
Part 1: Optimization and Applications

Mário A. T. Figueiredo1 and Stephen J. Wright2

1Instituto de Telecomunicações,
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Inference via Optimization

Many inference problems are formulated as optimization problems:

image reconstruction

image restoration/denoising

supervised learning

unsupervised learning

statistical inference

...

Standard formulation:

observed data: y

unknown mathematical object (signal, image, vector, matrix,...): x

inference criterion:
x̂ ∈ arg min

x
g(x , y)
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Inference via Optimization

Inference criterion:

x̂ ∈ arg min
x

g(x , y) = {x : g(x , y) ≤ g(z , y), ∀z}

Question 1: how to build g? Where does it come from?

Answer: from the application domain (machine learning, signal
processing, inverse problems, system identification, statistics, computer
vision, bioinformatics,...);
... examples ahead.

Question 2: how to solve the optimization problem?

Answer: the focus of this tutorial.
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Regularized Optimization

Inference criterion: x̂ ∈ arg min
x

g(x , y)

Typical structure of g : g(x , y) = h(x , y) + τψ(x)

h(x , y) → how well x “fits”/“explains” the data y ;
(data term, log-likelihood, loss function, observation model,...)

ψ(x) → knowledge/constraints/structure: the regularizer

τ ≥ 0: the regularization parameter (or constant).

Since y is fixed, we often write simply f (x) = h(x , y),

min
x

f (x) + τψ(x)
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Probabilistic/Bayesian Interpretations

Inference criterion: x̂ ∈ arg min
x

g(x , y)

Typical structure of g : g(x , y) = h(x , y) + τψ(x)

Likelihood (observation model): p(y |x) =
1

Zl
exp
(
−h(x , y)

)
Prior: p(x) =

1

Zp
exp
(
−τψ(x)

)
Posterior: p(x |y) =

p(y |x) p(x)

p(y)

Log-posterior: log p(x |y) = K (y)− h(x , y)− τψ(x) = K (y)− g(x , y)

x̂ is a maximum a posteriori (MAP) estimate.
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Regularizers

Inference criterion: min
x

f (x) + τψ(x)

Typically, the unknown is a vector x ∈ Rn

or a matrix x ∈ Rn×m

Common regularizers impose/encourage one (or a combination of) the
following characteristics:

small norm (vector or matrix)

sparsity (few nonzeros)

specific nonzero patterns (e.g., group/tree structure)

low-rank (matrix)

smoothness or piece-wise smoothness
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Unconstrained vs Constrained Formulations

Tikhonov regularization: min
x

f (x) + τψ(x)

Morozov regularization:
min
x

ψ(x)

subject to f (x) ≤ ε

Ivanov regularization:
min
x

f (x)

subject to ψ(x) ≤ δ

Under mild conditions, these are all “equivalent”.

Morozov and Ivanov can be written as Tikhonov using indicator functions
(more later).

Which one is more convenient is problem-dependent.
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Example: Under- and Over-Constrained Systems

A simple linear inverse problem: from y = Ax , find x (A ∈ Rm×n)

Trivial case, A is invertible: x = A−1y

Over-determined system (m > n); least squares solution
(rank(A) = n):

x̂ = arg min
x

n∑
i=1

(yi − (Ax)i )
2 = arg min

x
‖y − Ax‖2

2 = (ATA)−1AT y

Under-determined system (m < n); minimum norm solution
(rank(A) = m):

x̂ =

{
arg min

x
‖x‖2

2

s.t. Ax = y

}
= AT (AAT )−1y

Non-trivial cases: resort to optimization and regularization.

Quadratic (Euclidean) losses and regularizers have a long and rich
history: Gauss, Legendre, Wiener, Moore-Penrose, Tikhonov, ...
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Norms: A Quick Review

Consider some real vector space V, for example, Rn or Rn×n, ...

Some function ‖ · ‖ : V → R is a norm if it satisfies:

‖αx‖ = |α| ‖x‖, for any x ∈ V and α ∈ R (homogeneity);

‖x + x ′‖ ≤ ‖x‖+ ‖x ′‖, for any x , x ′ ∈ V (triangle inequality);

‖x‖ = 0 ⇒ x = 0.

Examples:

V = Rn, ‖x‖p =
(∑

i

|xi |p
)1/p

(called `p norm, for p ≥ 1).

V = Rn, ‖x‖∞ = lim
p→∞

‖x‖p = max{|x1|, ..., |xn|}

V = Rn×n, ‖X‖∗ = trace
(√

XTX
)

(matrix nuclear norm)

Also important (but not a norm): ‖x‖0 = lim
p→0
‖x‖pp = |{i : xi 6= 0}|
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Norm balls

Radius r ball in `p norm: Bp(r) = {x ∈ Rn : ‖x‖p ≤ r}

p = 1 p = 2
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Examples: Back to Under-Constrained Systems

A simple linear inverse problem: from y = Ax , find x (A ∈ Rm×n)

Under-determined system (m < n); minimum norm solution:

x̂ =

{
arg min

x
‖x‖2

2

s.t. Ax = y

}
= A∗(AA∗)−1y 6= x (in general)

Can we hope to recover x? Yes! ...if x is sparse enough (‖x‖0 < k)
and A satisfies some conditions, using

x̂ = arg min
x
‖x‖0

s.t. Ax = y

Several proofs, under different conditions (more later).

But, this is a hard problem! `0 “norm” is not convex.
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Review of Basics: Convex Sets
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Review of Basics: Convex Functions
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Lower Semi-Continuity: Why Is It Important?

A function f : Rn → R̄ is lower semi-continuous (l.s.c.) if

lim inf
x→x0

f (x) ≥ f (x0), for any x0 ∈ dom(f )

or, equivalently, {x : f (x) ≤ α} is a closed set, for any α ∈ R

f (x) =

{
e−x , if x < 0
+∞, if x ≥ 0

dom(f ) =]−∞, 0[, arg minx f (x) = ∅

f (x) =

{
e−x , if x ≤ 0
+∞, if x > 0

dom(f ) =]−∞, 0], arg minx f (x) = {0}

Unless stated otherwise, we only consider l.s.c. functions.
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Coercivity, Convexity, and Minima
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Another Important Concept: Strong Convexity

Recall the definition of convex function: ∀λ ∈ [0, 1],

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)

A β−strongly convex function satisfies a stronger condition: ∀λ ∈ [0, 1]

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)− β

2
λ(1− λ)‖x − x ′‖2

2

convexity strong convexity

Strong convexity
⇒
6⇐ strict convexity.
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A Little More on Convex Functions

Let f1, ..., fN : Rn → R̄ be convex functions. Then

f : Rn → R̄, defined as f (x) = max{f1(x), ..., fN(x)}, is convex.

g : Rn → R̄, defined as g(x) = f1(L(x)), where L is affine, is convex.

Note: L is affine ⇔ L(x)− L(0) is linear; e.g. L(x) = Ax + b.

h : Rn → R̄, defined as h(x) =
∑N

j=1
αj fj(x), for αj > 0, is convex.

An important function: the indicator of a set C ⊂ Rn,

ιC : Rn → R̄, ιC (x) =

{
0 ⇐ x ∈ C
+∞ ⇐ x 6∈ C

If C is a closed convex set, ιC is a l.s.c. convex function.
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The Case of Differentiable Functions

Let f : Rn → R be twice differentiable and consider its Hessian matrix at
x , denoted ∇2f (x) (or Hf (x)):

(
∇2f (x)

)
ij

=
∂f

∂xi∂xj
, for i , j = 1, ..., n.

f is convex ⇔ its Hessian ∇2f (x) is positive semidefinite ∀x

f is strictly convex ⇐ its Hessian ∇2f (x) is positive definite ∀x

f is β-strongly convex ⇔ its Hessian ∇2f (x) � βI , with β > 0, ∀x .
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More on the Relationship Between `1 and `0

Finding the sparsest solution is NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0

s.t. ‖Aw − y‖2
2 ≤ δ.

The related best subset selection problem is also NP-hard (Amaldi and
Kann, 1998; Davis et al., 1997).

ŵ = arg min
w
‖Aw − y‖2

2

s.t. ‖w‖0 ≤ τ.

Under conditions, replacing `0 with `1 yields “similar” results:
central issue in compressive sensing (CS) (Candès et al., 2006a; Donoho,

2006)
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Compressive Sensing in a Nutshell

Even in the noiseless case, it seems impossible to recover w from y
...unless, w is sparse and A has some properties.

If w is sparse enough and A has certain properties, then w is stably
recovered via (Haupt and Nowak, 2006)

ŵ = arg min
w
‖w‖0

s. t. ‖Aw − y‖ ≤ δ NP-hard!
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Compressive Sensing in a Nutshell

Under some conditions on A (e.g., the restricted isometry property (RIP)),
`0 can be replaced with `1 (Candès et al., 2006b):

ŵ = arg min
w
‖w‖1

subject to ‖Aw − y‖ ≤ δ convex problem

Matrix A satisfies the RIP of order k, with constant δk ∈ (0, 1), if

‖w‖0 ≤ k ⇒ (1− δk)‖w‖2
2 ≤ ‖Aw‖2

2 ≤ (1 + δk)‖w‖2
2

...i.e., for k-sparse vectors, A is approximately an isometry.

Other properties (spark and null space property (NSP)) can be used;
caveat: checking RIP, NSP, spark is NP-hard (Tillmann and Pfetsch, 2012).
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Examples: Back to Under-Constrained Systems

Let x̄ be the sparsest solution of Ax = y , where A ∈ Rm×n and m < n.

x̄ = arg min ‖x‖0 s.t. Ax = y .

Consider the `1 norm version: min
x
‖x‖1 s.t. Ax = y

Advantage: this is a convex problem! Fact: all norms are convex.

Of course, x̄ solves this problem too, if ‖x̄ + v‖1 ≥ ‖x̄‖1, ∀v ∈ ker(A).

Recall: ker(A) = {x ∈ Rn : Ax = 0} is the kernel (a.k.a. null space) of A.

Next: elementary analysis by Yin and Zhang (2008), based on work by
Kashin (1977) and Garnaev and Gluskin (1984).

M. Figueiredo and S. Wright () Optimization and Applications HIM, January 2016 22 / 64



Equivalence Between `1 and `0 Optimization

Minimum `0 (sparsest) solution: x̄ ∈ arg min ‖x‖0 s.t. Ax = y .

Minimum `1 solution(s): G = arg min ‖x‖1 s.t. Ax = y .

x̄ ∈ G , if ‖x̄ + v‖1 ≥ ‖x̄‖1, ∀v ∈ ker(A)

Let S = {i : x̄i 6= 0} and Z = {1, ..., n} \ S

‖x̄ + v‖1 = ‖x̄S + vS‖1 + ‖vZ‖1

≥ ‖x̄S‖1 + ‖vZ‖1 − ‖vS‖1 (‖a + b‖ ≥ ‖a‖ − ‖b‖)
= ‖x̄‖1 + ‖v‖1 − 2‖vS‖1

≥ ‖x̄‖1 + ‖v‖1 − 2
√
k‖v‖2. (‖a‖1 ≤

√
n ‖a‖2)

Hence, x̄ ∈ G , if 1
2
‖v‖1

‖v‖2
≥
√
k, ∀v ∈ ker(A)

...but, in general, we have only: 1 ≤ ‖v‖1

‖v‖2
≤
√
n

However, we may have ‖v‖1

‖v‖2
� 1, if v is restricted to a random subspace.
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Bounding the `1/`2 Ratio in Random Matrices

If the elements of A ∈ Rm×n are sampled i.i.d. from N (0, 1) (zero mean,
unit variance Gaussian), then, with high probability,

‖v‖1

‖v‖2
≥ C

√
m√

log(n/m)
, for all v ∈ ker(A),

for some constant C (based on concentration of measure phenomena).

Thus, with high probability, x̄ ∈ G , if

m ≥ 4

C 2
k log n

Conclusion: Can solve under-determined system, where A has i.i.d.
N (0, 1) elements, by solving

min
x
‖x‖1 s.t. Ax = b,

(a convex problem), if the solution is sparse enough.
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Ratio ‖v‖1/‖v‖2 on Random Null Spaces

Random A ∈ R4×7, showing ratio ‖v‖1 for v ∈ ker(A) with ‖v‖2 = 1

Blue: ‖v‖1 ≈ 1. Red: ratio ≈
√

7. Note that ‖v‖1 is well away from the
lower bound of 1 over the whole nullspace.
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Ratio ‖v‖1/‖v‖2 on Random Null Spaces

The effect grows more pronounced as m/n grows.
Random A ∈ R17×20, showing ratio ‖v‖1 for v ∈ N(A) with ‖v‖2 = 1.

Blue: ‖v‖1 ≈ 1. Red: ‖v‖1 ≈
√

20. Note that ‖v‖1 is closer to upper
bound throughout.
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When Data is Noisy
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The Ubiquitous `1 Norm

Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996)
a.k.a. basis pursuit denoising (Chen et al., 1995):

min
x

1

2
‖Ax − y‖2

2 + τ‖x‖1 or min
x
‖Ax − y‖2

2 s.t. ‖x‖1 ≤ δ

or, more generally,

min
x

f (x) + λ‖x‖1 or min
x

f (x) s.t. ‖x‖1 ≤ δ

Widely used outside and much earlier than compressive sensing
(statistics, signal processing, neural netowrks, ...).

Many extensions: namely to express structured sparsity (more later).

Why does `1 yield sparse solutions? (next slides)

How to solve these problems? (this tutorial)
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Why `1 Yields Sparse Solution

w∗ = arg minw ‖Aw − y‖2
2

s.t. ‖w‖2 ≤ δ
vs w∗ = arg minw ‖Aw − y‖2

2

s.t. ‖w‖1 ≤ δ
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Why `1 Yields Sparse Solution

The simplest problem with `1 regularization

ŵ = arg min
w

1

2
(w − y)2 + λ|w | = soft(y , λ) =


y − λ ⇐ y > λ
0 ⇐ |y | ≤ λ
y + λ ⇐ y < −λ

...by the way, how is this solved? (more later).

Contrast with the squared `2 (ridge) regularizer (linear scaling):

ŵ = arg min
w

1

2
(w − y)2 +

λ

2
w2 =

1

1 + λ
y
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More on the Relationship Between `1 and `0

The `0 “norm” (number of non-zeros): ‖w‖0 = |{i : wi 6= 0}|.
Not a norm, not convex, but in the simple case...

ŵ = arg min
w

1

2
(w − y)2 + λ|w |0 = hard(y ,

√
2λ) =

{
y ⇐ |y | >

√
2λ

0 ⇐ |y | ≤
√

2λ
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Another Application: Images

Natural images are well represented by a few coefficients in some bases.

Images (N ×M ≡ n pixels) are represented by vectors x ∈ Rn

Typical images have representations x = Ww that are sparse
(‖w‖0 � n) on some bases (W TW = WW T = I ), such as wavelets.

Original 1000× 1000 image x ∈ R106

...only its 25000 largest coefficients.

Also (even more) true with an over-complete tight frame; W is “fat”
(more columns than rows) and WW T = I , but W TW 6= I .
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Application to Image Deblurring/Deconvolution
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Application to Magnetic Resonance Imaging
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Machine/Statistical Learning: Linear Regression

Data N pairs (x1, y1), ..., (xN , yN), where xi ∈ Rd (feature/variable
vectors) and yi ∈ R (outputs).

Goal: find “good” linear function: ŷ =
d∑

j=1

wjxj + wd+1 = [xT 1]w

Assumption: data generated i.i.d. by some underlying distribution PX ,Y

Mean squared error: min
w

E
(
Y − [XT 1]w

)2
impossible! PX ,Y unknown

Empirical error: min
w

1
N

N∑
i=1

(
yi − [xTi 1]w

)2
= min

w

1
N ‖y − Aw‖2

2,

design matrix: Aij = (xi )j (j-th component of i-th sample), Ai(d+1) = 1

Regularization: minw ‖y − Aw‖2
2 + τψ(w)
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Machine/Statistical Learning: Linear Classification

Data N pairs (x1, y1), ..., (xN , yN), where xi ∈ Rd (feature vectors)
and yi ∈ {−1,+1} (labels).

Goal: find “good” linear classifier (i.e., find the optimal weights):

ŷ = sign([xT 1]w) = sign
(
wd+1 +

d∑
j=1

wjxj

)
Assumption: data generated i.i.d. by some underlying distribution PX ,Y

Expected error: min
w∈Rd+1

E
(
1Y ([XT 1]w)<0

)
impossible! PX ,Y unknown

Empirical error (EE): min
w

1
N

N∑
i=1

h
(
yi ([xT 1]w)︸ ︷︷ ︸

margin

)
, where h(z) = 1z<0.

Convexification: EE neither convex nor differentiable (NP-hard problem).
Solution: replace h : R→ {0, 1} with convex loss L : R→ R+.
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Machine/Statistical Learning: Linear Classification

Criterion: min
w

N∑
i=1

L
(
yi (wT xi + b)︸ ︷︷ ︸

margin

)
︸ ︷︷ ︸

f (w)

+τψ(w)

Regularizer: ψ = `1 ⇒ encourage sparseness ⇒ feature selection

Convex losses: L : R→ R+ is a (preferably convex) loss function.

Misclassification loss: L(z) = 1z<0

Hinge loss: L(z) = max{1− z , 0}

Logistic loss: L(z) =
log
(

1+exp(−z)
)

log 2

Squared loss: L(z) = (z − 1)2
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Machine/Statistical Learning: General Formulation

This formulation covers a wide range of linear ML methods:

min
w

N∑
i=1

L
(
yi ([xT 1]w)

)
︸ ︷︷ ︸

f (w)

+ τψ(w)

Least squares regression: L(z) = (z − 1)2, ψ(w) = 0.

Ridge regression: L(z) = (z − 1)2, ψ(w) = ‖w‖2
2.

Lasso regression: L(z) = (z − 1)2, ψ(w) = ‖w‖1

Logistic regression: L(z) = log(1 + exp(−z)) (ridge, if ψ(w) = ‖w‖2
2

Sparse logistic regression: L(z) = log(1 + exp(−z)), ψ(w) = ‖w‖1

Support vector machines: L(z) = max{1− z , 0}, ψ(w) = ‖w‖2
2

Boosting: L(z) = exp(−z),

...

M. Figueiredo and S. Wright () Optimization and Applications HIM, January 2016 38 / 64



Machine/Statistical Learning: Nonlinear Problems

What about non-linear functions?

Simply use ŷ = φ(x ,w) =
D∑
j=1

wj φj(x), where φj : Rd → R

Essentially, nothing changes; computationally, a lot may change!

min
w

N∑
i=1

L
(
yi φ(x ,w)

)
︸ ︷︷ ︸

f (w)

+ τψ(w)

Key feature: φ(x ,w) is still linear with respect to w , thus f inherits the
convexity of L.

Examples: polynomials, radial basis functions, wavelets, splines, kernels,...

Recover the linear case, letting D = d + 1, fj(x) = xj , and fd+1 = 1.
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Structured Sparsity

`1 regularization promotes sparsity

A very simple sparsity pattern: prefer models with small cardinality

Can we promote less trivial sparsity patterns? How?

Group/structured regularization.
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Structured Sparsity and Groups

Main goal: to promote structural patterns, not just penalize cardinality

Group sparsity: discard/keep entire groups of features (Bach et al., 2012)

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if the assumption is correct (Stojnic et al., 2009)

Many applications:

feature template selection (Martins et al., 2011)

multi-task learning (Caruana, 1997; Obozinski et al., 2010)

learning the structure of graphical models (Schmidt and Murphy,
2010)
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“Grid” Sparsity

For feature spaces that can be arranged as a grid (examples next)

Goal: push entire columns to have zero weights

The groups are the columns of the grid
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Example: Sparsity with Multiple Classes

In multi-class (more than just 2 classes) classification, a common
formulation is

ŷ = arg max
y∈{1,...,K}

xTwy

Weight vector w = (w1, ...,wK ) ∈ RKd has a natural group/grid
organization:

input features

la
b
e
ls

Simple sparsity is wasteful: may still need to keep all the features

Structured sparsity: discard some input features (feature selection)
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Example: Multi-Task Learning

Same thing, except now rows are tasks and columns are features

Example: simultaneous regression (seek function into Rd → Rb)

shared features

ta
sk

s

Goal: discard features that are irrelevant for all tasks

Approach: one group per feature (Caruana, 1997; Obozinski et al., 2010)
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Example: Magnetoencephalograpy (MEG)

Group: localized cortex area at localized time period (Bolstad et al., 2009)
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Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors xG1 , . . . , xGM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

ψ(x) =
M∑

m=1

λm‖xGm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

Weighted version: λm are prior weights for groups (groups may have
different sizes)
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Lasso versus group-Lasso
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Composite Absolute Penalties (Zhao et al., 2009)

A mixed-norm regularization:

ψ(x) =

(
M∑

m=1

‖xm‖rq

)1/r

The r -norm of the q-norms (r ≥ 1, q ≥ 1)

Technically, this is also a norm, called a mixed norm, denoted `q,r

The most common choice: `2,1 norm

Another frequent choice: `∞,1 norm (Turlach et al., 2005; Quattoni

et al., 2009; Graça et al., 2009; Eisenstein et al., 2011; Wright et al., 2009)
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Three Scenarios

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups
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Non-overlapping Groups

Assume that G1, . . . ,GM (where Gm ⊂ {1, ..., d}) constitute a partition:

M⋃
i=1

Gm = {1, ..., d} and i 6= j ⇒ Gi ∩ Gj = ∅

ψ(x) =
M∑

m=1

λm‖xGm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . , d}
`1-regularization: d singleton groups Gm = {m}

Examples of non-trivial groups:

label-based groups

task-based groups
M. Figueiredo and S. Wright () Optimization and Applications HIM, January 2016 50 / 64



Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded
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Matrix Inference Problems

Sparsest solution:

From Bx = b ∈ Rp, find
x ∈ Rn (p < n).

minx ‖x‖0 s.t. Bx = b

Yields exact solution, under
some conditions.

Lowest rank solution:

From B(X ) = b ∈ Rp, find
X ∈ Rm×n (p < mn).

minX rank(X ) s.t. B(X ) = b

Yields exact solution, under some
conditions.

Both NP−hard (in general); the same is true of noisy versions:

min
X∈Rm×n

rank(X ) s.t. ‖B(X )− b‖2
2

Under some conditions, the same solution is obtained by replacing rank(X )
by the nuclear norm ‖X‖∗ (as any norm, it is convex) (Recht et al., 2010)

M. Figueiredo and S. Wright () Optimization and Applications HIM, January 2016 52 / 64



Matrix Nuclear Norm (and Other Norms)

Also known as trace norm; the `1-type norm for matrices X ∈ Rm×n

Definition: ‖X‖∗ = trace
(√

XTX
)

=

min{m,n}∑
i=1

σi ,

the σi are the singular values of X .

Particular case of Schatten q-norm: ‖X‖q =

min{m,n}∑
i=1

(σi )
q

1/q

.

Two other notable Schatten norms:

Frobenius norm: ‖X‖2 = ‖X‖F =

√√√√min{m,n}∑
i=1

(σi )2 =

√∑
i,i

X 2
i,j

Spectral norm: ‖X‖∞ = max
{
σ1, ..., σmin{m,n}

}
M. Figueiredo and S. Wright () Optimization and Applications HIM, January 2016 53 / 64



Nuclear Norm Regularization

Tikhonov formulation: min
X
‖B(X )− b‖2

2︸ ︷︷ ︸
f (X )

+ τ‖X‖∗︸ ︷︷ ︸
τψ(X )

Linear observations: B : Rm×n → Rp,
(
B(X )

)
i

= 〈B(i),X 〉,

B(i) ∈ Rm×n, and 〈B,X 〉 =
∑
ij

BijXij = trace(BTX )

Particular case: matrix completion, each matrix B(i) has one 1 and is zero
everywhere else.

Why does the nuclear norm favor low rank solutions? Let Y = UΛV T be
the singular value decomposition, where Λ = diag

(
σ1, ..., σmin{m,n}

)
; then

arg min
X

1

2
‖Y − X‖2

F + τ‖Λ‖∗ = U soft(X , τ)︸ ︷︷ ︸
may yield zeros

V T

...singular value thresholding (Ma et al., 2011; Cai et al., 2010)
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Another Matrix Inference Problem: Inverse Covariance

Consider n samples y1, ..., yn ∈ Rd of a Gaussian r.v. Y ∼ N (µ,C ); the
log-likelihood is

L(P) = log p(y1, ..., yn|P) = log det(P)− trace(SP) + constant

where S = 1
n

∑n
i=1(yi − µ)(yi − µ)T and P = C−1 (inverse covariance).

Zeros in P reveal conditional independencies between components of Y :

Pij = 0 ⇔ Yi ⊥⊥ Yj |{Yk , k 6= i , j}

...exploited to infer (in)dependencies among Gaussian variables. Widely
used in computational biology and neuroscience, social network analysis, ...

Sparsity (presence of zeros) in P is encouraged by solving

min
P�0
− log det(P) + trace(SP)︸ ︷︷ ︸

f (P)

+τ ‖vect(P)‖1︸ ︷︷ ︸
ψ(P)

where vect(P) = [P1,1, ...,Pd ,d ]T .
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Atomic-Norm Regularization

Key concept in sparse modeling: synthesize “object” using a few atoms:

x =

|A|∑
i=1

ci ai

A is the set of atoms (the atomic set), or building blocks.

ci ≥ 0 are weights; x is simple/sparse object ⇒ ‖c‖0 � |A|
Formally, A is a compact subset of Rn

The (Minkowski) gauge of A is:

‖x‖A = inf
{
t > 0 : x ∈ t conv(A)

}
Assuming that A centrally symmetry about the origin
(a ∈ A ⇒ −a ∈ A), ‖ · ‖A is a norm, called the atomic norm
Chandrasekaran et al. (2012).
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Atomic-Norm Regularization

The atomic norm

‖x‖A = inf
{
t > 0 : x ∈ t conv(A)

}
= inf

{ |A|∑
i=1

ci : x =

|A|∑
i=1

ci ai , ci ≥ 0
}

...assuming that the centroid of A is at the origin.

Example: the `1 norm as an atomic norm

A =

{[
0
1

]
,

[
1
0

]
,

[
0
−1

]
,

[
−1
0

]}
conv(A) = B1(1) (`1 unit ball).

‖x‖A = inf
{
t > 0 : x ∈ t B1(1)

}
= ‖x‖1
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Atomic Norms: More Examples
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Atomic-Norm Regularization

Given an atomic set A, we can adopt an Ivanov formulation

min f (x) s.t. ‖x‖A ≤ δ

(for some δ > 0) tends to recover x with sparse atomic representation.

Can formulate algorithms for the various special cases — but is a general
approach available for this formulation?

Yes! Conditional Gradient (a.k.a. Frank-Wolfe). More later!
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Summary

Many inference, learning, signal/image processing problems can be
formulated as optimization problems.

Sparsity-inducing regularizers play an important role in these problems

There are several way to induce sparsity

It is possible to formulate structured sparsity

It is possible to extend the sparsity rationale to other objects, namely
matrices

Atomic norms provide a unified framework for sparsity/simplicity
regularization
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