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Abstract

A proper labeling of a graph is an assignment of integers to some elements of a graph,
which may be the vertices, the edges, or both of them, such that subject to some
conditions we obtain a proper vertex coloring via the labeling. The problem of proper
labeling offers many variants and received a great interest during these last years. In
this work, we consider the computational complexity of some variants of the proper
labeling problems such as: multiplicative vertex-coloring, fictional coloring and gap
coloring. For instance, we show that, for a given bipartite graph G, determining
whether G has a vertez-labeling by gap from {1,2} is NP-complete. Also, we prove
that there is a polynomial time algorithm for determining whether a given planar
bipartite graph G has a vertez-labeling by gap from {1,2}. In sharp contrast, it is NP-
complete to decide whether a given planar 3-colorable graph G has a vertez-labeling
by gap from {1, 2}.
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1 Introduction

A proper labeling of a graph is an assignment of integers to some elements of a graph, which
may be the vertices, the edges, or both of them, such that subject to some conditions we
obtain a proper vertex coloring via the labeling. Karonski, Luczak and Thomason initiated
the study of proper-labelings [16]. They introduced an edge-labeling which is additive
vertex-coloring that means for every edge uv, the sum of labels of the edges incident to u
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is different than the sum of labels of the edges incident to v [16]. The problem of proper
labeling offers many variants and received a great interest during these last years, for
instance see [1, 7, 8, 15, 16, 20]. First, consider the following two famous variants.

(P1) Edge-labeling by sum.

An edge-labeling f is edge-labeling by sum if c(v) =" 5, f(e), Yv € V is a proper vertex
coloring. This parameter was introduced by Karonski et al. and it is conjectured that
three integer labels {1,2,3} are sufficient for every connected graph, except Ko (1, 2, 3-
Conjecture, see [16]). This labeling have been studied extensively by several authors, for
instance see [1, 2, 6, 17, 20]. Currently, we know that every connected graph has an edge-
labeling by sum, using the labels from {1,2,3,4,5} [15]. Also, it is shown that determining
whether a given graph has a edge-labeling by sum from {1,2} is NP-complete [12].

(P2) Vertex-labeling by sum (Lucky labling and sigma coloring).

A vertex-labeling f is vertez-labeling by sum if c¢(v) = 3", ., f(u), Yv € V is a proper
vertex coloring. vertex-labeling by sum is a vertex versions of the above problem, which
was introduced recently by Czerwinski et al. [8]. It was conjectured that every graph G has
a vertex-labeling by sum, using the labels {1,2,--- , x(G)} [8] and it was shown that every
graph G with A(G) > 2, has a vertez-labeling by sum, using the labels {1,2,--- , A2~ A+1}
[1], also, it was shown that, it is NP-complete to decide for a given planar 3-colorable
graph G, whether G has a vertez-labeling by sum from {1,2} [3]. Furthermore, it is NP-
complete to determine for a given 3-regular graph G, whether G has a wvertex-labeling by
sum from {1,2} [10]. A similar version of this labeling was introduced by Chartrand et
al. [7].

In this work, we consider the algorithmic complexity of the following proper labeling
problems.

(P3) Edge-labeling by product. (Multiplicative vertex-coloring)

An edge-labeling f is edge-labeling by product if c(v) = [].5, f(e), Yv € V is a proper
vertex coloring. This variant was introduced by Skowronek-Kaziéw and it is conjectured
that every non-trivial graph G has an edge-labeling by product, using the labels from
{1,2,3} (Multiplicative 1, 2, 3-Conjecture, see [21]). Currently, we know that every non-
trivial graph has an edge-labeling by product, using the labels from {1,2,3,4} [21]. Also,
every non-trivial, 3-colorable graph G permits an edge-labeling by product from {1,2,3}
[21]. We will prove that determining whether a given planar 3-colorable graph has an
edge-labeling by product from {1,2} is NP-complete.

(P4) Vertex-labeling by product.
A vertex-labeling f is vertez-labeling by product if ¢(v) = [],.., f(u), Yo € V is a proper
vertex coloring. For a given graph G, let {V1,Va,--- Vi } be the color classes of a proper
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vertex coloring of G. Label the set of vertices of V7 by 1; also, for each 7, 1 < ¢ < k
label the set of vertices of V; by the (i — 1)-th prime number; this labeling is a vertez-
labeling by product. In number theory, the prime number theorem describes the asymptotic
distribution of the prime numbers. The prime number theorem implies estimates for the
size of the n-th prime number p,, (i.e., p1 = 2, p2 = 3, etc.): up to a bounded factor, p,
grows like nlog(n). As a consequence of the prime number theorem we have the following
bound: p, < nlnn + nlnlnn, for n > 6 (see [5] p. 233). So, every graph G has a
vertex-labeling by product, from {1,2,--- , xIn x4+ x Inlny +2}. Here, we ask the following
question.

Problem 1. Does every graph G have a vertex-labeling by product, wusing the labels

We shown that, every planar graph G has a vertez-labeling by product from {1,2,--- ,5}.
We will prove that determining whether a given planar 3-colorable graph has a wvertex-
labeling by product from {1,2} is NP-complete. Furthermore, for every k, k > 3 we show
that determining whether a given graph has a vertez-labeling by product from {1,2,--- |k}
is NP-complete.

(P5) Edge-labeling by gap.
An edge-labeling f is edge-labeling by gap if

B {f(e)eav if d(v) =1,
c(v) =

max.sy f(e) — mines, f(e) otherwise,

is a proper vertex coloring. Every graph G has an edge-labeling by gap if and only if it
has no connected component isomorphic to K; or Ky (put the different powers of two
(1,2,---,2/B@I=1) on the edges of G; this labeling is a vertex-labeling by gap). A similar
definition was introduced by Tahraoui et al. [22]. They introduced the following variant:
Let G be a graph, k be a positive integer and f be a mapping from E(G) to the set
{1,2,--- ,k}. For each vertex v of G, the label of v is defined as

N {f(e)eav if d(v) =1,
c(v) =

max.sy f(e) — mines, f(e) otherwise,

The mapping f is called gap vertex-distinguishing labeling if distinct vertices have distinct
labels. Such a coloring is called a gap-k-coloring and is denoted by gap(G) [22]. It was
conjectured that for a connected graph G of order n with n > 2, gap(G) € {n—1,n,n+1}
[22]. They purpose study of the variant of the gap coloring problem that distinguishes the
adjacent vertices only.
Let f be an edge-labeling by gap form {1,2,--- [k} for a graph G, we have k > x(G) — 1.
First, consider the following example.



Remark 1 Every complete graph K,, of order n with n > 2, has an edge-labeling f, by
gap form {1,2,--- ,x(K,) + 1}. Suppose that K3 = vjvovs and let f3 be the following
function: f3(vive) =4, f3(vivs) =1 and f3(vavs) = 2. Define f,, recursively.

fa—i(vvy) +1 if 4,5 <mn,
fn(vivy) =<1 if i =n and j # 2,

2 otherwise,

Now, we state the following problem:

Problem 2. Does every connected graph G of order n with n > 2, have an edge-labeling
by gap form {1,2,--- ,x(G) +1}?

We will prove that determining whether a given planar bipartite graph has an edge-
labeling by gap from {1,2} is NP-complete. Also, we show that for every k, k > 3, it
is NP-complete to determine whether a given graph has an edge-labeling by gap from
{1,2,--- ,k}.

(P6) Vertex-labeling by gap.
A vertex-labeling f is vertex-labeling by gap if
f )y if d(v) =1,
c(v) =
maxy~y f(u) — ming~, f(u) otherwise,
is a proper vertex coloring. A graph may lack any vertex-labeling by gap. Here we ask the
following:

Problem 3. Does there is a polynomial time algorithm to determine whether a given

graph has a vertex-labeling by gap ¢

We show that, for a given bipartite graph G, determining whether G has a vertex-
labeling by gap from {1,2} is NP-complete. Also, we prove that there is a polynomial
time algorithm for determining whether a given planar bipartite graph G has a vertez-
labeling by gap from {1,2}. In sharp contrast, it is NP-complete to decide whether a given
planar 3-colorable graph G has a vertex-labeling by gap from {1,2}.

Every bipartite graph G = [X, Y| has a vertex-labeling by gap, label the set of vertices
X by 1 and label the set of vertices of ¥ by different powers of two (2!,---,2¥1). Here
we ask the following:

Problem 4. Does there is a constant k such that every bipartite graph G, have a vertex-
labeling by gap form {1,2,--- |k}?



It was shown by Thomassen [23] that, for any k-uniform and k-regular hypergraph H,
if k > 4, then H is 2-colorable. For every r-regular bipartite graph G = [X, Y] with r > 4,
label the set of vertices of one of the color classes in part X by 1 and label other vertices
by 2. This Labeling is a vertez-labeling by gap from {1,2} for G.

(P7) Vertex-labeling by degree. (Fictional coloring)

A vertex-labeling f is vertez-labeling by degree if c(v) = f(v)d(v), where d(v) is the degree
of vertex v is a proper vertex coloring. This parameter was introduced by Bosek, Grytczuk,
Matecki and Zelazny [26]. They conjecture that every graph G has a vertez-labeling by
degree from {1,2,--- ,x(G)}. Let p be a prime number and let G be a graph such that
X(G) < p—1, they proved that G has a vertez-labeling by degree from {1,2,--- ,p—1}. For
every k greater than two it is clear that determining whether a given graph has a vertez-
labeling by degree from {1,2,---  k} is NP-complete. We will prove that determining
whether a given graph has a vertez-labeling by degree from {1,2} is in P.

(P8) Vertex-labeling by maximum.
A vertex-labeling f is vertez-labeling by mazimum if ¢(v) = maxy~, f(u), Yv € V is a
proper vertex coloring. A graph G may lack any wvertex-labeling by mazimum and it has
a wvertez-labeling by mazimum from {1,2} if and only if G is bipartite. We present a
nontrivial necessary condition that can be checked in polynomial time for a graph to have
a vertez-labeling by mazimum.

Remark 2 Let k£ be the minimum number such that G has a vertez-labeling by mazimum
from the set {1,2,--- ,k}, then x(G) — k can be arbitrary large. For instance, for a given
t > 3 consider the graph G with vertex set V(G) ={a; : 1 <i <t} U{b; : 1 <j<t—2}
and edge set E(G) = {a;a;i41 : 1 <1 <t —1}U{ajb;,bjaj41 : 1 < j < t—2}. Clearly
E—x(G)=t-3.

We will show that determining whether a given 3-regular graph has a wvertez-labeling by
mazimum from {1,2,3} is NP-complete.

Throughout this paper all graphs are finite and simple. We follow [13, 25] for ter-
minology and notation not defined here, and we consider finite undirected simple graphs
G = (V, E). We denote the induced subgraph G on S by G[S]. Also, for every v € V(G)
and S C V(G), N(v) and N(S) denote the neighbor set of v and the set of vertices of
G which has a neighbor in S, respectively. A proper vertex coloring of G = (V, E) is a
function ¢ : V(G) — L, such that if u,v € V(G) are adjacent, then c¢(u) and c(v) are
different. A proper vertex k-coloring is a proper vertex coloring with |L| = k. The smallest
integer k such that G has a proper vertex k-coloring is called the chromatic number of G



Table 1: Graph Labeling Results

Edge-labeling by  {1,2} {1,2,3} Current Upper Bound Conjecture
Sum NP-c - {1,2,3,4,5} {1,2,3)
Product NP-c - {1,2,3,4} {1,2,3}
Gap NP-c NP-c {1,2,--- ,2E@I-1y {1,2,--- ,x+1}
Vertex-labeling by

Sum NP-c NP-c A2 - A+1 {1,2,--- ,x}
Product NP-c NP-c {1, ,xInx+ xlnlny+ 2} {1,2,--- ,x}
Degree P NP-c {1,2,---,2x} {1,2,--- ,x}
Maximum P NP-c - -

Gap NP-c NP-c - -

and denoted by x(G). Similarly, for k& € N, a proper edge k-coloring of G is a function
¢: E(G) — {1,...,k}, such that if e,e’ € E(G) share a common endpoint, then c(e)
and c¢(¢') are different. The smallest integer k such that G has a proper edge k-coloring is
called the edge chromatic number of G and denoted by x'(G). By Vizing’s theorem [24],
the edge chromatic number of a graph G is equal to either A(G) or A(G) + 1. Those
graphs G for which x/(G) = A(G) are said to belong to Class 1, and the others to Class
2.

2 Results

2.1 Edge-labeling by product

Theorem 1 For a given planar 3-colorable graph G, determining whether G has an edge-
labeling by product from {1,2} is NP-complete.

Proof Clearly, the problem is in NP. We reduced Cubic Planar 1-In-3 3-Sat to our prob-
lem. Moore and Robson [18] proved that the following problem is NP-complete.

Cubic Planar 1-In-3 3-Sat.

INSTANCE: Set X of variables, collection C' of clauses over X such that each clause ¢ € C
has | ¢ |= 3 and every variable appears in exactly three clauses, there is no negation in the
formula, and the bipartite graph obtained by linking a variable and a clause if and only if
the variable appears in the clause, is planar.

QUESTION: Is there a truth assignment for X such that each clause in C' has exactly one



true literal?

Figure 1: The two gadgets H, and I.. I. is on the left hand side of the figure.

Consider an instance ®, we transform this into a graph Gg such that G¢ has an edge-
labeling by product from {1, 2} if and only if ® has a 1-in-3 assignment. We use two gadgets
H, and I. which are shown in Figure 1. The graph G¢ has a copy of H, for each variable
x € X and a copy of I. for each clause ¢ € C. Also, for each clause ¢ =y V z V w add the
edges cy, cz and cw. First, suppose that G¢ has a edge-labeling by product from {1,2}. In
every copy of H, and I. the label of every edge is determined uniquely. See Figure 1 (the
label of each edge is written on the edge and the color of each vertex induced by edge labels
is written on the vertex). Every variable z appears in exactly three clauses, suppose that
x appears in ¢;, ¢; and ¢;. By attention to the structure of H, the set of labels of edges
¢z, cjx and ¢px are {1,1,1} or {2,2,2}. Furthermore, by attention to the H, and I, for
every clause ¢ = x V y V z, the set of labels of edges cx, cy and cz is {2,1,1}. Now, for
every variable x, which is appeared in ¢;, ¢; and ¢, put I'(x) = T'rue if and only if the set
of labels of edges ¢;z, c;x and ¢z is {2,2,2}. Clearly, I' is an 1-in-3 satisfying assignment.
Next, suppose that ® has an 1-in-3 satisfying assignment I" : X — {true, false}, for every
variable x, which is appeared in ¢;, ¢; and ¢y, label ¢;z, ¢jo and c¢pz by 2 if and only if
['(z) = True. The labels of other vertices are determined uniquely and it is clear the this
labeling is an edge-labeling by product from {1,2}. O

2.2 Vertex-labeling by product

In the next, we consider the computational complexity of vertez-labeling by product.



Theorem 2 For a given planar 3-colorable graph G, determining whether G has a vertex-
labeling by product from {1,2} is NP-complete.

Proof Clearly, the problem is in NP. We reduced Cubic Planar 1-In-3 3-Sat to our
problem. First, we construct an auxiliary graph H{. Put a copy of triangle K3 = 2{2525.

For every vertex 2§, 1 < j <2, put 2 new isolated vertices #1,t5, -+, t3; and join z§ to all
of them. Also, add the edges t{té, tétj AR ,t%i_lt%i. Next, put 2¢ — 2 new isolated vertices
t%, t%, e ’t%z;z and join z§ to all of them. Finally, add the edges t‘%t%, t%t‘z, e ,t§i73t‘;’i72.

Call the resulting graph H;. Now, consider an instance ¥, we transform this into a graph
Gy such that Gy has a vertez-labeling by product from {1,2} if and only if ¥ has a 1-in-3
assignment. Our construction consists of three steps.

Step 1. For each clause ¢ € C put a vertex c and a copy of HS, Hf and H§. Connect the
vertex z§ of HS to c, also, join the vertex z5 of Hf to c and finally, connect the vertex 2§
of H to c.

Step 2. For each variable z € X put a vertex .

Step 3. For each clause ¢ = x V y V w add the edges cz, cy and cw.

First, suppose that Gy has a vertez-labeling f by product from {1,2} and let ¢ be the
induced coloring by f. In every copy of H§ the label of vertex z5 is 2. We have the similar
property for Hf and HS. By attention to the structure of Hf, we have f(¢) = 1 and
0(z5) = 8; similarly for Hf, we have £(25) = 32 and for H§, we have ¢(z5) = 64. So for every
clause vertex ¢ we have ¢(c) = 16. Now, for every variable z, put I'(z) = True if and only
if f(x) = 2. Since for every clause ¢, £(c) = 16, I is an 1-in-3 satisfying assignment. Next,
suppose that ¥ is 1-in-3 satisfiable with the satisfying assignment I' : X — {true, false},
for every variable x, label the vertex x by 2 if and only if I'(x) = True. The labels of
other vertices are determined uniquely and it is clear the this labeling is a vertez-labeling
by product from {1,2}.

O

Theorem 3 For every k, k > 3, it 1s NP-complete to determine whether a given graph
has a vertex-labeling by product from {1,2,---  k}.

Proof We present a polynomial time reduction from 3-colorability to our problem.
3-Colorability: Given a graph G; is x(G) < 37

First define the following sets: Ay = {mn : m,n € Ny}, B, = {* : m,n € N}, where
Ny = {1,2,--- ,k}. Also, define a(k) = maxp,cc, | Di |, where Cj is the set of sets
such that for every set Dy € Ck, we have D C Ai and {% :d,d € Dy} N B = 0.
Since k is constant, so we can compute «(k) in O(1). Now, for a given graph G with n



Figure 2: The graph G derived from G = P; for k = 3.

vertices vy, v, , vy, join all vertices of G to the all vertices of complete graph K, x)_3
with vertices vp41,-+ , Upya(r)—3- Call the resulting graph G*. Now consider the graph
G** with the vertex set {v! : i € Nyjq)-3,7 € Ni} such that vi is joined to v¥ if
and only if x = z or vyv, € E(G*). Finally, consider a copy of graph G**, for every 1,
1 <i<n+alk)— 3, put two new isolated vertices v, and v; and join them to the set
of vertices {v}, - ,vF}. Call the resulting graph G (see Figure 2). We show that G has
a vertex-labeling by product from {1,2,---  k} if and only if G is 3-colorable. Let f be
a vertez-labeling by product for G. Clearly, fl), -+, f(vF) should be different numbers.
For every 4, i € N, | (x)—3, We have: {f(vi) : j € Ni} = Ng. Furthermore, for every iy, io,
1<y <idg <n+alk) =3, we have: f(vp)f(v), f(vi,)f(vi,) € Ag. Also, for every i,
and 19, if v;,v;, € E(G), then

S ) f (i)
fi) f(vg)
Therefore, | {f(0))f(v}) : 1 < i < n+alk) =3} |> a(k) =3+ x(G). So, G has a
vertex-labeling by product from {1,2,---  k} if and only if x(G) < 3. The proof is complete.

¢ By.

]



2.3 [Edge-labeling by gap

Theorem 4 For a given planar bipartite graph G, determining whether G has an edge-
labeling by gap from {1,2} is NP-complete.

Proof Let ® be a 3-SAT formula with clauses C = {c1, -+, ¢} and variables X =
{z1,-+ ,z,}. Let G(®) be a graph with the vertices C U X U (=X), where =X =
{—z1,---,-z,}, such that for each clause ¢; = y V 2z V w, ¢; is adjacent to y,z and
w, also every x; € X is adjacent to —z;. ® is called planar 3-SAT type 2 formula if G(®)
is a planar graph. It was shown that the problem of satisfiability of planar 3-SAT type 2
is NP-complete [11].

Planar 3-SAT type 2.

INSTANCE: A 3-SAT type 2 formula ®.

QUESTION: Is there a truth assignment for ® that satisfies all the clauses?

We reduce planar 3-SAT type 2 problem to our problem. In planar 3-SAT type 2, if we
only consider the set of formulas such that the bipartite graph G obtained by linking a
variable and a clause if and only if the variable appears in the clause, is connected and it
does not have any vertex of degree one, the problem remains NP-complete. We reduce
this version to our problem. Consider an instance ®, we transform this into a graph G
such that G has an edge-labeling by gap from {1,2} if and only if ® has a satisfying
assignment. For each variable x € X put a copy of path P; = xt,—z, also, for each clause
¢ € C put a copy of gadget Py = ¢ d’¢”. Now, put a copy Cg. Also, for each clause
c=yV zVw add the edges cy, cz and cw. Finally, let x be an arbitrary literal, connect x
to one of the vertices of Cs. G is connected, bipartite and planar. First, suppose that Gg
has an edge-labeling f by gap from {1,2} and [ is the induced proper coloring by f. Since
for every variable x the degrees of vertices x and —x are greater than one, also for every
clause ¢ the degree of vertex ¢ is 4 and Gg¢ is connected, hence in the induced coloring
I by f, for the set of variables {z1,--- ,z,} and the set of clauses {c1,- -, ¢, } we have
lzy) =1(~xy) = =Uzn) #U(cr) =U(—c1) =+ =l(e) and U(x1) # 2 # (cq). First,
suppose that [(x) = 1. Since z is adjacent to one of the vertices of Cg, in this situation G
does not have any edge-labeling f by gap from {1,2}. So I(z) = 0 and I(c) = 1. Hence, the
labels of all edges incident with z; are same. Also, for every variable z, because of t,, the
labels of all edges incident with x are different from the labels of all edges incident with
—z. Now, for every variable , which is appeared in ¢;, ¢;j,-- -, ¢ put I'(z) = T'rue if and
only if the labels of edge ¢;x is 2. For every clause ¢ = xVyVw, l(c) = 1, if the set of labels
of edges {cx,cy,cw} is {1}, then since [(c) = 1 and by attention to the gadget cc'¢”’¢”,
G does not have any edge-labeling f by gap from {1,2}. So, 2 € {f(cx), f(cy), f(cw)}.
Therefore, I' is an satisfying assignment. Now, let I' be an satisfying assignment for &.

10



For every variable x, label all the edges incident with = by 2 if and only if I'(x) = T'rue.
It is easy to extend this labeling to an edge-labeling f by gap from {1,2}. This completes
the proof. O

Theorem 5 For every k, k > 3, it i1s NP-complete to determine whether a given graph
has an edge-labeling by gap from {1,2,---  k}.

Proof We present a polynomial time reduction from k-colorability, to our problem.
k-Colorability: Given a graph G; is x(G) < k?

For a given graph G, we construct a graph G* such that x(G) < k if and only if G* has
an edge-labeling by gap from {1,2,---  k}. Let G be a graph, for every vertex v € V(G),
put a copy P3 = vv'v” and join v to w if and only if wv € E(G). Call the resulting
G*. First, suppose that G* has an edge-labeling f by gap from {1,2,--- ,k} and ¢ is the
induced coloring by f. for every vertex v, v € V(G*) of degree more then one, we have
L(v) €{0,1, cdots, k—1}, so ¢ is also a proper vertex coloring for G. Now, let ¢ be a proper
vertex coloring for G. For every vertex v inV (G*), label all edges incident with v except
vv’ by 1 and label vv’ by ¢(v). Finally for every edge v'v”, label v/v” by 1 if ¢(v) # 1,
/,U//

otherwise label v'v” by k. This labeling is an edge-labeling by gap from {1,2,--- [k}. O

2.4 Vertex-labeling by gap

Theorem 6 For a given bipartite graph G, determining whether G has a vertez-labeling
by gap from {1,2} is NP-complete.

Proof We reduce Not-All-FEqual 3-Sat to our problem in polynomial time. It is shown
that the following problem is NP-complete [13].

Not-All-Equal 3-Sat .

INSTANCE: Set X of variables, collection C of clauses over X such that each clause ¢ € C
has | ¢ |= 3.

QUESTION: Is there a truth assignment for X such that each clause in C' has at least one
true literal and at least one false literal?

For a given ®, we transform & into a graph G4 such that Gg has a vertez-labeling by
gap from {1,2} if and only if ® has a satisfying assignment. Construction of Gg is
similar to the proof Theorem 4, except the gadget Py = cc'd’¢”. For each clause ¢ € C
instead of Py = cdc’d”, put a isolated vertex c. First, suppose that G¢ has an edge-
labeling f by gap from {1,2} and [ is the induced proper coloring by f. By an argument
similar to argument of proof of Theorem 4, for every clause ¢ = z Vy V w, I(¢) = 1. So

11



{f(z), f(y), f(w)} = {1,2}, therefore I" is a NAE satisfying assignment. Now, let " be an
satisfying assignment for ®. For every variable x, label the vertex x by 2 if and only if
I'(z) = True. This completes the proof. O

Theorem 7 For a given planar bipartite graph G, determining whether G has a vertex-
labeling by gap from {1,2} is in P.

Proof First we show that every tree T' with more than two vertex has a vertez-labeling by
gap from {1,2}. Let T be a tree with more than two vertex and v € V(T') be an arbitrary
vertex, define:
Flu) = {1 if d(u,z.}) =0 ( mod 4),

2 otherwise,
We call this kind of labeling as good labeling by center v. It is easy to see that good labeling
by center v is a vertex-labeling by gap from {1,2}. Now, consider the following problem.
Planar Not-All-Equal 3-Sat.
INSTANCE: Set X of variables, collection C' of clauses over X such that each clause ¢ € C
has | ¢ |= 3 and the following graph obtained from 3-Sat is planar. The graph has one
vertex for each variable, one vertex for each clause; all variable vertices are connected
in a simple cycle and each clause vertex is connected by an edge to variable vertices
corresponding to the literals present in the clause.
QUESTION: Is there a Not-All-Equal truth assignment for X7
It was proved in [19] that Planar Not-All-Equal 3-Sat is in P by a reduction to a known
problem in P, namely Planar(Simple) MaxCut. By a simple argument it was shown that
the following problem is in P (for more information see [10]).
Planar Not-All-Equal 3-Sat Type 2.
INSTANCE: Set X of variables, collection C' of clauses over X such that each clause ¢ € C
has | ¢ |= 3 and the bipartite graph obtained by linking a variable and a clause if and only
if the variable appears in the clause, is planar.
QUESTION: Is there a Not-All-Equal truth assignment for X7
Now, consider the following:
Planar Not-All-Equal Sat Type 2.
INSTANCE: Set X of variables, collection C of clauses over X such that each clause ¢ € C
has | ¢ |> 2 and the bipartite graph obtained by linking a variable and a clause if and only
if the variable appears in the clause, is planar.
QUESTION: Is there a Not-All-Equal truth assignment for X7
We can transform any instance of ® Planar Not-All-Equal Sat Type 2 to an instance W
of Planar Not-All-Equal 3-Sat Type 2 in polynomial time. For a given instance &, for
each clause with exactly two literals like ¢ = (z V y), put two clauses z V y V ¢t and
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xVyV-tin ¥, where ¢ is a new variable. And for each clause with exactly four literals
like c = (x Vy VwV z), put two clauses x Vy V¢t and wV zV =t in ¥, where ¢ is a new
variable. For clauses with more than five variable we have a similar argument.

Let G = [X,Y] be a planar bipartite graph, remove all vertices of degree one, repeat
this procedure to obtain a graph G’ = [X’, Y] such that G’ does not have a vertex of
degree one. For every vertex v € X', consider a variable v in ® and for every vertex
u €Y' with dg(u) = dgr(u) put a clause (Vyoyv) in @. Now determine whether ® has a
Not-All-Equal truth assignment. If & has a Not-All-Equal truth assignment I, for every
vertex v, v € X’ label v by 1 if and only if I'(v) = False. Label other vertices of G’ by
2, call this labeling by f. The induced graph on V(G) \ V(G’) is a forest, call this forest
by F. Suppose that F' = Ty U--- U T}, where T; is a tree. For every i, 1 < i < k let v;,
v; € V(G') be a vertex with minimum distance from T;. Now for every T; four cases can
be considered:

Case 1: v; € Y and {U,., f(u)} = {1,2}. Let z € Ng(v;) such that f(z) = 1 and
T! = T; Uv; U z. Suppose that f; is a good labeling by center z for T}.

v~u

Case 2: v; € Y and {U,., f(u)} = {2}. Let 2 € Nyv(v;). Suppose that f; is a good
labeling by center z for T;.

Case 3: v; € Y and {UJ,., f(v)} = {1}. Let z € Ng/(v;) such that f(z) = 1 and
T! = T; Uv; U z. Suppose that f; is a good labeling by center z for T}.

Case 4: v; € X' and {U,.,, f(u)} = {2}. Let T/ = T; Uwv; Ut, where ¢ is anew vertex
and ¢ is joined to v; in T]. Suppose that f; is a good labeling by center t for T.

It is easy to see that the union of good labelings f, f1, fa, -+, fx is a vertez-labeling
by gap from {1,2} for G. If ® does not have a Not-All-Equal truth assignment. Then,
for every vertex v € Y’ consider a variable v in ¥ and for every vertex u € X’ with
da(u) = dgr(u) put a clause (Vyyv) in U. Now determine whether ¥ has a Not-All-Equal
truth assignment. If ® has a Not-All-Equal truth assignment I" by a similar method we
can find vertez-labeling by gap from {1,2} for G. Otherwise, G does not have any vertez-
labeling by gap from {1,2}.

]

Theorem 8 For every k, k > 3, it i1s NP-complete to determine whether a given graph
has a vertex-labeling by gap from {1,2,--- ,k}.

Proof The proof is similar to the proof of Theorem 5. U
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It was shown that 3-colorability of planar 4-regular graphs is NP-complete [9]. So we
have the following:

Theorem 9 It is NP-complete to decide whether a given planar 3-colorable graph G has
a vertex-labeling by gap from {1,2}.

2.5 Vertex-labeling by degree

For every k greater than three it is clear that determining whether a given graph has a
vertez-labeling by degree from {1,2,--- |k} is NP-complete.

Theorem 10 Determining whether a given graph has a vertex-labeling by degree from
{1,2} is in P.

Proof We reduce our problem to 2-SAT problem in polynomial time.

2-SAT.

INSTANCE: A 2-SAT formula ®.

QUESTION: Is there a truth assignment for ® that satisfies all the clauses?

For a given graph G of order n we construct a 2-SAT formula ® with n variables vi, v - -+ | v,
such that G has a vertex-labeling by degree from {1, 2} if and only if there is a truth assign-
ment for ®. For every edge e = v;v;, if d(v;) = d(v;), add the clauses v; V v; and —v; V —w;
and if d(v;) = 2d(v;), add the clause v; V —w;, otherwise if 2d(v;) = d(v;), add the clause
—w; Vv;. First, suppose that I' is satisfying assignment for ®. For every vertex v;, label v;
by 2 if and only if I'(v;) = true. It is easy to see that this labeling is a vertez-labeling by
degree from {1,2}. Next, let f be a vertez-labeling by degree from {1, 2}, for every variable
v;, put I'(v;) = true if and only if f(v;) = 2. As we know 2-SAT problem is in P [13].
This completes the proof. O

2.6 Vertex-labeling by maximum

A graph may lack any vertex-labeling by mazimum, in the next we consider the complexity
of vertex-labeling by mazimum; also, we present a necessary condition that can be checked
in polynomial time for a graph to have a vertex-labeling by mazimum.

Theorem 11 For a given 3-regular graph G, determining whether G has a vertex-labeling
by maximum from {1,2,3} is NP-complete.
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Figure 3: Transformation in constructing G’.

Proof Clearly, the problem is in NP. It was shown that it is NP-hard to determine the
edge chromatic number of a cubic graph [14]. Let G be a 3-regular graph. We construct
a 3-regular graph G’ from G such that G’ has a vertez-labeling by mazimum from {1,2, 3}
if and only if G belongs to Class 1. In order to construct G', for every vertex v € V(G)
with the neighbors z, y and 2 consider two disjoint triangles v v,v, and vjvyv} in G'.
Also, for every edge e € E(G), consider two vertices e and €’ in G’. Finally, for every edge
e =uv € E(G), join e to v, and wu,; also join €’ to v), and u). Name the constructed graph
G’ (see Figure 3). Since G’ has triangles, so every vertex-labeling by mazimum needs at
least 3 distinct labels. First suppose that G’ has a wvertez-labeling f by mazimum from
{1,2,3} and let ¢ be the induced vertex coloring by f. For every vertex v € V(G) with the
neighbors z, y and z in G, we have {{(vy), £(vy), £(v.)} = {1,2,3} = {(v}), £(vy), £(v)}.
Suppose that there are u and v such that £(v,) = £(v],)) = 3, then f(vu) = f((vu)') = 3.
Since f can not assign 3 to the vertices in a triangle, hence £(vu) = ¢((vu)") = 3 and this
is a contradiction. so we have the following fact:
There are no u and v such that £(v,) = £(v],) = 3 (Fact 1).
Now, consider the following proper 3-edge coloring for G: g : E(G) — {1,2,3},

1 if fluv) =3,
glww) = 42 if f((uv)) =3,

3 otherwise.
By Fact 1, g is well-defined and G belongs to Class 1. On the other hand, assume that
g: E(G) — {1,2,3} is a proper 3-edge coloring. Define f : V(G') — {1,2,3} such that
for every edge uwv € E(G), f(vy,) = f(v],) =1, f(uv) = g(uwv) and f((uww)') = g(uv) + 1(
mod 3). It is easy to see that f is a vertex-labeling by mazimum. O
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For a given graph G, put a new vertex v and join it to the all vertices of G, next put
a new vertex u and join it to v. Name the constructed graph G’. We can construct G’ in
polynomial time and G has a vertez-labeling by mazimum from {1,2,---  k} if and only if
G’ has a vertez-labeling by mazimum from {1,2,--- k4 1} ;so we have the following:

Theorem 12 For every k > 3, it is NP-complete to decide whether G has a vertex-
labeling by maximum from {1,2,--- ,k} for a given k-colorable graph G.

Every triangle-free graph has a vertez-labeling by mazimum (put different numbers on
vertices) and if G is graph such that every vertex appears in some triangles then G does
not have wvertezx-labeling by maximum. Here, we present a nontrivial necessary condition
for a graph to have a vertez-labeling by maximum. First consider the following definition.

Definition 1For a given graph G the subset S of vertices is called kernel if every v € S
appears in a triangle in G[S] and for every two adjacent vertices v and u, where v € S
and w € N(S)\ S, there exists a vertex z € S such that z is adjacent to v and u.

Let S be a kernel for G. To the contrary, assume that f is a vertez-labeling by mazimum
for G and v € SU N(S) is a vertex that gets the maximum of {f(u) : u € SUN(S)}.
Then v has two neighbors = and y in S with max,~, f(v) = maxy~, f(u) = f(v). This
is a contradiction. Therefore, if G has a kernel, then G does not have a vertez-labeling by
mazimum. Now, consider Algorithm 1.

When Algorithm 1 terminates, if it returns ”G has the kernel S”, then S is a kernel,
so G does not have vertez-labeling by maximum. Suppose that Algorithm 1 returns ”G
has no kernel”, but G has a kernel S’. In the lines 2 — 3 of algorithm, the set of vertices
S’ are added to S. Now, consider the line 5 of algorithm and let v € S’ be the first vertex
form the set S’ that is eliminated from S. When Algorithm 1 chooses the vertex v, v is
in a triangle in G[S’], so is in a triangle in G[S]. Therefore, there is a vertex u such that
w € E(G),ve S, ue N(S)\S and there is no vertex z € S such that z is adjacent to v
and u. So S’ is not kernel. It is a contradiction. So when Algorithm 1 returns ”G has no
kernel”, G does not have any kernel. Here, we ask the following question: Is the necessary
condition, sufficient for a given graph to have a vertez-labeling by mazimum?

Problem 5. Does there is a polynomial time algorithm to determine whether a given
graph has a vertex-labeling by maximum ¢
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Algorithm 1 (Kernel)
S=10
for ( Every vertex u in a triangle) do
S — SU{u}
end for
while ( There are two adjacent vertices w and v such that v € S, u € N(S)\ S and
there is no vertex z € S such that z is adjacent to v and u.) or (v is not in any triangle
in G[S]) do
S =S\ {v}
end while
if (S #0) then
Return "G has the kernel S.”
else

Return "G has no kernel.”
end if
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