ ; Ẑ) = +∞, when ul(σ ;Z) > 0 but ul(σ ; Ẑ) = 0,

and so the sums in (3.219), (3.220) have all summands ≥ 0.

Proof of Theorem 3.7.5 The proof follows immediately from Example 3.6.7 with
n = t,al = ul,bl = ûl . In fact, the assertion of the theorem is equivalent to

ln

t
∑

l=1
ûl

t
∑

l=1
ul

≥
[

t

∑
l=1

(ullnûl −ullnul)

]/
t

∑
l=1

ul,

where ul = ul(σ ;Z) and ûl = ul(σ ; Ẑ).

Thus if, for given σ and Z, we can find a model Ẑ for which the RHS of (3.218)
is positive, then we obtain an ‘improved’ model, in a sense of a higher value for
the likelihood.

Hence, we are interested in minimising the function U(Z, Ẑ;σ) defined in
(3.220), in the variable Ẑ ∈ Z , for a given model Z ∈ Z and a given training
sequence σ . In general, the minimiser will of course depend on Z and σ (and upon
the choice of the set Z ).

To this end, it will be convenient to use transition counts. As in Section 3.4,
given i, j = 1, . . . ,s and l = 1, . . . , t, let fi j(l) be the number of transitions i → j in
the string x(l):

fi j(l) =
n

∑
m=1

1(xm−1(l) = i,xm(l) = j). (3.221)

Next, set

r j(l) = 1(x0(l) = j). (3.222)

Furthermore, given a training sequence σ and k = 1, . . . ,κ , denote by n jk(l) (=
n jk(l,σ)) the number of times the value k was recorded in state j in the string x(l):

n jk(l) =
n

∑
m=0

1(xm(l) = j, σm = k). (3.223)

Finally, denote:

e j =
t

∑
l=1

ulr j(l), ci j =
t

∑
l=1

ul fi j(l), and d jk =
t

∑
l=1

uln jk(l), (3.224)

where we again write ul = ul(σ ;Z) for model Z = (λ ,P,Q) ∈ Z . Thus, e j, ci j and
d jk are all functions of Z and σ .
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Going back to (3.220), we re-group summands in the expression for U(Z, Ẑ;σ),
according to occurrences of initial states i, transitions i → j and recorded values k.
As a result, we obtain that for Ẑ = (λ̂ , P̂,Q̂)

U(Z, Ẑ;σ) =
t

∑
l=1

ul

[
− lnλ̂x0(l)

−
s

∑
j=1

κ

∑
k=1

n jk(l)lnq̂ jk −
s

∑
i=1

s

∑
j=1

fi j(l)lnp̂i j

]
= −

s

∑
j=1

e jlnλ̂ j −
s

∑
j=1

κ

∑
k=1

d jklnq̂ jk −
s

∑
i=1

s

∑
j=1

ci jln p̂i j. (3.225)

The unique global minimum, in Ẑ, of the expression in the RHS of (3.225) is
attained at the point Ẑ∗ = (λ̂ ∗, P̂∗,Q̂∗) where λ̂ = (λ̂ ∗

i ), P̂∗ = (p̂∗i j) and Q̂∗ = (q̂∗jk)
are given by

λ̂ ∗
j = e j

/
s

∑
i=1

ei , j = 1, . . . ,s, (3.226)

p̂∗i j = ci j

/
s

∑
m=1

cim , i, j = 1, . . . ,s, , (3.227)

and

q̂∗jk = d jk

/
κ

∑
k=1

d jk , j = 1, . . . ,s, k = 1, . . . ,κ. (3.228)

The reader should bear in mind that the probabilities λ̂ ∗
j , p̂∗i j and q̂∗jk are functions

of Z and σ .
Thus, if model Ẑ∗ ∈ Z , it provides an ‘improvement’ upon Z. For instance,

in Example 3.7.3, where the transition matrix P has all diagonal entries pii = 0,
transition matrix P̂∗ = (p̂∗i j) from (3.227) holds the same property.

The denominators in (3.226), (3.228) can be simplified. Indeed, observe that

s

∑
j=1

e j =
t

∑
l=1

s

∑
j=1

r j(l) =
t

∑
l=1

ul = P(b(X) = σ ;Z)

and

n j :=
κ

∑
k=1

d jk = EZ
(
the number of visits to state j prior to time n

)
,
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where EZ stands for the expectation relative to PZ . Using these relations one can
write (3.226)–(3.228) in the compact form

λ̂ ∗
j = e j

/
PZ(b(X) = σ), p̂∗i j = ci j

/
s

∑
m=1

cim , and q̂∗jk = d jk
/

n j. (3.229)

In general, we have to solve the constrained problem

minimise the RHS of (3.225), in Ẑ, for a given Z
subject to Ẑ ∈ Z .

(3.230)

This suggests the following ‘learning’ algorithm: given an initial model Z(0) ∈ Z
and a training sequence σ , solve problem (3.230) thereby obtaining an improved
model, Z(1) = Ẑ∗ ∈ Z . Then repeat it for Z(1) and σ , and so on. Suppose that the
minimiser Z(N) obtained in the course of N iterations converges to a limit:

lim
N→∞

Z(N) = Z(∞) ∈ Z (3.231)

then the model Z(∞) can be considered as the ‘best fit’ for the algorithm.
The following questions then arise: (i) Does the limit Z(∞) in (3.231) exist (for

all or some initial models Z(0)); (ii) if this limit does exist, does it coincide with
a maximiser Z∗

ML in (3.214)? As was mentioned, these questions give rise to a
substantial literature embracing a number of important applications. Some of the
results in this direction are discussed in Section 3.9.

The above algorithm is called the Baum–Welch learning algorithm; its attraction
lies in the simplicity (and therefore practicality) of the solution to problem (3.230)
for various types of set Z , as was demonstrated by formulas (3.226)–(3.229). It is
important to associate with these relations a map Φ : U → U of the set U (see
(3.215)) to itself

Φ : Z = (λ ,P,Q) �→ Ẑ∗ = (λ̂ ∗, P̂∗,Q̂∗), (3.232)

which we call the Baum–Welch transformation for (unrestricted) filtration. (In the
course of our presentation, we will re-write formulas (3.226)–(3.229) in a number
of (equivalent) forms, clarifying various aspects of the map Φ.) The transformation
Φ will be particularly useful for problem (3.230) when it takes the original set of
models Z to itself:

Φ(Z ) ⊆ Z .

The above questions (i) and (ii) (in the unrestricted filtration problem) are about
iterations ΦN of the transformation Φ. A straightforward corollary of Theorem
3.7.5 is
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Worked Example 3.7.6 Prove that any point Z∗
ML defined in (3.214) is a fixed

point of the map Φ:

Φ(Z∗
ML) = Z∗

ML. (3.233)

Solution In fact, if Φ(Z∗
ML) �= Z∗

ML then the probability P(b(X) = σ ,Φ(Z∗
ML)) is ≥

P(b(X) = σ ,Z∗
ML).

Chariots of Φ, Chariots of Π
(From the series ‘Movies that never made it to the Big Screen’.)

We now pass to the HMM interpolation problems. Here, we work again with a
DTMC (Xm) with state space I = {1, . . . ,s} and a transition matrix P = (pi j). In
our setting, the matrix P completely defines the model; we assume for simplicity
that the initial distribution λ is known. Suppose the chain is observed at (integer)
times 0 = t0 < t1 < · · · < tk ≤ n; denote T = {t1, . . . , tk}. Correspondingly, denote:

XT =

⎛⎜⎝ Xt0
...

Xtk

⎞⎟⎠ and xT =

⎛⎜⎝ xt0
...

xtk

⎞⎟⎠. Next, given y =

⎛⎜⎝ y0
...

yn

⎞⎟⎠ ∈ In+1, let y
∣∣
T stand

for the restriction

⎛⎜⎝ yt0
...

ytk

⎞⎟⎠. Then define the aggregated likelihood:

L(P|XT = xT) = ∑
y∈In+1

λy0

n

∏
m=1

pym−1ym1
(
y
∣∣
T = xT

)
= ∑

y∈In+1

s

∏
i, j=1

λ ri
i p

fi j
i j 1
(
y
∣∣
T = xT

)
, (3.234)

where

fi j = fi j(y) =
n

∑
m=1

1(ym−1 = i,ym = j), ri = ri(y) = 1(y0 = i);

cf. (3.221), (3.222). The HMM interpolation problem is to find the maximiser
P∗

ML(= P∗
ML(xT)) over a given set Y ⊆ P (see (3.7)):

P∗
ML = argmax

P∈Y
L(P|XT = xT). (3.235)
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As before, when Y = P , we obtain an unrestricted problem, and if Y is a proper
subset of P , we speak of a restricted problem. A further generalisation (not con-
sidered here) would occur if we use a more general condition X0 ∈ A0, Xt1 ∈ A1,
. . ., Xtk ∈ Ak where A1, . . ., Ak are subsets of state space I.

We face here a kind of difficulty similar to that in the HMM filtration prob-
lem: the maximiser P∗

ML in (3.235) is hard to calculate, and it is sensitive to
the choice of set Y specifying a priori information about the model. There-
fore, an approximate solution is sought, based on a reasonably straightforward
construction.

To this end, define the matrix P̂ with entries p̂i j, i, j = 1, . . ., given by

p̂i j =
pi j

∂
∂ pi j

L(P|XT = xT)

s

∑
k=1

pik
∂

∂ pik
L(P|XT = xT)

, (3.236)

where the aggregated likelihood L(P|XT = xT) is given by (3.234). Clearly, P̂
depends on P and xT: P̂ = P̂(P,xT). For a given sample xT, formula (3.236) defines
a map Π(= Π(xT)) on the set Ps:

Π : P = (pi j) �→ P̂ = (p̂i j) (3.237)

which we call the Baum–Welch transformation for the HMM interpolation
problem.

Two observations are worthwhile here.

(I) Suppose that t0 = 0, t1 = 1, . . ., tk = k, i.e. we observe the chain at subsequent

time points 0, . . ., k. Then xT becomes the sample vector xk
0 =

⎛⎜⎝ x0
...

xk

⎞⎟⎠ ∈ Ik+1,

and the RHS in (3.236) yields a matrix which does not depend on P but on xk
0

only. More precisely, in this case formula (3.236) returns, as p̂i j, the empirical (or
relative) frequency f̂i j(= f̂i j(xk

0)) of the transition i → j in the sample xk
0:

p̂i j = f̂i j :=

(
s

∑
l=1

fil(xk
0)

)−1

fi j(xk
0), i, j = 1, . . . ,s. (3.238)

Geometrically, this means that the Baum–Welch transformation Π sends any P ∈
P to the matrix F̂ = ( f̂i j) of empirical frequencies:

Π(P) = F̂ , P ∈ P.
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Hence, in this case the matrix F̂ forms a unique fixed point of the transformation
(3.237), and if we repeat the procedure (3.236) (i.e. iterate the map (3.237)), then
the result will be again the matrix F̂ .

(II) If the DTMC (Xm) yields a sequence of IID RVs, then formula (3.236) returns,
as p̂i j, the empirical (relative) frequency ĝ j = ĝ j(xT) of visits to state j in sample
xT. Formally:

p̂i j = ĝ j :=

(
s

∑
l=1

gl

)−1

g j, j = 1, . . . ,s, (3.239)

where,

g j = g j(xT) =
k

∑
l=0

1(xtl = j).

In other words, we forget in this case about states visited during time intervals
between points t0, . . . , tk and compute the frequencies of visits to each state
j = 1, . . . ,s based on the available data. In other words, every matrix P = (pi j)
whose rows are repetitions of a fixed stochastic vector (or, equivalently, whose
entries pi j = p j are constant along the columns) is taken by map Π to the matrix
Ĝ of the empirical frequencies ĝ j (which, obviously, satisfies the same property).
Geometrically, this means the matrices Ĝ = (ĝi j) always form a family of fixed
points for the Baum–Welch transformation Π.

Worked Example 3.7.7 Prove remarks (I) and (II).

Solution Both equalities (3.238) and (3.239) follow from (3.236) by differentiation.

An remarkable fact is that iterating Π from (3.237) leads to an increase in the
value of the aggregated likelihood L(P|XT = xT) defined in (3.234).

Theorem 3.7.8 For any transition matrix P = (pi j), set of time points T =

{t0, t1, . . . , tk}, with 0 = t0 < t1 < · · · < tk ≤ n, and sample string xT =

⎛⎜⎝ xt0
...

xtk

⎞⎟⎠,

L
(
Π(P)

∣∣XT = xT
)
≥ L(P|XT = xT). (3.240)

Moreover, equality in (3.240) is attained if and only if Π(P) = P.

Proof The main idea of the proof is algebraic. Given xT, the functions

P �→ L(P|XT = xT) and P �→ L
(
Π(P)

∣∣XT = xT
)
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are homogeneous polynomials in variables pi j, in the sense that both L(P|XT =
xT) and L

(
Π(P)

∣∣XT = xT
)

are sums of monomials of a fixed (total) degree equal
to tk + 1. Moreover, these monomials enter the sum with coefficients 0 or 1 (see
(3.234)). Theorem 3.7.8 will follow from the more general Theorem 3.7.10 stated
and proved below for such polynomials.

Before we pass to Theorem 3.7.10, we would like to invoke the famous Euler
theorem on homogeneous functions. A function of n real variables f (x1,x2, . . . ,xn)
is said to be homogeneous of degree d, if for any real a

f (ax1,ax2, . . . ,axn) = ad f (x1,x2, . . . ,xn). (3.241)

Euler’s theorem says that for any differentiable homogeneous function,

n

∑
i=1

xi
∂

∂xi
f = d f . (3.242)

Worked Example 3.7.9 Assuming property (3.241), prove (3.242).

Solution (Sketch) Differentiate f (ax1,ax2, . . . ,axn) with respect to a. Then (3.241)
gives

d
da

f (ax1,ax2, . . . ,axn) =
n

∑
i=1

xi
∂

∂xi
f (ax1, . . . ,axn)

= dad−1 f (x1,x2, . . . ,xn).

Finally, set a = 1.

We are now in a position to state and prove Theorem 3.7.10.

Theorem 3.7.10 Suppose we are given positive integers q and qi, where i = 1,
. . ., q. We will be working with arrays of (non-negative) variables pi j, i = 1, . . . ,q,
j = 1, . . . ,qi, denoted by P. Consider a closed set D of dimension ∑q

i=1(qi − 1)
given by

D =

{
pi j ≥ 0,

qi

∑
l=1

pi j = 1, i = 1, . . . ,q, j = 1, . . . ,qi

}
. (3.243)

Next, let P �→ Z(P), P = (pi j), be a homogeneous polynomial of degree d in
variables pi j, i = 1, . . . ,q, j = 1, . . . ,qi, with non-negative coefficients. Given
P = (pi j) ∈ D , let Π(P) =

(
Π(P)i j

)
denote the point in D with
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Π(P)i j = pi j
∂Z

∂ pi j

(
qi

∑
j=1

pi j
∂Z

∂ pi j

)−1

. (3.244)

Then Z(Π(P)) > Z(P) unless Π(P) = P.

Proof First, we establish some notation. Let ν = (νi j) be an array of non-negative
integers νi j, where i = 1, . . . ,q, j = 1, . . . ,qi. Given an array P = (pi j) ∈ D , [P]ν

will stand for the product
q

∏
i=1

qi

∏
j=1

p
νi j
i j . Next, cν ≥ 0 will denote the coefficient in

Z(P) in front of monomial [P]ν :

Z(P) = ∑
ν

cν [P]ν .

Using this notation, we can write

Π(P)i j =
∑
ν

cννi j[P]ν

qi

∑
j=1

∑
ν

cννi j[P]ν
. (3.245)

We wish to prove that

Z(P) = ∑
ν

cν [P]ν = ∑
ν

cν

q

∏
i=1

qi

∏
j=1

p
νi j
i j

≤ ∑
ν

cν

q

∏
i=1

qi

∏
j=1

[Π(P)i j]νi j = ∑
ν

cν
[
Π(P)

]ν = Z
(
Π(P)

)
, (3.246)

and analyse the case of equality.

To this end, represent

Z(P) = ∑
ν

(
cν

q

∏
i=1

qi

∏
j=1

(Π(P)i j)νi j

)1/(d+1)

×
[

cd/d+1
ν [P]ν

q

∏
i=1

qi

∏
j=1

(
1

Π(P)i j

)νi j/(d+1)
]

.

and apply the Hölder inequality∣∣∣∣∑
ν

fνgν

∣∣∣∣≤ (∑
ν
| fν |p

)1/p(
∑
ν
|gν |q

)1/q

,
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with p = d +1 and q = (d +1)/d, to obtain

Z(P)

≤
(

∑
ν

cν

q

∏
i=1

qi

∏
j=1

(Π(P)i j)νi j

)1/(d+1)

×
(

∑
ν

cν [P]ν
q

∏
i=1

qi

∏
j=1

(
pi j

Π(P)i j

)νi j/d
)d/(d+1)

=
(

Z
(
Π(P)

))1/(d+1)
(

∑
ν

cν [P]ν
q

∏
i=1

qi

∏
j=1

(
pi j

Π(P)i j

)νi j/d
)d/(d+1)

; (3.247)

here, in the second factor we have used the fact that ([P]ν)d+1/d = [P]ν
p

∏
i=1

qi

∏
j=1

p
νi j/d
i j .

Since the polynomial Z is homogeneous and

p

∑
i=1

qi

∑
j=1

νi j

d
= 1,

we can use the inequality ∏zαi
i ≤ ∑αizi between the geometric and arithmetic

means with αi ≥ 0, and ∑i αi = 1 to conclude that

∑
ν

cν [P]ν
p

∏
i=1

qi

∏
j=1

(
pi j

Π(P)i j

)νi j/d

≤ ∑
ν

cν [P]ν
p

∑
i=1

qi

∑
j=1

νi j

d

(
pi j

Π(P)i j

)
.

We now substitute formula (3.245) to obtain

∑
ν

cν [P]ν
q

∑
i=1

qi

∑
j=1

νi j

d

(
pi j

Π(P)i j

)

=
1
d ∑

ν
cν

(
[P]ν

q

∑
i=1

qi

∑
j=1

νi j pi j

) qi

∑
j′=1

∑
ν ′

cν ′ν ′
i j′ [P]ν

′

∑
ν ′

cν ′ν ′
i j[P]ν ′

=
1
d

q

∑
i=1

qi

∑
j=1

pi j

⎛⎝ ∑
ν

νi jcν [P]ν

∑
ν ′

ν ′
i jcν ′ [P]ν ′

⎞⎠ qi

∑
j′=1

∑
ν ′

cν ′ν ′
i j′ [P]ν

′
. (3.248)

Here we have interchanged the order of finite summations. For every pair (i, j), the
ratio within the brackets equals 1 and by (3.243) for each i, we have ∑qi

j=1 pi j = 1.
Hence, the whole expression in the RHS of (3.248) reduces to

1
d

q

∑
i=1

qi

∑
j′=1

∑
ν ′

cν ′ν ′
i j′ [P]ν

′
=

1
d ∑

i j′
pi j′

∂P
∂ pi j′

. (3.249)
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So, by Euler’s theorem, expression (3.249) becomes ∑
ν

cν [P]ν = Z(P).

Thus, we obtain the following bound for the second factor in the RHS of (3.247):(
∑
ν

cν [P]ν
q

∏
i=1

qi

∏
j=1

(
pi j

Π(P)i j

)
)νi j/d

)
≤ Z(P).

Correspondingly, (3.247) becomes

Z(P) ≤
(

Z
(
Π(P)

))1/(d+1)
(Z(P))d/(d+1),

which is equivalent to (3.246).
Finally, Z(Π(P)) > Z(P) if Π(P) �= P, as follows from (3.247) and the fact that:

(i) the inequality between geometric and arithmetic means becomes equality if and
only if all numbers zi are equal; (ii) the Hölder inequality becomes equality if and

only if fν and gν are proportional. But equality of all zi means that the ratio
pi j

Π(P)i j
is a constant. But this constant must be 1 by (3.243). Then (ii) holds too.

We see that iterating the Baum–Welch transformation Π strictly increases the
aggregated likelihood L(P|XT = xT) unless we reach a fixed point. But the function
P �→ L(P|XT = xT) is uniformly bounded from above for P ∈ P . So, suppose we
start from a point P(0) ∈ P and let P(N) be ΠN(P(0)), the result of the N-fold
application of transformation Π. Then the limit

lim
N→∞

L(ΠN(P(0)|XT = xT) (3.250)

always exists. However, questions similar to (i) and (ii) for the transformation Φ
(see above) remain open:

(i) Does the matrix P(N) itself converge to a limit P(∞) as N → ∞? If yes then
P(∞) must be a fixed point for Π, with value L(P(∞)|XT = xT) coinciding
with the limit in (3.250). In general, the sequence

{
P(N)

}
may have more

than one limiting point in P (that is, the limits will exists along different
subsequences

{
P(Nm)

}
), but every limiting point will be a fixed point for Π.

(ii) Is the limit P(∞) (or a limiting point) a point of maximum of L(P|XT = xT)
(local or global)?

(iii) For a given restricted problem, with P ∈ Y , does the point P(∞) lie in Y ?
In general these questions do not have ‘nice’ (let alone straightforward)
answers and require painstaking analysis.

Remark 3.7.11 Despite these nice properties, values p̂∗i j and q̂∗jk have a serious
drawback: they are calculated for a given model Z, i.e. are not functions of training
sequence σ only. Thus, we cannot call them unbiased and consistent estimators for
λi, pi j and q jk.
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We finish this section by noting that Theorem 3.7.10 enables us to establish that
the transformation Φ (see (3.232)) also increases the aggregated likelihood:

Theorem 3.7.12 For any initial distribution λ = (λ j), transition matrix P = (pi j),
and collection of noise probabilities Q = (q jk) determining a model Z = (λ ,P,Q),

and any training sequence σ =

⎛⎝ σ0
...

σn

⎞⎠,

L
(
σ ;Φ(Z)

)
≥ L
(
σ ;Z

)
. (3.251)

Moreover, equality in (3.251) is attained if and only if Φ(Z) = Z.

Worked Example 3.7.13 Prove Theorem 3.7.12.

Solution (Sketch) Two alternative proofs are possible: either by using Theorem
3.7.5 or via Theorem 3.7.10.

3.8 Hidden Markov models, 2. The Baum–Welch learning algorithm

Desperately Seeking Smoothness
(From the series ‘Movies that never made it to the Big Screen’.)

We start this section by discussing the smoothing procedure, in the HMM filtration
problem. The philosophy behind this term is as follows. Prior to the procedure, we
deal with the situation where there is an unknown model, represented by a point
Z = (λ ,P,Q)∈Z or, figuratively speaking, by a function on Z vanishing ‘outside

Z’ and having a peak at Z. Given a training sequence σ =

⎛⎝ σ0
...

σn

⎞⎠, the procedure

enables us to consider a family of models Ẑ∗ = (λ̂ ∗, P̂∗,Q̂∗) compatible with σ ,
where λ̂ ∗ = λ̂ ∗(Z,σ), P̂∗ = P̂∗(Z,σ) and Q̂∗ = Q̂∗(Z,σ) vary with Z. In other
words, we pass to ‘distributed’, or ‘smoothed’ objects represented by functions on
the set Z . Formally, we obtain the map Φ: Z �→ Ẑ∗; see (3.232). (Of course, a
single application of this procedure does not yet solve the problem of assessing the
unknown HMM, but it represents a step towards such an assessment. An important
issue which we will discuss in the bulk of this section is the result of iterations of
the transformation Φ.)
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Thus, suppose that we have recorded a training sequence σ =

⎛⎜⎝ σ0
...

σn

⎞⎟⎠, for a

random string X =

⎛⎜⎝ X0
...

Xn

⎞⎟⎠ generated by a DTMC (Xm). That is, we will work

with conditional probabilities, given that b(X) = σ , where b(X) =

⎛⎜⎝ b(X0)
...

b(Xn)

⎞⎟⎠.

Given 0 ≤ m ≤ n, set

p̃i j(m,n) = PZ(Xm = i,Xm+1 = j | b(X) = σ) (3.252)

and

p̃i(m,n) = PZ(Xm = i | b(X) = σ) =
s

∑
j=1

p̃i j(m,n), λ̃i = p̃i(0,n). (3.253)

With ul = PZ(b(X) = σ ,X = x(l)), l = 1, . . . , t, denote the normalization
constant for u1, . . . ,ut by

C =
1

PZ(b(X) = σ)
=

1

∑t
l=1 ul

. (3.254)

In Lemmas 3.8.1 and 3.8.2 we rewrite formulas (3.226)–(3.228) in an alternative,
and more convenient, form.

Lemma 3.8.1 Minimisers q̂∗jk

(
= q̂∗jk(σ)

)
) from (3.228) and (3.229) can be

written in the form

q̂∗jk =
∑n

m=1 1
(
σm = k

)
p̃ j(m,n)

∑n
m=1 p̃ j(m,n)

, j = 1, . . . ,s, k = 1, . . . ,κ. (3.255)

Proof We start with an obvious observation that by (3.253), for all j = 1, . . . ,s
and k = 1, . . . ,κ ,

n

∑
m=1

1(σm = k)PZ(Xm = j | b(X) = σ) =
n

∑
m=1

1(σm = k)p̃ j(m,n). (3.256)

Our next goal is to check that

d jk = PZ(b(X) = σ)
n

∑
m=1

1(σm = k)PZ(Xm = j | b(X) = σ). (3.257)
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To prove (3.257), consider the function of the sample x(l), l = 1, . . . , t:

l �→ z(l, j,k) :=
n

∑
m=0

1(xm(l) = j,σm = k),

giving the number of times one sees a match j → k in x(l), for given σ . Then

n

∑
m=1

PZ(Xm = j,b(Xm) = k | b(X) = σ) = C
t

∑
l=1

z(l, j,k)ul = Cd jk

with C defined in (3.254). To finish the proof, it is enough to note that the
denominator

n

∑
m=1

p̃ j(m,n) = Cn j,

which is obvious. Hence,

q̂∗jk =
C−1

n
∑

m=1
1
(
σm = k

)
p̃ j(m,n)

C−1
n
∑

m=1
p̃ j(m,n)

.

This implies (3.255).

In a similar way one establishes

Lemma 3.8.2 The minimisers p̂∗i j

(
= p̂∗i j(σ)

)
) from (3.226) and (3.227) can be

written in the form

p̂∗i j =
∑n−1

m=1 p̃i j(m,n)

∑n−1
m=1 p̃i(m,n)

, i, j = 1, . . . ,s. (3.258)

The minimisers λ̂ ∗
j

(
= λ̂ ∗

j (σ)
)
) from (3.216) and (3.219) can be written in the

form

λ̂ ∗
j = p̃ j(0,n), j = 1, . . . ,s. (3.259)

Unfortunately, formulas (3.255), (3.258), (3.259), (like (3.226)–(3.228)) are not
very useful computationally. As was mentioned in Section 3.7, in practice the max-
imisation procedure is performed according to an algorithm, due to Baum and
Welch (also called the Baum–Welch re-estimation), which performs subsequent
‘improvements’ of p̃i j(m,n) and p̃i(m,n) at each iteration.

Our immediate goal is to write the smoothed probabilities in terms of so-
called forward and backward variables αm( j) and βm( j); see (3.260). This gives
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a computationally effective form of the Baum–Welch re-estimation. Given m =
0, . . . ,n, define random strings

bm↑(X) =

⎛⎜⎝ b(X0)
...

b(Xm)

⎞⎟⎠ and bm↓(X) =

⎛⎜⎝ b(Xm+1)
...

b(Xn)

⎞⎟⎠ .

Similarly,

σm↑ =

⎛⎜⎝ σ0
...

σm

⎞⎟⎠ and σ m↓ =

⎛⎜⎝ σm+1
...

σn

⎞⎟⎠ .

Next, define

αm( j) = PZ(bm↑(X) = σm↑,Xm = j),

βm( j) = PZ(bm↓(X) = σ m↓|Xm = j).
(3.260)

Then we have

αm( j)βm( j) = PZ(b(X) = σ ,Xm = j). (3.261)

By definition of conditional probability, the following recursion relations hold
true:

α0( j) = λ jq jσ0 , j = 1, . . . ,s, (3.262)

αm+1( j) =

[
s

∑
i=1

αm(i)pi j

]
q jσm+1 , j = 1, . . . ,s, m = 1, . . . ,n−1, (3.263)

βn( j) = 1, j = 1, . . . ,s, (3.264)

and

βm( j) =
s

∑
i=1

βm+1(i)qiσm+1 p ji, j = 1, . . . ,s, m = 0, . . . ,n−1. (3.265)

Equations (3.262) and (3.263) yield the forward recursion for probabilities α , while
(3.264), (3.265) the backward recursion for probabilities β .

Lemma 3.8.3 The probability p̃i(m,n) from (3.253) admits the following
representation:

p̃i(m,n) =
αm(i)βm(i)

PZ(b(X) = σ)
. (3.266)

Proof The result follows directly from (3.253).
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Now, applying Bayes’ formula, write

n−1

∑
m=1

p̃i j(m,n) =
n−1

∑
m=1

PZ(Xm = i,Xm+1 = j | b(X) = σ)

= C
n−1

∑
m=1

[
PZ(b(X) = σ | Xm = i,Xm+1 = j)PZ(Xm = i,Xm+1 = j)

]
= C

n−1

∑
m=1

PZ(b(X) = σ | Xm = i,Xm+1 = j)PZ(Xm = i)pi j,

where C is the constant from (3.254). The next step is to check, by using the
Markov property, that

PZ(b(X) = σ |Xm = i,Xm+1 = j)

= PZ(bm↑(X) = σm↑ | Xm = i)q jσm+1PZ(bm↓(X) = σ m↓ | Xm+1 = j).

Thus we obtain that

PZ(Xm = i)PZ(b(X) = σ | Xm = i,Xm+1 = j) = αm(i)q jσm+1βm+1( j).

Summing up yields

n−1

∑
m=1

p̃i j(m,n) =

n−1
∑

m=0
αm(i)pi jq jσm+1βm+1( j)

PZ(b(X) = σ)
. (3.267)

Our next task is to provide a computationally efficient expression for p∗i j.
Combining the expression (3.266) with Lemma 3.8.2, one obtains the smoothed
transition probabilities

p̂∗i j =

n−1
∑

m=1
p̃i, j(m,n)

n−1
∑

m=1
p̃i(m,n)

= pi j

n−1
∑

l=0
αl(i)q jσl+1βl+1(i)

n−1
∑

l=0
αl(i)βl(i)

. (3.268)

Next, the smoothed initial probabilities are given by

λ̂ ∗
j = p̃ j(0,n) =

α0( j)β0( j)
PZ(b(X) = σ)

. (3.269)

Finally, for the smoothed noise probabilities we have the formula

q̂∗jk =

n
∑

m=1
1(σm = k)p̃ j(m,n)

n
∑

m=1
p̃ j(m,n)

=

n
∑

m=1
1(σm = k)αm( j)βm( j)

n
∑

m=1
αm( j)βm( j)

. (3.270)
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Formulas (3.268)–(3.270) constitue the basis of the modern computational
machinery extensively used in many applications; see, e.g. Rabiner & Juang, 1993.
For an accessible introduction to HMMs in biology, see A. Krogh. “An introduction
to hidden Markov models for biological sequences”, in S.L, Salzberg, D.B. Searls
and S. Kasif. Computational Methods in Molecular Biology. Amsterdam: Elsevier,
1999, pp. 45–63; see also Durbin et al., 1998.

We want to repeat that (3.268)–(3.270) yield the point

Φ(Z) = Ẑ∗ = (λ̂ ∗, P̂∗,Q̂∗) (3.271)

which depends on the variable Z (that is, on the initial choice of an attempted
HMM). In this situation, the key step is to perform the N-fold iteration of the
procedure (i.e. to consider the transformation ΦN):

Z(N) = Φ(Z(N−1)) = ΦN(Z(0)), N = 1,2, . . . , (3.272)

and to identify the limit point(s) as N → ∞. In a ‘nice’ situation one may hope
that there exists a limit Z(∞) = lim

N→∞
ΦN(Z(0)) which does not depend on the initial

point Z(0) (or depends on Z(0) ‘weakly’, where Z(∞) will vary only when we pass
from one ‘basin of attraction’ to another). Assume in addition that Z(∞) is a global
maximiser for the likelihood L(σ ;Z) = P(b(X) = σ ;Z); that is,

L(σ ;Z(∞)) = max
[
L(σ ;Z) : Z = (λ ,P,Q) ∈ U

]
. (3.273)

Then we can treat the point Z(∞) as an ‘estimator’ (in fact, as an MLE, Z∗
ML)

yielding the ‘best guess’ of the HMM for the given training sequence σ .
Geometrically, the limit Z(∞), if it exists, is represented by a fixed point of the

map Φ. We see that the analysis of fixed points Z∗ of Φ, and particularly the issue
of convergence Z(N) = ΦN(Z)→ Z∗, becomes a crucial question here. This issue is
addressed in Section 3.9.

Before we proceed further, let us discuss the (straightforward) issue of maximis-
ing the expression (3.273) in the variables λ , P and Q constituting the model Z.
The Lagrangian is

L(σ ;Z)+ γ

(
s

∑
j=1

λ j −1

)
+

s

∑
i=1

νi

(
s

∑
j=1

pi j −1

)
+

s

∑
j=1

l j

(
κ

∑
k=1

q jk −1

)
,

where γ , νi and l j are Lagrange multipliers. The stationary point in the interior of
the domain satisfies

λ j > 0,
s

∑
j=1

λ j = 1,
∂

∂λ j
L(σ ;Z)+ γ = 0 j = 1, . . . ,s,
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pi j > 0,
s

∑
j=1

pi j = 1,
∂

∂ pi j
L(σ ;Z)+νi = 0, i, j = 1, . . . ,s

q jk > 0,
κ

∑
k=1

q jk = 1,
∂

∂q jk
L(σ ;Z)+ l j = 0, j = 1, . . . ,s, k = 1, . . . ,κ,

and is given by

λ j =

(
s

∑
m=1

λm
∂

∂λm
L(σ ;Z)

)−1

λ j
∂

∂λ j
L(σ ;Z), (3.274)

pi j =

(
s

∑
m=1

pim
∂

∂ pim
L(σ ;Z)

)−1

pi j
∂

∂ pi j
L(σ ;Z), (3.275)

and

q jk =

(
κ

∑
m=1

q jm
∂

∂q jm
L(σ ;Z)

)−1

q jk
∂

∂q jk
L(σ ;Z). (3.276)

These equations appeared before in (3.209), Example 3.7.3, and (3.226)–(3.229)
in a general context (see also (3.236) and (3.244)). They form a coupled system of
nonlinear equations, which in general cannot be solved analytically.

Since the maximisation can be done in each of these variables separately, we
consider maximisation in variables pi j only.

Lemma 3.8.4 The following equation holds true:

∂
∂ pi j

L(σ ;Z) =
n−1

∑
m=1

αm(i)q jσm+1βm+1( j) (3.277)

Proof Write

L(σ ;Z) = PZ(b(X) = σ ;Z) =
s

∑
j=1

αn( j)βn( j);

as βn( j) = 1, this factor will be omitted. Next, use (3.263) for m = n−1:

αm+1( j) =

(
s

∑
i=1

αm(i)pi j

)
q jσm+1 .

This gives

L(σ ;Z) =
s

∑
i, j=1

αn−1(i)pi jq jσn . (3.278)
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Hence, by direct differentiation,

∂
∂ pi j

L(σ ;Z) = αn−1(i)q jσn +
s

∑
l,m=1

[
∂

∂ pi j
αn−1(l)

]
plmqmσn . (3.279)

So we need only calculate the double sum in the RHS. We get

∂
∂ pi j

αn−1(l) =

⎧⎪⎪⎨⎪⎪⎩
αn−2(i)q jσn−1 +

s

∑
m=1

[
∂

∂ pi j
αn−2(m)

]
pm jq jσn−1 , if l = j,

s

∑
m=1

[
∂

∂ pi j
αn−2(m)

]
pm jq jσn−1 , if l �= j.

Substituting the partial derivative ∂αn−1(m)
/

∂ pi j in the second term in the RHS
of (3.279) gives

s

∑
r,l=1

[
∂

∂ pi j
αn−1(r)

]
prlqlσn

=
s

∑
r=1

αn−2(i)q jσn−1 p jrqrσn +
s

∑
r=1

[
s

∑
l=1

∂
∂ pi j

αn−2(l)pl jq jσn−1

]
p jrqrσn

+
s

∑
r,m,l=1

1(m �= j)
[

∂
∂ pi j

αn−2(l)plmqmσn−1

]
pmrqrσn

= I+ II+ III. (3.280)

Next, calculate the value of each of the three terms in the RHS of (3.280). First,

I =
s

∑
r=1

αn−2(i)q jσn−1 p jrqrσn = αn−2(i)q jσn−1

(
s

∑
r=1

p jrqrσn

)
from which, by virtue of (3.265), we get

I = αn−2(i)q jσn−1βn−1( j). (3.281)

Further, combining terms II and III together and interchanging the order of
summation yields

II+ III =
s

∑
r,l=1

[
∂

∂ pi j
αn−2(l)

]
plrqrσn−1

(
s

∑
m=1

prmqmσn

)
. (3.282)

The recursion relation (3.265) now gives

s

∑
m=1

prmqmσn = βn−1(r).
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Hence, the RHS of (3.282) becomes

s

∑
r,l=1

[
∂

∂ pi j
αn−2(l)

]
pirqrσn−1βn−1(r).

So, (3.279) takes the form

∂
∂ pi j

L(σ ;Z) = αn−1(i)q jσnβn( j)+αn−2(i)q jσn−1βn−1( j)

+
s

∑
r,l=1

[
∂

∂ pi j
αn−2(l)

]
plrqrσn−1βn−1(r). (3.283)

The double sum in the RHS of (3.283) can be subjected to a similar procedure,
substituting the derivative ∂αn−2(l)

/
∂ pi j and reorganizing the resulting sums as

above. Since αr(0) does not involve any pi j, differentiation stops at l = 0. Finally,
we obtain

∂
∂ pi j

L(σ ;Z) =
n−1

∑
m=0

αm(i)q jσm+1βm+1( j),

as required.

Lemma 3.8.4 leads to (yet) another form of (3.226)–(3.228), (3.255), (3.258)–
(3.259) and (3.268)–(3.270). Indeed, insert (3.277) into (3.275) and interchange
the order of summation in the denominator. We obtain

n−1

∑
m=1

αm(i)

[
s

∑
j=1

pi jq jσm+1βm+1( j)

]
,

where backward recursion (3.265) gives

s

∑
j=1

pi jq jσm+1βm+1( j) = βm(i).

Hence we have the equality

s

∑
j=1

pi j
∂

∂ pi j
L(σ ;Z) =

n−1

∑
m=1

αm(i)βm(i)

which immediately gives the RHS of (3.268).
Based on (3.274)–(3.276), we rewrite the Baum–Welch transformation Φ for the

HMM filtration problem as

Φ : (λ ,P,Q) �→
(

λ̂ ∗, P̂∗,Q̂∗
)

, (3.284)
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where

λ̂ ∗
j =

(
s

∑
m=1

λm
∂

∂λm
L(σ ;Z)

)−1

λ j
∂

∂λ j
L(σ ;Z), (3.285)

p̂∗i j =

(
s

∑
m=1

pim
∂

∂ pim
L(σ ;Z)

)−1

pi j
∂

∂ pi j
L(σ ;Z), (3.286)

and

q̂∗jk =

(
κ

∑
m=1

q jm
∂

∂q jm
L(σ ;Z)

)−1

q jk
∂

∂q jk
L(σ ;Z). (3.287)

It is important to stress that, by virtue of (3.268)–(3.270), the transformation
(3.284) has an essential computational advantage: it is reduced to a superposition
of local transformations. At each step one selects a position l = 0, . . . ,n−1 in the
string and updates the local variables with index l only. See Rabiner and Juang,
1993. It results in a great economy of calculation, requiring ns2 operation whereas
a straightforward approach results in nsn operations.

The analysis of convergence of iterations ΦN of map Φ follows basic geometric
ideas going back to the first half of the 20th Century. It is carried out in Section
3.9, and the outcome is stated as Theorem 3.9.9 (in the case of the HMM filtration
problem). A similar result holds for the interpolation problem.

A considerable part of this section has been an illustration of the importance of
mathematics aimed at enabling simulations on computers. We finish it with a story
about computers.

Recently, the authors of this book came across an account by A. Samarskii,
a prominent Russian applied mathematician and a full member of the Russian
Academy of Sciences, about an early stage of parallel computations in the USSR.
(See V. Gubarev, Stalin’s White Archipelago, Moscow: ‘Molodaya Gvardia’ Pub-
lishing House, 2004 (in Russian).) In the late 1940s, the Soviets were busy
constructing their own nuclear bomb, which required a lot of calculations. In partic-
ular, it was necessary to solve numerically systems of hundreds of linear equations
per day. The Soviet computer industry of the period was limited to fleet of mechan-
ical comptometers, but they still managed to perform calculations rapidly and
reliably. The Soviet solution was quite elegant: Samarskii, who was the head of a
computational group, presided over about 30 young female ‘computors’, recently
graduated from a Moscow Institute of Geodesy. Each girl had to solve, on her per-
sonal comptometer, a dozen equations and to give her results to another girl, for
comparison and further use, in accordance with a specially designed algorithm of
parallel computation. By the time of their first test explosion (August, 1949), the
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Soviets managed to numerically predict the results of the test with a margin of
error of 30%, which, according to Samarskii, was better than the level of accuracy
achieved by the Americans (who already used electronic computer prototypes).

A factor that might have contributed to Soviet efficiency of that period was that
a failure to perform a correct calculation might be treated as an act of sabotage
with dire consequences. A brilliant physicist or engineer toiling over radioactive
material could easily be transformed into a prisoner sent to mine the very same
material without any protection.

At the time, computors were already widely employed worldwide. For exam-
ple, many British Universities had a post of a computor attached to a mathematics
professor: the operator’s duties were to do calculations following the professor’s
instructions, by assembling a set of specialised calculators suitable for a given
problem.

3.9 Generalisations of the Baum–Welch algorithm. Global convergence of
iterations

I felt like the old minstrel who has been singing his song
for 18 years and now finds, with considerable satisfaction,

that his folklore is the theme of an overpowering symphony.
H.O. Hartley (1912–1980) American statistician

As was determined above, the Baum–Welch transformation for the HMM filtration
problem can been defined by the (equivalent) formulas (3.232) (3.271), (3.284),
and for the interpolation problem in (3.237). For definiteness, we will talk about
unrestricted problems only. In the case of the filtration problem, the characteristic
feature of the transformation is that it takes a current model Z to a re-estimated, or
updated, model Ẑ∗, where Ẑ∗ = Φ(Z) lies in a domain

D(Z) = {Ẑ ∈ U : L(σ ; Ẑ) ≥ L(σ ;Z)}; (3.288)

cf. Theorem 3.7.12. Similarly, for the interpolation problem, P̂∗ = Π(P) ∈ D(P)
where

D(P) = {P̂ ∈ P : L(P̂|XT = xT) ≥ L(P|XT = xT)}; (3.289)

cf. Theorem 3.7.8.
The proof of convergence of Baum–Welch does not use its specific character.

In particular, the structure of the Markov chain is used only in establishing mono-
tonicity in (3.213) and (3.234). This allows us to cover the issue of convergence
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for a larger class formed by expectation–modification (EM) algorithms and their
generalisations called generalised expectation–modification (GEM) algorithms.

The epigraph to this section is taken from X.-L. Meng, D. van Dyk, “The EM
algorithm – an old folk-song sung to fast new time”, J. Roy. Stat. Soc. B, 59 (1997),
511–567. It was followed by the following text: “Just as a folk-song typically
evolves many years before its tune is well recognised, various EM-type methods
or ideas . . . can be found in the [early] literature. . . . The folk-song analogy is
also accurate in the sense that it signifies the collective effort in developing the
EM algorithm. . . . Baum et al. (1970) is perhaps the most sophisticated.” By 1992,
the number of EM-related publications exceeded 1,000 (by now it is much larger).
Curiously, among the 300 journals where the above 1,000 papers were published,
the leading place was occupied, unsurprisingly, by the Journal of the American
Statistical Association, but the Journal of the Royal Statistical Society, Ser. B, was
pipped into the fifth place by the Journal of Dairy Science.

The EM algorithm works as follows. We have two sample spaces X (inac-
cessible ‘full data’ samples) and Y (observed ‘incomplete data’ samples) and a
many-to-one map Ψ from X to Y (an observation mechanism that is inaccurate).
That is, instead of observing a sample vector x ∈ X , we observe an ‘inaccurate’
vector y = Ψ(x) ∈ Y . This situation often occurs in statistics when data can be
grouped, censored, truncated or missing. Let f (x;θ)(= fX(x;θ)), x ∈ X , be the
PDF of the random sample vector X depending on a parameter θ ∈ Θ. Then the
PDF g(y;θ)(= gY(y;θ)) of the random vector Y = Ψ(X) is given by

g(y;θ) =
∫

X (y)
f (x;θ)dx, y ∈ Y , (3.290)

where X (y) is the inverse image {x : Ψ(x) = y}. The parameter θ is unknown
and should be estimated by the method of maximum likelihood, i.e. by maximizing
g(y;θ), or, equivalently, lng(y;θ), over θ ∈ Θ. Since the sample x is unavailable,
we replace the log-likelihood ln f (x;θ) by its conditional expectation given y. In
the description of the algorithm, this is done for an arbitrary θ ∈ Θ, but in sub-
sequent iterations, θ will be chosen to be θ (N), the value obtained after the Nth
iteration. See below.

Equation (3.290) is the starting point for the so-called E-step of the EM
algorithm. To perform the iteration of the E-step, set

h(x|y;θ) =
f (x;θ)
g(y;θ)

, x ∈ X , y = Ψ(x) ∈ Y , (3.291)

h(x|y;θ) being the conditional density of X given that Ψ(X) = y. To maximise
lng(y;θ), we write down the log-likelihood �(θ ′)(= �(y;θ ′)), in the form

lng(y|θ ′) = ln f (x|θ ′)− lnh(x|y,θ ′),
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and take the conditional expectation Eθ [ · |Ψ(X) = y]. So, � is considered as a
function of the variable θ ′ ∈ Θ:

�(θ ′) = lng(y|θ ′) = Q(θ ′|θ)−H(θ ′|θ). (3.292)

Here Q(θ ′|θ)(= Q(y;θ ′|θ)) and H(θ ′|θ)(= H(y;θ ′|θ)) stand for the conditional
expectations

Q(θ ′|θ) = Eθ

[
ln f (X|θ ′)|Ψ(X) = y

]
,

H(θ ′|θ) = Eθ

[
lnh
(
X|y;θ ′)∣∣Ψ(X) = y

]
,

(3.293)

which are assumed to exist for all pairs θ ′,θ ∈ Θ.
We now define the Nth iteration of the EM algorithm as a map A: θ (N) ∈ Θ �→

θ (N+1) = A(θ (N)) ∈ Θ as follows.
The E-step. Given θ (N), determine Q

(
θ |θ (N)

)
.

The M-step. Choose θ (N+1) to be a value which maximises the function θ ∈Θ �→
Q(θ |θ (N)):

θ (N+1) = argmax
[
Q(θ |θ (N)) : θ ∈ Θ

]
. (3.294)

The value θ (N+1) depends on θ (N) and the sample vector y.
The hope here would be (and perhaps initially was) that the sequence of subse-

quent values θ (N), N = 0,1, . . . obtained by iterating the algorithm (it is often called
an EM-sequence) will be ‘nice’. Ideally, θ (N) might converge (rather quickly) to
θ ∗, the MLE maximising likelihood g(y;θ) in (3.290). Unfortunately, this is not
always the case, and the large part of the forthcoming discussion aims to clar-
ify this issue. In view of applications, we use in examples the alternative notation
Lfull(θ) = Lfull(x;θ) for likelihood f (x;θ) and Lobs(θ) = Lobs(y;θ) for g(y;θ),
with �(θ ′) = Lobs(θ ′). One good bit of news here is that in the course of the
iterations, the value Lobs(θ (N+1)) is no less than Lobs(θ (N)):

Lobs(θ (N+1)) ≥ Lobs(θ (N)). (3.295)

We see that to make M a point-to-point map, we have to specify θ (N+1) among
maximisers. This choice may influence various aspects of the implementation of
the EM algorithm, both theoretical and practical. It is also clear that the choice of
an initial value θ (0) has to be judicial.

Example 3.9.1 In this example, φ stands for the standard normal PDF N(0,1):

φ(x) =
1√
2π

e−x2/2, x ∈ R. (3.296)
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We observe an IID random sample Y =

⎛⎜⎝ Y1
...

Yn

⎞⎟⎠ from a distribution with PDF

g(y;θ) =
1
2

(φ(y)+φ(y−θ)) ,y ∈ R, (3.297)

representing an equal mixture of a standard normal PDF and a normal PDF with
mean θ ∈ R and unit variance. In this example, the complete data x consist of
pairs x1 = (y1,α1), . . ., xn = (yn,αn) where y j ∈ R and α j = 0 or 1, j = 1, . . . ,n; α j

specifies by which PDF, φ(x) or φ(x−θ), the jth observation point y j is generated.
The function Ψ(x) = y erases the α js and leaves only points y1, . . . ,yn. The same
is applicable to random samples Y and X.

In this example, the log-likelihood lnLobs(θ) is given by

lnLobs(θ) =
n

∑
i=1

ln

(
1
2

φ(yi)+
1
2

φ(yi −θ)
)

, (3.298)

and the log-likelihood lnLfull(θ) by

lnLfull(θ) =
n

∑
i=1

1(αi = 0)lnφ(yi)+1(αi = 1)lnφ(yi −θ). (3.299)

The above description of the EM algorithm in this case leads to the following
formula:

Q(θ ′,θ) =
n

∑
i=1

(1−wi(θ)) lnφ(yi)+wi(θ)lnφ(yi −θ ′)+ c (3.300)

where wi(θ) =
φ(yi −θ)

φ(yi)+φ(yi −θ)
for i = 1, . . . ,n, and c is a constant not depend-

ing on θ and θ ′. Clearly, Q(θ ′,θ) is a quadratic form in θ ′ and can be easily
maximised.

Then, by the above description of the M-step, the value θ (N+1) obtained after the
(N +1)st iteration of the algorithm, is given by

θ (N+1) = θ (N+1)(θ (N),y) =

n
∑

i=1
yiwi(θ (N))

n
∑

i=1
wi(θ (N))

. (3.301)

Example 3.9.2 (Bivariate normal data with missing values) Let X =
(

X1

X2

)
be

a random vector with a bivariate normal distribution N(μ,Σ) where μ is a two-

dimensional real vector

(
μ1

μ2

)
of mean values μi = EXi and Σ a positive-definite
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2× 2 real covariance matrix

(
σ11 σ12

σ21 σ22

)
, with σii = VarXi and σ21 = σ12 =

Cov(X1,X2), i = 1,2. Suppose we want to estimate the collection of parameters
θ =

{
μi,σi j, i, j = 1,2

}
from a random sample of size n taken from independent

copies of X, where the data on the first variate, X1, are missing in m1 places and
the data on the second variate, X2, are missing in m2 places, where m1 + m2 ≤ n
and positions missing entry X1 are disjoint from those missing X2. In this example,
Θ ⊂ R

5; in fact Θ lies in R×R×R+×R+×R. (The first two Cartesian factors R

provide space for μ1 and μ2, the two copies of R+ do so for σ11 and σ22 and the
last factor R for σ12; the Cauchy–Schwarz inequality

∣∣σ2
12

∣∣≤ σ11σ22 indicates that
Θ is indeed a proper subset of R×R×R+×R+×R.)

The observed data array is denoted by y. For definiteness, we label the data so

that (i) y( j) =

(
y( j)

1

y( j)
2

)
, j = 1, . . . ,m, stand for the fully observed data points,

where m = n−m1−m2, (ii)

(
∗

y( j)
2

)
, j = m+1, . . . ,m+m1, denote the m1 obser-

vation with the first component missing, and

(
y( j)

1
∗

)
, j = m+m1 +1, . . . ,n, the

m2 observations with the the second component missing. Then y is associated with
the array

{(
y(1)

1

y(1)
2

)
. . .

(
y(m)

1

y(m)
2

)(
∗

y(m+1)
2

)
. . .(

∗
y(m+m1)

2

)(
y(m+m1+1)

1
∗

)
. . .

(
y(N)

1
∗

)}
. (3.302)

The full data of course would be represented by the array of vectors y( j) =(
y( j)

1

y( j)
2

)
, j = 1, . . . ,n:

x =

{(
y(1)

1

y(1)
2

)
. . .

(
y(n)

1

y(n)
2

)}
. (3.303)

We use the parallel notation Y and X for random samples and identify Y as a part
of X as has been indicated.
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The log-likelihood lnLobs(θ) = lnLobs(y;θ) for θ based on the observed data y is

lnLobs(θ)

= −nln(2π)− 1
2

mln
(
detΣ

)
−1

2

m

∑
j=1

(y( j)−μ)TΣ−1(y( j)−μ)− 1
2

2

∑
i=1

milnσii

−1
2

[
σ−1

11

n

∑
j=m+m1+1

(y( j)
1 −μ1)2 +σ−1

22

m+m1

∑
j=m+1

(y( j)
2 −μ2)2

]
. (3.304)

The full data log-likelihood lnLfull(θ) = lnLfull(x;θ) equals

lnLfull(θ) = −nln(2π)− 1
2

nln
(
detΣ

)
− 1

2

n

∑
j=1

(y( j)−μ)TΣ−1(y( j)−μ)

= −nln(2π)− 1
2

nln
(
σ11σ22 −σ2

12

)
−1

2

(
σ11σ22 −σ2

12

)−1
[
σ22S11 +σ11S22 −2σ12S12

−2T1(μ1σ22 −μ2σ12)+2T2(μ2σ11 −μ1σ12)

+n
(
μ2

1 σ22 + μ2
2 σ11 −2μ1μ2σ12

)]
, (3.305)

where

Ti =
n

∑
j=1

y( j)
i , Sil =

n

∑
j=1

y( j)
i y( j)

l , i, l = 1,2. (3.306)

We see that the likelihood Lfull(θ) belongs to the exponential family, with a
sufficient statistic formed by the collection

{
T1,T2,S11,S12,S22

}
. Had the full-

data array x been available, the (full-data) maximum likelihood estimator θ̂ of
parameter θ would be given by

μ̂i = Ti/n, σ̂il = (Sil −n−1TiTl)/n, i, l = 1,2. (3.307)

This observation suggests the form of the EM algorithm in the current example.
Again we assume that the value θ (N) =

{
μ(N)

i ,σ (N)
i j , i, j = 1,2

}
was obtained at

the Nth iteration and denote by Eθ (N) the expectation relative to the bivariate nor-
mal distribution determined by θ (N). The E-step on the (N + 1)th iteration of the
algorithm is as follows. We need to calculate the conditional expectation

Q(θ ,θ (N)) = Eθ (N)

[
lnLfull(θ)|y

]
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of the full-data log-likelihood lnLfull(X;θ), given that Y = y. It can be seen from
(3.304) that this is reduced to computing the conditional expected values

Eθ (N)

[
Y ( j)

1 |y
]

and Eθ (N)

[
(Y ( j)

1 )2|y
]
, j = m+1, . . . ,m+m1,

and

Eθ (N)

[
Y ( j)

2 |y
]

and Eθ (N)

[
(Y ( j)

2 )2|y
]
, j = m+m1 +1, . . . ,n.

By independence of the sample, in the first line the condition Y = y can be replaced

with Y ( j)
2 = y( j)

2 and in the second line with Y ( j)
1 = y( j)

1 . Correspondingly, one can
use the notation

Eθ (N)

[
Y ( j)

1 |y( j)
2

]
and Eθ (N)

[
(Y ( j)

1 )2|y( j)
2

]
, j = m+1, . . . ,m+m1, (3.308)

and its mirror versions

Eθ (N)

[
Y ( j)

2 |y( j)
1

]
and Eθ (N)

[
(Y ( j)

2 )2|y( j)
1

]
, j = m+m1 +1, . . . ,n. (3.309)

Next, if a vector

(
Y1

Y2

)
has a bivariate normal distribution N(μ,Σ), then the

distribution of Y2 conditional on Y1 = y1 is normal N(μ∗
2 ,σ∗

22), with the mean

μ∗
2 = μ2 +σ12σ−1

11 (y1 −μ1)

and the variance

σ∗
22 = σ22

(
1− σ2

12

σ11σ22

)
.

Thus, the above expected values (3.308) take the form

Eθ (N)

[
Y ( j)

2 |y( j)
1

]
= μ(N)

2 +
σ (N)

12

σ (N)
11

(
y( j)

1 −μ(N)
1

)
,

and

Eθ (N)

[
(Y ( j)

2 )2|Y ( j)
1 = y( j)

1

]
=
(
z( j)(N)

)2 +σ∗
22(N).

Here

z( j)(N) = μ(N)
2 +

σ (N)
12

σ (N)
11

(
y( j)

1 −μ(N)
1

)
and

σ∗
22(N) = σ (N)

22

(
1−

(
σ (N)

12

)2

σ (N)
11 σ (N)

22

)
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are values calculated at the Nth iteration (cf. (3.310)). The formulas for

Eθ (N)

[
Y ( j)

2 |y( j)
1

]
and Eθ (N)

[
(Y ( j)

2 )2|y( j)
1

]
in (3.309) are obtained by interchanging

the subscripts 1 and 2.
The M-step at the (N + 1)th iteration is implemented simply by replacing the

statistics Ti and Sil by T (N)
i and S(N)

il , respectively, where the latter are defined

by substituting, into (3.305), the missing values y( j)
i and (y( j)

i )2, i = 1,2 with
their current conditional expectations (3.308) and (3.309). Accordingly, the value
θ (N+1) =

{
μ(N+1)

i ,σ (N+1)
i j , i, j = 1,2

}
is given by

μ(N+1)
i = T (N)

i /n, σ (N+1)
il =

(
S(N)

il −n−1T (N)
i T (N)

l

)
/n. (3.310)

Example 3.9.3 (Parameter estimation for exponential families) In this example,

Θ = R
n. Recall, an exponential family of PDFs f (x;θ), θ =

⎛⎜⎝ θ1
...

θn

⎞⎟⎠ ∈ R
n, is

given by

f (x;θ) = exp
[(

gradθ B(θ)
)T[C(x)−θ ]+B(θ)+H(x)

]
(3.311)

where (
gradθ B(θ)

)T[C(x)−θ ] =
n

∑
j=1

∂
∂θ j

B(θ)[Cl(x)−θ j].

The vector-function C(x) is a sufficient statistic. Exponential families include many
popular examples: multivariate normal, Poisson, multinomial, hypergeometric (see
Volume 1, Section 3.6).

Assume that a function Ψ: x → y is given, and we have access to the sample
y = Ψ(x). The (N +1)st iteration of the EM algorithm works here as follows.

The E-step: write down the function

Q(y;θ |θ (N)) = Eθ (N)

(
H(X)

∣∣Ψ(X) = y
)
+
(
gradθ B(θ)

)T
C̃(y)

−
(
gradθ B(θ)

)Tθ +B(θ). (3.312)

Here

C̃(y)l = Eθ (N)

[
C(X)l

∣∣Ψ(X) = y
]
. (3.313)

Observe that the term in the first line of the RHS in (3.312) does not depend
on θ and hence does not take part in maximisation in θ . The third and the fourth
terms, in contrast, depend on θ but not on θ (N). It is the term

(
gradθ B(θ)

)T
C̃(y)

that depends on both θ and θ (N), where C̃(y) is defined in (3.313).



3.9 Generalisations of the Baum–Welch algorithm 469

The M-step: given the value of the parameter θ (N), you aim to find the maximum
of Q(y;θ ,θ (N)) in θ (for fixed y). When found, the maximiser is identified as
θ (N+1) (= θ (N+1)(y)). Unfortunately, a straighforward maximisation, as, e.g., in
Example 3.9.2, is rarely possible.

As was said above, the question of convergence of values θ (N) obtained in the
course of iterations is delicate and requres a detailed analysis. A relatively simple

model case is where the complete data X =

⎛⎜⎝ X1
...

Xn

⎞⎟⎠ and incomplete data Y =

⎛⎜⎝ Y1
...

Yn

⎞⎟⎠ coincide and are formed by IID vectors X j =

⎛⎜⎜⎝
X (1)

j
...

X (d)
j

⎞⎟⎟⎠, j = 1, . . . ,n,

which are multivariate normal vectors with a known d×d covariance matrix Σ and
an unknown mean vector θ = μ ∈ R

d . Here, the joint PDFs fX( · ;θ) and g( · ; ;θ)
coincide and are given by the expression

(
1√

(2π)ndetΣ

)n

exp

[
−1

2

n

∑
j=1

(x j −μ)TΣ−1(x j −μ)

]
,

x ∈ R
d , θ = μ ∈ R

d .

(3.314)

In this case the log-likelihood lnLobs(θ) = lnLfull(θ) is a negative quadratic
function of μ (with coefficients depending on sample x):

μ ∈ R
n �→ −1

2

n

∑
j=1

(x j −μ)TΣ−1(x j −μ).

This function is concave and has a unique maximum, giving the MLE

μ̂∗ =
1
n

n

∑
i=1

x j.

The value μ̂∗ can also be obtained as the limit in various approximations, which
provides good practice for the EM algorithm implementation. A standard approx-
imation technique is the steepest descent method (used to minimise the convex
quadratic function). But to estimate the rate of convergence one needs the following
inequality.
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Worked Example 3.9.4 (Kantorovich’s inequality) Let Σ be a positive definite

real n×n matrix. For any vector x =

⎛⎜⎝ x1
...

xn

⎞⎟⎠ ∈ R
n the following bound holds:

||x||4(
xTΣx

)(
xTΣ−1x)

≥ 4μ−μ+

(μ− + μ+)2 (3.315)

where μ− and μ+ are, respectively, the smallest and largest eigenvalues of Σ.

Solution Let the eigenvalues μi of Σ satisfy

0 < μ− = μ1 ≤ ·· · ≤ μn = μ+.

By an appropriate change of coordinates the matrix Σ becomes diagonal, and(
∑n

i=1 x2
i

)2(
∑n

i=1 μix2
i

)(
∑n

i=1 x2
i /μi

) =
1
/

∑n
i=1 ξiμi

∑n
i=1 ξi/μi

:=
φ(ξ )
ψ(ξ )

where ξi = x2
i

/
∑n

i=1 x2
i . The function y �→ 1/y is convex for y > 0, the point φ(ξ )

lies on the curve and the point ψ(ξ ) is the linear combination of the points on
the curve. Hence the minimal value of the ratio is achieved for some μ = ξ1μ1 +
ξnμn with ξ1 +ξn = 1. In this case, ξ1/μ1 +ξ2/μn = (μ1 + μn −μ)/μ1μn, and one
obtains

φ(ξ )
ψ(ξ )

≥ inf
μ1≤μ≤μn

1/y
(μ1 + μn −μ)/μ1μn

=
4μ1μn

(μ1 + μn)2

as the mimimum is achieved at the point μ = (μ1 + μn)/2.

Worked Example 3.9.5 (Steepest descent for quadratic functions.) Given a
positive definite real n×n matrix Σ and vectors b,x0 ∈ R

n, set

gk = Σxk −b and xk+1 = xk −
gT

k gk

gT
k Σgk

gk, k = 0,1, . . . . (3.316)

Then, for all x0 ∈ R
n, xk converges, as k → ∞, to the unique minimum point x∗ of

the function

f (x) =
1
2

xTΣx−xT b.

Furthermore, with D(x) = 1
2(x−x∗)TΣ(x−x∗), we have the following bound: for

all k,

D(xk+1) ≤
(

μ+−μ−
μ+ + μ−

)2

D(xk),
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where μ− and μ+, as before, are the minimal and the maximal eigenvalues of
matrix Σ.

Solution (Sketch) Apply Kantorovich’s inequality to

D(xk)−D(xk+1)
D(xk)

=
(gT

k gk)2

(gT
k Σgk)(gT

k Σ−1)gk
.

Quite often it is not numerically feasible to perform the maximisation proce-
dure in the M-step. We already spotted it in Example 3.9.3; in the case of Markov
chains this is true more often than not. To this end the generalised expectation-
modification (GEM) algorithm has been proposed. In the GEM algorithm, we
simply choose θ (N+1) in such a way that

Q(θ (N+1)|θ (N)) ≥ Q(θ (N)|θ (N)). (3.317)

Because the expectation H(θ |θ) obeys, by Gibbs’ inequality,

H(θ |θ) ≥ H(θ ′|θ), θ ,θ ′ ∈ Θ,

bound (3.296) leads to monotonicity property (3.295) (which is the crucial feature
of the EM and GEM algorithms).

That is, in the GEM algorithm we are looking at the inequality

Q(θ ′|θ) ≥ Q(θ |θ), θ ,θ ′ ∈ Θ. (3.318)

Given θ ∈ Θ, this determines the set

M(θ) = {θ ′ ∈ Θ : Q(θ ′|θ) ≥ Q(θ |θ)}, (3.319)

and we are forced to think in terms of a point-to-set map

θ ∈ Θ �→ M(θ),

guaranteeing that

θ (N+1) ∈ M(θ (N)), n = 0,1, . . . .

A sequence θ (N) with the last property is called a GEM-sequence.

Example 3.9.6 Here we give an example of a GEM sequence {θ (N)} for which
L(θ (N)) converges monotonically, whereas the sequence {θ (N)} does not converge
but has a unit circle as the set of limit points. Consider the bivariate normal PDF,

with an unknown mean μ =
(

μ1

μ2

)
and the unit covariance 2×2 matrix. In this
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example, the unknown parameter θ = μ , and the complete and incomplete data

coincide: x = y =
(

y1

y2

)
.

The GEM sequence {μ(N)}, where μ(N) =

(
μ(N)

1

μ(N)
2

)
, is given by

μ(N)
1 = y1 + r(N) cos ϑ (N),

μ(N)
2 = y2 + r(N) sin ϑ (N),

where r(0) = 2, ϑ (0) = 0, and

r(N) = 1+(N +1)−1, ϑ (N) =
N

∑
i=1

(i+1)−1, k = 1,2, . . . .

Here, in plain words, r and ϑ are the polar coordinates centred at the observed
vector y. For the log-likelihood lnL(μ(N)) = lnL(y|μ(N)) we have that

lnL(μ(N+1))− lnL(μ(N)) =
1
2

(
(r(N))2 − (r(N+1))2

)
=

1
2

[
(r(N))2 − (2− (r(N))−1)2],

since r(N+1) = 2− (r(N))−1. Now we use the elementary bound 0 < 2− u−1 ≤ u,
for u ≥ 1. As r(N) ≥ 1 for each k, we obtain that

lnL(μ(N+1))− lnL(μ(N)) ≥ 0.

Hence, the sequence μ(N) is indeed GEM.
Since r(N) → 1 as N →∞, the sequence of likelihood values {L(μ(N))} converges

to the value

(2π)−1e−1.

But for the sequence {μ(N)}, any point of the circle of unit radius and centred at y
is a limiting point.

We now pass to a general set-up, motivated by the background from above, to
which we will periodically refer. It is convenient to work with a transformation M
taking points to sets (a point-to-set map). In general, such a map will send a point
θ ∈ Θ to a subset M(θ) ⊂ Θ where Θ is a given domain in a Euclidean space R

n.

M : θ ∈ Θ �→ M(θ) ⊂ Θ. (3.320)

The examples we will have in mind emerge from (3.284) and (3.245). In these
examples θ = Z = (λ ,P,Q) for the HMM filtration problem and θ = P for the
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HMM interpolation problem. Here, the map M is actually point-to-point (i.e., one-
to-one), and coincides with the map Φ in the filtration problem and Π in the
interpolation problem.

From now on we will assume that M(θ) is a compact set for all θ ∈ Θ. This
will cover the above-mentioned case of transformations Φ and Π. In fact, in the
unrestricted filtration HMM problem, the transformation Φ acts on the set Θ = U ,
while in the unrestricted interpolation HMM problem, the transformation Π acts
on Θ = P , where both U and P are compact sets in the corresponding Euclidean
spaces (see. (3.215) and (3.5)–(3.7)).

Definition 3.9.7 We say that M is closed at point θ ∈ Θ if the convergence θ(k)→
θ , where θ(k) ∈ Θ, and ν(k) → ν , and where ν(k) ∈ M(θ(k)) implies that ν ∈
M(θ). If the map M is closed at each point θ ∈ Θ, we say M is closed over Θ.

For the rest of this section, we assume that all maps under consideration are
closed over Θ. Clearly, if M : Θ → Θ is a point-to-point map, then M is closed at
θ when M is continuous at the point θ . In the general case of a point-to-set map
M, we will continue speaking of an algorithm A generating a sequence of points
θ (N+1) = A(θ (N)), with θ (N+1) ∈ M(θ (N)), N ≥ 0, starting from an initial point
θ (0) ∈ Θ. Such an algorithm is merely given by a point-to-point map which we
again denote by A, specifying a unique choice of the point A(θ) from M(θ).

Definition 3.9.8 A function F : Θ → R is called an ascent (or Lyapunov) function
for a closed point-to-set map M, with a solution set Γ ⊂ Θ, if:

(1) F is continuous and bounded on Θ;

(2) F(θ̂) ≥ F(θ) for all θ ∈ Θ and θ̂ ∈ M(θ);
(3) F(θ̂) = F(θ) for some θ̂ ∈ M(θ) then θ ∈ Γ.

An example of an ascent function arises in the context of unrestricted HMM
problems. As was said above, for the filtration problem the set Θ = U , map M,
coincides with the (point-to-point) Baum–Welch transformation Z ∈ U �→ Φ(Z)
(see (3.284)) and the solution set Γ coincides with FΦ, the set of fixed points of
transformation Φ:

FΦ =
{

Z ∈ U : Φ(Z) = Z
}
. (3.321)

In this case, we can set

F(Z) = L(σ ;Z), Z = (λ ,P,Q) ∈ U , (3.322)

for any given training sequence σ . See (3.213).
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Similarly, for an unrestricted HMM interpolation problem, the set Θ = P (see
(3.216)), and a natural ascent function is

F(P) = L(P|XT = xT ), P ∈ P, (3.323)

see (3.234). The solution set here coincides with FΠ, the set of fixed points of the
transformation Π:

FΠ =
{

P ∈ P : Π(P) = P
}
. (3.324)

Note that both FΦ and FΠ are closed subsets in U and P , respectively.
We are interested in proving that sequences of models (Z(N)) and (P(N)) con-

verge or have limit points as N → ∞. Recall, geometrically Z(N) and P(N) are
images of initial models, Z(0) and P(0), under transformations ΦN and ΠN (that
is, the N-fold iterations of transformations Φ and Π). Thus, we want to analyse the
limit

lim
N→∞

ΦN(Z) = Z∗, lim
N→∞

ΠN(P) = P∗. (3.325)

For brevity, we refer below to transformation Φ, as the argument for Π is com-
pletely analogous. It is clear that limiting models Z∗ will give fixed points of the
transformation Φ,

Φ(Z∗) = Z∗, (3.326)

which is in agreement with (3.274)–(3.276).
From general results established below, it will be possible to deduce the

following

Theorem 3.9.9 Let a sequence
{

Z(N)
}

be generated by iterations of transformation
Φ from an initial model Z(0):

Z(N+1) = Φ(Z(N)), N = 0,1, . . . .

Suppose that F(Z) = L(σ ;Z), Z ∈ U , (cf. (3.322)) is an ascent function satisfying
properties (1) and (2) from Definition 3.9.13, where the solution set Γ is the set
FΦ of fixed points of Φ. Then:

(i) Any limiting point Z∗ of the sequence
{

Z(N)
}

lies in FΦ, i.e. is a fixed
point of Φ.

(ii) The values F
(
Z(N)

)
monotonically increase and hence

lim
N→∞

F
(

Z(N)
)

= F(Z∗)

(which implies that the value F(Z∗) is the same for all limiting points Z∗).
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(iii) Suppose in addition that the norm ||Z(N+1) − Z(N)|| → 0 as N → ∞, and
the limiting points Z∗ form a closed compact connected set in U . There-
fore, either there exists a unique limiting point or the limiting points form a
closed compact continuum.

(iv) Under assumption (iii), suppose that F has finitely or countably many
points of global maximum (that is, the likelihood L(σ ;Z), possesses not
more than countably many MLEs), and that F

(
Z(N)

)
converges to the

(globally) maximal value of F . Then, in assertion (iii), the limiting point
θ ∗ is unique, and hence there is the convergence

lim
N→∞

θ (N) = θ ∗.

Despite its assuring appearance, Theorem 3.9.9 requires strong assumptions and
leaves open the important question of how to verify conditions (iii) and (iv). This is
an area of intensive research, both analytic and computational. See Remark 3.9.14
below.

Our first example in the adopted general set-up is

Worked Example 3.9.10 (Lyapunov’s theorem) Let F be a bounded continuous
function Θ → R, and A a continuous point-to-point map Θ → Θ. Assume that F is
an ascent function with a solution set Γ. That is

F(A(θ)) ≥ F(θ), (3.327)

and

if F(A(θ)) = F(θ) then θ ∈ Γ. (3.328)

Let θ ∗ be a limit point for a sequence
{

θ (N)
}

where θ (N+1) = A(θ (N)), starting
from some initial point θ (0) ∈ Θ:

θ ∗ = lim
k→∞

θ (Nk).

Prove that θ ∗ ∈ Γ.

Solution Since the sequence F(θ (N)) is monotone non-decreasing in N and
bounded from above, there exists the limit lim

N→∞
F(θ (N)). By continuity of F ,

this limit coincides with F(θ ∗). On the other hand, by continuity of A and the
above monotonicity, it also coincides with F(A(θ ∗)). Thus, F(A(θ ∗)) = F(θ ∗),
and owing to condition (3.319), θ ∗ ∈ Γ.

Worked Example 3.9.11 (Ostrowski’s theorem) Consider a sequence of points
θ(k) ∈ R

n for which the norm ||θ(k + 1)−θ(k)|| → 0. Then either this sequence
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converges (i.e., there exists the limit lim
k→∞

θ(k)), or the set of its limiting points is a

closed connected continuum.

Solution A closed connected set in R
n is one that cannot be represented as a union

of two disjoint non-empty closed sets; if such a set contains more than one point,
it is a continuum. It is easy to see that the limiting points for the sequence under
consideration form a closed set. Suppose this set contains more than one point, and
that we have represented this set as a disjoint union C1 ∪C2 where C1 and C2 are
both closed. Then there exists a δ > 0 such that the distance of any point of C1

from any point of C2 does exceed δ . By hypothesis we have that for certain k0

||θ(k +1)−θ(k)|| ≤ δ
3

, whenever k > k0. (3.329)

Take a point θ ∗
1 ∈ C1. Then there exist arbitrarily large k′ > k0 such that ||θ(k′)−

θ ∗
1 || < δ/3. As the points θ(k) with k > k′ have an accumulation point in C2,

there exists k′′ > k′ such that dist(θ(k′′),C2) ≤ 2δ/3. Here and below, the distance
between a point and a set is understood, as usually, as the infimum:

dist(θ ,C) = inf
[
||θ − θ̃ || : θ̃ ∈C

]
.

Assume that k1 is the smallest number k′′ with this property. Then we have that

dist(θ(k1 −1),C2) >
2δ
3

,

and therefore by (3.329)

dist(θ(k1),C2) >
δ
3

.

We see that
δ
3

< dist(θ(k1),C2) ≤
2δ
3

. (3.330)

Therefore there exists an infinite sequence of indices k(1) < k(2) < · · ·, for which
(3.330) holds. An accumulation point θ∗ for the sequence

{
θ(k(N))

}
is a limiting

point for the original sequence {θ(k)} and satisfies the relation

δ
3
≤ dist(θ∗,C2) ≤

2δ
3

. (3.331)

So, θ∗ does not belong to C2. Then the point θ∗ must lie in C1; at the same time
its distance from C2 is less then δ . This yields a contradiction, and therefore the
set of limiting points is a connected continuum. Compare with Theorem 28.1 in
Ostrowski, 1966.
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Worked Example 3.9.12 Assume that function F : Θ → R and a point-to-point
map A : Θ→Θ are as in Worked Example 3.9.10, with the solution set Γ coinciding
with FA, the set of fixed points of A:

Γ = FA = {θ ∈ Θ : A(θ) = θ}. (3.332)

Show that for any initial point θ (0), the set of limiting points for the sequence{
θ (N)

}
, where θ (N+1) = A(θ (N)), is compact and connected.

Solution The limiting points form a closed subset of the compact set {θ ∈ Θ :
F(θ) ≥ F(θ (0))}; therefore they form a closed compact set. It has been proved in
Worked Example 3.9.11 that the condition

lim
m→∞

||θ (N+1)−θ (N)|| → 0 (3.333)

suffices to conclude that either there is a single limiting point (that is, the points
θ (N) converge to a limit) or the set of limiting points is a closed connected
continuum. Suppose that condition (3.333) fails. Then it is possible to extract a sub-
sequence θ (Nk) such that there exist the limits lim

k→∞
θ (Nk) = θ ′ and lim

k→∞
θ (Nk+1) = θ ′′,

but θ ′ �= θ ′′. Now the continuity of A implies that θ ′′ = A(θ ′), and the monotonicity
of F implies that

F(θ ′′) = F(θ ′) = lim
N→∞

F(θ (N)).

By virtue of (3.328), the equality F(θ ′′) = F(θ ′) implies that θ ′ is a fixed point for
A. Hence, θ ′′ = θ ′ which yields a contradiction. Hence the condition (3.332) holds,
and the set of the limiting points for {θ (N)} is connected.

Worked Examples 3.9.10–3.9.12 are summarised in

Theorem 3.9.13 (A global convergence theorem) Let M be a point-to-set map
θ ∈ Θ �→ M(θ) ⊂ Θ and F be a continuously differentiable ascent function F on
Θ with a solution set Γ ⊂ Θ. Fix an algorithm generating a sequence of points
θ (N+1) = A(θ (N)) ∈ M(θ (N)) from a point θ (0). Then any limiting point θ ∗ for
sequence

{
θ (N)

}
lies in the set Γ, and the values F(θ (N)) converge monotonically

to the limit equal to F(θ ∗) (which implies that value F(θ ∗) is the same for all
limiting points).

Assume in addition, that (i) the map A can be extended by continuity to Θ, and
the set Γ has been specified as in (3.332), and (ii) equation (3.333) holds true. Then
the set of limiting points for

{
θ (N)

}
is compact and connected. Suppose that we

know in addition that (iii) the set of limiting points for sequence
{

θ (N)
}

is finite
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or countable. Then this set is actually reduced to a single point, and therefore the
sequence converges to a limit:

lim
N→∞

θ (N) = θ (∞). (3.334)

Remark 3.9.14 A possible way to check the condition (iii) in Theorem 3.9.13 is to
verify that (a) the ascent function F has a unique global maximum θmax ∈ Θ, and
(b) the values F(θ (N)) converge to the maximal value F (θmax). For the case of the
HMM filtration problem, this has been epitomised in Theorem 3.9.9.

In practice, conditions (i)–(iii) of Theorem 3.9.13 are expected to be fulfilled
for a broad range of cases. However, their rigorous verification is not straightfor-
ward. This forced several authors to discuss various palliative measures which may
be helpful in some situations. See the monograph by McLachlan and Krishnan,
1997, and also the article C.F. Jeff Wu. “On the convergence properties of the EM
algorithm”,

Annals Stat., 11, 1983, 95–103.



Epilogue: Andrei Markov and his Time

The topic of Markov chains occupies a special place in teaching probability theory.
It is named after the Russian mathematician who introduced and developed this
elegant concept in the 1900s, 30 years before the notion of probability was shaped
in the manner we use it today.

Andrei Andreevich Markov (1856–1922) was born into the family of a Rus-
sian civil servant. His father, following the family tradition, began his career by
studying at a local seminary, but then moved into a forestry inspection office and
later became a private solicitor. Markov’s father was well known for his frank-
ness and high principles, qualities inherited by his son, but was also inclined to
gamble at card games. Once he lost all the family’s possessions, but luckily his
opponent was unmasked as a cheat, and the loss was declared void. His son by
contrast loved chess and was considered one of the best amateur players of the
time. When Mikhail Chigorin, a Russian chess master, was preparing for his 1892
match for the World Chess Championship with the Austrian Wilhelm Steinitz, the
reigning World champion, he played a sparring series of four games with Markov;
Markov won one and drew another. (Chigorin was later dramatically defeated
in the decisive game by Steinitz, to the deep disappointment of numerous chess
enthusiasts in Russia who still deplore this loss). Markov had already defeated
Chigorin in 1890, in a beautiful game recorded in a number of chess textbooks. In
an Oxford vs Moscow match played by telegraph in 1916, in the middle of World
War I, Markov, representing Moscow, gave another beautiful example, this time
against Paul Vinogradov, a social scientist of Russian origin and a professor at
Oxford.

In childhood Markov suffered from tuberculosis of the bone, particularly afflict-
ing one leg so that he had to use crutches. However, he was very active and
managed to play with other boys by jumping on his healthy leg. After the family
moved to St Petersburg, before his tenth birthday, Markov had successful surgery
and thereafter walked normally, with only a slight limp. He loved walking, and his

479
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favourite saying was ‘You must walk if you’re still alive.’ He was not a brilliant
pupil in the gymnasium (a high school in Imperial Russia and Germany) but
showed extraordinary abilities in mathematics. It was probably in the genes, as
his younger brother also became a prominent mathematician. During his final year
at the gymnasium he invented a method of solving linear differential equations
and wrote a long letter to a number of prominent Russian mathematicians. Their
responses, that his method was not as good as the standard method (which is taught
in modern differential equations courses and was already well known by then), only
encouraged his interest in mathematics, and he enrolled in 1874 at the Department
of Physics and Mathematics of St Petersburg University.

At university, Markov was an outstanding student and was awarded numerous
prizes and grants, including an Imperial stipend. His marks were always the high-
est, except in theology (then a part of the syllabus) and inorganic chemistry (where
his examiner was Mendeleev, the father of the Periodic Table and inventor of the
40% standard of alcohol in vodka). His favourite professor was Chebyshev with
whom Markov became particularly close and had long conversations after lectures.
He graduated in 1878 and earned his Magister’s degree in 1880 (roughly corre-
sponding to the modern PhD). The DSci. (Doctorate degree) was awarded to him
in 1885, and in 1896 he was elected a member of the Russian Academy of Sci-
ences. In his lifetime he published more than 120 papers and monographs, about a
third of them addressing topics from probability theory.

The idea of the Markov chain emerged in his paper of 1907. It is remarkable
that Markov did not foresee a wide application of his theory. In his attempts at
showing its use he analysed a sequence of 200,000 letters from ‘Eugene Onegin’,
an 1820s novel in verse by Alexandre Pushkin, and another one, of 100,000 letters,
from an 1850s Russian novel ‘Years of Childhood’, by Serguei Aksakov. (‘Eugene
Onegin’ is still probably the most popular piece of poetry in Russia, and it is not
uncommon to find people able to cite this long text by heart.) Markov checked
that the succession of vowels and consonants in these texts is accurately described
by a Markov chain with suitable transition probabilities. Without a computer, he
had to do all the analysis by hand, which took months of diligent work, including
continual error-checking.

Another example Markov had in mind was card-shuffling; he also spent time
in various related calculations. (It is well-known that probability theory from its
very beginning was strongly influenced by gambling.) It is worth noting that the
card-shuffle example became popular in many areas of research influenced by the
advent of computers.

Markov’s high research standards often led him into disputes with colleagues
whom he criticised for lack of rigour (one of his targets was Sonya (Sophia)
Kovalevskaya). In general, at this time there was a schism in Russian mathematics,
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as the St Petersburg school followed much higher standards than did Moscow
mathematicians; this did not always help to maintain friendly relations between
the two communities.

Despite (or perhaps because of) his frankness and unwillingness to find a com-
promise, Markov had many devoted friends among colleagues, notably Alexandre
Lyapunov (1857–1918). Lyapunov, although only a year younger, was considered
as a follower of Markov (in particular, he was consulted by Markov when in the
1900s he had to give courses in probability, an emerging area of mathematics with
a great potential for applications). Markov married in 1883; his wife was a for-
mer private student whom he had successfully coached in maths, but the marriage
was delayed by several years as the bride’s mother did not agree until the suitor
was able to prove he was financially solvent. They had three adopted children and
one natural son, also named Andrei (1903–1979), who later became a professor of
mathematical logic at the Moscow State University and a corresponding member
of the Soviet Academy of Sciences.

Markov was a confirmed liberal and leading activist in the organization of Rus-
sian science education, and in social and political life in general. In 1901, when
the Russian Church Synod announced its decision to excommunicate Leo Tolstoy,
Markov submitted a petition to be excommunicated with him. When a member of
the Synod approached him to discuss the matter, Markov responded he was only
prepared to discuss mathematical topics. In 1903 he declined offers of an Impe-
rial medal as a sign of his disagreement with governmental policies restricting the
financial and general freedoms of Russian universities. In 1905 he co-signed a let-
ter of protest against the poor state of Russian schools; when he was reprimanded
by Grand Duke Constantin Romanov, he famously replied: “I do not change my
views by orders from my superiors.” In 1908 the Imperial Cabinet Minister of
Education ordered university professors to report the political activities of stu-
dents (who were becoming more and more radical). Markov protested (“I refuse
to be an agent of the government at my lectures!”) and offered his resignation. The
resignation was not accepted but he was deprived of various honours during the
remaining period of the Romanov monarchy. In 1912 he opposed celebrations of
the 300th anniversary of the House of Romanov and organized instead a scientific
session dedicated to the 200th anniversary of the Law of Large Numbers. After
the Bolshevik Revolution, in 1921, he, together with other colleagues, strongly
protested to the Soviet authorities, arguing that candidates should be admitted to
the universities on the basis of their knowledge of the subject and not on their
class origins or political views. This last stance was a particularly bold step as he
was already seriously ill and in need of special foods and medicines, only avail-
able through government sources at this time of general chaos and shortages in
Russia.
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Markov was a brilliant lecturer. Many of his courses were lithographed and later
translated and printed in Germany. Among his students were Günter, Markov Jr
and Voronoi, future eminent mathematicians in their own right.

Towards the end of the academic year of 1921/2, Markov was so poorly that his
son Andrei had to lead his father to the lecture theatre. Markov’s general state of
health was undermined when he learned about the tragic end of Lyapunov who had
committed suicide after his wife died of tuberculosis (aggravated by malnutrition)
amid the deprivation which marked the Civil War in Russia. Markov’s departure
was a great loss for Russian mathematics. As Günter wrote shortly after his death:
“[Markov] was the natural leader of the circle of disciples who gathered around
him; he will remain our leader, as what rests in the cemetery is only what was
mortal in him – his high spirit will live forever in those who surrounded him.”

After Markov’s fundamental works, the theory took a turn towards a general
concept of random processes, which included Brownian motion, a continuous-
time/space version of a homogeneous random walk. The great names here are
Kolmogorov, Wiener, Lévy, Doob, Itô, Feller and, later on, Dynkin. Some of these
names have been mentioned in this book.
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Cappé, O., Moulines, E., Ryden, T. Inference in Hidden Markov Models. New York:
Springer, 2005.

Daley, D.J., Gani, J. Epidemic Modelling: an Introduction. Cambridge: Cambridge Uni-
versity Press, 1999.

Dembo, A., Zeitouni, O. Large Deviations Techniques and Applications. New York:
Springer, 1998.

Doob, J. Stochastic Processes. New York: Wiley, 1953.
Durbin, R., Eddy, S., Krogh, A., Mitchison, G. Biological Sequence Analysis. Probabilistic

Models of Proteins and Nucleic Acids. Cambridge: Cambridge University Press, 1998.
Durrett, R. Essentials of Stochastic Processes. New York: Springer, 1999.
Deuschel, J.D., Stroock, D.W. Large Deviations. Boston: Academic Press, 1989.
Dynkin, E.B. Foundations of the Theory of Markov Processes [in Russian]. Moscow:

Fizmatgiz, 1959. English translation: Theory of Markov Processes. Oxford:
Pergamon, 1960.

Dynkin, E.B. Markov Processes [in Russian]. Moscow: Fizmatgiz, 1963. English transla-
tion: Markov Processes,Vols. 1, 2. Berlin: Springer, 1965.

Dynkin, E.B. Markov Processes and Related Problems of Analysis. Cambridge: Cambridge
University Press, 1982.

Dynkin, E.B., Yushkevich, A.A. Controlled Markov Processes and their Applications [in
Russian]. Moscow: Nauka, 1975. English translation: Controlled Markov Processes.
New York: Springer-Verlag, 1979.

Feller, W. An Introduction to Probability Theory and its Applications, Vol. 1. New York:
Wiley, 1950. [Latest edition: 1968].

Feller, W. An Introduction to Probability Theory and its Applications, Vol 2. New York:
Wiley, 1966. [Latest edition: 1971].

Grimmett, G., Stirzaker, D. Probability and Stochastic Processes. Oxford: Clarendon
Press, 1982. [3rd edition: 2001].

483



484 Bibliography

Grimmett, G., Stirzaker, D. Probability and Random Processes: Problems and Solutions.
Oxford: Clarendon Press, 1992.

Karlin, S. A First Course in Stochastic Processes. New York: Academic Press, 1966.
Karlin S., Taylor, H.M. A Second Course in Stochastic Processes. New York: Academic

Press, 1981.
Kelly, F.P. Reversibility and Stochastic Networks. New York: Wiley, 1979.
Koski, T. Hidden Markov Models for Bioinformatics. Dordrecht: Kluwer, 2001.
Kingman, J.F.C. Poisson Processes. Oxford: Oxford University Press, 1993.
Kullback, S. Information Theory and Statistics. New York: Wiley, 1959. [Latest edition:

Mineola, N.Y.: Dover; London: Constable, 1997].
Lehmann, E. L. Testing Statistical Hypotheses. New York: Wiley; London: Chapman

and Hall, 1959. [Latest edition: Lehmann, E. L., Romano, E.P. Testing Statistical
Hypotheses. New York: Springer, 2005].

MacDonald, I.L., Zucchini, W. Hidden Markov and other Models for Discrete-valued Time
Series. London: Chapman and Hall, 1997.

Martin, J.J. Bayesian Decision Problems and Markov Chains. New York: Wiley, 1967.
McLachlan, G.J., Krishnan, T. The EM Algorithm and Extensions. New York: Wiley, 1997.
Norris, J.R. Markov Chains. Cambridge: Cambridge University Press, 1997.
Ostrowski, A.M. Solution of Equations and Systems of Equations. New York: Academic

Press, 1960. [Latest edition: 1973].
Rabiner, L.R., Juang, B.H. Fundamentals of Speech Recognition. Englewood Cliffs, NJ:

Prentice Hall, 1993.
Ross, S.M. Stochastic Processes. New York: Wiley, 1983. [Latest edition: 1996].
Shwartz, A., Weiss, A. Large Deviations for Performance Analysis. Queues, Communica-

tions, and Computing. London: Chapman and Hall, 1995.
Stirzaker, D. Stochastic Processes and Models. Oxford: Oxford University Press, 2005.
Stroock, D.W. An Introduction to the Theory of Large Deviations. New York: Springer,

1984.
Stroock, D.W. An Introduction to Markov Processes. Berlin: Springer, 2005.
Zangwill, W.I. Nonlinear Programming: a Unified Approach. Englewood Cliffs, NJ:

Prentice Hall, 1969.



Index

When a term is encountered on numerous occasions, the page number of only three of its appearances are given;
the number in italics indicates the page where the term was defined.

absorbing state, 18, 200, 361
absorption probability, 27
aggregated likelihood, 435, 436, 438
algebraic multiplicity, 108, 110, 193
almost sure (AS) convergence (see also: convergence

with probability 1), 61, 225, 370
alternative (hypothesis), 350, 351, 422

composite, 351
simple, 350

aperiodic communicating class, 24
aperiodic Markov chain, 24, 71, 402
arrival process, 291, 300, 318
arrival rate, 292, 298, 304

backward equations (Kolmogorov backward
equations), 187, 242, 316

Baum–Welch learning algorithm, 443
Baum–Welch transformation, 443

in an interpolation HMM problem, 445, 450
in a filtration HMM problem, 459, 473

bipartite graph, 118, 133
birth process (BP), 240, 241, 251
birth-and-death process (BDP), 21, 248, 341
birth-and-death Markov chain, 53, 86
branching process, 305, 306
Burke’s theorem, 296, 302, 341
busy period (of a queue), 295, 335

Cauchy–Schwarz (CS) inequality, 125, 136, 465
Central limit theorem, 139, 143
characteristic equation, 8, 25, 193
characteristic polynomial, 11, 110, 360
Chebyshev inequality, 139, 367, 378
Cheeger’s inequality, 120, 121, 135
Chernoff inequality, 142
closed communicating class, 18, 277, 355
communicating class, 18, 161, 260
connected graph, 83, 84, 184
consistent estimator, 366, 367, 450

continuous-time Markov chain (CTMC), 196,
197, 341

controlled Markov chain, 89
convergence in distribution, 229
convergence in probability, 367, 373, 382
convergence to equilibrium, 70, 122, 284

geometric (exponential), 74, 99
convergence with probability 1 (see also: almost

sure(AS) convergence), 61, 196, 370
convex order, 433
correlation coefficient, 359
coupling (of Markov chains), 72, 257, 431
covariance, 359, 407, 471
Cramér’s theorem, 144, 146, 148
CTMC, (δ ,Q), 197
CTMC, (λ ,Q), 196, 256, 286
cycle, 119, 180, 310

directed, 119, 126, 172
server’s, 295

departure process, 291, 298, 341
detailed balance equations (DBEs), 82, 286, 304
determinant of a matrix, 99, 108, 110, 194
directed cycle, 119, 126, 172
Dirichlet probability density function (Dirichlet PDF),

404, 405, 410
Dirichlet distribution, 401, 406, 408
Dirichlet form, 121, 124,
Dirichlet integral formula, 403, 407, 409
discrete Fourier transform, 101
discrete Laplacian, 107, 130, 131
discrete-time Markov chain (DTMC), 6, 8, 446

Ehrenfest urn problem, 107
eigenbasis, 115
eigenspace, 110, 112, 149
eigenvalue, viii, 8, 471
eigenvector, 8, 11, 395
embedded h-spacing, 271
embedded jump chain, 257
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empirical distribution, 422
empirical frequency, 445, 446
entropy rate, 389
epidemics, 345
ergodic, 62, 76
Erlang’s formulas, 302
equilibrium distribution (ED), viii, 52, 198
estimation, 349, 390, 468
estimator, 350, 357, 456
expectation–modification (EM) algorithm, 462,

466, 471
explosion, 245, 251, 256
explosion time, 269, 331
explosive birth process, 247, 254,
explosive Markov chain, 230, 244, 255
explosive state, 256
exponential family, 466, 468

filtration problem for HMM, 438, 439, 459
first passage time, 35, 181
Fisher information, 419, 420
forward equations (Kolmogorov forward equations),

187, 242, 334
full likelihood (for a Markov chain sample), 350,

358, 361

G/M/1 queue, 343
Gärtner–Ellis theorem, 148
generalised expectation–modification (GEM)

algorithm, 462, 471
generator, 196, 200, 334
geometric distribution, 306
geometric multiplicity, 109, 110, 193
Gibbs’ inequality, 421, 426, 471
global convergence theorem, for EM algorithms, 477
graph, 28, 184, 309

Hamiltonian, 127
Hermitian matrix, 85, 162, 355
hidden Markov model (HMM), 434

filtration problem, 437, 438, 478
interpolation problem, 437, 444, 474

hitting probability, 27, 171, 266
hitting time, 26, 199, 266
holding time, 180, 202, 314
homogeneous function, 447, 482
homogeneous Markov chain, 17, 67, 201
homogeneous Poisson process, 233, 236
homogeneous random walk, 45, 248, 249
hypothesis testing, 350, 422

idempotent matrix, 8, 395
independent, identically distributed (IID), 7,

154, 469
independent increments, 211, 232, 322
inhomogeneous Markov chain, 17, 201, 234
inhomogeneous Poisson process (IPP), 231,

254, 336
initial distribution, 3, 6, 444
inspection paradox, 220, 227, 229
invariant measure (IM), 53, 259, 322

invariant distribution, 52, 283, 382
irreducible, 22, 43, 402
Ising model, 127, 129, 130 jump chain, 39, 257, 345

jump rate, 185, 255, 345

Kantorovich inequality, 470, 471
Key Renewal theorem, 343
Kullback divergence, 420, 429, 431

conditional, 430
Kullback–Leibler distance, 420, 426, 432

Laplacian, 107, 130, 131
large deviation principle (LDP), 148, 150, 152
large deviation rate (LDR) function, 148, 151
large deviation theory, 138, 143
Law of Large numbers (LLN), 61, 481
Lebesgue measure, 355, 356, 371
Lebesgue’s theorem (dominated convergence), 226
Legendre transform (Legendre–Fenchel,

Legendre–Cramér transform), 140, 142, 143
likelihood, 350, 436, 475
likelihood ratio, 350, 351, 387

monotone, 432
Liouville distribution, 401, 402, 405
Liouville formula, 405
log-likelihood, 358, 462, 472
log-likelihood ratio, 422, 432
long-run proportion, 76, 169, 314
loss model, 299, 301, 341
Luzin theorem, 371
Lyapunov function, 473
Lyapunov theorem, 475

M/GI/1 queue, 342,
M/M/1 chain, 293, 296, 302
M/M/1/∞ queue, 292, 295, 304
M/M/r/∞ queue, 293, 299
M/M/∞ chain, 298, 299
M/M/∞ queue, 293, 297, 298
M/M/r/c chain, 299, 300, 302
Markov chain, 6, 80, 122
Markov property, 13, 198, 455
maximum likelihood equation, 361, 366, 377
maximum likelihood estimator (MLE), 358, 376, 436
minimal chain, 254, 259, 329
minimal non-negative solution, 27, 266, 324
moment-generating function (MGF), 139, 246, 339

nearest-neighbour random walk, 45, 107, 322
Neyman–Pearson lemma, 350, 351
non-closed communicating class, 18, 23, 43
non-essential state, 18, 22, 25
non-explosive birth process, 247
non-explosive birth-and-death process, 247
non-explosive Markov chain, 230, 244, 255
null hypothesis, simple, 350, 351, 351, 422
null recurrent (NR) Markov chain, 57, 273, 341
null recurrent (NR) state, 42, 59, 273
null recurrent (NR) transition matrix or Q-matrix, 53,

57, 273



Index 487

open communicating class, 53, 80, 277
Ostrowski’s theorem, 475

partially observed Markov chain, 96
path (on a graph), 28, 47, 132
passage time, 35, 44, 200
period of a subclass, 24, 109, 355
periodic Markov chain, 100, 133, 355
periodic subclass, 24, 105, 284
periodic transition matrix, 109, 118, 133
permanent, 99
Perron–Frobenius theorem, 112, 149
Pochhammer symbol, 411
Poincaré bound, 118, 131, 134
Poincaré inequality, 118, 124, 131
Poisson arrival process, 318
Poisson distribution, 168, 298, 468
Poisson process, PP(λ ), 210, 240, 341
positive definite matrix, 424, 464, 470
positive recurrent (PR) state, 42, 59, 72
positive recurrent (PR) Markov chain, 57, 59, 273
positive recurrent (PR) state, 42, 59, 273
positive recurrent (PR) transition or Q-matrix, 54,

57, 273
probability density function (PDF), 238, 371, 433
probability distribution, 1, 61, 438
probability-generating function, 38, 139, 339
probability mass function (PMF), 2, 350, 433
probability measure, 1
projection Markov chain, 122, 124, 128
projection onto a subspace, 395
projection of a random walk, 52

Q-matrix, 185, 248, 321
queue length (size), 291, 292, 341
queueing models, 291
queueing theory, 291

random variable (RV) 61, 220, 446
random walk (RW) on a graph, 83, 184, 310
random walk (RW) on a lattice, 45, 163, 347
rate of convergence to equilibrium, 74, 122, 469
rate of a Poisson process, 163, 210, 341
rate of exponential distribution, 200, 202
record process (process of records), 237, 338
record values (records), 236, 237, 336
recording states of a Markov chain, 45, 96, 452
recurrent Markov chain, 44, 272, 322
recurrent communicating class, 43, 44
recurrent (R) state, 39, 269, 322
recurrent (R) transition matrix (Q-matrix), 44,

53, 56
reduced likelihood (for a Markov chain sample), 350,

358, 361
relative entropy, 144, 145, 420
renewal process, 301, 343
renewal time, 344
residual holding time, 200
restriction Markov chain, 123, 126, 128
return probability, 15, 69, 319
return time, 40, 162, 342

reversible Markov chain, 82, 285, 341
reversible transition matrix, 114, 118, 135

sample (of a Markov chain), 151, 366, 469
sample path (of a Markov chain), 66, 196, 319
sample trajectory (of a Markov chain), 45, 196, 392
scalar product, 87, 131, 288
score (of a random variable), 418, 419
second moment, 62, 398
Secretary problem, 93, 94
self-adjoint matrix, 87, 288
semigroup property, 187, 247, 335
simple random walk, 50, 164, 230
simplex (of stochastic vectors), 146, 151, 353
sojourn time (in a queue), 295
spectral circle, 113
spectral gap, 105, 126, 149
spectral radius, 113, 114, 149
spectrum of a matrix, 110, 118, 130
state space, 1, 185, 445
Stirling’s formula, 47, 66, 147
stochastic matrix, 2, 361, 438
stochastic order, 229
stochastic vector, 2, 146, 446
stochastically equivalent, 291, 298, 301
stochastically larger, 229
stochastically smaller, 229
stopping time, 35, 199, 220
strong Law of Large numbers (LLN), 61,

170, 389
strong Markov property, 35, 199, 268
sum of independent Poisson processes, 222
Sylvester’s theorem, 394
symmetric matrix, 108, 162, 434
symmetric random walk, 46, 230, 322

time reversal, 80, 87, 288
total variation distance, 122
training sequence, 437, 450, 473
transient communicating class, 43, 44
transient (T) Markov chain, 44, 269, 341
transient (T) state, 40, 59, 269
transient (T) transition matrix or Q-matrix, 44,

59, 269
transition count, 390, 411, 441
transition matrix, viii, 2, 451
transition probabilities, 3, 180, 480
transition probability matrix, 46, 209, 351
transition rate, 230, 250, 345

unbiased estimator, 357, 358, 450

valency, 83, 182, 310

waiting time, 295
weak Law of Large numbers (LLN), 367, 368, 370
Whittle distribution, 393, 397, 401
Whittle’s formula, 390, 393
Wilks’ theorem, 352

Yegorov theorem, 372
Yule–Furry process, 245
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