


Hands-On Machine Learning with
Scikit-Learn, Keras, and

TensorFlow

THIRD EDITION

Concepts, Tools, and Techniques to Build Intelligent
Systems

Aurélien Géron



Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

by Aurélien Géron

Copyright © 2023 Aurélien Géron. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(https://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield

Development Editors: Nicole Taché and 
Michele Cronin

Production Editor: Beth Kelly

Copyeditor: Kim Cofer

Proofreader: Rachel Head

Indexer: Potomac Indexing, LLC

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

March 2017: First Edition

September 2019: Second Edition

https://oreilly.com


October 2022: Third Edition



Revision History for the Third Edition

2022-10-03: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781492032649 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Hands-
On Machine Learning with Scikit-Learn, Keras, and TensorFlow, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent
the publisher’s views. While the publisher and the author have used good
faith efforts to ensure that the information and instructions contained in this
work are accurate, the publisher and the author disclaim all responsibility for
errors or omissions, including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or
other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to
ensure that your use thereof complies with such licenses and/or rights.

978-1-098-12597-4

[LSI]

https://oreilly.com/catalog/errata.csp?isbn=9781492032649


Preface



The Machine Learning Tsunami
In 2006, Geoffrey Hinton et al. published a paper   showing how to train a
deep neural network capable of recognizing handwritten digits with state-of-
the-art precision (>98%). They branded this technique “deep learning”. A
deep neural network is a (very) simplified model of our cerebral cortex,
composed of a stack of layers of artificial neurons. Training a deep neural net
was widely considered impossible at the time,    and most researchers had
abandoned the idea in the late 1990s. This paper revived the interest of the
scientific community, and before long many new papers demonstrated that
deep learning was not only possible, but capable of mind-blowing
achievements that no other machine learning (ML) technique could hope to
match (with the help of tremendous computing power and great amounts of
data). This enthusiasm soon extended to many other areas of machine
learning.

A decade later, machine learning had conquered the industry, and today it is
at the heart of much of the magic in high-tech products, ranking your web
search results, powering your smartphone’s speech recognition,
recommending videos, and perhaps even driving your car.

1

2

https://homl.info/136


Machine Learning in Your Projects
So, naturally you are excited about machine learning and would love to join
the party!

Perhaps you would like to give your homemade robot a brain of its own?
Make it recognize faces? Or learn to walk around?

Or maybe your company has tons of data (user logs, financial data,
production data, machine sensor data, hotline stats, HR reports, etc.), and
more than likely you could unearth some hidden gems if you just knew where
to look. With machine learning, you could accomplish the following and
much more:

Segment customers and find the best marketing strategy for each group.

Recommend products for each client based on what similar clients
bought.

Detect which transactions are likely to be fraudulent.

Forecast next year’s revenue.

Whatever the reason, you have decided to learn machine learning and
implement it in your projects. Great idea!

https://homl.info/usecases


Objective and Approach
This book assumes that you know close to nothing about machine learning.
Its goal is to give you the concepts, tools, and intuition you need to
implement programs capable of learning from data.

We will cover a large number of techniques, from the simplest and most
commonly used (such as linear regression) to some of the deep learning
techniques that regularly win competitions. For this, we will be using
production-ready Python frameworks:

Scikit-Learn is very easy to use, yet it implements many machine
learning algorithms efficiently, so it makes for a great entry point to
learning machine learning. It was created by David Cournapeau in 2007,
and is now led by a team of researchers at the French Institute for
Research in Computer Science and Automation (Inria).

TensorFlow is a more complex library for distributed numerical
computation. It makes it possible to train and run very large neural
networks efficiently by distributing the computations across potentially
hundreds of multi-GPU (graphics processing unit) servers. TensorFlow
(TF) was created at Google and supports many of its large-scale
machine learning applications. It was open sourced in November 2015,
and version 2.0 was released in September 2019.

Keras is a high-level deep learning API that makes it very simple to train
and run neural networks. Keras comes bundled with TensorFlow, and it
relies on TensorFlow for all the intensive computations.

The book favors a hands-on approach, growing an intuitive understanding of
machine learning through concrete working examples and just a little bit of
theory.

TIP

https://scikit-learn.org
https://tensorflow.org
https://keras.io


While you can read this book without picking up your laptop, I highly recommend you
experiment with the code examples.



Code Examples
All the code examples in this book are open source and available online at
https://github.com/ageron/handson-ml3, as Jupyter notebooks. These are
interactive documents containing text, images, and executable code snippets
(Python in our case). The easiest and quickest way to get started is to run
these notebooks using Google Colab: this is a free service that allows you to
run any Jupyter notebook directly online, without having to install anything
on your machine. All you need is a web browser and a Google account.

NOTE
In this book, I will assume that you are using Google Colab, but I have also tested the
notebooks on other online platforms such as Kaggle and Binder, so you can use those if
you prefer. Alternatively, you can install the required libraries and tools (or the Docker
image for this book) and run the notebooks directly on your own machine. See the
instructions at https://homl.info/install.

This book is here to help you get your job done. If you wish to use additional
content beyond the code examples, and that use falls outside the scope of fair
use guidelines, (such as selling or distributing content from O’Reilly books,
or incorporating a significant amount of material from this book into your
product’s documentation), please reach out to us for permission, at
permissions@oreilly.com.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Hands-On Machine
Learning with Scikit-Learn, Keras, and TensorFlow by Aurélien Géron.
Copyright 2023 Aurélien Géron, 978-1-098-12597-4.”

https://github.com/ageron/handson-ml3
https://homl.info/install
mailto:permissions@oreilly.com


Prerequisites
This book assumes that you have some Python programming experience. If
you don’t know Python yet, https://learnpython.org is a great place to start.
The official tutorial on Python.org is also quite good.

This book also assumes that you are familiar with Python’s main scientific
libraries—in particular, NumPy, Pandas, and Matplotlib. If you have never
used these libraries, don’t worry; they’re easy to learn, and I’ve created a
tutorial for each of them. You can access them online at
https://homl.info/tutorials.

Moreover, if you want to fully understand how the machine learning
algorithms work (not just how to use them), then you should have at least a
basic understanding of a few math concepts, especially linear algebra.
Specifically, you should know what vectors and matrices are, and how to
perform some simple operations like adding vectors, or transposing and
multiplying matrices. If you need a quick introduction to linear algebra (it’s
really not rocket science!), I provide a tutorial at https://homl.info/tutorials.
You will also find a tutorial on differential calculus, which may be helpful to
understand how neural networks are trained, but it’s not entirely essential to
grasp the important concepts. This book also uses other mathematical
concepts occasionally, such as exponentials and logarithms, a bit of
probability theory, and some basic statistics concepts, but nothing too
advanced. If you need help on any of these, please check out
https://khanacademy.org, which offers many excellent and free math courses
online.

https://learnpython.org
https://docs.python.org/3/tutorial
https://numpy.org
https://pandas.pydata.org
https://matplotlib.org
https://homl.info/tutorials
https://homl.info/tutorials
https://khanacademy.org


Roadmap
This book is organized in two parts. Part I, “The Fundamentals of Machine
Learning”, covers the following topics:

What machine learning is, what problems it tries to solve, and the main
categories and fundamental concepts of its systems

The steps in a typical machine learning project

Learning by fitting a model to data

Optimizing a cost function

Handling, cleaning, and preparing data

Selecting and engineering features

Selecting a model and tuning hyperparameters using cross-validation

The challenges of machine learning, in particular underfitting and
overfitting (the bias/variance trade-off)

The most common learning algorithms: linear and polynomial
regression, logistic regression, k-nearest neighbors, support vector
machines, decision trees, random forests, and ensemble methods

Reducing the dimensionality of the training data to fight the “curse of
dimensionality”

Other unsupervised learning techniques, including clustering, density
estimation, and anomaly detection

Part II, “Neural Networks and Deep Learning”, covers the following topics:

What neural nets are and what they’re good for

Building and training neural nets using TensorFlow and Keras

The most important neural net architectures: feedforward neural nets for



tabular data, convolutional nets for computer vision, recurrent nets and
long short-term memory (LSTM) nets for sequence processing,
encoder–decoders and transformers for natural language processing (and
more!), autoencoders, generative adversarial networks (GANs), and
diffusion models for generative learning

Techniques for training deep neural nets

How to build an agent (e.g., a bot in a game) that can learn good
strategies through trial and error, using reinforcement learning

Loading and preprocessing large amounts of data efficiently

Training and deploying TensorFlow models at scale

The first part is based mostly on Scikit-Learn, while the second part uses
TensorFlow and Keras.

CAUTION
Don’t jump into deep waters too hastily: while deep learning is no doubt one of the most
exciting areas in machine learning, you should master the fundamentals first. Moreover,
most problems can be solved quite well using simpler techniques such as random forests
and ensemble methods (discussed in Part I). deep learning is best suited for complex
problems such as image recognition, speech recognition, or natural language processing,
and it requires a lot of data, computing power, and patience (unless you can leverage a
pretrained neural network, as you will see).



Changes Between the First and the Second Edition
If you have already read the first edition, here are the main changes between
the first and the second edition:

All the code was migrated from TensorFlow 1.x to TensorFlow 2.x, and
I replaced most of the low-level TensorFlow code (graphs, sessions,
feature columns, estimators, and so on) with much simpler Keras code.

The second edition introduced the Data API for loading and
preprocessing large datasets, the distribution strategies API to train and
deploy TF models at scale, TF Serving and Google Cloud AI Platform to
productionize models, and (briefly) TF Transform, TFLite, TF
Addons/Seq2Seq, TensorFlow.js, and TF Agents.

It also introduced many additional ML topics, including a new chapter
on unsupervised learning, computer vision techniques for object
detection and semantic segmentation, handling sequences using
convolutional neural networks (CNNs), natural language processing
(NLP) using recurrent neural networks (RNNs), CNNs and transformers,
GANs, and more.

See https://homl.info/changes2 for more details.

https://homl.info/changes2


Changes Between the Second and the Third Edition
If you read the second edition, here are the main changes between the second
and the third edition:

All the code was updated to the latest library versions. In particular, this
third edition introduces many new additions to Scikit-Learn (e.g.,
feature name tracking, histogram-based gradient boosting, label
propagation, and more). It also introduces the Keras Tuner library for
hyperparameter tuning, Hugging Face’s Transformers library for natural
language processing, and Keras’s new preprocessing and data
augmentation layers.

Several vision models were added (ResNeXt, DenseNet, MobileNet,
CSPNet, and EfficientNet), as well as guidelines for choosing the right
one.

Chapter 15 now analyzes the Chicago bus and rail ridership data instead
of generated time series, and it introduces the ARMA model and its
variants.

Chapter 16 on natural language processing now builds an English-to-
Spanish translation model, first using an encoder–decoder RNN, then
using a transformer model. The chapter also covers language models
such as Switch Transformers, DistilBERT, T5, and PaLM (with chain-
of-thought prompting). In addition, it introduces vision transformers
(ViTs) and gives an overview of a few transformer-based visual models,
such as data-efficient image transformers (DeiTs), Perceiver, and DINO,
as well as a brief overview of some large multimodal models, including
CLIP, DALL·E, Flamingo, and GATO.

Chapter 17 on generative learning now introduces diffusion models, and
shows how to implement a denoising diffusion probabilistic model
(DDPM) from scratch.

Chapter 19 migrated from Google Cloud AI Platform to Google Vertex



AI, and uses distributed Keras Tuner for large-scale hyperparameter
search. The chapter now includes TensorFlow.js code that you can
experiment with online. It also introduces additional distributed training
techniques, including PipeDream and Pathways.

In order to allow for all the new content, some sections were moved
online, including installation instructions, kernel principal component
analysis (PCA), mathematical details of Bayesian Gaussian mixtures, TF
Agents, and former appendices A (exercise solutions), C (support vector
machine math), and E (extra neural net architectures).

See https://homl.info/changes3 for more details.

https://homl.info/changes3


Other Resources
Many excellent resources are available to learn about machine learning. For
example, Andrew Ng’s ML course on Coursera is amazing, although it
requires a significant time investment.

There are also many interesting websites about machine learning, including
Scikit-Learn’s exceptional User Guide. You may also enjoy Dataquest, which
provides very nice interactive tutorials, and ML blogs such as those listed on
Quora.

There are many other introductory books about machine learning. In
particular:

Joel Grus’s Data Science from Scratch, 2nd edition (O’Reilly), presents
the fundamentals of machine learning and implements some of the main
algorithms in pure Python (from scratch, as the name suggests).

Stephen Marsland’s Machine Learning: An Algorithmic Perspective,
2nd edition (Chapman & Hall), is a great introduction to machine
learning, covering a wide range of topics in depth with code examples in
Python (also from scratch, but using NumPy).

Sebastian Raschka’s Python Machine Learning, 3rd edition (Packt
Publishing), is also a great introduction to machine learning and
leverages Python open source libraries (Pylearn 2 and Theano).

François Chollet’s Deep Learning with Python, 2nd edition (Manning),
is a very practical book that covers a large range of topics in a clear and
concise way, as you might expect from the author of the excellent Keras
library. It favors code examples over mathematical theory.

Andriy Burkov’s The Hundred-Page Machine Learning Book (self-
published) is very short but covers an impressive range of topics,
introducing them in approachable terms without shying away from the
math equations.

https://homl.info/ngcourse
https://homl.info/skdoc
https://dataquest.io
https://homl.info/1
https://homl.info/grusbook
https://themlbook.com


Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin’s
Learning from Data (AMLBook) is a rather theoretical approach to ML
that provides deep insights, in particular on the bias/variance trade-off
(see Chapter 4).

Stuart Russell and Peter Norvig’s Artificial Intelligence: A Modern
Approach, 4th edition (Pearson), is a great (and huge) book covering an
incredible amount of topics, including machine learning. It helps put ML
into perspective.

Jeremy Howard and Sylvain Gugger’s Deep Learning for Coders with
fastai and PyTorch (O’Reilly) provides a wonderfully clear and practical
introduction to deep learning using the fastai and PyTorch libraries.

Finally, joining ML competition websites such as Kaggle.com will allow you
to practice your skills on real-world problems, with help and insights from
some of the best ML professionals out there.

https://kaggle.com/


Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

Punctuation

To avoid any confusion, punctutation appears outside of quotes
throughout the book. My apologies to the purists.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.



WARNING
This element indicates a warning or caution.



O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

https://oreilly.com
https://oreilly.com


How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://homl.info/oreilly3.

Email bookquestions@oreilly.com to comment or ask technical questions
about this book.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

https://homl.info/oreilly3
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia
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Part I. The Fundamentals of
Machine Learning



Chapter 1. The Machine Learning
Landscape

Not so long ago, if you had picked up your phone and asked it the way home,
it would have ignored you—and people would have questioned your sanity.
But machine learning is no longer science fiction: billions of people use it
every day. And the truth is it has actually been around for decades in some
specialized applications, such as optical character recognition (OCR). The
first ML application that really became mainstream, improving the lives of
hundreds of millions of people, took over the world back in the 1990s: the
spam filter. It’s not exactly a self-aware robot, but it does technically qualify
as machine learning: it has actually learned so well that you seldom need to
flag an email as spam anymore. It was followed by hundreds of ML
applications that now quietly power hundreds of products and features that
you use regularly: voice prompts, automatic translation, image search,
product recommendations, and many more.

Where does machine learning start and where does it end? What exactly does
it mean for a machine to learn something? If I download a copy of all
Wikipedia articles, has my computer really learned something? Is it suddenly
smarter? In this chapter I will start by clarifying what machine learning is and
why you may want to use it.

Then, before we set out to explore the machine learning continent, we will
take a look at the map and learn about the main regions and the most notable
landmarks: supervised versus unsupervised learning and their variants, online
versus batch learning, instance-based versus model-based learning. Then we
will look at the workflow of a typical ML project, discuss the main
challenges you may face, and cover how to evaluate and fine-tune a machine
learning system.

This chapter introduces a lot of fundamental concepts (and jargon) that every
data scientist should know by heart. It will be a high-level overview (it’s the



only chapter without much code), all rather simple, but my goal is to ensure
everything is crystal clear to you before we continue on to the rest of the
book. So grab a coffee and let’s get started!

TIP
If you are already familiar with machine learning basics, you may want to skip directly to
Chapter 2. If you are not sure, try to answer all the questions listed at the end of the
chapter before moving on.



What Is Machine Learning?
Machine learning is the science (and art) of programming computers so they
can learn from data.

Here is a slightly more general definition:

[Machine learning is the] field of study that gives computers the ability to
learn without being explicitly programmed.

—Arthur Samuel, 1959

And a more engineering-oriented one:

A computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance on T, as
measured by P, improves with experience E.

—Tom Mitchell, 1997

Your spam filter is a machine learning program that, given examples of spam
emails (flagged by users) and examples of regular emails (nonspam, also
called “ham”), can learn to flag spam. The examples that the system uses to
learn are called the training set. Each training example is called a training
instance (or sample). The part of a machine learning system that learns and
makes predictions is called a model. Neural networks and random forests are
examples of models.

In this case, the task T is to flag spam for new emails, the experience E is the
training data, and the performance measure P needs to be defined; for
example, you can use the ratio of correctly classified emails. This particular
performance measure is called accuracy, and it is often used in classification
tasks.

If you just download a copy of all Wikipedia articles, your computer has a lot
more data, but it is not suddenly better at any task. This is not machine
learning.



Why Use Machine Learning?
Consider how you would write a spam filter using traditional programming
techniques (Figure 1-1):

1. First you would examine what spam typically looks like. You might
notice that some words or phrases (such as “4U”, “credit card”, “free”,
and “amazing”) tend to come up a lot in the subject line. Perhaps you
would also notice a few other patterns in the sender’s name, the email’s
body, and other parts of the email.

2. You would write a detection algorithm for each of the patterns that you
noticed, and your program would flag emails as spam if a number of
these patterns were detected.

3. You would test your program and repeat steps 1 and 2 until it was good
enough to launch.

Figure 1-1. The traditional approach



Since the problem is difficult, your program will likely become a long list of
complex rules—pretty hard to maintain.

In contrast, a spam filter based on machine learning techniques automatically
learns which words and phrases are good predictors of spam by detecting
unusually frequent patterns of words in the spam examples compared to the
ham examples (Figure 1-2). The program is much shorter, easier to maintain,
and most likely more accurate.

Figure 1-2. The machine learning approach

What if spammers notice that all their emails containing “4U” are blocked?
They might start writing “For U” instead. A spam filter using traditional
programming techniques would need to be updated to flag “For U” emails. If
spammers keep working around your spam filter, you will need to keep
writing new rules forever.

In contrast, a spam filter based on machine learning techniques automatically
notices that “For U” has become unusually frequent in spam flagged by users,
and it starts flagging them without your intervention (Figure 1-3).



Figure 1-3. Automatically adapting to change

Another area where machine learning shines is for problems that either are
too complex for traditional approaches or have no known algorithm. For
example, consider speech recognition. Say you want to start simple and write
a program capable of distinguishing the words “one” and “two”. You might
notice that the word “two” starts with a high-pitch sound (“T”), so you could
hardcode an algorithm that measures high-pitch sound intensity and use that
to distinguish ones and twos  —but obviously this technique will not scale to
thousands of words spoken by millions of very different people in noisy
environments and in dozens of languages. The best solution (at least today) is
to write an algorithm that learns by itself, given many example recordings for
each word.

Finally, machine learning can help humans learn (Figure 1-4). ML models
can be inspected to see what they have learned (although for some models
this can be tricky). For instance, once a spam filter has been trained on
enough spam, it can easily be inspected to reveal the list of words and
combinations of words that it believes are the best predictors of spam.
Sometimes this will reveal unsuspected correlations or new trends, and
thereby lead to a better understanding of the problem. Digging into large
amounts of data to discover hidden patterns is called data mining, and
machine learning excels at it.



Figure 1-4. Machine learning can help humans learn

To summarize, machine learning is great for:

Problems for which existing solutions require a lot of fine-tuning or long
lists of rules (a machine learning model can often simplify code and
perform better than the traditional approach)

Complex problems for which using a traditional approach yields no
good solution (the best machine learning techniques can perhaps find a
solution)

Fluctuating environments (a machine learning system can easily be
retrained on new data, always keeping it up to date)

Getting insights about complex problems and large amounts of data



Examples of Applications
Let’s look at some concrete examples of machine learning tasks, along with
the techniques that can tackle them:

Analyzing images of products on a production line to automatically classify
them

This is image classification, typically performed using convolutional
neural networks (CNNs; see Chapter 14) or sometimes transformers (see
Chapter 16).

Detecting tumors in brain scans

This is semantic image segmentation, where each pixel in the image is
classified (as we want to determine the exact location and shape of
tumors), typically using CNNs or transformers.

Automatically classifying news articles

This is natural language processing (NLP), and more specifically text
classification, which can be tackled using recurrent neural networks
(RNNs) and CNNs, but transformers work even better (see Chapter 16).

Automatically flagging offensive comments on discussion forums

This is also text classification, using the same NLP tools.

Summarizing long documents automatically

This is a branch of NLP called text summarization, again using the same
tools.

Creating a chatbot or a personal assistant

This involves many NLP components, including natural language
understanding (NLU) and question-answering modules.



Forecasting your company’s revenue next year, based on many performance
metrics

This is a regression task (i.e., predicting values) that may be tackled using
any regression model, such as a linear regression or polynomial
regression model (see Chapter 4), a regression support vector machine
(see Chapter 5), a regression random forest (see Chapter 7), or an
artificial neural network (see Chapter 10). If you want to take into
account sequences of past performance metrics, you may want to use
RNNs, CNNs, or transformers (see Chapters 15 and 16).

Making your app react to voice commands

This is speech recognition, which requires processing audio samples:
since they are long and complex sequences, they are typically processed
using RNNs, CNNs, or transformers (see Chapters 15 and 16).

Detecting credit card fraud

This is anomaly detection, which can be tackled using isolation forests,
Gaussian mixture models (see Chapter 9), or autoencoders (see
Chapter 17).

Segmenting clients based on their purchases so that you can design a
different marketing strategy for each segment

This is clustering, which can be achieved using k-means, DBSCAN, and
more (see Chapter 9).

Representing a complex, high-dimensional dataset in a clear and insightful
diagram

This is data visualization, often involving dimensionality reduction
techniques (see Chapter 8).

Recommending a product that a client may be interested in, based on past
purchases



This is a recommender system. One approach is to feed past purchases
(and other information about the client) to an artificial neural network
(see Chapter 10), and get it to output the most likely next purchase. This
neural net would typically be trained on past sequences of purchases
across all clients.

Building an intelligent bot for a game

This is often tackled using reinforcement learning (RL; see Chapter 18),
which is a branch of machine learning that trains agents (such as bots) to
pick the actions that will maximize their rewards over time (e.g., a bot
may get a reward every time the player loses some life points), within a
given environment (such as the game). The famous AlphaGo program
that beat the world champion at the game of Go was built using RL.

This list could go on and on, but hopefully it gives you a sense of the
incredible breadth and complexity of the tasks that machine learning can
tackle, and the types of techniques that you would use for each task.



Types of Machine Learning Systems
There are so many different types of machine learning systems that it is
useful to classify them in broad categories, based on the following criteria:

How they are supervised during training (supervised, unsupervised,
semi-supervised, self-supervised, and others)

Whether or not they can learn incrementally on the fly (online versus
batch learning)

Whether they work by simply comparing new data points to known data
points, or instead by detecting patterns in the training data and building a
predictive model, much like scientists do (instance-based versus model-
based learning)

These criteria are not exclusive; you can combine them in any way you like.
For example, a state-of-the-art spam filter may learn on the fly using a deep
neural network model trained using human-provided examples of spam and
ham; this makes it an online, model-based, supervised learning system.

Let’s look at each of these criteria a bit more closely.



Training Supervision
ML systems can be classified according to the amount and type of
supervision they get during training. There are many categories, but we’ll
discuss the main ones: supervised learning, unsupervised learning, self-
supervised learning, semi-supervised learning, and reinforcement learning.

Supervised learning

In supervised learning, the training set you feed to the algorithm includes the
desired solutions, called labels (Figure 1-5).

Figure 1-5. A labeled training set for spam classification (an example of supervised learning)

A typical supervised learning task is classification. The spam filter is a good
example of this: it is trained with many example emails along with their class
(spam or ham), and it must learn how to classify new emails.

Another typical task is to predict a target numeric value, such as the price of
a car, given a set of features (mileage, age, brand, etc.). This sort of task is
called regression (Figure 1-6).   To train the system, you need to give it
many examples of cars, including both their features and their targets (i.e.,
their prices).

Note that some regression models can be used for classification as well, and
vice versa. For example, logistic regression is commonly used for
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classification, as it can output a value that corresponds to the probability of
belonging to a given class (e.g., 20% chance of being spam).

Figure 1-6. A regression problem: predict a value, given an input feature (there are usually multiple
input features, and sometimes multiple output values)

NOTE
The words target and label are generally treated as synonyms in supervised learning, but
target is more common in regression tasks and label is more common in classification
tasks. Moreover, features are sometimes called predictors or attributes. These terms may
refer to individual samples (e.g., “this car’s mileage feature is equal to 15,000”) or to all
samples (e.g., “the mileage feature is strongly correlated with price”).

Unsupervised learning

In unsupervised learning, as you might guess, the training data is unlabeled
(Figure 1-7). The system tries to learn without a teacher.

For example, say you have a lot of data about your blog’s visitors. You may
want to run a clustering algorithm to try to detect groups of similar visitors
(Figure 1-8). At no point do you tell the algorithm which group a visitor
belongs to: it finds those connections without your help. For example, it
might notice that 40% of your visitors are teenagers who love comic books
and generally read your blog after school, while 20% are adults who enjoy



sci-fi and who visit during the weekends. If you use a hierarchical clustering
algorithm, it may also subdivide each group into smaller groups. This may
help you target your posts for each group.

Figure 1-7. An unlabeled training set for unsupervised learning

Figure 1-8. Clustering

Visualization algorithms are also good examples of unsupervised learning:
you feed them a lot of complex and unlabeled data, and they output a 2D or
3D representation of your data that can easily be plotted (Figure 1-9). These
algorithms try to preserve as much structure as they can (e.g., trying to keep



separate clusters in the input space from overlapping in the visualization) so
that you can understand how the data is organized and perhaps identify
unsuspected patterns.

A related task is dimensionality reduction, in which the goal is to simplify the
data without losing too much information. One way to do this is to merge
several correlated features into one. For example, a car’s mileage may be
strongly correlated with its age, so the dimensionality reduction algorithm
will merge them into one feature that represents the car’s wear and tear. This
is called feature extraction.

Figure 1-9. Example of a t-SNE visualization highlighting semantic clusters

TIP
It is often a good idea to try to reduce the number of dimensions in your training data
using a dimensionality reduction algorithm before you feed it to another machine learning
algorithm (such as a supervised learning algorithm). It will run much faster, the data will
take up less disk and memory space, and in some cases it may also perform better.
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Yet another important unsupervised task is anomaly detection—for example,
detecting unusual credit card transactions to prevent fraud, catching
manufacturing defects, or automatically removing outliers from a dataset
before feeding it to another learning algorithm. The system is shown mostly
normal instances during training, so it learns to recognize them; then, when it
sees a new instance, it can tell whether it looks like a normal one or whether
it is likely an anomaly (see Figure 1-10). A very similar task is novelty
detection: it aims to detect new instances that look different from all instances
in the training set. This requires having a very “clean” training set, devoid of
any instance that you would like the algorithm to detect. For example, if you
have thousands of pictures of dogs, and 1% of these pictures represent
Chihuahuas, then a novelty detection algorithm should not treat new pictures
of Chihuahuas as novelties. On the other hand, anomaly detection algorithms
may consider these dogs as so rare and so different from other dogs that they
would likely classify them as anomalies (no offense to Chihuahuas).

Figure 1-10. Anomaly detection

Finally, another common unsupervised task is association rule learning, in
which the goal is to dig into large amounts of data and discover interesting
relations between attributes. For example, suppose you own a supermarket.
Running an association rule on your sales logs may reveal that people who
purchase barbecue sauce and potato chips also tend to buy steak. Thus, you
may want to place these items close to one another.

Semi-supervised learning

Since labeling data is usually time-consuming and costly, you will often have



plenty of unlabeled instances, and few labeled instances. Some algorithms
can deal with data that’s partially labeled. This is called semi-supervised
learning (Figure 1-11).

Figure 1-11. Semi-supervised learning with two classes (triangles and squares): the unlabeled
examples (circles) help classify a new instance (the cross) into the triangle class rather than the square

class, even though it is closer to the labeled squares

Some photo-hosting services, such as Google Photos, are good examples of
this. Once you upload all your family photos to the service, it automatically
recognizes that the same person A shows up in photos 1, 5, and 11, while
another person B shows up in photos 2, 5, and 7. This is the unsupervised
part of the algorithm (clustering). Now all the system needs is for you to tell
it who these people are. Just add one label per person  and it is able to
name everyone in every photo, which is useful for searching photos.

Most semi-supervised learning algorithms are combinations of unsupervised
and supervised algorithms. For example, a clustering algorithm may be used
to group similar instances together, and then every unlabeled instance can be
labeled with the most common label in its cluster. Once the whole dataset is
labeled, it is possible to use any supervised learning algorithm.

Self-supervised learning

Another approach to machine learning involves actually generating a fully
labeled dataset from a fully unlabeled one. Again, once the whole dataset is
labeled, any supervised learning algorithm can be used. This approach is
called self-supervised learning.

For example, if you have a large dataset of unlabeled images, you can
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randomly mask a small part of each image and then train a model to recover
the original image (Figure 1-12). During training, the masked images are
used as the inputs to the model, and the original images are used as the labels.

Figure 1-12. Self-supervised learning example: input (left) and target (right)

The resulting model may be quite useful in itself—for example, to repair
damaged images or to erase unwanted objects from pictures. But more often
than not, a model trained using self-supervised learning is not the final goal.
You’ll usually want to tweak and fine-tune the model for a slightly different
task—one that you actually care about.

For example, suppose that what you really want is to have a pet classification
model: given a picture of any pet, it will tell you what species it belongs to. If
you have a large dataset of unlabeled photos of pets, you can start by training
an image-repairing model using self-supervised learning. Once it’s
performing well, it should be able to distinguish different pet species: when it
repairs an image of a cat whose face is masked, it must know not to add a
dog’s face. Assuming your model’s architecture allows it (and most neural
network architectures do), it is then possible to tweak the model so that it
predicts pet species instead of repairing images. The final step consists of
fine-tuning the model on a labeled dataset: the model already knows what
cats, dogs, and other pet species look like, so this step is only needed so the
model can learn the mapping between the species it already knows and the



labels we expect from it.

NOTE
Transferring knowledge from one task to another is called transfer learning, and it’s one
of the most important techniques in machine learning today, especially when using deep
neural networks (i.e., neural networks composed of many layers of neurons). We will
discuss this in detail in Part II.

Some people consider self-supervised learning to be a part of unsupervised
learning, since it deals with fully unlabeled datasets. But self-supervised
learning uses (generated) labels during training, so in that regard it’s closer to
supervised learning. And the term “unsupervised learning” is generally used
when dealing with tasks like clustering, dimensionality reduction, or anomaly
detection, whereas self-supervised learning focuses on the same tasks as
supervised learning: mainly classification and regression. In short, it’s best to
treat self-supervised learning as its own category.

Reinforcement learning

Reinforcement learning is a very different beast. The learning system, called
an agent in this context, can observe the environment, select and perform
actions, and get rewards in return (or penalties in the form of negative
rewards, as shown in Figure 1-13). It must then learn by itself what is the best
strategy, called a policy, to get the most reward over time. A policy defines
what action the agent should choose when it is in a given situation.



Figure 1-13. Reinforcement learning

For example, many robots implement reinforcement learning algorithms to
learn how to walk. DeepMind’s AlphaGo program is also a good example of
reinforcement learning: it made the headlines in May 2017 when it beat Ke
Jie, the number one ranked player in the world at the time, at the game of Go.
It learned its winning policy by analyzing millions of games, and then
playing many games against itself. Note that learning was turned off during
the games against the champion; AlphaGo was just applying the policy it had
learned. As you will see in the next section, this is called offline learning.



Batch Versus Online Learning
Another criterion used to classify machine learning systems is whether or not
the system can learn incrementally from a stream of incoming data.

Batch learning

In batch learning, the system is incapable of learning incrementally: it must
be trained using all the available data. This will generally take a lot of time
and computing resources, so it is typically done offline. First the system is
trained, and then it is launched into production and runs without learning
anymore; it just applies what it has learned. This is called offline learning.

Unfortunately, a model’s performance tends to decay slowly over time,
simply because the world continues to evolve while the model remains
unchanged. This phenomenon is often called model rot or data drift. The
solution is to regularly retrain the model on up-to-date data. How often you
need to do that depends on the use case: if the model classifies pictures of
cats and dogs, its performance will decay very slowly, but if the model deals
with fast-evolving systems, for example making predictions on the financial
market, then it is likely to decay quite fast.

WARNING
Even a model trained to classify pictures of cats and dogs may need to be retrained
regularly, not because cats and dogs will mutate overnight, but because cameras keep
changing, along with image formats, sharpness, brightness, and size ratios. Moreover,
people may love different breeds next year, or they may decide to dress their pets with tiny
hats—who knows?

If you want a batch learning system to know about new data (such as a new
type of spam), you need to train a new version of the system from scratch on
the full dataset (not just the new data, but also the old data), then replace the
old model with the new one. Fortunately, the whole process of training,
evaluating, and launching a machine learning system can be automated fairly



easily (as we saw in Figure 1-3), so even a batch learning system can adapt to
change. Simply update the data and train a new version of the system from
scratch as often as needed.

This solution is simple and often works fine, but training using the full set of
data can take many hours, so you would typically train a new system only
every 24 hours or even just weekly. If your system needs to adapt to rapidly
changing data (e.g., to predict stock prices), then you need a more reactive
solution.

Also, training on the full set of data requires a lot of computing resources
(CPU, memory space, disk space, disk I/O, network I/O, etc.). If you have a
lot of data and you automate your system to train from scratch every day, it
will end up costing you a lot of money. If the amount of data is huge, it may
even be impossible to use a batch learning algorithm.

Finally, if your system needs to be able to learn autonomously and it has
limited resources (e.g., a smartphone application or a rover on Mars), then
carrying around large amounts of training data and taking up a lot of
resources to train for hours every day is a showstopper.

A better option in all these cases is to use algorithms that are capable of
learning incrementally.

Online learning

In online learning, you train the system incrementally by feeding it data
instances sequentially, either individually or in small groups called mini-
batches. Each learning step is fast and cheap, so the system can learn about
new data on the fly, as it arrives (see Figure 1-14).



Figure 1-14. In online learning, a model is trained and launched into production, and then it keeps
learning as new data comes in

Online learning is useful for systems that need to adapt to change extremely
rapidly (e.g., to detect new patterns in the stock market). It is also a good
option if you have limited computing resources; for example, if the model is
trained on a mobile device.

Additionally, online learning algorithms can be used to train models on huge
datasets that cannot fit in one machine’s main memory (this is called out-of-
core learning). The algorithm loads part of the data, runs a training step on
that data, and repeats the process until it has run on all of the data (see
Figure 1-15).



Figure 1-15. Using online learning to handle huge datasets

One important parameter of online learning systems is how fast they should
adapt to changing data: this is called the learning rate. If you set a high
learning rate, then your system will rapidly adapt to new data, but it will also
tend to quickly forget the old data (and you don’t want a spam filter to flag
only the latest kinds of spam it was shown). Conversely, if you set a low
learning rate, the system will have more inertia; that is, it will learn more
slowly, but it will also be less sensitive to noise in the new data or to
sequences of nonrepresentative data points (outliers).

WARNING
Out-of-core learning is usually done offline (i.e., not on the live system), so online
learning can be a confusing name. Think of it as incremental learning.

A big challenge with online learning is that if bad data is fed to the system,
the system’s performance will decline, possibly quickly (depending on the



data quality and learning rate). If it’s a live system, your clients will notice.
For example, bad data could come from a bug (e.g., a malfunctioning sensor
on a robot), or it could come from someone trying to game the system (e.g.,
spamming a search engine to try to rank high in search results). To reduce
this risk, you need to monitor your system closely and promptly switch
learning off (and possibly revert to a previously working state) if you detect a
drop in performance. You may also want to monitor the input data and react
to abnormal data; for example, using an anomaly detection algorithm (see
Chapter 9).



Instance-Based Versus Model-Based Learning
One more way to categorize machine learning systems is by how they
generalize. Most machine learning tasks are about making predictions. This
means that given a number of training examples, the system needs to be able
to make good predictions for (generalize to) examples it has never seen
before. Having a good performance measure on the training data is good, but
insufficient; the true goal is to perform well on new instances.

There are two main approaches to generalization: instance-based learning and
model-based learning.

Instance-based learning

Possibly the most trivial form of learning is simply to learn by heart. If you
were to create a spam filter this way, it would just flag all emails that are
identical to emails that have already been flagged by users—not the worst
solution, but certainly not the best.

Instead of just flagging emails that are identical to known spam emails, your
spam filter could be programmed to also flag emails that are very similar to
known spam emails. This requires a measure of similarity between two
emails. A (very basic) similarity measure between two emails could be to
count the number of words they have in common. The system would flag an
email as spam if it has many words in common with a known spam email.

This is called instance-based learning: the system learns the examples by
heart, then generalizes to new cases by using a similarity measure to compare
them to the learned examples (or a subset of them). For example, in Figure 1-
16 the new instance would be classified as a triangle because the majority of
the most similar instances belong to that class.



Figure 1-16. Instance-based learning

Model-based learning and a typical machine learning workflow

Another way to generalize from a set of examples is to build a model of these
examples and then use that model to make predictions. This is called model-
based learning (Figure 1-17).

Figure 1-17. Model-based learning

For example, suppose you want to know if money makes people happy, so
you download the Better Life Index data from the OECD’s website and
World Bank stats about gross domestic product (GDP) per capita. Then you
join the tables and sort by GDP per capita. Table 1-1 shows an excerpt of

https://www.oecdbetterlifeindex.org
https://ourworldindata.org


what you get.

Table 1-1. Does money make people happier?

Country GDP per capita (USD) Life satisfaction

Turkey 28,384 5.5

Hungary 31,008 5.6

France 42,026 6.5

United States 60,236 6.9

New Zealand 42,404 7.3

Australia 48,698 7.3

Denmark 55,938 7.6

Let’s plot the data for these countries (Figure 1-18).

Figure 1-18. Do you see a trend here?

There does seem to be a trend here! Although the data is noisy (i.e., partly



random), it looks like life satisfaction goes up more or less linearly as the
country’s GDP per capita increases. So you decide to model life satisfaction
as a linear function of GDP per capita. This step is called model selection:
you selected a linear model of life satisfaction with just one attribute, GDP
per capita (Equation 1-1).

Equation 1-1. A simple linear model

life_satisfaction = θ 0 + θ 1 × GDP_per_capita

This model has two model parameters, θ  and θ .  By tweaking these
parameters, you can make your model represent any linear function, as shown
in Figure 1-19.

Figure 1-19. A few possible linear models

Before you can use your model, you need to define the parameter values θ
and θ . How can you know which values will make your model perform best?
To answer this question, you need to specify a performance measure. You
can either define a utility function (or fitness function) that measures how
good your model is, or you can define a cost function that measures how bad
it is. For linear regression problems, people typically use a cost function that
measures the distance between the linear model’s predictions and the training
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examples; the objective is to minimize this distance.

This is where the linear regression algorithm comes in: you feed it your
training examples, and it finds the parameters that make the linear model fit
best to your data. This is called training the model. In our case, the algorithm
finds that the optimal parameter values are θ  = 3.75 and θ  = 6.78 × 10 .

WARNING
Confusingly, the word “model” can refer to a type of model (e.g., linear regression), to a
fully specified model architecture (e.g., linear regression with one input and one output),
or to the final trained model ready to be used for predictions (e.g., linear regression with
one input and one output, using θ  = 3.75 and θ  = 6.78 × 10 ). Model selection consists
in choosing the type of model and fully specifying its architecture. Training a model
means running an algorithm to find the model parameters that will make it best fit the
training data, and hopefully make good predictions on new data.

Now the model fits the training data as closely as possible (for a linear
model), as you can see in Figure 1-20.

Figure 1-20. The linear model that fits the training data best

You are finally ready to run the model to make predictions. For example, say
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you want to know how happy Cypriots are, and the OECD data does not have
the answer. Fortunately, you can use your model to make a good prediction:
you look up Cyprus’s GDP per capita, find $37,655, and then apply your
model and find that life satisfaction is likely to be somewhere around 3.75 +
37,655 × 6.78 × 10  = 6.30.

To whet your appetite, Example 1-1 shows the Python code that loads the
data, separates the inputs X from the labels y, creates a scatterplot for
visualization, and then trains a linear model and makes a prediction.
Example 1-1. Training and running a linear model using Scikit-Learn
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression

# Download and prepare the data
data_root = "https://github.com/ageron/data/raw/main/"
lifesat = pd.read_csv(data_root + "lifesat/lifesat.csv")
X = lifesat[["GDP per capita (USD)"]].values
y = lifesat[["Life satisfaction"]].values

# Visualize the data
lifesat.plot(kind='scatter', grid=True,
             x="GDP per capita (USD)", y="Life satisfaction")
plt.axis([23_500, 62_500, 4, 9])
plt.show()

# Select a linear model
model = LinearRegression()

# Train the model
model.fit(X, y)

# Make a prediction for Cyprus
X_new = [[37_655.2]]  # Cyprus' GDP per capita in 2020
print(model.predict(X_new)) # output: [[6.30165767]]

NOTE
If you had used an instance-based learning algorithm instead, you would have found that
Israel has the closest GDP per capita to that of Cyprus ($38,341), and since the OECD
data tells us that Israelis’ life satisfaction is 7.2, you would have predicted a life
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satisfaction of 7.2 for Cyprus. If you zoom out a bit and look at the two next-closest
countries, you will find Lithuania and Slovenia, both with a life satisfaction of 5.9.
Averaging these three values, you get 6.33, which is pretty close to your model-based
prediction. This simple algorithm is called k-nearest neighbors regression (in this
example, k = 3).

Replacing the linear regression model with k-nearest neighbors regression in the previous
code is as easy as replacing these lines:

from sklearn.linear_model import LinearRegression
model = LinearRegression()

with these two:

from sklearn.neighbors import KNeighborsRegressor
model = KNeighborsRegressor(n_neighbors=3)

If all went well, your model will make good predictions. If not, you may need
to use more attributes (employment rate, health, air pollution, etc.), get more
or better-quality training data, or perhaps select a more powerful model (e.g.,
a polynomial regression model).

In summary:

You studied the data.

You selected a model.

You trained it on the training data (i.e., the learning algorithm searched
for the model parameter values that minimize a cost function).

Finally, you applied the model to make predictions on new cases (this is
called inference), hoping that this model will generalize well.

This is what a typical machine learning project looks like. In Chapter 2 you
will experience this firsthand by going through a project end to end.

We have covered a lot of ground so far: you now know what machine
learning is really about, why it is useful, what some of the most common



categories of ML systems are, and what a typical project workflow looks like.
Now let’s look at what can go wrong in learning and prevent you from
making accurate predictions.



Main Challenges of Machine Learning
In short, since your main task is to select a model and train it on some data,
the two things that can go wrong are “bad model” and “bad data”. Let’s start
with examples of bad data.



Insufficient Quantity of Training Data
For a toddler to learn what an apple is, all it takes is for you to point to an
apple and say “apple” (possibly repeating this procedure a few times). Now
the child is able to recognize apples in all sorts of colors and shapes. Genius.

Machine learning is not quite there yet; it takes a lot of data for most machine
learning algorithms to work properly. Even for very simple problems you
typically need thousands of examples, and for complex problems such as
image or speech recognition you may need millions of examples (unless you
can reuse parts of an existing model).

THE UNREASONABLE EFFECTIVENESS OF DATA

In a famous paper published in 2001, Microsoft researchers Michele
Banko and Eric Brill showed that very different machine learning
algorithms, including fairly simple ones, performed almost identically
well on a complex problem of natural language disambiguation   once
they were given enough data (as you can see in Figure 1-21).

As the authors put it, “these results suggest that we may want to
reconsider the trade-off between spending time and money on algorithm
development versus spending it on corpus development”.

The idea that data matters more than algorithms for complex problems
was further popularized by Peter Norvig et al. in a paper titled “The
Unreasonable Effectiveness of Data”, published in 2009.  It should be
noted, however, that small and medium-sized datasets are still very
common, and it is not always easy or cheap to get extra training data —
so don’t abandon algorithms just yet.
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Figure 1-21. The importance of data versus algorithms 8



Nonrepresentative Training Data
In order to generalize well, it is crucial that your training data be
representative of the new cases you want to generalize to. This is true
whether you use instance-based learning or model-based learning.

For example, the set of countries you used earlier for training the linear
model was not perfectly representative; it did not contain any country with a
GDP per capita lower than $23,500 or higher than $62,500. Figure 1-22
shows what the data looks like when you add such countries.

If you train a linear model on this data, you get the solid line, while the old
model is represented by the dotted line. As you can see, not only does adding
a few missing countries significantly alter the model, but it makes it clear that
such a simple linear model is probably never going to work well. It seems
that very rich countries are not happier than moderately rich countries (in
fact, they seem slightly unhappier!), and conversely some poor countries
seem happier than many rich countries.

By using a nonrepresentative training set, you trained a model that is unlikely
to make accurate predictions, especially for very poor and very rich countries.

Figure 1-22. A more representative training sample

It is crucial to use a training set that is representative of the cases you want to
generalize to. This is often harder than it sounds: if the sample is too small,
you will have sampling noise (i.e., nonrepresentative data as a result of
chance), but even very large samples can be nonrepresentative if the sampling



method is flawed. This is called sampling bias.

EXAMPLES OF SAMPLING BIAS

Perhaps the most famous example of sampling bias happened during the
US presidential election in 1936, which pitted Landon against Roosevelt:
the Literary Digest conducted a very large poll, sending mail to about 10
million people. It got 2.4 million answers, and predicted with high
confidence that Landon would get 57% of the votes. Instead, Roosevelt
won with 62% of the votes. The flaw was in the Literary Digest’s
sampling method:

First, to obtain the addresses to send the polls to, the Literary Digest
used telephone directories, lists of magazine subscribers, club
membership lists, and the like. All of these lists tended to favor
wealthier people, who were more likely to vote Republican (hence
Landon).

Second, less than 25% of the people who were polled answered.
Again this introduced a sampling bias, by potentially ruling out
people who didn’t care much about politics, people who didn’t like
the Literary Digest, and other key groups. This is a special type of
sampling bias called nonresponse bias.

Here is another example: say you want to build a system to recognize
funk music videos. One way to build your training set is to search for
“funk music” on YouTube and use the resulting videos. But this assumes
that YouTube’s search engine returns a set of videos that are
representative of all the funk music videos on YouTube. In reality, the
search results are likely to be biased toward popular artists (and if you
live in Brazil you will get a lot of “funk carioca” videos, which sound
nothing like James Brown). On the other hand, how else can you get a
large training set?



Poor-Quality Data
Obviously, if your training data is full of errors, outliers, and noise (e.g., due
to poor-quality measurements), it will make it harder for the system to detect
the underlying patterns, so your system is less likely to perform well. It is
often well worth the effort to spend time cleaning up your training data. The
truth is, most data scientists spend a significant part of their time doing just
that. The following are a couple examples of when you’d want to clean up
training data:

If some instances are clearly outliers, it may help to simply discard them
or try to fix the errors manually.

If some instances are missing a few features (e.g., 5% of your customers
did not specify their age), you must decide whether you want to ignore
this attribute altogether, ignore these instances, fill in the missing values
(e.g., with the median age), or train one model with the feature and one
model without it.



Irrelevant Features
As the saying goes: garbage in, garbage out. Your system will only be
capable of learning if the training data contains enough relevant features and
not too many irrelevant ones. A critical part of the success of a machine
learning project is coming up with a good set of features to train on. This
process, called feature engineering, involves the following steps:

Feature selection (selecting the most useful features to train on among
existing features)

Feature extraction (combining existing features to produce a more
useful one —as we saw earlier, dimensionality reduction algorithms
can help)

Creating new features by gathering new data

Now that we have looked at many examples of bad data, let’s look at a
couple examples of bad algorithms.



Overfitting the Training Data
Say you are visiting a foreign country and the taxi driver rips you off. You
might be tempted to say that all taxi drivers in that country are thieves.
Overgeneralizing is something that we humans do all too often, and
unfortunately machines can fall into the same trap if we are not careful. In
machine learning this is called overfitting: it means that the model performs
well on the training data, but it does not generalize well.

Figure 1-23 shows an example of a high-degree polynomial life satisfaction
model that strongly overfits the training data. Even though it performs much
better on the training data than the simple linear model, would you really
trust its predictions?

Figure 1-23. Overfitting the training data

Complex models such as deep neural networks can detect subtle patterns in
the data, but if the training set is noisy, or if it is too small, which introduces
sampling noise, then the model is likely to detect patterns in the noise itself
(as in the taxi driver example). Obviously these patterns will not generalize to
new instances. For example, say you feed your life satisfaction model many
more attributes, including uninformative ones such as the country’s name. In
that case, a complex model may detect patterns like the fact that all countries
in the training data with a w in their name have a life satisfaction greater than
7: New Zealand (7.3), Norway (7.6), Sweden (7.3), and Switzerland (7.5).
How confident are you that the w-satisfaction rule generalizes to Rwanda or
Zimbabwe? Obviously this pattern occurred in the training data by pure



chance, but the model has no way to tell whether a pattern is real or simply
the result of noise in the data.

WARNING
Overfitting happens when the model is too complex relative to the amount and noisiness
of the training data. Here are possible solutions:

Simplify the model by selecting one with fewer parameters (e.g., a linear model
rather than a high-degree polynomial model), by reducing the number of attributes
in the training data, or by constraining the model.

Gather more training data.

Reduce the noise in the training data (e.g., fix data errors and remove outliers).

Constraining a model to make it simpler and reduce the risk of overfitting is
called regularization. For example, the linear model we defined earlier has
two parameters, θ  and θ . This gives the learning algorithm two degrees of
freedom to adapt the model to the training data: it can tweak both the height
(θ ) and the slope (θ ) of the line. If we forced θ  = 0, the algorithm would
have only one degree of freedom and would have a much harder time fitting
the data properly: all it could do is move the line up or down to get as close
as possible to the training instances, so it would end up around the mean. A
very simple model indeed! If we allow the algorithm to modify θ  but we
force it to keep it small, then the learning algorithm will effectively have
somewhere in between one and two degrees of freedom. It will produce a
model that’s simpler than one with two degrees of freedom, but more
complex than one with just one. You want to find the right balance between
fitting the training data perfectly and keeping the model simple enough to
ensure that it will generalize well.

Figure 1-24 shows three models. The dotted line represents the original
model that was trained on the countries represented as circles (without the
countries represented as squares), the solid line is our second model trained
with all countries (circles and squares), and the dashed line is a model trained
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with the same data as the first model but with a regularization constraint. You
can see that regularization forced the model to have a smaller slope: this
model does not fit the training data (circles) as well as the first model, but it
actually generalizes better to new examples that it did not see during training
(squares).

Figure 1-24. Regularization reduces the risk of overfitting

The amount of regularization to apply during learning can be controlled by a
hyperparameter. A hyperparameter is a parameter of a learning algorithm
(not of the model). As such, it is not affected by the learning algorithm itself;
it must be set prior to training and remains constant during training. If you set
the regularization hyperparameter to a very large value, you will get an
almost flat model (a slope close to zero); the learning algorithm will almost
certainly not overfit the training data, but it will be less likely to find a good
solution. Tuning hyperparameters is an important part of building a machine
learning system (you will see a detailed example in the next chapter).



Underfitting the Training Data
As you might guess, underfitting is the opposite of overfitting: it occurs when
your model is too simple to learn the underlying structure of the data. For
example, a linear model of life satisfaction is prone to underfit; reality is just
more complex than the model, so its predictions are bound to be inaccurate,
even on the training examples.

Here are the main options for fixing this problem:

Select a more powerful model, with more parameters.

Feed better features to the learning algorithm (feature engineering).

Reduce the constraints on the model (for example by reducing the
regularization hyperparameter).



Stepping Back
By now you know a lot about machine learning. However, we went through
so many concepts that you may be feeling a little lost, so let’s step back and
look at the big picture:

Machine learning is about making machines get better at some task by
learning from data, instead of having to explicitly code rules.

There are many different types of ML systems: supervised or not, batch
or online, instance-based or model-based.

In an ML project you gather data in a training set, and you feed the
training set to a learning algorithm. If the algorithm is model-based, it
tunes some parameters to fit the model to the training set (i.e., to make
good predictions on the training set itself), and then hopefully it will be
able to make good predictions on new cases as well. If the algorithm is
instance-based, it just learns the examples by heart and generalizes to
new instances by using a similarity measure to compare them to the
learned instances.

The system will not perform well if your training set is too small, or if
the data is not representative, is noisy, or is polluted with irrelevant
features (garbage in, garbage out). Lastly, your model needs to be
neither too simple (in which case it will underfit) nor too complex (in
which case it will overfit).

There’s just one last important topic to cover: once you have trained a model,
you don’t want to just “hope” it generalizes to new cases. You want to
evaluate it and fine-tune it if necessary. Let’s see how to do that.



Testing and Validating
The only way to know how well a model will generalize to new cases is to
actually try it out on new cases. One way to do that is to put your model in
production and monitor how well it performs. This works well, but if your
model is horribly bad, your users will complain—not the best idea.

A better option is to split your data into two sets: the training set and the test
set. As these names imply, you train your model using the training set, and
you test it using the test set. The error rate on new cases is called the
generalization error (or out-of-sample error), and by evaluating your model
on the test set, you get an estimate of this error. This value tells you how well
your model will perform on instances it has never seen before.

If the training error is low (i.e., your model makes few mistakes on the
training set) but the generalization error is high, it means that your model is
overfitting the training data.

TIP
It is common to use 80% of the data for training and hold out 20% for testing. However,
this depends on the size of the dataset: if it contains 10 million instances, then holding out
1% means your test set will contain 100,000 instances, probably more than enough to get a
good estimate of the generalization error.



Hyperparameter Tuning and Model Selection
Evaluating a model is simple enough: just use a test set. But suppose you are
hesitating between two types of models (say, a linear model and a polynomial
model): how can you decide between them? One option is to train both and
compare how well they generalize using the test set.

Now suppose that the linear model generalizes better, but you want to apply
some regularization to avoid overfitting. The question is, how do you choose
the value of the regularization hyperparameter? One option is to train 100
different models using 100 different values for this hyperparameter. Suppose
you find the best hyperparameter value that produces a model with the lowest
generalization error —say, just 5% error. You launch this model into
production, but unfortunately it does not perform as well as expected and
produces 15% errors. What just happened?

The problem is that you measured the generalization error multiple times on
the test set, and you adapted the model and hyperparameters to produce the
best model for that particular set. This means the model is unlikely to
perform as well on new data.

A common solution to this problem is called holdout validation (Figure 1-
25): you simply hold out part of the training set to evaluate several candidate
models and select the best one. The new held-out set is called the validation
set (or the development set, or dev set). More specifically, you train multiple
models with various hyperparameters on the reduced training set (i.e., the full
training set minus the validation set), and you select the model that performs
best on the validation set. After this holdout validation process, you train the
best model on the full training set (including the validation set), and this
gives you the final model. Lastly, you evaluate this final model on the test set
to get an estimate of the generalization error.



Figure 1-25. Model selection using holdout validation

This solution usually works quite well. However, if the validation set is too
small, then the model evaluations will be imprecise: you may end up
selecting a suboptimal model by mistake. Conversely, if the validation set is
too large, then the remaining training set will be much smaller than the full
training set. Why is this bad? Well, since the final model will be trained on
the full training set, it is not ideal to compare candidate models trained on a
much smaller training set. It would be like selecting the fastest sprinter to
participate in a marathon. One way to solve this problem is to perform
repeated cross-validation, using many small validation sets. Each model is
evaluated once per validation set after it is trained on the rest of the data. By
averaging out all the evaluations of a model, you get a much more accurate
measure of its performance. There is a drawback, however: the training time
is multiplied by the number of validation sets.



Data Mismatch
In some cases, it’s easy to get a large amount of data for training, but this
data probably won’t be perfectly representative of the data that will be used
in production. For example, suppose you want to create a mobile app to take
pictures of flowers and automatically determine their species. You can easily
download millions of pictures of flowers on the web, but they won’t be
perfectly representative of the pictures that will actually be taken using the
app on a mobile device. Perhaps you only have 1,000 representative pictures
(i.e., actually taken with the app).

In this case, the most important rule to remember is that both the validation
set and the test set must be as representative as possible of the data you
expect to use in production, so they should be composed exclusively of
representative pictures: you can shuffle them and put half in the validation set
and half in the test set (making sure that no duplicates or near-duplicates end
up in both sets). After training your model on the web pictures, if you
observe that the performance of the model on the validation set is
disappointing, you will not know whether this is because your model has
overfit the training set, or whether this is just due to the mismatch between
the web pictures and the mobile app pictures.

One solution is to hold out some of the training pictures (from the web) in yet
another set that Andrew Ng dubbed the train-dev set (Figure 1-26). After the
model is trained (on the training set, not on the train-dev set), you can
evaluate it on the train-dev set. If the model performs poorly, then it must
have overfit the training set, so you should try to simplify or regularize the
model, get more training data, and clean up the training data. But if it
performs well on the train-dev set, then you can evaluate the model on the
dev set. If it performs poorly, then the problem must be coming from the data
mismatch. You can try to tackle this problem by preprocessing the web
images to make them look more like the pictures that will be taken by the
mobile app, and then retraining the model. Once you have a model that
performs well on both the train-dev set and the dev set, you can evaluate it
one last time on the test set to know how well it is likely to perform in



production.

Figure 1-26. When real data is scarce (right), you may use similar abundant data (left) for training and
hold out some of it in a train-dev set to evaluate overfitting; the real data is then used to evaluate data

mismatch (dev set) and to evaluate the final model’s performance (test set)

NO FREE LUNCH THEOREM

A model is a simplified representation of the data. The simplifications are
meant to discard the superfluous details that are unlikely to generalize to
new instances. When you select a particular type of model, you are
implicitly making assumptions about the data. For example, if you choose
a linear model, you are implicitly assuming that the data is fundamentally
linear and that the distance between the instances and the straight line is
just noise, which can safely be ignored.

In a famous 1996 paper,  David Wolpert demonstrated that if you make
absolutely no assumption about the data, then there is no reason to prefer
one model over any other. This is called the No Free Lunch (NFL)
theorem. For some datasets the best model is a linear model, while for
other datasets it is a neural network. There is no model that is a priori
guaranteed to work better (hence the name of the theorem). The only way
to know for sure which model is best is to evaluate them all. Since this is
not possible, in practice you make some reasonable assumptions about
the data and evaluate only a few reasonable models. For example, for
simple tasks you may evaluate linear models with various levels of
regularization, and for a complex problem you may evaluate various
neural networks.
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Exercises
In this chapter we have covered some of the most important concepts in
machine learning. In the next chapters we will dive deeper and write more
code, but before we do, make sure you can answer the following questions:

1. How would you define machine learning?

2. Can you name four types of applications where it shines?

3. What is a labeled training set?

4. What are the two most common supervised tasks?

5. Can you name four common unsupervised tasks?

6. What type of algorithm would you use to allow a robot to walk in
various unknown terrains?

7. What type of algorithm would you use to segment your customers into
multiple groups?

8. Would you frame the problem of spam detection as a supervised
learning problem or an unsupervised learning problem?

9. What is an online learning system?

10. What is out-of-core learning?

11. What type of algorithm relies on a similarity measure to make
predictions?

12. What is the difference between a model parameter and a model
hyperparameter?

13. What do model-based algorithms search for? What is the most common
strategy they use to succeed? How do they make predictions?

14. Can you name four of the main challenges in machine learning?



15. If your model performs great on the training data but generalizes poorly
to new instances, what is happening? Can you name three possible
solutions?

16. What is a test set, and why would you want to use it?

17. What is the purpose of a validation set?

18. What is the train-dev set, when do you need it, and how do you use it?

19. What can go wrong if you tune hyperparameters using the test set?

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.

1  Fun fact: this odd-sounding name is a statistics term introduced by Francis Galton while he was
studying the fact that the children of tall people tend to be shorter than their parents. Since the
children were shorter, he called this regression to the mean. This name was then applied to the
methods he used to analyze correlations between variables.

2  Notice how animals are rather well separated from vehicles and how horses are close to deer but
far from birds. Figure reproduced with permission from Richard Socher et al., “Zero-Shot
Learning Through Cross-Modal Transfer”, Proceedings of the 26th International Conference on
Neural Information Processing Systems 1 (2013): 935–943.

3  That’s when the system works perfectly. In practice it often creates a few clusters per person,
and sometimes mixes up two people who look alike, so you may need to provide a few labels per
person and manually clean up some clusters.

4  By convention, the Greek letter θ (theta) is frequently used to represent model parameters.

5  It’s OK if you don’t understand all the code yet; I will present Scikit-Learn in the following
chapters.

6  For example, knowing whether to write “to”, “two”, or “too”, depending on the context.

7  Peter Norvig et al., “The Unreasonable Effectiveness of Data”, IEEE Intelligent Systems 24, no.
2 (2009): 8–12.

8  Figure reproduced with permission from Michele Banko and Eric Brill, “Scaling to Very Very
Large Corpora for Natural Language Disambiguation”, Proceedings of the 39th Annual Meeting
of the Association for Computational Linguistics (2001): 26–33.

9  David Wolpert, “The Lack of A Priori Distinctions Between Learning Algorithms”, Neural
Computation 8, no. 7 (1996): 1341–1390.

https://homl.info/colab3


Chapter 2. End-to-End Machine
Learning Project

In this chapter you will work through an example project end to end,
pretending to be a recently hired data scientist at a real estate company. This
example is fictitious; the goal is to illustrate the main steps of a machine
learning project, not to learn anything about the real estate business. Here are
the main steps we will walk through:

1. Look at the big picture.

2. Get the data.

3. Explore and visualize the data to gain insights.

4. Prepare the data for machine learning algorithms.

5. Select a model and train it.

6. Fine-tune your model.

7. Present your solution.

8. Launch, monitor, and maintain your system.



Working with Real Data
When you are learning about machine learning, it is best to experiment with
real-world data, not artificial datasets. Fortunately, there are thousands of
open datasets to choose from, ranging across all sorts of domains. Here are a
few places you can look to get data:

Popular open data repositories:

OpenML.org

Kaggle.com

PapersWithCode.com

UC Irvine Machine Learning Repository

Amazon’s AWS datasets

TensorFlow datasets

Meta portals (they list open data repositories):

DataPortals.org

OpenDataMonitor.eu

Other pages listing many popular open data repositories:

Wikipedia’s list of machine learning datasets

Quora.com

The datasets subreddit

In this chapter we’ll use the California Housing Prices dataset from the
StatLib repository  (see Figure 2-1). This dataset is based on data from the
1990 California census. It is not exactly recent (a nice house in the Bay Area
was still affordable at the time), but it has many qualities for learning, so we
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will pretend it is recent data. For teaching purposes I’ve added a categorical
attribute and removed a few features.

Figure 2-1. California housing prices



Look at the Big Picture
Welcome to the Machine Learning Housing Corporation! Your first task is to
use California census data to build a model of housing prices in the state.
This data includes metrics such as the population, median income, and
median housing price for each block group in California. Block groups are
the smallest geographical unit for which the US Census Bureau publishes
sample data (a block group typically has a population of 600 to 3,000
people). I will call them “districts” for short.

Your model should learn from this data and be able to predict the median
housing price in any district, given all the other metrics.

TIP
Since you are a well-organized data scientist, the first thing you should do is pull out your
machine learning project checklist. You can start with the one in Appendix A; it should
work reasonably well for most machine learning projects, but make sure to adapt it to your
needs. In this chapter we will go through many checklist items, but we will also skip a
few, either because they are self-explanatory or because they will be discussed in later
chapters.



Frame the Problem
The first question to ask your boss is what exactly the business objective is.
Building a model is probably not the end goal. How does the company expect
to use and benefit from this model? Knowing the objective is important
because it will determine how you frame the problem, which algorithms you
will select, which performance measure you will use to evaluate your model,
and how much effort you will spend tweaking it.

Your boss answers that your model’s output (a prediction of a district’s
median housing price) will be fed to another machine learning system (see
Figure 2-2), along with many other signals.   This downstream system will
determine whether it is worth investing in a given area. Getting this right is
critical, as it directly affects revenue.

The next question to ask your boss is what the current solution looks like (if
any). The current situation will often give you a reference for performance, as
well as insights on how to solve the problem. Your boss answers that the
district housing prices are currently estimated manually by experts: a team
gathers up-to-date information about a district, and when they cannot get the
median housing price, they estimate it using complex rules.

Figure 2-2. A machine learning pipeline for real estate investments

This is costly and time-consuming, and their estimates are not great; in cases
where they manage to find out the actual median housing price, they often
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realize that their estimates were off by more than 30%. This is why the
company thinks that it would be useful to train a model to predict a district’s
median housing price, given other data about that district. The census data
looks like a great dataset to exploit for this purpose, since it includes the
median housing prices of thousands of districts, as well as other data.

PIPELINES

A sequence of data processing components is called a data pipeline.
Pipelines are very common in machine learning systems, since there is a
lot of data to manipulate and many data transformations to apply.

Components typically run asynchronously. Each component pulls in a
large amount of data, processes it, and spits out the result in another data
store. Then, some time later, the next component in the pipeline pulls in
this data and spits out its own output. Each component is fairly self-
contained: the interface between components is simply the data store.
This makes the system simple to grasp (with the help of a data flow
graph), and different teams can focus on different components. Moreover,
if a component breaks down, the downstream components can often
continue to run normally (at least for a while) by just using the last output
from the broken component. This makes the architecture quite robust.

On the other hand, a broken component can go unnoticed for some time if
proper monitoring is not implemented. The data gets stale and the overall
system’s performance drops.

With all this information, you are now ready to start designing your system.
First, determine what kind of training supervision the model will need: is it a
supervised, unsupervised, semi-supervised, self-supervised, or reinforcement
learning task? And is it a classification task, a regression task, or something
else? Should you use batch learning or online learning techniques? Before
you read on, pause and try to answer these questions for yourself.

Have you found the answers? Let’s see. This is clearly a typical supervised
learning task, since the model can be trained with labeled examples (each



instance comes with the expected output, i.e., the district’s median housing
price). It is a typical regression task, since the model will be asked to predict
a value. More specifically, this is a multiple regression problem, since the
system will use multiple features to make a prediction (the district’s
population, the median income, etc.). It is also a univariate regression
problem, since we are only trying to predict a single value for each district. If
we were trying to predict multiple values per district, it would be a
multivariate regression problem. Finally, there is no continuous flow of data
coming into the system, there is no particular need to adjust to changing data
rapidly, and the data is small enough to fit in memory, so plain batch learning
should do just fine.

TIP
If the data were huge, you could either split your batch learning work across multiple
servers (using the MapReduce technique) or use an online learning technique.



Select a Performance Measure
Your next step is to select a performance measure. A typical performance
measure for regression problems is the root mean square error (RMSE). It
gives an idea of how much error the system typically makes in its predictions,
with a higher weight given to large errors. Equation 2-1 shows the
mathematical formula to compute the RMSE.

Equation 2-1. Root mean square error (RMSE)

RMSE ( X , h ) = 1 m ∑ i=1 m h(x (i) )-y (i) 2

NOTATIONS

This equation introduces several very common machine learning
notations that I will use throughout this book:

m is the number of instances in the dataset you are measuring the
RMSE on.

For example, if you are evaluating the RMSE on a validation
set of 2,000 districts, then m = 2,000.

x  is a vector of all the feature values (excluding the label) of the i
instance in the dataset, and y  is its label (the desired output value
for that instance).

For example, if the first district in the dataset is located at
longitude –118.29°, latitude 33.91°, and it has 1,416 inhabitants
with a median income of $38,372, and the median house value
is $156,400 (ignoring other features for now), then:

x (1) = - 118.29 33.91 1,416 38,372

and:

y (1) = 156,400

(i) th

(i)



X is a matrix containing all the feature values (excluding labels) of
all instances in the dataset. There is one row per instance, and the i
row is equal to the transpose of x , noted (x ) .

For example, if the first district is as just described, then the
matrix X looks like this:

X = (x (1) ) ⊺ (x (2) ) ⊺ ⋮ (x (1999) ) ⊺ (x (2000) ) ⊺ = - 118.29
33.91 1,416 38,372 ⋮ ⋮ ⋮ ⋮

h is your system’s prediction function, also called a hypothesis.
When your system is given an instance’s feature vector x , it
outputs a predicted value ŷ  = h(x ) for that instance (ŷ is
pronounced “y-hat”).

For example, if your system predicts that the median housing
price in the first district is $158,400, then ŷ  = h(x ) =
158,400. The prediction error for this district is ŷ  – y  =
2,000.

RMSE(X,h) is the cost function measured on the set of examples
using your hypothesis h.

We use lowercase italic font for scalar values (such as m or y ) and
function names (such as h), lowercase bold font for vectors (such as x ),
and uppercase bold font for matrices (such as X).

Although the RMSE is generally the preferred performance measure for
regression tasks, in some contexts you may prefer to use another function.
For example, if there are many outlier districts. In that case, you may
consider using the mean absolute error (MAE, also called the average
absolute deviation), shown in Equation 2-2:

Equation 2-2. Mean absolute error (MAE)

MAE ( X , h ) = 1 m ∑ i=1 m h ( x (i) ) - y (i)

Both the RMSE and the MAE are ways to measure the distance between two

th

(i) (i) ⊺ 3

(i)

(i) (i)

(1) (1)

(1) (1)

(i)

(i)



vectors: the vector of predictions and the vector of target values. Various
distance measures, or norms, are possible:

Computing the root of a sum of squares (RMSE) corresponds to the
Euclidean norm: this is the notion of distance we are all familiar with. It
is also called the ℓ  norm, noted ∥ · ∥  (or just ∥ · ∥).

Computing the sum of absolutes (MAE) corresponds to the ℓ  norm,
noted ∥ · ∥ . This is sometimes called the Manhattan norm because it
measures the distance between two points in a city if you can only travel
along orthogonal city blocks.

More generally, the ℓ  norm of a vector v containing n elements is
defined as ∥v∥  = (|v |  + |v |  + ... + |v | ) . ℓ  gives the number of
nonzero elements in the vector, and ℓ  gives the maximum absolute
value in the vector.

The higher the norm index, the more it focuses on large values and neglects
small ones. This is why the RMSE is more sensitive to outliers than the
MAE. But when outliers are exponentially rare (like in a bell-shaped curve),
the RMSE performs very well and is generally preferred.
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Check the Assumptions
Lastly, it is good practice to list and verify the assumptions that have been
made so far (by you or others); this can help you catch serious issues early
on. For example, the district prices that your system outputs are going to be
fed into a downstream machine learning system, and you assume that these
prices are going to be used as such. But what if the downstream system
converts the prices into categories (e.g., “cheap”, “medium”, or “expensive”)
and then uses those categories instead of the prices themselves? In this case,
getting the price perfectly right is not important at all; your system just needs
to get the category right. If that’s so, then the problem should have been
framed as a classification task, not a regression task. You don’t want to find
this out after working on a regression system for months.

Fortunately, after talking with the team in charge of the downstream system,
you are confident that they do indeed need the actual prices, not just
categories. Great! You’re all set, the lights are green, and you can start coding
now!



Get the Data
It’s time to get your hands dirty. Don’t hesitate to pick up your laptop and
walk through the code examples. As I mentioned in the preface, all the code
examples in this book are open source and available online as Jupyter
notebooks, which are interactive documents containing text, images, and
executable code snippets (Python in our case). In this book I will assume you
are running these notebooks on Google Colab, a free service that lets you run
any Jupyter notebook directly online, without having to install anything on
your machine. If you want to use another online platform (e.g., Kaggle) or if
you want to install everything locally on your own machine, please see the
instructions on the book’s GitHub page.

https://github.com/ageron/handson-ml3


Running the Code Examples Using Google Colab
First, open a web browser and visit https://homl.info/colab3: this will lead
you to Google Colab, and it will display the list of Jupyter notebooks for this
book (see Figure 2-3). You will find one notebook per chapter, plus a few
extra notebooks and tutorials for NumPy, Matplotlib, Pandas, linear algebra,
and differential calculus. For example, if you click
02_end_to_end_machine_learning_project.ipynb, the notebook from
Chapter 2 will open up in Google Colab (see Figure 2-4).

A Jupyter notebook is composed of a list of cells. Each cell contains either
executable code or text. Try double-clicking the first text cell (which contains
the sentence “Welcome to Machine Learning Housing Corp.!”). This will
open the cell for editing. Notice that Jupyter notebooks use Markdown syntax
for formatting (e.g., **bold**, *italics*, # Title, [url](link text), and so on).
Try modifying this text, then press Shift-Enter to see the result.

Figure 2-3. List of notebooks in Google Colab

https://homl.info/colab3


Figure 2-4. Your notebook in Google Colab

Next, create a new code cell by selecting Insert → “Code cell” from the
menu. Alternatively, you can click the + Code button in the toolbar, or hover
your mouse over the bottom of a cell until you see + Code and + Text appear,
then click + Code. In the new code cell, type some Python code, such as
print("Hello World"), then press Shift-Enter to run this code (or click the ▷
button on the left side of the cell).

If you’re not logged in to your Google account, you’ll be asked to log in now
(if you don’t already have a Google account, you’ll need to create one). Once
you are logged in, when you try to run the code you’ll see a security warning
telling you that this notebook was not authored by Google. A malicious
person could create a notebook that tries to trick you into entering your
Google credentials so they can access your personal data, so before you run a
notebook, always make sure you trust its author (or double-check what each
code cell will do before running it). Assuming you trust me (or you plan to
check every code cell), you can now click “Run anyway”.



Colab will then allocate a new runtime for you: this is a free virtual machine
located on Google’s servers that contains a bunch of tools and Python
libraries, including everything you’ll need for most chapters (in some
chapters, you’ll need to run a command to install additional libraries). This
will take a few seconds. Next, Colab will automatically connect to this
runtime and use it to execute your new code cell. Importantly, the code runs
on the runtime, not on your machine. The code’s output will be displayed
under the cell. Congrats, you’ve run some Python code on Colab!

TIP
To insert a new code cell, you can also type Ctrl-M (or Cmd-M on macOS) followed by A
(to insert above the active cell) or B (to insert below). There are many other keyboard
shortcuts available: you can view and edit them by typing Ctrl-M (or Cmd-M) then H. If
you choose to run the notebooks on Kaggle or on your own machine using JupyterLab or
an IDE such as Visual Studio Code with the Jupyter extension, you will see some minor
differences—runtimes are called kernels, the user interface and keyboard shortcuts are
slightly different, etc.—but switching from one Jupyter environment to another is not too
hard.



Saving Your Code Changes and Your Data
You can make changes to a Colab notebook, and they will persist for as long
as you keep your browser tab open. But once you close it, the changes will be
lost. To avoid this, make sure you save a copy of the notebook to your
Google Drive by selecting File → “Save a copy in Drive”. Alternatively, you
can download the notebook to your computer by selecting File → Download
→ “Download .ipynb”. Then you can later visit
https://colab.research.google.com and open the notebook again (either from
Google Drive or by uploading it from your computer).

WARNING
Google Colab is meant only for interactive use: you can play around in the notebooks and
tweak the code as you like, but you cannot let the notebooks run unattended for a long
period of time, or else the runtime will be shut down and all of its data will be lost.

If the notebook generates data that you care about, make sure you download
this data before the runtime shuts down. To do this, click the Files icon (see
step 1 in Figure 2-5), find the file you want to download, click the vertical
dots next to it (step 2), and click Download (step 3). Alternatively, you can
mount your Google Drive on the runtime, allowing the notebook to read and
write files directly to Google Drive as if it were a local directory. For this,
click the Files icon (step 1), then click the Google Drive icon (circled in
Figure 2-5) and follow the on-screen instructions.

https://colab.research.google.com


Figure 2-5. Downloading a file from a Google Colab runtime (steps 1 to 3), or mounting your Google
Drive (circled icon)

By default, your Google Drive will be mounted at /content/drive/MyDrive. If
you want to back up a data file, simply copy it to this directory by running
!cp /content/my_great_model /content/drive/MyDrive. Any command
starting with a bang (!) is treated as a shell command, not as Python code: cp
is the Linux shell command to copy a file from one path to another. Note that
Colab runtimes run on Linux (specifically, Ubuntu).



The Power and Danger of Interactivity
Jupyter notebooks are interactive, and that’s a great thing: you can run each
cell one by one, stop at any point, insert a cell, play with the code, go back
and run the same cell again, etc., and I highly encourage you to do so. If you
just run the cells one by one without ever playing around with them, you
won’t learn as fast. However, this flexibility comes at a price: it’s very easy
to run cells in the wrong order, or to forget to run a cell. If this happens, the
subsequent code cells are likely to fail. For example, the very first code cell
in each notebook contains setup code (such as imports), so make sure you run
it first, or else nothing will work.

TIP
If you ever run into a weird error, try restarting the runtime (by selecting Runtime →
“Restart runtime” from the menu) and then run all the cells again from the beginning of
the notebook. This often solves the problem. If not, it’s likely that one of the changes you
made broke the notebook: just revert to the original notebook and try again. If it still fails,
please file an issue on GitHub.



Book Code Versus Notebook Code
You may sometimes notice some little differences between the code in this
book and the code in the notebooks. This may happen for several reasons:

A library may have changed slightly by the time you read these lines, or
perhaps despite my best efforts I made an error in the book. Sadly, I
cannot magically fix the code in your copy of this book (unless you are
reading an electronic copy and you can download the latest version), but
I can fix the notebooks. So, if you run into an error after copying code
from this book, please look for the fixed code in the notebooks: I will
strive to keep them error-free and up-to-date with the latest library
versions.

The notebooks contain some extra code to beautify the figures (adding
labels, setting font sizes, etc.) and to save them in high resolution for
this book. You can safely ignore this extra code if you want.

I optimized the code for readability and simplicity: I made it as linear and flat
as possible, defining very few functions or classes. The goal is to ensure that
the code you are running is generally right in front of you, and not nested
within several layers of abstractions that you have to search through. This
also makes it easier for you to play with the code. For simplicity, there’s
limited error handling, and I placed some of the least common imports right
where they are needed (instead of placing them at the top of the file, as is
recommended by the PEP 8 Python style guide). That said, your production
code will not be very different: just a bit more modular, and with additional
tests and error handling.

OK! Once you’re comfortable with Colab, you’re ready to download the data.



Download the Data
In typical environments your data would be available in a relational database
or some other common data store, and spread across multiple
tables/documents/files. To access it, you would first need to get your
credentials and access authorizations   and familiarize yourself with the data
schema. In this project, however, things are much simpler: you will just
download a single compressed file, housing.tgz, which contains a comma-
separated values (CSV) file called housing.csv with all the data.

Rather than manually downloading and decompressing the data, it’s usually
preferable to write a function that does it for you. This is useful in particular
if the data changes regularly: you can write a small script that uses the
function to fetch the latest data (or you can set up a scheduled job to do that
automatically at regular intervals). Automating the process of fetching the
data is also useful if you need to install the dataset on multiple machines.

Here is the function to fetch and load the data:

from pathlib import Path
import pandas as pd
import tarfile
import urllib.request

def load_housing_data():
    tarball_path = Path("datasets/housing.tgz")
    if not tarball_path.is_file():
        Path("datasets").mkdir(parents=True, exist_ok=True)
        url = "https://github.com/ageron/data/raw/main/housing.tgz"
        urllib.request.urlretrieve(url, tarball_path)
        with tarfile.open(tarball_path) as housing_tarball:
            housing_tarball.extractall(path="datasets")
    return pd.read_csv(Path("datasets/housing/housing.csv"))

housing = load_housing_data()

When load_housing_data() is called, it looks for the datasets/housing.tgz file.
If it does not find it, it creates the datasets directory inside the current
directory (which is /content by default, in Colab), downloads the housing.tgz
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file from the ageron/data GitHub repository, and extracts its content into the
datasets directory; this creates the datasets/housing directory with the
housing.csv file inside it. Lastly, the function loads this CSV file into a
Pandas DataFrame object containing all the data, and returns it.



Take a Quick Look at the Data Structure
You start by looking at the top five rows of data using the DataFrame’s
head() method (see Figure 2-6).

Figure 2-6. Top five rows in the dataset

Each row represents one district. There are 10 attributes (they are not all
shown in the screenshot): longitude, latitude, housing_median_age,
total_rooms, total_bedrooms, population, households, median_income,
median_house_value, and ocean_proximity.

The info() method is useful to get a quick description of the data, in particular
the total number of rows, each attribute’s type, and the number of non-null
values:

>>> housing.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
 #   Column              Non-Null Count  Dtype
---  ------              --------------  -----
 0   longitude           20640 non-null  float64
 1   latitude            20640 non-null  float64
 2   housing_median_age  20640 non-null  float64
 3   total_rooms         20640 non-null  float64
 4   total_bedrooms      20433 non-null  float64
 5   population          20640 non-null  float64
 6   households          20640 non-null  float64
 7   median_income       20640 non-null  float64
 8   median_house_value  20640 non-null  float64
 9   ocean_proximity     20640 non-null  object
dtypes: float64(9), object(1)



memory usage: 1.6+ MB

NOTE
In this book, when a code example contains a mix of code and outputs, as is the case here,
it is formatted like in the Python interpreter, for better readability: the code lines are
prefixed with >>> (or ... for indented blocks), and the outputs have no prefix.

There are 20,640 instances in the dataset, which means that it is fairly small
by machine learning standards, but it’s perfect to get started. You notice that
the total_bedrooms attribute has only 20,433 non-null values, meaning that
207 districts are missing this feature. You will need to take care of this later.

All attributes are numerical, except for ocean_proximity. Its type is object, so
it could hold any kind of Python object. But since you loaded this data from a
CSV file, you know that it must be a text attribute. When you looked at the
top five rows, you probably noticed that the values in the ocean_proximity
column were repetitive, which means that it is probably a categorical
attribute. You can find out what categories exist and how many districts
belong to each category by using the value_counts() method:

>>> housing["ocean_proximity"].value_counts()
<1H OCEAN     9136
INLAND        6551
NEAR OCEAN    2658
NEAR BAY      2290
ISLAND           5
Name: ocean_proximity, dtype: int64

Let’s look at the other fields. The describe() method shows a summary of the
numerical attributes (Figure 2-7).



Figure 2-7. Summary of each numerical attribute

The count, mean, min, and max rows are self-explanatory. Note that the null
values are ignored (so, for example, the count of total_bedrooms is 20,433,
not 20,640). The std row shows the standard deviation, which measures how
dispersed the values are.   The 25%, 50%, and 75% rows show the
corresponding percentiles: a percentile indicates the value below which a
given percentage of observations in a group of observations fall. For
example, 25% of the districts have a housing_median_age lower than 18,
while 50% are lower than 29 and 75% are lower than 37. These are often
called the 25th percentile (or first quartile), the median, and the 75th
percentile (or third quartile).

Another quick way to get a feel of the type of data you are dealing with is to
plot a histogram for each numerical attribute. A histogram shows the number
of instances (on the vertical axis) that have a given value range (on the
horizontal axis). You can either plot this one attribute at a time, or you can
call the hist() method on the whole dataset (as shown in the following code
example), and it will plot a histogram for each numerical attribute (see
Figure 2-8):

import matplotlib.pyplot as plt

housing.hist(bins=50, figsize=(12, 8))
plt.show()
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Figure 2-8. A histogram for each numerical attribute

Looking at these histograms, you notice a few things:

First, the median income attribute does not look like it is expressed in
US dollars (USD). After checking with the team that collected the data,
you are told that the data has been scaled and capped at 15 (actually,
15.0001) for higher median incomes, and at 0.5 (actually, 0.4999) for
lower median incomes. The numbers represent roughly tens of
thousands of dollars (e.g., 3 actually means about $30,000). Working
with preprocessed attributes is common in machine learning, and it is
not necessarily a problem, but you should try to understand how the data
was computed.

The housing median age and the median house value were also capped.
The latter may be a serious problem since it is your target attribute (your
labels). Your machine learning algorithms may learn that prices never
go beyond that limit. You need to check with your client team (the team
that will use your system’s output) to see if this is a problem or not. If
they tell you that they need precise predictions even beyond $500,000,



then you have two options:

Collect proper labels for the districts whose labels were capped.

Remove those districts from the training set (and also from the test
set, since your system should not be evaluated poorly if it predicts
values beyond $500,000).

These attributes have very different scales. We will discuss this later in
this chapter, when we explore feature scaling.

Finally, many histograms are skewed right: they extend much farther to
the right of the median than to the left. This may make it a bit harder for
some machine learning algorithms to detect patterns. Later, you’ll try
transforming these attributes to have more symmetrical and bell-shaped
distributions.

You should now have a better understanding of the kind of data you’re
dealing with.

WARNING
Wait! Before you look at the data any further, you need to create a test set, put it aside, and
never look at it.



Create a Test Set
It may seem strange to voluntarily set aside part of the data at this stage. After
all, you have only taken a quick glance at the data, and surely you should
learn a whole lot more about it before you decide what algorithms to use,
right? This is true, but your brain is an amazing pattern detection system,
which also means that it is highly prone to overfitting: if you look at the test
set, you may stumble upon some seemingly interesting pattern in the test data
that leads you to select a particular kind of machine learning model. When
you estimate the generalization error using the test set, your estimate will be
too optimistic, and you will launch a system that will not perform as well as
expected. This is called data snooping bias.

Creating a test set is theoretically simple; pick some instances randomly,
typically 20% of the dataset (or less if your dataset is very large), and set
them aside:

import numpy as np

def shuffle_and_split_data(data, test_ratio):
    shuffled_indices = np.random.permutation(len(data))
    test_set_size = int(len(data) * test_ratio)
    test_indices = shuffled_indices[:test_set_size]
    train_indices = shuffled_indices[test_set_size:]
    return data.iloc[train_indices], data.iloc[test_indices]

You can then use this function like this:

>>> train_set, test_set = shuffle_and_split_data(housing, 0.2)
>>> len(train_set)
16512
>>> len(test_set)
4128

Well, this works, but it is not perfect: if you run the program again, it will
generate a different test set! Over time, you (or your machine learning
algorithms) will get to see the whole dataset, which is what you want to
avoid.



One solution is to save the test set on the first run and then load it in
subsequent runs. Another option is to set the random number generator’s seed
(e.g., with np.random.seed(42))  before calling np.random.permutation() so
that it always generates the same shuffled indices.

However, both these solutions will break the next time you fetch an updated
dataset. To have a stable train/test split even after updating the dataset, a
common solution is to use each instance’s identifier to decide whether or not
it should go in the test set (assuming instances have unique and immutable
identifiers). For example, you could compute a hash of each instance’s
identifier and put that instance in the test set if the hash is lower than or equal
to 20% of the maximum hash value. This ensures that the test set will remain
consistent across multiple runs, even if you refresh the dataset. The new test
set will contain 20% of the new instances, but it will not contain any instance
that was previously in the training set.

Here is a possible implementation:

from zlib import crc32

def is_id_in_test_set(identifier, test_ratio):
    return crc32(np.int64(identifier)) < test_ratio * 2**32

def split_data_with_id_hash(data, test_ratio, id_column):
    ids = data[id_column]
    in_test_set = ids.apply(lambda id_: is_id_in_test_set(id_, test_ratio))
    return data.loc[~in_test_set], data.loc[in_test_set]

Unfortunately, the housing dataset does not have an identifier column. The
simplest solution is to use the row index as the ID:

housing_with_id = housing.reset_index()  # adds an `index` column
train_set, test_set = split_data_with_id_hash(housing_with_id, 0.2, "index")

If you use the row index as a unique identifier, you need to make sure that
new data gets appended to the end of the dataset and that no row ever gets
deleted. If this is not possible, then you can try to use the most stable features
to build a unique identifier. For example, a district’s latitude and longitude
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are guaranteed to be stable for a few million years, so you could combine
them into an ID like so:

housing_with_id["id"] = housing["longitude"] * 1000 + housing["latitude"]
train_set, test_set = split_data_with_id_hash(housing_with_id, 0.2, "id")

Scikit-Learn provides a few functions to split datasets into multiple subsets in
various ways. The simplest function is train_test_split(), which does pretty
much the same thing as the shuffle_and_split_data() function we defined
earlier, with a couple of additional features. First, there is a random_state
parameter that allows you to set the random generator seed. Second, you can
pass it multiple datasets with an identical number of rows, and it will split
them on the same indices (this is very useful, for example, if you have a
separate DataFrame for labels):

from sklearn.model_selection import train_test_split

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)

So far we have considered purely random sampling methods. This is
generally fine if your dataset is large enough (especially relative to the
number of attributes), but if it is not, you run the risk of introducing a
significant sampling bias. When employees at a survey company decides to
call 1,000 people to ask them a few questions, they don’t just pick 1,000
people randomly in a phone book. They try to ensure that these 1,000 people
are representative of the whole population, with regard to the questions they
want to ask. For example, the US population is 51.1% females and 48.9%
males, so a well-conducted survey in the US would try to maintain this ratio
in the sample: 511 females and 489 males (at least if it seems possible that
the answers may vary across genders). This is called stratified sampling: the
population is divided into homogeneous subgroups called strata, and the right
number of instances are sampled from each stratum to guarantee that the test
set is representative of the overall population. If the people running the
survey used purely random sampling, there would be about a 10.7% chance
of sampling a skewed test set with less than 48.5% female or more than
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53.5% female participants. Either way, the survey results would likely be
quite biased.

Suppose you’ve chatted with some experts who told you that the median
income is a very important attribute to predict median housing prices. You
may want to ensure that the test set is representative of the various categories
of incomes in the whole dataset. Since the median income is a continuous
numerical attribute, you first need to create an income category attribute.
Let’s look at the median income histogram more closely (back in Figure 2-8):
most median income values are clustered around 1.5 to 6 (i.e., $15,000–
$60,000), but some median incomes go far beyond 6. It is important to have a
sufficient number of instances in your dataset for each stratum, or else the
estimate of a stratum’s importance may be biased. This means that you
should not have too many strata, and each stratum should be large enough.
The following code uses the pd.cut() function to create an income category
attribute with five categories (labeled from 1 to 5); category 1 ranges from 0
to 1.5 (i.e., less than $15,000), category 2 from 1.5 to 3, and so on:

housing["income_cat"] = pd.cut(housing["median_income"],
                               bins=[0., 1.5, 3.0, 4.5, 6., np.inf],
                               labels=[1, 2, 3, 4, 5])

These income categories are represented in Figure 2-9:

housing["income_cat"].value_counts().sort_index().plot.bar(rot=0, grid=True)
plt.xlabel("Income category")
plt.ylabel("Number of districts")
plt.show()

Now you are ready to do stratified sampling based on the income category.
Scikit-Learn provides a number of splitter classes in the
sklearn.model_selection package that implement various strategies to split
your dataset into a training set and a test set. Each splitter has a split() method
that returns an iterator over different training/test splits of the same data.



Figure 2-9. Histogram of income categories

To be precise, the split() method yields the training and test indices, not the
data itself. Having multiple splits can be useful if you want to better estimate
the performance of your model, as you will see when we discuss cross-
validation later in this chapter. For example, the following code generates 10
different stratified splits of the same dataset:

from sklearn.model_selection import StratifiedShuffleSplit

splitter = StratifiedShuffleSplit(n_splits=10, test_size=0.2, random_state=42)
strat_splits = []
for train_index, test_index in splitter.split(housing, housing["income_cat"]):
    strat_train_set_n = housing.iloc[train_index]
    strat_test_set_n = housing.iloc[test_index]
    strat_splits.append([strat_train_set_n, strat_test_set_n])

For now, you can just use the first split:

strat_train_set, strat_test_set = strat_splits[0]

Or, since stratified sampling is fairly common, there’s a shorter way to get a
single split using the train_test_split() function with the stratify argument:

strat_train_set, strat_test_set = train_test_split(
    housing, test_size=0.2, stratify=housing["income_cat"], random_state=42)



Let’s see if this worked as expected. You can start by looking at the income
category proportions in the test set:

>>> strat_test_set["income_cat"].value_counts() / len(strat_test_set)
3    0.350533
2    0.318798
4    0.176357
5    0.114341
1    0.039971
Name: income_cat, dtype: float64

With similar code you can measure the income category proportions in the
full dataset. Figure 2-10 compares the income category proportions in the
overall dataset, in the test set generated with stratified sampling, and in a test
set generated using purely random sampling. As you can see, the test set
generated using stratified sampling has income category proportions almost
identical to those in the full dataset, whereas the test set generated using
purely random sampling is skewed.

Figure 2-10. Sampling bias comparison of stratified versus purely random sampling

You won’t use the income_cat column again, so you might as well drop it,
reverting the data back to its original state:

for set_ in (strat_train_set, strat_test_set):
    set_.drop("income_cat", axis=1, inplace=True)

We spent quite a bit of time on test set generation for a good reason: this is an
often neglected but critical part of a machine learning project. Moreover,
many of these ideas will be useful later when we discuss cross-validation.
Now it’s time to move on to the next stage: exploring the data.



Explore and Visualize the Data to Gain Insights
So far you have only taken a quick glance at the data to get a general
understanding of the kind of data you are manipulating. Now the goal is to go
into a little more depth.

First, make sure you have put the test set aside and you are only exploring the
training set. Also, if the training set is very large, you may want to sample an
exploration set, to make manipulations easy and fast during the exploration
phase. In this case, the training set is quite small, so you can just work
directly on the full set. Since you’re going to experiment with various
transformations of the full training set, you should make a copy of the
original so you can revert to it afterwards:

housing = strat_train_set.copy()



Visualizing Geographical Data
Because the dataset includes geographical information (latitude and
longitude), it is a good idea to create a scatterplot of all the districts to
visualize the data (Figure 2-11):

housing.plot(kind="scatter", x="longitude", y="latitude", grid=True)
plt.show()

Figure 2-11. A geographical scatterplot of the data

This looks like California all right, but other than that it is hard to see any
particular pattern. Setting the alpha option to 0.2 makes it much easier to
visualize the places where there is a high density of data points (Figure 2-12):

housing.plot(kind="scatter", x="longitude", y="latitude", grid=True, alpha=0.2)
plt.show()

Now that’s much better: you can clearly see the high-density areas, namely



the Bay Area and around Los Angeles and San Diego, plus a long line of
fairly high-density areas in the Central Valley (in particular, around
Sacramento and Fresno).

Our brains are very good at spotting patterns in pictures, but you may need to
play around with visualization parameters to make the patterns stand out.

Figure 2-12. A better visualization that highlights high-density areas

Next, you look at the housing prices (Figure 2-13). The radius of each circle
represents the district’s population (option s), and the color represents the
price (option c). Here you use a predefined color map (option cmap) called
jet, which ranges from blue (low values) to red (high prices):

housing.plot(kind="scatter", x="longitude", y="latitude", grid=True,
             s=housing["population"] / 100, label="population",
             c="median_house_value", cmap="jet", colorbar=True,
             legend=True, sharex=False, figsize=(10, 7))
plt.show()

This image tells you that the housing prices are very much related to the
location (e.g., close to the ocean) and to the population density, as you
probably knew already. A clustering algorithm should be useful for detecting
the main cluster and for adding new features that measure the proximity to
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the cluster centers. The ocean proximity attribute may be useful as well,
although in Northern California the housing prices in coastal districts are not
too high, so it is not a simple rule.

Figure 2-13. California housing prices: red is expensive, blue is cheap, larger circles indicate areas
with a larger population



Look for Correlations
Since the dataset is not too large, you can easily compute the standard
correlation coefficient (also called Pearson’s r) between every pair of
attributes using the corr() method:

corr_matrix = housing.corr()

Now you can look at how much each attribute correlates with the median
house value:

>>> corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value    1.000000
median_income         0.688380
total_rooms           0.137455
housing_median_age    0.102175
households            0.071426
total_bedrooms        0.054635
population           -0.020153
longitude            -0.050859
latitude             -0.139584
Name: median_house_value, dtype: float64

The correlation coefficient ranges from –1 to 1. When it is close to 1, it
means that there is a strong positive correlation; for example, the median
house value tends to go up when the median income goes up. When the
coefficient is close to –1, it means that there is a strong negative correlation;
you can see a small negative correlation between the latitude and the median
house value (i.e., prices have a slight tendency to go down when you go
north). Finally, coefficients close to 0 mean that there is no linear correlation.

Another way to check for correlation between attributes is to use the Pandas
scatter_matrix() function, which plots every numerical attribute against every
other numerical attribute. Since there are now 11 numerical attributes, you
would get 11  = 121 plots, which would not fit on a page—so you decide to
focus on a few promising attributes that seem most correlated with the
median housing value (Figure 2-14):

2



from pandas.plotting import scatter_matrix

attributes = ["median_house_value", "median_income", "total_rooms",
              "housing_median_age"]
scatter_matrix(housing[attributes], figsize=(12, 8))
plt.show()

Figure 2-14. This scatter matrix plots every numerical attribute against every other numerical
attribute, plus a histogram of each numerical attribute’s values on the main diagonal (top left to bottom

right)

The main diagonal would be full of straight lines if Pandas plotted each
variable against itself, which would not be very useful. So instead, the Pandas
displays a histogram of each attribute (other options are available; see the
Pandas documentation for more details).

Looking at the correlation scatterplots, it seems like the most promising
attribute to predict the median house value is the median income, so you
zoom in on their scatterplot (Figure 2-15):

housing.plot(kind="scatter", x="median_income", y="median_house_value",
             alpha=0.1, grid=True)



plt.show()

Figure 2-15. Median income versus median house value

This plot reveals a few things. First, the correlation is indeed quite strong;
you can clearly see the upward trend, and the points are not too dispersed.
Second, the price cap you noticed earlier is clearly visible as a horizontal line
at $500,000. But the plot also reveals other less obvious straight lines: a
horizontal line around $450,000, another around $350,000, perhaps one
around $280,000, and a few more below that. You may want to try removing
the corresponding districts to prevent your algorithms from learning to
reproduce these data quirks.

WARNING
The correlation coefficient only measures linear correlations (“as x goes up, y generally
goes up/down”). It may completely miss out on nonlinear relationships (e.g., “as x
approaches 0, y generally goes up”). Figure 2-16 shows a variety of datasets along with
their correlation coefficient. Note how all the plots of the bottom row have a correlation
coefficient equal to 0, despite the fact that their axes are clearly not independent: these are
examples of nonlinear relationships. Also, the second row shows examples where the



correlation coefficient is equal to 1 or –1; notice that this has nothing to do with the slope.
For example, your height in inches has a correlation coefficient of 1 with your height in
feet or in nanometers.

Figure 2-16. Standard correlation coefficient of various datasets (source: Wikipedia; public domain
image)



Experiment with Attribute Combinations
Hopefully the previous sections gave you an idea of a few ways you can
explore the data and gain insights. You identified a few data quirks that you
may want to clean up before feeding the data to a machine learning
algorithm, and you found interesting correlations between attributes, in
particular with the target attribute. You also noticed that some attributes have
a skewed-right distribution, so you may want to transform them (e.g., by
computing their logarithm or square root). Of course, your mileage will vary
considerably with each project, but the general ideas are similar.

One last thing you may want to do before preparing the data for machine
learning algorithms is to try out various attribute combinations. For example,
the total number of rooms in a district is not very useful if you don’t know
how many households there are. What you really want is the number of
rooms per household. Similarly, the total number of bedrooms by itself is not
very useful: you probably want to compare it to the number of rooms. And
the population per household also seems like an interesting attribute
combination to look at. You create these new attributes as follows:

housing["rooms_per_house"] = housing["total_rooms"] / housing["households"]
housing["bedrooms_ratio"] = housing["total_bedrooms"] / housing["total_rooms"]
housing["people_per_house"] = housing["population"] / housing["households"]

And then you look at the correlation matrix again:

>>> corr_matrix = housing.corr()
>>> corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value    1.000000
median_income         0.688380
rooms_per_house       0.143663
total_rooms           0.137455
housing_median_age    0.102175
households            0.071426
total_bedrooms        0.054635
population           -0.020153
people_per_house     -0.038224
longitude            -0.050859



latitude             -0.139584
bedrooms_ratio       -0.256397
Name: median_house_value, dtype: float64

Hey, not bad! The new bedrooms_ratio attribute is much more correlated
with the median house value than the total number of rooms or bedrooms.
Apparently houses with a lower bedroom/room ratio tend to be more
expensive. The number of rooms per household is also more informative than
the total number of rooms in a district—obviously the larger the houses, the
more expensive they are.

This round of exploration does not have to be absolutely thorough; the point
is to start off on the right foot and quickly gain insights that will help you get
a first reasonably good prototype. But this is an iterative process: once you
get a prototype up and running, you can analyze its output to gain more
insights and come back to this exploration step.



Prepare the Data for Machine Learning Algorithms
It’s time to prepare the data for your machine learning algorithms. Instead of
doing this manually, you should write functions for this purpose, for several
good reasons:

This will allow you to reproduce these transformations easily on any
dataset (e.g., the next time you get a fresh dataset).

You will gradually build a library of transformation functions that you
can reuse in future projects.

You can use these functions in your live system to transform the new
data before feeding it to your algorithms.

This will make it possible for you to easily try various transformations
and see which combination of transformations works best.

But first, revert to a clean training set (by copying strat_train_set once again).
You should also separate the predictors and the labels, since you don’t
necessarily want to apply the same transformations to the predictors and the
target values (note that drop() creates a copy of the data and does not affect
strat_train_set):

housing = strat_train_set.drop("median_house_value", axis=1)
housing_labels = strat_train_set["median_house_value"].copy()



Clean the Data
Most machine learning algorithms cannot work with missing features, so
you’ll need to take care of these. For example, you noticed earlier that the
total_bedrooms attribute has some missing values. You have three options to
fix this:

1. Get rid of the corresponding districts.

2. Get rid of the whole attribute.

3. Set the missing values to some value (zero, the mean, the median, etc.).
This is called imputation.

You can accomplish these easily using the Pandas DataFrame’s dropna(),
drop(), and fillna() methods:

housing.dropna(subset=["total_bedrooms"], inplace=True)  # option 1

housing.drop("total_bedrooms", axis=1)  # option 2

median = housing["total_bedrooms"].median()  # option 3
housing["total_bedrooms"].fillna(median, inplace=True)

You decide to go for option 3 since it is the least destructive, but instead of
the preceding code, you will use a handy Scikit-Learn class: SimpleImputer.
The benefit is that it will store the median value of each feature: this will
make it possible to impute missing values not only on the training set, but
also on the validation set, the test set, and any new data fed to the model. To
use it, first you need to create a SimpleImputer instance, specifying that you
want to replace each attribute’s missing values with the median of that
attribute:

from sklearn.impute import SimpleImputer

imputer = SimpleImputer(strategy="median")

Since the median can only be computed on numerical attributes, you then



need to create a copy of the data with only the numerical attributes (this will
exclude the text attribute ocean_proximity):

housing_num = housing.select_dtypes(include=[np.number])

Now you can fit the imputer instance to the training data using the fit()
method:

imputer.fit(housing_num)

The imputer has simply computed the median of each attribute and stored the
result in its statistics_ instance variable. Only the total_bedrooms attribute
had missing values, but you cannot be sure that there won’t be any missing
values in new data after the system goes live, so it is safer to apply the
imputer to all the numerical attributes:

>>> imputer.statistics_
array([-118.51 , 34.26 , 29. , 2125. , 434. , 1167. , 408. , 3.5385])
>>> housing_num.median().values
array([-118.51 , 34.26 , 29. , 2125. , 434. , 1167. , 408. , 3.5385])

Now you can use this “trained” imputer to transform the training set by
replacing missing values with the learned medians:

X = imputer.transform(housing_num)

Missing values can also be replaced with the mean value (strategy="mean"),
or with the most frequent value (strategy="most_frequent"), or with a
constant value (strategy="constant", fill_value=…). The last two strategies
support non-numerical data.

TIP
There are also more powerful imputers available in the sklearn.impute package (both for
numerical features only):

KNNImputer replaces each missing value with the mean of the k-nearest neighbors’



values for that feature. The distance is based on all the available features.

IterativeImputer trains a regression model per feature to predict the missing values
based on all the other available features. It then trains the model again on the
updated data, and repeats the process several times, improving the models and the
replacement values at each iteration.

SCIKIT-LEARN DESIGN

Scikit-Learn’s API is remarkably well designed. These are the main
design principles:
Consistency

All objects share a consistent and simple interface:

Estimators

Any object that can estimate some parameters based on a dataset is
called an estimator (e.g., a SimpleImputer is an estimator). The
estimation itself is performed by the fit() method, and it takes a
dataset as a parameter, or two for supervised learning algorithms—the
second dataset contains the labels. Any other parameter needed to
guide the estimation process is considered a hyperparameter (such as
a SimpleImputer’s strategy), and it must be set as an instance variable
(generally via a constructor parameter).

Transformers

Some estimators (such as a SimpleImputer) can also transform a
dataset; these are called transformers. Once again, the API is simple:
the transformation is performed by the transform() method with the
dataset to transform as a parameter. It returns the transformed dataset.
This transformation generally relies on the learned parameters, as is
the case for a SimpleImputer. All transformers also have a
convenience method called fit_transform(), which is equivalent to
calling fit() and then transform() (but sometimes fit_transform() is
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optimized and runs much faster).

Predictors

Finally, some estimators, given a dataset, are capable of making
predictions; they are called predictors. For example, the
LinearRegression model in the previous chapter was a predictor:
given a country’s GDP per capita, it predicted life satisfaction. A
predictor has a predict() method that takes a dataset of new instances
and returns a dataset of corresponding predictions. It also has a
score() method that measures the quality of the predictions, given a
test set (and the corresponding labels, in the case of supervised
learning algorithms).

Inspection

All the estimator’s hyperparameters are accessible directly via public
instance variables (e.g., imputer.strategy), and all the estimator’s learned
parameters are accessible via public instance variables with an
underscore suffix (e.g., imputer.statistics_).
Nonproliferation of classes

Datasets are represented as NumPy arrays or SciPy sparse matrices,
instead of homemade classes. Hyperparameters are just regular Python
strings or numbers.
Composition

Existing building blocks are reused as much as possible. For example, it
is easy to create a Pipeline estimator from an arbitrary sequence of
transformers followed by a final estimator, as you will see.
Sensible defaults

Scikit-Learn provides reasonable default values for most parameters,
making it easy to quickly create a baseline working system.

Scikit-Learn transformers output NumPy arrays (or sometimes SciPy sparse
matrices) even when they are fed Pandas DataFrames as input.  So, the
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output of imputer.transform(housing_num) is a NumPy array: X has neither
column names nor index. Luckily, it’s not too hard to wrap X in a DataFrame
and recover the column names and index from housing_num:

housing_tr = pd.DataFrame(X, columns=housing_num.columns,
                          index=housing_num.index)



Handling Text and Categorical Attributes
So far we have only dealt with numerical attributes, but your data may also
contain text attributes. In this dataset, there is just one: the ocean_proximity
attribute. Let’s look at its value for the first few instances:

>>> housing_cat = housing[["ocean_proximity"]]
>>> housing_cat.head(8)
      ocean_proximity
13096        NEAR BAY
14973       <1H OCEAN
3785           INLAND
14689          INLAND
20507      NEAR OCEAN
1286           INLAND
18078       <1H OCEAN
4396         NEAR BAY

It’s not arbitrary text: there are a limited number of possible values, each of
which represents a category. So this attribute is a categorical attribute. Most
machine learning algorithms prefer to work with numbers, so let’s convert
these categories from text to numbers. For this, we can use Scikit-Learn’s
OrdinalEncoder class:

from sklearn.preprocessing import OrdinalEncoder

ordinal_encoder = OrdinalEncoder()
housing_cat_encoded = ordinal_encoder.fit_transform(housing_cat)

Here’s what the first few encoded values in housing_cat_encoded look like:

>>> housing_cat_encoded[:8]
array([[3.],
       [0.],
       [1.],
       [1.],
       [4.],
       [1.],
       [0.],
       [3.]])



You can get the list of categories using the categories_ instance variable. It is
a list containing a 1D array of categories for each categorical attribute (in this
case, a list containing a single array since there is just one categorical
attribute):

>>> ordinal_encoder.categories_
[array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
       dtype=object)]

One issue with this representation is that ML algorithms will assume that two
nearby values are more similar than two distant values. This may be fine in
some cases (e.g., for ordered categories such as “bad”, “average”, “good”,
and “excellent”), but it is obviously not the case for the ocean_proximity
column (for example, categories 0 and 4 are clearly more similar than
categories 0 and 1). To fix this issue, a common solution is to create one
binary attribute per category: one attribute equal to 1 when the category is "
<1H OCEAN" (and 0 otherwise), another attribute equal to 1 when the
category is "INLAND" (and 0 otherwise), and so on. This is called one-hot
encoding, because only one attribute will be equal to 1 (hot), while the others
will be 0 (cold). The new attributes are sometimes called dummy attributes.
Scikit-Learn provides a OneHotEncoder class to convert categorical values
into one-hot vectors:

from sklearn.preprocessing import OneHotEncoder

cat_encoder = OneHotEncoder()
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)

By default, the output of a OneHotEncoder is a SciPy sparse matrix, instead
of a NumPy array:

>>> housing_cat_1hot
<16512x5 sparse matrix of type '<class 'numpy.float64'>'
 with 16512 stored elements in Compressed Sparse Row format>

A sparse matrix is a very efficient representation for matrices that contain
mostly zeros. Indeed, internally it only stores the nonzero values and their



positions. When a categorical attribute has hundreds or thousands of
categories, one-hot encoding it results in a very large matrix full of 0s except
for a single 1 per row. In this case, a sparse matrix is exactly what you need:
it will save plenty of memory and speed up computations. You can use a
sparse matrix mostly like a normal 2D array,  but if you want to convert it
to a (dense) NumPy array, just call the toarray() method:

>>> housing_cat_1hot.toarray()
array([[0., 0., 0., 1., 0.],
       [1., 0., 0., 0., 0.],
       [0., 1., 0., 0., 0.],
       ...,
       [0., 0., 0., 0., 1.],
       [1., 0., 0., 0., 0.],
       [0., 0., 0., 0., 1.]])

Alternatively, you can set sparse=False when creating the OneHotEncoder, in
which case the transform() method will return a regular (dense) NumPy array
directly.

As with the OrdinalEncoder, you can get the list of categories using the
encoder’s categories_ instance variable:

>>> cat_encoder.categories_
[array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
       dtype=object)]

Pandas has a function called get_dummies(), which also converts each
categorical feature into a one-hot representation, with one binary feature per
category:

>>> df_test = pd.DataFrame({"ocean_proximity": ["INLAND", "NEAR BAY"]})
>>> pd.get_dummies(df_test)
   ocean_proximity_INLAND  ocean_proximity_NEAR BAY
0                       1                         0
1                       0                         1

It looks nice and simple, so why not use it instead of OneHotEncoder? Well,
the advantage of OneHotEncoder is that it remembers which categories it was
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trained on. This is very important because once your model is in production,
it should be fed exactly the same features as during training: no more, no less.
Look what our trained cat_encoder outputs when we make it transform the
same df_test (using transform(), not fit_transform()):

>>> cat_encoder.transform(df_test)
array([[0., 1., 0., 0., 0.],
       [0., 0., 0., 1., 0.]])

See the difference? get_dummies() saw only two categories, so it output two
columns, whereas OneHotEncoder output one column per learned category,
in the right order. Moreover, if you feed get_dummies() a DataFrame
containing an unknown category (e.g., "<2H OCEAN"), it will happily
generate a column for it:

>>> df_test_unknown = pd.DataFrame({"ocean_proximity": ["<2H OCEAN", "ISLAND"]})
>>> pd.get_dummies(df_test_unknown)
   ocean_proximity_<2H OCEAN  ocean_proximity_ISLAND
0                          1                       0
1                          0                       1

But OneHotEncoder is smarter: it will detect the unknown category and raise
an exception. If you prefer, you can set the handle_unknown hyperparameter
to "ignore", in which case it will just represent the unknown category with
zeros:

>>> cat_encoder.handle_unknown = "ignore"
>>> cat_encoder.transform(df_test_unknown)
array([[0., 0., 0., 0., 0.],
       [0., 0., 1., 0., 0.]])

TIP
If a categorical attribute has a large number of possible categories (e.g., country code,
profession, species), then one-hot encoding will result in a large number of input features.
This may slow down training and degrade performance. If this happens, you may want to
replace the categorical input with useful numerical features related to the categories: for
example, you could replace the ocean_proximity feature with the distance to the ocean
(similarly, a country code could be replaced with the country’s population and GDP per



capita). Alternatively, you can use one of the encoders provided by the category_encoders
package on GitHub. Or, when dealing with neural networks, you can replace each
category with a learnable, low-dimensional vector called an embedding. This is an
example of representation learning (see Chapters 13 and 17 for more details).

When you fit any Scikit-Learn estimator using a DataFrame, the estimator
stores the column names in the feature_names_in_ attribute. Scikit-Learn
then ensures that any DataFrame fed to this estimator after that (e.g., to
transform() or predict()) has the same column names. Transformers also
provide a get_feature_names_out() method that you can use to build a
DataFrame around the transformer’s output:

>>> cat_encoder.feature_names_in_
array(['ocean_proximity'], dtype=object)
>>> cat_encoder.get_feature_names_out()
array(['ocean_proximity_<1H OCEAN', 'ocean_proximity_INLAND',
       'ocean_proximity_ISLAND', 'ocean_proximity_NEAR BAY',
       'ocean_proximity_NEAR OCEAN'], dtype=object)
>>> df_output = pd.DataFrame(cat_encoder.transform(df_test_unknown),
...                          columns=cat_encoder.get_feature_names_out(),
...                          index=df_test_unknown.index)
...

https://github.com/scikit-learn-contrib/category_encoders


Feature Scaling and Transformation
One of the most important transformations you need to apply to your data is
feature scaling. With few exceptions, machine learning algorithms don’t
perform well when the input numerical attributes have very different scales.
This is the case for the housing data: the total number of rooms ranges from
about 6 to 39,320, while the median incomes only range from 0 to 15.
Without any scaling, most models will be biased toward ignoring the median
income and focusing more on the number of rooms.

There are two common ways to get all attributes to have the same scale: min-
max scaling and standardization.

WARNING
As with all estimators, it is important to fit the scalers to the training data only: never use
fit() or fit_transform() for anything else than the training set. Once you have a trained
scaler, you can then use it to transform() any other set, including the validation set, the test
set, and new data. Note that while the training set values will always be scaled to the
specified range, if new data contains outliers, these may end up scaled outside the range. If
you want to avoid this, just set the clip hyperparameter to True.

Min-max scaling (many people call this normalization) is the simplest: for
each attribute, the values are shifted and rescaled so that they end up ranging
from 0 to 1. This is performed by subtracting the min value and dividing by
the difference between the min and the max. Scikit-Learn provides a
transformer called MinMaxScaler for this. It has a feature_range
hyperparameter that lets you change the range if, for some reason, you don’t
want 0–1 (e.g., neural networks work best with zero-mean inputs, so a range
of –1 to 1 is preferable). It’s quite easy to use:

from sklearn.preprocessing import MinMaxScaler

min_max_scaler = MinMaxScaler(feature_range=(-1, 1))
housing_num_min_max_scaled = min_max_scaler.fit_transform(housing_num)



Standardization is different: first it subtracts the mean value (so standardized
values have a zero mean), then it divides the result by the standard deviation
(so standardized values have a standard deviation equal to 1). Unlike min-
max scaling, standardization does not restrict values to a specific range.
However, standardization is much less affected by outliers. For example,
suppose a district has a median income equal to 100 (by mistake), instead of
the usual 0–15. Min-max scaling to the 0–1 range would map this outlier
down to 1 and it would crush all the other values down to 0–0.15, whereas
standardization would not be much affected. Scikit-Learn provides a
transformer called StandardScaler for standardization:

from sklearn.preprocessing import StandardScaler

std_scaler = StandardScaler()
housing_num_std_scaled = std_scaler.fit_transform(housing_num)

TIP
If you want to scale a sparse matrix without converting it to a dense matrix first, you can
use a StandardScaler with its with_mean hyperparameter set to False: it will only divide
the data by the standard deviation, without subtracting the mean (as this would break
sparsity).

When a feature’s distribution has a heavy tail (i.e., when values far from the
mean are not exponentially rare), both min-max scaling and standardization
will squash most values into a small range. Machine learning models
generally don’t like this at all, as you will see in Chapter 4. So before you
scale the feature, you should first transform it to shrink the heavy tail, and if
possible to make the distribution roughly symmetrical. For example, a
common way to do this for positive features with a heavy tail to the right is to
replace the feature with its square root (or raise the feature to a power
between 0 and 1). If the feature has a really long and heavy tail, such as a
power law distribution, then replacing the feature with its logarithm may
help. For example, the population feature roughly follows a power law:
districts with 10,000 inhabitants are only 10 times less frequent than districts



with 1,000 inhabitants, not exponentially less frequent. Figure 2-17 shows
how much better this feature looks when you compute its log: it’s very close
to a Gaussian distribution (i.e., bell-shaped).

Figure 2-17. Transforming a feature to make it closer to a Gaussian distribution

Another approach to handle heavy-tailed features consists in bucketizing the
feature. This means chopping its distribution into roughly equal-sized
buckets, and replacing each feature value with the index of the bucket it
belongs to, much like we did to create the income_cat feature (although we
only used it for stratified sampling). For example, you could replace each
value with its percentile. Bucketizing with equal-sized buckets results in a
feature with an almost uniform distribution, so there’s no need for further
scaling, or you can just divide by the number of buckets to force the values to
the 0–1 range.

When a feature has a multimodal distribution (i.e., with two or more clear
peaks, called modes), such as the housing_median_age feature, it can also be
helpful to bucketize it, but this time treating the bucket IDs as categories,
rather than as numerical values. This means that the bucket indices must be
encoded, for example using a OneHotEncoder (so you usually don’t want to
use too many buckets). This approach will allow the regression model to
more easily learn different rules for different ranges of this feature value. For
example, perhaps houses built around 35 years ago have a peculiar style that
fell out of fashion, and therefore they’re cheaper than their age alone would
suggest.

Another approach to transforming multimodal distributions is to add a feature



for each of the modes (at least the main ones), representing the similarity
between the housing median age and that particular mode. The similarity
measure is typically computed using a radial basis function (RBF)—any
function that depends only on the distance between the input value and a
fixed point. The most commonly used RBF is the Gaussian RBF, whose
output value decays exponentially as the input value moves away from the
fixed point. For example, the Gaussian RBF similarity between the housing
age x and 35 is given by the equation exp(–γ(x – 35)²). The hyperparameter γ
(gamma) determines how quickly the similarity measure decays as x moves
away from 35. Using Scikit-Learn’s rbf_kernel() function, you can create a
new Gaussian RBF feature measuring the similarity between the housing
median age and 35:

from sklearn.metrics.pairwise import rbf_kernel

age_simil_35 = rbf_kernel(housing[["housing_median_age"]], [[35]], gamma=0.1)

Figure 2-18 shows this new feature as a function of the housing median age
(solid line). It also shows what the feature would look like if you used a
smaller gamma value. As the chart shows, the new age similarity feature
peaks at 35, right around the spike in the housing median age distribution: if
this particular age group is well correlated with lower prices, there’s a good
chance that this new feature will help.



Figure 2-18. Gaussian RBF feature measuring the similarity between the housing median age and 35

So far we’ve only looked at the input features, but the target values may also
need to be transformed. For example, if the target distribution has a heavy
tail, you may choose to replace the target with its logarithm. But if you do,
the regression model will now predict the log of the median house value, not
the median house value itself. You will need to compute the exponential of
the model’s prediction if you want the predicted median house value.

Luckily, most of Scikit-Learn’s transformers have an inverse_transform()
method, making it easy to compute the inverse of their transformations. For
example, the following code example shows how to scale the labels using a
StandardScaler (just like we did for inputs), then train a simple linear
regression model on the resulting scaled labels and use it to make predictions
on some new data, which we transform back to the original scale using the
trained scaler’s inverse_transform() method. Note that we convert the labels
from a Pandas Series to a DataFrame, since the StandardScaler expects 2D
inputs. Also, in this example we just train the model on a single raw input
feature (median income), for simplicity:

from sklearn.linear_model import LinearRegression

target_scaler = StandardScaler()



scaled_labels = target_scaler.fit_transform(housing_labels.to_frame())

model = LinearRegression()
model.fit(housing[["median_income"]], scaled_labels)
some_new_data = housing[["median_income"]].iloc[:5]  # pretend this is new data

scaled_predictions = model.predict(some_new_data)
predictions = target_scaler.inverse_transform(scaled_predictions)

This works fine, but a simpler option is to use a
TransformedTargetRegressor. We just need to construct it, giving it the
regression model and the label transformer, then fit it on the training set,
using the original unscaled labels. It will automatically use the transformer to
scale the labels and train the regression model on the resulting scaled labels,
just like we did previously. Then, when we want to make a prediction, it will
call the regression model’s predict() method and use the scaler’s
inverse_transform() method to produce the prediction:

from sklearn.compose import TransformedTargetRegressor

model = TransformedTargetRegressor(LinearRegression(),
                                   transformer=StandardScaler())
model.fit(housing[["median_income"]], housing_labels)
predictions = model.predict(some_new_data)



Custom Transformers
Although Scikit-Learn provides many useful transformers, you will need to
write your own for tasks such as custom transformations, cleanup operations,
or combining specific attributes.

For transformations that don’t require any training, you can just write a
function that takes a NumPy array as input and outputs the transformed array.
For example, as discussed in the previous section, it’s often a good idea to
transform features with heavy-tailed distributions by replacing them with
their logarithm (assuming the feature is positive and the tail is on the right).
Let’s create a log-transformer and apply it to the population feature:

from sklearn.preprocessing import FunctionTransformer

log_transformer = FunctionTransformer(np.log, inverse_func=np.exp)
log_pop = log_transformer.transform(housing[["population"]])

The inverse_func argument is optional. It lets you specify an inverse
transform function, e.g., if you plan to use your transformer in a
TransformedTargetRegressor.

Your transformation function can take hyperparameters as additional
arguments. For example, here’s how to create a transformer that computes the
same Gaussian RBF similarity measure as earlier:

rbf_transformer = FunctionTransformer(rbf_kernel,
                                      kw_args=dict(Y=[[35.]], gamma=0.1))
age_simil_35 = rbf_transformer.transform(housing[["housing_median_age"]])

Note that there’s no inverse function for the RBF kernel, since there are
always two values at a given distance from a fixed point (except at distance
0). Also note that rbf_kernel() does not treat the features separately. If you
pass it an array with two features, it will measure the 2D distance (Euclidean)
to measure similarity. For example, here’s how to add a feature that will
measure the geographic similarity between each district and San Francisco:



sf_coords = 37.7749, -122.41
sf_transformer = FunctionTransformer(rbf_kernel,
                                     kw_args=dict(Y=[sf_coords], gamma=0.1))
sf_simil = sf_transformer.transform(housing[["latitude", "longitude"]])

Custom transformers are also useful to combine features. For example, here’s
a FunctionTransformer that computes the ratio between the input features 0
and 1:

>>> ratio_transformer = FunctionTransformer(lambda X: X[:, [0]] / X[:, [1]])
>>> ratio_transformer.transform(np.array([[1., 2.], [3., 4.]]))
array([[0.5 ],
       [0.75]])

FunctionTransformer is very handy, but what if you would like your
transformer to be trainable, learning some parameters in the fit() method and
using them later in the transform() method? For this, you need to write a
custom class. Scikit-Learn relies on duck typing, so this class does not have
to inherit from any particular base class. All it needs is three methods: fit()
(which must return self), transform(), and fit_transform().

You can get fit_transform() for free by simply adding TransformerMixin as a
base class: the default implementation will just call fit() and then transform().
If you add BaseEstimator as a base class (and avoid using *args and
**kwargs in your constructor), you will also get two extra methods:
get_params() and set_params(). These will be useful for automatic
hyperparameter tuning.

For example, here’s a custom transformer that acts much like the
StandardScaler:

from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.utils.validation import check_array, check_is_fitted

class StandardScalerClone(BaseEstimator, TransformerMixin):
    def __init__(self, with_mean=True):  # no *args or **kwargs!
        self.with_mean = with_mean

    def fit(self, X, y=None):  # y is required even though we don't use it
        X = check_array(X)  # checks that X is an array with finite float values



        self.mean_ = X.mean(axis=0)
        self.scale_ = X.std(axis=0)
        self.n_features_in_ = X.shape[1]  # every estimator stores this in fit()
        return self  # always return self!

    def transform(self, X):
        check_is_fitted(self)  # looks for learned attributes (with trailing _)
        X = check_array(X)
        assert self.n_features_in_ == X.shape[1]
        if self.with_mean:
            X = X - self.mean_
        return X / self.scale_

Here are a few things to note:

The sklearn.utils.validation package contains several functions we can
use to validate the inputs. For simplicity, we will skip such tests in the
rest of this book, but production code should have them.

Scikit-Learn pipelines require the fit() method to have two arguments X
and y, which is why we need the y=None argument even though we
don’t use y.

All Scikit-Learn estimators set n_features_in_ in the fit() method, and
they ensure that the data passed to transform() or predict() has this
number of features.

The fit() method must return self.

This implementation is not 100% complete: all estimators should set
feature_names_in_ in the fit() method when they are passed a
DataFrame. Moreover, all transformers should provide a
get_feature_names_out() method, as well as an inverse_transform()
method when their transformation can be reversed. See the last exercise
at the end of this chapter for more details.

A custom transformer can (and often does) use other estimators in its
implementation. For example, the following code demonstrates custom
transformer that uses a KMeans clusterer in the fit() method to identify the
main clusters in the training data, and then uses rbf_kernel() in the



transform() method to measure how similar each sample is to each cluster
center:

from sklearn.cluster import KMeans

class ClusterSimilarity(BaseEstimator, TransformerMixin):
    def __init__(self, n_clusters=10, gamma=1.0, random_state=None):
        self.n_clusters = n_clusters
        self.gamma = gamma
        self.random_state = random_state

    def fit(self, X, y=None, sample_weight=None):
        self.kmeans_ = KMeans(self.n_clusters, random_state=self.random_state)
        self.kmeans_.fit(X, sample_weight=sample_weight)
        return self  # always return self!

    def transform(self, X):
        return rbf_kernel(X, self.kmeans_.cluster_centers_, gamma=self.gamma)

    def get_feature_names_out(self, names=None):
        return [f"Cluster {i} similarity" for i in range(self.n_clusters)]

TIP
You can check whether your custom estimator respects Scikit-Learn’s API by passing an
instance to check_estimator() from the sklearn.utils.estimator_checks package. For the full
API, check out https://scikit-learn.org/stable/developers.

As you will see in Chapter 9, k-means is a clustering algorithm that locates
clusters in the data. How many it searches for is controlled by the n_clusters
hyperparameter. After training, the cluster centers are available via the
cluster_centers_ attribute. The fit() method of KMeans supports an optional
argument sample_weight, which lets the user specify the relative weights of
the samples. k-means is a stochastic algorithm, meaning that it relies on
randomness to locate the clusters, so if you want reproducible results, you
must set the random_state parameter. As you can see, despite the complexity
of the task, the code is fairly straightforward. Now let’s use this custom
transformer:

https://scikit-learn.org/stable/developers


cluster_simil = ClusterSimilarity(n_clusters=10, gamma=1., random_state=42)
similarities = cluster_simil.fit_transform(housing[["latitude", "longitude"]],
                                           sample_weight=housing_labels)

This code creates a ClusterSimilarity transformer, setting the number of
clusters to 10. Then it calls fit_transform() with the latitude and longitude of
every district in the training set, weighting each district by its median house
value. The transformer uses k-means to locate the clusters, then measures the
Gaussian RBF similarity between each district and all 10 cluster centers. The
result is a matrix with one row per district, and one column per cluster. Let’s
look at the first three rows, rounding to two decimal places:

>>> similarities[:3].round(2)
array([[0.  , 0.14, 0.  , 0.  , 0.  , 0.08, 0.  , 0.99, 0.  , 0.6 ],
       [0.63, 0.  , 0.99, 0.  , 0.  , 0.  , 0.04, 0.  , 0.11, 0.  ],
       [0.  , 0.29, 0.  , 0.  , 0.01, 0.44, 0.  , 0.7 , 0.  , 0.3 ]])

Figure 2-19 shows the 10 cluster centers found by k-means. The districts are
colored according to their geographic similarity to their closest cluster center.
As you can see, most clusters are located in highly populated and expensive
areas.



Figure 2-19. Gaussian RBF similarity to the nearest cluster center



Transformation Pipelines
As you can see, there are many data transformation steps that need to be
executed in the right order. Fortunately, Scikit-Learn provides the Pipeline
class to help with such sequences of transformations. Here is a small pipeline
for numerical attributes, which will first impute then scale the input features:

from sklearn.pipeline import Pipeline

num_pipeline = Pipeline([
    ("impute", SimpleImputer(strategy="median")),
    ("standardize", StandardScaler()),
])

The Pipeline constructor takes a list of name/estimator pairs (2-tuples)
defining a sequence of steps. The names can be anything you like, as long as
they are unique and don’t contain double underscores (__). They will be
useful later, when we discuss hyperparameter tuning. The estimators must all
be transformers (i.e., they must have a fit_transform() method), except for the
last one, which can be anything: a transformer, a predictor, or any other type
of estimator.

TIP
In a Jupyter notebook, if you import sklearn and run sklearn.
set_config(display="diagram"), all Scikit-Learn estimators will be rendered as interactive
diagrams. This is particularly useful for visualizing pipelines. To visualize num_pipeline,
run a cell with num_pipeline as the last line. Clicking an estimator will show more details.

If you don’t want to name the transformers, you can use the make_pipeline()
function instead; it takes transformers as positional arguments and creates a
Pipeline using the names of the transformers’ classes, in lowercase and
without underscores (e.g., "simpleimputer"):

from sklearn.pipeline import make_pipeline



num_pipeline = make_pipeline(SimpleImputer(strategy="median"), StandardScaler())

If multiple transformers have the same name, an index is appended to their
names (e.g., "foo-1", "foo-2", etc.).

When you call the pipeline’s fit() method, it calls fit_transform() sequentially
on all the transformers, passing the output of each call as the parameter to the
next call until it reaches the final estimator, for which it just calls the fit()
method.

The pipeline exposes the same methods as the final estimator. In this example
the last estimator is a StandardScaler, which is a transformer, so the pipeline
also acts like a transformer. If you call the pipeline’s transform() method, it
will sequentially apply all the transformations to the data. If the last estimator
were a predictor instead of a transformer, then the pipeline would have a
predict() method rather than a transform() method. Calling it would
sequentially apply all the transformations to the data and pass the result to the
predictor’s predict() method.

Let’s call the pipeline’s fit_transform() method and look at the output’s first
two rows, rounded to two decimal places:

>>> housing_num_prepared = num_pipeline.fit_transform(housing_num)
>>> housing_num_prepared[:2].round(2)
array([[-1.42,  1.01,  1.86,  0.31,  1.37,  0.14,  1.39, -0.94],
       [ 0.6 , -0.7 ,  0.91, -0.31, -0.44, -0.69, -0.37,  1.17]])

As you saw earlier, if you want to recover a nice DataFrame, you can use the
pipeline’s get_feature_names_out() method:

df_housing_num_prepared = pd.DataFrame(
    housing_num_prepared, columns=num_pipeline.get_feature_names_out(),
    index=housing_num.index)

Pipelines support indexing; for example, pipeline[1] returns the second
estimator in the pipeline, and pipeline[:-1] returns a Pipeline object
containing all but the last estimator. You can also access the estimators via
the steps attribute, which is a list of name/estimator pairs, or via the



named_steps dictionary attribute, which maps the names to the estimators.
For example, num_pipeline["simpleimputer"] returns the estimator named
"simpleimputer".

So far, we have handled the categorical columns and the numerical columns
separately. It would be more convenient to have a single transformer capable
of handling all columns, applying the appropriate transformations to each
column. For this, you can use a ColumnTransformer. For example, the
following ColumnTransformer will apply num_pipeline (the one we just
defined) to the numerical attributes and cat_pipeline to the categorical
attribute:

from sklearn.compose import ColumnTransformer

num_attribs = ["longitude", "latitude", "housing_median_age", "total_rooms",
               "total_bedrooms", "population", "households", "median_income"]
cat_attribs = ["ocean_proximity"]

cat_pipeline = make_pipeline(
    SimpleImputer(strategy="most_frequent"),
    OneHotEncoder(handle_unknown="ignore"))

preprocessing = ColumnTransformer([
    ("num", num_pipeline, num_attribs),
    ("cat", cat_pipeline, cat_attribs),
])

First we import the ColumnTransformer class, then we define the list of
numerical and categorical column names and construct a simple pipeline for
categorical attributes. Lastly, we construct a ColumnTransformer. Its
constructor requires a list of triplets (3-tuples), each containing a name
(which must be unique and not contain double underscores), a transformer,
and a list of names (or indices) of columns that the transformer should be
applied to.

TIP
Instead of using a transformer, you can specify the string "drop" if you want the columns
to be dropped, or you can specify "passthrough" if you want the columns to be left



untouched. By default, the remaining columns (i.e., the ones that were not listed) will be
dropped, but you can set the remainder hyperparameter to any transformer (or to
"passthrough") if you want these columns to be handled differently.

Since listing all the column names is not very convenient, Scikit-Learn
provides a make_column_selector() function that returns a selector function
you can use to automatically select all the features of a given type, such as
numerical or categorical. You can pass this selector function to the
ColumnTransformer instead of column names or indices. Moreover, if you
don’t care about naming the transformers, you can use
make_column_transformer(), which chooses the names for you, just like
make_pipeline() does. For example, the following code creates the same
ColumnTransformer as earlier, except the transformers are automatically
named "pipeline-1" and "pipeline-2" instead of "num" and "cat":

from sklearn.compose import make_column_selector, make_column_transformer

preprocessing = make_column_transformer(
    (num_pipeline, make_column_selector(dtype_include=np.number)),
    (cat_pipeline, make_column_selector(dtype_include=object)),
)

Now we’re ready to apply this ColumnTransformer to the housing data:

housing_prepared = preprocessing.fit_transform(housing)

Great! We have a preprocessing pipeline that takes the entire training dataset
and applies each transformer to the appropriate columns, then concatenates
the transformed columns horizontally (transformers must never change the
number of rows). Once again this returns a NumPy array, but you can get the
column names using preprocessing.get_feature_names_out() and wrap the
data in a nice DataFrame as we did before.

NOTE
The OneHotEncoder returns a sparse matrix and the num_pipeline returns a dense matrix.



When there is such a mix of sparse and dense matrices, the ColumnTransformer estimates
the density of the final matrix (i.e., the ratio of nonzero cells), and it returns a sparse
matrix if the density is lower than a given threshold (by default, sparse_threshold=0.3). In
this example, it returns a dense matrix.

Your project is going really well and you’re almost ready to train some
models! You now want to create a single pipeline that will perform all the
transformations you’ve experimented with up to now. Let’s recap what the
pipeline will do and why:

Missing values in numerical features will be imputed by replacing them
with the median, as most ML algorithms don’t expect missing values. In
categorical features, missing values will be replaced by the most
frequent category.

The categorical feature will be one-hot encoded, as most ML algorithms
only accept numerical inputs.

A few ratio features will be computed and added: bedrooms_ratio,
rooms_per_house, and people_per_house. Hopefully these will better
correlate with the median house value, and thereby help the ML models.

A few cluster similarity features will also be added. These will likely be
more useful to the model than latitude and longitude.

Features with a long tail will be replaced by their logarithm, as most
models prefer features with roughly uniform or Gaussian distributions.

All numerical features will be standardized, as most ML algorithms
prefer when all features have roughly the same scale.

The code that builds the pipeline to do all of this should look familiar to you
by now:

def column_ratio(X):
    return X[:, [0]] / X[:, [1]]

def ratio_name(function_transformer, feature_names_in):
    return ["ratio"]  # feature names out



def ratio_pipeline():
    return make_pipeline(
        SimpleImputer(strategy="median"),
        FunctionTransformer(column_ratio, feature_names_out=ratio_name),
        StandardScaler())

log_pipeline = make_pipeline(
    SimpleImputer(strategy="median"),
    FunctionTransformer(np.log, feature_names_out="one-to-one"),
    StandardScaler())
cluster_simil = ClusterSimilarity(n_clusters=10, gamma=1., random_state=42)
default_num_pipeline = make_pipeline(SimpleImputer(strategy="median"),
                                     StandardScaler())
preprocessing = ColumnTransformer([
        ("bedrooms", ratio_pipeline(), ["total_bedrooms", "total_rooms"]),
        ("rooms_per_house", ratio_pipeline(), ["total_rooms", "households"]),
        ("people_per_house", ratio_pipeline(), ["population", "households"]),
        ("log", log_pipeline, ["total_bedrooms", "total_rooms", "population",
                               "households", "median_income"]),
        ("geo", cluster_simil, ["latitude", "longitude"]),
        ("cat", cat_pipeline, make_column_selector(dtype_include=object)),
    ],
    remainder=default_num_pipeline)  # one column remaining: housing_median_age

If you run this ColumnTransformer, it performs all the transformations and
outputs a NumPy array with 24 features:

>>> housing_prepared = preprocessing.fit_transform(housing)
>>> housing_prepared.shape
(16512, 24)
>>> preprocessing.get_feature_names_out()
array(['bedrooms__ratio', 'rooms_per_house__ratio',
       'people_per_house__ratio', 'log__total_bedrooms',
       'log__total_rooms', 'log__population', 'log__households',
       'log__median_income', 'geo__Cluster 0 similarity', [...],
       'geo__Cluster 9 similarity', 'cat__ocean_proximity_<1H OCEAN',
       'cat__ocean_proximity_INLAND', 'cat__ocean_proximity_ISLAND',
       'cat__ocean_proximity_NEAR BAY', 'cat__ocean_proximity_NEAR OCEAN',
       'remainder__housing_median_age'], dtype=object)



Select and Train a Model
At last! You framed the problem, you got the data and explored it, you
sampled a training set and a test set, and you wrote a preprocessing pipeline
to automatically clean up and prepare your data for machine learning
algorithms. You are now ready to select and train a machine learning model.



Train and Evaluate on the Training Set
The good news is that thanks to all these previous steps, things are now going
to be easy! You decide to train a very basic linear regression model to get
started:

from sklearn.linear_model import LinearRegression

lin_reg = make_pipeline(preprocessing, LinearRegression())
lin_reg.fit(housing, housing_labels)

Done! You now have a working linear regression model. You try it out on the
training set, looking at the first five predictions and comparing them to the
labels:

>>> housing_predictions = lin_reg.predict(housing)
>>> housing_predictions[:5].round(-2)  # -2 = rounded to the nearest hundred
array([243700., 372400., 128800.,  94400., 328300.])
>>> housing_labels.iloc[:5].values
array([458300., 483800., 101700.,  96100., 361800.])

Well, it works, but not always: the first prediction is way off (by over
$200,000!), while the other predictions are better: two are off by about 25%,
and two are off by less than 10%. Remember that you chose to use the RMSE
as your performance measure, so you want to measure this regression
model’s RMSE on the whole training set using Scikit-Learn’s
mean_squared_error() function, with the squared argument set to False:

>>> from sklearn.metrics import mean_squared_error
>>> lin_rmse = mean_squared_error(housing_labels, housing_predictions,
...                               squared=False)
...
>>> lin_rmse
68687.89176589991

This is better than nothing, but clearly not a great score: the
median_housing_values of most districts range between $120,000 and
$265,000, so a typical prediction error of $68,628 is really not very



satisfying. This is an example of a model underfitting the training data. When
this happens it can mean that the features do not provide enough information
to make good predictions, or that the model is not powerful enough. As we
saw in the previous chapter, the main ways to fix underfitting are to select a
more powerful model, to feed the training algorithm with better features, or to
reduce the constraints on the model. This model is not regularized, which
rules out the last option. You could try to add more features, but first you
want to try a more complex model to see how it does.

You decide to try a DecisionTreeRegressor, as this is a fairly powerful model
capable of finding complex nonlinear relationships in the data (decision trees
are presented in more detail in Chapter 6):

from sklearn.tree import DecisionTreeRegressor

tree_reg = make_pipeline(preprocessing, DecisionTreeRegressor(random_state=42))
tree_reg.fit(housing, housing_labels)

Now that the model is trained, you evaluate it on the training set:

>>> housing_predictions = tree_reg.predict(housing)
>>> tree_rmse = mean_squared_error(housing_labels, housing_predictions,
...                                squared=False)
...
>>> tree_rmse
0.0

Wait, what!? No error at all? Could this model really be absolutely perfect?
Of course, it is much more likely that the model has badly overfit the data.
How can you be sure? As you saw earlier, you don’t want to touch the test set
until you are ready to launch a model you are confident about, so you need to
use part of the training set for training and part of it for model validation.



Better Evaluation Using Cross-Validation
One way to evaluate the decision tree model would be to use the train_
test_split() function to split the training set into a smaller training set and a
validation set, then train your models against the smaller training set and
evaluate them against the validation set. It’s a bit of effort, but nothing too
difficult, and it would work fairly well.

A great alternative is to use Scikit-Learn’s k_-fold cross-validation feature.
The following code randomly splits the training set into 10 nonoverlapping
subsets called folds, then it trains and evaluates the decision tree model 10
times, picking a different fold for evaluation every time and using the other 9
folds for training. The result is an array containing the 10 evaluation scores:

from sklearn.model_selection import cross_val_score

tree_rmses = -cross_val_score(tree_reg, housing, housing_labels,
                              scoring="neg_root_mean_squared_error", cv=10)

WARNING
Scikit-Learn’s cross-validation features expect a utility function (greater is better) rather
than a cost function (lower is better), so the scoring function is actually the opposite of the
RMSE. It’s a negative value, so you need to switch the sign of the output to get the RMSE
scores.

Let’s look at the results:

>>> pd.Series(tree_rmses).describe()
count       10.000000
mean     66868.027288
std       2060.966425
min      63649.536493
25%      65338.078316
50%      66801.953094
75%      68229.934454
max      70094.778246
dtype: float64



Now the decision tree doesn’t look as good as it did earlier. In fact, it seems
to perform almost as poorly as the linear regression model! Notice that cross-
validation allows you to get not only an estimate of the performance of your
model, but also a measure of how precise this estimate is (i.e., its standard
deviation). The decision tree has an RMSE of about 66,868, with a standard
deviation of about 2,061. You would not have this information if you just
used one validation set. But cross-validation comes at the cost of training the
model several times, so it is not always feasible.

If you compute the same metric for the linear regression model, you will find
that the mean RMSE is 69,858 and the standard deviation is 4,182. So the
decision tree model seems to perform very slightly better than the linear
model, but the difference is minimal due to severe overfitting. We know
there’s an overfitting problem because the training error is low (actually zero)
while the validation error is high.

Let’s try one last model now: the RandomForestRegressor. As you will see in
Chapter 7, random forests work by training many decision trees on random
subsets of the features, then averaging out their predictions. Such models
composed of many other models are called ensembles: they are capable of
boosting the performance of the underlying model (in this case, decision
trees). The code is much the same as earlier:

from sklearn.ensemble import RandomForestRegressor

forest_reg = make_pipeline(preprocessing,
                           RandomForestRegressor(random_state=42))
forest_rmses = -cross_val_score(forest_reg, housing, housing_labels,
                                scoring="neg_root_mean_squared_error", cv=10)

Let’s look at the scores:

>>> pd.Series(forest_rmses).describe()
count       10.000000
mean     47019.561281
std       1033.957120
min      45458.112527
25%      46464.031184
50%      46967.596354



75%      47325.694987
max      49243.765795
dtype: float64

Wow, this is much better: random forests really look very promising for this
task! However, if you train a RandomForest and measure the RMSE on the
training set, you will find roughly 17,474: that’s much lower, meaning that
there’s still quite a lot of overfitting going on. Possible solutions are to
simplify the model, constrain it (i.e., regularize it), or get a lot more training
data. Before you dive much deeper into random forests, however, you should
try out many other models from various categories of machine learning
algorithms (e.g., several support vector machines with different kernels, and
possibly a neural network), without spending too much time tweaking the
hyperparameters. The goal is to shortlist a few (two to five) promising
models.



Fine-Tune Your Model
Let’s assume that you now have a shortlist of promising models. You now
need to fine-tune them. Let’s look at a few ways you can do that.



Grid Search
One option would be to fiddle with the hyperparameters manually, until you
find a great combination of hyperparameter values. This would be very
tedious work, and you may not have time to explore many combinations.

Instead, you can use Scikit-Learn’s GridSearchCV class to search for you.
All you need to do is tell it which hyperparameters you want it to experiment
with and what values to try out, and it will use cross-validation to evaluate all
the possible combinations of hyperparameter values. For example, the
following code searches for the best combination of hyperparameter values
for the RandomForestRegressor:

from sklearn.model_selection import GridSearchCV

full_pipeline = Pipeline([
    ("preprocessing", preprocessing),
    ("random_forest", RandomForestRegressor(random_state=42)),
])
param_grid = [
    {'preprocessing__geo__n_clusters': [5, 8, 10],
     'random_forest__max_features': [4, 6, 8]},
    {'preprocessing__geo__n_clusters': [10, 15],
     'random_forest__max_features': [6, 8, 10]},
]
grid_search = GridSearchCV(full_pipeline, param_grid, cv=3,
                           scoring='neg_root_mean_squared_error')
grid_search.fit(housing, housing_labels)

Notice that you can refer to any hyperparameter of any estimator in a
pipeline, even if this estimator is nested deep inside several pipelines and
column transformers. For example, when Scikit-Learn sees
"preprocessing__geo__n_clusters", it splits this string at the double
underscores, then it looks for an estimator named "preprocessing" in the
pipeline and finds the preprocessing ColumnTransformer. Next, it looks for a
transformer named "geo" inside this ColumnTransformer and finds the
ClusterSimilarity transformer we used on the latitude and longitude attributes.
Then it finds this transformer’s n_clusters hyperparameter. Similarly,



random_forest__max_features refers to the max_features hyperparameter of
the estimator named "random_forest", which is of course the RandomForest
model (the max_features hyperparameter will be explained in Chapter 7).

TIP
Wrapping preprocessing steps in a Scikit-Learn pipeline allows you to tune the
preprocessing hyperparameters along with the model hyperparameters. This is a good
thing since they often interact. For example, perhaps increasing n_clusters requires
increasing max_features as well. If fitting the pipeline transformers is computationally
expensive, you can set the pipeline’s memory hyperparameter to the path of a caching
directory: when you first fit the pipeline, Scikit-Learn will save the fitted transformers to
this directory. If you then fit the pipeline again with the same hyperparameters, Scikit-
Learn will just load the cached transformers.

There are two dictionaries in this param_grid, so GridSearchCV will first
evaluate all 3 × 3 = 9 combinations of n_clusters and max_features
hyperparameter values specified in the first dict, then it will try all 2 × 3 = 6
combinations of hyperparameter values in the second dict. So in total the grid
search will explore 9 + 6 = 15 combinations of hyperparameter values, and it
will train the pipeline 3 times per combination, since we are using 3-fold
cross validation. This means there will be a grand total of 15 × 3 = 45 rounds
of training! It may take a while, but when it is done you can get the best
combination of parameters like this:

>>> grid_search.best_params_
{'preprocessing__geo__n_clusters': 15, 'random_forest__max_features': 6}

In this example, the best model is obtained by setting n_clusters to 15 and
setting max_features to 8.

TIP
Since 15 is the maximum value that was evaluated for n_clusters, you should probably try
searching again with higher values; the score may continue to improve.



You can access the best estimator using grid_search.best_estimator_. If
GridSearchCV is initialized with refit=True (which is the default), then once
it finds the best estimator using cross-validation, it retrains it on the whole
training set. This is usually a good idea, since feeding it more data will likely
improve its performance.

The evaluation scores are available using grid_search.cv_results_. This is a
dictionary, but if you wrap it in a DataFrame you get a nice list of all the test
scores for each combination of hyperparameters and for each cross-validation
split, as well as the mean test score across all splits:

>>> cv_res = pd.DataFrame(grid_search.cv_results_)
>>> cv_res.sort_values(by="mean_test_score", ascending=False, inplace=True)
>>> [...]  # change column names to fit on this page, and show rmse = -score
>>> cv_res.head()  # note: the 1st column is the row ID
   n_clusters max_features  split0  split1  split2  mean_test_rmse
12         15            6   43460   43919   44748           44042
13         15            8   44132   44075   45010           44406
14         15           10   44374   44286   45316           44659
7          10            6   44683   44655   45657           44999
9          10            6   44683   44655   45657           44999

The mean test RMSE score for the best model is 44,042, which is better than
the score you got earlier using the default hyperparameter values (which was
47,019). Congratulations, you have successfully fine-tuned your best model!



Randomized Search
The grid search approach is fine when you are exploring relatively few
combinations, like in the previous example, but RandomizedSearchCV is
often preferable, especially when the hyperparameter search space is large.
This class can be used in much the same way as the GridSearchCV class, but
instead of trying out all possible combinations it evaluates a fixed number of
combinations, selecting a random value for each hyperparameter at every
iteration. This may sound surprising, but this approach has several benefits:

If some of your hyperparameters are continuous (or discrete but with
many possible values), and you let randomized search run for, say, 1,000
iterations, then it will explore 1,000 different values for each of these
hyperparameters, whereas grid search would only explore the few values
you listed for each one.

Suppose a hyperparameter does not actually make much difference, but
you don’t know it yet. If it has 10 possible values and you add it to your
grid search, then training will take 10 times longer. But if you add it to a
random search, it will not make any difference.

If there are 6 hyperparameters to explore, each with 10 possible values,
then grid search offers no other choice than training the model a million
times, whereas random search can always run for any number of
iterations you choose.

For each hyperparameter, you must provide either a list of possible values, or
a probability distribution:

from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint

param_distribs = {'preprocessing__geo__n_clusters': randint(low=3, high=50),
                  'random_forest__max_features': randint(low=2, high=20)}

rnd_search = RandomizedSearchCV(
    full_pipeline, param_distributions=param_distribs, n_iter=10, cv=3,
    scoring='neg_root_mean_squared_error', random_state=42)



rnd_search.fit(housing, housing_labels)

Scikit-Learn also has HalvingRandomSearchCV and HalvingGridSearchCV
hyperparameter search classes. Their goal is to use the computational
resources more efficiently, either to train faster or to explore a larger
hyperparameter space. Here’s how they work: in the first round, many
hyperparameter combinations (called “candidates”) are generated using either
the grid approach or the random approach. These candidates are then used to
train models that are evaluated using cross-validation, as usual. However,
training uses limited resources, which speeds up this first round considerably.
By default, “limited resources” means that the models are trained on a small
part of the training set. However, other limitations are possible, such as
reducing the number of training iterations if the model has a hyperparameter
to set it. Once every candidate has been evaluated, only the best ones go on to
the second round, where they are allowed more resources to compete. After
several rounds, the final candidates are evaluated using full resources. This
may save you some time tuning hyperparameters.



Ensemble Methods
Another way to fine-tune your system is to try to combine the models that
perform best. The group (or “ensemble”) will often perform better than the
best individual model—just like random forests perform better than the
individual decision trees they rely on—especially if the individual models
make very different types of errors. For example, you could train and fine-
tune a k-nearest neighbors model, then create an ensemble model that just
predicts the mean of the random forest prediction and that model’s
prediction. We will cover this topic in more detail in Chapter 7.



Analyzing the Best Models and Their Errors
You will often gain good insights on the problem by inspecting the best
models. For example, the RandomForestRegressor can indicate the relative
importance of each attribute for making accurate predictions:

>>> final_model = rnd_search.best_estimator_  # includes preprocessing
>>> feature_importances = final_model["random_forest"].feature_importances_
>>> feature_importances.round(2)
array([0.07, 0.05, 0.05, 0.01, 0.01, 0.01, 0.01, 0.19, [...], 0.01])

Let’s sort these importance scores in descending order and display them next
to their corresponding attribute names:

>>> sorted(zip(feature_importances,
...            final_model["preprocessing"].get_feature_names_out()),
...            reverse=True)
...
[(0.18694559869103852, 'log__median_income'),
 (0.0748194905715524, 'cat__ocean_proximity_INLAND'),
 (0.06926417748515576, 'bedrooms__ratio'),
 (0.05446998753775219, 'rooms_per_house__ratio'),
 (0.05262301809680712, 'people_per_house__ratio'),
 (0.03819415873915732, 'geo__Cluster 0 similarity'),
 [...]
 (0.00015061247730531558, 'cat__ocean_proximity_NEAR BAY'),
 (7.301686597099842e-05, 'cat__ocean_proximity_ISLAND')]

With this information, you may want to try dropping some of the less useful
features (e.g., apparently only one ocean_proximity category is really useful,
so you could try dropping the others).

TIP
The sklearn.feature_selection.SelectFromModel transformer can automatically drop the
least useful features for you: when you fit it, it trains a model (typically a random forest),
looks at its feature_importances_ attribute, and selects the most useful features. Then
when you call transform(), it drops the other features.



You should also look at the specific errors that your system makes, then try to
understand why it makes them and what could fix the problem: adding extra
features or getting rid of uninformative ones, cleaning up outliers, etc.

Now is also a good time to ensure that your model not only works well on
average, but also on all categories of districts, whether they’re rural or urban,
rich or poor, northern or southern, minority or not, etc. Creating subsets of
your validation set for each category takes a bit of work, but it’s important: if
your model performs poorly on a whole category of districts, then it should
probably not be deployed until the issue is solved, or at least it should not be
used to make predictions for that category, as it may do more harm than
good.



Evaluate Your System on the Test Set
After tweaking your models for a while, you eventually have a system that
performs sufficiently well. You are ready to evaluate the final model on the
test set. There is nothing special about this process; just get the predictors and
the labels from your test set and run your final_model to transform the data
and make predictions, then evaluate these predictions:

X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()

final_predictions = final_model.predict(X_test)

final_rmse = mean_squared_error(y_test, final_predictions, squared=False)
print(final_rmse)  # prints 41424.40026462184

In some cases, such a point estimate of the generalization error will not be
quite enough to convince you to launch: what if it is just 0.1% better than the
model currently in production? You might want to have an idea of how
precise this estimate is. For this, you can compute a 95% confidence interval
for the generalization error using scipy.stats.t.interval(). You get a fairly large
interval from 39,275 to 43,467, and your previous point estimate of 41,424 is
roughly in the middle of it:

>>> from scipy import stats
>>> confidence = 0.95
>>> squared_errors = (final_predictions - y_test) ** 2
>>> np.sqrt(stats.t.interval(confidence, len(squared_errors) - 1,
...                          loc=squared_errors.mean(),
...                          scale=stats.sem(squared_errors)))
...
array([39275.40861216, 43467.27680583])

If you did a lot of hyperparameter tuning, the performance will usually be
slightly worse than what you measured using cross-validation. That’s because
your system ends up fine-tuned to perform well on the validation data and
will likely not perform as well on unknown datasets. That’s not the case in
this example since the test RMSE is lower than the validation RMSE, but



when it happens you must resist the temptation to tweak the hyperparameters
to make the numbers look good on the test set; the improvements would be
unlikely to generalize to new data.

Now comes the project prelaunch phase: you need to present your solution
(highlighting what you have learned, what worked and what did not, what
assumptions were made, and what your system’s limitations are), document
everything, and create nice presentations with clear visualizations and easy-
to-remember statements (e.g., “the median income is the number one
predictor of housing prices”). In this California housing example, the final
performance of the system is not much better than the experts’ price
estimates, which were often off by 30%, but it may still be a good idea to
launch it, especially if this frees up some time for the experts so they can
work on more interesting and productive tasks.



Launch, Monitor, and Maintain Your System
Perfect, you got approval to launch! You now need to get your solution ready
for production (e.g., polish the code, write documentation and tests, and so
on). Then you can deploy your model to your production environment. The
most basic way to do this is just to save the best model you trained, transfer
the file to your production environment, and load it. To save the model, you
can use the joblib library like this:

import joblib

joblib.dump(final_model, "my_california_housing_model.pkl")

TIP
It’s often a good idea to save every model you experiment with so that you can come back
easily to any model you want. You may also save the cross-validation scores and perhaps
the actual predictions on the validation set. This will allow you to easily compare scores
across model types, and compare the types of errors they make.

Once your model is transferred to production, you can load it and use it. For
this you must first import any custom classes and functions the model relies
on (which means transferring the code to production), then load the model
using joblib and use it to make predictions:

import joblib
[...]  # import KMeans, BaseEstimator, TransformerMixin, rbf_kernel, etc.

def column_ratio(X): [...]
def ratio_name(function_transformer, feature_names_in): [...]
class ClusterSimilarity(BaseEstimator, TransformerMixin): [...]

final_model_reloaded = joblib.load("my_california_housing_model.pkl")

new_data = [...]  # some new districts to make predictions for
predictions = final_model_reloaded.predict(new_data)



For example, perhaps the model will be used within a website: the user will
type in some data about a new district and click the Estimate Price button.
This will send a query containing the data to the web server, which will
forward it to your web application, and finally your code will simply call the
model’s predict() method (you want to load the model upon server startup,
rather than every time the model is used). Alternatively, you can wrap the
model within a dedicated web service that your web application can query
through a REST API  (see Figure 2-20). This makes it easier to upgrade
your model to new versions without interrupting the main application. It also
simplifies scaling, since you can start as many web services as needed and
load-balance the requests coming from your web application across these
web services. Moreover, it allows your web application to use any
programming language, not just Python.

Figure 2-20. A model deployed as a web service and used by a web application

Another popular strategy is to deploy your model to the cloud, for example
on Google’s Vertex AI (formerly known as Google Cloud AI Platform and
Google Cloud ML Engine): just save your model using joblib and upload it to
Google Cloud Storage (GCS), then head over to Vertex AI and create a new
model version, pointing it to the GCS file. That’s it! This gives you a simple
web service that takes care of load balancing and scaling for you. It takes
JSON requests containing the input data (e.g., of a district) and returns JSON
responses containing the predictions. You can then use this web service in
your website (or whatever production environment you are using). As you
will see in Chapter 19, deploying TensorFlow models on Vertex AI is not
much different from deploying Scikit-Learn models.

But deployment is not the end of the story. You also need to write monitoring
code to check your system’s live performance at regular intervals and trigger
alerts when it drops. It may drop very quickly, for example if a component
breaks in your infrastructure, but be aware that it could also decay very
slowly, which can easily go unnoticed for a long time. This is quite common
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because of model rot: if the model was trained with last year’s data, it may
not be adapted to today’s data.

So, you need to monitor your model’s live performance. But how do you do
that? Well, it depends. In some cases, the model’s performance can be
inferred from downstream metrics. For example, if your model is part of a
recommender system and it suggests products that the users may be interested
in, then it’s easy to monitor the number of recommended products sold each
day. If this number drops (compared to non-recommended products), then the
prime suspect is the model. This may be because the data pipeline is broken,
or perhaps the model needs to be retrained on fresh data (as we will discuss
shortly).

However, you may also need human analysis to assess the model’s
performance. For example, suppose you trained an image classification
model (we’ll look at these in Chapter 3) to detect various product defects on a
production line. How can you get an alert if the model’s performance drops,
before thousands of defective products get shipped to your clients? One
solution is to send to human raters a sample of all the pictures that the model
classified (especially pictures that the model wasn’t so sure about).
Depending on the task, the raters may need to be experts, or they could be
nonspecialists, such as workers on a crowdsourcing platform (e.g., Amazon
Mechanical Turk). In some applications they could even be the users
themselves, responding, for example, via surveys or repurposed captchas.
Either way, you need to put in place a monitoring system (with or without
human raters to evaluate the live model), as well as all the relevant processes
to define what to do in case of failures and how to prepare for them.
Unfortunately, this can be a lot of work. In fact, it is often much more work
than building and training a model.

If the data keeps evolving, you will need to update your datasets and retrain
your model regularly. You should probably automate the whole process as
much as possible. Here are a few things you can automate:

Collect fresh data regularly and label it (e.g., using human raters).
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Write a script to train the model and fine-tune the hyperparameters
automatically. This script could run automatically, for example every
day or every week, depending on your needs.

Write another script that will evaluate both the new model and the
previous model on the updated test set, and deploy the model to
production if the performance has not decreased (if it did, make sure you
investigate why). The script should probably test the performance of
your model on various subsets of the test set, such as poor or rich
districts, rural or urban districts, etc.

You should also make sure you evaluate the model’s input data quality.
Sometimes performance will degrade slightly because of a poor-quality
signal (e.g., a malfunctioning sensor sending random values, or another
team’s output becoming stale), but it may take a while before your system’s
performance degrades enough to trigger an alert. If you monitor your model’s
inputs, you may catch this earlier. For example, you could trigger an alert if
more and more inputs are missing a feature, or the mean or standard
deviation drifts too far from the training set, or a categorical feature starts
containing new categories.

Finally, make sure you keep backups of every model you create and have the
process and tools in place to roll back to a previous model quickly, in case
the new model starts failing badly for some reason. Having backups also
makes it possible to easily compare new models with previous ones.
Similarly, you should keep backups of every version of your datasets so that
you can roll back to a previous dataset if the new one ever gets corrupted
(e.g., if the fresh data that gets added to it turns out to be full of outliers).
Having backups of your datasets also allows you to evaluate any model
against any previous dataset.

As you can see, machine learning involves quite a lot of infrastructure.
Chapter 19 discusses some aspects of this, but it’s a very broad topic called
ML Operations (MLOps), which deserves its own book. So don’t be
surprised if your first ML project takes a lot of effort and time to build and
deploy to production. Fortunately, once all the infrastructure is in place,



going from idea to production will be much faster.



Try It Out!
Hopefully this chapter gave you a good idea of what a machine learning
project looks like as well as showing you some of the tools you can use to
train a great system. As you can see, much of the work is in the data
preparation step: building monitoring tools, setting up human evaluation
pipelines, and automating regular model training. The machine learning
algorithms are important, of course, but it is probably preferable to be
comfortable with the overall process and know three or four algorithms well
rather than to spend all your time exploring advanced algorithms.

So, if you have not already done so, now is a good time to pick up a laptop,
select a dataset that you are interested in, and try to go through the whole
process from A to Z. A good place to start is on a competition website such
as Kaggle: you will have a dataset to play with, a clear goal, and people to
share the experience with. Have fun!

https://kaggle.com


Exercises
The following exercises are based on this chapter’s housing dataset:

1. Try a support vector machine regressor (sklearn.svm.SVR) with various
hyperparameters, such as kernel="linear" (with various values for the C
hyperparameter) or kernel="rbf" (with various values for the C and
gamma hyperparameters). Note that support vector machines don’t scale
well to large datasets, so you should probably train your model on just
the first 5,000 instances of the training set and use only 3-fold cross-
validation, or else it will take hours. Don’t worry about what the
hyperparameters mean for now; we’ll discuss them in Chapter 5. How
does the best SVR predictor perform?

2. Try replacing the GridSearchCV with a RandomizedSearchCV.

3. Try adding a SelectFromModel transformer in the preparation pipeline
to select only the most important attributes.

4. Try creating a custom transformer that trains a k-nearest neighbors
regressor (sklearn.neighbors.KNeighborsRegressor) in its fit() method,
and outputs the model’s predictions in its transform() method. Then add
this feature to the preprocessing pipeline, using latitude and longitude as
the inputs to this transformer. This will add a feature in the model that
corresponds to the housing median price of the nearest districts.

5. Automatically explore some preparation options using GridSearchCV.

6. Try to implement the StandardScalerClone class again from scratch,
then add support for the inverse_transform() method: executing scaler.
inverse_transform(scaler.fit_transform(X)) should return an array very
close to X. Then add support for feature names: set feature_names_in_
in the fit() method if the input is a DataFrame. This attribute should be a
NumPy array of column names. Lastly, implement the
get_feature_names_out() method: it should have one optional
input_features=None argument. If passed, the method should check that



its length matches n_features_in_, and it should match
feature_names_in_ if it is defined; then input_features should be
returned. If input_features is None, then the method should either return
feature_names_in_ if it is defined or np.array(["x0", "x1", ...]) with
length n_features_in_ otherwise.

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.

1  The original dataset appeared in R. Kelley Pace and Ronald Barry, “Sparse Spatial
Autoregressions”, Statistics & Probability Letters 33, no. 3 (1997): 291–297.

2  A piece of information fed to a machine learning system is often called a signal, in reference to
Claude Shannon’s information theory, which he developed at Bell Labs to improve
telecommunications. His theory: you want a high signal-to-noise ratio.

3  Recall that the transpose operator flips a column vector into a row vector (and vice versa).

4  You might also need to check legal constraints, such as private fields that should never be
copied to unsafe data stores.

5  The standard deviation is generally denoted σ (the Greek letter sigma), and it is the square root
of the variance, which is the average of the squared deviation from the mean. When a feature has
a bell-shaped normal distribution (also called a Gaussian distribution), which is very common,
the “68-95-99.7” rule applies: about 68% of the values fall within 1σ of the mean, 95% within 2σ,
and 99.7% within 3σ.

6  You will often see people set the random seed to 42. This number has no special property, other
than being the Answer to the Ultimate Question of Life, the Universe, and Everything.

7  The location information is actually quite coarse, and as a result many districts will have the
exact same ID, so they will end up in the same set (test or train). This introduces some
unfortunate sampling bias.

8  If you are reading this in grayscale, grab a red pen and scribble over most of the coastline from
the Bay Area down to San Diego (as you might expect). You can add a patch of yellow around
Sacramento as well.

9  For more details on the design principles, see Lars Buitinck et al., “API Design for Machine
Learning Software: Experiences from the Scikit-Learn Project”, arXiv preprint arXiv:1309.0238
(2013).

10  Some predictors also provide methods to measure the confidence of their predictions.

11  By the time you read these lines, it may be possible to make all transformers output Pandas
DataFrames when they receive a DataFrame as input: Pandas in, Pandas out. There will likely be
a global configuration option for this: sklearn.set_config(pandas_in_out=True).

https://homl.info/colab3


12  See SciPy’s documentation for more details.

13  In a nutshell, a REST (or RESTful) API is an HTTP-based API that follows some conventions,
such as using standard HTTP verbs to read, update, create, or delete resources (GET, POST,
PUT, and DELETE) and using JSON for the inputs and outputs.

14  A captcha is a test to ensure a user is not a robot. These tests have often been used as a cheap
way to label training data.



Chapter 3. Classification

In Chapter 1 I mentioned that the most common supervised learning tasks are
regression (predicting values) and classification (predicting classes). In
Chapter 2 we explored a regression task, predicting housing values, using
various algorithms such as linear regression, decision trees, and random
forests (which will be explained in further detail in later chapters). Now we
will turn our attention to classification systems.



MNIST
In this chapter we will be using the MNIST dataset, which is a set of 70,000
small images of digits handwritten by high school students and employees of
the US Census Bureau. Each image is labeled with the digit it represents.
This set has been studied so much that it is often called the “hello world” of
machine learning: whenever people come up with a new classification
algorithm they are curious to see how it will perform on MNIST, and anyone
who learns machine learning tackles this dataset sooner or later.

Scikit-Learn provides many helper functions to download popular datasets.
MNIST is one of them. The following code fetches the MNIST dataset from
OpenML.org:

from sklearn.datasets import fetch_openml

mnist = fetch_openml('mnist_784', as_frame=False)

The sklearn.datasets package contains mostly three types of functions:
fetch_* functions such as fetch_openml() to download real-life datasets,
load_* functions to load small toy datasets bundled with Scikit-Learn (so
they don’t need to be downloaded over the internet), and make_* functions to
generate fake datasets, useful for tests. Generated datasets are usually
returned as an (X, y) tuple containing the input data and the targets, both as
NumPy arrays. Other datasets are returned as sklearn.utils.Bunch objects,
which are dictionaries whose entries can also be accessed as attributes. They
generally contain the following entries:

"DESCR"

A description of the dataset

"data"

The input data, usually as a 2D NumPy array
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"target"

The labels, usually as a 1D NumPy array

The fetch_openml() function is a bit unusual since by default it returns the
inputs as a Pandas DataFrame and the labels as a Pandas Series (unless the
dataset is sparse). But the MNIST dataset contains images, and DataFrames
aren’t ideal for that, so it’s preferable to set as_frame=False to get the data as
NumPy arrays instead. Let’s look at these arrays:

>>> X, y = mnist.data, mnist.target
>>> X
array([[0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]])
>>> X.shape
(70000, 784)
>>> y
array(['5', '0', '4', ..., '4', '5', '6'], dtype=object)
>>> y.shape
(70000,)

There are 70,000 images, and each image has 784 features. This is because
each image is 28 × 28 pixels, and each feature simply represents one pixel’s
intensity, from 0 (white) to 255 (black). Let’s take a peek at one digit from
the dataset (Figure 3-1). All we need to do is grab an instance’s feature
vector, reshape it to a 28 × 28 array, and display it using Matplotlib’s
imshow() function. We use cmap="binary" to get a grayscale color map
where 0 is white and 255 is black:

import matplotlib.pyplot as plt

def plot_digit(image_data):
    image = image_data.reshape(28, 28)
    plt.imshow(image, cmap="binary")
    plt.axis("off")



some_digit = X[0]
plot_digit(some_digit)
plt.show()

Figure 3-1. Example of an MNIST image

This looks like a 5, and indeed that’s what the label tells us:

>>> y[0]
'5'



To give you a feel for the complexity of the classification task, Figure 3-2
shows a few more images from the MNIST dataset.

But wait! You should always create a test set and set it aside before
inspecting the data closely. The MNIST dataset returned by fetch_openml() is
actually already split into a training set (the first 60,000 images) and a test set
(the last 10,000 images):

X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]

The training set is already shuffled for us, which is good because this
guarantees that all cross-validation folds will be similar (we don’t want one
fold to be missing some digits). Moreover, some learning algorithms are
sensitive to the order of the training instances, and they perform poorly if
they get many similar instances in a row. Shuffling the dataset ensures that
this won’t happen. 
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Figure 3-2. Digits from the MNIST dataset



Training a Binary Classifier
Let’s simplify the problem for now and only try to identify one digit—for
example, the number 5. This “5-detector” will be an example of a binary
classifier, capable of distinguishing between just two classes, 5 and non-5.
First we’ll create the target vectors for this classification task:

y_train_5 = (y_train == '5')  # True for all 5s, False for all other digits
y_test_5 = (y_test == '5')

Now let’s pick a classifier and train it. A good place to start is with a
stochastic gradient descent (SGD, or stochastic GD) classifier, using Scikit-
Learn’s SGDClassifier class. This classifier is capable of handling very large
datasets efficiently. This is in part because SGD deals with training instances
independently, one at a time, which also makes SGD well suited for online
learning, as you will see later. Let’s create an SGDClassifier and train it on
the whole training set:

from sklearn.linear_model import SGDClassifier

sgd_clf = SGDClassifier(random_state=42)
sgd_clf.fit(X_train, y_train_5)

Now we can use it to detect images of the number 5:

>>> sgd_clf.predict([some_digit])
array([ True])

The classifier guesses that this image represents a 5 (True). Looks like it
guessed right in this particular case! Now, let’s evaluate this model’s
performance.



Performance Measures
Evaluating a classifier is often significantly trickier than evaluating a
regressor, so we will spend a large part of this chapter on this topic. There are
many performance measures available, so grab another coffee and get ready
to learn a bunch of new concepts and acronyms!



Measuring Accuracy Using Cross-Validation
A good way to evaluate a model is to use cross-validation, just as you did in
Chapter 2. Let’s use the cross_val_score() function to evaluate our
SGDClassifier model, using k-fold cross-validation with three folds.
Remember that k-fold cross-validation means splitting the training set into k
folds (in this case, three), then training the model k times, holding out a
different fold each time for evaluation (see Chapter 2):

>>> from sklearn.model_selection import cross_val_score
>>> cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([0.95035, 0.96035, 0.9604 ])

Wow! Above 95% accuracy (ratio of correct predictions) on all cross-
validation folds? This looks amazing, doesn’t it? Well, before you get too
excited, let’s look at a dummy classifier that just classifies every single image
in the most frequent class, which in this case is the negative class (i.e., non
5):

from sklearn.dummy import DummyClassifier

dummy_clf = DummyClassifier()
dummy_clf.fit(X_train, y_train_5)
print(any(dummy_clf.predict(X_train)))  # prints False: no 5s detected

Can you guess this model’s accuracy? Let’s find out:

>>> cross_val_score(dummy_clf, X_train, y_train_5, cv=3, scoring="accuracy")
array([0.90965, 0.90965, 0.90965])

That’s right, it has over 90% accuracy! This is simply because only about
10% of the images are 5s, so if you always guess that an image is not a 5, you
will be right about 90% of the time. Beats Nostradamus.

This demonstrates why accuracy is generally not the preferred performance
measure for classifiers, especially when you are dealing with skewed datasets
(i.e., when some classes are much more frequent than others). A much better



way to evaluate the performance of a classifier is to look at the confusion
matrix (CM).

IMPLEMENTING CROSS-VALIDATION

Occasionally you will need more control over the cross-validation
process than what Scikit-Learn provides off the shelf. In these cases, you
can implement cross-validation yourself. The following code does
roughly the same thing as Scikit-Learn’s cross_val_score() function, and
it prints the same result:

from sklearn.model_selection import StratifiedKFold
from sklearn.base import clone

skfolds = StratifiedKFold(n_splits=3)  # add shuffle=True if the dataset is
                                       # not already shuffled
for train_index, test_index in skfolds.split(X_train, y_train_5):
    clone_clf = clone(sgd_clf)
    X_train_folds = X_train[train_index]
    y_train_folds = y_train_5[train_index]
    X_test_fold = X_train[test_index]
    y_test_fold = y_train_5[test_index]

    clone_clf.fit(X_train_folds, y_train_folds)
    y_pred = clone_clf.predict(X_test_fold)
    n_correct = sum(y_pred == y_test_fold)
    print(n_correct / len(y_pred))  # prints 0.95035, 0.96035, and 0.9604

The StratifiedKFold class performs stratified sampling (as explained in
Chapter 2) to produce folds that contain a representative ratio of each
class. At each iteration the code creates a clone of the classifier, trains
that clone on the training folds, and makes predictions on the test fold.
Then it counts the number of correct predictions and outputs the ratio of
correct predictions.



Confusion Matrices
The general idea of a confusion matrix is to count the number of times
instances of class A are classified as class B, for all A/B pairs. For example,
to know the number of times the classifier confused images of 8s with 0s, you
would look at row #8, column #0 of the confusion matrix.

To compute the confusion matrix, you first need to have a set of predictions
so that they can be compared to the actual targets. You could make
predictions on the test set, but it’s best to keep that untouched for now
(remember that you want to use the test set only at the very end of your
project, once you have a classifier that you are ready to launch). Instead, you
can use the cross_val_predict() function:

from sklearn.model_selection import cross_val_predict

y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3)

Just like the cross_val_score() function, cross_val_predict() performs k-fold
cross-validation, but instead of returning the evaluation scores, it returns the
predictions made on each test fold. This means that you get a clean prediction
for each instance in the training set (by “clean” I mean “out-of-sample”: the
model makes predictions on data that it never saw during training).

Now you are ready to get the confusion matrix using the confusion_matrix()
function. Just pass it the target classes (y_train_5) and the predicted classes
(y_train_pred):

>>> from sklearn.metrics import confusion_matrix
>>> cm = confusion_matrix(y_train_5, y_train_pred)
>>> cm
array([[53892,   687],
       [ 1891,  3530]])

Each row in a confusion matrix represents an actual class, while each column
represents a predicted class. The first row of this matrix considers non-5
images (the negative class): 53,892 of them were correctly classified as non-



5s (they are called true negatives), while the remaining 687 were wrongly
classified as 5s (false positives, also called type I errors). The second row
considers the images of 5s (the positive class): 1,891 were wrongly classified
as non-5s (false negatives, also called type II errors), while the remaining
3,530 were correctly classified as 5s (true positives). A perfect classifier
would only have true positives and true negatives, so its confusion matrix
would have nonzero values only on its main diagonal (top left to bottom
right):

>>> y_train_perfect_predictions = y_train_5  # pretend we reached perfection
>>> confusion_matrix(y_train_5, y_train_perfect_predictions)
array([[54579,     0],
       [    0,  5421]])

The confusion matrix gives you a lot of information, but sometimes you may
prefer a more concise metric. An interesting one to look at is the accuracy of
the positive predictions; this is called the precision of the classifier (Equation
3-1).

Equation 3-1. Precision

precision = TP TP+FP

TP is the number of true positives, and FP is the number of false positives.

A trivial way to have perfect precision is to create a classifier that always
makes negative predictions, except for one single positive prediction on the
instance it’s most confident about. If this one prediction is correct, then the
classifier has 100% precision (precision = 1/1 = 100%). Obviously, such a
classifier would not be very useful, since it would ignore all but one positive
instance. So, precision is typically used along with another metric named
recall, also called sensitivity or the true positive rate (TPR): this is the ratio
of positive instances that are correctly detected by the classifier (Equation 3-
2).

Equation 3-2. Recall

recall = TP TP+FN



FN is, of course, the number of false negatives.

If you are confused about the confusion matrix, Figure 3-3 may help.

Figure 3-3. An illustrated confusion matrix showing examples of true negatives (top left), false positives
(top right), false negatives (lower left), and true positives (lower right)



Precision and Recall
Scikit-Learn provides several functions to compute classifier metrics,
including precision and recall:

>>> from sklearn.metrics import precision_score, recall_score
>>> precision_score(y_train_5, y_train_pred)  # == 3530 / (687 + 3530)
0.8370879772350012
>>> recall_score(y_train_5, y_train_pred)  # == 3530 / (1891 + 3530)
0.6511713705958311

Now our 5-detector does not look as shiny as it did when we looked at its
accuracy. When it claims an image represents a 5, it is correct only 83.7% of
the time. Moreover, it only detects 65.1% of the 5s.

It is often convenient to combine precision and recall into a single metric
called the F  score, especially when you need a single metric to compare two
classifiers. The F  score is the harmonic mean of precision and recall
(Equation 3-3). Whereas the regular mean treats all values equally, the
harmonic mean gives much more weight to low values. As a result, the
classifier will only get a high F  score if both recall and precision are high.

Equation 3-3. F  score

F 1 = 2 1 precision+1 recall = 2 × precision×recall precision+recall = TP
TP+FN+FP 2

To compute the F  score, simply call the f1_score() function:

>>> from sklearn.metrics import f1_score
>>> f1_score(y_train_5, y_train_pred)
0.7325171197343846

The F  score favors classifiers that have similar precision and recall. This is
not always what you want: in some contexts you mostly care about precision,
and in other contexts you really care about recall. For example, if you trained
a classifier to detect videos that are safe for kids, you would probably prefer a
classifier that rejects many good videos (low recall) but keeps only safe ones
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(high precision), rather than a classifier that has a much higher recall but lets
a few really bad videos show up in your product (in such cases, you may
even want to add a human pipeline to check the classifier’s video selection).
On the other hand, suppose you train a classifier to detect shoplifters in
surveillance images: it is probably fine if your classifier only has 30%
precision as long as it has 99% recall (sure, the security guards will get a few
false alerts, but almost all shoplifters will get caught).

Unfortunately, you can’t have it both ways: increasing precision reduces
recall, and vice versa. This is called the precision/recall trade-off.



The Precision/Recall Trade-off
To understand this trade-off, let’s look at how the SGDClassifier makes its
classification decisions. For each instance, it computes a score based on a
decision function. If that score is greater than a threshold, it assigns the
instance to the positive class; otherwise it assigns it to the negative class.
Figure 3-4 shows a few digits positioned from the lowest score on the left to
the highest score on the right. Suppose the decision threshold is positioned at
the central arrow (between the two 5s): you will find 4 true positives (actual
5s) on the right of that threshold, and 1 false positive (actually a 6).
Therefore, with that threshold, the precision is 80% (4 out of 5). But out of 6
actual 5s, the classifier only detects 4, so the recall is 67% (4 out of 6). If you
raise the threshold (move it to the arrow on the right), the false positive (the
6) becomes a true negative, thereby increasing the precision (up to 100% in
this case), but one true positive becomes a false negative, decreasing recall
down to 50%. Conversely, lowering the threshold increases recall and
reduces precision.

Figure 3-4. The precision/recall trade-off: images are ranked by their classifier score, and those above
the chosen decision threshold are considered positive; the higher the threshold, the lower the recall,

but (in general) the higher the precision

Scikit-Learn does not let you set the threshold directly, but it does give you
access to the decision scores that it uses to make predictions. Instead of
calling the classifier’s predict() method, you can call its decision_function()
method, which returns a score for each instance, and then use any threshold
you want to make predictions based on those scores:



>>> y_scores = sgd_clf.decision_function([some_digit])
>>> y_scores
array([2164.22030239])
>>> threshold = 0
>>> y_some_digit_pred = (y_scores > threshold)
array([ True])

The SGDClassifier uses a threshold equal to 0, so the preceding code returns
the same result as the predict() method (i.e., True). Let’s raise the threshold:

>>> threshold = 3000
>>> y_some_digit_pred = (y_scores > threshold)
>>> y_some_digit_pred
array([False])

This confirms that raising the threshold decreases recall. The image actually
represents a 5, and the classifier detects it when the threshold is 0, but it
misses it when the threshold is increased to 3,000.

How do you decide which threshold to use? First, use the cross_val_predict()
function to get the scores of all instances in the training set, but this time
specify that you want to return decision scores instead of predictions:

y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3,
                             method="decision_function")

With these scores, use the precision_recall_curve() function to compute
precision and recall for all possible thresholds (the function adds a last
precision of 0 and a last recall of 1, corresponding to an infinite threshold):

from sklearn.metrics import precision_recall_curve

precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores)

Finally, use Matplotlib to plot precision and recall as functions of the
threshold value (Figure 3-5). Let’s show the threshold of 3,000 we selected:

plt.plot(thresholds, precisions[:-1], "b--", label="Precision", linewidth=2)
plt.plot(thresholds, recalls[:-1], "g-", label="Recall", linewidth=2)
plt.vlines(threshold, 0, 1.0, "k", "dotted", label="threshold")



[...]  # beautify the figure: add grid, legend, axis, labels, and circles
plt.show()

Figure 3-5. Precision and recall versus the decision threshold

NOTE
You may wonder why the precision curve is bumpier than the recall curve in Figure 3-5.
The reason is that precision may sometimes go down when you raise the threshold
(although in general it will go up). To understand why, look back at Figure 3-4 and notice
what happens when you start from the central threshold and move it just one digit to the
right: precision goes from 4/5 (80%) down to 3/4 (75%). On the other hand, recall can
only go down when the threshold is increased, which explains why its curve looks smooth.

At this threshold value, precision is near 90% and recall is around 50%.
Another way to select a good precision/recall trade-off is to plot precision
directly against recall, as shown in Figure 3-6 (the same threshold is shown):

plt.plot(recalls, precisions, linewidth=2, label="Precision/Recall curve")
[...]  # beautify the figure: add labels, grid, legend, arrow, and text
plt.show()



Figure 3-6. Precision versus recall

You can see that precision really starts to fall sharply at around 80% recall.
You will probably want to select a precision/recall trade-off just before that
drop—for example, at around 60% recall. But of course, the choice depends
on your project.

Suppose you decide to aim for 90% precision. You could use the first plot to
find the threshold you need to use, but that’s not very precise. Alternatively,
you can search for the lowest threshold that gives you at least 90% precision.
For this, you can use the NumPy array’s argmax() method. This returns the
first index of the maximum value, which in this case means the first True
value:

>>> idx_for_90_precision = (precisions >= 0.90).argmax()
>>> threshold_for_90_precision = thresholds[idx_for_90_precision]



>>> threshold_for_90_precision
3370.0194991439557

To make predictions (on the training set for now), instead of calling the
classifier’s predict() method, you can run this code:

y_train_pred_90 = (y_scores >= threshold_for_90_precision)

Let’s check these predictions’ precision and recall:

>>> precision_score(y_train_5, y_train_pred_90)
0.9000345901072293
>>> recall_at_90_precision = recall_score(y_train_5, y_train_pred_90)
>>> recall_at_90_precision
0.4799852425751706

Great, you have a 90% precision classifier! As you can see, it is fairly easy to
create a classifier with virtually any precision you want: just set a high
enough threshold, and you’re done. But wait, not so fast–a high-precision
classifier is not very useful if its recall is too low! For many applications,
48% recall wouldn’t be great at all.

TIP
If someone says, “Let’s reach 99% precision”, you should ask, “At what recall?”



The ROC Curve
The receiver operating characteristic (ROC) curve is another common tool
used with binary classifiers. It is very similar to the precision/recall curve, but
instead of plotting precision versus recall, the ROC curve plots the true
positive rate (another name for recall) against the false positive rate (FPR).
The FPR (also called the fall-out) is the ratio of negative instances that are
incorrectly classified as positive. It is equal to 1 – the true negative rate
(TNR), which is the ratio of negative instances that are correctly classified as
negative. The TNR is also called specificity. Hence, the ROC curve plots
sensitivity (recall) versus 1 – specificity.

To plot the ROC curve, you first use the roc_curve() function to compute the
TPR and FPR for various threshold values:

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_train_5, y_scores)

Then you can plot the FPR against the TPR using Matplotlib. The following
code produces the plot in Figure 3-7. To find the point that corresponds to
90% precision, we need to look for the index of the desired threshold. Since
thresholds are listed in decreasing order in this case, we use <= instead of >=
on the first line:

idx_for_threshold_at_90 = (thresholds <= threshold_for_90_precision).argmax()
tpr_90, fpr_90 = tpr[idx_for_threshold_at_90], fpr[idx_for_threshold_at_90]

plt.plot(fpr, tpr, linewidth=2, label="ROC curve")
plt.plot([0, 1], [0, 1], 'k:', label="Random classifier's ROC curve")
plt.plot([fpr_90], [tpr_90], "ko", label="Threshold for 90% precision")
[...]  # beautify the figure: add labels, grid, legend, arrow, and text
plt.show()



Figure 3-7. A ROC curve plotting the false positive rate against the true positive rate for all possible
thresholds; the black circle highlights the chosen ratio (at 90% precision and 48% recall)

Once again there is a trade-off: the higher the recall (TPR), the more false
positives (FPR) the classifier produces. The dotted line represents the ROC
curve of a purely random classifier; a good classifier stays as far away from
that line as possible (toward the top-left corner).

One way to compare classifiers is to measure the area under the curve
(AUC). A perfect classifier will have a ROC AUC equal to 1, whereas a
purely random classifier will have a ROC AUC equal to 0.5. Scikit-Learn
provides a function to estimate the ROC AUC:

>>> from sklearn.metrics import roc_auc_score
>>> roc_auc_score(y_train_5, y_scores)
0.9604938554008616



TIP
Since the ROC curve is so similar to the precision/recall (PR) curve, you may wonder how
to decide which one to use. As a rule of thumb, you should prefer the PR curve whenever
the positive class is rare or when you care more about the false positives than the false
negatives. Otherwise, use the ROC curve. For example, looking at the previous ROC
curve (and the ROC AUC score), you may think that the classifier is really good. But this
is mostly because there are few positives (5s) compared to the negatives (non-5s). In
contrast, the PR curve makes it clear that the classifier has room for improvement: the
curve could really be closer to the top-right corner (see Figure 3-6 again).

Let’s now create a RandomForestClassifier, whose PR curve and F  score we
can compare to those of the SGDClassifier:

from sklearn.ensemble import RandomForestClassifier

forest_clf = RandomForestClassifier(random_state=42)

The precision_recall_curve() function expects labels and scores for each
instance, so we need to train the random forest classifier and make it assign a
score to each instance. But the RandomForestClassifier class does not have a
decision_function() method, due to the way it works (we will cover this in
Chapter 7). Luckily, it has a predict_proba() method that returns class
probabilities for each instance, and we can just use the probability of the
positive class as a score, so it will work fine.  We can call the
cross_val_predict() function to train the RandomForestClassifier using cross-
validation and make it predict class probabilities for every image as follows:

y_probas_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3,
                                    method="predict_proba")

Let’s look at the class probabilities for the first two images in the training set:

>>> y_probas_forest[:2]
array([[0.11, 0.89],
       [0.99, 0.01]])

The model predicts that the first image is positive with 89% probability, and
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it predicts that the second image is negative with 99% probability. Since each
image is either positive or negative, the probabilities in each row add up to
100%.

WARNING
These are estimated probabilities, not actual probabilities. For example, if you look at all
the images that the model classified as positive with an estimated probability between 50%
and 60%, roughly 94% of them are actually positive. So, the model’s estimated
probabilities were much too low in this case—but models can be overconfident as well.
The sklearn.calibration package contains tools to calibrate the estimated probabilities and
make them much closer to actual probabilities. See the extra material section in this
chapter’s notebook for more details.

The second column contains the estimated probabilities for the positive class,
so let’s pass them to the precision_recall_curve() function:

y_scores_forest = y_probas_forest[:, 1]
precisions_forest, recalls_forest, thresholds_forest = precision_recall_curve(
    y_train_5, y_scores_forest)

Now we’re ready to plot the PR curve. It is useful to plot the first PR curve as
well to see how they compare (Figure 3-8):

plt.plot(recalls_forest, precisions_forest, "b-", linewidth=2,
         label="Random Forest")
plt.plot(recalls, precisions, "--", linewidth=2, label="SGD")
[...]  # beautify the figure: add labels, grid, and legend
plt.show()

https://homl.info/colab3


Figure 3-8. Comparing PR curves: the random forest classifier is superior to the SGD classifier
because its PR curve is much closer to the top-right corner, and it has a greater AUC

As you can see in Figure 3-8, the RandomForestClassifier’s PR curve looks
much better than the SGDClassifier’s: it comes much closer to the top-right
corner. Its F  score and ROC AUC score are also significantly better:

>>> y_train_pred_forest = y_probas_forest[:, 1] >= 0.5  # positive proba ≥ 50%
>>> f1_score(y_train_5, y_pred_forest)
0.9242275142688446
>>> roc_auc_score(y_train_5, y_scores_forest)
0.9983436731328145

Try measuring the precision and recall scores: you should find about 99.1%
precision and 86.6% recall. Not too bad!

You now know how to train binary classifiers, choose the appropriate metric
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for your task, evaluate your classifiers using cross-validation, select the
precision/recall trade-off that fits your needs, and use several metrics and
curves to compare various models. You’re ready to try to detect more than
just the 5s.



Multiclass Classification
Whereas binary classifiers distinguish between two classes, multiclass
classifiers (also called multinomial classifiers) can distinguish between more
than two classes.

Some Scikit-Learn classifiers (e.g., LogisticRegression,
RandomForestClassifier, and GaussianNB) are capable of handling multiple
classes natively. Others are strictly binary classifiers (e.g., SGDClassifier and
SVC). However, there are various strategies that you can use to perform
multiclass classification with multiple binary classifiers.

One way to create a system that can classify the digit images into 10 classes
(from 0 to 9) is to train 10 binary classifiers, one for each digit (a 0-detector,
a 1-detector, a 2-detector, and so on). Then when you want to classify an
image, you get the decision score from each classifier for that image and you
select the class whose classifier outputs the highest score. This is called the
one-versus-the-rest (OvR) strategy, or sometimes one-versus-all (OvA).

Another strategy is to train a binary classifier for every pair of digits: one to
distinguish 0s and 1s, another to distinguish 0s and 2s, another for 1s and 2s,
and so on. This is called the one-versus-one (OvO) strategy. If there are N
classes, you need to train N × (N – 1) / 2 classifiers. For the MNIST problem,
this means training 45 binary classifiers! When you want to classify an
image, you have to run the image through all 45 classifiers and see which
class wins the most duels. The main advantage of OvO is that each classifier
only needs to be trained on the part of the training set containing the two
classes that it must distinguish.

Some algorithms (such as support vector machine classifiers) scale poorly
with the size of the training set. For these algorithms OvO is preferred
because it is faster to train many classifiers on small training sets than to train
few classifiers on large training sets. For most binary classification
algorithms, however, OvR is preferred.

Scikit-Learn detects when you try to use a binary classification algorithm for



a multiclass classification task, and it automatically runs OvR or OvO,
depending on the algorithm. Let’s try this with a support vector machine
classifier using the sklearn.svm.SVC class (see Chapter 5). We’ll only train
on the first 2,000 images, or else it will take a very long time:

from sklearn.svm import SVC

svm_clf = SVC(random_state=42)
svm_clf.fit(X_train[:2000], y_train[:2000])  # y_train, not y_train_5

That was easy! We trained the SVC using the original target classes from 0 to
9 (y_train), instead of the 5-versus-the-rest target classes (y_train_5). Since
there are 10 classes (i.e., more than 2), Scikit-Learn used the OvO strategy
and trained 45 binary classifiers. Now let’s make a prediction on an image:

>>> svm_clf.predict([some_digit])
array(['5'], dtype=object)

That’s correct! This code actually made 45 predictions—one per pair of
classes—and it selected the class that won the most duels. If you call the
decision_function() method, you will see that it returns 10 scores per
instance: one per class. Each class gets a score equal to the number of won
duels plus or minus a small tweak (max ±0.33) to break ties, based on the
classifier scores:

>>> some_digit_scores = svm_clf.decision_function([some_digit])
>>> some_digit_scores.round(2)
array([[ 3.79,  0.73,  6.06,  8.3 , -0.29,  9.3 ,  1.75,  2.77,  7.21,
         4.82]])

The highest score is 9.3, and it’s indeed the one corresponding to class 5:

>>> class_id = some_digit_scores.argmax()
>>> class_id
5

When a classifier is trained, it stores the list of target classes in its classes_
attribute, ordered by value. In the case of MNIST, the index of each class in



the classes_ array conveniently matches the class itself (e.g., the class at
index 5 happens to be class '5'), but in general you won’t be so lucky; you
will need to look up the class label like this:

>>> svm_clf.classes_
array(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'], dtype=object)
>>> svm_clf.classes_[class_id]
'5'

If you want to force Scikit-Learn to use one-versus-one or one-versus-the-
rest, you can use the OneVsOneClassifier or OneVsRestClassifier classes.
Simply create an instance and pass a classifier to its constructor (it doesn’t
even have to be a binary classifier). For example, this code creates a
multiclass classifier using the OvR strategy, based on an SVC:

from sklearn.multiclass import OneVsRestClassifier

ovr_clf = OneVsRestClassifier(SVC(random_state=42))
ovr_clf.fit(X_train[:2000], y_train[:2000])

Let’s make a prediction, and check the number of trained classifiers:

>>> ovr_clf.predict([some_digit])
array(['5'], dtype='<U1')
>>> len(ovr_clf.estimators_)
10

Training an SGDClassifier on a multiclass dataset and using it to make
predictions is just as easy:

>>> sgd_clf = SGDClassifier(random_state=42)
>>> sgd_clf.fit(X_train, y_train)
>>> sgd_clf.predict([some_digit])
array(['3'], dtype='<U1')

Oops, that’s incorrect. Prediction errors do happen! This time Scikit-Learn
used the OvR strategy under the hood: since there are 10 classes, it trained 10
binary classifiers. The decision_function() method now returns one value per
class. Let’s look at the scores that the SGD classifier assigned to each class:



>>> sgd_clf.decision_function([some_digit]).round()
array([[-31893., -34420.,  -9531.,   1824., -22320.,  -1386., -26189.,
        -16148.,  -4604., -12051.]])

You can see that the classifier is not very confident about its prediction:
almost all scores are very negative, while class 3 has a score of +1,824, and
class 5 is not too far behind at –1,386. Of course, you’ll want to evaluate this
classifier on more than one image. Since there are roughly the same number
of images in each class, the accuracy metric is fine. As usual, you can use the
cross_val_score() function to evaluate the model:

>>> cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring="accuracy")
array([0.87365, 0.85835, 0.8689 ])

It gets over 85.8% on all test folds. If you used a random classifier, you
would get 10% accuracy, so this is not such a bad score, but you can still do
much better. Simply scaling the inputs (as discussed in Chapter 2) increases
accuracy above 89.1%:

>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler()
>>> X_train_scaled = scaler.fit_transform(X_train.astype("float64"))
>>> cross_val_score(sgd_clf, X_train_scaled, y_train, cv=3, scoring="accuracy")
array([0.8983, 0.891 , 0.9018])



Error Analysis
If this were a real project, you would now follow the steps in your machine
learning project checklist (see Appendix A). You’d explore data preparation
options, try out multiple models, shortlist the best ones, fine-tune their
hyperparameters using GridSearchCV, and automate as much as possible.
Here, we will assume that you have found a promising model and you want
to find ways to improve it. One way to do this is to analyze the types of errors
it makes.

First, look at the confusion matrix. For this, you first need to make
predictions using the cross_val_predict() function; then you can pass the
labels and predictions to the confusion_matrix() function, just like you did
earlier. However, since there are now 10 classes instead of 2, the confusion
matrix will contain quite a lot of numbers, and it may be hard to read.

A colored diagram of the confusion matrix is much easier to analyze. To plot
such a diagram, use the ConfusionMatrixDisplay.from_predictions() function
like this:

from sklearn.metrics import ConfusionMatrixDisplay

y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3)
ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred)
plt.show()

This produces the left diagram in Figure 3-9. This confusion matrix looks
pretty good: most images are on the main diagonal, which means that they
were classified correctly. Notice that the cell on the diagonal in row #5 and
column #5 looks slightly darker than the other digits. This could be because
the model made more errors on 5s, or because there are fewer 5s in the
dataset than the other digits. That’s why it’s important to normalize the
confusion matrix by dividing each value by the total number of images in the
corresponding (true) class (i.e., divide by the row’s sum). This can be done
simply by setting normalize="true". We can also specify the



values_format=".0%" argument to show percentages with no decimals. The
following code produces the diagram on the right in Figure 3-9:

ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,
                                        normalize="true", values_format=".0%")
plt.show()

Now we can easily see that only 82% of the images of 5s were classified
correctly. The most common error the model made with images of 5s was to
misclassify them as 8s: this happened for 10% of all 5s. But only 2% of 8s
got misclassified as 5s; confusion matrices are generally not symmetrical! If
you look carefully, you will notice that many digits have been misclassified
as 8s, but this is not immediately obvious from this diagram. If you want to
make the errors stand out more, you can try putting zero weight on the correct
predictions. The following code does just that and produces the diagram on
the left in Figure 3-10:

sample_weight = (y_train_pred != y_train)
ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,
                                        sample_weight=sample_weight,
                                        normalize="true", values_format=".0%")
plt.show()

Figure 3-9. Confusion matrix (left) and the same CM normalized by row (right)



Figure 3-10. Confusion matrix with errors only, normalized by row (left) and by column (right)

Now you can see much more clearly the kinds of errors the classifier makes.
The column for class 8 is now really bright, which confirms that many
images got misclassified as 8s. In fact this is the most common
misclassification for almost all classes. But be careful how you interpret the
percentages in this diagram: remember that we’ve excluded the correct
predictions. For example, the 36% in row #7, column #9 does not mean that
36% of all images of 7s were misclassified as 9s. It means that 36% of the
errors the model made on images of 7s were misclassifications as 9s. In
reality, only 3% of images of 7s were misclassified as 9s, as you can see in
the diagram on the right in Figure 3-9.

It is also possible to normalize the confusion matrix by column rather than by
row: if you set normalize="pred", you get the diagram on the right in
Figure 3-10. For example, you can see that 56% of misclassified 7s are
actually 9s.

Analyzing the confusion matrix often gives you insights into ways to improve
your classifier. Looking at these plots, it seems that your efforts should be
spent on reducing the false 8s. For example, you could try to gather more
training data for digits that look like 8s (but are not) so that the classifier can
learn to distinguish them from real 8s. Or you could engineer new features
that would help the classifier—for example, writing an algorithm to count the
number of closed loops (e.g., 8 has two, 6 has one, 5 has none). Or you could



preprocess the images (e.g., using Scikit-Image, Pillow, or OpenCV) to make
some patterns, such as closed loops, stand out more.

Analyzing individual errors can also be a good way to gain insights into what
your classifier is doing and why it is failing. For example, let’s plot examples
of 3s and 5s in a confusion matrix style (Figure 3-11):

cl_a, cl_b = '3', '5'
X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)]
X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)]
X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)]
X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)]
[...]  # plot all images in X_aa, X_ab, X_ba, X_bb in a confusion matrix style

Figure 3-11. Some images of 3s and 5s organized like a confusion matrix

As you can see, some of the digits that the classifier gets wrong (i.e., in the
bottom-left and top-right blocks) are so badly written that even a human
would have trouble classifying them. However, most misclassified images
seem like obvious errors to us. It may be hard to understand why the
classifier made the mistakes it did, but remember that the human brain is a
fantastic pattern recognition system, and our visual system does a lot of



complex preprocessing before any information even reaches our
consciousness. So, the fact that this task feels simple does not mean that it is.
Recall that we used a simple SGDClassifier, which is just a linear model: all
it does is assign a weight per class to each pixel, and when it sees a new
image it just sums up the weighted pixel intensities to get a score for each
class. Since 3s and 5s differ by only a few pixels, this model will easily
confuse them.

The main difference between 3s and 5s is the position of the small line that
joins the top line to the bottom arc. If you draw a 3 with the junction slightly
shifted to the left, the classifier might classify it as a 5, and vice versa. In
other words, this classifier is quite sensitive to image shifting and rotation.
One way to reduce the 3/5 confusion is to preprocess the images to ensure
that they are well centered and not too rotated. However, this may not be easy
since it requires predicting the correct rotation of each image. A much
simpler approach consists of augmenting the training set with slightly shifted
and rotated variants of the training images. This will force the model to learn
to be more tolerant to such variations. This is called data augmentation (we’ll
cover this in Chapter 14; also see exercise 2 at the end of this chapter).



Multilabel Classification
Until now, each instance has always been assigned to just one class. But in
some cases you may want your classifier to output multiple classes for each
instance. Consider a face-recognition classifier: what should it do if it
recognizes several people in the same picture? It should attach one tag per
person it recognizes. Say the classifier has been trained to recognize three
faces: Alice, Bob, and Charlie. Then when the classifier is shown a picture of
Alice and Charlie, it should output [True, False, True] (meaning “Alice yes,
Bob no, Charlie yes”). Such a classification system that outputs multiple
binary tags is called a multilabel classification system.

We won’t go into face recognition just yet, but let’s look at a simpler
example, just for illustration purposes:

import numpy as np
from sklearn.neighbors import KNeighborsClassifier

y_train_large = (y_train >= '7')
y_train_odd = (y_train.astype('int8') % 2 == 1)
y_multilabel = np.c_[y_train_large, y_train_odd]

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_multilabel)

This code creates a y_multilabel array containing two target labels for each
digit image: the first indicates whether or not the digit is large (7, 8, or 9), and
the second indicates whether or not it is odd. Then the code creates a
KNeighborsClassifier instance, which supports multilabel classification (not
all classifiers do), and trains this model using the multiple targets array. Now
you can make a prediction, and notice that it outputs two labels:

>>> knn_clf.predict([some_digit])
array([[False,  True]])

And it gets it right! The digit 5 is indeed not large (False) and odd (True).



There are many ways to evaluate a multilabel classifier, and selecting the
right metric really depends on your project. One approach is to measure the
F  score for each individual label (or any other binary classifier metric
discussed earlier), then simply compute the average score. The following
code computes the average F  score across all labels:

>>> y_train_knn_pred = cross_val_predict(knn_clf, X_train, y_multilabel, cv=3)
>>> f1_score(y_multilabel, y_train_knn_pred, average="macro")
0.976410265560605

This approach assumes that all labels are equally important, which may not
be the case. In particular, if you have many more pictures of Alice than of
Bob or Charlie, you may want to give more weight to the classifier’s score on
pictures of Alice. One simple option is to give each label a weight equal to its
support (i.e., the number of instances with that target label). To do this,
simply set average="weighted" when calling the f1_score() function.
If you wish to use a classifier that does not natively support multilabel
classification, such as SVC, one possible strategy is to train one model per
label. However, this strategy may have a hard time capturing the
dependencies between the labels. For example, a large digit (7, 8, or 9) is
twice more likely to be odd than even, but the classifier for the “odd” label
does not know what the classifier for the “large” label predicted. To solve this
issue, the models can be organized in a chain: when a model makes a
prediction, it uses the input features plus all the predictions of the models that
come before it in the chain.

The good news is that Scikit-Learn has a class called ChainClassifier that
does just that! By default it will use the true labels for training, feeding each
model the appropriate labels depending on their position in the chain. But if
you set the cv hyperparameter, it will use cross-validation to get “clean” (out-
of-sample) predictions from each trained model for every instance in the
training set, and these predictions will then be used to train all the models
later in the chain. Here’s an example showing how to create and train a
ChainClassifier using the cross-validation strategy. As earlier, we’ll just use
the first 2,000 images in the training set to speed things up:

1
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from sklearn.multioutput import ClassifierChain

chain_clf = ClassifierChain(SVC(), cv=3, random_state=42)
chain_clf.fit(X_train[:2000], y_multilabel[:2000])

Now we can use this ChainClassifier to make predictions:

>>> chain_clf.predict([some_digit])
array([[0., 1.]])



Multioutput Classification
The last type of classification task we’ll discuss here is called multioutput–
multiclass classification (or just multioutput classification). It is a
generalization of multilabel classification where each label can be multiclass
(i.e., it can have more than two possible values).

To illustrate this, let’s build a system that removes noise from images. It will
take as input a noisy digit image, and it will (hopefully) output a clean digit
image, represented as an array of pixel intensities, just like the MNIST
images. Notice that the classifier’s output is multilabel (one label per pixel)
and each label can have multiple values (pixel intensity ranges from 0 to
255). This is thus an example of a multioutput classification system.

NOTE
The line between classification and regression is sometimes blurry, such as in this
example. Arguably, predicting pixel intensity is more akin to regression than to
classification. Moreover, multioutput systems are not limited to classification tasks; you
could even have a system that outputs multiple labels per instance, including both class
labels and value labels.

Let’s start by creating the training and test sets by taking the MNIST images
and adding noise to their pixel intensities with NumPy’s randint() function.
The target images will be the original images:

np.random.seed(42)  # to make this code example reproducible
noise = np.random.randint(0, 100, (len(X_train), 784))
X_train_mod = X_train + noise
noise = np.random.randint(0, 100, (len(X_test), 784))
X_test_mod = X_test + noise
y_train_mod = X_train
y_test_mod = X_test

Let’s take a peek at the first image from the test set (Figure 3-12). Yes, we’re
snooping on the test data, so you should be frowning right now.



Figure 3-12. A noisy image (left) and the target clean image (right)

On the left is the noisy input image, and on the right is the clean target image.
Now let’s train the classifier and make it clean up this image (Figure 3-13):

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train_mod, y_train_mod)
clean_digit = knn_clf.predict([X_test_mod[0]])
plot_digit(clean_digit)
plt.show()



Figure 3-13. The cleaned-up image

Looks close enough to the target! This concludes our tour of classification.



You now know how to select good metrics for classification tasks, pick the
appropriate precision/recall trade-off, compare classifiers, and more generally
build good classification systems for a variety of tasks. In the next chapters,
you’ll learn how all these machine learning models you’ve been using
actually work.



Exercises
1. Try to build a classifier for the MNIST dataset that achieves over 97%

accuracy on the test set. Hint: the KNeighborsClassifier works quite well
for this task; you just need to find good hyperparameter values (try a
grid search on the weights and n_neighbors hyperparameters).

2. Write a function that can shift an MNIST image in any direction (left,
right, up, or down) by one pixel.   Then, for each image in the training
set, create four shifted copies (one per direction) and add them to the
training set. Finally, train your best model on this expanded training set
and measure its accuracy on the test set. You should observe that your
model performs even better now! This technique of artificially growing
the training set is called data augmentation or training set expansion.

3. Tackle the Titanic dataset. A great place to start is on Kaggle.
Alternatively, you can download the data from
https://homl.info/titanic.tgz and unzip this tarball like you did for the
housing data in Chapter 2. This will give you two CSV files, train.csv
and test.csv, which you can load using pandas.read_csv(). The goal is to
train a classifier that can predict the Survived column based on the other
columns.

4. Build a spam classifier (a more challenging exercise):

a. Download examples of spam and ham from Apache
SpamAssassin’s public datasets.

b. Unzip the datasets and familiarize yourself with the data format.

c. Split the data into a training set and a test set.

d. Write a data preparation pipeline to convert each email into a
feature vector. Your preparation pipeline should transform an email
into a (sparse) vector that indicates the presence or absence of each
possible word. For example, if all emails only ever contain four
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words, “Hello”, “how”, “are”, “you”, then the email “Hello you
Hello Hello you” would be converted into a vector [1, 0, 0, 1]
(meaning [“Hello” is present, “how” is absent, “are” is absent,
“you” is present]), or [3, 0, 0, 2] if you prefer to count the number
of occurrences of each word.

You may want to add hyperparameters to your preparation pipeline
to control whether or not to strip off email headers, convert each
email to lowercase, remove punctuation, replace all URLs with
“URL”, replace all numbers with “NUMBER”, or even perform
stemming (i.e., trim off word endings; there are Python libraries
available to do this).

e. Finally, try out several classifiers and see if you can build a great
spam classifier, with both high recall and high precision.

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.

1  By default Scikit-Learn caches downloaded datasets in a directory called scikit_learn_data in
your home directory.

2  Datasets returned by fetch_openml() are not always shuffled or split.

3  Shuffling may be a bad idea in some contexts—for example, if you are working on time series
data (such as stock market prices or weather conditions). We will explore this in Chapter 15.

4  Scikit-Learn classifiers always have either a decision_function() method or a predict_proba()
method, or sometimes both.

5  Scikit-Learn offers a few other averaging options and multilabel classifier metrics; see the
documentation for more details.

6  You can use the shift() function from the scipy.ndimage.interpolation module. For example,
shift(image, [2, 1], cval=0) shifts the image two pixels down and one pixel to the right.

https://homl.info/colab3


Chapter 4. Training Models

So far we have treated machine learning models and their training algorithms
mostly like black boxes. If you went through some of the exercises in the
previous chapters, you may have been surprised by how much you can get
done without knowing anything about what’s under the hood: you optimized
a regression system, you improved a digit image classifier, and you even built
a spam classifier from scratch, all without knowing how they actually work.
Indeed, in many situations you don’t really need to know the implementation
details.

However, having a good understanding of how things work can help you
quickly home in on the appropriate model, the right training algorithm to use,
and a good set of hyperparameters for your task. Understanding what’s under
the hood will also help you debug issues and perform error analysis more
efficiently. Lastly, most of the topics discussed in this chapter will be
essential in understanding, building, and training neural networks (discussed
in Part II of this book).

In this chapter we will start by looking at the linear regression model, one of
the simplest models there is. We will discuss two very different ways to train
it:

Using a “closed-form” equation  that directly computes the model
parameters that best fit the model to the training set (i.e., the model
parameters that minimize the cost function over the training set).

Using an iterative optimization approach called gradient descent (GD)
that gradually tweaks the model parameters to minimize the cost
function over the training set, eventually converging to the same set of
parameters as the first method. We will look at a few variants of gradient
descent that we will use again and again when we study neural networks
in Part II: batch GD, mini-batch GD, and stochastic GD.
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Next we will look at polynomial regression, a more complex model that can
fit nonlinear datasets. Since this model has more parameters than linear
regression, it is more prone to overfitting the training data. We will explore
how to detect whether or not this is the case using learning curves, and then
we will look at several regularization techniques that can reduce the risk of
overfitting the training set.

Finally, we will examine two more models that are commonly used for
classification tasks: logistic regression and softmax regression.

WARNING
There will be quite a few math equations in this chapter, using basic notions of linear
algebra and calculus. To understand these equations, you will need to know what vectors
and matrices are; how to transpose them, multiply them, and inverse them; and what
partial derivatives are. If you are unfamiliar with these concepts, please go through the
linear algebra and calculus introductory tutorials available as Jupyter notebooks in the
online supplemental material. For those who are truly allergic to mathematics, you should
still go through this chapter and simply skip the equations; hopefully, the text will be
sufficient to help you understand most of the concepts.

https://github.com/ageron/handson-ml3


Linear Regression
In Chapter 1 we looked at a simple regression model of life satisfaction:

life_satisfaction = θ  + θ  × GDP_per_capita

This model is just a linear function of the input feature GDP_per_capita. θ
and θ  are the model’s parameters.

More generally, a linear model makes a prediction by simply computing a
weighted sum of the input features, plus a constant called the bias term (also
called the intercept term), as shown in Equation 4-1.

Equation 4-1. Linear regression model prediction

y ^ = θ 0 + θ 1 x 1 + θ 2 x 2 + ⋯ + θ n x n

In this equation:

ŷ is the predicted value.

n is the number of features.

x  is the i  feature value.

θ  is the j  model parameter, including the bias term θ  and the feature
weights θ , θ , ⋯, θ .

This can be written much more concisely using a vectorized form, as shown
in Equation 4-2.

Equation 4-2. Linear regression model prediction (vectorized form)

y^=hθ(x)=θ·x

In this equation:

h  is the hypothesis function, using the model parameters θ.

θ is the model’s parameter vector, containing the bias term θ  and the
feature weights θ  to θ .
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x is the instance’s feature vector, containing x  to x , with x  always
equal to 1.

θ · x is the dot product of the vectors θ and x, which is equal to θ x  +
θ x  + θ x  + ... + θ x .

NOTE
In machine learning, vectors are often represented as column vectors, which are 2D arrays
with a single column. If θ and x are column vectors, then the prediction is y^=θ⊺x, where
θ⊺ is the transpose of θ (a row vector instead of a column vector) and θ⊺x is the matrix
multiplication of θ⊺ and x. It is of course the same prediction, except that it is now
represented as a single-cell matrix rather than a scalar value. In this book I will use this
notation to avoid switching between dot products and matrix multiplications.

OK, that’s the linear regression model—but how do we train it? Well, recall
that training a model means setting its parameters so that the model best fits
the training set. For this purpose, we first need a measure of how well (or
poorly) the model fits the training data. In Chapter 2 we saw that the most
common performance measure of a regression model is the root mean square
error (Equation 2-1). Therefore, to train a linear regression model, we need to
find the value of θ that minimizes the RMSE. In practice, it is simpler to
minimize the mean squared error (MSE) than the RMSE, and it leads to the
same result (because the value that minimizes a positive function also
minimizes its square root).

WARNING
Learning algorithms will often optimize a different loss function during training than the
performance measure used to evaluate the final model. This is generally because the
function is easier to optimize and/or because it has extra terms needed during training only
(e.g., for regularization). A good performance metric is as close as possible to the final
business objective. A good training loss is easy to optimize and strongly correlated with
the metric. For example, classifiers are often trained using a cost function such as the log
loss (as you will see later in this chapter) but evaluated using precision/recall. The log loss
is easy to minimize, and doing so will usually improve precision/recall.

0 n 0

0 0

1 1 2 2 n n



The MSE of a linear regression hypothesis h  on a training set X is calculated
using Equation 4-3.

Equation 4-3. MSE cost function for a linear regression model

MSE ( X , h θ ) = 1 m ∑ i=1 m (θ ⊺ x (i) -y (i) ) 2

Most of these notations were presented in Chapter 2 (see “Notations”). The
only difference is that we write h  instead of just h to make it clear that the
model is parametrized by the vector θ. To simplify notations, we will just
write MSE(θ) instead of MSE(X, h ).

θ

θ

θ



The Normal Equation
To find the value of θ that minimizes the MSE, there exists a closed-form
solution—in other words, a mathematical equation that gives the result
directly. This is called the Normal equation (Equation 4-4).

Equation 4-4. Normal equation

θ ^ = (X ⊺ X) -1   X ⊺   y

In this equation:

θ^ is the value of θ that minimizes the cost function.

y is the vector of target values containing y  to y .

Let’s generate some linear-looking data to test this equation on (Figure 4-1):

import numpy as np

np.random.seed(42)  # to make this code example reproducible
m = 100  # number of instances
X = 2 * np.random.rand(m, 1)  # column vector
y = 4 + 3 * X + np.random.randn(m, 1)  # column vector

(1) (m)



Figure 4-1. A randomly generated linear dataset

Now let’s compute θ^ using the Normal equation. We will use the inv()
function from NumPy’s linear algebra module (np.linalg) to compute the
inverse of a matrix, and the dot() method for matrix multiplication:

from sklearn.preprocessing import add_dummy_feature

X_b = add_dummy_feature(X)  # add x0 = 1 to each instance
theta_best = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ y

NOTE
The @ operator performs matrix multiplication. If A and B are NumPy arrays, then A @ B
is equivalent to np.matmul(A, B). Many other libraries, like TensorFlow, PyTorch, and
JAX, support the @ operator as well. However, you cannot use @ on pure Python arrays
(i.e., lists of lists).

The function that we used to generate the data is y = 4 + 3x  + Gaussian
noise. Let’s see what the equation found:
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>>> theta_best
array([[4.21509616],
       [2.77011339]])

We would have hoped for θ  = 4 and θ  = 3 instead of θ  = 4.215 and θ  =
2.770. Close enough, but the noise made it impossible to recover the exact
parameters of the original function. The smaller and noisier the dataset, the
harder it gets.

Now we can make predictions using θ^:

>>> X_new = np.array([[0], [2]])
>>> X_new_b = add_dummy_feature(X_new)  # add x0 = 1 to each instance
>>> y_predict = X_new_b @ theta_best
>>> y_predict
array([[4.21509616],
       [9.75532293]])

Let’s plot this model’s predictions (Figure 4-2):

import matplotlib.pyplot as plt

plt.plot(X_new, y_predict, "r-", label="Predictions")
plt.plot(X, y, "b.")
[...]  # beautify the figure: add labels, axis, grid, and legend
plt.show()

0 1 0 1



Figure 4-2. Linear regression model predictions

Performing linear regression using Scikit-Learn is relatively straightforward:

>>> from sklearn.linear_model import LinearRegression
>>> lin_reg = LinearRegression()
>>> lin_reg.fit(X, y)
>>> lin_reg.intercept_, lin_reg.coef_
(array([4.21509616]), array([[2.77011339]]))
>>> lin_reg.predict(X_new)
array([[4.21509616],
       [9.75532293]])

Notice that Scikit-Learn separates the bias term (intercept_) from the feature
weights (coef_). The LinearRegression class is based on the
scipy.linalg.lstsq() function (the name stands for “least squares”), which you
could call directly:

>>> theta_best_svd, residuals, rank, s = np.linalg.lstsq(X_b, y, rcond=1e-6)
>>> theta_best_svd
array([[4.21509616],
       [2.77011339]])



This function computes θ^=X+y, where X+ is the pseudoinverse of X
(specifically, the Moore–Penrose inverse). You can use np.linalg.pinv() to
compute the pseudoinverse directly:

>>> np.linalg.pinv(X_b) @ y
array([[4.21509616],
       [2.77011339]])

The pseudoinverse itself is computed using a standard matrix factorization
technique called singular value decomposition (SVD) that can decompose the
training set matrix X into the matrix multiplication of three matrices U Σ V
(see numpy.linalg.svd()). The pseudoinverse is computed as X+=VΣ+U⊺. To
compute the matrix Σ+, the algorithm takes Σ and sets to zero all values
smaller than a tiny threshold value, then it replaces all the nonzero values
with their inverse, and finally it transposes the resulting matrix. This
approach is more efficient than computing the Normal equation, plus it
handles edge cases nicely: indeed, the Normal equation may not work if the
matrix X X is not invertible (i.e., singular), such as if m < n or if some
features are redundant, but the pseudoinverse is always defined.
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Computational Complexity
The Normal equation computes the inverse of X  X, which is an (n + 1) × (n
+ 1) matrix (where n is the number of features). The computational
complexity of inverting such a matrix is typically about O(n ) to O(n ),
depending on the implementation. In other words, if you double the number
of features, you multiply the computation time by roughly 2  = 5.3 to 2  =
8.

The SVD approach used by Scikit-Learn’s LinearRegression class is about
O(n ). If you double the number of features, you multiply the computation
time by roughly 4.

WARNING
Both the Normal equation and the SVD approach get very slow when the number of
features grows large (e.g., 100,000). On the positive side, both are linear with regard to the
number of instances in the training set (they are O(m)), so they handle large training sets
efficiently, provided they can fit in memory.

Also, once you have trained your linear regression model (using the Normal
equation or any other algorithm), predictions are very fast: the computational
complexity is linear with regard to both the number of instances you want to
make predictions on and the number of features. In other words, making
predictions on twice as many instances (or twice as many features) will take
roughly twice as much time.

Now we will look at a very different way to train a linear regression model,
which is better suited for cases where there are a large number of features or
too many training instances to fit in memory.

⊺
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Gradient Descent
Gradient descent is a generic optimization algorithm capable of finding
optimal solutions to a wide range of problems. The general idea of gradient
descent is to tweak parameters iteratively in order to minimize a cost
function.

Suppose you are lost in the mountains in a dense fog, and you can only feel
the slope of the ground below your feet. A good strategy to get to the bottom
of the valley quickly is to go downhill in the direction of the steepest slope.
This is exactly what gradient descent does: it measures the local gradient of
the error function with regard to the parameter vector θ, and it goes in the
direction of descending gradient. Once the gradient is zero, you have reached
a minimum!

In practice, you start by filling θ with random values (this is called random
initialization). Then you improve it gradually, taking one baby step at a time,
each step attempting to decrease the cost function (e.g., the MSE), until the
algorithm converges to a minimum (see Figure 4-3).

Figure 4-3. In this depiction of gradient descent, the model parameters are initialized randomly and get



tweaked repeatedly to minimize the cost function; the learning step size is proportional to the slope of
the cost function, so the steps gradually get smaller as the cost approaches the minimum

An important parameter in gradient descent is the size of the steps,
determined by the learning rate hyperparameter. If the learning rate is too
small, then the algorithm will have to go through many iterations to
converge, which will take a long time (see Figure 4-4).

Figure 4-4. Learning rate too small

On the other hand, if the learning rate is too high, you might jump across the
valley and end up on the other side, possibly even higher up than you were
before. This might make the algorithm diverge, with larger and larger values,
failing to find a good solution (see Figure 4-5).



Figure 4-5. Learning rate too high

Additionally, not all cost functions look like nice, regular bowls. There may
be holes, ridges, plateaus, and all sorts of irregular terrain, making
convergence to the minimum difficult. Figure 4-6 shows the two main
challenges with gradient descent. If the random initialization starts the
algorithm on the left, then it will converge to a local minimum, which is not
as good as the global minimum. If it starts on the right, then it will take a very
long time to cross the plateau. And if you stop too early, you will never reach
the global minimum.



Figure 4-6. Gradient descent pitfalls

Fortunately, the MSE cost function for a linear regression model happens to
be a convex function, which means that if you pick any two points on the
curve, the line segment joining them is never below the curve. This implies
that there are no local minima, just one global minimum. It is also a
continuous function with a slope that never changes abruptly.   These two
facts have a great consequence: gradient descent is guaranteed to approach
arbitrarily closely the global minimum (if you wait long enough and if the
learning rate is not too high).

While the cost function has the shape of a bowl, it can be an elongated bowl
if the features have very different scales. Figure 4-7 shows gradient descent
on a training set where features 1 and 2 have the same scale (on the left), and
on a training set where feature 1 has much smaller values than feature 2 (on
the right).

2

3



Figure 4-7. Gradient descent with (left) and without (right) feature scaling

As you can see, on the left the gradient descent algorithm goes straight
toward the minimum, thereby reaching it quickly, whereas on the right it first
goes in a direction almost orthogonal to the direction of the global minimum,
and it ends with a long march down an almost flat valley. It will eventually
reach the minimum, but it will take a long time.

WARNING
When using gradient descent, you should ensure that all features have a similar scale (e.g.,
using Scikit-Learn’s StandardScaler class), or else it will take much longer to converge.

This diagram also illustrates the fact that training a model means searching
for a combination of model parameters that minimizes a cost function (over
the training set). It is a search in the model’s parameter space. The more
parameters a model has, the more dimensions this space has, and the harder
the search is: searching for a needle in a 300-dimensional haystack is much
trickier than in 3 dimensions. Fortunately, since the cost function is convex in
the case of linear regression, the needle is simply at the bottom of the bowl.



Batch Gradient Descent
To implement gradient descent, you need to compute the gradient of the cost
function with regard to each model parameter θ . In other words, you need to
calculate how much the cost function will change if you change θ  just a little
bit. This is called a partial derivative. It is like asking, “What is the slope of
the mountain under my feet if I face east”? and then asking the same question
facing north (and so on for all other dimensions, if you can imagine a
universe with more than three dimensions). Equation 4-5 computes the partial
derivative of the MSE with regard to parameter θ , noted ∂ MSE(θ) / ∂θ .

Equation 4-5. Partial derivatives of the cost function

∂ ∂θ j MSE ( θ ) = 2 m ∑ i=1 m ( θ ⊺ x (i) - y (i) ) x j (i)

Instead of computing these partial derivatives individually, you can use
Equation 4-6 to compute them all in one go. The gradient vector, noted
∇ MSE(θ), contains all the partial derivatives of the cost function (one for
each model parameter).

Equation 4-6. Gradient vector of the cost function

∇ θ MSE ( θ ) = ∂ ∂θ 0 MSE ( θ ) ∂ ∂θ 1 MSE ( θ ) ⋮ ∂ ∂θ n MSE ( θ ) = 2 m
X ⊺ ( X θ - y )

WARNING
Notice that this formula involves calculations over the full training set X, at each gradient
descent step! This is why the algorithm is called batch gradient descent: it uses the whole
batch of training data at every step (actually, full gradient descent would probably be a
better name). As a result, it is terribly slow on very large training sets (we will look at
some much faster gradient descent algorithms shortly). However, gradient descent scales
well with the number of features; training a linear regression model when there are
hundreds of thousands of features is much faster using gradient descent than using the
Normal equation or SVD decomposition.

Once you have the gradient vector, which points uphill, just go in the
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opposite direction to go downhill. This means subtracting ∇ MSE(θ) from θ.
This is where the learning rate η comes into play:  multiply the gradient
vector by η to determine the size of the downhill step (Equation 4-7).

Equation 4-7. Gradient descent step

θ(next step)=θ-η∇θ MSE(θ)

Let’s look at a quick implementation of this algorithm:

eta = 0.1  # learning rate
n_epochs = 1000
m = len(X_b)  # number of instances

np.random.seed(42)
theta = np.random.randn(2, 1)  # randomly initialized model parameters

for epoch in range(n_epochs):
    gradients = 2 / m * X_b.T @ (X_b @ theta - y)
    theta = theta - eta * gradients

That wasn’t too hard! Each iteration over the training set is called an epoch.
Let’s look at the resulting theta:

>>> theta
array([[4.21509616],
       [2.77011339]])

Hey, that’s exactly what the Normal equation found! Gradient descent
worked perfectly. But what if you had used a different learning rate (eta)?
Figure 4-8 shows the first 20 steps of gradient descent using three different
learning rates. The line at the bottom of each plot represents the random
starting point, then each epoch is represented by a darker and darker line.

θ
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Figure 4-8. Gradient descent with various learning rates

On the left, the learning rate is too low: the algorithm will eventually reach
the solution, but it will take a long time. In the middle, the learning rate looks
pretty good: in just a few epochs, it has already converged to the solution. On
the right, the learning rate is too high: the algorithm diverges, jumping all
over the place and actually getting further and further away from the solution
at every step.

To find a good learning rate, you can use grid search (see Chapter 2).
However, you may want to limit the number of epochs so that grid search can
eliminate models that take too long to converge.

You may wonder how to set the number of epochs. If it is too low, you will
still be far away from the optimal solution when the algorithm stops; but if it
is too high, you will waste time while the model parameters do not change
anymore. A simple solution is to set a very large number of epochs but to
interrupt the algorithm when the gradient vector becomes tiny—that is, when
its norm becomes smaller than a tiny number ϵ (called the tolerance)—
because this happens when gradient descent has (almost) reached the
minimum.

CONVERGENCE RATE

When the cost function is convex and its slope does not change abruptly
(as is the case for the MSE cost function), batch gradient descent with a
fixed learning rate will eventually converge to the optimal solution, but



you may have to wait a while: it can take O(1/ϵ) iterations to reach the
optimum within a range of ϵ, depending on the shape of the cost function.
If you divide the tolerance by 10 to have a more precise solution, then the
algorithm may have to run about 10 times longer.



Stochastic Gradient Descent
The main problem with batch gradient descent is the fact that it uses the
whole training set to compute the gradients at every step, which makes it very
slow when the training set is large. At the opposite extreme, stochastic
gradient descent picks a random instance in the training set at every step and
computes the gradients based only on that single instance. Obviously,
working on a single instance at a time makes the algorithm much faster
because it has very little data to manipulate at every iteration. It also makes it
possible to train on huge training sets, since only one instance needs to be in
memory at each iteration (stochastic GD can be implemented as an out-of-
core algorithm; see Chapter 1).

On the other hand, due to its stochastic (i.e., random) nature, this algorithm is
much less regular than batch gradient descent: instead of gently decreasing
until it reaches the minimum, the cost function will bounce up and down,
decreasing only on average. Over time it will end up very close to the
minimum, but once it gets there it will continue to bounce around, never
settling down (see Figure 4-9). Once the algorithm stops, the final parameter
values will be good, but not optimal.



Figure 4-9. With stochastic gradient descent, each training step is much faster but also much more
stochastic than when using batch gradient descent

When the cost function is very irregular (as in Figure 4-6), this can actually
help the algorithm jump out of local minima, so stochastic gradient descent
has a better chance of finding the global minimum than batch gradient
descent does.

Therefore, randomness is good to escape from local optima, but bad because
it means that the algorithm can never settle at the minimum. One solution to
this dilemma is to gradually reduce the learning rate. The steps start out large
(which helps make quick progress and escape local minima), then get smaller
and smaller, allowing the algorithm to settle at the global minimum. This
process is akin to simulated annealing, an algorithm inspired by the process
in metallurgy of annealing, where molten metal is slowly cooled down. The
function that determines the learning rate at each iteration is called the
learning schedule. If the learning rate is reduced too quickly, you may get
stuck in a local minimum, or even end up frozen halfway to the minimum. If



the learning rate is reduced too slowly, you may jump around the minimum
for a long time and end up with a suboptimal solution if you halt training too
early.

This code implements stochastic gradient descent using a simple learning
schedule:

n_epochs = 50
t0, t1 = 5, 50  # learning schedule hyperparameters

def learning_schedule(t):
    return t0 / (t + t1)

np.random.seed(42)
theta = np.random.randn(2, 1)  # random initialization

for epoch in range(n_epochs):
    for iteration in range(m):
        random_index = np.random.randint(m)
        xi = X_b[random_index : random_index + 1]
        yi = y[random_index : random_index + 1]
        gradients = 2 * xi.T @ (xi @ theta - yi)  # for SGD, do not divide by m
        eta = learning_schedule(epoch * m + iteration)
        theta = theta - eta * gradients

By convention we iterate by rounds of m iterations; each round is called an
epoch, as earlier. While the batch gradient descent code iterated 1,000 times
through the whole training set, this code goes through the training set only 50
times and reaches a pretty good solution:

>>> theta
array([[4.21076011],
       [2.74856079]])

Figure 4-10 shows the first 20 steps of training (notice how irregular the steps
are).

Note that since instances are picked randomly, some instances may be picked
several times per epoch, while others may not be picked at all. If you want to
be sure that the algorithm goes through every instance at each epoch, another
approach is to shuffle the training set (making sure to shuffle the input



features and the labels jointly), then go through it instance by instance, then
shuffle it again, and so on. However, this approach is more complex, and it
generally does not improve the result.

Figure 4-10. The first 20 steps of stochastic gradient descent

WARNING
When using stochastic gradient descent, the training instances must be independent and
identically distributed (IID) to ensure that the parameters get pulled toward the global
optimum, on average. A simple way to ensure this is to shuffle the instances during
training (e.g., pick each instance randomly, or shuffle the training set at the beginning of
each epoch). If you do not shuffle the instances—for example, if the instances are sorted
by label—then SGD will start by optimizing for one label, then the next, and so on, and it
will not settle close to the global minimum.

To perform linear regression using stochastic GD with Scikit-Learn, you can
use the SGDRegressor class, which defaults to optimizing the MSE cost
function. The following code runs for maximum 1,000 epochs (max_iter) or
until the loss drops by less than 10  (tol) during 100 epochs–5



(n_iter_no_change). It starts with a learning rate of 0.01 (eta0), using the
default learning schedule (different from the one we used). Lastly, it does not
use any regularization (penalty=None; more details on this shortly):

from sklearn.linear_model import SGDRegressor

sgd_reg = SGDRegressor(max_iter=1000, tol=1e-5, penalty=None, eta0=0.01,
                       n_iter_no_change=100, random_state=42)
sgd_reg.fit(X, y.ravel())  # y.ravel() because fit() expects 1D targets

Once again, you find a solution quite close to the one returned by the Normal
equation:

>>> sgd_reg.intercept_, sgd_reg.coef_
(array([4.21278812]), array([2.77270267]))

TIP
All Scikit-Learn estimators can be trained using the fit() method, but some estimators also
have a partial_fit() method that you can call to run a single round of training on one or
more instances (it ignores hyperparameters like max_iter or tol). Repeatedly calling
partial_fit() will gradually train the model. This is useful when you need more control over
the training process. Other models have a warm_start hyperparameter instead (and some
have both): if you set warm_start=True, calling the fit() method on a trained model will
not reset the model; it will just continue training where it left off, respecting
hyperparameters like max_iter and tol. Note that fit() resets the iteration counter used by
the learning schedule, while partial_fit() does not.



Mini-Batch Gradient Descent
The last gradient descent algorithm we will look at is called mini-batch
gradient descent. It is straightforward once you know batch and stochastic
gradient descent: at each step, instead of computing the gradients based on
the full training set (as in batch GD) or based on just one instance (as in
stochastic GD), mini-batch GD computes the gradients on small random sets
of instances called mini-batches. The main advantage of mini-batch GD over
stochastic GD is that you can get a performance boost from hardware
optimization of matrix operations, especially when using GPUs.

The algorithm’s progress in parameter space is less erratic than with
stochastic GD, especially with fairly large mini-batches. As a result, mini-
batch GD will end up walking around a bit closer to the minimum than
stochastic GD—but it may be harder for it to escape from local minima (in
the case of problems that suffer from local minima, unlike linear regression
with the MSE cost function). Figure 4-11 shows the paths taken by the three
gradient descent algorithms in parameter space during training. They all end
up near the minimum, but batch GD’s path actually stops at the minimum,
while both stochastic GD and mini-batch GD continue to walk around.
However, don’t forget that batch GD takes a lot of time to take each step, and
stochastic GD and mini-batch GD would also reach the minimum if you used
a good learning schedule.



Figure 4-11. Gradient descent paths in parameter space

Table 4-1 compares the algorithms we’ve discussed so far for linear
regression  (recall that m is the number of training instances and n is the
number of features).

Table 4-1. Comparison of algorithms for linear regression

Algorithm Large m
Out-of-core
support Large n Hyperparams

Normal equation Fast No Slow 0

SVD Fast No Slow 0

Batch GD Slow No Fast 2

Stochastic GD Fast Yes Fast ≥2

Mini-batch GD Fast Yes Fast ≥2

There is almost no difference after training: all these algorithms end up with
very similar models and make predictions in exactly the same way.
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Polynomial Regression
What if your data is more complex than a straight line? Surprisingly, you can
use a linear model to fit nonlinear data. A simple way to do this is to add
powers of each feature as new features, then train a linear model on this
extended set of features. This technique is called polynomial regression.

Let’s look at an example. First, we’ll generate some nonlinear data (see
Figure 4-12), based on a simple quadratic equation—that’s an equation of
the form y = ax² + bx + c—plus some noise:

np.random.seed(42)
m = 100
X = 6 * np.random.rand(m, 1) - 3
y = 0.5 * X ** 2 + X + 2 + np.random.randn(m, 1)

Figure 4-12. Generated nonlinear and noisy dataset

Clearly, a straight line will never fit this data properly. So let’s use Scikit-
Learn’s PolynomialFeatures class to transform our training data, adding the



square (second-degree polynomial) of each feature in the training set as a new
feature (in this case there is just one feature):

>>> from sklearn.preprocessing import PolynomialFeatures
>>> poly_features = PolynomialFeatures(degree=2, include_bias=False)
>>> X_poly = poly_features.fit_transform(X)
>>> X[0]
array([-0.75275929])
>>> X_poly[0]
array([-0.75275929,  0.56664654])

X_poly now contains the original feature of X plus the square of this feature.
Now we can fit a LinearRegression model to this extended training data
(Figure 4-13):

>>> lin_reg = LinearRegression()
>>> lin_reg.fit(X_poly, y)
>>> lin_reg.intercept_, lin_reg.coef_
(array([1.78134581]), array([[0.93366893, 0.56456263]]))

Figure 4-13. Polynomial regression model predictions



Not bad: the model estimates y ^ = 0.56 x 1 2 + 0.93 x 1 + 1.78 when in fact
the original function was y = 0.5 x 1 2 + 1.0 x 1 + 2.0 + Gaussian noise .

Note that when there are multiple features, polynomial regression is capable
of finding relationships between features, which is something a plain linear
regression model cannot do. This is made possible by the fact that
PolynomialFeatures also adds all combinations of features up to the given
degree. For example, if there were two features a and b, PolynomialFeatures
with degree=3 would not only add the features a , a , b , and b , but also the
combinations ab, a b, and ab .

WARNING
PolynomialFeatures(degree=d) transforms an array containing n features into an array
containing (n + d)! / d!n! features, where n! is the factorial of n, equal to 1 × 2 × 3 × ⋯ × n.
Beware of the combinatorial explosion of the number of features!

2 3 2 3
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Learning Curves
If you perform high-degree polynomial regression, you will likely fit the
training data much better than with plain linear regression. For example,
Figure 4-14 applies a 300-degree polynomial model to the preceding training
data, and compares the result with a pure linear model and a quadratic model
(second-degree polynomial). Notice how the 300-degree polynomial model
wiggles around to get as close as possible to the training instances.

Figure 4-14. High-degree polynomial regression

This high-degree polynomial regression model is severely overfitting the
training data, while the linear model is underfitting it. The model that will
generalize best in this case is the quadratic model, which makes sense
because the data was generated using a quadratic model. But in general you
won’t know what function generated the data, so how can you decide how
complex your model should be? How can you tell that your model is
overfitting or underfitting the data?



In Chapter 2 you used cross-validation to get an estimate of a model’s
generalization performance. If a model performs well on the training data but
generalizes poorly according to the cross-validation metrics, then your model
is overfitting. If it performs poorly on both, then it is underfitting. This is one
way to tell when a model is too simple or too complex.

Another way to tell is to look at the learning curves, which are plots of the
model’s training error and validation error as a function of the training
iteration: just evaluate the model at regular intervals during training on both
the training set and the validation set, and plot the results. If the model cannot
be trained incrementally (i.e., if it does not support partial_fit() or
warm_start), then you must train it several times on gradually larger subsets
of the training set.

Scikit-Learn has a useful learning_curve() function to help with this: it trains
and evaluates the model using cross-validation. By default it retrains the
model on growing subsets of the training set, but if the model supports
incremental learning you can set exploit_incremental_learning=True when
calling learning_curve() and it will train the model incrementally instead. The
function returns the training set sizes at which it evaluated the model, and the
training and validation scores it measured for each size and for each cross-
validation fold. Let’s use this function to look at the learning curves of the
plain linear regression model (see Figure 4-15):

from sklearn.model_selection import learning_curve

train_sizes, train_scores, valid_scores = learning_curve(
    LinearRegression(), X, y, train_sizes=np.linspace(0.01, 1.0, 40), cv=5,
    scoring="neg_root_mean_squared_error")
train_errors = -train_scores.mean(axis=1)
valid_errors = -valid_scores.mean(axis=1)

plt.plot(train_sizes, train_errors, "r-+", linewidth=2, label="train")
plt.plot(train_sizes, valid_errors, "b-", linewidth=3, label="valid")
[...]  # beautify the figure: add labels, axis, grid, and legend
plt.show()



Figure 4-15. Learning curves

This model is underfitting. To see why, first let’s look at the training error.
When there are just one or two instances in the training set, the model can fit
them perfectly, which is why the curve starts at zero. But as new instances are
added to the training set, it becomes impossible for the model to fit the
training data perfectly, both because the data is noisy and because it is not
linear at all. So the error on the training data goes up until it reaches a
plateau, at which point adding new instances to the training set doesn’t make
the average error much better or worse. Now let’s look at the validation error.
When the model is trained on very few training instances, it is incapable of
generalizing properly, which is why the validation error is initially quite
large. Then, as the model is shown more training examples, it learns, and thus
the validation error slowly goes down. However, once again a straight line
cannot do a good job of modeling the data, so the error ends up at a plateau,
very close to the other curve.

These learning curves are typical of a model that’s underfitting. Both curves
have reached a plateau; they are close and fairly high.



TIP
If your model is underfitting the training data, adding more training examples will not
help. You need to use a better model or come up with better features.

Now let’s look at the learning curves of a 10th-degree polynomial model on
the same data (Figure 4-16):

from sklearn.pipeline import make_pipeline

polynomial_regression = make_pipeline(
    PolynomialFeatures(degree=10, include_bias=False),
    LinearRegression())

train_sizes, train_scores, valid_scores = learning_curve(
    polynomial_regression, X, y, train_sizes=np.linspace(0.01, 1.0, 40), cv=5,
    scoring="neg_root_mean_squared_error")
[...]  # same as earlier

Figure 4-16. Learning curves for the 10th-degree polynomial model



These learning curves look a bit like the previous ones, but there are two very
important differences:

The error on the training data is much lower than before.

There is a gap between the curves. This means that the model performs
significantly better on the training data than on the validation data,
which is the hallmark of an overfitting model. If you used a much larger
training set, however, the two curves would continue to get closer.

TIP
One way to improve an overfitting model is to feed it more training data until the
validation error reaches the training error.

THE BIAS/VARIANCE TRADE-OFF

An important theoretical result of statistics and machine learning is the
fact that a model’s generalization error can be expressed as the sum of
three very different errors:

Bias

This part of the generalization error is due to wrong assumptions,
such as assuming that the data is linear when it is actually quadratic.
A high-bias model is most likely to underfit the training data.

Variance

This part is due to the model’s excessive sensitivity to small
variations in the training data. A model with many degrees of
freedom (such as a high-degree polynomial model) is likely to have
high variance and thus overfit the training data.

Irreducible error

This part is due to the noisiness of the data itself. The only way to
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reduce this part of the error is to clean up the data (e.g., fix the data
sources, such as broken sensors, or detect and remove outliers).

Increasing a model’s complexity will typically increase its variance and
reduce its bias. Conversely, reducing a model’s complexity increases its
bias and reduces its variance. This is why it is called a trade-off.



Regularized Linear Models
As you saw in Chapters 1 and 2, a good way to reduce overfitting is to
regularize the model (i.e., to constrain it): the fewer degrees of freedom it
has, the harder it will be for it to overfit the data. A simple way to regularize
a polynomial model is to reduce the number of polynomial degrees.

For a linear model, regularization is typically achieved by constraining the
weights of the model. We will now look at ridge regression, lasso regression,
and elastic net regression, which implement three different ways to constrain
the weights.



Ridge Regression
Ridge regression (also called Tikhonov regularization) is a regularized
version of linear regression: a regularization term equal to αm∑i=1nθi2 is
added to the MSE. This forces the learning algorithm to not only fit the data
but also keep the model weights as small as possible. Note that the
regularization term should only be added to the cost function during training.
Once the model is trained, you want to use the unregularized MSE (or the
RMSE) to evaluate the model’s performance.

The hyperparameter α controls how much you want to regularize the model.
If α = 0, then ridge regression is just linear regression. If α is very large, then
all weights end up very close to zero and the result is a flat line going through
the data’s mean. Equation 4-8 presents the ridge regression cost function. 

Equation 4-8. Ridge regression cost function

J(θ)=MSE(θ)+αm∑i=1nθi2

Note that the bias term θ  is not regularized (the sum starts at i = 1, not 0). If
we define w as the vector of feature weights (θ  to θ ), then the regularization
term is equal to α(∥ w ∥ )  / m, where ∥ w ∥  represents the ℓ  norm of
the weight vector.  For batch gradient descent, just add 2αw / m to the part
of the MSE gradient vector that corresponds to the feature weights, without
adding anything to the gradient of the bias term (see Equation 4-6).

WARNING
It is important to scale the data (e.g., using a StandardScaler) before performing ridge
regression, as it is sensitive to the scale of the input features. This is true of most
regularized models.

Figure 4-17 shows several ridge models that were trained on some very noisy
linear data using different α values. On the left, plain ridge models are used,
leading to linear predictions. On the right, the data is first expanded using
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PolynomialFeatures(degree=10), then it is scaled using a StandardScaler, and
finally the ridge models are applied to the resulting features: this is
polynomial regression with ridge regularization. Note how increasing α leads
to flatter (i.e., less extreme, more reasonable) predictions, thus reducing the
model’s variance but increasing its bias.

Figure 4-17. Linear (left) and a polynomial (right) models, both with various levels of ridge
regularization

As with linear regression, we can perform ridge regression either by
computing a closed-form equation or by performing gradient descent. The
pros and cons are the same. Equation 4-9 shows the closed-form solution,
where A is the (n + 1) × (n + 1) identity matrix,  except with a 0 in the top-
left cell, corresponding to the bias term.

Equation 4-9. Ridge regression closed-form solution

θ ^ = (X ⊺ X+αA) -1   X ⊺   y

Here is how to perform ridge regression with Scikit-Learn using a closed-
form solution (a variant of Equation 4-9 that uses a matrix factorization
technique by André-Louis Cholesky):

>>> from sklearn.linear_model import Ridge
>>> ridge_reg = Ridge(alpha=0.1, solver="cholesky")
>>> ridge_reg.fit(X, y)
>>> ridge_reg.predict([[1.5]])
array([[1.55325833]])
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And using stochastic gradient descent:

>>> sgd_reg = SGDRegressor(penalty="l2", alpha=0.1 / m, tol=None,
...                        max_iter=1000, eta0=0.01, random_state=42)
...
>>> sgd_reg.fit(X, y.ravel())  # y.ravel() because fit() expects 1D targets
>>> sgd_reg.predict([[1.5]])
array([1.55302613])

The penalty hyperparameter sets the type of regularization term to use.
Specifying "l2" indicates that you want SGD to add a regularization term to
the MSE cost function equal to alpha times the square of the ℓ  norm of the
weight vector. This is just like ridge regression, except there’s no division by
m in this case; that’s why we passed alpha=0.1 / m, to get the same result as
Ridge(alpha=0.1).

TIP
The RidgeCV class also performs ridge regression, but it automatically tunes
hyperparameters using cross-validation. It’s roughly equivalent to using GridSearchCV,
but it’s optimized for ridge regression and runs much faster. Several other estimators
(mostly linear) also have efficient CV variants, such as LassoCV and ElasticNetCV.
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Lasso Regression
Least absolute shrinkage and selection operator regression (usually simply
called lasso regression) is another regularized version of linear regression:
just like ridge regression, it adds a regularization term to the cost function,
but it uses the ℓ  norm of the weight vector instead of the square of the ℓ
norm (see Equation 4-10). Notice that the ℓ  norm is multiplied by 2α,
whereas the ℓ  norm was multiplied by α / m in ridge regression. These
factors were chosen to ensure that the optimal α value is independent from
the training set size: different norms lead to different factors (see Scikit-Learn
issue #15657 for more details).

Equation 4-10. Lasso regression cost function

J(θ)=MSE(θ)+2α∑i=1nθi

Figure 4-18 shows the same thing as Figure 4-17 but replaces the ridge
models with lasso models and uses different α values.

Figure 4-18. Linear (left) and polynomial (right) models, both using various levels of lasso
regularization

An important characteristic of lasso regression is that it tends to eliminate the
weights of the least important features (i.e., set them to zero). For example,
the dashed line in the righthand plot in Figure 4-18 (with α = 0.01) looks
roughly cubic: all the weights for the high-degree polynomial features are
equal to zero. In other words, lasso regression automatically performs feature
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selection and outputs a sparse model with few nonzero feature weights.

You can get a sense of why this is the case by looking at Figure 4-19: the
axes represent two model parameters, and the background contours represent
different loss functions. In the top-left plot, the contours represent the ℓ  loss
(|θ | + |θ |), which drops linearly as you get closer to any axis. For example, if
you initialize the model parameters to θ  = 2 and θ  = 0.5, running gradient
descent will decrement both parameters equally (as represented by the dashed
yellow line); therefore θ  will reach 0 first (since it was closer to 0 to begin
with). After that, gradient descent will roll down the gutter until it reaches θ
= 0 (with a bit of bouncing around, since the gradients of ℓ  never get close to
0: they are either –1 or 1 for each parameter). In the top-right plot, the
contours represent lasso regression’s cost function (i.e., an MSE cost function
plus an ℓ  loss). The small white circles show the path that gradient descent
takes to optimize some model parameters that were initialized around θ  =
0.25 and θ  = –1: notice once again how the path quickly reaches θ  = 0, then
rolls down the gutter and ends up bouncing around the global optimum
(represented by the red square). If we increased α, the global optimum would
move left along the dashed yellow line, while if we decreased α, the global
optimum would move right (in this example, the optimal parameters for the
unregularized MSE are θ  = 2 and θ  = 0.5).
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Figure 4-19. Lasso versus ridge regularization

The two bottom plots show the same thing but with an ℓ  penalty instead. In
the bottom-left plot, you can see that the ℓ  loss decreases as we get closer to
the origin, so gradient descent just takes a straight path toward that point. In
the bottom-right plot, the contours represent ridge regression’s cost function
(i.e., an MSE cost function plus an ℓ  loss). As you can see, the gradients get
smaller as the parameters approach the global optimum, so gradient descent
naturally slows down. This limits the bouncing around, which helps ridge
converge faster than lasso regression. Also note that the optimal parameters
(represented by the red square) get closer and closer to the origin when you
increase α, but they never get eliminated entirely.

TIP
To keep gradient descent from bouncing around the optimum at the end when using lasso
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regression, you need to gradually reduce the learning rate during training. It will still
bounce around the optimum, but the steps will get smaller and smaller, so it will converge.

The lasso cost function is not differentiable at θ  = 0 (for i = 1, 2, ⋯, n), but
gradient descent still works if you use a subgradient vector g  instead when
any θ  = 0. Equation 4-11 shows a subgradient vector equation you can use
for gradient descent with the lasso cost function.

Equation 4-11. Lasso regression subgradient vector

g(θ,J)=∇θ 
MSE(θ)+2αsign(θ1)sign(θ2)⋮sign(θn)  where sign(θi)=-1if θi<00if θi=0+1if θi>0

Here is a small Scikit-Learn example using the Lasso class:

>>> from sklearn.linear_model import Lasso
>>> lasso_reg = Lasso(alpha=0.1)
>>> lasso_reg.fit(X, y)
>>> lasso_reg.predict([[1.5]])
array([1.53788174])

Note that you could instead use SGDRegressor(penalty="l1", alpha=0.1).
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Elastic Net Regression
Elastic net regression is a middle ground between ridge regression and lasso
regression. The regularization term is a weighted sum of both ridge and
lasso’s regularization terms, and you can control the mix ratio r. When r = 0,
elastic net is equivalent to ridge regression, and when r = 1, it is equivalent to
lasso regression (Equation 4-12).

Equation 4-12. Elastic net cost function

J(θ)=MSE(θ)+r2α∑i=1nθi+(1-r)αm∑i=1nθi2

So when should you use elastic net regression, or ridge, lasso, or plain linear
regression (i.e., without any regularization)? It is almost always preferable to
have at least a little bit of regularization, so generally you should avoid plain
linear regression. Ridge is a good default, but if you suspect that only a few
features are useful, you should prefer lasso or elastic net because they tend to
reduce the useless features’ weights down to zero, as discussed earlier. In
general, elastic net is preferred over lasso because lasso may behave
erratically when the number of features is greater than the number of training
instances or when several features are strongly correlated.

Here is a short example that uses Scikit-Learn’s ElasticNet (l1_ratio
corresponds to the mix ratio r):

>>> from sklearn.linear_model import ElasticNet
>>> elastic_net = ElasticNet(alpha=0.1, l1_ratio=0.5)
>>> elastic_net.fit(X, y)
>>> elastic_net.predict([[1.5]])
array([1.54333232])



Early Stopping
A very different way to regularize iterative learning algorithms such as
gradient descent is to stop training as soon as the validation error reaches a
minimum. This is called early stopping. Figure 4-20 shows a complex model
(in this case, a high-degree polynomial regression model) being trained with
batch gradient descent on the quadratic dataset we used earlier. As the epochs
go by, the algorithm learns, and its prediction error (RMSE) on the training
set goes down, along with its prediction error on the validation set. After a
while, though, the validation error stops decreasing and starts to go back up.
This indicates that the model has started to overfit the training data. With
early stopping you just stop training as soon as the validation error reaches
the minimum. It is such a simple and efficient regularization technique that
Geoffrey Hinton called it a “beautiful free lunch”.

Figure 4-20. Early stopping regularization

TIP



With stochastic and mini-batch gradient descent, the curves are not so smooth, and it may
be hard to know whether you have reached the minimum or not. One solution is to stop
only after the validation error has been above the minimum for some time (when you are
confident that the model will not do any better), then roll back the model parameters to the
point where the validation error was at a minimum.

Here is a basic implementation of early stopping:

from copy import deepcopy
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler

X_train, y_train, X_valid, y_valid = [...]  # split the quadratic dataset

preprocessing = make_pipeline(PolynomialFeatures(degree=90, include_bias=False),
                              StandardScaler())
X_train_prep = preprocessing.fit_transform(X_train)
X_valid_prep = preprocessing.transform(X_valid)
sgd_reg = SGDRegressor(penalty=None, eta0=0.002, random_state=42)
n_epochs = 500
best_valid_rmse = float('inf')

for epoch in range(n_epochs):
    sgd_reg.partial_fit(X_train_prep, y_train)
    y_valid_predict = sgd_reg.predict(X_valid_prep)
    val_error = mean_squared_error(y_valid, y_valid_predict, squared=False)
    if val_error < best_valid_rmse:
        best_valid_rmse = val_error
        best_model = deepcopy(sgd_reg)

This code first adds the polynomial features and scales all the input features,
both for the training set and for the validation set (the code assumes that you
have split the original training set into a smaller training set and a validation
set). Then it creates an SGDRegressor model with no regularization and a
small learning rate. In the training loop, it calls partial_fit() instead of fit(), to
perform incremental learning. At each epoch, it measures the RMSE on the
validation set. If it is lower than the lowest RMSE seen so far, it saves a copy
of the model in the best_model variable. This implementation does not
actually stop training, but it lets you revert to the best model after training.
Note that the model is copied using copy.deepcopy(), because it copies both



the model’s hyperparameters and the learned parameters. In contrast,
sklearn.base.clone() only copies the model’s hyperparameters.



Logistic Regression
As discussed in Chapter 1, some regression algorithms can be used for
classification (and vice versa). Logistic regression (also called logit
regression) is commonly used to estimate the probability that an instance
belongs to a particular class (e.g., what is the probability that this email is
spam?). If the estimated probability is greater than a given threshold
(typically 50%), then the model predicts that the instance belongs to that class
(called the positive class, labeled “1”), and otherwise it predicts that it does
not (i.e., it belongs to the negative class, labeled “0”). This makes it a binary
classifier.



Estimating Probabilities
So how does logistic regression work? Just like a linear regression model, a
logistic regression model computes a weighted sum of the input features (plus
a bias term), but instead of outputting the result directly like the linear
regression model does, it outputs the logistic of this result (see Equation 4-
13).

Equation 4-13. Logistic regression model estimated probability (vectorized form)

p ^ = h θ ( x ) = σ ( θ ⊺ x )

The logistic—noted σ(·)—is a sigmoid function (i.e., S-shaped) that outputs a
number between 0 and 1. It is defined as shown in Equation 4-14 and
Figure 4-21.

Equation 4-14. Logistic function

σ ( t ) = 1 1+exp(-t)

Figure 4-21. Logistic function

Once the logistic regression model has estimated the probability p^ = h (x)
that an instance x belongs to the positive class, it can make its prediction ŷ
easily (see Equation 4-15).

Equation 4-15. Logistic regression model prediction using a 50% threshold probability

y ^ = 0 if p ^ < 0.5 1 if p ^ ≥ 0.5

θ



Notice that σ(t) < 0.5 when t < 0, and σ(t) ≥ 0.5 when t ≥ 0, so a logistic
regression model using the default threshold of 50% probability predicts 1 if
θ  x is positive and 0 if it is negative.

NOTE
The score t is often called the logit. The name comes from the fact that the logit function,
defined as logit(p) = log(p / (1 – p)), is the inverse of the logistic function. Indeed, if you
compute the logit of the estimated probability p, you will find that the result is t. The logit
is also called the log-odds, since it is the log of the ratio between the estimated probability
for the positive class and the estimated probability for the negative class.

⊺



Training and Cost Function
Now you know how a logistic regression model estimates probabilities and
makes predictions. But how is it trained? The objective of training is to set
the parameter vector θ so that the model estimates high probabilities for
positive instances (y = 1) and low probabilities for negative instances (y = 0).
This idea is captured by the cost function shown in Equation 4-16 for a single
training instance x.

Equation 4-16. Cost function of a single training instance

c(θ)=-log(p^)if y=1-log(1-p^)if y=0

This cost function makes sense because –log(t) grows very large when t
approaches 0, so the cost will be large if the model estimates a probability
close to 0 for a positive instance, and it will also be large if the model
estimates a probability close to 1 for a negative instance. On the other hand, –
log(t) is close to 0 when t is close to 1, so the cost will be close to 0 if the
estimated probability is close to 0 for a negative instance or close to 1 for a
positive instance, which is precisely what we want.

The cost function over the whole training set is the average cost over all
training instances. It can be written in a single expression called the log loss,
shown in Equation 4-17.

Equation 4-17. Logistic regression cost function (log loss)

J(θ)=-1m∑i=1my(i)logp^(i)+(1-y(i))log1-p^(i)

WARNING
The log loss was not just pulled out of a hat. It can be shown mathematically (using
Bayesian inference) that minimizing this loss will result in the model with the maximum
likelihood of being optimal, assuming that the instances follow a Gaussian distribution
around the mean of their class. When you use the log loss, this is the implicit assumption
you are making. The more wrong this assumption is, the more biased the model will be.
Similarly, when we used the MSE to train linear regression models, we were implicitly
assuming that the data was purely linear, plus some Gaussian noise. So, if the data is not
linear (e.g., if it’s quadratic) or if the noise is not Gaussian (e.g., if outliers are not



exponentially rare), then the model will be biased.

The bad news is that there is no known closed-form equation to compute the
value of θ that minimizes this cost function (there is no equivalent of the
Normal equation). But the good news is that this cost function is convex, so
gradient descent (or any other optimization algorithm) is guaranteed to find
the global minimum (if the learning rate is not too large and you wait long
enough). The partial derivatives of the cost function with regard to the j
model parameter θ  are given by Equation 4-18.

Equation 4-18. Logistic cost function partial derivatives

∂ ∂θ j J ( θ ) = 1 m ∑ i=1 m σ ( θ ⊺ x (i) ) - y (i) x j (i)

This equation looks very much like Equation 4-5: for each instance it
computes the prediction error and multiplies it by the j  feature value, and
then it computes the average over all training instances. Once you have the
gradient vector containing all the partial derivatives, you can use it in the
batch gradient descent algorithm. That’s it: you now know how to train a
logistic regression model. For stochastic GD you would take one instance at a
time, and for mini-batch GD you would use a mini-batch at a time.
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Decision Boundaries
We can use the iris dataset to illustrate logistic regression. This is a famous
dataset that contains the sepal and petal length and width of 150 iris flowers
of three different species: Iris setosa, Iris versicolor, and Iris virginica (see
Figure 4-22).

Figure 4-22. Flowers of three iris plant species

Let’s try to build a classifier to detect the Iris virginica type based only on the
petal width feature. The first step is to load the data and take a quick peek:

>>> from sklearn.datasets import load_iris
>>> iris = load_iris(as_frame=True)
>>> list(iris)
['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names',
 'filename', 'data_module']
>>> iris.data.head(3)
   sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                5.1               3.5                1.4               0.2
1                4.9               3.0                1.4               0.2
2                4.7               3.2                1.3               0.2
>>> iris.target.head(3)  # note that the instances are not shuffled
0    0
1    0
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2    0
Name: target, dtype: int64
>>> iris.target_names
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

Next we’ll split the data and train a logistic regression model on the training
set:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

X = iris.data[["petal width (cm)"]].values
y = iris.target_names[iris.target] == 'virginica'
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

log_reg = LogisticRegression(random_state=42)
log_reg.fit(X_train, y_train)

Let’s look at the model’s estimated probabilities for flowers with petal widths
varying from 0 cm to 3 cm (Figure 4-23):

X_new = np.linspace(0, 3, 1000).reshape(-1, 1)  # reshape to get a column vector
y_proba = log_reg.predict_proba(X_new)
decision_boundary = X_new[y_proba[:, 1] >= 0.5][0, 0]

plt.plot(X_new, y_proba[:, 0], "b--", linewidth=2,
         label="Not Iris virginica proba")
plt.plot(X_new, y_proba[:, 1], "g-", linewidth=2, label="Iris virginica proba")
plt.plot([decision_boundary, decision_boundary], [0, 1], "k:", linewidth=2,
         label="Decision boundary")
[...] # beautify the figure: add grid, labels, axis, legend, arrows, and samples
plt.show()
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Figure 4-23. Estimated probabilities and decision boundary

The petal width of Iris virginica flowers (represented as triangles) ranges
from 1.4 cm to 2.5 cm, while the other iris flowers (represented by squares)
generally have a smaller petal width, ranging from 0.1 cm to 1.8 cm. Notice
that there is a bit of overlap. Above about 2 cm the classifier is highly
confident that the flower is an Iris virginica (it outputs a high probability for
that class), while below 1 cm it is highly confident that it is not an Iris
virginica (high probability for the “Not Iris virginica” class). In between
these extremes, the classifier is unsure. However, if you ask it to predict the
class (using the predict() method rather than the predict_proba() method), it
will return whichever class is the most likely. Therefore, there is a decision
boundary at around 1.6 cm where both probabilities are equal to 50%: if the
petal width is greater than 1.6 cm the classifier will predict that the flower is
an Iris virginica, and otherwise it will predict that it is not (even if it is not
very confident):

>>> decision_boundary
1.6516516516516517
>>> log_reg.predict([[1.7], [1.5]])
array([ True, False])

Figure 4-24 shows the same dataset, but this time displaying two features:
petal width and length. Once trained, the logistic regression classifier can,
based on these two features, estimate the probability that a new flower is an
Iris virginica. The dashed line represents the points where the model
estimates a 50% probability: this is the model’s decision boundary. Note that
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it is a linear boundary.  Each parallel line represents the points where the
model outputs a specific probability, from 15% (bottom left) to 90% (top
right). All the flowers beyond the top-right line have over 90% chance of
being Iris virginica, according to the model.

Figure 4-24. Linear decision boundary

NOTE
The hyperparameter controlling the regularization strength of a Scikit-Learn
LogisticRegression model is not alpha (as in other linear models), but its inverse: C. The
higher the value of C, the less the model is regularized.

Just like the other linear models, logistic regression models can be
regularized using ℓ  or ℓ  penalties. Scikit-Learn actually adds an ℓ  penalty
by default.

14

1 2 2



Softmax Regression
The logistic regression model can be generalized to support multiple classes
directly, without having to train and combine multiple binary classifiers (as
discussed in Chapter 3). This is called softmax regression, or multinomial
logistic regression.

The idea is simple: when given an instance x, the softmax regression model
first computes a score s (x) for each class k, then estimates the probability of
each class by applying the softmax function (also called the normalized
exponential) to the scores. The equation to compute s (x) should look
familiar, as it is just like the equation for linear regression prediction (see
Equation 4-19).

Equation 4-19. Softmax score for class k

s k ( x ) = (θ (k) ) ⊺ x

Note that each class has its own dedicated parameter vector θ . All these
vectors are typically stored as rows in a parameter matrix Θ.

Once you have computed the score of every class for the instance x, you can
estimate the probability p^k that the instance belongs to class k by running
the scores through the softmax function (Equation 4-20). The function
computes the exponential of every score, then normalizes them (dividing by
the sum of all the exponentials). The scores are generally called logits or log-
odds (although they are actually unnormalized log-odds).

Equation 4-20. Softmax function

p ^ k = σ s(x) k = exps k (x) ∑ j=1 K exps j (x)

In this equation:

K is the number of classes.

s(x) is a vector containing the scores of each class for the instance x.

σ(s(x))  is the estimated probability that the instance x belongs to class k,

k

k
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given the scores of each class for that instance.

Just like the logistic regression classifier, by default the softmax regression
classifier predicts the class with the highest estimated probability (which is
simply the class with the highest score), as shown in Equation 4-21.

Equation 4-21. Softmax regression classifier prediction

y ^ = argmax k σ s(x) k = argmax k s k ( x ) = argmax k (θ (k) ) ⊺ x

The argmax operator returns the value of a variable that maximizes a
function. In this equation, it returns the value of k that maximizes the
estimated probability σ(s(x)) .

TIP
The softmax regression classifier predicts only one class at a time (i.e., it is multiclass, not
multioutput), so it should be used only with mutually exclusive classes, such as different
species of plants. You cannot use it to recognize multiple people in one picture.

Now that you know how the model estimates probabilities and makes
predictions, let’s take a look at training. The objective is to have a model that
estimates a high probability for the target class (and consequently a low
probability for the other classes). Minimizing the cost function shown in
Equation 4-22, called the cross entropy, should lead to this objective because
it penalizes the model when it estimates a low probability for a target class.
Cross entropy is frequently used to measure how well a set of estimated class
probabilities matches the target classes.

Equation 4-22. Cross entropy cost function

J(Θ)=-1m∑i=1m∑k=1Kyk(i)logp^k(i)

In this equation, yk(i) is the target probability that the i  instance belongs to
class k. In general, it is either equal to 1 or 0, depending on whether the
instance belongs to the class or not.

Notice that when there are just two classes (K = 2), this cost function is
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equivalent to the logistic regression cost function (log loss; see Equation 4-
17).

CROSS ENTROPY

Cross entropy originated from Claude Shannon’s information theory.
Suppose you want to efficiently transmit information about the weather
every day. If there are eight options (sunny, rainy, etc.), you could encode
each option using 3 bits, because 2  = 8. However, if you think it will be
sunny almost every day, it would be much more efficient to code “sunny”
on just one bit (0) and the other seven options on four bits (starting with a
1). Cross entropy measures the average number of bits you actually send
per option. If your assumption about the weather is perfect, cross entropy
will be equal to the entropy of the weather itself (i.e., its intrinsic
unpredictability). But if your assumption is wrong (e.g., if it rains often),
cross entropy will be greater by an amount called the Kullback–Leibler
(KL) divergence.

The cross entropy between two probability distributions p and q is
defined as H(p,q) = –Σ  p(x) log q(x) (at least when the distributions are
discrete). For more details, check out my video on the subject.

The gradient vector of this cost function with regard to θ  is given by
Equation 4-23.

Equation 4-23. Cross entropy gradient vector for class k

∇ θ (k) J ( Θ ) = 1 m ∑ i=1 m p ^ k (i) - y k (i) x (i)

Now you can compute the gradient vector for every class, then use gradient
descent (or any other optimization algorithm) to find the parameter matrix Θ
that minimizes the cost function.

Let’s use softmax regression to classify the iris plants into all three classes.
Scikit-Learn’s LogisticRegression classifier uses softmax regression
automatically when you train it on more than two classes (assuming you use
solver="lbfgs", which is the default). It also applies ℓ  regularization by
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default, which you can control using the hyperparameter C, as mentioned
earlier:

X = iris.data[["petal length (cm)", "petal width (cm)"]].values
y = iris["target"]
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

softmax_reg = LogisticRegression(C=30, random_state=42)
softmax_reg.fit(X_train, y_train)

So the next time you find an iris with petals that are 5 cm long and 2 cm
wide, you can ask your model to tell you what type of iris it is, and it will
answer Iris virginica (class 2) with 96% probability (or Iris versicolor with
4% probability):

>>> softmax_reg.predict([[5, 2]])
array([2])
>>> softmax_reg.predict_proba([[5, 2]]).round(2)
array([[0.  , 0.04, 0.96]])

Figure 4-25 shows the resulting decision boundaries, represented by the
background colors. Notice that the decision boundaries between any two
classes are linear. The figure also shows the probabilities for the Iris
versicolor class, represented by the curved lines (e.g., the line labeled with
0.30 represents the 30% probability boundary). Notice that the model can
predict a class that has an estimated probability below 50%. For example, at
the point where all decision boundaries meet, all classes have an equal
estimated probability of 33%.



Figure 4-25. Softmax regression decision boundaries

In this chapter, you learned various ways to train linear models, both for
regression and for classification. You used a closed-form equation to solve
linear regression, as well as gradient descent, and you learned how various
penalties can be added to the cost function during training to regularize the
model. Along the way, you also learned how to plot learning curves and
analyze them, and how to implement early stopping. Finally, you learned
how logistic regression and softmax regression work. We’ve opened up the
first machine learning black boxes! In the next chapters we will open many
more, starting with support vector machines.



Exercises
1. Which linear regression training algorithm can you use if you have a

training set with millions of features?

2. Suppose the features in your training set have very different scales.
Which algorithms might suffer from this, and how? What can you do
about it?

3. Can gradient descent get stuck in a local minimum when training a
logistic regression model?

4. Do all gradient descent algorithms lead to the same model, provided you
let them run long enough?

5. Suppose you use batch gradient descent and you plot the validation error
at every epoch. If you notice that the validation error consistently goes
up, what is likely going on? How can you fix this?

6. Is it a good idea to stop mini-batch gradient descent immediately when
the validation error goes up?

7. Which gradient descent algorithm (among those we discussed) will
reach the vicinity of the optimal solution the fastest? Which will actually
converge? How can you make the others converge as well?

8. Suppose you are using polynomial regression. You plot the learning
curves and you notice that there is a large gap between the training error
and the validation error. What is happening? What are three ways to
solve this?

9. Suppose you are using ridge regression and you notice that the training
error and the validation error are almost equal and fairly high. Would
you say that the model suffers from high bias or high variance? Should
you increase the regularization hyperparameter α or reduce it?

10. Why would you want to use:



a. Ridge regression instead of plain linear regression (i.e., without any
regularization)?

b. Lasso instead of ridge regression?

c. Elastic net instead of lasso regression?

11. Suppose you want to classify pictures as outdoor/indoor and
daytime/nighttime. Should you implement two logistic regression
classifiers or one softmax regression classifier?

12. Implement batch gradient descent with early stopping for softmax
regression without using Scikit-Learn, only NumPy. Use it on a
classification task such as the iris dataset.

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.

1  A closed-form equation is only composed of a finite number of constants, variables, and
standard operations: for example, a = sin(b – c). No infinite sums, no limits, no integrals, etc.

2  Technically speaking, its derivative is Lipschitz continuous.

3  Since feature 1 is smaller, it takes a larger change in θ  to affect the cost function, which is why
the bowl is elongated along the θ  axis.

4  Eta (η) is the seventh letter of the Greek alphabet.

5  While the Normal equation can only perform linear regression, the gradient descent algorithms
can be used to train many other models, as you’ll see.

6  This notion of bias is not to be confused with the bias term of linear models.

7  It is common to use the notation J(θ) for cost functions that don’t have a short name; I’ll often
use this notation throughout the rest of this book. The context will make it clear which cost
function is being discussed.

8  Norms are discussed in Chapter 2.

9  A square matrix full of 0s except for 1s on the main diagonal (top left to bottom right).

10  Alternatively, you can use the Ridge class with the "sag" solver. Stochastic average GD is a
variant of stochastic GD. For more details, see the presentation “Minimizing Finite Sums with
the Stochastic Average Gradient Algorithm” by Mark Schmidt et al. from the University of
British Columbia.

11  You can think of a subgradient vector at a nondifferentiable point as an intermediate vector

1
1

https://homl.info/colab3
https://homl.info/12


between the gradient vectors around that point.

12  Photos reproduced from the corresponding Wikipedia pages. Iris virginica photo by Frank
Mayfield (Creative Commons BY-SA 2.0), Iris versicolor photo by D. Gordon E. Robertson
(Creative Commons BY-SA 3.0), Iris setosa photo public domain.

13  NumPy’s reshape() function allows one dimension to be –1, which means “automatic”: the
value is inferred from the length of the array and the remaining dimensions.

14  It is the set of points x such that θ  + θ x  + θ x  = 0, which defines a straight line.0 1 1 2 2

https://creativecommons.org/licenses/by-sa/2.0
https://creativecommons.org/licenses/by-sa/3.0


Chapter 5. Support Vector
Machines

A support vector machine (SVM) is a powerful and versatile machine
learning model, capable of performing linear or nonlinear classification,
regression, and even novelty detection. SVMs shine with small to medium-
sized nonlinear datasets (i.e., hundreds to thousands of instances), especially
for classification tasks. However, they don’t scale very well to very large
datasets, as you will see.

This chapter will explain the core concepts of SVMs, how to use them, and
how they work. Let’s jump right in!



Linear SVM Classification
The fundamental idea behind SVMs is best explained with some visuals.
Figure 5-1 shows part of the iris dataset that was introduced at the end of
Chapter 4. The two classes can clearly be separated easily with a straight line
(they are linearly separable). The left plot shows the decision boundaries of
three possible linear classifiers. The model whose decision boundary is
represented by the dashed line is so bad that it does not even separate the
classes properly. The other two models work perfectly on this training set,
but their decision boundaries come so close to the instances that these models
will probably not perform as well on new instances. In contrast, the solid line
in the plot on the right represents the decision boundary of an SVM classifier;
this line not only separates the two classes but also stays as far away from the
closest training instances as possible. You can think of an SVM classifier as
fitting the widest possible street (represented by the parallel dashed lines)
between the classes. This is called large margin classification.

Figure 5-1. Large margin classification

Notice that adding more training instances “off the street” will not affect the
decision boundary at all: it is fully determined (or “supported”) by the
instances located on the edge of the street. These instances are called the
support vectors (they are circled in Figure 5-1).

WARNING
SVMs are sensitive to the feature scales, as you can see in Figure 5-2. In the left plot, the
vertical scale is much larger than the horizontal scale, so the widest possible street is close
to horizontal. After feature scaling (e.g., using Scikit-Learn’s StandardScaler), the decision



boundary in the right plot looks much better.

Figure 5-2. Sensitivity to feature scales



Soft Margin Classification
If we strictly impose that all instances must be off the street and on the
correct side, this is called hard margin classification. There are two main
issues with hard margin classification. First, it only works if the data is
linearly separable. Second, it is sensitive to outliers. Figure 5-3 shows the iris
dataset with just one additional outlier: on the left, it is impossible to find a
hard margin; on the right, the decision boundary ends up very different from
the one we saw in Figure 5-1 without the outlier, and the model will probably
not generalize as well.

Figure 5-3. Hard margin sensitivity to outliers

To avoid these issues, we need to use a more flexible model. The objective is
to find a good balance between keeping the street as large as possible and
limiting the margin violations (i.e., instances that end up in the middle of the
street or even on the wrong side). This is called soft margin classification.

When creating an SVM model using Scikit-Learn, you can specify several
hyperparameters, including the regularization hyperparameter C. If you set it
to a low value, then you end up with the model on the left of Figure 5-4. With
a high value, you get the model on the right. As you can see, reducing C
makes the street larger, but it also leads to more margin violations. In other
words, reducing C results in more instances supporting the street, so there’s
less risk of overfitting. But if you reduce it too much, then the model ends up
underfitting, as seems to be the case here: the model with C=100 looks like it
will generalize better than the one with C=1.



Figure 5-4. Large margin (left) versus fewer margin violations (right)

TIP
If your SVM model is overfitting, you can try regularizing it by reducing C.

The following Scikit-Learn code loads the iris dataset and trains a linear
SVM classifier to detect Iris virginica flowers. The pipeline first scales the
features, then uses a LinearSVC with C=1:

from sklearn.datasets import load_iris
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

iris = load_iris(as_frame=True)
X = iris.data[["petal length (cm)", "petal width (cm)"]].values
y = (iris.target == 2)  # Iris virginica

svm_clf = make_pipeline(StandardScaler(),
                        LinearSVC(C=1, random_state=42))
svm_clf.fit(X, y)

The resulting model is represented on the left in Figure 5-4.

Then, as usual, you can use the model to make predictions:

>>> X_new = [[5.5, 1.7], [5.0, 1.5]]
>>> svm_clf.predict(X_new)
array([ True, False])

The first plant is classified as an Iris virginica, while the second is not. Let’s



look at the scores that the SVM used to make these predictions. These
measure the signed distance between each instance and the decision
boundary:

>>> svm_clf.decision_function(X_new)
array([ 0.66163411, -0.22036063])

Unlike LogisticRegression, LinearSVC doesn’t have a predict_proba()
method to estimate the class probabilities. That said, if you use the SVC class
(discussed shortly) instead of LinearSVC, and if you set its probability
hyperparameter to True, then the model will fit an extra model at the end of
training to map the SVM decision function scores to estimated probabilities.
Under the hood, this requires using 5-fold cross-validation to generate out-of-
sample predictions for every instance in the training set, then training a
LogisticRegression model, so it will slow down training considerably. After
that, the predict_proba() and predict_log_proba() methods will be available.



Nonlinear SVM Classification
Although linear SVM classifiers are efficient and often work surprisingly
well, many datasets are not even close to being linearly separable. One
approach to handling nonlinear datasets is to add more features, such as
polynomial features (as we did in Chapter 4); in some cases this can result in
a linearly separable dataset. Consider the lefthand plot in Figure 5-5: it
represents a simple dataset with just one feature, x . This dataset is not
linearly separable, as you can see. But if you add a second feature x  = (x ) ,
the resulting 2D dataset is perfectly linearly separable.

Figure 5-5. Adding features to make a dataset linearly separable

To implement this idea using Scikit-Learn, you can create a pipeline
containing a PolynomialFeatures transformer (discussed in “Polynomial
Regression”), followed by a StandardScaler and a LinearSVC classifier. Let’s
test this on the moons dataset, a toy dataset for binary classification in which
the data points are shaped as two interleaving crescent moons (see Figure 5-
6). You can generate this dataset using the make_moons() function:

from sklearn.datasets import make_moons
from sklearn.preprocessing import PolynomialFeatures

X, y = make_moons(n_samples=100, noise=0.15, random_state=42)

polynomial_svm_clf = make_pipeline(
    PolynomialFeatures(degree=3),
    StandardScaler(),
    LinearSVC(C=10, max_iter=10_000, random_state=42)
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)
polynomial_svm_clf.fit(X, y)

Figure 5-6. Linear SVM classifier using polynomial features



Polynomial Kernel
Adding polynomial features is simple to implement and can work great with
all sorts of machine learning algorithms (not just SVMs). That said, at a low
polynomial degree this method cannot deal with very complex datasets, and
with a high polynomial degree it creates a huge number of features, making
the model too slow.

Fortunately, when using SVMs you can apply an almost miraculous
mathematical technique called the kernel trick (which is explained later in
this chapter). The kernel trick makes it possible to get the same result as if
you had added many polynomial features, even with a very high degree,
without actually having to add them. This means there’s no combinatorial
explosion of the number of features. This trick is implemented by the SVC
class. Let’s test it on the moons dataset:

from sklearn.svm import SVC

poly_kernel_svm_clf = make_pipeline(StandardScaler(),
                                    SVC(kernel="poly", degree=3, coef0=1, C=5))
poly_kernel_svm_clf.fit(X, y)

This code trains an SVM classifier using a third-degree polynomial kernel,
represented on the left in Figure 5-7. On the right is another SVM classifier
using a 10th-degree polynomial kernel. Obviously, if your model is
overfitting, you might want to reduce the polynomial degree. Conversely, if it
is underfitting, you can try increasing it. The hyperparameter coef0 controls
how much the model is influenced by high-degree terms versus low-degree
terms.



Figure 5-7. SVM classifiers with a polynomial kernel

TIP
Although hyperparameters will generally be tuned automatically (e.g., using randomized
search), it’s good to have a sense of what each hyperparameter actually does and how it
may interact with other hyperparameters: this way, you can narrow the search to a much
smaller space.



Similarity Features
Another technique to tackle nonlinear problems is to add features computed
using a similarity function, which measures how much each instance
resembles a particular landmark, as we did in Chapter 2 when we added the
geographic similarity features. For example, let’s take the 1D dataset from
earlier and add two landmarks to it at x  = –2 and x  = 1 (see the left plot in
Figure 5-8). Next, we’ll define the similarity function to be the Gaussian RBF
with γ = 0.3. This is a bell-shaped function varying from 0 (very far away
from the landmark) to 1 (at the landmark).

Now we are ready to compute the new features. For example, let’s look at the
instance x  = –1: it is located at a distance of 1 from the first landmark and 2
from the second landmark. Therefore, its new features are x  = exp(–0.3 × 1 )
≈ 0.74 and x  = exp(–0.3 × 2 ) ≈ 0.30. The plot on the right in Figure 5-8
shows the transformed dataset (dropping the original features). As you can
see, it is now linearly separable.

Figure 5-8. Similarity features using the Gaussian RBF

You may wonder how to select the landmarks. The simplest approach is to
create a landmark at the location of each and every instance in the dataset.
Doing that creates many dimensions and thus increases the chances that the
transformed training set will be linearly separable. The downside is that a
training set with m instances and n features gets transformed into a training
set with m instances and m features (assuming you drop the original features).

1 1

1

2
2

3
2



If your training set is very large, you end up with an equally large number of
features.



Gaussian RBF Kernel
Just like the polynomial features method, the similarity features method can
be useful with any machine learning algorithm, but it may be computationally
expensive to compute all the additional features (especially on large training
sets). Once again the kernel trick does its SVM magic, making it possible to
obtain a similar result as if you had added many similarity features, but
without actually doing so. Let’s try the SVC class with the Gaussian RBF
kernel:

rbf_kernel_svm_clf = make_pipeline(StandardScaler(),
                                   SVC(kernel="rbf", gamma=5, C=0.001))
rbf_kernel_svm_clf.fit(X, y)

This model is represented at the bottom left in Figure 5-9. The other plots
show models trained with different values of hyperparameters gamma (γ) and
C. Increasing gamma makes the bell-shaped curve narrower (see the lefthand
plots in Figure 5-8). As a result, each instance’s range of influence is smaller:
the decision boundary ends up being more irregular, wiggling around
individual instances. Conversely, a small gamma value makes the bell-shaped
curve wider: instances have a larger range of influence, and the decision
boundary ends up smoother. So γ acts like a regularization hyperparameter: if
your model is overfitting, you should reduce γ; if it is underfitting, you should
increase γ (similar to the C hyperparameter).



Figure 5-9. SVM classifiers using an RBF kernel

Other kernels exist but are used much more rarely. Some kernels are
specialized for specific data structures. String kernels are sometimes used
when classifying text documents or DNA sequences (e.g., using the string
subsequence kernel or kernels based on the Levenshtein distance).

TIP
With so many kernels to choose from, how can you decide which one to use? As a rule of
thumb, you should always try the linear kernel first. The LinearSVC class is much faster
than SVC(kernel="linear"), especially if the training set is very large. If it is not too large,
you should also try kernelized SVMs, starting with the Gaussian RBF kernel; it often
works really well. Then, if you have spare time and computing power, you can experiment
with a few other kernels using hyperparameter search. If there are kernels specialized for
your training set’s data structure, make sure to give them a try too.



SVM Classes and Computational Complexity
The LinearSVC class is based on the liblinear library, which implements an
optimized algorithm for linear SVMs.  It does not support the kernel trick,
but it scales almost linearly with the number of training instances and the
number of features. Its training time complexity is roughly O(m × n). The
algorithm takes longer if you require very high precision. This is controlled
by the tolerance hyperparameter ϵ (called tol in Scikit-Learn). In most
classification tasks, the default tolerance is fine.

The SVC class is based on the libsvm library, which implements an algorithm
that supports the kernel trick.  The training time complexity is usually
between O(m  × n) and O(m  × n). Unfortunately, this means that it gets
dreadfully slow when the number of training instances gets large (e.g.,
hundreds of thousands of instances), so this algorithm is best for small or
medium-sized nonlinear training sets. It scales well with the number of
features, especially with sparse features (i.e., when each instance has few
nonzero features). In this case, the algorithm scales roughly with the average
number of nonzero features per instance.

The SGDClassifier class also performs large margin classification by default,
and its hyperparameters–especially the regularization hyperparameters (alpha
and penalty) and the learning_rate–can be adjusted to produce similar results
as the linear SVMs. For training it uses stochastic gradient descent (see
Chapter 4), which allows incremental learning and uses little memory, so you
can use it to train a model on a large dataset that does not fit in RAM (i.e., for
out-of-core learning). Moreover, it scales very well, as its computational
complexity is O(m × n). Table 5-1 compares Scikit-Learn’s SVM
classification classes.

Table 5-1. Comparison of Scikit-Learn classes for SVM classification

Class Time complexity
Out-of-core
support Scaling required Kernel trick

LinearSVC O(m × n) No Yes No
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SVC O(m² × n) to O(m³
× n)

No Yes Yes

SGDClassifier O(m × n) Yes Yes No

Now let’s see how the SVM algorithms can also be used for linear and
nonlinear regression.



SVM Regression
To use SVMs for regression instead of classification, the trick is to tweak the
objective: instead of trying to fit the largest possible street between two
classes while limiting margin violations, SVM regression tries to fit as many
instances as possible on the street while limiting margin violations (i.e.,
instances off the street). The width of the street is controlled by a
hyperparameter, ϵ. Figure 5-10 shows two linear SVM regression models
trained on some linear data, one with a small margin (ϵ = 0.5) and the other
with a larger margin (ϵ = 1.2).

Figure 5-10. SVM regression

Reducing ϵ increases the number of support vectors, which regularizes the
model. Moreover, if you add more training instances within the margin, it
will not affect the model’s predictions; thus, the model is said to be ϵ-
insensitive.

You can use Scikit-Learn’s LinearSVR class to perform linear SVM
regression. The following code produces the model represented on the left in
Figure 5-10:

from sklearn.svm import LinearSVR

X, y = [...]  # a linear dataset
svm_reg = make_pipeline(StandardScaler(),



                        LinearSVR(epsilon=0.5, random_state=42))
svm_reg.fit(X, y)

To tackle nonlinear regression tasks, you can use a kernelized SVM model.
Figure 5-11 shows SVM regression on a random quadratic training set, using
a second-degree polynomial kernel. There is some regularization in the left
plot (i.e., a small C value), and much less in the right plot (i.e., a large C
value).

Figure 5-11. SVM regression using a second-degree polynomial kernel

The following code uses Scikit-Learn’s SVR class (which supports the kernel
trick) to produce the model represented on the left in Figure 5-11:

from sklearn.svm import SVR

X, y = [...]  # a quadratic dataset
svm_poly_reg = make_pipeline(StandardScaler(),
                             SVR(kernel="poly", degree=2, C=0.01, epsilon=0.1))
svm_poly_reg.fit(X, y)

The SVR class is the regression equivalent of the SVC class, and the
LinearSVR class is the regression equivalent of the LinearSVC class. The
LinearSVR class scales linearly with the size of the training set (just like the
LinearSVC class), while the SVR class gets much too slow when the training
set grows very large (just like the SVC class).



NOTE
SVMs can also be used for novelty detection, as you will see in Chapter 9.

The rest of this chapter explains how SVMs make predictions and how their
training algorithms work, starting with linear SVM classifiers. If you are just
getting started with machine learning, you can safely skip this and go straight
to the exercises at the end of this chapter, and come back later when you want
to get a deeper understanding of SVMs.



Under the Hood of Linear SVM Classifiers
A linear SVM classifier predicts the class of a new instance x by first
computing the decision function θ  x = θ  x  + ⋯ + θ  x , where x  is the bias
feature (always equal to 1). If the result is positive, then the predicted class ŷ
is the positive class (1); otherwise it is the negative class (0). This is exactly
like LogisticRegression (discussed in Chapter 4).

NOTE
Up to now, I have used the convention of putting all the model parameters in one vector θ,
including the bias term θ  and the input feature weights θ  to θ . This required adding a
bias input x  = 1 to all instances. Another very common convention is to separate the bias
term b (equal to θ ) and the feature weights vector w (containing θ  to θ ). In this case, no
bias feature needs to be added to the input feature vectors, and the linear SVM’s decision
function is equal to w  x + b = w  x  + ⋯ + w  x  + b. I will use this convention throughout
the rest of this book.

So, making predictions with a linear SVM classifier is quite straightforward.
How about training? This requires finding the weights vector w and the bias
term b that make the street, or margin, as wide as possible while limiting the
number of margin violations. Let’s start with the width of the street: to make
it larger, we need to make w smaller. This may be easier to visualize in 2D,
as shown in Figure 5-12. Let’s define the borders of the street as the points
where the decision function is equal to –1 or +1. In the left plot the weight w
is 1, so the points at which w  x  = –1 or +1 are x  = –1 and +1: therefore the
margin’s size is 2. In the right plot the weight is 0.5, so the points at which w
x  = –1 or +1 are x  = –2 and +2: the margin’s size is 4. So, we need to keep
w as small as possible. Note that the bias term b has no influence on the size
of the margin: tweaking it just shifts the margin around, without affecting its
size.
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Figure 5-12. A smaller weight vector results in a larger margin

We also want to avoid margin violations, so we need the decision function to
be greater than 1 for all positive training instances and lower than –1 for
negative training instances. If we define t  = –1 for negative instances (when
y  = 0) and t  = 1 for positive instances (when y  = 1), then we can write
this constraint as t (w  x  + b) ≥ 1 for all instances.

We can therefore express the hard margin linear SVM classifier objective as
the constrained optimization problem in Equation 5-1.

Equation 5-1. Hard margin linear SVM classifier objective

minimize w,b 1 2 w ⊺ w subject to t (i) ( w ⊺ x (i) + b ) ≥ 1 for i = 1 , 2 , ⋯ , m

NOTE
We are minimizing ½ w  w, which is equal to ½∥ w ∥ , rather than minimizing ∥ w ∥
(the norm of w). Indeed, ½∥ w ∥  has a nice, simple derivative (it is just w), while ∥ w
∥ is not differentiable at w = 0. Optimization algorithms often work much better on
differentiable functions.

To get the soft margin objective, we need to introduce a slack variable ζ  ≥ 0
for each instance:  ζ  measures how much the i  instance is allowed to
violate the margin. We now have two conflicting objectives: make the slack
variables as small as possible to reduce the margin violations, and make ½ w
w as small as possible to increase the margin. This is where the C
hyperparameter comes in: it allows us to define the trade-off between these
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two objectives. This gives us the constrained optimization problem in
Equation 5-2.

Equation 5-2. Soft margin linear SVM classifier objective

minimize w,b,ζ 1 2 w ⊺ w + C ∑ i=1 m ζ (i) subject to t (i) ( w ⊺ x (i) + b ) ≥
1 - ζ (i) and ζ (i) ≥ 0 for i = 1 , 2 , ⋯ , m

The hard margin and soft margin problems are both convex quadratic
optimization problems with linear constraints. Such problems are known as
quadratic programming (QP) problems. Many off-the-shelf solvers are
available to solve QP problems by using a variety of techniques that are
outside the scope of this book.
Using a QP solver is one way to train an SVM. Another is to use gradient
descent to minimize the hinge loss or the squared hinge loss (see Figure 5-
13). Given an instance x of the positive class (i.e., with t = 1), the loss is 0 if
the output s of the decision function (s = w  x + b) is greater than or equal to
1. This happens when the instance is off the street and on the positive side.
Given an instance of the negative class (i.e., with t = –1), the loss is 0 if s ≤ –
1. This happens when the instance is off the street and on the negative side.
The further away an instance is from the correct side of the margin, the
higher the loss: it grows linearly for the hinge loss, and quadratically for the
squared hinge loss. This makes the squared hinge loss more sensitive to
outliers. However, if the dataset is clean, it tends to converge faster. By
default, LinearSVC uses the squared hinge loss, while SGDClassifier uses the
hinge loss. Both classes let you choose the loss by setting the loss
hyperparameter to "hinge" or "squared_hinge". The SVC class’s optimization
algorithm finds a similar solution as minimizing the hinge loss.
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Figure 5-13. The hinge loss (left) and the squared hinge loss (right)

Next, we’ll look at yet another way to train a linear SVM classifier: solving
the dual problem.



The Dual Problem
Given a constrained optimization problem, known as the primal problem, it is
possible to express a different but closely related problem, called its dual
problem. The solution to the dual problem typically gives a lower bound to
the solution of the primal problem, but under some conditions it can have the
same solution as the primal problem. Luckily, the SVM problem happens to
meet these conditions,   so you can choose to solve the primal problem or
the dual problem; both will have the same solution. Equation 5-3 shows the
dual form of the linear SVM objective. If you are interested in knowing how
to derive the dual problem from the primal problem, see the extra material
section in this chapter’s notebook.

Equation 5-3. Dual form of the linear SVM objective

minimize α 12∑i=1m 
∑j=1mα(i)α(j)t(i)t(j)x(i)⊺x(j)  -  ∑i=1mα(i)subject to α(i)≥0 for all i=1,2,
…,m and ∑i=1mα(i)t(i)=0

Once you find the vector α ^ that minimizes this equation (using a QP
solver), use Equation 5-4 to compute the w ^ and b^ that minimize the primal
problem. In this equation, n  represents the number of support vectors.

Equation 5-4. From the dual solution to the primal solution

w ^ = ∑ i=1 m α ^ (i) t (i) x (i) b ^ = 1 n s ∑ i=1 α ^ (i) >0 m t (i) - w ^ ⊺ x (i)

The dual problem is faster to solve than the primal one when the number of
training instances is smaller than the number of features. More importantly,
the dual problem makes the kernel trick possible, while the primal problem
does not. So what is this kernel trick, anyway?
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Kernelized SVMs
Suppose you want to apply a second-degree polynomial transformation to a
two-dimensional training set (such as the moons training set), then train a
linear SVM classifier on the transformed training set. Equation 5-5 shows the
second-degree polynomial mapping function ϕ that you want to apply.

Equation 5-5. Second-degree polynomial mapping

ϕ x = ϕ x 1 x 2 = x 1 2 2 x 1 x 2 x 2 2

Notice that the transformed vector is 3D instead of 2D. Now let’s look at
what happens to a couple of 2D vectors, a and b, if we apply this second-
degree polynomial mapping and then compute the dot product  of the
transformed vectors (see Equation 5-6).

Equation 5-6. Kernel trick for a second-degree polynomial mapping

ϕ (a) ⊺ ϕ ( b ) = a 1 2 2a 1 a 2 a 2 2 ⊺ b 1 2 2 b 1 b 2 b 2 2 = a 1 2 b 1 2 + 2 a 1
b 1 a 2 b 2 + a 2 2 b 2 2 = a 1 b 1 +a 2 b 2 2 = a 1 a 2 ⊺ b 1 b 2 2 = (a ⊺ b) 2

How about that? The dot product of the transformed vectors is equal to the
square of the dot product of the original vectors: ϕ(a)  ϕ(b) = (a  b) .

Here is the key insight: if you apply the transformation ϕ to all training
instances, then the dual problem (see Equation 5-3) will contain the dot
product ϕ(x )  ϕ(x ). But if ϕ is the second-degree polynomial
transformation defined in Equation 5-5, then you can replace this dot product
of transformed vectors simply by (x (i) ⊺ x (j) ) 2 . So, you don’t need to
transform the training instances at all; just replace the dot product by its
square in Equation 5-3. The result will be strictly the same as if you had gone
through the trouble of transforming the training set and then fitting a linear
SVM algorithm, but this trick makes the whole process much more
computationally efficient.

The function K(a, b) = (a  b)  is a second-degree polynomial kernel. In
machine learning, a kernel is a function capable of computing the dot product
ϕ(a)  ϕ(b), based only on the original vectors a and b, without having to
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compute (or even to know about) the transformation ϕ. Equation 5-7 lists
some of the most commonly used kernels.

Equation 5-7. Common kernels

Linear: K ( a , b ) = a ⊺ b Polynomial: K ( a , b ) = γa ⊺ b+r d Gaussian RBF:
K ( a , b ) = exp ( - γ a-b 2 ) Sigmoid: K ( a , b ) = tanh γ a ⊺ b + r

MERCER’S THEOREM

According to Mercer’s theorem, if a function K(a, b) respects a few
mathematical conditions called Mercer’s conditions (e.g., K must be
continuous and symmetric in its arguments so that K(a, b) = K(b, a),
etc.), then there exists a function ϕ that maps a and b into another space
(possibly with much higher dimensions) such that K(a, b) = ϕ(a)  ϕ(b).
You can use K as a kernel because you know ϕ exists, even if you don’t
know what ϕ is. In the case of the Gaussian RBF kernel, it can be shown
that ϕ maps each training instance to an infinite-dimensional space, so it’s
a good thing you don’t need to actually perform the mapping!

Note that some frequently used kernels (such as the sigmoid kernel) don’t
respect all of Mercer’s conditions, yet they generally work well in
practice.

There is still one loose end we must tie up. Equation 5-4 shows how to go
from the dual solution to the primal solution in the case of a linear SVM
classifier. But if you apply the kernel trick, you end up with equations that
include ϕ(x ). In fact, w ^ must have the same number of dimensions as
ϕ(x ), which may be huge or even infinite, so you can’t compute it. But how
can you make predictions without knowing w ^ ? Well, the good news is that
you can plug the formula for w ^ from Equation 5-4 into the decision
function for a new instance x , and you get an equation with only dot
products between input vectors. This makes it possible to use the kernel trick
(Equation 5-8).

Equation 5-8. Making predictions with a kernelized SVM

⊺

(i)
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h w ^,b ^ ϕ ( x (n) ) = w ^ ⊺ ϕ ( x (n) ) + b ^ = ∑ i=1 m α ^ (i) t (i) ϕ(x (i) ) ⊺ ϕ
( x (n) ) + b ^ = ∑ i=1 m α ^ (i) t (i) ϕ (x (i) ) ⊺ ϕ ( x (n) ) + b ^ = ∑ i=1 α ^ (i)
>0 m α ^ (i) t (i) K ( x (i) , x (n) ) + b ^

Note that since α  ≠ 0 only for support vectors, making predictions involves
computing the dot product of the new input vector x  with only the support
vectors, not all the training instances. Of course, you need to use the same
trick to compute the bias term b^ (Equation 5-9).

Equation 5-9. Using the kernel trick to compute the bias term

b ^ = 1 n s ∑ i=1 α ^ (i) >0 m t (i) - w ^ ⊺ ϕ ( x (i) ) = 1 n s ∑ i=1 α ^ (i) >0 m
t (i) - ∑ j=1 m α ^ (j) t (j) ϕ(x (j) ) ⊺ ϕ ( x (i) ) = 1 n s ∑ i=1 α ^ (i) >0 m t (i) -
∑ j=1 α ^ (j) >0 m α ^ (j) t (j) K ( x (i) , x (j) )

If you are starting to get a headache, that’s perfectly normal: it’s an
unfortunate side effect of the kernel trick.

NOTE
It is also possible to implement online kernelized SVMs, capable of incremental learning,
as described in the papers “Incremental and Decremental Support Vector Machine
Learning”  and “Fast Kernel Classifiers with Online and Active Learning”.  These
kernelized SVMs are implemented in Matlab and C++. But for large-scale nonlinear
problems, you may want to consider using random forests (see Chapter 7) or neural
networks (see Part II).

(i)

(n)
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Exercises
1. What is the fundamental idea behind support vector machines?

2. What is a support vector?

3. Why is it important to scale the inputs when using SVMs?

4. Can an SVM classifier output a confidence score when it classifies an
instance? What about a probability?

5. How can you choose between LinearSVC, SVC, and SGDClassifier?

6. Say you’ve trained an SVM classifier with an RBF kernel, but it seems
to underfit the training set. Should you increase or decrease γ (gamma)?
What about C?

7. What does it mean for a model to be ϵ-insensitive?

8. What is the point of using the kernel trick?

9. Train a LinearSVC on a linearly separable dataset. Then train an SVC
and a SGDClassifier on the same dataset. See if you can get them to
produce roughly the same model.

10. Train an SVM classifier on the wine dataset, which you can load using
sklearn.datasets.load_wine(). This dataset contains the chemical
analyses of 178 wine samples produced by 3 different cultivators: the
goal is to train a classification model capable of predicting the cultivator
based on the wine’s chemical analysis. Since SVM classifiers are binary
classifiers, you will need to use one-versus-all to classify all three
classes. What accuracy can you reach?

11. Train and fine-tune an SVM regressor on the California housing dataset.
You can use the original dataset rather than the tweaked version we used
in Chapter 2, which you can load using
sklearn.datasets.fetch_california_housing(). The targets represent



hundreds of thousands of dollars. Since there are over 20,000 instances,
SVMs can be slow, so for hyperparameter tuning you should use far
fewer instances (e.g., 2,000) to test many more hyperparameter
combinations. What is your best model’s RMSE?

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.

1  Chih-Jen Lin et al., “A Dual Coordinate Descent Method for Large-Scale Linear SVM”,
Proceedings of the 25th International Conference on Machine Learning (2008): 408–415.

2  John Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector
Machines” (Microsoft Research technical report, April 21, 1998).

3  Zeta (ζ) is the sixth letter of the Greek alphabet.

4  To learn more about quadratic programming, you can start by reading Stephen Boyd and Lieven
Vandenberghe’s book Convex Optimization (Cambridge University Press) or watching Richard
Brown’s series of video lectures.

5  The objective function is convex, and the inequality constraints are continuously differentiable
and convex functions.

6  As explained in Chapter 4, the dot product of two vectors a and b is normally noted a · b.
However, in machine learning, vectors are frequently represented as column vectors (i.e., single-
column matrices), so the dot product is achieved by computing a b. To remain consistent with
the rest of the book, we will use this notation here, ignoring the fact that this technically results in
a single-cell matrix rather than a scalar value.

7  Gert Cauwenberghs and Tomaso Poggio, “Incremental and Decremental Support Vector
Machine Learning”, Proceedings of the 13th International Conference on Neural Information
Processing Systems (2000): 388–394.

8  Antoine Bordes et al., “Fast Kernel Classifiers with Online and Active Learning”, Journal of
Machine Learning Research 6 (2005): 1579–1619.
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Chapter 6. Decision Trees

Decision trees are versatile machine learning algorithms that can perform
both classification and regression tasks, and even multioutput tasks. They are
powerful algorithms, capable of fitting complex datasets. For example, in
Chapter 2 you trained a DecisionTreeRegressor model on the California
housing dataset, fitting it perfectly (actually, overfitting it).

Decision trees are also the fundamental components of random forests (see
Chapter 7), which are among the most powerful machine learning algorithms
available today.

In this chapter we will start by discussing how to train, visualize, and make
predictions with decision trees. Then we will go through the CART training
algorithm used by Scikit-Learn, and we will explore how to regularize trees
and use them for regression tasks. Finally, we will discuss some of the
limitations of decision trees.



Training and Visualizing a Decision Tree
To understand decision trees, let’s build one and take a look at how it makes
predictions. The following code trains a DecisionTreeClassifier on the iris
dataset (see Chapter 4):

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris(as_frame=True)
X_iris = iris.data[["petal length (cm)", "petal width (cm)"]].values
y_iris = iris.target

tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf.fit(X_iris, y_iris)

You can visualize the trained decision tree by first using the
export_graphviz() function to output a graph definition file called
iris_tree.dot:

from sklearn.tree import export_graphviz

export_graphviz(
        tree_clf,
        out_file="iris_tree.dot",
        feature_names=["petal length (cm)", "petal width (cm)"],
        class_names=iris.target_names,
        rounded=True,
        filled=True
    )

Then you can use graphviz.Source.from_file() to load and display the file in a
Jupyter notebook:

from graphviz import Source

Source.from_file("iris_tree.dot")

Graphviz is an open source graph visualization software package. It also

https://graphviz.org


includes a dot command-line tool to convert .dot files to a variety of formats,
such as PDF or PNG.

Your first decision tree looks like Figure 6-1.

Figure 6-1. Iris decision tree



Making Predictions
Let’s see how the tree represented in Figure 6-1 makes predictions. Suppose
you find an iris flower and you want to classify it based on its petals. You
start at the root node (depth 0, at the top): this node asks whether the flower’s
petal length is smaller than 2.45 cm. If it is, then you move down to the root’s
left child node (depth 1, left). In this case, it is a leaf node (i.e., it does not
have any child nodes), so it does not ask any questions: simply look at the
predicted class for that node, and the decision tree predicts that your flower is
an Iris setosa (class=setosa).

Now suppose you find another flower, and this time the petal length is greater
than 2.45 cm. You again start at the root but now move down to its right child
node (depth 1, right). This is not a leaf node, it’s a split node, so it asks
another question: is the petal width smaller than 1.75 cm? If it is, then your
flower is most likely an Iris versicolor (depth 2, left). If not, it is likely an Iris
virginica (depth 2, right). It’s really that simple.

NOTE
One of the many qualities of decision trees is that they require very little data preparation.
In fact, they don’t require feature scaling or centering at all.

A node’s samples attribute counts how many training instances it applies to.
For example, 100 training instances have a petal length greater than 2.45 cm
(depth 1, right), and of those 100, 54 have a petal width smaller than 1.75 cm
(depth 2, left). A node’s value attribute tells you how many training instances
of each class this node applies to: for example, the bottom-right node applies
to 0 Iris setosa, 1 Iris versicolor, and 45 Iris virginica. Finally, a node’s gini
attribute measures its Gini impurity: a node is “pure” (gini=0) if all training
instances it applies to belong to the same class. For example, since the depth-
1 left node applies only to Iris setosa training instances, it is pure and its Gini
impurity is 0. Equation 6-1 shows how the training algorithm computes the
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Gini impurity G  of the i  node. The depth-2 left node has a Gini impurity
equal to 1 – (0/54)  – (49/54)  – (5/54)  ≈ 0.168.

Equation 6-1. Gini impurity

G i = 1 - ∑ k=1 n p i,k 2

In this equation:

G  is the Gini impurity of the i  node.

p  is the ratio of class k instances among the training instances in the i
node.

NOTE
Scikit-Learn uses the CART algorithm, which produces only binary trees, meaning trees
where split nodes always have exactly two children (i.e., questions only have yes/no
answers). However, other algorithms, such as ID3, can produce decision trees with nodes
that have more than two children.

Figure 6-2 shows this decision tree’s decision boundaries. The thick vertical
line represents the decision boundary of the root node (depth 0): petal length
= 2.45 cm. Since the lefthand area is pure (only Iris setosa), it cannot be split
any further. However, the righthand area is impure, so the depth-1 right node
splits it at petal width = 1.75 cm (represented by the dashed line). Since
max_depth was set to 2, the decision tree stops right there. If you set
max_depth to 3, then the two depth-2 nodes would each add another decision
boundary (represented by the two vertical dotted lines).
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Figure 6-2. Decision tree decision boundaries

TIP
The tree structure, including all the information shown in Figure 6-1, is available via the
classifier’s tree_ attribute. Type help(tree_clf.tree_) for details, and see the this chapter’s
notebook for an example.

MODEL INTERPRETATION: WHITE BOX VERSUS BLACK
BOX

Decision trees are intuitive, and their decisions are easy to interpret. Such
models are often called white box models. In contrast, as you will see,
random forests and neural networks are generally considered black box
models. They make great predictions, and you can easily check the
calculations that they performed to make these predictions; nevertheless,
it is usually hard to explain in simple terms why the predictions were
made. For example, if a neural network says that a particular person
appears in a picture, it is hard to know what contributed to this prediction:
Did the model recognize that person’s eyes? Their mouth? Their nose?
Their shoes? Or even the couch that they were sitting on? Conversely,
decision trees provide nice, simple classification rules that can even be
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applied manually if need be (e.g., for flower classification). The field of
interpretable ML aims at creating ML systems that can explain their
decisions in a way humans can understand. This is important in many
domains—for example, to ensure the system does not make unfair
decisions.



Estimating Class Probabilities
A decision tree can also estimate the probability that an instance belongs to a
particular class k. First it traverses the tree to find the leaf node for this
instance, and then it returns the ratio of training instances of class k in this
node. For example, suppose you have found a flower whose petals are 5 cm
long and 1.5 cm wide. The corresponding leaf node is the depth-2 left node,
so the decision tree outputs the following probabilities: 0% for Iris setosa
(0/54), 90.7% for Iris versicolor (49/54), and 9.3% for Iris virginica (5/54).
And if you ask it to predict the class, it outputs Iris versicolor (class 1)
because it has the highest probability. Let’s check this:

>>> tree_clf.predict_proba([[5, 1.5]]).round(3)
array([[0.   , 0.907, 0.093]])
>>> tree_clf.predict([[5, 1.5]])
array([1])

Perfect! Notice that the estimated probabilities would be identical anywhere
else in the bottom-right rectangle of Figure 6-2—for example, if the petals
were 6 cm long and 1.5 cm wide (even though it seems obvious that it would
most likely be an Iris virginica in this case).



The CART Training Algorithm
Scikit-Learn uses the Classification and Regression Tree (CART) algorithm
to train decision trees (also called “growing” trees). The algorithm works by
first splitting the training set into two subsets using a single feature k and a
threshold t  (e.g., “petal length ≤ 2.45 cm”). How does it choose k and t ? It
searches for the pair (k, t ) that produces the purest subsets, weighted by their
size. Equation 6-2 gives the cost function that the algorithm tries to minimize.

Equation 6-2. CART cost function for classification

J ( k , t k ) = m left m G left + m right m G right where G left/right measures
the impurity of the left/right subset m left/right is the number of instances in
the left/right subset

Once the CART algorithm has successfully split the training set in two, it
splits the subsets using the same logic, then the sub-subsets, and so on,
recursively. It stops recursing once it reaches the maximum depth (defined by
the max_depth hyperparameter), or if it cannot find a split that will reduce
impurity. A few other hyperparameters (described in a moment) control
additional stopping conditions: min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, and max_leaf_nodes.

WARNING
As you can see, the CART algorithm is a greedy algorithm: it greedily searches for an
optimum split at the top level, then repeats the process at each subsequent level. It does
not check whether or not the split will lead to the lowest possible impurity several levels
down. A greedy algorithm often produces a solution that’s reasonably good but not
guaranteed to be optimal.

Unfortunately, finding the optimal tree is known to be an NP-complete problem.  It
requires O(exp(m)) time, making the problem intractable even for small training sets. This
is why we must settle for a “reasonably good” solution when training decision trees.
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Computational Complexity
Making predictions requires traversing the decision tree from the root to a
leaf. Decision trees generally are approximately balanced, so traversing the
decision tree requires going through roughly O(log (m)) nodes, where
log (m) is the binary logarithm of m, equal to log(m) / log(2). Since each
node only requires checking the value of one feature, the overall prediction
complexity is O(log (m)), independent of the number of features. So
predictions are very fast, even when dealing with large training sets.

The training algorithm compares all features (or less if max_features is set)
on all samples at each node. Comparing all features on all samples at each
node results in a training complexity of O(n × m log (m)).
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Gini Impurity or Entropy?
By default, the DecisionTreeClassifier class uses the Gini impurity measure,
but you can select the entropy impurity measure instead by setting the
criterion hyperparameter to "entropy". The concept of entropy originated in
thermodynamics as a measure of molecular disorder: entropy approaches zero
when molecules are still and well ordered. Entropy later spread to a wide
variety of domains, including in Shannon’s information theory, where it
measures the average information content of a message, as we saw in
Chapter 4. Entropy is zero when all messages are identical. In machine
learning, entropy is frequently used as an impurity measure: a set’s entropy is
zero when it contains instances of only one class. Equation 6-3 shows the
definition of the entropy of the i  node. For example, the depth-2 left node in
Figure 6-1 has an entropy equal to –(49/54) log  (49/54) – (5/54) log  (5/54)
≈ 0.445.

Equation 6-3. Entropy

H i = - ∑ k=1 p i,k ≠0 n p i,k log 2 ( p i,k )

So, should you use Gini impurity or entropy? The truth is, most of the time it
does not make a big difference: they lead to similar trees. Gini impurity is
slightly faster to compute, so it is a good default. However, when they differ,
Gini impurity tends to isolate the most frequent class in its own branch of the
tree, while entropy tends to produce slightly more balanced trees.

th

2 2

2



Regularization Hyperparameters
Decision trees make very few assumptions about the training data (as
opposed to linear models, which assume that the data is linear, for example).
If left unconstrained, the tree structure will adapt itself to the training data,
fitting it very closely—indeed, most likely overfitting it. Such a model is
often called a nonparametric model, not because it does not have any
parameters (it often has a lot) but because the number of parameters is not
determined prior to training, so the model structure is free to stick closely to
the data. In contrast, a parametric model, such as a linear model, has a
predetermined number of parameters, so its degree of freedom is limited,
reducing the risk of overfitting (but increasing the risk of underfitting).

To avoid overfitting the training data, you need to restrict the decision tree’s
freedom during training. As you know by now, this is called regularization.
The regularization hyperparameters depend on the algorithm used, but
generally you can at least restrict the maximum depth of the decision tree. In
Scikit-Learn, this is controlled by the max_depth hyperparameter. The default
value is None, which means unlimited. Reducing max_depth will regularize
the model and thus reduce the risk of overfitting.

The DecisionTreeClassifier class has a few other parameters that similarly
restrict the shape of the decision tree:

max_features

Maximum number of features that are evaluated for splitting at each node

max_leaf_nodes

Maximum number of leaf nodes

min_samples_split

Minimum number of samples a node must have before it can be split

min_samples_leaf



Minimum number of samples a leaf node must have to be created

min_weight_fraction_leaf

Same as min_samples_leaf but expressed as a fraction of the total number
of weighted instances

Increasing min_* hyperparameters or reducing max_* hyperparameters will
regularize the model.

NOTE
Other algorithms work by first training the decision tree without restrictions, then pruning
(deleting) unnecessary nodes. A node whose children are all leaf nodes is considered
unnecessary if the purity improvement it provides is not statistically significant. Standard
statistical tests, such as the χ  test (chi-squared test), are used to estimate the probability
that the improvement is purely the result of chance (which is called the null hypothesis). If
this probability, called the p-value, is higher than a given threshold (typically 5%,
controlled by a hyperparameter), then the node is considered unnecessary and its children
are deleted. The pruning continues until all unnecessary nodes have been pruned.

Let’s test regularization on the moons dataset, introduced in Chapter 5. We’ll
train one decision tree without regularization, and another with
min_samples_leaf=5. Here’s the code; Figure 6-3 shows the decision
boundaries of each tree:

from sklearn.datasets import make_moons

X_moons, y_moons = make_moons(n_samples=150, noise=0.2, random_state=42)

tree_clf1 = DecisionTreeClassifier(random_state=42)
tree_clf2 = DecisionTreeClassifier(min_samples_leaf=5, random_state=42)
tree_clf1.fit(X_moons, y_moons)
tree_clf2.fit(X_moons, y_moons)
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Figure 6-3. Decision boundaries of an unregularized tree (left) and a regularized tree (right)

The unregularized model on the left is clearly overfitting, and the regularized
model on the right will probably generalize better. We can verify this by
evaluating both trees on a test set generated using a different random seed:

>>> X_moons_test, y_moons_test = make_moons(n_samples=1000, noise=0.2,
...                                         random_state=43)
...
>>> tree_clf1.score(X_moons_test, y_moons_test)
0.898
>>> tree_clf2.score(X_moons_test, y_moons_test)
0.92

Indeed, the second tree has a better accuracy on the test set.



Regression
Decision trees are also capable of performing regression tasks. Let’s build a
regression tree using Scikit-Learn’s DecisionTreeRegressor class, training it
on a noisy quadratic dataset with max_depth=2:

import numpy as np
from sklearn.tree import DecisionTreeRegressor

np.random.seed(42)
X_quad = np.random.rand(200, 1) - 0.5  # a single random input feature
y_quad = X_quad ** 2 + 0.025 * np.random.randn(200, 1)

tree_reg = DecisionTreeRegressor(max_depth=2, random_state=42)
tree_reg.fit(X_quad, y_quad)

The resulting tree is represented in Figure 6-4.

Figure 6-4. A decision tree for regression

This tree looks very similar to the classification tree you built earlier. The
main difference is that instead of predicting a class in each node, it predicts a
value. For example, suppose you want to make a prediction for a new



instance with x  = 0.2. The root node asks whether x  ≤ 0.197. Since it is not,
the algorithm goes to the right child node, which asks whether x  ≤ 0.772.
Since it is, the algorithm goes to the left child node. This is a leaf node, and it
predicts value=0.111. This prediction is the average target value of the 110
training instances associated with this leaf node, and it results in a mean
squared error equal to 0.015 over these 110 instances.

This model’s predictions are represented on the left in Figure 6-5. If you set
max_depth=3, you get the predictions represented on the right. Notice how
the predicted value for each region is always the average target value of the
instances in that region. The algorithm splits each region in a way that makes
most training instances as close as possible to that predicted value.

Figure 6-5. Predictions of two decision tree regression models

The CART algorithm works as described earlier, except that instead of trying
to split the training set in a way that minimizes impurity, it now tries to split
the training set in a way that minimizes the MSE. Equation 6-4 shows the
cost function that the algorithm tries to minimize.

Equation 6-4. CART cost function for regression

J(k,tk)=mleftmMSEleft+mrightmMSErightwhereMSEnode=∑i∈node(y^node-
y(i))2mnodey^node=∑i∈nodey(i)mnode

Just like for classification tasks, decision trees are prone to overfitting when
dealing with regression tasks. Without any regularization (i.e., using the
default hyperparameters), you get the predictions on the left in Figure 6-6.
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These predictions are obviously overfitting the training set very badly. Just
setting min_samples_leaf=10 results in a much more reasonable model,
represented on the right in Figure 6-6.

Figure 6-6. Predictions of an unregularized regression tree (left) and a regularized tree (right)



Sensitivity to Axis Orientation
Hopefully by now you are convinced that decision trees have a lot going for
them: they are relatively easy to understand and interpret, simple to use,
versatile, and powerful. However, they do have a few limitations. First, as
you may have noticed, decision trees love orthogonal decision boundaries (all
splits are perpendicular to an axis), which makes them sensitive to the data’s
orientation. For example, Figure 6-7 shows a simple linearly separable
dataset: on the left, a decision tree can split it easily, while on the right, after
the dataset is rotated by 45°, the decision boundary looks unnecessarily
convoluted. Although both decision trees fit the training set perfectly, it is
very likely that the model on the right will not generalize well.

Figure 6-7. Sensitivity to training set rotation

One way to limit this problem is to scale the data, then apply a principal
component analysis transformation. We will look at PCA in detail in
Chapter 8, but for now you only need to know that it rotates the data in a way
that reduces the correlation between the features, which often (not always)
makes things easier for trees.

Let’s create a small pipeline that scales the data and rotates it using PCA,
then train a DecisionTreeClassifier on that data. Figure 6-8 shows the
decision boundaries of that tree: as you can see, the rotation makes it possible
to fit the dataset pretty well using only one feature, z , which is a linear1



function of the original petal length and width. Here’s the code:

from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

pca_pipeline = make_pipeline(StandardScaler(), PCA())
X_iris_rotated = pca_pipeline.fit_transform(X_iris)
tree_clf_pca = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf_pca.fit(X_iris_rotated, y_iris)

Figure 6-8. A tree’s decision boundaries on the scaled and PCA-rotated iris dataset



Decision Trees Have a High Variance
More generally, the main issue with decision trees is that they have quite a
high variance: small changes to the hyperparameters or to the data may
produce very different models. In fact, since the training algorithm used by
Scikit-Learn is stochastic—it randomly selects the set of features to evaluate
at each node—even retraining the same decision tree on the exact same data
may produce a very different model, such as the one represented in Figure 6-
9 (unless you set the random_state hyperparameter). As you can see, it looks
very different from the previous decision tree (Figure 6-2).

Figure 6-9. Retraining the same model on the same data may produce a very different model

Luckily, by averaging predictions over many trees, it’s possible to reduce
variance significantly. Such an ensemble of trees is called a random forest,
and it’s one of the most powerful types of models available today, as you will
see in the next chapter.



Exercises
1. What is the approximate depth of a decision tree trained (without

restrictions) on a training set with one million instances?

2. Is a node’s Gini impurity generally lower or higher than its parent’s? Is
it generally lower/higher, or always lower/higher?

3. If a decision tree is overfitting the training set, is it a good idea to try
decreasing max_depth?

4. If a decision tree is underfitting the training set, is it a good idea to try
scaling the input features?

5. If it takes one hour to train a decision tree on a training set containing
one million instances, roughly how much time will it take to train
another decision tree on a training set containing ten million instances?
Hint: consider the CART algorithm’s computational complexity.

6. If it takes one hour to train a decision tree on a given training set,
roughly how much time will it take if you double the number of
features?

7. Train and fine-tune a decision tree for the moons dataset by following
these steps:

a. Use make_moons(n_samples=10000, noise=0.4) to generate a
moons dataset.

b. Use train_test_split() to split the dataset into a training set and a test
set.

c. Use grid search with cross-validation (with the help of the
GridSearchCV class) to find good hyperparameter values for a
DecisionTreeClassifier. Hint: try various values for
max_leaf_nodes.



d. Train it on the full training set using these hyperparameters, and
measure your model’s performance on the test set. You should get
roughly 85% to 87% accuracy.

8. Grow a forest by following these steps:

a. Continuing the previous exercise, generate 1,000 subsets of the
training set, each containing 100 instances selected randomly. Hint:
you can use Scikit-Learn’s ShuffleSplit class for this.

b. Train one decision tree on each subset, using the best
hyperparameter values found in the previous exercise. Evaluate
these 1,000 decision trees on the test set. Since they were trained on
smaller sets, these decision trees will likely perform worse than the
first decision tree, achieving only about 80% accuracy.

c. Now comes the magic. For each test set instance, generate the
predictions of the 1,000 decision trees, and keep only the most
frequent prediction (you can use SciPy’s mode() function for this).
This approach gives you majority-vote predictions over the test set.

d. Evaluate these predictions on the test set: you should obtain a
slightly higher accuracy than your first model (about 0.5 to 1.5%
higher). Congratulations, you have trained a random forest
classifier!

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.

1  P is the set of problems that can be solved in polynomial time (i.e., a polynomial of the dataset
size). NP is the set of problems whose solutions can be verified in polynomial time. An NP-hard
problem is a problem that can be reduced to a known NP-hard problem in polynomial time. An
NP-complete problem is both NP and NP-hard. A major open mathematical question is whether
or not P = NP. If P ≠ NP (which seems likely), then no polynomial algorithm will ever be found
for any NP-complete problem (except perhaps one day on a quantum computer).

2  See Sebastian Raschka’s interesting analysis for more details.
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Chapter 7. Ensemble Learning and
Random Forests

Suppose you pose a complex question to thousands of random people, then
aggregate their answers. In many cases you will find that this aggregated
answer is better than an expert’s answer. This is called the wisdom of the
crowd. Similarly, if you aggregate the predictions of a group of predictors
(such as classifiers or regressors), you will often get better predictions than
with the best individual predictor. A group of predictors is called an
ensemble; thus, this technique is called ensemble learning, and an ensemble
learning algorithm is called an ensemble method.

As an example of an ensemble method, you can train a group of decision tree
classifiers, each on a different random subset of the training set. You can then
obtain the predictions of all the individual trees, and the class that gets the
most votes is the ensemble’s prediction (see the last exercise in Chapter 6).
Such an ensemble of decision trees is called a random forest, and despite its
simplicity, this is one of the most powerful machine learning algorithms
available today.

As discussed in Chapter 2, you will often use ensemble methods near the end
of a project, once you have already built a few good predictors, to combine
them into an even better predictor. In fact, the winning solutions in machine
learning competitions often involve several ensemble methods—most
famously in the Netflix Prize competition.

In this chapter we will examine the most popular ensemble methods,
including voting classifiers, bagging and pasting ensembles, random forests,
and boosting, and stacking ensembles.

https://en.wikipedia.org/wiki/Netflix_Prize


Voting Classifiers
Suppose you have trained a few classifiers, each one achieving about 80%
accuracy. You may have a logistic regression classifier, an SVM classifier, a
random forest classifier, a k-nearest neighbors classifier, and perhaps a few
more (see Figure 7-1).

Figure 7-1. Training diverse classifiers

A very simple way to create an even better classifier is to aggregate the
predictions of each classifier: the class that gets the most votes is the
ensemble’s prediction. This majority-vote classifier is called a hard voting
classifier (see Figure 7-2).



Figure 7-2. Hard voting classifier predictions

Somewhat surprisingly, this voting classifier often achieves a higher accuracy
than the best classifier in the ensemble. In fact, even if each classifier is a
weak learner (meaning it does only slightly better than random guessing), the
ensemble can still be a strong learner (achieving high accuracy), provided
there are a sufficient number of weak learners in the ensemble and they are
sufficiently diverse.

How is this possible? The following analogy can help shed some light on this
mystery. Suppose you have a slightly biased coin that has a 51% chance of
coming up heads and 49% chance of coming up tails. If you toss it 1,000
times, you will generally get more or less 510 heads and 490 tails, and hence
a majority of heads. If you do the math, you will find that the probability of
obtaining a majority of heads after 1,000 tosses is close to 75%. The more
you toss the coin, the higher the probability (e.g., with 10,000 tosses, the
probability climbs over 97%). This is due to the law of large numbers: as you
keep tossing the coin, the ratio of heads gets closer and closer to the
probability of heads (51%). Figure 7-3 shows 10 series of biased coin tosses.
You can see that as the number of tosses increases, the ratio of heads



approaches 51%. Eventually all 10 series end up so close to 51% that they are
consistently above 50%.

Figure 7-3. The law of large numbers

Similarly, suppose you build an ensemble containing 1,000 classifiers that are
individually correct only 51% of the time (barely better than random
guessing). If you predict the majority voted class, you can hope for up to 75%
accuracy! However, this is only true if all classifiers are perfectly
independent, making uncorrelated errors, which is clearly not the case
because they are trained on the same data. They are likely to make the same
types of errors, so there will be many majority votes for the wrong class,
reducing the ensemble’s accuracy.

TIP
Ensemble methods work best when the predictors are as independent from one another as
possible. One way to get diverse classifiers is to train them using very different
algorithms. This increases the chance that they will make very different types of errors,
improving the ensemble’s accuracy.

Scikit-Learn provides a VotingClassifier class that’s quite easy to use: just
give it a list of name/predictor pairs, and use it like a normal classifier. Let’s
try it on the moons dataset (introduced in Chapter 5). We will load and split
the moons dataset into a training set and a test set, then we’ll create and train



a voting classifier composed of three diverse classifiers:

from sklearn.datasets import make_moons
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

X, y = make_moons(n_samples=500, noise=0.30, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

voting_clf = VotingClassifier(
    estimators=[
        ('lr', LogisticRegression(random_state=42)),
        ('rf', RandomForestClassifier(random_state=42)),
        ('svc', SVC(random_state=42))
    ]
)
voting_clf.fit(X_train, y_train)

When you fit a VotingClassifier, it clones every estimator and fits the clones.
The original estimators are available via the estimators attribute, while the
fitted clones are available via the estimators_ attribute. If you prefer a dict
rather than a list, you can use named_estimators or named_estimators_
instead. To begin, let’s look at each fitted classifier’s accuracy on the test set:

>>> for name, clf in voting_clf.named_estimators_.items():
...     print(name, "=", clf.score(X_test, y_test))
...
lr = 0.864
rf = 0.896
svc = 0.896

When you call the voting classifier’s predict() method, it performs hard
voting. For example, the voting classifier predicts class 1 for the first instance
of the test set, because two out of three classifiers predict that class:

>>> voting_clf.predict(X_test[:1])
array([1])
>>> [clf.predict(X_test[:1]) for clf in voting_clf.estimators_]
[array([1]), array([1]), array([0])]



Now let’s look at the performance of the voting classifier on the test set:

>>> voting_clf.score(X_test, y_test)
0.912

There you have it! The voting classifier outperforms all the individual
classifiers.

If all classifiers are able to estimate class probabilities (i.e., if they all have a
predict_proba() method), then you can tell Scikit-Learn to predict the class
with the highest class probability, averaged over all the individual classifiers.
This is called soft voting. It often achieves higher performance than hard
voting because it gives more weight to highly confident votes. All you need
to do is set the voting classifier’s voting hyperparameter to "soft", and ensure
that all classifiers can estimate class probabilities. This is not the case for the
SVC class by default, so you need to set its probability hyperparameter to
True (this will make the SVC class use cross-validation to estimate class
probabilities, slowing down training, and it will add a predict_proba()
method). Let’s try that:

>>> voting_clf.voting = "soft"
>>> voting_clf.named_estimators["svc"].probability = True
>>> voting_clf.fit(X_train, y_train)
>>> voting_clf.score(X_test, y_test)
0.92

We reach 92% accuracy simply by using soft voting—not bad!



Bagging and Pasting
One way to get a diverse set of classifiers is to use very different training
algorithms, as just discussed. Another approach is to use the same training
algorithm for every predictor but train them on different random subsets of
the training set. When sampling is performed with replacement,  this
method is called bagging   (short for bootstrap aggregating  ). When sampling
is performed without replacement, it is called pasting.
In other words, both bagging and pasting allow training instances to be
sampled several times across multiple predictors, but only bagging allows
training instances to be sampled several times for the same predictor. This
sampling and training process is represented in Figure 7-4.

Figure 7-4. Bagging and pasting involve training several predictors on different random samples of the
training set

Once all predictors are trained, the ensemble can make a prediction for a new
instance by simply aggregating the predictions of all predictors. The

1
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aggregation function is typically the statistical mode for classification (i.e.,
the most frequent prediction, just like with a hard voting classifier), or the
average for regression. Each individual predictor has a higher bias than if it
were trained on the original training set, but aggregation reduces both bias
and variance.  Generally, the net result is that the ensemble has a similar
bias but a lower variance than a single predictor trained on the original
training set.

As you can see in Figure 7-4, predictors can all be trained in parallel, via
different CPU cores or even different servers. Similarly, predictions can be
made in parallel. This is one of the reasons bagging and pasting are such
popular methods: they scale very well.
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Bagging and Pasting in Scikit-Learn
Scikit-Learn offers a simple API for both bagging and pasting:
BaggingClassifier class (or BaggingRegressor for regression). The following
code trains an ensemble of 500 decision tree classifiers:  each is trained on
100 training instances randomly sampled from the training set with
replacement (this is an example of bagging, but if you want to use pasting
instead, just set bootstrap=False). The n_jobs parameter tells Scikit-Learn the
number of CPU cores to use for training and predictions, and –1 tells Scikit-
Learn to use all available cores:

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier

bag_clf = BaggingClassifier(DecisionTreeClassifier(), n_estimators=500,
                            max_samples=100, n_jobs=-1, random_state=42)
bag_clf.fit(X_train, y_train)

NOTE
A BaggingClassifier automatically performs soft voting instead of hard voting if the base
classifier can estimate class probabilities (i.e., if it has a predict_proba() method), which is
the case with decision tree classifiers.

Figure 7-5 compares the decision boundary of a single decision tree with the
decision boundary of a bagging ensemble of 500 trees (from the preceding
code), both trained on the moons dataset. As you can see, the ensemble’s
predictions will likely generalize much better than the single decision tree’s
predictions: the ensemble has a comparable bias but a smaller variance (it
makes roughly the same number of errors on the training set, but the decision
boundary is less irregular).

Bagging introduces a bit more diversity in the subsets that each predictor is
trained on, so bagging ends up with a slightly higher bias than pasting; but
the extra diversity also means that the predictors end up being less correlated,
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so the ensemble’s variance is reduced. Overall, bagging often results in better
models, which explains why it’s generally preferred. But if you have spare
time and CPU power, you can use cross-validation to evaluate both bagging
and pasting and select the one that works best.

Figure 7-5. A single decision tree (left) versus a bagging ensemble of 500 trees (right)



Out-of-Bag Evaluation
With bagging, some training instances may be sampled several times for any
given predictor, while others may not be sampled at all. By default a
BaggingClassifier samples m training instances with replacement
(bootstrap=True), where m is the size of the training set. With this process, it
can be shown mathematically that only about 63% of the training instances
are sampled on average for each predictor.  The remaining 37% of the
training instances that are not sampled are called out-of-bag (OOB) instances.
Note that they are not the same 37% for all predictors.

A bagging ensemble can be evaluated using OOB instances, without the need
for a separate validation set: indeed, if there are enough estimators, then each
instance in the training set will likely be an OOB instance of several
estimators, so these estimators can be used to make a fair ensemble prediction
for that instance. Once you have a prediction for each instance, you can
compute the ensemble’s prediction accuracy (or any other metric).

In Scikit-Learn, you can set oob_score=True when creating a
BaggingClassifier to request an automatic OOB evaluation after training. The
following code demonstrates this. The resulting evaluation score is available
in the oob_score_ attribute:

>>> bag_clf = BaggingClassifier(DecisionTreeClassifier(), n_estimators=500,
...                             oob_score=True, n_jobs=-1, random_state=42)
...
>>> bag_clf.fit(X_train, y_train)
>>> bag_clf.oob_score_
0.896

According to this OOB evaluation, this BaggingClassifier is likely to achieve
about 89.6% accuracy on the test set. Let’s verify this:

>>> from sklearn.metrics import accuracy_score
>>> y_pred = bag_clf.predict(X_test)
>>> accuracy_score(y_test, y_pred)
0.92
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We get 92% accuracy on the test. The OOB evaluation was a bit too
pessimistic, just over 2% too low.

The OOB decision function for each training instance is also available
through the oob_decision_function_ attribute. Since the base estimator has a
predict_proba() method, the decision function returns the class probabilities
for each training instance. For example, the OOB evaluation estimates that
the first training instance has a 67.6% probability of belonging to the positive
class and a 32.4% probability of belonging to the negative class:

>>> bag_clf.oob_decision_function_[:3]  # probas for the first 3 instances
array([[0.32352941, 0.67647059],
       [0.3375    , 0.6625    ],
       [1.        , 0.        ]])



Random Patches and Random Subspaces
The BaggingClassifier class supports sampling the features as well. Sampling
is controlled by two hyperparameters: max_features and bootstrap_features.
They work the same way as max_samples and bootstrap, but for feature
sampling instead of instance sampling. Thus, each predictor will be trained
on a random subset of the input features.

This technique is particularly useful when you are dealing with high-
dimensional inputs (such as images), as it can considerably speed up training.
Sampling both training instances and features is called the random patches
method.  Keeping all training instances (by setting bootstrap=False and
max_samples=1.0) but sampling features (by setting bootstrap_features to
True and/or max_features to a value smaller than 1.0) is called the random
subspaces method.
Sampling features results in even more predictor diversity, trading a bit more
bias for a lower variance.

8
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Random Forests
As we have discussed, a random forest  is an ensemble of decision trees,
generally trained via the bagging method (or sometimes pasting), typically
with max_samples set to the size of the training set. Instead of building a
BaggingClassifier and passing it a DecisionTreeClassifier, you can use the
RandomForestClassifier class, which is more convenient and optimized for
decision trees   (similarly, there is a RandomForestRegressor class for
regression tasks). The following code trains a random forest classifier with
500 trees, each limited to maximum 16 leaf nodes, using all available CPU
cores:

from sklearn.ensemble import RandomForestClassifier

rnd_clf = RandomForestClassifier(n_estimators=500, max_leaf_nodes=16,
                                 n_jobs=-1, random_state=42)
rnd_clf.fit(X_train, y_train)

y_pred_rf = rnd_clf.predict(X_test)

With a few exceptions, a RandomForestClassifier has all the hyperparameters
of a DecisionTreeClassifier (to control how trees are grown), plus all the
hyperparameters of a BaggingClassifier to control the ensemble itself.

The random forest algorithm introduces extra randomness when growing
trees; instead of searching for the very best feature when splitting a node (see
Chapter 6), it searches for the best feature among a random subset of features.
By default, it samples n features (where n is the total number of features).
The algorithm results in greater tree diversity, which (again) trades a higher
bias for a lower variance, generally yielding an overall better model. So, the
following BaggingClassifier is equivalent to the previous
RandomForestClassifier:

bag_clf = BaggingClassifier(
    DecisionTreeClassifier(max_features="sqrt", max_leaf_nodes=16),
    n_estimators=500, n_jobs=-1, random_state=42)
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Extra-Trees
When you are growing a tree in a random forest, at each node only a random
subset of the features is considered for splitting (as discussed earlier). It is
possible to make trees even more random by also using random thresholds
for each feature rather than searching for the best possible thresholds (like
regular decision trees do). For this, simply set splitter="random" when
creating a DecisionTreeClassifier.

A forest of such extremely random trees is called an extremely randomized
trees   (or extra-trees for short) ensemble. Once again, this technique trades
more bias for a lower variance. It also makes extra-trees classifiers much
faster to train than regular random forests, because finding the best possible
threshold for each feature at every node is one of the most time-consuming
tasks of growing a tree.

You can create an extra-trees classifier using Scikit-Learn’s
ExtraTreesClassifier class. Its API is identical to the RandomForestClassifier
class, except bootstrap defaults to False. Similarly, the ExtraTreesRegressor
class has the same API as the RandomForestRegressor class, except bootstrap
defaults to False.

TIP
It is hard to tell in advance whether a RandomForestClassifier will perform better or worse
than an ExtraTreesClassifier. Generally, the only way to know is to try both and compare
them using cross-validation.
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Feature Importance
Yet another great quality of random forests is that they make it easy to
measure the relative importance of each feature. Scikit-Learn measures a
feature’s importance by looking at how much the tree nodes that use that
feature reduce impurity on average, across all trees in the forest. More
precisely, it is a weighted average, where each node’s weight is equal to the
number of training samples that are associated with it (see Chapter 6).

Scikit-Learn computes this score automatically for each feature after training,
then it scales the results so that the sum of all importances is equal to 1. You
can access the result using the feature_importances_ variable. For example,
the following code trains a RandomForestClassifier on the iris dataset
(introduced in Chapter 4) and outputs each feature’s importance. It seems that
the most important features are the petal length (44%) and width (42%),
while sepal length and width are rather unimportant in comparison (11% and
2%, respectively):

>>> from sklearn.datasets import load_iris
>>> iris = load_iris(as_frame=True)
>>> rnd_clf = RandomForestClassifier(n_estimators=500, random_state=42)
>>> rnd_clf.fit(iris.data, iris.target)
>>> for score, name in zip(rnd_clf.feature_importances_, iris.data.columns):
...     print(round(score, 2), name)
...
0.11 sepal length (cm)
0.02 sepal width (cm)
0.44 petal length (cm)
0.42 petal width (cm)

Similarly, if you train a random forest classifier on the MNIST dataset
(introduced in Chapter 3) and plot each pixel’s importance, you get the image
represented in Figure 7-6.



Figure 7-6. MNIST pixel importance (according to a random forest classifier)

Random forests are very handy to get a quick understanding of what features
actually matter, in particular if you need to perform feature selection.



Boosting
Boosting (originally called hypothesis boosting) refers to any ensemble
method that can combine several weak learners into a strong learner. The
general idea of most boosting methods is to train predictors sequentially, each
trying to correct its predecessor. There are many boosting methods available,
but by far the most popular are AdaBoost  (short for adaptive boosting) and
gradient boosting. Let’s start with AdaBoost.
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AdaBoost
One way for a new predictor to correct its predecessor is to pay a bit more
attention to the training instances that the predecessor underfit. This results in
new predictors focusing more and more on the hard cases. This is the
technique used by AdaBoost.

For example, when training an AdaBoost classifier, the algorithm first trains
a base classifier (such as a decision tree) and uses it to make predictions on
the training set. The algorithm then increases the relative weight of
misclassified training instances. Then it trains a second classifier, using the
updated weights, and again makes predictions on the training set, updates the
instance weights, and so on (see Figure 7-7).

Figure 7-8 shows the decision boundaries of five consecutive predictors on
the moons dataset (in this example, each predictor is a highly regularized
SVM classifier with an RBF kernel).  The first classifier gets many
instances wrong, so their weights get boosted. The second classifier therefore
does a better job on these instances, and so on. The plot on the right
represents the same sequence of predictors, except that the learning rate is
halved (i.e., the misclassified instance weights are boosted much less at every
iteration). As you can see, this sequential learning technique has some
similarities with gradient descent, except that instead of tweaking a single
predictor’s parameters to minimize a cost function, AdaBoost adds predictors
to the ensemble, gradually making it better.
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Figure 7-7. AdaBoost sequential training with instance weight updates

Once all predictors are trained, the ensemble makes predictions very much
like bagging or pasting, except that predictors have different weights
depending on their overall accuracy on the weighted training set.

Figure 7-8. Decision boundaries of consecutive predictors

WARNING



There is one important drawback to this sequential learning technique: training cannot be
parallelized since each predictor can only be trained after the previous predictor has been
trained and evaluated. As a result, it does not scale as well as bagging or pasting.

Let’s take a closer look at the AdaBoost algorithm. Each instance weight w
is initially set to 1/m. A first predictor is trained, and its weighted error rate r
is computed on the training set; see Equation 7-1.

Equation 7-1. Weighted error rate of the j  predictor

rj = ∑ i=1 y^ j (i) ≠ y (i) m w(i) where y^ j(i) is the jth predictor’s
predictionfor the i th instance

The predictor’s weight α  is then computed using Equation 7-2, where η is the
learning rate hyperparameter (defaults to 1).  The more accurate the
predictor is, the higher its weight will be. If it is just guessing randomly, then
its weight will be close to zero. However, if it is most often wrong (i.e., less
accurate than random guessing), then its weight will be negative.

Equation 7-2. Predictor weight

α j = η log 1-r j r j

Next, the AdaBoost algorithm updates the instance weights, using Equation
7-3, which boosts the weights of the misclassified instances.

Equation 7-3. Weight update rule

for i = 1 , 2 , ⋯ , m w (i) ← w (i) if y j ^ (i) = y (i) w (i) exp ( α j ) if y j ^ (i) ≠
y (i)

Then all the instance weights are normalized (i.e., divided by ∑i=1mw(i)).

Finally, a new predictor is trained using the updated weights, and the whole
process is repeated: the new predictor’s weight is computed, the instance
weights are updated, then another predictor is trained, and so on. The
algorithm stops when the desired number of predictors is reached, or when a
perfect predictor is found.

To make predictions, AdaBoost simply computes the predictions of all the

(i)

1

th

j
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predictors and weighs them using the predictor weights α . The predicted
class is the one that receives the majority of weighted votes (see Equation 7-
4).

Equation 7-4. AdaBoost predictions

y ^ ( x ) = argmax k ∑ j=1 y ^ j (x)=k N α j where N is the number of
predictors

Scikit-Learn uses a multiclass version of AdaBoost called SAMME  (which
stands for Stagewise Additive Modeling using a Multiclass Exponential loss
function). When there are just two classes, SAMME is equivalent to
AdaBoost. If the predictors can estimate class probabilities (i.e., if they have
a predict_proba() method), Scikit-Learn can use a variant of SAMME called
SAMME.R (the R stands for “Real”), which relies on class probabilities rather
than predictions and generally performs better.

The following code trains an AdaBoost classifier based on 30 decision
stumps using Scikit-Learn’s AdaBoostClassifier class (as you might expect,
there is also an AdaBoostRegressor class). A decision stump is a decision tree
with max_depth=1—in other words, a tree composed of a single decision
node plus two leaf nodes. This is the default base estimator for the
AdaBoostClassifier class:

from sklearn.ensemble import AdaBoostClassifier

ada_clf = AdaBoostClassifier(
    DecisionTreeClassifier(max_depth=1), n_estimators=30,
    learning_rate=0.5, random_state=42)
ada_clf.fit(X_train, y_train)

TIP
If your AdaBoost ensemble is overfitting the training set, you can try reducing the number
of estimators or more strongly regularizing the base estimator.

j
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Gradient Boosting
Another very popular boosting algorithm is gradient boosting.  Just like
AdaBoost, gradient boosting works by sequentially adding predictors to an
ensemble, each one correcting its predecessor. However, instead of tweaking
the instance weights at every iteration like AdaBoost does, this method tries
to fit the new predictor to the residual errors made by the previous predictor.

Let’s go through a simple regression example, using decision trees as the
base predictors; this is called gradient tree boosting, or gradient boosted
regression trees (GBRT). First, let’s generate a noisy quadratic dataset and fit
a DecisionTreeRegressor to it:

import numpy as np
from sklearn.tree import DecisionTreeRegressor

np.random.seed(42)
X = np.random.rand(100, 1) - 0.5
y = 3 * X[:, 0] ** 2 + 0.05 * np.random.randn(100)  # y = 3x² + Gaussian noise

tree_reg1 = DecisionTreeRegressor(max_depth=2, random_state=42)
tree_reg1.fit(X, y)

Next, we’ll train a second DecisionTreeRegressor on the residual errors made
by the first predictor:

y2 = y - tree_reg1.predict(X)
tree_reg2 = DecisionTreeRegressor(max_depth=2, random_state=43)
tree_reg2.fit(X, y2)

And then we’ll train a third regressor on the residual errors made by the
second predictor:

y3 = y2 - tree_reg2.predict(X)
tree_reg3 = DecisionTreeRegressor(max_depth=2, random_state=44)
tree_reg3.fit(X, y3)

Now we have an ensemble containing three trees. It can make predictions on
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a new instance simply by adding up the predictions of all the trees:

>>> X_new = np.array([[-0.4], [0.], [0.5]])
>>> sum(tree.predict(X_new) for tree in (tree_reg1, tree_reg2, tree_reg3))
array([0.49484029, 0.04021166, 0.75026781])

Figure 7-9 represents the predictions of these three trees in the left column,
and the ensemble’s predictions in the right column. In the first row, the
ensemble has just one tree, so its predictions are exactly the same as the first
tree’s predictions. In the second row, a new tree is trained on the residual
errors of the first tree. On the right you can see that the ensemble’s
predictions are equal to the sum of the predictions of the first two trees.
Similarly, in the third row another tree is trained on the residual errors of the
second tree. You can see that the ensemble’s predictions gradually get better
as trees are added to the ensemble.

You can use Scikit-Learn’s GradientBoostingRegressor class to train GBRT
ensembles more easily (there’s also a GradientBoostingClassifier class for
classification). Much like the RandomForestRegressor class, it has
hyperparameters to control the growth of decision trees (e.g., max_depth,
min_samples_leaf), as well as hyperparameters to control the ensemble
training, such as the number of trees (n_estimators). The following code
creates the same ensemble as the previous one:

from sklearn.ensemble import GradientBoostingRegressor

gbrt = GradientBoostingRegressor(max_depth=2, n_estimators=3,
                                 learning_rate=1.0, random_state=42)
gbrt.fit(X, y)



Figure 7-9. In this depiction of gradient boosting, the first predictor (top left) is trained normally, then
each consecutive predictor (middle left and lower left) is trained on the previous predictor’s residuals;

the right column shows the resulting ensemble’s predictions

The learning_rate hyperparameter scales the contribution of each tree. If you
set it to a low value, such as 0.05, you will need more trees in the ensemble to
fit the training set, but the predictions will usually generalize better. This is a
regularization technique called shrinkage. Figure 7-10 shows two GBRT
ensembles trained with different hyperparameters: the one on the left does not
have enough trees to fit the training set, while the one on the right has about
the right amount. If we added more trees, the GBRT would start to overfit the



training set.

Figure 7-10. GBRT ensembles with not enough predictors (left) and just enough (right)

To find the optimal number of trees, you could perform cross-validation
using GridSearchCV or RandomizedSearchCV, as usual, but there’s a
simpler way: if you set the n_iter_no_change hyperparameter to an integer
value, say 10, then the GradientBoostingRegressor will automatically stop
adding more trees during training if it sees that the last 10 trees didn’t help.
This is simply early stopping (introduced in Chapter 4), but with a little bit of
patience: it tolerates having no progress for a few iterations before it stops.
Let’s train the ensemble using early stopping:

gbrt_best = GradientBoostingRegressor(
    max_depth=2, learning_rate=0.05, n_estimators=500,
    n_iter_no_change=10, random_state=42)
gbrt_best.fit(X, y)

If you set n_iter_no_change too low, training may stop too early and the
model will underfit. But if you set it too high, it will overfit instead. We also
set a fairly small learning rate and a high number of estimators, but the actual
number of estimators in the trained ensemble is much lower, thanks to early
stopping:

>>> gbrt_best.n_estimators_
92

When n_iter_no_change is set, the fit() method automatically splits the



training set into a smaller training set and a validation set: this allows it to
evaluate the model’s performance each time it adds a new tree. The size of
the validation set is controlled by the validation_fraction hyperparameter,
which is 10% by default. The tol hyperparameter determines the maximum
performance improvement that still counts as negligible. It defaults to 0.0001.

The GradientBoostingRegressor class also supports a subsample
hyperparameter, which specifies the fraction of training instances to be used
for training each tree. For example, if subsample=0.25, then each tree is
trained on 25% of the training instances, selected randomly. As you can
probably guess by now, this technique trades a higher bias for a lower
variance. It also speeds up training considerably. This is called stochastic
gradient boosting.



Histogram-Based Gradient Boosting
Scikit-Learn also provides another GBRT implementation, optimized for
large datasets: histogram-based gradient boosting (HGB). It works by
binning the input features, replacing them with integers. The number of bins
is controlled by the max_bins hyperparameter, which defaults to 255 and
cannot be set any higher than this. Binning can greatly reduce the number of
possible thresholds that the training algorithm needs to evaluate. Moreover,
working with integers makes it possible to use faster and more memory-
efficient data structures. And the way the bins are built removes the need for
sorting the features when training each tree.

As a result, this implementation has a computational complexity of O(b×m)
instead of O(n×m×log(m)), where b is the number of bins, m is the number of
training instances, and n is the number of features. In practice, this means that
HGB can train hundreds of times faster than regular GBRT on large datasets.
However, binning causes a precision loss, which acts as a regularizer:
depending on the dataset, this may help reduce overfitting, or it may cause
underfitting.

Scikit-Learn provides two classes for HGB: HistGradientBoostingRegressor
and HistGradientBoostingClassifier. They’re similar to
GradientBoostingRegressor and GradientBoostingClassifier, with a few
notable differences:

Early stopping is automatically activated if the number of instances is
greater than 10,000. You can turn early stopping always on or always
off by setting the early_stopping hyperparameter to True or False.

Subsampling is not supported.

n_estimators is renamed to max_iter.

The only decision tree hyperparameters that can be tweaked are
max_leaf_nodes, min_samples_leaf, and max_depth.

The HGB classes also have two nice features: they support both categorical



features and missing values. This simplifies preprocessing quite a bit.
However, the categorical features must be represented as integers ranging
from 0 to a number lower than max_bins. You can use an OrdinalEncoder for
this. For example, here’s how to build and train a complete pipeline for the
California housing dataset introduced in Chapter 2:

from sklearn.pipeline import make_pipeline
from sklearn.compose import make_column_transformer
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.preprocessing import OrdinalEncoder

hgb_reg = make_pipeline(
    make_column_transformer((OrdinalEncoder(), ["ocean_proximity"]),
                            remainder="passthrough"),
    HistGradientBoostingRegressor(categorical_features=[0], random_state=42)
)
hgb_reg.fit(housing, housing_labels)

The whole pipeline is just as short as the imports! No need for an imputer,
scaler, or a one-hot encoder, so it’s really convenient. Note that
categorical_features must be set to the categorical column indices (or a
Boolean array). Without any hyperparameter tuning, this model yields an
RMSE of about 47,600, which is not too bad.

TIP
Several other optimized implementations of gradient boosting are available in the Python
ML ecosystem: in particular, XGBoost, CatBoost, and LightGBM. These libraries have
been around for several years. They are all specialized for gradient boosting, their APIs
are very similar to Scikit-Learn’s, and they provide many additional features, including
GPU acceleration; you should definitely check them out! Moreover, the TensorFlow
Random Forests library provides optimized implementations of a variety of random forest
algorithms, including plain random forests, extra-trees, GBRT, and several more.

https://github.com/dmlc/xgboost
https://catboost.ai
https://lightgbm.readthedocs.io
https://tensorflow.org/decision_forests


Stacking
The last ensemble method we will discuss in this chapter is called stacking
(short for stacked generalization).   It is based on a simple idea: instead of
using trivial functions (such as hard voting) to aggregate the predictions of all
predictors in an ensemble, why don’t we train a model to perform this
aggregation? Figure 7-11 shows such an ensemble performing a regression
task on a new instance. Each of the bottom three predictors predicts a
different value (3.1, 2.7, and 2.9), and then the final predictor (called a
blender, or a meta learner) takes these predictions as inputs and makes the
final prediction (3.0).

Figure 7-11. Aggregating predictions using a blending predictor
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To train the blender, you first need to build the blending training set. You can
use cross_val_predict() on every predictor in the ensemble to get out-of-
sample predictions for each instance in the original training set (Figure 7-12),
and use these can be used as the input features to train the blender; and the
targets can simply be copied from the original training set. Note that
regardless of the number of features in the original training set (just one in
this example), the blending training set will contain one input feature per
predictor (three in this example). Once the blender is trained, the base
predictors are retrained one last time on the full original training set.

Figure 7-12. Training the blender in a stacking ensemble

It is actually possible to train several different blenders this way (e.g., one
using linear regression, another using random forest regression) to get a



whole layer of blenders, and then add another blender on top of that to
produce the final prediction, as shown in Figure 7-13. You may be able to
squeeze out a few more drops of performance by doing this, but it will cost
you in both training time and system complexity.

Figure 7-13. Predictions in a multilayer stacking ensemble

Scikit-Learn provides two classes for stacking ensembles: StackingClassifier
and StackingRegressor. For example, we can replace the VotingClassifier we
used at the beginning of this chapter on the moons dataset with a
StackingClassifier:

from sklearn.ensemble import StackingClassifier

stacking_clf = StackingClassifier(
    estimators=[
        ('lr', LogisticRegression(random_state=42)),
        ('rf', RandomForestClassifier(random_state=42)),
        ('svc', SVC(probability=True, random_state=42))
    ],
    final_estimator=RandomForestClassifier(random_state=43),



    cv=5  # number of cross-validation folds
)
stacking_clf.fit(X_train, y_train)

For each predictor, the stacking classifier will call predict_proba() if
available; if not it will fall back to decision_function() or, as a last resort, call
predict(). If you don’t provide a final estimator, StackingClassifier will use
LogisticRegression and StackingRegressor will use RidgeCV.

If you evaluate this stacking model on the test set, you will find 92.8%
accuracy, which is a bit better than the voting classifier using soft voting,
which got 92%.

In conclusion, ensemble methods are versatile, powerful, and fairly simple to
use. Random forests, AdaBoost, and GBRT are among the first models you
should test for most machine learning tasks, and they particularly shine with
heterogeneous tabular data. Moreover, as they require very little
preprocessing, they’re great for getting a prototype up and running quickly.
Lastly, ensemble methods like voting classifiers and stacking classifiers can
help push your system’s performance to its limits.



Exercises
1. If you have trained five different models on the exact same training data,

and they all achieve 95% precision, is there any chance that you can
combine these models to get better results? If so, how? If not, why?

2. What is the difference between hard and soft voting classifiers?

3. Is it possible to speed up training of a bagging ensemble by distributing
it across multiple servers? What about pasting ensembles, boosting
ensembles, random forests, or stacking ensembles?

4. What is the benefit of out-of-bag evaluation?

5. What makes extra-trees ensembles more random than regular random
forests? How can this extra randomness help? Are extra-trees classifiers
slower or faster than regular random forests?

6. If your AdaBoost ensemble underfits the training data, which
hyperparameters should you tweak, and how?

7. If your gradient boosting ensemble overfits the training set, should you
increase or decrease the learning rate?

8. Load the MNIST dataset (introduced in Chapter 3), and split it into a
training set, a validation set, and a test set (e.g., use 50,000 instances for
training, 10,000 for validation, and 10,000 for testing). Then train
various classifiers, such as a random forest classifier, an extra-trees
classifier, and an SVM classifier. Next, try to combine them into an
ensemble that outperforms each individual classifier on the validation
set, using soft or hard voting. Once you have found one, try it on the test
set. How much better does it perform compared to the individual
classifiers?

9. Run the individual classifiers from the previous exercise to make
predictions on the validation set, and create a new training set with the



resulting predictions: each training instance is a vector containing the set
of predictions from all your classifiers for an image, and the target is the
image’s class. Train a classifier on this new training set. Congratulations
—you have just trained a blender, and together with the classifiers it
forms a stacking ensemble! Now evaluate the ensemble on the test set.
For each image in the test set, make predictions with all your classifiers,
then feed the predictions to the blender to get the ensemble’s
predictions. How does it compare to the voting classifier you trained
earlier? Now try again using a StackingClassifier instead. Do you get
better performance? If so, why?

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.
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Chapter 8. Dimensionality
Reduction

Many machine learning problems involve thousands or even millions of
features for each training instance. Not only do all these features make
training extremely slow, but they can also make it much harder to find a good
solution, as you will see. This problem is often referred to as the curse of
dimensionality.

Fortunately, in real-world problems, it is often possible to reduce the number
of features considerably, turning an intractable problem into a tractable one.
For example, consider the MNIST images (introduced in Chapter 3): the
pixels on the image borders are almost always white, so you could
completely drop these pixels from the training set without losing much
information. As we saw in the previous chapter, (Figure 7-6) confirms that
these pixels are utterly unimportant for the classification task. Additionally,
two neighboring pixels are often highly correlated: if you merge them into a
single pixel (e.g., by taking the mean of the two pixel intensities), you will
not lose much information.

WARNING
Reducing dimensionality does cause some information loss, just like compressing an
image to JPEG can degrade its quality, so even though it will speed up training, it may
make your system perform slightly worse. It also makes your pipelines a bit more complex
and thus harder to maintain. Therefore, I recommend you first try to train your system with
the original data before considering using dimensionality reduction. In some cases,
reducing the dimensionality of the training data may filter out some noise and unnecessary
details and thus result in higher performance, but in general it won’t; it will just speed up
training.

Apart from speeding up training, dimensionality reduction is also extremely



useful for data visualization. Reducing the number of dimensions down to
two (or three) makes it possible to plot a condensed view of a high-
dimensional training set on a graph and often gain some important insights by
visually detecting patterns, such as clusters. Moreover, data visualization is
essential to communicate your conclusions to people who are not data
scientists—in particular, decision makers who will use your results.

In this chapter we will first discuss the curse of dimensionality and get a
sense of what goes on in high-dimensional space. Then we will consider the
two main approaches to dimensionality reduction (projection and manifold
learning), and we will go through three of the most popular dimensionality
reduction techniques: PCA, random projection, and locally linear embedding
(LLE).



The Curse of Dimensionality
We are so used to living in three dimensions   that our intuition fails us
when we try to imagine a high-dimensional space. Even a basic 4D
hypercube is incredibly hard to picture in our minds (see Figure 8-1), let
alone a 200-dimensional ellipsoid bent in a 1,000-dimensional space.

Figure 8-1. Point, segment, square, cube, and tesseract (0D to 4D hypercubes)

It turns out that many things behave very differently in high-dimensional
space. For example, if you pick a random point in a unit square (a 1 × 1
square), it will have only about a 0.4% chance of being located less than
0.001 from a border (in other words, it is very unlikely that a random point
will be “extreme” along any dimension). But in a 10,000-dimensional unit
hypercube, this probability is greater than 99.999999%. Most points in a
high-dimensional hypercube are very close to the border.
Here is a more troublesome difference: if you pick two points randomly in a
unit square, the distance between these two points will be, on average,
roughly 0.52. If you pick two random points in a 3D unit cube, the average
distance will be roughly 0.66. But what about two points picked randomly in
a 1,000,000-dimensional unit hypercube? The average distance, believe it or
not, will be about 408.25 (roughly 1,000,0006)! This is counterintuitive: how
can two points be so far apart when they both lie within the same unit
hypercube? Well, there’s just plenty of space in high dimensions. As a result,
high-dimensional datasets are at risk of being very sparse: most training
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instances are likely to be far away from each other. This also means that a
new instance will likely be far away from any training instance, making
predictions much less reliable than in lower dimensions, since they will be
based on much larger extrapolations. In short, the more dimensions the
training set has, the greater the risk of overfitting it.

In theory, one solution to the curse of dimensionality could be to increase the
size of the training set to reach a sufficient density of training instances.
Unfortunately, in practice, the number of training instances required to reach
a given density grows exponentially with the number of dimensions. With
just 100 features—significantly fewer than in the MNIST problem—all
ranging from 0 to 1, you would need more training instances than atoms in
the observable universe in order for training instances to be within 0.1 of
each other on average, assuming they were spread out uniformly across all
dimensions.



Main Approaches for Dimensionality Reduction
Before we dive into specific dimensionality reduction algorithms, let’s take a
look at the two main approaches to reducing dimensionality: projection and
manifold learning.



Projection
In most real-world problems, training instances are not spread out uniformly
across all dimensions. Many features are almost constant, while others are
highly correlated (as discussed earlier for MNIST). As a result, all training
instances lie within (or close to) a much lower-dimensional subspace of the
high-dimensional space. This sounds very abstract, so let’s look at an
example. In Figure 8-2 you can see a 3D dataset represented by small
spheres.

Figure 8-2. A 3D dataset lying close to a 2D subspace

Notice that all training instances lie close to a plane: this is a lower-



dimensional (2D) subspace of the higher-dimensional (3D) space. If we
project every training instance perpendicularly onto this subspace (as
represented by the short dashed lines connecting the instances to the plane),
we get the new 2D dataset shown in Figure 8-3. Ta-da! We have just reduced
the dataset’s dimensionality from 3D to 2D. Note that the axes correspond to
new features z  and z : they are the coordinates of the projections on the
plane.

Figure 8-3. The new 2D dataset after projection
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Manifold Learning
However, projection is not always the best approach to dimensionality
reduction. In many cases the subspace may twist and turn, such as in the
famous Swiss roll toy dataset represented in Figure 8-4.

Figure 8-4. Swiss roll dataset

Simply projecting onto a plane (e.g., by dropping x ) would squash different
layers of the Swiss roll together, as shown on the left side of Figure 8-5.
What you probably want instead is to unroll the Swiss roll to obtain the 2D
dataset on the right side of Figure 8-5.
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Figure 8-5. Squashing by projecting onto a plane (left) versus unrolling the Swiss roll (right)

The Swiss roll is an example of a 2D manifold. Put simply, a 2D manifold is
a 2D shape that can be bent and twisted in a higher-dimensional space. More
generally, a d-dimensional manifold is a part of an n-dimensional space
(where d < n) that locally resembles a d-dimensional hyperplane. In the case
of the Swiss roll, d = 2 and n = 3: it locally resembles a 2D plane, but it is
rolled in the third dimension.

Many dimensionality reduction algorithms work by modeling the manifold
on which the training instances lie; this is called manifold learning. It relies
on the manifold assumption, also called the manifold hypothesis, which holds
that most real-world high-dimensional datasets lie close to a much lower-
dimensional manifold. This assumption is very often empirically observed.

Once again, think about the MNIST dataset: all handwritten digit images
have some similarities. They are made of connected lines, the borders are
white, and they are more or less centered. If you randomly generated images,
only a ridiculously tiny fraction of them would look like handwritten digits.
In other words, the degrees of freedom available to you if you try to create a
digit image are dramatically lower than the degrees of freedom you have if
you are allowed to generate any image you want. These constraints tend to
squeeze the dataset into a lower-dimensional manifold.

The manifold assumption is often accompanied by another implicit
assumption: that the task at hand (e.g., classification or regression) will be
simpler if expressed in the lower-dimensional space of the manifold. For



example, in the top row of Figure 8-6 the Swiss roll is split into two classes:
in the 3D space (on the left) the decision boundary would be fairly complex,
but in the 2D unrolled manifold space (on the right) the decision boundary is
a straight line.

However, this implicit assumption does not always hold. For example, in the
bottom row of Figure 8-6, the decision boundary is located at x  = 5. This
decision boundary looks very simple in the original 3D space (a vertical
plane), but it looks more complex in the unrolled manifold (a collection of
four independent line segments).

In short, reducing the dimensionality of your training set before training a
model will usually speed up training, but it may not always lead to a better or
simpler solution; it all depends on the dataset.

Hopefully you now have a good sense of what the curse of dimensionality is
and how dimensionality reduction algorithms can fight it, especially when the
manifold assumption holds. The rest of this chapter will go through some of
the most popular algorithms for dimensionality reduction.
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Figure 8-6. The decision boundary may not always be simpler with lower dimensions



PCA
Principal component analysis (PCA) is by far the most popular
dimensionality reduction algorithm. First it identifies the hyperplane that lies
closest to the data, and then it projects the data onto it, just like in Figure 8-2.



Preserving the Variance
Before you can project the training set onto a lower-dimensional hyperplane,
you first need to choose the right hyperplane. For example, a simple 2D
dataset is represented on the left in Figure 8-7, along with three different axes
(i.e., 1D hyperplanes). On the right is the result of the projection of the
dataset onto each of these axes. As you can see, the projection onto the solid
line preserves the maximum variance (top), while the projection onto the
dotted line preserves very little variance (bottom) and the projection onto the
dashed line preserves an intermediate amount of variance (middle).

Figure 8-7. Selecting the subspace on which to project

It seems reasonable to select the axis that preserves the maximum amount of
variance, as it will most likely lose less information than the other
projections. Another way to justify this choice is that it is the axis that
minimizes the mean squared distance between the original dataset and its
projection onto that axis. This is the rather simple idea behind PCA. 4
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Principal Components
PCA identifies the axis that accounts for the largest amount of variance in the
training set. In Figure 8-7, it is the solid line. It also finds a second axis,
orthogonal to the first one, that accounts for the largest amount of the
remaining variance. In this 2D example there is no choice: it is the dotted
line. If it were a higher-dimensional dataset, PCA would also find a third
axis, orthogonal to both previous axes, and a fourth, a fifth, and so on—as
many axes as the number of dimensions in the dataset.

The i  axis is called the i  principal component (PC) of the data. In Figure 8-
7, the first PC is the axis on which vector c  lies, and the second PC is the
axis on which vector c  lies. In Figure 8-2 the first two PCs are on the
projection plane, and the third PC is the axis orthogonal to that plane. After
the projection, in Figure 8-3, the first PC corresponds to the z  axis, and the
second PC corresponds to the z  axis.

NOTE
For each principal component, PCA finds a zero-centered unit vector pointing in the
direction of the PC. Since two opposing unit vectors lie on the same axis, the direction of
the unit vectors returned by PCA is not stable: if you perturb the training set slightly and
run PCA again, the unit vectors may point in the opposite direction as the original vectors.
However, they will generally still lie on the same axes. In some cases, a pair of unit
vectors may even rotate or swap (if the variances along these two axes are very close), but
the plane they define will generally remain the same.

So how can you find the principal components of a training set? Luckily,
there is a standard matrix factorization technique called singular value
decomposition (SVD) that can decompose the training set matrix X into the
matrix multiplication of three matrices U Σ V , where V contains the unit
vectors that define all the principal components that you are looking for, as
shown in Equation 8-1.

Equation 8-1. Principal components matrix
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V = ∣ ∣ ∣ c 1 c 2 ⋯ c n ∣ ∣ ∣

The following Python code uses NumPy’s svd() function to obtain all the
principal components of the 3D training set represented in Figure 8-2, then it
extracts the two unit vectors that define the first two PCs:

import numpy as np

X = [...]  # create a small 3D dataset
X_centered = X - X.mean(axis=0)
U, s, Vt = np.linalg.svd(X_centered)
c1 = Vt[0]
c2 = Vt[1]

WARNING
PCA assumes that the dataset is centered around the origin. As you will see, Scikit-Learn’s
PCA classes take care of centering the data for you. If you implement PCA yourself (as in
the preceding example), or if you use other libraries, don’t forget to center the data first.



Projecting Down to d Dimensions
Once you have identified all the principal components, you can reduce the
dimensionality of the dataset down to d dimensions by projecting it onto the
hyperplane defined by the first d principal components. Selecting this
hyperplane ensures that the projection will preserve as much variance as
possible. For example, in Figure 8-2 the 3D dataset is projected down to the
2D plane defined by the first two principal components, preserving a large
part of the dataset’s variance. As a result, the 2D projection looks very much
like the original 3D dataset.

To project the training set onto the hyperplane and obtain a reduced dataset
X  of dimensionality d, compute the matrix multiplication of the training
set matrix X by the matrix W , defined as the matrix containing the first d
columns of V, as shown in Equation 8-2.

Equation 8-2. Projecting the training set down to d dimensions

X d-proj = X W d

The following Python code projects the training set onto the plane defined by
the first two principal components:

W2 = Vt[:2].T
X2D = X_centered @ W2

There you have it! You now know how to reduce the dimensionality of any
dataset by projecting it down to any number of dimensions, while preserving
as much variance as possible.

d-proj
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Using Scikit-Learn
Scikit-Learn’s PCA class uses SVD to implement PCA, just like we did
earlier in this chapter. The following code applies PCA to reduce the
dimensionality of the dataset down to two dimensions (note that it
automatically takes care of centering the data):

from sklearn.decomposition import PCA

pca = PCA(n_components=2)
X2D = pca.fit_transform(X)

After fitting the PCA transformer to the dataset, its components_ attribute
holds the transpose of W : it contains one row for each of the first d principal
components.

d



Explained Variance Ratio
Another useful piece of information is the explained variance ratio of each
principal component, available via the explained_variance_ratio_ variable.
The ratio indicates the proportion of the dataset’s variance that lies along
each principal component. For example, let’s look at the explained variance
ratios of the first two components of the 3D dataset represented in Figure 8-2:

>>> pca.explained_variance_ratio_
array([0.7578477 , 0.15186921])

This output tells us that about 76% of the dataset’s variance lies along the
first PC, and about 15% lies along the second PC. This leaves about 9% for
the third PC, so it is reasonable to assume that the third PC probably carries
little information.



Choosing the Right Number of Dimensions
Instead of arbitrarily choosing the number of dimensions to reduce down to,
it is simpler to choose the number of dimensions that add up to a sufficiently
large portion of the variance—say, 95% (An exception to this rule, of course,
is if you are reducing dimensionality for data visualization, in which case you
will want to reduce the dimensionality down to 2 or 3).

The following code loads and splits the MNIST dataset (introduced in
Chapter 3) and performs PCA without reducing dimensionality, then
computes the minimum number of dimensions required to preserve 95% of
the training set’s variance:

from sklearn.datasets import fetch_openml

mnist = fetch_openml('mnist_784', as_frame=False)
X_train, y_train = mnist.data[:60_000], mnist.target[:60_000]
X_test, y_test = mnist.data[60_000:], mnist.target[60_000:]

pca = PCA()
pca.fit(X_train)
cumsum = np.cumsum(pca.explained_variance_ratio_)
d = np.argmax(cumsum >= 0.95) + 1  # d equals 154

You could then set n_components=d and run PCA again, but there’s a better
option. Instead of specifying the number of principal components you want to
preserve, you can set n_components to be a float between 0.0 and 1.0,
indicating the ratio of variance you wish to preserve:

pca = PCA(n_components=0.95)
X_reduced = pca.fit_transform(X_train)

The actual number of components is determined during training, and it is
stored in the n_components_ attribute:

>>> pca.n_components_
154



Yet another option is to plot the explained variance as a function of the
number of dimensions (simply plot cumsum; see Figure 8-8). There will
usually be an elbow in the curve, where the explained variance stops growing
fast. In this case, you can see that reducing the dimensionality down to about
100 dimensions wouldn’t lose too much explained variance.

Figure 8-8. Explained variance as a function of the number of dimensions

Lastly, if you are using dimensionality reduction as a preprocessing step for a
supervised learning task (e.g., classification), then you can tune the number
of dimensions as you would any other hyperparameter (see Chapter 2). For
example, the following code example creates a two-step pipeline, first
reducing dimensionality using PCA, then classifying using a random forest.
Next, it uses RandomizedSearchCV to find a good combination of
hyperparameters for both PCA and the random forest classifier. This example
does a quick search, tuning only 2 hyperparameters, training on just 1,000
instances, and running for just 10 iterations, but feel free to do a more
thorough search if you have the time:

from sklearn.ensemble import RandomForestClassifier



from sklearn.model_selection import RandomizedSearchCV
from sklearn.pipeline import make_pipeline

clf = make_pipeline(PCA(random_state=42),
                    RandomForestClassifier(random_state=42))
param_distrib = {
    "pca__n_components": np.arange(10, 80),
    "randomforestclassifier__n_estimators": np.arange(50, 500)
}
rnd_search = RandomizedSearchCV(clf, param_distrib, n_iter=10, cv=3,
                                random_state=42)
rnd_search.fit(X_train[:1000], y_train[:1000])

Let’s look at the best hyperparameters found:

>>> print(rnd_search.best_params_)
{'randomforestclassifier__n_estimators': 465, 'pca__n_components': 23}

It’s interesting to note how low the optimal number of components is: we
reduced a 784-dimensional dataset to just 23 dimensions! This is tied to the
fact that we used a random forest, which is a pretty powerful model. If we
used a linear model instead, such as an SGDClassifier, the search would find
that we need to preserve more dimensions (about 70).



PCA for Compression
After dimensionality reduction, the training set takes up much less space. For
example, after applying PCA to the MNIST dataset while preserving 95% of
its variance, we are left with 154 features, instead of the original 784 features.
So the dataset is now less than 20% of its original size, and we only lost 5%
of its variance! This is a reasonable compression ratio, and it’s easy to see
how such a size reduction would speed up a classification algorithm
tremendously.

It is also possible to decompress the reduced dataset back to 784 dimensions
by applying the inverse transformation of the PCA projection. This won’t
give you back the original data, since the projection lost a bit of information
(within the 5% variance that was dropped), but it will likely be close to the
original data. The mean squared distance between the original data and the
reconstructed data (compressed and then decompressed) is called the
reconstruction error.

The inverse_transform() method lets us decompress the reduced MNIST
dataset back to 784 dimensions:

X_recovered = pca.inverse_transform(X_reduced)

Figure 8-9 shows a few digits from the original training set (on the left), and
the corresponding digits after compression and decompression. You can see
that there is a slight image quality loss, but the digits are still mostly intact.



Figure 8-9. MNIST compression that preserves 95% of the variance

The equation for the inverse transformation is shown in Equation 8-3.

Equation 8-3. PCA inverse transformation, back to the original number of dimensions

X recovered = X d-proj W d ⊺



Randomized PCA
If you set the svd_solver hyperparameter to "randomized", Scikit-Learn uses
a stochastic algorithm called randomized PCA that quickly finds an
approximation of the first d principal components. Its computational
complexity is O(m × d ) + O(d ), instead of O(m × n ) + O(n ) for the full
SVD approach, so it is dramatically faster than full SVD when d is much
smaller than n:

rnd_pca = PCA(n_components=154, svd_solver="randomized", random_state=42)
X_reduced = rnd_pca.fit_transform(X_train)

TIP
By default, svd_solver is actually set to "auto": Scikit-Learn automatically uses the
randomized PCA algorithm if max(m, n) > 500 and n_components is an integer smaller
than 80% of min(m, n), or else it uses the full SVD approach. So the preceding code would
use the randomized PCA algorithm even if you removed the svd_solver="randomized"
argument, since 154 < 0.8 × 784. If you want to force Scikit-Learn to use full SVD for a
slightly more precise result, you can set the svd_solver hyperparameter to "full".
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Incremental PCA
One problem with the preceding implementations of PCA is that they require
the whole training set to fit in memory in order for the algorithm to run.
Fortunately, incremental PCA (IPCA) algorithms have been developed that
allow you to split the training set into mini-batches and feed these in one
mini-batch at a time. This is useful for large training sets and for applying
PCA online (i.e., on the fly, as new instances arrive).

The following code splits the MNIST training set into 100 mini-batches
(using NumPy’s array_split() function) and feeds them to Scikit-Learn’s
IncrementalPCA class   to reduce the dimensionality of the MNIST dataset
down to 154 dimensions, just like before. Note that you must call the
partial_fit() method with each mini-batch, rather than the fit() method with
the whole training set:

from sklearn.decomposition import IncrementalPCA

n_batches = 100
inc_pca = IncrementalPCA(n_components=154)
for X_batch in np.array_split(X_train, n_batches):
    inc_pca.partial_fit(X_batch)

X_reduced = inc_pca.transform(X_train)

Alternatively, you can use NumPy’s memmap class, which allows you to
manipulate a large array stored in a binary file on disk as if it were entirely in
memory; the class loads only the data it needs in memory, when it needs it.
To demonstrate this, let’s first create a memory-mapped (memmap) file and
copy the MNIST training set to it, then call flush() to ensure that any data still
in the cache gets saved to disk. In real life, X_train would typically not fit in
memory, so you would load it chunk by chunk and save each chunk to the
right part of the memmap array:

filename = "my_mnist.mmap"
X_mmap = np.memmap(filename, dtype='float32', mode='write', shape=X_train.shape)
X_mmap[:] = X_train  # could be a loop instead, saving the data chunk by chunk

5



X_mmap.flush()

Next, we can load the memmap file and use it like a regular NumPy array.
Let’s use the IncrementalPCA class to reduce its dimensionality. Since this
algorithm uses only a small part of the array at any given time, memory usage
remains under control. This makes it possible to call the usual fit() method
instead of partial_fit(), which is quite convenient:

X_mmap = np.memmap(filename, dtype="float32", mode="readonly").reshape(-1, 784)
batch_size = X_mmap.shape[0] // n_batches
inc_pca = IncrementalPCA(n_components=154, batch_size=batch_size)
inc_pca.fit(X_mmap)

WARNING
Only the raw binary data is saved to disk, so you need to specify the data type and shape
of the array when you load it. If you omit the shape, np.memmap() returns a 1D array.

For very high-dimensional datasets, PCA can be too slow. As you saw
earlier, even if you use randomized PCA its computational complexity is still
O(m × d ) + O(d ), so the target number of dimensions d must not be too
large. If you are dealing with a dataset with tens of thousands of features or
more (e.g., images), then training may become much too slow: in this case,
you should consider using random projection instead.
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Random Projection
As its name suggests, the random projection algorithm projects the data to a
lower-dimensional space using a random linear projection. This may sound
crazy, but it turns out that such a random projection is actually very likely to
preserve distances fairly well, as was demonstrated mathematically by
William B. Johnson and Joram Lindenstrauss in a famous lemma. So, two
similar instances will remain similar after the projection, and two very
different instances will remain very different.

Obviously, the more dimensions you drop, the more information is lost, and
the more distances get distorted. So how can you choose the optimal number
of dimensions? Well, Johnson and Lindenstrauss came up with an equation
that determines the minimum number of dimensions to preserve in order to
ensure—with high probability—that distances won’t change by more than a
given tolerance. For example, if you have a dataset containing m = 5,000
instances with n = 20,000 features each, and you don’t want the squared
distance between any two instances to change by more than ε = 10%,  then
you should project the data down to d dimensions, with d ≥ 4 log(m) / (½ ε² -
⅓ ε³), which is 7,300 dimensions. That’s quite a significant dimensionality
reduction! Notice that the equation does not use n, it only relies on m and ε.
This equation is implemented by the johnson_lindenstrauss_min_dim()
function:

>>> from sklearn.random_projection import johnson_lindenstrauss_min_dim
>>> m, ε = 5_000, 0.1
>>> d = johnson_lindenstrauss_min_dim(m, eps=ε)
>>> d
7300

Now we can just generate a random matrix P of shape [d, n], where each item
is sampled randomly from a Gaussian distribution with mean 0 and variance
1 / d, and use it to project a dataset from n dimensions down to d:

n = 20_000
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np.random.seed(42)
P = np.random.randn(d, n) / np.sqrt(d)  # std dev = square root of variance

X = np.random.randn(m, n)  # generate a fake dataset
X_reduced = X @ P.T

That’s all there is to it! It’s simple and efficient, and no training is required:
the only thing the algorithm needs to create the random matrix is the dataset’s
shape. The data itself is not used at all.

Scikit-Learn offers a GaussianRandomProjection class to do exactly what we
just did: when you call its fit() method, it uses
johnson_lindenstrauss_min_dim() to determine the output dimensionality,
then it generates a random matrix, which it stores in the components_
attribute. Then when you call transform(), it uses this matrix to perform the
projection. When creating the transformer, you can set eps if you want to
tweak ε (it defaults to 0.1), and n_components if you want to force a specific
target dimensionality d. The following code example gives the same result as
the preceding code (you can also verify that gaussian_rnd_proj.components_
is equal to P):

from sklearn.random_projection import GaussianRandomProjection

gaussian_rnd_proj = GaussianRandomProjection(eps=ε, random_state=42)
X_reduced = gaussian_rnd_proj.fit_transform(X)  # same result as above

Scikit-Learn also provides a second random projection transformer, known as
SparseRandomProjection. It determines the target dimensionality in the same
way, generates a random matrix of the same shape, and performs the
projection identically. The main difference is that the random matrix is
sparse. This means it uses much less memory: about 25 MB instead of almost
1.2 GB in the preceding example! And it’s also much faster, both to generate
the random matrix and to reduce dimensionality: about 50% faster in this
case. Moreover, if the input is sparse, the transformation keeps it sparse
(unless you set dense_output=True). Lastly, it enjoys the same distance-
preserving property as the previous approach, and the quality of the
dimensionality reduction is comparable. In short, it’s usually preferable to



use this transformer instead of the first one, especially for large or sparse
datasets.

The ratio r of nonzero items in the sparse random matrix is called its density.
By default, it is equal to 1/n. With 20,000 features, this means that only 1 in
~141 cells in the random matrix is nonzero: that’s quite sparse! You can set
the density hyperparameter to another value if you prefer. Each cell in the
sparse random matrix has a probability r of being nonzero, and each nonzero
value is either –v or +v (both equally likely), where v = 1/dr.

If you want to perform the inverse transform, you first need to compute the
pseudo-inverse of the components matrix using SciPy’s pinv() function, then
multiply the reduced data by the transpose of the pseudo-inverse:

components_pinv = np.linalg.pinv(gaussian_rnd_proj.components_)
X_recovered = X_reduced @ components_pinv.T

WARNING
Computing the pseudo-inverse may take a very long time if the components matrix is
large, as the computational complexity of pinv() is O(dn²) if d < n, or O(nd²) otherwise.

In summary, random projection is a simple, fast, memory-efficient, and
surprisingly powerful dimensionality reduction algorithm that you should
keep in mind, especially when you deal with high-dimensional datasets.

NOTE
Random projection is not always used to reduce the dimensionality of large datasets. For
example, a 2017 paper  by Sanjoy Dasgupta et al. showed that the brain of a fruit fly
implements an analog of random projection to map dense low-dimensional olfactory
inputs to sparse high-dimensional binary outputs: for each odor, only a small fraction of
the output neurons get activated, but similar odors activate many of the same neurons.
This is similar to a well-known algorithm called locality sensitive hashing (LSH), which is
typically used in search engines to group similar documents.
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LLE
Locally linear embedding (LLE)  is a nonlinear dimensionality reduction
(NLDR) technique. It is a manifold learning technique that does not rely on
projections, unlike PCA and random projection. In a nutshell, LLE works by
first measuring how each training instance linearly relates to its nearest
neighbors, and then looking for a low-dimensional representation of the
training set where these local relationships are best preserved (more details
shortly). This approach makes it particularly good at unrolling twisted
manifolds, especially when there is not too much noise.

The following code makes a Swiss roll, then uses Scikit-Learn’s
LocallyLinearEmbedding class to unroll it:

from sklearn.datasets import make_swiss_roll
from sklearn.manifold import LocallyLinearEmbedding

X_swiss, t = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)
lle = LocallyLinearEmbedding(n_components=2, n_neighbors=10, random_state=42)
X_unrolled = lle.fit_transform(X_swiss)

The variable t is a 1D NumPy array containing the position of each instance
along the rolled axis of the Swiss roll. We don’t use it in this example, but it
can be used as a target for a nonlinear regression task.

The resulting 2D dataset is shown in Figure 8-10. As you can see, the Swiss
roll is completely unrolled, and the distances between instances are locally
well preserved. However, distances are not preserved on a larger scale: the
unrolled Swiss roll should be a rectangle, not this kind of stretched and
twisted band. Nevertheless, LLE did a pretty good job of modeling the
manifold.
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Figure 8-10. Unrolled Swiss roll using LLE

Here’s how LLE works: for each training instance x , the algorithm
identifies its k-nearest neighbors (in the preceding code k = 10), then tries to
reconstruct x  as a linear function of these neighbors. More specifically, it
tries to find the weights w  such that the squared distance between x  and ∑
j=1 m w i,j x (j) is as small as possible, assuming w  = 0 if x  is not one of
the k-nearest neighbors of x . Thus the first step of LLE is the constrained
optimization problem described in Equation 8-4, where W is the weight
matrix containing all the weights w . The second constraint simply
normalizes the weights for each training instance x .

Equation 8-4. LLE step 1: linearly modeling local relationships

W ^ = argmin W ∑ i=1 m x (i) -∑ j=1 m w i,j x (j) 2 subject to w i,j = 0 if x
(j) is not one of the k n.n. of x (i) ∑ j=1 m w i,j = 1 for i = 1 , 2 , ⋯ , m

After this step, the weight matrix W ^ (containing the weights w^i,j) encodes
the local linear relationships between the training instances. The second step
is to map the training instances into a d-dimensional space (where d < n)
while preserving these local relationships as much as possible. If z  is the
image of x  in this d-dimensional space, then we want the squared distance
between z  and ∑ j=1 m w ^ i,j z (j) to be as small as possible. This idea
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leads to the unconstrained optimization problem described in Equation 8-5. It
looks very similar to the first step, but instead of keeping the instances fixed
and finding the optimal weights, we are doing the reverse: keeping the
weights fixed and finding the optimal position of the instances’ images in the
low-dimensional space. Note that Z is the matrix containing all z .

Equation 8-5. LLE step 2: reducing dimensionality while preserving relationships

Z ^ = argmin Z ∑ i=1 m z (i) -∑ j=1 m w ^ i,j z (j) 2

Scikit-Learn’s LLE implementation has the following computational
complexity: O(m log(m)n log(k)) for finding the k-nearest neighbors, O(mnk )
for optimizing the weights, and O(dm ) for constructing the low-dimensional
representations. Unfortunately, the m  in the last term makes this algorithm
scale poorly to very large datasets.

As you can see, LLE is quite different from the projection techniques, and it’s
significantly more complex, but it can also construct much better low-
dimensional representations, especially if the data is nonlinear.
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Other Dimensionality Reduction Techniques
Before we conclude this chapter, let’s take a quick look at a few other
popular dimensionality reduction techniques available in Scikit-Learn:

sklearn.manifold.MDS

Multidimensional scaling (MDS) reduces dimensionality while trying to
preserve the distances between the instances. Random projection does
that for high-dimensional data, but it doesn’t work well on low-
dimensional data.

sklearn.manifold.Isomap

Isomap creates a graph by connecting each instance to its nearest
neighbors, then reduces dimensionality while trying to preserve the
geodesic distances between the instances. The geodesic distance between
two nodes in a graph is the number of nodes on the shortest path between
these nodes.

sklearn.manifold.TSNE

t-distributed stochastic neighbor embedding (t-SNE) reduces
dimensionality while trying to keep similar instances close and dissimilar
instances apart. It is mostly used for visualization, in particular to
visualize clusters of instances in high-dimensional space. For example, in
the exercises at the end of this chapter you will use t-SNE to visualize a
2D map of the MNIST images.

sklearn.discriminant_analysis.LinearDiscriminantAnalysis

Linear discriminant analysis (LDA) is a linear classification algorithm
that, during training, learns the most discriminative axes between the
classes. These axes can then be used to define a hyperplane onto which to
project the data. The benefit of this approach is that the projection will
keep classes as far apart as possible, so LDA is a good technique to



reduce dimensionality before running another classification algorithm
(unless LDA alone is sufficient).

Figure 8-11 shows the results of MDS, Isomap, and t-SNE on the Swiss roll.
MDS manages to flatten the Swiss roll without losing its global curvature,
while Isomap drops it entirely. Depending on the downstream task,
preserving the large-scale structure may be good or bad. t-SNE does a
reasonable job of flattening the Swiss roll, preserving a bit of curvature, and
it also amplifies clusters, tearing the roll apart. Again, this might be good or
bad, depending on the downstream task.

Figure 8-11. Using various techniques to reduce the Swiss roll to 2D



Exercises
1. What are the main motivations for reducing a dataset’s dimensionality?

What are the main drawbacks?

2. What is the curse of dimensionality?

3. Once a dataset’s dimensionality has been reduced, is it possible to
reverse the operation? If so, how? If not, why?

4. Can PCA be used to reduce the dimensionality of a highly nonlinear
dataset?

5. Suppose you perform PCA on a 1,000-dimensional dataset, setting the
explained variance ratio to 95%. How many dimensions will the
resulting dataset have?

6. In what cases would you use regular PCA, incremental PCA,
randomized PCA, or random projection?

7. How can you evaluate the performance of a dimensionality reduction
algorithm on your dataset?

8. Does it make any sense to chain two different dimensionality reduction
algorithms?

9. Load the MNIST dataset (introduced in Chapter 3) and split it into a
training set and a test set (take the first 60,000 instances for training, and
the remaining 10,000 for testing). Train a random forest classifier on the
dataset and time how long it takes, then evaluate the resulting model on
the test set. Next, use PCA to reduce the dataset’s dimensionality, with
an explained variance ratio of 95%. Train a new random forest classifier
on the reduced dataset and see how long it takes. Was training much
faster? Next, evaluate the classifier on the test set. How does it compare
to the previous classifier? Try again with an SGDClassifier. How much
does PCA help now?



10. Use t-SNE to reduce the first 5,000 images of the MNIST dataset down
to 2 dimensions and plot the result using Matplotlib. You can use a
scatterplot using 10 different colors to represent each image’s target
class. Alternatively, you can replace each dot in the scatterplot with the
corresponding instance’s class (a digit from 0 to 9), or even plot scaled-
down versions of the digit images themselves (if you plot all digits the
visualization will be too cluttered, so you should either draw a random
sample or plot an instance only if no other instance has already been
plotted at a close distance). You should get a nice visualization with
well-separated clusters of digits. Try using other dimensionality
reduction algorithms, such as PCA, LLE, or MDS, and compare the
resulting visualizations.

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.

1  Well, four dimensions if you count time, and a few more if you are a string theorist.

2  Watch a rotating tesseract projected into 3D space at https://homl.info/30. Image by Wikipedia
user NerdBoy1392 (Creative Commons BY-SA 3.0). Reproduced from
https://en.wikipedia.org/wiki/Tesseract.

3  Fun fact: anyone you know is probably an extremist in at least one dimension (e.g., how much
sugar they put in their coffee), if you consider enough dimensions.

4  Karl Pearson, “On Lines and Planes of Closest Fit to Systems of Points in Space”, The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2, no. 11 (1901): 559–
572.

5  Scikit-Learn uses the algorithm described in David A. Ross et al., “Incremental Learning for
Robust Visual Tracking”, International Journal of Computer Vision 77, no. 1–3 (2008): 125–
141.

6  ε is the Greek letter epsilon, often used for tiny values.

7  Sanjoy Dasgupta et al., “A neural algorithm for a fundamental computing problem”, Science
358, no. 6364 (2017): 793–796.

8  Sam T. Roweis and Lawrence K. Saul, “Nonlinear Dimensionality Reduction by Locally Linear
Embedding”, Science 290, no. 5500 (2000): 2323–2326.

https://homl.info/colab3
https://homl.info/30
https://creativecommons.org/licenses/by-sa/3.0
https://en.wikipedia.org/wiki/Tesseract
https://homl.info/32


Chapter 9. Unsupervised Learning
Techniques

Although most of the applications of machine learning today are based on
supervised learning (and as a result, this is where most of the investments go
to), the vast majority of the available data is unlabeled: we have the input
features X, but we do not have the labels y. The computer scientist Yann
LeCun famously said that “if intelligence was a cake, unsupervised learning
would be the cake, supervised learning would be the icing on the cake, and
reinforcement learning would be the cherry on the cake.” In other words,
there is a huge potential in unsupervised learning that we have only barely
started to sink our teeth into.

Say you want to create a system that will take a few pictures of each item on
a manufacturing production line and detect which items are defective. You
can fairly easily create a system that will take pictures automatically, and this
might give you thousands of pictures every day. You can then build a
reasonably large dataset in just a few weeks. But wait, there are no labels! If
you want to train a regular binary classifier that will predict whether an item
is defective or not, you will need to label every single picture as “defective”
or “normal”. This will generally require human experts to sit down and
manually go through all the pictures. This is a long, costly, and tedious task,
so it will usually only be done on a small subset of the available pictures. As
a result, the labeled dataset will be quite small, and the classifier’s
performance will be disappointing. Moreover, every time the company makes
any change to its products, the whole process will need to be started over
from scratch. Wouldn’t it be great if the algorithm could just exploit the
unlabeled data without needing humans to label every picture? Enter
unsupervised learning.

In Chapter 8 we looked at the most common unsupervised learning task:
dimensionality reduction. In this chapter we will look at a few more



unsupervised tasks:

Clustering

The goal is to group similar instances together into clusters. Clustering is
a great tool for data analysis, customer segmentation, recommender
systems, search engines, image segmentation, semi-supervised learning,
dimensionality reduction, and more.

Anomaly detection (also called outlier detection)

The objective is to learn what “normal” data looks like, and then use that
to detect abnormal instances. These instances are called anomalies, or
outliers, while the normal instances are called inliers. Anomaly detection
is useful in a wide variety of applications, such as fraud detection,
detecting defective products in manufacturing, identifying new trends in
time series, or removing outliers from a dataset before training another
model, which can significantly improve the performance of the resulting
model.

Density estimation

This is the task of estimating the probability density function (PDF) of the
random process that generated the dataset. Density estimation is
commonly used for anomaly detection: instances located in very low-
density regions are likely to be anomalies. It is also useful for data
analysis and visualization.

Ready for some cake? We will start with two clustering algorithms, k-means
and DBSCAN, then we’ll discuss Gaussian mixture models and see how they
can be used for density estimation, clustering, and anomaly detection.



Clustering Algorithms: k-means and DBSCAN
As you enjoy a hike in the mountains, you stumble upon a plant you have
never seen before. You look around and you notice a few more. They are not
identical, yet they are sufficiently similar for you to know that they most
likely belong to the same species (or at least the same genus). You may need
a botanist to tell you what species that is, but you certainly don’t need an
expert to identify groups of similar-looking objects. This is called clustering:
it is the task of identifying similar instances and assigning them to clusters, or
groups of similar instances.

Just like in classification, each instance gets assigned to a group. However,
unlike classification, clustering is an unsupervised task. Consider Figure 9-1:
on the left is the iris dataset (introduced in Chapter 4), where each instance’s
species (i.e., its class) is represented with a different marker. It is a labeled
dataset, for which classification algorithms such as logistic regression,
SVMs, or random forest classifiers are well suited. On the right is the same
dataset, but without the labels, so you cannot use a classification algorithm
anymore. This is where clustering algorithms step in: many of them can
easily detect the lower-left cluster. It is also quite easy to see with our own
eyes, but it is not so obvious that the upper-right cluster is composed of two
distinct subclusters. That said, the dataset has two additional features (sepal
length and width) that are not represented here, and clustering algorithms can
make good use of all features, so in fact they identify the three clusters fairly
well (e.g., using a Gaussian mixture model, only 5 instances out of 150 are
assigned to the wrong cluster).



Figure 9-1. Classification (left) versus clustering (right)

Clustering is used in a wide variety of applications, including:

Customer segmentation

You can cluster your customers based on their purchases and their
activity on your website. This is useful to understand who your customers
are and what they need, so you can adapt your products and marketing
campaigns to each segment. For example, customer segmentation can be
useful in recommender systems to suggest content that other users in the
same cluster enjoyed.

Data analysis

When you analyze a new dataset, it can be helpful to run a clustering
algorithm, and then analyze each cluster separately.

Dimensionality reduction

Once a dataset has been clustered, it is usually possible to measure each
instance’s affinity with each cluster; affinity is any measure of how well
an instance fits into a cluster. Each instance’s feature vector x can then be
replaced with the vector of its cluster affinities. If there are k clusters,
then this vector is k-dimensional. The new vector is typically much
lower-dimensional than the original feature vector, but it can preserve
enough information for further processing.

Feature engineering



The cluster affinities can often be useful as extra features. For example,
we used k-means in Chapter 2 to add geographic cluster affinity features
to the California housing dataset, and they helped us get better
performance.

Anomaly detection (also called outlier detection)

Any instance that has a low affinity to all the clusters is likely to be an
anomaly. For example, if you have clustered the users of your website
based on their behavior, you can detect users with unusual behavior, such
as an unusual number of requests per second.

Semi-supervised learning

If you only have a few labels, you could perform clustering and propagate
the labels to all the instances in the same cluster. This technique can
greatly increase the number of labels available for a subsequent
supervised learning algorithm, and thus improve its performance.

Search engines

Some search engines let you search for images that are similar to a
reference image. To build such a system, you would first apply a
clustering algorithm to all the images in your database; similar images
would end up in the same cluster. Then when a user provides a reference
image, all you’d need to do is use the trained clustering model to find this
image’s cluster, and you could then simply return all the images from this
cluster.

Image segmentation

By clustering pixels according to their color, then replacing each pixel’s
color with the mean color of its cluster, it is possible to considerably
reduce the number of different colors in an image. Image segmentation is
used in many object detection and tracking systems, as it makes it easier
to detect the contour of each object.



There is no universal definition of what a cluster is: it really depends on the
context, and different algorithms will capture different kinds of clusters.
Some algorithms look for instances centered around a particular point, called
a centroid. Others look for continuous regions of densely packed instances:
these clusters can take on any shape. Some algorithms are hierarchical,
looking for clusters of clusters. And the list goes on.

In this section, we will look at two popular clustering algorithms, k-means
and DBSCAN, and explore some of their applications, such as nonlinear
dimensionality reduction, semi-supervised learning, and anomaly detection.



k-means
Consider the unlabeled dataset represented in Figure 9-2: you can clearly see
five blobs of instances. The k-means algorithm is a simple algorithm capable
of clustering this kind of dataset very quickly and efficiently, often in just a
few iterations. It was proposed by Stuart Lloyd at Bell Labs in 1957 as a
technique for pulse-code modulation, but it was only published outside of the
company in 1982.   In 1965, Edward W. Forgy had published virtually the
same algorithm, so k-means is sometimes referred to as the Lloyd–Forgy
algorithm.

Figure 9-2. An unlabeled dataset composed of five blobs of instances

Let’s train a k-means clusterer on this dataset. It will try to find each blob’s
center and assign each instance to the closest blob:

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

X, y = make_blobs([...])  # make the blobs: y contains the cluster IDs, but we
                          # will not use them; that's what we want to predict
k = 5
kmeans = KMeans(n_clusters=k, random_state=42)
y_pred = kmeans.fit_predict(X)

1
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Note that you have to specify the number of clusters k that the algorithm must
find. In this example, it is pretty obvious from looking at the data that k
should be set to 5, but in general it is not that easy. We will discuss this
shortly.

Each instance will be assigned to one of the five clusters. In the context of
clustering, an instance’s label is the index of the cluster to which the
algorithm assigns this instance; this is not to be confused with the class labels
in classification, which are used as targets (remember that clustering is an
unsupervised learning task). The KMeans instance preserves the predicted
labels of the instances it was trained on, available via the labels_ instance
variable:

>>> y_pred
array([4, 0, 1, ..., 2, 1, 0], dtype=int32)
>>> y_pred is kmeans.labels_
True

We can also take a look at the five centroids that the algorithm found:

>>> kmeans.cluster_centers_
array([[-2.80389616,  1.80117999],
       [ 0.20876306,  2.25551336],
       [-2.79290307,  2.79641063],
       [-1.46679593,  2.28585348],
       [-2.80037642,  1.30082566]])

You can easily assign new instances to the cluster whose centroid is closest:

>>> import numpy as np
>>> X_new = np.array([[0, 2], [3, 2], [-3, 3], [-3, 2.5]])
>>> kmeans.predict(X_new)
array([1, 1, 2, 2], dtype=int32)

If you plot the cluster’s decision boundaries, you get a Voronoi tessellation:
see Figure 9-3, where each centroid is represented with an X.



Figure 9-3. k-means decision boundaries (Voronoi tessellation)

The vast majority of the instances were clearly assigned to the appropriate
cluster, but a few instances were probably mislabeled, especially near the
boundary between the top-left cluster and the central cluster. Indeed, the k-
means algorithm does not behave very well when the blobs have very
different diameters because all it cares about when assigning an instance to a
cluster is the distance to the centroid.

Instead of assigning each instance to a single cluster, which is called hard
clustering, it can be useful to give each instance a score per cluster, which is
called soft clustering. The score can be the distance between the instance and
the centroid or a similarity score (or affinity), such as the Gaussian radial
basis function we used in Chapter 2. In the KMeans class, the transform()
method measures the distance from each instance to every centroid:

>>> kmeans.transform(X_new).round(2)
array([[2.81, 0.33, 2.9 , 1.49, 2.89],
       [5.81, 2.8 , 5.85, 4.48, 5.84],
       [1.21, 3.29, 0.29, 1.69, 1.71],
       [0.73, 3.22, 0.36, 1.55, 1.22]])

In this example, the first instance in X_new is located at a distance of about
2.81 from the first centroid, 0.33 from the second centroid, 2.90 from the
third centroid, 1.49 from the fourth centroid, and 2.89 from the fifth centroid.



If you have a high-dimensional dataset and you transform it this way, you
end up with a k-dimensional dataset: this transformation can be a very
efficient nonlinear dimensionality reduction technique. Alternatively, you can
use these distances as extra features to train another model, as in Chapter 2.

The k-means algorithm

So, how does the algorithm work? Well, suppose you were given the
centroids. You could easily label all the instances in the dataset by assigning
each of them to the cluster whose centroid is closest. Conversely, if you were
given all the instance labels, you could easily locate each cluster’s centroid
by computing the mean of the instances in that cluster. But you are given
neither the labels nor the centroids, so how can you proceed? Start by placing
the centroids randomly (e.g., by picking k instances at random from the
dataset and using their locations as centroids). Then label the instances,
update the centroids, label the instances, update the centroids, and so on until
the centroids stop moving. The algorithm is guaranteed to converge in a finite
number of steps (usually quite small). That’s because the mean squared
distance between the instances and their closest centroids can only go down
at each step, and since it cannot be negative, it’s guaranteed to converge.

You can see the algorithm in action in Figure 9-4: the centroids are initialized
randomly (top left), then the instances are labeled (top right), then the
centroids are updated (center left), the instances are relabeled (center right),
and so on. As you can see, in just three iterations the algorithm has reached a
clustering that seems close to optimal.

NOTE
The computational complexity of the algorithm is generally linear with regard to the
number of instances m, the number of clusters k, and the number of dimensions n.
However, this is only true when the data has a clustering structure. If it does not, then in
the worst-case scenario the complexity can increase exponentially with the number of
instances. In practice, this rarely happens, and k-means is generally one of the fastest
clustering algorithms.



Figure 9-4. The k-means algorithm

Although the algorithm is guaranteed to converge, it may not converge to the
right solution (i.e., it may converge to a local optimum): whether it does or
not depends on the centroid initialization. Figure 9-5 shows two suboptimal
solutions that the algorithm can converge to if you are not lucky with the
random initialization step.

Figure 9-5. Suboptimal solutions due to unlucky centroid initializations



Let’s take a look at a few ways you can mitigate this risk by improving the
centroid initialization.

Centroid initialization methods

If you happen to know approximately where the centroids should be (e.g., if
you ran another clustering algorithm earlier), then you can set the init
hyperparameter to a NumPy array containing the list of centroids, and set
n_init to 1:

good_init = np.array([[-3, 3], [-3, 2], [-3, 1], [-1, 2], [0, 2]])
kmeans = KMeans(n_clusters=5, init=good_init, n_init=1, random_state=42)
kmeans.fit(X)

Another solution is to run the algorithm multiple times with different random
initializations and keep the best solution. The number of random
initializations is controlled by the n_init hyperparameter: by default it is equal
to 10, which means that the whole algorithm described earlier runs 10 times
when you call fit(), and Scikit-Learn keeps the best solution. But how exactly
does it know which solution is the best? It uses a performance metric! That
metric is called the model’s inertia, which is the sum of the squared distances
between the instances and their closest centroids. It is roughly equal to 219.4
for the model on the left in Figure 9-5, 258.6 for the model on the right in
Figure 9-5, and only 211.6 for the model in Figure 9-3. The KMeans class
runs the algorithm n_init times and keeps the model with the lowest inertia.
In this example, the model in Figure 9-3 will be selected (unless we are very
unlucky with n_init consecutive random initializations). If you are curious, a
model’s inertia is accessible via the inertia_ instance variable:

>>> kmeans.inertia_
211.59853725816836

The score() method returns the negative inertia (it’s negative because a
predictor’s score() method must always respect Scikit-Learn’s “greater is
better” rule: if a predictor is better than another, its score() method should
return a greater score):



>>> kmeans.score(X)
-211.5985372581684

An important improvement to the k-means algorithm, k-means++, was
proposed in a 2006 paper by David Arthur and Sergei Vassilvitskii.  They
introduced a smarter initialization step that tends to select centroids that are
distant from one another, and this improvement makes the k-means algorithm
much less likely to converge to a suboptimal solution. The paper showed that
the additional computation required for the smarter initialization step is well
worth it because it makes it possible to drastically reduce the number of times
the algorithm needs to be run to find the optimal solution. The k-means++
initialization algorithm works like this:

1. Take one centroid c , chosen uniformly at random from the dataset.

2. Take a new centroid c , choosing an instance x  with probability
Dx(i)2 / ∑j=1mDx(j)2, where D(x ) is the distance between the
instance x  and the closest centroid that was already chosen. This
probability distribution ensures that instances farther away from already
chosen centroids are much more likely to be selected as centroids.

3. Repeat the previous step until all k centroids have been chosen.

The KMeans class uses this initialization method by default.

Accelerated k-means and mini-batch k-means

Another improvement to the k-means algorithm was proposed in a 2003
paper by Charles Elkan.   On some large datasets with many clusters, the
algorithm can be accelerated by avoiding many unnecessary distance
calculations. Elkan achieved this by exploiting the triangle inequality (i.e.,
that a straight line is always the shortest distance between two points  ) and
by keeping track of lower and upper bounds for distances between instances
and centroids. However, Elkan’s algorithm does not always accelerate
training, and sometimes it can even slow down training significantly; it
depends on the dataset. Still, if you want to give it a try, set
algorithm="elkan".
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Yet another important variant of the k-means algorithm was proposed in a
2010 paper by David Sculley.   Instead of using the full dataset at each
iteration, the algorithm is capable of using mini-batches, moving the
centroids just slightly at each iteration. This speeds up the algorithm
(typically by a factor of three to four) and makes it possible to cluster huge
datasets that do not fit in memory. Scikit-Learn implements this algorithm in
the MiniBatchKMeans class, which you can use just like the KMeans class:

from sklearn.cluster import MiniBatchKMeans

minibatch_kmeans = MiniBatchKMeans(n_clusters=5, random_state=42)
minibatch_kmeans.fit(X)

If the dataset does not fit in memory, the simplest option is to use the
memmap class, as we did for incremental PCA in Chapter 8. Alternatively,
you can pass one mini-batch at a time to the partial_fit() method, but this will
require much more work, since you will need to perform multiple
initializations and select the best one yourself.

Although the mini-batch k-means algorithm is much faster than the regular k-
means algorithm, its inertia is generally slightly worse. You can see this in
Figure 9-6: the plot on the left compares the inertias of mini-batch k-means
and regular k-means models trained on the previous five-blobs dataset using
various numbers of clusters k. The difference between the two curves is
small, but visible. In the plot on the right, you can see that mini-batch k-
means is roughly 3.5 times faster than regular k-means on this dataset.

5
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Figure 9-6. Mini-batch k-means has a higher inertia than k-means (left) but it is much faster (right),
especially as k increases

Finding the optimal number of clusters

So far, we’ve set the number of clusters k to 5 because it was obvious by
looking at the data that this was the correct number of clusters. But in
general, it won’t be so easy to know how to set k, and the result might be
quite bad if you set it to the wrong value. As you can see in Figure 9-7, for
this dataset setting k to 3 or 8 results in fairly bad models.

You might be thinking that you could just pick the model with the lowest
inertia. Unfortunately, it is not that simple. The inertia for k=3 is about 653.2,
which is much higher than for k=5 (211.6). But with k=8, the inertia is just
119.1. The inertia is not a good performance metric when trying to choose k
because it keeps getting lower as we increase k. Indeed, the more clusters
there are, the closer each instance will be to its closest centroid, and therefore
the lower the inertia will be. Let’s plot the inertia as a function of k. When we
do this, the curve often contains an inflexion point called the elbow (see
Figure 9-8).

Figure 9-7. Bad choices for the number of clusters: when k is too small, separate clusters get merged
(left), and when k is too large, some clusters get chopped into multiple pieces (right)



Figure 9-8. Plotting the inertia as a function of the number of clusters k

As you can see, the inertia drops very quickly as we increase k up to 4, but
then it decreases much more slowly as we keep increasing k. This curve has
roughly the shape of an arm, and there is an elbow at k = 4. So, if we did not
know better, we might think 4 was a good choice: any lower value would be
dramatic, while any higher value would not help much, and we might just be
splitting perfectly good clusters in half for no good reason.

This technique for choosing the best value for the number of clusters is rather
coarse. A more precise (but also more computationally expensive) approach
is to use the silhouette score, which is the mean silhouette coefficient over all
the instances. An instance’s silhouette coefficient is equal to (b – a) / max(a,
b), where a is the mean distance to the other instances in the same cluster
(i.e., the mean intra-cluster distance) and b is the mean nearest-cluster
distance (i.e., the mean distance to the instances of the next closest cluster,
defined as the one that minimizes b, excluding the instance’s own cluster).
The silhouette coefficient can vary between –1 and +1. A coefficient close to
+1 means that the instance is well inside its own cluster and far from other
clusters, while a coefficient close to 0 means that it is close to a cluster
boundary; finally, a coefficient close to –1 means that the instance may have
been assigned to the wrong cluster.

To compute the silhouette score, you can use Scikit-Learn’s
silhouette_score() function, giving it all the instances in the dataset and the
labels they were assigned:



>>> from sklearn.metrics import silhouette_score
>>> silhouette_score(X, kmeans.labels_)
0.655517642572828

Let’s compare the silhouette scores for different numbers of clusters (see
Figure 9-9).

Figure 9-9. Selecting the number of clusters k using the silhouette score

As you can see, this visualization is much richer than the previous one:
although it confirms that k = 4 is a very good choice, it also highlights the
fact that k = 5 is quite good as well, and much better than k = 6 or 7. This was
not visible when comparing inertias.

An even more informative visualization is obtained when we plot every
instance’s silhouette coefficient, sorted by the clusters they are assigned to
and by the value of the coefficient. This is called a silhouette diagram (see
Figure 9-10). Each diagram contains one knife shape per cluster. The shape’s
height indicates the number of instances in the cluster, and its width
represents the sorted silhouette coefficients of the instances in the cluster
(wider is better).

The vertical dashed lines represent the mean silhouette score for each number
of clusters. When most of the instances in a cluster have a lower coefficient
than this score (i.e., if many of the instances stop short of the dashed line,
ending to the left of it), then the cluster is rather bad since this means its
instances are much too close to other clusters. Here we can see that when k =
3 or 6, we get bad clusters. But when k = 4 or 5, the clusters look pretty good:
most instances extend beyond the dashed line, to the right and closer to 1.0.



When k = 4, the cluster at index 1 (the second from the bottom) is rather big.
When k = 5, all clusters have similar sizes. So, even though the overall
silhouette score from k = 4 is slightly greater than for k = 5, it seems like a
good idea to use k = 5 to get clusters of similar sizes.

Figure 9-10. Analyzing the silhouette diagrams for various values of k



Limits of k-means
Despite its many merits, most notably being fast and scalable, k-means is not
perfect. As we saw, it is necessary to run the algorithm several times to avoid
suboptimal solutions, plus you need to specify the number of clusters, which
can be quite a hassle. Moreover, k-means does not behave very well when the
clusters have varying sizes, different densities, or nonspherical shapes. For
example, Figure 9-11 shows how k-means clusters a dataset containing three
ellipsoidal clusters of different dimensions, densities, and orientations.

As you can see, neither of these solutions is any good. The solution on the
left is better, but it still chops off 25% of the middle cluster and assigns it to
the cluster on the right. The solution on the right is just terrible, even though
its inertia is lower. So, depending on the data, different clustering algorithms
may perform better. On these types of elliptical clusters, Gaussian mixture
models work great.

Figure 9-11. k-means fails to cluster these ellipsoidal blobs properly

TIP
It is important to scale the input features (see Chapter 2) before you run k-means, or the
clusters may be very stretched and k-means will perform poorly. Scaling the features does
not guarantee that all the clusters will be nice and spherical, but it generally helps k-means.

Now let’s look at a few ways we can benefit from clustering. We will use k-
means, but feel free to experiment with other clustering algorithms.



Using Clustering for Image Segmentation
Image segmentation is the task of partitioning an image into multiple
segments. There are several variants:

In color segmentation, pixels with a similar color get assigned to the
same segment. This is sufficient in many applications. For example, if
you want to analyze satellite images to measure how much total forest
area there is in a region, color segmentation may be just fine.

In semantic segmentation, all pixels that are part of the same object type
get assigned to the same segment. For example, in a self-driving car’s
vision system, all pixels that are part of a pedestrian’s image might be
assigned to the “pedestrian” segment (there would be one segment
containing all the pedestrians).

In instance segmentation, all pixels that are part of the same individual
object are assigned to the same segment. In this case there would be a
different segment for each pedestrian.

The state of the art in semantic or instance segmentation today is achieved
using complex architectures based on convolutional neural networks (see
Chapter 14). In this chapter we are going to focus on the (much simpler)
color segmentation task, using k-means.

We’ll start by importing the Pillow package (successor to the Python Imaging
Library, PIL), which we’ll then use to load the ladybug.png image (see the
upper-left image in Figure 9-12), assuming it’s located at filepath:

>>> import PIL
>>> image = np.asarray(PIL.Image.open(filepath))
>>> image.shape
(533, 800, 3)

The image is represented as a 3D array. The first dimension’s size is the
height; the second is the width; and the third is the number of color channels,
in this case red, green, and blue (RGB). In other words, for each pixel there is



a 3D vector containing the intensities of red, green, and blue as unsigned 8-
bit integers between 0 and 255. Some images may have fewer channels (such
as grayscale images, which only have one), and some images may have more
channels (such as images with an additional alpha channel for transparency,
or satellite images, which often contain channels for additional light
frequencies (like infrared).

The following code reshapes the array to get a long list of RGB colors, then it
clusters these colors using k-means with eight clusters. It creates a
segmented_img array containing the nearest cluster center for each pixel (i.e.,
the mean color of each pixel’s cluster), and lastly it reshapes this array to the
original image shape. The third line uses advanced NumPy indexing; for
example, if the first 10 labels in kmeans_.labels_ are equal to 1, then the first
10 colors in segmented_img are equal to kmeans.cluster_centers_[1]:

X = image.reshape(-1, 3)
kmeans = KMeans(n_clusters=8, random_state=42).fit(X)
segmented_img = kmeans.cluster_centers_[kmeans.labels_]
segmented_img = segmented_img.reshape(image.shape)

This outputs the image shown in the upper right of Figure 9-12. You can
experiment with various numbers of clusters, as shown in the figure. When
you use fewer than eight clusters, notice that the ladybug’s flashy red color
fails to get a cluster of its own: it gets merged with colors from the
environment. This is because k-means prefers clusters of similar sizes. The
ladybug is small—much smaller than the rest of the image—so even though
its color is flashy, k-means fails to dedicate a cluster to it.



Figure 9-12. Image segmentation using k-means with various numbers of color clusters

That wasn’t too hard, was it? Now let’s look at another application of
clustering.



Using Clustering for Semi-Supervised Learning
Another use case for clustering is in semi-supervised learning, when we have
plenty of unlabeled instances and very few labeled instances. In this section,
we’ll use the digits dataset, which is a simple MNIST-like dataset containing
1,797 grayscale 8 × 8 images representing the digits 0 to 9. First, let’s load
and split the dataset (it’s already shuffled):

from sklearn.datasets import load_digits

X_digits, y_digits = load_digits(return_X_y=True)
X_train, y_train = X_digits[:1400], y_digits[:1400]
X_test, y_test = X_digits[1400:], y_digits[1400:]

We will pretend we only have labels for 50 instances. To get a baseline
performance, let’s train a logistic regression model on these 50 labeled
instances:

from sklearn.linear_model import LogisticRegression

n_labeled = 50
log_reg = LogisticRegression(max_iter=10_000)
log_reg.fit(X_train[:n_labeled], y_train[:n_labeled])

We can then measure the accuracy of this model on the test set (note that the
test set must be labeled):

>>> log_reg.score(X_test, y_test)
0.7481108312342569

The model’s accuracy is just 74.8%. That’s not great: indeed, if you try
training the model on the full training set, you will find that it will reach
about 90.7% accuracy. Let’s see how we can do better. First, let’s cluster the
training set into 50 clusters. Then, for each cluster, we’ll find the image
closest to the centroid. We’ll call these images the representative images:

k = 50



kmeans = KMeans(n_clusters=k, random_state=42)
X_digits_dist = kmeans.fit_transform(X_train)
representative_digit_idx = np.argmin(X_digits_dist, axis=0)
X_representative_digits = X_train[representative_digit_idx]

Figure 9-13 shows the 50 representative images.

Figure 9-13. Fifty representative digit images (one per cluster)

Let’s look at each image and manually label them:

y_representative_digits = np.array([1, 3, 6, 0, 7, 9, 2, ..., 5, 1, 9, 9, 3, 7])

Now we have a dataset with just 50 labeled instances, but instead of being
random instances, each of them is a representative image of its cluster. Let’s
see if the performance is any better:

>>> log_reg = LogisticRegression(max_iter=10_000)
>>> log_reg.fit(X_representative_digits, y_representative_digits)
>>> log_reg.score(X_test, y_test)
0.8488664987405542

Wow! We jumped from 74.8% accuracy to 84.9%, although we are still only
training the model on 50 instances. Since it is often costly and painful to label
instances, especially when it has to be done manually by experts, it is a good
idea to label representative instances rather than just random instances.

But perhaps we can go one step further: what if we propagated the labels to
all the other instances in the same cluster? This is called label propagation:

y_train_propagated = np.empty(len(X_train), dtype=np.int64)
for i in range(k):
    y_train_propagated[kmeans.labels_ == i] = y_representative_digits[i]



Now let’s train the model again and look at its performance:

>>> log_reg = LogisticRegression()
>>> log_reg.fit(X_train, y_train_propagated)
>>> log_reg.score(X_test, y_test)
0.8942065491183879

We got another significant accuracy boost! Let’s see if we can do even better
by ignoring the 1% of instances that are farthest from their cluster center: this
should eliminate some outliers. The following code first computes the
distance from each instance to its closest cluster center, then for each cluster
it sets the 1% largest distances to –1. Lastly, it creates a set without these
instances marked with a –1 distance:

percentile_closest = 99

X_cluster_dist = X_digits_dist[np.arange(len(X_train)), kmeans.labels_]
for i in range(k):
    in_cluster = (kmeans.labels_ == i)
    cluster_dist = X_cluster_dist[in_cluster]
    cutoff_distance = np.percentile(cluster_dist, percentile_closest)
    above_cutoff = (X_cluster_dist > cutoff_distance)
    X_cluster_dist[in_cluster & above_cutoff] = -1

partially_propagated = (X_cluster_dist != -1)
X_train_partially_propagated = X_train[partially_propagated]
y_train_partially_propagated = y_train_propagated[partially_propagated]

Now let’s train the model again on this partially propagated dataset and see
what accuracy we get:

>>> log_reg = LogisticRegression(max_iter=10_000)
>>> log_reg.fit(X_train_partially_propagated, y_train_partially_propagated)
>>> log_reg.score(X_test, y_test)
0.9093198992443325

Nice! With just 50 labeled instances (only 5 examples per class on average!)
we got 90.9% accuracy, which is actually slightly higher than the
performance we got on the fully labeled digits dataset (90.7%). This is partly
thanks to the fact that we dropped some outliers, and partly because the



propagated labels are actually pretty good—their accuracy is about 97.5%, as
the following code shows:

>>> (y_train_partially_propagated == y_train[partially_propagated]).mean()
0.9755555555555555

TIP
Scikit-Learn also offers two classes that can propagate labels automatically:
LabelSpreading and LabelPropagation in the sklearn.semi_supervised package. Both
classes construct a similarity matrix between all the instances, and iteratively propagate
labels from labeled instances to similar unlabeled instances. There’s also a very different
class called SelfTrainingClassifier in the same package: you give it a base classifier (such
as a RandomForestClassifier) and it trains it on the labeled instances, then uses it to
predict labels for the unlabeled samples. It then updates the training set with the labels it is
most confident about, and repeats this process of training and labeling until it cannot add
labels anymore. These techniques are not magic bullets, but they can occasionally give
your model a little boost.

ACTIVE LEARNING

To continue improving your model and your training set, the next step
could be to do a few rounds of active learning, which is when a human
expert interacts with the learning algorithm, providing labels for specific
instances when the algorithm requests them. There are many different
strategies for active learning, but one of the most common ones is called
uncertainty sampling. Here is how it works:

1. The model is trained on the labeled instances gathered so far, and
this model is used to make predictions on all the unlabeled instances.

2. The instances for which the model is most uncertain (i.e., where its
estimated probability is lowest) are given to the expert for labeling.

3. You iterate this process until the performance improvement stops
being worth the labeling effort.

Other active learning strategies include labeling the instances that would



result in the largest model change or the largest drop in the model’s
validation error, or the instances that different models disagree on (e.g.,
an SVM and a random forest).

Before we move on to Gaussian mixture models, let’s take a look at
DBSCAN, another popular clustering algorithm that illustrates a very
different approach based on local density estimation. This approach allows
the algorithm to identify clusters of arbitrary shapes.



DBSCAN
The density-based spatial clustering of applications with noise (DBSCAN)
algorithm defines clusters as continuous regions of high density. Here is how
it works:

For each instance, the algorithm counts how many instances are located
within a small distance ε (epsilon) from it. This region is called the
instance’s ε-neighborhood.

If an instance has at least min_samples instances in its ε-neighborhood
(including itself), then it is considered a core instance. In other words,
core instances are those that are located in dense regions.

All instances in the neighborhood of a core instance belong to the same
cluster. This neighborhood may include other core instances; therefore, a
long sequence of neighboring core instances forms a single cluster.

Any instance that is not a core instance and does not have one in its
neighborhood is considered an anomaly.

This algorithm works well if all the clusters are well separated by low-density
regions. The DBSCAN class in Scikit-Learn is as simple to use as you might
expect. Let’s test it on the moons dataset, introduced in Chapter 5:

from sklearn.cluster import DBSCAN
from sklearn.datasets import make_moons

X, y = make_moons(n_samples=1000, noise=0.05)
dbscan = DBSCAN(eps=0.05, min_samples=5)
dbscan.fit(X)

The labels of all the instances are now available in the labels_ instance
variable:

>>> dbscan.labels_
array([ 0,  2, -1, -1,  1,  0,  0,  0,  2,  5, [...], 3,  3,  4,  2,  6,  3])



Notice that some instances have a cluster index equal to –1, which means that
they are considered as anomalies by the algorithm. The indices of the core
instances are available in the core_sample_indices_ instance variable, and the
core instances themselves are available in the components_ instance variable:

>>> dbscan.core_sample_indices_
array([  0,   4,   5,   6,   7,   8,  10,  11, [...], 993, 995, 997, 998, 999])
>>> dbscan.components_
array([[-0.02137124,  0.40618608],
       [-0.84192557,  0.53058695],
       [...],
       [ 0.79419406,  0.60777171]])

This clustering is represented in the lefthand plot of Figure 9-14. As you can
see, it identified quite a lot of anomalies, plus seven different clusters. How
disappointing! Fortunately, if we widen each instance’s neighborhood by
increasing eps to 0.2, we get the clustering on the right, which looks perfect.
Let’s continue with this model.

Figure 9-14. DBSCAN clustering using two different neighborhood radiuses

Surprisingly, the DBSCAN class does not have a predict() method, although
it has a fit_predict() method. In other words, it cannot predict which cluster a
new instance belongs to. This decision was made because different
classification algorithms can be better for different tasks, so the authors
decided to let the user choose which one to use. Moreover, it’s not hard to
implement. For example, let’s train a KNeighborsClassifier:

from sklearn.neighbors import KNeighborsClassifier



knn = KNeighborsClassifier(n_neighbors=50)
knn.fit(dbscan.components_, dbscan.labels_[dbscan.core_sample_indices_])

Now, given a few new instances, we can predict which clusters they most
likely belong to and even estimate a probability for each cluster:

>>> X_new = np.array([[-0.5, 0], [0, 0.5], [1, -0.1], [2, 1]])
>>> knn.predict(X_new)
array([1, 0, 1, 0])
>>> knn.predict_proba(X_new)
array([[0.18, 0.82],
       [1.  , 0.  ],
       [0.12, 0.88],
       [1.  , 0.  ]])

Note that we only trained the classifier on the core instances, but we could
also have chosen to train it on all the instances, or all but the anomalies: this
choice depends on the final task.

The decision boundary is represented in Figure 9-15 (the crosses represent
the four instances in X_new). Notice that since there is no anomaly in the
training set, the classifier always chooses a cluster, even when that cluster is
far away. It is fairly straightforward to introduce a maximum distance, in
which case the two instances that are far away from both clusters are
classified as anomalies. To do this, use the kneighbors() method of the
KNeighborsClassifier. Given a set of instances, it returns the distances and
the indices of the k-nearest neighbors in the training set (two matrices, each
with k columns):

>>> y_dist, y_pred_idx = knn.kneighbors(X_new, n_neighbors=1)
>>> y_pred = dbscan.labels_[dbscan.core_sample_indices_][y_pred_idx]
>>> y_pred[y_dist > 0.2] = -1
>>> y_pred.ravel()
array([-1,  0,  1, -1])



Figure 9-15. Decision boundary between two clusters

In short, DBSCAN is a very simple yet powerful algorithm capable of
identifying any number of clusters of any shape. It is robust to outliers, and it
has just two hyperparameters (eps and min_samples). If the density varies
significantly across the clusters, however, or if there’s no sufficiently low-
density region around some clusters, DBSCAN can struggle to capture all the
clusters properly. Moreover, its computational complexity is roughly O(m n),
so it does not scale well to large datasets.

TIP
You may also want to try hierarchical DBSCAN (HDBSCAN), which is implemented in
the scikit-learn-contrib project, as it is usually better than DBSCAN at finding clusters of
varying densities.
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Other Clustering Algorithms
Scikit-Learn implements several more clustering algorithms that you should
take a look at. I cannot cover them all in detail here, but here is a brief
overview:

Agglomerative clustering

A hierarchy of clusters is built from the bottom up. Think of many tiny
bubbles floating on water and gradually attaching to each other until
there’s one big group of bubbles. Similarly, at each iteration,
agglomerative clustering connects the nearest pair of clusters (starting
with individual instances). If you drew a tree with a branch for every pair
of clusters that merged, you would get a binary tree of clusters, where the
leaves are the individual instances. This approach can capture clusters of
various shapes; it also produces a flexible and informative cluster tree
instead of forcing you to choose a particular cluster scale, and it can be
used with any pairwise distance. It can scale nicely to large numbers of
instances if you provide a connectivity matrix, which is a sparse m × m
matrix that indicates which pairs of instances are neighbors (e.g., returned
by sklearn.neighbors.kneighbors_graph()). Without a connectivity matrix,
the algorithm does not scale well to large datasets.

BIRCH

The balanced iterative reducing and clustering using hierarchies (BIRCH)
algorithm was designed specifically for very large datasets, and it can be
faster than batch k-means, with similar results, as long as the number of
features is not too large (<20). During training, it builds a tree structure
containing just enough information to quickly assign each new instance to
a cluster, without having to store all the instances in the tree: this
approach allows it to use limited memory while handling huge datasets.

Mean-shift

This algorithm starts by placing a circle centered on each instance; then



for each circle it computes the mean of all the instances located within it,
and it shifts the circle so that it is centered on the mean. Next, it iterates
this mean-shifting step until all the circles stop moving (i.e., until each of
them is centered on the mean of the instances it contains). Mean-shift
shifts the circles in the direction of higher density, until each of them has
found a local density maximum. Finally, all the instances whose circles
have settled in the same place (or close enough) are assigned to the same
cluster. Mean-shift has some of the same features as DBSCAN, like how
it can find any number of clusters of any shape, it has very few
hyperparameters (just one—the radius of the circles, called the
bandwidth), and it relies on local density estimation. But unlike
DBSCAN, mean-shift tends to chop clusters into pieces when they have
internal density variations. Unfortunately, its computational complexity is
O(m n), so it is not suited for large datasets.

Affinity propagation

In this algorithm, instances repeatedly exchange messages between one
another until every instance has elected another instance (or itself) to
represent it. These elected instances are called exemplars. Each exemplar
and all the instances that elected it form one cluster. In real-life politics,
you typically want to vote for a candidate whose opinions are similar to
yours, but you also want them to win the election, so you might choose a
candidate you don’t fully agree with, but who is more popular. You
typically evaluate popularity through polls. Affinity propagation works in
a similar way, and it tends to choose exemplars located near the center of
clusters, similar to k-means. But unlike with k-means, you don’t have to
pick a number of clusters ahead of time: it is determined during training.
Moreover, affinity propagation can deal nicely with clusters of different
sizes. Sadly, this algorithm has a computational complexity of O(m ), so
it is not suited for large datasets.

Spectral clustering

This algorithm takes a similarity matrix between the instances and creates
a low-dimensional embedding from it (i.e., it reduces the matrix’s
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dimensionality), then it uses another clustering algorithm in this low-
dimensional space (Scikit-Learn’s implementation uses k-means).
Spectral clustering can capture complex cluster structures, and it can also
be used to cut graphs (e.g., to identify clusters of friends on a social
network). It does not scale well to large numbers of instances, and it does
not behave well when the clusters have very different sizes.

Now let’s dive into Gaussian mixture models, which can be used for density
estimation, clustering, and anomaly detection.



Gaussian Mixtures
A Gaussian mixture model (GMM) is a probabilistic model that assumes that
the instances were generated from a mixture of several Gaussian distributions
whose parameters are unknown. All the instances generated from a single
Gaussian distribution form a cluster that typically looks like an ellipsoid.
Each cluster can have a different ellipsoidal shape, size, density, and
orientation, just like in Figure 9-11. When you observe an instance, you know
it was generated from one of the Gaussian distributions, but you are not told
which one, and you do not know what the parameters of these distributions
are.

There are several GMM variants. In the simplest variant, implemented in the
GaussianMixture class, you must know in advance the number k of Gaussian
distributions. The dataset X is assumed to have been generated through the
following probabilistic process:

For each instance, a cluster is picked randomly from among k clusters.
The probability of choosing the j  cluster is the cluster’s weight ϕ .
The index of the cluster chosen for the i  instance is noted z .

If the i  instance was assigned to the j  cluster (i.e., z  = j), then the
location x  of this instance is sampled randomly from the Gaussian
distribution with mean μ  and covariance matrix Σ . This is noted x
~ ᷒(μ , Σ ).

So what can you do with such a model? Well, given the dataset X, you
typically want to start by estimating the weights ϕ and all the distribution
parameters μ  to μ  and Σ  to Σ . Scikit-Learn’s GaussianMixture class
makes this super easy:

from sklearn.mixture import GaussianMixture

gm = GaussianMixture(n_components=3, n_init=10)
gm.fit(X)
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Let’s look at the parameters that the algorithm estimated:

>>> gm.weights_
array([0.39025715, 0.40007391, 0.20966893])
>>> gm.means_
array([[ 0.05131611,  0.07521837],
       [-1.40763156,  1.42708225],
       [ 3.39893794,  1.05928897]])
>>> gm.covariances_
array([[[ 0.68799922,  0.79606357],
        [ 0.79606357,  1.21236106]],

       [[ 0.63479409,  0.72970799],
        [ 0.72970799,  1.1610351 ]],

       [[ 1.14833585, -0.03256179],
        [-0.03256179,  0.95490931]]])

Great, it worked fine! Indeed, two of the three clusters were generated with
500 instances each, while the third cluster only contains 250 instances. So the
true cluster weights are 0.4, 0.4, and 0.2, respectively, and that’s roughly
what the algorithm found. Similarly, the true means and covariance matrices
are quite close to those found by the algorithm. But how? This class relies on
the expectation-maximization (EM) algorithm, which has many similarities
with the k-means algorithm: it also initializes the cluster parameters
randomly, then it repeats two steps until convergence, first assigning
instances to clusters (this is called the expectation step) and then updating the
clusters (this is called the maximization step). Sounds familiar, right? In the
context of clustering, you can think of EM as a generalization of k-means that
not only finds the cluster centers (μ  to μ ), but also their size, shape, and
orientation (Σ  to Σ ), as well as their relative weights (ϕ  to ϕ ). Unlike
k-means, though, EM uses soft cluster assignments, not hard assignments.
For each instance, during the expectation step, the algorithm estimates the
probability that it belongs to each cluster (based on the current cluster
parameters). Then, during the maximization step, each cluster is updated
using all the instances in the dataset, with each instance weighted by the
estimated probability that it belongs to that cluster. These probabilities are
called the responsibilities of the clusters for the instances. During the

(1) (k)
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maximization step, each cluster’s update will mostly be impacted by the
instances it is most responsible for.

WARNING
Unfortunately, just like k-means, EM can end up converging to poor solutions, so it needs
to be run several times, keeping only the best solution. This is why we set n_init to 10. Be
careful: by default n_init is set to 1.

You can check whether or not the algorithm converged and how many
iterations it took:

>>> gm.converged_
True
>>> gm.n_iter_
4

Now that you have an estimate of the location, size, shape, orientation, and
relative weight of each cluster, the model can easily assign each instance to
the most likely cluster (hard clustering) or estimate the probability that it
belongs to a particular cluster (soft clustering). Just use the predict() method
for hard clustering, or the predict_proba() method for soft clustering:

>>> gm.predict(X)
array([0, 0, 1, ..., 2, 2, 2])
>>> gm.predict_proba(X).round(3)
array([[0.977, 0.   , 0.023],
       [0.983, 0.001, 0.016],
       [0.   , 1.   , 0.   ],
       ...,
       [0.   , 0.   , 1.   ],
       [0.   , 0.   , 1.   ],
       [0.   , 0.   , 1.   ]])

A Gaussian mixture model is a generative model, meaning you can sample
new instances from it (note that they are ordered by cluster index):

>>> X_new, y_new = gm.sample(6)



>>> X_new
array([[-0.86944074, -0.32767626],
       [ 0.29836051,  0.28297011],
       [-2.8014927 , -0.09047309],
       [ 3.98203732,  1.49951491],
       [ 3.81677148,  0.53095244],
       [ 2.84104923, -0.73858639]])
>>> y_new
array([0, 0, 1, 2, 2, 2])

It is also possible to estimate the density of the model at any given location.
This is achieved using the score_samples() method: for each instance it is
given, this method estimates the log of the probability density function (PDF)
at that location. The greater the score, the higher the density:

>>> gm.score_samples(X).round(2)
array([-2.61, -3.57, -3.33, ..., -3.51, -4.4 , -3.81])

If you compute the exponential of these scores, you get the value of the PDF
at the location of the given instances. These are not probabilities, but
probability densities: they can take on any positive value, not just a value
between 0 and 1. To estimate the probability that an instance will fall within a
particular region, you would have to integrate the PDF over that region (if
you do so over the entire space of possible instance locations, the result will
be 1).

Figure 9-16 shows the cluster means, the decision boundaries (dashed lines),
and the density contours of this model.



Figure 9-16. Cluster means, decision boundaries, and density contours of a trained Gaussian mixture
model

Nice! The algorithm clearly found an excellent solution. Of course, we made
its task easy by generating the data using a set of 2D Gaussian distributions
(unfortunately, real-life data is not always so Gaussian and low-dimensional).
We also gave the algorithm the correct number of clusters. When there are
many dimensions, or many clusters, or few instances, EM can struggle to
converge to the optimal solution. You might need to reduce the difficulty of
the task by limiting the number of parameters that the algorithm has to learn.
One way to do this is to limit the range of shapes and orientations that the
clusters can have. This can be achieved by imposing constraints on the
covariance matrices. To do this, set the covariance_type hyperparameter to
one of the following values:

"spherical"

All clusters must be spherical, but they can have different diameters (i.e.,
different variances).

"diag"

Clusters can take on any ellipsoidal shape of any size, but the ellipsoid’s
axes must be parallel to the coordinate axes (i.e., the covariance matrices
must be diagonal).



"tied"

All clusters must have the same ellipsoidal shape, size, and orientation
(i.e., all clusters share the same covariance matrix).

By default, covariance_type is equal to "full", which means that each cluster
can take on any shape, size, and orientation (it has its own unconstrained
covariance matrix). Figure 9-17 plots the solutions found by the EM
algorithm when covariance_type is set to "tied" or "spherical".

Figure 9-17. Gaussian mixtures for tied clusters (left) and spherical clusters (right)

NOTE
The computational complexity of training a GaussianMixture model depends on the
number of instances m, the number of dimensions n, the number of clusters k, and the
constraints on the covariance matrices. If covariance_type is "spherical" or "diag", it is
O(kmn), assuming the data has a clustering structure. If covariance_type is "tied" or "full",
it is O(kmn  + kn ), so it will not scale to large numbers of features.

Gaussian mixture models can also be used for anomaly detection. We’ll see
how in the next section.
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Using Gaussian Mixtures for Anomaly Detection
Using a Gaussian mixture model for anomaly detection is quite simple: any
instance located in a low-density region can be considered an anomaly. You
must define what density threshold you want to use. For example, in a
manufacturing company that tries to detect defective products, the ratio of
defective products is usually well known. Say it is equal to 2%. You then set
the density threshold to be the value that results in having 2% of the instances
located in areas below that threshold density. If you notice that you get too
many false positives (i.e., perfectly good products that are flagged as
defective), you can lower the threshold. Conversely, if you have too many
false negatives (i.e., defective products that the system does not flag as
defective), you can increase the threshold. This is the usual precision/recall
trade-off (see Chapter 3). Here is how you would identify the outliers using
the fourth percentile lowest density as the threshold (i.e., approximately 4%
of the instances will be flagged as anomalies):

densities = gm.score_samples(X)
density_threshold = np.percentile(densities, 2)
anomalies = X[densities < density_threshold]

Figure 9-18 represents these anomalies as stars.

A closely related task is novelty detection: it differs from anomaly detection
in that the algorithm is assumed to be trained on a “clean” dataset,
uncontaminated by outliers, whereas anomaly detection does not make this
assumption. Indeed, outlier detection is often used to clean up a dataset.

TIP
Gaussian mixture models try to fit all the data, including the outliers; if you have too many
of them this will bias the model’s view of “normality”, and some outliers may wrongly be
considered as normal. If this happens, you can try to fit the model once, use it to detect and
remove the most extreme outliers, then fit the model again on the cleaned-up dataset.
Another approach is to use robust covariance estimation methods (see the EllipticEnvelope
class).



Figure 9-18. Anomaly detection using a Gaussian mixture model

Just like k-means, the GaussianMixture algorithm requires you to specify the
number of clusters. So how can you find that number?



Selecting the Number of Clusters
With k-means, you can use the inertia or the silhouette score to select the
appropriate number of clusters. But with Gaussian mixtures, it is not possible
to use these metrics because they are not reliable when the clusters are not
spherical or have different sizes. Instead, you can try to find the model that
minimizes a theoretical information criterion, such as the Bayesian
information criterion (BIC) or the Akaike information criterion (AIC),
defined in Equation 9-1.

Equation 9-1. Bayesian information criterion (BIC) and Akaike information criterion (AIC)

B I C = log ( m ) p - 2 log ( L ^ ) A I C = 2 p - 2 log ( L ^ )

In these equations:

m is the number of instances, as always.

p is the number of parameters learned by the model.

L^ is the maximized value of the likelihood function of the model.

Both the BIC and the AIC penalize models that have more parameters to
learn (e.g., more clusters) and reward models that fit the data well. They often
end up selecting the same model. When they differ, the model selected by the
BIC tends to be simpler (fewer parameters) than the one selected by the AIC,
but tends to not fit the data quite as well (this is especially true for larger
datasets).

LIKELIHOOD FUNCTION

The terms “probability” and “likelihood” are often used interchangeably
in everyday language, but they have very different meanings in statistics.
Given a statistical model with some parameters θ, the word “probability”
is used to describe how plausible a future outcome x is (knowing the
parameter values θ), while the word “likelihood” is used to describe how
plausible a particular set of parameter values θ are, after the outcome x is



known.

Consider a 1D mixture model of two Gaussian distributions centered at –
4 and +1. For simplicity, this toy model has a single parameter θ that
controls the standard deviations of both distributions. The top-left contour
plot in Figure 9-19 shows the entire model f(x; θ) as a function of both x
and θ. To estimate the probability distribution of a future outcome x, you
need to set the model parameter θ. For example, if you set θ to 1.3 (the
horizontal line), you get the probability density function f(x; θ=1.3)
shown in the lower-left plot. Say you want to estimate the probability that
x will fall between –2 and +2. You must calculate the integral of the PDF
on this range (i.e., the surface of the shaded region). But what if you
don’t know θ, and instead if you have observed a single instance x=2.5
(the vertical line in the upper-left plot)? In this case, you get the
likelihood function ℒ(θ|x=2.5)=f(x=2.5; θ), represented in the upper-right
plot.

Figure 9-19. A model’s parametric function (top left), and some derived functions: a PDF (lower
left), a likelihood function (top right), and a log likelihood function (lower right)

In short, the PDF is a function of x (with θ fixed), while the likelihood
function is a function of θ (with x fixed). It is important to understand
that the likelihood function is not a probability distribution: if you



integrate a probability distribution over all possible values of x, you
always get 1, but if you integrate the likelihood function over all possible
values of θ the result can be any positive value.

Given a dataset X, a common task is to try to estimate the most likely
values for the model parameters. To do this, you must find the values that
maximize the likelihood function, given X. In this example, if you have
observed a single instance x=2.5, the maximum likelihood estimate
(MLE) of θ is θ^=1.5. If a prior probability distribution g over θ exists, it
is possible to take it into account by maximizing ℒ(θ|x)g(θ) rather than
just maximizing ℒ(θ|x). This is called maximum a-posteriori (MAP)
estimation. Since MAP constrains the parameter values, you can think of
it as a regularized version of MLE.

Notice that maximizing the likelihood function is equivalent to
maximizing its logarithm (represented in the lower-right plot in Figure 9-
19). Indeed, the logarithm is a strictly increasing function, so if θ
maximizes the log likelihood, it also maximizes the likelihood. It turns
out that it is generally easier to maximize the log likelihood. For example,
if you observed several independent instances x  to x , you would need
to find the value of θ that maximizes the product of the individual
likelihood functions. But it is equivalent, and much simpler, to maximize
the sum (not the product) of the log likelihood functions, thanks to the
magic of the logarithm which converts products into sums: log(ab) =
log(a) + log(b).

Once you have estimated θ^, the value of θ that maximizes the likelihood
function, then you are ready to compute L^=L(θ^,X), which is the value
used to compute the AIC and BIC; you can think of it as a measure of
how well the model fits the data.

To compute the BIC and AIC, call the bic() and aic() methods:

>>> gm.bic(X)
8189.747000497186
>>> gm.aic(X)
8102.521720382148

(1) (m)



Figure 9-20 shows the BIC for different numbers of clusters k. As you can
see, both the BIC and the AIC are lowest when k=3, so it is most likely the
best choice.

Figure 9-20. AIC and BIC for different numbers of clusters k



Bayesian Gaussian Mixture Models
Rather than manually searching for the optimal number of clusters, you can
use the BayesianGaussianMixture class, which is capable of giving weights
equal (or close) to zero to unnecessary clusters. Set the number of clusters
n_components to a value that you have good reason to believe is greater than
the optimal number of clusters (this assumes some minimal knowledge about
the problem at hand), and the algorithm will eliminate the unnecessary
clusters automatically. For example, let’s set the number of clusters to 10 and
see what happens:

>>> from sklearn.mixture import BayesianGaussianMixture
>>> bgm = BayesianGaussianMixture(n_components=10, n_init=10, random_state=42)
>>> bgm.fit(X)
>>> bgm.weights_.round(2)
array([0.4 , 0.21, 0.4 , 0.  , 0.  , 0.  , 0.  , 0.  , 0.  , 0.  ])

Perfect: the algorithm automatically detected that only three clusters are
needed, and the resulting clusters are almost identical to the ones in Figure 9-
16.

A final note about Gaussian mixture models: although they work great on
clusters with ellipsoidal shapes, they don’t do so well with clusters of very
different shapes. For example, let’s see what happens if we use a Bayesian
Gaussian mixture model to cluster the moons dataset (see Figure 9-21).

Oops! The algorithm desperately searched for ellipsoids, so it found eight
different clusters instead of two. The density estimation is not too bad, so this
model could perhaps be used for anomaly detection, but it failed to identify
the two moons. To conclude this chapter, let’s take a quick look at a few
algorithms capable of dealing with arbitrarily shaped clusters.



Figure 9-21. Fitting a Gaussian mixture to nonellipsoidal clusters



Other Algorithms for Anomaly and Novelty Detection
Scikit-Learn implements other algorithms dedicated to anomaly detection or
novelty detection:

Fast-MCD (minimum covariance determinant)

Implemented by the EllipticEnvelope class, this algorithm is useful for
outlier detection, in particular to clean up a dataset. It assumes that the
normal instances (inliers) are generated from a single Gaussian
distribution (not a mixture). It also assumes that the dataset is
contaminated with outliers that were not generated from this Gaussian
distribution. When the algorithm estimates the parameters of the Gaussian
distribution (i.e., the shape of the elliptic envelope around the inliers), it is
careful to ignore the instances that are most likely outliers. This technique
gives a better estimation of the elliptic envelope and thus makes the
algorithm better at identifying the outliers.

Isolation forest

This is an efficient algorithm for outlier detection, especially in high-
dimensional datasets. The algorithm builds a random forest in which each
decision tree is grown randomly: at each node, it picks a feature
randomly, then it picks a random threshold value (between the min and
max values) to split the dataset in two. The dataset gradually gets
chopped into pieces this way, until all instances end up isolated from the
other instances. Anomalies are usually far from other instances, so on
average (across all the decision trees) they tend to get isolated in fewer
steps than normal instances.

Local outlier factor (LOF)

This algorithm is also good for outlier detection. It compares the density
of instances around a given instance to the density around its neighbors.
An anomaly is often more isolated than its k-nearest neighbors.



One-class SVM

This algorithm is better suited for novelty detection. Recall that a
kernelized SVM classifier separates two classes by first (implicitly)
mapping all the instances to a high-dimensional space, then separating the
two classes using a linear SVM classifier within this high-dimensional
space (see Chapter 5). Since we just have one class of instances, the one-
class SVM algorithm instead tries to separate the instances in high-
dimensional space from the origin. In the original space, this will
correspond to finding a small region that encompasses all the instances. If
a new instance does not fall within this region, it is an anomaly. There are
a few hyperparameters to tweak: the usual ones for a kernelized SVM,
plus a margin hyperparameter that corresponds to the probability of a new
instance being mistakenly considered as novel when it is in fact normal. It
works great, especially with high-dimensional datasets, but like all SVMs
it does not scale to large datasets.

PCA and other dimensionality reduction techniques with an
inverse_transform() method

If you compare the reconstruction error of a normal instance with the
reconstruction error of an anomaly, the latter will usually be much larger.
This is a simple and often quite efficient anomaly detection approach (see
this chapter’s exercises for an example).



Exercises
1. How would you define clustering? Can you name a few clustering

algorithms?

2. What are some of the main applications of clustering algorithms?

3. Describe two techniques to select the right number of clusters when
using k-means.

4. What is label propagation? Why would you implement it, and how?

5. Can you name two clustering algorithms that can scale to large datasets?
And two that look for regions of high density?

6. Can you think of a use case where active learning would be useful? How
would you implement it?

7. What is the difference between anomaly detection and novelty
detection?

8. What is a Gaussian mixture? What tasks can you use it for?

9. Can you name two techniques to find the right number of clusters when
using a Gaussian mixture model?

10. The classic Olivetti faces dataset contains 400 grayscale 64 × 64–pixel
images of faces. Each image is flattened to a 1D vector of size 4,096.
Forty different people were photographed (10 times each), and the usual
task is to train a model that can predict which person is represented in
each picture. Load the dataset using the
sklearn.datasets.fetch_olivetti_faces() function, then split it into a
training set, a validation set, and a test set (note that the dataset is
already scaled between 0 and 1). Since the dataset is quite small, you
will probably want to use stratified sampling to ensure that there are the
same number of images per person in each set. Next, cluster the images
using k-means, and ensure that you have a good number of clusters



(using one of the techniques discussed in this chapter). Visualize the
clusters: do you see similar faces in each cluster?

11. Continuing with the Olivetti faces dataset, train a classifier to predict
which person is represented in each picture, and evaluate it on the
validation set. Next, use k-means as a dimensionality reduction tool, and
train a classifier on the reduced set. Search for the number of clusters
that allows the classifier to get the best performance: what performance
can you reach? What if you append the features from the reduced set to
the original features (again, searching for the best number of clusters)?

12. Train a Gaussian mixture model on the Olivetti faces dataset. To speed
up the algorithm, you should probably reduce the dataset’s
dimensionality (e.g., use PCA, preserving 99% of the variance). Use the
model to generate some new faces (using the sample() method), and
visualize them (if you used PCA, you will need to use its
inverse_transform() method). Try to modify some images (e.g., rotate,
flip, darken) and see if the model can detect the anomalies (i.e., compare
the output of the score_samples() method for normal images and for
anomalies).

13. Some dimensionality reduction techniques can also be used for anomaly
detection. For example, take the Olivetti faces dataset and reduce it with
PCA, preserving 99% of the variance. Then compute the reconstruction
error for each image. Next, take some of the modified images you built
in the previous exercise and look at their reconstruction error: notice
how much larger it is. If you plot a reconstructed image, you will see
why: it tries to reconstruct a normal face.

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.
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Part II. Neural Networks and Deep
Learning



Chapter 10. Introduction to
Artificial Neural Networks with
Keras

Birds inspired us to fly, burdock plants inspired Velcro, and nature has
inspired countless more inventions. It seems only logical, then, to look at the
brain’s architecture for inspiration on how to build an intelligent machine.
This is the logic that sparked artificial neural networks (ANNs), machine
learning models inspired by the networks of biological neurons found in our
brains. However, although planes were inspired by birds, they don’t have to
flap their wings to fly. Similarly, ANNs have gradually become quite
different from their biological cousins. Some researchers even argue that we
should drop the biological analogy altogether (e.g., by saying “units” rather
than “neurons”), lest we restrict our creativity to biologically plausible
systems.
ANNs are at the very core of deep learning. They are versatile, powerful, and
scalable, making them ideal to tackle large and highly complex machine
learning tasks such as classifying billions of images (e.g., Google Images),
powering speech recognition services (e.g., Apple’s Siri), recommending the
best videos to watch to hundreds of millions of users every day (e.g.,
YouTube), or learning to beat the world champion at the game of Go
(DeepMind’s AlphaGo).

The first part of this chapter introduces artificial neural networks, starting
with a quick tour of the very first ANN architectures and leading up to
multilayer perceptrons, which are heavily used today (other architectures will
be explored in the next chapters). In the second part, we will look at how to
implement neural networks using TensorFlow’s Keras API. This is a
beautifully designed and simple high-level API for building, training,
evaluating, and running neural networks. But don’t be fooled by its
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simplicity: it is expressive and flexible enough to let you build a wide variety
of neural network architectures. In fact, it will probably be sufficient for most
of your use cases. And should you ever need extra flexibility, you can always
write custom Keras components using its lower-level API, or even use
TensorFlow directly, as you will see in Chapter 12.

But first, let’s go back in time to see how artificial neural networks came to
be!



From Biological to Artificial Neurons
Surprisingly, ANNs have been around for quite a while: they were first
introduced back in 1943 by the neurophysiologist Warren McCulloch and the
mathematician Walter Pitts. In their landmark paper  “A Logical Calculus of
Ideas Immanent in Nervous Activity”, McCulloch and Pitts presented a
simplified computational model of how biological neurons might work
together in animal brains to perform complex computations using
propositional logic. This was the first artificial neural network architecture.
Since then many other architectures have been invented, as you will see.

The early successes of ANNs led to the widespread belief that we would soon
be conversing with truly intelligent machines. When it became clear in the
1960s that this promise would go unfulfilled (at least for quite a while),
funding flew elsewhere, and ANNs entered a long winter. In the early 1980s,
new architectures were invented and better training techniques were
developed, sparking a revival of interest in connectionism, the study of neural
networks. But progress was slow, and by the 1990s other powerful machine
learning techniques had been invented, such as support vector machines (see
Chapter 5). These techniques seemed to offer better results and stronger
theoretical foundations than ANNs, so once again the study of neural
networks was put on hold.

We are now witnessing yet another wave of interest in ANNs. Will this wave
die out like the previous ones did? Well, here are a few good reasons to
believe that this time is different and that the renewed interest in ANNs will
have a much more profound impact on our lives:

There is now a huge quantity of data available to train neural networks,
and ANNs frequently outperform other ML techniques on very large and
complex problems.

The tremendous increase in computing power since the 1990s now
makes it possible to train large neural networks in a reasonable amount
of time. This is in part due to Moore’s law (the number of components
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in integrated circuits has doubled about every 2 years over the last 50
years), but also thanks to the gaming industry, which has stimulated the
production of powerful GPU cards by the millions. Moreover, cloud
platforms have made this power accessible to everyone.

The training algorithms have been improved. To be fair they are only
slightly different from the ones used in the 1990s, but these relatively
small tweaks have had a huge positive impact.

Some theoretical limitations of ANNs have turned out to be benign in
practice. For example, many people thought that ANN training
algorithms were doomed because they were likely to get stuck in local
optima, but it turns out that this is not a big problem in practice,
especially for larger neural networks: the local optima often perform
almost as well as the global optimum.

ANNs seem to have entered a virtuous circle of funding and progress.
Amazing products based on ANNs regularly make the headline news,
which pulls more and more attention and funding toward them, resulting
in more and more progress and even more amazing products.



Biological Neurons
Before we discuss artificial neurons, let’s take a quick look at a biological
neuron (represented in Figure 10-1). It is an unusual-looking cell mostly
found in animal brains. It’s composed of a cell body containing the nucleus
and most of the cell’s complex components, many branching extensions
called dendrites, plus one very long extension called the axon. The axon’s
length may be just a few times longer than the cell body, or up to tens of
thousands of times longer. Near its extremity the axon splits off into many
branches called telodendria, and at the tip of these branches are minuscule
structures called synaptic terminals (or simply synapses), which are
connected to the dendrites or cell bodies of other neurons.   Biological
neurons produce short electrical impulses called action potentials (APs, or
just signals), which travel along the axons and make the synapses release
chemical signals called neurotransmitters. When a neuron receives a
sufficient amount of these neurotransmitters within a few milliseconds, it
fires its own electrical impulses (actually, it depends on the neurotransmitters,
as some of them inhibit the neuron from firing).
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Figure 10-1. A biological neuron 

Thus, individual biological neurons seem to behave in a simple way, but
they’re organized in a vast network of billions, with each neuron typically
connected to thousands of other neurons. Highly complex computations can
be performed by a network of fairly simple neurons, much like a complex
anthill can emerge from the combined efforts of simple ants. The architecture
of biological neural networks (BNNs)  is the subject of active research, but
some parts of the brain have been mapped. These efforts show that neurons
are often organized in consecutive layers, especially in the cerebral cortex
(the outer layer of the brain), as shown in Figure 10-2.

4

5

6



Figure 10-2. Multiple layers in a biological neural network (human cortex) 6



Logical Computations with Neurons
McCulloch and Pitts proposed a very simple model of the biological neuron,
which later became known as an artificial neuron: it has one or more binary
(on/off) inputs and one binary output. The artificial neuron activates its
output when more than a certain number of its inputs are active. In their
paper, McCulloch and Pitts showed that even with such a simplified model it
is possible to build a network of artificial neurons that can compute any
logical proposition you want. To see how such a network works, let’s build a
few ANNs that perform various logical computations (see Figure 10-3),
assuming that a neuron is activated when at least two of its input connections
are active.

Figure 10-3. ANNs performing simple logical computations

Let’s see what these networks do:

The first network on the left is the identity function: if neuron A is
activated, then neuron C gets activated as well (since it receives two
input signals from neuron A); but if neuron A is off, then neuron C is off
as well.

The second network performs a logical AND: neuron C is activated only
when both neurons A and B are activated (a single input signal is not
enough to activate neuron C).

The third network performs a logical OR: neuron C gets activated if
either neuron A or neuron B is activated (or both).



Finally, if we suppose that an input connection can inhibit the neuron’s
activity (which is the case with biological neurons), then the fourth
network computes a slightly more complex logical proposition: neuron
C is activated only if neuron A is active and neuron B is off. If neuron A
is active all the time, then you get a logical NOT: neuron C is active
when neuron B is off, and vice versa.

You can imagine how these networks can be combined to compute complex
logical expressions (see the exercises at the end of the chapter for an
example).



The Perceptron
The perceptron is one of the simplest ANN architectures, invented in 1957 by
Frank Rosenblatt. It is based on a slightly different artificial neuron (see
Figure 10-4) called a threshold logic unit (TLU), or sometimes a linear
threshold unit (LTU). The inputs and output are numbers (instead of binary
on/off values), and each input connection is associated with a weight. The
TLU first computes a linear function of its inputs: z = w  x  + w  x  + ⋯ + w
x  + b = w  x + b. Then it applies a step function to the result: h (x) = step(z).
So it’s almost like logistic regression, except it uses a step function instead of
the logistic function (Chapter 4). Just like in logistic regression, the model
parameters are the input weights w and the bias term b.

Figure 10-4. TLU: an artificial neuron that computes a weighted sum of its inputs w  x, plus a bias
term b, then applies a step function

The most common step function used in perceptrons is the Heaviside step
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function (see Equation 10-1). Sometimes the sign function is used instead.

Equation 10-1. Common step functions used in perceptrons (assuming threshold = 0)

heaviside ( z ) = 0 if z < 0 1 if z ≥ 0 sgn ( z ) = - 1 if z < 0 0 if z = 0 + 1 if z >
0

A single TLU can be used for simple linear binary classification. It computes
a linear function of its inputs, and if the result exceeds a threshold, it outputs
the positive class. Otherwise, it outputs the negative class. This may remind
you of logistic regression (Chapter 4) or linear SVM classification
(Chapter 5). You could, for example, use a single TLU to classify iris flowers
based on petal length and width. Training such a TLU would require finding
the right values for w , w , and b (the training algorithm is discussed shortly).

A perceptron is composed of one or more TLUs organized in a single layer,
where every TLU is connected to every input. Such a layer is called a fully
connected layer, or a dense layer. The inputs constitute the input layer. And
since the layer of TLUs produces the final outputs, it is called the output
layer. For example, a perceptron with two inputs and three outputs is
represented in Figure 10-5.
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Figure 10-5. Architecture of a perceptron with two inputs and three output neurons

This perceptron can classify instances simultaneously into three different
binary classes, which makes it a multilabel classifier. It may also be used for
multiclass classification.

Thanks to the magic of linear algebra, Equation 10-2 can be used to
efficiently compute the outputs of a layer of artificial neurons for several
instances at once.

Equation 10-2. Computing the outputs of a fully connected layer

h W,b ( X ) = ϕ ( X W + b )

In this equation:

As always, X represents the matrix of input features. It has one row per
instance and one column per feature.



The weight matrix W contains all the connection weights. It has one row
per input and one column per neuron.

The bias vector b contains all the bias terms: one per neuron.

The function ϕ is called the activation function: when the artificial
neurons are TLUs, it is a step function (we will discuss other activation
functions shortly).

NOTE
In mathematics, the sum of a matrix and a vector is undefined. However, in data science,
we allow “broadcasting”: adding a vector to a matrix means adding it to every row in the
matrix. So, XW + b first multiplies X by W—which results in a matrix with one row per
instance and one column per output—then adds the vector b to every row of that matrix,
which adds each bias term to the corresponding output, for every instance. Moreover, ϕ is
then applied itemwise to each item in the resulting matrix.

So, how is a perceptron trained? The perceptron training algorithm proposed
by Rosenblatt was largely inspired by Hebb’s rule. In his 1949 book The
Organization of Behavior (Wiley), Donald Hebb suggested that when a
biological neuron triggers another neuron often, the connection between these
two neurons grows stronger. Siegrid Löwel later summarized Hebb’s idea in
the catchy phrase, “Cells that fire together, wire together”; that is, the
connection weight between two neurons tends to increase when they fire
simultaneously. This rule later became known as Hebb’s rule (or Hebbian
learning). Perceptrons are trained using a variant of this rule that takes into
account the error made by the network when it makes a prediction; the
perceptron learning rule reinforces connections that help reduce the error.
More specifically, the perceptron is fed one training instance at a time, and
for each instance it makes its predictions. For every output neuron that
produced a wrong prediction, it reinforces the connection weights from the
inputs that would have contributed to the correct prediction. The rule is
shown in Equation 10-3.

Equation 10-3. Perceptron learning rule (weight update)



w i,j (nextstep) = w i,j + η ( y j - y ^ j ) x i

In this equation:

w  is the connection weight between the i  input and the j  neuron.

x  is the i  input value of the current training instance.

y^j is the output of the j  output neuron for the current training instance.

y  is the target output of the j  output neuron for the current training
instance.

η is the learning rate (see Chapter 4).

The decision boundary of each output neuron is linear, so perceptrons are
incapable of learning complex patterns (just like logistic regression
classifiers). However, if the training instances are linearly separable,
Rosenblatt demonstrated that this algorithm would converge to a solution.
This is called the perceptron convergence theorem.

Scikit-Learn provides a Perceptron class that can be used pretty much as you
would expect—for example, on the iris dataset (introduced in Chapter 4):

import numpy as np
from sklearn.datasets import load_iris
from sklearn.linear_model import Perceptron

iris = load_iris(as_frame=True)
X = iris.data[["petal length (cm)", "petal width (cm)"]].values
y = (iris.target == 0)  # Iris setosa

per_clf = Perceptron(random_state=42)
per_clf.fit(X, y)

X_new = [[2, 0.5], [3, 1]]
y_pred = per_clf.predict(X_new)  # predicts True and False for these 2 flowers

You may have noticed that the perceptron learning algorithm strongly
resembles stochastic gradient descent (introduced in Chapter 4). In fact,
Scikit-Learn’s Perceptron class is equivalent to using an SGDClassifier with

i, j
th th

i
th

th

j
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the following hyperparameters: loss="perceptron", learning_rate="constant",
eta0=1 (the learning rate), and penalty=None (no regularization).

In their 1969 monograph Perceptrons, Marvin Minsky and Seymour Papert
highlighted a number of serious weaknesses of perceptrons—in particular,
the fact that they are incapable of solving some trivial problems (e.g., the
exclusive OR (XOR) classification problem; see the left side of Figure 10-6).
This is true of any other linear classification model (such as logistic
regression classifiers), but researchers had expected much more from
perceptrons, and some were so disappointed that they dropped neural
networks altogether in favor of higher-level problems such as logic, problem
solving, and search. The lack of practical applications also didn’t help.

It turns out that some of the limitations of perceptrons can be eliminated by
stacking multiple perceptrons. The resulting ANN is called a multilayer
perceptron (MLP). An MLP can solve the XOR problem, as you can verify
by computing the output of the MLP represented on the right side of
Figure 10-6: with inputs (0, 0) or (1, 1), the network outputs 0, and with
inputs (0, 1) or (1, 0) it outputs 1. Try verifying that this network indeed
solves the XOR problem!8



Figure 10-6. XOR classification problem and an MLP that solves it

NOTE
Contrary to logistic regression classifiers, perceptrons do not output a class probability.
This is one reason to prefer logistic regression over perceptrons. Moreover, perceptrons do
not use any regularization by default, and training stops as soon as there are no more
prediction errors on the training set, so the model typically does not generalize as well as
logistic regression or a linear SVM classifier. However, perceptrons may train a bit faster.



The Multilayer Perceptron and Backpropagation
An MLP is composed of one input layer, one or more layers of TLUs called
hidden layers, and one final layer of TLUs called the output layer (see
Figure 10-7). The layers close to the input layer are usually called the lower
layers, and the ones close to the outputs are usually called the upper layers.

Figure 10-7. Architecture of a multilayer perceptron with two inputs, one hidden layer of four neurons,
and three output neurons

NOTE



The signal flows only in one direction (from the inputs to the outputs), so this architecture
is an example of a feedforward neural network (FNN).

When an ANN contains a deep stack of hidden layers,  it is called a deep
neural network (DNN). The field of deep learning studies DNNs, and more
generally it is interested in models containing deep stacks of computations.
Even so, many people talk about deep learning whenever neural networks are
involved (even shallow ones).

For many years researchers struggled to find a way to train MLPs, without
success. In the early 1960s several researchers discussed the possibility of
using gradient descent to train neural networks, but as we saw in Chapter 4,
this requires computing the gradients of the model’s error with regard to the
model parameters; it wasn’t clear at the time how to do this efficiently with
such a complex model containing so many parameters, especially with the
computers they had back then.

Then, in 1970, a researcher named Seppo Linnainmaa introduced in his
master’s thesis a technique to compute all the gradients automatically and
efficiently. This algorithm is now called reverse-mode automatic
differentiation (or reverse-mode autodiff for short). In just two passes through
the network (one forward, one backward), it is able to compute the gradients
of the neural network’s error with regard to every single model parameter. In
other words, it can find out how each connection weight and each bias should
be tweaked in order to reduce the neural network’s error. These gradients can
then be used to perform a gradient descent step. If you repeat this process of
computing the gradients automatically and taking a gradient descent step, the
neural network’s error will gradually drop until it eventually reaches a
minimum. This combination of reverse-mode autodiff and gradient descent is
now called backpropagation (or backprop for short).

NOTE
There are various autodiff techniques, with different pros and cons. Reverse-mode autodiff
is well suited when the function to differentiate has many variables (e.g., connection
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weights and biases) and few outputs (e.g., one loss). If you want to learn more about
autodiff, check out Appendix B.

Backpropagation can actually be applied to all sorts of computational graphs,
not just neural networks: indeed, Linnainmaa’s master’s thesis was not about
neural nets, it was more general. It was several more years before backprop
started to be used to train neural networks, but it still wasn’t mainstream.
Then, in 1985, David Rumelhart, Geoffrey Hinton, and Ronald Williams
published a groundbreaking paper  analyzing how backpropagation allowed
neural networks to learn useful internal representations. Their results were so
impressive that backpropagation was quickly popularized in the field. Today,
it is by far the most popular training technique for neural networks.

Let’s run through how backpropagation works again in a bit more detail:

It handles one mini-batch at a time (for example, containing 32 instances
each), and it goes through the full training set multiple times. Each pass
is called an epoch.

Each mini-batch enters the network through the input layer. The
algorithm then computes the output of all the neurons in the first hidden
layer, for every instance in the mini-batch. The result is passed on to the
next layer, its output is computed and passed to the next layer, and so on
until we get the output of the last layer, the output layer. This is the
forward pass: it is exactly like making predictions, except all
intermediate results are preserved since they are needed for the
backward pass.

Next, the algorithm measures the network’s output error (i.e., it uses a
loss function that compares the desired output and the actual output of
the network, and returns some measure of the error).

Then it computes how much each output bias and each connection to the
output layer contributed to the error. This is done analytically by
applying the chain rule (perhaps the most fundamental rule in calculus),
which makes this step fast and precise.
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The algorithm then measures how much of these error contributions
came from each connection in the layer below, again using the chain
rule, working backward until it reaches the input layer. As explained
earlier, this reverse pass efficiently measures the error gradient across all
the connection weights and biases in the network by propagating the
error gradient backward through the network (hence the name of the
algorithm).

Finally, the algorithm performs a gradient descent step to tweak all the
connection weights in the network, using the error gradients it just
computed.

WARNING
It is important to initialize all the hidden layers’ connection weights randomly, or else
training will fail. For example, if you initialize all weights and biases to zero, then all
neurons in a given layer will be perfectly identical, and thus backpropagation will affect
them in exactly the same way, so they will remain identical. In other words, despite having
hundreds of neurons per layer, your model will act as if it had only one neuron per layer: it
won’t be too smart. If instead you randomly initialize the weights, you break the symmetry
and allow backpropagation to train a diverse team of neurons.

In short, backpropagation makes predictions for a mini-batch (forward pass),
measures the error, then goes through each layer in reverse to measure the
error contribution from each parameter (reverse pass), and finally tweaks the
connection weights and biases to reduce the error (gradient descent step).

In order for backprop to work properly, Rumelhart and his colleagues made a
key change to the MLP’s architecture: they replaced the step function with
the logistic function, σ(z) = 1 / (1 + exp(–z)), also called the sigmoid function.
This was essential because the step function contains only flat segments, so
there is no gradient to work with (gradient descent cannot move on a flat
surface), while the sigmoid function has a well-defined nonzero derivative
everywhere, allowing gradient descent to make some progress at every step.
In fact, the backpropagation algorithm works well with many other activation
functions, not just the sigmoid function. Here are two other popular choices:



The hyperbolic tangent function: tanh(z) = 2σ(2z) – 1

Just like the sigmoid function, this activation function is S-shaped,
continuous, and differentiable, but its output value ranges from –1 to 1
(instead of 0 to 1 in the case of the sigmoid function). That range tends to
make each layer’s output more or less centered around 0 at the beginning
of training, which often helps speed up convergence.

The rectified linear unit function: ReLU(z) = max(0, z)

The ReLU function is continuous but unfortunately not differentiable at z
= 0 (the slope changes abruptly, which can make gradient descent bounce
around), and its derivative is 0 for z < 0. In practice, however, it works
very well and has the advantage of being fast to compute, so it has
become the default.   Importantly, the fact that it does not have a
maximum output value helps reduce some issues during gradient descent
(we will come back to this in Chapter 11).

These popular activation functions and their derivatives are represented in
Figure 10-8. But wait! Why do we need activation functions in the first
place? Well, if you chain several linear transformations, all you get is a linear
transformation. For example, if f(x) = 2x + 3 and g(x) = 5x – 1, then chaining
these two linear functions gives you another linear function: f(g(x)) = 2(5x –
1) + 3 = 10x + 1. So if you don’t have some nonlinearity between layers, then
even a deep stack of layers is equivalent to a single layer, and you can’t solve
very complex problems with that. Conversely, a large enough DNN with
nonlinear activations can theoretically approximate any continuous function.

Figure 10-8. Activation functions (left) and their derivatives (right)
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OK! You know where neural nets came from, what their architecture is, and
how to compute their outputs. You’ve also learned about the backpropagation
algorithm. But what exactly can you do with neural nets?



Regression MLPs
First, MLPs can be used for regression tasks. If you want to predict a single
value (e.g., the price of a house, given many of its features), then you just
need a single output neuron: its output is the predicted value. For multivariate
regression (i.e., to predict multiple values at once), you need one output
neuron per output dimension. For example, to locate the center of an object in
an image, you need to predict 2D coordinates, so you need two output
neurons. If you also want to place a bounding box around the object, then you
need two more numbers: the width and the height of the object. So, you end
up with four output neurons.

Scikit-Learn includes an MLPRegressor class, so let’s use it to build an MLP
with three hidden layers composed of 50 neurons each, and train it on the
California housing dataset. For simplicity, we will use Scikit-Learn’s
fetch_california_housing() function to load the data. This dataset is simpler
than the one we used in Chapter 2, since it contains only numerical features
(there is no ocean_proximity feature), and there are no missing values. The
following code starts by fetching and splitting the dataset, then it creates a
pipeline to standardize the input features before sending them to the
MLPRegressor. This is very important for neural networks because they are
trained using gradient descent, and as we saw in Chapter 4, gradient descent
does not converge very well when the features have very different scales.
Finally, the code trains the model and evaluates its validation error. The
model uses the ReLU activation function in the hidden layers, and it uses a
variant of gradient descent called Adam (see Chapter 11) to minimize the
mean squared error, with a little bit of ℓ  regularization (which you can
control via the alpha hyperparameter):

from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPRegressor
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

2



housing = fetch_california_housing()
X_train_full, X_test, y_train_full, y_test = train_test_split(
    housing.data, housing.target, random_state=42)
X_train, X_valid, y_train, y_valid = train_test_split(
    X_train_full, y_train_full, random_state=42)

mlp_reg = MLPRegressor(hidden_layer_sizes=[50, 50, 50], random_state=42)
pipeline = make_pipeline(StandardScaler(), mlp_reg)
pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_valid)
rmse = mean_squared_error(y_valid, y_pred, squared=False)  # about 0.505

We get a validation RMSE of about 0.505, which is comparable to what you
would get with a random forest classifier. Not too bad for a first try!

Note that this MLP does not use any activation function for the output layer,
so it’s free to output any value it wants. This is generally fine, but if you want
to guarantee that the output will always be positive, then you should use the
ReLU activation function in the output layer, or the softplus activation
function, which is a smooth variant of ReLU: softplus(z) = log(1 + exp(z)).
Softplus is close to 0 when z is negative, and close to z when z is positive.
Finally, if you want to guarantee that the predictions will always fall within a
given range of values, then you should use the sigmoid function or the
hyperbolic tangent, and scale the targets to the appropriate range: 0 to 1 for
sigmoid and –1 to 1 for tanh. Sadly, the MLPRegressor class does not support
activation functions in the output layer.

WARNING
Building and training a standard MLP with Scikit-Learn in just a few lines of code is very
convenient, but the neural net features are limited. This is why we will switch to Keras in
the second part of this chapter.

The MLPRegressor class uses the mean squared error, which is usually what
you want for regression, but if you have a lot of outliers in the training set,
you may prefer to use the mean absolute error instead. Alternatively, you
may want to use the Huber loss, which is a combination of both. It is



quadratic when the error is smaller than a threshold δ (typically 1) but linear
when the error is larger than δ. The linear part makes it less sensitive to
outliers than the mean squared error, and the quadratic part allows it to
converge faster and be more precise than the mean absolute error. However,
MLPRegressor only supports the MSE.

Table 10-1 summarizes the typical architecture of a regression MLP.

Table 10-1. Typical regression MLP architecture

Hyperparameter Typical value

# hidden layers Depends on the problem, but typically 1 to 5

# neurons per hidden
layer

Depends on the problem, but typically 10 to 100

# output neurons 1 per prediction dimension

Hidden activation ReLU

Output activation None, or ReLU/softplus (if positive outputs) or sigmoid/tanh (if bounded
outputs)

Loss function MSE, or Huber if outliers



Classification MLPs
MLPs can also be used for classification tasks. For a binary classification
problem, you just need a single output neuron using the sigmoid activation
function: the output will be a number between 0 and 1, which you can
interpret as the estimated probability of the positive class. The estimated
probability of the negative class is equal to one minus that number.

MLPs can also easily handle multilabel binary classification tasks (see
Chapter 3). For example, you could have an email classification system that
predicts whether each incoming email is ham or spam, and simultaneously
predicts whether it is an urgent or nonurgent email. In this case, you would
need two output neurons, both using the sigmoid activation function: the first
would output the probability that the email is spam, and the second would
output the probability that it is urgent. More generally, you would dedicate
one output neuron for each positive class. Note that the output probabilities
do not necessarily add up to 1. This lets the model output any combination of
labels: you can have nonurgent ham, urgent ham, nonurgent spam, and
perhaps even urgent spam (although that would probably be an error).

If each instance can belong only to a single class, out of three or more
possible classes (e.g., classes 0 through 9 for digit image classification), then
you need to have one output neuron per class, and you should use the softmax
activation function for the whole output layer (see Figure 10-9). The softmax
function (introduced in Chapter 4) will ensure that all the estimated
probabilities are between 0 and 1 and that they add up to 1, since the classes
are exclusive. As you saw in Chapter 3, this is called multiclass classification.

Regarding the loss function, since we are predicting probability distributions,
the cross-entropy loss (or x-entropy or log loss for short, see Chapter 4) is
generally a good choice.



Figure 10-9. A modern MLP (including ReLU and softmax) for classification

Scikit-Learn has an MLPClassifier class in the sklearn.neural_network
package. It is almost identical to the MLPRegressor class, except that it
minimizes the cross entropy rather than the MSE. Give it a try now, for
example on the iris dataset. It’s almost a linear task, so a single layer with 5
to 10 neurons should suffice (make sure to scale the features).

Table 10-2 summarizes the typical architecture of a classification MLP.

Table 10-2. Typical classification MLP architecture

Hyperparameter
Binary
classification

Multilabel binary
classification

Multiclass
classification



# hidden layers Typically 1 to 5 layers, depending on the task

# output neurons 1 1 per binary label 1 per class

Output layer
activation

Sigmoid Sigmoid Softmax

Loss function X-entropy X-entropy X-entropy

TIP
Before we go on, I recommend you go through exercise 1 at the end of this chapter. You
will play with various neural network architectures and visualize their outputs using the
TensorFlow playground. This will be very useful to better understand MLPs, including the
effects of all the hyperparameters (number of layers and neurons, activation functions, and
more).

Now you have all the concepts you need to start implementing MLPs with
Keras!



Implementing MLPs with Keras
Keras is TensorFlow’s high-level deep learning API: it allows you to build,
train, evaluate, and execute all sorts of neural networks. The original Keras
library was developed by François Chollet as part of a research project
and was released as a standalone open source project in March 2015. It
quickly gained popularity, owing to its ease of use, flexibility, and beautiful
design.

NOTE
Keras used to support multiple backends, including TensorFlow, PlaidML, Theano, and
Microsoft Cognitive Toolkit (CNTK) (the last two are sadly deprecated), but since version
2.4, Keras is TensorFlow-only. Similarly, TensorFlow used to include multiple high-level
APIs, but Keras was officially chosen as its preferred high-level API when TensorFlow 2
came out. Installing TensorFlow will automatically install Keras as well, and Keras will
not work without TensorFlow installed. In short, Keras and TensorFlow fell in love and
got married. Other popular deep learning libraries include PyTorch by Facebook and JAX
by Google.

Now let’s use Keras! We will start by building an MLP for image
classification.

NOTE
Colab runtimes come with recent versions of TensorFlow and Keras preinstalled.
However, if you want to install them on your own machine, please see the installation
instructions at https://homl.info/install.

12

13

https://pytorch.org
https://github.com/google/jax
https://homl.info/install


Building an Image Classifier Using the Sequential API
First, we need to load a dataset. We will use Fashion MNIST, which is a
drop-in replacement of MNIST (introduced in Chapter 3). It has the exact
same format as MNIST (70,000 grayscale images of 28 × 28 pixels each,
with 10 classes), but the images represent fashion items rather than
handwritten digits, so each class is more diverse, and the problem turns out to
be significantly more challenging than MNIST. For example, a simple linear
model reaches about 92% accuracy on MNIST, but only about 83% on
Fashion MNIST.

Using Keras to load the dataset

Keras provides some utility functions to fetch and load common datasets,
including MNIST, Fashion MNIST, and a few more. Let’s load Fashion
MNIST. It’s already shuffled and split into a training set (60,000 images) and
a test set (10,000 images), but we’ll hold out the last 5,000 images from the
training set for validation:

import tensorflow as tf

fashion_mnist = tf.keras.datasets.fashion_mnist.load_data()
(X_train_full, y_train_full), (X_test, y_test) = fashion_mnist
X_train, y_train = X_train_full[:-5000], y_train_full[:-5000]
X_valid, y_valid = X_train_full[-5000:], y_train_full[-5000:]

TIP
TensorFlow is usually imported as tf, and the Keras API is available via tf.keras.

When loading MNIST or Fashion MNIST using Keras rather than Scikit-
Learn, one important difference is that every image is represented as a 28 ×
28 array rather than a 1D array of size 784. Moreover, the pixel intensities are
represented as integers (from 0 to 255) rather than floats (from 0.0 to 255.0).
Let’s take a look at the shape and data type of the training set:



>>> X_train.shape
(55000, 28, 28)
>>> X_train.dtype
dtype('uint8')

For simplicity, we’ll scale the pixel intensities down to the 0–1 range by
dividing them by 255.0 (this also converts them to floats):

X_train, X_valid, X_test = X_train / 255., X_valid / 255., X_test / 255.

With MNIST, when the label is equal to 5, it means that the image represents
the handwritten digit 5. Easy. For Fashion MNIST, however, we need the list
of class names to know what we are dealing with:

class_names = ["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",
               "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]

For example, the first image in the training set represents an ankle boot:

>>> class_names[y_train[0]]
'Ankle boot'

Figure 10-10 shows some samples from the Fashion MNIST dataset.

Figure 10-10. Samples from Fashion MNIST

Creating the model using the sequential API

Now let’s build the neural network! Here is a classification MLP with two



hidden layers:

tf.random.set_seed(42)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Input(shape=[28, 28]))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(300, activation="relu"))
model.add(tf.keras.layers.Dense(100, activation="relu"))
model.add(tf.keras.layers.Dense(10, activation="softmax"))

Let’s go through this code line by line:

First, set TensorFlow’s random seed to make the results reproducible:
the random weights of the hidden layers and the output layer will be the
same every time you run the notebook. You could also choose to use the
tf.keras.utils.set_random_seed() function, which conveniently sets the
random seeds for TensorFlow, Python (random.seed()), and NumPy
(np.random.seed()).

The next line creates a Sequential model. This is the simplest kind of
Keras model for neural networks that are just composed of a single stack
of layers connected sequentially. This is called the sequential API.

Next, we build the first layer (an Input layer) and add it to the model.
We specify the input shape, which doesn’t include the batch size, only
the shape of the instances. Keras needs to know the shape of the inputs
so it can determine the shape of the connection weight matrix of the first
hidden layer.

Then we add a Flatten layer. Its role is to convert each input image into
a 1D array: for example, if it receives a batch of shape [32, 28, 28], it
will reshape it to [32, 784]. In other words, if it receives input data X, it
computes X.reshape(-1, 784). This layer doesn’t have any parameters;
it’s just there to do some simple preprocessing.

Next we add a Dense hidden layer with 300 neurons. It will use the
ReLU activation function. Each Dense layer manages its own weight
matrix, containing all the connection weights between the neurons and



their inputs. It also manages a vector of bias terms (one per neuron).
When it receives some input data, it computes Equation 10-2.

Then we add a second Dense hidden layer with 100 neurons, also using
the ReLU activation function.

Finally, we add a Dense output layer with 10 neurons (one per class),
using the softmax activation function because the classes are exclusive.

TIP
Specifying activation="relu" is equivalent to specifying
activation=tf.keras.activations.relu. Other activation functions are available in the
tf.keras.activations package. We will use many of them in this book; see
https://keras.io/api/layers/activations for the full list. We will also define our own custom
activation functions in Chapter 12.

Instead of adding the layers one by one as we just did, it’s often more
convenient to pass a list of layers when creating the Sequential model. You
can also drop the Input layer and instead specify the input_shape in the first
layer:

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=[28, 28]),
    tf.keras.layers.Dense(300, activation="relu"),
    tf.keras.layers.Dense(100, activation="relu"),
    tf.keras.layers.Dense(10, activation="softmax")
])

The model’s summary() method displays all the model’s layers,  including
each layer’s name (which is automatically generated unless you set it when
creating the layer), its output shape (None means the batch size can be
anything), and its number of parameters. The summary ends with the total
number of parameters, including trainable and non-trainable parameters. Here
we only have trainable parameters (you will see some non-trainable
parameters later in this chapter):
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>>> model.summary()
Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #
=================================================================
 flatten (Flatten)           (None, 784)               0

 dense (Dense)               (None, 300)               235500

 dense_1 (Dense)             (None, 100)               30100

 dense_2 (Dense)             (None, 10)                1010

=================================================================
Total params: 266,610
Trainable params: 266,610
Non-trainable params: 0
_________________________________________________________________

Note that Dense layers often have a lot of parameters. For example, the first
hidden layer has 784 × 300 connection weights, plus 300 bias terms, which
adds up to 235,500 parameters! This gives the model quite a lot of flexibility
to fit the training data, but it also means that the model runs the risk of
overfitting, especially when you do not have a lot of training data. We will
come back to this later.

Each layer in a model must have a unique name (e.g., "dense_2"). You can
set the layer names explicitly using the constructor’s name argument, but
generally it’s simpler to let Keras name the layers automatically, as we just
did. Keras takes the layer’s class name and converts it to snake case (e.g., a
layer from the MyCoolLayer class is named "my_cool_layer" by default).
Keras also ensures that the name is globally unique, even across models, by
appending an index if needed, as in "dense_2". But why does it bother
making the names unique across models? Well, this makes it possible to
merge models easily without getting name conflicts.

TIP
All global state managed by Keras is stored in a Keras session, which you can clear using
tf.keras.backend.clear_session(). In particular, this resets the name counters.



You can easily get a model’s list of layers using the layers attribute, or use
the get_layer() method to access a layer by name:

>>> model.layers
[<keras.layers.core.flatten.Flatten at 0x7fa1dea02250>,
 <keras.layers.core.dense.Dense at 0x7fa1c8f42520>,
 <keras.layers.core.dense.Dense at 0x7fa188be7ac0>,
 <keras.layers.core.dense.Dense at 0x7fa188be7fa0>]
>>> hidden1 = model.layers[1]
>>> hidden1.name
'dense'
>>> model.get_layer('dense') is hidden1
True

All the parameters of a layer can be accessed using its get_weights() and
set_weights() methods. For a Dense layer, this includes both the connection
weights and the bias terms:

>>> weights, biases = hidden1.get_weights()
>>> weights
array([[ 0.02448617, -0.00877795, -0.02189048, ...,  0.03859074, -0.06889391],
       [ 0.00476504, -0.03105379, -0.0586676 , ..., -0.02763776, -0.04165364],
       ...,
       [ 0.07061854, -0.06960931,  0.07038955, ..., 0.00034875,  0.02878492],
       [-0.06022581,  0.01577859, -0.02585464, ..., 0.00272203, -0.06793761]],
       dtype=float32)
>>> weights.shape
(784, 300)
>>> biases
array([0., 0., 0., 0., 0., 0., 0., 0., 0., ...,  0., 0., 0.], dtype=float32)
>>> biases.shape
(300,)

Notice that the Dense layer initialized the connection weights randomly
(which is needed to break symmetry, as discussed earlier), and the biases
were initialized to zeros, which is fine. If you want to use a different
initialization method, you can set kernel_initializer (kernel is another name
for the matrix of connection weights) or bias_initializer when creating the
layer. We’ll discuss initializers further in Chapter 11, and the full list is at



https://keras.io/api/layers/initializers.

NOTE
The shape of the weight matrix depends on the number of inputs, which is why we
specified the input_shape when creating the model. If you do not specify the input shape,
it’s OK: Keras will simply wait until it knows the input shape before it actually builds the
model parameters. This will happen either when you feed it some data (e.g., during
training), or when you call its build() method. Until the model parameters are built, you
will not be able to do certain things, such as display the model summary or save the
model. So, if you know the input shape when creating the model, it is best to specify it.

Compiling the model

After a model is created, you must call its compile() method to specify the
loss function and the optimizer to use. Optionally, you can specify a list of
extra metrics to compute during training and evaluation:

model.compile(loss="sparse_categorical_crossentropy",
              optimizer="sgd",
              metrics=["accuracy"])

NOTE
Using loss="sparse_categorical_crossentropy" is the equivalent of using
loss=tf.keras.losses.sparse_categorical_cross entropy. Similarly, using optimizer="sgd" is
the equivalent of using optimizer=tf.keras.optimizers.SGD(), and using metrics=
["accuracy"] is the equivalent of using metrics=
[tf.keras.metrics.sparse_categorical_accuracy] (when using this loss). We will use many
other losses, optimizers, and metrics in this book; for the full lists, see
https://keras.io/api/losses, https://keras.io/api/optimizers, and https://keras.io/api/metrics.

This code requires explanation. We use the
"sparse_categorical_crossentropy" loss because we have sparse labels (i.e.,
for each instance, there is just a target class index, from 0 to 9 in this case),
and the classes are exclusive. If instead we had one target probability per
class for each instance (such as one-hot vectors, e.g., [0., 0., 0., 1., 0., 0., 0.,

https://keras.io/api/layers/initializers
https://keras.io/api/losses
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https://keras.io/api/metrics


0., 0., 0.] to represent class 3), then we would need to use the
"categorical_crossentropy" loss instead. If we were doing binary
classification or multilabel binary classification, then we would use the
"sigmoid" activation function in the output layer instead of the "softmax"
activation function, and we would use the "binary_crossentropy" loss.

TIP
If you want to convert sparse labels (i.e., class indices) to one-hot vector labels, use the
tf.keras.utils.to_categorical() function. To go the other way round, use the np.argmax()
function with axis=1.

Regarding the optimizer, "sgd" means that we will train the model using
stochastic gradient descent. In other words, Keras will perform the
backpropagation algorithm described earlier (i.e., reverse-mode autodiff plus
gradient descent). We will discuss more efficient optimizers in Chapter 11.
They improve gradient descent, not autodiff.

NOTE
When using the SGD optimizer, it is important to tune the learning rate. So, you will
generally want to use optimizer=tf.keras. opti mizers.SGD(learning_rate=__???__) to set
the learning rate, rather than optimizer="sgd", which defaults to a learning rate of 0.01.

Finally, since this is a classifier, it’s useful to measure its accuracy during
training and evaluation, which is why we set metrics=["accuracy"].

Training and evaluating the model

Now the model is ready to be trained. For this we simply need to call its fit()
method:

>>> history = model.fit(X_train, y_train, epochs=30,
...                     validation_data=(X_valid, y_valid))
...



Epoch 1/30
1719/1719 [==============================] - 2s 989us/step
  - loss: 0.7220 - sparse_categorical_accuracy: 0.7649
  - val_loss: 0.4959 - val_sparse_categorical_accuracy: 0.8332
Epoch 2/30
1719/1719 [==============================] - 2s 964us/step
  - loss: 0.4825 - sparse_categorical_accuracy: 0.8332
  - val_loss: 0.4567 - val_sparse_categorical_accuracy: 0.8384
[...]
Epoch 30/30
1719/1719 [==============================] - 2s 963us/step
  - loss: 0.2235 - sparse_categorical_accuracy: 0.9200
  - val_loss: 0.3056 - val_sparse_categorical_accuracy: 0.8894

We pass it the input features (X_train) and the target classes (y_train), as well
as the number of epochs to train (or else it would default to just 1, which
would definitely not be enough to converge to a good solution). We also pass
a validation set (this is optional). Keras will measure the loss and the extra
metrics on this set at the end of each epoch, which is very useful to see how
well the model really performs. If the performance on the training set is much
better than on the validation set, your model is probably overfitting the
training set, or there is a bug, such as a data mismatch between the training
set and the validation set.

TIP
Shape errors are quite common, especially when getting started, so you should familiarize
yourself with the error messages: try fitting a model with inputs and/or labels of the wrong
shape, and see the errors you get. Similarly, try compiling the model with
loss="categorical_crossentropy" instead of loss="sparse_cat egorical_crossentropy". Or
you can remove the Flatten layer.

And that’s it! The neural network is trained. At each epoch during training,
Keras displays the number of mini-batches processed so far on the left side of
the progress bar. The batch size is 32 by default, and since the training set has
55,000 images, the model goes through 1,719 batches per epoch: 1,718 of
size 32, and 1 of size 24. After the progress bar, you can see the mean
training time per sample, and the loss and accuracy (or any other extra



metrics you asked for) on both the training set and the validation set. Notice
that the training loss went down, which is a good sign, and the validation
accuracy reached 88.94% after 30 epochs. That’s slightly below the training
accuracy, so there is a little bit of overfitting going on, but not a huge
amount.

TIP
Instead of passing a validation set using the validation_data argument, you could set
validation_split to the ratio of the training set that you want Keras to use for validation.
For example, validation_split=0.1 tells Keras to use the last 10% of the data (before
shuffling) for validation.

If the training set was very skewed, with some classes being overrepresented
and others underrepresented, it would be useful to set the class_weight
argument when calling the fit() method, to give a larger weight to
underrepresented classes and a lower weight to overrepresented classes.
These weights would be used by Keras when computing the loss. If you need
per-instance weights, set the sample_weight argument. If both class_weight
and sample_weight are provided, then Keras multiplies them. Per-instance
weights could be useful, for example, if some instances were labeled by
experts while others were labeled using a crowdsourcing platform: you might
want to give more weight to the former. You can also provide sample weights
(but not class weights) for the validation set by adding them as a third item in
the validation_data tuple.

The fit() method returns a History object containing the training parameters
(history.params), the list of epochs it went through (history.epoch), and most
importantly a dictionary (history.history) containing the loss and extra
metrics it measured at the end of each epoch on the training set and on the
validation set (if any). If you use this dictionary to create a Pandas DataFrame
and call its plot() method, you get the learning curves shown in Figure 10-11:

import matplotlib.pyplot as plt
import pandas as pd



pd.DataFrame(history.history).plot(
    figsize=(8, 5), xlim=[0, 29], ylim=[0, 1], grid=True, xlabel="Epoch",
    style=["r--", "r--.", "b-", "b-*"])
plt.show()

Figure 10-11. Learning curves: the mean training loss and accuracy measured over each epoch, and
the mean validation loss and accuracy measured at the end of each epoch

You can see that both the training accuracy and the validation accuracy
steadily increase during training, while the training loss and the validation
loss decrease. This is good. The validation curves are relatively close to each
other at first, but they get further apart over time, which shows that there’s a
little bit of overfitting. In this particular case, the model looks like it
performed better on the validation set than on the training set at the beginning
of training, but that’s not actually the case. The validation error is computed
at the end of each epoch, while the training error is computed using a running
mean during each epoch, so the training curve should be shifted by half an
epoch to the left. If you do that, you will see that the training and validation
curves overlap almost perfectly at the beginning of training.

The training set performance ends up beating the validation performance, as



is generally the case when you train for long enough. You can tell that the
model has not quite converged yet, as the validation loss is still going down,
so you should probably continue training. This is as simple as calling the fit()
method again, since Keras just continues training where it left off: you should
be able to reach about 89.8% validation accuracy, while the training accuracy
will continue to rise up to 100% (this is not always the case).

If you are not satisfied with the performance of your model, you should go
back and tune the hyperparameters. The first one to check is the learning rate.
If that doesn’t help, try another optimizer (and always retune the learning rate
after changing any hyperparameter). If the performance is still not great, then
try tuning model hyperparameters such as the number of layers, the number
of neurons per layer, and the types of activation functions to use for each
hidden layer. You can also try tuning other hyperparameters, such as the
batch size (it can be set in the fit() method using the batch_size argument,
which defaults to 32). We will get back to hyperparameter tuning at the end
of this chapter. Once you are satisfied with your model’s validation accuracy,
you should evaluate it on the test set to estimate the generalization error
before you deploy the model to production. You can easily do this using the
evaluate() method (it also supports several other arguments, such as
batch_size and sample_weight; please check the documentation for more
details):

>>> model.evaluate(X_test, y_test)
313/313 [==============================] - 0s 626us/step
  - loss: 0.3243 - sparse_categorical_accuracy: 0.8864
[0.32431697845458984, 0.8863999843597412]

As you saw in Chapter 2, it is common to get slightly lower performance on
the test set than on the validation set, because the hyperparameters are tuned
on the validation set, not the test set (however, in this example, we did not do
any hyperparameter tuning, so the lower accuracy is just bad luck).
Remember to resist the temptation to tweak the hyperparameters on the test
set, or else your estimate of the generalization error will be too optimistic.

Using the model to make predictions



Now let’s use the model’s predict() method to make predictions on new
instances. Since we don’t have actual new instances, we’ll just use the first
three instances of the test set:

>>> X_new = X_test[:3]
>>> y_proba = model.predict(X_new)
>>> y_proba.round(2)
array([[0.  , 0.  , 0.  , 0.  , 0.  , 0.01, 0.  , 0.02, 0.  , 0.97],
       [0.  , 0.  , 0.99, 0.  , 0.01, 0.  , 0.  , 0.  , 0.  , 0.  ],
       [0.  , 1.  , 0.  , 0.  , 0.  , 0.  , 0.  , 0.  , 0.  , 0.  ]],
      dtype=float32)

For each instance the model estimates one probability per class, from class 0
to class 9. This is similar to the output of the predict_proba() method in
Scikit-Learn classifiers. For example, for the first image it estimates that the
probability of class 9 (ankle boot) is 96%, the probability of class 7 (sneaker)
is 2%, the probability of class 5 (sandal) is 1%, and the probabilities of the
other classes are negligible. In other words, it is highly confident that the first
image is footwear, most likely ankle boots but possibly sneakers or sandals.
If you only care about the class with the highest estimated probability (even if
that probability is quite low), then you can use the argmax() method to get the
highest probability class index for each instance:

>>> import numpy as np
>>> y_pred = y_proba.argmax(axis=-1)
>>> y_pred
array([9, 2, 1])
>>> np.array(class_names)[y_pred]
array(['Ankle boot', 'Pullover', 'Trouser'], dtype='<U11')

Here, the classifier actually classified all three images correctly (these images
are shown in Figure 10-12):

>>> y_new = y_test[:3]
>>> y_new
array([9, 2, 1], dtype=uint8)



Figure 10-12. Correctly classified Fashion MNIST images

Now you know how to use the sequential API to build, train, and evaluate a
classification MLP. But what about regression?



Building a Regression MLP Using the Sequential API
Let’s switch back to the California housing problem and tackle it using the
same MLP as earlier, with 3 hidden layers composed of 50 neurons each, but
this time building it with Keras.

Using the sequential API to build, train, evaluate, and use a regression MLP
is quite similar to what we did for classification. The main differences in the
following code example are the fact that the output layer has a single neuron
(since we only want to predict a single value) and it uses no activation
function, the loss function is the mean squared error, the metric is the RMSE,
and we’re using an Adam optimizer like Scikit-Learn’s MLPRegressor did.
Moreover, in this example we don’t need a Flatten layer, and instead we’re
using a Normalization layer as the first layer: it does the same thing as Scikit-
Learn’s StandardScaler, but it must be fitted to the training data using its
adapt() method before you call the model’s fit() method. (Keras has other
preprocessing layers, which will be covered in Chapter 13). Let’s take a look:

tf.random.set_seed(42)
norm_layer = tf.keras.layers.Normalization(input_shape=X_train.shape[1:])
model = tf.keras.Sequential([
    norm_layer,
    tf.keras.layers.Dense(50, activation="relu"),
    tf.keras.layers.Dense(50, activation="relu"),
    tf.keras.layers.Dense(50, activation="relu"),
    tf.keras.layers.Dense(1)
])
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
model.compile(loss="mse", optimizer=optimizer, metrics=["RootMeanSquaredError"])
norm_layer.adapt(X_train)
history = model.fit(X_train, y_train, epochs=20,
                    validation_data=(X_valid, y_valid))
mse_test, rmse_test = model.evaluate(X_test, y_test)
X_new = X_test[:3]
y_pred = model.predict(X_new)

NOTE
The Normalization layer learns the feature means and standard deviations in the training



data when you call the adapt() method. Yet when you display the model’s summary, these
statistics are listed as non-trainable. This is because these parameters are not affected by
gradient descent.

As you can see, the sequential API is quite clean and straightforward.
However, although Sequential models are extremely common, it is
sometimes useful to build neural networks with more complex topologies, or
with multiple inputs or outputs. For this purpose, Keras offers the functional
API.



Building Complex Models Using the Functional API
One example of a nonsequential neural network is a Wide & Deep neural
network. This neural network architecture was introduced in a 2016 paper by
Heng-Tze Cheng et al.   It connects all or part of the inputs directly to the
output layer, as shown in Figure 10-13. This architecture makes it possible
for the neural network to learn both deep patterns (using the deep path) and
simple rules (through the short path).  In contrast, a regular MLP forces all
the data to flow through the full stack of layers; thus, simple patterns in the
data may end up being distorted by this sequence of transformations.

Figure 10-13. Wide & Deep neural network

Let’s build such a neural network to tackle the California housing problem:

normalization_layer = tf.keras.layers.Normalization()
hidden_layer1 = tf.keras.layers.Dense(30, activation="relu")
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hidden_layer2 = tf.keras.layers.Dense(30, activation="relu")
concat_layer = tf.keras.layers.Concatenate()
output_layer = tf.keras.layers.Dense(1)

input_ = tf.keras.layers.Input(shape=X_train.shape[1:])
normalized = normalization_layer(input_)
hidden1 = hidden_layer1(normalized)
hidden2 = hidden_layer2(hidden1)
concat = concat_layer([normalized, hidden2])
output = output_layer(concat)

model = tf.keras.Model(inputs=[input_], outputs=[output])

At a high level, the first five lines create all the layers we need to build the
model, the next six lines use these layers just like functions to go from the
input to the output, and the last line creates a Keras Model object by pointing
to the input and the output. Let’s go through this code in more detail:

First, we create five layers: a Normalization layer to standardize the
inputs, two Dense layers with 30 neurons each, using the ReLU
activation function, a Concatenate layer, and one more Dense layer with
a single neuron for the output layer, without any activation function.

Next, we create an Input object (the variable name input_ is used to
avoid overshadowing Python’s built-in input() function). This is a
specification of the kind of input the model will get, including its shape
and optionally its dtype, which defaults to 32-bit floats. A model may
actually have multiple inputs, as you will see shortly.

Then we use the Normalization layer just like a function, passing it the
Input object. This is why this is called the functional API. Note that we
are just telling Keras how it should connect the layers together; no actual
data is being processed yet, as the Input object is just a data
specification. In other words, it’s a symbolic input. The output of this
call is also symbolic: normalized doesn’t store any actual data, it’s just
used to construct the model.

In the same way, we then pass normalized to hidden_layer1, which
outputs hidden1, and we pass hidden1 to hidden_layer2, which outputs



hidden2.

So far we’ve connected the layers sequentially, but then we use the
concat_layer to concatenate the input and the second hidden layer’s
output. Again, no actual data is concatenated yet: it’s all symbolic, to
build the model.

Then we pass concat to the output_layer, which gives us the final output.

Lastly, we create a Keras Model, specifying which inputs and outputs to
use.

Once you have built this Keras model, everything is exactly like earlier, so
there’s no need to repeat it here: you compile the model, adapt the
Normalization layer, fit the model, evaluate it, and use it to make predictions.

But what if you want to send a subset of the features through the wide path
and a different subset (possibly overlapping) through the deep path, as
illustrated in Figure 10-14? In this case, one solution is to use multiple inputs.
For example, suppose we want to send five features through the wide path
(features 0 to 4), and six features through the deep path (features 2 to 7). We
can do this as follows:

input_wide = tf.keras.layers.Input(shape=[5])  # features 0 to 4
input_deep = tf.keras.layers.Input(shape=[6])  # features 2 to 7
norm_layer_wide = tf.keras.layers.Normalization()
norm_layer_deep = tf.keras.layers.Normalization()
norm_wide = norm_layer_wide(input_wide)
norm_deep = norm_layer_deep(input_deep)
hidden1 = tf.keras.layers.Dense(30, activation="relu")(norm_deep)
hidden2 = tf.keras.layers.Dense(30, activation="relu")(hidden1)
concat = tf.keras.layers.concatenate([norm_wide, hidden2])
output = tf.keras.layers.Dense(1)(concat)
model = tf.keras.Model(inputs=[input_wide, input_deep], outputs=[output])



Figure 10-14. Handling multiple inputs

There are a few things to note in this example, compared to the previous one:

Each Dense layer is created and called on the same line. This is a
common practice, as it makes the code more concise without losing
clarity. However, we can’t do this with the Normalization layer since we
need a reference to the layer to be able to call its adapt() method before
fitting the model.

We used tf.keras.layers.concatenate(), which creates a Concatenate layer
and calls it with the given inputs.

We specified inputs=[input_wide, input_deep] when creating the model,
since there are two inputs.

Now we can compile the model as usual, but when we call the fit() method,
instead of passing a single input matrix X_train, we must pass a pair of
matrices (X_train_wide, X_train_deep), one per input. The same is true for
X_valid, and also for X_test and X_new when you call evaluate() or
predict():



optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
model.compile(loss="mse", optimizer=optimizer, metrics=["RootMeanSquaredError"])

X_train_wide, X_train_deep = X_train[:, :5], X_train[:, 2:]
X_valid_wide, X_valid_deep = X_valid[:, :5], X_valid[:, 2:]
X_test_wide, X_test_deep = X_test[:, :5], X_test[:, 2:]
X_new_wide, X_new_deep = X_test_wide[:3], X_test_deep[:3]

norm_layer_wide.adapt(X_train_wide)
norm_layer_deep.adapt(X_train_deep)
history = model.fit((X_train_wide, X_train_deep), y_train, epochs=20,
                    validation_data=((X_valid_wide, X_valid_deep), y_valid))
mse_test = model.evaluate((X_test_wide, X_test_deep), y_test)
y_pred = model.predict((X_new_wide, X_new_deep))

TIP
Instead of passing a tuple (X_train_wide, X_train_deep), you can pass a dictionary
{"input_wide": X_train_wide, "input_deep": X_train_deep}, if you set
name="input_wide" and name="input_deep" when creating the inputs. This is highly
recommended when there are many inputs, to clarify the code and avoid getting the order
wrong.

There are also many use cases in which you may want to have multiple
outputs:

The task may demand it. For instance, you may want to locate and
classify the main object in a picture. This is both a regression tasks and a
classification task.

Similarly, you may have multiple independent tasks based on the same
data. Sure, you could train one neural network per task, but in many
cases you will get better results on all tasks by training a single neural
network with one output per task. This is because the neural network can
learn features in the data that are useful across tasks. For example, you
could perform multitask classification on pictures of faces, using one
output to classify the person’s facial expression (smiling, surprised, etc.)
and another output to identify whether they are wearing glasses or not.

Another use case is as a regularization technique (i.e., a training



constraint whose objective is to reduce overfitting and thus improve the
model’s ability to generalize). For example, you may want to add an
auxiliary output in a neural network architecture (see Figure 10-15) to
ensure that the underlying part of the network learns something useful
on its own, without relying on the rest of the network.



Figure 10-15. Handling multiple outputs, in this example to add an auxiliary output for regularization

Adding an extra output is quite easy: we just connect it to the appropriate
layer and add it to the model’s list of outputs. For example, the following
code builds the network represented in Figure 10-15:



[...]  # Same as above, up to the main output layer
output = tf.keras.layers.Dense(1)(concat)
aux_output = tf.keras.layers.Dense(1)(hidden2)
model = tf.keras.Model(inputs=[input_wide, input_deep],
                       outputs=[output, aux_output])

Each output will need its own loss function. Therefore, when we compile the
model, we should pass a list of losses. If we pass a single loss, Keras will
assume that the same loss must be used for all outputs. By default, Keras will
compute all the losses and simply add them up to get the final loss used for
training. Since we care much more about the main output than about the
auxiliary output (as it is just used for regularization), we want to give the
main output’s loss a much greater weight. Luckily, it is possible to set all the
loss weights when compiling the model:

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
model.compile(loss=("mse", "mse"), loss_weights=(0.9, 0.1), optimizer=optimizer,
              metrics=["RootMeanSquaredError"])

TIP
Instead of passing a tuple loss=("mse", "mse"), you can pass a dictionary loss={"output":
"mse", "aux_output": "mse"}, assuming you created the output layers with name="output"
and name="aux_output". Just like for the inputs, this clarifies the code and avoids errors
when there are several outputs. You can also pass a dictionary for loss_weights.

Now when we train the model, we need to provide labels for each output. In
this example, the main output and the auxiliary output should try to predict
the same thing, so they should use the same labels. So instead of passing
y_train, we need to pass (y_train, y_train), or a dictionary {"output": y_train,
"aux_output": y_train} if the outputs were named "output" and "aux_output".
The same goes for y_valid and y_test:

norm_layer_wide.adapt(X_train_wide)
norm_layer_deep.adapt(X_train_deep)
history = model.fit(
    (X_train_wide, X_train_deep), (y_train, y_train), epochs=20,
    validation_data=((X_valid_wide, X_valid_deep), (y_valid, y_valid))



)

When we evaluate the model, Keras returns the weighted sum of the losses,
as well as all the individual losses and metrics:

eval_results = model.evaluate((X_test_wide, X_test_deep), (y_test, y_test))
weighted_sum_of_losses, main_loss, aux_loss, main_rmse, aux_rmse = eval_results

TIP
If you set return_dict=True, then evaluate() will return a dictionary instead of a big tuple.

Similarly, the predict() method will return predictions for each output:

y_pred_main, y_pred_aux = model.predict((X_new_wide, X_new_deep))

The predict() method returns a tuple, and it does not have a return_dict
argument to get a dictionary instead. However, you can create one using
model.output_names:

y_pred_tuple = model.predict((X_new_wide, X_new_deep))
y_pred = dict(zip(model.output_names, y_pred_tuple))

As you can see, you can build all sorts of architectures with the functional
API. Next, we’ll look at one last way you can build Keras models.



Using the Subclassing API to Build Dynamic Models
Both the sequential API and the functional API are declarative: you start by
declaring which layers you want to use and how they should be connected,
and only then can you start feeding the model some data for training or
inference. This has many advantages: the model can easily be saved, cloned,
and shared; its structure can be displayed and analyzed; the framework can
infer shapes and check types, so errors can be caught early (i.e., before any
data ever goes through the model). It’s also fairly straightforward to debug,
since the whole model is a static graph of layers. But the flip side is just that:
it’s static. Some models involve loops, varying shapes, conditional branching,
and other dynamic behaviors. For such cases, or simply if you prefer a more
imperative programming style, the subclassing API is for you.

With this approach, you subclass the Model class, create the layers you need
in the constructor, and use them to perform the computations you want in the
call() method. For example, creating an instance of the following
WideAndDeepModel class gives us an equivalent model to the one we just
built with the functional API:

class WideAndDeepModel(tf.keras.Model):
    def __init__(self, units=30, activation="relu", **kwargs):
        super().__init__(**kwargs)  # needed to support naming the model
        self.norm_layer_wide = tf.keras.layers.Normalization()
        self.norm_layer_deep = tf.keras.layers.Normalization()
        self.hidden1 = tf.keras.layers.Dense(units, activation=activation)
        self.hidden2 = tf.keras.layers.Dense(units, activation=activation)
        self.main_output = tf.keras.layers.Dense(1)
        self.aux_output = tf.keras.layers.Dense(1)

    def call(self, inputs):
        input_wide, input_deep = inputs
        norm_wide = self.norm_layer_wide(input_wide)
        norm_deep = self.norm_layer_deep(input_deep)
        hidden1 = self.hidden1(norm_deep)
        hidden2 = self.hidden2(hidden1)
        concat = tf.keras.layers.concatenate([norm_wide, hidden2])
        output = self.main_output(concat)
        aux_output = self.aux_output(hidden2)
        return output, aux_output



model = WideAndDeepModel(30, activation="relu", name="my_cool_model")

This example looks like the previous one, except we separate the creation of
the layers   in the constructor from their usage in the call() method. And we
don’t need to create the Input objects: we can use the input argument to the
call() method.

Now that we have a model instance, we can compile it, adapt its
normalization layers (e.g., using model.norm_layer_wide.adapt(...) and
model.norm_layer_deep.adapt(...)), fit it, evaluate it, and use it to make
predictions, exactly like we did with the functional API.

The big difference with this API is that you can include pretty much anything
you want in the call() method: for loops, if statements, low-level TensorFlow
operations—your imagination is the limit (see Chapter 12)! This makes it a
great API when experimenting with new ideas, especially for researchers.
However, this extra flexibility does come at a cost: your model’s architecture
is hidden within the call() method, so Keras cannot easily inspect it; the
model cannot be cloned using tf.keras.models.clone_model(); and when you
call the summary() method, you only get a list of layers, without any
information on how they are connected to each other. Moreover, Keras
cannot check types and shapes ahead of time, and it is easier to make
mistakes. So unless you really need that extra flexibility, you should probably
stick to the sequential API or the functional API.

TIP
Keras models can be used just like regular layers, so you can easily combine them to build
complex architectures.

Now that you know how to build and train neural nets using Keras, you will
want to save them!

17



Saving and Restoring a Model
Saving a trained Keras model is as simple as it gets:

model.save("my_keras_model", save_format="tf")

When you set save_format="tf",  Keras saves the model using TensorFlow’s
SavedModel format: this is a directory (with the given name) containing
several files and subdirectories. In particular, the saved_model.pb file
contains the model’s architecture and logic in the form of a serialized
computation graph, so you don’t need to deploy the model’s source code in
order to use it in production; the SavedModel is sufficient (you will see how
this works in Chapter 12). The keras_metadata.pb file contains extra
information needed by Keras. The variables subdirectory contains all the
parameter values (including the connection weights, the biases, the
normalization statistics, and the optimizer’s parameters), possibly split across
multiple files if the model is very large. Lastly, the assets directory may
contain extra files, such as data samples, feature names, class names, and so
on. By default, the assets directory is empty. Since the optimizer is also
saved, including its hyperparameters and any state it may have, after loading
the model you can continue training if you want.

NOTE
If you set save_format="h5" or use a filename that ends with .h5, .hdf5, or .keras, then
Keras will save the model to a single file using a Keras-specific format based on the HDF5
format. However, most TensorFlow deployment tools require the SavedModel format
instead.

You will typically have a script that trains a model and saves it, and one or
more scripts (or web services) that load the model and use it to evaluate it or
to make predictions. Loading the model is just as easy as saving it:

model = tf.keras.models.load_model("my_keras_model")
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y_pred_main, y_pred_aux = model.predict((X_new_wide, X_new_deep))

You can also use save_weights() and load_weights() to save and load only
the parameter values. This includes the connection weights, biases,
preprocessing stats, optimizer state, etc. The parameter values are saved in
one or more files such as my_weights.data-00004-of-00052, plus an index file
like my_weights.index.

Saving just the weights is faster and uses less disk space than saving the
whole model, so it’s perfect to save quick checkpoints during training. If
you’re training a big model, and it takes hours or days, then you must save
checkpoints regularly in case the computer crashes. But how can you tell the
fit() method to save checkpoints? Use callbacks.



Using Callbacks
The fit() method accepts a callbacks argument that lets you specify a list of
objects that Keras will call before and after training, before and after each
epoch, and even before and after processing each batch. For example, the
ModelCheckpoint callback saves checkpoints of your model at regular
intervals during training, by default at the end of each epoch:

checkpoint_cb = tf.keras.callbacks.ModelCheckpoint("my_checkpoints",
                                                   save_weights_only=True)
history = model.fit([...], callbacks=[checkpoint_cb])

Moreover, if you use a validation set during training, you can set save_
best_only=True when creating the ModelCheckpoint. In this case, it will only
save your model when its performance on the validation set is the best so far.
This way, you do not need to worry about training for too long and
overfitting the training set: simply restore the last saved model after training,
and this will be the best model on the validation set. This is one way to
implement early stopping (introduced in Chapter 4), but it won’t actually stop
training.

Another way is to use the EarlyStopping callback. It will interrupt training
when it measures no progress on the validation set for a number of epochs
(defined by the patience argument), and if you set restore_best_weights=True
it will roll back to the best model at the end of training. You can combine
both callbacks to save checkpoints of your model in case your computer
crashes, and interrupt training early when there is no more progress, to avoid
wasting time and resources and to reduce overfitting:

early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=10,
                                                     restore_best_weights=True)
history = model.fit([...], callbacks=[checkpoint_cb, early_stopping_cb])

The number of epochs can be set to a large value since training will stop
automatically when there is no more progress (just make sure the learning
rate is not too small, or else it might keep making slow progress until the



end). The EarlyStopping callback will store the weights of the best model in
RAM, and it will restore them for you at the end of training.

TIP
Many other callbacks are available in the tf.keras.callbacks package.

If you need extra control, you can easily write your own custom callbacks.
For example, the following custom callback will display the ratio between the
validation loss and the training loss during training (e.g., to detect
overfitting):

class PrintValTrainRatioCallback(tf.keras.callbacks.Callback):
    def on_epoch_end(self, epoch, logs):
        ratio = logs["val_loss"] / logs["loss"]
        print(f"Epoch={epoch}, val/train={ratio:.2f}")

As you might expect, you can implement on_train_begin(), on_train_end(),
on_epoch_begin(), on_epoch_end(), on_batch_begin(), and on_batch_end().
Callbacks can also be used during evaluation and predictions, should you
ever need them (e.g., for debugging). For evaluation, you should implement
on_test_begin(), on_test_end(), on_test_batch_begin(), or
on_test_batch_end(), which are called by evaluate(). For prediction, you
should implement on_predict_begin(), on_predict_end(),
on_predict_batch_begin(), or on_predict_batch_end(), which are called by
predict().

Now let’s take a look at one more tool you should definitely have in your
toolbox when using Keras: TensorBoard.

https://keras.io/api/callbacks


Using TensorBoard for Visualization
TensorBoard is a great interactive visualization tool that you can use to view
the learning curves during training, compare curves and metrics between
multiple runs, visualize the computation graph, analyze training statistics,
view images generated by your model, visualize complex multidimensional
data projected down to 3D and automatically clustered for you, profile your
network (i.e., measure its speed to identify bottlenecks), and more!

TensorBoard is installed automatically when you install TensorFlow.
However, you will need a TensorBoard plug-in to visualize profiling data. If
you followed the installation instructions at https://homl.info/install to run
everything locally, then you already have the plug-in installed, but if you are
using Colab, then you must run the following command:

%pip install -q -U tensorboard-plugin-profile

To use TensorBoard, you must modify your program so that it outputs the
data you want to visualize to special binary logfiles called event files. Each
binary data record is called a summary. The TensorBoard server will monitor
the log directory, and it will automatically pick up the changes and update the
visualizations: this allows you to visualize live data (with a short delay), such
as the learning curves during training. In general, you want to point the
TensorBoard server to a root log directory and configure your program so
that it writes to a different subdirectory every time it runs. This way, the same
TensorBoard server instance will allow you to visualize and compare data
from multiple runs of your program, without getting everything mixed up.

Let’s name the root log directory my_logs, and let’s define a little function
that generates the path of the log subdirectory based on the current date and
time, so that it’s different at every run:

from pathlib import Path
from time import strftime

def get_run_logdir(root_logdir="my_logs"):

https://homl.info/install


    return Path(root_logdir) / strftime("run_%Y_%m_%d_%H_%M_%S")

run_logdir = get_run_logdir()  # e.g., my_logs/run_2022_08_01_17_25_59

The good news is that Keras provides a convenient TensorBoard() callback
that will take care of creating the log directory for you (along with its parent
directories if needed), and it will create event files and write summaries to
them during training. It will measure your model’s training and validation
loss and metrics (in this case, the MSE and RMSE), and it will also profile
your neural network. It is straightforward to use:

tensorboard_cb = tf.keras.callbacks.TensorBoard(run_logdir,
                                                profile_batch=(100, 200))
history = model.fit([...], callbacks=[tensorboard_cb])

That’s all there is to it! In this example, it will profile the network between
batches 100 and 200 during the first epoch. Why 100 and 200? Well, it often
takes a few batches for the neural network to “warm up”, so you don’t want
to profile too early, and profiling uses resources, so it’s best not to do it for
every batch.

Next, try changing the learning rate from 0.001 to 0.002, and run the code
again, with a new log subdirectory. You will end up with a directory structure
similar to this one:

my_logs
├── run_2022_08_01_17_25_59
│   ├── train
│   │   ├── events.out.tfevents.1659331561.my_host_name.42042.0.v2
│   │   ├── events.out.tfevents.1659331562.my_host_name.profile-empty
│   │   └── plugins
│   │       └── profile
│   │           └── 2022_08_01_17_26_02
│   │               ├── my_host_name.input_pipeline.pb
│   │               └── [...]
│   └── validation
│       └── events.out.tfevents.1659331562.my_host_name.42042.1.v2
└── run_2022_08_01_17_31_12
    └── [...]



There’s one directory per run, each containing one subdirectory for training
logs and one for validation logs. Both contain event files, and the training
logs also include profiling traces.

Now that you have the event files ready, it’s time to start the TensorBoard
server. This can be done directly within Jupyter or Colab using the Jupyter
extension for TensorBoard, which gets installed along with the TensorBoard
library. This extension is preinstalled in Colab. The following code loads the
Jupyter extension for TensorBoard, and the second line starts a TensorBoard
server for the my_logs directory, connects to this server and displays the user
interface directly inside of Jupyter. The server, listens on the first available
TCP port greater than or equal to 6006 (or you can set the port you want
using the --port option).

%load_ext tensorboard
%tensorboard --logdir=./my_logs

TIP
If you’re running everything on your own machine, it’s possible to start TensorBoard by
executing tensorboard --logdir=./my_logs in a terminal. You must first activate the Conda
environment in which you installed TensorBoard, and go to the handson-ml3 directory.
Once the server is started, visit http://localhost:6006.

Now you should see TensorBoard’s user interface. Click the SCALARS tab
to view the learning curves (see Figure 10-16). At the bottom left, select the
logs you want to visualize (e.g., the training logs from the first and second
run), and click the epoch_loss scalar. Notice that the training loss went down
nicely during both runs, but in the second run it went down a bit faster thanks
to the higher learning rate.

http://localhost:6006


Figure 10-16. Visualizing learning curves with TensorBoard

You can also visualize the whole computation graph in the GRAPHS tab, the
learned weights projected to 3D in the PROJECTOR tab, and the profiling
traces in the PROFILE tab. The TensorBoard() callback has options to log
extra data too (see the documentation for more details). You can click the
refresh button (⟳) at the top right to make TensorBoard refresh data, and you
can click the settings button (⚙) to activate auto-refresh and specify the
refresh interval.

Additionally, TensorFlow offers a lower-level API in the tf.summary
package. The following code creates a SummaryWriter using the
create_file_writer() function, and it uses this writer as a Python context to log
scalars, histograms, images, audio, and text, all of which can then be
visualized using TensorBoard:

test_logdir = get_run_logdir()
writer = tf.summary.create_file_writer(str(test_logdir))
with writer.as_default():
    for step in range(1, 1000 + 1):
        tf.summary.scalar("my_scalar", np.sin(step / 10), step=step)



        data = (np.random.randn(100) + 2) * step / 100  # gets larger
        tf.summary.histogram("my_hist", data, buckets=50, step=step)

        images = np.random.rand(2, 32, 32, 3) * step / 1000  # gets brighter
        tf.summary.image("my_images", images, step=step)

        texts = ["The step is " + str(step), "Its square is " + str(step ** 2)]
        tf.summary.text("my_text", texts, step=step)

        sine_wave = tf.math.sin(tf.range(12000) / 48000 * 2 * np.pi * step)
        audio = tf.reshape(tf.cast(sine_wave, tf.float32), [1, -1, 1])
        tf.summary.audio("my_audio", audio, sample_rate=48000, step=step)

If you run this code and click the refresh button in TensorBoard, you will see
several tabs appear: IMAGES, AUDIO, DISTRIBUTIONS, HISTOGRAMS,
and TEXT. Try clicking the IMAGES tab, and use the slider above each
image to view the images at different time steps. Similarly, go to the AUDIO
tab and try listening to the audio at different time steps. As you can see,
TensorBoard is a useful tool even beyond TensorFlow or deep learning.

TIP
You can share your results online by publishing them to https://tensorboard.dev. For this,
just run !tensorboard dev upload --logdir ./my_logs. The first time, it will ask you to
accept the terms and conditions and authenticate. Then your logs will be uploaded, and
you will get a permanent link to view your results in a TensorBoard interface.

Let’s summarize what you’ve learned so far in this chapter: you now know
where neural nets came from, what an MLP is and how you can use it for
classification and regression, how to use Keras’s sequential API to build
MLPs, and how to use the functional API or the subclassing API to build
more complex model architectures (including Wide & Deep models, as well
as models with multiple inputs and outputs). You also learned how to save
and restore a model and how to use callbacks for checkpointing, early
stopping, and more. Finally, you learned how to use TensorBoard for
visualization. You can already go ahead and use neural networks to tackle
many problems! However, you may wonder how to choose the number of

https://tensorboard.dev


hidden layers, the number of neurons in the network, and all the other
hyperparameters. Let’s look at this now.



Fine-Tuning Neural Network Hyperparameters
The flexibility of neural networks is also one of their main drawbacks: there
are many hyperparameters to tweak. Not only can you use any imaginable
network architecture, but even in a basic MLP you can change the number of
layers, the number of neurons and the type of activation function to use in
each layer, the weight initialization logic, the type of optimizer to use, its
learning rate, the batch size, and more. How do you know what combination
of hyperparameters is the best for your task?

One option is to convert your Keras model to a Scikit-Learn estimator, and
then use GridSearchCV or RandomizedSearchCV to fine-tune the
hyperparameters, as you did in Chapter 2. For this, you can use the
KerasRegressor and KerasClassifier wrapper classes from the SciKeras
library (see https://github.com/adriangb/scikeras for more details). However,
there’s a better way: you can use the Keras Tuner library, which is a
hyperparameter tuning library for Keras models. It offers several tuning
strategies, it’s highly customizable, and it has excellent integration with
TensorBoard. Let’s see how to use it.

If you followed the installation instructions at https://homl.info/install to run
everything locally, then you already have Keras Tuner installed, but if you
are using Colab, you’ll need to run %pip install -q -U keras-tuner. Next,
import keras_tuner, usually as kt, then write a function that builds, compiles,
and returns a Keras model. The function must take a kt.HyperParameters
object as an argument, which it can use to define hyperparameters (integers,
floats, strings, etc.) along with their range of possible values, and these
hyperparameters may be used to build and compile the model. For example,
the following function builds and compiles an MLP to classify Fashion
MNIST images, using hyperparameters such as the number of hidden layers
(n_hidden), the number of neurons per layer (n_neurons), the learning rate
(learning_rate), and the type of optimizer to use (optimizer):

import keras_tuner as kt

https://github.com/adriangb/scikeras
https://homl.info/install


def build_model(hp):
    n_hidden = hp.Int("n_hidden", min_value=0, max_value=8, default=2)
    n_neurons = hp.Int("n_neurons", min_value=16, max_value=256)
    learning_rate = hp.Float("learning_rate", min_value=1e-4, max_value=1e-2,
                             sampling="log")
    optimizer = hp.Choice("optimizer", values=["sgd", "adam"])
    if optimizer == "sgd":
        optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate)
    else:
        optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

    model = tf.keras.Sequential()
    model.add(tf.keras.layers.Flatten())
    for _ in range(n_hidden):
        model.add(tf.keras.layers.Dense(n_neurons, activation="relu"))
    model.add(tf.keras.layers.Dense(10, activation="softmax"))
    model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer,
                  metrics=["accuracy"])
    return model

The first part of the function defines the hyperparameters. For example,
hp.Int("n_hidden", min_value=0, max_value=8, default=2) checks whether a
hyperparameter named "n_hidden" is already present in the HyperParameters
object hp, and if so it returns its value. If not, then it registers a new integer
hyperparameter named "n_hidden", whose possible values range from 0 to 8
(inclusive), and it returns the default value, which is 2 in this case (when
default is not set, then min_value is returned). The "n_neurons"
hyperparameter is registered in a similar way. The "learning_rate"
hyperparameter is registered as a float ranging from 10  to 10 , and since
sampling="log", learning rates of all scales will be sampled equally. Lastly,
the optimizer hyperparameter is registered with two possible values: "sgd" or
"adam" (the default value is the first one, which is "sgd" in this case).
Depending on the value of optimizer, we create an SGD optimizer or an
Adam optimizer with the given learning rate.

The second part of the function just builds the model using the
hyperparameter values. It creates a Sequential model starting with a Flatten
layer, followed by the requested number of hidden layers (as determined by
the n_hidden hyperparameter) using the ReLU activation function, and an
output layer with 10 neurons (one per class) using the softmax activation
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function. Lastly, the function compiles the model and returns it.

Now if you want to do a basic random search, you can create a
kt.RandomSearch tuner, passing the build_model function to the constructor,
and call the tuner’s search() method:

random_search_tuner = kt.RandomSearch(
    build_model, objective="val_accuracy", max_trials=5, overwrite=True,
    directory="my_fashion_mnist", project_name="my_rnd_search", seed=42)
random_search_tuner.search(X_train, y_train, epochs=10,
                           validation_data=(X_valid, y_valid))

The RandomSearch tuner first calls build_model() once with an empty
Hyperparameters object, just to gather all the hyperparameter specifications.
Then, in this example, it runs 5 trials; for each trial it builds a model using
hyperparameters sampled randomly within their respective ranges, then it
trains that model for 10 epochs and saves it to a subdirectory of the
my_fashion_mnist/my_rnd_search directory. Since overwrite=True, the
my_rnd_search directory is deleted before training starts. If you run this code
a second time but with overwrite=False and max_tri als=10, the tuner will
continue tuning where it left off, running 5 more trials: this means you don’t
have to run all the trials in one shot. Lastly, since objective is set to
"val_accuracy", the tuner prefers models with a higher validation accuracy,
so once the tuner has finished searching, you can get the best models like
this:

top3_models = random_search_tuner.get_best_models(num_models=3)
best_model = top3_models[0]

You can also call get_best_hyperparameters() to get the kt.HyperParameters
of the best models:

>>> top3_params = random_search_tuner.get_best_hyperparameters(num_trials=3)
>>> top3_params[0].values  # best hyperparameter values
{'n_hidden': 5,
 'n_neurons': 70,
 'learning_rate': 0.00041268008323824807,
 'optimizer': 'adam'}



Each tuner is guided by a so-called oracle: before each trial, the tuner asks
the oracle to tell it what the next trial should be. The RandomSearch tuner
uses a RandomSearchOracle, which is pretty basic: it just picks the next trial
randomly, as we saw earlier. Since the oracle keeps track of all the trials, you
can ask it to give you the best one, and you can display a summary of that
trial:

>>> best_trial = random_search_tuner.oracle.get_best_trials(num_trials=1)[0]
>>> best_trial.summary()
Trial summary
Hyperparameters:
n_hidden: 5
n_neurons: 70
learning_rate: 0.00041268008323824807
optimizer: adam
Score: 0.8736000061035156

This shows the best hyperparameters (like earlier), as well as the validation
accuracy. You can also access all the metrics directly:

>>> best_trial.metrics.get_last_value("val_accuracy")
0.8736000061035156

If you are happy with the best model’s performance, you may continue
training it for a few epochs on the full training set (X_train_full and
y_train_full), then evaluate it on the test set, and deploy it to production (see
Chapter 19):

best_model.fit(X_train_full, y_train_full, epochs=10)
test_loss, test_accuracy = best_model.evaluate(X_test, y_test)

In some cases, you may want to fine-tune data preprocessing
hyperparameters, or model.fit() arguments, such as the batch size. For this,
you must use a slightly different technique: instead of writing a
build_model() function, you must subclass the kt.HyperModel class and
define two methods, build() and fit(). The build() method does the exact same
thing as the build_model() function. The fit() method takes a
HyperParameters object and a compiled model as an argument, as well as all



the model.fit() arguments, and fits the model and returns the History object.
Crucially, the fit() method may use hyperparameters to decide how to
preprocess the data, tweak the batch size, and more. For example, the
following class builds the same model as before, with the same
hyperparameters, but it also uses a Boolean "normalize" hyperparameter to
control whether or not to standardize the training data before fitting the
model:

class MyClassificationHyperModel(kt.HyperModel):
    def build(self, hp):
        return build_model(hp)

    def fit(self, hp, model, X, y, **kwargs):
        if hp.Boolean("normalize"):
            norm_layer = tf.keras.layers.Normalization()
            X = norm_layer(X)
        return model.fit(X, y, **kwargs)

You can then pass an instance of this class to the tuner of your choice, instead
of passing the build_model function. For example, let’s build a kt.Hyperband
tuner based on a MyClassificationHyperModel instance:

hyperband_tuner = kt.Hyperband(
    MyClassificationHyperModel(), objective="val_accuracy", seed=42,
    max_epochs=10, factor=3, hyperband_iterations=2,
    overwrite=True, directory="my_fashion_mnist", project_name="hyperband")

This tuner is similar to the HalvingRandomSearchCV class we discussed in
Chapter 2: it starts by training many different models for few epochs, then it
eliminates the worst models and keeps only the top 1 / factor models (i.e., the
top third in this case), repeating this selection process until a single model is
left.  The max_epochs argument controls the max number of epochs that the
best model will be trained for. The whole process is repeated twice in this
case (hyperband_iterations=2). The total number of training epochs across all
models for each hyperband iteration is about max_epochs *
(log(max_epochs) / log(factor)) ** 2, so it’s about 44 epochs in this example.
The other arguments are the same as for kt.RandomSearch.
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Let’s run the Hyperband tuner now. We’ll use the TensorBoard callback, this
time pointing to the root log directory (the tuner will take care of using a
different subdirectory for each trial), as well as an EarlyStopping callback:

root_logdir = Path(hyperband_tuner.project_dir) / "tensorboard"
tensorboard_cb = tf.keras.callbacks.TensorBoard(root_logdir)
early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=2)
hyperband_tuner.search(X_train, y_train, epochs=10,
                       validation_data=(X_valid, y_valid),
                       callbacks=[early_stopping_cb, tensorboard_cb])

Now if you open TensorBoard, pointing --logdir to the
my_fashion_mnist/hyperband/tensorboard directory, you will see all the trial
results as they unfold. Make sure to visit the HPARAMS tab: it contains a
summary of all the hyperparameter combinations that were tried, along with
the corresponding metrics. Notice that there are three tabs inside the
HPARAMS tab: a table view, a parallel coordinates view, and a scatterplot
matrix view. In the lower part of the left panel, uncheck all metrics except for
validation.epoch_accuracy: this will make the graphs clearer. In the parallel
coordinates view, try selecting a range of high values in the
validation.epoch_accuracy column: this will filter only the hyperparameter
combinations that reached a good performance. Click one of the
hyperparameter combinations, and the corresponding learning curves will
appear at the bottom of the page. Take some time to go through each tab; this
will help you understand the effect of each hyperparameter on performance,
as well as the interactions between the hyperparameters.

Hyperband is smarter than pure random search in the way it allocates
resources, but at its core it still explores the hyperparameter space randomly;
it’s fast, but coarse. However, Keras Tuner also includes a
kt.BayesianOptimization tuner: this algorithm gradually learns which regions
of the hyperparameter space are most promising by fitting a probabilistic
model called a Gaussian process. This allows it to gradually zoom in on the
best hyperparameters. The downside is that the algorithm has its own
hyperparameters: alpha represents the level of noise you expect in the
performance measures across trials (it defaults to 10 ), and beta specifies–4



how much you want the algorithm to explore, instead of simply exploiting the
known good regions of hyperparameter space (it defaults to 2.6). Other than
that, this tuner can be used just like the previous ones:

bayesian_opt_tuner = kt.BayesianOptimization(
    MyClassificationHyperModel(), objective="val_accuracy", seed=42,
    max_trials=10, alpha=1e-4, beta=2.6,
    overwrite=True, directory="my_fashion_mnist", project_name="bayesian_opt")
bayesian_opt_tuner.search([...])

Hyperparameter tuning is still an active area of research, and many other
approaches are being explored. For example, check out DeepMind’s excellent
2017 paper,  where the authors used an evolutionary algorithm to jointly
optimize a population of models and their hyperparameters. Google has also
used an evolutionary approach, not just to search for hyperparameters but
also to explore all sorts of model architectures: it powers their AutoML
service on Google Vertex AI (see Chapter 19). The term AutoML refers to
any system that takes care of a large part of the ML workflow. Evolutionary
algorithms have even been used successfully to train individual neural
networks, replacing the ubiquitous gradient descent! For an example, see the
2017 post by Uber where the authors introduce their Deep Neuroevolution
technique.

But despite all this exciting progress and all these tools and services, it still
helps to have an idea of what values are reasonable for each hyperparameter
so that you can build a quick prototype and restrict the search space. The
following sections provide guidelines for choosing the number of hidden
layers and neurons in an MLP and for selecting good values for some of the
main hyperparameters.
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Number of Hidden Layers
For many problems, you can begin with a single hidden layer and get
reasonable results. An MLP with just one hidden layer can theoretically
model even the most complex functions, provided it has enough neurons. But
for complex problems, deep networks have a much higher parameter
efficiency than shallow ones: they can model complex functions using
exponentially fewer neurons than shallow nets, allowing them to reach much
better performance with the same amount of training data.

To understand why, suppose you are asked to draw a forest using some
drawing software, but you are forbidden to copy and paste anything. It would
take an enormous amount of time: you would have to draw each tree
individually, branch by branch, leaf by leaf. If you could instead draw one
leaf, copy and paste it to draw a branch, then copy and paste that branch to
create a tree, and finally copy and paste this tree to make a forest, you would
be finished in no time. Real-world data is often structured in such a
hierarchical way, and deep neural networks automatically take advantage of
this fact: lower hidden layers model low-level structures (e.g., line segments
of various shapes and orientations), intermediate hidden layers combine these
low-level structures to model intermediate-level structures (e.g., squares,
circles), and the highest hidden layers and the output layer combine these
intermediate structures to model high-level structures (e.g., faces).

Not only does this hierarchical architecture help DNNs converge faster to a
good solution, but it also improves their ability to generalize to new datasets.
For example, if you have already trained a model to recognize faces in
pictures and you now want to train a new neural network to recognize
hairstyles, you can kickstart the training by reusing the lower layers of the
first network. Instead of randomly initializing the weights and biases of the
first few layers of the new neural network, you can initialize them to the
values of the weights and biases of the lower layers of the first network. This
way the network will not have to learn from scratch all the low-level
structures that occur in most pictures; it will only have to learn the higher-
level structures (e.g., hairstyles). This is called transfer learning.



In summary, for many problems you can start with just one or two hidden
layers and the neural network will work just fine. For instance, you can easily
reach above 97% accuracy on the MNIST dataset using just one hidden layer
with a few hundred neurons, and above 98% accuracy using two hidden
layers with the same total number of neurons, in roughly the same amount of
training time. For more complex problems, you can ramp up the number of
hidden layers until you start overfitting the training set. Very complex tasks,
such as large image classification or speech recognition, typically require
networks with dozens of layers (or even hundreds, but not fully connected
ones, as you will see in Chapter 14), and they need a huge amount of training
data. You will rarely have to train such networks from scratch: it is much
more common to reuse parts of a pretrained state-of-the-art network that
performs a similar task. Training will then be a lot faster and require much
less data (we will discuss this in Chapter 11).



Number of Neurons per Hidden Layer
The number of neurons in the input and output layers is determined by the
type of input and output your task requires. For example, the MNIST task
requires 28 × 28 = 784 inputs and 10 output neurons.

As for the hidden layers, it used to be common to size them to form a
pyramid, with fewer and fewer neurons at each layer—the rationale being
that many low-level features can coalesce into far fewer high-level features.
A typical neural network for MNIST might have 3 hidden layers, the first
with 300 neurons, the second with 200, and the third with 100. However, this
practice has been largely abandoned because it seems that using the same
number of neurons in all hidden layers performs just as well in most cases, or
even better; plus, there is only one hyperparameter to tune, instead of one per
layer. That said, depending on the dataset, it can sometimes help to make the
first hidden layer bigger than the others.

Just like the number of layers, you can try increasing the number of neurons
gradually until the network starts overfitting. Alternatively, you can try
building a model with slightly more layers and neurons than you actually
need, then use early stopping and other regularization techniques to prevent it
from overfitting too much. Vincent Vanhoucke, a scientist at Google, has
dubbed this the “stretch pants” approach: instead of wasting time looking for
pants that perfectly match your size, just use large stretch pants that will
shrink down to the right size. With this approach, you avoid bottleneck layers
that could ruin your model. Indeed, if a layer has too few neurons, it will not
have enough representational power to preserve all the useful information
from the inputs (e.g., a layer with two neurons can only output 2D data, so if
it gets 3D data as input, some information will be lost). No matter how big
and powerful the rest of the network is, that information will never be
recovered.

TIP
In general you will get more bang for your buck by increasing the number of layers



instead of the number of neurons per layer.



Learning Rate, Batch Size, and Other Hyperparameters
The number of hidden layers and neurons are not the only hyperparameters
you can tweak in an MLP. Here are some of the most important ones, as well
as tips on how to set them:

Learning rate

The learning rate is arguably the most important hyperparameter. In
general, the optimal learning rate is about half of the maximum learning
rate (i.e., the learning rate above which the training algorithm diverges, as
we saw in Chapter 4). One way to find a good learning rate is to train the
model for a few hundred iterations, starting with a very low learning rate
(e.g., 10 ) and gradually increasing it up to a very large value (e.g., 10).
This is done by multiplying the learning rate by a constant factor at each
iteration (e.g., by (10 / 10 )  to go from 10  to 10 in 500 iterations).
If you plot the loss as a function of the learning rate (using a log scale for
the learning rate), you should see it dropping at first. But after a while, the
learning rate will be too large, so the loss will shoot back up: the optimal
learning rate will be a bit lower than the point at which the loss starts to
climb (typically about 10 times lower than the turning point). You can
then reinitialize your model and train it normally using this good learning
rate. We will look at more learning rate optimization techniques in
Chapter 11.

Optimizer

Choosing a better optimizer than plain old mini-batch gradient descent
(and tuning its hyperparameters) is also quite important. We will examine
several advanced optimizers in Chapter 11.

Batch size

The batch size can have a significant impact on your model’s
performance and training time. The main benefit of using large batch
sizes is that hardware accelerators like GPUs can process them efficiently
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(see Chapter 19), so the training algorithm will see more instances per
second. Therefore, many researchers and practitioners recommend using
the largest batch size that can fit in GPU RAM. There’s a catch, though:
in practice, large batch sizes often lead to training instabilities, especially
at the beginning of training, and the resulting model may not generalize
as well as a model trained with a small batch size. In April 2018, Yann
LeCun even tweeted “Friends don’t let friends use mini-batches larger
than 32”, citing a 2018 paper  by Dominic Masters and Carlo Luschi
which concluded that using small batches (from 2 to 32) was preferable
because small batches led to better models in less training time. Other
research points in the opposite direction, however. For example, in 2017,
papers by Elad Hoffer et al.  and Priya Goyal et al.  showed that it was
possible to use very large batch sizes (up to 8,192) along with various
techniques such as warming up the learning rate (i.e., starting training
with a small learning rate, then ramping it up, as discussed in Chapter 11)
and to obtain very short training times, without any generalization gap.
So, one strategy is to try to using a large batch size, with learning rate
warmup, and if training is unstable or the final performance is
disappointing, then try using a small batch size instead.

Activation function

We discussed how to choose the activation function earlier in this
chapter: in general, the ReLU activation function will be a good default
for all hidden layers, but for the output layer it really depends on your
task.

Number of iterations

In most cases, the number of training iterations does not actually need to
be tweaked: just use early stopping instead.

TIP
The optimal learning rate depends on the other hyperparameters—especially the batch size
—so if you modify any hyperparameter, make sure to update the learning rate as well.
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For more best practices regarding tuning neural network hyperparameters,
check out the excellent 2018 paper  by Leslie Smith.

This concludes our introduction to artificial neural networks and their
implementation with Keras. In the next few chapters, we will discuss
techniques to train very deep nets. We will also explore how to customize
models using TensorFlow’s lower-level API and how to load and preprocess
data efficiently using the tf.data API. And we will dive into other popular
neural network architectures: convolutional neural networks for image
processing, recurrent neural networks and transformers for sequential data
and text, autoencoders for representation learning, and generative adversarial
networks to model and generate data. 
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Exercises
1. The TensorFlow playground is a handy neural network simulator built

by the TensorFlow team. In this exercise, you will train several binary
classifiers in just a few clicks, and tweak the model’s architecture and its
hyperparameters to gain some intuition on how neural networks work
and what their hyperparameters do. Take some time to explore the
following:

a. The patterns learned by a neural net. Try training the default neural
network by clicking the Run button (top left). Notice how it quickly
finds a good solution for the classification task. The neurons in the
first hidden layer have learned simple patterns, while the neurons in
the second hidden layer have learned to combine the simple
patterns of the first hidden layer into more complex patterns. In
general, the more layers there are, the more complex the patterns
can be.

b. Activation functions. Try replacing the tanh activation function
with a ReLU activation function, and train the network again.
Notice that it finds a solution even faster, but this time the
boundaries are linear. This is due to the shape of the ReLU
function.

c. The risk of local minima. Modify the network architecture to have
just one hidden layer with three neurons. Train it multiple times (to
reset the network weights, click the Reset button next to the Play
button). Notice that the training time varies a lot, and sometimes it
even gets stuck in a local minimum.

d. What happens when neural nets are too small. Remove one neuron
to keep just two. Notice that the neural network is now incapable of
finding a good solution, even if you try multiple times. The model
has too few parameters and systematically underfits the training set.

https://playground.tensorflow.org


e. What happens when neural nets are large enough. Set the number
of neurons to eight, and train the network several times. Notice that
it is now consistently fast and never gets stuck. This highlights an
important finding in neural network theory: large neural networks
rarely get stuck in local minima, and even when they do these local
optima are often almost as good as the global optimum. However,
they can still get stuck on long plateaus for a long time.

f. The risk of vanishing gradients in deep networks. Select the spiral
dataset (the bottom-right dataset under “DATA”), and change the
network architecture to have four hidden layers with eight neurons
each. Notice that training takes much longer and often gets stuck on
plateaus for long periods of time. Also notice that the neurons in
the highest layers (on the right) tend to evolve faster than the
neurons in the lowest layers (on the left). This problem, called the
vanishing gradients problem, can be alleviated with better weight
initialization and other techniques, better optimizers (such as
AdaGrad or Adam), or batch normalization (discussed in
Chapter 11).

g. Go further. Take an hour or so to play around with other parameters
and get a feel for what they do, to build an intuitive understanding
about neural networks.

2. Draw an ANN using the original artificial neurons (like the ones in
Figure 10-3) that computes A ⊕ B (where ⊕ represents the XOR
operation). Hint: A ⊕ B = (A ∧ ¬ B) ∨ (¬ A ∧ B).

3. Why is it generally preferable to use a logistic regression classifier
rather than a classic perceptron (i.e., a single layer of threshold logic
units trained using the perceptron training algorithm)? How can you
tweak a perceptron to make it equivalent to a logistic regression
classifier?

4. Why was the sigmoid activation function a key ingredient in training the
first MLPs?



5. Name three popular activation functions. Can you draw them?

6. Suppose you have an MLP composed of one input layer with 10
passthrough neurons, followed by one hidden layer with 50 artificial
neurons, and finally one output layer with 3 artificial neurons. All
artificial neurons use the ReLU activation function.

a. What is the shape of the input matrix X?

b. What are the shapes of the hidden layer’s weight matrix W  and
bias vector b ?

c. What are the shapes of the output layer’s weight matrix W  and
bias vector b ?

d. What is the shape of the network’s output matrix Y?

e. Write the equation that computes the network’s output matrix Y as
a function of X, W , b , W , and b .

7. How many neurons do you need in the output layer if you want to
classify email into spam or ham? What activation function should you
use in the output layer? If instead you want to tackle MNIST, how many
neurons do you need in the output layer, and which activation function
should you use? What about for getting your network to predict housing
prices, as in Chapter 2?

8. What is backpropagation and how does it work? What is the difference
between backpropagation and reverse-mode autodiff?

9. Can you list all the hyperparameters you can tweak in a basic MLP? If
the MLP overfits the training data, how could you tweak these
hyperparameters to try to solve the problem?

10. Train a deep MLP on the MNIST dataset (you can load it using tf.keras.
data sets.mnist.load_data()). See if you can get over 98% accuracy by
manually tuning the hyperparameters. Try searching for the optimal
learning rate by using the approach presented in this chapter (i.e., by
growing the learning rate exponentially, plotting the loss, and finding
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the point where the loss shoots up). Next, try tuning the hyperparameters
using Keras Tuner with all the bells and whistles—save checkpoints, use
early stopping, and plot learning curves using TensorBoard.

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.

1  You can get the best of both worlds by being open to biological inspirations without being
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Chapter 11. Training Deep Neural
Networks

In Chapter 10 you built, trained, and fine-tuned your first artificial neural
networks. But they were shallow nets, with just a few hidden layers. What if
you need to tackle a complex problem, such as detecting hundreds of types of
objects in high-resolution images? You may need to train a much deeper
ANN, perhaps with 10 layers or many more, each containing hundreds of
neurons, linked by hundreds of thousands of connections. Training a deep
neural network isn’t a walk in the park. Here are some of the problems you
could run into:

You may be faced with the problem of gradients growing ever smaller
or larger, when flowing backward through the DNN during training.
Both of these problems make lower layers very hard to train.

You might not have enough training data for such a large network, or it
might be too costly to label.

Training may be extremely slow.

A model with millions of parameters would severely risk overfitting the
training set, especially if there are not enough training instances or if
they are too noisy.

In this chapter we will go through each of these problems and present
techniques to solve them. We will start by exploring the vanishing and
exploding gradients problems and some of their most popular solutions. Next,
we will look at transfer learning and unsupervised pretraining, which can
help you tackle complex tasks even when you have little labeled data. Then
we will discuss various optimizers that can speed up training large models
tremendously. Finally, we will cover a few popular regularization techniques
for large neural networks.



With these tools, you will be able to train very deep nets. Welcome to deep
learning!



The Vanishing/Exploding Gradients Problems
As discussed in Chapter 10, the backpropagation algorithm’s second phase
works by going from the output layer to the input layer, propagating the error
gradient along the way. Once the algorithm has computed the gradient of the
cost function with regard to each parameter in the network, it uses these
gradients to update each parameter with a gradient descent step.

Unfortunately, gradients often get smaller and smaller as the algorithm
progresses down to the lower layers. As a result, the gradient descent update
leaves the lower layers’ connection weights virtually unchanged, and training
never converges to a good solution. This is called the vanishing gradients
problem. In some cases, the opposite can happen: the gradients can grow
bigger and bigger until layers get insanely large weight updates and the
algorithm diverges. This is the exploding gradients problem, which surfaces
most often in recurrent neural networks (see Chapter 15). More generally,
deep neural networks suffer from unstable gradients; different layers may
learn at widely different speeds.

This unfortunate behavior was empirically observed long ago, and it was one
of the reasons deep neural networks were mostly abandoned in the early
2000s. It wasn’t clear what caused the gradients to be so unstable when
training a DNN, but some light was shed in a 2010 paper by Xavier Glorot
and Yoshua Bengio.   The authors found a few suspects, including the
combination of the popular sigmoid (logistic) activation function and the
weight initialization technique that was most popular at the time (i.e., a
normal distribution with a mean of 0 and a standard deviation of 1). In short,
they showed that with this activation function and this initialization scheme,
the variance of the outputs of each layer is much greater than the variance of
its inputs. Going forward in the network, the variance keeps increasing after
each layer until the activation function saturates at the top layers. This
saturation is actually made worse by the fact that the sigmoid function has a
mean of 0.5, not 0 (the hyperbolic tangent function has a mean of 0 and
behaves slightly better than the sigmoid function in deep networks).
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Looking at the sigmoid activation function (see Figure 11-1), you can see that
when inputs become large (negative or positive), the function saturates at 0 or
1, with a derivative extremely close to 0 (i.e., the curve is flat at both
extremes). Thus, when backpropagation kicks in it has virtually no gradient
to propagate back through the network, and what little gradient exists keeps
getting diluted as backpropagation progresses down through the top layers, so
there is really nothing left for the lower layers.

Figure 11-1. Sigmoid activation function saturation



Glorot and He Initialization
In their paper, Glorot and Bengio propose a way to significantly alleviate the
unstable gradients problem. They point out that we need the signal to flow
properly in both directions: in the forward direction when making
predictions, and in the reverse direction when backpropagating gradients. We
don’t want the signal to die out, nor do we want it to explode and saturate.
For the signal to flow properly, the authors argue that we need the variance of
the outputs of each layer to be equal to the variance of its inputs,  and we
need the gradients to have equal variance before and after flowing through a
layer in the reverse direction (please check out the paper if you are interested
in the mathematical details). It is actually not possible to guarantee both
unless the layer has an equal number of inputs and outputs (these numbers are
called the fan-in and fan-out of the layer), but Glorot and Bengio proposed a
good compromise that has proven to work very well in practice: the
connection weights of each layer must be initialized randomly as described in
Equation 11-1, where fan  = (fan  + fan ) / 2. This initialization strategy
is called Xavier initialization or Glorot initialization, after the paper’s first
author.

Equation 11-1. Glorot initialization (when using the sigmoid activation function)

Normal distribution with mean 0 and variance σ2=1fanavgOr a uniform
distribution between -r and +r, with r=3fanavg

If you replace fan  with fan  in Equation 11-1, you get an initialization
strategy that Yann LeCun proposed in the 1990s. He called it LeCun
initialization. Genevieve Orr and Klaus-Robert Müller even recommended it
in their 1998 book Neural Networks: Tricks of the Trade (Springer). LeCun
initialization is equivalent to Glorot initialization when fan  = fan . It took
over a decade for researchers to realize how important this trick is. Using
Glorot initialization can speed up training considerably, and it is one of the
practices that led to the success of deep learning.

Some papers   have provided similar strategies for different activation
functions. These strategies differ only by the scale of the variance and
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whether they use fan  or fan , as shown in Table 11-1 (for the uniform
distribution, just use r=3σ2). The initialization strategy proposed for the
ReLU activation function and its variants is called He initialization or
Kaiming initialization, after the paper’s first author. For SELU, use Yann
LeCun’s initialization method, preferably with a normal distribution. We will
cover all these activation functions shortly.

Table 11-1. Initialization parameters for each type of activation
function

Initialization Activation functions σ² (Normal)

Glorot None, tanh, sigmoid, softmax 1 / fan

He ReLU, Leaky ReLU, ELU, GELU, Swish, Mish 2 / fan

LeCun SELU 1 / fan

By default, Keras uses Glorot initialization with a uniform distribution. When
you create a layer, you can switch to He initialization by setting
kernel_initializer="he_uniform" or kernel_initializer="he_normal" like this:

import tensorflow as tf

dense = tf.keras.layers.Dense(50, activation="relu",
                              kernel_initializer="he_normal")

Alternatively, you can obtain any of the initializations listed in Table 11-1
and more using the VarianceScaling initializer. For example, if you want He
initialization with a uniform distribution and based on fan  (rather than
fan ), you can use the following code:

he_avg_init = tf.keras.initializers.VarianceScaling(scale=2., mode="fan_avg",
                                                    distribution="uniform")
dense = tf.keras.layers.Dense(50, activation="sigmoid",
                              kernel_initializer=he_avg_init)
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Better Activation Functions
One of the insights in the 2010 paper by Glorot and Bengio was that the
problems with unstable gradients were in part due to a poor choice of
activation function. Until then most people had assumed that if Mother
Nature had chosen to use roughly sigmoid activation functions in biological
neurons, they must be an excellent choice. But it turns out that other
activation functions behave much better in deep neural networks—in
particular, the ReLU activation function, mostly because it does not saturate
for positive values, and also because it is very fast to compute.

Unfortunately, the ReLU activation function is not perfect. It suffers from a
problem known as the dying ReLUs: during training, some neurons
effectively “die”, meaning they stop outputting anything other than 0. In
some cases, you may find that half of your network’s neurons are dead,
especially if you used a large learning rate. A neuron dies when its weights
get tweaked in such a way that the input of the ReLU function (i.e., the
weighted sum of the neuron’s inputs plus its bias term) is negative for all
instances in the training set. When this happens, it just keeps outputting
zeros, and gradient descent does not affect it anymore because the gradient of
the ReLU function is zero when its input is negative.
To solve this problem, you may want to use a variant of the ReLU function,
such as the leaky ReLU.

Leaky ReLU

The leaky ReLU activation function is defined as LeakyReLU (z) = max(αz,
z) (see Figure 11-2). The hyperparameter α defines how much the function
“leaks”: it is the slope of the function for z < 0. Having a slope for z < 0
ensures that leaky ReLUs never die; they can go into a long coma, but they
have a chance to eventually wake up. A 2015 paper by Bing Xu et al.
compared several variants of the ReLU activation function, and one of its
conclusions was that the leaky variants always outperformed the strict ReLU
activation function. In fact, setting α = 0.2 (a huge leak) seemed to result in

4

α

5

https://homl.info/49


better performance than α = 0.01 (a small leak). The paper also evaluated the
randomized leaky ReLU (RReLU), where α is picked randomly in a given
range during training and is fixed to an average value during testing. RReLU
also performed fairly well and seemed to act as a regularizer, reducing the
risk of overfitting the training set. Finally, the paper evaluated the parametric
leaky ReLU (PReLU), where α is authorized to be learned during training:
instead of being a hyperparameter, it becomes a parameter that can be
modified by backpropagation like any other parameter. PReLU was reported
to strongly outperform ReLU on large image datasets, but on smaller datasets
it runs the risk of overfitting the training set.

Figure 11-2. Leaky ReLU: like ReLU, but with a small slope for negative values

Keras includes the classes LeakyReLU and PReLU in the tf.keras.layers
package. Just like for other ReLU variants, you should use He initialization
with these. For example:

leaky_relu = tf.keras.layers.LeakyReLU(alpha=0.2)  # defaults to alpha=0.3
dense = tf.keras.layers.Dense(50, activation=leaky_relu,
                              kernel_initializer="he_normal")

If you prefer, you can also use LeakyReLU as a separate layer in your model;
it makes no difference for training and predictions:



model = tf.keras.models.Sequential([
    [...]  # more layers
    tf.keras.layers.Dense(50, kernel_initializer="he_normal"),  # no activation
    tf.keras.layers.LeakyReLU(alpha=0.2),  # activation as a separate layer
    [...]  # more layers
])

For PReLU, replace LeakyReLU with PReLU. There is currently no official
implementation of RReLU in Keras, but you can fairly easily implement your
own (to learn how to do that, see the exercises at the end of Chapter 12).

ReLU, leaky ReLU, and PReLU all suffer from the fact that they are not
smooth functions: their derivatives abruptly change (at z = 0). As we saw in
Chapter 4 when we discussed lasso, this sort of discontinuity can make
gradient descent bounce around the optimum, and slow down convergence.
So now we will look at some smooth variants of the ReLU activation
function, starting with ELU and SELU.

ELU and SELU

In 2015, a paper by Djork-Arné Clevert et al.  proposed a new activation
function, called the exponential linear unit (ELU), that outperformed all the
ReLU variants in the authors’ experiments: training time was reduced, and
the neural network performed better on the test set. Equation 11-2 shows this
activation function’s definition.

Equation 11-2. ELU activation function

ELU α ( z ) = α ( exp ( z ) - 1 ) if z < 0 z if z ≥ 0

The ELU activation function looks a lot like the ReLU function (see
Figure 11-3), with a few major differences:

It takes on negative values when z < 0, which allows the unit to have an
average output closer to 0 and helps alleviate the vanishing gradients
problem. The hyperparameter α defines the opposite of the value that the
ELU function approaches when z is a large negative number. It is
usually set to 1, but you can tweak it like any other hyperparameter.

It has a nonzero gradient for z < 0, which avoids the dead neurons
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problem.

If α is equal to 1 then the function is smooth everywhere, including
around z = 0, which helps speed up gradient descent since it does not
bounce as much to the left and right of z = 0.

Using ELU with Keras is as easy as setting activation="elu", and like with
other ReLU variants, you should use He initialization. The main drawback of
the ELU activation function is that it is slower to compute than the ReLU
function and its variants (due to the use of the exponential function). Its faster
convergence rate during training may compensate for that slow computation,
but still, at test time an ELU network will be a bit slower than a ReLU
network.

Figure 11-3. ELU and SELU activation functions

Not long after, a 2017 paper by Günter Klambauer et al.  introduced the
scaled ELU (SELU) activation function: as its name suggests, it is a scaled
variant of the ELU activation function (about 1.05 times ELU, using α ≈
1.67). The authors showed that if you build a neural network composed
exclusively of a stack of dense layers (i.e., an MLP), and if all hidden layers
use the SELU activation function, then the network will self-normalize: the
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output of each layer will tend to preserve a mean of 0 and a standard
deviation of 1 during training, which solves the vanishing/exploding
gradients problem. As a result, the SELU activation function may outperform
other activation functions for MLPs, especially deep ones. To use it with
Keras, just set activation="selu". There are, however, a few conditions for
self-normalization to happen (see the paper for the mathematical
justification):

The input features must be standardized: mean 0 and standard deviation
1.

Every hidden layer’s weights must be initialized using LeCun normal
initialization. In Keras, this means setting
kernel_initializer="lecun_normal".

The self-normalizing property is only guaranteed with plain MLPs. If
you try to use SELU in other architectures, like recurrent networks (see
Chapter 15) or networks with skip connections (i.e., connections that
skip layers, such as in Wide & Deep nets), it will probably not
outperform ELU.

You cannot use regularization techniques like ℓ  or ℓ  regularization,
max-norm, batch-norm, or regular dropout (these are discussed later in
this chapter).

These are significant constraints, so despite its promises, SELU did not gain a
lot of traction. Moreover, three more activation functions seem to outperform
it quite consistently on most tasks: GELU, Swish, and Mish.

GELU, Swish, and Mish

GELU was introduced in a 2016 paper by Dan Hendrycks and Kevin
Gimpel.  Once again, you can think of it as a smooth variant of the ReLU
activation function. Its definition is given in Equation 11-3, where Φ is the
standard Gaussian cumulative distribution function (CDF): Φ(z) corresponds
to the probability that a value sampled randomly from a normal distribution
of mean 0 and variance 1 is lower than z.

1 2
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Equation 11-3. GELU activation function

GELU(z)=z Φ(z)

As you can see in Figure 11-4, GELU resembles ReLU: it approaches 0 when
its input z is very negative, and it approaches z when z is very positive.
However, whereas all the activation functions we’ve discussed so far were
both convex and monotonic,  the GELU activation function is neither: from
left to right, it starts by going straight, then it wiggles down, reaches a low
point around –0.17 (near z ≈ –0.75), and finally bounces up and ends up
going straight toward the top right. This fairly complex shape and the fact
that it has a curvature at every point may explain why it works so well,
especially for complex tasks: gradient descent may find it easier to fit
complex patterns. In practice, it often outperforms every other activation
function discussed so far. However, it is a bit more computationally
intensive, and the performance boost it provides is not always sufficient to
justify the extra cost. That said, it is possible to show that it is approximately
equal to zσ(1.702 z), where σ is the sigmoid function: using this
approximation also works very well, and it has the advantage of being much
faster to compute.

Figure 11-4. GELU, Swish, parametrized Swish, and Mish activation functions
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The GELU paper also introduced the sigmoid linear unit (SiLU) activation
function, which is equal to zσ(z), but it was outperformed by GELU in the
authors’ tests. Interestingly, a 2017 paper by Prajit Ramachandran et al.
rediscovered the SiLU function by automatically searching for good
activation functions. The authors named it Swish, and the name caught on. In
their paper, Swish outperformed every other function, including GELU.
Ramachandran et al. later generalized Swish by adding an extra
hyperparameter β to scale the sigmoid function’s input. The generalized
Swish function is Swish (z) = zσ(βz), so GELU is approximately equal to the
generalized Swish function using β = 1.702. You can tune β like any other
hyperparameter. Alternatively, it’s also possible to make β trainable and let
gradient descent optimize it: much like PReLU, this can make your model
more powerful, but it also runs the risk of overfitting the data.

Another quite similar activation function is Mish, which was introduced in a
2019 paper by Diganta Misra.  It is defined as mish(z) = ztanh(softplus(z)),
where softplus(z) = log(1 + exp(z)). Just like GELU and Swish, it is a smooth,
nonconvex, and nonmonotonic variant of ReLU, and once again the author
ran many experiments and found that Mish generally outperformed other
activation functions—even Swish and GELU, by a tiny margin. Figure 11-4
shows GELU, Swish (both with the default β = 1 and with β = 0.6), and lastly
Mish. As you can see, Mish overlaps almost perfectly with Swish when z is
negative, and almost perfectly with GELU when z is positive.

TIP
So, which activation function should you use for the hidden layers of your deep neural
networks? ReLU remains a good default for simple tasks: it’s often just as good as the
more sophisticated activation functions, plus it’s very fast to compute, and many libraries
and hardware accelerators provide ReLU-specific optimizations. However, Swish is
probably a better default for more complex tasks, and you can even try parametrized
Swish with a learnable β parameter for the most complex tasks. Mish may give you
slightly better results, but it requires a bit more compute. If you care a lot about runtime
latency, then you may prefer leaky ReLU, or parametrized leaky ReLU for more complex
tasks. For deep MLPs, give SELU a try, but make sure to respect the constraints listed
earlier. If you have spare time and computing power, you can use cross-validation to
evaluate other activation functions as well.
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Keras supports GELU and Swish out of the box; just use activation="gelu" or
activation="swish". However, it does not support Mish or the generalized
Swish activation function yet (but see Chapter 12 to see how to implement
your own activation functions and layers).

That’s all for activation functions! Now, let’s look at a completely different
way to solve the unstable gradients problem: batch normalization.



Batch Normalization
Although using He initialization along with ReLU (or any of its variants) can
significantly reduce the danger of the vanishing/exploding gradients
problems at the beginning of training, it doesn’t guarantee that they won’t
come back during training.

In a 2015 paper,  Sergey Ioffe and Christian Szegedy proposed a
technique called batch normalization (BN) that addresses these problems.
The technique consists of adding an operation in the model just before or
after the activation function of each hidden layer. This operation simply zero-
centers and normalizes each input, then scales and shifts the result using two
new parameter vectors per layer: one for scaling, the other for shifting. In
other words, the operation lets the model learn the optimal scale and mean of
each of the layer’s inputs. In many cases, if you add a BN layer as the very
first layer of your neural network, you do not need to standardize your
training set. That is, there’s no need for StandardScaler or Normalization; the
BN layer will do it for you (well, approximately, since it only looks at one
batch at a time, and it can also rescale and shift each input feature).

In order to zero-center and normalize the inputs, the algorithm needs to
estimate each input’s mean and standard deviation. It does so by evaluating
the mean and standard deviation of the input over the current mini-batch
(hence the name “batch normalization”). The whole operation is summarized
step by step in Equation 11-4.

Equation 11-4. Batch normalization algorithm

1 . μ B = 1 m B ∑ i=1 m B x (i) 2 . σ B 2 = 1 m B ∑ i=1 m B (x (i) -μ B ) 2 3
. x ^ (i) = x (i) -μ B σ B 2 +ε 4 . z (i) = γ ⊗ x ^ (i) + β

In this algorithm:

μ  is the vector of input means, evaluated over the whole mini-batch B
(it contains one mean per input).

m  is the number of instances in the mini-batch.
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σ  is the vector of input standard deviations, also evaluated over the
whole mini-batch (it contains one standard deviation per input).

x ^  is the vector of zero-centered and normalized inputs for instance i.

ε is a tiny number that avoids division by zero and ensures the gradients
don’t grow too large (typically 10 ). This is called a smoothing term.

γ is the output scale parameter vector for the layer (it contains one scale
parameter per input).

⊗ represents element-wise multiplication (each input is multiplied by its
corresponding output scale parameter).

β is the output shift (offset) parameter vector for the layer (it contains
one offset parameter per input). Each input is offset by its corresponding
shift parameter.

z  is the output of the BN operation. It is a rescaled and shifted version
of the inputs.

So during training, BN standardizes its inputs, then rescales and offsets them.
Good! What about at test time? Well, it’s not that simple. Indeed, we may
need to make predictions for individual instances rather than for batches of
instances: in this case, we will have no way to compute each input’s mean
and standard deviation. Moreover, even if we do have a batch of instances, it
may be too small, or the instances may not be independent and identically
distributed, so computing statistics over the batch instances would be
unreliable. One solution could be to wait until the end of training, then run
the whole training set through the neural network and compute the mean and
standard deviation of each input of the BN layer. These “final” input means
and standard deviations could then be used instead of the batch input means
and standard deviations when making predictions. However, most
implementations of batch normalization estimate these final statistics during
training by using a moving average of the layer’s input means and standard
deviations. This is what Keras does automatically when you use the
BatchNormalization layer. To sum up, four parameter vectors are learned in

B
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each batch-normalized layer: γ (the output scale vector) and β (the output
offset vector) are learned through regular backpropagation, and μ (the final
input mean vector) and σ (the final input standard deviation vector) are
estimated using an exponential moving average. Note that μ and σ are
estimated during training, but they are used only after training (to replace the
batch input means and standard deviations in Equation 11-4).

Ioffe and Szegedy demonstrated that batch normalization considerably
improved all the deep neural networks they experimented with, leading to a
huge improvement in the ImageNet classification task (ImageNet is a large
database of images classified into many classes, commonly used to evaluate
computer vision systems). The vanishing gradients problem was strongly
reduced, to the point that they could use saturating activation functions such
as the tanh and even the sigmoid activation function. The networks were also
much less sensitive to the weight initialization. The authors were able to use
much larger learning rates, significantly speeding up the learning process.
Specifically, they note that:

Applied to a state-of-the-art image classification model, batch
normalization achieves the same accuracy with 14 times fewer training
steps, and beats the original model by a significant margin. […] Using an
ensemble of batch-normalized networks, we improve upon the best
published result on ImageNet classification: reaching 4.9% top-5
validation error (and 4.8% test error), exceeding the accuracy of human
raters.

Finally, like a gift that keeps on giving, batch normalization acts like a
regularizer, reducing the need for other regularization techniques (such as
dropout, described later in this chapter).

Batch normalization does, however, add some complexity to the model
(although it can remove the need for normalizing the input data, as discussed
earlier). Moreover, there is a runtime penalty: the neural network makes
slower predictions due to the extra computations required at each layer.
Fortunately, it’s often possible to fuse the BN layer with the previous layer
after training, thereby avoiding the runtime penalty. This is done by updating
the previous layer’s weights and biases so that it directly produces outputs of



the appropriate scale and offset. For example, if the previous layer computes
XW + b, then the BN layer will compute γ ⊗ (XW + b – μ) / σ + β (ignoring
the smoothing term ε in the denominator). If we define W′ = γ⊗W / σ and b′
= γ ⊗ (b – μ) / σ + β, the equation simplifies to XW′ + b′. So, if we replace
the previous layer’s weights and biases (W and b) with the updated weights
and biases (W′ and b′), we can get rid of the BN layer (TFLite’s converter
does this automatically; see Chapter 19).

NOTE
You may find that training is rather slow, because each epoch takes much more time when
you use batch normalization. This is usually counterbalanced by the fact that convergence
is much faster with BN, so it will take fewer epochs to reach the same performance. All in
all, wall time will usually be shorter (this is the time measured by the clock on your wall).

Implementing batch normalization with Keras

As with most things with Keras, implementing batch normalization is
straightforward and intuitive. Just add a BatchNormalization layer before or
after each hidden layer’s activation function. You may also add a BN layer as
the first layer in your model, but a plain Normalization layer generally
performs just as well in this location (its only drawback is that you must first
call its adapt() method). For example, this model applies BN after every
hidden layer and as the first layer in the model (after flattening the input
images):

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=[28, 28]),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Dense(300, activation="relu",
                          kernel_initializer="he_normal"),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Dense(100, activation="relu",
                          kernel_initializer="he_normal"),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Dense(10, activation="softmax")
])



That’s all! In this tiny example with just two hidden layers batch
normalization is unlikely to have a large impact, but for deeper networks it
can make a tremendous difference.

Let’s display the model summary:

>>> model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
flatten (Flatten)            (None, 784)               0
_________________________________________________________________
batch_normalization (BatchNo (None, 784)               3136
_________________________________________________________________
dense (Dense)                (None, 300)               235500
_________________________________________________________________
batch_normalization_1 (Batch (None, 300)               1200
_________________________________________________________________
dense_1 (Dense)              (None, 100)               30100
_________________________________________________________________
batch_normalization_2 (Batch (None, 100)               400
_________________________________________________________________
dense_2 (Dense)              (None, 10)                1010
=================================================================
Total params: 271,346
Trainable params: 268,978
Non-trainable params: 2,368
_________________________________________________________________

As you can see, each BN layer adds four parameters per input: γ, β, μ, and σ
(for example, the first BN layer adds 3,136 parameters, which is 4 × 784).
The last two parameters, μ and σ, are the moving averages; they are not
affected by backpropagation, so Keras calls them “non-trainable”  (if you
count the total number of BN parameters, 3,136 + 1,200 + 400, and divide by
2, you get 2,368, which is the total number of non-trainable parameters in this
model).

Let’s look at the parameters of the first BN layer. Two are trainable (by
backpropagation), and two are not:

>>> [(var.name, var.trainable) for var in model.layers[1].variables]
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[('batch_normalization/gamma:0', True),
 ('batch_normalization/beta:0', True),
 ('batch_normalization/moving_mean:0', False),
 ('batch_normalization/moving_variance:0', False)]

The authors of the BN paper argued in favor of adding the BN layers before
the activation functions, rather than after (as we just did). There is some
debate about this, as which is preferable seems to depend on the task—you
can experiment with this too to see which option works best on your dataset.
To add the BN layers before the activation function, you must remove the
activation functions from the hidden layers and add them as separate layers
after the BN layers. Moreover, since a batch normalization layer includes one
offset parameter per input, you can remove the bias term from the previous
layer by passing use_bias=False when creating it. Lastly, you can usually
drop the first BN layer to avoid sandwiching the first hidden layer between
two BN layers. The updated code looks like this:

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=[28, 28]),
    tf.keras.layers.Dense(300, kernel_initializer="he_normal", use_bias=False),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Activation("relu"),
    tf.keras.layers.Dense(100, kernel_initializer="he_normal", use_bias=False),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Activation("relu"),
    tf.keras.layers.Dense(10, activation="softmax")
])

The BatchNormalization class has quite a few hyperparameters you can
tweak. The defaults will usually be fine, but you may occasionally need to
tweak the momentum. This hyperparameter is used by the
BatchNormalization layer when it updates the exponential moving averages;
given a new value v (i.e., a new vector of input means or standard deviations
computed over the current batch), the layer updates the running average v^
using the following equation:

v ^ ← v ^ × momentum + v × ( 1 - momentum )

A good momentum value is typically close to 1; for example, 0.9, 0.99, or



0.999. You want more 9s for larger datasets and for smaller mini-batches.

Another important hyperparameter is axis: it determines which axis should be
normalized. It defaults to –1, meaning that by default it will normalize the
last axis (using the means and standard deviations computed across the other
axes). When the input batch is 2D (i.e., the batch shape is [batch size,
features]), this means that each input feature will be normalized based on the
mean and standard deviation computed across all the instances in the batch.
For example, the first BN layer in the previous code example will
independently normalize (and rescale and shift) each of the 784 input
features. If we move the first BN layer before the Flatten layer, then the input
batches will be 3D, with shape [batch size, height, width]; therefore, the BN
layer will compute 28 means and 28 standard deviations (1 per column of
pixels, computed across all instances in the batch and across all rows in the
column), and it will normalize all pixels in a given column using the same
mean and standard deviation. There will also be just 28 scale parameters and
28 shift parameters. If instead you still want to treat each of the 784 pixels
independently, then you should set axis=[1, 2].

Batch normalization has become one of the most-used layers in deep neural
networks, especially deep convolutional neural networks discussed in
(Chapter 14), to the point that it is often omitted in the architecture diagrams:
it is assumed that BN is added after every layer. Now let’s look at one last
technique to stabilize gradients during training: gradient clipping.



Gradient Clipping
Another technique to mitigate the exploding gradients problem is to clip the
gradients during backpropagation so that they never exceed some threshold.
This is called gradient clipping.  This technique is generally used in
recurrent neural networks, where using batch normalization is tricky (as you
will see in Chapter 15).

In Keras, implementing gradient clipping is just a matter of setting the
clipvalue or clipnorm argument when creating an optimizer, like this:

optimizer = tf.keras.optimizers.SGD(clipvalue=1.0)
model.compile([...], optimizer=optimizer)

This optimizer will clip every component of the gradient vector to a value
between –1.0 and 1.0. This means that all the partial derivatives of the loss
(with regard to each and every trainable parameter) will be clipped between –
1.0 and 1.0. The threshold is a hyperparameter you can tune. Note that it may
change the orientation of the gradient vector. For instance, if the original
gradient vector is [0.9, 100.0], it points mostly in the direction of the second
axis; but once you clip it by value, you get [0.9, 1.0], which points roughly at
the diagonal between the two axes. In practice, this approach works well. If
you want to ensure that gradient clipping does not change the direction of the
gradient vector, you should clip by norm by setting clipnorm instead of
clipvalue. This will clip the whole gradient if its ℓ  norm is greater than the
threshold you picked. For example, if you set clipnorm=1.0, then the vector
[0.9, 100.0] will be clipped to [0.00899964, 0.9999595], preserving its
orientation but almost eliminating the first component. If you observe that the
gradients explode during training (you can track the size of the gradients
using TensorBoard), you may want to try clipping by value or clipping by
norm, with different thresholds, and see which option performs best on the
validation set.
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Reusing Pretrained Layers
It is generally not a good idea to train a very large DNN from scratch without
first trying to find an existing neural network that accomplishes a similar task
to the one you are trying to tackle (I will discuss how to find them in
Chapter 14). If you find such as neural network, then you can generally reuse
most of its layers, except for the top ones. This technique is called transfer
learning. It will not only speed up training considerably, but also requires
significantly less training data.

Suppose you have access to a DNN that was trained to classify pictures into
100 different categories, including animals, plants, vehicles, and everyday
objects, and you now want to train a DNN to classify specific types of
vehicles. These tasks are very similar, even partly overlapping, so you should
try to reuse parts of the first network (see Figure 11-5).

NOTE
If the input pictures for your new task don’t have the same size as the ones used in the
original task, you will usually have to add a preprocessing step to resize them to the size
expected by the original model. More generally, transfer learning will work best when the
inputs have similar low-level features.



Figure 11-5. Reusing pretrained layers

The output layer of the original model should usually be replaced because it
is most likely not useful at all for the new task, and probably will not have the
right number of outputs.

Similarly, the upper hidden layers of the original model are less likely to be
as useful as the lower layers, since the high-level features that are most useful
for the new task may differ significantly from the ones that were most useful
for the original task. You want to find the right number of layers to reuse.

TIP
The more similar the tasks are, the more layers you will want to reuse (starting with the
lower layers). For very similar tasks, try to keep all the hidden layers and just replace the
output layer.



Try freezing all the reused layers first (i.e., make their weights non-trainable
so that gradient descent won’t modify them and they will remain fixed), then
train your model and see how it performs. Then try unfreezing one or two of
the top hidden layers to let backpropagation tweak them and see if
performance improves. The more training data you have, the more layers you
can unfreeze. It is also useful to reduce the learning rate when you unfreeze
reused layers: this will avoid wrecking their fine-tuned weights.

If you still cannot get good performance, and you have little training data, try
dropping the top hidden layer(s) and freezing all the remaining hidden layers
again. You can iterate until you find the right number of layers to reuse. If
you have plenty of training data, you may try replacing the top hidden layers
instead of dropping them, and even adding more hidden layers.



Transfer Learning with Keras
Let’s look at an example. Suppose the Fashion MNIST dataset only
contained eight classes—for example, all the classes except for sandal and
shirt. Someone built and trained a Keras model on that set and got reasonably
good performance (>90% accuracy). Let’s call this model A. You now want
to tackle a different task: you have images of T-shirts and pullovers, and you
want to train a binary classifier: positive for T-shirts (and tops), negative for
sandals. Your dataset is quite small; you only have 200 labeled images. When
you train a new model for this task (let’s call it model B) with the same
architecture as model A, you get 91.85% test accuracy. While drinking your
morning coffee, you realize that your task is quite similar to task A, so
perhaps transfer learning can help? Let’s find out!

First, you need to load model A and create a new model based on that
model’s layers. You decide to reuse all the layers except for the output layer:

[...]  # Assuming model A was already trained and saved to "my_model_A"
model_A = tf.keras.models.load_model("my_model_A")
model_B_on_A = tf.keras.Sequential(model_A.layers[:-1])
model_B_on_A.add(tf.keras.layers.Dense(1, activation="sigmoid"))

Note that model_A and model_B_on_A now share some layers. When you
train model_B_on_A, it will also affect model_A. If you want to avoid that,
you need to clone model_A before you reuse its layers. To do this, you clone
model A’s architecture with clone_model(), then copy its weights:

model_A_clone = tf.keras.models.clone_model(model_A)
model_A_clone.set_weights(model_A.get_weights())

WARNING
tf.keras.models.clone_model() only clones the architecture, not the weights. If you don’t
copy them manually using set_weights(), they will be initialized randomly when the
cloned model is first used.



Now you could train model_B_on_A for task B, but since the new output
layer was initialized randomly it will make large errors (at least during the
first few epochs), so there will be large error gradients that may wreck the
reused weights. To avoid this, one approach is to freeze the reused layers
during the first few epochs, giving the new layer some time to learn
reasonable weights. To do this, set every layer’s trainable attribute to False
and compile the model:

for layer in model_B_on_A.layers[:-1]:
    layer.trainable = False

optimizer = tf.keras.optimizers.SGD(learning_rate=0.001)
model_B_on_A.compile(loss="binary_crossentropy", optimizer=optimizer,
                     metrics=["accuracy"])

NOTE
You must always compile your model after you freeze or unfreeze layers.

Now you can train the model for a few epochs, then unfreeze the reused
layers (which requires compiling the model again) and continue training to
fine-tune the reused layers for task B. After unfreezing the reused layers, it is
usually a good idea to reduce the learning rate, once again to avoid damaging
the reused weights.

history = model_B_on_A.fit(X_train_B, y_train_B, epochs=4,
                           validation_data=(X_valid_B, y_valid_B))

for layer in model_B_on_A.layers[:-1]:
    layer.trainable = True

optimizer = tf.keras.optimizers.SGD(learning_rate=0.001)
model_B_on_A.compile(loss="binary_crossentropy", optimizer=optimizer,
                     metrics=["accuracy"])
history = model_B_on_A.fit(X_train_B, y_train_B, epochs=16,
                           validation_data=(X_valid_B, y_valid_B))

So, what’s the final verdict? Well, this model’s test accuracy is 93.85%, up



exactly two percentage points from 91.85%! This means that transfer learning
reduced the error rate by almost 25%:

>>> model_B_on_A.evaluate(X_test_B, y_test_B)
[0.2546142041683197, 0.9384999871253967]

Are you convinced? You shouldn’t be: I cheated! I tried many configurations
until I found one that demonstrated a strong improvement. If you try to
change the classes or the random seed, you will see that the improvement
generally drops, or even vanishes or reverses. What I did is called “torturing
the data until it confesses”. When a paper just looks too positive, you should
be suspicious: perhaps the flashy new technique does not actually help much
(in fact, it may even degrade performance), but the authors tried many
variants and reported only the best results (which may be due to sheer luck),
without mentioning how many failures they encountered on the way. Most of
the time, this is not malicious at all, but it is part of the reason so many results
in science can never be reproduced.

Why did I cheat? It turns out that transfer learning does not work very well
with small dense networks, presumably because small networks learn few
patterns, and dense networks learn very specific patterns, which are unlikely
to be useful in other tasks. Transfer learning works best with deep
convolutional neural networks, which tend to learn feature detectors that are
much more general (especially in the lower layers). We will revisit transfer
learning in Chapter 14, using the techniques we just discussed (and this time
there will be no cheating, I promise!).



Unsupervised Pretraining
Suppose you want to tackle a complex task for which you don’t have much
labeled training data, but unfortunately you cannot find a model trained on a
similar task. Don’t lose hope! First, you should try to gather more labeled
training data, but if you can’t, you may still be able to perform unsupervised
pretraining (see Figure 11-6). Indeed, it is often cheap to gather unlabeled
training examples, but expensive to label them. If you can gather plenty of
unlabeled training data, you can try to use it to train an unsupervised model,
such as an autoencoder or a generative adversarial network (GAN; see
Chapter 17). Then you can reuse the lower layers of the autoencoder or the
lower layers of the GAN’s discriminator, add the output layer for your task
on top, and fine-tune the final network using supervised learning (i.e., with
the labeled training examples).

It is this technique that Geoffrey Hinton and his team used in 2006, and
which led to the revival of neural networks and the success of deep learning.
Until 2010, unsupervised pretraining—typically with restricted Boltzmann
machines (RBMs; see the notebook at https://homl.info/extra-anns)—was the
norm for deep nets, and only after the vanishing gradients problem was
alleviated did it become much more common to train DNNs purely using
supervised learning. Unsupervised pretraining (today typically using
autoencoders or GANs rather than RBMs) is still a good option when you
have a complex task to solve, no similar model you can reuse, and little
labeled training data but plenty of unlabeled training data.

Note that in the early days of deep learning it was difficult to train deep
models, so people would use a technique called greedy layer-wise pretraining
(depicted in Figure 11-6). They would first train an unsupervised model with
a single layer, typically an RBM, then they would freeze that layer and add
another one on top of it, then train the model again (effectively just training
the new layer), then freeze the new layer and add another layer on top of it,
train the model again, and so on. Nowadays, things are much simpler: people
generally train the full unsupervised model in one shot and use autoencoders
or GANs rather than RBMs.

https://homl.info/extra-anns


Figure 11-6. In unsupervised training, a model is trained on all data, including the unlabeled data,
using an unsupervised learning technique, then it is fine-tuned for the final task on just the labeled data

using a supervised learning technique; the unsupervised part may train one layer at a time as shown
here, or it may train the full model directly



Pretraining on an Auxiliary Task
If you do not have much labeled training data, one last option is to train a first
neural network on an auxiliary task for which you can easily obtain or
generate labeled training data, then reuse the lower layers of that network for
your actual task. The first neural network’s lower layers will learn feature
detectors that will likely be reusable by the second neural network.

For example, if you want to build a system to recognize faces, you may only
have a few pictures of each individual—clearly not enough to train a good
classifier. Gathering hundreds of pictures of each person would not be
practical. You could, however, gather a lot of pictures of random people on
the web and train a first neural network to detect whether or not two different
pictures feature the same person. Such a network would learn good feature
detectors for faces, so reusing its lower layers would allow you to train a
good face classifier that uses little training data.

For natural language processing (NLP) applications, you can download a
corpus of millions of text documents and automatically generate labeled data
from it. For example, you could randomly mask out some words and train a
model to predict what the missing words are (e.g., it should predict that the
missing word in the sentence “What ___ you saying?” is probably “are” or
“were”). If you can train a model to reach good performance on this task,
then it will already know quite a lot about language, and you can certainly
reuse it for your actual task and fine-tune it on your labeled data (we will
discuss more pretraining tasks in Chapter 15).

NOTE
Self-supervised learning is when you automatically generate the labels from the data itself,
as in the text-masking example, then you train a model on the resulting “labeled” dataset
using supervised learning techniques.



Faster Optimizers
Training a very large deep neural network can be painfully slow. So far we
have seen four ways to speed up training (and reach a better solution):
applying a good initialization strategy for the connection weights, using a
good activation function, using batch normalization, and reusing parts of a
pretrained network (possibly built for an auxiliary task or using unsupervised
learning). Another huge speed boost comes from using a faster optimizer than
the regular gradient descent optimizer. In this section we will present the
most popular optimization algorithms: momentum, Nesterov accelerated
gradient, AdaGrad, RMSProp, and finally Adam and its variants.



Momentum
Imagine a bowling ball rolling down a gentle slope on a smooth surface: it
will start out slowly, but it will quickly pick up momentum until it eventually
reaches terminal velocity (if there is some friction or air resistance). This is
the core idea behind momentum optimization, proposed by Boris Polyak in
1964.  In contrast, regular gradient descent will take small steps when the
slope is gentle and big steps when the slope is steep, but it will never pick up
speed. As a result, regular gradient descent is generally much slower to reach
the minimum than momentum optimization.

Recall that gradient descent updates the weights θ by directly subtracting the
gradient of the cost function J(θ) with regard to the weights (∇ J(θ))
multiplied by the learning rate η. The equation is θ ← θ – η∇ J(θ). It does
not care about what the earlier gradients were. If the local gradient is tiny, it
goes very slowly.

Momentum optimization cares a great deal about what previous gradients
were: at each iteration, it subtracts the local gradient from the momentum
vector m (multiplied by the learning rate η), and it updates the weights by
adding this momentum vector (see Equation 11-5). In other words, the
gradient is used as an acceleration, not as a speed. To simulate some sort of
friction mechanism and prevent the momentum from growing too large, the
algorithm introduces a new hyperparameter β, called the momentum, which
must be set between 0 (high friction) and 1 (no friction). A typical
momentum value is 0.9.

Equation 11-5. Momentum algorithm

1 . m ← β m - η ∇ θ J ( θ ) 2 . θ ← θ + m

You can verify that if the gradient remains constant, the terminal velocity
(i.e., the maximum size of the weight updates) is equal to that gradient
multiplied by the learning rate η multiplied by 1 / (1 – β) (ignoring the sign).
For example, if β = 0.9, then the terminal velocity is equal to 10 times the
gradient times the learning rate, so momentum optimization ends up going 10
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times faster than gradient descent! This allows momentum optimization to
escape from plateaus much faster than gradient descent. We saw in Chapter 4
that when the inputs have very different scales, the cost function will look
like an elongated bowl (see Figure 4-7). Gradient descent goes down the
steep slope quite fast, but then it takes a very long time to go down the valley.
In contrast, momentum optimization will roll down the valley faster and
faster until it reaches the bottom (the optimum). In deep neural networks that
don’t use batch normalization, the upper layers will often end up having
inputs with very different scales, so using momentum optimization helps a
lot. It can also help roll past local optima.

NOTE
Due to the momentum, the optimizer may overshoot a bit, then come back, overshoot
again, and oscillate like this many times before stabilizing at the minimum. This is one of
the reasons it’s good to have a bit of friction in the system: it gets rid of these oscillations
and thus speeds up convergence.

Implementing momentum optimization in Keras is a no-brainer: just use the
SGD optimizer and set its momentum hyperparameter, then lie back and
profit!

optimizer = tf.keras.optimizers.SGD(learning_rate=0.001, momentum=0.9)

The one drawback of momentum optimization is that it adds yet another
hyperparameter to tune. However, the momentum value of 0.9 usually works
well in practice and almost always goes faster than regular gradient descent.



Nesterov Accelerated Gradient
One small variant to momentum optimization, proposed by Yurii Nesterov in
1983,  is almost always faster than regular momentum optimization. The
Nesterov accelerated gradient (NAG) method, also known as Nesterov
momentum optimization, measures the gradient of the cost function not at the
local position θ but slightly ahead in the direction of the momentum, at θ +
βm (see Equation 11-6).

Equation 11-6. Nesterov accelerated gradient algorithm

1 . m ← β m - η ∇ θ J ( θ + β m ) 2 . θ ← θ + m

This small tweak works because in general the momentum vector will be
pointing in the right direction (i.e., toward the optimum), so it will be slightly
more accurate to use the gradient measured a bit farther in that direction
rather than the gradient at the original position, as you can see in Figure 11-7
(where ∇  represents the gradient of the cost function measured at the
starting point θ, and ∇  represents the gradient at the point located at θ +
βm).
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Figure 11-7. Regular versus Nesterov momentum optimization: the former applies the gradients
computed before the momentum step, while the latter applies the gradients computed after

As you can see, the Nesterov update ends up closer to the optimum. After a
while, these small improvements add up and NAG ends up being
significantly faster than regular momentum optimization. Moreover, note that
when the momentum pushes the weights across a valley, ∇  continues to
push farther across the valley, while ∇  pushes back toward the bottom of
the valley. This helps reduce oscillations and thus NAG converges faster.

To use NAG, simply set nesterov=True when creating the SGD optimizer:

optimizer = tf.keras.optimizers.SGD(learning_rate=0.001, momentum=0.9,
                                    nesterov=True)

1

2



AdaGrad
Consider the elongated bowl problem again: gradient descent starts by
quickly going down the steepest slope, which does not point straight toward
the global optimum, then it very slowly goes down to the bottom of the
valley. It would be nice if the algorithm could correct its direction earlier to
point a bit more toward the global optimum. The AdaGrad algorithm
achieves this correction by scaling down the gradient vector along the
steepest dimensions (see Equation 11-7).

Equation 11-7. AdaGrad algorithm

1 . s ← s + ∇ θ J ( θ ) ⊗ ∇ θ J ( θ ) 2 . θ ← θ - η ∇ θ J ( θ ) ⊘ s + ε

The first step accumulates the square of the gradients into the vector s (recall
that the ⊗ symbol represents the element-wise multiplication). This vectorized
form is equivalent to computing s  ← s  + (∂ J(θ) / ∂ θ )  for each element s
of the vector s; in other words, each s  accumulates the squares of the partial
derivative of the cost function with regard to parameter θ . If the cost function
is steep along the i  dimension, then s  will get larger and larger at each
iteration.

The second step is almost identical to gradient descent, but with one big
difference: the gradient vector is scaled down by a factor of s+ε (the ⊘ symbol
represents the element-wise division, and ε is a smoothing term to avoid
division by zero, typically set to 10 ). This vectorized form is equivalent to
simultaneously computing θi←θi-η ∂J(θ)/∂θi/si+ε for all parameters θ .

In short, this algorithm decays the learning rate, but it does so faster for steep
dimensions than for dimensions with gentler slopes. This is called an
adaptive learning rate. It helps point the resulting updates more directly
toward the global optimum (see Figure 11-8). One additional benefit is that it
requires much less tuning of the learning rate hyperparameter η.
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Figure 11-8. AdaGrad versus gradient descent: the former can correct its direction earlier to point to
the optimum

AdaGrad frequently performs well for simple quadratic problems, but it often
stops too early when training neural networks: the learning rate gets scaled
down so much that the algorithm ends up stopping entirely before reaching
the global optimum. So even though Keras has an Adagrad optimizer, you
should not use it to train deep neural networks (it may be efficient for simpler
tasks such as linear regression, though). Still, understanding AdaGrad is
helpful to comprehend the other adaptive learning rate optimizers.



RMSProp
As we’ve seen, AdaGrad runs the risk of slowing down a bit too fast and
never converging to the global optimum. The RMSProp algorithm  fixes
this by accumulating only the gradients from the most recent iterations, as
opposed to all the gradients since the beginning of training. It does so by
using exponential decay in the first step (see Equation 11-8).

Equation 11-8. RMSProp algorithm

1 . s ← ρ s + ( 1 - ρ ) ∇ θ J ( θ ) ⊗ ∇ θ J ( θ ) 2 . θ ← θ - η ∇ θ J ( θ ) ⊘ s + ε

The decay rate ρ is typically set to 0.9.  Yes, it is once again a new
hyperparameter, but this default value often works well, so you may not need
to tune it at all.

As you might expect, Keras has an RMSprop optimizer:

optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.001, rho=0.9)

Except on very simple problems, this optimizer almost always performs
much better than AdaGrad. In fact, it was the preferred optimization
algorithm of many researchers until Adam optimization came around.

18

19



Adam
Adam,  which stands for adaptive moment estimation, combines the ideas
of momentum optimization and RMSProp: just like momentum optimization,
it keeps track of an exponentially decaying average of past gradients; and just
like RMSProp, it keeps track of an exponentially decaying average of past
squared gradients (see Equation 11-9). These are estimations of the mean and
(uncentered) variance of the gradients. The mean is often called the first
moment while the variance is often called the second moment, hence the
name of the algorithm.

Equation 11-9. Adam algorithm

1 . m ← β 1 m - ( 1 - β 1 ) ∇ θ J ( θ ) 2 . s ← β 2 s + ( 1 - β 2 ) ∇ θ J ( θ ) ⊗
∇ θ J ( θ ) 3 . m^ ← m 1 - β 1 t 4 . s^ ← s 1-β 2 t 5 . θ ← θ + η m^ ⊘ s^ + ε

In this equation, t represents the iteration number (starting at 1).

If you just look at steps 1, 2, and 5, you will notice Adam’s close similarity to
both momentum optimization and RMSProp: β  corresponds to β in
momentum optimization, and β  corresponds to ρ in RMSProp. The only
difference is that step 1 computes an exponentially decaying average rather
than an exponentially decaying sum, but these are actually equivalent except
for a constant factor (the decaying average is just 1 – β  times the decaying
sum). Steps 3 and 4 are somewhat of a technical detail: since m and s are
initialized at 0, they will be biased toward 0 at the beginning of training, so
these two steps will help boost m and s at the beginning of training.

The momentum decay hyperparameter β  is typically initialized to 0.9, while
the scaling decay hyperparameter β  is often initialized to 0.999. As earlier,
the smoothing term ε is usually initialized to a tiny number such as 10 .
These are the default values for the Adam class. Here is how to create an
Adam optimizer using Keras:

optimizer = tf.keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9,
                                     beta_2=0.999)
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Since Adam is an adaptive learning rate algorithm, like AdaGrad and
RMSProp, it requires less tuning of the learning rate hyperparameter η. You
can often use the default value η = 0.001, making Adam even easier to use
than gradient descent.

TIP
If you are starting to feel overwhelmed by all these different techniques and are wondering
how to choose the right ones for your task, don’t worry: some practical guidelines are
provided at the end of this chapter.

Finally, three variants of Adam are worth mentioning: AdaMax, Nadam, and
AdamW.



AdaMax
The Adam paper also introduced AdaMax. Notice that in step 2 of Equation
11-9, Adam accumulates the squares of the gradients in s (with a greater
weight for more recent gradients). In step 5, if we ignore ε and steps 3 and 4
(which are technical details anyway), Adam scales down the parameter
updates by the square root of s. In short, Adam scales down the parameter
updates by the ℓ  norm of the time-decayed gradients (recall that the ℓ  norm
is the square root of the sum of squares).

AdaMax replaces the ℓ  norm with the ℓ  norm (a fancy way of saying the
max). Specifically, it replaces step 2 in Equation 11-9 with s←max(β2s,
abs(∇θJ(θ))), it drops step 4, and in step 5 it scales down the gradient
updates by a factor of s, which is the max of the absolute value of the time-
decayed gradients.

In practice, this can make AdaMax more stable than Adam, but it really
depends on the dataset, and in general Adam performs better. So, this is just
one more optimizer you can try if you experience problems with Adam on
some task.

2 2
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Nadam
Nadam optimization is Adam optimization plus the Nesterov trick, so it will
often converge slightly faster than Adam. In his report introducing this
technique,  the researcher Timothy Dozat compares many different
optimizers on various tasks and finds that Nadam generally outperforms
Adam but is sometimes outperformed by RMSProp.
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AdamW
AdamW  is a variant of Adam that integrates a regularization technique
called weight decay. Weight decay reduces the size of the model’s weights at
each training iteration by multiplying them by a decay factor such as 0.99.
This may remind you of ℓ  regularization (introduced in Chapter 4), which
also aims to keep the weights small, and indeed it can be shown
mathematically that ℓ  regularization is equivalent to weight decay when
using SGD. However, when using Adam or its variants, ℓ  regularization and
weight decay are not equivalent: in practice, combining Adam with ℓ
regularization results in models that often don’t generalize as well as those
produced by SGD. AdamW fixes this issue by properly combining Adam
with weight decay.

WARNING
Adaptive optimization methods (including RMSProp, Adam, AdaMax, Nadam, and
AdamW optimization) are often great, converging fast to a good solution. However, a
2017 paper  by Ashia C. Wilson et al. showed that they can lead to solutions that
generalize poorly on some datasets. So when you are disappointed by your model’s
performance, try using NAG instead: your dataset may just be allergic to adaptive
gradients. Also check out the latest research, because it’s moving fast.

To use Nadam, AdaMax, or AdamW in Keras, replace
tf.keras.optimizers.Adam with tf.keras.optimizers.Nadam,
tf.keras.optimizers.Adamax, or tf.keras.optimizers.experimental.AdamW. For
AdamW, you probably want to tune the weight_decay hyperparameter.

All the optimization techniques discussed so far only rely on the first-order
partial derivatives (Jacobians). The optimization literature also contains
amazing algorithms based on the second-order partial derivatives (the
Hessians, which are the partial derivatives of the Jacobians). Unfortunately,
these algorithms are very hard to apply to deep neural networks because there
are n  Hessians per output (where n is the number of parameters), as opposed
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to just n Jacobians per output. Since DNNs typically have tens of thousands
of parameters or more, the second-order optimization algorithms often don’t
even fit in memory, and even when they do, computing the Hessians is just
too slow.

TRAINING SPARSE MODELS

All the optimization algorithms we just discussed produce dense models,
meaning that most parameters will be nonzero. If you need a blazingly
fast model at runtime, or if you need it to take up less memory, you may
prefer to end up with a sparse model instead.

One way to achieve this is to train the model as usual, then get rid of the
tiny weights (set them to zero). However, this will typically not lead to a
very sparse model, and it may degrade the model’s performance.

A better option is to apply strong ℓ  regularization during training (you’ll
see how later in this chapter), as it pushes the optimizer to zero out as
many weights as it can (as discussed in “Lasso Regression”).

If these techniques remain insufficient, check out the TensorFlow Model
Optimization Toolkit (TF-MOT), which provides a pruning API capable
of iteratively removing connections during training based on their
magnitude.

Table 11-2 compares all the optimizers we’ve discussed so far (* is bad, ** is
average, and *** is good).

Table 11-2. Optimizer comparison

Class Convergence speed Convergence quality

SGD * ***

SGD(momentum=...) ** ***

SGD(momentum=..., nesterov=True) ** ***

Adagrad *** * (stops too early)

1
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RMSprop *** ** or ***

Adam *** ** or ***

AdaMax *** ** or ***

Nadam *** ** or ***

AdamW *** ** or ***



Learning Rate Scheduling
Finding a good learning rate is very important. If you set it much too high,
training may diverge (as discussed in “Gradient Descent”). If you set it too
low, training will eventually converge to the optimum, but it will take a very
long time. If you set it slightly too high, it will make progress very quickly at
first, but it will end up dancing around the optimum and never really settling
down. If you have a limited computing budget, you may have to interrupt
training before it has converged properly, yielding a suboptimal solution (see
Figure 11-9).

Figure 11-9. Learning curves for various learning rates η

As discussed in Chapter 10, you can find a good learning rate by training the
model for a few hundred iterations, exponentially increasing the learning rate
from a very small value to a very large value, and then looking at the learning
curve and picking a learning rate slightly lower than the one at which the
learning curve starts shooting back up. You can then reinitialize your model
and train it with that learning rate.

But you can do better than a constant learning rate: if you start with a large



learning rate and then reduce it once training stops making fast progress, you
can reach a good solution faster than with the optimal constant learning rate.
There are many different strategies to reduce the learning rate during training.
It can also be beneficial to start with a low learning rate, increase it, then drop
it again. These strategies are called learning schedules (I briefly introduced
this concept in Chapter 4). These are the most commonly used learning
schedules:

Power scheduling

Set the learning rate to a function of the iteration number t: η(t) = η  / (1 +
t/s) . The initial learning rate η , the power c (typically set to 1), and the
steps s are hyperparameters. The learning rate drops at each step. After s
steps, the learning rate is down to η  / 2. After s more steps it is down to
η  / 3, then it goes down to η  / 4, then η  / 5, and so on. As you can see,
this schedule first drops quickly, then more and more slowly. Of course,
power scheduling requires tuning η  and s (and possibly c).

Exponential scheduling

Set the learning rate to η(t) = η  0.1 . The learning rate will gradually
drop by a factor of 10 every s steps. While power scheduling reduces the
learning rate more and more slowly, exponential scheduling keeps
slashing it by a factor of 10 every s steps.

Piecewise constant scheduling

Use a constant learning rate for a number of epochs (e.g., η  = 0.1 for 5
epochs), then a smaller learning rate for another number of epochs (e.g.,
η  = 0.001 for 50 epochs), and so on. Although this solution can work
very well, it requires fiddling around to figure out the right sequence of
learning rates and how long to use each of them.

Performance scheduling

Measure the validation error every N steps (just like for early stopping),
and reduce the learning rate by a factor of λ when the error stops
dropping.

0
c

0

0

0 0 0

0

0
t/s

0

1



1cycle scheduling

1cycle was introduced in a 2018 paper by Leslie Smith.  Contrary to
the other approaches, it starts by increasing the initial learning rate η ,
growing linearly up to η  halfway through training. Then it decreases the
learning rate linearly down to η  again during the second half of training,
finishing the last few epochs by dropping the rate down by several orders
of magnitude (still linearly). The maximum learning rate η  is chosen
using the same approach we used to find the optimal learning rate, and
the initial learning rate η  is usually 10 times lower. When using a
momentum, we start with a high momentum first (e.g., 0.95), then drop it
down to a lower momentum during the first half of training (e.g., down to
0.85, linearly), and then bring it back up to the maximum value (e.g.,
0.95) during the second half of training, finishing the last few epochs with
that maximum value. Smith did many experiments showing that this
approach was often able to speed up training considerably and reach
better performance. For example, on the popular CIFAR10 image dataset,
this approach reached 91.9% validation accuracy in just 100 epochs,
compared to 90.3% accuracy in 800 epochs through a standard approach
(with the same neural network architecture). This feat was dubbed super-
convergence.

A 2013 paper by Andrew Senior et al.  compared the performance of some
of the most popular learning schedules when using momentum optimization
to train deep neural networks for speech recognition. The authors concluded
that, in this setting, both performance scheduling and exponential scheduling
performed well. They favored exponential scheduling because it was easy to
tune and it converged slightly faster to the optimal solution. They also
mentioned that it was easier to implement than performance scheduling, but
in Keras both options are easy. That said, the 1cycle approach seems to
perform even better.

Implementing power scheduling in Keras is the easiest option—just set the
decay hyperparameter when creating an optimizer:
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optimizer = tf.keras.optimizers.SGD(learning_rate=0.01, decay=1e-4)

The decay is the inverse of s (the number of steps it takes to divide the
learning rate by one more unit), and Keras assumes that c is equal to 1.

Exponential scheduling and piecewise scheduling are quite simple too. You
first need to define a function that takes the current epoch and returns the
learning rate. For example, let’s implement exponential scheduling:

def exponential_decay_fn(epoch):
    return 0.01 * 0.1 ** (epoch / 20)

If you do not want to hardcode η  and s, you can create a function that returns
a configured function:

def exponential_decay(lr0, s):
    def exponential_decay_fn(epoch):
        return lr0 * 0.1 ** (epoch / s)
    return exponential_decay_fn

exponential_decay_fn = exponential_decay(lr0=0.01, s=20)

Next, create a LearningRateScheduler callback, giving it the schedule
function, and pass this callback to the fit() method:

lr_scheduler = tf.keras.callbacks.LearningRateScheduler(exponential_decay_fn)
history = model.fit(X_train, y_train, [...], callbacks=[lr_scheduler])

The LearningRateScheduler will update the optimizer’s learning_rate
attribute at the beginning of each epoch. Updating the learning rate once per
epoch is usually enough, but if you want it to be updated more often, for
example at every step, you can always write your own callback (see the
“Exponential Scheduling” section of this chapter’s notebook for an example).
Updating the learning rate at every step may help if there are many steps per
epoch. Alternatively, you can use the tf.keras.optimiz ers.schedules
approach, described shortly.

0



TIP
After training, history.history["lr"] gives you access to the list of learning rates used
during training.

The schedule function can optionally take the current learning rate as a
second argument. For example, the following schedule function multiplies
the previous learning rate by 0.1 , which results in the same exponential
decay (except the decay now starts at the beginning of epoch 0 instead of 1):

def exponential_decay_fn(epoch, lr):
    return lr * 0.1 ** (1 / 20)

This implementation relies on the optimizer’s initial learning rate (contrary to
the previous implementation), so make sure to set it appropriately.

When you save a model, the optimizer and its learning rate get saved along
with it. This means that with this new schedule function, you could just load
a trained model and continue training where it left off, no problem. Things
are not so simple if your schedule function uses the epoch argument,
however: the epoch does not get saved, and it gets reset to 0 every time you
call the fit() method. If you were to continue training a model where it left
off, this could lead to a very large learning rate, which would likely damage
your model’s weights. One solution is to manually set the fit() method’s
initial_epoch argument so the epoch starts at the right value.

For piecewise constant scheduling, you can use a schedule function like the
following one (as earlier, you can define a more general function if you want;
see the “Piecewise Constant Scheduling” section of the notebook for an
example), then create a LearningRateScheduler callback with this function
and pass it to the fit() method, just like for exponential scheduling:

def piecewise_constant_fn(epoch):
    if epoch < 5:
        return 0.01
    elif epoch < 15:
        return 0.005
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    else:
        return 0.001

For performance scheduling, use the ReduceLROnPlateau callback. For
example, if you pass the following callback to the fit() method, it will
multiply the learning rate by 0.5 whenever the best validation loss does not
improve for five consecutive epochs (other options are available; please
check the documentation for more details):

lr_scheduler = tf.keras.callbacks.ReduceLROnPlateau(factor=0.5, patience=5)
history = model.fit(X_train, y_train, [...], callbacks=[lr_scheduler])

Lastly, Keras offers an alternative way to implement learning rate scheduling:
you can define a scheduled learning rate using one of the classes available in
tf.keras.opti mizers.schedules, then pass it to any optimizer. This approach
updates the learning rate at each step rather than at each epoch. For example,
here is how to implement the same exponential schedule as the
exponential_decay_fn() function we defined earlier:

import math

batch_size = 32
n_epochs = 25
n_steps = n_epochs * math.ceil(len(X_train) / batch_size)
scheduled_learning_rate = tf.keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate=0.01, decay_steps=n_steps, decay_rate=0.1)
optimizer = tf.keras.optimizers.SGD(learning_rate=scheduled_learning_rate)

This is nice and simple, plus when you save the model, the learning rate and
its schedule (including its state) get saved as well.

As for 1cycle, Keras does not support it, but it’s possible to implement it in
less than 30 lines of code by creating a custom callback that modifies the
learning rate at each iteration. To update the optimizer’s learning rate from
within the callback’s on_batch_begin() method, you need to call tf.keras.
back end.set_value(self.model.optimizer.learning_rate, new_learning_rate).
See the “1Cycle Scheduling” section of the notebook for an example.

To sum up, exponential decay, performance scheduling, and 1cycle can



considerably speed up convergence, so give them a try!



Avoiding Overfitting Through Regularization
With four parameters I can fit an elephant and with five I can make him
wiggle his trunk.

—John von Neumann, cited by Enrico Fermi in Nature 427

With thousands of parameters, you can fit the whole zoo. Deep neural
networks typically have tens of thousands of parameters, sometimes even
millions. This gives them an incredible amount of freedom and means they
can fit a huge variety of complex datasets. But this great flexibility also
makes the network prone to overfitting the training set. Regularization is
often needed to prevent this.

We already implemented one of the best regularization techniques in
Chapter 10: early stopping. Moreover, even though batch normalization was
designed to solve the unstable gradients problems, it also acts like a pretty
good regularizer. In this section we will examine other popular regularization
techniques for neural networks: ℓ  and ℓ  regularization, dropout, and max-
norm regularization.
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ℓ  and ℓ  Regularization
Just like you did in Chapter 4 for simple linear models, you can use ℓ
regularization to constrain a neural network’s connection weights, and/or ℓ
regularization if you want a sparse model (with many weights equal to 0).
Here is how to apply ℓ  regularization to a Keras layer’s connection weights,
using a regularization factor of 0.01:

layer = tf.keras.layers.Dense(100, activation="relu",
                              kernel_initializer="he_normal",
                              kernel_regularizer=tf.keras.regularizers.l2(0.01))

The l2() function returns a regularizer that will be called at each step during
training to compute the regularization loss. This is then added to the final
loss. As you might expect, you can just use tf.keras.regularizers.l1() if you
want ℓ  regularization; if you want both ℓ  and ℓ  regularization, use
tf.keras.regularizers.l1_l2() (specifying both regularization factors).

Since you will typically want to apply the same regularizer to all layers in
your network, as well as using the same activation function and the same
initialization strategy in all hidden layers, you may find yourself repeating the
same arguments. This makes the code ugly and error-prone. To avoid this,
you can try refactoring your code to use loops. Another option is to use
Python’s functools.partial() function, which lets you create a thin wrapper for
any callable, with some default argument values:

from functools import partial

RegularizedDense = partial(tf.keras.layers.Dense,
                           activation="relu",
                           kernel_initializer="he_normal",
                           kernel_regularizer=tf.keras.regularizers.l2(0.01))

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=[28, 28]),
    RegularizedDense(100),
    RegularizedDense(100),
    RegularizedDense(10, activation="softmax")
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])

WARNING
As we saw earlier, ℓ  regularization is fine when using SGD, momentum optimization,
and Nesterov momentum optimization, but not with Adam and its variants. If you want to
use Adam with weight decay, then do not use ℓ  regularization: use AdamW instead.
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Dropout
Dropout is one of the most popular regularization techniques for deep neural
networks. It was proposed in a paper  by Geoffrey Hinton et al. in 2012 and
further detailed in a 2014 paper  by Nitish Srivastava et al., and it has
proven to be highly successful: many state-of-the-art neural networks use
dropout, as it gives them a 1%–2% accuracy boost. This may not sound like a
lot, but when a model already has 95% accuracy, getting a 2% accuracy boost
means dropping the error rate by almost 40% (going from 5% error to
roughly 3%).

It is a fairly simple algorithm: at every training step, every neuron (including
the input neurons, but always excluding the output neurons) has a probability
p of being temporarily “dropped out”, meaning it will be entirely ignored
during this training step, but it may be active during the next step (see
Figure 11-10). The hyperparameter p is called the dropout rate, and it is
typically set between 10% and 50%: closer to 20%–30% in recurrent neural
nets (see Chapter 15), and closer to 40%–50% in convolutional neural
networks (see Chapter 14). After training, neurons don’t get dropped
anymore. And that’s all (except for a technical detail we will discuss
momentarily).

It’s surprising at first that this destructive technique works at all. Would a
company perform better if its employees were told to toss a coin every
morning to decide whether or not to go to work? Well, who knows; perhaps it
would! The company would be forced to adapt its organization; it could not
rely on any single person to work the coffee machine or perform any other
critical tasks, so this expertise would have to be spread across several people.
Employees would have to learn to cooperate with many of their coworkers,
not just a handful of them. The company would become much more resilient.
If one person quit, it wouldn’t make much of a difference. It’s unclear
whether this idea would actually work for companies, but it certainly does for
neural networks. Neurons trained with dropout cannot co-adapt with their
neighboring neurons; they have to be as useful as possible on their own. They
also cannot rely excessively on just a few input neurons; they must pay
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attention to each of their input neurons. They end up being less sensitive to
slight changes in the inputs. In the end, you get a more robust network that
generalizes better.

Figure 11-10. With dropout regularization, at each training iteration a random subset of all neurons in
one or more layers—except the output layer—are “dropped out”; these neurons output 0 at this

iteration (represented by the dashed arrows)

Another way to understand the power of dropout is to realize that a unique
neural network is generated at each training step. Since each neuron can be
either present or absent, there are a total of 2  possible networks (where N is
the total number of droppable neurons). This is such a huge number that it is
virtually impossible for the same neural network to be sampled twice. Once
you have run 10,000 training steps, you have essentially trained 10,000
different neural networks, each with just one training instance. These neural

N



networks are obviously not independent because they share many of their
weights, but they are nevertheless all different. The resulting neural network
can be seen as an averaging ensemble of all these smaller neural networks.

TIP
In practice, you can usually apply dropout only to the neurons in the top one to three
layers (excluding the output layer).

There is one small but important technical detail. Suppose p = 75%: on
average only 25% of all neurons are active at each step during training. This
means that after training, a neuron would be connected to four times as many
input neurons as it would be during training. To compensate for this fact, we
need to multiply each neuron’s input connection weights by four during
training. If we don’t, the neural network will not perform well as it will see
different data during and after training. More generally, we need to divide the
connection weights by the keep probability (1 – p) during training.

To implement dropout using Keras, you can use the tf.keras.layers.Dropout
layer. During training, it randomly drops some inputs (setting them to 0) and
divides the remaining inputs by the keep probability. After training, it does
nothing at all; it just passes the inputs to the next layer. The following code
applies dropout regularization before every dense layer, using a dropout rate
of 0.2:

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=[28, 28]),
    tf.keras.layers.Dropout(rate=0.2),
    tf.keras.layers.Dense(100, activation="relu",
                          kernel_initializer="he_normal"),
    tf.keras.layers.Dropout(rate=0.2),
    tf.keras.layers.Dense(100, activation="relu",
                          kernel_initializer="he_normal"),
    tf.keras.layers.Dropout(rate=0.2),
    tf.keras.layers.Dense(10, activation="softmax")
])
[...]  # compile and train the model



WARNING
Since dropout is only active during training, comparing the training loss and the validation
loss can be misleading. In particular, a model may be overfitting the training set and yet
have similar training and validation losses. So, make sure to evaluate the training loss
without dropout (e.g., after training).

If you observe that the model is overfitting, you can increase the dropout rate.
Conversely, you should try decreasing the dropout rate if the model underfits
the training set. It can also help to increase the dropout rate for large layers,
and reduce it for small ones. Moreover, many state-of-the-art architectures
only use dropout after the last hidden layer, so you may want to try this if full
dropout is too strong.

Dropout does tend to significantly slow down convergence, but it often
results in a better model when tuned properly. So, it is generally well worth
the extra time and effort, especially for large models.

TIP
If you want to regularize a self-normalizing network based on the SELU activation
function (as discussed earlier), you should use alpha dropout: this is a variant of dropout
that preserves the mean and standard deviation of its inputs. It was introduced in the same
paper as SELU, as regular dropout would break self-normalization.



Monte Carlo (MC) Dropout
In 2016, a paper  by Yarin Gal and Zoubin Ghahramani added a few more
good reasons to use dropout:

First, the paper established a profound connection between dropout
networks (i.e., neural networks containing Dropout layers) and
approximate Bayesian inference,  giving dropout a solid
mathematical justification.

Second, the authors introduced a powerful technique called MC dropout,
which can boost the performance of any trained dropout model without
having to retrain it or even modify it at all. It also provides a much better
measure of the model’s uncertainty, and it can be implemented in just a
few lines of code.

If this all sounds like some “one weird trick” clickbait, then take a look at the
following code. It is the full implementation of MC dropout, boosting the
dropout model we trained earlier without retraining it:

import numpy as np

y_probas = np.stack([model(X_test, training=True)
                     for sample in range(100)])
y_proba = y_probas.mean(axis=0)

Note that model(X) is similar to model.predict(X) except it returns a tensor
rather than a NumPy array, and it supports the training argument. In this code
example, setting training=True ensures that the Dropout layer remains active,
so all predictions will be a bit different. We just make 100 predictions over
the test set, and we compute their average. More specifically, each call to the
model returns a matrix with one row per instance and one column per class.
Because there are 10,000 instances in the test set and 10 classes, this is a
matrix of shape [10000, 10]. We stack 100 such matrices, so y_probas is a 3D
array of shape [100, 10000, 10]. Once we average over the first dimension
(axis=0) we get y_proba, an array of shape [10000, 10], like we would get
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with a single prediction. That’s all! Averaging over multiple predictions with
dropout turned on gives us a Monte Carlo estimate that is generally more
reliable than the result of a single prediction with dropout turned off. For
example, let’s look at the model’s prediction for the first instance in the
Fashion MNIST test set, with dropout turned off:

>>> model.predict(X_test[:1]).round(3)
array([[0.   , 0.   , 0.   , 0.   , 0.   , 0.024, 0.   , 0.132, 0.   ,
        0.844]], dtype=float32)

The model is fairly confident (84.4%) that this image belongs to class 9
(ankle boot). Compare this with the MC dropout prediction:

>>> y_proba[0].round(3)
array([0.   , 0.   , 0.   , 0.   , 0.   , 0.067, 0.   , 0.209, 0.001,
       0.723], dtype=float32)

The model still seems to prefer class 9, but its confidence dropped down to
72.3%, and the estimated probabilities for classes 5 (sandal) and 7 (sneaker)
have increased, which makes sense given they’re also footwear.

MC dropout tends to improve the reliability of the model’s probability
estimates. This means that it’s less likely to be confident but wrong, which
can be dangerous: just imagine a self-driving car confidently ignoring a stop
sign. It’s also useful to know exactly which other classes are most likely.
Additionally, you can take a look at the standard deviation of the probability
estimates:

>>> y_std = y_probas.std(axis=0)
>>> y_std[0].round(3)
array([0.   , 0.   , 0.   , 0.001, 0.   , 0.096, 0.   , 0.162, 0.001,
       0.183], dtype=float32)

Apparently there’s quite a lot of variance in the probability estimates for class
9: the standard deviation is 0.183, which should be compared to the estimated
probability of 0.723: if you were building a risk-sensitive system (e.g., a
medical or financial system), you would probably treat such an uncertain
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prediction with extreme caution. You would definitely not treat it like an
84.4% confident prediction. The model’s accuracy also got a (very) small
boost from 87.0% to 87.2%:

>>> y_pred = y_proba.argmax(axis=1)
>>> accuracy = (y_pred == y_test).sum() / len(y_test)
>>> accuracy
0.8717

NOTE
The number of Monte Carlo samples you use (100 in this example) is a hyperparameter
you can tweak. The higher it is, the more accurate the predictions and their uncertainty
estimates will be. However, if you double it, inference time will also be doubled.
Moreover, above a certain number of samples, you will notice little improvement. Your
job is to find the right trade-off between latency and accuracy, depending on your
application.

If your model contains other layers that behave in a special way during
training (such as BatchNormalization layers), then you should not force
training mode like we just did. Instead, you should replace the Dropout layers
with the following MCDropout class:

class MCDropout(tf.keras.layers.Dropout):
    def call(self, inputs, training=False):
        return super().call(inputs, training=True)

Here, we just subclass the Dropout layer and override the call() method to
force its training argument to True (see Chapter 12). Similarly, you could
define an MCAlphaDropout class by subclassing AlphaDropout instead. If
you are creating a model from scratch, it’s just a matter of using MCDropout
rather than Dropout. But if you have a model that was already trained using
Dropout, you need to create a new model that’s identical to the existing
model except with Dropout instead of MCDropout, then copy the existing
model’s weights to your new model.

In short, MC dropout is a great technique that boosts dropout models and
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provides better uncertainty estimates. And of course, since it is just regular
dropout during training, it also acts like a regularizer.



Max-Norm Regularization
Another popular regularization technique for neural networks is called max-
norm regularization: for each neuron, it constrains the weights w of the
incoming connections such that ∥ w ∥  ≤ r, where r is the max-norm
hyperparameter and ∥ · ∥  is the ℓ  norm.

Max-norm regularization does not add a regularization loss term to the
overall loss function. Instead, it is typically implemented by computing
∥ w ∥  after each training step and rescaling w if needed (w ← w r /
∥ w ∥ ).

Reducing r increases the amount of regularization and helps reduce
overfitting. Max-norm regularization can also help alleviate the unstable
gradients problems (if you are not using batch normalization).

To implement max-norm regularization in Keras, set the kernel_constraint
argument of each hidden layer to a max_norm() constraint with the
appropriate max value, like this:

dense = tf.keras.layers.Dense(
    100, activation="relu", kernel_initializer="he_normal",
    kernel_constraint=tf.keras.constraints.max_norm(1.))

After each training iteration, the model’s fit() method will call the object
returned by max_norm(), passing it the layer’s weights and getting rescaled
weights in return, which then replace the layer’s weights. As you’ll see in
Chapter 12, you can define your own custom constraint function if necessary
and use it as the kernel_con straint. You can also constrain the bias terms by
setting the bias_constraint argument.

The max_norm() function has an axis argument that defaults to 0. A Dense
layer usually has weights of shape [number of inputs, number of neurons], so
using axis=0 means that the max-norm constraint will apply independently to
each neuron’s weight vector. If you want to use max-norm with
convolutional layers (see Chapter 14), make sure to set the max_norm()
constraint’s axis argument appropriately (usually axis=[0, 1, 2]).
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Summary and Practical Guidelines
In this chapter we have covered a wide range of techniques, and you may be
wondering which ones you should use. This depends on the task, and there is
no clear consensus yet, but I have found the configuration in Table 11-3 to
work fine in most cases, without requiring much hyperparameter tuning. That
said, please do not consider these defaults as hard rules!

Table 11-3. Default DNN configuration

Hyperparameter Default value

Kernel initializer He initialization

Activation function ReLU if shallow; Swish if deep

Normalization None if shallow; batch norm if deep

Regularization Early stopping; weight decay if needed

Optimizer Nesterov accelerated gradients or AdamW

Learning rate schedule Performance scheduling or 1cycle

If the network is a simple stack of dense layers, then it can self-normalize,
and you should use the configuration in Table 11-4 instead.

Table 11-4. DNN configuration for a self-
normalizing net

Hyperparameter Default value

Kernel initializer LeCun initialization

Activation function SELU

Normalization None (self-normalization)

Regularization Alpha dropout if needed



Optimizer Nesterov accelerated gradients

Learning rate schedule Performance scheduling or 1cycle

Don’t forget to normalize the input features! You should also try to reuse
parts of a pretrained neural network if you can find one that solves a similar
problem, or use unsupervised pretraining if you have a lot of unlabeled data,
or use pretraining on an auxiliary task if you have a lot of labeled data for a
similar task.

While the previous guidelines should cover most cases, here are some
exceptions:

If you need a sparse model, you can use ℓ  regularization (and optionally
zero out the tiny weights after training). If you need an even sparser
model, you can use the TensorFlow Model Optimization Toolkit. This
will break self-normalization, so you should use the default
configuration in this case.

If you need a low-latency model (one that performs lightning-fast
predictions), you may need to use fewer layers, use a fast activation
function such as ReLU or leaky ReLU, and fold the batch normalization
layers into the previous layers after training. Having a sparse model will
also help. Finally, you may want to reduce the float precision from 32
bits to 16 or even 8 bits (see “Deploying a Model to a Mobile or
Embedded Device”). Again, check out TF-MOT.

If you are building a risk-sensitive application, or inference latency is
not very important in your application, you can use MC dropout to boost
performance and get more reliable probability estimates, along with
uncertainty estimates.

With these guidelines, you are now ready to train very deep nets! I hope you
are now convinced that you can go quite a long way using just the convenient
Keras API. There may come a time, however, when you need to have even
more control; for example, to write a custom loss function or to tweak the
training algorithm. For such cases you will need to use TensorFlow’s lower-
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level API, as you will see in the next chapter.



Exercises
1. What is the problem that Glorot initialization and He initialization aim

to fix?

2. Is it OK to initialize all the weights to the same value as long as that
value is selected randomly using He initialization?

3. Is it OK to initialize the bias terms to 0?

4. In which cases would you want to use each of the activation functions
we discussed in this chapter?

5. What may happen if you set the momentum hyperparameter too close to
1 (e.g., 0.99999) when using an SGD optimizer?

6. Name three ways you can produce a sparse model.

7. Does dropout slow down training? Does it slow down inference (i.e.,
making predictions on new instances)? What about MC dropout?

8. Practice training a deep neural network on the CIFAR10 image dataset:

a. Build a DNN with 20 hidden layers of 100 neurons each (that’s too
many, but it’s the point of this exercise). Use He initialization and
the Swish activation function.

b. Using Nadam optimization and early stopping, train the network on
the CIFAR10 dataset. You can load it with
tf.keras.datasets.cifar10.load_data(). The dataset is composed of
60,000 32 × 32–pixel color images (50,000 for training, 10,000 for
testing) with 10 classes, so you’ll need a softmax output layer with
10 neurons. Remember to search for the right learning rate each
time you change the model’s architecture or hyperparameters.

c. Now try adding batch normalization and compare the learning
curves: is it converging faster than before? Does it produce a better



model? How does it affect training speed?

d. Try replacing batch normalization with SELU, and make the
necessary adjustments to ensure the network self-normalizes (i.e.,
standardize the input features, use LeCun normal initialization,
make sure the DNN contains only a sequence of dense layers, etc.).

e. Try regularizing the model with alpha dropout. Then, without
retraining your model, see if you can achieve better accuracy using
MC dropout.

f. Retrain your model using 1cycle scheduling and see if it improves
training speed and model accuracy.

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.
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Chapter 12. Custom Models and
Training with TensorFlow

Up until now, we’ve used only TensorFlow’s high-level API, Keras, but it
already got us pretty far: we built various neural network architectures,
including regression and classification nets, Wide & Deep nets, and self-
normalizing nets, using all sorts of techniques, such as batch normalization,
dropout, and learning rate schedules. In fact, 95% of the use cases you will
encounter will not require anything other than Keras (and tf.data; see
Chapter 13). But now it’s time to dive deeper into TensorFlow and take a
look at its lower-level Python API. This will be useful when you need extra
control to write custom loss functions, custom metrics, layers, models,
initializers, regularizers, weight constraints, and more. You may even need to
fully control the training loop itself; for example, to apply special
transformations or constraints to the gradients (beyond just clipping them) or
to use multiple optimizers for different parts of the network. We will cover all
these cases in this chapter, and we will also look at how you can boost your
custom models and training algorithms using TensorFlow’s automatic graph
generation feature. But first, let’s take a quick tour of TensorFlow.

https://homl.info/tf2api


A Quick Tour of TensorFlow
As you know, TensorFlow is a powerful library for numerical computation,
particularly well suited and fine-tuned for large-scale machine learning (but
you can use it for anything else that requires heavy computations). It was
developed by the Google Brain team and it powers many of Google’s large-
scale services, such as Google Cloud Speech, Google Photos, and Google
Search. It was open sourced in November 2015, and it is now the most
widely used deep learning library in the industry:  countless projects use
TensorFlow for all sorts of machine learning tasks, such as image
classification, natural language processing, recommender systems, and time
series forecasting.

So what does TensorFlow offer? Here’s a summary:

Its core is very similar to NumPy, but with GPU support.

It supports distributed computing (across multiple devices and servers).

It includes a kind of just-in-time (JIT) compiler that allows it to optimize
computations for speed and memory usage. It works by extracting the
computation graph from a Python function, optimizing it (e.g., by
pruning unused nodes), and running it efficiently (e.g., by automatically
running independent operations in parallel).

Computation graphs can be exported to a portable format, so you can
train a TensorFlow model in one environment (e.g., using Python on
Linux) and run it in another (e.g., using Java on an Android device).

It implements reverse-mode autodiff (see Chapter 10 and Appendix B)
and provides some excellent optimizers, such as RMSProp and Nadam
(see Chapter 11), so you can easily minimize all sorts of loss functions.

TensorFlow offers many more features built on top of these core features: the
most important is of course Keras,  but it also has data loading and
preprocessing ops (tf.data, tf.io, etc.), image processing ops (tf.image), signal
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processing ops (tf.signal), and more (see Figure 12-1 for an overview of
TensorFlow’s Python API).

TIP
We will cover many of the packages and functions of the TensorFlow API, but it’s
impossible to cover them all, so you should really take some time to browse through the
API; you will find that it is quite rich and well documented.

At the lowest level, each TensorFlow operation (op for short) is implemented
using highly efficient C++ code.  Many operations have multiple
implementations called kernels: each kernel is dedicated to a specific device
type, such as CPUs, GPUs, or even TPUs (tensor processing units). As you
may know, GPUs can dramatically speed up computations by splitting them
into many smaller chunks and running them in parallel across many GPU
threads. TPUs are even faster: they are custom ASIC chips built specifically
for deep learning operations   (we will discuss how to use TensorFlow with
GPUs or TPUs in Chapter 19).
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Figure 12-1. TensorFlow’s Python API

TensorFlow’s architecture is shown in Figure 12-2. Most of the time your
code will use the high-level APIs (especially Keras and tf.data), but when
you need more flexibility you will use the lower-level Python API, handling
tensors directly. In any case, TensorFlow’s execution engine will take care of
running the operations efficiently, even across multiple devices and machines
if you tell it to.

TensorFlow runs not only on Windows, Linux, and macOS, but also on
mobile devices (using TensorFlow Lite), including both iOS and Android
(see Chapter 19). Note that APIs for other languages are also available, if you
do not want to use the Python API: there are C++, Java, and Swift APIs.
There is even a JavaScript implementation called TensorFlow.js that makes it
possible to run your models directly in your browser.



Figure 12-2. TensorFlow’s architecture

There’s more to TensorFlow than the library. TensorFlow is at the center of
an extensive ecosystem of libraries. First, there’s TensorBoard for
visualization (see Chapter 10). Next, there’s TensorFlow Extended (TFX),
which is a set of libraries built by Google to productionize TensorFlow
projects: it includes tools for data validation, preprocessing, model analysis,
and serving (with TF Serving; see Chapter 19). Google’s TensorFlow Hub
provides a way to easily download and reuse pretrained neural networks. You
can also get many neural network architectures, some of them pretrained, in
TensorFlow’s model garden. Check out the TensorFlow Resources and
https://github.com/jtoy/awesome-tensorflow for more TensorFlow-based
projects. You will find hundreds of TensorFlow projects on GitHub, so it is
often easy to find existing code for whatever you are trying to do.

TIP
More and more ML papers are released along with their implementations, and sometimes
even with pretrained models. Check out https://paperswithcode.com to easily find them.

Last but not least, TensorFlow has a dedicated team of passionate and helpful

https://tensorflow.org/tfx
https://github.com/tensorflow/models
https://tensorflow.org/resources
https://github.com/jtoy/awesome-tensorflow
https://paperswithcode.com


developers, as well as a large community contributing to improving it. To ask
technical questions, you should use https://stackoverflow.com and tag your
question with tensorflow and python. You can file bugs and feature requests
through GitHub. For general discussions, join the TensorFlow Forum.

OK, it’s time to start coding!

https://stackoverflow.com
https://github.com/tensorflow/tensorflow
https://discuss.tensorflow.org


Using TensorFlow like NumPy
TensorFlow’s API revolves around tensors, which flow from operation to
operation—hence the name TensorFlow. A tensor is very similar to a NumPy
ndarray: it is usually a multidimensional array, but it can also hold a scalar (a
simple value, such as 42). These tensors will be important when we create
custom cost functions, custom metrics, custom layers, and more, so let’s see
how to create and manipulate them.



Tensors and Operations
You can create a tensor with tf.constant(). For example, here is a tensor
representing a matrix with two rows and three columns of floats:

>>> import tensorflow as tf
>>> t = tf.constant([[1., 2., 3.], [4., 5., 6.]])  # matrix
>>> t
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[1., 2., 3.],
       [4., 5., 6.]], dtype=float32)>

Just like an ndarray, a tf.Tensor has a shape and a data type (dtype):

>>> t.shape
TensorShape([2, 3])
>>> t.dtype
tf.float32

Indexing works much like in NumPy:

>>> t[:, 1:]
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[2., 3.],
       [5., 6.]], dtype=float32)>
>>> t[..., 1, tf.newaxis]
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[2.],
       [5.]], dtype=float32)>

Most importantly, all sorts of tensor operations are available:

>>> t + 10
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[11., 12., 13.],
       [14., 15., 16.]], dtype=float32)>
>>> tf.square(t)
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[ 1.,  4.,  9.],
       [16., 25., 36.]], dtype=float32)>
>>> t @ tf.transpose(t)



<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[14., 32.],
       [32., 77.]], dtype=float32)>

Note that writing t + 10 is equivalent to calling tf.add(t, 10) (indeed, Python
calls the magic method t.__add__(10), which just calls tf.add(t, 10)). Other
operators, like - and *, are also supported. The @ operator was added in
Python 3.5, for matrix multiplication: it is equivalent to calling the
tf.matmul() function.

NOTE
Many functions and classes have aliases. For example, tf.add() and tf.math.add() are the
same function. This allows TensorFlow to have concise names for the most common
operations  while preserving well-organized packages.

A tensor can also hold a scalar value. In this case, the shape is empty:

>>> tf.constant(42)
<tf.Tensor: shape=(), dtype=int32, numpy=42>

NOTE
The Keras API has its own low-level API, located in tf.keras.backend. This package is
usually imported as K, for conciseness. It used to include functions like K.square(),
K.exp(), and K.sqrt(), which you may run across in existing code: this was useful to write
portable code back when Keras supported multiple backends, but now that Keras is
TensorFlow-only, you should call TensorFlow’s low-level API directly (e.g., tf.square()
instead of K.square()). Technically K.square() and its friends are still there for backward
compatibility, but the documentation of the tf.keras.backend package only lists a handful
of utility functions, such as clear_session() (mentioned in Chapter 10).

You will find all the basic math operations you need (tf.add(), tf.multiply(),
tf.square(), tf.exp(), tf.sqrt(), etc.) and most operations that you can find in
NumPy (e.g., tf.reshape(), tf.squeeze(), tf.tile()). Some functions have a
different name than in NumPy; for instance, tf.reduce_mean(),
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tf.reduce_sum(), tf.reduce_max(), and tf.math.log() are the equivalent of
np.mean(), np.sum(), np.max(), and np.log(). When the name differs, there is
usually a good reason for it. For example, in TensorFlow you must write
tf.transpose(t); you cannot just write t.T like in NumPy. The reason is that the
tf.transpose() function does not do exactly the same thing as NumPy’s T
attribute: in TensorFlow, a new tensor is created with its own copy of the
transposed data, while in NumPy, t.T is just a transposed view on the same
data. Similarly, the tf.reduce_sum() operation is named this way because its
GPU kernel (i.e., GPU implementation) uses a reduce algorithm that does not
guarantee the order in which the elements are added: because 32-bit floats
have limited precision, the result may change ever so slightly every time you
call this operation. The same is true of tf.reduce_mean() (but of course
tf.reduce_max() is deterministic).



Tensors and NumPy
Tensors play nice with NumPy: you can create a tensor from a NumPy array,
and vice versa. You can even apply TensorFlow operations to NumPy arrays
and NumPy operations to tensors:

>>> import numpy as np
>>> a = np.array([2., 4., 5.])
>>> tf.constant(a)
<tf.Tensor: id=111, shape=(3,), dtype=float64, numpy=array([2., 4., 5.])>
>>> t.numpy()  # or np.array(t)
array([[1., 2., 3.],
       [4., 5., 6.]], dtype=float32)
>>> tf.square(a)
<tf.Tensor: id=116, shape=(3,), dtype=float64, numpy=array([4., 16., 25.])>
>>> np.square(t)
array([[ 1.,  4.,  9.],
       [16., 25., 36.]], dtype=float32)

WARNING
Notice that NumPy uses 64-bit precision by default, while TensorFlow uses 32-bit. This is
because 32-bit precision is generally more than enough for neural networks, plus it runs
faster and uses less RAM. So when you create a tensor from a NumPy array, make sure to
set dtype=tf.float32.



Type Conversions
Type conversions can significantly hurt performance, and they can easily go
unnoticed when they are done automatically. To avoid this, TensorFlow does
not perform any type conversions automatically: it just raises an exception if
you try to execute an operation on tensors with incompatible types. For
example, you cannot add a float tensor and an integer tensor, and you cannot
even add a 32-bit float and a 64-bit float:

>>> tf.constant(2.) + tf.constant(40)
[...] InvalidArgumentError: [...] expected to be a float tensor [...]
>>> tf.constant(2.) + tf.constant(40., dtype=tf.float64)
[...] InvalidArgumentError: [...] expected to be a float tensor [...]

This may be a bit annoying at first, but remember that it’s for a good cause!
And of course you can use tf.cast() when you really need to convert types:

>>> t2 = tf.constant(40., dtype=tf.float64)
>>> tf.constant(2.0) + tf.cast(t2, tf.float32)
<tf.Tensor: id=136, shape=(), dtype=float32, numpy=42.0>



Variables
The tf.Tensor values we’ve seen so far are immutable: we cannot modify
them. This means that we cannot use regular tensors to implement weights in
a neural network, since they need to be tweaked by backpropagation. Plus,
other parameters may also need to change over time (e.g., a momentum
optimizer keeps track of past gradients). What we need is a tf.Variable:

>>> v = tf.Variable([[1., 2., 3.], [4., 5., 6.]])
>>> v
<tf.Variable 'Variable:0' shape=(2, 3) dtype=float32, numpy=
array([[1., 2., 3.],
       [4., 5., 6.]], dtype=float32)>

A tf.Variable acts much like a tf.Tensor: you can perform the same operations
with it, it plays nicely with NumPy as well, and it is just as picky with types.
But it can also be modified in place using the assign() method (or
assign_add() or assign_sub(), which increment or decrement the variable by
the given value). You can also modify individual cells (or slices), by using
the cell’s (or slice’s) assign() method or by using the scatter_update() or
scatter_nd_update() methods:

v.assign(2 * v)           # v now equals [[2., 4., 6.], [8., 10., 12.]]
v[0, 1].assign(42)        # v now equals [[2., 42., 6.], [8., 10., 12.]]
v[:, 2].assign([0., 1.])  # v now equals [[2., 42., 0.], [8., 10., 1.]]
v.scatter_nd_update(      # v now equals [[100., 42., 0.], [8., 10., 200.]]
    indices=[[0, 0], [1, 2]], updates=[100., 200.])

Direct assignment will not work:

>>> v[1] = [7., 8., 9.]
[...] TypeError: 'ResourceVariable' object does not support item assignment

NOTE
In practice you will rarely have to create variables manually; Keras provides an
add_weight() method that will take care of it for you, as you’ll see. Moreover, model



parameters will generally be updated directly by the optimizers, so you will rarely need to
update variables manually.



Other Data Structures
TensorFlow supports several other data structures, including the following
(see the “Other Data Structures” section in this chapter’s notebook or
Appendix C for more details):

Sparse tensors (tf.SparseTensor)

Efficiently represent tensors containing mostly zeros. The tf.sparse
package contains operations for sparse tensors.

Tensor arrays (tf.TensorArray)

Are lists of tensors. They have a fixed length by default but can
optionally be made extensible. All tensors they contain must have the
same shape and data type.

Ragged tensors (tf.RaggedTensor)

Represent lists of tensors, all of the same rank and data type, but with
varying sizes. The dimensions along which the tensor sizes vary are
called the ragged dimensions. The tf.ragged package contains operations
for ragged tensors.

String tensors

Are regular tensors of type tf.string. These represent byte strings, not
Unicode strings, so if you create a string tensor using a Unicode string
(e.g., a regular Python 3 string like "café"), then it will get encoded to
UTF-8 automatically (e.g., b"caf\xc3\xa9"). Alternatively, you can
represent Unicode strings using tensors of type tf.int32, where each item
represents a Unicode code point (e.g., [99, 97, 102, 233]). The tf.strings
package (with an s) contains ops for byte strings and Unicode strings (and
to convert one into the other). It’s important to note that a tf.string is
atomic, meaning that its length does not appear in the tensor’s shape.
Once you convert it to a Unicode tensor (i.e., a tensor of type tf.int32
holding Unicode code points), the length appears in the shape.



Sets

Are represented as regular tensors (or sparse tensors). For example,
tf.constant([[1, 2], [3, 4]]) represents the two sets {1, 2} and {3, 4}. More
generally, each set is represented by a vector in the tensor’s last axis. You
can manipulate sets using operations from the tf.sets package.

Queues

Store tensors across multiple steps. TensorFlow offers various kinds of
queues: basic first-in, first-out (FIFO) queues (FIFOQueue), plus queues
that can prioritize some items (PriorityQueue), shuffle their items
(RandomShuffleQueue), and batch items of different shapes by padding
(PaddingFIFOQueue). These classes are all in the tf.queue package.

With tensors, operations, variables, and various data structures at your
disposal, you are now ready to customize your models and training
algorithms!



Customizing Models and Training Algorithms
You’ll start by creating a custom loss function, which is a straightforward and
common use case.



Custom Loss Functions
Suppose you want to train a regression model, but your training set is a bit
noisy. Of course, you start by trying to clean up your dataset by removing or
fixing the outliers, but that turns out to be insufficient; the dataset is still
noisy. Which loss function should you use? The mean squared error might
penalize large errors too much and cause your model to be imprecise. The
mean absolute error would not penalize outliers as much, but training might
take a while to converge, and the trained model might not be very precise.
This is probably a good time to use the Huber loss (introduced in Chapter 10)
instead of the good old MSE. The Huber loss is available in Keras (just use
an instance of the tf.keras.losses.Huber class), but let’s pretend it’s not there.
To implement it, just create a function that takes the labels and the model’s
predictions as arguments, and uses TensorFlow operations to compute a
tensor containing all the losses (one per sample):

def huber_fn(y_true, y_pred):
    error = y_true - y_pred
    is_small_error = tf.abs(error) < 1
    squared_loss = tf.square(error) / 2
    linear_loss  = tf.abs(error) - 0.5
    return tf.where(is_small_error, squared_loss, linear_loss)

WARNING
For better performance, you should use a vectorized implementation, as in this example.
Moreover, if you want to benefit from TensorFlow’s graph optimization features, you
should use only TensorFlow operations.

It is also possible to return the mean loss instead of the individual sample
losses, but this is not recommended as it makes it impossible to use class
weights or sample weights when you need them (see Chapter 10).

Now you can use this Huber loss function when you compile the Keras
model, then train your model as usual:



model.compile(loss=huber_fn, optimizer="nadam")
model.fit(X_train, y_train, [...])

And that’s it! For each batch during training, Keras will call the huber_fn()
function to compute the loss, then it will use reverse-mode autodiff to
compute the gradients of the loss with regard to all the model parameters, and
finally it will perform a gradient descent step (in this example using a Nadam
optimizer). Moreover, it will keep track of the total loss since the beginning
of the epoch, and it will display the mean loss.

But what happens to this custom loss when you save the model?



Saving and Loading Models That Contain Custom
Components
Saving a model containing a custom loss function works fine, but when you
load it, you’ll need to provide a dictionary that maps the function name to the
actual function. More generally, when you load a model containing custom
objects, you need to map the names to the objects:

model = tf.keras.models.load_model("my_model_with_a_custom_loss",
                                   custom_objects={"huber_fn": huber_fn})

TIP
If you decorate the huber_fn() function with @keras.utils.reg ister_keras_serializable(), it
will automatically be available to the load_model() function: there’s no need to include it
in the custom_objects dictionary.

With the current implementation, any error between –1 and 1 is considered
“small”. But what if you want a different threshold? One solution is to create
a function that creates a configured loss function:

def create_huber(threshold=1.0):
    def huber_fn(y_true, y_pred):
        error = y_true - y_pred
        is_small_error = tf.abs(error) < threshold
        squared_loss = tf.square(error) / 2
        linear_loss  = threshold * tf.abs(error) - threshold ** 2 / 2
        return tf.where(is_small_error, squared_loss, linear_loss)
    return huber_fn

model.compile(loss=create_huber(2.0), optimizer="nadam")

Unfortunately, when you save the model, the threshold will not be saved.
This means that you will have to specify the threshold value when loading the
model (note that the name to use is "huber_fn", which is the name of the
function you gave Keras, not the name of the function that created it):



model = tf.keras.models.load_model(
    "my_model_with_a_custom_loss_threshold_2",
    custom_objects={"huber_fn": create_huber(2.0)}
)

You can solve this by creating a subclass of the tf.keras.losses.Loss class, and
then implementing its get_config() method:

class HuberLoss(tf.keras.losses.Loss):
    def __init__(self, threshold=1.0, **kwargs):
        self.threshold = threshold
        super().__init__(**kwargs)

    def call(self, y_true, y_pred):
        error = y_true - y_pred
        is_small_error = tf.abs(error) < self.threshold
        squared_loss = tf.square(error) / 2
        linear_loss  = self.threshold * tf.abs(error) - self.threshold**2 / 2
        return tf.where(is_small_error, squared_loss, linear_loss)

    def get_config(self):
        base_config = super().get_config()
        return {**base_config, "threshold": self.threshold}

Let’s walk through this code:

The constructor accepts **kwargs and passes them to the parent
constructor, which handles standard hyperparameters: the name of the
loss and the reduction algorithm to use to aggregate the individual
instance losses. By default this is "AUTO", which is equivalent to
"SUM_OVER_BATCH_SIZE": the loss will be the sum of the instance
losses, weighted by the sample weights, if any, and divided by the batch
size (not by the sum of weights, so this is not the weighted mean).
Other possible values are "SUM" and "NONE".

The call() method takes the labels and predictions, computes all the
instance losses, and returns them.

The get_config() method returns a dictionary mapping each
hyperparameter name to its value. It first calls the parent class’s
get_config() method, then adds the new hyperparameters to this
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dictionary. 

You can then use any instance of this class when you compile the model:

model.compile(loss=HuberLoss(2.), optimizer="nadam")

When you save the model, the threshold will be saved along with it; and
when you load the model, you just need to map the class name to the class
itself:

model = tf.keras.models.load_model("my_model_with_a_custom_loss_class",
                                   custom_objects={"HuberLoss": HuberLoss})

When you save a model, Keras calls the loss instance’s get_config() method
and saves the config in the SavedModel format. When you load the model, it
calls the from_config() class method on the HuberLoss class: this method is
implemented by the base class (Loss) and creates an instance of the class,
passing **config to the constructor.

That’s it for losses! As you’ll see now, custom activation functions,
initializers, regularizers, and constraints are not much different.
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Custom Activation Functions, Initializers, Regularizers, and
Constraints
Most Keras functionalities, such as losses, regularizers, constraints,
initializers, metrics, activation functions, layers, and even full models, can be
customized in much the same way. Most of the time, you will just need to
write a simple function with the appropriate inputs and outputs. Here are
examples of a custom activation function (equivalent to
tf.keras.activations.softplus() or tf.nn.softplus()), a custom Glorot initializer
(equivalent to tf.keras.initializers.glorot_normal()), a custom ℓ  regularizer
(equivalent to tf.keras.regularizers.l1(0.01)), and a custom constraint that
ensures weights are all positive (equivalent to tf.keras.con straints.nonneg()
or tf.nn.relu()):

def my_softplus(z):
    return tf.math.log(1.0 + tf.exp(z))

def my_glorot_initializer(shape, dtype=tf.float32):
    stddev = tf.sqrt(2. / (shape[0] + shape[1]))
    return tf.random.normal(shape, stddev=stddev, dtype=dtype)

def my_l1_regularizer(weights):
    return tf.reduce_sum(tf.abs(0.01 * weights))

def my_positive_weights(weights):  # return value is just tf.nn.relu(weights)
    return tf.where(weights < 0., tf.zeros_like(weights), weights)

As you can see, the arguments depend on the type of custom function. These
custom functions can then be used normally, as shown here:

layer = tf.keras.layers.Dense(1, activation=my_softplus,
                              kernel_initializer=my_glorot_initializer,
                              kernel_regularizer=my_l1_regularizer,
                              kernel_constraint=my_positive_weights)

The activation function will be applied to the output of this Dense layer, and
its result will be passed on to the next layer. The layer’s weights will be
initialized using the value returned by the initializer. At each training step the
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weights will be passed to the regularization function to compute the
regularization loss, which will be added to the main loss to get the final loss
used for training. Finally, the constraint function will be called after each
training step, and the layer’s weights will be replaced by the constrained
weights.

If a function has hyperparameters that need to be saved along with the model,
then you will want to subclass the appropriate class, such as
tf.keras.regu larizers.Reg  ularizer, tf.keras.constraints.Constraint,
tf.keras.initializers.Ini tializer, or tf.keras.layers.Layer (for any layer,
including activation functions). Much as you did for the custom loss, here is a
simple class for ℓ  regularization that saves its factor hyperparameter (this
time you do not need to call the parent constructor or the get_config()
method, as they are not defined by the parent class):

class MyL1Regularizer(tf.keras.regularizers.Regularizer):
    def __init__(self, factor):
        self.factor = factor

    def __call__(self, weights):
        return tf.reduce_sum(tf.abs(self.factor * weights))

    def get_config(self):
        return {"factor": self.factor}

Note that you must implement the call() method for losses, layers (including
activation functions), and models, or the __call__() method for regularizers,
initializers, and constraints. For metrics, things are a bit different, as you will
see now.
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Custom Metrics
Losses and metrics are conceptually not the same thing: losses (e.g., cross
entropy) are used by gradient descent to train a model, so they must be
differentiable (at least at the points where they are evaluated), and their
gradients should not be zero everywhere. Plus, it’s OK if they are not easily
interpretable by humans. In contrast, metrics (e.g., accuracy) are used to
evaluate a model: they must be more easily interpretable, and they can be
nondifferentiable or have zero gradients everywhere.

That said, in most cases, defining a custom metric function is exactly the
same as defining a custom loss function. In fact, we could even use the Huber
loss function we created earlier as a metric;  it would work just fine (and
persistence would also work the same way, in this case only saving the name
of the function, "huber_fn", not the threshold):

model.compile(loss="mse", optimizer="nadam", metrics=[create_huber(2.0)])

For each batch during training, Keras will compute this metric and keep track
of its mean since the beginning of the epoch. Most of the time, this is exactly
what you want. But not always! Consider a binary classifier’s precision, for
example. As you saw in Chapter 3, precision is the number of true positives
divided by the number of positive predictions (including both true positives
and false positives). Suppose the model made five positive predictions in the
first batch, four of which were correct: that’s 80% precision. Then suppose
the model made three positive predictions in the second batch, but they were
all incorrect: that’s 0% precision for the second batch. If you just compute the
mean of these two precisions, you get 40%. But wait a second—that’s not the
model’s precision over these two batches! Indeed, there were a total of four
true positives (4 + 0) out of eight positive predictions (5 + 3), so the overall
precision is 50%, not 40%. What we need is an object that can keep track of
the number of true positives and the number of false positives and that can
compute the precision based on these numbers when requested. This is
precisely what the tf.keras.metrics.Precision class does:
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>>> precision = tf.keras.metrics.Precision()
>>> precision([0, 1, 1, 1, 0, 1, 0, 1], [1, 1, 0, 1, 0, 1, 0, 1])
<tf.Tensor: shape=(), dtype=float32, numpy=0.8>
>>> precision([0, 1, 0, 0, 1, 0, 1, 1], [1, 0, 1, 1, 0, 0, 0, 0])
<tf.Tensor: shape=(), dtype=float32, numpy=0.5>

In this example, we created a Precision object, then we used it like a function,
passing it the labels and predictions for the first batch, then for the second
batch (you can optionally pass sample weights as well, if you want). We used
the same number of true and false positives as in the example we just
discussed. After the first batch, it returns a precision of 80%; then after the
second batch, it returns 50% (which is the overall precision so far, not the
second batch’s precision). This is called a streaming metric (or stateful
metric), as it is gradually updated, batch after batch.

At any point, we can call the result() method to get the current value of the
metric. We can also look at its variables (tracking the number of true and
false positives) by using the variables attribute, and we can reset these
variables using the reset_states() method:

>>> precision.result()
<tf.Tensor: shape=(), dtype=float32, numpy=0.5>
>>> precision.variables
[<tf.Variable 'true_positives:0' [...], numpy=array([4.], dtype=float32)>,
 <tf.Variable 'false_positives:0' [...], numpy=array([4.], dtype=float32)>]
>>> precision.reset_states()  # both variables get reset to 0.0

If you need to define your own custom streaming metric, create a subclass of
the tf.keras.metrics.Metric class. Here is a basic example that keeps track of
the total Huber loss and the number of instances seen so far. When asked for
the result, it returns the ratio, which is just the mean Huber loss:

class HuberMetric(tf.keras.metrics.Metric):
    def __init__(self, threshold=1.0, **kwargs):
        super().__init__(**kwargs)  # handles base args (e.g., dtype)
        self.threshold = threshold
        self.huber_fn = create_huber(threshold)
        self.total = self.add_weight("total", initializer="zeros")
        self.count = self.add_weight("count", initializer="zeros")



    def update_state(self, y_true, y_pred, sample_weight=None):
        sample_metrics = self.huber_fn(y_true, y_pred)
        self.total.assign_add(tf.reduce_sum(sample_metrics))
        self.count.assign_add(tf.cast(tf.size(y_true), tf.float32))

    def result(self):
        return self.total / self.count

    def get_config(self):
        base_config = super().get_config()
        return {**base_config, "threshold": self.threshold}

Let’s walk through this code:

The constructor uses the add_weight() method to create the variables
needed to keep track of the metric’s state over multiple batches—in this
case, the sum of all Huber losses (total) and the number of instances
seen so far (count). You could just create variables manually if you
preferred. Keras tracks any tf.Variable that is set as an attribute (and
more generally, any “trackable” object, such as layers or models).

The update_state() method is called when you use an instance of this
class as a function (as we did with the Precision object). It updates the
variables, given the labels and predictions for one batch (and sample
weights, but in this case we ignore them).

The result() method computes and returns the final result, in this case the
mean Huber metric over all instances. When you use the metric as a
function, the update_state() method gets called first, then the result()
method is called, and its output is returned.

We also implement the get_config() method to ensure the threshold gets
saved along with the model.

The default implementation of the reset_states() method resets all
variables to 0.0 (but you can override it if needed).

NOTE
Keras will take care of variable persistence seamlessly; no action is required.
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When you define a metric using a simple function, Keras automatically calls
it for each batch, and it keeps track of the mean during each epoch, just like
we did manually. So the only benefit of our HuberMetric class is that the
threshold will be saved. But of course, some metrics, like precision, cannot
simply be averaged over batches: in those cases, there’s no other option than
to implement a streaming metric.

Now that you’ve built a streaming metric, building a custom layer will seem
like a walk in the park!



Custom Layers
You may occasionally want to build an architecture that contains an exotic
layer for which TensorFlow does not provide a default implementation. Or
you may simply want to build a very repetitive architecture, in which a
particular block of layers is repeated many times, and it would be convenient
to treat each block as a single layer. For such cases, you’ll want to build a
custom layer.

There are some layers that have no weights, such as tf.keras.layers.Flatten or
tf.keras.layers.ReLU. If you want to create a custom layer without any
weights, the simplest option is to write a function and wrap it in a
tf.keras.layers.Lambda layer. For example, the following layer will apply the
exponential function to its inputs:

exponential_layer = tf.keras.layers.Lambda(lambda x: tf.exp(x))

This custom layer can then be used like any other layer, using the sequential
API, the functional API, or the subclassing API. You can also use it as an
activation function, or you could use activation=tf.exp. The exponential layer
is sometimes used in the output layer of a regression model when the values
to predict have very different scales (e.g., 0.001, 10., 1,000.). In fact, the
exponential function is one of the standard activation functions in Keras, so
you can just use activation="exponential".

As you might guess, to build a custom stateful layer (i.e., a layer with
weights), you need to create a subclass of the tf.keras.layers.Layer class. For
example, the following class implements a simplified version of the Dense
layer:

class MyDense(tf.keras.layers.Layer):
    def __init__(self, units, activation=None, **kwargs):
        super().__init__(**kwargs)
        self.units = units
        self.activation = tf.keras.activations.get(activation)

    def build(self, batch_input_shape):



        self.kernel = self.add_weight(
            name="kernel", shape=[batch_input_shape[-1], self.units],
            initializer="glorot_normal")
        self.bias = self.add_weight(
            name="bias", shape=[self.units], initializer="zeros")

    def call(self, X):
        return self.activation(X @ self.kernel + self.bias)

    def get_config(self):
        base_config = super().get_config()
        return {**base_config, "units": self.units,
                "activation": tf.keras.activations.serialize(self.activation)}

Let’s walk through this code:

The constructor takes all the hyperparameters as arguments (in this
example, units and activation), and importantly it also takes a **kwargs
argument. It calls the parent constructor, passing it the kwargs: this takes
care of standard arguments such as input_shape, trainable, and name.
Then it saves the hyperparameters as attributes, converting the activation
argument to the appropriate activation function using the
tf.keras.activations.get() function (it accepts functions, standard strings
like "relu" or "swish", or simply None).

The build() method’s role is to create the layer’s variables by calling the
add_weight() method for each weight. The build() method is called the
first time the layer is used. At that point, Keras will know the shape of
this layer’s inputs, and it will pass it to the build() method,  which is
often necessary to create some of the weights. For example, we need to
know the number of neurons in the previous layer in order to create the
connection weights matrix (i.e., the "kernel"): this corresponds to the
size of the last dimension of the inputs. At the end of the build() method
(and only at the end), you must call the parent’s build() method: this
tells Keras that the layer is built (it just sets self.built = True).

The call() method performs the desired operations. In this case, we
compute the matrix multiplication of the inputs X and the layer’s kernel,
we add the bias vector, and we apply the activation function to the
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result, and this gives us the output of the layer.

The get_config() method is just like in the previous custom classes. Note
that we save the activation function’s full configuration by calling
tf.keras.activa tions.serialize().

You can now use a MyDense layer just like any other layer!

NOTE
Keras automatically infers the output shape, except when the layer is dynamic (as you will
see shortly). In this (rare) case, you need to implement the compute_output_shape()
method, which must return a TensorShape object.

To create a layer with multiple inputs (e.g., Concatenate), the argument to the
call() method should be a tuple containing all the inputs. To create a layer
with multiple outputs, the call() method should return the list of outputs. For
example, the following toy layer takes two inputs and returns three outputs:

class MyMultiLayer(tf.keras.layers.Layer):
    def call(self, X):
        X1, X2 = X
        return X1 + X2, X1 * X2, X1 / X2

This layer may now be used like any other layer, but of course only using the
functional and subclassing APIs, not the sequential API (which only accepts
layers with one input and one output).

If your layer needs to have a different behavior during training and during
testing (e.g., if it uses Dropout or BatchNormalization layers), then you must
add a training argument to the call() method and use this argument to decide
what to do. For example, let’s create a layer that adds Gaussian noise during
training (for regularization) but does nothing during testing (Keras has a layer
that does the same thing, tf.keras.layers.GaussianNoise):

class MyGaussianNoise(tf.keras.layers.Layer):
    def __init__(self, stddev, **kwargs):



        super().__init__(**kwargs)
        self.stddev = stddev

    def call(self, X, training=False):
        if training:
            noise = tf.random.normal(tf.shape(X), stddev=self.stddev)
            return X + noise
        else:
            return X

With that, you can now build any custom layer you need! Now let’s look at
how to create custom models.



Custom Models
We already looked at creating custom model classes in Chapter 10, when we
discussed the subclassing API.  It’s straightforward: subclass the
tf.keras.Model class, create layers and variables in the constructor, and
implement the call() method to do whatever you want the model to do. For
example, suppose we want to build the model represented in Figure 12-3.

Figure 12-3. Custom model example: an arbitrary model with a custom ResidualBlock layer containing
a skip connection

The inputs go through a first dense layer, then through a residual block
composed of two dense layers and an addition operation (as you will see in
Chapter 14, a residual block adds its inputs to its outputs), then through this
same residual block three more times, then through a second residual block,
and the final result goes through a dense output layer. Don’t worry if this
model does not make much sense; it’s just an example to illustrate the fact
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that you can easily build any kind of model you want, even one that contains
loops and skip connections. To implement this model, it is best to first create
a ResidualBlock layer, since we are going to create a couple of identical
blocks (and we might want to reuse it in another model):

class ResidualBlock(tf.keras.layers.Layer):
    def __init__(self, n_layers, n_neurons, **kwargs):
        super().__init__(**kwargs)
        self.hidden = [tf.keras.layers.Dense(n_neurons, activation="relu",
                                             kernel_initializer="he_normal")
                       for _ in range(n_layers)]

    def call(self, inputs):
        Z = inputs
        for layer in self.hidden:
            Z = layer(Z)
        return inputs + Z

This layer is a bit special since it contains other layers. This is handled
transparently by Keras: it automatically detects that the hidden attribute
contains trackable objects (layers in this case), so their variables are
automatically added to this layer’s list of variables. The rest of this class is
self-explanatory. Next, let’s use the subclassing API to define the model
itself:

class ResidualRegressor(tf.keras.Model):
    def __init__(self, output_dim, **kwargs):
        super().__init__(**kwargs)
        self.hidden1 = tf.keras.layers.Dense(30, activation="relu",
                                             kernel_initializer="he_normal")
        self.block1 = ResidualBlock(2, 30)
        self.block2 = ResidualBlock(2, 30)
        self.out = tf.keras.layers.Dense(output_dim)

    def call(self, inputs):
        Z = self.hidden1(inputs)
        for _ in range(1 + 3):
            Z = self.block1(Z)
        Z = self.block2(Z)
        return self.out(Z)

We create the layers in the constructor and use them in the call() method.



This model can then be used like any other model (compile it, fit it, evaluate
it, and use it to make predictions). If you also want to be able to save the
model using the save() method and load it using the
tf.keras.models.load_model() function, you must implement the get_config()
method (as we did earlier) in both the ResidualBlock class and the
ResidualRegressor class. Alternatively, you can save and load the weights
using the save_weights() and load_weights() methods.

The Model class is a subclass of the Layer class, so models can be defined
and used exactly like layers. But a model has some extra functionalities,
including of course its compile(), fit(), evaluate(), and predict() methods (and
a few variants), plus the get_layer() method (which can return any of the
model’s layers by name or by index) and the save() method (and support for
tf.keras.models.load_model() and tf.keras.models.clone_model()).

TIP
If models provide more functionality than layers, why not just define every layer as a
model? Well, technically you could, but it is usually cleaner to distinguish the internal
components of your model (i.e., layers or reusable blocks of layers) from the model itself
(i.e., the object you will train). The former should subclass the Layer class, while the latter
should subclass the Model class.

With that, you can naturally and concisely build almost any model that you
find in a paper, using the sequential API, the functional API, the subclassing
API, or even a mix of these. “Almost” any model? Yes, there are still a few
things that we need to look at: first, how to define losses or metrics based on
model internals, and second, how to build a custom training loop.



Losses and Metrics Based on Model Internals
The custom losses and metrics we defined earlier were all based on the labels
and the predictions (and optionally sample weights). There will be times
when you want to define losses based on other parts of your model, such as
the weights or activations of its hidden layers. This may be useful for
regularization purposes or to monitor some internal aspect of your model.

To define a custom loss based on model internals, compute it based on any
part of the model you want, then pass the result to the add_loss() method. For
example, let’s build a custom regression MLP model composed of a stack of
five hidden layers plus an output layer. This custom model will also have an
auxiliary output on top of the upper hidden layer. The loss associated with
this auxiliary output will be called the reconstruction loss (see Chapter 17): it
is the mean squared difference between the reconstruction and the inputs. By
adding this reconstruction loss to the main loss, we will encourage the model
to preserve as much information as possible through the hidden layers—even
information that is not directly useful for the regression task itself. In
practice, this loss sometimes improves generalization (it is a regularization
loss). It is also possible to add a custom metric using the model’s
add_metric() method. Here is the code for this custom model with a custom
reconstruction loss and a corresponding metric:

class ReconstructingRegressor(tf.keras.Model):
    def __init__(self, output_dim, **kwargs):
        super().__init__(**kwargs)
        self.hidden = [tf.keras.layers.Dense(30, activation="relu",
                                             kernel_initializer="he_normal")
                       for _ in range(5)]
        self.out = tf.keras.layers.Dense(output_dim)
        self.reconstruction_mean = tf.keras.metrics.Mean(
            name="reconstruction_error")

    def build(self, batch_input_shape):
        n_inputs = batch_input_shape[-1]
        self.reconstruct = tf.keras.layers.Dense(n_inputs)

    def call(self, inputs, training=False):



        Z = inputs
        for layer in self.hidden:
            Z = layer(Z)
        reconstruction = self.reconstruct(Z)
        recon_loss = tf.reduce_mean(tf.square(reconstruction - inputs))
        self.add_loss(0.05 * recon_loss)
        if training:
            result = self.reconstruction_mean(recon_loss)
            self.add_metric(result)
        return self.out(Z)

Let’s go through this code:

The constructor creates the DNN with five dense hidden layers and one
dense output layer. We also create a Mean streaming metric to keep
track of the reconstruction error during training.

The build() method creates an extra dense layer that will be used to
reconstruct the inputs of the model. It must be created here because its
number of units must be equal to the number of inputs, and this number
is unknown before the build() method is called. 

The call() method processes the inputs through all five hidden layers,
then passes the result through the reconstruction layer, which produces
the reconstruction.

Then the call() method computes the reconstruction loss (the mean
squared difference between the reconstruction and the inputs), and adds
it to the model’s list of losses using the add_loss() method.   Notice
that we scale down the reconstruction loss by multiplying it by 0.05 (this
is a hyperparameter you can tune). This ensures that the reconstruction
loss does not dominate the main loss.

Next, during training only, the call() method updates the reconstruction
metric and adds it to the model so it can be displayed. This code
example can actually be simplified by calling
self.add_metric(recon_loss) instead: Keras will automatically track the
mean for you.

Finally, the call() method passes the output of the hidden layers to the
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output layer and returns its output.

Both the total loss and the reconstruction loss will go down during training:

Epoch 1/5
363/363 [========] - 1s 820us/step - loss: 0.7640 - reconstruction_error: 1.2728
Epoch 2/5
363/363 [========] - 0s 809us/step - loss: 0.4584 - reconstruction_error: 0.6340
[...]

In most cases, everything we have discussed so far will be sufficient to
implement whatever model you want to build, even with complex
architectures, losses, and metrics. However, for some architectures, such as
GANs (see Chapter 17), you will have to customize the training loop itself.
Before we get there, we must look at how to compute gradients automatically
in TensorFlow.



Computing Gradients Using Autodiff
To understand how to use autodiff (see Chapter 10 and Appendix B) to
compute gradients automatically, let’s consider a simple toy function:

def f(w1, w2):
    return 3 * w1 ** 2 + 2 * w1 * w2

If you know calculus, you can analytically find that the partial derivative of
this function with regard to w1 is 6 * w1 + 2 * w2. You can also find that its
partial derivative with regard to w2 is 2 * w1. For example, at the point (w1,
w2) = (5, 3), these partial derivatives are equal to 36 and 10, respectively, so
the gradient vector at this point is (36, 10). But if this were a neural network,
the function would be much more complex, typically with tens of thousands
of parameters, and finding the partial derivatives analytically by hand would
be a virtually impossible task. One solution could be to compute an
approximation of each partial derivative by measuring how much the
function’s output changes when you tweak the corresponding parameter by a
tiny amount:

>>> w1, w2 = 5, 3
>>> eps = 1e-6
>>> (f(w1 + eps, w2) - f(w1, w2)) / eps
36.000003007075065
>>> (f(w1, w2 + eps) - f(w1, w2)) / eps
10.000000003174137

Looks about right! This works rather well and is easy to implement, but it is
just an approximation, and importantly you need to call f() at least once per
parameter (not twice, since we could compute f(w1, w2) just once). Having
to call f() at least once per parameter makes this approach intractable for
large neural networks. So instead, we should use reverse-mode autodiff.
TensorFlow makes this pretty simple:

w1, w2 = tf.Variable(5.), tf.Variable(3.)
with tf.GradientTape() as tape:



    z = f(w1, w2)

gradients = tape.gradient(z, [w1, w2])

We first define two variables w1 and w2, then we create a tf.GradientTape
context that will automatically record every operation that involves a
variable, and finally we ask this tape to compute the gradients of the result z
with regard to both variables [w1, w2]. Let’s take a look at the gradients that
TensorFlow computed:

>>> gradients
[<tf.Tensor: shape=(), dtype=float32, numpy=36.0>,
 <tf.Tensor: shape=(), dtype=float32, numpy=10.0>]

Perfect! Not only is the result accurate (the precision is only limited by the
floating-point errors), but the gradient() method only goes through the
recorded computations once (in reverse order), no matter how many variables
there are, so it is incredibly efficient. It’s like magic!

TIP
In order to save memory, only put the strict minimum inside the tf.GradientTape() block.
Alternatively, pause recording by creating a with tape.stop_recording() block inside the
tf.GradientTape() block.

The tape is automatically erased immediately after you call its gradient()
method, so you will get an exception if you try to call gradient() twice:

with tf.GradientTape() as tape:
    z = f(w1, w2)

dz_dw1 = tape.gradient(z, w1)  # returns tensor 36.0
dz_dw2 = tape.gradient(z, w2)  # raises a RuntimeError!

If you need to call gradient() more than once, you must make the tape
persistent and delete it each time you are done with it to free resources: 14



with tf.GradientTape(persistent=True) as tape:
    z = f(w1, w2)

dz_dw1 = tape.gradient(z, w1)  # returns tensor 36.0
dz_dw2 = tape.gradient(z, w2)  # returns tensor 10.0, works fine now!
del tape

By default, the tape will only track operations involving variables, so if you
try to compute the gradient of z with regard to anything other than a variable,
the result will be None:

c1, c2 = tf.constant(5.), tf.constant(3.)
with tf.GradientTape() as tape:
    z = f(c1, c2)

gradients = tape.gradient(z, [c1, c2])  # returns [None, None]

However, you can force the tape to watch any tensors you like, to record
every operation that involves them. You can then compute gradients with
regard to these tensors, as if they were variables:

with tf.GradientTape() as tape:
    tape.watch(c1)
    tape.watch(c2)
    z = f(c1, c2)

gradients = tape.gradient(z, [c1, c2])  # returns [tensor 36., tensor 10.]

This can be useful in some cases, like if you want to implement a
regularization loss that penalizes activations that vary a lot when the inputs
vary little: the loss will be based on the gradient of the activations with regard
to the inputs. Since the inputs are not variables, you’ll need to tell the tape to
watch them.

Most of the time a gradient tape is used to compute the gradients of a single
value (usually the loss) with regard to a set of values (usually the model
parameters). This is where reverse-mode autodiff shines, as it just needs to do
one forward pass and one reverse pass to get all the gradients at once. If you
try to compute the gradients of a vector, for example a vector containing



multiple losses, then TensorFlow will compute the gradients of the vector’s
sum. So if you ever need to get the individual gradients (e.g., the gradients of
each loss with regard to the model parameters), you must call the tape’s
jacobian() method: it will perform reverse-mode autodiff once for each loss
in the vector (all in parallel by default). It is even possible to compute
second-order partial derivatives (the Hessians, i.e., the partial derivatives of
the partial derivatives), but this is rarely needed in practice (see the
“Computing Gradients Using Autodiff” section of this chapter’s notebook for
an example).

In some cases you may want to stop gradients from backpropagating through
some part of your neural network. To do this, you must use the
tf.stop_gradient() function. The function returns its inputs during the forward
pass (like tf.identity()), but it does not let gradients through during
backpropagation (it acts like a constant):

def f(w1, w2):
    return 3 * w1 ** 2 + tf.stop_gradient(2 * w1 * w2)

with tf.GradientTape() as tape:
    z = f(w1, w2)  # the forward pass is not affected by stop_gradient()

gradients = tape.gradient(z, [w1, w2])  # returns [tensor 30., None]

Finally, you may occasionally run into some numerical issues when
computing gradients. For example, if you compute the gradients of the square
root function at x = 10 , the result will be infinite. In reality, the slope at
that point is not infinite, but it’s more than 32-bit floats can handle:

>>> x = tf.Variable(1e-50)
>>> with tf.GradientTape() as tape:
...     z = tf.sqrt(x)
...
>>> tape.gradient(z, [x])
[<tf.Tensor: shape=(), dtype=float32, numpy=inf>]

To solve this, it’s often a good idea to add a tiny value to x (such as 10 )
when computing its square root.

–50

–6



The exponential function is also a frequent source of headaches, as it grows
extremely fast. For example, the way my_softplus() was defined earlier is not
numerically stable. If you compute my_softplus(100.0), you will get infinity
rather than the correct result (about 100). But it’s possible to rewrite the
function to make it numerically stable: the softplus function is defined as
log(1 + exp(z)), which is also equal to log(1 + exp(–|z|)) + max(z, 0) (see the
notebook for the mathematical proof) and the advantage of this second form
is that the exponential term cannot explode. So, here’s a better
implementation of the my_softplus() function:

def my_softplus(z):
    return tf.math.log(1 + tf.exp(-tf.abs(z))) + tf.maximum(0., z)

In some rare cases, a numerically stable function may still have numerically
unstable gradients. In such cases, you will have to tell TensorFlow which
equation to use for the gradients, rather than letting it use autodiff. For this,
you must use the @tf.cus  tom_gradient decorator when defining the
function, and return both the function’s usual result and a function that
computes the gradients. For example, let’s update the my_softplus() function
to also return a numerically stable gradients function:

@tf.custom_gradient
def my_softplus(z):
    def my_softplus_gradients(grads):  # grads = backprop'ed from upper layers
        return grads * (1 - 1 / (1 + tf.exp(z)))  # stable grads of softplus

    result = tf.math.log(1 + tf.exp(-tf.abs(z))) + tf.maximum(0., z)
    return result, my_softplus_gradients

If you know differential calculus (see the tutorial notebook on this topic), you
can find that the derivative of log(1 + exp(z)) is exp(z) / (1 + exp(z)). But this
form is not stable: for large values of z, it ends up computing infinity divided
by infinity, which returns NaN. However, with a bit of algebraic
manipulation, you can show that it’s also equal to 1 – 1 / (1 + exp(z)), which
is stable. The my_softplus_gradients() function uses this equation to compute
the gradients. Note that this function will receive as input the gradients that
were backpropagated so far, down to the my_softplus() function, and



according to the chain rule we must multiply them with this function’s
gradients.

Now when we compute the gradients of the my_softplus() function, we get
the proper result, even for large input values.

Congratulations! You can now compute the gradients of any function
(provided it is differentiable at the point where you compute it), even
blocking backpropagation when needed, and write your own gradient
functions! This is probably more flexibility than you will ever need, even if
you build your own custom training loops. You’ll see how to do that next.



Custom Training Loops
In some cases, the fit() method may not be flexible enough for what you need
to do. For example, the Wide & Deep paper we discussed in Chapter 10 uses
two different optimizers: one for the wide path and the other for the deep
path. Since the fit() method only uses one optimizer (the one that we specify
when compiling the model), implementing this paper requires writing your
own custom loop.

You may also like to write custom training loops simply to feel more
confident that they do precisely what you intend them to do (perhaps you are
unsure about some details of the fit() method). It can sometimes feel safer to
make everything explicit. However, remember that writing a custom training
loop will make your code longer, more error-prone, and harder to maintain.

TIP
Unless you’re learning or you really need the extra flexibility, you should prefer using the
fit() method rather than implementing your own training loop, especially if you work in a
team.

First, let’s build a simple model. There’s no need to compile it, since we will
handle the training loop manually:

l2_reg = tf.keras.regularizers.l2(0.05)
model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(30, activation="relu", kernel_initializer="he_normal",
                          kernel_regularizer=l2_reg),
    tf.keras.layers.Dense(1, kernel_regularizer=l2_reg)
])

Next, let’s create a tiny function that will randomly sample a batch of
instances from the training set (in Chapter 13 we will discuss the tf.data API,
which offers a much better alternative):

def random_batch(X, y, batch_size=32):

https://homl.info/widedeep


    idx = np.random.randint(len(X), size=batch_size)
    return X[idx], y[idx]

Let’s also define a function that will display the training status, including the
number of steps, the total number of steps, the mean loss since the start of the
epoch (we will use the Mean metric to compute it), and other metrics:

def print_status_bar(step, total, loss, metrics=None):
    metrics = " - ".join([f"{m.name}: {m.result():.4f}"
                          for m in [loss] + (metrics or [])])
    end = "" if step < total else "\n"
    print(f"\r{step}/{total} - " + metrics, end=end)

This code is self-explanatory, unless you are unfamiliar with Python string
formatting: {m.result():.4f} will format the metric’s result as a float with four
digits after the decimal point, and using \r (carriage return) along with end=""
ensures that the status bar always gets printed on the same line.

With that, let’s get down to business! First, we need to define some
hyperparameters and choose the optimizer, the loss function, and the metrics
(just the MAE in this example):

n_epochs = 5
batch_size = 32
n_steps = len(X_train) // batch_size
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
loss_fn = tf.keras.losses.mean_squared_error
mean_loss = tf.keras.metrics.Mean(name="mean_loss")
metrics = [tf.keras.metrics.MeanAbsoluteError()]

And now we are ready to build the custom loop!

for epoch in range(1, n_epochs + 1):
    print("Epoch {}/{}".format(epoch, n_epochs))
    for step in range(1, n_steps + 1):
        X_batch, y_batch = random_batch(X_train_scaled, y_train)
        with tf.GradientTape() as tape:
            y_pred = model(X_batch, training=True)
            main_loss = tf.reduce_mean(loss_fn(y_batch, y_pred))
            loss = tf.add_n([main_loss] + model.losses)



        gradients = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(gradients, model.trainable_variables))
        mean_loss(loss)
        for metric in metrics:
            metric(y_batch, y_pred)

        print_status_bar(step, n_steps, mean_loss, metrics)

    for metric in [mean_loss] + metrics:
        metric.reset_states()

There’s a lot going on in this code, so let’s walk through it:

We create two nested loops: one for the epochs, the other for the batches
within an epoch.

Then we sample a random batch from the training set.

Inside the tf.GradientTape() block, we make a prediction for one batch,
using the model as a function, and we compute the loss: it is equal to the
main loss plus the other losses (in this model, there is one regularization
loss per layer). Since the mean_squared_error() function returns one loss
per instance, we compute the mean over the batch using
tf.reduce_mean() (if you wanted to apply different weights to each
instance, this is where you would do it). The regularization losses are
already reduced to a single scalar each, so we just need to sum them
(using tf.add_n(), which sums multiple tensors of the same shape and
data type).

Next, we ask the tape to compute the gradients of the loss with regard to
each trainable variable—not all variables!—and we apply them to the
optimizer to perform a gradient descent step.

Then we update the mean loss and the metrics (over the current epoch),
and we display the status bar.

At the end of each epoch, we reset the states of the mean loss and the
metrics.

If you want to apply gradient clipping (see Chapter 11), set the optimizer’s



clipnorm or clipvalue hyperparameter. If you want to apply any other
transformation to the gradients, simply do so before calling the
apply_gradients() method. And if you want to add weight constraints to your
model (e.g., by setting kernel_constraint or bias_constraint when creating a
layer), you should update the training loop to apply these constraints just after
apply_gradients(), like so:

for variable in model.variables:
    if variable.constraint is not None:
        variable.assign(variable.constraint(variable))

WARNING
Don’t forget to set training=True when calling the model in the training loop, especially if
your model behaves differently during training and testing (e.g., if it uses
BatchNormalization or Dropout). If it’s a custom model, make sure to propagate the
training argument to the layers that your model calls.

As you can see, there are quite a lot of things you need to get right, and it’s
easy to make a mistake. But on the bright side, you get full control.

Now that you know how to customize any part of your models   and
training algorithms, let’s see how you can use TensorFlow’s automatic graph
generation feature: it can speed up your custom code considerably, and it will
also make it portable to any platform supported by TensorFlow (see
Chapter 19).
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TensorFlow Functions and Graphs
Back in TensorFlow 1, graphs were unavoidable (as were the complexities
that came with them) because they were a central part of TensorFlow’s API.
Since TensorFlow 2 (released in 2019), graphs are still there, but not as
central, and they’re much (much!) simpler to use. To show just how simple,
let’s start with a trivial function that computes the cube of its input:

def cube(x):
    return x ** 3

We can obviously call this function with a Python value, such as an int or a
float, or we can call it with a tensor:

>>> cube(2)
8
>>> cube(tf.constant(2.0))
<tf.Tensor: shape=(), dtype=float32, numpy=8.0>

Now, let’s use tf.function() to convert this Python function to a TensorFlow
function:

>>> tf_cube = tf.function(cube)
>>> tf_cube
<tensorflow.python.eager.def_function.Function at 0x7fbfe0c54d50>

This TF function can then be used exactly like the original Python function,
and it will return the same result (but always as tensors):

>>> tf_cube(2)
<tf.Tensor: shape=(), dtype=int32, numpy=8>
>>> tf_cube(tf.constant(2.0))
<tf.Tensor: shape=(), dtype=float32, numpy=8.0>

Under the hood, tf.function() analyzed the computations performed by the
cube() function and generated an equivalent computation graph! As you can



see, it was rather painless (we will look at how this works shortly).
Alternatively, we could have used tf.function as a decorator; this is actually
more common:

@tf.function
def tf_cube(x):
    return x ** 3

The original Python function is still available via the TF function’s
python_function attribute, in case you ever need it:

>>> tf_cube.python_function(2)
8

TensorFlow optimizes the computation graph, pruning unused nodes,
simplifying expressions (e.g., 1 + 2 would get replaced with 3), and more.
Once the optimized graph is ready, the TF function efficiently executes the
operations in the graph, in the appropriate order (and in parallel when it can).
As a result, a TF function will usually run much faster than the original
Python function, especially if it performs complex computations.  Most of
the time you will not really need to know more than that: when you want to
boost a Python function, just transform it into a TF function. That’s all!

Moreover, if you set jit_compile=True when calling tf.function(), then
TensorFlow will use accelerated linear algebra (XLA) to compile dedicated
kernels for your graph, often fusing multiple operations. For example, if your
TF function calls tf.reduce_sum(a * b + c), then without XLA the function
would first need to compute a * b and store the result in a temporary variable,
then add c to that variable, and lastly call tf.reduce_sum() on the result. With
XLA, the whole computation gets compiled into a single kernel, which will
compute tf.reduce_sum(a * b + c) in one shot, without using any large
temporary variable. Not only will this be much faster, it will also use
dramatically less RAM.

When you write a custom loss function, a custom metric, a custom layer, or
any other custom function and you use it in a Keras model (as we’ve done
throughout this chapter), Keras automatically converts your function into a
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TF function—no need to use tf.function(). So most of the time, the magic is
100% transparent. And if you want Keras to use XLA, you just need to set
jit_compile=True when calling the compile() method. Easy!

TIP
You can tell Keras not to convert your Python functions to TF functions by setting
dynamic=True when creating a custom layer or a custom model. Alternatively, you can set
run_eagerly=True when calling the model’s compile() method.

By default, a TF function generates a new graph for every unique set of input
shapes and data types and caches it for subsequent calls. For example, if you
call tf_cube(tf.constant(10)), a graph will be generated for int32 tensors of
shape []. Then if you call tf_cube(tf.constant(20)), the same graph will be
reused. But if you then call tf_cube(tf.constant([10, 20])), a new graph will be
generated for int32 tensors of shape [2]. This is how TF functions handle
polymorphism (i.e., varying argument types and shapes). However, this is
only true for tensor arguments: if you pass numerical Python values to a TF
function, a new graph will be generated for every distinct value: for example,
calling tf_cube(10) and tf_cube(20) will generate two graphs.

WARNING
If you call a TF function many times with different numerical Python values, then many
graphs will be generated, slowing down your program and using up a lot of RAM (you
must delete the TF function to release it). Python values should be reserved for arguments
that will have few unique values, such as hyperparameters like the number of neurons per
layer. This allows TensorFlow to better optimize each variant of your model.



AutoGraph and Tracing
So how does TensorFlow generate graphs? It starts by analyzing the Python
function’s source code to capture all the control flow statements, such as for
loops, while loops, and if statements, as well as break, continue, and return
statements. This first step is called AutoGraph. The reason TensorFlow has to
analyze the source code is that Python does not provide any other way to
capture control flow statements: it offers magic methods like __add__() and
__mul__() to capture operators like + and *, but there are no __while__() or
__if__() magic methods. After analyzing the function’s code, AutoGraph
outputs an upgraded version of that function in which all the control flow
statements are replaced by the appropriate TensorFlow operations, such as
tf.while_loop() for loops and tf.cond() for if statements. For example, in
Figure 12-4, AutoGraph analyzes the source code of the sum_squares()
Python function, and it generates the tf__sum_squares() function. In this
function, the for loop is replaced by the definition of the loop_body()
function (containing the body of the original for loop), followed by a call to
the for_stmt() function. This call will build the appropriate tf.while_loop()
operation in the computation graph.



Figure 12-4. How TensorFlow generates graphs using AutoGraph and tracing

Next, TensorFlow calls this “upgraded” function, but instead of passing the
argument, it passes a symbolic tensor—a tensor without any actual value,
only a name, a data type, and a shape. For example, if you call
sum_squares(tf.constant(10)), then the tf__sum_squares() function will be
called with a symbolic tensor of type int32 and shape []. The function will
run in graph mode, meaning that each TensorFlow operation will add a node
in the graph to represent itself and its output tensor(s) (as opposed to the
regular mode, called eager execution, or eager mode). In graph mode, TF
operations do not perform any computations. Graph mode was the default
mode in TensorFlow 1. In Figure 12-4, you can see the tf__sum_squares()
function being called with a symbolic tensor as its argument (in this case, an
int32 tensor of shape []) and the final graph being generated during tracing.
The nodes represent operations, and the arrows represent tensors (both the
generated function and the graph are simplified).



TIP
In order to view the generated function’s source code, you can call
tf.autograph.to_code(sum_squares.python_function). The code is not meant to be pretty,
but it can sometimes help for debugging.



TF Function Rules
Most of the time, converting a Python function that performs TensorFlow
operations into a TF function is trivial: decorate it with @tf.function or let
Keras take care of it for you. However, there are a few rules to respect:

If you call any external library, including NumPy or even the standard
library, this call will run only during tracing; it will not be part of the
graph. Indeed, a TensorFlow graph can only include TensorFlow
constructs (tensors, operations, variables, datasets, and so on). So, make
sure you use tf.reduce_sum() instead of np.sum(), tf.sort() instead of the
built-in sorted() function, and so on (unless you really want the code to
run only during tracing). This has a few additional implications:

If you define a TF function f(x) that just returns np.random.rand(),
a random number will only be generated when the function is
traced, so f(tf.constant(2.)) and f(tf.constant(3.)) will return the
same random number, but f(tf.constant([2., 3.])) will return a
different one. If you replace np.random.rand() with
tf.random.uniform([]), then a new random number will be
generated upon every call, since the operation will be part of the
graph.

If your non-TensorFlow code has side effects (such as logging
something or updating a Python counter), then you should not
expect those side effects to occur every time you call the TF
function, as they will only occur when the function is traced.

You can wrap arbitrary Python code in a tf.py_function() operation,
but doing so will hinder performance, as TensorFlow will not be
able to do any graph optimization on this code. It will also reduce
portability, as the graph will only run on platforms where Python is
available (and where the right libraries are installed).

You can call other Python functions or TF functions, but they should
follow the same rules, as TensorFlow will capture their operations in the



computation graph. Note that these other functions do not need to be
decorated with @tf.function.

If the function creates a TensorFlow variable (or any other stateful
TensorFlow object, such as a dataset or a queue), it must do so upon the
very first call, and only then, or else you will get an exception. It is
usually preferable to create variables outside of the TF function (e.g., in
the build() method of a custom layer). If you want to assign a new value
to the variable, make sure you call its assign() method instead of using
the = operator.

The source code of your Python function should be available to
TensorFlow. If the source code is unavailable (for example, if you
define your function in the Python shell, which does not give access to
the source code, or if you deploy only the compiled *.pyc Python files to
production), then the graph generation process will fail or have limited
functionality.

TensorFlow will only capture for loops that iterate over a tensor or a
tf.data.Dataset (see Chapter 13). Therefore, make sure you use for i in
tf.range(x) rather than for i in range(x), or else the loop will not be
captured in the graph. Instead, it will run during tracing. (This may be
what you want if the for loop is meant to build the graph; for example,
to create each layer in a neural network.)

As always, for performance reasons, you should prefer a vectorized
implementation whenever you can, rather than using loops.

It’s time to sum up! In this chapter we started with a brief overview of
TensorFlow, then we looked at TensorFlow’s low-level API, including
tensors, operations, variables, and special data structures. We then used these
tools to customize almost every component in the Keras API. Finally, we
looked at how TF functions can boost performance, how graphs are generated
using AutoGraph and tracing, and what rules to follow when you write TF
functions (if you would like to open the black box a bit further and explore
the generated graphs, you will find technical details in Appendix D).



In the next chapter, we will look at how to efficiently load and preprocess
data with TensorFlow.



Exercises
1. How would you describe TensorFlow in a short sentence? What are its

main features? Can you name other popular deep learning libraries?

2. Is TensorFlow a drop-in replacement for NumPy? What are the main
differences between the two?

3. Do you get the same result with tf.range(10) and tf.constant(np.
ara nge(10))?

4. Can you name six other data structures available in TensorFlow, beyond
regular tensors?

5. You can define a custom loss function by writing a function or by
subclassing the tf.keras.losses.Loss class. When would you use each
option?

6. Similarly, you can define a custom metric in a function or as a subclass
of tf.keras.metrics.Metric. When would you use each option?

7. When should you create a custom layer versus a custom model?

8. What are some use cases that require writing your own custom training
loop?

9. Can custom Keras components contain arbitrary Python code, or must
they be convertible to TF functions?

10. What are the main rules to respect if you want a function to be
convertible to a TF function?

11. When would you need to create a dynamic Keras model? How do you
do that? Why not make all your models dynamic?

12. Implement a custom layer that performs layer normalization (we will
use this type of layer in Chapter 15):



a. The build() method should define two trainable weights α and β,
both of shape input_shape[-1:] and data type tf.float32. α should be
initialized with 1s, and β with 0s.

b. The call() method should compute the mean μ and standard
deviation σ of each instance’s features. For this, you can use
tf.nn.moments(inputs, axes=-1, keepdims=True), which returns the
mean μ and the variance σ  of all instances (compute the square
root of the variance to get the standard deviation). Then the
function should compute and return α ⊗ (X – μ)/(σ + ε) + β, where ⊗
represents itemwise multiplication (*) and ε is a smoothing term (a
small constant to avoid division by zero, e.g., 0.001).

c. Ensure that your custom layer produces the same (or very nearly
the same) output as the tf.keras.layers.LayerNormalization layer.

13. Train a model using a custom training loop to tackle the Fashion MNIST
dataset (see Chapter 10):

a. Display the epoch, iteration, mean training loss, and mean accuracy
over each epoch (updated at each iteration), as well as the
validation loss and accuracy at the end of each epoch.

b. Try using a different optimizer with a different learning rate for the
upper layers and the lower layers.

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.

1  However, Facebook’s PyTorch library is currently more popular in academia: more papers cite
PyTorch than TensorFlow or Keras. Moreover, Google’s JAX library is gaining momentum,
especially in academia.

2  TensorFlow includes another deep learning API called the estimators API, but it is now
deprecated.

3  If you ever need to (but you probably won’t), you can write your own operations using the C++
API.

4  To learn more about TPUs and how they work, check out https://homl.info/tpus.
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5  A notable exception is tf.math.log(), which is commonly used but doesn’t have a tf.log() alias,
as it might be confused with logging.

6  It would not be a good idea to use a weighted mean: if you did, then two instances with the
same weight but in different batches would have a different impact on training, depending on the
total weight of each batch.

7  The {**x, [...]} syntax was added in Python 3.5, to merge all the key/value pairs from dictionary
x into another dictionary. Since Python 3.9, you can use the nicer x | y syntax instead (where x
and y are two dictionaries).

8  However, the Huber loss is seldom used as a metric—the MAE or MSE is generally preferred.

9  This class is for illustration purposes only. A simpler and better implementation would just
subclass the tf.keras.metrics.Mean class; see the “Streaming Metrics” section of this chapter’s
notebook for an example.

10  The Keras API calls this argument input_shape, but since it also includes the batch dimension, I
prefer to call it batch_input_shape.

11  The name “subclassing API” in Keras usually refers only to the creation of custom models by
subclassing, although many other things can be created by subclassing, as you’ve seen in this
chapter.

12  Due to TensorFlow issue #46858, the call to super().build() may fail in this case, unless the
issue was fixed by the time you read this. If not, you need to replace this line with self.built =
True.

13  You can also call add_loss() on any layer inside the model, as the model recursively gathers
losses from all of its layers.

14  If the tape goes out of scope, for example when the function that used it returns, Python’s
garbage collector will delete it for you.

15  With the exception of optimizers, as very few people ever customize these; see the “Custom
Optimizers” section in the notebook for an example.

16  However, in this trivial example, the computation graph is so small that there is nothing at all to
optimize, so tf_cube() actually runs much slower than cube().



Chapter 13. Loading and
Preprocessing Data with
TensorFlow

In Chapter 2, you saw that loading and preprocessing data is an important
part of any machine learning project. You used Pandas to load and explore
the (modified) California housing dataset—which was stored in a CSV file—
and you applied Scikit-Learn’s transformers for preprocessing. These tools
are quite convenient, and you will probably be using them often, especially
when exploring and experimenting with data.

However, when training TensorFlow models on large datasets, you may
prefer to use TensorFlow’s own data loading and preprocessing API, called
tf.data. It is capable of loading and preprocessing data extremely efficiently,
reading from multiple files in parallel using multithreading and queuing,
shuffling and batching samples, and more. Plus, it can do all of this on the fly
—it loads and preprocesses the next batch of data across multiple CPU cores,
while your GPUs or TPUs are busy training the current batch of data.

The tf.data API lets you handle datasets that don’t fit in memory, and it
allows you to make full use of your hardware resources, thereby speeding up
training. Off the shelf, the tf.data API can read from text files (such as CSV
files), binary files with fixed-size records, and binary files that use
TensorFlow’s TFRecord format, which supports records of varying sizes.

TFRecord is a flexible and efficient binary format usually containing protocol
buffers (an open source binary format). The tf.data API also has support for
reading from SQL databases. Moreover, many open source extensions are
available to read from all sorts of data sources, such as Google’s BigQuery
service (see https://tensorflow.org/io).

Keras also comes with powerful yet easy-to-use preprocessing layers that can

https://tensorflow.org/io


be embedded in your models: this way, when you deploy a model to
production, it will be able to ingest raw data directly, without you having to
add any additional preprocessing code. This eliminates the risk of mismatch
between the preprocessing code used during training and the preprocessing
code used in production, which would likely cause training/serving skew.
And if you deploy your model in multiple apps coded in different
programming languages, you won’t have to reimplement the same
preprocessing code multiple times, which also reduces the risk of mismatch.

As you will see, both APIs can be used jointly—for example, to benefit from
the efficient data loading offered by tf.data and the convenience of the Keras
preprocessing layers.

In this chapter, we will first cover the tf.data API and the TFRecord format.
Then we will explore the Keras preprocessing layers and how to use them
with the tf.data API. Lastly, we will take a quick look at a few related
libraries that you may find useful for loading and preprocessing data, such as
TensorFlow Datasets and TensorFlow Hub. So, let’s get started!



The tf.data API
The whole tf.data API revolves around the concept of a tf.data.Dataset: this
represents a sequence of data items. Usually you will use datasets that
gradually read data from disk, but for simplicity let’s create a dataset from a
simple data tensor using tf.data.Dataset.from_tensor_slices():

>>> import tensorflow as tf
>>> X = tf.range(10)  # any data tensor
>>> dataset = tf.data.Dataset.from_tensor_slices(X)
>>> dataset
<TensorSliceDataset shapes: (), types: tf.int32>

The from_tensor_slices() function takes a tensor and creates a tf.data.Dataset
whose elements are all the slices of X along the first dimension, so this
dataset contains 10 items: tensors 0, 1, 2, …, 9. In this case we would have
obtained the same dataset if we had used tf.data.Dataset.range(10) (except the
elements would be 64-bit integers instead of 32-bit integers).

You can simply iterate over a dataset’s items like this:

>>> for item in dataset:
...     print(item)
...
tf.Tensor(0, shape=(), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32)
[...]
tf.Tensor(9, shape=(), dtype=int32)

NOTE
The tf.data API is a streaming API: you can very efficiently iterate through a dataset’s
items, but the API is not designed for indexing or slicing.

A dataset may also contain tuples of tensors, or dictionaries of name/tensor
pairs, or even nested tuples and dictionaries of tensors. When slicing a tuple,



a dictionary, or a nested structure, the dataset will only slice the tensors it
contains, while preserving the tuple/dictionary structure. For example:

>>> X_nested = {"a": ([1, 2, 3], [4, 5, 6]), "b": [7, 8, 9]}
>>> dataset = tf.data.Dataset.from_tensor_slices(X_nested)
>>> for item in dataset:
...     print(item)
...
{'a': (<tf.Tensor: [...]=1>, <tf.Tensor: [...]=4>), 'b': <tf.Tensor: [...]=7>}
{'a': (<tf.Tensor: [...]=2>, <tf.Tensor: [...]=5>), 'b': <tf.Tensor: [...]=8>}
{'a': (<tf.Tensor: [...]=3>, <tf.Tensor: [...]=6>), 'b': <tf.Tensor: [...]=9>}



Chaining Transformations
Once you have a dataset, you can apply all sorts of transformations to it by
calling its transformation methods. Each method returns a new dataset, so
you can chain transformations like this (this chain is illustrated in Figure 13-
1):

>>> dataset = tf.data.Dataset.from_tensor_slices(tf.range(10))
>>> dataset = dataset.repeat(3).batch(7)
>>> for item in dataset:
...     print(item)
...
tf.Tensor([0 1 2 3 4 5 6], shape=(7,), dtype=int32)
tf.Tensor([7 8 9 0 1 2 3], shape=(7,), dtype=int32)
tf.Tensor([4 5 6 7 8 9 0], shape=(7,), dtype=int32)
tf.Tensor([1 2 3 4 5 6 7], shape=(7,), dtype=int32)
tf.Tensor([8 9], shape=(2,), dtype=int32)

In this example, we first call the repeat() method on the original dataset, and
it returns a new dataset that repeats the items of the original dataset three
times. Of course, this will not copy all the data in memory three times! If you
call this method with no arguments, the new dataset will repeat the source
dataset forever, so the code that iterates over the dataset will have to decide
when to stop.

Then we call the batch() method on this new dataset, and again this creates a
new dataset. This one will group the items of the previous dataset in batches
of seven items.



Figure 13-1. Chaining dataset transformations

Finally, we iterate over the items of this final dataset. The batch() method had
to output a final batch of size two instead of seven, but you can call batch()
with drop_remainder=True if you want it to drop this final batch, such that all
batches have the exact same size.

WARNING
The dataset methods do not modify datasets—they create new ones. So make sure to keep
a reference to these new datasets (e.g., with dataset = ...), or else nothing will happen.

You can also transform the items by calling the map() method. For example,
this creates a new dataset with all batches multiplied by two:

>>> dataset = dataset.map(lambda x: x * 2)  # x is a batch
>>> for item in dataset:
...     print(item)
...
tf.Tensor([ 0  2  4  6  8 10 12], shape=(7,), dtype=int32)
tf.Tensor([14 16 18  0  2  4  6], shape=(7,), dtype=int32)
[...]

This map() method is the one you will call to apply any preprocessing to your
data. Sometimes this will include computations that can be quite intensive,
such as reshaping or rotating an image, so you will usually want to spawn
multiple threads to speed things up. This can be done by setting the



num_parallel_calls argument to the number of threads to run, or to
tf.data.AUTOTUNE. Note that the function you pass to the map() method
must be convertible to a TF function (see Chapter 12).

It is also possible to simply filter the dataset using the filter() method. For
example, this code creates a dataset that only contains the batchs whose sum
is greater than 50:

>>> dataset = dataset.filter(lambda x: tf.reduce_sum(x) > 50)
>>> for item in dataset:
...     print(item)
...
tf.Tensor([14 16 18  0  2  4  6], shape=(7,), dtype=int32)
tf.Tensor([ 8 10 12 14 16 18  0], shape=(7,), dtype=int32)
tf.Tensor([ 2  4  6  8 10 12 14], shape=(7,), dtype=int32)

You will often want to look at just a few items from a dataset. You can use
the take() method for that:

>>> for item in dataset.take(2):
...     print(item)
...
tf.Tensor([14 16 18  0  2  4  6], shape=(7,), dtype=int32)
tf.Tensor([ 8 10 12 14 16 18  0], shape=(7,), dtype=int32)



Shuffling the Data
As we discussed in Chapter 4, gradient descent works best when the instances
in the training set are independent and identically distributed (IID). A simple
way to ensure this is to shuffle the instances, using the shuffle() method. It
will create a new dataset that will start by filling up a buffer with the first
items of the source dataset. Then, whenever it is asked for an item, it will pull
one out randomly from the buffer and replace it with a fresh one from the
source dataset, until it has iterated entirely through the source dataset. At this
point it will continue to pull out items randomly from the buffer until it is
empty. You must specify the buffer size, and it is important to make it large
enough, or else shuffling will not be very effective.   Just don’t exceed the
amount of RAM you have, though even if you have plenty of it, there’s no
need to go beyond the dataset’s size. You can provide a random seed if you
want the same random order every time you run your program. For example,
the following code creates and displays a dataset containing the integers 0 to
9, repeated twice, shuffled using a buffer of size 4 and a random seed of 42,
and batched with a batch size of 7:

>>> dataset = tf.data.Dataset.range(10).repeat(2)
>>> dataset = dataset.shuffle(buffer_size=4, seed=42).batch(7)
>>> for item in dataset:
...     print(item)
...
tf.Tensor([3 0 1 6 2 5 7], shape=(7,), dtype=int64)
tf.Tensor([8 4 1 9 4 2 3], shape=(7,), dtype=int64)
tf.Tensor([7 5 0 8 9 6], shape=(6,), dtype=int64)

TIP
If you call repeat() on a shuffled dataset, by default it will generate a new order at every
iteration. This is generally a good idea, but if you prefer to reuse the same order at each
iteration (e.g., for tests or debugging), you can set reshuffle_each_itera tion=False when
calling shuffle().

For a large dataset that does not fit in memory, this simple shuffling-buffer
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approach may not be sufficient, since the buffer will be small compared to the
dataset. One solution is to shuffle the source data itself (for example, on
Linux you can shuffle text files using the shuf command). This will definitely
improve shuffling a lot! Even if the source data is shuffled, you will usually
want to shuffle it some more, or else the same order will be repeated at each
epoch, and the model may end up being biased (e.g., due to some spurious
patterns present by chance in the source data’s order). To shuffle the
instances some more, a common approach is to split the source data into
multiple files, then read them in a random order during training. However,
instances located in the same file will still end up close to each other. To
avoid this you can pick multiple files randomly and read them
simultaneously, interleaving their records. Then on top of that you can add a
shuffling buffer using the shuffle() method. If this sounds like a lot of work,
don’t worry: the tf.data API makes all this possible in just a few lines of code.
Let’s go over how you can do this.



Interleaving Lines from Multiple Files
First, suppose you’ve loaded the California housing dataset, shuffled it
(unless it was already shuffled), and split it into a training set, a validation
set, and a test set. Then you split each set into many CSV files that each look
like this (each row contains eight input features plus the target median house
value):

MedInc,HouseAge,AveRooms,AveBedrms,Popul…,AveOccup,Lat…,Long…,MedianHouseValue
3.5214,15.0,3.050,1.107,1447.0,1.606,37.63,-122.43,1.442
5.3275,5.0,6.490,0.991,3464.0,3.443,33.69,-117.39,1.687
3.1,29.0,7.542,1.592,1328.0,2.251,38.44,-122.98,1.621
[...]

Let’s also suppose train_filepaths contains the list of training filepaths (and
you also have valid_filepaths and test_filepaths):

>>> train_filepaths
['datasets/housing/my_train_00.csv', 'datasets/housing/my_train_01.csv', ...]

Alternatively, you could use file patterns; for example, train_filepaths =
"datasets/housing/my_train_*.csv". Now let’s create a dataset containing only
these filepaths:

filepath_dataset = tf.data.Dataset.list_files(train_filepaths, seed=42)

By default, the list_files() function returns a dataset that shuffles the filepaths.
In general this is a good thing, but you can set shuffle=False if you do not
want that for some reason.

Next, you can call the interleave() method to read from five files at a time and
interleave their lines. You can also skip the first line of each file—which is
the header row—using the skip() method):

n_readers = 5
dataset = filepath_dataset.interleave(
    lambda filepath: tf.data.TextLineDataset(filepath).skip(1),



    cycle_length=n_readers)

The interleave() method will create a dataset that will pull five filepaths from
the filepath_dataset, and for each one it will call the function you gave it (a
lambda in this example) to create a new dataset (in this case a
TextLineDataset). To be clear, at this stage there will be seven datasets in all:
the filepath dataset, the interleave dataset, and the five TextLineDatasets
created internally by the interleave dataset. When you iterate over the
interleave dataset, it will cycle through these five TextLineDatasets, reading
one line at a time from each until all datasets are out of items. Then it will
fetch the next five filepaths from the filepath_dataset and interleave them the
same way, and so on until it runs out of filepaths. For interleaving to work
best, it is preferable to have files of identical length; otherwise the end of the
longest file will not be interleaved.

By default, interleave() does not use parallelism; it just reads one line at a
time from each file, sequentially. If you want it to actually read files in
parallel, you can set the interleave() method’s num_parallel_calls argument to
the number of threads you want (recall that the map() method also has this
argument). You can even set it to tf.data.AUTOTUNE to make TensorFlow
choose the right number of threads dynamically based on the available CPU.
Let’s look at what the dataset contains now:

>>> for line in dataset.take(5):
...     print(line)
...
tf.Tensor(b'4.5909,16.0,[...],33.63,-117.71,2.418', shape=(), dtype=string)
tf.Tensor(b'2.4792,24.0,[...],34.18,-118.38,2.0', shape=(), dtype=string)
tf.Tensor(b'4.2708,45.0,[...],37.48,-122.19,2.67', shape=(), dtype=string)
tf.Tensor(b'2.1856,41.0,[...],32.76,-117.12,1.205', shape=(), dtype=string)
tf.Tensor(b'4.1812,52.0,[...],33.73,-118.31,3.215', shape=(), dtype=string)

These are the first rows (ignoring the header row) of five CSV files, chosen
randomly. Looks good!

NOTE



It’s possible to pass a list of filepaths to the TextLineDataset constructor: it will go
through each file in order, line by line. If you also set the num_parallel_reads argument to
a number greater than one, then the dataset will read that number of files in parallel and
interleave their lines (without having to call the interleave() method). However, it will not
shuffle the files, nor will it skip the header lines.



Preprocessing the Data
Now that we have a housing dataset that returns each instance as a tensor
containing a byte string, we need to do a bit of preprocessing, including
parsing the strings and scaling the data. Let’s implement a couple custom
functions that will perform this preprocessing:

X_mean, X_std = [...]  # mean and scale of each feature in the training set
n_inputs = 8

def parse_csv_line(line):
    defs = [0.] * n_inputs + [tf.constant([], dtype=tf.float32)]
    fields = tf.io.decode_csv(line, record_defaults=defs)
    return tf.stack(fields[:-1]), tf.stack(fields[-1:])

def preprocess(line):
    x, y = parse_csv_line(line)
    return (x - X_mean) / X_std, y

Let’s walk through this code:

First, the code assumes that we have precomputed the mean and
standard deviation of each feature in the training set. X_mean and X_std
are just 1D tensors (or NumPy arrays) containing eight floats, one per
input feature. This can be done using a Scikit-Learn StandardScaler on a
large enough random sample of the dataset. Later in this chapter, we will
use a Keras preprocessing layer instead.

The parse_csv_line() function takes one CSV line and parses it. To help
with that, it uses the tf.io.decode_csv() function, which takes two
arguments: the first is the line to parse, and the second is an array
containing the default value for each column in the CSV file. This array
(defs) tells TensorFlow not only the default value for each column, but
also the number of columns and their types. In this example, we tell it
that all feature columns are floats and that missing values should default
to zero, but we provide an empty array of type tf.float32 as the default
value for the last column (the target): the array tells TensorFlow that this



column contains floats, but that there is no default value, so it will raise
an exception if it encounters a missing value.

The tf.io.decode_csv() function returns a list of scalar tensors (one per
column), but we need to return a 1D tensor array. So we call tf.stack()
on all tensors except for the last one (the target): this will stack these
tensors into a 1D array. We then do the same for the target value: this
makes it a 1D tensor array with a single value, rather than a scalar
tensor. The tf.io.decode_csv() function is done, so it returns the input
features and the target.

Finally, the custom preprocess() function just calls the parse_csv_line()
function, scales the input features by subtracting the feature means and
then dividing by the feature standard deviations, and returns a tuple
containing the scaled features and the target.

Let’s test this preprocessing function:

>>> preprocess(b'4.2083,44.0,5.3232,0.9171,846.0,2.3370,37.47,-122.2,2.782')
(<tf.Tensor: shape=(8,), dtype=float32, numpy=
 array([ 0.16579159,  1.216324  , -0.05204564, -0.39215982, -0.5277444 ,
        -0.2633488 ,  0.8543046 , -1.3072058 ], dtype=float32)>,
 <tf.Tensor: shape=(1,), dtype=float32, numpy=array([2.782], dtype=float32)>)

Looks good! The preprocess() function can convert an instance from a byte
string to a nice scaled tensor, with its corresponding label. We can now use
the dataset’s map() method to apply the preprocess() function to each sample
in the dataset.



Putting Everything Together
To make the code more reusable, let’s put together everything we have
discussed so far into another helper function; it will create and return a
dataset that will efficiently load California housing data from multiple CSV
files, preprocess it, shuffle it, and batch it (see Figure 13-2):

def csv_reader_dataset(filepaths, n_readers=5, n_read_threads=None,
                       n_parse_threads=5, shuffle_buffer_size=10_000, seed=42,
                       batch_size=32):
    dataset = tf.data.Dataset.list_files(filepaths, seed=seed)
    dataset = dataset.interleave(
        lambda filepath: tf.data.TextLineDataset(filepath).skip(1),
        cycle_length=n_readers, num_parallel_calls=n_read_threads)
    dataset = dataset.map(preprocess, num_parallel_calls=n_parse_threads)
    dataset = dataset.shuffle(shuffle_buffer_size, seed=seed)
    return dataset.batch(batch_size).prefetch(1)

Note that we use the prefetch() method on the very last line. This is important
for performance, as you will see now.



Figure 13-2. Loading and preprocessing data from multiple CSV files



Prefetching
By calling prefetch(1) at the end of the custom csv_reader_dataset() function,
we are creating a dataset that will do its best to always be one batch ahead.
In other words, while our training algorithm is working on one batch, the
dataset will already be working in parallel on getting the next batch ready
(e.g., reading the data from disk and preprocessing it). This can improve
performance dramatically, as is illustrated in Figure 13-3.

If we also ensure that loading and preprocessing are multithreaded (by setting
num_parallel_calls when calling interleave() and map()), we can exploit
multiple CPU cores and hopefully make preparing one batch of data shorter
than running a training step on the GPU: this way the GPU will be almost
100% utilized (except for the data transfer time from the CPU to the
GPU ), and training will run much faster.
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Figure 13-3. With prefetching, the CPU and the GPU work in parallel: as the GPU works on one
batch, the CPU works on the next

TIP
If you plan to purchase a GPU card, its processing power and its memory size are of
course very important (in particular, a large amount of RAM is crucial for large computer
vision or natural language processing models). Just as important for good performance is
the GPU’s memory bandwidth; this is the number of gigabytes of data it can get into or out
of its RAM per second.



If the dataset is small enough to fit in memory, you can significantly speed up
training by using the dataset’s cache() method to cache its content to RAM.
You should generally do this after loading and preprocessing the data, but
before shuffling, repeating, batching, and prefetching. This way, each
instance will only be read and preprocessed once (instead of once per epoch),
but the data will still be shuffled differently at each epoch, and the next batch
will still be prepared in advance.

You have now learned how to build efficient input pipelines to load and
preprocess data from multiple text files. We have discussed the most
common dataset methods, but there are a few more you may want to look at,
such as concatenate(), zip(), window(), reduce(), shard(), flat_map(), apply(),
unbatch(), and padded_batch(). There are also a few more class methods,
such as from_generator() and from_ten sors(), which create a new dataset
from a Python generator or a list of tensors, respectively. Please check the
API documentation for more details. Also note that there are experimental
features available in tf.data.experimental, many of which will likely make it
to the core API in future releases (e.g., check out the CsvDataset class, as
well as the make_csv_dataset() method, which takes care of inferring the type
of each column).



Using the Dataset with Keras
Now we can use the custom csv_reader_dataset() function we wrote earlier to
create a dataset for the training set, and for the validation set and the test set.
The training set will be shuffled at each epoch (note that the validation set
and the test set will also be shuffled, even though we don’t really need that):

train_set = csv_reader_dataset(train_filepaths)
valid_set = csv_reader_dataset(valid_filepaths)
test_set = csv_reader_dataset(test_filepaths)

Now you can simply build and train a Keras model using these datasets.
When you call the model’s fit() method, you pass train_set instead of
X_train, y_train, and pass validation_data=valid_set instead of
validation_data=(X_valid, y_valid). The fit() method will take care of
repeating the training dataset once per epoch, using a different random order
at each epoch:

model = tf.keras.Sequential([...])
model.compile(loss="mse", optimizer="sgd")
model.fit(train_set, validation_data=valid_set, epochs=5)

Similarly, you can pass a dataset to the evaluate() and predict() methods:

test_mse = model.evaluate(test_set)
new_set = test_set.take(3)  # pretend we have 3 new samples
y_pred = model.predict(new_set)  # or you could just pass a NumPy array

Unlike the other sets, the new_set will usually not contain labels. If it does, as
is the case here, Keras will ignore them. Note that in all these cases, you can
still use NumPy arrays instead of datasets if you prefer (but of course they
need to have been loaded and preprocessed first).

If you want to build your own custom training loop (as discussed in
Chapter 12), you can just iterate over the training set, very naturally:

n_epochs = 5



for epoch in range(n_epochs):
    for X_batch, y_batch in train_set:
        [...]  # perform one gradient descent step

In fact, it is even possible to create a TF function (see Chapter 12) that trains
the model for a whole epoch. This can really speed up training:

@tf.function
def train_one_epoch(model, optimizer, loss_fn, train_set):
    for X_batch, y_batch in train_set:
        with tf.GradientTape() as tape:
            y_pred = model(X_batch)
            main_loss = tf.reduce_mean(loss_fn(y_batch, y_pred))
            loss = tf.add_n([main_loss] + model.losses)
        gradients = tape.gradient(loss, model.trainable_variables)
        optimizer.apply_gradients(zip(gradients, model.trainable_variables))

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
loss_fn = tf.keras.losses.mean_squared_error
for epoch in range(n_epochs):
    print("\rEpoch {}/{}".format(epoch + 1, n_epochs), end="")
    train_one_epoch(model, optimizer, loss_fn, train_set)

In Keras, the steps_per_execution argument of the compile() method lets you
define the number of batches that the fit() method will process during each
call to the tf.function it uses for training. The default is just 1, so if you set it
to 50 you will often see a significant performance improvement. However,
the on_batch_*() methods of Keras callbacks will only be called every 50
batches.

Congratulations, you now know how to build powerful input pipelines using
the tf.data API! However, so far we’ve been using CSV files, which are
common, simple, and convenient but not really efficient, and do not support
large or complex data structures (such as images or audio) very well. So, let’s
see how to use TFRecords instead.

TIP
If you are happy with CSV files (or whatever other format you are using), you do not have
to use TFRecords. As the saying goes, if it ain’t broke, don’t fix it! TFRecords are useful



when the bottleneck during training is loading and parsing the data.



The TFRecord Format
The TFRecord format is TensorFlow’s preferred format for storing large
amounts of data and reading it efficiently. It is a very simple binary format
that just contains a sequence of binary records of varying sizes (each record is
comprised of a length, a CRC checksum to check that the length was not
corrupted, then the actual data, and finally a CRC checksum for the data).
You can easily create a TFRecord file using the tf.io.TFRecordWriter class:

with tf.io.TFRecordWriter("my_data.tfrecord") as f:
    f.write(b"This is the first record")
    f.write(b"And this is the second record")

And you can then use a tf.data.TFRecordDataset to read one or more
TFRecord files:

filepaths = ["my_data.tfrecord"]
dataset = tf.data.TFRecordDataset(filepaths)
for item in dataset:
    print(item)

This will output:

tf.Tensor(b'This is the first record', shape=(), dtype=string)
tf.Tensor(b'And this is the second record', shape=(), dtype=string)

TIP
By default, a TFRecordDataset will read files one by one, but you can make it read
multiple files in parallel and interleave their records by passing the constructor a list of
filepaths and setting num_parallel_reads to a number greater than one. Alternatively, you
could obtain the same result by using list_files() and interleave() as we did earlier to read
multiple CSV files.



Compressed TFRecord Files
It can sometimes be useful to compress your TFRecord files, especially if
they need to be loaded via a network connection. You can create a
compressed TFRecord file by setting the options argument:

options = tf.io.TFRecordOptions(compression_type="GZIP")
with tf.io.TFRecordWriter("my_compressed.tfrecord", options) as f:
    f.write(b"Compress, compress, compress!")

When reading a compressed TFRecord file, you need to specify the
compression type:

dataset = tf.data.TFRecordDataset(["my_compressed.tfrecord"],
                                  compression_type="GZIP")



A Brief Introduction to Protocol Buffers
Even though each record can use any binary format you want, TFRecord files
usually contain serialized protocol buffers (also called protobufs). This is a
portable, extensible, and efficient binary format developed at Google back in
2001 and made open source in 2008; protobufs are now widely used, in
particular in gRPC, Google’s remote procedure call system. They are defined
using a simple language that looks like this:

syntax = "proto3";
message Person {
    string name = 1;
    int32 id = 2;
    repeated string email = 3;
}

This protobuf definition says we are using version 3 of the protobuf format,
and it specifies that each Person object  may (optionally) have a name of
type string, an id of type int32, and zero or more email fields, each of type
string. The numbers 1, 2, and 3 are the field identifiers: they will be used in
each record’s binary representation. Once you have a definition in a .proto
file, you can compile it. This requires protoc, the protobuf compiler, to
generate access classes in Python (or some other language). Note that the
protobuf definitions you will generally use in TensorFlow have already been
compiled for you, and their Python classes are part of the TensorFlow library,
so you will not need to use protoc. All you need to know is how to use
protobuf access classes in Python. To illustrate the basics, let’s look at a
simple example that uses the access classes generated for the Person protobuf
(the code is explained in the comments):

>>> from person_pb2 import Person  # import the generated access class
>>> person = Person(name="Al", id=123, email=["a@b.com"])  # create a Person
>>> print(person)  # display the Person
name: "Al"
id: 123
email: "a@b.com"
>>> person.name  # read a field
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'Al'
>>> person.name = "Alice"  # modify a field
>>> person.email[0]  # repeated fields can be accessed like arrays
'a@b.com'
>>> person.email.append("c@d.com")  # add an email address
>>> serialized = person.SerializeToString()  # serialize person to a byte string
>>> serialized
b'\n\x05Alice\x10{\x1a\x07a@b.com\x1a\x07c@d.com'
>>> person2 = Person()  # create a new Person
>>> person2.ParseFromString(serialized)  # parse the byte string (27 bytes long)
27
>>> person == person2  # now they are equal
True

In short, we import the Person class generated by protoc, we create an
instance and play with it, visualizing it and reading and writing some fields,
then we serialize it using the SerializeToString() method. This is the binary
data that is ready to be saved or transmitted over the network. When reading
or receiving this binary data, we can parse it using the ParseFromString()
method, and we get a copy of the object that was serialized. 
You could save the serialized Person object to a TFRecord file, then load and
parse it: everything would work fine. However, ParseFromString() is not a
TensorFlow operation, so you couldn’t use it in a preprocessing function in a
tf.data pipeline (except by wrapping it in a tf.py_function() operation, which
would make the code slower and less portable, as you saw in Chapter 12).
However, you could use the tf.io.decode_proto() function, which can parse
any protobuf you want, provided you give it the protobuf definition (see the
notebook for an example). That said, in practice you will generally want to
use instead the predefined protobufs for which TensorFlow provides
dedicated parsing operations. Let’s look at these predefined protobufs now.
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TensorFlow Protobufs
The main protobuf typically used in a TFRecord file is the Example protobuf,
which represents one instance in a dataset. It contains a list of named
features, where each feature can either be a list of byte strings, a list of floats,
or a list of integers. Here is the protobuf definition (from TensorFlow’s
source code):

syntax = "proto3";
message BytesList { repeated bytes value = 1; }
message FloatList { repeated float value = 1 [packed = true]; }
message Int64List { repeated int64 value = 1 [packed = true]; }
message Feature {
    oneof kind {
        BytesList bytes_list = 1;
        FloatList float_list = 2;
        Int64List int64_list = 3;
    }
};
message Features { map<string, Feature> feature = 1; };
message Example { Features features = 1; };

The definitions of BytesList, FloatList, and Int64List are straightforward
enough. Note that [packed = true] is used for repeated numerical fields, for a
more efficient encoding. A Feature contains either a BytesList, a FloatList, or
an Int64List. A Features (with an s) contains a dictionary that maps a feature
name to the corresponding feature value. And finally, an Example contains
only a Features object.

NOTE
Why was Example even defined, since it contains no more than a Features object? Well,
TensorFlow’s developers may one day decide to add more fields to it. As long as the new
Example definition still contains the features field, with the same ID, it will be backward
compatible. This extensibility is one of the great features of protobufs.

Here is how you could create a tf.train.Example representing the same person



as earlier:

from tensorflow.train import BytesList, FloatList, Int64List
from tensorflow.train import Feature, Features, Example

person_example = Example(
    features=Features(
        feature={
            "name": Feature(bytes_list=BytesList(value=[b"Alice"])),
            "id": Feature(int64_list=Int64List(value=[123])),
            "emails": Feature(bytes_list=BytesList(value=[b"a@b.com",
                                                          b"c@d.com"]))
        }))

The code is a bit verbose and repetitive, but you could easily wrap it inside a
small helper function. Now that we have an Example protobuf, we can
serialize it by calling its SerializeToString() method, then write the resulting
data to a TFRecord file. Let’s write it five times to pretend we have several
contacts:

with tf.io.TFRecordWriter("my_contacts.tfrecord") as f:
    for _ in range(5):
        f.write(person_example.SerializeToString())

Normally you would write much more than five Examples! Typically, you
would create a conversion script that reads from your current format (say,
CSV files), creates an Example protobuf for each instance, serializes them,
and saves them to several TFRecord files, ideally shuffling them in the
process. This requires a bit of work, so once again make sure it is really
necessary (perhaps your pipeline works fine with CSV files).

Now that we have a nice TFRecord file containing several serialized
Examples, let’s try to load it.



Loading and Parsing Examples
To load the serialized Example protobufs, we will use a
tf.data.TFRecordDataset once again, and we will parse each Example using
tf.io.parse_single_example(). It requires at least two arguments: a string
scalar tensor containing the serialized data, and a description of each feature.
The description is a dictionary that maps each feature name to either a
tf.io.FixedLenFeature descriptor indicating the feature’s shape, type, and
default value, or a tf.io.VarLenFeature descriptor indicating only the type if
the length of the feature’s list may vary (such as for the "emails" feature).

The following code defines a description dictionary, then creates a
TFRecordDataset and applies a custom preprocessing function to it to parse
each serialized Example protobuf that this dataset contains:

feature_description = {
    "name": tf.io.FixedLenFeature([], tf.string, default_value=""),
    "id": tf.io.FixedLenFeature([], tf.int64, default_value=0),
    "emails": tf.io.VarLenFeature(tf.string),
}

def parse(serialized_example):
    return tf.io.parse_single_example(serialized_example, feature_description)

dataset = tf.data.TFRecordDataset(["my_contacts.tfrecord"]).map(parse)
for parsed_example in dataset:
    print(parsed_example)

The fixed-length features are parsed as regular tensors, but the variable-
length features are parsed as sparse tensors. You can convert a sparse tensor
to a dense tensor using tf.sparse.to_dense(), but in this case it is simpler to
just access its values:

>>> tf.sparse.to_dense(parsed_example["emails"], default_value=b"")
<tf.Tensor: [...] dtype=string, numpy=array([b'a@b.com', b'c@d.com'], [...])>
>>> parsed_example["emails"].values
<tf.Tensor: [...] dtype=string, numpy=array([b'a@b.com', b'c@d.com'], [...])>



Instead of parsing examples one by one using tf.io.parse_single_example(),
you may want to parse them batch by batch using tf.io.parse_example():

def parse(serialized_examples):
    return tf.io.parse_example(serialized_examples, feature_description)

dataset = tf.data.TFRecordDataset(["my_contacts.tfrecord"]).batch(2).map(parse)
for parsed_examples in dataset:
    print(parsed_examples)  # two examples at a time

Lastly, a BytesList can contain any binary data you want, including any
serialized object. For example, you can use tf.io.encode_jpeg() to encode an
image using the JPEG format and put this binary data in a BytesList. Later,
when your code reads the TFRecord, it will start by parsing the Example,
then it will need to call tf.io.decode_jpeg() to parse the data and get the
original image (or you can use tf.io.decode_image(), which can decode any
BMP, GIF, JPEG, or PNG image). You can also store any tensor you want in
a BytesList by serializing the tensor using tf.io.serialize_tensor() then putting
the resulting byte string in a BytesList feature. Later, when you parse the
TFRecord, you can parse this data using tf.io.parse_tensor(). See this
chapter’s notebook at https://homl.info/colab3 for examples of storing images
and tensors in a TFRecord file.

As you can see, the Example protobuf is quite flexible, so it will probably be
sufficient for most use cases. However, it may be a bit cumbersome to use
when you are dealing with lists of lists. For example, suppose you want to
classify text documents. Each document may be represented as a list of
sentences, where each sentence is represented as a list of words. And perhaps
each document also has a list of comments, where each comment is
represented as a list of words. There may be some contextual data too, such
as the document’s author, title, and publication date. TensorFlow’s
SequenceExample protobuf is designed for such use cases.

https://homl.info/colab3


Handling Lists of Lists Using the SequenceExample Protobuf
Here is the definition of the SequenceExample protobuf:

message FeatureList { repeated Feature feature = 1; };
message FeatureLists { map<string, FeatureList> feature_list = 1; };
message SequenceExample {
    Features context = 1;
    FeatureLists feature_lists = 2;
};

A SequenceExample contains a Features object for the contextual data and a
FeatureLists object that contains one or more named FeatureList objects (e.g.,
a FeatureList named "content" and another named "comments"). Each
FeatureList contains a list of Feature objects, each of which may be a list of
byte strings, a list of 64-bit integers, or a list of floats (in this example, each
Feature would represent a sentence or a comment, perhaps in the form of a
list of word identifiers). Building a SequenceExample, serializing it, and
parsing it is similar to building, serializing, and parsing an Example, but you
must use tf.io.parse_single_sequence_example() to parse a single
SequenceExample or tf.io.parse_sequence_example() to parse a batch. Both
functions return a tuple containing the context features (as a dictionary) and
the feature lists (also as a dictionary). If the feature lists contain sequences of
varying sizes (as in the preceding example), you may want to convert them to
ragged tensors using tf.RaggedTensor.from_sparse() (see the notebook for
the full code):

parsed_context, parsed_feature_lists = tf.io.parse_single_sequence_example(
    serialized_sequence_example, context_feature_descriptions,
    sequence_feature_descriptions)
parsed_content = tf.RaggedTensor.from_sparse(parsed_feature_lists["content"])

Now that you know how to efficiently store, load, parse, and preprocess the
data using the tf.data API, TFRecords, and protobufs, it’s time to turn our
attention to the Keras preprocessing layers.



Keras Preprocessing Layers
Preparing your data for a neural network typically requires normalizing the
numerical features, encoding the categorical features and text, cropping and
resizing images, and more. There are several options for this:

The preprocessing can be done ahead of time when preparing your
training data files, using any tools you like, such as NumPy, Pandas, or
Scikit-Learn. You will need to apply the exact same preprocessing steps
in production, to ensure your production model receives preprocessed
inputs similar to the ones it was trained on.

Alternatively, you can preprocess your data on the fly while loading it
with tf.data, by applying a preprocessing function to every element of a
dataset using that dataset’s map() method, as we did earlier in this
chapter. Again, you will need to apply the same preprocessing steps in
production.

One last approach is to include preprocessing layers directly inside your
model so it can preprocess all the input data on the fly during training,
then use the same preprocessing layers in production. The rest of this
chapter will look at this last approach.

Keras offers many preprocessing layers that you can include in your models:
they can be applied to numerical features, categorical features, images, and
text. We’ll go over the numerical and categorical features in the next sections,
as well as basic text preprocessing, and we will cover image preprocessing in
Chapter 14 and more advanced text preprocessing in Chapter 16.



The Normalization Layer
As we saw in Chapter 10, Keras provides a Normalization layer that we can
use to standardize the input features. We can either specify the mean and
variance of each feature when creating the layer or—more simply—pass the
training set to the layer’s adapt() method before fitting the model, so the layer
can measure the feature means and variances on its own before training:

norm_layer = tf.keras.layers.Normalization()
model = tf.keras.models.Sequential([
    norm_layer,
    tf.keras.layers.Dense(1)
])
model.compile(loss="mse", optimizer=tf.keras.optimizers.SGD(learning_rate=2e-3))
norm_layer.adapt(X_train)  # computes the mean and variance of every feature
model.fit(X_train, y_train, validation_data=(X_valid, y_valid), epochs=5)

TIP
The data sample passed to the adapt() method must be large enough to be representative of
your dataset, but it does not have to be the full training set: for the Normalization layer, a
few hundred instances randomly sampled from the training set will generally be sufficient
to get a good estimate of the feature means and variances.

Since we included the Normalization layer inside the model, we can now
deploy this model to production without having to worry about normalization
again: the model will just handle it (see Figure 13-4). Fantastic! This
approach completely eliminates the risk of preprocessing mismatch, which
happens when people try to maintain different preprocessing code for training
and production but update one and forget to update the other. The production
model then ends up receiving data preprocessed in a way it doesn’t expect. If
they’re lucky, they get a clear bug. If not, the model’s accuracy just silently
degrades.



Figure 13-4. Including preprocessing layers inside a model

Including the preprocessing layer directly in the model is nice and
straightforward, but it will slow down training (only very slightly in the case
of the Normalization layer): indeed, since preprocessing is performed on the
fly during training, it happens once per epoch. We can do better by
normalizing the whole training set just once before training. To do this, we
can use the Normalization layer in a standalone fashion (much like a Scikit-
Learn StandardScaler):

norm_layer = tf.keras.layers.Normalization()
norm_layer.adapt(X_train)
X_train_scaled = norm_layer(X_train)
X_valid_scaled = norm_layer(X_valid)

Now we can train a model on the scaled data, this time without a
Normalization layer:

model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
model.compile(loss="mse", optimizer=tf.keras.optimizers.SGD(learning_rate=2e-3))
model.fit(X_train_scaled, y_train, epochs=5,
          validation_data=(X_valid_scaled, y_valid))

Good! This should speed up training a bit. But now the model won’t
preprocess its inputs when we deploy it to production. To fix this, we just
need to create a new model that wraps both the adapted Normalization layer
and the model we just trained. We can then deploy this final model to



production, and it will take care of both preprocessing its inputs and making
predictions (see Figure 13-5):

final_model = tf.keras.Sequential([norm_layer, model])
X_new = X_test[:3]  # pretend we have a few new instances (unscaled)
y_pred = final_model(X_new)  # preprocesses the data and makes predictions

Figure 13-5. Preprocessing the data just once before training using preprocessing layers, then
deploying these layers inside the final model

Now we have the best of both worlds: training is fast because we only
preprocess the data once before training begins, and the final model can
preprocess its inputs on the fly without any risk of preprocessing mismatch.

Moreover, the Keras preprocessing layers play nicely with the tf.data API.
For example, it’s possible to pass a tf.data.Dataset to a preprocessing layer’s
adapt() method. It’s also possible to apply a Keras preprocessing layer to a
tf.data.Dataset using the dataset’s map() method. For example, here’s how
you could apply an adapted Normalization layer to the input features of each
batch in a dataset:

dataset = dataset.map(lambda X, y: (norm_layer(X), y))

Lastly, if you ever need more features than the Keras preprocessing layers
provide, you can always write your own Keras layer, just like we discussed in
Chapter 12. For example, if the Normalization layer didn’t exist, you could
get a similar result using the following custom layer:

import numpy as np



class MyNormalization(tf.keras.layers.Layer):
    def adapt(self, X):
        self.mean_ = np.mean(X, axis=0, keepdims=True)
        self.std_ = np.std(X, axis=0, keepdims=True)

    def call(self, inputs):
        eps = tf.keras.backend.epsilon()  # a small smoothing term
        return (inputs - self.mean_) / (self.std_ + eps)

Next, let’s look at another Keras preprocessing layer for numerical features:
the Discretization layer.



The Discretization Layer
The Discretization layer’s goal is to transform a numerical feature into a
categorical feature by mapping value ranges (called bins) to categories. This
is sometimes useful for features with multimodal distributions, or with
features that have a highly non-linear relationship with the target. For
example, the following code maps a numerical age feature to three categories,
less than 18, 18 to 50 (not included), and 50 or over:

>>> age = tf.constant([[10.], [93.], [57.], [18.], [37.], [5.]])
>>> discretize_layer = tf.keras.layers.Discretization(bin_boundaries=[18., 50.])
>>> age_categories = discretize_layer(age)
>>> age_categories
<tf.Tensor: shape=(6, 1), dtype=int64, numpy=array([[0],[2],[2],[1],[1],[0]])>

In this example, we provided the desired bin boundaries. If you prefer, you
can instead provide the number of bins you want, then call the layer’s adapt()
method to let it find the appropriate bin boundaries based on the value
percentiles. For example, if we set num_bins=3, then the bin boundaries will
be located at the values just below the 33rd and 66th percentiles (in this
example, at the values 10 and 37):

>>> discretize_layer = tf.keras.layers.Discretization(num_bins=3)
>>> discretize_layer.adapt(age)
>>> age_categories = discretize_layer(age)
>>> age_categories
<tf.Tensor: shape=(6, 1), dtype=int64, numpy=array([[1],[2],[2],[1],[2],[0]])>

Category identifiers such as these should generally not be passed directly to a
neural network, as their values cannot be meaningfully compared. Instead,
they should be encoded, for example using one-hot encoding. Let’s look at
how to do this now.



The CategoryEncoding Layer
When there are only a few categories (e.g., less than a dozen or two), then
one-hot encoding is often a good option (as discussed in Chapter 2). To do
this, Keras provides the CategoryEncoding layer. For example, let’s one-hot
encode the age_cate gories feature we just created:

>>> onehot_layer = tf.keras.layers.CategoryEncoding(num_tokens=3)
>>> onehot_layer(age_categories)
<tf.Tensor: shape=(6, 3), dtype=float32, numpy=
array([[0., 1., 0.],
       [0., 0., 1.],
       [0., 0., 1.],
       [0., 1., 0.],
       [0., 0., 1.],
       [1., 0., 0.]], dtype=float32)>

If you try to encode more than one categorical feature at a time (which only
makes sense if they all use the same categories), the CategoryEncoding class
will perform multi-hot encoding by default: the output tensor will contain a 1
for each category present in any input feature. For example:

>>> two_age_categories = np.array([[1, 0], [2, 2], [2, 0]])
>>> onehot_layer(two_age_categories)
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[1., 1., 0.],
       [0., 0., 1.],
       [1., 0., 1.]], dtype=float32)>

If you believe it’s useful to know how many times each category occurred,
you can set output_mode="count" when creating the CategoryEncoding
layer, in which case the output tensor will contain the number of occurrences
of each category. In the preceding example, the output would be the same
except for the second row, which would become [0., 0., 2.].

Note that both multi-hot encoding and count encoding lose information, since
it’s not possible to know which feature each active category came from. For
example, both [0, 1] and [1, 0] are encoded as [1., 1., 0.]. If you want to avoid



this, then you need to one-hot encode each feature separately and concatenate
the outputs. This way, [0, 1] would get encoded as [1., 0., 0., 0., 1., 0.] and [1,
0] would get encoded as [0., 1., 0., 1., 0., 0.]. You can get the same result by
tweaking the category identifiers so they don’t overlap. For example:

>>> onehot_layer = tf.keras.layers.CategoryEncoding(num_tokens=3 + 3)
>>> onehot_layer(two_age_categories + [0, 3])  # adds 3 to the second feature
<tf.Tensor: shape=(3, 6), dtype=float32, numpy=
array([[0., 1., 0., 1., 0., 0.],
       [0., 0., 1., 0., 0., 1.],
       [0., 0., 1., 1., 0., 0.]], dtype=float32)>

In this output, the first three columns correspond to the first feature, and the
last three correspond to the second feature. This allows the model to
distinguish the two features. However, it also increases the number of
features fed to the model, and thereby requires more model parameters. It’s
hard to know in advance whether a single multi-hot encoding or a per-feature
one-hot encoding will work best: it depends on the task, and you may need to
test both options.

Now you can encode categorical integer features using one-hot or multi-hot
encoding. But what about categorical text features? For this, you can use the
StringLookup layer.



The StringLookup Layer
Let’s use the Keras StringLookup layer to one-hot encode a cities feature:

>>> cities = ["Auckland", "Paris", "Paris", "San Francisco"]
>>> str_lookup_layer = tf.keras.layers.StringLookup()
>>> str_lookup_layer.adapt(cities)
>>> str_lookup_layer([["Paris"], ["Auckland"], ["Auckland"], ["Montreal"]])
<tf.Tensor: shape=(4, 1), dtype=int64, numpy=array([[1], [3], [3], [0]])>

We first create a StringLookup layer, then we adapt it to the data: it finds that
there are three distinct categories. Then we use the layer to encode a few
cities. They are encoded as integers by default. Unknown categories get
mapped to 0, as is the case for “Montreal” in this example. The known
categories are numbered starting at 1, from the most frequent category to the
least frequent.

Conveniently, if you set output_mode="one_hot" when creating the
StringLookup layer, it will output a one-hot vector for each category, instead
of an integer:

>>> str_lookup_layer = tf.keras.layers.StringLookup(output_mode="one_hot")
>>> str_lookup_layer.adapt(cities)
>>> str_lookup_layer([["Paris"], ["Auckland"], ["Auckland"], ["Montreal"]])
<tf.Tensor: shape=(4, 4), dtype=float32, numpy=
array([[0., 1., 0., 0.],
       [0., 0., 0., 1.],
       [0., 0., 0., 1.],
       [1., 0., 0., 0.]], dtype=float32)>

TIP
Keras also includes an IntegerLookup layer that acts much like the StringLookup layer but
takes integers as input, rather than strings.

If the training set is very large, it may be convenient to adapt the layer to just
a random subset of the training set. In this case, the layer’s adapt() method



may miss some of the rarer categories. By default, it would then map them all
to category 0, making them indistinguishable by the model. To reduce this
risk (while still adapting the layer only on a subset of the training set), you
can set num_oov_indices to an integer greater than 1. This is the number of
out-of-vocabulary (OOV) buckets to use: each unknown category will get
mapped pseudorandomly to one of the OOV buckets, using a hash function
modulo the number of OOV buckets. This will allow the model to distinguish
at least some of the rare categories. For example:

>>> str_lookup_layer = tf.keras.layers.StringLookup(num_oov_indices=5)
>>> str_lookup_layer.adapt(cities)
>>> str_lookup_layer([["Paris"], ["Auckland"], ["Foo"], ["Bar"], ["Baz"]])
<tf.Tensor: shape=(4, 1), dtype=int64, numpy=array([[5], [7], [4], [3], [4]])>

Since there are five OOV buckets, the first known category’s ID is now 5
("Paris"). But "Foo", "Bar", and "Baz" are unknown, so they each get mapped
to one of the OOV buckets. "Bar" gets its own dedicated bucket (with ID 3),
but sadly "Foo" and "Baz" happen to be mapped to the same bucket (with ID
4), so they remain indistinguishable by the model. This is called a hashing
collision. The only way to reduce the risk of collision is to increase the
number of OOV buckets. However, this will also increase the total number of
categories, which will require more RAM and extra model parameters once
the categories are one-hot encoded. So, don’t increase that number too much.

This idea of mapping categories pseudorandomly to buckets is called the
hashing trick. Keras provides a dedicated layer which does just that: the
Hashing layer.



The Hashing Layer
For each category, the Keras Hashing layer computes a hash, modulo the
number of buckets (or “bins”). The mapping is entirely pseudorandom, but
stable across runs and platforms (i.e., the same category will always be
mapped to the same integer, as long as the number of bins is unchanged). For
example, let’s use the Hashing layer to encode a few cities:

>>> hashing_layer = tf.keras.layers.Hashing(num_bins=10)
>>> hashing_layer([["Paris"], ["Tokyo"], ["Auckland"], ["Montreal"]])
<tf.Tensor: shape=(4, 1), dtype=int64, numpy=array([[0], [1], [9], [1]])>

The benefit of this layer is that it does not need to be adapted at all, which
may sometimes be useful, especially in an out-of-core setting (when the
dataset is too large to fit in memory). However, we once again get a hashing
collision: “Tokyo” and “Montreal” are mapped to the same ID, making them
indistinguishable by the model. So, it’s usually preferable to stick to the
StringLookup layer.

Let’s now look at another way to encode categories: trainable embeddings.



Encoding Categorical Features Using Embeddings
An embedding is a dense representation of some higher-dimensional data,
such as a category, or a word in a vocabulary. If there are 50,000 possible
categories, then one-hot encoding would produce a 50,000-dimensional
sparse vector (i.e., containing mostly zeros). In contrast, an embedding would
be a comparatively small dense vector; for example, with just 100
dimensions.

In deep learning, embeddings are usually initialized randomly, and they are
then trained by gradient descent, along with the other model parameters. For
example, the "NEAR BAY" category in the California housing dataset could
be represented initially by a random vector such as [0.131, 0.890], while the
"NEAR OCEAN" category might be represented by another random vector
such as [0.631, 0.791]. In this example, we use 2D embeddings, but the
number of dimensions is a hyperparameter you can tweak.

Since these embeddings are trainable, they will gradually improve during
training; and as they represent fairly similar categories in this case, gradient
descent will certainly end up pushing them closer together, while it will tend
to move them away from the "INLAND" category’s embedding (see
Figure 13-6). Indeed, the better the representation, the easier it will be for the
neural network to make accurate predictions, so training tends to make
embeddings useful representations of the categories. This is called
representation learning (you will see other types of representation learning in
Chapter 17).



Figure 13-6. Embeddings will gradually improve during training

WORD EMBEDDINGS

Not only will embeddings generally be useful representations for the task
at hand, but quite often these same embeddings can be reused
successfully for other tasks. The most common example of this is word
embeddings (i.e., embeddings of individual words): when you are
working on a natural language processing task, you are often better off
reusing pretrained word embeddings than training your own.

The idea of using vectors to represent words dates back to the 1960s, and
many sophisticated techniques have been used to generate useful vectors,
including using neural networks. But things really took off in 2013, when
Tomáš Mikolov and other Google researchers published a paper
describing an efficient technique to learn word embeddings using neural
networks, significantly outperforming previous attempts. This allowed
them to learn embeddings on a very large corpus of text: they trained a
neural network to predict the words near any given word and obtained
astounding word embeddings. For example, synonyms had very close
embeddings, and semantically related words such as France, Spain, and
Italy ended up clustered together.

It’s not just about proximity, though: word embeddings were also
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organized along meaningful axes in the embedding space. Here is a
famous example: if you compute King – Man + Woman (adding and
subtracting the embedding vectors of these words), then the result will be
very close to the embedding of the word Queen (see Figure 13-7). In
other words, the word embeddings encode the concept of gender!
Similarly, you can compute Madrid – Spain + France, and the result is
close to Paris, which seems to show that the notion of capital city was
also encoded in the embeddings.

Figure 13-7. Word embeddings of similar words tend to be close, and some axes seem to encode
meaningful concepts

Unfortunately, word embeddings sometimes capture our worst biases. For
example, although they correctly learn that Man is to King as Woman is
to Queen, they also seem to learn that Man is to Doctor as Woman is to
Nurse: quite a sexist bias! To be fair, this particular example is probably
exaggerated, as was pointed out in a 2019 paper  by Malvina Nissim et
al. Nevertheless, ensuring fairness in deep learning algorithms is an
important and active research topic.

Keras provides an Embedding layer, which wraps an embedding matrix: this
matrix has one row per category and one column per embedding dimension.
By default, it is initialized randomly. To convert a category ID to an
embedding, the Embedding layer just looks up and returns the row that
corresponds to that category. That’s all there is to it! For example, let’s
initialize an Embedding layer with five rows and 2D embeddings, and use it
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to encode some categories:

>>> tf.random.set_seed(42)
>>> embedding_layer = tf.keras.layers.Embedding(input_dim=5, output_dim=2)
>>> embedding_layer(np.array([2, 4, 2]))
<tf.Tensor: shape=(3, 2), dtype=float32, numpy=
array([[-0.04663396,  0.01846724],
       [-0.02736737, -0.02768031],
       [-0.04663396,  0.01846724]], dtype=float32)>

As you can see, category 2 gets encoded (twice) as the 2D vector
[-0.04663396, 0.01846724], while category 4 gets encoded as [-0.02736737,
-0.02768031]. Since the layer is not trained yet, these encodings are just
random.

WARNING
An Embedding layer is initialized randomly, so it does not make sense to use it outside of
a model as a standalone preprocessing layer unless you initialize it with pretrained
weights.

If you want to embed a categorical text attribute, you can simply chain a
StringLookup layer and an Embedding layer, like this:

>>> tf.random.set_seed(42)
>>> ocean_prox = ["<1H OCEAN", "INLAND", "NEAR OCEAN", "NEAR BAY", "ISLAND"]
>>> str_lookup_layer = tf.keras.layers.StringLookup()
>>> str_lookup_layer.adapt(ocean_prox)
>>> lookup_and_embed = tf.keras.Sequential([
...     str_lookup_layer,
...     tf.keras.layers.Embedding(input_dim=str_lookup_layer.vocabulary_size(),
...                               output_dim=2)
... ])
...
>>> lookup_and_embed(np.array([["<1H OCEAN"], ["ISLAND"], ["<1H OCEAN"]]))
<tf.Tensor: shape=(3, 2), dtype=float32, numpy=
array([[-0.01896119,  0.02223358],
       [ 0.02401174,  0.03724445],
       [-0.01896119,  0.02223358]], dtype=float32)>



Note that the number of rows in the embedding matrix needs to be equal to
the vocabulary size: that’s the total number of categories, including the
known categories plus the OOV buckets (just one by default). The
vocabulary_size() method of the StringLookup class conveniently returns this
number.

TIP
In this example we used 2D embeddings, but as a rule of thumb embeddings typically
have 10 to 300 dimensions, depending on the task, the vocabulary size, and the size of
your training set. You will have to tune this hyperparameter.

Putting everything together, we can now create a Keras model that can
process a categorical text feature along with regular numerical features and
learn an embedding for each category (as well as for each OOV bucket):

X_train_num, X_train_cat, y_train = [...]  # load the training set
X_valid_num, X_valid_cat, y_valid = [...]  # and the validation set

num_input = tf.keras.layers.Input(shape=[8], name="num")
cat_input = tf.keras.layers.Input(shape=[], dtype=tf.string, name="cat")
cat_embeddings = lookup_and_embed(cat_input)
encoded_inputs = tf.keras.layers.concatenate([num_input, cat_embeddings])
outputs = tf.keras.layers.Dense(1)(encoded_inputs)
model = tf.keras.models.Model(inputs=[num_input, cat_input], outputs=[outputs])
model.compile(loss="mse", optimizer="sgd")
history = model.fit((X_train_num, X_train_cat), y_train, epochs=5,
                    validation_data=((X_valid_num, X_valid_cat), y_valid))

This model takes two inputs: num_input, which contains eight numerical
features per instance, plus cat_input, which contains a single categorical text
input per instance. The model uses the lookup_and_embed model we created
earlier to encode each ocean-proximity category as the corresponding
trainable embedding. Next, it concatenates the numerical inputs and the
embeddings using the concatenate() function to produce the complete
encoded inputs, which are ready to be fed to a neural network. We could add
any kind of neural network at this point, but for simplicity we just add a



single dense output layer, and then we create the Keras Model with the inputs
and output we’ve just defined. Next we compile the model and train it,
passing both the numerical and categorical inputs.

As you saw in Chapter 10, since the Input layers are named "num" and "cat",
we could also have passed the training data to the fit() method using a
dictionary instead of a tuple: {"num": X_train_num, "cat": X_train_cat}.
Alternatively, we could have passed a tf.data.Dataset containing batches,
each represented as ((X_batch_num, X_batch_cat), y_batch) or as ({"num":
X_batch_num, "cat": X_batch_cat}, y_batch). And of course the same goes
for the validation data.

NOTE
One-hot encoding followed by a Dense layer (with no activation function and no biases) is
equivalent to an Embedding layer. However, the Embedding layer uses way fewer
computations as it avoids many multiplications by zero—the performance difference
becomes clear when the size of the embedding matrix grows. The Dense layer’s weight
matrix plays the role of the embedding matrix. For example, using one-hot vectors of size
20 and a Dense layer with 10 units is equivalent to using an Embedding layer with
input_dim=20 and output_dim=10. As a result, it would be wasteful to use more
embedding dimensions than the number of units in the layer that follows the Embedding
layer.

OK, now that you have learned how to encode categorical features, it’s time
to turn our attention to text preprocessing.



Text Preprocessing
Keras provides a TextVectorization layer for basic text preprocessing. Much
like the StringLookup layer, you must either pass it a vocabulary upon
creation, or let it learn the vocabulary from some training data using the
adapt() method. Let’s look at an example:

>>> train_data = ["To be", "!(to be)", "That's the question", "Be, be, be."]
>>> text_vec_layer = tf.keras.layers.TextVectorization()
>>> text_vec_layer.adapt(train_data)
>>> text_vec_layer(["Be good!", "Question: be or be?"])
<tf.Tensor: shape=(2, 4), dtype=int64, numpy=
array([[2, 1, 0, 0],
       [6, 2, 1, 2]])>

The two sentences “Be good!” and “Question: be or be?” were encoded as [2,
1, 0, 0] and [6, 2, 1, 2], respectively. The vocabulary was learned from the
four sentences in the training data: “be” = 2, “to” = 3, etc. To construct the
vocabulary, the adapt() method first converted the training sentences to
lowercase and removed punctuation, which is why “Be”, “be”, and “be?” are
all encoded as “be” = 2. Next, the sentences were split on whitespace, and the
resulting words were sorted by descending frequency, producing the final
vocabulary. When encoding sentences, unknown words get encoded as 1s.
Lastly, since the first sentence is shorter than the second, it was padded with
0s.

TIP
The TextVectorization layer has many options. For example, you can preserve the case
and punctuation if you want, by setting standardize=None, or you can pass any
standardization function you please as the standardize argument. You can prevent splitting
by setting split=None, or you can pass your own splitting function instead. You can set the
output_sequence_length argument to ensure that the output sequences all get cropped or
padded to the desired length, or you can set ragged=True to get a ragged tensor instead of
a regular tensor. Please check out the documentation for more options.



The word IDs must be encoded, typically using an Embedding layer: we will
do this in Chapter 16. Alternatively, you can set the TextVectorization layer’s
output_mode argument to "multi_hot" or "count" to get the corresponding
encodings. However, simply counting words is usually not ideal: words like
“to” and “the” are so frequent that they hardly matter at all, whereas, rarer
words such as “basketball” are much more informative. So, rather than
setting output_mode to "multi_hot" or "count", it is usually preferable to set it
to "tf_idf", which stands for term-frequency × inverse-document-frequency
(TF-IDF). This is similar to the count encoding, but words that occur
frequently in the training data are downweighted, and conversely, rare words
are upweighted. For example:

>>> text_vec_layer = tf.keras.layers.TextVectorization(output_mode="tf_idf")
>>> text_vec_layer.adapt(train_data)
>>> text_vec_layer(["Be good!", "Question: be or be?"])
<tf.Tensor: shape=(2, 6), dtype=float32, numpy=
array([[0.96725637, 0.6931472 , 0. , 0. , 0. , 0.        ],
       [0.96725637, 1.3862944 , 0. , 0. , 0. , 1.0986123 ]], dtype=float32)>

There are many TF-IDF variants, but the way the TextVectorization layer
implements it is by multiplying each word count by a weight equal to log(1 +
d / (f + 1)), where d is the total number of sentences (a.k.a., documents) in the
training data and f counts how many of these training sentences contain the
given word. For example, in this case there are d = 4 sentences in the training
data, and the word “be” appears in f = 3 of these. Since the word “be” occurs
twice in the sentence “Question: be or be?”, it gets encoded as 2 × log(1 + 4 /
(1 + 3)) ≈ 1.3862944. The word “question” only appears once, but since it is
a less common word, its encoding is almost as high: 1 × log(1 + 4 / (1 + 1)) ≈
1.0986123. Note that the average weight is used for unknown words.

This approach to text encoding is straightforward to use and it can give fairly
good results for basic natural language processing tasks, but it has several
important limitations: it only works with languages that separate words with
spaces, it doesn’t distinguish between homonyms (e.g., “to bear” versus
“teddy bear”), it gives no hint to your model that words like “evolution” and
“evolutionary” are related, etc. And if you use multi-hot, count, or TF-IDF



encoding, then the order of the words is lost. So what are the other options?

One option is to use the TensorFlow Text library, which provides more
advanced text preprocessing features than the TextVectorization layer. For
example, it includes several subword tokenizers capable of splitting the text
into tokens smaller than words, which makes it possible for the model to
more easily detect that “evolution” and “evolutionary” have something in
common (more on subword tokenization in Chapter 16).

Yet another option is to use pretrained language model components. Let’s
look at this now.

https://tensorflow.org/text


Using Pretrained Language Model Components
The TensorFlow Hub library makes it easy to reuse pretrained model
components in your own models, for text, image, audio, and more. These
model components are called modules. Simply browse the TF Hub
repository, find the one you need, and copy the code example into your
project, and the module will be automatically downloaded and bundled into a
Keras layer that you can directly include in your model. Modules typically
contain both preprocessing code and pretrained weights, and they generally
require no extra training (but of course, the rest of your model will certainly
require training).

For example, some powerful pretrained language models are available. The
most powerful are quite large (several gigabytes), so for a quick example let’s
use the nnlm-en-dim50 module, version 2, which is a fairly basic module that
takes raw text as input and outputs 50-dimensional sentence embeddings.
We’ll import TensorFlow Hub and use it to load the module, then use that
module to encode two sentences to vectors:

>>> import tensorflow_hub as hub
>>> hub_layer = hub.KerasLayer("https://tfhub.dev/google/nnlm-en-dim50/2")
>>> sentence_embeddings = hub_layer(tf.constant(["To be", "Not to be"]))
>>> sentence_embeddings.numpy().round(2)
array([[-0.25,  0.28,  0.01,  0.1 ,  [...] ,  0.05,  0.31],
       [-0.2 ,  0.2 , -0.08,  0.02,  [...] , -0.04,  0.15]], dtype=float32)

The hub.KerasLayer layer downloads the module from the given URL. This
particular module is a sentence encoder: it takes strings as input and encodes
each one as a single vector (in this case, a 50-dimensional vector). Internally,
it parses the string (splitting words on spaces) and embeds each word using
an embedding matrix that was pretrained on a huge corpus: the Google News
7B corpus (seven billion words long!). Then it computes the mean of all the
word embeddings, and the result is the sentence embedding. 
You just need to include this hub_layer in your model, and you’re ready to
go. Note that this particular language model was trained on the English
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language, but many other languages are available, as well as multilingual
models.

Last but not least, the excellent open source Transformers library by Hugging
Face also makes it easy to include powerful language model components
inside your own models. You can browse the Hugging Face Hub, choose the
model you want, and use the provided code examples to get started. It used to
contain only language models, but it has now expanded to include image
models and more.

We will come back to natural language processing in more depth in
Chapter 16. Let’s now look at Keras’s image preprocessing layers.

https://huggingface.co/docs/transformers
https://huggingface.co/models


Image Preprocessing Layers
The Keras preprocessing API includes three image preprocessing layers:

tf.keras.layers.Resizing resizes the input images to the desired size. For
example, Resizing(height=100, width=200) resizes each image to 100 ×
200, possibly distorting the image. If you set crop_to_aspect_ratio=True,
then the image will be cropped to the target image ratio, to avoid
distortion.

tf.keras.layers.Rescaling rescales the pixel values. For example,
Rescal ing(scale=2/255, offset=-1) scales the values from 0 → 255 to –
1 → 1.

tf.keras.layers.CenterCrop crops the image, keeping only a center patch
of the desired height and width.

For example, let’s load a couple of sample images and center-crop them. For
this, we will use Scikit-Learn’s load_sample_images() function; this loads
two color images, one of a Chinese temple and the other of a flower (this
requires the Pillow library, which should already be installed if you are using
Colab or if you followed the installation instructions):

from sklearn.datasets import load_sample_images

images = load_sample_images()["images"]
crop_image_layer = tf.keras.layers.CenterCrop(height=100, width=100)
cropped_images = crop_image_layer(images)

Keras also includes several layers for data augmentation, such as
RandomCrop, RandomFlip, RandomTranslation, RandomRotation,
RandomZoom, RandomHeight, RandomWidth, and RandomContrast. These
layers are only active during training, and they randomly apply some
transformation to the input images (their names are self-explanatory). Data
augmentation will artificially increase the size of the training set, which often
leads to improved performance, as long as the transformed images look like
realistic (nonaugmented) images. We’ll cover image processing more closely



in the next chapter.

NOTE
Under the hood, the Keras preprocessing layers are based on TensorFlow’s low-level API.
For example, the Normalization layer uses tf.nn.moments() to compute both the mean and
variance, the Discretization layer uses tf.raw_ops.Bucketize(), CategoricalEncoding uses
tf.math.bincount(), IntegerLookup and StringLookup use the tf.lookup package, Hashing
and TextVectorization use several ops from the tf.strings package, Embedding uses
tf.nn.embedding_lookup(), and the image preprocessing layers use the ops from the
tf.image package. If the Keras preprocessing API isn’t sufficient for your needs, you may
occasionally need to use TensorFlow’s low-level API directly.

Now let’s look at another way to load data easily and efficiently in
TensorFlow.



The TensorFlow Datasets Project
The TensorFlow Datasets (TFDS) project makes it very easy to load common
datasets, from small ones like MNIST or Fashion MNIST to huge datasets
like ImageNet (you will need quite a bit of disk space!). The list includes
image datasets, text datasets (including translation datasets), audio and video
datasets, time series, and much more. You can visit https://homl.info/tfds to
view the full list, along with a description of each dataset. You can also check
out Know Your Data, which is a tool to explore and understand many of the
datasets provided by TFDS.

TFDS is not bundled with TensorFlow, but if you are running on Colab or if
you followed the installation instructions at https://homl.info/install, then it’s
already installed. You can then import tensorflow_datasets, usually as tfds,
then call the tfds.load() function, which will download the data you want
(unless it was already downloaded earlier) and return the data as a dictionary
of datasets (typically one for training and one for testing, but this depends on
the dataset you choose). For example, let’s download MNIST:

import tensorflow_datasets as tfds

datasets = tfds.load(name="mnist")
mnist_train, mnist_test = datasets["train"], datasets["test"]

You can then apply any transformation you want (typically shuffling,
batching, and prefetching), and you’re ready to train your model. Here is a
simple example:

for batch in mnist_train.shuffle(10_000, seed=42).batch(32).prefetch(1):
    images = batch["image"]
    labels = batch["label"]
    # [...] do something with the images and labels

TIP
The load() function can shuffle the files it downloads: just set shuffle_files=True.

https://tensorflow.org/datasets
https://homl.info/tfds
https://knowyourdata.withgoogle.com
https://homl.info/install


However, this may be insufficient, so it’s best to shuffle the training data some more.

Note that each item in the dataset is a dictionary containing both the features
and the labels. But Keras expects each item to be a tuple containing two
elements (again, the features and the labels). You could transform the dataset
using the map() method, like this:

mnist_train = mnist_train.shuffle(buffer_size=10_000, seed=42).batch(32)
mnist_train = mnist_train.map(lambda items: (items["image"], items["label"]))
mnist_train = mnist_train.prefetch(1)

But it’s simpler to ask the load() function to do this for you by setting
as_supervised=True (obviously this works only for labeled datasets).

Lastly, TFDS provides a convenient way to split the data using the split
argument. For example, if you want to use the first 90% of the training set for
training, the remaining 10% for validation, and the whole test set for testing,
then you can set split=["train[:90%]", "train[90%:]", "test"]. The load()
function will return all three sets. Here is a complete example, loading and
splitting the MNIST dataset using TFDS, then using these sets to train and
evaluate a simple Keras model:

train_set, valid_set, test_set = tfds.load(
    name="mnist",
    split=["train[:90%]", "train[90%:]", "test"],
    as_supervised=True
)
train_set = train_set.shuffle(buffer_size=10_000, seed=42).batch(32).prefetch(1)
valid_set = valid_set.batch(32).cache()
test_set = test_set.batch(32).cache()
tf.random.set_seed(42)
model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(10, activation="softmax")
])
model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
              metrics=["accuracy"])
history = model.fit(train_set, validation_data=valid_set, epochs=5)
test_loss, test_accuracy = model.evaluate(test_set)



Congratulations, you’ve reached the end of this quite technical chapter! You
may feel that it is a bit far from the abstract beauty of neural networks, but
the fact is deep learning often involves large amounts of data, and knowing
how to load, parse, and preprocess it efficiently is a crucial skill to have. In
the next chapter, we will look at convolutional neural networks, which are
among the most successful neural net architectures for image processing and
many other applications.



Exercises
1. Why would you want to use the tf.data API?

2. What are the benefits of splitting a large dataset into multiple files?

3. During training, how can you tell that your input pipeline is the
bottleneck? What can you do to fix it?

4. Can you save any binary data to a TFRecord file, or only serialized
protocol buffers?

5. Why would you go through the hassle of converting all your data to the
Example protobuf format? Why not use your own protobuf definition?

6. When using TFRecords, when would you want to activate compression?
Why not do it systematically?

7. Data can be preprocessed directly when writing the data files, or within
the tf.data pipeline, or in preprocessing layers within your model. Can
you list a few pros and cons of each option?

8. Name a few common ways you can encode categorical integer features.
What about text?

9. Load the Fashion MNIST dataset (introduced in Chapter 10); split it into
a training set, a validation set, and a test set; shuffle the training set; and
save each dataset to multiple TFRecord files. Each record should be a
serialized Example protobuf with two features: the serialized image (use
tf.io.serialize_tensor() to serialize each image), and the label.  Then
use tf.data to create an efficient dataset for each set. Finally, use a Keras
model to train these datasets, including a preprocessing layer to
standardize each input feature. Try to make the input pipeline as
efficient as possible, using TensorBoard to visualize profiling data.

10. In this exercise you will download a dataset, split it, create a
tf.data.Dataset to load it and preprocess it efficiently, then build and
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train a binary classification model containing an Embedding layer:

a. Download the Large Movie Review Dataset, which contains 50,000
movie reviews from the Internet Movie Database (IMDb). The data
is organized in two directories, train and test, each containing a pos
subdirectory with 12,500 positive reviews and a neg subdirectory
with 12,500 negative reviews. Each review is stored in a separate
text file. There are other files and folders (including preprocessed
bag-of-words versions), but we will ignore them in this exercise.

b. Split the test set into a validation set (15,000) and a test set
(10,000).

c. Use tf.data to create an efficient dataset for each set.

d. Create a binary classification model, using a TextVectorization
layer to preprocess each review.

e. Add an Embedding layer and compute the mean embedding for
each review, multiplied by the square root of the number of words
(see Chapter 16). This rescaled mean embedding can then be
passed to the rest of your model.

f. Train the model and see what accuracy you get. Try to optimize
your pipelines to make training as fast as possible.

g. Use TFDS to load the same dataset more easily:
tfds.load("imdb_reviews").

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.

1  Imagine a sorted deck of cards on your left: suppose you just take the top three cards and shuffle
them, then pick one randomly and put it to your right, keeping the other two in your hands. Take
another card on your left, shuffle the three cards in your hands and pick one of them randomly,
and put it on your right. When you are done going through all the cards like this, you will have a
deck of cards on your right: do you think it will be perfectly shuffled?

2  In general, just prefetching one batch is fine, but in some cases you may need to prefetch a few

https://homl.info/imdb
https://imdb.com
https://homl.info/colab3


more. Alternatively, you can let TensorFlow decide automatically by passing
tf.data.AUTOTUNE to prefetch().

3  But check out the experimental tf.data.experimental.prefetch_to_device() function, which can
prefetch data directly to the GPU. Any TensorFlow function or class with experimental in its
name may change without warning in future versions. If an experimental function fails, try
removing the word experimental: it may have been moved to the core API. If not, then please
check the notebook, as I will ensure it contains up-to-date code.

4  Since protobuf objects are meant to be serialized and transmitted, they are called messages.

5  This chapter contains the bare minimum you need to know about protobufs to use TFRecords.
To learn more about protobufs, please visit https://homl.info/protobuf.

6  Tomáš Mikolov et al., “Distributed Representations of Words and Phrases and Their
Compositionality”, Proceedings of the 26th International Conference on Neural Information
Processing Systems 2 (2013): 3111–3119.

7  Malvina Nissim et al., “Fair Is Better Than Sensational: Man Is to Doctor as Woman Is to
Doctor”, arXiv preprint arXiv:1905.09866 (2019).

8  TensorFlow Hub is not bundled with TensorFlow, but if you are running on Colab or if you
followed the installation instructions at https://homl.info/install, then it’s already installed.

9  To be precise, the sentence embedding is equal to the mean word embedding multiplied by the
square root of the number of words in the sentence. This compensates for the fact that the mean
of n random vectors gets shorter as n grows.

10  For large images, you could use tf.io.encode_jpeg() instead. This would save a lot of space, but
it would lose a bit of image quality.

https://homl.info/protobuf
https://homl.info/install


Chapter 14. Deep Computer Vision
Using Convolutional Neural
Networks

Although IBM’s Deep Blue supercomputer beat the chess world champion
Garry Kasparov back in 1996, it wasn’t until fairly recently that computers
were able to reliably perform seemingly trivial tasks such as detecting a
puppy in a picture or recognizing spoken words. Why are these tasks so
effortless to us humans? The answer lies in the fact that perception largely
takes place outside the realm of our consciousness, within specialized visual,
auditory, and other sensory modules in our brains. By the time sensory
information reaches our consciousness, it is already adorned with high-level
features; for example, when you look at a picture of a cute puppy, you cannot
choose not to see the puppy, not to notice its cuteness. Nor can you explain
how you recognize a cute puppy; it’s just obvious to you. Thus, we cannot
trust our subjective experience: perception is not trivial at all, and to
understand it we must look at how our sensory modules work.

Convolutional neural networks (CNNs) emerged from the study of the
brain’s visual cortex, and they have been used in computer image recognition
since the 1980s. Over the last 10 years, thanks to the increase in
computational power, the amount of available training data, and the tricks
presented in Chapter 11 for training deep nets, CNNs have managed to
achieve superhuman performance on some complex visual tasks. They power
image search services, self-driving cars, automatic video classification
systems, and more. Moreover, CNNs are not restricted to visual perception:
they are also successful at many other tasks, such as voice recognition and
natural language processing. However, we will focus on visual applications
for now.

In this chapter we will explore where CNNs came from, what their building



blocks look like, and how to implement them using Keras. Then we will
discuss some of the best CNN architectures, as well as other visual tasks,
including object detection (classifying multiple objects in an image and
placing bounding boxes around them) and semantic segmentation (classifying
each pixel according to the class of the object it belongs to).



The Architecture of the Visual Cortex
David H. Hubel and Torsten Wiesel performed a series of experiments on
cats in 1958  and 1959  (and a few years later on monkeys  ), giving crucial
insights into the structure of the visual cortex (the authors received the Nobel
Prize in Physiology or Medicine in 1981 for their work). In particular, they
showed that many neurons in the visual cortex have a small local receptive
field, meaning they react only to visual stimuli located in a limited region of
the visual field (see Figure 14-1, in which the local receptive fields of five
neurons are represented by dashed circles). The receptive fields of different
neurons may overlap, and together they tile the whole visual field.

Figure 14-1. Biological neurons in the visual cortex respond to specific patterns in small regions of the
visual field called receptive fields; as the visual signal makes its way through consecutive brain

modules, neurons respond to more complex patterns in larger receptive fields

Moreover, the authors showed that some neurons react only to images of
horizontal lines, while others react only to lines with different orientations
(two neurons may have the same receptive field but react to different line
orientations). They also noticed that some neurons have larger receptive
fields, and they react to more complex patterns that are combinations of the
lower-level patterns. These observations led to the idea that the higher-level
neurons are based on the outputs of neighboring lower-level neurons (in
Figure 14-1, notice that each neuron is connected only to nearby neurons
from the previous layer). This powerful architecture is able to detect all sorts
of complex patterns in any area of the visual field.

These studies of the visual cortex inspired the neocognitron,  introduced in

1 2 3
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1980, which gradually evolved into what we now call convolutional neural
networks. An important milestone was a 1998 paper  by Yann LeCun et al.
that introduced the famous LeNet-5 architecture, which became widely used
by banks to recognize handwritten digits on checks. This architecture has
some building blocks that you already know, such as fully connected layers
and sigmoid activation functions, but it also introduces two new building
blocks: convolutional layers and pooling layers. Let’s look at them now.

NOTE
Why not simply use a deep neural network with fully connected layers for image
recognition tasks? Unfortunately, although this works fine for small images (e.g.,
MNIST), it breaks down for larger images because of the huge number of parameters it
requires. For example, a 100 × 100–pixel image has 10,000 pixels, and if the first layer has
just 1,000 neurons (which already severely restricts the amount of information transmitted
to the next layer), this means a total of 10 million connections. And that’s just the first
layer. CNNs solve this problem using partially connected layers and weight sharing.

5
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Convolutional Layers
The most important building block of a CNN is the convolutional layer:
neurons in the first convolutional layer are not connected to every single
pixel in the input image (like they were in the layers discussed in previous
chapters), but only to pixels in their receptive fields (see Figure 14-2). In
turn, each neuron in the second convolutional layer is connected only to
neurons located within a small rectangle in the first layer. This architecture
allows the network to concentrate on small low-level features in the first
hidden layer, then assemble them into larger higher-level features in the next
hidden layer, and so on. This hierarchical structure is common in real-world
images, which is one of the reasons why CNNs work so well for image
recognition.

Figure 14-2. CNN layers with rectangular local receptive fields

NOTE
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All the multilayer neural networks we’ve looked at so far had layers composed of a long
line of neurons, and we had to flatten input images to 1D before feeding them to the neural
network. In a CNN each layer is represented in 2D, which makes it easier to match
neurons with their corresponding inputs.

A neuron located in row i, column j of a given layer is connected to the
outputs of the neurons in the previous layer located in rows i to i + f  – 1,
columns j to j + f  – 1, where f  and f  are the height and width of the
receptive field (see Figure 14-3). In order for a layer to have the same height
and width as the previous layer, it is common to add zeros around the inputs,
as shown in the diagram. This is called zero padding.

It is also possible to connect a large input layer to a much smaller layer by
spacing out the receptive fields, as shown in Figure 14-4. This dramatically
reduces the model’s computational complexity. The horizontal or vertical
step size from one receptive field to the next is called the stride. In the
diagram, a 5 × 7 input layer (plus zero padding) is connected to a 3 × 4 layer,
using 3 × 3 receptive fields and a stride of 2 (in this example the stride is the
same in both directions, but it does not have to be so). A neuron located in
row i, column j in the upper layer is connected to the outputs of the neurons
in the previous layer located in rows i × s  to i × s  + f  – 1, columns j × s  to
j × s  + f  – 1, where s  and s  are the vertical and horizontal strides.
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Figure 14-3. Connections between layers and zero padding



Figure 14-4. Reducing dimensionality using a stride of 2



Filters
A neuron’s weights can be represented as a small image the size of the
receptive field. For example, Figure 14-5 shows two possible sets of weights,
called filters (or convolution kernels, or just kernels). The first one is
represented as a black square with a vertical white line in the middle (it’s a 7
× 7 matrix full of 0s except for the central column, which is full of 1s);
neurons using these weights will ignore everything in their receptive field
except for the central vertical line (since all inputs will be multiplied by 0,
except for the ones in the central vertical line). The second filter is a black
square with a horizontal white line in the middle. Neurons using these
weights will ignore everything in their receptive field except for the central
horizontal line.

Figure 14-5. Applying two different filters to get two feature maps

Now if all neurons in a layer use the same vertical line filter (and the same
bias term), and you feed the network the input image shown in Figure 14-5
(the bottom image), the layer will output the top-left image. Notice that the



vertical white lines get enhanced while the rest gets blurred. Similarly, the
upper-right image is what you get if all neurons use the same horizontal line
filter; notice that the horizontal white lines get enhanced while the rest is
blurred out. Thus, a layer full of neurons using the same filter outputs a
feature map, which highlights the areas in an image that activate the filter the
most. But don’t worry, you won’t have to define the filters manually: instead,
during training the convolutional layer will automatically learn the most
useful filters for its task, and the layers above will learn to combine them into
more complex patterns.



Stacking Multiple Feature Maps
Up to now, for simplicity, I have represented the output of each convolutional
layer as a 2D layer, but in reality a convolutional layer has multiple filters
(you decide how many) and outputs one feature map per filter, so it is more
accurately represented in 3D (see Figure 14-6). It has one neuron per pixel in
each feature map, and all neurons within a given feature map share the same
parameters (i.e., the same kernel and bias term). Neurons in different feature
maps use different parameters. A neuron’s receptive field is the same as
described earlier, but it extends across all the feature maps of the previous
layer. In short, a convolutional layer simultaneously applies multiple
trainable filters to its inputs, making it capable of detecting multiple features
anywhere in its inputs.



Figure 14-6. Two convolutional layers with multiple filters each (kernels), processing a color image
with three color channels; each convolutional layer outputs one feature map per filter

NOTE
The fact that all neurons in a feature map share the same parameters dramatically reduces
the number of parameters in the model. Once the CNN has learned to recognize a pattern
in one location, it can recognize it in any other location. In contrast, once a fully connected
neural network has learned to recognize a pattern in one location, it can only recognize it
in that particular location.

Input images are also composed of multiple sublayers: one per color channel.
As mentioned in Chapter 9, there are typically three: red, green, and blue



(RGB). Grayscale images have just one channel, but some images may have
many more—for example, satellite images that capture extra light frequencies
(such as infrared).

Specifically, a neuron located in row i, column j of the feature map k in a
given convolutional layer l is connected to the outputs of the neurons in the
previous layer l – 1, located in rows i × s  to i × s  + f  – 1 and columns j × s
to j × s  + f  – 1, across all feature maps (in layer l – 1). Note that, within a
layer, all neurons located in the same row i and column j but in different
feature maps are connected to the outputs of the exact same neurons in the
previous layer.

Equation 14-1 summarizes the preceding explanations in one big
mathematical equation: it shows how to compute the output of a given neuron
in a convolutional layer. It is a bit ugly due to all the different indices, but all
it does is calculate the weighted sum of all the inputs, plus the bias term.

Equation 14-1. Computing the output of a neuron in a convolutional layer

z i,j,k = b k + ∑ u=0 f h -1 ∑ v=0 f w -1 ∑ k'=0 f n ' -1 x i ' ,j ' ,k ' × w u,v,k '
,k with i ' = i × s h + u j ' = j × s w + v

In this equation:

z  is the output of the neuron located in row i, column j in feature
map k of the convolutional layer (layer l).

As explained earlier, s  and s  are the vertical and horizontal strides, f
and f  are the height and width of the receptive field, and f  is the
number of feature maps in the previous layer (layer l – 1).

x  is the output of the neuron located in layer l – 1, row i′, column j′,
feature map k′ (or channel k′ if the previous layer is the input layer).

b  is the bias term for feature map k (in layer l). You can think of it as a
knob that tweaks the overall brightness of the feature map k.

w  is the connection weight between any neuron in feature map k
of the layer l and its input located at row u, column v (relative to the
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neuron’s receptive field), and feature map k′.

Let’s see how to create and use a convolutional layer using Keras.



Implementing Convolutional Layers with Keras
First, let’s load and preprocess a couple of sample images, using Scikit-
Learn’s load_sample_image() function and Keras’s CenterCrop and
Rescaling layers (all of which were introduced in Chapter 13):

from sklearn.datasets import load_sample_images
import tensorflow as tf

images = load_sample_images()["images"]
images = tf.keras.layers.CenterCrop(height=70, width=120)(images)
images = tf.keras.layers.Rescaling(scale=1 / 255)(images)

Let’s look at the shape of the images tensor:

>>> images.shape
TensorShape([2, 70, 120, 3])

Yikes, it’s a 4D tensor; we haven’t seen this before! What do all these
dimensions mean? Well, there are two sample images, which explains the
first dimension. Then each image is 70 × 120, since that’s the size we
specified when creating the CenterCrop layer (the original images were 427 ×
640). This explains the second and third dimensions. And lastly, each pixel
holds one value per color channel, and there are three of them—red, green,
and blue—which explains the last dimension.

Now let’s create a 2D convolutional layer and feed it these images to see
what comes out. For this, Keras provides a Convolution2D layer, alias
Conv2D. Under the hood, this layer relies on TensorFlow’s tf.nn.conv2d()
operation. Let’s create a convolutional layer with 32 filters, each of size 7 × 7
(using kernel_size=7, which is equivalent to using kernel_size=(7 , 7)), and
apply this layer to our small batch of two images:

conv_layer = tf.keras.layers.Conv2D(filters=32, kernel_size=7)
fmaps = conv_layer(images)



NOTE
When we talk about a 2D convolutional layer, “2D” refers to the number of spatial
dimensions (height and width), but as you can see, the layer takes 4D inputs: as we saw,
the two additional dimensions are the batch size (first dimension) and the channels (last
dimension).

Now let’s look at the output’s shape:

>>> fmaps.shape
TensorShape([2, 64, 114, 32])

The output shape is similar to the input shape, with two main differences.
First, there are 32 channels instead of 3. This is because we set filters=32, so
we get 32 output feature maps: instead of the intensity of red, green, and blue
at each location, we now have the intensity of each feature at each location.
Second, the height and width have both shrunk by 6 pixels. This is due to the
fact that the Conv2D layer does not use any zero-padding by default, which
means that we lose a few pixels on the sides of the output feature maps,
depending on the size of the filters. In this case, since the kernel size is 7, we
lose 6 pixels horizontally and 6 pixels vertically (i.e., 3 pixels on each side).

WARNING
The default option is surprisingly named padding="valid", which actually means no zero-
padding at all! This name comes from the fact that in this case every neuron’s receptive
field lies strictly within valid positions inside the input (it does not go out of bounds). It’s
not a Keras naming quirk: everyone uses this odd nomenclature.

If instead we set padding="same", then the inputs are padded with enough
zeros on all sides to ensure that the output feature maps end up with the same
size as the inputs (hence the name of this option):

>>> conv_layer = tf.keras.layers.Conv2D(filters=32, kernel_size=7,
...                                     padding="same")
...



>>> fmaps = conv_layer(images)
>>> fmaps.shape
TensorShape([2, 70, 120, 32])

These two padding options are illustrated in Figure 14-7. For simplicity, only
the horizontal dimension is shown here, but of course the same logic applies
to the vertical dimension as well.

If the stride is greater than 1 (in any direction), then the output size will not
be equal to the input size, even if padding="same". For example, if you set
strides=2 (or equivalently strides=(2, 2)), then the output feature maps will be
35 × 60: halved both vertically and horizontally. Figure 14-8 shows what
happens when strides=2, with both padding options.

Figure 14-7. The two padding options, when strides=1

Figure 14-8. With strides greater than 1, the output is much smaller even when using "same" padding
(and "valid" padding may ignore some inputs)

If you are curious, this is how the output size is computed:



With padding="valid", if the width of the input is i , then the output
width is equal to (i  – f  + s ) / s , rounded down. Recall that f  is the
kernel width, and s  is the horizontal stride. Any remainder in the
division corresponds to ignored columns on the right side of the input
image. The same logic can be used to compute the output height, and
any ignored rows at the bottom of the image.

With padding="same", the output width is equal to i  / s , rounded up.
To make this possible, the appropriate number of zero columns are
padded to the left and right of the input image (an equal number if
possible, or just one more on the right side). Assuming the output width
is o , then the number of padded zero columns is (o  – 1) × s  + f  – i .
Again, the same logic can be used to compute the output height and the
number of padded rows.

Now let’s look at the layer’s weights (which were noted w  and b  in
Equation 14-1). Just like a Dense layer, a Conv2D layer holds all the layer’s
weights, including the kernels and biases. The kernels are initialized
randomly, while the biases are initialized to zero. These weights are
accessible as TF variables via the weights attribute, or as NumPy arrays via
the get_weights() method:

>>> kernels, biases = conv_layer.get_weights()
>>> kernels.shape
(7, 7, 3, 32)
>>> biases.shape
(32,)

The kernels array is 4D, and its shape is [kernel_height, kernel_width,
input_channels, output_channels]. The biases array is 1D, with shape
[output_channels]. The number of output channels is equal to the number of
output feature maps, which is also equal to the number of filters.

Most importantly, note that the height and width of the input images do not
appear in the kernel’s shape: this is because all the neurons in the output
feature maps share the same weights, as explained earlier. This means that
you can feed images of any size to this layer, as long as they are at least as
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large as the kernels, and if they have the right number of channels (three in
this case).

Lastly, you will generally want to specify an activation function (such as
ReLU) when creating a Conv2D layer, and also specify the corresponding
kernel initializer (such as He initialization). This is for the same reason as for
Dense layers: a convolutional layer performs a linear operation, so if you
stacked multiple convolutional layers without any activation functions they
would all be equivalent to a single convolutional layer, and they wouldn’t be
able to learn anything really complex.

As you can see, convolutional layers have quite a few hyperparameters:
filters, kernel_size, padding, strides, activation, kernel_initializer, etc. As
always, you can use cross-validation to find the right hyperparameter values,
but this is very time-consuming. We will discuss common CNN architectures
later in this chapter, to give you some idea of which hyperparameter values
work best in practice.



Memory Requirements
Another challenge with CNNs is that the convolutional layers require a huge
amount of RAM. This is especially true during training, because the reverse
pass of backpropagation requires all the intermediate values computed during
the forward pass.

For example, consider a convolutional layer with 200 5 × 5 filters, with stride
1 and "same" padding. If the input is a 150 × 100 RGB image (three
channels), then the number of parameters is (5 × 5 × 3 + 1) × 200 = 15,200
(the + 1 corresponds to the bias terms), which is fairly small compared to a
fully connected layer.  However, each of the 200 feature maps contains 150
× 100 neurons, and each of these neurons needs to compute a weighted sum
of its 5 × 5 × 3 = 75 inputs: that’s a total of 225 million float multiplications.
Not as bad as a fully connected layer, but still quite computationally
intensive. Moreover, if the feature maps are represented using 32-bit floats,
then the convolutional layer’s output will occupy 200 × 150 × 100 × 32 = 96
million bits (12 MB) of RAM.   And that’s just for one instance—if a
training batch contains 100 instances, then this layer will use up 1.2 GB of
RAM!

During inference (i.e., when making a prediction for a new instance) the
RAM occupied by one layer can be released as soon as the next layer has
been computed, so you only need as much RAM as required by two
consecutive layers. But during training everything computed during the
forward pass needs to be preserved for the reverse pass, so the amount of
RAM needed is (at least) the total amount of RAM required by all layers.

TIP
If training crashes because of an out-of-memory error, you can try reducing the mini-batch
size. Alternatively, you can try reducing dimensionality using a stride, removing a few
layers, using 16-bit floats instead of 32-bit floats, or distributing the CNN across multiple
devices (you will see how to do this in Chapter 19).
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Now let’s look at the second common building block of CNNs: the pooling
layer.



Pooling Layers
Once you understand how convolutional layers work, the pooling layers are
quite easy to grasp. Their goal is to subsample (i.e., shrink) the input image in
order to reduce the computational load, the memory usage, and the number of
parameters (thereby limiting the risk of overfitting).

Just like in convolutional layers, each neuron in a pooling layer is connected
to the outputs of a limited number of neurons in the previous layer, located
within a small rectangular receptive field. You must define its size, the stride,
and the padding type, just like before. However, a pooling neuron has no
weights; all it does is aggregate the inputs using an aggregation function such
as the max or mean. Figure 14-9 shows a max pooling layer, which is the
most common type of pooling layer. In this example, we use a 2 × 2 pooling
kernel,  with a stride of 2 and no padding. Only the max input value in each
receptive field makes it to the next layer, while the other inputs are dropped.
For example, in the lower-left receptive field in Figure 14-9, the input values
are 1, 5, 3, 2, so only the max value, 5, is propagated to the next layer.
Because of the stride of 2, the output image has half the height and half the
width of the input image (rounded down since we use no padding).

Figure 14-9. Max pooling layer (2 × 2 pooling kernel, stride 2, no padding)
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NOTE
A pooling layer typically works on every input channel independently, so the output depth
(i.e., the number of channels) is the same as the input depth.

Other than reducing computations, memory usage, and the number of
parameters, a max pooling layer also introduces some level of invariance to
small translations, as shown in Figure 14-10. Here we assume that the bright
pixels have a lower value than dark pixels, and we consider three images (A,
B, C) going through a max pooling layer with a 2 × 2 kernel and stride 2.
Images B and C are the same as image A, but shifted by one and two pixels
to the right. As you can see, the outputs of the max pooling layer for images
A and B are identical. This is what translation invariance means. For image
C, the output is different: it is shifted one pixel to the right (but there is still
50% invariance). By inserting a max pooling layer every few layers in a
CNN, it is possible to get some level of translation invariance at a larger
scale. Moreover, max pooling offers a small amount of rotational invariance
and a slight scale invariance. Such invariance (even if it is limited) can be
useful in cases where the prediction should not depend on these details, such
as in classification tasks.

However, max pooling has some downsides too. It’s obviously very
destructive: even with a tiny 2 × 2 kernel and a stride of 2, the output will be
two times smaller in both directions (so its area will be four times smaller),
simply dropping 75% of the input values. And in some applications,
invariance is not desirable. Take semantic segmentation (the task of
classifying each pixel in an image according to the object that pixel belongs
to, which we’ll explore later in this chapter): obviously, if the input image is
translated by one pixel to the right, the output should also be translated by
one pixel to the right. The goal in this case is equivariance, not invariance: a
small change to the inputs should lead to a corresponding small change in the
output.



Figure 14-10. Invariance to small translations



Implementing Pooling Layers with Keras
The following code creates a MaxPooling2D layer, alias MaxPool2D, using a
2 × 2 kernel. The strides default to the kernel size, so this layer uses a stride
of 2 (horizontally and vertically). By default, it uses "valid" padding (i.e., no
padding at all):

max_pool = tf.keras.layers.MaxPool2D(pool_size=2)

To create an average pooling layer, just use AveragePooling2D, alias
AvgPool2D, instead of MaxPool2D. As you might expect, it works exactly
like a max pooling layer, except it computes the mean rather than the max.
Average pooling layers used to be very popular, but people mostly use max
pooling layers now, as they generally perform better. This may seem
surprising, since computing the mean generally loses less information than
computing the max. But on the other hand, max pooling preserves only the
strongest features, getting rid of all the meaningless ones, so the next layers
get a cleaner signal to work with. Moreover, max pooling offers stronger
translation invariance than average pooling, and it requires slightly less
compute.

Note that max pooling and average pooling can be performed along the depth
dimension instead of the spatial dimensions, although it’s not as common.
This can allow the CNN to learn to be invariant to various features. For
example, it could learn multiple filters, each detecting a different rotation of
the same pattern (such as handwritten digits; see Figure 14-11), and the
depthwise max pooling layer would ensure that the output is the same
regardless of the rotation. The CNN could similarly learn to be invariant to
anything: thickness, brightness, skew, color, and so on.



Figure 14-11. Depthwise max pooling can help the CNN learn to be invariant (to rotation in this case)

Keras does not include a depthwise max pooling layer, but it’s not too
difficult to implement a custom layer for that:

class DepthPool(tf.keras.layers.Layer):
    def __init__(self, pool_size=2, **kwargs):
        super().__init__(**kwargs)
        self.pool_size = pool_size

    def call(self, inputs):
        shape = tf.shape(inputs)  # shape[-1] is the number of channels
        groups = shape[-1] // self.pool_size  # number of channel groups
        new_shape = tf.concat([shape[:-1], [groups, self.pool_size]], axis=0)
        return tf.reduce_max(tf.reshape(inputs, new_shape), axis=-1)

This layer reshapes its inputs to split the channels into groups of the desired
size (pool_size), then it uses tf.reduce_max() to compute the max of each
group. This implementation assumes that the stride is equal to the pool size,



which is generally what you want. Alternatively, you could use TensorFlow’s
tf.nn.max_pool() operation, and wrap in a Lambda layer to use it inside a
Keras model, but sadly this op does not implement depthwise pooling for the
GPU, only for the CPU.

One last type of pooling layer that you will often see in modern architectures
is the global average pooling layer. It works very differently: all it does is
compute the mean of each entire feature map (it’s like an average pooling
layer using a pooling kernel with the same spatial dimensions as the inputs).
This means that it just outputs a single number per feature map and per
instance. Although this is of course extremely destructive (most of the
information in the feature map is lost), it can be useful just before the output
layer, as you will see later in this chapter. To create such a layer, simply use
the GlobalAveragePooling2D class, alias GlobalAvgPool2D:

global_avg_pool = tf.keras.layers.GlobalAvgPool2D()

It’s equivalent to the following Lambda layer, which computes the mean over
the spatial dimensions (height and width):

global_avg_pool = tf.keras.layers.Lambda(
    lambda X: tf.reduce_mean(X, axis=[1, 2]))

For example, if we apply this layer to the input images, we get the mean
intensity of red, green, and blue for each image:

>>> global_avg_pool(images)
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0.64338624, 0.5971759 , 0.5824972 ],
       [0.76306933, 0.26011038, 0.10849128]], dtype=float32)>

Now you know all the building blocks to create convolutional neural
networks. Let’s see how to assemble them.



CNN Architectures
Typical CNN architectures stack a few convolutional layers (each one
generally followed by a ReLU layer), then a pooling layer, then another few
convolutional layers (+ReLU), then another pooling layer, and so on. The
image gets smaller and smaller as it progresses through the network, but it
also typically gets deeper and deeper (i.e., with more feature maps), thanks to
the convolutional layers (see Figure 14-12). At the top of the stack, a regular
feedforward neural network is added, composed of a few fully connected
layers (+ReLUs), and the final layer outputs the prediction (e.g., a softmax
layer that outputs estimated class probabilities).

Figure 14-12. Typical CNN architecture

TIP
A common mistake is to use convolution kernels that are too large. For example, instead
of using a convolutional layer with a 5 × 5 kernel, stack two layers with 3 × 3 kernels: it
will use fewer parameters and require fewer computations, and it will usually perform
better. One exception is for the first convolutional layer: it can typically have a large
kernel (e.g., 5 × 5), usually with a stride of 2 or more. This will reduce the spatial
dimension of the image without losing too much information, and since the input image
only has three channels in general, it will not be too costly.

Here is how you can implement a basic CNN to tackle the Fashion MNIST
dataset (introduced in Chapter 10):

from functools import partial



DefaultConv2D = partial(tf.keras.layers.Conv2D, kernel_size=3, padding="same",
                        activation="relu", kernel_initializer="he_normal")
model = tf.keras.Sequential([
    DefaultConv2D(filters=64, kernel_size=7, input_shape=[28, 28, 1]),
    tf.keras.layers.MaxPool2D(),
    DefaultConv2D(filters=128),
    DefaultConv2D(filters=128),
    tf.keras.layers.MaxPool2D(),
    DefaultConv2D(filters=256),
    DefaultConv2D(filters=256),
    tf.keras.layers.MaxPool2D(),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(units=128, activation="relu",
                          kernel_initializer="he_normal"),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(units=64, activation="relu",
                          kernel_initializer="he_normal"),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(units=10, activation="softmax")
])

Let’s go through this code:

We use the functools.partial() function (introduced in Chapter 11) to
define DefaultConv2D, which acts just like Conv2D but with different
default arguments: a small kernel size of 3, "same" padding, the ReLU
activation function, and its corresponding He initializer.

Next, we create the Sequential model. Its first layer is a DefaultConv2D
with 64 fairly large filters (7 × 7). It uses the default stride of 1 because
the input images are not very large. It also sets input_shape=[28, 28, 1],
because the images are 28 × 28 pixels, with a single color channel (i.e.,
grayscale). When you load the Fashion MNIST dataset, make sure each
image has this shape: you may need to use np.reshape() or
np.expanddims() to add the channels dimension. Alternatively, you
could use a Reshape layer as the first layer in the model.

We then add a max pooling layer that uses the default pool size of 2, so
it divides each spatial dimension by a factor of 2.

Then we repeat the same structure twice: two convolutional layers



followed by a max pooling layer. For larger images, we could repeat this
structure several more times. The number of repetitions is a
hyperparameter you can tune.

Note that the number of filters doubles as we climb up the CNN toward
the output layer (it is initially 64, then 128, then 256): it makes sense for
it to grow, since the number of low-level features is often fairly low
(e.g., small circles, horizontal lines), but there are many different ways
to combine them into higher-level features. It is a common practice to
double the number of filters after each pooling layer: since a pooling
layer divides each spatial dimension by a factor of 2, we can afford to
double the number of feature maps in the next layer without fear of
exploding the number of parameters, memory usage, or computational
load.

Next is the fully connected network, composed of two hidden dense
layers and a dense output layer. Since it’s a classification task with 10
classes, the output layer has 10 units, and it uses the softmax activation
function. Note that we must flatten the inputs just before the first dense
layer, since it expects a 1D array of features for each instance. We also
add two dropout layers, with a dropout rate of 50% each, to reduce
overfitting.

If you compile this model using the "sparse_categorical_crossentropy" loss
and you fit the model to the Fashion MNIST training set, it should reach over
92% accuracy on the test set. It’s not state of the art, but it is pretty good, and
clearly much better than what we achieved with dense networks in
Chapter 10.

Over the years, variants of this fundamental architecture have been
developed, leading to amazing advances in the field. A good measure of this
progress is the error rate in competitions such as the ILSVRC ImageNet
challenge. In this competition, the top-five error rate for image classification
—that is, the number of test images for which the system’s top five
predictions did not include the correct answer—fell from over 26% to less
than 2.3% in just six years. The images are fairly large (e.g., 256 pixels high)

https://image-net.org


and there are 1,000 classes, some of which are really subtle (try
distinguishing 120 dog breeds). Looking at the evolution of the winning
entries is a good way to understand how CNNs work, and how research in
deep learning progresses.

We will first look at the classical LeNet-5 architecture (1998), then several
winners of the ILSVRC challenge: AlexNet (2012), GoogLeNet (2014),
ResNet (2015), and SENet (2017). Along the way, we will also look at a few
more architectures, including Xception, ResNeXt, DenseNet, MobileNet,
CSPNet, and EfficientNet.



LeNet-5
The LeNet-5 architecture  is perhaps the most widely known CNN
architecture. As mentioned earlier, it was created by Yann LeCun in 1998 and
has been widely used for handwritten digit recognition (MNIST). It is
composed of the layers shown in Table 14-1.

Table 14-1. LeNet-5 architecture

Layer Type Maps Size Kernel size

Out Fully connected – 10 –

F6 Fully connected – 84 –

C5 Convolution 120 1 × 1 5 × 5

S4 Avg pooling 16 5 × 5 2 × 2

C3 Convolution 16 10 × 10 5 × 5

S2 Avg pooling 6 14 × 14 2 × 2

C1 Convolution 6 28 × 28 5 × 5

In Input 1 32 × 32 –

As you can see, this looks pretty similar to our Fashion MNIST model: a
stack of convolutional layers and pooling layers, followed by a dense
network. Perhaps the main difference with more modern classification CNNs
is the activation functions: today, we would use ReLU instead of tanh and
softmax instead of RBF. There were several other minor differences that
don’t really matter much, but in case you are interested, they are listed in this
chapter’s notebook at https://homl.info/colab3. Yann LeCun’s website also
features great demos of LeNet-5 classifying digits.
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AlexNet
The AlexNet CNN architecture  won the 2012 ILSVRC challenge by a large
margin: it achieved a top-five error rate of 17%, while the second best
competitor achieved only 26%! AlexaNet was developed by Alex Krizhevsky
(hence the name), Ilya Sutskever, and Geoffrey Hinton. It is similar to LeNet-
5, only much larger and deeper, and it was the first to stack convolutional
layers directly on top of one another, instead of stacking a pooling layer on
top of each convolutional layer. Table 14-2 presents this architecture.

Table 14-2. AlexNet architecture

Layer Type Maps Size Kernel size

Out Fully connected – 1,000 –

F10 Fully connected – 4,096 –

F9 Fully connected – 4,096 –

S8 Max pooling 256 6 × 6 3 × 3

C7 Convolution 256 13 × 13 3 × 3

C6 Convolution 384 13 × 13 3 × 3

C5 Convolution 384 13 × 13 3 × 3

S4 Max pooling 256 13 × 13 3 × 3

C3 Convolution 256 27 × 27 5 × 5

S2 Max pooling 96 27 × 27 3 × 3

C1 Convolution 96 55 × 55 11 × 11

In Input 3 (RGB) 227 × 227 –

To reduce overfitting, the authors used two regularization techniques. First,
they applied dropout (introduced in Chapter 11) with a 50% dropout rate
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during training to the outputs of layers F9 and F10. Second, they performed
data augmentation by randomly shifting the training images by various
offsets, flipping them horizontally, and changing the lighting conditions.

DATA AUGMENTATION

Data augmentation artificially increases the size of the training set by
generating many realistic variants of each training instance. This reduces
overfitting, making this a regularization technique. The generated
instances should be as realistic as possible: ideally, given an image from
the augmented training set, a human should not be able to tell whether it
was augmented or not. Simply adding white noise will not help; the
modifications should be learnable (white noise is not).

For example, you can slightly shift, rotate, and resize every picture in the
training set by various amounts and add the resulting pictures to the
training set (see Figure 14-13). To do this, you can use Keras’s data
augmentation layers, introduced in Chapter 13 (e.g., RandomCrop,
RandomRotation, etc.). This forces the model to be more tolerant to
variations in the position, orientation, and size of the objects in the
pictures. To produce a model that’s more tolerant of different lighting
conditions, you can similarly generate many images with various
contrasts. In general, you can also flip the pictures horizontally (except
for text, and other asymmetrical objects). By combining these
transformations, you can greatly increase your training set size.



Figure 14-13. Generating new training instances from existing ones

Data augmentation is also useful when you have an unbalanced dataset:
you can use it to generate more samples of the less frequent classes. This
is called the synthetic minority oversampling technique, or SMOTE for
short.

AlexNet also uses a competitive normalization step immediately after the
ReLU step of layers C1 and C3, called local response normalization (LRN):
the most strongly activated neurons inhibit other neurons located at the same
position in neighboring feature maps. Such competitive activation has been
observed in biological neurons. This encourages different feature maps to
specialize, pushing them apart and forcing them to explore a wider range of
features, ultimately improving generalization. Equation 14-2 shows how to
apply LRN.

Equation 14-2. Local response normalization (LRN)

b i = a i k+α∑ j=j low j high a j 2 -β with j high = min i + r 2 , f n - 1 j low =
max 0 , i - r 2



In this equation:

b  is the normalized output of the neuron located in feature map i, at
some row u and column v (note that in this equation we consider only
neurons located at this row and column, so u and v are not shown).

a  is the activation of that neuron after the ReLU step, but before
normalization.

k, α, β, and r are hyperparameters. k is called the bias, and r is called the
depth radius.

f  is the number of feature maps.

For example, if r = 2 and a neuron has a strong activation, it will inhibit the
activation of the neurons located in the feature maps immediately above and
below its own.

In AlexNet, the hyperparameters are set as: r = 5, α = 0.0001, β = 0.75, and k
= 2. You can implement this step by using the
tf.nn.local_response_normalization() function (which you can wrap in a
Lambda layer if you want to use it in a Keras model).

A variant of AlexNet called ZF Net  was developed by Matthew Zeiler and
Rob Fergus and won the 2013 ILSVRC challenge. It is essentially AlexNet
with a few tweaked hyperparameters (number of feature maps, kernel size,
stride, etc.).

i

i

n
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GoogLeNet
The GoogLeNet architecture was developed by Christian Szegedy et al. from
Google Research,  and it won the ILSVRC 2014 challenge by pushing the
top-five error rate below 7%. This great performance came in large part from
the fact that the network was much deeper than previous CNNs (as you’ll see
in Figure 14-15). This was made possible by subnetworks called inception
modules,  which allow GoogLeNet to use parameters much more
efficiently than previous architectures: GoogLeNet actually has 10 times
fewer parameters than AlexNet (roughly 6 million instead of 60 million).

Figure 14-14 shows the architecture of an inception module. The notation “3
× 3 + 1(S)” means that the layer uses a 3 × 3 kernel, stride 1, and "same"
padding. The input signal is first fed to four different layers in parallel. All
convolutional layers use the ReLU activation function. Note that the top
convolutional layers use different kernel sizes (1 × 1, 3 × 3, and 5 × 5),
allowing them to capture patterns at different scales. Also note that every
single layer uses a stride of 1 and "same" padding (even the max pooling
layer), so their outputs all have the same height and width as their inputs.
This makes it possible to concatenate all the outputs along the depth
dimension in the final depth concatenation layer (i.e., to stack the feature
maps from all four top convolutional layers). It can be implemented using
Keras’s Concatenate layer, using the default axis=-1.
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Figure 14-14. Inception module

You may wonder why inception modules have convolutional layers with 1 ×
1 kernels. Surely these layers cannot capture any features because they look
at only one pixel at a time, right? In fact, these layers serve three purposes:

Although they cannot capture spatial patterns, they can capture patterns
along the depth dimension (i.e., across channels).

They are configured to output fewer feature maps than their inputs, so
they serve as bottleneck layers, meaning they reduce dimensionality.
This cuts the computational cost and the number of parameters, speeding
up training and improving generalization.

Each pair of convolutional layers ([1 × 1, 3 × 3] and [1 × 1, 5 × 5]) acts
like a single powerful convolutional layer, capable of capturing more
complex patterns. A convolutional layer is equivalent to sweeping a
dense layer across the image (at each location, it only looks at a small
receptive field), and these pairs of convolutional layers are equivalent to
sweeping two-layer neural networks across the image.

In short, you can think of the whole inception module as a convolutional



layer on steroids, able to output feature maps that capture complex patterns at
various scales.

Now let’s look at the architecture of the GoogLeNet CNN (see Figure 14-15).
The number of feature maps output by each convolutional layer and each
pooling layer is shown before the kernel size. The architecture is so deep that
it has to be represented in three columns, but GoogLeNet is actually one tall
stack, including nine inception modules (the boxes with the spinning tops).
The six numbers in the inception modules represent the number of feature
maps output by each convolutional layer in the module (in the same order as
in Figure 14-14). Note that all the convolutional layers use the ReLU
activation function.

Let’s go through this network:

The first two layers divide the image’s height and width by 4 (so its area
is divided by 16), to reduce the computational load. The first layer uses a
large kernel size, 7 × 7, so that much of the information is preserved.

Then the local response normalization layer ensures that the previous
layers learn a wide variety of features (as discussed earlier).

Two convolutional layers follow, where the first acts like a bottleneck
layer. As mentioned, you can think of this pair as a single smarter
convolutional layer.

Again, a local response normalization layer ensures that the previous
layers capture a wide variety of patterns.

Next, a max pooling layer reduces the image height and width by 2,
again to speed up computations.

Then comes the CNN’s backbone: a tall stack of nine inception
modules, interleaved with a couple of max pooling layers to reduce
dimensionality and speed up the net.

Next, the global average pooling layer outputs the mean of each feature
map: this drops any remaining spatial information, which is fine because
there is not much spatial information left at that point. Indeed,



GoogLeNet input images are typically expected to be 224 × 224 pixels,
so after 5 max pooling layers, each dividing the height and width by 2,
the feature maps are down to 7 × 7. Moreover, this is a classification
task, not localization, so it doesn’t matter where the object is. Thanks to
the dimensionality reduction brought by this layer, there is no need to
have several fully connected layers at the top of the CNN (like in
AlexNet), and this considerably reduces the number of parameters in the
network and limits the risk of overfitting.

The last layers are self-explanatory: dropout for regularization, then a
fully connected layer with 1,000 units (since there are 1,000 classes) and
a softmax activation function to output estimated class probabilities.



Figure 14-15. GoogLeNet architecture

The original GoogLeNet architecture included two auxiliary classifiers
plugged on top of the third and sixth inception modules. They were both
composed of one average pooling layer, one convolutional layer, two fully



connected layers, and a softmax activation layer. During training, their loss
(scaled down by 70%) was added to the overall loss. The goal was to fight
the vanishing gradients problem and regularize the network, but it was later
shown that their effect was relatively minor.

Several variants of the GoogLeNet architecture were later proposed by
Google researchers, including Inception-v3 and Inception-v4, using slightly
different inception modules to reach even better performance.



VGGNet
The runner-up in the ILSVRC 2014 challenge was VGGNet,  Karen
Simonyan and Andrew Zisserman, from the Visual Geometry Group (VGG)
research lab at Oxford University, developed a very simple and classical
architecture; it had 2 or 3 convolutional layers and a pooling layer, then again
2 or 3 convolutional layers and a pooling layer, and so on (reaching a total of
16 or 19 convolutional layers, depending on the VGG variant), plus a final
dense network with 2 hidden layers and the output layer. It used small 3 × 3
filters, but it had many of them.
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ResNet
Kaiming He et al. won the ILSVRC 2015 challenge using a Residual
Network (ResNet)  that delivered an astounding top-five error rate under
3.6%. The winning variant used an extremely deep CNN composed of 152
layers (other variants had 34, 50, and 101 layers). It confirmed the general
trend: computer vision models were getting deeper and deeper, with fewer
and fewer parameters. The key to being able to train such a deep network is
to use skip connections (also called shortcut connections): the signal feeding
into a layer is also added to the output of a layer located higher up the stack.
Let’s see why this is useful.

When training a neural network, the goal is to make it model a target function
h(x). If you add the input x to the output of the network (i.e., you add a skip
connection), then the network will be forced to model f(x) = h(x) – x rather
than h(x). This is called residual learning (see Figure 14-16).

Figure 14-16. Residual learning

When you initialize a regular neural network, its weights are close to zero, so
the network just outputs values close to zero. If you add a skip connection,
the resulting network just outputs a copy of its inputs; in other words, it
initially models the identity function. If the target function is fairly close to
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the identity function (which is often the case), this will speed up training
considerably.

Moreover, if you add many skip connections, the network can start making
progress even if several layers have not started learning yet (see Figure 14-
17). Thanks to skip connections, the signal can easily make its way across the
whole network. The deep residual network can be seen as a stack of residual
units (RUs), where each residual unit is a small neural network with a skip
connection.

Now let’s look at ResNet’s architecture (see Figure 14-18). It is surprisingly
simple. It starts and ends exactly like GoogLeNet (except without a dropout
layer), and in between is just a very deep stack of residual units. Each
residual unit is composed of two convolutional layers (and no pooling layer!),
with batch normalization (BN) and ReLU activation, using 3 × 3 kernels and
preserving spatial dimensions (stride 1, "same" padding).

Figure 14-17. Regular deep neural network (left) and deep residual network (right)



Figure 14-18. ResNet architecture

Note that the number of feature maps is doubled every few residual units, at
the same time as their height and width are halved (using a convolutional
layer with stride 2). When this happens, the inputs cannot be added directly to
the outputs of the residual unit because they don’t have the same shape (for
example, this problem affects the skip connection represented by the dashed
arrow in Figure 14-18). To solve this problem, the inputs are passed through
a 1 × 1 convolutional layer with stride 2 and the right number of output
feature maps (see Figure 14-19).



Figure 14-19. Skip connection when changing feature map size and depth

Different variations of the architecture exist, with different numbers of layers.
ResNet-34 is a ResNet with 34 layers (only counting the convolutional layers
and the fully connected layer)  containing 3 RUs that output 64 feature
maps, 4 RUs with 128 maps, 6 RUs with 256 maps, and 3 RUs with 512
maps. We will implement this architecture later in this chapter.

NOTE
Google’s Inception-v4   architecture merged the ideas of GoogLeNet and ResNet and
achieved a top-five error rate of close to 3% on ImageNet classification.

ResNets deeper than that, such as ResNet-152, use slightly different residual
units. Instead of two 3 × 3 convolutional layers with, say, 256 feature maps,
they use three convolutional layers: first a 1 × 1 convolutional layer with just
64 feature maps (4 × less), which acts as a bottleneck layer (as discussed
already), then a 3 × 3 layer with 64 feature maps, and finally another 1 × 1
convolutional layer with 256 feature maps (4 times 64) that restores the
original depth. ResNet-152 contains 3 such RUs that output 256 maps, then 8
RUs with 512 maps, a whopping 36 RUs with 1,024 maps, and finally 3 RUs
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with 2,048 maps.



Xception
Another variant of the GoogLeNet architecture is worth noting: Xception 
(which stands for Extreme Inception) was proposed in 2016 by François
Chollet (the author of Keras), and it significantly outperformed Inception-v3
on a huge vision task (350 million images and 17,000 classes). Just like
Inception-v4, it merges the ideas of GoogLeNet and ResNet, but it replaces
the inception modules with a special type of layer called a depthwise
separable convolution layer (or separable convolution layer for short ).
These layers had been used before in some CNN architectures, but they were
not as central as in the Xception architecture. While a regular convolutional
layer uses filters that try to simultaneously capture spatial patterns (e.g., an
oval) and cross-channel patterns (e.g., mouth + nose + eyes = face), a
separable convolutional layer makes the strong assumption that spatial
patterns and cross-channel patterns can be modeled separately (see Figure 14-
20). Thus, it is composed of two parts: the first part applies a single spatial
filter to each input feature map, then the second part looks exclusively for
cross-channel patterns—it is just a regular convolutional layer with 1 × 1
filters.

Since separable convolutional layers only have one spatial filter per input
channel, you should avoid using them after layers that have too few channels,
such as the input layer (granted, that’s what Figure 14-20 represents, but it is
just for illustration purposes). For this reason, the Xception architecture starts
with 2 regular convolutional layers, but then the rest of the architecture uses
only separable convolutions (34 in all), plus a few max pooling layers and the
usual final layers (a global average pooling layer and a dense output layer).

You might wonder why Xception is considered a variant of GoogLeNet,
since it contains no inception modules at all. Well, as discussed earlier, an
inception module contains convolutional layers with 1 × 1 filters: these look
exclusively for cross-channel patterns. However, the convolutional layers that
sit on top of them are regular convolutional layers that look both for spatial
and cross-channel patterns. So, you can think of an inception module as an
intermediate between a regular convolutional layer (which considers spatial

19

20

https://homl.info/xception


patterns and cross-channel patterns jointly) and a separable convolutional
layer (which considers them separately). In practice, it seems that separable
convolutional layers often perform better.

Figure 14-20. Depthwise separable convolutional layer

TIP
Separable convolutional layers use fewer parameters, less memory, and fewer
computations than regular convolutional layers, and they often perform better. Consider
using them by default, except after layers with few channels (such as the input channel). In
Keras, just use SeparableConv2D instead of Conv2D: it’s a drop-in replacement. Keras
also offers a DepthwiseConv2D layer that implements the first part of a depthwise
separable convolutional layer (i.e., applying one spatial filter per input feature map).



SENet
The winning architecture in the ILSVRC 2017 challenge was the Squeeze-
and-Excitation Network (SENet).  This architecture extends existing
architectures such as inception networks and ResNets, and boosts their
performance. This allowed SENet to win the competition with an astonishing
2.25% top-five error rate! The extended versions of inception networks and
ResNets are called SE-Inception and SE-ResNet, respectively. The boost
comes from the fact that a SENet adds a small neural network, called an SE
block, to every inception module or residual unit in the original architecture,
as shown in Figure 14-21.

Figure 14-21. SE-Inception module (left) and SE-ResNet unit (right)

An SE block analyzes the output of the unit it is attached to, focusing
exclusively on the depth dimension (it does not look for any spatial pattern),
and it learns which features are usually most active together. It then uses this
information to recalibrate the feature maps, as shown in Figure 14-22. For
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example, an SE block may learn that mouths, noses, and eyes usually appear
together in pictures: if you see a mouth and a nose, you should expect to see
eyes as well. So, if the block sees a strong activation in the mouth and nose
feature maps, but only mild activation in the eye feature map, it will boost the
eye feature map (more accurately, it will reduce irrelevant feature maps). If
the eyes were somewhat confused with something else, this feature map
recalibration will help resolve the ambiguity.

Figure 14-22. An SE block performs feature map recalibration

An SE block is composed of just three layers: a global average pooling layer,
a hidden dense layer using the ReLU activation function, and a dense output
layer using the sigmoid activation function (see Figure 14-23).



Figure 14-23. SE block architecture

As earlier, the global average pooling layer computes the mean activation for
each feature map: for example, if its input contains 256 feature maps, it will
output 256 numbers representing the overall level of response for each filter.
The next layer is where the “squeeze” happens: this layer has significantly
fewer than 256 neurons—typically 16 times fewer than the number of feature
maps (e.g., 16 neurons)—so the 256 numbers get compressed into a small
vector (e.g., 16 dimensions). This is a low-dimensional vector representation
(i.e., an embedding) of the distribution of feature responses. This bottleneck
step forces the SE block to learn a general representation of the feature
combinations (we will see this principle in action again when we discuss
autoencoders in Chapter 17). Finally, the output layer takes the embedding
and outputs a recalibration vector containing one number per feature map
(e.g., 256), each between 0 and 1. The feature maps are then multiplied by
this recalibration vector, so irrelevant features (with a low recalibration score)
get scaled down while relevant features (with a recalibration score close to 1)



are left alone.



Other Noteworthy Architectures
There are many other CNN architectures to explore. Here’s a brief overview
of some of the most noteworthy:

ResNeXt
ResNeXt improves the residual units in ResNet. Whereas the residual
units in the best ResNet models just contain 3 convolutional layers each,
the ResNeXt residual units are composed of many parallel stacks (e.g., 32
stacks), with 3 convolutional layers each. However, the first two layers in
each stack only use a few filters (e.g., just four), so the overall number of
parameters remains the same as in ResNet. Then the outputs of all the
stacks are added together, and the result is passed to the next residual unit
(along with the skip connection).

DenseNet
A DenseNet is composed of several dense blocks, each made up of a few
densely connected convolutional layers. This architecture achieved
excellent accuracy while using comparatively few parameters. What does
“densely connected” mean? The output of each layer is fed as input to
every layer after it within the same block. For example, layer 4 in a block
takes as input the depthwise concatenation of the outputs of layers 1, 2,
and 3 in that block. Dense blocks are separated by a few transition layers.

MobileNet
MobileNets are streamlined models designed to be lightweight and fast,
making them popular in mobile and web applications. They are based on
depthwise separable convolutional layers, like Xception. The authors
proposed several variants, trading a bit of accuracy for faster and smaller
models.

CSPNet
A Cross Stage Partial Network (CSPNet) is similar to a DenseNet, but
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part of each dense block’s input is concatenated directly to that block’s
output, without going through the block.

EfficientNet
EfficientNet is arguably the most important model in this list. The authors
proposed a method to scale any CNN efficiently, by jointly increasing the
depth (number of layers), width (number of filters per layer), and
resolution (size of the input image) in a principled way. This is called
compound scaling. They used neural architecture search to find a good
architecture for a scaled-down version of ImageNet (with smaller and
fewer images), and then used compound scaling to create larger and
larger versions of this architecture. When EfficientNet models came out,
they vastly outperformed all existing models, across all compute budgets,
and they remain among the best models out there today.

Understanding EfficientNet’s compound scaling method is helpful to gain a
deeper understanding of CNNs, especially if you ever need to scale a CNN
architecture. It is based on a logarithmic measure of the compute budget,
noted ϕ: if your compute budget doubles, then ϕ increases by 1. In other
words, the number of floating-point operations available for training is
proportional to 2 . Your CNN architecture’s depth, width, and resolution
should scale as α , β , and γ , respectively. The factors α, β, and γ must be
greater than 1, and α + β  + γ  should be close to 2. The optimal values for
these factors depend on the CNN’s architecture. To find the optimal values
for the EfficientNet architecture, the authors started with a small baseline
model (EfficientNetB0), fixed ϕ = 1, and simply ran a grid search: they found
α = 1.2, β = 1.1, and γ = 1.1. They then used these factors to create several
larger architectures, named EfficientNetB1 to EfficientNetB7, for increasing
values of ϕ.
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Choosing the Right CNN Architecture
With so many CNN architectures, how do you choose which one is best for
your project? Well, it depends on what matters most to you: Accuracy?
Model size (e.g., for deployment to a mobile device)? Inference speed on
CPU? On GPU? Table 14-3 lists the best pretrained models currently
available in Keras (you’ll see how to use them later in this chapter), sorted by
model size. You can find the full list at https://keras.io/api/applications. For
each model, the table shows the Keras class name to use (in the
tf.keras.applications package), the model’s size in MB, the top-1 and top-5
validation accuracy on the ImageNet dataset, the number of parameters
(millions), and the inference time on CPU and GPU in ms, using batches of
32 images on reasonably powerful hardware.  For each column, the best
value is highlighted. As you can see, larger models are generally more
accurate, but not always; for example, EfficientNetB2 outperforms
InceptionV3 both in size and accuracy. I only kept InceptionV3 in the list
because it is almost twice as fast as EfficientNetB2 on a CPU. Similarly,
InceptionResNetV2 is fast on a CPU, and ResNet50V2 and ResNet101V2 are
blazingly fast on a GPU.

Table 14-3. Pretrained models available in Keras

Class name Size (MB) Top-1 acc Top-5 acc Params

MobileNetV2 14 71.3% 90.1% 3.5M

MobileNet 16 70.4% 89.5% 4.3M

NASNetMobile 23 74.4% 91.9% 5.3M

EfficientNetB0 29 77.1% 93.3% 5.3M

EfficientNetB1 31 79.1% 94.4% 7.9M

EfficientNetB2 36 80.1% 94.9% 9.2M

EfficientNetB3 48 81.6% 95.7% 12.3M
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EfficientNetB4 75 82.9% 96.4% 19.5M

InceptionV3 92 77.9% 93.7% 23.9M

ResNet50V2 98 76.0% 93.0% 25.6M

EfficientNetB5 118 83.6% 96.7% 30.6M

EfficientNetB6 166 84.0% 96.8% 43.3M

ResNet101V2 171 77.2% 93.8% 44.7M

InceptionResNetV2 215 80.3% 95.3% 55.9M

EfficientNetB7 256 84.3% 97.0% 66.7M

I hope you enjoyed this deep dive into the main CNN architectures! Now
let’s see how to implement one of them using Keras.



Implementing a ResNet-34 CNN Using Keras
Most CNN architectures described so far can be implemented pretty naturally
using Keras (although generally you would load a pretrained network instead,
as you will see). To illustrate the process, let’s implement a ResNet-34 from
scratch with Keras. First, we’ll create a ResidualUnit layer:

DefaultConv2D = partial(tf.keras.layers.Conv2D, kernel_size=3, strides=1,
                        padding="same", kernel_initializer="he_normal",
                        use_bias=False)

class ResidualUnit(tf.keras.layers.Layer):
    def __init__(self, filters, strides=1, activation="relu", **kwargs):
        super().__init__(**kwargs)
        self.activation = tf.keras.activations.get(activation)
        self.main_layers = [
            DefaultConv2D(filters, strides=strides),
            tf.keras.layers.BatchNormalization(),
            self.activation,
            DefaultConv2D(filters),
            tf.keras.layers.BatchNormalization()
        ]
        self.skip_layers = []
        if strides > 1:
            self.skip_layers = [
                DefaultConv2D(filters, kernel_size=1, strides=strides),
                tf.keras.layers.BatchNormalization()
            ]

    def call(self, inputs):
        Z = inputs
        for layer in self.main_layers:
            Z = layer(Z)
        skip_Z = inputs
        for layer in self.skip_layers:
            skip_Z = layer(skip_Z)
        return self.activation(Z + skip_Z)

As you can see, this code matches Figure 14-19 pretty closely. In the
constructor, we create all the layers we will need: the main layers are the ones
on the right side of the diagram, and the skip layers are the ones on the left



(only needed if the stride is greater than 1). Then in the call() method, we
make the inputs go through the main layers and the skip layers (if any), and
we add both outputs and apply the activation function.

Now we can build a ResNet-34 using a Sequential model, since it’s really just
a long sequence of layers—we can treat each residual unit as a single layer
now that we have the ResidualUnit class. The code closely matches
Figure 14-18:

model = tf.keras.Sequential([
    DefaultConv2D(64, kernel_size=7, strides=2, input_shape=[224, 224, 3]),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Activation("relu"),
    tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding="same"),
])
prev_filters = 64
for filters in [64] * 3 + [128] * 4 + [256] * 6 + [512] * 3:
    strides = 1 if filters == prev_filters else 2
    model.add(ResidualUnit(filters, strides=strides))
    prev_filters = filters

model.add(tf.keras.layers.GlobalAvgPool2D())
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(10, activation="softmax"))

The only tricky part in this code is the loop that adds the ResidualUnit layers
to the model: as explained earlier, the first 3 RUs have 64 filters, then the
next 4 RUs have 128 filters, and so on. At each iteration, we must set the
stride to 1 when the number of filters is the same as in the previous RU, or
else we set it to 2; then we add the ResidualUnit, and finally we update
prev_filters.

It is amazing that in about 40 lines of code, we can build the model that won
the ILSVRC 2015 challenge! This demonstrates both the elegance of the
ResNet model and the expressiveness of the Keras API. Implementing the
other CNN architectures is a bit longer, but not much harder. However, Keras
comes with several of these architectures built in, so why not use them
instead?



Using Pretrained Models from Keras
In general, you won’t have to implement standard models like GoogLeNet or
ResNet manually, since pretrained networks are readily available with a
single line of code in the tf.keras.applications package.

For example, you can load the ResNet-50 model, pretrained on ImageNet,
with the following line of code:

model = tf.keras.applications.ResNet50(weights="imagenet")

That’s all! This will create a ResNet-50 model and download weights
pretrained on the ImageNet dataset. To use it, you first need to ensure that the
images have the right size. A ResNet-50 model expects 224 × 224–pixel
images (other models may expect other sizes, such as 299 × 299), so let’s use
Keras’s Resizing layer (introduced in Chapter 13) to resize two sample
images (after cropping them to the target aspect ratio):

images = load_sample_images()["images"]
images_resized = tf.keras.layers.Resizing(height=224, width=224,
                                          crop_to_aspect_ratio=True)(images)

The pretrained models assume that the images are preprocessed in a specific
way. In some cases they may expect the inputs to be scaled from 0 to 1, or
from –1 to 1, and so on. Each model provides a preprocess_input() function
that you can use to preprocess your images. These functions assume that the
original pixel values range from 0 to 255, which is the case here:

inputs = tf.keras.applications.resnet50.preprocess_input(images_resized)

Now we can use the pretrained model to make predictions:

>>> Y_proba = model.predict(inputs)
>>> Y_proba.shape
(2, 1000)



As usual, the output Y_proba is a matrix with one row per image and one
column per class (in this case, there are 1,000 classes). If you want to display
the top K predictions, including the class name and the estimated probability
of each predicted class, use the decode_predictions() function. For each
image, it returns an array containing the top K predictions, where each
prediction is represented as an array containing the class identifier,  its
name, and the corresponding confidence score:

top_K = tf.keras.applications.resnet50.decode_predictions(Y_proba, top=3)
for image_index in range(len(images)):
    print(f"Image #{image_index}")
    for class_id, name, y_proba in top_K[image_index]:
        print(f"  {class_id} - {name:12s} {y_proba:.2%}")

The output looks like this:

Image #0
  n03877845 - palace       54.69%
  n03781244 - monastery    24.72%
  n02825657 - bell_cote    18.55%
Image #1
  n04522168 - vase         32.66%
  n11939491 - daisy        17.81%
  n03530642 - honeycomb    12.06%

The correct classes are palace and dahlia, so the model is correct for the first
image but wrong for the second. However, that’s because dahlia is not one of
the 1,000 ImageNet classes. With that in mind, vase is a reasonable guess
(perhaps the flower is in a vase?), and daisy is not a bad choice either, since
dahlias and daisies are both from the same Compositae family.

As you can see, it is very easy to create a pretty good image classifier using a
pretrained model. As you saw in Table 14-3, many other vision models are
available in tf.keras.applications, from lightweight and fast models to large
and accurate ones.

But what if you want to use an image classifier for classes of images that are
not part of ImageNet? In that case, you may still benefit from the pretrained
models by using them to perform transfer learning.

28



Pretrained Models for Transfer Learning
If you want to build an image classifier but you do not have enough data to
train it from scratch, then it is often a good idea to reuse the lower layers of a
pretrained model, as we discussed in Chapter 11. For example, let’s train a
model to classify pictures of flowers, reusing a pretrained Xception model.
First, we’ll load the flowers dataset using TensorFlow Datasets (introduced in
Chapter 13):

import tensorflow_datasets as tfds

dataset, info = tfds.load("tf_flowers", as_supervised=True, with_info=True)
dataset_size = info.splits["train"].num_examples  # 3670
class_names = info.features["label"].names  # ["dandelion", "daisy", ...]
n_classes = info.features["label"].num_classes  # 5

Note that you can get information about the dataset by setting
with_info=True. Here, we get the dataset size and the names of the classes.
Unfortunately, there is only a "train" dataset, no test set or validation set, so
we need to split the training set. Let’s call tfds.load() again, but this time
taking the first 10% of the dataset for testing, the next 15% for validation,
and the remaining 75% for training:

test_set_raw, valid_set_raw, train_set_raw = tfds.load(
    "tf_flowers",
    split=["train[:10%]", "train[10%:25%]", "train[25%:]"],
    as_supervised=True)

All three datasets contain individual images. We need to batch them, but first
we need to ensure they all have the same size, or batching will fail. We can
use a Resizing layer for this. We must also call the tf.keras.applications.
xcep tion.preprocess_input() function to preprocess the images
appropriately for the Xception model. Lastly, we’ll also shuffle the training
set and use prefetching:

batch_size = 32



preprocess = tf.keras.Sequential([
    tf.keras.layers.Resizing(height=224, width=224, crop_to_aspect_ratio=True),
    tf.keras.layers.Lambda(tf.keras.applications.xception.preprocess_input)
])
train_set = train_set_raw.map(lambda X, y: (preprocess(X), y))
train_set = train_set.shuffle(1000, seed=42).batch(batch_size).prefetch(1)
valid_set = valid_set_raw.map(lambda X, y: (preprocess(X), y)).batch(batch_size)
test_set = test_set_raw.map(lambda X, y: (preprocess(X), y)).batch(batch_size)

Now each batch contains 32 images, all of them 224 × 224 pixels, with pixel
values ranging from –1 to 1. Perfect!

Since the dataset is not very large, a bit of data augmentation will certainly
help. Let’s create a data augmentation model that we will embed in our final
model. During training, it will randomly flip the images horizontally, rotate
them a little bit, and tweak the contrast:

data_augmentation = tf.keras.Sequential([
    tf.keras.layers.RandomFlip(mode="horizontal", seed=42),
    tf.keras.layers.RandomRotation(factor=0.05, seed=42),
    tf.keras.layers.RandomContrast(factor=0.2, seed=42)
])

TIP
The tf.keras.preprocessing.image.ImageDataGenerator class makes it easy to load images
from disk and augment them in various ways: you can shift each image, rotate it, rescale it,
flip it horizontally or vertically, shear it, or apply any transformation function you want to
it. This is very convenient for simple projects. However, a tf.data pipeline is not much
more complicated, and it’s generally faster. Moreover, if you have a GPU and you include
the preprocessing or data augmentation layers inside your model, they will benefit from
GPU acceleration during training.

Next let’s load an Xception model, pretrained on ImageNet. We exclude the
top of the network by setting include_top=False. This excludes the global
average pooling layer and the dense output layer. We then add our own
global average pooling layer (feeding it the output of the base model),
followed by a dense output layer with one unit per class, using the softmax
activation function. Finally, we wrap all this in a Keras Model:



base_model = tf.keras.applications.xception.Xception(weights="imagenet",
                                                     include_top=False)
avg = tf.keras.layers.GlobalAveragePooling2D()(base_model.output)
output = tf.keras.layers.Dense(n_classes, activation="softmax")(avg)
model = tf.keras.Model(inputs=base_model.input, outputs=output)

As explained in Chapter 11, it’s usually a good idea to freeze the weights of
the pretrained layers, at least at the beginning of training:

for layer in base_model.layers:
    layer.trainable = False

WARNING
Since our model uses the base model’s layers directly, rather than the base_model object
itself, setting base_model.trainable=False would have no effect.

Finally, we can compile the model and start training:

optimizer = tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9)
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer,
              metrics=["accuracy"])
history = model.fit(train_set, validation_data=valid_set, epochs=3)

WARNING
If you are running in Colab, make sure the runtime is using a GPU: select Runtime →
“Change runtime type”, choose “GPU” in the “Hardware accelerator” drop-down menu,
then click Save. It’s possible to train the model without a GPU, but it will be terribly slow
(minutes per epoch, as opposed to seconds).

After training the model for a few epochs, its validation accuracy should
reach a bit over 80% and then stop improving. This means that the top layers
are now pretty well trained, and we are ready to unfreeze some of the base
model’s top layers, then continue training. For example, let’s unfreeze layers
56 and above (that’s the start of residual unit 7 out of 14, as you can see if



you list the layer names):

for layer in base_model.layers[56:]:
    layer.trainable = True

Don’t forget to compile the model whenever you freeze or unfreeze layers.
Also make sure to use a much lower learning rate to avoid damaging the
pretrained weights:

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9)
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer,
              metrics=["accuracy"])
history = model.fit(train_set, validation_data=valid_set, epochs=10)

This model should reach around 92% accuracy on the test set, in just a few
minutes of training (with a GPU). If you tune the hyperparameters, lower the
learning rate, and train for quite a bit longer, you should be able to reach 95%
to 97%. With that, you can start training amazing image classifiers on your
own images and classes! But there’s more to computer vision than just
classification. For example, what if you also want to know where the flower
is in a picture? Let’s look at this now.



Classification and Localization
Localizing an object in a picture can be expressed as a regression task, as
discussed in Chapter 10: to predict a bounding box around the object, a
common approach is to predict the horizontal and vertical coordinates of the
object’s center, as well as its height and width. This means we have four
numbers to predict. It does not require much change to the model; we just
need to add a second dense output layer with four units (typically on top of
the global average pooling layer), and it can be trained using the MSE loss:

base_model = tf.keras.applications.xception.Xception(weights="imagenet",
                                                     include_top=False)
avg = tf.keras.layers.GlobalAveragePooling2D()(base_model.output)
class_output = tf.keras.layers.Dense(n_classes, activation="softmax")(avg)
loc_output = tf.keras.layers.Dense(4)(avg)
model = tf.keras.Model(inputs=base_model.input,
                       outputs=[class_output, loc_output])
model.compile(loss=["sparse_categorical_crossentropy", "mse"],
              loss_weights=[0.8, 0.2],  # depends on what you care most about
              optimizer=optimizer, metrics=["accuracy"])

But now we have a problem: the flowers dataset does not have bounding
boxes around the flowers. So, we need to add them ourselves. This is often
one of the hardest and most costly parts of a machine learning project: getting
the labels. It’s a good idea to spend time looking for the right tools. To
annotate images with bounding boxes, you may want to use an open source
image labeling tool like VGG Image Annotator, LabelImg, OpenLabeler, or
ImgLab, or perhaps a commercial tool like LabelBox or Supervisely. You
may also want to consider crowdsourcing platforms such as Amazon
Mechanical Turk if you have a very large number of images to annotate.
However, it is quite a lot of work to set up a crowdsourcing platform, prepare
the form to be sent to the workers, supervise them, and ensure that the quality
of the bounding boxes they produce is good, so make sure it is worth the
effort. Adriana Kovashka et al. wrote a very practical paper  about
crowdsourcing in computer vision. I recommend you check it out, even if you
do not plan to use crowdsourcing. If there are just a few hundred or a even a
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couple thousand images to label, and you don’t plan to do this frequently, it
may be preferable to do it yourself: with the right tools, it will only take a few
days, and you’ll also gain a better understanding of your dataset and task.

Now let’s suppose you’ve obtained the bounding boxes for every image in
the flowers dataset (for now we will assume there is a single bounding box
per image). You then need to create a dataset whose items will be batches of
preprocessed images along with their class labels and their bounding boxes.
Each item should be a tuple of the form (images, (class_labels,
bounding_boxes)). Then you are ready to train your model!

TIP
The bounding boxes should be normalized so that the horizontal and vertical coordinates,
as well as the height and width, all range from 0 to 1. Also, it is common to predict the
square root of the height and width rather than the height and width directly: this way, a
10-pixel error for a large bounding box will not be penalized as much as a 10-pixel error
for a small bounding box.

The MSE often works fairly well as a cost function to train the model, but it
is not a great metric to evaluate how well the model can predict bounding
boxes. The most common metric for this is the intersection over union (IoU):
the area of overlap between the predicted bounding box and the target
bounding box, divided by the area of their union (see Figure 14-24). In Keras,
it is implemented by the tf.keras.metrics.MeanIoU class.

Classifying and localizing a single object is nice, but what if the images
contain multiple objects (as is often the case in the flowers dataset)?



Figure 14-24. IoU metric for bounding boxes



Object Detection
The task of classifying and localizing multiple objects in an image is called
object detection. Until a few years ago, a common approach was to take a
CNN that was trained to classify and locate a single object roughly centered
in the image, then slide this CNN across the image and make predictions at
each step. The CNN was generally trained to predict not only class
probabilities and a bounding box, but also an objectness score: this is the
estimated probability that the image does indeed contain an object centered
near the middle. This is a binary classification output; it can be produced by a
dense output layer with a single unit, using the sigmoid activation function
and trained using the binary cross-entropy loss.

NOTE
Instead of an objectness score, a “no-object” class was sometimes added, but in general
this did not work as well: the questions “Is an object present?” and “What type of object is
it?” are best answered separately.

This sliding-CNN approach is illustrated in Figure 14-25. In this example, the
image was chopped into a 5 × 7 grid, and we see a CNN—the thick black
rectangle—sliding across all 3 × 3 regions and making predictions at each
step.



Figure 14-25. Detecting multiple objects by sliding a CNN across the image

In this figure, the CNN has already made predictions for three of these 3 × 3
regions:

When looking at the top-left 3 × 3 region (centered on the red-shaded
grid cell located in the second row and second column), it detected the
leftmost rose. Notice that the predicted bounding box exceeds the
boundary of this 3 × 3 region. That’s absolutely fine: even though the
CNN could not see the bottom part of the rose, it was able to make a
reasonable guess as to where it might be. It also predicted class
probabilities, giving a high probability to the “rose” class. Lastly, it
predicted a fairly high objectness score, since the center of the bounding
box lies within the central grid cell (in this figure, the objectness score is
represented by the thickness of the bounding box).

When looking at the next 3 × 3 region, one grid cell to the right
(centered on the shaded blue square), it did not detect any flower



centered in that region, so it predicted a very low objectness score;
therefore, the predicted bounding box and class probabilities can safely
be ignored. You can see that the predicted bounding box was no good
anyway.

finally, when looking at the next 3 × 3 region, again one grid cell to the
right (centered on the shaded green cell), it detected the rose at the top,
although not perfectly: this rose is not well centered within this region,
so the predicted objectness score was not very high.

You can imagine how sliding the CNN across the whole image would give
you a total of 15 predicted bounding boxes, organized in a 3 × 5 grid, with
each bounding box accompanied by its estimated class probabilities and
objectness score. Since objects can have varying sizes, you may then want to
slide the CNN again across larger 4 × 4 regions as well, to get even more
bounding boxes.

This technique is fairly straightforward, but as you can see it will often detect
the same object multiple times, at slightly different positions. Some
postprocessing is needed to get rid of all the unnecessary bounding boxes. A
common approach for this is called non-max suppression. Here’s how it
works:

1. First, get rid of all the bounding boxes for which the objectness score is
below some threshold: since the CNN believes there’s no object at that
location, the bounding box is useless.

2. Find the remaining bounding box with the highest objectness score, and
get rid of all the other remaining bounding boxes that overlap a lot with
it (e.g., with an IoU greater than 60%). For example, in Figure 14-25,
the bounding box with the max objectness score is the thick bounding
box over the leftmost rose. The other bounding box that touches this
same rose overlaps a lot with the max bounding box, so we will get rid
of it (although in this example it would already have been removed in
the previous step).

3. Repeat step 2 until there are no more bounding boxes to get rid of.



This simple approach to object detection works pretty well, but it requires
running the CNN many times (15 times in this example), so it is quite slow.
Fortunately, there is a much faster way to slide a CNN across an image: using
a fully convolutional network (FCN).



Fully Convolutional Networks
The idea of FCNs was first introduced in a 2015 paper  by Jonathan Long et
al., for semantic segmentation (the task of classifying every pixel in an image
according to the class of the object it belongs to). The authors pointed out that
you could replace the dense layers at the top of a CNN with convolutional
layers. To understand this, let’s look at an example: suppose a dense layer
with 200 neurons sits on top of a convolutional layer that outputs 100 feature
maps, each of size 7 × 7 (this is the feature map size, not the kernel size).
Each neuron will compute a weighted sum of all 100 × 7 × 7 activations from
the convolutional layer (plus a bias term). Now let’s see what happens if we
replace the dense layer with a convolutional layer using 200 filters, each of
size 7 × 7, and with "valid" padding. This layer will output 200 feature maps,
each 1 × 1 (since the kernel is exactly the size of the input feature maps and
we are using "valid" padding). In other words, it will output 200 numbers,
just like the dense layer did; and if you look closely at the computations
performed by a convolutional layer, you will notice that these numbers will
be precisely the same as those the dense layer produced. The only difference
is that the dense layer’s output was a tensor of shape [batch size, 200], while
the convolutional layer will output a tensor of shape [batch size, 1, 1, 200].

TIP
To convert a dense layer to a convolutional layer, the number of filters in the
convolutional layer must be equal to the number of units in the dense layer, the filter size
must be equal to the size of the input feature maps, and you must use "valid" padding. The
stride may be set to 1 or more, as you will see shortly.

Why is this important? Well, while a dense layer expects a specific input size
(since it has one weight per input feature), a convolutional layer will happily
process images of any size  (however, it does expect its inputs to have a
specific number of channels, since each kernel contains a different set of
weights for each input channel). Since an FCN contains only convolutional
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layers (and pooling layers, which have the same property), it can be trained
and executed on images of any size!

For example, suppose we’d already trained a CNN for flower classification
and localization. It was trained on 224 × 224 images, and it outputs 10
numbers:

Outputs 0 to 4 are sent through the softmax activation function, and this
gives the class probabilities (one per class).

Output 5 is sent through the sigmoid activation function, and this gives
the objectness score.

Outputs 6 and 7 represent the bounding box’s center coordinates; they
also go through a sigmoid activation function to ensure they range from
0 to 1.

Lastly, outputs 8 and 9 represent the bounding box’s height and width;
they do not go through any activation function to allow the bounding
boxes to extend beyond the borders of the image.

We can now convert the CNN’s dense layers to convolutional layers. In fact,
we don’t even need to retrain it; we can just copy the weights from the dense
layers to the convolutional layers! Alternatively, we could have converted the
CNN into an FCN before training.

Now suppose the last convolutional layer before the output layer (also called
the bottleneck layer) outputs 7 × 7 feature maps when the network is fed a
224 × 224 image (see the left side of Figure 14-26). If we feed the FCN a 448
× 448 image (see the right side of Figure 14-26), the bottleneck layer will
now output 14 × 14 feature maps.  Since the dense output layer was
replaced by a convolutional layer using 10 filters of size 7 × 7, with "valid"
padding and stride 1, the output will be composed of 10 features maps, each
of size 8 × 8 (since 14 – 7 + 1 = 8). In other words, the FCN will process the
whole image only once, and it will output an 8 × 8 grid where each cell
contains 10 numbers (5 class probabilities, 1 objectness score, and 4
bounding box coordinates). It’s exactly like taking the original CNN and
sliding it across the image using 8 steps per row and 8 steps per column. To
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visualize this, imagine chopping the original image into a 14 × 14 grid, then
sliding a 7 × 7 window across this grid; there will be 8 × 8 = 64 possible
locations for the window, hence 8 × 8 predictions. However, the FCN
approach is much more efficient, since the network only looks at the image
once. In fact, You Only Look Once (YOLO) is the name of a very popular
object detection architecture, which we’ll look at next.

Figure 14-26. The same fully convolutional network processing a small image (left) and a large one
(right)



You Only Look Once
YOLO is a fast and accurate object detection architecture proposed by Joseph
Redmon et al. in a 2015 paper.  It is so fast that it can run in real time on a
video, as seen in Redmon’s demo. YOLO’s architecture is quite similar to the
one we just discussed, but with a few important differences:

For each grid cell, YOLO only considers objects whose bounding box
center lies within that cell. The bounding box coordinates are relative to
that cell, where (0, 0) means the top-left corner of the cell and (1, 1)
means the bottom right. However, the bounding box’s height and width
may extend well beyond the cell.

It outputs two bounding boxes for each grid cell (instead of just one),
which allows the model to handle cases where two objects are so close
to each other that their bounding box centers lie within the same cell.
Each bounding box also comes with its own objectness score.

YOLO also outputs a class probability distribution for each grid cell,
predicting 20 class probabilities per grid cell since YOLO was trained
on the PASCAL VOC dataset, which contains 20 classes. This produces
a coarse class probability map. Note that the model predicts one class
probability distribution per grid cell, not per bounding box. However,
it’s possible to estimate class probabilities for each bounding box during
postprocessing, by measuring how well each bounding box matches
each class in the class probability map. For example, imagine a picture
of a person standing in front of a car. There will be two bounding boxes:
one large horizontal one for the car, and a smaller vertical one for the
person. These bounding boxes may have their centers within the same
grid cell. So how can we tell which class should be assigned to each
bounding box? Well, the class probability map will contain a large
region where the “car” class is dominant, and inside it there will be a
smaller region where the “person” class is dominant. Hopefully, the
car’s bounding box will roughly match the “car” region, while the
person’s bounding box will roughly match the “person” region: this will
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allow the correct class to be assigned to each bounding box.

YOLO was originally developed using Darknet, an open source deep learning
framework initially developed in C by Joseph Redmon, but it was soon
ported to TensorFlow, Keras, PyTorch, and more. It was continuously
improved over the years, with YOLOv2, YOLOv3, and YOLO9000 (again
by Joseph Redmon et al.), YOLOv4 (by Alexey Bochkovskiy et al.),
YOLOv5 (by Glenn Jocher), and PP-YOLO (by Xiang Long et al.).

Each version brought some impressive improvements in speed and accuracy,
using a variety of techniques; for example, YOLOv3 boosted accuracy in part
thanks to anchor priors, exploiting the fact that some bounding box shapes
are more likely than others, depending on the class (e.g., people tend to have
vertical bounding boxes, while cars usually don’t). They also increased the
number of bounding boxes per grid cell, they trained on different datasets
with many more classes (up to 9,000 classes organized in a hierarchy in the
case of YOLO9000), they added skip connections to recover some of the
spatial resolution that is lost in the CNN (we will discuss this shortly, when
we look at semantic segmentation), and much more. There are many variants
of these models too, such as YOLOv4-tiny, which is optimized to be trained
on less powerful machines and which can run extremely fast (at over 1,000
frames per second!), but with a slightly lower mean average precision
(mAP).

MEAN AVERAGE PRECISION

A very common metric used in object detection tasks is the mean average
precision. “Mean average” sounds a bit redundant, doesn’t it? To
understand this metric, let’s go back to two classification metrics we
discussed in Chapter 3: precision and recall. Remember the trade-off: the
higher the recall, the lower the precision. You can visualize this in a
precision/recall curve (see Figure 3-6). To summarize this curve into a
single number, we could compute its area under the curve (AUC). But
note that the precision/recall curve may contain a few sections where
precision actually goes up when recall increases, especially at low recall



values (you can see this at the top left of Figure 3-6). This is one of the
motivations for the mAP metric.

Suppose the classifier has 90% precision at 10% recall, but 96% precision
at 20% recall. There’s really no trade-off here: it simply makes more
sense to use the classifier at 20% recall rather than at 10% recall, as you
will get both higher recall and higher precision. So instead of looking at
the precision at 10% recall, we should really be looking at the maximum
precision that the classifier can offer with at least 10% recall. It would be
96%, not 90%. Therefore, one way to get a fair idea of the model’s
performance is to compute the maximum precision you can get with at
least 0% recall, then 10% recall, 20%, and so on up to 100%, and then
calculate the mean of these maximum precisions. This is called the
average precision (AP) metric. Now when there are more than two
classes, we can compute the AP for each class, and then compute the
mean AP (mAP). That’s it!

In an object detection system, there is an additional level of complexity:
what if the system detected the correct class, but at the wrong location
(i.e., the bounding box is completely off)? Surely we should not count
this as a positive prediction. One approach is to define an IoU threshold:
for example, we may consider that a prediction is correct only if the IoU
is greater than, say, 0.5, and the predicted class is correct. The
corresponding mAP is generally noted mAP@0.5 (or mAP@50%, or
sometimes just AP ). In some competitions (such as the PASCAL VOC
challenge), this is what is done. In others (such as the COCO
competition), the mAP is computed for different IoU thresholds (0.50,
0.55, 0.60, …, 0.95), and the final metric is the mean of all these mAPs
(noted mAP@[.50:.95] or mAP@[.50:0.05:.95]). Yes, that’s a mean
mean average.

Many object detection models are available on TensorFlow Hub, often with
pretrained weights, such as YOLOv5,   SSD,  Faster R-CNN,  and
EfficentDet.
SSD and EfficientDet are “look once” detection models, similar to YOLO.
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EfficientDet is based on the EfficientNet convolutional architecture. Faster R-
CNN is more complex: the image first goes through a CNN, then the output
is passed to a region proposal network (RPN) that proposes bounding boxes
that are most likely to contain an object; a classifier is then run for each
bounding box, based on the cropped output of the CNN. The best place to
start using these models is TensorFlow Hub’s excellent object detection
tutorial.

So far, we’ve only considered detecting objects in single images. But what
about videos? Objects must not only be detected in each frame, they must
also be tracked over time. Let’s take a quick look at object tracking now.

https://homl.info/objdet


Object Tracking
Object tracking is a challenging task: objects move, they may grow or shrink
as they get closer to or further away from the camera, their appearance may
change as they turn around or move to different lighting conditions or
backgrounds, they may be temporarily occluded by other objects, and so on.

One of the most popular object tracking systems is DeepSORT.  It is
based on a combination of classical algorithms and deep learning:

It uses Kalman filters to estimate the most likely current position of an
object given prior detections, and assuming that objects tend to move at
a constant speed.

It uses a deep learning model to measure the resemblance between new
detections and existing tracked objects.

Lastly, it uses the Hungarian algorithm to map new detections to
existing tracked objects (or to new tracked objects): this algorithm
efficiently finds the combination of mappings that minimizes the
distance between the detections and the predicted positions of tracked
objects, while also minimizing the appearance discrepancy.

For example, imagine a red ball that just bounced off a blue ball traveling in
the opposite direction. Based on the previous positions of the balls, the
Kalman filter will predict that the balls will go through each other: indeed, it
assumes that objects move at a constant speed, so it will not expect the
bounce. If the Hungarian algorithm only considered positions, then it would
happily map the new detections to the wrong balls, as if they had just gone
through each other and swapped colors. But thanks to the resemblance
measure, the Hungarian algorithm will notice the problem. Assuming the
balls are not too similar, the algorithm will map the new detections to the
correct balls.
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TIP
There are a few DeepSORT implementations available on GitHub, including a
TensorFlow implementation of YOLOv4 + DeepSORT:
https://github.com/theAIGuysCode/yolov4-deepsort.

So far we have located objects using bounding boxes. This is often sufficient,
but sometimes you need to locate objects with much more precision—for
example, to remove the background behind a person during a
videoconference call. Let’s see how to go down to the pixel level.

https://github.com/theAIGuysCode/yolov4-deepsort


Semantic Segmentation
In semantic segmentation, each pixel is classified according to the class of the
object it belongs to (e.g., road, car, pedestrian, building, etc.), as shown in
Figure 14-27. Note that different objects of the same class are not
distinguished. For example, all the bicycles on the right side of the segmented
image end up as one big lump of pixels. The main difficulty in this task is
that when images go through a regular CNN, they gradually lose their spatial
resolution (due to the layers with strides greater than 1); so, a regular CNN
may end up knowing that there’s a person somewhere in the bottom left of
the image, but it will not be much more precise than that.

Figure 14-27. Semantic segmentation

Just like for object detection, there are many different approaches to tackle
this problem, some quite complex. However, a fairly simple solution was
proposed in the 2015 paper by Jonathan Long et al. I mentioned earlier, on
fully convolutional networks. The authors start by taking a pretrained CNN
and turning it into an FCN. The CNN applies an overall stride of 32 to the
input image (i.e., if you add up all the strides greater than 1), meaning the last
layer outputs feature maps that are 32 times smaller than the input image.
This is clearly too coarse, so they added a single upsampling layer that
multiplies the resolution by 32.

There are several solutions available for upsampling (increasing the size of an



image), such as bilinear interpolation, but that only works reasonably well up
to ×4 or ×8. Instead, they use a transposed convolutional layer:  this is
equivalent to first stretching the image by inserting empty rows and columns
(full of zeros), then performing a regular convolution (see Figure 14-28).
Alternatively, some people prefer to think of it as a regular convolutional
layer that uses fractional strides (e.g., the stride is 1/2 in Figure 14-28). The
transposed convolutional layer can be initialized to perform something close
to linear interpolation, but since it is a trainable layer, it will learn to do better
during training. In Keras, you can use the Conv2DTranspose layer.

NOTE
In a transposed convolutional layer, the stride defines how much the input will be
stretched, not the size of the filter steps, so the larger the stride, the larger the output
(unlike for convolutional layers or pooling layers).
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Figure 14-28. Upsampling using a transposed convolutional layer

OTHER KERAS CONVOLUTIONAL LAYERS

Keras also offers a few other kinds of convolutional layers:

tf.keras.layers.Conv1D

A convolutional layer for 1D inputs, such as time series or text
(sequences of letters or words), as you will see in Chapter 15.

tf.keras.layers.Conv3D

A convolutional layer for 3D inputs, such as 3D PET scans.

dilation_rate

Setting the dilation_rate hyperparameter of any convolutional layer to



a value of 2 or more creates an à-trous convolutional layer (“à trous”
is French for “with holes”). This is equivalent to using a regular
convolutional layer with a filter dilated by inserting rows and
columns of zeros (i.e., holes). For example, a 1 × 3 filter equal to
[[1,2,3]] may be dilated with a dilation rate of 4, resulting in a dilated
filter of [[1, 0, 0, 0, 2, 0, 0, 0, 3]]. This lets the convolutional layer
have a larger receptive field at no computational price and using no
extra parameters.

Using transposed convolutional layers for upsampling is OK, but still too
imprecise. To do better, Long et al. added skip connections from lower
layers: for example, they upsampled the output image by a factor of 2
(instead of 32), and they added the output of a lower layer that had this
double resolution. Then they upsampled the result by a factor of 16, leading
to a total upsampling factor of 32 (see Figure 14-29). This recovered some of
the spatial resolution that was lost in earlier pooling layers. In their best
architecture, they used a second similar skip connection to recover even finer
details from an even lower layer. In short, the output of the original CNN
goes through the following extra steps: upsample ×2, add the output of a
lower layer (of the appropriate scale), upsample ×2, add the output of an even
lower layer, and finally upsample ×8. It is even possible to scale up beyond
the size of the original image: this can be used to increase the resolution of an
image, which is a technique called super-resolution.

Figure 14-29. Skip layers recover some spatial resolution from lower layers

Instance segmentation is similar to semantic segmentation, but instead of



merging all objects of the same class into one big lump, each object is
distinguished from the others (e.g., it identifies each individual bicycle). For
example the Mask R-CNN architecture, proposed in a 2017 paper  by
Kaiming He et al., extends the Faster R-CNN model by additionally
producing a pixel mask for each bounding box. So, not only do you get a
bounding box around each object, with a set of estimated class probabilities,
but you also get a pixel mask that locates pixels in the bounding box that
belong to the object. This model is available on TensorFlow Hub, pretrained
on the COCO 2017 dataset. The field is moving fast, though so if you want to
try the latest and greatest models, please check out the state-of-the-art section
of https://paperswithcode.com.

As you can see, the field of deep computer vision is vast and fast-paced, with
all sorts of architectures popping up every year. Almost all of them are based
on convolutional neural networks, but since 2020 another neural net
architecture has entered the computer vision space: transformers (which we
will discuss in Chapter 16). The progress made over the last decade has been
astounding, and researchers are now focusing on harder and harder problems,
such as adversarial learning (which attempts to make the network more
resistant to images designed to fool it), explainability (understanding why the
network makes a specific classification), realistic image generation (which
we will come back to in Chapter 17), single-shot learning (a system that can
recognize an object after it has seen it just once), predicting the next frames
in a video, combining text and image tasks, and more.

Now on to the next chapter, where we will look at how to process sequential
data such as time series using recurrent neural networks and convolutional
neural networks.
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Exercises
1. What are the advantages of a CNN over a fully connected DNN for

image classification?

2. Consider a CNN composed of three convolutional layers, each with 3 ×
3 kernels, a stride of 2, and "same" padding. The lowest layer outputs
100 feature maps, the middle one outputs 200, and the top one outputs
400. The input images are RGB images of 200 × 300 pixels:

a. What is the total number of parameters in the CNN?

b. If we are using 32-bit floats, at least how much RAM will this
network require when making a prediction for a single instance?

c. What about when training on a mini-batch of 50 images?

3. If your GPU runs out of memory while training a CNN, what are five
things you could try to solve the problem?

4. Why would you want to add a max pooling layer rather than a
convolutional layer with the same stride?

5. When would you want to add a local response normalization layer?

6. Can you name the main innovations in AlexNet, as compared to LeNet-
5? What about the main innovations in GoogLeNet, ResNet, SENet,
Xception, and EfficientNet?

7. What is a fully convolutional network? How can you convert a dense
layer into a convolutional layer?

8. What is the main technical difficulty of semantic segmentation?

9. Build your own CNN from scratch and try to achieve the highest
possible accuracy on MNIST.

10. Use transfer learning for large image classification, going through these



steps:

a. Create a training set containing at least 100 images per class. For
example, you could classify your own pictures based on the
location (beach, mountain, city, etc.), or alternatively you can use
an existing dataset (e.g., from TensorFlow Datasets).

b. Split it into a training set, a validation set, and a test set.

c. Build the input pipeline, apply the appropriate preprocessing
operations, and optionally add data augmentation.

d. Fine-tune a pretrained model on this dataset.

11. Go through TensorFlow’s Style Transfer tutorial. This is a fun way to
generate art using deep learning.

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.
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Chapter 15. Processing Sequences
Using RNNs and CNNs

Predicting the future is something you do all the time, whether you are
finishing a friend’s sentence or anticipating the smell of coffee at breakfast.
In this chapter we will discuss recurrent neural networks (RNNs)—a class of
nets that can predict the future (well, up to a point). RNNs can analyze time
series data, such as the number of daily active users on your website, the
hourly temperature in your city, your home’s daily power consumption, the
trajectories of nearby cars, and more. Once an RNN learns past patterns in the
data, it is able to use its knowledge to forecast the future, assuming of course
that past patterns still hold in the future.

More generally, RNNs can work on sequences of arbitrary lengths, rather
than on fixed-sized inputs. For example, they can take sentences, documents,
or audio samples as input, making them extremely useful for natural language
processing applications such as automatic translation or speech-to-text.

In this chapter, we will first go through the fundamental concepts underlying
RNNs and how to train them using backpropagation through time. Then, we
will use them to forecast a time series. Along the way, we will look at the
popular ARMA family of models, often used to forecast time series, and use
them as baselines to compare with our RNNs. After that, we’ll explore the
two main difficulties that RNNs face:

Unstable gradients (discussed in Chapter 11), which can be alleviated
using various techniques, including recurrent dropout and recurrent
layer normalization.

A (very) limited short-term memory, which can be extended using
LSTM and GRU cells.

RNNs are not the only types of neural networks capable of handling



sequential data. For small sequences, a regular dense network can do the
trick, and for very long sequences, such as audio samples or text,
convolutional neural networks can actually work quite well too. We will
discuss both of these possibilities, and we will finish this chapter by
implementing a WaveNet—a CNN architecture capable of handling
sequences of tens of thousands of time steps. Let’s get started!



Recurrent Neurons and Layers
Up to now we have focused on feedforward neural networks, where the
activations flow only in one direction, from the input layer to the output
layer. A recurrent neural network looks very much like a feedforward neural
network, except it also has connections pointing backward.

Let’s look at the simplest possible RNN, composed of one neuron receiving
inputs, producing an output, and sending that output back to itself, as shown
in Figure 15-1 (left). At each time step t (also called a frame), this recurrent
neuron receives the inputs x  as well as its own output from the previous
time step, ŷ . Since there is no previous output at the first time step, it is
generally set to 0. We can represent this tiny network against the time axis, as
shown in Figure 15-1 (right). This is called unrolling the network through
time (it’s the same recurrent neuron represented once per time step).

Figure 15-1. A recurrent neuron (left) unrolled through time (right)

You can easily create a layer of recurrent neurons. At each time step t, every
neuron receives both the input vector x  and the output vector from the
previous time step ŷ , as shown in Figure 15-2. Note that both the inputs
and outputs are now vectors (when there was just a single neuron, the output
was a scalar).

(t)

(t–1)

(t)

(t–1)



Figure 15-2. A layer of recurrent neurons (left) unrolled through time (right)

Each recurrent neuron has two sets of weights: one for the inputs x  and the
other for the outputs of the previous time step, ŷ . Let’s call these weight
vectors w  and w . If we consider the whole recurrent layer instead of just
one recurrent neuron, we can place all the weight vectors in two weight
matrices: W  and W .

The output vector of the whole recurrent layer can then be computed pretty
much as you might expect, as shown in Equation 15-1, where b is the bias
vector and ϕ(·) is the activation function (e.g., ReLU ).

Equation 15-1. Output of a recurrent layer for a single instance

ŷ(t)=ϕWx⊺x(t) + Wŷ⊺ŷ(t-1) + b

Just as with feedforward neural networks, we can compute a recurrent layer’s
output in one shot for an entire mini-batch by placing all the inputs at time
step t into an input matrix X  (see Equation 15-2).

Equation 15-2. Outputs of a layer of recurrent neurons for all instances in a pass:[mini-batch

Ŷ (t) = ϕ X (t) W x + Ŷ (t-1) W ŷ + b = ϕ X (t) Ŷ (t-1) W + b with W = W x
W ŷ

In this equation:

Ŷ  is an m × n  matrix containing the layer’s outputs at time step t
for each instance in the mini-batch (m is the number of instances in the

(t)

(t–1)

x ŷ

x ŷ

1

(t)
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mini-batch and n  is the number of neurons).

X  is an m × n  matrix containing the inputs for all instances (n
is the number of input features).

W  is an n  × n  matrix containing the connection weights for
the inputs of the current time step.

W  is an n  × n  matrix containing the connection weights for
the outputs of the previous time step.

b is a vector of size n  containing each neuron’s bias term.

The weight matrices W  and W  are often concatenated vertically into a
single weight matrix W of shape (n  + n ) × n  (see the
second line of Equation 15-2).

The notation [X  Ŷ ] represents the horizontal concatenation of the
matrices X  and Ŷ .

Notice that Ŷ  is a function of X  and Ŷ , which is a function of X
and Ŷ , which is a function of X  and Ŷ , and so on. This makes Ŷ
a function of all the inputs since time t = 0 (that is, X , X , …, X ). At the
first time step, t = 0, there are no previous outputs, so they are typically
assumed to be all zeros.
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Memory Cells
Since the output of a recurrent neuron at time step t is a function of all the
inputs from previous time steps, you could say it has a form of memory. A
part of a neural network that preserves some state across time steps is called a
memory cell (or simply a cell). A single recurrent neuron, or a layer of
recurrent neurons, is a very basic cell, capable of learning only short patterns
(typically about 10 steps long, but this varies depending on the task). Later in
this chapter, we will look at some more complex and powerful types of cells
capable of learning longer patterns (roughly 10 times longer, but again, this
depends on the task).

A cell’s state at time step t, denoted h  (the “h” stands for “hidden”), is a
function of some inputs at that time step and its state at the previous time
step: h  = f(x , h ). Its output at time step t, denoted ŷ , is also a
function of the previous state and the current inputs. In the case of the basic
cells we have discussed so far, the output is just equal to the state, but in
more complex cells this is not always the case, as shown in Figure 15-3.

Figure 15-3. A cell’s hidden state and its output may be different

(t)

(t) (t) (t–1) (t)



Input and Output Sequences
An RNN can simultaneously take a sequence of inputs and produce a
sequence of outputs (see the top-left network in Figure 15-4). This type of
sequence-to-sequence network is useful to forecast time series, such as your
home’s daily power consumption: you feed it the data over the last N days,
and you train it to output the power consumption shifted by one day into the
future (i.e., from N – 1 days ago to tomorrow).

Alternatively, you could feed the network a sequence of inputs and ignore all
outputs except for the last one (see the top-right network in Figure 15-4).
This is a sequence-to-vector network. For example, you could feed the
network a sequence of words corresponding to a movie review, and the
network would output a sentiment score (e.g., from 0 [hate] to 1 [love]).

Conversely, you could feed the network the same input vector over and over
again at each time step and let it output a sequence (see the bottom-left
network of Figure 15-4). This is a vector-to-sequence network. For example,
the input could be an image (or the output of a CNN), and the output could be
a caption for that image.

Lastly, you could have a sequence-to-vector network, called an encoder,
followed by a vector-to-sequence network, called a decoder (see the bottom-
right network of Figure 15-4). For example, this could be used for translating
a sentence from one language to another. You would feed the network a
sentence in one language, the encoder would convert this sentence into a
single vector representation, and then the decoder would decode this vector
into a sentence in another language. This two-step model, called an encoder–
decoder,  works much better than trying to translate on the fly with a single
sequence-to-sequence RNN (like the one represented at the top left): the last
words of a sentence can affect the first words of the translation, so you need
to wait until you have seen the whole sentence before translating it. We will
go through the implementation of an encoder–decoder in Chapter 16 (as you
will see, it is a bit more complex than what Figure 15-4 suggests).
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Figure 15-4. Sequence-to-sequence (top left), sequence-to-vector (top right), vector-to-sequence
(bottom left), and encoder–decoder (bottom right) networks

This versatility sounds promising, but how do you train a recurrent neural
network?



Training RNNs
To train an RNN, the trick is to unroll it through time (like we just did) and
then use regular backpropagation (see Figure 15-5). This strategy is called
backpropagation through time (BPTT).

Just like in regular backpropagation, there is a first forward pass through the
unrolled network (represented by the dashed arrows). Then the output
sequence is evaluated using a loss function ℒ(Y , Y , …, Y ; Ŷ , Ŷ ,
…, Ŷ ) (where Y  is the i  target, Ŷ  is the i  prediction, and T is the max
time step). Note that this loss function may ignore some outputs. For
example, in a sequence-to-vector RNN, all outputs are ignored except for the
very last one. In Figure 15-5, the loss function is computed based on the last
three outputs only. The gradients of that loss function are then propagated
backward through the unrolled network (represented by the solid arrows). In
this example, since the outputs Ŷ  and Ŷ  are not used to compute the loss,
the gradients do not flow backward through them; they only flow through
Ŷ , Ŷ , and Ŷ . Moreover, since the same parameters W and b are used at
each time step, their gradients will be tweaked multiple times during
backprop. Once the backward phase is complete and all the gradients have
been computed, BPTT can perform a gradient descent step to update the
parameters (this is no different from regular backprop).

(0) (1) (T) (0) (1)

(T) (i)
th

(i)
th

(0) (1)

(2) (3) (4)



Figure 15-5. Backpropagation through time

Fortunately, Keras takes care of all of this complexity for you, as you will
see. But before we get there, let’s load a time series and start analyzing it
using classical tools to better understand what we’re dealing with, and to get
some baseline metrics.



Forecasting a Time Series
All right! Let’s pretend you’ve just been hired as a data scientist by
Chicago’s Transit Authority. Your first task is to build a model capable of
forecasting the number of passengers that will ride on bus and rail the next
day. You have access to daily ridership data since 2001. Let’s walk through
together how you would handle this. We’ll start by loading and cleaning up
the data:

import pandas as pd
from pathlib import Path

path = Path("datasets/ridership/CTA_-_Ridership_-_Daily_Boarding_Totals.csv")
df = pd.read_csv(path, parse_dates=["service_date"])
df.columns = ["date", "day_type", "bus", "rail", "total"]  # shorter names
df = df.sort_values("date").set_index("date")
df = df.drop("total", axis=1)  # no need for total, it's just bus + rail
df = df.drop_duplicates()  # remove duplicated months (2011-10 and 2014-07)

We load the CSV file, set short column names, sort the rows by date, remove
the redundant total column, and drop duplicate rows. Now let’s check what
the first few rows look like:

>>> df.head()
           day_type     bus    rail
date
2001-01-01        U  297192  126455
2001-01-02        W  780827  501952
2001-01-03        W  824923  536432
2001-01-04        W  870021  550011
2001-01-05        W  890426  557917

On January 1st, 2001, 297,192 people boarded a bus in Chicago, and 126,455
boarded a train. The day_type column contains W for Weekdays, A for
Saturdays, and U for Sundays or holidays.

Now let’s plot the bus and rail ridership figures over a few months in 2019, to
see what it looks like (see Figure 15-6):
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import matplotlib.pyplot as plt

df["2019-03":"2019-05"].plot(grid=True, marker=".", figsize=(8, 3.5))
plt.show()

Figure 15-6. Daily ridership in Chicago

Note that Pandas includes both the start and end month in the range, so this
plots the data from the 1st of March all the way up to the 31st of May. This is
a time series: data with values at different time steps, usually at regular
intervals. More specifically, since there are multiple values per time step, this
is called a multivariate time series. If we only looked at the bus column, it
would be a univariate time series, with a single value per time step.
Predicting future values (i.e., forecasting) is the most typical task when
dealing with time series, and this is what we will focus on in this chapter.
Other tasks include imputation (filling in missing past values), classification,
anomaly detection, and more.

Looking at Figure 15-6, we can see that a similar pattern is clearly repeated
every week. This is called a weekly seasonality. In fact, it’s so strong in this
case that forecasting tomorrow’s ridership by just copying the values from a
week earlier will yield reasonably good results. This is called naive
forecasting: simply copying a past value to make our forecast. Naive
forecasting is often a great baseline, and it can even be tricky to beat in some
cases.



NOTE
In general, naive forecasting means copying the latest known value (e.g., forecasting that
tomorrow will be the same as today). However, in our case, copying the value from the
previous week works better, due to the strong weekly seasonality.

To visualize these naive forecasts, let’s overlay the two time series (for bus
and rail) as well as the same time series lagged by one week (i.e., shifted
toward the right) using dotted lines. We’ll also plot the difference between
the two (i.e., the value at time t minus the value at time t – 7); this is called
differencing (see Figure 15-7):

diff_7 = df[["bus", "rail"]].diff(7)["2019-03":"2019-05"]

fig, axs = plt.subplots(2, 1, sharex=True, figsize=(8, 5))
df.plot(ax=axs[0], legend=False, marker=".")  # original time series
df.shift(7).plot(ax=axs[0], grid=True, legend=False, linestyle=":")  # lagged
diff_7.plot(ax=axs[1], grid=True, marker=".")  # 7-day difference time series
plt.show()

Not too bad! Notice how closely the lagged time series track the actual time
series. When a time series is correlated with a lagged version of itself, we say
that the time series is autocorrelated. As you can see, most of the differences
are fairly small, except at the end of May. Maybe there was a holiday at that
time? Let’s check the day_type column:

>>> list(df.loc["2019-05-25":"2019-05-27"]["day_type"])
['A', 'U', 'U']



Figure 15-7. Time series overlaid with 7-day lagged time series (top), and difference between t and t –
 7 (bottom)

Indeed, there was a long weekend back then: the Monday was the Memorial
Day holiday. We could use this column to improve our forecasts, but for now
let’s just measure the mean absolute error over the three-month period we’re
arbitrarily focusing on—March, April, and May 2019—to get a rough idea:

>>> diff_7.abs().mean()
bus     43915.608696
rail    42143.271739
dtype: float64

Our naive forecasts get an MAE of about 43,916 bus riders, and about 42,143
rail riders. It’s hard to tell at a glance how good or bad this is, so let’s put the
forecast errors into perspective by dividing them by the target values:

>>> targets = df[["bus", "rail"]]["2019-03":"2019-05"]
>>> (diff_7 / targets).abs().mean()
bus     0.082938
rail    0.089948
dtype: float64



What we just computed is called the mean absolute percentage error
(MAPE): it looks like our naive forecasts give us a MAPE of roughly 8.3%
for bus and 9.0% for rail. It’s interesting to note that the MAE for the rail
forecasts looks slightly better than the MAE for the bus forecasts, while the
opposite is true for the MAPE. That’s because the bus ridership is larger than
the rail ridership, so naturally the forecast errors are also larger, but when we
put the errors into perspective, it turns out that the bus forecasts are actually
slightly better than the rail forecasts.

TIP
The MAE, MAPE, and MSE are among the most common metrics you can use to evaluate
your forecasts. As always, choosing the right metric depends on the task. For example, if
your project suffers quadratically more from large errors than from small ones, then the
MSE may be preferable, as it strongly penalizes large errors.

Looking at the time series, there doesn’t appear to be any significant monthly
seasonality, but let’s check whether there’s any yearly seasonality. We’ll look
at the data from 2001 to 2019. To reduce the risk of data snooping, we’ll
ignore more recent data for now. Let’s also plot a 12-month rolling average
for each series to visualize long-term trends (see Figure 15-8):

period = slice("2001", "2019")
df_monthly = df.resample('M').mean()  # compute the mean for each month
rolling_average_12_months = df_monthly[period].rolling(window=12).mean()

fig, ax = plt.subplots(figsize=(8, 4))
df_monthly[period].plot(ax=ax, marker=".")
rolling_average_12_months.plot(ax=ax, grid=True, legend=False)
plt.show()



Figure 15-8. Yearly seasonality and long-term trends

Yep! There’s definitely some yearly seasonality as well, although it is noisier
than the weekly seasonality, and more visible for the rail series than the bus
series: we see peaks and troughs at roughly the same dates each year. Let’s
check what we get if we plot the 12-month difference (see Figure 15-9):

df_monthly.diff(12)[period].plot(grid=True, marker=".", figsize=(8, 3))
plt.show()

Figure 15-9. The 12-month difference

Notice how differencing not only removed the yearly seasonality, but it also
removed the long-term trends. For example, the linear downward trend
present in the time series from 2016 to 2019 became a roughly constant
negative value in the differenced time series. In fact, differencing is a



common technique used to remove trend and seasonality from a time series:
it’s easier to study a stationary time series, meaning one whose statistical
properties remain constant over time, without any seasonality or trends. Once
you’re able to make accurate forecasts on the differenced time series, it’s
easy to turn them into forecasts for the actual time series by just adding back
the past values that were previously subtracted.

You may be thinking that we’re only trying to predict tomorrow’s ridership,
so the long-term patterns matter much less than the short-term ones. You’re
right, but still, we may be able to improve performance slightly by taking
long-term patterns into account. For example, daily bus ridership dropped by
about 2,500 in October 2017, which represents about 570 fewer passengers
each week, so if we were at the end of October 2017, it would make sense to
forecast tomorrow’s ridership by copying the value from last week, minus
570. Accounting for the trend will make your forecasts a bit more accurate on
average.

Now that you’re familiar with the ridership time series, as well as some of the
most important concepts in time series analysis, including seasonality, trend,
differencing, and moving averages, let’s take a quick look at a very popular
family of statistical models that are commonly used to analyze time series.



The ARMA Model Family
We’ll start with the autoregressive moving average (ARMA) model,
developed by Herman Wold in the 1930s: it computes its forecasts using a
simple weighted sum of lagged values and corrects these forecasts by adding
a moving average, very much like we just discussed. Specifically, the moving
average component is computed using a weighted sum of the last few
forecast errors. Equation 15-3 shows how the model makes its forecasts.

Equation 15-3. Forecasting using an ARMA model

y^(t)=∑i=1pαi y(t-i)+∑i=1qθi ϵ(t-i)with ϵ(t)=y(t)-y^(t)

In this equation:

ŷ  is the model’s forecast for time step t.

y  is the time series’ value at time step t.

The first sum is the weighted sum of the past p values of the time series,
using the learned weights α . The number p is a hyperparameter, and it
determines how far back into the past the model should look. This sum
is the autoregressive component of the model: it performs regression
based on past values.

The second sum is the weighted sum over the past q forecast errors ε ,
using the learned weights θ . The number q is a hyperparameter. This
sum is the moving average component of the model.

Importantly, this model assumes that the time series is stationary. If it is not,
then differencing may help. Using differencing over a single time step will
produce an approximation of the derivative of the time series: indeed, it will
give the slope of the series at each time step. This means that it will eliminate
any linear trend, transforming it into a constant value. For example, if you
apply one-step differencing to the series [3, 5, 7, 9, 11], you get the
differenced series [2, 2, 2, 2].

If the original time series has a quadratic trend instead of a linear trend, then a
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single round of differencing will not be enough. For example, the series [1, 4,
9, 16, 25, 36] becomes [3, 5, 7, 9, 11] after one round of differencing, but if
you run differencing for a second round, then you get [2, 2, 2, 2]. So, running
two rounds of differencing will eliminate quadratic trends. More generally,
running d consecutive rounds of differencing computes an approximation of
the d  order derivative of the time series, so it will eliminate polynomial
trends up to degree d. This hyperparameter d is called the order of
integration.

Differencing is the central contribution of the autoregressive integrated
moving average (ARIMA) model, introduced in 1970 by George Box and
Gwilym Jenkins in their book Time Series Analysis (Wiley): this model runs
d rounds of differencing to make the time series more stationary, then it
applies a regular ARMA model. When making forecasts, it uses this ARMA
model, then it adds back the terms that were subtracted by differencing.

One last member of the ARMA family is the seasonal ARIMA (SARIMA)
model: it models the time series in the same way as ARIMA, but it
additionally models a seasonal component for a given frequency (e.g.,
weekly), using the exact same ARIMA approach. It has a total of seven
hyperparameters: the same p, d, and q hyperparameters as ARIMA, plus
additional P, D, and Q hyperparameters to model the seasonal pattern, and
lastly the period of the seasonal pattern, noted s. The hyperparameters P, D,
and Q are just like p, d, and q, but they are used to model the time series at t –
 s, t – 2s, t – 3s, etc.

Let’s see how to fit a SARIMA model to the rail time series, and use it to
make a forecast for tomorrow’s ridership. We’ll pretend today is the last day
of May 2019, and we want to forecast the rail ridership for “tomorrow”, the
1st of June, 2019. For this, we can use the statsmodels library, which contains
many different statistical models, including the ARMA model and its
variants, implemented by the ARIMA class:

from statsmodels.tsa.arima.model import ARIMA

origin, today = "2019-01-01", "2019-05-31"
rail_series = df.loc[origin:today]["rail"].asfreq("D")

th



model = ARIMA(rail_series,
              order=(1, 0, 0),
              seasonal_order=(0, 1, 1, 7))
model = model.fit()
y_pred = model.forecast()  # returns 427,758.6

In this code example:

We start by importing the ARIMA class, then we take the rail ridership
data from the start of 2019 up to “today”, and we use asfreq("D") to set
the time series’ frequency to daily: this doesn’t change the data at all in
this case, since it’s already daily, but without this the ARIMA class
would have to guess the frequency, and it would display a warning.

Next, we create an ARIMA instance, passing it all the data until “today”,
and we set the model hyperparameters: order=(1, 0, 0) means that p = 1,
d = 0, q = 0, and seasonal_order=(0, 1, 1, 7) means that P = 0, D = 1, Q
= 1, and s = 7. Notice that the statsmodels API differs a bit from Scikit-
Learn’s API, since we pass the data to the model at construction time,
instead of passing it to the fit() method.

Next, we fit the model, and we use it to make a forecast for “tomorrow”,
the 1st of June, 2019.

The forecast is 427,759 passengers, when in fact there were 379,044. Yikes,
we’re 12.9% off—that’s pretty bad. It’s actually slightly worse than naive
forecasting, which forecasts 426,932, off by 12.6%. But perhaps we were just
unlucky that day? To check this, we can run the same code in a loop to make
forecasts for every day in March, April, and May, and compute the MAE
over that period:

origin, start_date, end_date = "2019-01-01", "2019-03-01", "2019-05-31"
time_period = pd.date_range(start_date, end_date)
rail_series = df.loc[origin:end_date]["rail"].asfreq("D")
y_preds = []
for today in time_period.shift(-1):
    model = ARIMA(rail_series[origin:today],  # train on data up to "today"
                  order=(1, 0, 0),
                  seasonal_order=(0, 1, 1, 7))
    model = model.fit()  # note that we retrain the model every day!



    y_pred = model.forecast()[0]
    y_preds.append(y_pred)

y_preds = pd.Series(y_preds, index=time_period)
mae = (y_preds - rail_series[time_period]).abs().mean()  # returns 32,040.7

Ah, that’s much better! The MAE is about 32,041, which is significantly
lower than the MAE we got with naive forecasting (42,143). So although the
model is not perfect, it still beats naive forecasting by a large margin, on
average.

At this point, you may be wondering how to pick good hyperparameters for
the SARIMA model. There are several methods, but the simplest to
understand and to get started with is the brute-force approach: just run a grid
search. For each model you want to evaluate (i.e., each hyperparameter
combination), you can run the preceding code example, changing only the
hyperparameter values. Good p, q, P, and Q values are usually fairly small
(typically 0 to 2, sometimes up to 5 or 6), and d and D are typically 0 or 1,
sometimes 2. As for s, it’s just the main seasonal pattern’s period: in our case
it’s 7 since there’s a strong weekly seasonality. The model with the lowest
MAE wins. Of course, you can replace the MAE with another metric if it
better matches your business objective. And that’s it!4



Preparing the Data for Machine Learning Models
Now that we have two baselines, naive forecasting and SARIMA, let’s try to
use the machine learning models we’ve covered so far to forecast this time
series, starting with a basic linear model. Our goal will be to forecast
tomorrow’s ridership based on the ridership of the past 8 weeks of data (56
days). The inputs to our model will therefore be sequences (usually a single
sequence per day once the model is in production), each containing 56 values
from time steps t – 55 to t. For each input sequence, the model will output a
single value: the forecast for time step t + 1.

But what will we use as training data? Well, that’s the trick: we will use
every 56-day window from the past as training data, and the target for each
window will be the value immediately following it.

Keras actually has a nice utility function called tf.keras.utils.timeseries_
data set_from_array() to help us prepare the training set. It takes a time
series as input, and it builds a tf.data.Dataset (introduced in Chapter 13)
containing all the windows of the desired length, as well as their
corresponding targets. Here’s an example that takes a time series containing
the numbers 0 to 5 and creates a dataset containing all the windows of length
3, with their corresponding targets, grouped into batches of size 2:

import tensorflow as tf

my_series = [0, 1, 2, 3, 4, 5]
my_dataset = tf.keras.utils.timeseries_dataset_from_array(
    my_series,
    targets=my_series[3:],  # the targets are 3 steps into the future
    sequence_length=3,
    batch_size=2
)

Let’s inspect the contents of this dataset:

>>> list(my_dataset)
[(<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
  array([[0, 1, 2],



         [1, 2, 3]], dtype=int32)>,
  <tf.Tensor: shape=(2,), dtype=int32, numpy=array([3, 4], dtype=int32)>),
 (<tf.Tensor: shape=(1, 3), dtype=int32, numpy=array([[2, 3, 4]], dtype=int32)>,
  <tf.Tensor: shape=(1,), dtype=int32, numpy=array([5], dtype=int32)>)]

Each sample in the dataset is a window of length 3, along with its
corresponding target (i.e., the value immediately after the window). The
windows are [0, 1, 2], [1, 2, 3], and [2, 3, 4], and their respective targets are
3, 4, and 5. Since there are three windows in total, which is not a multiple of
the batch size, the last batch only contains one window instead of two.

Another way to get the same result is to use the window() method of tf.data’s
Dataset class. It’s more complex, but it gives you full control, which will
come in handy later in this chapter, so let’s see how it works. The window()
method returns a dataset of window datasets:

>>> for window_dataset in tf.data.Dataset.range(6).window(4, shift=1):
...     for element in window_dataset:
...         print(f"{element}", end=" ")
...     print()
...
0 1 2 3
1 2 3 4
2 3 4 5
3 4 5
4 5
5

In this example, the dataset contains six windows, each shifted by one step
compared to the previous one, and the last three windows are smaller because
they’ve reached the end of the series. In general you’ll want to get rid of these
smaller windows by passing drop_remainder=True to the window() method.

The window() method returns a nested dataset, analogous to a list of lists.
This is useful when you want to transform each window by calling its dataset
methods (e.g., to shuffle them or batch them). However, we cannot use a
nested dataset directly for training, as our model will expect tensors as input,
not datasets.

Therefore, we must call the flat_map() method: it converts a nested dataset



into a flat dataset (one that contains tensors, not datasets). For example,
suppose {1, 2, 3} represents a dataset containing the sequence of tensors 1, 2,
and 3. If you flatten the nested dataset {{1, 2}, {3, 4, 5, 6}}, you get back the
flat dataset {1, 2, 3, 4, 5, 6}.

Moreover, the flat_map() method takes a function as an argument, which
allows you to transform each dataset in the nested dataset before flattening.
For example, if you pass the function lambda ds: ds.batch(2) to flat_map(),
then it will transform the nested dataset {{1, 2}, {3, 4, 5, 6}} into the flat
dataset {[1, 2], [3, 4], [5, 6]}: it’s a dataset containing 3 tensors, each of size
2.

With that in mind, we are ready to flatten our dataset:

>>> dataset = tf.data.Dataset.range(6).window(4, shift=1, drop_remainder=True)
>>> dataset = dataset.flat_map(lambda window_dataset: window_dataset.batch(4))
>>> for window_tensor in dataset:
...     print(f"{window_tensor}")
...
[0 1 2 3]
[1 2 3 4]
[2 3 4 5]

Since each window dataset contains exactly four items, calling batch(4) on a
window produces a single tensor of size 4. Great! We now have a dataset
containing consecutive windows represented as tensors. Let’s create a little
helper function to make it easier to extract windows from a dataset:

def to_windows(dataset, length):
    dataset = dataset.window(length, shift=1, drop_remainder=True)
    return dataset.flat_map(lambda window_ds: window_ds.batch(length))

The last step is to split each window into inputs and targets, using the map()
method. We can also group the resulting windows into batches of size 2:

>>> dataset = to_windows(tf.data.Dataset.range(6), 4)  # 3 inputs + 1 target = 4
>>> dataset = dataset.map(lambda window: (window[:-1], window[-1]))
>>> list(dataset.batch(2))
[(<tf.Tensor: shape=(2, 3), dtype=int64, numpy=
  array([[0, 1, 2],



         [1, 2, 3]])>,
  <tf.Tensor: shape=(2,), dtype=int64, numpy=array([3, 4])>),
 (<tf.Tensor: shape=(1, 3), dtype=int64, numpy=array([[2, 3, 4]])>,
  <tf.Tensor: shape=(1,), dtype=int64, numpy=array([5])>)]

As you can see, we now have the same output as we got earlier with the
timeseries_dataset_from_array() function (with a bit more effort, but it will
be worthwhile soon).

Now, before we start training, we need to split our data into a training period,
a validation period, and a test period. We will focus on the rail ridership for
now. We will also scale it down by a factor of one million, to ensure the
values are near the 0–1 range; this plays nicely with the default weight
initialization and learning rate:

rail_train = df["rail"]["2016-01":"2018-12"] / 1e6
rail_valid = df["rail"]["2019-01":"2019-05"] / 1e6
rail_test = df["rail"]["2019-06":] / 1e6

NOTE
When dealing with time series, you generally want to split across time. However, in some
cases you may be able to split along other dimensions, which will give you a longer time
period to train on. For example, if you have data about the financial health of 10,000
companies from 2001 to 2019, you might be able to split this data across the different
companies. It’s very likely that many of these companies will be strongly correlated,
though (e.g., whole economic sectors may go up or down jointly), and if you have
correlated companies across the training set and the test set, your test set will not be as
useful, as its measure of the generalization error will be optimistically biased.

Next, let’s use timeseries_dataset_from_array() to create datasets for training
and validation. Since gradient descent expects the instances in the training set
to be independent and identically distributed (IID), as we saw in Chapter 4,
we must set the argument shuffle=True to shuffle the training windows (but
not their contents):

seq_length = 56
train_ds = tf.keras.utils.timeseries_dataset_from_array(
    rail_train.to_numpy(),



    targets=rail_train[seq_length:],
    sequence_length=seq_length,
    batch_size=32,
    shuffle=True,
    seed=42
)
valid_ds = tf.keras.utils.timeseries_dataset_from_array(
    rail_valid.to_numpy(),
    targets=rail_valid[seq_length:],
    sequence_length=seq_length,
    batch_size=32
)

And now we’re ready to build and train any regression model we want!



Forecasting Using a Linear Model
Let’s try a basic linear model first. We will use the Huber loss, which usually
works better than minimizing the MAE directly, as discussed in Chapter 10.
We’ll also use early stopping:

tf.random.set_seed(42)
model = tf.keras.Sequential([
    tf.keras.layers.Dense(1, input_shape=[seq_length])
])
early_stopping_cb = tf.keras.callbacks.EarlyStopping(
    monitor="val_mae", patience=50, restore_best_weights=True)
opt = tf.keras.optimizers.SGD(learning_rate=0.02, momentum=0.9)
model.compile(loss=tf.keras.losses.Huber(), optimizer=opt, metrics=["mae"])
history = model.fit(train_ds, validation_data=valid_ds, epochs=500,
                    callbacks=[early_stopping_cb])

This model reaches a validation MAE of about 37,866 (your mileage may
vary). That’s better than naive forecasting, but worse than the SARIMA
model.

Can we do better with an RNN? Let’s see!
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Forecasting Using a Simple RNN
Let’s try the most basic RNN, containing a single recurrent layer with just
one recurrent neuron, as we saw in Figure 15-1:

model = tf.keras.Sequential([
    tf.keras.layers.SimpleRNN(1, input_shape=[None, 1])
])

All recurrent layers in Keras expect 3D inputs of shape [batch size, time
steps, dimensionality], where dimensionality is 1 for univariate time series
and more for multivariate time series. Recall that the input_shape argument
ignores the first dimension (i.e., the batch size), and since recurrent layers can
accept input sequences of any length, we can set the second dimension to
None, which means “any size”. Lastly, since we’re dealing with a univariate
time series, we need the last dimension’s size to be 1. This is why we
specified the input shape [None, 1]: it means “univariate sequences of any
length”. Note that the datasets actually contain inputs of shape [batch size,
time steps], so we’re missing the last dimension, of size 1, but Keras is kind
enough to add it for us in this case.

This model works exactly as we saw earlier: the initial state h  is set to 0,
and it is passed to a single recurrent neuron, along with the value of the first
time step, x . The neuron computes a weighted sum of these values plus the
bias term, and it applies the activation function to the result, using the
hyperbolic tangent function by default. The result is the first output, y . In a
simple RNN, this output is also the new state h . This new state is passed to
the same recurrent neuron along with the next input value, x , and the
process is repeated until the last time step. At the end, the layer just outputs
the last value: in our case the sequences are 56 steps long, so the last value is
y . All of this is performed simultaneously for every sequence in the batch,
of which there are 32 in this case.

NOTE

(init)

(0)

0

0

(1)

55



By default, recurrent layers in Keras only return the final output. To make them return one
output per time step, you must set return_sequences=True, as you will see.

So that’s our first recurrent model! It’s a sequence-to-vector model. Since
there’s a single output neuron, the output vector has a size of 1.

Now if you compile, train, and evaluate this model just like the previous
model, you will find that it’s no good at all: its validation MAE is greater
than 100,000! Ouch. That was to be expected, for two reasons:

1. The model only has a single recurrent neuron, so the only data it can use
to make a prediction at each time step is the input value at the current
time step and the output value from the previous time step. That’s not
much to go on! In other words, the RNN’s memory is extremely limited:
it’s just a single number, its previous output. And let’s count how many
parameters this model has: since there’s just one recurrent neuron with
only two input values, the whole model only has three parameters (two
weights plus a bias term). That’s far from enough for this time series. In
contrast, our previous model could look at all 56 previous values at
once, and it had a total of 57 parameters.

2. The time series contains values from 0 to about 1.4, but since the default
activation function is tanh, the recurrent layer can only output values
between –1 and +1. There’s no way it can predict values between 1.0
and 1.4.

Let’s fix both of these issues: we will create a model with a larger recurrent
layer, containing 32 recurrent neurons, and we will add a dense output layer
on top of it with a single output neuron and no activation function. The
recurrent layer will be able to carry much more information from one time
step to the next, and the dense output layer will project the final output from
32 dimensions down to 1, without any value range constraints:

univar_model = tf.keras.Sequential([
    tf.keras.layers.SimpleRNN(32, input_shape=[None, 1]),
    tf.keras.layers.Dense(1)  # no activation function by default
])



Now if you compile, fit, and evaluate this model just like the previous one,
you will find that its validation MAE reaches 27,703. That’s the best model
we’ve trained so far, and it even beats the SARIMA model: we’re doing
pretty well!

TIP
We’ve only normalized the time series, without removing trend and seasonality, and yet
the model still performs well. This is convenient, as it makes it possible to quickly search
for promising models without worrying too much about preprocessing. However, to get
the best performance, you may want to try making the time series more stationary; for
example, using differencing.



Forecasting Using a Deep RNN
It is quite common to stack multiple layers of cells, as shown in Figure 15-10.
This gives you a deep RNN.

Figure 15-10. A deep RNN (left) unrolled through time (right)

Implementing a deep RNN with Keras is straightforward: just stack recurrent
layers. In the following example, we use three SimpleRNN layers (but we
could use any other type of recurrent layer instead, such as an LSTM layer or
a GRU layer, which we will discuss shortly). The first two are sequence-to-
sequence layers, and the last one is a sequence-to-vector layer. Finally, the
Dense layer produces the model’s forecast (you can think of it as a vector-to-
vector layer). So this model is just like the model represented in Figure 15-
10, except the outputs Ŷ  to Ŷ  are ignored, and there’s a dense layer on
top of Ŷ , which outputs the actual forecast:

deep_model = tf.keras.Sequential([
    tf.keras.layers.SimpleRNN(32, return_sequences=True, input_shape=[None, 1]),
    tf.keras.layers.SimpleRNN(32, return_sequences=True),
    tf.keras.layers.SimpleRNN(32),
    tf.keras.layers.Dense(1)

(0) (t–1_)

(t)



])

WARNING
Make sure to set return_sequences=True for all recurrent layers (except the last one, if you
only care about the last output). If you forget to set this parameter for one recurrent layer,
it will output a 2D array containing only the output of the last time step, instead of a 3D
array containing outputs for all time steps. The next recurrent layer will complain that you
are not feeding it sequences in the expected 3D format.

If you train and evaluate this model, you will find that it reaches an MAE of
about 31,211. That’s better than both baselines, but it doesn’t beat our
“shallower” RNN. It looks like this RNN is a bit too large for our task.



Forecasting Multivariate Time Series
A great quality of neural networks is their flexibility: in particular, they can
deal with multivariate time series with almost no change to their architecture.
For example, let’s try to forecast the rail time series using both the bus and
rail data as input. In fact, let’s also throw in the day type! Since we can
always know in advance whether tomorrow is going to be a weekday, a
weekend, or a holiday, we can shift the day type series one day into the
future, so that the model is given tomorrow’s day type as input. For
simplicity, we’ll do this processing using Pandas:

df_mulvar = df[["bus", "rail"]] / 1e6  # use both bus & rail series as input
df_mulvar["next_day_type"] = df["day_type"].shift(-1)  # we know tomorrow's type
df_mulvar = pd.get_dummies(df_mulvar)  # one-hot encode the day type

Now df_mulvar is a DataFrame with five columns: the bus and rail data, plus
three columns containing the one-hot encoding of the next day’s type (recall
that there are three possible day types, W, A, and U). Next we can proceed
much like we did earlier. First we split the data into three periods, for
training, validation, and testing:

mulvar_train = df_mulvar["2016-01":"2018-12"]
mulvar_valid = df_mulvar["2019-01":"2019-05"]
mulvar_test = df_mulvar["2019-06":]

Then we create the datasets:

train_mulvar_ds = tf.keras.utils.timeseries_dataset_from_array(
    mulvar_train.to_numpy(),  # use all 5 columns as input
    targets=mulvar_train["rail"][seq_length:],  # forecast only the rail series
    [...]  # the other 4 arguments are the same as earlier
)
valid_mulvar_ds = tf.keras.utils.timeseries_dataset_from_array(
    mulvar_valid.to_numpy(),
    targets=mulvar_valid["rail"][seq_length:],
    [...]  # the other 2 arguments are the same as earlier
)



And finally we create the RNN:

mulvar_model = tf.keras.Sequential([
    tf.keras.layers.SimpleRNN(32, input_shape=[None, 5]),
    tf.keras.layers.Dense(1)
])

Notice that the only difference from the univar_model RNN we built earlier
is the input shape: at each time step, the model now receives five inputs
instead of one. This model actually reaches a validation MAE of 22,062.
Now we’re making big progress!

In fact, it’s not too hard to make the RNN forecast both the bus and rail
ridership. You just need to change the targets when creating the datasets,
setting them to mulvar_train[["bus", "rail"]][seq_length:] for the training set,
and mulvar_valid[["bus", "rail"]][seq_length:] for the validation set. You
must also add an extra neuron in the output Dense layer, since it must now
make two forecasts: one for tomorrow’s bus ridership, and the other for rail.
That’s all there is to it!

As we discussed in Chapter 10, using a single model for multiple related
tasks often results in better performance than using a separate model for each
task, since features learned for one task may be useful for the other tasks, and
also because having to perform well across multiple tasks prevents the model
from overfitting (it’s a form of regularization). However, it depends on the
task, and in this particular case the multitask RNN that forecasts both the bus
and the rail ridership doesn’t perform quite as well as dedicated models that
forecast one or the other (using all five columns as input). Still, it reaches a
validation MAE of 25,330 for rail and 26,369 for bus, which is pretty good.



Forecasting Several Time Steps Ahead
So far we have only predicted the value at the next time step, but we could
just as easily have predicted the value several steps ahead by changing the
targets appropriately (e.g., to predict the ridership 2 weeks from now, we
could just change the targets to be the value 14 days ahead instead of 1 day
ahead). But what if we want to predict the next 14 values?

The first option is to take the univar_model RNN we trained earlier for the
rail time series, make it predict the next value, and add that value to the
inputs, acting as if the predicted value had actually occurred; we would then
use the model again to predict the following value, and so on, as in the
following code:

import numpy as np

X = rail_valid.to_numpy()[np.newaxis, :seq_length, np.newaxis]
for step_ahead in range(14):
    y_pred_one = univar_model.predict(X)
    X = np.concatenate([X, y_pred_one.reshape(1, 1, 1)], axis=1)

In this code, we take the rail ridership of the first 56 days of the validation
period, and we convert the data to a NumPy array of shape [1, 56, 1] (recall
that recurrent layers expect 3D inputs). Then we repeatedly use the model to
forecast the next value, and we append each forecast to the input series, along
the time axis (axis=1). The resulting forecasts are plotted in Figure 15-11.

WARNING
If the model makes an error at one time step, then the forecasts for the following time
steps are impacted as well: the errors tend to accumulate. So, it’s preferable to use this
technique only for a small number of steps.



Figure 15-11. Forecasting 14 steps ahead, 1 step at a time

The second option is to train an RNN to predict the next 14 values in one
shot. We can still use a sequence-to-vector model, but it will output 14 values
instead of 1. However, we first need to change the targets to be vectors
containing the next 14 values. To do this, we can use
timeseries_dataset_from_array() again, but this time asking it to create
datasets without targets (targets=None) and with longer sequences, of length
seq_length + 14. Then we can use the datasets’ map() method to apply a
custom function to each batch of sequences, splitting them into inputs and
targets. In this example, we use the multivariate time series as input (using all
five columns), and we forecast the rail ridership for the next 14 days:

def split_inputs_and_targets(mulvar_series, ahead=14, target_col=1):
    return mulvar_series[:, :-ahead], mulvar_series[:, -ahead:, target_col]

ahead_train_ds = tf.keras.utils.timeseries_dataset_from_array(
    mulvar_train.to_numpy(),
    targets=None,
    sequence_length=seq_length + 14,
    [...]  # the other 3 arguments are the same as earlier
).map(split_inputs_and_targets)
ahead_valid_ds = tf.keras.utils.timeseries_dataset_from_array(
    mulvar_valid.to_numpy(),
    targets=None,
    sequence_length=seq_length + 14,
    batch_size=32
).map(split_inputs_and_targets)
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Now we just need the output layer to have 14 units instead of 1:

ahead_model = tf.keras.Sequential([
    tf.keras.layers.SimpleRNN(32, input_shape=[None, 5]),
    tf.keras.layers.Dense(14)
])

After training this model, you can predict the next 14 values at once like this:

X = mulvar_valid.to_numpy()[np.newaxis, :seq_length]  # shape [1, 56, 5]
Y_pred = ahead_model.predict(X)  # shape [1, 14]

This approach works quite well. Its forecasts for the next day are obviously
better than its forecasts for 14 days into the future, but it doesn’t accumulate
errors like the previous approach did. However, we can still do better, using a
sequence-to-sequence (or seq2seq) model.



Forecasting Using a Sequence-to-Sequence Model
Instead of training the model to forecast the next 14 values only at the very
last time step, we can train it to forecast the next 14 values at each and every
time step. In other words, we can turn this sequence-to-vector RNN into a
sequence-to-sequence RNN. The advantage of this technique is that the loss
will contain a term for the output of the RNN at each and every time step, not
just for the output at the last time step.

This means there will be many more error gradients flowing through the
model, and they won’t have to flow through time as much since they will
come from the output of each time step, not just the last one. This will both
stabilize and speed up training.

To be clear, at time step 0 the model will output a vector containing the
forecasts for time steps 1 to 14, then at time step 1 the model will forecast
time steps 2 to 15, and so on. In other words, the targets are sequences of
consecutive windows, shifted by one time step at each time step. The target is
not a vector anymore, but a sequence of the same length as the inputs,
containing a 14-dimensional vector at each step.

Preparing the datasets is not trivial, since each instance has a window as input
and a sequence of windows as output. One way to do this is to use the
to_windows() utility function we created earlier, twice in a row, to get
windows of consecutive windows. For example, let’s turn the series of
numbers 0 to 6 into a dataset containing sequences of 4 consecutive windows,
each of length 3:

>>> my_series = tf.data.Dataset.range(7)
>>> dataset = to_windows(to_windows(my_series, 3), 4)
>>> list(dataset)
[<tf.Tensor: shape=(4, 3), dtype=int64, numpy=
 array([[0, 1, 2],
        [1, 2, 3],
        [2, 3, 4],
        [3, 4, 5]])>,
 <tf.Tensor: shape=(4, 3), dtype=int64, numpy=
 array([[1, 2, 3],



        [2, 3, 4],
        [3, 4, 5],
        [4, 5, 6]])>]

Now we can use the map() method to split these windows of windows into
inputs and targets:

>>> dataset = dataset.map(lambda S: (S[:, 0], S[:, 1:]))
>>> list(dataset)
[(<tf.Tensor: shape=(4,), dtype=int64, numpy=array([0, 1, 2, 3])>,
  <tf.Tensor: shape=(4, 2), dtype=int64, numpy=
  array([[1, 2],
         [2, 3],
         [3, 4],
         [4, 5]])>),
 (<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 2, 3, 4])>,
  <tf.Tensor: shape=(4, 2), dtype=int64, numpy=
  array([[2, 3],
         [3, 4],
         [4, 5],
         [5, 6]])>)]

Now the dataset contains sequences of length 4 as inputs, and the targets are
sequences containing the next two steps, for each time step. For example, the
first input sequence is [0, 1, 2, 3], and its corresponding targets are [[1, 2], [2,
3], [3, 4], [4, 5]], which are the next two values for each time step. If you’re
like me, you will probably need a few minutes to wrap your head around this.
Take your time!

NOTE
It may be surprising that the targets contain values that appear in the inputs. Isn’t that
cheating? Fortunately, not at all: at each time step, an RNN only knows about past time
steps; it cannot look ahead. It is said to be a causal model.

Let’s create another little utility function to prepare the datasets for our
sequence-to-sequence model. It will also take care of shuffling (optional) and
batching:



def to_seq2seq_dataset(series, seq_length=56, ahead=14, target_col=1,
                       batch_size=32, shuffle=False, seed=None):
    ds = to_windows(tf.data.Dataset.from_tensor_slices(series), ahead + 1)
    ds = to_windows(ds, seq_length).map(lambda S: (S[:, 0], S[:, 1:, 1]))
    if shuffle:
        ds = ds.shuffle(8 * batch_size, seed=seed)
    return ds.batch(batch_size)

Now we can use this function to create the datasets:

seq2seq_train = to_seq2seq_dataset(mulvar_train, shuffle=True, seed=42)
seq2seq_valid = to_seq2seq_dataset(mulvar_valid)

And lastly, we can build the sequence-to-sequence model:

seq2seq_model = tf.keras.Sequential([
    tf.keras.layers.SimpleRNN(32, return_sequences=True, input_shape=[None, 5]),
    tf.keras.layers.Dense(14)
])

It is almost identical to our previous model: the only difference is that we set
return_sequences=True in the SimpleRNN layer. This way, it will output a
sequence of vectors (each of size 32), instead of outputting a single vector at
the last time step. The Dense layer is smart enough to handle sequences as
input: it will be applied at each time step, taking a 32-dimensional vector as
input and outputting a 14-dimensional vector. In fact, another way to get the
exact same result is to use a Conv1D layer with a kernel size of 1:
Conv1D(14, kernel_size=1).

TIP
Keras offers a TimeDistributed layer that lets you apply any vector-to-vector layer to
every vector in the input sequences, at every time step. It does this efficiently, by
reshaping the inputs so that each time step is treated as a separate instance, then it reshapes
the layer’s outputs to recover the time dimension. In our case, we don’t need it since the
Dense layer already supports sequences as inputs.

The training code is the same as usual. During training, all the model’s



outputs are used, but after training only the output of the very last time step
matters, and the rest can be ignored. For example, we can forecast the rail
ridership for the next 14 days like this:

X = mulvar_valid.to_numpy()[np.newaxis, :seq_length]
y_pred_14 = seq2seq_model.predict(X)[0, -1]  # only the last time step's output

If you evaluate this model’s forecasts for t + 1, you will find a validation
MAE of 25,519. For t + 2 it’s 26,274, and the performance continues to drop
gradually as the model tries to forecast further into the future. At t + 14, the
MAE is 34,322.

TIP
You can combine both approaches to forecasting multiple steps ahead: for example, you
can train a model that forecasts 14 days ahead, then take its output and append it to the
inputs, then run the model again to get forecasts for the following 14 days, and possibly
repeat the process.

Simple RNNs can be quite good at forecasting time series or handling other
kinds of sequences, but they do not perform as well on long time series or
sequences. Let’s discuss why and see what we can do about it.



Handling Long Sequences
To train an RNN on long sequences, we must run it over many time steps,
making the unrolled RNN a very deep network. Just like any deep neural
network it may suffer from the unstable gradients problem, discussed in
Chapter 11: it may take forever to train, or training may be unstable.
Moreover, when an RNN processes a long sequence, it will gradually forget
the first inputs in the sequence. Let’s look at both these problems, starting
with the unstable gradients problem.



Fighting the Unstable Gradients Problem
Many of the tricks we used in deep nets to alleviate the unstable gradients
problem can also be used for RNNs: good parameter initialization, faster
optimizers, dropout, and so on. However, nonsaturating activation functions
(e.g., ReLU) may not help as much here. In fact, they may actually lead the
RNN to be even more unstable during training. Why? Well, suppose gradient
descent updates the weights in a way that increases the outputs slightly at the
first time step. Because the same weights are used at every time step, the
outputs at the second time step may also be slightly increased, and those at
the third, and so on until the outputs explode—and a nonsaturating activation
function does not prevent that.

You can reduce this risk by using a smaller learning rate, or you can use a
saturating activation function like the hyperbolic tangent (this explains why
it’s the default).

In much the same way, the gradients themselves can explode. If you notice
that training is unstable, you may want to monitor the size of the gradients
(e.g., using TensorBoard) and perhaps use gradient clipping.

Moreover, batch normalization cannot be used as efficiently with RNNs as
with deep feedforward nets. In fact, you cannot use it between time steps,
only between recurrent layers.

To be more precise, it is technically possible to add a BN layer to a memory
cell (as you will see shortly) so that it will be applied at each time step (both
on the inputs for that time step and on the hidden state from the previous
step). However, the same BN layer will be used at each time step, with the
same parameters, regardless of the actual scale and offset of the inputs and
hidden state. In practice, this does not yield good results, as was
demonstrated by César Laurent et al. in a 2015 paper:  the authors found
that BN was slightly beneficial only when it was applied to the layer’s inputs,
not to the hidden states. In other words, it was slightly better than nothing
when applied between recurrent layers (i.e., vertically in Figure 15-10), but
not within recurrent layers (i.e., horizontally). In Keras, you can apply BN
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between layers simply by adding a BatchNormalization layer before each
recurrent layer, but it will slow down training, and it may not help much.

Another form of normalization often works better with RNNs: layer
normalization. This idea was introduced by Jimmy Lei Ba et al. in a 2016
paper:  it is very similar to batch normalization, but instead of normalizing
across the batch dimension, layer normalization normalizes across the
features dimension. One advantage is that it can compute the required
statistics on the fly, at each time step, independently for each instance. This
also means that it behaves the same way during training and testing (as
opposed to BN), and it does not need to use exponential moving averages to
estimate the feature statistics across all instances in the training set, like BN
does. Like BN, layer normalization learns a scale and an offset parameter for
each input. In an RNN, it is typically used right after the linear combination
of the inputs and the hidden states.

Let’s use Keras to implement layer normalization within a simple memory
cell. To do this, we need to define a custom memory cell, which is just like a
regular layer, except its call() method takes two arguments: the inputs at the
current time step and the hidden states from the previous time step.

Note that the states argument is a list containing one or more tensors. In the
case of a simple RNN cell it contains a single tensor equal to the outputs of
the previous time step, but other cells may have multiple state tensors (e.g.,
an LSTMCell has a long-term state and a short-term state, as you will see
shortly). A cell must also have a state_size attribute and an output_size
attribute. In a simple RNN, both are simply equal to the number of units. The
following code implements a custom memory cell that will behave like a
SimpleRNNCell, except it will also apply layer normalization at each time
step:

class LNSimpleRNNCell(tf.keras.layers.Layer):
    def __init__(self, units, activation="tanh", **kwargs):
        super().__init__(**kwargs)
        self.state_size = units
        self.output_size = units
        self.simple_rnn_cell = tf.keras.layers.SimpleRNNCell(units,
                                                             activation=None)
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        self.layer_norm = tf.keras.layers.LayerNormalization()
        self.activation = tf.keras.activations.get(activation)

    def call(self, inputs, states):
        outputs, new_states = self.simple_rnn_cell(inputs, states)
        norm_outputs = self.activation(self.layer_norm(outputs))
        return norm_outputs, [norm_outputs]

Let’s walk through this code:

Our LNSimpleRNNCell class inherits from the tf.keras.layers.Layer
class, just like any custom layer.

The constructor takes the number of units and the desired activation
function and sets the state_size and output_size attributes, then creates a
SimpleRNNCell with no activation function (because we want to
perform layer normalization after the linear operation but before the
activation function).   Then the constructor creates the
LayerNormalization layer, and finally it fetches the desired activation
function.

The call() method starts by applying the simpleRNNCell, which
computes a linear combination of the current inputs and the previous
hidden states, and it returns the result twice (indeed, in a
SimpleRNNCell, the outputs are just equal to the hidden states: in other
words, new_states[0] is equal to outputs, so we can safely ignore
new_states in the rest of the call() method). Next, the call() method
applies layer normalization, followed by the activation function. Finally,
it returns the outputs twice: once as the outputs, and once as the new
hidden states. To use this custom cell, all we need to do is create a
tf.keras.layers.RNN layer, passing it a cell instance:

custom_ln_model = tf.keras.Sequential([
    tf.keras.layers.RNN(LNSimpleRNNCell(32), return_sequences=True,
                        input_shape=[None, 5]),
    tf.keras.layers.Dense(14)
])

Similarly, you could create a custom cell to apply dropout between each time
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step. But there’s a simpler way: most recurrent layers and cells provided by
Keras have dropout and recurrent_dropout hyperparameters: the former
defines the dropout rate to apply to the inputs, and the latter defines the
dropout rate for the hidden states, between time steps. So, there’s no need to
create a custom cell to apply dropout at each time step in an RNN.

With these techniques, you can alleviate the unstable gradients problem and
train an RNN much more efficiently. Now let’s look at how to deal with the
short-term memory problem.

TIP
When forecasting time series, it is often useful to have some error bars along with your
predictions. For this, one approach is to use MC dropout, introduced in Chapter 11: use
recurrent_dropout during training, then keep dropout active at inference time by calling
the model using model(X, training=True). Repeat this several times to get multiple slightly
different forecasts, then compute the mean and standard deviation of these predictions for
each time step.



Tackling the Short-Term Memory Problem
Due to the transformations that the data goes through when traversing an
RNN, some information is lost at each time step. After a while, the RNN’s
state contains virtually no trace of the first inputs. This can be a showstopper.
Imagine Dory the fish  trying to translate a long sentence; by the time
she’s finished reading it, she has no clue how it started. To tackle this
problem, various types of cells with long-term memory have been introduced.
They have proven so successful that the basic cells are not used much
anymore. Let’s first look at the most popular of these long-term memory
cells: the LSTM cell.

LSTM cells

The long short-term memory (LSTM) cell was proposed in 1997   by Sepp
Hochreiter and Jürgen Schmidhuber and gradually improved over the years
by several researchers, such as Alex Graves, Haşim Sak,  and Wojciech
Zaremba.  If you consider the LSTM cell as a black box, it can be used
very much like a basic cell, except it will perform much better; training will
converge faster, and it will detect longer-term patterns in the data. In Keras,
you can simply use the LSTM layer instead of the SimpleRNN layer:

model = tf.keras.Sequential([
    tf.keras.layers.LSTM(32, return_sequences=True, input_shape=[None, 5]),
    tf.keras.layers.Dense(14)
])

Alternatively, you could use the general-purpose tf.keras.layers.RNN layer,
giving it an LSTMCell as an argument. However, the LSTM layer uses an
optimized implementation when running on a GPU (see Chapter 19), so in
general it is preferable to use it (the RNN layer is mostly useful when you
define custom cells, as we did earlier).

So how does an LSTM cell work? Its architecture is shown in Figure 15-12.
If you don’t look at what’s inside the box, the LSTM cell looks exactly like a
regular cell, except that its state is split into two vectors: h  and c  (“c”
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stands for “cell”). You can think of h  as the short-term state and c  as the
long-term state.

Figure 15-12. An LSTM cell

Now let’s open the box! The key idea is that the network can learn what to
store in the long-term state, what to throw away, and what to read from it. As
the long-term state c  traverses the network from left to right, you can see
that it first goes through a forget gate, dropping some memories, and then it
adds some new memories via the addition operation (which adds the
memories that were selected by an input gate). The result c  is sent straight
out, without any further transformation. So, at each time step, some memories
are dropped and some memories are added. Moreover, after the addition
operation, the long-term state is copied and passed through the tanh function,
and then the result is filtered by the output gate. This produces the short-term
state h  (which is equal to the cell’s output for this time step, y ). Now let’s
look at where new memories come from and how the gates work.

First, the current input vector x  and the previous short-term state h  are
fed to four different fully connected layers. They all serve a different

(t) (t)
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purpose:

The main layer is the one that outputs g . It has the usual role of
analyzing the current inputs x  and the previous (short-term) state h .
In a basic cell, there is nothing other than this layer, and its output goes
straight out to y  and h . But in an LSTM cell, this layer’s output does
not go straight out; instead its most important parts are stored in the
long-term state (and the rest is dropped).

The three other layers are gate controllers. Since they use the logistic
activation function, the outputs range from 0 to 1. As you can see, the
gate controllers’ outputs are fed to element-wise multiplication
operations: if they output 0s they close the gate, and if they output 1s
they open it. Specifically:

The forget gate (controlled by f ) controls which parts of the long-
term state should be erased.

The input gate (controlled by i ) controls which parts of g  should
be added to the long-term state.

Finally, the output gate (controlled by o ) controls which parts of
the long-term state should be read and output at this time step, both
to h  and to y .

In short, an LSTM cell can learn to recognize an important input (that’s the
role of the input gate), store it in the long-term state, preserve it for as long as
it is needed (that’s the role of the forget gate), and extract it whenever it is
needed. This explains why these cells have been amazingly successful at
capturing long-term patterns in time series, long texts, audio recordings, and
more.

Equation 15-4 summarizes how to compute the cell’s long-term state, its
short-term state, and its output at each time step for a single instance (the
equations for a whole mini-batch are very similar).

Equation 15-4. LSTM computations
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i (t) = σ ( W xi ⊺ x (t) + W hi ⊺ h (t-1) + b i ) f (t) = σ ( W xf ⊺ x (t) + W hf ⊺
h (t-1) + b f ) o (t) = σ ( W xo ⊺ x (t) + W ho ⊺ h (t-1) + b o ) g (t) = tanh ( W
xg ⊺ x (t) + W hg ⊺ h (t-1) + b g ) c (t) = f (t) ⊗ c (t-1) + i (t) ⊗ g (t) y (t) = h
(t) = o (t) ⊗ tanh ( c (t) )

In this equation:

W , W , W , and W  are the weight matrices of each of the four
layers for their connection to the input vector x .

W , W , W , and W  are the weight matrices of each of the four
layers for their connection to the previous short-term state h .

b , b , b , and b  are the bias terms for each of the four layers. Note that
TensorFlow initializes b  to a vector full of 1s instead of 0s. This
prevents forgetting everything at the beginning of training.

There are several variants of the LSTM cell. One particularly popular variant
is the GRU cell, which we will look at now.

GRU cells

The gated recurrent unit (GRU) cell (see Figure 15-13) was proposed by
Kyunghyun Cho et al. in a 2014 paper  that also introduced the encoder–
decoder network we discussed earlier.

xi xf xo xg

(t)

hi hf ho hg

(t–1)

i f o g

f

14

https://homl.info/97


Figure 15-13. GRU cell

The GRU cell is a simplified version of the LSTM cell, and it seems to
perform just as well  (which explains its growing popularity). These are
the main simplifications:

Both state vectors are merged into a single vector h .

A single gate controller z  controls both the forget gate and the input
gate. If the gate controller outputs a 1, the forget gate is open (= 1) and
the input gate is closed (1 – 1 = 0). If it outputs a 0, the opposite
happens. In other words, whenever a memory must be stored, the
location where it will be stored is erased first. This is actually a frequent
variant to the LSTM cell in and of itself.

There is no output gate; the full state vector is output at every time step.
However, there is a new gate controller r  that controls which part of
the previous state will be shown to the main layer (g ).
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Equation 15-5 summarizes how to compute the cell’s state at each time step
for a single instance.

Equation 15-5. GRU computations

z (t) = σ ( W xz ⊺ x (t) + W hz ⊺ h (t-1) + bz ) r (t) = σ ( W xr ⊺ x (t) + W hr ⊺
h (t-1) + br ) g (t) = tanh W xg ⊺ x (t) + W hg ⊺ ( r (t) ⊗ h (t-1) ) + bg h (t) = z
(t) ⊗ h (t-1) + ( 1 - z (t) ) ⊗ g (t)

Keras provides a tf.keras.layers.GRU layer: using it is just a matter of
replacing SimpleRNN or LSTM with GRU. It also provides a
tf.keras.layers.GRUCell, in case you want to create a custom cell based on a
GRU cell.

LSTM and GRU cells are one of the main reasons behind the success of
RNNs. Yet while they can tackle much longer sequences than simple RNNs,
they still have a fairly limited short-term memory, and they have a hard time
learning long-term patterns in sequences of 100 time steps or more, such as
audio samples, long time series, or long sentences. One way to solve this is to
shorten the input sequences; for example, using 1D convolutional layers.

Using 1D convolutional layers to process sequences

In Chapter 14, we saw that a 2D convolutional layer works by sliding several
fairly small kernels (or filters) across an image, producing multiple 2D
feature maps (one per kernel). Similarly, a 1D convolutional layer slides
several kernels across a sequence, producing a 1D feature map per kernel.
Each kernel will learn to detect a single very short sequential pattern (no
longer than the kernel size). If you use 10 kernels, then the layer’s output will
be composed of 10 1D sequences (all of the same length), or equivalently you
can view this output as a single 10D sequence. This means that you can build
a neural network composed of a mix of recurrent layers and 1D convolutional
layers (or even 1D pooling layers). If you use a 1D convolutional layer with a
stride of 1 and "same" padding, then the output sequence will have the same
length as the input sequence. But if you use "valid" padding or a stride
greater than 1, then the output sequence will be shorter than the input
sequence, so make sure you adjust the targets accordingly.



For example, the following model is the same as earlier, except it starts with a
1D convolutional layer that downsamples the input sequence by a factor of 2,
using a stride of 2. The kernel size is larger than the stride, so all inputs will
be used to compute the layer’s output, and therefore the model can learn to
preserve the useful information, dropping only the unimportant details. By
shortening the sequences the convolutional layer may help the GRU layers
detect longer patterns, so we can afford to double the input sequence length
to 112 days. Note that we must also crop off the first three time steps in the
targets: indeed, the kernel’s size is 4, so the first output of the convolutional
layer will be based on the input time steps 0 to 3, and the first forecasts will
be for time steps 4 to 17 (instead of time steps 1 to 14). Moreover, we must
downsample the targets by a factor of 2, because of the stride:

conv_rnn_model = tf.keras.Sequential([
    tf.keras.layers.Conv1D(filters=32, kernel_size=4, strides=2,
                           activation="relu", input_shape=[None, 5]),
    tf.keras.layers.GRU(32, return_sequences=True),
    tf.keras.layers.Dense(14)
])

longer_train = to_seq2seq_dataset(mulvar_train, seq_length=112,
                                       shuffle=True, seed=42)
longer_valid = to_seq2seq_dataset(mulvar_valid, seq_length=112)
downsampled_train = longer_train.map(lambda X, Y: (X, Y[:, 3::2]))
downsampled_valid = longer_valid.map(lambda X, Y: (X, Y[:, 3::2]))
[...]  # compile and fit the model using the downsampled datasets

If you train and evaluate this model, you will find that it outperforms the
previous model (by a small margin). In fact, it is actually possible to use only
1D convolutional layers and drop the recurrent layers entirely!

WaveNet

In a 2016 paper,  Aaron van den Oord and other DeepMind researchers
introduced a novel architecture called WaveNet. They stacked 1D
convolutional layers, doubling the dilation rate (how spread apart each
neuron’s inputs are) at every layer: the first convolutional layer gets a
glimpse of just two time steps at a time, while the next one sees four time
steps (its receptive field is four time steps long), the next one sees eight time
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steps, and so on (see Figure 15-14). This way, the lower layers learn short-
term patterns, while the higher layers learn long-term patterns. Thanks to the
doubling dilation rate, the network can process extremely large sequences
very efficiently.

Figure 15-14. WaveNet architecture

The authors of the paper actually stacked 10 convolutional layers with
dilation rates of 1, 2, 4, 8, …, 256, 512, then they stacked another group of 10
identical layers (also with dilation rates 1, 2, 4, 8, …, 256, 512), then again
another identical group of 10 layers. They justified this architecture by
pointing out that a single stack of 10 convolutional layers with these dilation
rates will act like a super-efficient convolutional layer with a kernel of size
1,024 (except way faster, more powerful, and using significantly fewer
parameters). They also left-padded the input sequences with a number of
zeros equal to the dilation rate before every layer, to preserve the same
sequence length throughout the network.

Here is how to implement a simplified WaveNet to tackle the same sequences
as earlier:

wavenet_model = tf.keras.Sequential()
wavenet_model.add(tf.keras.layers.Input(shape=[None, 5]))
for rate in (1, 2, 4, 8) * 2:
    wavenet_model.add(tf.keras.layers.Conv1D(
        filters=32, kernel_size=2, padding="causal", activation="relu",
        dilation_rate=rate))
wavenet_model.add(tf.keras.layers.Conv1D(filters=14, kernel_size=1))
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This Sequential model starts with an explicit input layer—this is simpler than
trying to set input_shape only on the first layer. Then it continues with a 1D
convolutional layer using "causal" padding, which is like "same" padding
except that the zeros are appended only at the start of the input sequence,
instead of on both sides. This ensures that the convolutional layer does not
peek into the future when making predictions. Then we add similar pairs of
layers using growing dilation rates: 1, 2, 4, 8, and again 1, 2, 4, 8. Finally, we
add the output layer: a convolutional layer with 14 filters of size 1 and
without any activation function. As we saw earlier, such a convolutional layer
is equivalent to a Dense layer with 14 units. Thanks to the causal padding,
every convolutional layer outputs a sequence of the same length as its input
sequence, so the targets we use during training can be the full 112-day
sequences: no need to crop them or downsample them.

The models we’ve discussed in this section offer similar performance for the
ridership forecasting task, but they may vary significantly depending on the
task and the amount of available data. In the WaveNet paper, the authors
achieved state-of-the-art performance on various audio tasks (hence the name
of the architecture), including text-to-speech tasks, producing incredibly
realistic voices across several languages. They also used the model to
generate music, one audio sample at a time. This feat is all the more
impressive when you realize that a single second of audio can contain tens of
thousands of time steps—even LSTMs and GRUs cannot handle such long
sequences.

WARNING
If you evaluate our best Chicago ridership models on the test period, starting in 2020, you
will find that they perform much worse than expected! Why is that? Well, that’s when the
Covid-19 pandemic started, which greatly affected public transportation. As mentioned
earlier, these models will only work well if the patterns they learned from the past
continue in the future. In any case, before deploying a model to production, verify that it
works well on recent data. And once it’s in production, make sure to monitor its
performance regularly.



With that, you can now tackle all sorts of time series! In Chapter 16, we will
continue to explore RNNs, and we will see how they can tackle various NLP
tasks as well.



Exercises
1. Can you think of a few applications for a sequence-to-sequence RNN?

What about a sequence-to-vector RNN, and a vector-to-sequence RNN?

2. How many dimensions must the inputs of an RNN layer have? What
does each dimension represent? What about its outputs?

3. If you want to build a deep sequence-to-sequence RNN, which RNN
layers should have return_sequences=True? What about a sequence-to-
vector RNN?

4. Suppose you have a daily univariate time series, and you want to
forecast the next seven days. Which RNN architecture should you use?

5. What are the main difficulties when training RNNs? How can you
handle them?

6. Can you sketch the LSTM cell’s architecture?

7. Why would you want to use 1D convolutional layers in an RNN?

8. Which neural network architecture could you use to classify videos?

9. Train a classification model for the SketchRNN dataset, available in
TensorFlow Datasets.

10. Download the Bach chorales dataset and unzip it. It is composed of 382
chorales composed by Johann Sebastian Bach. Each chorale is 100 to
640 time steps long, and each time step contains 4 integers, where each
integer corresponds to a note’s index on a piano (except for the value 0,
which means that no note is played). Train a model—recurrent,
convolutional, or both—that can predict the next time step (four notes),
given a sequence of time steps from a chorale. Then use this model to
generate Bach-like music, one note at a time: you can do this by giving
the model the start of a chorale and asking it to predict the next time
step, then appending these time steps to the input sequence and asking

https://homl.info/bach


the model for the next note, and so on. Also make sure to check out
Google’s Coconet model, which was used for a nice Google doodle
about Bach.

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.

1  Note that many researchers prefer to use the hyperbolic tangent (tanh) activation function in
RNNs rather than the ReLU activation function. For example, see Vu Pham et al.’s 2013 paper
“Dropout Improves Recurrent Neural Networks for Handwriting Recognition”. ReLU-based
RNNs are also possible, as shown in Quoc V. Le et al.’s 2015 paper “A Simple Way to Initialize
Recurrent Networks of Rectified Linear Units”.

2  Nal Kalchbrenner and Phil Blunsom, “Recurrent Continuous Translation Models”, Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Processing (2013): 1700–
1709.

3  The latest data from the Chicago Transit Authority is available at the Chicago Data Portal.

4  There are other more principled approaches to selecting good hyperparameters, based on
analyzing the autocorrelation function (ACF) and partial autocorrelation function (PACF), or
minimizing the AIC or BIC metrics (introduced in Chapter 9) to penalize models that use too
many parameters and reduce the risk of overfitting the data, but grid search is a good place to
start. For more details on the ACF-PACF approach, check out this very nice post by Jason
Brownlee.

5  Note that the validation period starts on the 1st of January 2019, so the first prediction is for the
26th of February 2019, eight weeks later. When we evaluated the baseline models we used
predictions starting on the 1st of March instead, but this should be close enough.

6  Feel free to play around with this model. For example, you can try forecasting both the bus and
rail ridership for the next 14 days. You’ll need to tweak the targets to include both, and make
your model output 28 forecasts instead of 14.

7  César Laurent et al., “Batch Normalized Recurrent Neural Networks”, Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing (2016): 2657–2661.

8  Jimmy Lei Ba et al., “Layer Normalization”, arXiv preprint arXiv:1607.06450 (2016).

9  It would have been simpler to inherit from SimpleRNNCell instead so that we wouldn’t have to
create an internal SimpleRNNCell or handle the state_size and output_size attributes, but the goal
here was to show how to create a custom cell from scratch.

10  A character from the animated movies Finding Nemo and Finding Dory who has short-term
memory loss.

11  Sepp Hochreiter and Jürgen Schmidhuber, “Long Short-Term Memory”, Neural Computation 9,
no. 8 (1997): 1735–1780.
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12  Haşim Sak et al., “Long Short-Term Memory Based Recurrent Neural Network Architectures
for Large Vocabulary Speech Recognition”, arXiv preprint arXiv:1402.1128 (2014).

13  Wojciech Zaremba et al., “Recurrent Neural Network Regularization”, arXiv preprint
arXiv:1409.2329 (2014).

14  Kyunghyun Cho et al., “Learning Phrase Representations Using RNN Encoder–Decoder for
Statistical Machine Translation”, Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (2014): 1724–1734.

15  See Klaus Greff et al., “LSTM: A Search Space Odyssey”, IEEE Transactions on Neural
Networks and Learning Systems 28, no. 10 (2017): 2222–2232.This paper seems to show that all
LSTM variants perform roughly the same.

16  Aaron van den Oord et al., “WaveNet: A Generative Model for Raw Audio”, arXiv preprint
arXiv:1609.03499 (2016).

17  The complete WaveNet uses a few more tricks, such as skip connections like in a ResNet, and
gated activation units similar to those found in a GRU cell. See this chapter’s notebook for more
details.
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Chapter 16. Natural Language
Processing with RNNs and
Attention

When Alan Turing imagined his famous Turing test  in 1950, he proposed a
way to evaluate a machine’s ability to match human intelligence. He could
have tested for many things, such as the ability to recognize cats in pictures,
play chess, compose music, or escape a maze, but, interestingly, he chose a
linguistic task. More specifically, he devised a chatbot capable of fooling its
interlocutor into thinking it was human.   This test does have its
weaknesses: a set of hardcoded rules can fool unsuspecting or naive humans
(e.g., the machine could give vague predefined answers in response to some
keywords, it could pretend that it is joking or drunk to get a pass on its
weirdest answers, or it could escape difficult questions by answering them
with its own questions), and many aspects of human intelligence are utterly
ignored (e.g., the ability to interpret nonverbal communication such as facial
expressions, or to learn a manual task). But the test does highlight the fact
that mastering language is arguably Homo sapiens’s greatest cognitive
ability.

Can we build a machine that can master written and spoken language? This is
the ultimate goal of NLP research, but it’s a bit too broad, so in practice
researchers focus on more specific tasks, such as text classification,
translation, summarization, question answering, and many more.

A common approach for natural language tasks is to use recurrent neural
networks. We will therefore continue to explore RNNs (introduced in
Chapter 15), starting with a character RNN, or char-RNN, trained to predict
the next character in a sentence. This will allow us to generate some original
text. We will first use a stateless RNN (which learns on random portions of
text at each iteration, without any information on the rest of the text), then we
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will build a stateful RNN (which preserves the hidden state between training
iterations and continues reading where it left off, allowing it to learn longer
patterns). Next, we will build an RNN to perform sentiment analysis (e.g.,
reading movie reviews and extracting the rater’s feeling about the movie),
this time treating sentences as sequences of words, rather than characters.
Then we will show how RNNs can be used to build an encoder–decoder
architecture capable of performing neural machine translation (NMT),
translating English to Spanish.

In the second part of this chapter, we will explore attention mechanisms. As
their name suggests, these are neural network components that learn to select
the part of the inputs that the rest of the model should focus on at each time
step. First, we will boost the performance of an RNN-based encoder–decoder
architecture using attention. Next, we will drop RNNs altogether and use a
very successful attention-only architecture, called the transformer, to build a
translation model. We will then discuss some of the most important advances
in NLP in the last few years, including incredibly powerful language models
such as GPT and BERT, both based on transformers. Lastly, I will show you
how to get started with the excellent Transformers library by Hugging Face.

Let’s start with a simple and fun model that can write like Shakespeare (sort
of).



Generating Shakespearean Text Using a Character
RNN
In a famous 2015 blog post titled “The Unreasonable Effectiveness of
Recurrent Neural Networks”, Andrej Karpathy showed how to train an RNN
to predict the next character in a sentence. This char-RNN can then be used to
generate novel text, one character at a time. Here is a small sample of the text
generated by a char-RNN model after it was trained on all of Shakespeare’s
works:

PANDARUS:

Alas, I think he shall be come approached and the day

When little srain would be attain’d into being never fed,

And who is but a chain and subjects of his death,

I should not sleep.

Not exactly a masterpiece, but it is still impressive that the model was able to
learn words, grammar, proper punctuation, and more, just by learning to
predict the next character in a sentence. This is our first example of a
language model; similar (but much more powerful) language models,
discussed later in this chapter, are at the core of modern NLP. In the
remainder of this section we’ll build a char-RNN step by step, starting with
the creation of the dataset.

https://homl.info/charrnn


Creating the Training Dataset
First, using Keras’s handy tf.keras.utils.get_file() function, let’s download all
of Shakespeare’s works. The data is loaded from Andrej Karpathy’s char-rnn
project:

import tensorflow as tf

shakespeare_url = "https://homl.info/shakespeare"  # shortcut URL
filepath = tf.keras.utils.get_file("shakespeare.txt", shakespeare_url)
with open(filepath) as f:
    shakespeare_text = f.read()

Let’s print the first few lines:

>>> print(shakespeare_text[:80])
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

Looks like Shakespeare all right!

Next, we’ll use a tf.keras.layers.TextVectorization layer (introduced in
Chapter 13) to encode this text. We set split="character" to get character-
level encoding rather than the default word-level encoding, and we use
standardize="lower" to convert the text to lowercase (which will simplify the
task):

text_vec_layer = tf.keras.layers.TextVectorization(split="character",
                                                   standardize="lower")
text_vec_layer.adapt([shakespeare_text])
encoded = text_vec_layer([shakespeare_text])[0]

Each character is now mapped to an integer, starting at 2. The
TextVectorization layer reserved the value 0 for padding tokens, and it
reserved 1 for unknown characters. We won’t need either of these tokens for
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now, so let’s subtract 2 from the character IDs and compute the number of
distinct characters and the total number of characters:

encoded -= 2  # drop tokens 0 (pad) and 1 (unknown), which we will not use
n_tokens = text_vec_layer.vocabulary_size() - 2  # number of distinct chars = 39
dataset_size = len(encoded)  # total number of chars = 1,115,394

Next, just like we did in Chapter 15, we can turn this very long sequence into
a dataset of windows that we can then use to train a sequence-to-sequence
RNN. The targets will be similar to the inputs, but shifted by one time step
into the “future”. For example, one sample in the dataset may be a sequence
of character IDs representing the text “to be or not to b” (without the final
“e”), and the corresponding target—a sequence of character IDs representing
the text “o be or not to be” (with the final “e”, but without the leading “t”).
Let’s write a small utility function to convert a long sequence of character
IDs into a dataset of input/target window pairs:

def to_dataset(sequence, length, shuffle=False, seed=None, batch_size=32):
    ds = tf.data.Dataset.from_tensor_slices(sequence)
    ds = ds.window(length + 1, shift=1, drop_remainder=True)
    ds = ds.flat_map(lambda window_ds: window_ds.batch(length + 1))
    if shuffle:
        ds = ds.shuffle(buffer_size=100_000, seed=seed)
    ds = ds.batch(batch_size)
    return ds.map(lambda window: (window[:, :-1], window[:, 1:])).prefetch(1)

This function starts much like the to_windows() custom utility function we
created in Chapter 15:

It takes a sequence as input (i.e., the encoded text), and creates a dataset
containing all the windows of the desired length.

It increases the length by one, since we need the next character for the
target.

Then, it shuffles the windows (optionally), batches them, splits them
into input/output pairs, and activates prefetching.

Figure 16-1 summarizes the dataset preparation steps: it shows windows of



length 11, and a batch size of 3. The start index of each window is indicated
next to it.

Figure 16-1. Preparing a dataset of shuffled windows

Now we’re ready to create the training set, the validation set, and the test set.
We will use roughly 90% of the text for training, 5% for validation, and 5%
for testing:

length = 100
tf.random.set_seed(42)
train_set = to_dataset(encoded[:1_000_000], length=length, shuffle=True,
                       seed=42)
valid_set = to_dataset(encoded[1_000_000:1_060_000], length=length)
test_set = to_dataset(encoded[1_060_000:], length=length)

TIP
We set the window length to 100, but you can try tuning it: it’s easier and faster to train
RNNs on shorter input sequences, but the RNN will not be able to learn any pattern longer
than length, so don’t make it too small.



That’s it! Preparing the dataset was the hardest part. Now let’s create the
model.



Building and Training the Char-RNN Model
Since our dataset is reasonably large, and modeling language is quite a
difficult task, we need more than a simple RNN with a few recurrent neurons.
Let’s build and train a model with one GRU layer composed of 128 units
(you can try tweaking the number of layers and units later, if needed):

model = tf.keras.Sequential([
    tf.keras.layers.Embedding(input_dim=n_tokens, output_dim=16),
    tf.keras.layers.GRU(128, return_sequences=True),
    tf.keras.layers.Dense(n_tokens, activation="softmax")
])
model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
              metrics=["accuracy"])
model_ckpt = tf.keras.callbacks.ModelCheckpoint(
    "my_shakespeare_model", monitor="val_accuracy", save_best_only=True)
history = model.fit(train_set, validation_data=valid_set, epochs=10,
                    callbacks=[model_ckpt])

Let’s go over this code:

We use an Embedding layer as the first layer, to encode the character
IDs (embeddings were introduced in Chapter 13). The Embedding
layer’s number of input dimensions is the number of distinct character
IDs, and the number of output dimensions is a hyperparameter you can
tune—we’ll set it to 16 for now. Whereas the inputs of the Embedding
layer will be 2D tensors of shape [batch size, window length], the output
of the Embedding layer will be a 3D tensor of shape [batch size, window
length, embedding size].

We use a Dense layer for the output layer: it must have 39 units
(n_tokens) because there are 39 distinct characters in the text, and we
want to output a probability for each possible character (at each time
step). The 39 output probabilities should sum up to 1 at each time step,
so we apply the softmax activation function to the outputs of the Dense
layer.

Lastly, we compile this model, using the



"sparse_categorical_crossentropy" loss and a Nadam optimizer, and we
train the model for several epochs,  using a ModelCheckpoint callback
to save the best model (in terms of validation accuracy) as training
progresses.

TIP
If you are running this code on Colab with a GPU activated, then training should take
roughly one to two hours. You can reduce the number of epochs if you don’t want to wait
that long, but of course the model’s accuracy will probably be lower. If the Colab session
times out, make sure to reconnect quickly, or else the Colab runtime will be destroyed.

This model does not handle text preprocessing, so let’s wrap it in a final
model containing the tf.keras.layers.TextVectorization layer as the first layer,
plus a tf.keras.layers.Lambda layer to subtract 2 from the character IDs since
we’re not using the padding and unknown tokens for now:

shakespeare_model = tf.keras.Sequential([
    text_vec_layer,
    tf.keras.layers.Lambda(lambda X: X - 2),  # no <PAD> or <UNK> tokens
    model
])

And now let’s use it to predict the next character in a sentence:

>>> y_proba = shakespeare_model.predict(["To be or not to b"])[0, -1]
>>> y_pred = tf.argmax(y_proba)  # choose the most probable character ID
>>> text_vec_layer.get_vocabulary()[y_pred + 2]
'e'

Great, the model correctly predicted the next character. Now let’s use this
model to pretend we’re Shakespeare!

3



Generating Fake Shakespearean Text
To generate new text using the char-RNN model, we could feed it some text,
make the model predict the most likely next letter, add it to the end of the
text, then give the extended text to the model to guess the next letter, and so
on. This is called greedy decoding. But in practice this often leads to the
same words being repeated over and over again. Instead, we can sample the
next character randomly, with a probability equal to the estimated probability,
using TensorFlow’s tf.random.categorical() function. This will generate more
diverse and interesting text. The categorical() function samples random class
indices, given the class log probabilities (logits). For example:

>>> log_probas = tf.math.log([[0.5, 0.4, 0.1]])  # probas = 50%, 40%, and 10%
>>> tf.random.set_seed(42)
>>> tf.random.categorical(log_probas, num_samples=8)  # draw 8 samples
<tf.Tensor: shape=(1, 8), dtype=int64, numpy=array([[0, 1, 0, 2, 1, 0, 0, 1]])>

To have more control over the diversity of the generated text, we can divide
the logits by a number called the temperature, which we can tweak as we
wish. A temperature close to zero favors high-probability characters, while a
high temperature gives all characters an equal probability. Lower
temperatures are typically preferred when generating fairly rigid and precise
text, such as mathematical equations, while higher temperatures are preferred
when generating more diverse and creative text. The following next_char()
custom helper function uses this approach to pick the next character to add to
the input text:

def next_char(text, temperature=1):
    y_proba = shakespeare_model.predict([text])[0, -1:]
    rescaled_logits = tf.math.log(y_proba) / temperature
    char_id = tf.random.categorical(rescaled_logits, num_samples=1)[0, 0]
    return text_vec_layer.get_vocabulary()[char_id + 2]

Next, we can write another small helper function that will repeatedly call
next_char() to get the next character and append it to the given text:



def extend_text(text, n_chars=50, temperature=1):
    for _ in range(n_chars):
        text += next_char(text, temperature)
    return text

We are now ready to generate some text! Let’s try with different temperature
values:

>>> tf.random.set_seed(42)
>>> print(extend_text("To be or not to be", temperature=0.01))
To be or not to be the duke
as it is a proper strange death,
and the
>>> print(extend_text("To be or not to be", temperature=1))
To be or not to behold?

second push:
gremio, lord all, a sistermen,
>>> print(extend_text("To be or not to be", temperature=100))
To be or not to bef ,mt'&o3fpadm!$
wh!nse?bws3est--vgerdjw?c-y-ewznq

Shakespeare seems to be suffering from a heatwave. To generate more
convincing text, a common technique is to sample only from the top k
characters, or only from the smallest set of top characters whose total
probability exceeds some threshold (this is called nucleus sampling).
Alternatively, you could try using beam search, which we will discuss later
in this chapter, or using more GRU layers and more neurons per layer,
training for longer, and adding some regularization if needed. Also note that
the model is currently incapable of learning patterns longer than length,
which is just 100 characters. You could try making this window larger, but it
will also make training harder, and even LSTM and GRU cells cannot handle
very long sequences. An alternative approach is to use a stateful RNN.



Stateful RNN
Until now, we have only used stateless RNNs: at each training iteration the
model starts with a hidden state full of zeros, then it updates this state at each
time step, and after the last time step, it throws it away as it is not needed
anymore. What if we instructed the RNN to preserve this final state after
processing a training batch and use it as the initial state for the next training
batch? This way the model could learn long-term patterns despite only
backpropagating through short sequences. This is called a stateful RNN. Let’s
go over how to build one.

First, note that a stateful RNN only makes sense if each input sequence in a
batch starts exactly where the corresponding sequence in the previous batch
left off. So the first thing we need to do to build a stateful RNN is to use
sequential and nonoverlapping input sequences (rather than the shuffled and
overlapping sequences we used to train stateless RNNs). When creating the
tf.data.Dataset, we must therefore use shift=length (instead of shift=1) when
calling the window() method. Moreover, we must not call the shuffle()
method.

Unfortunately, batching is much harder when preparing a dataset for a
stateful RNN than it is for a stateless RNN. Indeed, if we were to call
batch(32), then 32 consecutive windows would be put in the same batch, and
the following batch would not continue each of these windows where it left
off. The first batch would contain windows 1 to 32 and the second batch
would contain windows 33 to 64, so if you consider, say, the first window of
each batch (i.e., windows 1 and 33), you can see that they are not
consecutive. The simplest solution to this problem is to just use a batch size
of 1. The following to_dataset_for_stateful_rnn() custom utility function uses
this strategy to prepare a dataset for a stateful RNN:

def to_dataset_for_stateful_rnn(sequence, length):
    ds = tf.data.Dataset.from_tensor_slices(sequence)
    ds = ds.window(length + 1, shift=length, drop_remainder=True)
    ds = ds.flat_map(lambda window: window.batch(length + 1)).batch(1)
    return ds.map(lambda window: (window[:, :-1], window[:, 1:])).prefetch(1)



stateful_train_set = to_dataset_for_stateful_rnn(encoded[:1_000_000], length)
stateful_valid_set = to_dataset_for_stateful_rnn(encoded[1_000_000:1_060_000],
                                                 length)
stateful_test_set = to_dataset_for_stateful_rnn(encoded[1_060_000:], length)

Figure 16-2 summarizes the main steps of this function.

Figure 16-2. Preparing a dataset of consecutive sequence fragments for a stateful RNN

Batching is harder, but it is not impossible. For example, we could chop
Shakespeare’s text into 32 texts of equal length, create one dataset of
consecutive input sequences for each of them, and finally use
tf.data.Dataset.zip(datasets).map(lambda *windows: tf.stack(windows)) to
create proper consecutive batches, where the n  input sequence in a batch
starts off exactly where the n  input sequence ended in the previous batch
(see the notebook for the full code).

Now, let’s create the stateful RNN. We need to set the stateful argument to
True when creating each recurrent layer, and because the stateful RNN needs
to know the batch size (since it will preserve a state for each input sequence
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in the batch). Therefore we must set the batch_input_shape argument in the
first layer. Note that we can leave the second dimension unspecified, since
the input sequences could have any length:

model = tf.keras.Sequential([
    tf.keras.layers.Embedding(input_dim=n_tokens, output_dim=16,
                              batch_input_shape=[1, None]),
    tf.keras.layers.GRU(128, return_sequences=True, stateful=True),
    tf.keras.layers.Dense(n_tokens, activation="softmax")
])

At the end of each epoch, we need to reset the states before we go back to the
beginning of the text. For this, we can use a small custom Keras callback:

class ResetStatesCallback(tf.keras.callbacks.Callback):
    def on_epoch_begin(self, epoch, logs):
        self.model.reset_states()

And now we can compile the model and train it using our callback:

model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
              metrics=["accuracy"])
history = model.fit(stateful_train_set, validation_data=stateful_valid_set,
                    epochs=10, callbacks=[ResetStatesCallback(), model_ckpt])

TIP
After this model is trained, it will only be possible to use it to make predictions for batches
of the same size as were used during training. To avoid this restriction, create an identical
stateless model, and copy the stateful model’s weights to this model.

Interestingly, although a char-RNN model is just trained to predict the next
character, this seemingly simple task actually requires it to learn some higher-
level tasks as well. For example, to find the next character after “Great
movie, I really”, it’s helpful to understand that the sentence is positive, so
what follows is more likely to be the letter “l” (for “loved”) rather than “h”
(for “hated”). In fact, a 2017 paper  by Alec Radford and other OpenAI4

https://homl.info/sentimentneuron


researchers describes how the authors trained a big char-RNN-like model on
a large dataset, and found that one of the neurons acted as an excellent
sentiment analysis classifier: although the model was trained without any
labels, the sentiment neuron—as they called it—reached state-of-the-art
performance on sentiment analysis benchmarks. This foreshadowed and
motivated unsupervised pretraining in NLP.

But before we explore unsupervised pretraining, let’s turn our attention to
word-level models and how to use them in a supervised fashion for sentiment
analysis. In the process, you will learn how to handle sequences of variable
lengths using masking.



Sentiment Analysis
Generating text can be fun and instructive, but in real-life projects, one of the
most common applications of NLP is text classification—especially
sentiment analysis. If image classification on the MNIST dataset is the “Hello
world!” of computer vision, then sentiment analysis on the IMDb reviews
dataset is the “Hello world!” of natural language processing. The IMDb
dataset consists of 50,000 movie reviews in English (25,000 for training,
25,000 for testing) extracted from the famous Internet Movie Database, along
with a simple binary target for each review indicating whether it is negative
(0) or positive (1). Just like MNIST, the IMDb reviews dataset is popular for
good reasons: it is simple enough to be tackled on a laptop in a reasonable
amount of time, but challenging enough to be fun and rewarding.

Let’s load the IMDb dataset using the TensorFlow Datasets library
(introduced in Chapter 13). We’ll use the first 90% of the training set for
training, and the remaining 10% for validation:

import tensorflow_datasets as tfds

raw_train_set, raw_valid_set, raw_test_set = tfds.load(
    name="imdb_reviews",
    split=["train[:90%]", "train[90%:]", "test"],
    as_supervised=True
)
tf.random.set_seed(42)
train_set = raw_train_set.shuffle(5000, seed=42).batch(32).prefetch(1)
valid_set = raw_valid_set.batch(32).prefetch(1)
test_set = raw_test_set.batch(32).prefetch(1)

TIP
Keras also includes a function for loading the IMDb dataset, if you prefer:
tf.keras.datasets.imdb.load_data(). The reviews are already preprocessed as sequences of
word IDs.

https://imdb.com


Let’s inspect a few reviews:

>>> for review, label in raw_train_set.take(4):
...     print(review.numpy().decode("utf-8"))
...     print("Label:", label.numpy())
...
This was an absolutely terrible movie. Don't be lured in by Christopher [...]
Label: 0
I have been known to fall asleep during films, but this is usually due to [...]
Label: 0
Mann photographs the Alberta Rocky Mountains in a superb fashion, and [...]
Label: 0
This is the kind of film for a snowy Sunday afternoon when the rest of the [...]
Label: 1

Some reviews are easy to classify. For example, the first review includes the
words “terrible movie” in the very first sentence. But in many cases things
are not that simple. For example, the third review starts off positively, even
though it’s ultimately a negative review (label 0).

To build a model for this task, we need to preprocess the text, but this time
we will chop it into words instead of characters. For this, we can use the
tf.keras.lay ers.TextVectorization layer again. Note that it uses spaces to
identify word boundaries, which will not work well in some languages. For
example, Chinese writing does not use spaces between words, Vietnamese
uses spaces even within words, and German often attaches multiple words
together, without spaces. Even in English, spaces are not always the best way
to tokenize text: think of “San Francisco” or “#ILoveDeepLearning”.

Fortunately, there are solutions to address these issues. In a 2016 paper,
Rico Sennrich et al. from the University of Edinburgh explored several
methods to tokenize and detokenize text at the subword level. This way, even
if your model encounters a rare word it has never seen before, it can still
reasonably guess what it means. For example, even if the model never saw
the word “smartest” during training, if it learned the word “smart” and it also
learned that the suffix “est” means “the most”, it can infer the meaning of
“smartest”. One of the techniques the authors evaluated is byte pair encoding
(BPE). BPE works by splitting the whole training set into individual
characters (including spaces), then repeatedly merging the most frequent
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adjacent pairs until the vocabulary reaches the desired size.

A 2018 paper  by Taku Kudo at Google further improved subword
tokenization, often removing the need for language-specific preprocessing
prior to tokenization. Moreover, the paper proposed a novel regularization
technique called subword regularization, which improves accuracy and
robustness by introducing some randomness in tokenization during training:
for example, “New England” may be tokenized as “New” + “England”, or
“New” + “Eng” + “land”, or simply “New England” (just one token).
Google’s SentencePiece project provides an open source implementation,
which is described in a paper  by Taku Kudo and John Richardson.

The TensorFlow Text library also implements various tokenization strategies,
including WordPiece  (a variant of BPE), and last but not least, the
Tokenizers library by Hugging Face implements a wide range of extremely
fast tokenizers.

However, for the IMDb task in English, using spaces for token boundaries
should be good enough. So let’s go ahead with creating a TextVectorization
layer and adapting it to the training set. We will limit the vocabulary to 1,000
tokens, including the most frequent 998 words plus a padding token and a
token for unknown words, since it’s unlikely that very rare words will be
important for this task, and limiting the vocabulary size will reduce the
number of parameters the model needs to learn:

vocab_size = 1000
text_vec_layer = tf.keras.layers.TextVectorization(max_tokens=vocab_size)
text_vec_layer.adapt(train_set.map(lambda reviews, labels: reviews))

Finally, we can create the model and train it:

embed_size = 128
tf.random.set_seed(42)
model = tf.keras.Sequential([
    text_vec_layer,
    tf.keras.layers.Embedding(vocab_size, embed_size),
    tf.keras.layers.GRU(128),
    tf.keras.layers.Dense(1, activation="sigmoid")
])
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model.compile(loss="binary_crossentropy", optimizer="nadam",
              metrics=["accuracy"])
history = model.fit(train_set, validation_data=valid_set, epochs=2)

The first layer is the TextVectorization layer we just prepared, followed by an
Embedding layer that will convert word IDs into embeddings. The
embedding matrix needs to have one row per token in the vocabulary
(vocab_size) and one column per embedding dimension (this example uses
128 dimensions, but this is a hyperparameter you could tune). Next we use a
GRU layer and a Dense layer with a single neuron and the sigmoid activation
function, since this is a binary classification task: the model’s output will be
the estimated probability that the review expresses a positive sentiment
regarding the movie. We then compile the model, and we fit it on the dataset
we prepared earlier for a couple of epochs (or you can train for longer to get
better results).

Sadly, if you run this code, you will generally find that the model fails to
learn anything at all: the accuracy remains close to 50%, no better than
random chance. Why is that? The reviews have different lengths, so when the
TextVectorization layer converts them to sequences of token IDs, it pads the
shorter sequences using the padding token (with ID 0) to make them as long
as the longest sequence in the batch. As a result, most sequences end with
many padding tokens—often dozens or even hundreds of them. Even though
we’re using a GRU layer, which is much better than a SimpleRNN layer, its
short-term memory is still not great, so when it goes through many padding
tokens, it ends up forgetting what the review was about! One solution is to
feed the model with batches of equal-length sentences (which also speeds up
training). Another solution is to make the RNN ignore the padding tokens.
This can be done using masking.



Masking
Making the model ignore padding tokens is trivial using Keras: simply add
mask_zero=True when creating the Embedding layer. This means that
padding tokens (whose ID is 0) will be ignored by all downstream layers.
That’s all! If you retrain the previous model for a few epochs, you will find
that the validation accuracy quickly reaches over 80%.

The way this works is that the Embedding layer creates a mask tensor equal
to tf.math.not_equal(inputs, 0): it is a Boolean tensor with the same shape as
the inputs, and it is equal to False anywhere the token IDs are 0, or True
otherwise. This mask tensor is then automatically propagated by the model to
the next layer. If that layer’s call() method has a mask argument, then it
automatically receives the mask. This allows the layer to ignore the
appropriate time steps. Each layer may handle the mask differently, but in
general they simply ignore masked time steps (i.e., time steps for which the
mask is False). For example, when a recurrent layer encounters a masked
time step, it simply copies the output from the previous time step.

Next, if the layer’s supports_masking attribute is True, then the mask is
automatically propagated to the next layer. It keeps propagating this way for
as long as the layers have supports_masking=True. As an example, a
recurrent layer’s supports_mask  ing attribute is True when
return_sequences=True, but it’s False when return_sequen ces=False since
there’s no need for a mask anymore in this case. So if you have a model with
several recurrent layers with return_sequences=True, followed by a recurrent
layer with return_sequences=False, then the mask will automatically
propagate up to the last recurrent layer: that layer will use the mask to ignore
masked steps, but it will not propagate the mask any further. Similarly, if you
set mask_zero=True when creating the Embedding layer in the sentiment
analysis model we just built, then the GRU layer will receive and use the
mask automatically, but it will not propagate it any further, since
return_sequences is not set to True.



TIP
Some layers need to update the mask before propagating it to the next layer: they do so by
implementing the compute_mask() method, which takes two arguments: the inputs and the
previous mask. It then computes the updated mask and returns it. The default
implementation of compute_mask() just returns the previous mask unchanged.

Many Keras layers support masking: SimpleRNN, GRU, LSTM,
Bidirectional, Dense, TimeDistributed, Add, and a few others (all in the
tf.keras.layers package). However, convolutional layers (including Conv1D)
do not support masking—it’s not obvious how they would do so anyway.

If the mask propagates all the way to the output, then it gets applied to the
losses as well, so the masked time steps will not contribute to the loss (their
loss will be 0). This assumes that the model outputs sequences, which is not
the case in our sentiment analysis model.

WARNING
The LSTM and GRU layers have an optimized implementation for GPUs, based on
Nvidia’s cuDNN library. However, this implementation only supports masking if all the
padding tokens are at the end of the sequences. It also requires you to use the default
values for several hyperparameters: activation, recurrent_activation, recurrent_dropout,
unroll, use_bias, and reset_after. If that’s not the case, then these layers will fall back to
the (much slower) default GPU implementation.

If you want to implement your own custom layer with masking support, you
should add a mask argument to the call() method, and obviously make the
method use the mask. Additionally, if the mask must be propagated to the
next layers, then you should set self.supports_masking=True in the
constructor. If the mask must be updated before it is propagated, then you
must implement the compute_mask() method.

If your model does not start with an Embedding layer, you may use the tf.
keras.layers.Masking layer instead: by default, it sets the mask to tf.math.
reduce_any(tf.math.not_equal(X, 0), axis=-1), meaning that time steps where



the last dimension is full of zeros will be masked out in subsequent layers.

Using masking layers and automatic mask propagation works best for simple
models. It will not always work for more complex models, such as when you
need to mix Conv1D layers with recurrent layers. In such cases, you will
need to explicitly compute the mask and pass it to the appropriate layers,
using either the functional API or the subclassing API. For example, the
following model is equivalent to the previous model, except it is built using
the functional API and handles masking manually. It also adds a bit of
dropout since the previous model was overfitting slightly:

inputs = tf.keras.layers.Input(shape=[], dtype=tf.string)
token_ids = text_vec_layer(inputs)
mask = tf.math.not_equal(token_ids, 0)
Z = tf.keras.layers.Embedding(vocab_size, embed_size)(token_ids)
Z = tf.keras.layers.GRU(128, dropout=0.2)(Z, mask=mask)
outputs = tf.keras.layers.Dense(1, activation="sigmoid")(Z)
model = tf.keras.Model(inputs=[inputs], outputs=[outputs])

One last approach to masking is to feed the model with ragged tensors.   In
practice, all you need to do is to set ragged=True when creating the
TextVectorization layer, so that the input sequences are represented as ragged
tensors:

>>> text_vec_layer_ragged = tf.keras.layers.TextVectorization(
...     max_tokens=vocab_size, ragged=True)
...
>>> text_vec_layer_ragged.adapt(train_set.map(lambda reviews, labels: reviews))
>>> text_vec_layer_ragged(["Great movie!", "This is DiCaprio's best role."])
<tf.RaggedTensor [[86, 18], [11, 7, 1, 116, 217]]>

Compare this ragged tensor representation with the regular tensor
representation, which uses padding tokens:

>>> text_vec_layer(["Great movie!", "This is DiCaprio's best role."])
<tf.Tensor: shape=(2, 5), dtype=int64, numpy=
array([[ 86,  18,   0,   0,   0],
       [ 11,   7,   1, 116, 217]])>

9



Keras’s recurrent layers have built-in support for ragged tensors, so there’s
nothing else you need to do: just use this TextVectorization layer in your
model. There’s no need to pass mask_zero=True or handle masks explicitly
—it’s all implemented for you. That’s convenient! However, as of early
2022, the support for ragged tensors in Keras is still fairly recent, so there are
a few rough edges. For example, it is currently not possible to use ragged
tensors as targets when running on the GPU (but this may be resolved by the
time you read these lines).

Whichever masking approach you prefer, after training this model for a few
epochs, it will become quite good at judging whether a review is positive or
not. If you use the tf.keras.callbacks.TensorBoard() callback, you can
visualize the embeddings in TensorBoard as they are being learned: it is
fascinating to see words like “awesome” and “amazing” gradually cluster on
one side of the embedding space, while words like “awful” and “terrible”
cluster on the other side. Some words are not as positive as you might expect
(at least with this model), such as the word “good”, presumably because
many negative reviews contain the phrase “not good”.



Reusing Pretrained Embeddings and Language Models
It’s impressive that the model is able to learn useful word embeddings based
on just 25,000 movie reviews. Imagine how good the embeddings would be if
we had billions of reviews to train on! Unfortunately, we don’t, but perhaps
we can reuse word embeddings trained on some other (very) large text corpus
(e.g., Amazon reviews, available on TensorFlow Datasets), even if it is not
composed of movie reviews? After all, the word “amazing” generally has the
same meaning whether you use it to talk about movies or anything else.
Moreover, perhaps embeddings would be useful for sentiment analysis even
if they were trained on another task: since words like “awesome” and
“amazing” have a similar meaning, they will likely cluster in the embedding
space even for tasks such as predicting the next word in a sentence. If all
positive words and all negative words form clusters, then this will be helpful
for sentiment analysis. So, instead of training word embeddings, we could
just download and use pretrained embeddings, such as Google’s Word2vec
embeddings, Stanford’s GloVe embeddings, or Facebook’s FastText
embeddings.

Using pretrained word embeddings was popular for several years, but this
approach has its limits. In particular, a word has a single representation, no
matter the context. For example, the word “right” is encoded the same way in
“left and right” and “right and wrong”, even though it means two very
different things. To address this limitation, a 2018 paper  by Matthew Peters
introduced Embeddings from Language Models (ELMo): these are
contextualized word embeddings learned from the internal states of a deep
bidirectional language model. Instead of just using pretrained embeddings in
your model, you reuse part of a pretrained language model.

At roughly the same time, the Universal Language Model Fine-Tuning
(ULMFiT) paper  by Jeremy Howard and Sebastian Ruder demonstrated the
effectiveness of unsupervised pretraining for NLP tasks: the authors trained
an LSTM language model on a huge text corpus using self-supervised
learning (i.e., generating the labels automatically from the data), then they
fine-tuned it on various tasks. Their model outperformed the state of the art
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on six text classification tasks by a large margin (reducing the error rate by
18–24% in most cases). Moreover, the authors showed a pretrained model
fine-tuned on just 100 labeled examples could achieve the same performance
as one trained from scratch on 10,000 examples. Before the ULMFiT paper,
using pretrained models was only the norm in computer vision; in the context
of NLP, pretraining was limited to word embeddings. This paper marked the
beginning of a new era in NLP: today, reusing pretrained language models is
the norm.

For example, let’s build a classifier based on the Universal Sentence Encoder,
a model architecture introduced in a 2018 paper  by a team of Google
researchers. This model is based on the transformer architecture, which we
will look at later in this chapter. Conveniently, the model is available on
TensorFlow Hub:

import os
import tensorflow_hub as hub

os.environ["TFHUB_CACHE_DIR"] = "my_tfhub_cache"
model = tf.keras.Sequential([
    hub.KerasLayer("https://tfhub.dev/google/universal-sentence-encoder/4",
                   trainable=True, dtype=tf.string, input_shape=[]),
    tf.keras.layers.Dense(64, activation="relu"),
    tf.keras.layers.Dense(1, activation="sigmoid")
])
model.compile(loss="binary_crossentropy", optimizer="nadam",
              metrics=["accuracy"])
model.fit(train_set, validation_data=valid_set, epochs=10)

TIP
This model is quite large—close to 1 GB in size—so it may take a while to download. By
default, TensorFlow Hub modules are saved to a temporary directory, and they get
downloaded again and again every time you run your program. To avoid that, you must set
the TFHUB_CACHE_DIR environment variable to a directory of your choice: the
modules will then be saved there, and only downloaded once.

Note that the last part of the TensorFlow Hub module URL specifies that we
want version 4 of the model. This versioning ensures that if a new module
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version is released on TF Hub, it will not break our model. Conveniently, if
you just enter this URL in a web browser, you will get the documentation for
this module.

Also note that we set trainable=True when creating the hub.KerasLayer. This
way, the pretrained Universal Sentence Encoder is fine-tuned during training:
some of its weights are tweaked via backprop. Not all TensorFlow Hub
modules are fine-tunable, so make sure to check the documentation for each
pretrained module you’re interested in.

After training, this model should reach a validation accuracy of over 90%.
That’s actually really good: if you try to perform the task yourself, you will
probably do only marginally better since many reviews contain both positive
and negative comments. Classifying these ambiguous reviews is like flipping
a coin.

So far we have looked at text generation using a char-RNN, and sentiment
analysis with word-level RNN models (based on trainable embeddings) and
using a powerful pretrained language model from TensorFlow Hub. In the
next section, we will explore another important NLP task: neural machine
translation (NMT).



An Encoder–Decoder Network for Neural Machine
Translation
Let’s begin with a simple NMT model  that will translate English sentences
to Spanish (see Figure 16-3).

In short, the architecture is as follows: English sentences are fed as inputs to
the encoder, and the decoder outputs the Spanish translations. Note that the
Spanish translations are also used as inputs to the decoder during training, but
shifted back by one step. In other words, during training the decoder is given
as input the word that it should have output at the previous step, regardless of
what it actually output. This is called teacher forcing—a technique that
significantly speeds up training and improves the model’s performance. For
the very first word, the decoder is given the start-of-sequence (SOS) token,
and the decoder is expected to end the sentence with an end-of-sequence
(EOS) token.

Each word is initially represented by its ID (e.g., 854 for the word “soccer”).
Next, an Embedding layer returns the word embedding. These word
embeddings are then fed to the encoder and the decoder.

At each step, the decoder outputs a score for each word in the output
vocabulary (i.e., Spanish), then the softmax activation function turns these
scores into probabilities. For example, at the first step the word “Me” may
have a probability of 7%, “Yo” may have a probability of 1%, and so on. The
word with the highest probability is output. This is very much like a regular
classification task, and indeed you can train the model using the
"sparse_categorical_crossentropy" loss, much like we did in the char-RNN
model.
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Figure 16-3. A simple machine translation model

Note that at inference time (after training), you will not have the target
sentence to feed to the decoder. Instead, you need to feed it the word that it
has just output at the previous step, as shown in Figure 16-4 (this will require
an embedding lookup that is not shown in the diagram).

TIP
In a 2015 paper,  Samy Bengio et al. proposed gradually switching from feeding the
decoder the previous target token to feeding it the previous output token during training.
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Figure 16-4. At inference time, the decoder is fed as input the word it just output at the previous time
step

Let’s build and train this model! First, we need to download a dataset of
English/Spanish sentence pairs:

url = "https://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip"
path = tf.keras.utils.get_file("spa-eng.zip", origin=url, cache_dir="datasets",
                               extract=True)
text = (Path(path).with_name("spa-eng") / "spa.txt").read_text()

Each line contains an English sentence and the corresponding Spanish
translation, separated by a tab. We’ll start by removing the Spanish characters
“¡” and “¿”, which the TextVectorization layer doesn’t handle, then we will
parse the sentence pairs and shuffle them. Finally, we will split them into two
separate lists, one per language:

import numpy as np

text = text.replace("¡", "").replace("¿", "")
pairs = [line.split("\t") for line in text.splitlines()]
np.random.shuffle(pairs)
sentences_en, sentences_es = zip(*pairs)  # separates the pairs into 2 lists

Let’s take a look at the first three sentence pairs:
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>>> for i in range(3):
...     print(sentences_en[i], "=>", sentences_es[i])
...
How boring! => Qué aburrimiento!
I love sports. => Adoro el deporte.
Would you like to swap jobs? => Te gustaría que intercambiemos los trabajos?

Next, let’s create two TextVectorization layers—one per language—and
adapt them to the text:

vocab_size = 1000
max_length = 50
text_vec_layer_en = tf.keras.layers.TextVectorization(
    vocab_size, output_sequence_length=max_length)
text_vec_layer_es = tf.keras.layers.TextVectorization(
    vocab_size, output_sequence_length=max_length)
text_vec_layer_en.adapt(sentences_en)
text_vec_layer_es.adapt([f"startofseq {s} endofseq" for s in sentences_es])

There are a few things to note here:

We limit the vocabulary size to 1,000, which is quite small. That’s
because the training set is not very large, and because using a small
value will speed up training. State-of-the-art translation models typically
use a much larger vocabulary (e.g., 30,000), a much larger training set
(gigabytes), and a much larger model (hundreds or even thousands of
megabytes). For example, check out the Opus-MT models by the
University of Helsinki, or the M2M-100 model by Facebook.

Since all sentences in the dataset have a maximum of 50 words, we set
output_sequence_length to 50: this way the input sequences will
automatically be padded with zeros until they are all 50 tokens long. If
there was any sentence longer than 50 tokens in the training set, it would
be cropped to 50 tokens.

For the Spanish text, we add “startofseq” and “endofseq” to each
sentence when adapting the TextVectorization layer: we will use these
words as SOS and EOS tokens. You could use any other words, as long
as they are not actual Spanish words.



Let’s inspect the first 10 tokens in both vocabularies. They start with the
padding token, the unknown token, the SOS and EOS tokens (only in the
Spanish vocabulary), then the actual words, sorted by decreasing frequency:

>>> text_vec_layer_en.get_vocabulary()[:10]
['', '[UNK]', 'the', 'i', 'to', 'you', 'tom', 'a', 'is', 'he']
>>> text_vec_layer_es.get_vocabulary()[:10]
['', '[UNK]', 'startofseq', 'endofseq', 'de', 'que', 'a', 'no', 'tom', 'la']

Next, let’s create the training set and the validation set (you could also create
a test set if you needed it). We will use the first 100,000 sentence pairs for
training, and the rest for validation. The decoder’s inputs are the Spanish
sentences plus an SOS token prefix. The targets are the Spanish sentences
plus an EOS suffix:

X_train = tf.constant(sentences_en[:100_000])
X_valid = tf.constant(sentences_en[100_000:])
X_train_dec = tf.constant([f"startofseq {s}" for s in sentences_es[:100_000]])
X_valid_dec = tf.constant([f"startofseq {s}" for s in sentences_es[100_000:]])
Y_train = text_vec_layer_es([f"{s} endofseq" for s in sentences_es[:100_000]])
Y_valid = text_vec_layer_es([f"{s} endofseq" for s in sentences_es[100_000:]])

OK, we’re now ready to build our translation model. We will use the
functional API for that since the model is not sequential. It requires two text
inputs—one for the encoder and one for the decoder—so let’s start with that:

encoder_inputs = tf.keras.layers.Input(shape=[], dtype=tf.string)
decoder_inputs = tf.keras.layers.Input(shape=[], dtype=tf.string)

Next, we need to encode these sentences using the TextVectorization layers
we prepared earlier, followed by an Embedding layer for each language, with
mask_zero=True to ensure masking is handled automatically. The embedding
size is a hyperparameter you can tune, as always:

embed_size = 128
encoder_input_ids = text_vec_layer_en(encoder_inputs)
decoder_input_ids = text_vec_layer_es(decoder_inputs)
encoder_embedding_layer = tf.keras.layers.Embedding(vocab_size, embed_size,
                                                    mask_zero=True)



decoder_embedding_layer = tf.keras.layers.Embedding(vocab_size, embed_size,
                                                    mask_zero=True)
encoder_embeddings = encoder_embedding_layer(encoder_input_ids)
decoder_embeddings = decoder_embedding_layer(decoder_input_ids)

TIP
When the languages share many words, you may get better performance using the same
embedding layer for both the encoder and the decoder.

Now let’s create the encoder and pass it the embedded inputs:

encoder = tf.keras.layers.LSTM(512, return_state=True)
encoder_outputs, *encoder_state = encoder(encoder_embeddings)

To keep things simple, we just used a single LSTM layer, but you could stack
several of them. We also set return_state=True to get a reference to the
layer’s final state. Since we’re using an LSTM layer, there are actually two
states: the short-term state and the long-term state. The layer returns these
states separately, which is why we had to write *encoder_state to group both
states in a list.  Now we can use this (double) state as the initial state of
the decoder:

decoder = tf.keras.layers.LSTM(512, return_sequences=True)
decoder_outputs = decoder(decoder_embeddings, initial_state=encoder_state)

Next, we can pass the decoder’s outputs through a Dense layer with the
softmax activation function to get the word probabilities for each step:

output_layer = tf.keras.layers.Dense(vocab_size, activation="softmax")
Y_proba = output_layer(decoder_outputs)

OPTIMIZING THE OUTPUT LAYER

When the output vocabulary is large, outputting a probability for each
and every possible word can be quite slow. If the target vocabulary
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contained, say, 50,000 Spanish words instead of 1,000, then the decoder
would output 50,000-dimensional vectors, and computing the softmax
function over such a large vector would be very computationally
intensive. To avoid this, one solution is to look only at the logits output
by the model for the correct word and for a random sample of incorrect
words, then compute an approximation of the loss based only on these
logits. This sampled softmax technique was introduced in 2015 by
Sébastien Jean et al.  In TensorFlow you can use the
tf.nn.sampled_softmax_loss() function for this during training and use the
normal softmax function at inference time (sampled softmax cannot be
used at inference time because it requires knowing the target).

Another thing you can do to speed up training—which is compatible with
sampled softmax—is to tie the weights of the output layer to the
transpose of the decoder’s embedding matrix (you will see how to tie
weights in Chapter 17). This significantly reduces the number of model
parameters, which speeds up training and may sometimes improve the
model’s accuracy as well, especially if you don’t have a lot of training
data. The embedding matrix is equivalent to one-hot encoding followed
by a linear layer with no bias term and no activation function that maps
the one-hot vectors to the embedding space. The output layer does the
reverse. So, if the model can find an embedding matrix whose transpose
is close to its inverse (such a matrix is called an orthogonal matrix), then
there’s no need to learn a separate set of weights for the output layer.

And that’s it! We just need to create the Keras Model, compile it, and train it:

model = tf.keras.Model(inputs=[encoder_inputs, decoder_inputs],
                       outputs=[Y_proba])
model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
              metrics=["accuracy"])
model.fit((X_train, X_train_dec), Y_train, epochs=10,
          validation_data=((X_valid, X_valid_dec), Y_valid))

After training, we can use the model to translate new English sentences to
Spanish. But it’s not as simple as calling model.predict(), because the
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decoder expects as input the word that was predicted at the previous time
step. One way to do this is to write a custom memory cell that keeps track of
the previous output and feeds it to the encoder at the next time step.
However, to keep things simple, we can just call the model multiple times,
predicting one extra word at each round. Let’s write a little utility function for
that:

def translate(sentence_en):
    translation = ""
    for word_idx in range(max_length):
        X = np.array([sentence_en])  # encoder input
        X_dec = np.array(["startofseq " + translation])  # decoder input
        y_proba = model.predict((X, X_dec))[0, word_idx]  # last token's probas
        predicted_word_id = np.argmax(y_proba)
        predicted_word = text_vec_layer_es.get_vocabulary()[predicted_word_id]
        if predicted_word == "endofseq":
            break
        translation += " " + predicted_word
    return translation.strip()

The function simply keeps predicting one word at a time, gradually
completing the translation, and it stops once it reaches the EOS token. Let’s
give it a try!

>>> translate("I like soccer")
'me gusta el fútbol'

Hurray, it works! Well, at least it does with very short sentences. If you try
playing with this model for a while, you will find that it’s not bilingual yet,
and in particular it really struggles with longer sentences. For example:

>>> translate("I like soccer and also going to the beach")
'me gusta el fútbol y a veces mismo al bus'

The translation says “I like soccer and sometimes even the bus”. So how can
you improve it? One way is to increase the training set size and add more
LSTM layers in both the encoder and the decoder. But this will only get you
so far, so let’s look at more sophisticated techniques, starting with
bidirectional recurrent layers.



Bidirectional RNNs
At each time step, a regular recurrent layer only looks at past and present
inputs before generating its output. In other words, it is causal, meaning it
cannot look into the future. This type of RNN makes sense when forecasting
time series, or in the decoder of a sequence-to-sequence (seq2seq) model. But
for tasks like text classification, or in the encoder of a seq2seq model, it is
often preferable to look ahead at the next words before encoding a given
word.

For example, consider the phrases “the right arm”, “the right person”, and
“the right to criticize”: to properly encode the word “right”, you need to look
ahead. One solution is to run two recurrent layers on the same inputs, one
reading the words from left to right and the other reading them from right to
left, then combine their outputs at each time step, typically by concatenating
them. This is what a bidirectional recurrent layer does (see Figure 16-5).

Figure 16-5. A bidirectional recurrent layer

To implement a bidirectional recurrent layer in Keras, just wrap a recurrent
layer in a tf.keras.layers.Bidirectional layer. For example, the following
Bidirectional layer could be used as the encoder in our translation model:

encoder = tf.keras.layers.Bidirectional(
    tf.keras.layers.LSTM(256, return_state=True))



NOTE
The Bidirectional layer will create a clone of the GRU layer (but in the reverse direction),
and it will run both and concatenate their outputs. So although the GRU layer has 10 units,
the Bidirectional layer will output 20 values per time step.

There’s just one problem. This layer will now return four states instead of
two: the final short-term and long-term states of the forward LSTM layer, and
the final short-term and long-term states of the backward LSTM layer. We
cannot use this quadruple state directly as the initial state of the decoder’s
LSTM layer, since it expects just two states (short-term and long-term). We
cannot make the decoder bidirectional, since it must remain causal: otherwise
it would cheat during training and it would not work. Instead, we can
concatenate the two short-term states, and also concatenate the two long-term
states:

encoder_outputs, *encoder_state = encoder(encoder_embeddings)
encoder_state = [tf.concat(encoder_state[::2], axis=-1),  # short-term (0 & 2)
                 tf.concat(encoder_state[1::2], axis=-1)]  # long-term (1 & 3)

Now let’s look at another popular technique that can greatly improve the
performance of a translation model at inference time: beam search.



Beam Search
Suppose you have trained an encoder–decoder model, and you use it to
translate the sentence “I like soccer” to Spanish. You are hoping that it will
output the proper translation “me gusta el fútbol”, but unfortunately it outputs
“me gustan los jugadores”, which means “I like the players”. Looking at the
training set, you notice many sentences such as “I like cars”, which translates
to “me gustan los autos”, so it wasn’t absurd for the model to output “me
gustan los” after seeing “I like”. Unfortunately, in this case it was a mistake
since “soccer” is singular. The model could not go back and fix it, so it tried
to complete the sentence as best it could, in this case using the word
“jugadores”. How can we give the model a chance to go back and fix
mistakes it made earlier? One of the most common solutions is beam search:
it keeps track of a short list of the k most promising sentences (say, the top
three), and at each decoder step it tries to extend them by one word, keeping
only the k most likely sentences. The parameter k is called the beam width.

For example, suppose you use the model to translate the sentence “I like
soccer” using beam search with a beam width of 3 (see Figure 16-6). At the
first decoder step, the model will output an estimated probability for each
possible first word in the translated sentence. Suppose the top three words are
“me” (75% estimated probability), “a” (3%), and “como” (1%). That’s our
short list so far. Next, we use the model to find the next word for each
sentence. For the first sentence (“me”), perhaps the model outputs a
probability of 36% for the word “gustan”, 32% for the word “gusta”, 16% for
the word “encanta”, and so on. Note that these are actually conditional
probabilities, given that the sentence starts with “me”. For the second
sentence (“a”), the model might output a conditional probability of 50% for
the word “mi”, and so on. Assuming the vocabulary has 1,000 words, we will
end up with 1,000 probabilities per sentence.

Next, we compute the probabilities of each of the 3,000 two-word sentences
we considered (3 × 1,000). We do this by multiplying the estimated
conditional probability of each word by the estimated probability of the
sentence it completes. For example, the estimated probability of the sentence



“me” was 75%, while the estimated conditional probability of the word
“gustan” (given that the first word is “me”) was 36%, so the estimated
probability of the sentence “me gustan” is 75% × 36% = 27%. After
computing the probabilities of all 3,000 two-word sentences, we keep only
the top 3. In this example they all start with the word “me”: “me gustan”
(27%), “me gusta” (24%), and “me encanta” (12%). Right now, the sentence
“me gustan” is winning, but “me gusta” has not been eliminated.

Figure 16-6. Beam search, with a beam width of 3

Then we repeat the same process: we use the model to predict the next word
in each of these three sentences, and we compute the probabilities of all 3,000
three-word sentences we considered. Perhaps the top three are now “me
gustan los” (10%), “me gusta el” (8%), and “me gusta mucho” (2%). At the
next step we may get “me gusta el fútbol” (6%), “me gusta mucho el” (1%),
and “me gusta el deporte” (0.2%). Notice that “me gustan” was eliminated,
and the correct translation is now ahead. We boosted our encoder–decoder
model’s performance without any extra training, simply by using it more
wisely.

TIP
The TensorFlow Addons library includes a full seq2seq API that lets you build encoder–
decoder models with attention, including beam search, and more. However, its
documentation is currently very limited. Implementing beam search is a good exercise, so
give it a try! Check out this chapter’s notebook for a possible solution.



With all this, you can get reasonably good translations for fairly short
sentences. Unfortunately, this model will be really bad at translating long
sentences. Once again, the problem comes from the limited short-term
memory of RNNs. Attention mechanisms are the game-changing innovation
that addressed this problem.



Attention Mechanisms
Consider the path from the word “soccer” to its translation “fútbol” back in
Figure 16-3: it is quite long! This means that a representation of this word
(along with all the other words) needs to be carried over many steps before it
is actually used. Can’t we make this path shorter?

This was the core idea in a landmark 2014 paper  by Dzmitry Bahdanau et
al., where the authors introduced a technique that allowed the decoder to
focus on the appropriate words (as encoded by the encoder) at each time step.
For example, at the time step where the decoder needs to output the word
“fútbol”, it will focus its attention on the word “soccer”. This means that the
path from an input word to its translation is now much shorter, so the short-
term memory limitations of RNNs have much less impact. Attention
mechanisms revolutionized neural machine translation (and deep learning in
general), allowing a significant improvement in the state of the art, especially
for long sentences (e.g., over 30 words).

NOTE
The most common metric used in NMT is the bilingual evaluation understudy (BLEU)
score, which compares each translation produced by the model with several good
translations produced by humans: it counts the number of n-grams (sequences of n words)
that appear in any of the target translations and adjusts the score to take into account the
frequency of the produced n-grams in the target translations.

Figure 16-7 shows our encoder–decoder model with an added attention
mechanism. On the left, you have the encoder and the decoder. Instead of just
sending the encoder’s final hidden state to the decoder, as well as the
previous target word at each step (which is still done, although it is not shown
in the figure), we now send all of the encoder’s outputs to the decoder as
well. Since the decoder cannot deal with all these encoder outputs at once,
they need to be aggregated: at each time step, the decoder’s memory cell
computes a weighted sum of all the encoder outputs. This determines which
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words it will focus on at this step. The weight α  is the weight of the i
encoder output at the t  decoder time step. For example, if the weight α  is
much larger than the weights α  and α , then the decoder will pay much
more attention to the encoder’s output for word #2 (“soccer”) than to the
other two outputs, at least at this time step. The rest of the decoder works just
like earlier: at each time step the memory cell receives the inputs we just
discussed, plus the hidden state from the previous time step, and finally
(although it is not represented in the diagram) it receives the target word from
the previous time step (or at inference time, the output from the previous time
step).

Figure 16-7. Neural machine translation using an encoder–decoder network with an attention model

But where do these α  weights come from? Well, they are generated by a
small neural network called an alignment model (or an attention layer),

(t,i)
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which is trained jointly with the rest of the encoder–decoder model. This
alignment model is illustrated on the righthand side of Figure 16-7. It starts
with a Dense layer composed of a single neuron that processes each of the
encoder’s outputs, along with the decoder’s previous hidden state (e.g., h ).
This layer outputs a score (or energy) for each encoder output (e.g., e ):
this score measures how well each output is aligned with the decoder’s
previous hidden state. For example, in Figure 16-7, the model has already
output “me gusta el” (meaning “I like”), so it’s now expecting a noun: the
word “soccer” is the one that best aligns with the current state, so it gets a
high score. Finally, all the scores go through a softmax layer to get a final
weight for each encoder output (e.g., α ). All the weights for a given
decoder time step add up to 1. This particular attention mechanism is called
Bahdanau attention (named after the 2014 paper’s first author). Since it
concatenates the encoder output with the decoder’s previous hidden state, it is
sometimes called concatenative attention (or additive attention).

NOTE
If the input sentence is n words long, and assuming the output sentence is about as long,
then this model will need to compute about n  weights. Fortunately, this quadratic
computational complexity is still tractable because even long sentences don’t have
thousands of words.

Another common attention mechanism, known as Luong attention or
multiplicative attention, was proposed shortly after, in 2015,  by Minh-
Thang Luong et al. Because the goal of the alignment model is to measure the
similarity between one of the encoder’s outputs and the decoder’s previous
hidden state, the authors proposed to simply compute the dot product (see
Chapter 4) of these two vectors, as this is often a fairly good similarity
measure, and modern hardware can compute it very efficiently. For this to be
possible, both vectors must have the same dimensionality. The dot product
gives a score, and all the scores (at a given decoder time step) go through a
softmax layer to give the final weights, just like in Bahdanau attention.
Another simplification Luong et al. proposed was to use the decoder’s hidden

(2)

(3, 2)

(3,2)
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state at the current time step rather than at the previous time step (i.e., h
rather than h ), then to use the output of the attention mechanism (noted
h~(t)) directly to compute the decoder’s predictions, rather than using it to
compute the decoder’s current hidden state. The researchers also proposed a
variant of the dot product mechanism where the encoder outputs first go
through a fully connected layer (without a bias term) before the dot products
are computed. This is called the “general” dot product approach. The
researchers compared both dot product approaches with the concatenative
attention mechanism (adding a rescaling parameter vector v), and they
observed that the dot product variants performed better than concatenative
attention. For this reason, concatenative attention is much less used now. The
equations for these three attention mechanisms are summarized in Equation
16-1.

Equation 16-1. Attention mechanisms

h~(t)=∑iα(t,i)y(i) with α(t,i)=expe(t,i)∑i'expe(t,i') and e(t,i)=h(t)⊺ y(i)doth(t)⊺ 
W y(i)generalv⊺tanh(W[h(t);y(i)])concat

Keras provides a tf.keras.layers.Attention layer for Luong attention, and an
AdditiveAttention layer for Bahdanau attention. Let’s add Luong attention to
our encoder–decoder model. Since we will need to pass all the encoder’s
outputs to the Attention layer, we first need to set return_sequences=True
when creating the encoder:

encoder = tf.keras.layers.Bidirectional(
    tf.keras.layers.LSTM(256, return_sequences=True, return_state=True))

Next, we need to create the attention layer and pass it the decoder’s states and
the encoder’s outputs. However, to access the decoder’s states at each step
we would need to write a custom memory cell. For simplicity, let’s use the
decoder’s outputs instead of its states: in practice this works well too, and it’s
much easier to code. Then we just pass the attention layer’s outputs directly
to the output layer, as suggested in the Luong attention paper:

attention_layer = tf.keras.layers.Attention()
attention_outputs = attention_layer([decoder_outputs, encoder_outputs])

(t)

(t–1)



output_layer = tf.keras.layers.Dense(vocab_size, activation="softmax")
Y_proba = output_layer(attention_outputs)

And that’s it! If you train this model, you will find that it now handles much
longer sentences. For example:

>>> translate("I like soccer and also going to the beach")
'me gusta el fútbol y también ir a la playa'

In short, the attention layer provides a way to focus the attention of the model
on part of the inputs. But there’s another way to think of this layer: it acts as a
differentiable memory retrieval mechanism.

For example, let’s suppose the encoder analyzed the input sentence “I like
soccer”, and it managed to understand that the word “I” is the subject and the
word “like” is the verb, so it encoded this information in its outputs for these
words. Now suppose the decoder has already translated the subject, and it
thinks that it should translate the verb next. For this, it needs to fetch the verb
from the input sentence. This is analogous to a dictionary lookup: it’s as if the
encoder had created a dictionary {"subject”: “They”, “verb”: “played”, …}
and the decoder wanted to look up the value that corresponds to the key
“verb”.

However, the model does not have discrete tokens to represent the keys (like
“subject” or “verb”); instead, it has vectorized representations of these
concepts that it learned during training, so the query it will use for the lookup
will not perfectly match any key in the dictionary. The solution is to compute
a similarity measure between the query and each key in the dictionary, and
then use the softmax function to convert these similarity scores to weights
that add up to 1. As we saw earlier, that’s exactly what the attention layer
does. If the key that represents the verb is by far the most similar to the
query, then that key’s weight will be close to 1.

Next, the attention layer computes a weighted sum of the corresponding
values: if the weight of the “verb” key is close to 1, then the weighted sum
will be very close to the representation of the word “played”.

This is why the Keras Attention and AdditiveAttention layers both expect a



list as input, containing two or three items: the queries, the keys, and
optionally the values. If you do not pass any values, then they are
automatically equal to the keys. So, looking at the previous code example
again, the decoder outputs are the queries, and the encoder outputs are both
the keys and the values. For each decoder output (i.e., each query), the
attention layer returns a weighted sum of the encoder outputs (i.e., the
keys/values) that are most similar to the decoder output.

The bottom line is that an attention mechanism is a trainable memory
retrieval system. It is so powerful that you can actually build state-of-the-art
models using only attention mechanisms. Enter the transformer architecture.



Attention Is All You Need: The Original Transformer
Architecture
In a groundbreaking 2017 paper,  a team of Google researchers suggested
that “Attention Is All You Need”. They created an architecture called the
transformer, which significantly improved the state-of-the-art in NMT
without using any recurrent or convolutional layers,  just attention
mechanisms (plus embedding layers, dense layers, normalization layers, and
a few other bits and pieces). Because the model is not recurrent, it doesn’t
suffer as much from the vanishing or exploding gradients problems as RNNs,
it can be trained in fewer steps, it’s easier to parallelize across multiple
GPUs, and it can better capture long-range patterns than RNNs. The original
2017 transformer architecture is represented in Figure 16-8.

In short, the left part of Figure 16-8 is the encoder, and the right part is the
decoder. Each embedding layer outputs a 3D tensor of shape [batch size,
sequence length, embedding size]. After that, the tensors are gradually
transformed as they flow through the transformer, but their shape remains the
same.
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Figure 16-8. The original 2017 transformer architecture

If you use the transformer for NMT, then during training you must feed the
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English sentences to the encoder and the corresponding Spanish translations
to the decoder, with an extra SOS token inserted at the start of each sentence.
At inference time, you must call the transformer multiple times, producing
the translations one word at a time and feeding the partial translations to the
decoder at each round, just like we did earlier in the translate() function.

The encoder’s role is to gradually transform the inputs—word representations
of the English sentence—until each word’s representation perfectly captures
the meaning of the word, in the context of the sentence. For example, if you
feed the encoder with the sentence “I like soccer”, then the word “like” will
start off with a rather vague representation, since this word could mean
different things in different contexts: think of “I like soccer” versus “It’s like
that”. But after going through the encoder, the word’s representation should
capture the correct meaning of “like” in the given sentence (i.e., to be fond
of), as well as any other information that may be required for translation (e.g.,
it’s a verb).

The decoder’s role is to gradually transform each word representation in the
translated sentence into a word representation of the next word in the
translation. For example, if the sentence to translate is “I like soccer”, and the
decoder’s input sentence is “<SOS> me gusta el fútbol”, then after going
through the decoder, the word representation of the word “el” will end up
transformed into a representation of the word “fútbol”. Similarly, the
representation of the word “fútbol” will be transformed into a representation
of the EOS token.

After going through the decoder, each word representation goes through a
final Dense layer with a softmax activation function, which will hopefully
output a high probability for the correct next word and a low probability for
all other words. The predicted sentence should be “me gusta el fútbol
<EOS>”.

That was the big picture; now let’s walk through Figure 16-8 in more detail:

First, notice that both the encoder and the decoder contain modules that
are stacked N times. In the paper, N = 6. The final outputs of the whole
encoder stack are fed to the decoder at each of these N levels.



Zooming in, you can see that you are already familiar with most
components: there are two embedding layers; several skip connections,
each of them followed by a layer normalization layer; several
feedforward modules that are composed of two dense layers each (the
first one using the ReLU activation function, the second with no
activation function); and finally the output layer is a dense layer using
the softmax activation function. You can also sprinkle a bit of dropout
after the attention layers and the feedforward modules, if needed. Since
all of these layers are time-distributed, each word is treated
independently from all the others. But how can we translate a sentence
by looking at the words completely separately? Well, we can’t, so that’s
where the new components come in:

The encoder’s multi-head attention layer updates each word
representation by attending to (i.e., paying attention to) all other
words in the same sentence. That’s where the vague representation
of the word “like” becomes a richer and more accurate
representation, capturing its precise meaning in the given sentence.
We will discuss exactly how this works shortly.

The decoder’s masked multi-head attention layer does the same
thing, but when it processes a word, it doesn’t attend to words
located after it: it’s a causal layer. For example, when it processes
the word “gusta”, it only attends to the words “<SOS> me gusta”,
and it ignores the words “el fútbol” (or else that would be
cheating).

The decoder’s upper multi-head attention layer is where the
decoder pays attention to the words in the English sentence. This is
called cross-attention, not self-attention in this case. For example,
the decoder will probably pay close attention to the word “soccer”
when it processes the word “el” and transforms its representation
into a representation of the word “fútbol”.

The positional encodings are dense vectors (much like word
embeddings) that represent the position of each word in the
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sentence. The n  positional encoding is added to the word
embedding of the n  word in each sentence. This is needed because
all layers in the transformer architecture ignore word positions:
without positional encodings, you could shuffle the input
sequences, and it would just shuffle the output sequences in the
same way. Obviously, the order of words matters, which is why we
need to give positional information to the transformer somehow:
adding positional encodings to the word representations is a good
way to achieve this.

NOTE
The first two arrows going into each multi-head attention layer in Figure 16-8 represent
the keys and values, and the third arrow represents the queries. In the self-attention layers,
all three are equal to the word representations output by the previous layer, while in the
decoder’s upper attention layer, the keys and values are equal to the encoder’s final word
representations, and the queries are equal to the word representations output by the
previous layer.

Let’s go through the novel components of the transformer architecture in
more detail, starting with the positional encodings.

Positional encodings

A positional encoding is a dense vector that encodes the position of a word
within a sentence: the i  positional encoding is added to the word embedding
of the i  word in the sentence. The easiest way to implement this is to use an
Embedding layer and make it encode all the positions from 0 to the maximum
sequence length in the batch, then add the result to the word embeddings. The
rules of broadcasting will ensure that the positional encodings get applied to
every input sequence. For example, here is how to add positional encodings
to the encoder and decoder inputs:

max_length = 50  # max length in the whole training set
embed_size = 128
pos_embed_layer = tf.keras.layers.Embedding(max_length, embed_size)
batch_max_len_enc = tf.shape(encoder_embeddings)[1]
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encoder_in = encoder_embeddings + pos_embed_layer(tf.range(batch_max_len_enc))
batch_max_len_dec = tf.shape(decoder_embeddings)[1]
decoder_in = decoder_embeddings + pos_embed_layer(tf.range(batch_max_len_dec))

Note that this implementation assumes that the embeddings are represented
as regular tensors, not ragged tensors.  The encoder and the decoder share
the same Embedding layer for the positional encodings, since they have the
same embedding size (this is often the case).

Instead of using trainable positional encodings, the authors of the transformer
paper chose to use fixed positional encodings, based on the sine and cosine
functions at different frequencies. The positional encoding matrix P is
defined in Equation 16-2 and represented at the top of Figure 16-9
(transposed), where P  is the i  component of the encoding for the word
located at the p  position in the sentence.

Equation 16-2. Sine/cosine positional encodings

Pp,i=sin(p/10000i/d)if i is evencos(p/10000(i-1)/d)if i is odd

Figure 16-9. Sine/cosine positional encoding matrix (transposed, top) with a focus on two values of i
(bottom)

This solution can give the same performance as trainable positional
encodings, and it can extend to arbitrarily long sentences without adding any
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parameters to the model (however, when there is a large amount of
pretraining data, trainable positional encodings are usually favored). After
these positional encodings are added to the word embeddings, the rest of the
model has access to the absolute position of each word in the sentence
because there is a unique positional encoding for each position (e.g., the
positional encoding for the word located at the 22nd position in a sentence is
represented by the vertical dashed line at the top left of Figure 16-9, and you
can see that it is unique to that position). Moreover, the choice of oscillating
functions (sine and cosine) makes it possible for the model to learn relative
positions as well. For example, words located 38 words apart (e.g., at
positions p = 22 and p = 60) always have the same positional encoding values
in the encoding dimensions i = 100 and i = 101, as you can see in Figure 16-
9. This explains why we need both the sine and the cosine for each
frequency: if we only used the sine (the blue wave at i = 100), the model
would not be able to distinguish positions p = 22 and p = 35 (marked by a
cross).

There is no PositionalEncoding layer in TensorFlow, but it is not too hard to
create one. For efficiency reasons, we precompute the positional encoding
matrix in the constructor. The call() method just truncates this encoding
matrix to the max length of the input sequences, and it adds them to the
inputs. We also set supports_masking=True to propagate the input’s
automatic mask to the next layer:

class PositionalEncoding(tf.keras.layers.Layer):
    def __init__(self, max_length, embed_size, dtype=tf.float32, **kwargs):
        super().__init__(dtype=dtype, **kwargs)
        assert embed_size % 2 == 0, "embed_size must be even"
        p, i = np.meshgrid(np.arange(max_length),
                           2 * np.arange(embed_size // 2))
        pos_emb = np.empty((1, max_length, embed_size))
        pos_emb[0, :, ::2] = np.sin(p / 10_000 ** (i / embed_size)).T
        pos_emb[0, :, 1::2] = np.cos(p / 10_000 ** (i / embed_size)).T
        self.pos_encodings = tf.constant(pos_emb.astype(self.dtype))
        self.supports_masking = True

    def call(self, inputs):
        batch_max_length = tf.shape(inputs)[1]
        return inputs + self.pos_encodings[:, :batch_max_length]



Let’s use this layer to add the positional encoding to the encoder’s inputs:

pos_embed_layer = PositionalEncoding(max_length, embed_size)
encoder_in = pos_embed_layer(encoder_embeddings)
decoder_in = pos_embed_layer(decoder_embeddings)

Now let’s look deeper into the heart of the transformer model, at the multi-
head attention layer.

Multi-head attention

To understand how a multi-head attention layer works, we must first
understand the scaled dot-product attention layer, which it is based on. Its
equation is shown in Equation 16-3, in a vectorized form. It’s the same as
Luong attention, except for a scaling factor.

Equation 16-3. Scaled dot-product attention

Attention(Q,K,V)=softmaxQK⊺dkeysV

In this equation:

Q is a matrix containing one row per query. Its shape is [n , d ],
where n  is the number of queries and d  is the number of
dimensions of each query and each key.

K is a matrix containing one row per key. Its shape is [n , d ],
where n  is the number of keys and values.

V is a matrix containing one row per value. Its shape is [n , d ],
where d  is the number of dimensions of each value.

The shape of Q K  is [n , n ]: it contains one similarity score for
each query/key pair. To prevent this matrix from being huge, the input
sequences must not be too long (we will discuss how to overcome this
limitation later in this chapter). The output of the softmax function has
the same shape, but all rows sum up to 1. The final output has a shape of
[n , d ]: there is one row per query, where each row represents
the query result (a weighted sum of the values).

queries keys

queries keys

keys keys

keys

keys values

values

⊺
queries keys

queries values



The scaling factor 1 / (d keys) scales down the similarity scores to avoid
saturating the softmax function, which would lead to tiny gradients.

It is possible to mask out some key/value pairs by adding a very large
negative value to the corresponding similarity scores, just before
computing the softmax. This is useful in the masked multi-head
attention layer.

If you set use_scale=True when creating a tf.keras.layers.Attention layer,
then it will create an additional parameter that lets the layer learn how to
properly downscale the similarity scores. The scaled dot-product attention
used in the transformer model is almost the same, except it always scales the
similarity scores by the same factor, 1 / (d keys).

Note that the Attention layer’s inputs are just like Q, K, and V, except with
an extra batch dimension (the first dimension). Internally, the layer computes
all the attention scores for all sentences in the batch with just one call to
tf.matmul(queries, keys): this makes it extremely efficient. Indeed, in
TensorFlow, if A and B are tensors with more than two dimensions—say, of
shape [2, 3, 4, 5] and [2, 3, 5, 6], respectively—then tf.matmul(A, B) will
treat these tensors as 2 × 3 arrays where each cell contains a matrix, and it
will multiply the corresponding matrices: the matrix at the i  row and j
column in A will be multiplied by the matrix at the i  row and j  column in
B. Since the product of a 4 × 5 matrix with a 5 × 6 matrix is a 4 × 6 matrix,
tf.matmul(A, B) will return an array of shape [2, 3, 4, 6].

Now we’re ready to look at the multi-head attention layer. Its architecture is
shown in Figure 16-10.

th th

th th



Figure 16-10. Multi-head attention layer architecture

As you can see, it is just a bunch of scaled dot-product attention layers, each
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preceded by a linear transformation of the values, keys, and queries (i.e., a
time-distributed dense layer with no activation function). All the outputs are
simply concatenated, and they go through a final linear transformation (again,
time-distributed).

But why? What is the intuition behind this architecture? Well, consider once
again the word “like” in the sentence “I like soccer”. The encoder was smart
enough to encode the fact that it is a verb. But the word representation also
includes its position in the text, thanks to the positional encodings, and it
probably includes many other features that are useful for its translation, such
as the fact that it is in the present tense. In short, the word representation
encodes many different characteristics of the word. If we just used a single
scaled dot-product attention layer, we would only be able to query all of these
characteristics in one shot.

This is why the multi-head attention layer applies multiple different linear
transformations of the values, keys, and queries: this allows the model to
apply many different projections of the word representation into different
subspaces, each focusing on a subset of the word’s characteristics. Perhaps
one of the linear layers will project the word representation into a subspace
where all that remains is the information that the word is a verb, another
linear layer will extract just the fact that it is present tense, and so on. Then
the scaled dot-product attention layers implement the lookup phase, and
finally we concatenate all the results and project them back to the original
space.

Keras includes a tf.keras.layers.MultiHeadAttention layer, so we now have
everything we need to build the rest of the transformer. Let’s start with the
full encoder, which is exactly like in Figure 16-8, except we use a stack of
two blocks (N = 2) instead of six, since we don’t have a huge training set, and
we add a bit of dropout as well:

N = 2  # instead of 6
num_heads = 8
dropout_rate = 0.1
n_units = 128  # for the first dense layer in each feedforward block
encoder_pad_mask = tf.math.not_equal(encoder_input_ids, 0)[:, tf.newaxis]
Z = encoder_in



for _ in range(N):
    skip = Z
    attn_layer = tf.keras.layers.MultiHeadAttention(
        num_heads=num_heads, key_dim=embed_size, dropout=dropout_rate)
    Z = attn_layer(Z, value=Z, attention_mask=encoder_pad_mask)
    Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))
    skip = Z
    Z = tf.keras.layers.Dense(n_units, activation="relu")(Z)
    Z = tf.keras.layers.Dense(embed_size)(Z)
    Z = tf.keras.layers.Dropout(dropout_rate)(Z)
    Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))

This code should be mostly straightforward, except for one thing: masking.
As of the time of writing, the MultiHeadAttention layer does not support
automatic masking,  so we must handle it manually. How can we do that?

The MultiHeadAttention layer accepts an attention_mask argument, which is
a Boolean tensor of shape [batch size, max query length, max value length]:
for every token in every query sequence, this mask indicates which tokens in
the corresponding value sequence should be attended to. We want to tell the
MultiHeadAttention layer to ignore all the padding tokens in the values. So,
we first compute the padding mask using
tf.math.not_equal(encoder_input_ids, 0). This returns a Boolean tensor of
shape [batch size, max sequence length]. We then insert a second axis using
[:, tf.newaxis], to get a mask of shape [batch size, 1, max sequence length].
This allows us to use this mask as the attention_mask when calling the
MultiHeadAtten  tion layer: thanks to broadcasting, the same mask will be
used for all tokens in each query. This way, the padding tokens in the values
will be ignored correctly.

However, the layer will compute outputs for every single query token,
including the padding tokens. We need to mask the outputs that correspond to
these padding tokens. Recall that we used mask_zero in the Embedding
layers, and we set supports_masking to True in the PositionalEncoding layer,
so the automatic mask was propagated all the way to the MultiHeadAttention
layer’s inputs (encoder_in). We can use this to our advantage in the skip
connection: indeed, the Add layer supports automatic masking, so when we
add Z and skip (which is initially equal to encoder_in), the outputs get
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automatically masked correctly.  Yikes! Masking required much more
explanation than code.

Now on to the decoder! Once again, masking is going to be the only tricky
part, so let’s start with that. The first multi-head attention layer is a self-
attention layer, like in the encoder, but it is a masked multi-head attention
layer, meaning it is causal: it should ignore all tokens in the future. So, we
need two masks: a padding mask and a causal mask. Let’s create them:

decoder_pad_mask = tf.math.not_equal(decoder_input_ids, 0)[:, tf.newaxis]
causal_mask = tf.linalg.band_part(  # creates a lower triangular matrix
    tf.ones((batch_max_len_dec, batch_max_len_dec), tf.bool), -1, 0)

The padding mask is exactly like the one we created for the encoder, except
it’s based on the decoder’s inputs rather than the encoder’s. The causal mask
is created using the tf.linalg.band_part() function, which takes a tensor and
returns a copy with all the values outside a diagonal band set to zero. With
these arguments, we get a square matrix of size batch_max_len_dec (the max
length of the input sequences in the batch), with 1s in the lower-left triangle
and 0s in the upper right. If we use this mask as the attention mask, we will
get exactly what we want: the first query token will only attend to the first
value token, the second will only attend to the first two, the third will only
attend to the first three, and so on. In other words, query tokens cannot attend
to any value token in the future.

Let’s now build the decoder:

encoder_outputs = Z  # let's save the encoder's final outputs
Z = decoder_in  # the decoder starts with its own inputs
for _ in range(N):
    skip = Z
    attn_layer = tf.keras.layers.MultiHeadAttention(
        num_heads=num_heads, key_dim=embed_size, dropout=dropout_rate)
    Z = attn_layer(Z, value=Z, attention_mask=causal_mask & decoder_pad_mask)
    Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))
    skip = Z
    attn_layer = tf.keras.layers.MultiHeadAttention(
        num_heads=num_heads, key_dim=embed_size, dropout=dropout_rate)
    Z = attn_layer(Z, value=encoder_outputs, attention_mask=encoder_pad_mask)
    Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))
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    skip = Z
    Z = tf.keras.layers.Dense(n_units, activation="relu")(Z)
    Z = tf.keras.layers.Dense(embed_size)(Z)
    Z = tf.keras.layers.LayerNormalization()(tf.keras.layers.Add()([Z, skip]))

For the first attention layer, we use causal_mask & decoder_pad_mask to
mask both the padding tokens and future tokens. The causal mask only has
two dimensions: it’s missing the batch dimension, but that’s okay since
broadcasting ensures that it gets copied across all the instances in the batch.

For the second attention layer, there’s nothing special. The only thing to note
is that we are using encoder_pad_mask, not decoder_pad_mask, because this
attention layer uses the encoder’s final outputs as its values.

We’re almost done. We just need to add the final output layer, create the
model, compile it, and train it:

Y_proba = tf.keras.layers.Dense(vocab_size, activation="softmax")(Z)
model = tf.keras.Model(inputs=[encoder_inputs, decoder_inputs],
                       outputs=[Y_proba])
model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam",
              metrics=["accuracy"])
model.fit((X_train, X_train_dec), Y_train, epochs=10,
          validation_data=((X_valid, X_valid_dec), Y_valid))

Congratulations! You’ve built a full transformer from scratch, and trained it
for automatic translation. This is getting quite advanced!

TIP
The Keras team has created a new Keras NLP project, including an API to build a
transformer more easily. You may also be interested in the new Keras CV project for
computer vision.

But the field didn’t stop there. Let’s now explore some of the recent
advances.

https://github.com/keras-team/keras-nlp
https://github.com/keras-team/keras-cv


An Avalanche of Transformer Models
The year 2018 has been called the “ImageNet moment for NLP”. Since then,
progress has been astounding, with larger and larger transformer-based
architectures trained on immense datasets.

First, the GPT paper  by Alec Radford and other OpenAI researchers once
again demonstrated the effectiveness of unsupervised pretraining, like the
ELMo and ULMFiT papers before it, but this time using a transformer-like
architecture. The authors pretrained a large but fairly simple architecture
composed of a stack of 12 transformer modules using only masked multi-
head attention layers, like in the original transformer’s decoder. They trained
it on a very large dataset, using the same autoregressive technique we used
for our Shakespearean char-RNN: just predict the next token. This is a form
of self-supervised learning. Then they fine-tuned it on various language tasks,
using only minor adaptations for each task. The tasks were quite diverse: they
included text classification, entailment (whether sentence A imposes,
involves, or implies sentence B as a necessary consequence),   similarity
(e.g., “Nice weather today” is very similar to “It is sunny”), and question
answering (given a few paragraphs of text giving some context, the model
must answer some multiple-choice questions).

Then Google’s BERT paper  came out: it also demonstrated the
effectiveness of self-supervised pretraining on a large corpus, using a similar
architecture to GPT but with nonmasked multi-head attention layers only,
like in the original transformer’s encoder. This means that the model is
naturally bidirectional; hence the B in BERT (Bidirectional Encoder
Representations from Transformers). Most importantly, the authors proposed
two pretraining tasks that explain most of the model’s strength:

Masked language model (MLM)

Each word in a sentence has a 15% probability of being masked, and the
model is trained to predict the masked words. For example, if the original
sentence is “She had fun at the birthday party”, then the model may be
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given the sentence “She <mask> fun at the <mask> party” and it must
predict the words “had” and “birthday” (the other outputs will be
ignored). To be more precise, each selected word has an 80% chance of
being masked, a 10% chance of being replaced by a random word (to
reduce the discrepancy between pretraining and fine-tuning, since the
model will not see <mask> tokens during fine-tuning), and a 10% chance
of being left alone (to bias the model toward the correct answer).

Next sentence prediction (NSP)

The model is trained to predict whether two sentences are consecutive or
not. For example, it should predict that “The dog sleeps” and “It snores
loudly” are consecutive sentences, while “The dog sleeps” and “The
Earth orbits the Sun” are not consecutive. Later research showed that
NSP was not as important as was initially thought, so it was dropped in
most later architectures.

The model is trained on these two tasks simultaneously (see Figure 16-11).
For the NSP task, the authors inserted a class token (<CLS>) at the start of
every input, and the corresponding output token represents the model’s
prediction: sentence B follows sentence A, or it does not. The two input
sentences are concatenated, separated only by a special separation token
(<SEP>), and they are fed as input to the model. To help the model know
which sentence each input token belongs to, a segment embedding is added
on top of each token’s positional embeddings: there are just two possible
segment embeddings, one for sentence A and one for sentence B. For the
MLM task, some input words are masked (as we just saw) and the model tries
to predict what those words were. The loss is only computed on the NSP
prediction and the masked tokens, not on the unmasked ones.



Figure 16-11. BERT training and fine-tuning process

After this unsupervised pretraining phase on a very large corpus of text, the
model is then fine-tuned on many different tasks, changing very little for each
task. For example, for text classification such as sentiment analysis, all output
tokens are ignored except for the first one, corresponding to the class token,
and a new output layer replaces the previous one, which was just a binary
classification layer for NSP.

In February 2019, just a few months after BERT was published, Alec
Radford, Jeffrey Wu, and other OpenAI researchers published the GPT-2
paper,  which proposed a very similar architecture to GPT, but larger still
(with over 1.5 billion parameters!). The researchers showed that the new and
improved GPT model could perform zero-shot learning (ZSL), meaning it
could achieve good performance on many tasks without any fine-tuning. This
was just the start of a race toward larger and larger models: Google’s Switch
Transformers   (introduced in January 2021) used 1 trillion parameters, and
soon much larger models came out, such as the Wu Dao 2.0 model by the
Beijing Academy of Artificial Intelligence (BAII), announced in June 2021.

An unfortunate consequence of this trend toward gigantic models is that only
well-funded organizations can afford to train such models: it can easily cost
hundreds of thousands of dollars or more. And the energy required to train a
single model corresponds to an American household’s electricity
consumption for several years; it’s not eco-friendly at all. Many of these
models are just too big to even be used on regular hardware: they wouldn’t fit
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in RAM, and they would be horribly slow. Lastly, some are so costly that
they are not released publicly.

Luckily, ingenious researchers are finding new ways to downsize
transformers and make them more data-efficient. For example, the
DistilBERT model,  introduced in October 2019 by Victor Sanh et al.
from Hugging Face, is a small and fast transformer model based on BERT. It
is available on Hugging Face’s excellent model hub, along with thousands of
others—you’ll see an example later in this chapter.

DistilBERT was trained using distillation (hence the name): this means
transferring knowledge from a teacher model to a student one, which is
usually much smaller than the teacher model. This is typically done by using
the teacher’s predicted probabilities for each training instance as targets for
the student. Surprisingly, distillation often works better than training the
student from scratch on the same dataset as the teacher! Indeed, the student
benefits from the teacher’s more nuanced labels.

Many more transformer architectures came out after BERT, almost on a
monthly basis, often improving on the state of the art across all NLP tasks:
XLNet (June 2019), RoBERTa (July 2019), StructBERT (August 2019),
ALBERT (September 2019), T5 (October 2019), ELECTRA (March 2020),
GPT3 (May 2020), DeBERTa (June 2020), Switch Transformers (January
2021), Wu Dao 2.0 (June 2021), Gopher (December 2021), GPT-NeoX-20B
(February 2022), Chinchilla (March 2022), OPT (May 2022), and the list
goes on and on. Each of these models brought new ideas and techniques,
but I particularly like the T5 paper  by Google researchers: it frames all NLP
tasks as text-to-text, using an encoder–decoder transformer. For example, to
translate “I like soccer” to Spanish, you can just call the model with the input
sentence “translate English to Spanish: I like soccer” and it outputs “me gusta
el fútbol”. To summarize a paragraph, you just enter “summarize:” followed
by the paragraph, and it outputs the summary. For classification, you only
need to change the prefix to “classify:” and the model outputs the class name,
as text. This simplifies using the model, and it also makes it possible to
pretrain it on even more tasks.
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Last but not least, in April 2022, Google researchers used a new large-scale
training platform named Pathways (which we will briefly discuss in
Chapter 19) to train a humongous language model named the Pathways
Language Model (PaLM),  with a whopping 540 billion parameters, using
over 6,000 TPUs. Other than its incredible size, this model is a standard
transformer, using decoders only (i.e., with masked multi-head attention
layers), with just a few tweaks (see the paper for details). This model
achieved incredible performance on all sorts of NLP tasks, particularly in
natural language understanding (NLU). It’s capable of impressive feats, such
as explaining jokes, giving detailed step-by-step answers to questions, and
even coding. This is in part due to the model’s size, but also thanks to a
technique called Chain of thought prompting,  which was introduced a
couple months earlier by another team of Google researchers.

In question answering tasks, regular prompting typically includes a few
examples of questions and answers, such as: “Q: Roger has 5 tennis balls. He
buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? A: 11.” The prompt then continues with the
actual question, such as “Q: John takes care of 10 dogs. Each dog takes .5
hours a day to walk and take care of their business. How many hours a week
does he spend taking care of dogs? A:”, and the model’s job is to append the
answer: in this case, “35.”

But with chain of thought prompting, the example answers include all the
reasoning steps that lead to the conclusion. For example, instead of “A: 11”,
the prompt contains “A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11.” This encourages the model to give a
detailed answer to the actual question, such as “John takes care of 10 dogs.
Each dog takes .5 hours a day to walk and take care of their business. So that
is 10 × .5 = 5 hours a day. 5 hours a day × 7 days a week = 35 hours a week.
The answer is 35 hours a week.” This is an actual example from the paper!

Not only does the model give the right answer much more frequently than
using regular prompting—we’re encouraging the model to think things
through—but it also provides all the reasoning steps, which can be useful to
better understand the rationale behind a model’s answer.
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Transformers have taken over NLP, but they didn’t stop there: they soon
expanded to computer vision as well.



Vision Transformers
One of the first applications of attention mechanisms beyond NMT was in
generating image captions using visual attention:  a convolutional neural
network first processes the image and outputs some feature maps, then a
decoder RNN equipped with an attention mechanism generates the caption,
one word at a time.

At each decoder time step (i.e., each word), the decoder uses the attention
model to focus on just the right part of the image. For example, in Figure 16-
12, the model generated the caption “A woman is throwing a frisbee in a
park”, and you can see what part of the input image the decoder focused its
attention on when it was about to output the word “frisbee”: clearly, most of
its attention was focused on the frisbee.

Figure 16-12. Visual attention: an input image (left) and the model’s focus before producing the word
“frisbee” (right)

EXPLAINABILITY

One extra benefit of attention mechanisms is that they make it easier to
understand what led the model to produce its output. This is called
explainability. It can be especially useful when the model makes a
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mistake: for example, if an image of a dog walking in the snow is labeled
as “a wolf walking in the snow”, then you can go back and check what
the model focused on when it output the word “wolf”. You may find that
it was paying attention not only to the dog, but also to the snow, hinting
at a possible explanation: perhaps the way the model learned to
distinguish dogs from wolves is by checking whether or not there’s a lot
of snow around. You can then fix this by training the model with more
images of wolves without snow, and dogs with snow. This example
comes from a great 2016 paper  by Marco Tulio Ribeiro et al. that uses a
different approach to explainability: learning an interpretable model
locally around a classifier’s prediction.

In some applications, explainability is not just a tool to debug a model; it
can be a legal requirement—think of a system deciding whether or not it
should grant you a loan.

When transformers came out in 2017 and people started to experiment with
them beyond NLP, they were first used alongside CNNs, without replacing
them. Instead, transformers were generally used to replace RNNs, for
example, in image captioning models. Transformers became slightly more
visual in a 2020 paper  by Facebook researchers, which proposed a hybrid
CNN–transformer architecture for object detection. Once again, the CNN
first processes the input images and outputs a set of feature maps, then these
feature maps are converted to sequences and fed to a transformer, which
outputs bounding box predictions. But again, most of the visual work is still
done by the CNN.

Then, in October 2020, a team of Google researchers released a paper  that
introduced a fully transformer-based vision model, called a vision
transformer (ViT). The idea is surprisingly simple: just chop the image into
little 16 × 16 squares, and treat the sequence of squares as if it were a
sequence of word representations. To be more precise, the squares are first
flattened into 16 × 16 × 3 = 768-dimensional vectors—the 3 is for the RGB
color channels—then these vectors go through a linear layer that transforms
them but retains their dimensionality. The resulting sequence of vectors can
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then be treated just like a sequence of word embeddings: this means adding
positional embeddings, and passing the result to the transformer. That’s it!
This model beat the state of the art on ImageNet image classification, but to
be fair the authors had to use over 300 million additional images for training.
This makes sense since transformers don’t have as many inductive biases as
convolution neural nets, so they need extra data just to learn things that
CNNs implicitly assume.

NOTE
An inductive bias is an implicit assumption made by the model, due to its architecture. For
example, linear models implicitly assume that the data is, well, linear. CNNs implicitly
assume that patterns learned in one location will likely be useful in other locations as well.
RNNs implicitly assume that the inputs are ordered, and that recent tokens are more
important than older ones. The more inductive biases a model has, assuming they are
correct, the less training data the model will require. But if the implicit assumptions are
wrong, then the model may perform poorly even if it is trained on a large dataset.

Just two months later, a team of Facebook researchers released a paper  that
introduced data-efficient image transformers (DeiTs). Their model achieved
competitive results on ImageNet without requiring any additional data for
training. The model’s architecture is virtually the same as the original ViT,
but the authors used a distillation technique to transfer knowledge from state-
of-the-art CNN models to their model.

Then, in March 2021, DeepMind released an important paper  that
introduced the Perceiver architecture. It is a multimodal transformer,
meaning you can feed it text, images, audio, or virtually any other modality.
Until then, transformers had been restricted to fairly short sequences because
of the performance and RAM bottleneck in the attention layers. This
excluded modalities such as audio or video, and it forced researchers to treat
images as sequences of patches, rather than sequences of pixels. The
bottleneck is due to self-attention, where every token must attend to every
other token: if the input sequence has M tokens, then the attention layer must
compute an M × M matrix, which can be huge if M is very large. The
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Perceiver solves this problem by gradually improving a fairly short latent
representation of the inputs, composed of N tokens—typically just a few
hundred. (The word latent means hidden, or internal.) The model uses cross-
attention layers only, feeding them the latent representation as the queries,
and the (possibly large) inputs as the values. This only requires computing an
M × N matrix, so the computational complexity is linear with regard to M,
instead of quadratic. After going through several cross-attention layers, if
everything goes well, the latent representation ends up capturing everything
that matters in the inputs. The authors also suggested sharing the weights
between consecutive cross-attention layers: if you do that, then the Perceiver
effectively becomes an RNN. Indeed, the shared cross-attention layers can be
seen as the same memory cell at different time steps, and the latent
representation corresponds to the cell’s context vector. The same inputs are
repeatedly fed to the memory cell at every time step. It looks like RNNs are
not dead after all!

Just a month later, Mathilde Caron et al. introduced DINO,  an impressive
vision transformer trained entirely without labels, using self-supervision, and
capable of high-accuracy semantic segmentation. The model is duplicated
during training, with one network acting as a teacher and the other acting as a
student. Gradient descent only affects the student, while the teacher’s weights
are just an exponential moving average of the student’s weights. The student
is trained to match the teacher’s predictions: since they’re almost the same
model, this is called self-distillation. At each training step, the input images
are augmented in different ways for the teacher and the student, so they don’t
see the exact same image, but their predictions must match. This forces them
to come up with high-level representations. To prevent mode collapse, where
both the student and the teacher would always output the same thing,
completely ignoring the inputs, DINO keeps track of a moving average of the
teacher’s outputs, and it tweaks the teacher’s predictions to ensure that they
remain centered on zero, on average. DINO also forces the teacher to have
high confidence in its predictions: this is called sharpening. Together, these
techniques preserve diversity in the teacher’s outputs.

In a 2021 paper,  Google researchers showed how to scale ViTs up or
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down, depending on the amount of data. They managed to create a huge 2
billion parameter model that reached over 90.4% top-1 accuracy on
ImageNet. Conversely, they also trained a scaled-down model that reached
over 84.8% top-1 accuracy on ImageNet, using only 10,000 images: that’s
just 10 images per class!

And progress in visual transformers has continued steadily to this day. For
example, in March 2022, a paper  by Mitchell Wortsman et al. demonstrated
that it’s possible to first train multiple transformers, then average their
weights to create a new and improved model. This is similar to an ensemble
(see Chapter 7), except there’s just one model in the end, which means
there’s no inference time penalty.

The latest trend in transformers consists in building large multimodal models,
often capable of zero-shot or few-shot learning. For example, OpenAI’s 2021
CLIP paper  proposed a large transformer model pretrained to match
captions with images: this task allows it to learn excellent image
representations, and the model can then be used directly for tasks such as
image classification using simple text prompts such as “a photo of a cat”.
Soon after, OpenAI announced DALL·E,  capable of generating amazing
images based on text prompts. The DALL·E 2,  which generates even
higher quality images using a diffusion model (see Chapter 17).

In April 2022, DeepMind released the Flamingo paper,  which introduced
a family of models pretrained on a wide variety of tasks across multiple
modalities, including text, images, and videos. A single model can be used
across very different tasks, such as question answering, image captioning,
and more. Soon after, in May 2022, DeepMind introduced GATO,  a
multimodal model that can be used as a policy for a reinforcement learning
agent (RL will be introduced in Chapter 18). The same transformer can chat
with you, caption images, play Atari games, control (simulated) robotic arms,
and more, all with “only” 1.2 billion parameters. And the adventure
continues!

NOTE
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These astounding advances have led some researchers to claim that human-level AI is
near, that “scale is all you need”, and that some of these models may be “slightly
conscious”. Others point out that despite the amazing progress, these models still lack the
reliability and adaptability of human intelligence, our ability to reason symbolically, to
generalize based on a single example, and more.

As you can see, transformers are everywhere! And the good news is that you
generally won’t have to implement transformers yourself since many
excellent pretrained models are readily available for download via
TensorFlow Hub or Hugging Face’s model hub. You’ve already seen how to
use a model from TF Hub, so let’s close this chapter by taking a quick look at
Hugging Face’s ecosystem.



Hugging Face’s Transformers Library
It’s impossible to talk about transformers today without mentioning Hugging
Face, an AI company that has built a whole ecosystem of easy-to-use open
source tools for NLP, vision, and beyond. The central component of their
ecosystem is the Transformers library, which allows you to easily download a
pretrained model, including its corresponding tokenizer, and then fine-tune it
on your own dataset, if needed. Plus, the library supports TensorFlow,
PyTorch, and JAX (with the Flax library).

The simplest way to use the Transformers library is to use the transformers.
pipe line() function: you just specify which task you want, such as sentiment
analysis, and it downloads a default pretrained model, ready to be used—it
really couldn’t be any simpler:

from transformers import pipeline

classifier = pipeline("sentiment-analysis")  # many other tasks are available
result = classifier("The actors were very convincing".)

The result is a Python list containing one dictionary per input text:

>>> result
[{'label': 'POSITIVE', 'score': 0.9998071789741516}]

In this example, the model correctly found that the sentence is positive, with
around 99.98% confidence. Of course, you can also pass a batch of sentences
to the model:

>>> classifier(["I am from India.", "I am from Iraq."])
[{'label': 'POSITIVE', 'score': 0.9896161556243896},
 {'label': 'NEGATIVE', 'score': 0.9811071157455444}]

BIAS AND FAIRNESS

As the output suggests, this specific classifier loves Indians, but is



severely biased against Iraqis. You can try this code with your own
country or city. Such an undesirable bias generally comes in large part
from the training data itself: in this case, there were plenty of negative
sentences related to the wars in Iraq in the training data. This bias was
then amplified during the fine-tuning process since the model was forced
to choose between just two classes: positive or negative. If you add a
neutral class when fine-tuning, then the country bias mostly disappears.
But the training data is not the only source of bias: the model’s
architecture, the type of loss or regularization used for training, the
optimizer; all of these can affect what the model ends up learning. Even a
mostly unbiased model can be used in a biased way, much like survey
questions can be biased.

Understanding bias in AI and mitigating its negative effects is still an
area of active research, but one thing is certain: you should pause and
think before you rush to deploy a model to production. Ask yourself how
the model could do harm, even indirectly. For example, if the model’s
predictions are used to decide whether or not to give someone a loan, the
process should be fair. So, make sure you evaluate the model’s
performance not just on average over the whole test set, but across
various subsets as well: for example, you may find that although the
model works very well on average, its performance is abysmal for some
categories of people. You may also want to run counterfactual tests: for
example, you may want to check that the model’s predictions do not
change when you simply switch someone’s gender.

If the model works well on average, it’s tempting to push it to production
and move on to something else, especially if it’s just one component of a
much larger system. But in general, if you don’t fix such issues, no one
else will, and your model may end up doing more harm than good. The
solution depends on the problem: it may require rebalancing the dataset,
fine-tuning on a different dataset, switching to another pretrained model,
tweaking the model’s architecture or hyperparameters, etc.

The pipeline() function uses the default model for the given task. For



example, for text classification tasks such as sentiment analysis, at the time of
writing, it defaults to distilbert-base-uncased-finetuned-sst-2-english—a
DistilBERT model with an uncased tokenizer, trained on English Wikipedia
and a corpus of English books, and fine-tuned on the Stanford Sentiment
Treebank v2 (SST 2) task. It’s also possible to manually specify a different
model. For example, you could use a DistilBERT model fine-tuned on the
Multi-Genre Natural Language Inference (MultiNLI) task, which classifies
two sentences into three classes: contradiction, neutral, or entailment. Here is
how:

>>> model_name = "huggingface/distilbert-base-uncased-finetuned-mnli"
>>> classifier_mnli = pipeline("text-classification", model=model_name)
>>> classifier_mnli("She loves me. [SEP] She loves me not.")
[{'label': 'contradiction', 'score': 0.9790192246437073}]

TIP
You can find the available models at https://huggingface.co/models, and the list of tasks at
https://huggingface.co/tasks.

The pipeline API is very simple and convenient, but sometimes you will need
more control. For such cases, the Transformers library provides many classes,
including all sorts of tokenizers, models, configurations, callbacks, and much
more. For example, let’s load the same DistilBERT model, along with its
corresponding tokenizer, using the TFAutoModelForSequenceClassification
and AutoTokenizer classes:

from transformers import AutoTokenizer, TFAutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = TFAutoModelForSequenceClassification.from_pretrained(model_name)

Next, let’s tokenize a couple of pairs of sentences. In this code, we activate
padding and specify that we want TensorFlow tensors instead of Python lists:

token_ids = tokenizer(["I like soccer. [SEP] We all love soccer!",
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                       "Joe lived for a very long time. [SEP] Joe is old."],
                      padding=True, return_tensors="tf")

TIP
Instead of passing "Sentence 1 [SEP] Sentence 2" to the tokenizer, you can equivalently
pass it a tuple: ("Sentence 1", "Sentence 2").

The output is a dictionary-like instance of the BatchEncoding class, which
contains the sequences of token IDs, as well as a mask containing 0s for the
padding tokens:

>>> token_ids
{'input_ids': <tf.Tensor: shape=(2, 15), dtype=int32, numpy=
array([[ 101, 1045, 2066, 4715, 1012,  102, 2057, 2035, 2293, 4715,  999,
         102,    0,    0,    0],
       [ 101, 3533, 2973, 2005, 1037, 2200, 2146, 2051, 1012,  102, 3533,
        2003, 2214, 1012,  102]], dtype=int32)>,
 'attention_mask': <tf.Tensor: shape=(2, 15), dtype=int32, numpy=
array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
       [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=int32)>}

If you set return_token_type_ids=True when calling the tokenizer, you will
also get an extra tensor that indicates which sentence each token belongs to.
This is needed by some models, but not DistilBERT.

Next, we can directly pass this BatchEncoding object to the model; it returns
a TFSequenceClassifierOutput object containing its predicted class logits:

>>> outputs = model(token_ids)
>>> outputs
TFSequenceClassifierOutput(loss=None, logits=[<tf.Tensor: [...] numpy=
array([[-2.1123817 ,  1.1786783 ,  1.4101017 ],
       [-0.01478387,  1.0962474 , -0.9919954 ]], dtype=float32)>], [...])

Lastly, we can apply the softmax activation function to convert these logits to
class probabilities, and use the argmax() function to predict the class with the
highest probability for each input sentence pair:



>>> Y_probas = tf.keras.activations.softmax(outputs.logits)
>>> Y_probas
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0.01619702, 0.43523544, 0.5485676 ],
       [0.08672056, 0.85204804, 0.06123142]], dtype=float32)>
>>> Y_pred = tf.argmax(Y_probas, axis=1)
>>> Y_pred  # 0 = contradiction, 1 = entailment, 2 = neutral
<tf.Tensor: shape=(2,), dtype=int64, numpy=array([2, 1])>

In this example, the model correctly classifies the first sentence pair as
neutral (the fact that I like soccer does not imply that everyone else does) and
the second pair as an entailment (Joe must indeed be quite old).

If you wish to fine-tune this model on your own dataset, you can train the
model as usual with Keras since it’s just a regular Keras model with a few
extra methods. However, because the model outputs logits instead of
probabilities, you must use the
tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss instead
of the usual "sparse_categorical_crossentropy" loss. Moreover, the model
does not support BatchEncoding inputs during training, so you must use its
data attribute to get a regular dictionary instead:

sentences = [("Sky is blue", "Sky is red"), ("I love her", "She loves me")]
X_train = tokenizer(sentences, padding=True, return_tensors="tf").data
y_train = tf.constant([0, 2])  # contradiction, neutral
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(loss=loss, optimizer="nadam", metrics=["accuracy"])
history = model.fit(X_train, y_train, epochs=2)

Hugging Face has also built a Datasets library that you can use to easily
download a standard dataset (such as IMDb) or a custom one, and use it to
fine-tune your model. It’s similar to TensorFlow Datasets, but it also provides
tools to perform common preprocessing tasks on the fly, such as masking.
The list of datasets is available at https://huggingface.co/datasets.

This should get you started with Hugging Face’s ecosystem. To learn more,
you can head over to https://huggingface.co/docs for the documentation,
which includes many tutorial notebooks, videos, the full API, and more. I
also recommend you check out the O’Reilly book Natural Language
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Processing with Transformers: Building Language Applications with
Hugging Face by Lewis Tunstall, Leandro von Werra, and Thomas Wolf—
all from the Hugging Face team.

In the next chapter we will discuss how to learn deep representations in an
unsupervised way using autoencoders, and we will use generative adversarial
networks to produce images and more!



Exercises
1. What are the pros and cons of using a stateful RNN versus a stateless

RNN?

2. Why do people use encoder–decoder RNNs rather than plain sequence-
to-sequence RNNs for automatic translation?

3. How can you deal with variable-length input sequences? What about
variable-length output sequences?

4. What is beam search, and why would you use it? What tool can you use
to implement it?

5. What is an attention mechanism? How does it help?

6. What is the most important layer in the transformer architecture? What
is its purpose?

7. When would you need to use sampled softmax?

8. Embedded Reber grammars were used by Hochreiter and Schmidhuber
in their paper about LSTMs. They are artificial grammars that produce
strings such as “BPBTSXXVPSEPE”. Check out Jenny Orr’s nice
introduction to this topic, then choose a particular embedded Reber
grammar (such as the one represented on Orr’s page), then train an RNN
to identify whether a string respects that grammar or not. You will first
need to write a function capable of generating a training batch
containing about 50% strings that respect the grammar, and 50% that
don’t.

9. Train an encoder–decoder model that can convert a date string from one
format to another (e.g., from “April 22, 2019” to “2019-04-22”).

10. Go through the example on the Keras website for “Natural language
image search with a Dual Encoder”. You will learn how to build a
model capable of representing both images and text within the same
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embedding space. This makes it possible to search for images using a
text prompt, like in the CLIP model by OpenAI.

11. Use the Hugging Face Transformers library to download a pretrained
language model capable of generating text (e.g., GPT), and try
generating more convincing Shakespearean text. You will need to use
the model’s generate() method—see Hugging Face’s documentation for
more details.

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.
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Chapter 17. Autoencoders, GANs,
and Diffusion Models

Autoencoders are artificial neural networks capable of learning dense
representations of the input data, called latent representations or codings,
without any supervision (i.e., the training set is unlabeled). These codings
typically have a much lower dimensionality than the input data, making
autoencoders useful for dimensionality reduction (see Chapter 8), especially
for visualization purposes. Autoencoders also act as feature detectors, and
they can be used for unsupervised pretraining of deep neural networks (as we
discussed in Chapter 11). Lastly, some autoencoders are generative models:
they are capable of randomly generating new data that looks very similar to
the training data. For example, you could train an autoencoder on pictures of
faces, and it would then be able to generate new faces.

Generative adversarial networks (GANs) are also neural nets capable of
generating data. In fact, they can generate pictures of faces so convincing that
it is hard to believe the people they represent do not exist. You can judge so
for yourself by visiting https://thispersondoesnotexist.com, a website that
shows faces generated by a GAN architecture called StyleGAN. You can also
check out https://thisrentaldoesnotexist.com to see some generated Airbnb
listings. GANs are now widely used for super resolution (increasing the
resolution of an image), colorization, powerful image editing (e.g., replacing
photo bombers with realistic background), turning simple sketches into
photorealistic images, predicting the next frames in a video, augmenting a
dataset (to train other models), generating other types of data (such as text,
audio, and time series), identifying the weaknesses in other models to
strengthen them, and more.

A more recent addition to the generative learning party is diffusion models. In
2021, they managed to generate more diverse and higher-quality images than
GANs, while also being much easier to train. However, diffusion models are
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much slower to run.

Autoencoders, GANs, and diffusion models are all unsupervised, they all
learn latent representations, they can all be used as generative models, and
they have many similar applications. However, they work very differently:

Autoencoders simply learn to copy their inputs to their outputs. This
may sound like a trivial task, but as you will see, constraining the
network in various ways can make it rather difficult. For example, you
can limit the size of the latent representations, or you can add noise to
the inputs and train the network to recover the original inputs. These
constraints prevent the autoencoder from trivially copying the inputs
directly to the outputs, which forces it to learn efficient ways of
representing the data. In short, the codings are byproducts of the
autoencoder learning the identity function under some constraints.

GANs are composed of two neural networks: a generator that tries to
generate data that looks similar to the training data, and a discriminator
that tries to tell real data from fake data. This architecture is very
original in deep learning in that the generator and the discriminator
compete against each other during training: the generator is often
compared to a criminal trying to make realistic counterfeit money, while
the discriminator is like the police investigator trying to tell real money
from fake. Adversarial training (training competing neural networks) is
widely considered one of the most important innovations of the 2010s.
In 2016, Yann LeCun even said that it was “the most interesting idea in
the last 10 years in machine learning”.

A denoising diffusion probabilistic model (DDPM) is trained to remove
a tiny bit of noise from an image. If you then take an image entirely full
of Gaussian noise and repeatedly run the diffusion model on that image,
a high-quality image will gradually emerge, similar to the training
images (but not identical).

In this chapter we will start by exploring in more depth how autoencoders
work and how to use them for dimensionality reduction, feature extraction,



unsupervised pretraining, or as generative models. This will naturally lead us
to GANs. We will build a simple GAN to generate fake images, but we will
see that training is often quite difficult. We will discuss the main difficulties
you will encounter with adversarial training, as well as some of the main
techniques to work around these difficulties. And lastly, we will build and
train a DDPM and use it to generate images. Let’s start with autoencoders!



Efficient Data Representations
Which of the following number sequences do you find the easiest to
memorize?

40, 27, 25, 36, 81, 57, 10, 73, 19, 68

50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14

At first glance, it would seem that the first sequence should be easier, since it
is much shorter. However, if you look carefully at the second sequence, you
will notice that it is just the list of even numbers from 50 down to 14. Once
you notice this pattern, the second sequence becomes much easier to
memorize than the first because you only need to remember the pattern (i.e.,
decreasing even numbers) and the starting and ending numbers (i.e., 50 and
14). Note that if you could quickly and easily memorize very long sequences,
you would not care much about the existence of a pattern in the second
sequence. You would just learn every number by heart, and that would be
that. The fact that it is hard to memorize long sequences is what makes it
useful to recognize patterns, and hopefully this clarifies why constraining an
autoencoder during training pushes it to discover and exploit patterns in the
data.

The relationship between memory, perception, and pattern matching was
famously studied by William Chase and Herbert Simon   in the early 1970s.
They observed that expert chess players were able to memorize the positions
of all the pieces in a game by looking at the board for just five seconds, a task
that most people would find impossible. However, this was only the case
when the pieces were placed in realistic positions (from actual games), not
when the pieces were placed randomly. Chess experts don’t have a much
better memory than you and I; they just see chess patterns more easily, thanks
to their experience with the game. Noticing patterns helps them store
information efficiently.

Just like the chess players in this memory experiment, an autoencoder looks
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at the inputs, converts them to an efficient latent representation, and then spits
out something that (hopefully) looks very close to the inputs. An autoencoder
is always composed of two parts: an encoder (or recognition network) that
converts the inputs to a latent representation, followed by a decoder (or
generative network) that converts the internal representation to the outputs
(see Figure 17-1).

Figure 17-1. The chess memory experiment (left) and a simple autoencoder (right)

As you can see, an autoencoder typically has the same architecture as a
multilayer perceptron (MLP; see Chapter 10), except that the number of
neurons in the output layer must be equal to the number of inputs. In this
example, there is just one hidden layer composed of two neurons (the
encoder), and one output layer composed of three neurons (the decoder). The



outputs are often called the reconstructions because the autoencoder tries to
reconstruct the inputs. The cost function contains a reconstruction loss that
penalizes the model when the reconstructions are different from the inputs.

Because the internal representation has a lower dimensionality than the input
data (it is 2D instead of 3D), the autoencoder is said to be undercomplete. An
undercomplete autoencoder cannot trivially copy its inputs to the codings, yet
it must find a way to output a copy of its inputs. It is forced to learn the most
important features in the input data (and drop the unimportant ones).

Let’s see how to implement a very simple undercomplete autoencoder for
dimensionality reduction.



Performing PCA with an Undercomplete Linear
Autoencoder
If the autoencoder uses only linear activations and the cost function is the
mean squared error (MSE), then it ends up performing principal component
analysis (PCA; see Chapter 8).

The following code builds a simple linear autoencoder to perform PCA on a
3D dataset, projecting it to 2D:

import tensorflow as tf

encoder = tf.keras.Sequential([tf.keras.layers.Dense(2)])
decoder = tf.keras.Sequential([tf.keras.layers.Dense(3)])
autoencoder = tf.keras.Sequential([encoder, decoder])

optimizer = tf.keras.optimizers.SGD(learning_rate=0.5)
autoencoder.compile(loss="mse", optimizer=optimizer)

This code is really not very different from all the MLPs we built in past
chapters, but there are a few things to note:

We organized the autoencoder into two subcomponents: the encoder and
the decoder. Both are regular Sequential models with a single Dense
layer each, and the autoencoder is a Sequential model containing the
encoder followed by the decoder (remember that a model can be used as
a layer in another model).

The autoencoder’s number of outputs is equal to the number of inputs
(i.e., 3).

To perform PCA, we do not use any activation function (i.e., all neurons
are linear), and the cost function is the MSE. That’s because PCA is a
linear transformation. We will see more complex and nonlinear
autoencoders shortly.

Now let’s train the model on the same simple generated 3D dataset we used



in Chapter 8 and use it to encode that dataset (i.e., project it to 2D):

X_train = [...]  # generate a 3D dataset, like in Chapter 8
history = autoencoder.fit(X_train, X_train, epochs=500, verbose=False)
codings = encoder.predict(X_train)

Note that X_train is used as both the inputs and the targets. Figure 17-2
shows the original 3D dataset (on the left) and the output of the autoencoder’s
hidden layer (i.e., the coding layer, on the right). As you can see, the
autoencoder found the best 2D plane to project the data onto, preserving as
much variance in the data as it could (just like PCA).

Figure 17-2. Approximate PCA performed by an undercomplete linear autoencoder

NOTE
You can think of an autoencoder as performing a form of self-supervised learning, since it
is based on a supervised learning technique with automatically generated labels (in this
case simply equal to the inputs).



Stacked Autoencoders
Just like other neural networks we have discussed, autoencoders can have
multiple hidden layers. In this case they are called stacked autoencoders (or
deep autoencoders). Adding more layers helps the autoencoder learn more
complex codings. That said, one must be careful not to make the autoencoder
too powerful. Imagine an encoder so powerful that it just learns to map each
input to a single arbitrary number (and the decoder learns the reverse
mapping). Obviously such an autoencoder will reconstruct the training data
perfectly, but it will not have learned any useful data representation in the
process, and it is unlikely to generalize well to new instances.

The architecture of a stacked autoencoder is typically symmetrical with
regard to the central hidden layer (the coding layer). To put it simply, it looks
like a sandwich. For example, an autoencoder for Fashion MNIST
(introduced in Chapter 10) may have 784 inputs, followed by a hidden layer
with 100 neurons, then a central hidden layer of 30 neurons, then another
hidden layer with 100 neurons, and an output layer with 784 neurons. This
stacked autoencoder is represented in Figure 17-3.



Figure 17-3. Stacked autoencoder



Implementing a Stacked Autoencoder Using Keras
You can implement a stacked autoencoder very much like a regular deep
MLP:

stacked_encoder = tf.keras.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(100, activation="relu"),
    tf.keras.layers.Dense(30, activation="relu"),
])
stacked_decoder = tf.keras.Sequential([
    tf.keras.layers.Dense(100, activation="relu"),
    tf.keras.layers.Dense(28 * 28),
    tf.keras.layers.Reshape([28, 28])
])
stacked_ae = tf.keras.Sequential([stacked_encoder, stacked_decoder])

stacked_ae.compile(loss="mse", optimizer="nadam")
history = stacked_ae.fit(X_train, X_train, epochs=20,
                         validation_data=(X_valid, X_valid))

Let’s go through this code:

Just like earlier, we split the autoencoder model into two submodels: the
encoder and the decoder.

The encoder takes 28 × 28–pixel grayscale images, flattens them so that
each image is represented as a vector of size 784, then processes these
vectors through two Dense layers of diminishing sizes (100 units then 30
units), both using the ReLU activation function. For each input image,
the encoder outputs a vector of size 30.

The decoder takes codings of size 30 (output by the encoder) and
processes them through two Dense layers of increasing sizes (100 units
then 784 units), and it reshapes the final vectors into 28 × 28 arrays so
the decoder’s outputs have the same shape as the encoder’s inputs.

When compiling the stacked autoencoder, we use the MSE loss and
Nadam optimization.



Finally, we train the model using X_train as both the inputs and the
targets. Similarly, we use X_valid as both the validation inputs and
targets.



Visualizing the Reconstructions
One way to ensure that an autoencoder is properly trained is to compare the
inputs and the outputs: the differences should not be too significant. Let’s
plot a few images from the validation set, as well as their reconstructions:

import numpy as np

def plot_reconstructions(model, images=X_valid, n_images=5):
    reconstructions = np.clip(model.predict(images[:n_images]), 0, 1)
    fig = plt.figure(figsize=(n_images * 1.5, 3))
    for image_index in range(n_images):
        plt.subplot(2, n_images, 1 + image_index)
        plt.imshow(images[image_index], cmap="binary")
        plt.axis("off")
        plt.subplot(2, n_images, 1 + n_images + image_index)
        plt.imshow(reconstructions[image_index], cmap="binary")
        plt.axis("off")

plot_reconstructions(stacked_ae)
plt.show()

Figure 17-4 shows the resulting images.

Figure 17-4. Original images (top) and their reconstructions (bottom)

The reconstructions are recognizable, but a bit too lossy. We may need to
train the model for longer, or make the encoder and decoder deeper, or make
the codings larger. But if we make the network too powerful, it will manage
to make perfect reconstructions without having learned any useful patterns in



the data. For now, let’s go with this model.



Visualizing the Fashion MNIST Dataset
Now that we have trained a stacked autoencoder, we can use it to reduce the
dataset’s dimensionality. For visualization, this does not give great results
compared to other dimensionality reduction algorithms (such as those we
discussed in Chapter 8), but one big advantage of autoencoders is that they
can handle large datasets with many instances and many features. So, one
strategy is to use an autoencoder to reduce the dimensionality down to a
reasonable level, then use another dimensionality reduction algorithm for
visualization. Let’s use this strategy to visualize Fashion MNIST. First we’ll
use the encoder from our stacked autoencoder to reduce the dimensionality
down to 30, then we’ll use Scikit-Learn’s implementation of the t-SNE
algorithm to reduce the dimensionality down to 2 for visualization:

from sklearn.manifold import TSNE

X_valid_compressed = stacked_encoder.predict(X_valid)
tsne = TSNE(init="pca", learning_rate="auto", random_state=42)
X_valid_2D = tsne.fit_transform(X_valid_compressed)

Now we can plot the dataset:

plt.scatter(X_valid_2D[:, 0], X_valid_2D[:, 1], c=y_valid, s=10, cmap="tab10")
plt.show()

Figure 17-5 shows the resulting scatterplot, beautified a bit by displaying
some of the images. The t-SNE algorithm identified several clusters that
match the classes reasonably well (each class is represented by a different
color).



Figure 17-5. Fashion MNIST visualization using an autoencoder followed by t-SNE

So, autoencoders can be used for dimensionality reduction. Another
application is for unsupervised pretraining.



Unsupervised Pretraining Using Stacked Autoencoders
As we discussed in Chapter 11, if you are tackling a complex supervised task
but you do not have a lot of labeled training data, one solution is to find a
neural network that performs a similar task and reuse its lower layers. This
makes it possible to train a high-performance model using little training data
because your neural network won’t have to learn all the low-level features; it
will just reuse the feature detectors learned by the existing network.

Similarly, if you have a large dataset but most of it is unlabeled, you can first
train a stacked autoencoder using all the data, then reuse the lower layers to
create a neural network for your actual task and train it using the labeled data.
For example, Figure 17-6 shows how to use a stacked autoencoder to perform
unsupervised pretraining for a classification neural network. When training
the classifier, if you really don’t have much labeled training data, you may
want to freeze the pretrained layers (at least the lower ones).



Figure 17-6. Unsupervised pretraining using autoencoders

NOTE
Having plenty of unlabeled data and little labeled data is common. Building a large
unlabeled dataset is often cheap (e.g., a simple script can download millions of images off
the internet), but labeling those images (e.g., classifying them as cute or not) can usually
be done reliably only by humans. Labeling instances is time-consuming and costly, so it’s
normal to have only a few thousand human-labeled instances, or even less.

There is nothing special about the implementation: just train an autoencoder
using all the training data (labeled plus unlabeled), then reuse its encoder
layers to create a new neural network (see the exercises at the end of this
chapter for an example).



Next, let’s look at a few techniques for training stacked autoencoders.



Tying Weights
When an autoencoder is neatly symmetrical, like the one we just built, a
common technique is to tie the weights of the decoder layers to the weights
of the encoder layers. This halves the number of weights in the model,
speeding up training and limiting the risk of overfitting. Specifically, if the
autoencoder has a total of N layers (not counting the input layer), and W
represents the connection weights of the L  layer (e.g., layer 1 is the first
hidden layer, layer N/2 is the coding layer, and layer N is the output layer),
then the decoder layer weights can be defined as W  = W  (with L = N /
2 + 1, …, N).

To tie weights between layers using Keras, let’s define a custom layer:

class DenseTranspose(tf.keras.layers.Layer):
    def __init__(self, dense, activation=None, **kwargs):
        super().__init__(**kwargs)
        self.dense = dense
        self.activation = tf.keras.activations.get(activation)

    def build(self, batch_input_shape):
        self.biases = self.add_weight(name="bias",
                                      shape=self.dense.input_shape[-1],
                                      initializer="zeros")
        super().build(batch_input_shape)

    def call(self, inputs):
        Z = tf.matmul(inputs, self.dense.weights[0], transpose_b=True)
        return self.activation(Z + self.biases)

This custom layer acts like a regular Dense layer, but it uses another Dense
layer’s weights, transposed (setting transpose_b=True is equivalent to
transposing the second argument, but it’s more efficient as it performs the
transposition on the fly within the matmul() operation). However, it uses its
own bias vector. Now we can build a new stacked autoencoder, much like the
previous one but with the decoder’s Dense layers tied to the encoder’s Dense
layers:

L
th

L N–L+1
⊺



dense_1 = tf.keras.layers.Dense(100, activation="relu")
dense_2 = tf.keras.layers.Dense(30, activation="relu")

tied_encoder = tf.keras.Sequential([
    tf.keras.layers.Flatten(),
    dense_1,
    dense_2
])

tied_decoder = tf.keras.Sequential([
    DenseTranspose(dense_2, activation="relu"),
    DenseTranspose(dense_1),
    tf.keras.layers.Reshape([28, 28])
])

tied_ae = tf.keras.Sequential([tied_encoder, tied_decoder])

This model achieves roughly the same reconstruction error as the previous
model, using almost half the number of parameters.



Training One Autoencoder at a Time
Rather than training the whole stacked autoencoder in one go like we just did,
it is possible to train one shallow autoencoder at a time, then stack all of them
into a single stacked autoencoder (hence the name), as shown in Figure 17-7.
This technique is not used so much these days, but you may still run into
papers that talk about “greedy layerwise training”, so it’s good to know what
it means.

Figure 17-7. Training one autoencoder at a time

During the first phase of training, the first autoencoder learns to reconstruct
the inputs. Then we encode the whole training set using this first
autoencoder, and this gives us a new (compressed) training set. We then train
a second autoencoder on this new dataset. This is the second phase of
training. Finally, we build a big sandwich using all these autoencoders, as
shown in Figure 17-7 (i.e., we first stack the hidden layers of each
autoencoder, then the output layers in reverse order). This gives us the final
stacked autoencoder (see the “Training One Autoencoder at a Time” section
in the chapter’s notebook for an implementation). We could easily train more



autoencoders this way, building a very deep stacked autoencoder.

As I mentioned earlier, one of the triggers of the deep learning tsunami was
the discovery in 2006 by Geoffrey Hinton et al. that deep neural networks can
be pretrained in an unsupervised fashion, using this greedy layerwise
approach. They used restricted Boltzmann machines (RBMs; see
https://homl.info/extra-anns) for this purpose, but in 2007 Yoshua Bengio et
al.  showed that autoencoders worked just as well. For several years this was
the only efficient way to train deep nets, until many of the techniques
introduced in Chapter 11 made it possible to just train a deep net in one shot.

Autoencoders are not limited to dense networks: you can also build
convolutional autoencoders. Let’s look at these now.
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Convolutional Autoencoders
If you are dealing with images, then the autoencoders we have seen so far
will not work well (unless the images are very small): as you saw in
Chapter 14, convolutional neural networks are far better suited than dense
networks to working with images. So if you want to build an autoencoder for
images (e.g., for unsupervised pretraining or dimensionality reduction), you
will need to build a convolutional autoencoder.  The encoder is a regular
CNN composed of convolutional layers and pooling layers. It typically
reduces the spatial dimensionality of the inputs (i.e., height and width) while
increasing the depth (i.e., the number of feature maps). The decoder must do
the reverse (upscale the image and reduce its depth back to the original
dimensions), and for this you can use transpose convolutional layers
(alternatively, you could combine upsampling layers with convolutional
layers). Here is a basic convolutional autoencoder for Fashion MNIST:

conv_encoder = tf.keras.Sequential([
    tf.keras.layers.Reshape([28, 28, 1]),
    tf.keras.layers.Conv2D(16, 3, padding="same", activation="relu"),
    tf.keras.layers.MaxPool2D(pool_size=2),  # output: 14 × 14 x 16
    tf.keras.layers.Conv2D(32, 3, padding="same", activation="relu"),
    tf.keras.layers.MaxPool2D(pool_size=2),  # output: 7 × 7 x 32
    tf.keras.layers.Conv2D(64, 3, padding="same", activation="relu"),
    tf.keras.layers.MaxPool2D(pool_size=2),  # output: 3 × 3 x 64
    tf.keras.layers.Conv2D(30, 3, padding="same", activation="relu"),
    tf.keras.layers.GlobalAvgPool2D()  # output: 30
])
conv_decoder = tf.keras.Sequential([
    tf.keras.layers.Dense(3 * 3 * 16),
    tf.keras.layers.Reshape((3, 3, 16)),
    tf.keras.layers.Conv2DTranspose(32, 3, strides=2, activation="relu"),
    tf.keras.layers.Conv2DTranspose(16, 3, strides=2, padding="same",
                                    activation="relu"),
    tf.keras.layers.Conv2DTranspose(1, 3, strides=2, padding="same"),
    tf.keras.layers.Reshape([28, 28])
])
conv_ae = tf.keras.Sequential([conv_encoder, conv_decoder])

It’s also possible to create autoencoders with other architecture types, such as
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RNNs (see the notebook for an example).

OK, let’s step back for a second. So far we have looked at various kinds of
autoencoders (basic, stacked, and convolutional), and how to train them
(either in one shot or layer by layer). We also looked at a couple of
applications: data visualization and unsupervised pretraining.

Up to now, in order to force the autoencoder to learn interesting features, we
have limited the size of the coding layer, making it undercomplete. There are
actually many other kinds of constraints that can be used, including ones that
allow the coding layer to be just as large as the inputs, or even larger,
resulting in an overcomplete autoencoder. Then, in the following sections
we’ll look at a few more kinds of autoencoders: denoising autoencoders,
sparse autoencoders, and variational autoencoders.



Denoising Autoencoders
Another way to force the autoencoder to learn useful features is to add noise
to its inputs, training it to recover the original, noise-free inputs. This idea has
been around since the 1980s (e.g., it is mentioned in Yann LeCun’s 1987
master’s thesis). In a 2008 paper,  Pascal Vincent et al. showed that
autoencoders could also be used for feature extraction. In a 2010 paper,
Vincent et al. introduced stacked denoising autoencoders.

The noise can be pure Gaussian noise added to the inputs, or it can be
randomly switched-off inputs, just like in dropout (introduced in Chapter 11).
Figure 17-8 shows both options.

The implementation is straightforward: it is a regular stacked autoencoder
with an additional Dropout layer applied to the encoder’s inputs (or you
could use a GaussianNoise layer instead). Recall that the Dropout layer is
only active during training (and so is the GaussianNoise layer):

dropout_encoder = tf.keras.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(100, activation="relu"),
    tf.keras.layers.Dense(30, activation="relu")
])
dropout_decoder = tf.keras.Sequential([
    tf.keras.layers.Dense(100, activation="relu"),
    tf.keras.layers.Dense(28 * 28),
    tf.keras.layers.Reshape([28, 28])
])
dropout_ae = tf.keras.Sequential([dropout_encoder, dropout_decoder])
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Figure 17-8. Denoising autoencoders, with Gaussian noise (left) or dropout (right)

Figure 17-9 shows a few noisy images (with half the pixels turned off), and
the images reconstructed by the dropout-based denoising autoencoder. Notice
how the autoencoder guesses details that are actually not in the input, such as
the top of the white shirt (bottom row, fourth image). As you can see, not
only can denoising autoencoders be used for data visualization or
unsupervised pretraining, like the other autoencoders we’ve discussed so far,
but they can also be used quite simply and efficiently to remove noise from
images.

Figure 17-9. Noisy images (top) and their reconstructions (bottom)



Sparse Autoencoders
Another kind of constraint that often leads to good feature extraction is
sparsity: by adding an appropriate term to the cost function, the autoencoder
is pushed to reduce the number of active neurons in the coding layer. For
example, it may be pushed to have on average only 5% significantly active
neurons in the coding layer. This forces the autoencoder to represent each
input as a combination of a small number of activations. As a result, each
neuron in the coding layer typically ends up representing a useful feature (if
you could speak only a few words per month, you would probably try to
make them worth listening to).

A simple approach is to use the sigmoid activation function in the coding
layer (to constrain the codings to values between 0 and 1), use a large coding
layer (e.g., with 300 units), and add some ℓ  regularization to the coding
layer’s activations. The decoder is just a regular decoder:

sparse_l1_encoder = tf.keras.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(100, activation="relu"),
    tf.keras.layers.Dense(300, activation="sigmoid"),
    tf.keras.layers.ActivityRegularization(l1=1e-4)
])
sparse_l1_decoder = tf.keras.Sequential([
    tf.keras.layers.Dense(100, activation="relu"),
    tf.keras.layers.Dense(28 * 28),
    tf.keras.layers.Reshape([28, 28])
])
sparse_l1_ae = tf.keras.Sequential([sparse_l1_encoder, sparse_l1_decoder])

This ActivityRegularization layer just returns its inputs, but as a side effect it
adds a training loss equal to the sum of the absolute values of its inputs. This
only affects training. Equivalently, you could remove the
ActivityRegularization layer and set
activity_regularizer=tf.keras.regularizers.l1(1e-4) in the previous layer. This
penalty will encourage the neural network to produce codings close to 0, but
since it will also be penalized if it does not reconstruct the inputs correctly, it
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will have to output at least a few nonzero values. Using the ℓ  norm rather
than the ℓ  norm will push the neural network to preserve the most important
codings while eliminating the ones that are not needed for the input image
(rather than just reducing all codings).

Another approach, which often yields better results, is to measure the actual
sparsity of the coding layer at each training iteration, and penalize the model
when the measured sparsity differs from a target sparsity. We do so by
computing the average activation of each neuron in the coding layer, over the
whole training batch. The batch size must not be too small, or else the mean
will not be accurate.

Once we have the mean activation per neuron, we want to penalize the
neurons that are too active, or not active enough, by adding a sparsity loss to
the cost function. For example, if we measure that a neuron has an average
activation of 0.3, but the target sparsity is 0.1, it must be penalized to activate
less. One approach could be simply adding the squared error (0.3 – 0.1)  to
the cost function, but in practice a better approach is to use the Kullback–
Leibler (KL) divergence (briefly discussed in Chapter 4), which has much
stronger gradients than the mean squared error, as you can see in Figure 17-
10.
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Figure 17-10. Sparsity loss

Given two discrete probability distributions P and Q, the KL divergence
between these distributions, noted D (P ∥ Q), can be computed using
Equation 17-1.

Equation 17-1. Kullback–Leibler divergence

D KL ( P ∥ Q ) = ∑ i P ( i ) log P(i) Q(i)

In our case, we want to measure the divergence between the target probability
p that a neuron in the coding layer will activate and the actual probability q,
estimated by measuring the mean activation over the training batch. So, the
KL divergence simplifies to Equation 17-2.

Equation 17-2. KL divergence between the target sparsity p and the actual sparsity q

D KL ( p ∥ q ) = p log p q + ( 1 - p ) log 1-p 1-q

Once we have computed the sparsity loss for each neuron in the coding layer,
we sum up these losses and add the result to the cost function. In order to
control the relative importance of the sparsity loss and the reconstruction

KL



loss, we can multiply the sparsity loss by a sparsity weight hyperparameter. If
this weight is too high, the model will stick closely to the target sparsity, but
it may not reconstruct the inputs properly, making the model useless.
Conversely, if it is too low, the model will mostly ignore the sparsity
objective and will not learn any interesting features.

We now have all we need to implement a sparse autoencoder based on the
KL divergence. First, let’s create a custom regularizer to apply KL
divergence regularization:

kl_divergence = tf.keras.losses.kullback_leibler_divergence

class KLDivergenceRegularizer(tf.keras.regularizers.Regularizer):
    def __init__(self, weight, target):
        self.weight = weight
        self.target = target

    def __call__(self, inputs):
        mean_activities = tf.reduce_mean(inputs, axis=0)
        return self.weight * (
            kl_divergence(self.target, mean_activities) +
            kl_divergence(1. - self.target, 1. - mean_activities))

Now we can build the sparse autoencoder, using the
KLDivergenceRegularizer for the coding layer’s activations:

kld_reg = KLDivergenceRegularizer(weight=5e-3, target=0.1)
sparse_kl_encoder = tf.keras.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(100, activation="relu"),
    tf.keras.layers.Dense(300, activation="sigmoid",
                          activity_regularizer=kld_reg)
])
sparse_kl_decoder = tf.keras.Sequential([
    tf.keras.layers.Dense(100, activation="relu"),
    tf.keras.layers.Dense(28 * 28),
    tf.keras.layers.Reshape([28, 28])
])
sparse_kl_ae = tf.keras.Sequential([sparse_kl_encoder, sparse_kl_decoder])

After training this sparse autoencoder on Fashion MNIST, the coding layer
will have roughly 10% sparsity.



Variational Autoencoders
An important category of autoencoders was introduced in 2013 by Diederik
Kingma and Max Welling  and quickly became one of the most popular
variants: variational autoencoders (VAEs).

VAEs are quite different from all the autoencoders we have discussed so far,
in these particular ways:

They are probabilistic autoencoders, meaning that their outputs are
partly determined by chance, even after training (as opposed to
denoising autoencoders, which use randomness only during training).

Most importantly, they are generative autoencoders, meaning that they
can generate new instances that look like they were sampled from the
training set.

Both these properties make VAEs rather similar to RBMs, but they are easier
to train, and the sampling process is much faster (with RBMs you need to
wait for the network to stabilize into a “thermal equilibrium” before you can
sample a new instance). As their name suggests, variational autoencoders
perform variational Bayesian inference, which is an efficient way of carrying
out approximate Bayesian inference. Recall that Bayesian inference means
updating a probability distribution based on new data, using equations
derived from Bayes’ theorem. The original distribution is called the prior,
while the updated distribution is called the posterior. In our case, we want to
find a good approximation of the data distribution. Once we have that, we can
sample from it.

Let’s take a look at how VAEs work. Figure 17-11 (left) shows a variational
autoencoder. You can recognize the basic structure of all autoencoders, with
an encoder followed by a decoder (in this example, they both have two
hidden layers), but there is a twist: instead of directly producing a coding for
a given input, the encoder produces a mean coding μ and a standard deviation
σ. The actual coding is then sampled randomly from a Gaussian distribution
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with mean μ and standard deviation σ. After that the decoder decodes the
sampled coding normally. The right part of the diagram shows a training
instance going through this autoencoder. First, the encoder produces μ and σ,
then a coding is sampled randomly (notice that it is not exactly located at μ),
and finally this coding is decoded; the final output resembles the training
instance.

Figure 17-11. A variational autoencoder (left) and an instance going through it (right)

As you can see in the diagram, although the inputs may have a very
convoluted distribution, a variational autoencoder tends to produce codings
that look as though they were sampled from a simple Gaussian
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distribution:  during training, the cost function (discussed next) pushes the
codings to gradually migrate within the coding space (also called the latent
space) to end up looking like a cloud of Gaussian points. One great
consequence is that after training a variational autoencoder, you can very
easily generate a new instance: just sample a random coding from the
Gaussian distribution, decode it, and voilà!

Now, let’s look at the cost function. It is composed of two parts. The first is
the usual reconstruction loss that pushes the autoencoder to reproduce its
inputs. We can use the MSE for this, as we did earlier. The second is the
latent loss that pushes the autoencoder to have codings that look as though
they were sampled from a simple Gaussian distribution: it is the KL
divergence between the target distribution (i.e., the Gaussian distribution) and
the actual distribution of the codings. The math is a bit more complex than
with the sparse autoencoder, in particular because of the Gaussian noise,
which limits the amount of information that can be transmitted to the coding
layer. This pushes the autoencoder to learn useful features. Luckily, the
equations simplify, so the latent loss can be computed using Equation 17-
3.

Equation 17-3. Variational autoencoder’s latent loss

L=-12∑i=1n1+log(σi2)-σi2-μi2

In this equation, ℒ is the latent loss, n is the codings’ dimensionality, and μ
and σ  are the mean and standard deviation of the i  component of the
codings. The vectors μ and σ (which contain all the μ  and σ ) are output by
the encoder, as shown in Figure 17-11 (left).

A common tweak to the variational autoencoder’s architecture is to make the
encoder output γ = log(σ ) rather than σ. The latent loss can then be
computed as shown in Equation 17-4. This approach is more numerically
stable and speeds up training.

Equation 17-4. Variational autoencoder’s latent loss, rewritten using γ = log(σ²)

L=-12∑i=1n1+γi-exp(γi)-μi2
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Let’s start building a variational autoencoder for Fashion MNIST (as shown
in Figure 17-11, but using the γ tweak). First, we will need a custom layer to
sample the codings, given μ and γ:

class Sampling(tf.keras.layers.Layer):
    def call(self, inputs):
        mean, log_var = inputs
        return tf.random.normal(tf.shape(log_var)) * tf.exp(log_var / 2) + mean

This Sampling layer takes two inputs: mean (μ) and log_var (γ). It uses the
function tf.random.normal() to sample a random vector (of the same shape as
γ) from the Gaussian distribution, with mean 0 and standard deviation 1.
Then it multiplies it by exp(γ / 2) (which is equal to σ, as you can verify
mathematically), and finally it adds μ and returns the result. This samples a
codings vector from the Gaussian distribution with mean μ and standard
deviation σ.

Next, we can create the encoder, using the functional API because the model
is not entirely sequential:

codings_size = 10

inputs = tf.keras.layers.Input(shape=[28, 28])
Z = tf.keras.layers.Flatten()(inputs)
Z = tf.keras.layers.Dense(150, activation="relu")(Z)
Z = tf.keras.layers.Dense(100, activation="relu")(Z)
codings_mean = tf.keras.layers.Dense(codings_size)(Z)  # μ
codings_log_var = tf.keras.layers.Dense(codings_size)(Z)  # γ
codings = Sampling()([codings_mean, codings_log_var])
variational_encoder = tf.keras.Model(
    inputs=[inputs], outputs=[codings_mean, codings_log_var, codings])

Note that the Dense layers that output codings_mean (μ) and
codings_log_var (γ) have the same inputs (i.e., the outputs of the second
Dense layer). We then pass both codings_mean and codings_log_var to the
Sampling layer. Finally, the variational_encoder model has three outputs.
Only the codings are required, but we add codings_mean and
codings_log_var as well, in case we want to inspect their values. Now let’s
build the decoder:



decoder_inputs = tf.keras.layers.Input(shape=[codings_size])
x = tf.keras.layers.Dense(100, activation="relu")(decoder_inputs)
x = tf.keras.layers.Dense(150, activation="relu")(x)
x = tf.keras.layers.Dense(28 * 28)(x)
outputs = tf.keras.layers.Reshape([28, 28])(x)
variational_decoder = tf.keras.Model(inputs=[decoder_inputs], outputs=[outputs])

For this decoder, we could have used the sequential API instead of the
functional API, since it is really just a simple stack of layers, virtually
identical to many of the decoders we have built so far. Finally, let’s build the
variational autoencoder model:

_, _, codings = variational_encoder(inputs)
reconstructions = variational_decoder(codings)
variational_ae = tf.keras.Model(inputs=[inputs], outputs=[reconstructions])

We ignore the first two outputs of the encoder (we only want to feed the
codings to the decoder). Lastly, we must add the latent loss and the
reconstruction loss:

latent_loss = -0.5 * tf.reduce_sum(
    1 + codings_log_var - tf.exp(codings_log_var) - tf.square(codings_mean),
    axis=-1)
variational_ae.add_loss(tf.reduce_mean(latent_loss) / 784.)

We first apply Equation 17-4 to compute the latent loss for each instance in
the batch, summing over the last axis. Then we compute the mean loss over
all the instances in the batch, and we divide the result by 784 to ensure it has
the appropriate scale compared to the reconstruction loss. Indeed, the
variational autoencoder’s reconstruction loss is supposed to be the sum of the
pixel reconstruction errors, but when Keras computes the "mse" loss it
computes the mean over all 784 pixels, rather than the sum. So, the
reconstruction loss is 784 times smaller than we need it to be. We could
define a custom loss to compute the sum rather than the mean, but it is
simpler to divide the latent loss by 784 (the final loss will be 784 times
smaller than it should be, but this just means that we should use a larger
learning rate).



And finally, we can compile and fit the autoencoder!

variational_ae.compile(loss="mse", optimizer="nadam")
history = variational_ae.fit(X_train, X_train, epochs=25, batch_size=128,
                             validation_data=(X_valid, X_valid))



Generating Fashion MNIST Images
Now let’s use this variational autoencoder to generate images that look like
fashion items. All we need to do is sample random codings from a Gaussian
distribution and decode them:

codings = tf.random.normal(shape=[3 * 7, codings_size])
images = variational_decoder(codings).numpy()

Figure 17-12 shows the 12 generated images.

Figure 17-12. Fashion MNIST images generated by the variational autoencoder

The majority of these images look fairly convincing, if a bit too fuzzy. The
rest are not great, but don’t be too harsh on the autoencoder—it only had a
few minutes to learn!

Variational autoencoders make it possible to perform semantic interpolation:
instead of interpolating between two images at the pixel level, which would
look as if the two images were just overlaid, we can interpolate at the codings
level. For example, let’s take a few codings along an arbitrary line in latent
space and decode them. We get a sequence of images that gradually go from
pants to sweaters (see Figure 17-13):

codings = np.zeros([7, codings_size])
codings[:, 3] = np.linspace(-0.8, 0.8, 7)  # axis 3 looks best in this case



images = variational_decoder(codings).numpy()

Figure 17-13. Semantic interpolation

Let’s now turn our attention to GANs: they are harder to train, but when you
manage to get them to work, they produce pretty amazing images.



Generative Adversarial Networks
Generative adversarial networks were proposed in a 2014 paper  by Ian
Goodfellow et al., and although the idea got researchers excited almost
instantly, it took a few years to overcome some of the difficulties of training
GANs. Like many great ideas, it seems simple in hindsight: make neural
networks compete against each other in the hope that this competition will
push them to excel. As shown in Figure 17-14, a GAN is composed of two
neural networks:

Generator

Takes a random distribution as input (typically Gaussian) and outputs
some data—typically, an image. You can think of the random inputs as
the latent representations (i.e., codings) of the image to be generated. So,
as you can see, the generator offers the same functionality as a decoder in
a variational autoencoder, and it can be used in the same way to generate
new images: just feed it some Gaussian noise, and it outputs a brand-new
image. However, it is trained very differently, as you will soon see.

Discriminator

Takes either a fake image from the generator or a real image from the
training set as input, and must guess whether the input image is fake or
real.
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Figure 17-14. A generative adversarial network

During training, the generator and the discriminator have opposite goals: the
discriminator tries to tell fake images from real images, while the generator
tries to produce images that look real enough to trick the discriminator.
Because the GAN is composed of two networks with different objectives, it
cannot be trained like a regular neural network. Each training iteration is
divided into two phases:

In the first phase, we train the discriminator. A batch of real images is
sampled from the training set and is completed with an equal number of
fake images produced by the generator. The labels are set to 0 for fake
images and 1 for real images, and the discriminator is trained on this
labeled batch for one step, using the binary cross-entropy loss.
Importantly, backpropagation only optimizes the weights of the
discriminator during this phase.

In the second phase, we train the generator. We first use it to produce



another batch of fake images, and once again the discriminator is used to
tell whether the images are fake or real. This time we do not add real
images in the batch, and all the labels are set to 1 (real): in other words,
we want the generator to produce images that the discriminator will
(wrongly) believe to be real! Crucially, the weights of the discriminator
are frozen during this step, so backpropagation only affects the weights
of the generator.

NOTE
The generator never actually sees any real images, yet it gradually learns to produce
convincing fake images! All it gets is the gradients flowing back through the
discriminator. Fortunately, the better the discriminator gets, the more information about
the real images is contained in these secondhand gradients, so the generator can make
significant progress.

Let’s go ahead and build a simple GAN for Fashion MNIST.

First, we need to build the generator and the discriminator. The generator is
similar to an autoencoder’s decoder, and the discriminator is a regular binary
classifier: it takes an image as input and ends with a Dense layer containing a
single unit and using the sigmoid activation function. For the second phase of
each training iteration, we also need the full GAN model containing the
generator followed by the discriminator:

codings_size = 30

Dense = tf.keras.layers.Dense
generator = tf.keras.Sequential([
    Dense(100, activation="relu", kernel_initializer="he_normal"),
    Dense(150, activation="relu", kernel_initializer="he_normal"),
    Dense(28 * 28, activation="sigmoid"),
    tf.keras.layers.Reshape([28, 28])
])
discriminator = tf.keras.Sequential([
    tf.keras.layers.Flatten(),
    Dense(150, activation="relu", kernel_initializer="he_normal"),
    Dense(100, activation="relu", kernel_initializer="he_normal"),
    Dense(1, activation="sigmoid")



])
gan = tf.keras.Sequential([generator, discriminator])

Next, we need to compile these models. As the discriminator is a binary
classifier, we can naturally use the binary cross-entropy loss. The gan model
is also a binary classifier, so it can use the binary cross-entropy loss as well.
However, the generator will only be trained through the gan model, so we do
not need to compile it at all. Importantly, the discriminator should not be
trained during the second phase, so we make it non-trainable before
compiling the gan model:

discriminator.compile(loss="binary_crossentropy", optimizer="rmsprop")
discriminator.trainable = False
gan.compile(loss="binary_crossentropy", optimizer="rmsprop")

NOTE
The trainable attribute is taken into account by Keras only when compiling a model, so
after running this code, the discriminator is trainable if we call its fit() method or its
train_on_batch() method (which we will be using), while it is not trainable when we call
these methods on the gan model.

Since the training loop is unusual, we cannot use the regular fit() method.
Instead, we will write a custom training loop. For this, we first need to create
a Dataset to iterate through the images:

batch_size = 32
dataset = tf.data.Dataset.from_tensor_slices(X_train).shuffle(buffer_size=1000)
dataset = dataset.batch(batch_size, drop_remainder=True).prefetch(1)

We are now ready to write the training loop. Let’s wrap it in a train_gan()
function:

def train_gan(gan, dataset, batch_size, codings_size, n_epochs):
    generator, discriminator = gan.layers
    for epoch in range(n_epochs):
        for X_batch in dataset:
            # phase 1 - training the discriminator



            noise = tf.random.normal(shape=[batch_size, codings_size])
            generated_images = generator(noise)
            X_fake_and_real = tf.concat([generated_images, X_batch], axis=0)
            y1 = tf.constant([[0.]] * batch_size + [[1.]] * batch_size)
            discriminator.train_on_batch(X_fake_and_real, y1)
            # phase 2 - training the generator
            noise = tf.random.normal(shape=[batch_size, codings_size])
            y2 = tf.constant([[1.]] * batch_size)
            gan.train_on_batch(noise, y2)

train_gan(gan, dataset, batch_size, codings_size, n_epochs=50)

As discussed earlier, you can see the two phases at each iteration:

In phase one we feed Gaussian noise to the generator to produce fake
images, and we complete this batch by concatenating an equal number
of real images. The targets y1 are set to 0 for fake images and 1 for real
images. Then we train the discriminator on this batch. Remember that
the discriminator is trainable in this phase, but we are not touching the
generator.

In phase two, we feed the GAN some Gaussian noise. Its generator will
start by producing fake images, then the discriminator will try to guess
whether these images are fake or real. In this phase, we are trying to
improve the generator, which means that we want the discriminator to
fail: this is why the targets y2 are all set to 1, although the images are
fake. In this phase, the discriminator is not trainable, so the only part of
the gan model that will improve is the generator.

That’s it! After training, you can randomly sample some codings from a
Gaussian distribution, and feed them to the generator to produce new images:

codings = tf.random.normal(shape=[batch_size, codings_size])
generated_images = generator.predict(codings)

If you display the generated images (see Figure 17-15), you will see that at
the end of the first epoch, they already start to look like (very noisy) Fashion
MNIST images.



Figure 17-15. Images generated by the GAN after one epoch of training

Unfortunately, the images never really get much better than that, and you
may even find epochs where the GAN seems to be forgetting what it learned.
Why is that? Well, it turns out that training a GAN can be challenging. Let’s
see why.



The Difficulties of Training GANs
During training, the generator and the discriminator constantly try to outsmart
each other, in a zero-sum game. As training advances, the game may end up
in a state that game theorists call a Nash equilibrium, named after the
mathematician John Nash: this is when no player would be better off
changing their own strategy, assuming the other players do not change theirs.
For example, a Nash equilibrium is reached when everyone drives on the left
side of the road: no driver would be better off being the only one to switch
sides. Of course, there is a second possible Nash equilibrium: when everyone
drives on the right side of the road. Different initial states and dynamics may
lead to one equilibrium or the other. In this example, there is a single optimal
strategy once an equilibrium is reached (i.e., driving on the same side as
everyone else), but a Nash equilibrium can involve multiple competing
strategies (e.g., a predator chases its prey, the prey tries to escape, and neither
would be better off changing their strategy).

So how does this apply to GANs? Well, the authors of the GAN paper
demonstrated that a GAN can only reach a single Nash equilibrium: that’s
when the generator produces perfectly realistic images, and the discriminator
is forced to guess (50% real, 50% fake). This fact is very encouraging: it
would seem that you just need to train the GAN for long enough, and it will
eventually reach this equilibrium, giving you a perfect generator.
Unfortunately, it’s not that simple: nothing guarantees that the equilibrium
will ever be reached.

The biggest difficulty is called mode collapse: this is when the generator’s
outputs gradually become less diverse. How can this happen? Suppose that
the generator gets better at producing convincing shoes than any other class.
It will fool the discriminator a bit more with shoes, and this will encourage it
to produce even more images of shoes. Gradually, it will forget how to
produce anything else. Meanwhile, the only fake images that the
discriminator will see will be shoes, so it will also forget how to discriminate
fake images of other classes. Eventually, when the discriminator manages to
discriminate the fake shoes from the real ones, the generator will be forced to



move to another class. It may then become good at shirts, forgetting about
shoes, and the discriminator will follow. The GAN may gradually cycle
across a few classes, never really becoming very good at any of them.

Moreover, because the generator and the discriminator are constantly pushing
against each other, their parameters may end up oscillating and becoming
unstable. Training may begin properly, then suddenly diverge for no apparent
reason, due to these instabilities. And since many factors affect these
complex dynamics, GANs are very sensitive to the hyperparameters: you
may have to spend a lot of effort fine-tuning them. In fact, that’s why I used
RMSProp rather than Nadam when compiling the models: when using
Nadam, I ran into a severe mode collapse.

These problems have kept researchers very busy since 2014: many papers
have been published on this topic, some proposing new cost functions 
(though a 2018 paper  by Google researchers questions their efficiency) or
techniques to stabilize training or to avoid the mode collapse issue. For
example, a popular technique called experience replay consists of storing the
images produced by the generator at each iteration in a replay buffer
(gradually dropping older generated images) and training the discriminator
using real images plus fake images drawn from this buffer (rather than just
fake images produced by the current generator). This reduces the chances that
the discriminator will overfit the latest generator’s outputs. Another common
technique is called mini-batch discrimination: it measures how similar
images are across the batch and provides this statistic to the discriminator, so
it can easily reject a whole batch of fake images that lack diversity. This
encourages the generator to produce a greater variety of images, reducing the
chance of mode collapse. Other papers simply propose specific architectures
that happen to perform well.

In short, this is still a very active field of research, and the dynamics of GANs
are still not perfectly understood. But the good news is that great progress has
been made, and some of the results are truly astounding! So let’s look at
some of the most successful architectures, starting with deep convolutional
GANs, which were the state of the art just a few years ago. Then we will look
at two more recent (and more complex) architectures.
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Deep Convolutional GANs
The authors of the original GAN paper experimented with convolutional
layers, but only tried to generate small images. Soon after, many researchers
tried to build GANs based on deeper convolutional nets for larger images.
This proved to be tricky, as training was very unstable, but Alec Radford et
al. finally succeeded in late 2015, after experimenting with many different
architectures and hyperparameters. They called their architecture deep
convolutional GANs (DCGANs).   Here are the main guidelines they
proposed for building stable convolutional GANs:

Replace any pooling layers with strided convolutions (in the
discriminator) and transposed convolutions (in the generator).

Use batch normalization in both the generator and the discriminator,
except in the generator’s output layer and the discriminator’s input layer.

Remove fully connected hidden layers for deeper architectures.

Use ReLU activation in the generator for all layers except the output
layer, which should use tanh.

Use leaky ReLU activation in the discriminator for all layers.

These guidelines will work in many cases, but not always, so you may still
need to experiment with different hyperparameters. In fact, just changing the
random seed and training the exact same model again will sometimes work.
Here is a small DCGAN that works reasonably well with Fashion MNIST:

codings_size = 100

generator = tf.keras.Sequential([
    tf.keras.layers.Dense(7 * 7 * 128),
    tf.keras.layers.Reshape([7, 7, 128]),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Conv2DTranspose(64, kernel_size=5, strides=2,
                                    padding="same", activation="relu"),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Conv2DTranspose(1, kernel_size=5, strides=2,
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                                    padding="same", activation="tanh"),
])
discriminator = tf.keras.Sequential([
    tf.keras.layers.Conv2D(64, kernel_size=5, strides=2, padding="same",
                           activation=tf.keras.layers.LeakyReLU(0.2)),
    tf.keras.layers.Dropout(0.4),
    tf.keras.layers.Conv2D(128, kernel_size=5, strides=2, padding="same",
                           activation=tf.keras.layers.LeakyReLU(0.2)),
    tf.keras.layers.Dropout(0.4),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(1, activation="sigmoid")
])
gan = tf.keras.Sequential([generator, discriminator])

The generator takes codings of size 100, projects them to 6,272 dimensions
(7 * 7 * 128), and reshapes the result to get a 7 × 7 × 128 tensor. This tensor
is batch normalized and fed to a transposed convolutional layer with a stride
of 2, which upsamples it from 7 × 7 to 14 × 14 and reduces its depth from
128 to 64. The result is batch normalized again and fed to another transposed
convolutional layer with a stride of 2, which upsamples it from 14 × 14 to 28
× 28 and reduces the depth from 64 to 1. This layer uses the tanh activation
function, so the outputs will range from –1 to 1. For this reason, before
training the GAN, we need to rescale the training set to that same range. We
also need to reshape it to add the channel dimension:

X_train_dcgan = X_train.reshape(-1, 28, 28, 1) * 2. - 1. # reshape and rescale

The discriminator looks much like a regular CNN for binary classification,
except instead of using max pooling layers to downsample the image, we use
strided convolutions (strides=2). Note that we use the leaky ReLU activation
function. Overall, we respected the DCGAN guidelines, except we replaced
the BatchNormalization layers in the discriminator with Dropout layers;
otherwise, training was unstable in this case. Feel free to tweak this
architecture: you will see how sensitive it is to the hyperparameters,
especially the relative learning rates of the two networks.

Lastly, to build the dataset and then compile and train this model, we can use
the same code as earlier. After 50 epochs of training, the generator produces
images like those shown in Figure 17-16. It’s still not perfect, but many of



these images are pretty convincing.

Figure 17-16. Images generated by the DCGAN after 50 epochs of training

If you scale up this architecture and train it on a large dataset of faces, you
can get fairly realistic images. In fact, DCGANs can learn quite meaningful
latent representations, as you can see in Figure 17-17: many images were
generated, and nine of them were picked manually (top left), including three
representing men with glasses, three men without glasses, and three women
without glasses. For each of these categories, the codings that were used to
generate the images were averaged, and an image was generated based on the
resulting mean codings (lower left). In short, each of the three lower-left
images represents the mean of the three images located above it. But this is
not a simple mean computed at the pixel level (this would result in three
overlapping faces), it is a mean computed in the latent space, so the images
still look like normal faces. Amazingly, if you compute men with glasses,
minus men without glasses, plus women without glasses—where each term
corresponds to one of the mean codings—and you generate the image that
corresponds to this coding, you get the image at the center of the 3 × 3 grid of
faces on the right: a woman with glasses! The eight other images around it
were generated based on the same vector plus a bit of noise, to illustrate the
semantic interpolation capabilities of DCGANs. Being able to do arithmetic
on faces feels like science fiction!



DCGANs aren’t perfect, though. For example, when you try to generate very
large images using DCGANs, you often end up with locally convincing
features but overall inconsistencies, such as shirts with one sleeve much
longer than the other, different earrings, or eyes looking in opposite
directions. How can you fix this?

Figure 17-17. Vector arithmetic for visual concepts (part of figure 7 from the DCGAN paper)

TIP
If you add each image’s class as an extra input to both the generator and the discriminator,
they will both learn what each class looks like, and thus you will be able to control the
class of each image produced by the generator. This is called a conditional
GAN(CGAN). 
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Progressive Growing of GANs
In a 2018 paper,  Nvidia researchers Tero Kerras et al. proposed an
important technique: they suggested generating small images at the beginning
of training, then gradually adding convolutional layers to both the generator
and the discriminator to produce larger and larger images (4 × 4, 8 × 8, 16 ×
16, …, 512 × 512, 1,024 × 1,024). This approach resembles greedy layer-
wise training of stacked autoencoders. The extra layers get added at the end
of the generator and at the beginning of the discriminator, and previously
trained layers remain trainable.

For example, when growing the generator’s outputs from 4 × 4 to 8 × 8 (see
Figure 17-18), an upsampling layer (using nearest neighbor filtering) is added
to the existing convolutional layer (“Conv 1”) to produce 8 × 8 feature maps.
These are fed to the new convolutional layer (“Conv 2”), which in turn feeds
into a new output convolutional layer. To avoid breaking the trained weights
of Conv 1, we gradually fade in the two new convolutional layers
(represented with dashed lines in Figure 17-18) and fade out the original
output layer. The final outputs are a weighted sum of the new outputs (with
weight α) and the original outputs (with weight 1 – α), slowly increasing α
from 0 to 1. A similar fade-in/fade-out technique is used when a new
convolutional layer is added to the discriminator (followed by an average
pooling layer for downsampling). Note that all convolutional layers use
"same" padding and strides of 1, so they preserve the height and width of
their inputs. This includes the original convolutional layer, so it now
produces 8 × 8 outputs (since its inputs are now 8 × 8). Lastly, the output
layers use kernel size 1. They just project their inputs down to the desired
number of color channels (typically 3).

15

https://homl.info/progan


Figure 17-18. A progressively growing GAN: a GAN generator outputs 4 × 4 color images (left); we
extend it to output 8 × 8 images (right)

The paper also introduced several other techniques aimed at increasing the
diversity of the outputs (to avoid mode collapse) and making training more
stable:

Mini-batch standard deviation layer



Added near the end of the discriminator. For each position in the inputs, it
computes the standard deviation across all channels and all instances in
the batch (S = tf.math.reduce_std(inputs, axis=[0, -1])). These standard
deviations are then averaged across all points to get a single value (v =
tf.reduce_mean(S)). Finally, an extra feature map is added to each
instance in the batch and filled with the computed value
(tf.concat([inputs, tf.fill([batch_size, height, width, 1], v)], axis=-1)).
How does this help? Well, if the generator produces images with little
variety, then there will be a small standard deviation across feature maps
in the discriminator. Thanks to this layer, the discriminator will have easy
access to this statistic, making it less likely to be fooled by a generator
that produces too little diversity. This will encourage the generator to
produce more diverse outputs, reducing the risk of mode collapse.

Equalized learning rate

Initializes all weights using a Gaussian distribution with mean 0 and
standard deviation 1 rather than using He initialization. However, the
weights are scaled down at runtime (i.e., every time the layer is executed)
by the same factor as in He initialization: they are divided by 2ninputs,
where n  is the number of inputs to the layer. The paper demonstrated
that this technique significantly improved the GAN’s performance when
using RMSProp, Adam, or other adaptive gradient optimizers. Indeed,
these optimizers normalize the gradient updates by their estimated
standard deviation (see Chapter 11), so parameters that have a larger
dynamic range  will take longer to train, while parameters with a small
dynamic range may be updated too quickly, leading to instabilities. By
rescaling the weights as part of the model itself rather than just rescaling
them upon initialization, this approach ensures that the dynamic range is
the same for all parameters throughout training, so they all learn at the
same speed. This both speeds up and stabilizes training.

Pixelwise normalization layer

Added after each convolutional layer in the generator. It normalizes each
activation based on all the activations in the same image and at the same

inputs
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location, but across all channels (dividing by the square root of the mean
squared activation). In TensorFlow code, this is inputs /
tf.sqrt(tf.reduce_mean(tf.square(X), axis=-1, keepdims=True) + 1e-8) (the
smoothing term 1e-8 is needed to avoid division by zero). This technique
avoids explosions in the activations due to excessive competition between
the generator and the discriminator.

The combination of all these techniques allowed the authors to generate
extremely convincing high-definition images of faces. But what exactly do
we call “convincing”? Evaluation is one of the big challenges when working
with GANs: although it is possible to automatically evaluate the diversity of
the generated images, judging their quality is a much trickier and subjective
task. One technique is to use human raters, but this is costly and time-
consuming. So, the authors proposed to measure the similarity between the
local image structure of the generated images and the training images,
considering every scale. This idea led them to another groundbreaking
innovation: StyleGANs.

https://homl.info/progandemo


StyleGANs
The state of the art in high-resolution image generation was advanced once
again by the same Nvidia team in a 2018 paper  that introduced the popular
StyleGAN architecture. The authors used style transfer techniques in the
generator to ensure that the generated images have the same local structure as
the training images, at every scale, greatly improving the quality of the
generated images. The discriminator and the loss function were not modified,
only the generator. A StyleGAN generator is composed of two networks (see
Figure 17-19):

Mapping network

An eight-layer MLP that maps the latent representations z (i.e., the
codings) to a vector w. This vector is then sent through multiple affine
transformations (i.e., Dense layers with no activation functions,
represented by the “A” boxes in Figure 17-19), which produces multiple
vectors. These vectors control the style of the generated image at different
levels, from fine-grained texture (e.g., hair color) to high-level features
(e.g., adult or child). In short, the mapping network maps the codings to
multiple style vectors.

Synthesis network

Responsible for generating the images. It has a constant learned input (to
be clear, this input will be constant after training, but during training it
keeps getting tweaked by backpropagation). It processes this input
through multiple convolutional and upsampling layers, as earlier, but
there are two twists. First, some noise is added to the input and to all the
outputs of the convolutional layers (before the activation function).
Second, each noise layer is followed by an adaptive instance
normalization (AdaIN) layer: it standardizes each feature map
independently (by subtracting the feature map’s mean and dividing by its
standard deviation), then it uses the style vector to determine the scale
and offset of each feature map (the style vector contains one scale and
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one bias term for each feature map).

Figure 17-19. StyleGAN’s generator architecture (part of Figure 1 from the StyleGAN paper)

The idea of adding noise independently from the codings is very important.
Some parts of an image are quite random, such as the exact position of each
freckle or hair. In earlier GANs, this randomness had to either come from the
codings or be some pseudorandom noise produced by the generator itself. If it
came from the codings, it meant that the generator had to dedicate a
significant portion of the codings’ representational power to storing noise,
which this is quite wasteful. Moreover, the noise had to be able to flow
through the network and reach the final layers of the generator: this seems
like an unnecessary constraint that probably slowed down training. And
finally, some visual artifacts may appear because the same noise was used at
different levels. If instead the generator tried to produce its own
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pseudorandom noise, this noise might not look very convincing, leading to
more visual artifacts. Plus, part of the generator’s weights would be dedicated
to generating pseudorandom noise, which again seems wasteful. By adding
extra noise inputs, all these issues are avoided; the GAN is able to use the
provided noise to add the right amount of stochasticity to each part of the
image.

The added noise is different for each level. Each noise input consists of a
single feature map full of Gaussian noise, which is broadcast to all feature
maps (of the given level) and scaled using learned per-feature scaling factors
(this is represented by the “B” boxes in Figure 17-19) before it is added.

Finally, StyleGAN uses a technique called mixing regularization (or style
mixing), where a percentage of the generated images are produced using two
different codings. Specifically, the codings c  and c  are sent through the
mapping network, giving two style vectors w  and w . Then the synthesis
network generates an image based on the styles w  for the first levels and the
styles w  for the remaining levels. The cutoff level is picked randomly. This
prevents the network from assuming that styles at adjacent levels are
correlated, which in turn encourages locality in the GAN, meaning that each
style vector only affects a limited number of traits in the generated image.

There is such a wide variety of GANs out there that it would require a whole
book to cover them all. Hopefully this introduction has given you the main
ideas, and most importantly the desire to learn more. Go ahead and
implement your own GAN, and do not get discouraged if it has trouble
learning at first: unfortunately, this is normal, and it will require quite a bit of
patience to get it working, but the result is worth it. If you’re struggling with
an implementation detail, there are plenty of Keras or TensorFlow
implementations that you can look at. In fact, if all you want is to get some
amazing results quickly, then you can just use a pretrained model (e.g., there
are pretrained StyleGAN models available for Keras).

Now that we’ve examined autoencoders and GANs, let’s look at one last type
of architecture: diffusion models.
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Diffusion Models
The ideas behind diffusion models have been around for many years, but they
were first formalized in their modern form in a 2015 paper  by Jascha Sohl-
Dickstein et al. from Stanford University and UC Berkeley. The authors
applied tools from thermodynamics to model a diffusion process, similar to a
drop of milk diffusing in a cup of tea. The core idea is to train a model to
learn the reverse process: start from the completely mixed state, and
gradually “unmix” the milk from the tea. Using this idea, they obtained
promising results in image generation, but since GANs produced more
convincing images back then, diffusion models did not get as much attention.

Then, in 2020, Jonathan Ho et al., also from UC Berkeley, managed to build
a diffusion model capable of generating highly realistic images, which they
called a denoising diffusion probabilistic model (DDPM).  A few months
later, a 2021 paper  by OpenAI researchers Alex Nichol and Prafulla
Dhariwal analyzed the DDPM architecture and proposed several
improvements that allowed DDPMs to finally beat GANs: not only are
DDPMs much easier to train than GANs, but the generated images are more
diverse and of even higher quality. The main downside of DDPMs, as you
will see, is that they take a very long time to generate images, compared to
GANs or VAEs.

So how exactly does a DDPM work? Well, suppose you start with a picture
of a cat (like the one you’ll see in Figure 17-20), noted x , and at each time
step t you add a little bit of Gaussian noise to the image, with mean 0 and
variance β . This noise is independent for each pixel: we call it isotropic. You
first obtain the image x , then x , and so on, until the cat is completely hidden
by the noise, impossible to see. The last time step is noted T. In the original
DDPM paper, the authors used T = 1,000, and they scheduled the variance β
in such a way that the cat signal fades linearly between time steps 0 and T. In
the improved DDPM paper, T was bumped up to 4,000, and the variance
schedule was tweaked to change more slowly at the beginning and at the end.
In short, we’re gradually drowning the cat in noise: this is called the forward
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process.

As we add more and more Gaussian noise in the forward process, the
distribution of pixel values becomes more and more Gaussian. One important
detail I left out is that the pixel values get rescaled slightly at each step, by a
factor of 1-βt. This ensures that the mean of the pixel values gradually
approaches 0, since the scaling factor is a bit smaller than 1 (imagine
repeatedly multiplying a number by 0.99). It also ensures that the variance
will gradually converge to 1. This is because the standard deviation of the
pixel values also gets scaled by 1-βt, so the variance gets scaled by 1 – β
(i.e., the square of the scaling factor). But the variance cannot shrink to 0
since we’re adding Gaussian noise with variance β  at each step. And since
variances add up when you sum Gaussian distributions, you can see that the
variance can only converge to 1 – β  + β  = 1.

The forward diffusion process is summarized in Equation 17-5. This equation
won’t teach you anything new about the forward process, but it’s useful to
understand this type of mathematical notation, as it’s often used in ML
papers. This equation defines the probability distribution q of x  given x  as
a Gaussian distribution with mean x  times the scaling factor, and with a
covariance matrix equal to β I. This is the identity matrix I multiplied by β ,
which means that the noise is isotropic with variance β .

Equation 17-5. Probability distribution q of the forward diffusion process

q(xt|xt-1)=N(1-βtxt-1  ,  βtI)

Interestingly, there’s a shortcut for the forward process: it’s possible to
sample an image x  given x  without having to first compute x , x , …, x .
Indeed, since the sum of multiple Gaussian distributions is also a Gaussian
distribution, all the noise can be added in just one shot using Equation 17-6.
This is the equation we will be using, as it is much faster.

Equation 17-6. Shortcut for the forward diffusion process

q(xt|x0)=Nα¯tx0 , (1-α¯t)I

Our goal, of course, is not to drown cats in noise. On the contrary, we want to
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create many new cats! We can do so by training a model that can perform the
reverse process: going from x  to x . We can then use it to remove a tiny bit
of noise from an image, and repeat the operation many times until all the
noise is gone. If we train the model on a dataset containing many cat images,
then we can give it a picture entirely full of Gaussian noise, and the model
will gradually make a brand new cat appear (see Figure 17-20).

Figure 17-20. The forward process q and reverse process p

OK, so let’s start coding! The first thing we need to do is to code the forward
process. For this, we will first need to implement the variance schedule. How
can we control how fast the cat disappears? Initially, 100% of the variance
comes from the original cat image. Then at each time step t, the variance gets
multiplied by 1 – β , as explained earlier, and noise gets added. So, the part of
the variance that comes from the initial distribution shrinks by a factor of 1 –
β  at each step. If we define α  = 1 – β , then after t time steps, the cat signal
will have been multiplied by a factor of α̅  = α ×α ×…×α  = α¯t=∏i=1tαt. It’s
this “cat signal” factor α̅  that we want to schedule so it shrinks down from 1
to 0 gradually between time steps 0 and T. In the improved DDPM paper, the
authors schedule α̅  according to Equation 17-7. This schedule is represented
in Figure 17-21.

Equation 17-7. Variance schedule equations for the forward diffusion process

βt=1-α¯tα¯t-1, with α¯t=f(t)f(0) and f(t)=cos(t/T+s1+s·π2)2

In these equations:
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s is a tiny value which prevents β  from being too small near t = 0. In the
paper, the authors used s = 0.008.

β  is clipped to be no larger than 0.999, to avoid instabilities near t = T.

Figure 17-21. Noise variance schedule β , and the remaining signal variance α̅

Let’s create a small function to compute α , β , and α̅ , and call it with T =
4,000:

def variance_schedule(T, s=0.008, max_beta=0.999):
    t = np.arange(T + 1)
    f = np.cos((t / T + s) / (1 + s) * np.pi / 2) ** 2
    alpha = np.clip(f[1:] / f[:-1], 1 - max_beta, 1)
    alpha = np.append(1, alpha).astype(np.float32)  # add α₀ = 1
    beta = 1 - alpha
    alpha_cumprod = np.cumprod(alpha)
    return alpha, alpha_cumprod, beta  # αₜ , α̅ₜ , βₜ for t = 0 to T

T = 4000
alpha, alpha_cumprod, beta = variance_schedule(T)

To train our model to reverse the diffusion process, we will need noisy
images from different time steps of the forward process. For this, let’s create
a prepare_batch() function that will take a batch of clean images from the
dataset and prepare them:

def prepare_batch(X):
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    X = tf.cast(X[..., tf.newaxis], tf.float32) * 2 - 1  # scale from –1 to +1
    X_shape = tf.shape(X)
    t = tf.random.uniform([X_shape[0]], minval=1, maxval=T + 1, dtype=tf.int32)
    alpha_cm = tf.gather(alpha_cumprod, t)
    alpha_cm = tf.reshape(alpha_cm, [X_shape[0]] + [1] * (len(X_shape) - 1))
    noise = tf.random.normal(X_shape)
    return {
        "X_noisy": alpha_cm ** 0.5 * X + (1 - alpha_cm) ** 0.5 * noise,
        "time": t,
    }, noise

Let’s go through this code:

For simplicity we will use Fashion MNIST, so the function must first
add a channel axis. It will also help to scale the pixel values from –1 to
1, so it’s closer to the final Gaussian distribution with mean 0 and
variance 1.

Next, the function creates t, a vector containing a random time step for
each image in the batch, between 1 and T.

Then it uses tf.gather() to get the value of alpha_cumprod for each of the
time steps in the vector t. This gives us the vector alpha_cm, containing
one value of α̅  for each image.

The next line reshapes the alpha_cm from [batch size] to [batch size, 1,
1, 1]. This is needed to ensure alpha_cm can be broadcasted with the
batch X.

Then we generate some Gaussian noise with mean 0 and variance 1.

Lastly, we use Equation 17-6 to apply the diffusion process to the
images. Note that x ** 0.5 is equal to the square root of x. The function
returns a tuple containing the inputs and the targets. The inputs are
represented as a Python dict containing the noisy images and the time
steps used to generate them. The targets are the Gaussian noise used to
generate each image.

NOTE
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With this setup, the model will predict the noise that should be subtracted from the input
image to get the original image. Why not predict the original image directly? Well, the
authors tried: it simply doesn’t work as well.

Next, we’ll create a training dataset and a validation set that will apply the
prepare_batch() function to every batch. As earlier, X_train and X_valid
contain the Fashion MNIST images with pixel values ranging from 0 to 1:

def prepare_dataset(X, batch_size=32, shuffle=False):
    ds = tf.data.Dataset.from_tensor_slices(X)
    if shuffle:
        ds = ds.shuffle(buffer_size=10_000)
    return ds.batch(batch_size).map(prepare_batch).prefetch(1)

train_set = prepare_dataset(X_train, batch_size=32, shuffle=True)
valid_set = prepare_dataset(X_valid, batch_size=32)

Now we’re ready to build the actual diffusion model itself. It can be any
model you want, as long as it takes the noisy images and time steps as inputs,
and predicts the noise to subtract from the input images:

def build_diffusion_model():
    X_noisy = tf.keras.layers.Input(shape=[28, 28, 1], name="X_noisy")
    time_input = tf.keras.layers.Input(shape=[], dtype=tf.int32, name="time")
    [...]  # build the model based on the noisy images and the time steps
    outputs = [...]  # predict the noise (same shape as the input images)
    return tf.keras.Model(inputs=[X_noisy, time_input], outputs=[outputs])

The DDPM authors used a modified U-Net architecture,  which has many
similarities with the FCN architecture we discussed in Chapter 14 for
semantic segmentation: it’s a convolutional neural network that gradually
downsamples the input images, then gradually upsamples them again, with
skip connections crossing over from each level of the downsampling part to
the corresponding level in the upsampling part. To take into account the time
steps, they encoded them using the same technique as the positional
encodings in the transformer architecture (see Chapter 16). At every level in
the U-Net architecture, they passed these time encodings through Dense
layers and fed them to the U-Net. Lastly, they also used multi-head attention
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layers at various levels. See this chapter’s notebook for a basic
implementation, or https://homl.info/ddpmcode for the official
implementation: it’s based on TF 1.x, which is deprecated, but it’s quite
readable.

WE can now train the model normally. The authors noted that using the MAE
loss worked better than the MSE. You can also use the Huber loss:

model = build_diffusion_model()
model.compile(loss=tf.keras.losses.Huber(), optimizer="nadam")
history = model.fit(train_set, validation_data=valid_set, epochs=100)

Once the model is trained, you can use it to generate new images.
Unfortunately, there’s no shortcut in the reverse diffusion process, so you
have to sample x  randomly from a Gaussian distribution with mean 0 and
variance 1, then pass it to the model to predict the noise; subtract it from the
image using Equation 17-8, and you get x . Repeat the process 3,999 more
times until you get x : if all went well, it should look like a regular Fashion
MNIST image!

Equation 17-8. Going one step in reverse in the diffusion process

xt-1=1αtxt-βt1-α¯tϵθ(xt,t)+βtz

In this equation, ϵ (x , t) represents the noise predicted by the model given the
input image x  and the time step t. The θ represents the model parameters.
Moreover, z is Gaussian noise with mean 0 and variance 1. This makes the
reverse process stochastic: if you run it multiple times, you will get different
images.

Let’s write a function that implements this reverse process, and call it to
generate a few images:

def generate(model, batch_size=32):
    X = tf.random.normal([batch_size, 28, 28, 1])
    for t in range(T, 0, -1):
        noise = (tf.random.normal if t > 1 else tf.zeros)(tf.shape(X))
        X_noise = model({"X_noisy": X, "time": tf.constant([t] * batch_size)})
        X = (
            1 / alpha[t] ** 0.5

T

T–1

0

θ t

t
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            * (X - beta[t] / (1 - alpha_cumprod[t]) ** 0.5 * X_noise)
            + (1 - alpha[t]) ** 0.5 * noise
        )
    return X

X_gen = generate(model)  # generated images

This may take a minute or two. That’s the main drawback of diffusion
models: generating images is slow since the model needs to be called many
times. It’s possible to make this faster by using a smaller T value, or by using
the same model prediction for several steps at a time, but the resulting images
may not look as nice. That said, despite this speed limitation, diffusion
models do produce high-quality and diverse images, as you can see in
Figure 17-22.

Figure 17-22. Images generated by the DDPM

Diffusion models have made tremendous progress recently. In particular, a
paper published in December 2021 by Robin Rombach, Andreas Blattmann,
et al.,  introduced latent diffusion models, where the diffusion process
takes place in latent space, rather than in pixel space. To achieve this, a
powerful autoencoder is used to compress each training image into a much
smaller latent space, where the diffusion process takes place, then the
autoencoder is used to decompress the final latent representation, generating
the output image. This considerably speeds up image generation, and reduces
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training time and cost dramatically. Importantly, the quality of the generated
images is outstanding.

Moreover, the researchers also adapted various conditioning techniques to
guide the diffusion process using text prompts, images, or any other inputs.
This makes it possible to quickly produce a beautiful, high-resolution image
of a salamander reading a book, or anything else you might fancy. You can
also condition the image generation process using an input image. This
enables many applications, such as outpainting—where an input image is
extended beyond its borders—or inpainting—where holes in an image are
filled in.

Lastly, a powerful pretrained latent diffusion model named Stable Diffusion
was open sourced in August 2022 by a collaboration between LMU Munich
and a few companies, including StabilityAI, and Runway, with support from
EleutherAI and LAION. In September 2022, it was ported to TensorFlow and
included in KerasCV, a computer vision library built by the Keras team. Now
anyone can generate mindblowing images in seconds, for free, even on a
regular laptop (see the last exercise in this chapter). The possibilities are
endless!

In the next chapter we will move on to an entirely different branch of deep
learning: deep reinforcement learning.

https://keras.io/keras_cv


Exercises
1. What are the main tasks that autoencoders are used for?

2. Suppose you want to train a classifier, and you have plenty of unlabeled
training data but only a few thousand labeled instances. How can
autoencoders help? How would you proceed?

3. If an autoencoder perfectly reconstructs the inputs, is it necessarily a
good autoencoder? How can you evaluate the performance of an
autoencoder?

4. What are undercomplete and overcomplete autoencoders? What is the
main risk of an excessively undercomplete autoencoder? What about the
main risk of an overcomplete autoencoder?

5. How do you tie weights in a stacked autoencoder? What is the point of
doing so?

6. What is a generative model? Can you name a type of generative
autoencoder?

7. What is a GAN? Can you name a few tasks where GANs can shine?

8. What are the main difficulties when training GANs?

9. What are diffusion models good at? What is their main limitation?

10. Try using a denoising autoencoder to pretrain an image classifier. You
can use MNIST (the simplest option), or a more complex image dataset
such as CIFAR10 if you want a bigger challenge. Regardless of the
dataset you’re using, follow these steps:

a. Split the dataset into a training set and a test set. Train a deep
denoising autoencoder on the full training set.

b. Check that the images are fairly well reconstructed. Visualize the
images that most activate each neuron in the coding layer.

https://homl.info/122


c. Build a classification DNN, reusing the lower layers of the
autoencoder. Train it using only 500 images from the training set.
Does it perform better with or without pretraining?

11. Train a variational autoencoder on the image dataset of your choice, and
use it to generate images. Alternatively, you can try to find an unlabeled
dataset that you are interested in and see if you can generate new
samples.

12. Train a DCGAN to tackle the image dataset of your choice, and use it to
generate images. Add experience replay and see if this helps. Turn it
into a conditional GAN where you can control the generated class.

13. Go through KerasCV’s excellent Stable Diffusion tutorial, and generate
a beautiful drawing of a salamander reading a book. If you post your
best drawing on Twitter, please tag me at @aureliengeron. I’d love to
see your creations!

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.
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Chapter 18. Reinforcement
Learning

Reinforcement learning (RL) is one of the most exciting fields of machine
learning today, and also one of the oldest. It has been around since the 1950s,
producing many interesting applications over the years,   particularly in
games (e.g., TD-Gammon, a Backgammon-playing program) and in machine
control, but seldom making the headline news. However, a revolution took
place in 2013, when researchers from a British startup called DeepMind
demonstrated a system that could learn to play just about any Atari game
from scratch,   eventually outperforming humans   in most of them, using
only raw pixels as inputs and without any prior knowledge of the rules of the
games.  This was the first of a series of amazing feats, culminating with the
victory of their system AlphaGo against Lee Sedol, a legendary professional
player of the game of Go, in March 2016 and against Ke Jie, the world
champion, in May 2017. No program had ever come close to beating a master
of this game, let alone the world champion. Today the whole field of RL is
boiling with new ideas, with a wide range of applications.

So how did DeepMind (bought by Google for over $500 million in 2014)
achieve all this? With hindsight it seems rather simple: they applied the
power of deep learning to the field of reinforcement learning, and it worked
beyond their wildest dreams. In this chapter I will first explain what
reinforcement learning is and what it’s good at, then present two of the most
important techniques in deep reinforcement learning: policy gradients and
deep Q-networks, including a discussion of Markov decision processes. Let’s
get started!

1
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Learning to Optimize Rewards
In reinforcement learning, a software agent makes observations and takes
actions within an environment, and in return it receives rewards from the
environment. Its objective is to learn to act in a way that will maximize its
expected rewards over time. If you don’t mind a bit of anthropomorphism,
you can think of positive rewards as pleasure, and negative rewards as pain
(the term “reward” is a bit misleading in this case). In short, the agent acts in
the environment and learns by trial and error to maximize its pleasure and
minimize its pain.

This is quite a broad setting, which can apply to a wide variety of tasks. Here
are a few examples (see Figure 18-1):

1. The agent can be the program controlling a robot. In this case, the
environment is the real world, the agent observes the environment
through a set of sensors such as cameras and touch sensors, and its
actions consist of sending signals to activate motors. It may be
programmed to get positive rewards whenever it approaches the target
destination, and negative rewards whenever it wastes time or goes in the
wrong direction.

2. The agent can be the program controlling Ms. Pac-Man. In this case, the
environment is a simulation of the Atari game, the actions are the nine
possible joystick positions (upper left, down, center, and so on), the
observations are screenshots, and the rewards are just the game points.

3. Similarly, the agent can be the program playing a board game such as
Go. It only gets a reward if it wins.

4. The agent does not have to control a physically (or virtually) moving
thing. For example, it can be a smart thermostat, getting positive
rewards whenever it is close to the target temperature and saves energy,
and negative rewards when humans need to tweak the temperature, so
the agent must learn to anticipate human needs.



5. The agent can observe stock market prices and decide how much to buy
or sell every second. Rewards are obviously the monetary gains and
losses.

Note that there may not be any positive rewards at all; for example, the agent
may move around in a maze, getting a negative reward at every time step, so
it had better find the exit as quickly as possible! There are many other
examples of tasks to which reinforcement learning is well suited, such as self-
driving cars, recommender systems, placing ads on a web page, or controlling
where an image classification system should focus its attention.

Figure 18-1. Reinforcement learning examples: (a) robotics, (b) Ms. Pac-Man, (c) Go player, (d)
thermostat, (e) automatic trader 5



Policy Search
The algorithm a software agent uses to determine its actions is called its
policy. The policy could be a neural network taking observations as inputs
and outputting the action to take (see Figure 18-2).

Figure 18-2. Reinforcement learning using a neural network policy

The policy can be any algorithm you can think of, and it does not have to be
deterministic. In fact, in some cases it does not even have to observe the
environment! For example, consider a robotic vacuum cleaner whose reward
is the amount of dust it picks up in 30 minutes. Its policy could be to move
forward with some probability p every second, or randomly rotate left or right
with probability 1 – p. The rotation angle would be a random angle between
–r and +r. Since this policy involves some randomness, it is called a
stochastic policy. The robot will have an erratic trajectory, which guarantees
that it will eventually get to any place it can reach and pick up all the dust.
The question is, how much dust will it pick up in 30 minutes?

How would you train such a robot? There are just two policy parameters you
can tweak: the probability p and the angle range r. One possible learning
algorithm could be to try out many different values for these parameters, and
pick the combination that performs best (see Figure 18-3). This is an example
of policy search, in this case using a brute-force approach. When the policy
space is too large (which is generally the case), finding a good set of
parameters this way is like searching for a needle in a gigantic haystack.



Another way to explore the policy space is to use genetic algorithms. For
example, you could randomly create a first generation of 100 policies and try
them out, then “kill” the 80 worst policies   and make the 20 survivors
produce 4 offspring each. An offspring is a copy of its parent  plus some
random variation. The surviving policies plus their offspring together
constitute the second generation. You can continue to iterate through
generations this way until you find a good policy.

Figure 18-3. Four points in the policy space (left) and the agent’s corresponding behavior (right)

Yet another approach is to use optimization techniques, by evaluating the
gradients of the rewards with regard to the policy parameters, then tweaking
these parameters by following the gradients toward higher rewards.  We
will discuss this approach, called policy gradients (PG), in more detail later
in this chapter. Going back to the vacuum cleaner robot, you could slightly
increase p and evaluate whether doing so increases the amount of dust picked
up by the robot in 30 minutes; if it does, then increase p some more, or else
reduce p. We will implement a popular PG algorithm using TensorFlow, but
before we do, we need to create an environment for the agent to live in —so
it’s time to introduce OpenAI Gym.
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Introduction to OpenAI Gym
One of the challenges of reinforcement learning is that in order to train an
agent, you first need to have a working environment. If you want to program
an agent that will learn to play an Atari game, you will need an Atari game
simulator. If you want to program a walking robot, then the environment is
the real world, and you can directly train your robot in that environment.
However, this has its limits: if the robot falls off a cliff, you can’t just click
Undo. You can’t speed up time either—adding more computing power won’t
make the robot move any faster—and it’s generally too expensive to train
1,000 robots in parallel. In short, training is hard and slow in the real world,
so you generally need a simulated environment at least for bootstrap training.
For example, you might use a library like PyBullet or MuJoCo for 3D
physics simulation.

OpenAI Gym  is a toolkit that provides a wide variety of simulated
environments (Atari games, board games, 2D and 3D physical simulations,
and so on), that you can use to train agents, compare them, or develop new
RL algorithms.

OpenAI Gym is preinstalled on Colab, but it’s an older version, so you’ll
need to replace it with the latest one. You also need to install a few of its
dependencies. If you are coding on your own machine instead of Colab, and
you followed the installation instructions at https://homl.info/install, then you
can skip this step; otherwise, enter these commands:

# Only run these commands on Colab or Kaggle!
%pip install -q -U gym
%pip install -q -U gym[classic_control,box2d,atari,accept-rom-license]

The first %pip command upgrades Gym to the latest version. The -q option
stands for quiet: it makes the output less verbose. The -U option stands for
upgrade. The second %pip command installs the libraries required to run
various kinds of environments. This includes classic environments from
control theory–the science of controlling dynamical systems–such as
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balancing a pole on a cart. It also includes environments based on the Box2D
library—a 2D physics engine for games. Lastly, it includes environments
based on the Arcade Learning Environment (ALE), which is an emulator for
Atari 2600 games. Several Atari game ROMs are downloaded automatically,
and by running this code you agree with Atari’s ROM licenses.

With that, you’re ready to use OpenAI Gym. Let’s import it and make an
environment:

import gym

env = gym.make("CartPole-v1", render_mode="rgb_array")

Here, we’ve created a CartPole environment. This is a 2D simulation in
which a cart can be accelerated left or right in order to balance a pole placed
on top of it (see Figure 18-4). This is a classic control task.

TIP
The gym.envs.registry dictionary contains the names and specifications of all the available
environments.



Figure 18-4. The CartPole environment

After the environment is created, you must initialize it using the reset()
method, optionally specifying a random seed. This returns the first
observation. Observations depend on the type of environment. For the
CartPole environment, each observation is a 1D NumPy array containing four
floats representing the cart’s horizontal position (0.0 = center), its velocity
(positive means right), the angle of the pole (0.0 = vertical), and its angular
velocity (positive means clockwise). The reset() method also returns a
dictionary that may contain extra environment-specific information. This can
be useful for debugging or for training. For example, in many Atari
environments, it contains the number of lives left. However, in the CartPole
environment, this dictionary is empty.

>>> obs, info = env.reset(seed=42)
>>> obs
array([ 0.0273956 , -0.00611216,  0.03585979,  0.0197368 ], dtype=float32)
>>> info
{}

Let’s call the render() method to render this environment as an image. Since



we set render_mode="rgb_array" when creating the environment, the image
will be returned as a NumPy array:

>>> img = env.render()
>>> img.shape  # height, width, channels (3 = Red, Green, Blue)
(400, 600, 3)

You can then use Matplotlib’s imshow() function to display this image, as
usual.

Now let’s ask the environment what actions are possible:

>>> env.action_space
Discrete(2)

Discrete(2) means that the possible actions are integers 0 and 1, which
represent accelerating left or right. Other environments may have additional
discrete actions, or other kinds of actions (e.g., continuous). Since the pole is
leaning toward the right (obs[2] > 0), let’s accelerate the cart toward the
right:

>>> action = 1  # accelerate right
>>> obs, reward, done, truncated, info = env.step(action)
>>> obs
array([ 0.02727336,  0.18847767,  0.03625453, -0.26141977], dtype=float32)
>>> reward
1.0
>>> done
False
>>> truncated
False
>>> info
{}

The step() method executes the desired action and returns five values:

obs

This is the new observation. The cart is now moving toward the right
(obs[1] > 0). The pole is still tilted toward the right (obs[2] > 0), but its
angular velocity is now negative (obs[3] < 0), so it will likely be tilted



toward the left after the next step.

reward

In this environment, you get a reward of 1.0 at every step, no matter what
you do, so the goal is to keep the episode running for as long as possible.

done

This value will be True when the episode is over. This will happen when
the pole tilts too much, or goes off the screen, or after 200 steps (in this
last case, you have won). After that, the environment must be reset before
it can be used again.

truncated

This value will be True when an episode is interrupted early, for example
by an environment wrapper that imposes a maximum number of steps per
episode (see Gym’s documentation for more details on environment
wrappers). Some RL algorithms treat truncated episodes differently from
episodes finished normally (i.e., when done is True), but in this chapter
we will treat them identically.

info

This environment-specific dictionary may provide extra information, just
like the one returned by the reset() method.

TIP
Once you have finished using an environment, you should call its close() method to free
resources.

Let’s hardcode a simple policy that accelerates left when the pole is leaning
toward the left and accelerates right when the pole is leaning toward the right.
We will run this policy to see the average rewards it gets over 500 episodes:



def basic_policy(obs):
    angle = obs[2]
    return 0 if angle < 0 else 1

totals = []
for episode in range(500):
    episode_rewards = 0
    obs, info = env.reset(seed=episode)
    for step in range(200):
        action = basic_policy(obs)
        obs, reward, done, truncated, info = env.step(action)
        episode_rewards += reward
        if done or truncated:
            break

    totals.append(episode_rewards)

This code is self-explanatory. Let’s look at the result:

>>> import numpy as np
>>> np.mean(totals), np.std(totals), min(totals), max(totals)
(41.698, 8.389445512070509, 24.0, 63.0)

Even with 500 tries, this policy never managed to keep the pole upright for
more than 63 consecutive steps. Not great. If you look at the simulation in
this chapter’s notebook, you will see that the cart oscillates left and right
more and more strongly until the pole tilts too much. Let’s see if a neural
network can come up with a better policy.



Neural Network Policies
Let’s create a neural network policy. This neural network will take an
observation as input, and it will output the action to be executed, just like the
policy we hardcoded earlier. More precisely, it will estimate a probability for
each action, and then we will select an action randomly, according to the
estimated probabilities (see Figure 18-5). In the case of the CartPole
environment, there are just two possible actions (left or right), so we only
need one output neuron. It will output the probability p of action 0 (left), and
of course the probability of action 1 (right) will be 1 – p. For example, if it
outputs 0.7, then we will pick action 0 with 70% probability, or action 1 with
30% probability.

Figure 18-5. Neural network policy

You may wonder why we are picking a random action based on the



probabilities given by the neural network, rather than just picking the action
with the highest score. This approach lets the agent find the right balance
between exploring new actions and exploiting the actions that are known to
work well. Here’s an analogy: suppose you go to a restaurant for the first
time, and all the dishes look equally appealing, so you randomly pick one. If
it turns out to be good, you can increase the probability that you’ll order it
next time, but you shouldn’t increase that probability up to 100%, or else you
will never try out the other dishes, some of which may be even better than the
one you tried. This exploration/exploitation dilemma is central in
reinforcement learning.

Also note that in this particular environment, the past actions and
observations can safely be ignored, since each observation contains the
environment’s full state. If there were some hidden state, then you might
need to consider past actions and observations as well. For example, if the
environment only revealed the position of the cart but not its velocity, you
would have to consider not only the current observation but also the previous
observation in order to estimate the current velocity. Another example is
when the observations are noisy; in that case, you generally want to use the
past few observations to estimate the most likely current state. The CartPole
problem is thus as simple as can be; the observations are noise-free, and they
contain the environment’s full state.

Here is the code to build a basic neural network policy using Keras:

import tensorflow as tf

model = tf.keras.Sequential([
    tf.keras.layers.Dense(5, activation="relu"),
    tf.keras.layers.Dense(1, activation="sigmoid"),
])

We use a Sequential model to define the policy network. The number of
inputs is the size of the observation space—which in the case of CartPole is 4
—and we have just five hidden units because it’s a fairly simple task. Finally,
we want to output a single probability—the probability of going left—so we
have a single output neuron using the sigmoid activation function. If there



were more than two possible actions, there would be one output neuron per
action, and we would use the softmax activation function instead.

OK, we now have a neural network policy that will take observations and
output action probabilities. But how do we train it?



Evaluating Actions: The Credit Assignment
Problem
If we knew what the best action was at each step, we could train the neural
network as usual, by minimizing the cross entropy between the estimated
probability distribution and the target probability distribution. It would just be
regular supervised learning. However, in reinforcement learning the only
guidance the agent gets is through rewards, and rewards are typically sparse
and delayed. For example, if the agent manages to balance the pole for 100
steps, how can it know which of the 100 actions it took were good, and which
of them were bad? All it knows is that the pole fell after the last action, but
surely this last action is not entirely responsible. This is called the credit
assignment problem: when the agent gets a reward, it is hard for it to know
which actions should get credited (or blamed) for it. Think of a dog that gets
rewarded hours after it behaved well; will it understand what it is being
rewarded for?

To tackle this problem, a common strategy is to evaluate an action based on
the sum of all the rewards that come after it, usually applying a discount
factor, γ (gamma), at each step. This sum of discounted rewards is called the
action’s return. Consider the example in Figure 18-6. If an agent decides to
go right three times in a row and gets +10 reward after the first step, 0 after
the second step, and finally –50 after the third step, then assuming we use a
discount factor γ = 0.8, the first action will have a return of 10 + γ × 0 + γ  ×
(–50) = –22. If the discount factor is close to 0, then future rewards won’t
count for much compared to immediate rewards. Conversely, if the discount
factor is close to 1, then rewards far into the future will count almost as much
as immediate rewards. Typical discount factors vary from 0.9 to 0.99. With a
discount factor of 0.95, rewards 13 steps into the future count roughly for half
as much as immediate rewards (since 0.95  ≈ 0.5), while with a discount
factor of 0.99, rewards 69 steps into the future count for half as much as
immediate rewards. In the CartPole environment, actions have fairly short-
term effects, so choosing a discount factor of 0.95 seems reasonable.
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Figure 18-6. Computing an action’s return: the sum of discounted future rewards

Of course, a good action may be followed by several bad actions that cause
the pole to fall quickly, resulting in the good action getting a low return.
Similarly, a good actor may sometimes star in a terrible movie. However, if
we play the game enough times, on average good actions will get a higher
return than bad ones. We want to estimate how much better or worse an
action is, compared to the other possible actions, on average. This is called
the action advantage. For this, we must run many episodes and normalize all
the action returns, by subtracting the mean and dividing by the standard
deviation. After that, we can reasonably assume that actions with a negative
advantage were bad while actions with a positive advantage were good. OK,
now that we have a way to evaluate each action, we are ready to train our first
agent using policy gradients. Let’s see how.



Policy Gradients
As discussed earlier, PG algorithms optimize the parameters of a policy by
following the gradients toward higher rewards. One popular class of PG
algorithms, called REINFORCE algorithms, was introduced back in 1992
by Ronald Williams. Here is one common variant:

1. First, let the neural network policy play the game several times, and at
each step, compute the gradients that would make the chosen action
even more likely—but don’t apply these gradients yet.

2. Once you have run several episodes, compute each action’s advantage,
using the method described in the previous section.

3. If an action’s advantage is positive, it means that the action was
probably good, and you want to apply the gradients computed earlier to
make the action even more likely to be chosen in the future. However, if
the action’s advantage is negative, it means the action was probably bad,
and you want to apply the opposite gradients to make this action slightly
less likely in the future. The solution is to multiply each gradient vector
by the corresponding action’s advantage.

4. Finally, compute the mean of all the resulting gradient vectors, and use
it to perform a gradient descent step.

Let’s use Keras to implement this algorithm. We will train the neural network
policy we built earlier so that it learns to balance the pole on the cart. First,
we need a function that will play one step. We will pretend for now that
whatever action it takes is the right one so that we can compute the loss and
its gradients. These gradients will just be saved for a while, and we will
modify them later depending on how good or bad the action turned out to be:

def play_one_step(env, obs, model, loss_fn):
    with tf.GradientTape() as tape:
        left_proba = model(obs[np.newaxis])
        action = (tf.random.uniform([1, 1]) > left_proba)
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        y_target = tf.constant([[1.]]) - tf.cast(action, tf.float32)
        loss = tf.reduce_mean(loss_fn(y_target, left_proba))

    grads = tape.gradient(loss, model.trainable_variables)
    obs, reward, done, truncated, info = env.step(int(action))
    return obs, reward, done, truncated, grads

Let’s walk though this function:

Within the GradientTape block (see Chapter 12), we start by calling the
model, giving it a single observation. We reshape the observation so it
becomes a batch containing a single instance, as the model expects a
batch. This outputs the probability of going left.

Next, we sample a random float between 0 and 1, and we check whether
it is greater than left_proba. The action will be False with probability
left_proba, or True with probability 1 – left_proba. Once we cast this
Boolean to an integer, the action will be 0 (left) or 1 (right) with the
appropriate probabilities.

We now define the target probability of going left: it is 1 minus the
action (cast to a float). If the action is 0 (left), then the target probability
of going left will be 1. If the action is 1 (right), then the target
probability will be 0.

Then we compute the loss using the given loss function, and we use the
tape to compute the gradient of the loss with regard to the model’s
trainable variables. Again, these gradients will be tweaked later, before
we apply them, depending on how good or bad the action turned out to
be.

Finally, we play the selected action, and we return the new observation,
the reward, whether the episode is ended or not, whether it is truncated
or not, and of course the gradients that we just computed.

Now let’s create another function that will rely on the play_one_step()
function to play multiple episodes, returning all the rewards and gradients for
each episode and each step:



def play_multiple_episodes(env, n_episodes, n_max_steps, model, loss_fn):
    all_rewards = []
    all_grads = []
    for episode in range(n_episodes):
        current_rewards = []
        current_grads = []
        obs, info = env.reset()
        for step in range(n_max_steps):
            obs, reward, done, truncated, grads = play_one_step(
                env, obs, model, loss_fn)
            current_rewards.append(reward)
            current_grads.append(grads)
            if done or truncated:
                break

        all_rewards.append(current_rewards)
        all_grads.append(current_grads)

    return all_rewards, all_grads

This code returns a list of reward lists: one reward list per episode, containing
one reward per step. It also returns a list of gradient lists: one gradient list per
episode, each containing one tuple of gradients per step and each tuple
containing one gradient tensor per trainable variable.

The algorithm will use the play_multiple_episodes() function to play the
game several times (e.g., 10 times), then it will go back and look at all the
rewards, discount them, and normalize them. To do that, we need a couple
more functions; the first will compute the sum of future discounted rewards
at each step, and the second will normalize all these discounted rewards (i.e.,
the returns) across many episodes by subtracting the mean and dividing by
the standard deviation:

def discount_rewards(rewards, discount_factor):
    discounted = np.array(rewards)
    for step in range(len(rewards) - 2, -1, -1):
        discounted[step] += discounted[step + 1] * discount_factor
    return discounted

def discount_and_normalize_rewards(all_rewards, discount_factor):
    all_discounted_rewards = [discount_rewards(rewards, discount_factor)
                              for rewards in all_rewards]
    flat_rewards = np.concatenate(all_discounted_rewards)



    reward_mean = flat_rewards.mean()
    reward_std = flat_rewards.std()
    return [(discounted_rewards - reward_mean) / reward_std
            for discounted_rewards in all_discounted_rewards]

Let’s check that this works:

>>> discount_rewards([10, 0, -50], discount_factor=0.8)
array([-22, -40, -50])
>>> discount_and_normalize_rewards([[10, 0, -50], [10, 20]],
...                                discount_factor=0.8)
...
[array([-0.28435071, -0.86597718, -1.18910299]),
 array([1.26665318, 1.0727777 ])]

The call to discount_rewards() returns exactly what we expect (see Figure 18-
6). You can verify that the function discount_and_normalize_rewards() does
indeed return the normalized action advantages for each action in both
episodes. Notice that the first episode was much worse than the second, so its
normalized advantages are all negative; all actions from the first episode
would be considered bad, and conversely all actions from the second episode
would be considered good.

We are almost ready to run the algorithm! Now let’s define the
hyperparameters. We will run 150 training iterations, playing 10 episodes per
iteration, and each episode will last at most 200 steps. We will use a discount
factor of 0.95:

n_iterations = 150
n_episodes_per_update = 10
n_max_steps = 200
discount_factor = 0.95

We also need an optimizer and the loss function. A regular Nadam optimizer
with learning rate 0.01 will do just fine, and we will use the binary cross-
entropy loss function because we are training a binary classifier (there are
two possible actions—left or right):

optimizer = tf.keras.optimizers.Nadam(learning_rate=0.01)



loss_fn = tf.keras.losses.binary_crossentropy

We are now ready to build and run the training loop!

for iteration in range(n_iterations):
    all_rewards, all_grads = play_multiple_episodes(
        env, n_episodes_per_update, n_max_steps, model, loss_fn)
    all_final_rewards = discount_and_normalize_rewards(all_rewards,
                                                       discount_factor)
    all_mean_grads = []
    for var_index in range(len(model.trainable_variables)):
        mean_grads = tf.reduce_mean(
            [final_reward * all_grads[episode_index][step][var_index]
             for episode_index, final_rewards in enumerate(all_final_rewards)
                 for step, final_reward in enumerate(final_rewards)], axis=0)
        all_mean_grads.append(mean_grads)

    optimizer.apply_gradients(zip(all_mean_grads, model.trainable_variables))

Let’s walk through this code:

At each training iteration, this loop calls the play_multiple_episodes()
function, which plays 10 episodes and returns the rewards and gradients
for each step in each episode.

Then we call the discount_and_normalize_rewards() function to
compute each action’s normalized advantage, called the final_reward in
this code. This provides a measure of how good or bad each action
actually was, in hindsight.

Next, we go through each trainable variable, and for each of them we
compute the weighted mean of the gradients for that variable over all
episodes and all steps, weighted by the final_reward.

Finally, we apply these mean gradients using the optimizer: the model’s
trainable variables will be tweaked, and hopefully the policy will be a bit
better.

And we’re done! This code will train the neural network policy, and it will
successfully learn to balance the pole on the cart. The mean reward per
episode will get very close to 200. By default, that’s the maximum for this



environment. Success!

The simple policy gradients algorithm we just trained solved the CartPole
task, but it would not scale well to larger and more complex tasks. Indeed, it
is highly sample inefficient, meaning it needs to explore the game for a very
long time before it can make significant progress. This is due to the fact that
it must run multiple episodes to estimate the advantage of each action, as we
have seen. However, it is the foundation of more powerful algorithms, such
as actor-critic algorithms (which we will discuss briefly at the end of this
chapter).

TIP
Researchers try to find algorithms that work well even when the agent initially knows
nothing about the environment. However, unless you are writing a paper, you should not
hesitate to inject prior knowledge into the agent, as it will speed up training dramatically.
For example, since you know that the pole should be as vertical as possible, you could add
negative rewards proportional to the pole’s angle. This will make the rewards much less
sparse and speed up training. Also, if you already have a reasonably good policy (e.g.,
hardcoded), you may want to train the neural network to imitate it before using policy
gradients to improve it.

We will now look at another popular family of algorithms. Whereas PG
algorithms directly try to optimize the policy to increase rewards, the
algorithms we will explore now are less direct: the agent learns to estimate
the expected return for each state, or for each action in each state, then it uses
this knowledge to decide how to act. To understand these algorithms, we
must first consider Markov decision processes (MDPs).



Markov Decision Processes
In the early 20th century, the mathematician Andrey Markov studied
stochastic processes with no memory, called Markov chains. Such a process
has a fixed number of states, and it randomly evolves from one state to
another at each step. The probability for it to evolve from a state s to a state s′
is fixed, and it depends only on the pair (s, s′), not on past states. This is why
we say that the system has no memory.

Figure 18-7 shows an example of a Markov chain with four states.

Figure 18-7. Example of a Markov chain

Suppose that the process starts in state s , and there is a 70% chance that it
will remain in that state at the next step. Eventually it is bound to leave that
state and never come back, because no other state points back to s . If it goes
to state s , it will then most likely go to state s  (90% probability), then
immediately back to state s  (with 100% probability). It may alternate a
number of times between these two states, but eventually it will fall into state
s  and remain there forever, since there’s no way out: this is called a terminal
state. Markov chains can have very different dynamics, and they are heavily
used in thermodynamics, chemistry, statistics, and much more.

Markov decision processes were first described in the 1950s by Richard
Bellman.  They resemble Markov chains, but with a twist: at each step, an
agent can choose one of several possible actions, and the transition
probabilities depend on the chosen action. Moreover, some state transitions
return some reward (positive or negative), and the agent’s goal is to find a
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policy that will maximize reward over time.

For example, the MDP represented in Figure 18-8 has three states
(represented by circles) and up to three possible discrete actions at each step
(represented by diamonds).

Figure 18-8. Example of a Markov decision process

If it starts in state s , the agent can choose between actions a , a , or a . If it
chooses action a , it just remains in state s  with certainty, and without any
reward. It can thus decide to stay there forever if it wants to. But if it chooses
action a , it has a 70% probability of gaining a reward of +10 and remaining
in state s . It can then try again and again to gain as much reward as possible,
but at one point it is going to end up instead in state s . In state s  it has only
two possible actions: a  or a . It can choose to stay put by repeatedly
choosing action a , or it can choose to move on to state s  and get a negative
reward of –50 (ouch). In state s  it has no choice but to take action a , which
will most likely lead it back to state s , gaining a reward of +40 on the way.
You get the picture. By looking at this MDP, can you guess which strategy
will gain the most reward over time? In state s  it is clear that action a  is the
best option, and in state s  the agent has no choice but to take action a , but in
state s  it is not obvious whether the agent should stay put (a ) or go through
the fire (a ).

Bellman found a way to estimate the optimal state value of any state s, noted
V*(s), which is the sum of all discounted future rewards the agent can expect
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on average after it reaches the state, assuming it acts optimally. He showed
that if the agent acts optimally, then the Bellman optimality equation applies
(see Equation 18-1). This recursive equation says that if the agent acts
optimally, then the optimal value of the current state is equal to the reward it
will get on average after taking one optimal action, plus the expected optimal
value of all possible next states that this action can lead to.

Equation 18-1. Bellman optimality equation

V * ( s ) = max a ∑ s' T ( s , a , s' ) [ R ( s , a , s' ) + γ · V * ( s' ) ] for all s

In this equation:

T(s, a, s′) is the transition probability from state s to state s′, given that
the agent chose action a. For example, in Figure 18-8, T(s , a , s ) = 0.8.

R(s, a, s′) is the reward that the agent gets when it goes from state s to
state s′, given that the agent chose action a. For example, in Figure 18-8,
R(s , a , s ) = +40.

γ is the discount factor.

This equation leads directly to an algorithm that can precisely estimate the
optimal state value of every possible state: first initialize all the state value
estimates to zero, and then iteratively update them using the value iteration
algorithm (see Equation 18-2). A remarkable result is that, given enough
time, these estimates are guaranteed to converge to the optimal state values,
corresponding to the optimal policy.

Equation 18-2. Value iteration algorithm

V k+1 ( s ) ← max a ∑ s' T ( s , a , s' ) [ R ( s , a , s' ) + γ · V k ( s' ) ] for all s

In this equation, V (s) is the estimated value of state s at the k  iteration of
the algorithm.

NOTE
This algorithm is an example of dynamic programming, which breaks down a complex
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problem into tractable subproblems that can be tackled iteratively.

Knowing the optimal state values can be useful, in particular to evaluate a
policy, but it does not give us the optimal policy for the agent. Luckily,
Bellman found a very similar algorithm to estimate the optimal state-action
values, generally called Q-values (quality values). The optimal Q-value of the
state-action pair (s, a), noted Q*(s, a), is the sum of discounted future
rewards the agent can expect on average after it reaches the state s and
chooses action a, but before it sees the outcome of this action, assuming it
acts optimally after that action.

Let’s look at how it works. Once again, you start by initializing all the Q-
value estimates to zero, then you update them using the Q-value iteration
algorithm (see Equation 18-3).

Equation 18-3. Q-value iteration algorithm

Q k+1 ( s , a ) ← ∑ s' T ( s , a , s' ) [ R ( s , a , s' ) + γ · max a' Q k ( s' , a' ) ]
for all ( s , a )

Once you have the optimal Q-values, defining the optimal policy, noted π*
(s), is trivial; when the agent is in state s, it should choose the action with the
highest Q-value for that state: π*(s)=argmaxa Q*(s,a).

Let’s apply this algorithm to the MDP represented in Figure 18-8. First, we
need to define the MDP:

transition_probabilities = [  # shape=[s, a, s']
    [[0.7, 0.3, 0.0], [1.0, 0.0, 0.0], [0.8, 0.2, 0.0]],
    [[0.0, 1.0, 0.0], None, [0.0, 0.0, 1.0]],
    [None, [0.8, 0.1, 0.1], None]
]
rewards = [  # shape=[s, a, s']
    [[+10, 0, 0], [0, 0, 0], [0, 0, 0]],
    [[0, 0, 0], [0, 0, 0], [0, 0, -50]],
    [[0, 0, 0], [+40, 0, 0], [0, 0, 0]]
]
possible_actions = [[0, 1, 2], [0, 2], [1]]



For example, to know the transition probability of going from s  to s  after
playing action a , we will look up transition_probabilities[2][1][0] (which is
0.8). Similarly, to get the corresponding reward, we will look up rewards[2]
[1][0] (which is +40). And to get the list of possible actions in s , we will
look up possible_actions[2] (in this case, only action a  is possible). Next, we
must initialize all the Q-values to zero (except for the impossible actions, for
which we set the Q-values to –∞):

Q_values = np.full((3, 3), -np.inf)  # -np.inf for impossible actions
for state, actions in enumerate(possible_actions):
    Q_values[state, actions] = 0.0  # for all possible actions

Now let’s run the Q-value iteration algorithm. It applies Equation 18-3
repeatedly, to all Q-values, for every state and every possible action:

gamma = 0.90  # the discount factor

for iteration in range(50):
    Q_prev = Q_values.copy()
    for s in range(3):
        for a in possible_actions[s]:
            Q_values[s, a] = np.sum([
                    transition_probabilities[s][a][sp]
                    * (rewards[s][a][sp] + gamma * Q_prev[sp].max())
                for sp in range(3)])

That’s it! The resulting Q-values look like this:

>>> Q_values
array([[18.91891892, 17.02702702, 13.62162162],
       [ 0.        ,        -inf, -4.87971488],
       [       -inf, 50.13365013,        -inf]])

For example, when the agent is in state s  and it chooses action a , the
expected sum of discounted future rewards is approximately 17.0.

For each state, we can find the action that has the highest Q-value:

>>> Q_values.argmax(axis=1)  # optimal action for each state
array([0, 0, 1])
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This gives us the optimal policy for this MDP when using a discount factor of
0.90: in state s  choose action a , in state s  choose action a  (i.e., stay put),
and in state s  choose action a  (the only possible action). Interestingly, if we
increase the discount factor to 0.95, the optimal policy changes: in state s  the
best action becomes a  (go through the fire!). This makes sense because the
more you value future rewards, the more you are willing to put up with some
pain now for the promise of future bliss.
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Temporal Difference Learning
Reinforcement learning problems with discrete actions can often be modeled
as Markov decision processes, but the agent initially has no idea what the
transition probabilities are (it does not know T(s, a, s′)), and it does not know
what the rewards are going to be either (it does not know R(s, a, s′)). It must
experience each state and each transition at least once to know the rewards,
and it must experience them multiple times if it is to have a reasonable
estimate of the transition probabilities.

The temporal difference (TD) learning algorithm is very similar to the Q-
value iteration algorithm, but tweaked to take into account the fact that the
agent has only partial knowledge of the MDP. In general we assume that the
agent initially knows only the possible states and actions, and nothing more.
The agent uses an exploration policy—for example, a purely random policy
—to explore the MDP, and as it progresses, the TD learning algorithm
updates the estimates of the state values based on the transitions and rewards
that are actually observed (see Equation 18-4).

Equation 18-4. TD learning algorithm

V k+1 (s)←(1-α) Vk (s)+α r+γ· Vk (s') or, equivalently:  Vk+1 (s)←Vk
(s)+α· δk (s,r, s') with δk (s,r,s′ )=r+γ · Vk (s')- Vk(s)

In this equation:

α is the learning rate (e.g., 0.01).

r + γ · V (s′) is called the TD target.

δ (s, r, s′) is called the TD error.

A more concise way of writing the first form of this equation is to use the
notation a←αb, which means a  ← (1 – α) · a  + α ·b . So, the first line of
Equation 18-4 can be rewritten like this: V(s)←αr+γ·V(s').
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TIP
TD learning has many similarities with stochastic gradient descent, including the fact that
it handles one sample at a time. Moreover, just like SGD, it can only truly converge if you
gradually reduce the learning rate; otherwise, it will keep bouncing around the optimum
Q-values.

For each state s, this algorithm keeps track of a running average of the
immediate rewards the agent gets upon leaving that state, plus the rewards it
expects to get later, assuming it acts optimally.



Q-Learning
Similarly, the Q-learning algorithm is an adaptation of the Q-value iteration
algorithm to the situation where the transition probabilities and the rewards
are initially unknown (see Equation 18-5). Q-learning works by watching an
agent play (e.g., randomly) and gradually improving its estimates of the Q-
values. Once it has accurate Q-value estimates (or close enough), then the
optimal policy is just choosing the action that has the highest Q-value (i.e.,
the greedy policy).

Equation 18-5. Q-learning algorithm

Q(s,a) ←α r+γ· maxa'  Q(s', a')

For each state-action pair (s, a), this algorithm keeps track of a running
average of the rewards r the agent gets upon leaving the state s with action a,
plus the sum of discounted future rewards it expects to get. To estimate this
sum, we take the maximum of the Q-value estimates for the next state s′,
since we assume that the target policy will act optimally from then on.

Let’s implement the Q-learning algorithm. First, we will need to make an
agent explore the environment. For this, we need a step function so that the
agent can execute one action and get the resulting state and reward:

def step(state, action):
    probas = transition_probabilities[state][action]
    next_state = np.random.choice([0, 1, 2], p=probas)
    reward = rewards[state][action][next_state]
    return next_state, reward

Now let’s implement the agent’s exploration policy. Since the state space is
pretty small, a simple random policy will be sufficient. If we run the
algorithm for long enough, the agent will visit every state many times, and it
will also try every possible action many times:

def exploration_policy(state):
    return np.random.choice(possible_actions[state])



Next, after we initialize the Q-values just like earlier, we are ready to run the
Q-learning algorithm with learning rate decay (using power scheduling,
introduced in Chapter 11):

alpha0 = 0.05  # initial learning rate
decay = 0.005  # learning rate decay
gamma = 0.90  # discount factor
state = 0  # initial state

for iteration in range(10_000):
    action = exploration_policy(state)
    next_state, reward = step(state, action)
    next_value = Q_values[next_state].max()  # greedy policy at the next step
    alpha = alpha0 / (1 + iteration * decay)
    Q_values[state, action] *= 1 - alpha
    Q_values[state, action] += alpha * (reward + gamma * next_value)
    state = next_state

This algorithm will converge to the optimal Q-values, but it will take many
iterations, and possibly quite a lot of hyperparameter tuning. As you can see
in Figure 18-9, the Q-value iteration algorithm (left) converges very quickly,
in fewer than 20 iterations, while the Q-learning algorithm (right) takes about
8,000 iterations to converge. Obviously, not knowing the transition
probabilities or the rewards makes finding the optimal policy significantly
harder!

Figure 18-9. Learning curve of the Q-value iteration algorithm versus the Q-learning algorithm

The Q-learning algorithm is called an off-policy algorithm because the policy
being trained is not necessarily the one used during training. For example, in



the code we just ran, the policy being executed (the exploration policy) was
completely random, while the policy being trained was never used. After
training, the optimal policy corresponds to systematically choosing the action
with the highest Q-value. Conversely, the policy gradients algorithm is an on-
policy algorithm: it explores the world using the policy being trained. It is
somewhat surprising that Q-learning is capable of learning the optimal policy
by just watching an agent act randomly. Imagine learning to play golf when
your teacher is a blindfolded monkey. Can we do better?



Exploration Policies
Of course, Q-learning can work only if the exploration policy explores the
MDP thoroughly enough. Although a purely random policy is guaranteed to
eventually visit every state and every transition many times, it may take an
extremely long time to do so. Therefore, a better option is to use the ε-greedy
policy (ε is epsilon): at each step it acts randomly with probability ε, or
greedily with probability 1–ε (i.e., choosing the action with the highest Q-
value). The advantage of the ε-greedy policy (compared to a completely
random policy) is that it will spend more and more time exploring the
interesting parts of the environment, as the Q-value estimates get better and
better, while still spending some time visiting unknown regions of the MDP.
It is quite common to start with a high value for ε (e.g., 1.0) and then
gradually reduce it (e.g., down to 0.05).

Alternatively, rather than relying only on chance for exploration, another
approach is to encourage the exploration policy to try actions that it has not
tried much before. This can be implemented as a bonus added to the Q-value
estimates, as shown in Equation 18-6.

Equation 18-6. Q-learning using an exploration function

Q(s,a) ←α r+γ·max a'  f Q(s',a' ),N(s', a')

In this equation:

N(s′, a′) counts the number of times the action a′ was chosen in state s′.

f(Q, N) is an exploration function, such as f(Q, N) = Q + κ/(1 + N),
where κ is a curiosity hyperparameter that measures how much the agent
is attracted to the unknown.



Approximate Q-Learning and Deep Q-Learning
The main problem with Q-learning is that it does not scale well to large (or
even medium) MDPs with many states and actions. For example, suppose
you wanted to use Q-learning to train an agent to play Ms. Pac-Man (see
Figure 18-1). There are about 150 pellets that Ms. Pac-Man can eat, each of
which can be present or absent (i.e., already eaten). So, the number of
possible states is greater than 2  ≈ 10 . And if you add all the possible
combinations of positions for all the ghosts and Ms. Pac-Man, the number of
possible states becomes larger than the number of atoms in our planet, so
there’s absolutely no way you can keep track of an estimate for every single
Q-value.

The solution is to find a function Q (s, a) that approximates the Q-value of
any state-action pair (s, a) using a manageable number of parameters (given
by the parameter vector θ). This is called approximate Q-learning. For years
it was recommended to use linear combinations of handcrafted features
extracted from the state (e.g., the distances of the closest ghosts, their
directions, and so on) to estimate Q-values, but in 2013, DeepMind showed
that using deep neural networks can work much better, especially for
complex problems, and it does not require any feature engineering. A DNN
used to estimate Q-values is called a deep Q-network (DQN), and using a
DQN for approximate Q-learning is called deep Q-learning.

Now, how can we train a DQN? Well, consider the approximate Q-value
computed by the DQN for a given state-action pair (s, a). Thanks to Bellman,
we know we want this approximate Q-value to be as close as possible to the
reward r that we actually observe after playing action a in state s, plus the
discounted value of playing optimally from then on. To estimate this sum of
future discounted rewards, we can just execute the DQN on the next state s′,
for all possible actions a′. We get an approximate future Q-value for each
possible action. We then pick the highest (since we assume we will be
playing optimally) and discount it, and this gives us an estimate of the sum of
future discounted rewards. By summing the reward r and the future
discounted value estimate, we get a target Q-value y(s, a) for the state-action
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pair (s, a), as shown in Equation 18-7.

Equation 18-7. Target Q-value

y(s,a)=r+γ·maxa' Qθ(s',a')

With this target Q-value, we can run a training step using any gradient
descent algorithm. Specifically, we generally try to minimize the squared
error between the estimated Q-value Q (s, a) and the target Q-value y(s, a),
or the Huber loss to reduce the algorithm’s sensitivity to large errors. And
that’s the deep Q-learning algorithm! Let’s see how to implement it to solve
the CartPole environment.

θ



Implementing Deep Q-Learning
The first thing we need is a deep Q-network. In theory, we need a neural net
that takes a state-action pair as input, and outputs an approximate Q-value.
However, in practice it’s much more efficient to use a neural net that takes
only a state as input, and outputs one approximate Q-value for each possible
action. To solve the CartPole environment, we do not need a very
complicated neural net; a couple of hidden layers will do:

input_shape = [4]  # == env.observation_space.shape
n_outputs = 2  # == env.action_space.n

model = tf.keras.Sequential([
    tf.keras.layers.Dense(32, activation="elu", input_shape=input_shape),
    tf.keras.layers.Dense(32, activation="elu"),
    tf.keras.layers.Dense(n_outputs)
])

To select an action using this DQN, we pick the action with the largest
predicted Q-value. To ensure that the agent explores the environment, we will
use an ε-greedy policy (i.e., we will choose a random action with probability
ε):

def epsilon_greedy_policy(state, epsilon=0):
    if np.random.rand() < epsilon:
        return np.random.randint(n_outputs)  # random action
    else:
        Q_values = model.predict(state[np.newaxis], verbose=0)[0]
        return Q_values.argmax()  # optimal action according to the DQN

Instead of training the DQN based only on the latest experiences, we will
store all experiences in a replay buffer (or replay memory), and we will
sample a random training batch from it at each training iteration. This helps
reduce the correlations between the experiences in a training batch, which
tremendously helps training. For this, we will just use a double-ended queue
(deque):



from collections import deque

replay_buffer = deque(maxlen=2000)

TIP
A deque is a queue elements can be efficiently added to or removed from on both ends.
Inserting and deleting items from the ends of the queue is very fast, but random access can
be slow when the queue gets long. If you need a very large replay buffer, you should use a
circular buffer instead (see the notebook for an implementation), or check out DeepMind’s
Reverb library.

Each experience will be composed of six elements: a state s, the action a that
the agent took, the resulting reward r, the next state s′ it reached, a Boolean
indicating whether the episode ended at that point (done), and finally another
Boolean indicating whether the episode was truncated at that point. We will
need a small function to sample a random batch of experiences from the
replay buffer. It will return six NumPy arrays corresponding to the six
experience elements:

def sample_experiences(batch_size):
    indices = np.random.randint(len(replay_buffer), size=batch_size)
    batch = [replay_buffer[index] for index in indices]
    return [
        np.array([experience[field_index] for experience in batch])
        for field_index in range(6)
    ]  # [states, actions, rewards, next_states, dones, truncateds]

Let’s also create a function that will play a single step using the ε-greedy
policy, then store the resulting experience in the replay buffer:

def play_one_step(env, state, epsilon):
    action = epsilon_greedy_policy(state, epsilon)
    next_state, reward, done, truncated, info = env.step(action)
    replay_buffer.append((state, action, reward, next_state, done, truncated))
    return next_state, reward, done, truncated, info

Finally, let’s create one last function that will sample a batch of experiences

https://homl.info/reverb


from the replay buffer and train the DQN by performing a single gradient
descent step on this batch:

batch_size = 32
discount_factor = 0.95
optimizer = tf.keras.optimizers.Nadam(learning_rate=1e-2)
loss_fn = tf.keras.losses.mean_squared_error

def training_step(batch_size):
    experiences = sample_experiences(batch_size)
    states, actions, rewards, next_states, dones, truncateds = experiences
    next_Q_values = model.predict(next_states, verbose=0)
    max_next_Q_values = next_Q_values.max(axis=1)
    runs = 1.0 - (dones | truncateds)  # episode is not done or truncated
    target_Q_values = rewards + runs * discount_factor * max_next_Q_values
    target_Q_values = target_Q_values.reshape(-1, 1)
    mask = tf.one_hot(actions, n_outputs)
    with tf.GradientTape() as tape:
        all_Q_values = model(states)
        Q_values = tf.reduce_sum(all_Q_values * mask, axis=1, keepdims=True)
        loss = tf.reduce_mean(loss_fn(target_Q_values, Q_values))

    grads = tape.gradient(loss, model.trainable_variables)
    optimizer.apply_gradients(zip(grads, model.trainable_variables))

Here’s what’s happening in this code:

First we define some hyperparameters, and we create the optimizer and
the loss function.

Then we create the training_step() function. It starts by sampling a batch
of experiences, then it uses the DQN to predict the Q-value for each
possible action in each experience’s next state. Since we assume that the
agent will be playing optimally, we only keep the maximum Q-value for
each next state. Next, we use Equation 18-7 to compute the target Q-
value for each experience’s state-action pair.

We want to use the DQN to compute the Q-value for each experienced
state-action pair, but the DQN will also output the Q-values for the other
possible actions, not just for the action that was actually chosen by the
agent. So, we need to mask out all the Q-values we do not need. The



tf.one_hot() function makes it possible to convert an array of action
indices into such a mask. For example, if the first three experiences
contain actions 1, 1, 0, respectively, then the mask will start with [[0, 1],
[0, 1], [1, 0],...]. We can then multiply the DQN’s output with this mask,
and this will zero out all the Q-values we do not want. We then sum
over axis 1 to get rid of all the zeros, keeping only the Q-values of the
experienced state-action pairs. This gives us the Q_values tensor,
containing one predicted Q-value for each experience in the batch.

Next, we compute the loss: it is the mean squared error between the
target and predicted Q-values for the experienced state-action pairs.

Finally, we perform a gradient descent step to minimize the loss with
regard to the model’s trainable variables.

This was the hardest part. Now training the model is straightforward:

for episode in range(600):
    obs, info = env.reset()
    for step in range(200):
        epsilon = max(1 - episode / 500, 0.01)
        obs, reward, done, truncated, info = play_one_step(env, obs, epsilon)
        if done or truncated:
            break

    if episode > 50:
        training_step(batch_size)

We run 600 episodes, each for a maximum of 200 steps. At each step, we
first compute the epsilon value for the ε-greedy policy: it will go from 1
down to 0.01, linearly, in a bit under 500 episodes. Then we call the
play_one_step() function, which will use the ε-greedy policy to pick an
action, then execute it and record the experience in the replay buffer. If the
episode is done or truncated, we exit the loop. Finally, if we are past episode
50, we call the training_step() function to train the model on one batch
sampled from the replay buffer. The reason we play many episodes without
training is to give the replay buffer some time to fill up (if we don’t wait
enough, then there will not be enough diversity in the replay buffer). And



that’s it: we just implemented the Deep Q-learning algorithm!

Figure 18-10 shows the total rewards the agent got during each episode.

Figure 18-10. Learning curve of the deep Q-learning algorithm

As you can see, the algorithm took a while to start learning anything, in part
because ε was very high at the beginning. Then its progress was erratic: it
first reached the max reward around episode 220, but it immediately dropped,
then bounced up and down a few times, and soon after it looked like it had
finally stabilized near the max reward, at around episode 320, its score again
dropped down dramatically. This is called catastrophic forgetting, and it is
one of the big problems facing virtually all RL algorithms: as the agent
explores the environment, it updates its policy, but what it learns in one part
of the environment may break what it learned earlier in other parts of the
environment. The experiences are quite correlated, and the learning
environment keeps changing—this is not ideal for gradient descent! If you
increase the size of the replay buffer, the algorithm will be less subject to this
problem. Tuning the learning rate may also help. But the truth is,
reinforcement learning is hard: training is often unstable, and you may need
to try many hyperparameter values and random seeds before you find a
combination that works well. For example, if you try changing the activation
function from "elu" to "relu", the performance will be much lower.



NOTE
Reinforcement learning is notoriously difficult, largely because of the training instabilities
and the huge sensitivity to the choice of hyperparameter values and random seeds.  As
the researcher Andrej Karpathy put it, “[Supervised learning] wants to work. […] RL must
be forced to work”. You will need time, patience, perseverance, and perhaps a bit of luck
too. This is a major reason RL is not as widely adopted as regular deep learning (e.g.,
convolutional nets). But there are a few real-world applications, beyond AlphaGo and
Atari games: for example, Google uses RL to optimize its datacenter costs, and it is used
in some robotics applications, for hyperparameter tuning, and in recommender systems.

You might wonder why we didn’t plot the loss. It turns out that loss is a poor
indicator of the model’s performance. The loss might go down, yet the agent
might perform worse (e.g., this can happen when the agent gets stuck in one
small region of the environment, and the DQN starts overfitting this region).
Conversely, the loss could go up, yet the agent might perform better (e.g., if
the DQN was underestimating the Q-values and it starts correctly increasing
its predictions, the agent will likely perform better, getting more rewards, but
the loss might increase because the DQN also sets the targets, which will be
larger too). So, it’s preferable to plot the rewards.

The basic deep Q-learning algorithm we’ve been using so far would be too
unstable to learn to play Atari games. So how did DeepMind do it? Well,
they tweaked the algorithm!

13



Deep Q-Learning Variants
Let’s look at a few variants of the deep Q-learning algorithm that can
stabilize and speed up training.



Fixed Q-value Targets
In the basic deep Q-learning algorithm, the model is used both to make
predictions and to set its own targets. This can lead to a situation analogous to
a dog chasing its own tail. This feedback loop can make the network
unstable: it can diverge, oscillate, freeze, and so on. To solve this problem, in
their 2013 paper the DeepMind researchers used two DQNs instead of one:
the first is the online model, which learns at each step and is used to move the
agent around, and the other is the target model used only to define the targets.
The target model is just a clone of the online model:

target = tf.keras.models.clone_model(model)  # clone the model's architecture
target.set_weights(model.get_weights())  # copy the weights

Then, in the training_step() function, we just need to change one line to use
the target model instead of the online model when computing the Q-values of
the next states:

next_Q_values = target.predict(next_states, verbose=0)

Finally, in the training loop, we must copy the weights of the online model to
the target model, at regular intervals (e.g., every 50 episodes):

if episode % 50 == 0:
    target.set_weights(model.get_weights())

Since the target model is updated much less often than the online model, the
Q-value targets are more stable, the feedback loop we discussed earlier is
dampened, and its effects are less severe. This approach was one of the
DeepMind researchers’ main contributions in their 2013 paper, allowing
agents to learn to play Atari games from raw pixels. To stabilize training,
they used a tiny learning rate of 0.00025, they updated the target model only
every 10,000 steps (instead of 50), and they used a very large replay buffer of
1 million experiences. They decreased epsilon very slowly, from 1 to 0.1 in 1
million steps, and they let the algorithm run for 50 million steps. Moreover,



their DQN was a deep convolutional net.

Now let’s take a look at another DQN variant that managed to beat the state
of the art once more.



Double DQN
In a 2015 paper,  DeepMind researchers tweaked their DQN algorithm,
increasing its performance and somewhat stabilizing training. They called
this variant double DQN. The update was based on the observation that the
target network is prone to overestimating Q-values. Indeed, suppose all
actions are equally good: the Q-values estimated by the target model should
be identical, but since they are approximations, some may be slightly greater
than others, by pure chance. The target model will always select the largest
Q-value, which will be slightly greater than the mean Q-value, most likely
overestimating the true Q-value (a bit like counting the height of the tallest
random wave when measuring the depth of a pool). To fix this, the
researchers proposed using the online model instead of the target model when
selecting the best actions for the next states, and using the target model only
to estimate the Q-values for these best actions. Here is the updated
training_step() function:

def training_step(batch_size):
    experiences = sample_experiences(batch_size)
    states, actions, rewards, next_states, dones, truncateds = experiences
    next_Q_values = model.predict(next_states, verbose=0)  # ≠ target.predict()
    best_next_actions = next_Q_values.argmax(axis=1)
    next_mask = tf.one_hot(best_next_actions, n_outputs).numpy()
    max_next_Q_values = (target.predict(next_states, verbose=0) * next_mask
                        ).sum(axis=1)
    [...]  # the rest is the same as earlier

Just a few months later, another improvement to the DQN algorithm was
propose; we’ll look at that next.
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Prioritized Experience Replay
Instead of sampling experiences uniformly from the replay buffer, why not
sample important experiences more frequently? This idea is called
importance sampling (IS) or prioritized experience replay (PER), and it was
introduced in a 2015 paper  by DeepMind researchers (once again!).

More specifically, experiences are considered “important” if they are likely to
lead to fast learning progress. But how can we estimate this? One reasonable
approach is to measure the magnitude of the TD error δ = r + γ·V(s′) – V(s). A
large TD error indicates that a transition (s, a, s′) is very surprising, and thus
probably worth learning from.  When an experience is recorded in the
replay buffer, its priority is set to a very large value, to ensure that it gets
sampled at least once. However, once it is sampled (and every time it is
sampled), the TD error δ is computed, and this experience’s priority is set to
p = |δ| (plus a small constant to ensure that every experience has a nonzero
probability of being sampled). The probability P of sampling an experience
with priority p is proportional to p , where ζ is a hyperparameter that controls
how greedy we want importance sampling to be: when ζ = 0, we just get
uniform sampling, and when ζ = 1, we get full-blown importance sampling.
In the paper, the authors used ζ = 0.6, but the optimal value will depend on
the task.

There’s one catch, though: since the samples will be biased toward important
experiences, we must compensate for this bias during training by
downweighting the experiences according to their importance, or else the
model will just overfit the important experiences. To be clear, we want
important experiences to be sampled more often, but this also means we must
give them a lower weight during training. To do this, we define each
experience’s training weight as w = (n P) , where n is the number of
experiences in the replay buffer, and β is a hyperparameter that controls how
much we want to compensate for the importance sampling bias (0 means not
at all, while 1 means entirely). In the paper, the authors used β = 0.4 at the
beginning of training and linearly increased it to β = 1 by the end of training.
Again, the optimal value will depend on the task, but if you increase one, you
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will usually want to increase the other as well.

Now let’s look at one last important variant of the DQN algorithm.



Dueling DQN
The dueling DQN algorithm (DDQN, not to be confused with double DQN,
although both techniques can easily be combined) was introduced in yet
another 2015 paper  by DeepMind researchers. To understand how it works,
we must first note that the Q-value of a state-action pair (s, a) can be
expressed as Q(s, a) = V(s) + A(s, a), where V(s) is the value of state s and
A(s, a) is the advantage of taking the action a in state s, compared to all other
possible actions in that state. Moreover, the value of a state is equal to the Q-
value of the best action a  for that state (since we assume the optimal policy
will pick the best action), so V(s) = Q(s, a ), which implies that A(s, a ) = 0.
In a dueling DQN, the model estimates both the value of the state and the
advantage of each possible action. Since the best action should have an
advantage of 0, the model subtracts the maximum predicted advantage from
all predicted advantages. Here is a simple DDQN model, implemented using
the functional API:

input_states = tf.keras.layers.Input(shape=[4])
hidden1 = tf.keras.layers.Dense(32, activation="elu")(input_states)
hidden2 = tf.keras.layers.Dense(32, activation="elu")(hidden1)
state_values = tf.keras.layers.Dense(1)(hidden2)
raw_advantages = tf.keras.layers.Dense(n_outputs)(hidden2)
advantages = raw_advantages - tf.reduce_max(raw_advantages, axis=1,
                                            keepdims=True)
Q_values = state_values + advantages
model = tf.keras.Model(inputs=[input_states], outputs=[Q_values])

The rest of the algorithm is just the same as earlier. In fact, you can build a
double dueling DQN and combine it with prioritized experience replay! More
generally, many RL techniques can be combined, as DeepMind demonstrated
in a 2017 paper:  the paper’s authors combined six different techniques
into an agent called Rainbow, which largely outperformed the state of the art.

As you can see, deep reinforcement learning is a fast-growing field and
there’s much more to discover!
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Overview of Some Popular RL Algorithms
Before we close this chapter, let’s take a brief look at a few other popular
algorithms:

AlphaGo
AlphaGo uses a variant of Monte Carlo tree search (MCTS) based on
deep neural networks to beat human champions at the game of Go. MCTS
was invented in 1949 by Nicholas Metropolis and Stanislaw Ulam. It
selects the best move after running many simulations, repeatedly
exploring the search tree starting from the current position, and spending
more time on the most promising branches. When it reaches a node that it
hasn’t visited before, it plays randomly until the game ends, and updates
its estimates for each visited node (excluding the random moves),
increasing or decreasing each estimate depending on the final outcome.
AlphaGo is based on the same principle, but it uses a policy network to
select moves, rather than playing randomly. This policy net is trained
using policy gradients. The original algorithm involved three more neural
networks, and was more complicated, but it was simplified in the
AlphaGo Zero paper,  which uses a single neural network to both
select moves and evaluate game states. The AlphaZero paper
generalized this algorithm, making it capable of tackling not only the
game of Go, but also chess and shogi (Japanese chess). Lastly, the
MuZero paper  continued to improve upon this algorithm, outperforming
the previous iterations even though the agent starts out without even
knowing the rules of the game!

Actor-critic algorithms

Actor-critics are a family of RL algorithms that combine policy gradients
with deep Q-networks. An actor-critic agent contains two neural
networks: a policy net and a DQN. The DQN is trained normally, by
learning from the agent’s experiences. The policy net learns differently
(and much faster) than in regular PG: instead of estimating the value of
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each action by going through multiple episodes, then summing the future
discounted rewards for each action, and finally normalizing them, the
agent (actor) relies on the action values estimated by the DQN (critic).
It’s a bit like an athlete (the agent) learning with the help of a coach (the
DQN).

Asynchronous advantage actor-critic (A3C)
This is an important actor-critic variant introduced by DeepMind
researchers in 2016 where multiple agents learn in parallel, exploring
different copies of the environment. At regular intervals, but
asynchronously (hence the name), each agent pushes some weight
updates to a master network, then it pulls the latest weights from that
network. Each agent thus contributes to improving the master network
and benefits from what the other agents have learned. Moreover, instead
of estimating the Q-values, the DQN estimates the advantage of each
action (hence the second A in the name), which stabilizes training.

Advantage actor-critic (A2C)

A2C is a variant of the A3C algorithm that removes the asynchronicity.
All model updates are synchronous, so gradient updates are performed
over larger batches, which allows the model to better utilize the power of
the GPU.

Soft actor-critic (SAC)
SAC is an actor-critic variant proposed in 2018 by Tuomas Haarnoja and
other UC Berkeley researchers. It learns not only rewards, but also to
maximize the entropy of its actions. In other words, it tries to be as
unpredictable as possible while still getting as many rewards as possible.
This encourages the agent to explore the environment, which speeds up
training, and makes it less likely to repeatedly execute the same action
when the DQN produces imperfect estimates. This algorithm has
demonstrated an amazing sample efficiency (contrary to all the previous
algorithms, which learn very slowly).
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Proximal policy optimization (PPO)
This algorithm by John Schulman and other OpenAI researchers is based
on A2C, but it clips the loss function to avoid excessively large weight
updates (which often lead to training instabilities). PPO is a simplification
of the previous trust region policy optimization  (TRPO) algorithm, also
by OpenAI. OpenAI made the news in April 2019 with its AI called
OpenAI Five, based on the PPO algorithm, which defeated the world
champions at the multiplayer game Dota 2.

Curiosity-based exploration 
A recurring problem in RL is the sparsity of the rewards, which makes
learning very slow and inefficient. Deepak Pathak and other UC Berkeley
researchers have proposed an exciting way to tackle this issue: why not
ignore the rewards, and just make the agent extremely curious to explore
the environment? The rewards thus become intrinsic to the agent, rather
than coming from the environment. Similarly, stimulating curiosity in a
child is more likely to give good results than purely rewarding the child
for getting good grades. How does this work? The agent continuously
tries to predict the outcome of its actions, and it seeks situations where
the outcome does not match its predictions. In other words, it wants to be
surprised. If the outcome is predictable (boring), it goes elsewhere.
However, if the outcome is unpredictable but the agent notices that it has
no control over it, it also gets bored after a while. With only curiosity, the
authors succeeded in training an agent at many video games: even though
the agent gets no penalty for losing, the game starts over, which is boring
so it learns to avoid it.

Open-ended learning (OEL)

The objective of OEL is to train agents capable of endlessly learning new
and interesting tasks, typically generated procedurally. We’re not there
yet, but there has been some amazing progress over the last few years.
For example, a 2019 paper  by a team of researchers from Uber AI
introduced the POET algorithm, which generates multiple simulated 2D

25

26

27

28

https://homl.info/ppo
https://homl.info/trpo
https://homl.info/curiosity
https://homl.info/poet


environments with bumps and holes and trains one agent per
environment: the agent’s goal is to walk as fast as possible while avoiding
the obstacles. The algorithm starts out with simple environments, but they
gradually get harder over time: this is called curriculum learning.
Moreover, although each agent is only trained within one environment, it
must regularly compete against other agents, across all environments. In
each environment, the winner is copied over and it replaces the agent that
was there before. This way, knowledge is regularly transferred across
environments, and the most adaptable agents are selected. In the end, the
agents are much better walkers than agents trained on a single task, and
they can tackle much harder environments. Of course, this principle can
be applied to other environments and tasks as well. If you’re interested in
OEL, make sure to check out the Enhanced POET paper,  as well as
DeepMind’s 2021 paper  on this topic.

TIP
If you’d like to learn more about reinforcement learning, check out the book
Reinforcement Learning by Phil Winder (O’Reilly).

We covered many topics in this chapter: policy gradients, Markov chains,
Markov decision processes, Q-learning, approximate Q-learning, and deep Q-
learning and its main variants (fixed Q-value targets, double DQN, dueling
DQN, and prioritized experience replay), and finally we took a quick look at
a few other popular algorithms. Reinforcement learning is a huge and
exciting field, with new ideas and algorithms popping out every day, so I
hope this chapter sparked your curiosity: there is a whole world to explore!

29

30

https://homl.info/epoet
https://homl.info/oel2021
https://homl.info/rlbook


Exercises
1. How would you define reinforcement learning? How is it different from

regular supervised or unsupervised learning?

2. Can you think of three possible applications of RL that were not
mentioned in this chapter? For each of them, what is the environment?
What is the agent? What are some possible actions? What are the
rewards?

3. What is the discount factor? Can the optimal policy change if you
modify the discount factor?

4. How do you measure the performance of a reinforcement learning
agent?

5. What is the credit assignment problem? When does it occur? How can
you alleviate it?

6. What is the point of using a replay buffer?

7. What is an off-policy RL algorithm?

8. Use policy gradients to solve OpenAI Gym’s LunarLander-v2
environment.

9. Use a double dueling DQN to train an agent that can achieve a
superhuman level at the famous Atari Breakout game ("ALE/Breakout-
v5"). The observations are images. To simplify the task, you should
convert them to grayscale (i.e., average over the channels axis) then crop
them and downsample them, so they’re just large enough to play, but not
more. An individual image does not tell you which way the ball and the
paddles are going, so you should merge two or three consecutive images
to form each state. Lastly, the DQN should be composed mostly of
convolutional layers.

10. If you have about $100 to spare, you can purchase a Raspberry Pi 3 plus



some cheap robotics components, install TensorFlow on the Pi, and go
wild! For an example, check out this fun post by Lukas Biewald, or take
a look at GoPiGo or BrickPi. Start with simple goals, like making the
robot turn around to find the brightest angle (if it has a light sensor) or
the closest object (if it has a sonar sensor), and move in that direction.
Then you can start using deep learning: for example, if the robot has a
camera, you can try to implement an object detection algorithm so it
detects people and moves toward them. You can also try to use RL to
make the agent learn on its own how to use the motors to achieve that
goal. Have fun!

Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.
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Chapter 19. Training and Deploying
TensorFlow Models at Scale

Once you have a beautiful model that makes amazing predictions, what do
you do with it? Well, you need to put it in production! This could be as
simple as running the model on a batch of data, and perhaps writing a script
that runs this model every night. However, it is often much more involved.
Various parts of your infrastructure may need to use this model on live data,
in which case you will probably want to wrap your model in a web service:
this way, any part of your infrastructure can query the model at any time
using a simple REST API (or some other protocol), as we discussed in
Chapter 2. But as time passes, you’ll need to regularly retrain your model on
fresh data and push the updated version to production. You must handle
model versioning, gracefully transition from one model to the next, possibly
roll back to the previous model in case of problems, and perhaps run multiple
different models in parallel to perform A/B experiments.  If your product
becomes successful, your service may start to get a large number of of
queries per second (QPS), and it must scale up to support the load. A great
solution to scale up your service, as you will see in this chapter, is to use TF
Serving, either on your own hardware infrastructure or via a cloud service
such as Google Vertex AI.  It will take care of efficiently serving your
model, handle graceful model transitions, and more. If you use the cloud
platform you will also get many extra features, such as powerful monitoring
tools.

Moreover, if you have a lot of training data and compute-intensive models,
then training time may be prohibitively long. If your product needs to adapt
to changes quickly, then a long training time can be a showstopper (e.g.,
think of a news recommendation system promoting news from last week).
Perhaps even more importantly, a long training time will prevent you from
experimenting with new ideas. In machine learning (as in many other fields),
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it is hard to know in advance which ideas will work, so you should try out as
many as possible, as fast as possible. One way to speed up training is to use
hardware accelerators such as GPUs or TPUs. To go even faster, you can
train a model across multiple machines, each equipped with multiple
hardware accelerators. TensorFlow’s simple yet powerful distribution
strategies API makes this easy, as you will see.

In this chapter we will look at how to deploy models, first using TF Serving,
then using Vertex AI. We will also take a quick look at deploying models to
mobile apps, embedded devices, and web apps. Then we will discuss how to
speed up computations using GPUs and how to train models across multiple
devices and servers using the distribution strategies API. Lastly, we will
explore how to train models and fine-tune their hyperparameters at scale
using Vertex AI. That’s a lot of topics to discuss, so let’s dive in!



Serving a TensorFlow Model
Once you have trained a TensorFlow model, you can easily use it in any
Python code: if it’s a Keras model, just call its predict() method! But as your
infrastructure grows, there comes a point where it is preferable to wrap your
model in a small service whose sole role is to make predictions and have the
rest of the infrastructure query it (e.g., via a REST or gRPC API).  This
decouples your model from the rest of the infrastructure, making it possible
to easily switch model versions or scale the service up as needed
(independently from the rest of your infrastructure), perform A/B
experiments, and ensure that all your software components rely on the same
model versions. It also simplifies testing and development, and more. You
could create your own microservice using any technology you want (e.g.,
using the Flask library), but why reinvent the wheel when you can just use TF
Serving?
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Using TensorFlow Serving
TF Serving is a very efficient, battle-tested model server, written in C++. It
can sustain a high load, serve multiple versions of your models and watch a
model repository to automatically deploy the latest versions, and more (see
Figure 19-1).

Figure 19-1. TF Serving can serve multiple models and automatically deploy the latest version of each
model

So let’s suppose you have trained an MNIST model using Keras, and you
want to deploy it to TF Serving. The first thing you have to do is export this
model to the SavedModel format, introduced in Chapter 10.

Exporting SavedModels

You already know how to save the model: just call model.save(). Now to
version the model, you just need to create a subdirectory for each model
version. Easy!



from pathlib import Path
import tensorflow as tf

X_train, X_valid, X_test = [...]  # load and split the MNIST dataset
model = [...]  # build & train an MNIST model (also handles image preprocessing)

model_name = "my_mnist_model"
model_version = "0001"
model_path = Path(model_name) / model_version
model.save(model_path, save_format="tf")

It’s usually a good idea to include all the preprocessing layers in the final
model you export so that it can ingest data in its natural form once it is
deployed to production. This avoids having to take care of preprocessing
separately within the application that uses the model. Bundling the
preprocessing steps within the model also makes it simpler to update them
later on and limits the risk of mismatch between a model and the
preprocessing steps it requires.

WARNING
Since a SavedModel saves the computation graph, it can only be used with models that are
based exclusively on TensorFlow operations, excluding the tf.py_function() operation,
which wraps arbitrary Python code.

TensorFlow comes with a small saved_model_cli command-line interface to
inspect SavedModels. Let use it to inspect our exported model:

$ saved_model_cli show --dir my_mnist_model/0001
The given SavedModel contains the following tag-sets:
'serve'

What does this output mean? Well, a SavedModel contains one or more
metagraphs. A metagraph is a computation graph plus some function
signature definitions, including their input and output names, types, and
shapes. Each metagraph is identified by a set of tags. For example, you may
want to have a metagraph containing the full computation graph, including



the training operations: you would typically tag this one as "train". And you
might have another metagraph containing a pruned computation graph with
only the prediction operations, including some GPU-specific operations: this
one might be tagged as "serve", "gpu". You might want to have other
metagraphs as well. This can be done using TensorFlow’s low-level
SavedModel API. However, when you save a Keras model using its save()
method, it saves a single metagraph tagged as "serve". Let’s inspect this
"serve" tag set:

$ saved_model_cli show --dir 0001/my_mnist_model --tag_set serve
The given SavedModel MetaGraphDef contains SignatureDefs with these keys:
SignatureDef key: "__saved_model_init_op"
SignatureDef key: "serving_default"

This metagraph contains two signature definitions: an initialization function
called "__saved_model_init_op", which you do not need to worry about, and
a default serving function called "serving_default". When saving a Keras
model, the default serving function is the model’s call() method, which
makes predictions, as you already know. Let’s get more details about this
serving function:

$ saved_model_cli show --dir 0001/my_mnist_model --tag_set serve \
                       --signature_def serving_default
The given SavedModel SignatureDef contains the following input(s):
  inputs['flatten_input'] tensor_info:
      dtype: DT_UINT8
      shape: (-1, 28, 28)
      name: serving_default_flatten_input:0
The given SavedModel SignatureDef contains the following output(s):
  outputs['dense_1'] tensor_info:
      dtype: DT_FLOAT
      shape: (-1, 10)
      name: StatefulPartitionedCall:0
Method name is: tensorflow/serving/predict

Note that the function’s input is named "flatten_input", and the output is
named "dense_1". These correspond to the Keras model’s input and output
layer names. You can also see the type and shape of the input and output
data. Looks good!

https://homl.info/savedmodel


Now that you have a SavedModel, the next step is to install TF Serving.

Installing and starting TensorFlow Serving

There are many ways to install TF Serving: using the system’s package
manager, using a Docker image,   installing from source, and more. Since
Colab runs on Ubuntu, we can use Ubuntu’s apt package manager like this:

url = "https://storage.googleapis.com/tensorflow-serving-apt"
src = "stable tensorflow-model-server tensorflow-model-server-universal"
!echo 'deb {url} {src}' > /etc/apt/sources.list.d/tensorflow-serving.list
!curl '{url}/tensorflow-serving.release.pub.gpg' | apt-key add -
!apt update -q && apt-get install -y tensorflow-model-server
%pip install -q -U tensorflow-serving-api

This code starts by adding TensorFlow’s package repository to Ubuntu’s list
of package sources. Then it downloads TensorFlow’s public GPG key and
adds it to the package manager’s key list so it can verify TensorFlow’s
package signatures. Next, it uses apt to install the tensorflow-model-server
package. Lastly, it installs the tensorflow-serving-api library, which we will
need to communicate with the server.

Now we want to start the server. The command will require the absolute path
of the base model directory (i.e., the path to my_mnist_model, not 0001), so
let’s save that to the MODEL_DIR environment variable:

import os

os.environ["MODEL_DIR"] = str(model_path.parent.absolute())

We can then start the server:

%%bash --bg
tensorflow_model_server \
     --port=8500 \
     --rest_api_port=8501 \
     --model_name=my_mnist_model \
     --model_base_path="${MODEL_DIR}" >my_server.log 2>&1

In Jupyter or Colab, the %%bash --bg magic command executes the cell as a
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bash script, running it in the background. The >my_server.log 2>&1 part
redirects the standard output and standard error to the my_server.log file. And
that’s it! TF Serving is now running in the background, and its logs are saved
to my_server.log. It loaded our MNIST model (version 1), and it is now
waiting for gRPC and REST requests, respectively, on ports 8500 and 8501.

RUNNING TF SERVING IN A DOCKER CONTAINER

If you are running the notebook on your own machine and you have
installed Docker, you can run docker pull tensorflow/serving in a
terminal to download the TF Serving image. The TensorFlow team
highly recommends this installation method because it is simple, it will
not mess with your system, and it offers high performance.  To start the
server inside a Docker container, you can run the following command in
a terminal:

$ docker run -it --rm -v "/path/to/my_mnist_model:/models/my_mnist_model" \
    -p 8500:8500 -p 8501:8501 -e MODEL_NAME=my_mnist_model tensorflow/serving

Here is what all these command-line options mean:

-it

Makes the container interactive (so you can press Ctrl-C to stop it)
and displays the server’s output.

--rm

Deletes the container when you stop it: no need to clutter your
machine with interrupted containers. However, it does not delete the
image.

-v "/path/to/my_mnist_model:/models/my_mnist_model"

Makes the host’s my_mnist_model directory available to the container
at the path /models/mnist_model. You must replace
/path/to/my_mnist_model with the absolute path of this directory. On
Windows, remember to use \ instead of / in the host path, but not in
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the container path (since the container runs on Linux).

-p 8500:8500

Makes the Docker engine forward the host’s TCP port 8500 to the
container’s TCP port 8500. By default, TF Serving uses this port to
serve the gRPC API.

-p 8501:8501

Forwards the host’s TCP port 8501 to the container’s TCP port 8501.
The Docker image is configured to use this port by default to serve
the REST API.

-e MODEL_NAME=my_mnist_model

Sets the container’s MODEL_NAME environment variable, so TF
Serving knows which model to serve. By default, it will look for
models in the /models directory, and it will automatically serve the
latest version it finds.

tensorflow/serving

This is the name of the image to run.

Now that the server is up and running, let’s query it, first using the REST
API, then the gRPC API.

Querying TF Serving through the REST API

Let’s start by creating the query. It must contain the name of the function
signature you want to call, and of course the input data. Since the request
must use the JSON format, we have to convert the input images from a
NumPy array to a Python list:

import json

X_new = X_test[:3]  # pretend we have 3 new digit images to classify



request_json = json.dumps({
    "signature_name": "serving_default",
    "instances": X_new.tolist(),
})

Note that the JSON format is 100% text-based. The request string looks like
this:

>>> request_json
'{"signature_name": "serving_default", "instances": [[[0, 0, 0, 0, ... ]]]}'

Now let’s send this request to TF Serving via an HTTP POST request. This
can be done using the requests library (it is not part of Python’s standard
library, but it is preinstalled on Colab):

import requests

server_url = "http://localhost:8501/v1/models/my_mnist_model:predict"
response = requests.post(server_url, data=request_json)
response.raise_for_status()  # raise an exception in case of error
response = response.json()

If all goes well, the response should be a dictionary containing a single
"predictions" key. The corresponding value is the list of predictions. This list
is a Python list, so let’s convert it to a NumPy array and round the floats it
contains to the second decimal:

>>> import numpy as np
>>> y_proba = np.array(response["predictions"])
>>> y_proba.round(2)
array([[0.  , 0.  , 0.  , 0.  , 0.  , 0.  , 0.  , 1.  , 0.  , 0.  ],
       [0.  , 0.  , 0.99, 0.01, 0.  , 0.  , 0.  , 0.  , 0.  , 0.  ],
       [0.  , 0.97, 0.01, 0.  , 0.  , 0.  , 0.  , 0.01, 0.  , 0.  ]])

Hurray, we have the predictions! The model is close to 100% confident that
the first image is a 7, 99% confident that the second image is a 2, and 97%
confident that the third image is a 1. That’s correct.

The REST API is nice and simple, and it works well when the input and
output data are not too large. Moreover, just about any client application can



make REST queries without additional dependencies, whereas other
protocols are not always so readily available. However, it is based on JSON,
which is text-based and fairly verbose. For example, we had to convert the
NumPy array to a Python list, and every float ended up represented as a
string. This is very inefficient, both in terms of serialization/deserialization
time—we have to convert all the floats to strings and back—and in terms of
payload size: many floats end up being represented using over 15 characters,
which translates to over 120 bits for 32-bit floats! This will result in high
latency and bandwidth usage when transferring large NumPy arrays.  So,
let’s see how to use gRPC instead.

TIP
When transferring large amounts of data, or when latency is important, it is much better to
use the gRPC API, if the client supports it, as it uses a compact binary format and an
efficient communication protocol based on HTTP/2 framing.

Querying TF Serving through the gRPC API

The gRPC API expects a serialized PredictRequest protocol buffer as input,
and it outputs a serialized PredictResponse protocol buffer. These protobufs
are part of the tensorflow-serving-api library, which we installed earlier.
First, let’s create the request:

from tensorflow_serving.apis.predict_pb2 import PredictRequest

request = PredictRequest()
request.model_spec.name = model_name
request.model_spec.signature_name = "serving_default"
input_name = model.input_names[0]  # == "flatten_input"
request.inputs[input_name].CopyFrom(tf.make_tensor_proto(X_new))

This code creates a PredictRequest protocol buffer and fills in the required
fields, including the model name (defined earlier), the signature name of the
function we want to call, and finally the input data, in the form of a Tensor
protocol buffer. The tf.make_tensor_proto() function creates a Tensor
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protocol buffer based on the given tensor or NumPy array, in this case
X_new.

Next, we’ll send the request to the server and get its response. For this, we
will need the grpcio library, which is preinstalled in Colab:

import grpc
from tensorflow_serving.apis import prediction_service_pb2_grpc

channel = grpc.insecure_channel('localhost:8500')
predict_service = prediction_service_pb2_grpc.PredictionServiceStub(channel)
response = predict_service.Predict(request, timeout=10.0)

The code is quite straightforward: after the imports, we create a gRPC
communication channel to localhost on TCP port 8500, then we create a
gRPC service over this channel and use it to send a request, with a 10-second
timeout. Note that the call is synchronous: it will block until it receives the
response or when the timeout period expires. In this example the channel is
insecure (no encryption, no authentication), but gRPC and TF Serving also
support secure channels over SSL/TLS.

Next, let’s convert the PredictResponse protocol buffer to a tensor:

output_name = model.output_names[0]  # == "dense_1"
outputs_proto = response.outputs[output_name]
y_proba = tf.make_ndarray(outputs_proto)

If you run this code and print y_proba.round(2), you will get the exact same
estimated class probabilities as earlier. And that’s all there is to it: in just a
few lines of code, you can now access your TensorFlow model remotely,
using either REST or gRPC.

Deploying a new model version

Now let’s create a new model version and export a SavedModel, this time to
the my_mnist_model/0002 directory:

model = [...]  # build and train a new MNIST model version



model_version = "0002"
model_path = Path(model_name) / model_version
model.save(model_path, save_format="tf")

At regular intervals (the delay is configurable), TF Serving checks the model
directory for new model versions. If it finds one, it automatically handles the
transition gracefully: by default, it answers pending requests (if any) with the
previous model version, while handling new requests with the new version.
As soon as every pending request has been answered, the previous model
version is unloaded. You can see this at work in the TF Serving logs (in
my_server.log):

[...]
Reading SavedModel from: /models/my_mnist_model/0002
Reading meta graph with tags { serve }
[...]
Successfully loaded servable version {name: my_mnist_model version: 2}
Quiescing servable version {name: my_mnist_model version: 1}
Done quiescing servable version {name: my_mnist_model version: 1}
Unloading servable version {name: my_mnist_model version: 1}

TIP
If the SavedModel contains some example instances in the assets/extra directory, you can
configure TF Serving to run the new model on these instances before starting to use it to
serve requests. This is called model warmup: it will ensure that everything is properly
loaded, avoiding long response times for the first requests.

This approach offers a smooth transition, but it may use too much RAM—
especially GPU RAM, which is generally the most limited. In this case, you
can configure TF Serving so that it handles all pending requests with the
previous model version and unloads it before loading and using the new
model version. This configuration will avoid having two model versions
loaded at the same time, but the service will be unavailable for a short period.

As you can see, TF Serving makes it straightforward to deploy new models.
Moreover, if you discover that version 2 does not work as well as you
expected, then rolling back to version 1 is as simple as removing the



my_mnist_model/0002 directory.

TIP
Another great feature of TF Serving is its automatic batching capability, which you can
activate using the --enable_batching option upon startup. When TF Serving receives
multiple requests within a short period of time (the delay is configurable), it will
automatically batch them together before using the model. This offers a significant
performance boost by leveraging the power of the GPU. Once the model returns the
predictions, TF Serving dispatches each prediction to the right client. You can trade a bit
of latency for a greater throughput by increasing the batching delay (see the --
batching_parameters_file option).

If you expect to get many queries per second, you will want to deploy TF
Serving on multiple servers and load-balance the queries (see Figure 19-2).
This will require deploying and managing many TF Serving containers across
these servers. One way to handle that is to use a tool such as Kubernetes,
which is an open source system for simplifying container orchestration across
many servers. If you do not want to purchase, maintain, and upgrade all the
hardware infrastructure, you will want to use virtual machines on a cloud
platform such as Amazon AWS, Microsoft Azure, Google Cloud Platform,
IBM Cloud, Alibaba Cloud, Oracle Cloud, or some other platform as a
service (PaaS) offering. Managing all the virtual machines, handling
container orchestration (even with the help of Kubernetes), taking care of TF
Serving configuration, tuning and monitoring—all of this can be a full-time
job. Fortunately, some service providers can take care of all this for you. In
this chapter we will use Vertex AI: it’s the only platform with TPUs today; it
supports TensorFlow 2, Scikit-Learn, and XGBoost; and it offers a nice suite
of AI services. There are several other providers in this space that are capable
of serving TensorFlow models as well, though, such as Amazon AWS
SageMaker and Microsoft AI Platform, so make sure to check them out too.

https://kubernetes.io


Figure 19-2. Scaling up TF Serving with load balancing

Now let’s see how to serve our wonderful MNIST model on the cloud!



Creating a Prediction Service on Vertex AI
Vertex AI is a platform within Google Cloud Platform (GCP) that offers a
wide range of AI-related tools and services. You can upload datasets, get
humans to label them, store commonly used features in a feature store and
use them for training or in production, and train models across many GPU or
TPU servers with automatic hyperparameter tuning or model architecture
search (AutoML). You can also manage your trained models, use them to
make batch predictions on large amounts of data, schedule multiple jobs for
your data workflows, serve your models via REST or gRPC at scale, and
experiment with your data and models within a hosted Jupyter environment
called the Workbench. There’s even a Matching Engine service that lets you
compare vectors very efficiently (i.e., approximate nearest neighbors). GCP
also includes other AI services, such as APIs for computer vision, translation,
speech-to-text, and more.

Before we start, there’s a little bit of setup to take care of:

1. Log in to your Google account, and then go to the Google Cloud
Platform console (see Figure 19-3). If you don’t have a Google account,
you’ll have to create one.

2. If it’s your first time using GCP, you’ll have to read and accept the
terms and conditions. New users are offered a free trial, including $300
worth of GCP credit that you can use over the course of 90 days (as of
May 2022). You’ll only need a small portion of that to pay for the
services you’ll use in this chapter. Upon signing up for a free trial, you’ll
still need to create a payment profile and enter your credit card number:
it’s used for verification purposes—probably to avoid people using the
free trial multiple times—but you won’t be billed for the first $300, and
after that you’ll only be charged if you opt in by upgrading to a paid
account.

https://console.cloud.google.com


Figure 19-3. Google Cloud Platform console

3. If you have used GCP before and your free trial has expired, then the
services you will use in this chapter will cost you some money. It
shouldn’t be too much, especially if you remember to turn off the
services when you don’t need them anymore. Make sure you understand
and agree to the pricing conditions before you run any service. I hereby
decline any responsibility if services end up costing more than you
expected! Also make sure your billing account is active. To check, open
the ☰ navigation menu at the top left and click Billing, then make sure
you have set up a payment method and that the billing account is active.

4. Every resource in GCP belongs to a project. This includes all the virtual
machines you may use, the files you store, and the training jobs you run.
When you create an account, GCP automatically creates a project for
you, called “My First Project”. If you want, you can change its display
name by going to the project settings: in the ☰ navigation menu, select
“IAM and admin → Settings”, change the project’s display name, and
click SAVE. Note that the project also has a unique ID and number. You
can choose the project ID when you create a project, but you cannot
change it later. The project number is automatically generated and
cannot be changed. If you want to create a new project, click the project
name at the top of the page, then click NEW PROJECT and enter the
project name. You can also click EDIT to set the project ID. Make sure
billing is active for this new project so that service fees can be billed (to



your free credits, if any).

WARNING
Always set an alarm to remind yourself to turn services off when you know you will
only need them for a few hours, or else you might leave them running for days or
months, incurring potentially significant costs.

5. Now that you have a GCP account and a project, and billing is activated,
you must activate the APIs you need. In the ☰ navigation menu, select
“APIs and services”, and make sure the Cloud Storage API is enabled. If
needed, click + ENABLE APIS AND SERVICES, find Cloud Storage,
and enable it. Also enable the Vertex AI API.

You could continue to do everything via the GCP console, but I recommend
using Python instead: this way you can write scripts to automate just about
anything you want with GCP, and it’s often more convenient than clicking
your way through menus and forms, especially for common tasks.

GOOGLE CLOUD CLI AND SHELL

Google Cloud’s command-line interface (CLI) includes the gcloud
command, which lets you control almost everything in GCP, and gsutil,
which lets you interact with Google Cloud Storage. This CLI is
preinstalled in Colab: all you need to do is authenticate using
google.auth.authenticate_user(), and you’re good to go. For example,
!gcloud config list will display the configuration.

GCP also offers a preconfigured shell environment called the Google
Cloud Shell, which you can use directly in your web browser; it runs on a
free Linux VM (Debian) with the Google Cloud SDK already preinstalled
and configured for you, so there’s no need to authenticate. The Cloud
Shell is available anywhere in GCP: just click the Activate Cloud Shell
icon at the top right of the page (see Figure 19-4).



Figure 19-4. Activating the Google Cloud Shell

If you prefer to install the CLI on your machine, then after installation
you need to initialize it by running gcloud init: follow the instructions to
log in to GCP and grant access to your GCP resources, then select the
default GCP project you want to use (if you have more than one) and the
default region where you want your jobs to run.

The first thing you need to do before you can use any GCP service is to
authenticate. The simplest solution when using Colab is to execute the
following code:

from google.colab import auth

auth.authenticate_user()

The authentication process is based on OAuth 2.0: a pop-up window will ask
you to confirm that you want the Colab notebook to access your Google
credentials. If you accept, you must select the same Google account you used
for GCP. Then you will be asked to confirm that you agree to give Colab full
access to all your data on Google Drive and in GCP. If you allow access, only
the current notebook will have access, and only until the Colab runtime
expires. Obviously, you should only accept this if you trust the code in the
notebook.

WARNING
If you are not working with the official notebooks from
https://github.com/ageron/handson-ml3, then you should be extra careful: if the
notebook’s author is mischievous, they could include code to do whatever they want with
your data.

https://homl.info/gcloud
https://oauth.net
https://github.com/ageron/handson-ml3


AUTHENTICATION AND AUTHORIZATION ON GCP

In general, using OAuth 2.0 authentication is only recommended when an
application must access the user’s personal data or resources from
another application, on the user’s behalf. For example, some applications
allow the user to save data to their Google Drive, but for that the
application first needs the user to authenticate with Google and allow
access to Google Drive. In general, the application will only ask for the
level of access it needs; it won’t be an unlimited access: for example, the
application will only request access to Google Drive, not Gmail or any
other Google service. Moreover, the authorization usually expires after a
while, and it can always be revoked.

When an application needs to access a service on GCP on its own behalf,
not on behalf of the user, then it should generally use a service account.
For example, if you build a website that needs to send prediction requests
to a Vertex AI endpoint, then the website will be accessing the service on
its own behalf. There’s no data or resource that it needs to access in the
user’s Google account. In fact, many users of the website will not even
have a Google account. For this scenario, you first need to create a
service account. Select “IAM and admin → Service accounts” in the GCP
console’s ☰ navigation menu (or use the search box), then click +
CREATE SERVICE ACCOUNT, fill in the first page of the form
(service account name, ID, description), and click CREATE AND
CONTINUE. Next, you must give this account some access rights. Select
the “Vertex AI user” role: this will allow the service account to make
predictions and use other Vertex AI services, but nothing else. Click
CONTINUE. You can now optionally grant some users access to the
service account: this is useful when your GCP user account is part of an
organization and you wish to authorize other users in the organization to
deploy applications that will be based on this service account, or to
manage the service account itself. Next, click DONE.

Once you have created a service account, your application must
authenticate as that service account. There are several ways to do that. If



your application is hosted on GCP—for example, if you are coding a
website hosted on Google Compute Engine—then the simplest and safest
solution is to attach the service account to the GCP resource that hosts
your website, such as a VM instance or a Google App Engine service.
This can be done when creating the GCP resource, by selecting the
service account in the “Identity and API access” section. Some resources,
such as VM instances, also let you attach the service account after the
VM instance is created: you must stop it and edit its settings. In any case,
once a service account is attached to a VM instance, or any other GCP
resource running your code, GCP’s client libraries (discussed shortly)
will automatically authenticate as the chosen service account, with no
extra step needed.

If your application is hosted using Kubernetes, then you should use
Google’s Workload Identity service to map the right service account to
each Kubernetes service account. If your application is not hosted on
GCP—for example, if you are just running the Jupyter notebook on your
own machine—then you can either use the Workload Identity Federation
service (that’s the safest but hardest option), or just generate an access
key for your service account, save it to a JSON file, and point the
GOOGLE_APPLICATION_CREDENTIALS environment variable to it
so your client application can access it. You can manage access keys by
clicking the service account you just created, and then opening the KEYS
tab. Make sure to keep the key file secret: it’s like a password for the
service account.

For more details on setting up authentication and authorization so your
application can access GCP services, check out the documentation.

Now let’s create a Google Cloud Storage bucket to store our SavedModels (a
GCS bucket is a container for your data). For this we will use the google-
cloud-storage library, which is preinstalled in Colab. We first create a Client
object, which will serve as the interface with GCS, then we use it to create
the bucket:

from google.cloud import storage

https://homl.info/gcpauth


project_id = "my_project"  # change this to your project ID
bucket_name = "my_bucket"  # change this to a unique bucket name
location = "us-central1"

storage_client = storage.Client(project=project_id)
bucket = storage_client.create_bucket(bucket_name, location=location)

TIP
If you want to reuse an existing bucket, replace the last line with bucket =
storage_client.bucket(bucket_name). Make sure location is set to the bucket’s region.

GCS uses a single worldwide namespace for buckets, so simple names like
“machine-learning” will most likely not be available. Make sure the bucket
name conforms to DNS naming conventions, as it may be used in DNS
records. Moreover, bucket names are public, so do not put anything private in
the name. It is common to use your domain name, your company name, or
your project ID as a prefix to ensure uniqueness, or simply use a random
number as part of the name.

You can change the region if you want, but be sure to choose one that
supports GPUs. Also, you may want to consider the fact that prices vary
greatly between regions, some regions produce much more CO₂ than others,
some regions do not support all services, and using a single-region bucket
improves performance. See Google Cloud’s list of regions and Vertex AI’s
documentation on locations for more details. If you are unsure, it might be
best to stick with "us-central1".

Next, let’s upload the my_mnist_model directory to the new bucket. Files in
GCS are called blobs (or objects), and under the hood they are all just placed
in the bucket without any directory structure. Blob names can be arbitrary
Unicode strings, and they can even contain forward slashes (/). The GCP
console and other tools use these slashes to give the illusion that there are
directories. So, when we upload the my_mnist_model directory, we only care
about the files, not the directories:

https://homl.info/regions
https://homl.info/locations


def upload_directory(bucket, dirpath):
    dirpath = Path(dirpath)
    for filepath in dirpath.glob("**/*"):
        if filepath.is_file():
            blob = bucket.blob(filepath.relative_to(dirpath.parent).as_posix())
            blob.upload_from_filename(filepath)

upload_directory(bucket, "my_mnist_model")

This function works fine now, but it would be very slow if there were many
files to upload. It’s not too hard to speed it up tremendously by
multithreading it (see the notebook for an implementation). Alternatively, if
you have the Google Cloud CLI, then you can use following command
instead:

!gsutil -m cp -r my_mnist_model gs://{bucket_name}/

Next, let’s tell Vertex AI about our MNIST model. To communicate with
Vertex AI, we can use the google-cloud-aiplatform library (it still uses the old
AI Platform name instead of Vertex AI). It’s not preinstalled in Colab, so we
need to install it. After that, we can import the library and initialize it—just to
specify some default values for the project ID and the location—then we can
create a new Vertex AI model: we specify a display name, the GCS path to
our model (in this case the version 0001), and the URL of the Docker
container we want Vertex AI to use to run this model. If you visit that URL
and navigate up one level, you will find other containers you can use. This
one supports TensorFlow 2.8 with a GPU:

from google.cloud import aiplatform

server_image = "gcr.io/cloud-aiplatform/prediction/tf2-gpu.2-8:latest"

aiplatform.init(project=project_id, location=location)
mnist_model = aiplatform.Model.upload(
    display_name="mnist",
    artifact_uri=f"gs://{bucket_name}/my_mnist_model/0001",
    serving_container_image_uri=server_image,
)



Now let’s deploy this model so we can query it via a gRPC or REST API to
make predictions. For this we first need to create an endpoint. This is what
client applications connect to when they want to access a service. Then we
need to deploy our model to this endpoint:

endpoint = aiplatform.Endpoint.create(display_name="mnist-endpoint")

endpoint.deploy(
    mnist_model,
    min_replica_count=1,
    max_replica_count=5,
    machine_type="n1-standard-4",
    accelerator_type="NVIDIA_TESLA_K80",
    accelerator_count=1
)

This code may take a few minutes to run, because Vertex AI needs to set up a
virtual machine. In this example, we use a fairly basic machine of type n1-
standard-4 (see https://homl.info/machinetypes for other types). We also use a
basic GPU of type NVIDIA_TESLA_K80 (see https://homl.info/accelerators
for other types). If you selected another region than "us-central1", then you
may need to change the machine type or the accelerator type to values that
are supported in that region (e.g., not all regions have Nvidia Tesla K80
GPUs).

NOTE
Google Cloud Platform enforces various GPU quotas, both worldwide and per region: you
cannot create thousands of GPU nodes without prior authorization from Google. To check
your quotas, open “IAM and admin → Quotas” in the GCP console. If some quotas are too
low (e.g., if you need more GPUs in a particular region), you can ask for them to be
increased; it often takes about 48 hours.

Vertex AI will initially spawn the minimum number of compute nodes (just
one in this case), and whenever the number of queries per second becomes
too high, it will spawn more nodes (up to the maximum number you defined,
five in this case) and will load-balance the queries between them. If the QPS

https://homl.info/machinetypes
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rate goes down for a while, Vertex AI will stop the extra compute nodes
automatically. The cost is therefore directly linked to the load, as well as the
machine and accelerator types you selected and the amount of data you store
on GCS. This pricing model is great for occasional users and for services
with important usage spikes. It’s also ideal for startups: the price remains low
until the startup actually starts up.

Congratulations, you have deployed your first model to the cloud! Now let’s
query this prediction service:

response = endpoint.predict(instances=X_new.tolist())

We first need to convert the images we want to classify to a Python list, as we
did earlier when we sent requests to TF Serving using the REST API. The
response object contains the predictions, represented as a Python list of lists
of floats. Let’s round them to two decimal places and convert them to a
NumPy array:

>>> import numpy as np
>>> np.round(response.predictions, 2)
array([[0.  , 0.  , 0.  , 0.  , 0.  , 0.  , 0.  , 1.  , 0.  , 0.  ],
       [0.  , 0.  , 0.99, 0.01, 0.  , 0.  , 0.  , 0.  , 0.  , 0.  ],
       [0.  , 0.97, 0.01, 0.  , 0.  , 0.  , 0.  , 0.01, 0.  , 0.  ]])

Yes! We get the exact same predictions as earlier. We now have a nice
prediction service running on the cloud that we can query from anywhere
securely, and which can automatically scale up or down depending on the
number of QPS. When you are done using the endpoint, don’t forget to delete
it, to avoid paying for nothing:

endpoint.undeploy_all()  # undeploy all models from the endpoint
endpoint.delete()

Now let’s see how to run a job on Vertex AI to make predictions on a
potentially very large batch of data.



Running Batch Prediction Jobs on Vertex AI
If we have a large number of predictions to make, then instead of calling our
prediction service repeatedly, we can ask Vertex AI to run a prediction job
for us. This does not require an endpoint, only a model. For example, let’s
run a prediction job on the first 100 images of the test set, using our MNIST
model. For this, we first need to prepare the batch and upload it to GCS. One
way to do this is to create a file containing one instance per line, each
formatted as a JSON value—this format is called JSON Lines—then pass this
file to Vertex AI. So let’s create a JSON Lines file in a new directory, then
upload this directory to GCS:

batch_path = Path("my_mnist_batch")
batch_path.mkdir(exist_ok=True)
with open(batch_path / "my_mnist_batch.jsonl", "w") as jsonl_file:
    for image in X_test[:100].tolist():
        jsonl_file.write(json.dumps(image))
        jsonl_file.write("\n")

upload_directory(bucket, batch_path)

Now we’re ready to launch the prediction job, specifying the job’s name, the
type and number of machines and accelerators to use, the GCS path to the
JSON Lines file we just created, and the path to the GCS directory where
Vertex AI will save the model’s predictions:

batch_prediction_job = mnist_model.batch_predict(
    job_display_name="my_batch_prediction_job",
    machine_type="n1-standard-4",
    starting_replica_count=1,
    max_replica_count=5,
    accelerator_type="NVIDIA_TESLA_K80",
    accelerator_count=1,
    gcs_source=[f"gs://{bucket_name}/{batch_path.name}/my_mnist_batch.jsonl"],
    gcs_destination_prefix=f"gs://{bucket_name}/my_mnist_predictions/",
    sync=True  # set to False if you don't want to wait for completion
)



TIP
For large batches, you can split the inputs into multiple JSON Lines files and list them all
via the gcs_source argument.

This will take a few minutes, mostly to spawn the compute nodes on Vertex
AI. Once this command completes, the predictions will be available in a set
of files named something like prediction.results-00001-of-00002. These files
use the JSON Lines format by default, and each value is a dictionary
containing an instance and its corresponding prediction (i.e., 10
probabilities). The instances are listed in the same order as the inputs. The job
also outputs prediction-errors* files, which can be useful for debugging if
something goes wrong. We can iterate through all these output files using
batch_prediction_job.iter_outputs(), so let’s go through all the predictions
and store them in a y_probas array:

y_probas = []
for blob in batch_prediction_job.iter_outputs():
    if "prediction.results" in blob.name:
        for line in blob.download_as_text().splitlines():
            y_proba = json.loads(line)["prediction"]
            y_probas.append(y_proba)

Now let’s see how good these predictions are:

>>> y_pred = np.argmax(y_probas, axis=1)
>>> accuracy = np.sum(y_pred == y_test[:100]) / 100
0.98

Nice, 98% accuracy!

The JSON Lines format is the default, but when dealing with large instances
such as images, it is too verbose. Luckily, the batch_predict() method accepts
an instances_format argument that lets you choose another format if you
want. It defaults to "jsonl", but you can change it to "csv", "tf-record", "tf-
record-gzip", "bigquery", or "file-list". If you set it to "file-list", then the
gcs_source argument should point to a text file containing one input filepath



per line; for instance, pointing to PNG image files. Vertex AI will read these
files as binary, encode them using Base64, and pass the resulting byte strings
to the model. This means that you must add a preprocessing layer in your
model to parse the Base64 strings, using tf.io.decode_base64(). If the files are
images, you must then parse the result using a function like
tf.io.decode_image() or tf.io.decode_png(), as discussed in Chapter 13.

When you’re finished using the model, you can delete it if you want, by
running mnist_model.delete(). You can also delete the directories you created
in your GCS bucket, optionally the bucket itself (if it’s empty), and the batch
prediction job:

for prefix in ["my_mnist_model/", "my_mnist_batch/", "my_mnist_predictions/"]:
    blobs = bucket.list_blobs(prefix=prefix)
    for blob in blobs:
        blob.delete()

bucket.delete()  # if the bucket is empty
batch_prediction_job.delete()

You now know how to deploy a model to Vertex AI, create a prediction
service, and run batch prediction jobs. But what if you want to deploy your
model to a mobile app instead? Or to an embedded device, such as a heating
control system, a fitness tracker, or a self-driving car?



Deploying a Model to a Mobile or Embedded Device
Machine learning models are not limited to running on big centralized servers
with multiple GPUs: they can run closer to the source of data (this is called
edge computing), for example in the user’s mobile device or in an embedded
device. There are many benefits to decentralizing the computations and
moving them toward the edge: it allows the device to be smart even when it’s
not connected to the internet, it reduces latency by not having to send data to
a remote server and reduces the load on the servers, and it may improve
privacy, since the user’s data can stay on the device.

However, deploying models to the edge has its downsides too. The device’s
computing resources are generally tiny compared to a beefy multi-GPU
server. A large model may not fit in the device, it may use too much RAM
and CPU, and it may take too long to download. As a result, the application
may become unresponsive, and the device may heat up and quickly run out of
battery. To avoid all this, you need to make a lightweight and efficient model,
without sacrificing too much of its accuracy. The TFLite library provides
several tools   to help you deploy your models to the edge, with three main
objectives:

Reduce the model size, to shorten download time and reduce RAM
usage.

Reduce the amount of computations needed for each prediction, to
reduce latency, battery usage, and heating.

Adapt the model to device-specific constraints.

To reduce the model size, TFLite’s model converter can take a SavedModel
and compress it to a much lighter format based on FlatBuffers. This is an
efficient cross-platform serialization library (a bit like protocol buffers)
initially created by Google for gaming. It is designed so you can load
FlatBuffers straight to RAM without any preprocessing: this reduces the
loading time and memory footprint. Once the model is loaded into a mobile
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or embedded device, the TFLite interpreter will execute it to make
predictions. Here is how you can convert a SavedModel to a FlatBuffer and
save it to a .tflite file:

converter = tf.lite.TFLiteConverter.from_saved_model(str(model_path))
tflite_model = converter.convert()
with open("my_converted_savedmodel.tflite", "wb") as f:
    f.write(tflite_model)

TIP
You can also save a Keras model directly to a FlatBuffer using
tf.lite.TFLiteConverter.from_keras_model(model).

The converter also optimizes the model, both to shrink it and to reduce its
latency. It prunes all the operations that are not needed to make predictions
(such as training operations), and it optimizes computations whenever
possible; for example, 3 × a + 4 ×_ a_ + 5 × a will be converted to 12 × a.
Addtionally, it tries to fuse operations whenever possible. For example, if
possible, batch normalization layers end up folded into the previous layer’s
addition and multiplication operations. To get a good idea of how much
TFLite can optimize a model, download one of the pretrained TFLite models,
such as Inception_V1_quant (click tflite&pb), unzip the archive, then open
the excellent Netron graph visualization tool and upload the .pb file to view
the original model. It’s a big, complex graph, right? Next, open the optimized
.tflite model and marvel at its beauty!

Another way you can reduce the model size—other than simply using smaller
neural network architectures—is by using smaller bit-widths: for example, if
you use half-floats (16 bits) rather than regular floats (32 bits), the model size
will shrink by a factor of 2, at the cost of a (generally small) accuracy drop.
Moreover, training will be faster, and you will use roughly half the amount of
GPU RAM.

TFLite’s converter can go further than that, by quantizing the model weights
down to fixed-point, 8-bit integers! This leads to a fourfold size reduction

https://homl.info/litemodels
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compared to using 32-bit floats. The simplest approach is called post-training
quantization: it just quantizes the weights after training, using a fairly basic
but efficient symmetrical quantization technique. It finds the maximum
absolute weight value, m, then it maps the floating-point range –m to +m to
the fixed-point (integer) range –127 to +127. For example, if the weights
range from –1.5 to +0.8, then the bytes –127, 0, and +127 will correspond to
the floats –1.5, 0.0, and +1.5, respectively (see Figure 19-5). Note that 0.0
always maps to 0 when using symmetrical quantization. Also note that the
byte values +68 to +127 will not be used in this example, since they map to
floats greater than +0.8.

Figure 19-5. From 32-bit floats to 8-bit integers, using symmetrical quantization

To perform this post-training quantization, simply add DEFAULT to the list
of converter optimizations before calling the convert() method:

converter.optimizations = [tf.lite.Optimize.DEFAULT]

This technique dramatically reduces the model’s size, which makes it much
faster to download, and uses less storage space. At runtime the quantized
weights get converted back to floats before they are used. These recovered
floats are not perfectly identical to the original floats, but they’re not too far
off, so the accuracy loss is usually acceptable. To avoid recomputing the float
values all the time, which would severely slow down the model, TFLite
caches them: unfortunately, this means that this technique does not reduce
RAM usage, and it doesn’t speed up the model either. It’s mostly useful to
reduce the application’s size.

The most effective way to reduce latency and power consumption is to also



quantize the activations so that the computations can be done entirely with
integers, without the need for any floating-point operations. Even when using
the same bit-width (e.g., 32-bit integers instead of 32-bit floats), integer
computations use less CPU cycles, consume less energy, and produce less
heat. And if you also reduce the bit-width (e.g., down to 8-bit integers), you
can get huge speedups. Moreover, some neural network accelerator devices—
such as Google’s Edge TPU—can only process integers, so full quantization
of both weights and activations is compulsory. This can be done post-
training; it requires a calibration step to find the maximum absolute value of
the activations, so you need to provide a representative sample of training
data to TFLite (it does not need to be huge), and it will process the data
through the model and measure the activation statistics required for
quantization. This step is typically fast.

The main problem with quantization is that it loses a bit of accuracy: it is
similar to adding noise to the weights and activations. If the accuracy drop is
too severe, then you may need to use quantization-aware training. This
means adding fake quantization operations to the model so it can learn to
ignore the quantization noise during training; the final weights will then be
more robust to quantization. Moreover, the calibration step can be taken care
of automatically during training, which simplifies the whole process.

I have explained the core concepts of TFLite, but going all the way to coding
a mobile or embedded application woud require a dedicated book.
Fortunately, some exist: if you want to learn more about building TensorFlow
applications for mobile and embedded devices, check out the O’Reilly books
TinyML: Machine Learning with TensorFlow on Arduino and Ultra-Low
Power Micro-Controllers, by Pete Warden (former lead of the TFLite team)
and Daniel Situnayake and AI and Machine Learning for On-Device
Development, by Laurence Moroney.

Now what if you want to use your model in a website, running directly in the
user’s browser?

https://homl.info/tinyml
https://homl.info/ondevice


Running a Model in a Web Page
Running your machine learning model on the client side, in the user’s
browser, rather than on the server side can be useful in many scenarios, such
as:

When your web application is often used in situations where the user’s
connectivity is intermittent or slow (e.g., a website for hikers), so
running the model directly on the client side is the only way to make
your website reliable.

When you need the model’s responses to be as fast as possible (e.g., for
an online game). Removing the need to query the server to make
predictions will definitely reduce the latency and make the website much
more responsive.

When your web service makes predictions based on some private user
data, and you want to protect the user’s privacy by making the
predictions on the client side so that the private data never has to leave
the user’s machine.

For all these scenarios, you can use the TensorFlow.js (TFJS) JavaScript
library. This library can load a TFLite model and make predictions directly in
the user’s browser. For example, the following JavaScript module imports the
TFJS library, downloads a pretrained MobileNet model, and uses this model
to classify an image and log the predictions. You can play with the code at
https://homl.info/tfjscode, using Glitch.com, a website that lets you build web
apps in your browser for free; click the PREVIEW button in the lower-right
corner of the page to see the code in action:

import "https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest";
import "https://cdn.jsdelivr.net/npm/@tensorflow-models/mobilenet@1.0.0";

const image = document.getElementById("image");

mobilenet.load().then(model => {

https://tensorflow.org/js
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    model.classify(image).then(predictions => {
        for (var i = 0; i < predictions.length; i++) {
            let className = predictions[i].className
            let proba = (predictions[i].probability * 100).toFixed(1)
            console.log(className + " : " + proba + "%");
        }
    });
});

It’s even possible to turn this website into a progressive web app (PWA): this
is a website that respects a number of criteria  that allow it to be viewed in
any browser, and even installed as a standalone app on a mobile device. For
example, try visiting https://homl.info/tfjswpa on a mobile device: most
modern browsers will ask you whether you would like to add TFJS Demo to
your home screen. If you accept, you will see a new icon in your list of
applications. Clicking this icon will load the TFJS Demo website inside its
own window, just like a regular mobile app. A PWA can even be configured
to work offline, by using a service worker: this is a JavaScript module that
runs in its own separate thread in the browser and intercepts network
requests, allowing it to cache resources so the PWA can run faster, or even
entirely offline. It can also deliver push messages, run tasks in the
background, and more. PWAs allow you to manage a single code base for the
web and for mobile devices. They also make it easier to ensure that all users
run the same version of your application. You can play with this TFJS
Demo’s PWA code on Glitch.com at https://homl.info/wpacode.

TIP
Check out many more demos of machine learning models running in your browser at
https://tensorflow.org/js/demos.

TFJS also supports training a model directly in your web browser! And it’s
actually pretty fast. If your computer has a GPU card, then TFJS can
generally use it, even if it’s not an Nvidia card. Indeed, TFJS will use
WebGL when it’s available, and since modern web browsers generally
support a wide range of GPU cards, TFJS actually supports more GPU cards
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than regular TensorFlow (which only supports Nvidia cards).

Training a model in a user’s web browser can be especially useful to
guarantee that this user’s data remains private. A model can be trained
centrally, and then fine-tuned locally, in the browser, based on that user’s
data. If you’re interested in this topic, check out federated learning.

Once again, doing justice to this topic would require a whole book. If you
want to learn more about TensorFlow.js, check out the O’reilly books
Practical Deep Learning for Cloud, Mobile, and Edge, by Anirudh Koul et
al., or Learning TensorFlow.js, by Gant Laborde.

Now that you’ve seen how to deploy TensorFlow models to TF Serving, or to
the cloud with Vertex AI, or to mobile and embedded devices using TFLite,
or to a web browser using TFJS, let’s discuss how to use GPUs to speed up
computations.

https://tensorflow.org/federated
https://homl.info/tfjsbook
https://homl.info/tfjsbook2


Using GPUs to Speed Up Computations
In Chapter 11 we looked at several techniques that can considerably speed up
training: better weight initialization, sophisticated optimizers, and so on. But
even with all of these techniques, training a large neural network on a single
machine with a single CPU can take hours, days, or even weeks, depending
on the task. Thanks to GPUs, this training time can be reduced down to
minutes or hours. Not only does this save an enormous amount of time, but it
also means that you can experiment with various models much more easily,
and frequently retrain your models on fresh data.

In the previous chapters, we used GPU-enabled runtimes on Google Colab.
All you have to do for this is select “Change runtime type” from the Runtime
menu, and choose the GPU accelerator type; TensorFlow automatically
detects the GPU and uses it to speed up computations, and the code is exactly
the same as without a GPU. Then, in this chapter you saw how to deploy your
models to Vertex AI on multiple GPU-enabled compute nodes: it’s just a
matter of selecting the right GPU-enabled Docker image when creating the
Vertex AI model, and selecting the desired GPU type when calling
endpoint.deploy(). But what if you want to buy your own GPU? And what if
you want to distribute the computations across the CPU and multiple GPU
devices on a single machine (see Figure 19-6)? This is what we will discuss
now, then later in this chapter we will discuss how to distribute computations
across multiple servers.



Figure 19-6. Executing a TensorFlow graph across multiple devices in parallel



Getting Your Own GPU
If you know that you’ll be using a GPU heavily and for a long period of time,
then buying your own can make financial sense. You may also want to train
your models locally because you do not want to upload your data to the
cloud. Or perhaps you just want to buy a GPU card for gaming, and you’d
like to use it for deep learning as well.

If you decide to purchase a GPU card, then take some time to make the right
choice. You will need to consider the amount of RAM you will need for your
tasks (e.g., typically at least 10 GB for image processing or NLP), the
bandwidth (i.e., how fast you can send data into and out of the GPU), the
number of cores, the cooling system, etc. Tim Dettmers wrote an excellent
blog post to help you choose: I encourage you to read it carefully. At the time
of this writing, TensorFlow only supports Nvidia cards with CUDA Compute
Capability 3.5+ (as well as Google’s TPUs, of course), but it may extend its
support to other manufacturers, so make sure to check TensorFlow’s
documentation to see what devices are supported today.

If you go for an Nvidia GPU card, you will need to install the appropriate
Nvidia drivers and several Nvidia libraries.   These include the Compute
Unified Device Architecture library (CUDA) Toolkit, which allows
developers to use CUDA-enabled GPUs for all sorts of computations (not just
graphics acceleration), and the CUDA Deep Neural Network library
(cuDNN), a GPU-accelerated library of common DNN computations such as
activation layers, normalization, forward and backward convolutions, and
pooling (see Chapter 14). cuDNN is part of Nvidia’s Deep Learning SDK.
Note that you will need to create an Nvidia developer account in order to
download it. TensorFlow uses CUDA and cuDNN to control the GPU cards
and accelerate computations (see Figure 19-7).
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Figure 19-7. TensorFlow uses CUDA and cuDNN to control GPUs and boost DNNs

Once you have installed the GPU card(s) and all the required drivers and
libraries, you can use the nvidia-smi command to check that everything is
properly installed. This command lists the available GPU cards, as well as all
the processes running on each card. In this example, it’s an Nvidia Tesla T4
GPU card with about 15 GB of available RAM, and there are no processes
currently running on it:

$ nvidia-smi
Sun Apr 10 04:52:10 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+================
======|
|   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |
| N/A   34C    P8     9W /  70W |      3MiB / 15109MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |



|        ID   ID                                                   Usage      |
|=======================================================================
======|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

To check that TensorFlow actually sees your GPU, run the following
commands and make sure the result is not empty:

>>> physical_gpus = tf.config.list_physical_devices("GPU")
>>> physical_gpus
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]



Managing the GPU RAM
By default TensorFlow automatically grabs almost all the RAM in all
available GPUs the first time you run a computation. It does this to limit GPU
RAM fragmentation. This means that if you try to start a second TensorFlow
program (or any program that requires the GPU), it will quickly run out of
RAM. This does not happen as often as you might think, as you will most
often have a single TensorFlow program running on a machine: usually a
training script, a TF Serving node, or a Jupyter notebook. If you need to run
multiple programs for some reason (e.g., to train two different models in
parallel on the same machine), then you will need to split the GPU RAM
between these processes more evenly.

If you have multiple GPU cards on your machine, a simple solution is to
assign each of them to a single process. To do this, you can set the
CUDA_VISIBLE_DEVICES environment variable so that each process only
sees the appropriate GPU card(s). Also set the CUDA_DEVICE_ORDER
environment variable to PCI_BUS_ID to ensure that each ID always refers to
the same GPU card. For example, if you have four GPU cards, you could
start two programs, assigning two GPUs to each of them, by executing
commands like the following in two separate terminal windows:

$ CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=0,1 python3 
program_1.py
# and in another terminal:
$ CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=3,2 python3 
program_2.py

Program 1 will then only see GPU cards 0 and 1, named "/gpu:0" and
"/gpu:1", respectively, in TensorFlow, and program 2 will only see GPU
cards 2 and 3, named "/gpu:1" and "/gpu:0", respectively (note the order).
Everything will work fine (see Figure 19-8). Of course, you can also define
these environment variables in Python by setting
os.environ["CUDA_DEVICE_ORDER"] and os.environ["CUDA_
VISI BLE_DEVICES"], as long as you do so before using TensorFlow.



Figure 19-8. Each program gets two GPUs

Another option is to tell TensorFlow to grab only a specific amount of GPU
RAM. This must be done immediately after importing TensorFlow. For
example, to make TensorFlow grab only 2 GiB of RAM on each GPU, you
must create a logical GPU device (sometimes called a virtual GPU device)
for each physical GPU device and set its memory limit to 2 GiB (i.e.,
2,048 MiB):

for gpu in physical_gpus:
    tf.config.set_logical_device_configuration(
        gpu,
        [tf.config.LogicalDeviceConfiguration(memory_limit=2048)]
    )

Let’s suppose you have four GPUs, each with at least 4 GiB of RAM: in this
case, two programs like this one can run in parallel, each using all four GPU
cards (see Figure 19-9). If you run the nvidia-smi command while both
programs are running, you should see that each process holds 2 GiB of RAM
on each card.



Figure 19-9. Each program gets all four GPUs, but with only 2 GiB of RAM on each GPU

Yet another option is to tell TensorFlow to grab memory only when it needs
it. Again, this must be done immediately after importing TensorFlow:

for gpu in physical_gpus:
    tf.config.experimental.set_memory_growth(gpu, True)

Another way to do this is to set the TF_FORCE_GPU_ALLOW_GROWTH
environment variable to true. With this option, TensorFlow will never release
memory once it has grabbed it (again, to avoid memory fragmentation),
except of course when the program ends. It can be harder to guarantee
deterministic behavior using this option (e.g., one program may crash
because another program’s memory usage went through the roof), so in
production you’ll probably want to stick with one of the previous options.
However, there are some cases where it is very useful: for example, when
you use a machine to run multiple Jupyter notebooks, several of which use
TensorFlow. The TF_FORCE_GPU_ALLOW_GROWTH environment
variable is set to true in Colab runtimes.

Lastly, in some cases you may want to split a GPU into two or more logical
devices. For example, this is useful if you only have one physical GPU—like
in a Colab runtime—but you want to test a multi-GPU algorithm. The



following code splits GPU #0 into two logical devices, with 2 GiB of RAM
each (again, this must be done immediately after importing TensorFlow):

tf.config.set_logical_device_configuration(
    physical_gpus[0],
    [tf.config.LogicalDeviceConfiguration(memory_limit=2048),
     tf.config.LogicalDeviceConfiguration(memory_limit=2048)]
)

These two logical devices are called "/gpu:0" and "/gpu:1", and you can use
them as if they were two normal GPUs. You can list all logical devices like
this:

>>> logical_gpus = tf.config.list_logical_devices("GPU")
>>> logical_gpus
[LogicalDevice(name='/device:GPU:0', device_type='GPU'),
 LogicalDevice(name='/device:GPU:1', device_type='GPU')]

Now let’s see how TensorFlow decides which devices it should use to place
variables and execute operations.



Placing Operations and Variables on Devices
Keras and tf.data generally do a good job of placing operations and variables
where they belong, but you can also place operations and variables manually
on each device, if you want more control:

You generally want to place the data preprocessing operations on the
CPU, and place the neural network operations on the GPUs.

GPUs usually have a fairly limited communication bandwidth, so it is
important to avoid unnecessary data transfers into and out of the GPUs.

Adding more CPU RAM to a machine is simple and fairly cheap, so
there’s usually plenty of it, whereas the GPU RAM is baked into the
GPU: it is an expensive and thus limited resource, so if a variable is not
needed in the next few training steps, it should probably be placed on
the CPU (e.g., datasets generally belong on the CPU).

By default, all variables and all operations will be placed on the first GPU
(the one named "/gpu:0"), except for variables and operations that don’t have
a GPU kernel:  these are placed on the CPU (always named "/cpu:0"). A
tensor or variable’s device attribute tells you which device it was placed
on:

>>> a = tf.Variable([1., 2., 3.])  # float32 variable goes to the GPU
>>> a.device
'/job:localhost/replica:0/task:0/device:GPU:0'
>>> b = tf.Variable([1, 2, 3])  # int32 variable goes to the CPU
>>> b.device
'/job:localhost/replica:0/task:0/device:CPU:0'

You can safely ignore the prefix /job:localhost/replica:0/task:0 for now; we
will discuss jobs, replicas, and tasks later in this chapter. As you can see, the
first variable was placed on GPU #0, which is the default device. However,
the second variable was placed on the CPU: this is because there are no GPU
kernels for integer variables, or for operations involving integer tensors, so
TensorFlow fell back to the CPU.
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If you want to place an operation on a different device than the default one,
use a tf.device() context:

>>> with tf.device("/cpu:0"):
...     c = tf.Variable([1., 2., 3.])
...
>>> c.device
'/job:localhost/replica:0/task:0/device:CPU:0'

NOTE
The CPU is always treated as a single device ("/cpu:0"), even if your machine has multiple
CPU cores. Any operation placed on the CPU may run in parallel across multiple cores if
it has a multithreaded kernel.

If you explicitly try to place an operation or variable on a device that does not
exist or for which there is no kernel, then TensorFlow will silently fall back
to the device it would have chosen by default. This is useful when you want
to be able to run the same code on different machines that don’t have the
same number of GPUs. However, you can run
tf.config.set_soft_device_placement(False) if you prefer to get an exception.

Now, how exactly does TensorFlow execute operations across multiple
devices?



Parallel Execution Across Multiple Devices
As we saw in Chapter 12, one of the benefits of using TF functions is
parallelism. Let’s look at this a bit more closely. When TensorFlow runs a TF
function, it starts by analyzing its graph to find the list of operations that need
to be evaluated, and it counts how many dependencies each of them has.
TensorFlow then adds each operation with zero dependencies (i.e., each
source operation) to the evaluation queue of this operation’s device (see
Figure 19-10). Once an operation has been evaluated, the dependency counter
of each operation that depends on it is decremented. Once an operation’s
dependency counter reaches zero, it is pushed to the evaluation queue of its
device. And once all the outputs have been computed, they are returned.



Figure 19-10. Parallelized execution of a TensorFlow graph

Operations in the CPU’s evaluation queue are dispatched to a thread pool
called the inter-op thread pool. If the CPU has multiple cores, then these
operations will effectively be evaluated in parallel. Some operations have
multithreaded CPU kernels: these kernels split their tasks into multiple
suboperations, which are placed in another evaluation queue and dispatched
to a second thread pool called the intra-op thread pool (shared by all
multithreaded CPU kernels). In short, multiple operations and suboperations
may be evaluated in parallel on different CPU cores.

For the GPU, things are a bit simpler. Operations in a GPU’s evaluation
queue are evaluated sequentially. However, most operations have
multithreaded GPU kernels, typically implemented by libraries that
TensorFlow depends on, such as CUDA and cuDNN. These implementations
have their own thread pools, and they typically exploit as many GPU threads
as they can (which is the reason why there is no need for an inter-op thread
pool in GPUs: each operation already floods most GPU threads).

For example, in Figure 19-10, operations A, B, and C are source ops, so they
can immediately be evaluated. Operations A and B are placed on the CPU, so
they are sent to the CPU’s evaluation queue, then they are dispatched to the
inter-op thread pool and immediately evaluated in parallel. Operation A
happens to have a multithreaded kernel; its computations are split into three
parts, which are executed in parallel by the intra-op thread pool. Operation C
goes to GPU #0’s evaluation queue, and in this example its GPU kernel
happens to use cuDNN, which manages its own intra-op thread pool and runs
the operation across many GPU threads in parallel. Suppose C finishes first.
The dependency counters of D and E are decremented and they reach 0, so
both operations are pushed to GPU #0’s evaluation queue, and they are
executed sequentially. Note that C only gets evaluated once, even though
both D and E depend on it. Suppose B finishes next. Then F’s dependency
counter is decremented from 4 to 3, and since that’s not 0, it does not run yet.
Once A, D, and E are finished, then F’s dependency counter reaches 0, and it
is pushed to the CPU’s evaluation queue and evaluated. Finally, TensorFlow
returns the requested outputs.



An extra bit of magic that TensorFlow performs is when the TF function
modifies a stateful resource, such as a variable: it ensures that the order of
execution matches the order in the code, even if there is no explicit
dependency between the statements. For example, if your TF function
contains v.assign_add(1) followed by v.assign(v * 2), TensorFlow will ensure
that these operations are executed in that order.

TIP
You can control the number of threads in the inter-op thread pool by calling
tf.config.threading.set_inter_op_parallelism_threads(). To set the number of intra-op
threads, use tf.config.threading.set_intra_op_parallelism_threads(). This is useful if you do
not want TensorFlow to use all the CPU cores or if you want it to be single-threaded. 

With that, you have all you need to run any operation on any device, and
exploit the power of your GPUs! Here are some of the things you could do:

You could train several models in parallel, each on its own GPU: just
write a training script for each model and run them in parallel, setting
CUDA_DEVICE_ORDER and CUDA_VISIBLE_DEVICES so that
each script only sees a single GPU device. This is great for
hyperparameter tuning, as you can train in parallel multiple models with
different hyperparameters. If you have a single machine with two GPUs,
and it takes one hour to train one model on one GPU, then training two
models in parallel, each on its own dedicated GPU, will take just one
hour. Simple!

You could train a model on a single GPU and perform all the
preprocessing in parallel on the CPU, using the dataset’s prefetch()
method   to prepare the next few batches in advance so that they are
ready when the GPU needs them (see Chapter 13).

If your model takes two images as input and processes them using two
CNNs before joining their outputs,   then it will probably run much
faster if you place each CNN on a different GPU.
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You can create an efficient ensemble: just place a different trained
model on each GPU so that you can get all the predictions much faster
to produce the ensemble’s final prediction.

But what if you want to speed up training by using multiple GPUs?



Training Models Across Multiple Devices
There are two main approaches to training a single model across multiple
devices: model parallelism, where the model is split across the devices, and
data parallelism, where the model is replicated across every device, and each
replica is trained on a different subset of the data. Let’s look at these two
options.



Model Parallelism
So far we have trained each neural network on a single device. What if we
want to train a single neural network across multiple devices? This requires
chopping the model into separate chunks and running each chunk on a
different device. Unfortunately, such model parallelism turns out to be pretty
tricky, and its effectiveness really depends on the architecture of your neural
network. For fully connected networks, there is generally not much to be
gained from this approach (see Figure 19-11). Intuitively, it may seem that an
easy way to split the model is to place each layer on a different device, but
this does not work because each layer needs to wait for the output of the
previous layer before it can do anything. So perhaps you can slice it vertically
—for example, with the left half of each layer on one device, and the right
part on another device? This is slightly better, since both halves of each layer
can indeed work in parallel, but the problem is that each half of the next layer
requires the output of both halves, so there will be a lot of cross-device
communication (represented by the dashed arrows). This is likely to
completely cancel out the benefit of the parallel computation, since cross-
device communication is slow (and even more so when the devices are
located on different machines).



Figure 19-11. Splitting a fully connected neural network

Some neural network architectures, such as convolutional neural networks
(see Chapter 14), contain layers that are only partially connected to the lower
layers, so it is much easier to distribute chunks across devices in an efficient
way (Figure 19-12).



Figure 19-12. Splitting a partially connected neural network

Deep recurrent neural networks (see Chapter 15) can be split a bit more
efficiently across multiple GPUs. If you split the network horizontally by
placing each layer on a different device, and feed the network with an input
sequence to process, then at the first time step only one device will be active
(working on the sequence’s first value), at the second step two will be active
(the second layer will be handling the output of the first layer for the first
value, while the first layer will be handling the second value), and by the time
the signal propagates to the output layer, all devices will be active
simultaneously (Figure 19-13). There is still a lot of cross-device
communication going on, but since each cell may be fairly complex, the
benefit of running multiple cells in parallel may (in theory) outweigh the
communication penalty. However, in practice a regular stack of LSTM layers
running on a single GPU actually runs much faster.



Figure 19-13. Splitting a deep recurrent neural network

In short, model parallelism may speed up running or training some types of
neural networks, but not all, and it requires special care and tuning, such as
making sure that devices that need to communicate the most run on the same
machine.   Next we’ll look at a much simpler and generally more efficient
option: data parallelism.
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Data Parallelism
Another way to parallelize the training of a neural network is to replicate it on
every device and run each training step simultaneously on all replicas, using a
different mini-batch for each. The gradients computed by each replica are
then averaged, and the result is used to update the model parameters. This is
called data parallelism, or sometimes single program, multiple data (SPMD).
There are many variants of this idea, so let’s look at the most important ones.

Data parallelism using the mirrored strategy

Arguably the simplest approach is to completely mirror all the model
parameters across all the GPUs and always apply the exact same parameter
updates on every GPU. This way, all replicas always remain perfectly
identical. This is called the mirrored strategy, and it turns out to be quite
efficient, especially when using a single machine (see Figure 19-14).



Figure 19-14. Data parallelism using the mirrored strategy

The tricky part when using this approach is to efficiently compute the mean
of all the gradients from all the GPUs and distribute the result across all the
GPUs. This can be done using an AllReduce algorithm, a class of algorithms
where multiple nodes collaborate to efficiently perform a reduce operation
(such as computing the mean, sum, and max), while ensuring that all nodes
obtain the same final result. Fortunately, there are off-the-shelf
implementations of such algorithms, as you will see.

Data parallelism with centralized parameters

Another approach is to store the model parameters outside of the GPU



devices performing the computations (called workers); for example, on the
CPU (see Figure 19-15). In a distributed setup, you may place all the
parameters on one or more CPU-only servers called parameter servers,
whose only role is to host and update the parameters.

Figure 19-15. Data parallelism with centralized parameters

Whereas the mirrored strategy imposes synchronous weight updates across
all GPUs, this centralized approach allows either synchronous or
asynchronous updates. Let’s take a look at the pros and cons of both options.

Synchronous updates

With synchronous updates, the aggregator waits until all gradients are
available before it computes the average gradients and passes them to the
optimizer, which will update the model parameters. Once a replica has
finished computing its gradients, it must wait for the parameters to be
updated before it can proceed to the next mini-batch. The downside is that
some devices may be slower than others, so the fast devices will have to wait
for the slow ones at every step, making the whole process as slow as the



slowest device. Moreover, the parameters will be copied to every device
almost at the same time (immediately after the gradients are applied), which
may saturate the parameter servers’ bandwidth.

TIP
To reduce the waiting time at each step, you could ignore the gradients from the slowest
few replicas (typically ~10%). For example, you could run 20 replicas, but only aggregate
the gradients from the fastest 18 replicas at each step, and just ignore the gradients from
the last 2. As soon as the parameters are updated, the first 18 replicas can start working
again immediately, without having to wait for the 2 slowest replicas. This setup is
generally described as having 18 replicas plus 2 spare replicas.

Asynchronous updates

With asynchronous updates, whenever a replica has finished computing the
gradients, the gradients are immediately used to update the model parameters.
There is no aggregation (it removes the “mean” step in Figure 19-15) and no
synchronization. Replicas work independently of the other replicas. Since
there is no waiting for the other replicas, this approach runs more training
steps per minute. Moreover, although the parameters still need to be copied to
every device at every step, this happens at different times for each replica, so
the risk of bandwidth saturation is reduced.

Data parallelism with asynchronous updates is an attractive choice because of
its simplicity, the absence of synchronization delay, and its better use of the
bandwidth. However, although it works reasonably well in practice, it is
almost surprising that it works at all! Indeed, by the time a replica has
finished computing the gradients based on some parameter values, these
parameters will have been updated several times by other replicas (on
average N – 1 times, if there are N replicas), and there is no guarantee that the
computed gradients will still be pointing in the right direction (see Figure 19-
16). When gradients are severely out of date, they are called stale gradients:
they can slow down convergence, introducing noise and wobble effects (the
learning curve may contain temporary oscillations), or they can even make
the training algorithm diverge.
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Figure 19-16. Stale gradients when using asynchronous updates

There are a few ways you can reduce the effect of stale gradients:

Reduce the learning rate.

Drop stale gradients or scale them down.

Adjust the mini-batch size.

Start the first few epochs using just one replica (this is called the
warmup phase). Stale gradients tend to be more damaging at the
beginning of training, when gradients are typically large and the
parameters have not settled into a valley of the cost function yet, so
different replicas may push the parameters in quite different directions.

A paper published by the Google Brain team in 2016   benchmarked
various approaches and found that using synchronous updates with a few
spare replicas was more efficient than using asynchronous updates, not only
converging faster but also producing a better model. However, this is still an
active area of research, so you should not rule out asynchronous updates just
yet.
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Bandwidth saturation

Whether you use synchronous or asynchronous updates, data parallelism with
centralized parameters still requires communicating the model parameters
from the parameter servers to every replica at the beginning of each training
step, and the gradients in the other direction at the end of each training step.
Similarly, when using the mirrored strategy, the gradients produced by each
GPU will need to be shared with every other GPU. Unfortunately, there often
comes a point where adding an extra GPU will not improve performance at
all because the time spent moving the data into and out of GPU RAM (and
across the network in a distributed setup) will outweigh the speedup obtained
by splitting the computation load. At that point, adding more GPUs will just
worsen the bandwidth saturation and actually slow down training.

Saturation is more severe for large dense models, since they have a lot of
parameters and gradients to transfer. It is less severe for small models (but the
parallelization gain is limited) and for large sparse models, where the
gradients are typically mostly zeros and so can be communicated efficiently.
Jeff Dean, initiator and lead of the Google Brain project, reported typical
speedups of 25–40× when distributing computations across 50 GPUs for
dense models, and a 300× speedup for sparser models trained across 500
GPUs. As you can see, sparse models really do scale better. Here are a few
concrete examples:

Neural machine translation: 6× speedup on 8 GPUs

Inception/ImageNet: 32× speedup on 50 GPUs

RankBrain: 300× speedup on 500 GPUs

There is plenty of research going on to alleviate the bandwidth saturation
issue, with the goal of allowing training to scale linearly with the number of
GPUs available. For example, a 2018 paper  by a team of researchers from
Carnegie Mellon University, Stanford University, and Microsoft Research
proposed a system called PipeDream that managed to reduce network
communications by over 90%, making it possible to train large models across
many machines. They achieved this using a new technique called pipeline
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parallelism, which combines model parallelism and data parallelism: the
model is chopped into consecutive parts, called stages, each of which is
trained on a different machine. This results in an asynchronous pipeline in
which all machines work in parallel with very little idle time. During training,
each stage alternates one round of forward propagation and one round of
backpropagation (see Figure 19-17): it pulls a mini-batch from its input
queue, processes it, and sends the outputs to the next stage’s input queue,
then it pulls one mini-batch of gradients from its gradient queue,
backpropagates these gradients and updates its own model parameters, and
pushes the backpropagated gradients to the previous stage’s gradient queue. It
then repeats the whole process again and again. Each stage can also use
regular data parallelism (e.g., using the mirrored strategy), independently
from the other stages.

Figure 19-17. PipeDream’s pipeline parallelism

However, as it’s presented here, PipeDream would not work so well. To
understand why, consider mini-batch #5 in Figure 19-17: when it went
through stage 1 during the forward pass, the gradients from mini-batch #4
had not yet been backpropagated through that stage, but by the time #5’s
gradients flow back to stage 1, #4’s gradients will have been used to update
the model parameters, so #5’s gradients will be a bit stale. As we have seen,
this can degrade training speed and accuracy, and even make it diverge: the
more stages there are, the worse this problem becomes. The paper’s authors
proposed methods to mitigate this issue, though: for example, each stage
saves weights during forward propagation and restores them during
backpropagation, to ensure that the same weights are used for both the
forward pass and the backward pass. This is called weight stashing. Thanks
to this, PipeDream demonstrates impressive scaling capability, well beyond
simple data parallelism.

The latest breakthrough in this field of research was published in a 2022
19

https://homl.info/pathways


paper  by Google researchers: they developed a system called Pathways that
uses automated model parallelism, asynchronous gang scheduling, and other
techniques to reach close to 100% hardware utilization across thousands of
TPUs! Scheduling means organizing when and where each task must run, and
gang scheduling means running related tasks at the same time in parallel and
close to each other to reduce the time tasks have to wait for the others’
outputs. As we saw in Chapter 16, this system was used to train a massive
language model across over 6,000 TPUs, with close to 100% hardware
utilization: that’s a mindblowing engineering feat.

At the time of writing, Pathways is not public yet, but it’s likely that in the
near future you will be able to train huge models on Vertex AI using
Pathways or a similar system. In the meantime, to reduce the saturation
problem, you’ll probably want to use a few powerful GPUs rather than plenty
of weak GPUs, and if you need to train a model across multiple servers, you
should group your GPUs on few and very well interconnected servers. You
can also try dropping the float precision from 32 bits (tf.float32) to 16 bits
(tf.bfloat16). This will cut in half the amount of data to transfer, often without
much impact on the convergence rate or the model’s performance. Lastly, if
you are using centralized parameters, you can shard (split) the parameters
across multiple parameter servers: adding more parameter servers will reduce
the network load on each server and limit the risk of bandwidth saturation.

OK, now that we’ve gone through all the theory, let’s actually train a model
across multiple GPUs!
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Training at Scale Using the Distribution Strategies API
Luckily, TensorFlow comes with a very nice API that takes care of all the
complexity of distributing your model across multiple devices and machines:
the distribution strategies API. To train a Keras model across all available
GPUs (on a single machine, for now) using data parallelism with the mirrored
strategy, just create a MirroredStrategy object, call its scope() method to get a
distribution context, and wrap the creation and compilation of your model
inside that context. Then call the model’s fit() method normally:

strategy = tf.distribute.MirroredStrategy()

with strategy.scope():
    model = tf.keras.Sequential([...])  # create a Keras model normally
    model.compile([...])  # compile the model normally

batch_size = 100  # preferably divisible by the number of replicas
model.fit(X_train, y_train, epochs=10,
          validation_data=(X_valid, y_valid), batch_size=batch_size)

Under the hood, Keras is distribution-aware, so in this MirroredStrategy
context it knows that it must replicate all variables and operations across all
available GPU devices. If you look at the model’s weights, they are of type
MirroredVariable:

>>> type(model.weights[0])
tensorflow.python.distribute.values.MirroredVariable

Note that the fit() method will automatically split each training batch across
all the replicas, so it’s preferable to ensure that the batch size is divisible by
the number of replicas (i.e., the number of available GPUs) so that all replicas
get batches of the same size. And that’s all! Training will generally be
significantly faster than using a single device, and the code change was really
minimal.

Once you have finished training your model, you can use it to make
predictions efficiently: call the predict() method, and it will automatically



split the batch across all replicas, making predictions in parallel. Again, the
batch size must be divisible by the number of replicas. If you call the model’s
save() method, it will be saved as a regular model, not as a mirrored model
with multiple replicas. So when you load it, it will run like a regular model,
on a single device: by default on GPU #0, or on the CPU if there are no
GPUs. If you want to load a model and run it on all available devices, you
must call tf.keras.models.load_model() within a distribution context:

with strategy.scope():
    model = tf.keras.models.load_model("my_mirrored_model")

If you only want to use a subset of all the available GPU devices, you can
pass the list to the MirroredStrategy’s constructor:

strategy = tf.distribute.MirroredStrategy(devices=["/gpu:0", "/gpu:1"])

By default, the MirroredStrategy class uses the NVIDIA Collective
Communications Library (NCCL) for the AllReduce mean operation, but you
can change it by setting the cross_device_ops argument to an instance of the
tf.distribute.HierarchicalCopyAllReduce class, or an instance of the
tf.distribute.ReductionToOneDevice class. The default NCCL option is based
on the tf.distribute.NcclAllReduce class, which is usually faster, but this
depends on the number and types of GPUs, so you may want to give the
alternatives a try.
If you want to try using data parallelism with centralized parameters, replace
the MirroredStrategy with the CentralStorageStrategy:

strategy = tf.distribute.experimental.CentralStorageStrategy()

You can optionally set the compute_devices argument to specify the list of
devices you want to use as workers—by default it will use all available GPUs
—and you can optionally set the parameter_device argument to specify the
device you want to store the parameters on. By default it will use the CPU, or
the GPU if there is just one.
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Now let’s see how to train a model across a cluster of TensorFlow servers!



Training a Model on a TensorFlow Cluster
A TensorFlow cluster is a group of TensorFlow processes running in parallel,
usually on different machines, and talking to each other to complete some
work—for example, training or executing a neural network model. Each TF
process in the cluster is called a task, or a TF server. It has an IP address, a
port, and a type (also called its role or its job). The type can be either
"worker", "chief", "ps" (parameter server), or "evaluator":

Each worker performs computations, usually on a machine with one or
more GPUs.

The chief performs computations as well (it is a worker), but it also
handles extra work such as writing TensorBoard logs or saving
checkpoints. There is a single chief in a cluster. If no chief is specified
explicitly, then by convention the first worker is the chief.

A parameter server only keeps track of variable values, and it is usually
on a CPU-only machine. This type of task is only used with the
ParameterServerStrategy.

An evaluator obviously takes care of evaluation. This type is not used
often, and when it’s used, there’s usually just one evaluator.

To start a TensorFlow cluster, you must first define its specification. This
means defining each task’s IP address, TCP port, and type. For example, the
following cluster specification defines a cluster with three tasks (two workers
and one parameter server; see Figure 19-18). The cluster spec is a dictionary
with one key per job, and the values are lists of task addresses (IP:port):

cluster_spec = {
    "worker": [
        "machine-a.example.com:2222",     # /job:worker/task:0
        "machine-b.example.com:2222"      # /job:worker/task:1
    ],
    "ps": ["machine-a.example.com:2221"]  # /job:ps/task:0
}



In general there will be a single task per machine, but as this example shows,
you can configure multiple tasks on the same machine if you want. In this
case, if they share the same GPUs, make sure the RAM is split appropriately,
as discussed earlier.

WARNING
By default, every task in the cluster may communicate with every other task, so make sure
to configure your firewall to authorize all communications between these machines on
these ports (it’s usually simpler if you use the same port on every machine).

Figure 19-18. An example TensorFlow cluster

When you start a task, you must give it the cluster spec, and you must also
tell it what its type and index are (e.g., worker #0). The simplest way to
specify everything at once (both the cluster spec and the current task’s type
and index) is to set the TF_CONFIG environment variable before starting
TensorFlow. It must be a JSON-encoded dictionary containing a cluster
specification (under the "cluster" key) and the type and index of the current



task (under the "task" key). For example, the following TF_CONFIG
environment variable uses the cluster we just defined and specifies that the
task to start is worker #0:

os.environ["TF_CONFIG"] = json.dumps({
    "cluster": cluster_spec,
    "task": {"type": "worker", "index": 0}
})

TIP
In general you want to define the TF_CONFIG environment variable outside of Python, so
the code does not need to include the current task’s type and index (this makes it possible
to use the same code across all workers).

Now let’s train a model on a cluster! We will start with the mirrored strategy.
First, you need to set the TF_CONFIG environment variable appropriately
for each task. There should be no parameter server (remove the "ps" key in
the cluster spec), and in general you will want a single worker per machine.
Make extra sure you set a different task index for each task. Finally, run the
following script on every worker:

import tempfile
import tensorflow as tf

strategy = tf.distribute.MultiWorkerMirroredStrategy()  # at the start!
resolver = tf.distribute.cluster_resolver.TFConfigClusterResolver()
print(f"Starting task {resolver.task_type} #{resolver.task_id}")
[...] # load and split the MNIST dataset

with strategy.scope():
    model = tf.keras.Sequential([...])  # build the Keras model
    model.compile([...])  # compile the model

model.fit(X_train, y_train, validation_data=(X_valid, y_valid), epochs=10)

if resolver.task_id == 0:  # the chief saves the model to the right location
    model.save("my_mnist_multiworker_model", save_format="tf")
else:
    tmpdir = tempfile.mkdtemp()  # other workers save to a temporary directory



    model.save(tmpdir, save_format="tf")
    tf.io.gfile.rmtree(tmpdir)  # and we can delete this directory at the end!

That’s almost the same code you used earlier, except this time you are using
the MultiWorkerMirroredStrategy. When you start this script on the first
workers, they will remain blocked at the AllReduce step, but training will
begin as soon as the last worker starts up, and you will see them all
advancing at exactly the same rate since they synchronize at each step.

WARNING
When using the MultiWorkerMirroredStrategy, it’s important to ensure that all workers do
the same thing, including saving model checkpoints or writing TensorBoard logs, even
though you will only keep what the chief writes. This is because these operations may
need to run the AllReduce operations, so all workers must be in sync.

There are two AllReduce implementations for this distribution strategy: a ring
AllReduce algorithm based on gRPC for the network communications, and
NCCL’s implementation. The best algorithm to use depends on the number
of workers, the number and types of GPUs, and the network. By default,
TensorFlow will apply some heuristics to select the right algorithm for you,
but you can force NCCL (or RING) like this:

strategy = tf.distribute.MultiWorkerMirroredStrategy(
    communication_options=tf.distribute.experimental.CommunicationOptions(
        implementation=tf.distribute.experimental.CollectiveCommunication.NCCL))

If you prefer to implement asynchronous data parallelism with parameter
servers, change the strategy to ParameterServerStrategy, add one or more
parameter servers, and configure TF_CONFIG appropriately for each task.
Note that although the workers will work asynchronously, the replicas on
each worker will work synchronously.

Lastly, if you have access to TPUs on Google Cloud—for example, if you
use Colab and you set the accelerator type to TPU—then you can create a
TPUStrategy like this:

https://cloud.google.com/tpu


resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)

This needs to be run right after importing TensorFlow. You can then use this
strategy normally.

TIP
If you are a researcher, you may be eligible to use TPUs for free; see
https://tensorflow.org/tfrc for more details.

You can now train models across multiple GPUs and multiple servers: give
yourself a pat on the back! If you want to train a very large model, however,
you will need many GPUs, across many servers, which will require either
buying a lot of hardware or managing a lot of cloud virtual machines. In
many cases, it’s less hassle and less expensive to use a cloud service that
takes care of provisioning and managing all this infrastructure for you, just
when you need it. Let’s see how to do that using Vertex AI.

https://tensorflow.org/tfrc


Running Large Training Jobs on Vertex AI
Vertex AI allows you to create custom training jobs with your own training
code. In fact, you can use almost the same training code as you would use on
your own TF cluster. The main thing you must change is where the chief
should save the model, the checkpoints, and the TensorBoard logs. Instead of
saving the model to a local directory, the chief must save it to GCS, using the
path provided by Vertex AI in the AIP_MODEL_DIR environment variable.
For the model checkpoints and TensorBoard logs, you should use the paths
contained in the AIP_CHECKPOINT_DIR and
AIP_TENSORBOARD_LOG_DIR environment variables, respectively. Of
course, you must also make sure that the training data can be accessed from
the virtual machines, such as on GCS, or another GCP service like BigQuery,
or directly from the web. Lastly, Vertex AI sets the "chief" task type
explicitly, so you should identify the chief using resolved.task_type ==
"chief" instead of resolved.task_id == 0:

import os
[...]  # other imports, create MultiWorkerMirroredStrategy, and resolver

if resolver.task_type == "chief":
    model_dir = os.getenv("AIP_MODEL_DIR")  # paths provided by Vertex AI
    tensorboard_log_dir = os.getenv("AIP_TENSORBOARD_LOG_DIR")
    checkpoint_dir = os.getenv("AIP_CHECKPOINT_DIR")
else:
    tmp_dir = Path(tempfile.mkdtemp())  # other workers use temporary dirs
    model_dir = tmp_dir / "model"
    tensorboard_log_dir = tmp_dir / "logs"
    checkpoint_dir = tmp_dir / "ckpt"

callbacks = [tf.keras.callbacks.TensorBoard(tensorboard_log_dir),
             tf.keras.callbacks.ModelCheckpoint(checkpoint_dir)]
[...]  # build and  compile using the strategy scope, just like earlier
model.fit(X_train, y_train, validation_data=(X_valid, y_valid), epochs=10,
          callbacks=callbacks)
model.save(model_dir, save_format="tf")

TIP



If you place the training data on GCS, you can create a tf.data.TextLineDataset or
tf.data.TFRecordDataset to access it: just use the GCS paths as the filenames (e.g.,
gs://my_bucket/data/001.csv). These datasets rely on the tf.io.gfile package to access files:
it supports both local files and GCS files.

Now you can create a custom training job on Vertex AI, based on this script.
You’ll need to specify the job name, the path to your training script, the
Docker image to use for training, the one to use for predictions (after
training), any additional Python libraries you may need, and lastly the bucket
that Vertex AI should use as a staging directory to store the training script.
By default, that’s also where the training script will save the trained model, as
well as the TensorBoard logs and model checkpoints (if any). Let’s create the
job:

custom_training_job = aiplatform.CustomTrainingJob(
    display_name="my_custom_training_job",
    script_path="my_vertex_ai_training_task.py",
    container_uri="gcr.io/cloud-aiplatform/training/tf-gpu.2-4:latest",
    model_serving_container_image_uri=server_image,
    requirements=["gcsfs==2022.3.0"],  # not needed, this is just an example
    staging_bucket=f"gs://{bucket_name}/staging"
)

And now let’s run it on two workers, each with two GPUs:

mnist_model2 = custom_training_job.run(
    machine_type="n1-standard-4",
    replica_count=2,
    accelerator_type="NVIDIA_TESLA_K80",
    accelerator_count=2,
)

And that’s it: Vertex AI will provision the compute nodes you requested
(within your quotas), and it will run your training script across them. Once
the job is complete, the run() method will return a trained model that you can
use exactly like the one you created earlier: you can deploy it to an endpoint,
or use it to make batch predictions. If anything goes wrong during training,
you can view the logs in the GCP console: in the ☰ navigation menu, select



Vertex AI → Training, click on your training job, and click VIEW LOGS.
Alternatively, you can click the CUSTOM JOBS tab and copy the job’s ID
(e.g., 1234), then select Logging from the ☰ navigation menu and query
resource.labels.job_id=1234.

TIP
To visualize the training progress, just start TensorBoard and point its --logdir to the GCS
path of the logs. It will use application default credentials, which you can set up using
gcloud auth application-default login. Vertex AI also offers hosted TensorBoard servers if
you prefer.

If you want to try out a few hyperparameter values, one option is to run
multiple jobs. You can pass the hyperparameter values to your script as
command-line arguments by setting the args parameter when calling the run()
method, or you can pass them as environment variables using the
environment_variables parameter.

However, if you want to run a large hyperparameter tuning job on the cloud,
a much better option is to use Vertex AI’s hyperparameter tuning service.
Let’s see how.



Hyperparameter Tuning on Vertex AI
Vertex AI’s hyperparameter tuning service is based on a Bayesian
optimization algorithm, capable of quickly finding optimal combinations of
hyperparameters. To use it, you first need to create a training script that
accepts hyperparameter values as command-line arguments. For example,
your script could use the argparse standard library like this:

import argparse

parser = argparse.ArgumentParser()
parser.add_argument("--n_hidden", type=int, default=2)
parser.add_argument("--n_neurons", type=int, default=256)
parser.add_argument("--learning_rate", type=float, default=1e-2)
parser.add_argument("--optimizer", default="adam")
args = parser.parse_args()

The hyperparameter tuning service will call your script multiple times, each
time with different hyperparameter values: each run is called a trial, and the
set of trials is called a study. Your training script must then use the given
hyperparameter values to build and compile a model. You can use a mirrored
distribution strategy if you want, in case each trial runs on a multi-GPU
machine. Then the script can load the dataset and train the model. For
example:

import tensorflow as tf

def build_model(args):
    with tf.distribute.MirroredStrategy().scope():
        model = tf.keras.Sequential()
        model.add(tf.keras.layers.Flatten(input_shape=[28, 28], dtype=tf.uint8))
        for _ in range(args.n_hidden):
            model.add(tf.keras.layers.Dense(args.n_neurons, activation="relu"))
        model.add(tf.keras.layers.Dense(10, activation="softmax"))
        opt = tf.keras.optimizers.get(args.optimizer)
        opt.learning_rate = args.learning_rate
        model.compile(loss="sparse_categorical_crossentropy", optimizer=opt,
                      metrics=["accuracy"])
        return model



[...]  # load the dataset
model = build_model(args)
history = model.fit([...])

TIP
You can use the AIP_* environment variables we mentioned earlier to determine where to
save the checkpoints, the TensorBoard logs, and the final model.

Lastly, the script must report the model’s performance back to Vertex AI’s
hyperparameter tuning service, so it can decide which hyperparameters to try
next. For this, you must use the hypertune library, which is automatically
installed on Vertex AI training VMs:

import hypertune

hypertune = hypertune.HyperTune()
hypertune.report_hyperparameter_tuning_metric(
    hyperparameter_metric_tag="accuracy",  # name of the reported metric
    metric_value=max(history.history["val_accuracy"]),  # metric value
    global_step=model.optimizer.iterations.numpy(),
)

Now that your training script is ready, you need to define the type of machine
you would like to run it on. For this, you must define a custom job, which
Vertex AI will use as a template for each trial:

trial_job = aiplatform.CustomJob.from_local_script(
    display_name="my_search_trial_job",
    script_path="my_vertex_ai_trial.py",  # path to your training script
    container_uri="gcr.io/cloud-aiplatform/training/tf-gpu.2-4:latest",
    staging_bucket=f"gs://{bucket_name}/staging",
    accelerator_type="NVIDIA_TESLA_K80",
    accelerator_count=2,  # in this example, each trial will have 2 GPUs
)

Finally, you’re ready to create and run the hyperparameter tuning job:

from google.cloud.aiplatform import hyperparameter_tuning as hpt



hp_job = aiplatform.HyperparameterTuningJob(
    display_name="my_hp_search_job",
    custom_job=trial_job,
    metric_spec={"accuracy": "maximize"},
    parameter_spec={
        "learning_rate": hpt.DoubleParameterSpec(min=1e-3, max=10, scale="log"),
        "n_neurons": hpt.IntegerParameterSpec(min=1, max=300, scale="linear"),
        "n_hidden": hpt.IntegerParameterSpec(min=1, max=10, scale="linear"),
        "optimizer": hpt.CategoricalParameterSpec(["sgd", "adam"]),
    },
    max_trial_count=100,
    parallel_trial_count=20,
)
hp_job.run()

Here, we tell Vertex AI to maximize the metric named "accuracy": this name
must match the name of the metric reported by the training script. We also
define the search space, using a log scale for the learning rate and a linear
(i.e., uniform) scale for the other hyperparameters. The hyperparameter
names must match the command-line arguments of the training script. Then
we set the maximum number of trials to 100, and the maximum number of
trials running in parallel to 20. If you increase the number of parallel trials to
(say) 60, the total search time will be reduced significantly, by a factor of up
to 3. But the first 60 trials will be started in parallel, so they will not benefit
from the other trials’ feedback. Therefore, you should increase the max
number of trials to compensate—for example, up to about 140.

This will take quite a while. Once the job is completed, you can fetch the trial
results using hp_job.trials. Each trial result is represented as a protobuf
object, containing the hyperparameter values and the resulting metrics. Let’s
find the best trial:

def get_final_metric(trial, metric_id):
    for metric in trial.final_measurement.metrics:
        if metric.metric_id == metric_id:
            return metric.value

trials = hp_job.trials
trial_accuracies = [get_final_metric(trial, "accuracy") for trial in trials]
best_trial = trials[np.argmax(trial_accuracies)]



Now let’s look at this trial’s accuracy, and its hyperparameter values:

>>> max(trial_accuracies)
0.977400004863739
>>> best_trial.id
'98'
>>> best_trial.parameters
[parameter_id: "learning_rate" value { number_value: 0.001 },
 parameter_id: "n_hidden" value { number_value: 8.0 },
 parameter_id: "n_neurons" value { number_value: 216.0 },
 parameter_id: "optimizer" value { string_value: "adam" }
]

That’s it! Now you can get this trial’s SavedModel, optionally train it a bit
more, and deploy it to production.

TIP
Vertex AI also includes an AutoML service, which completely takes care of finding the
right model architecture and training it for you. All you need to do is upload your dataset
to Vertex AI using a special format that depends on the type of dataset (images, text,
tabular, video, etc.), then create an AutoML training job, pointing to the dataset and
specifying the maximum number of compute hours you’re willing to spend. See the
notebook for an example.

HYPERPARAMETER TUNING USING KERAS TUNER ON
VERTEX AI

Instead of using Vertex AI’s hyperparameter tuning service, you can use
Keras Tuner (introduced in Chapter 10) and run it on Vertex AI VMs.
Keras Tuner provides a simple way to scale hyperparameter search by
distributing it across multiple machines: it only requires setting three
environment variables on each machine, then running your regular Keras
Tuner code on each machine. You can use the exact same script on all
machines. One of the machines acts as the chief (i.e., the oracle), and the
others act as workers. Each worker asks the chief which hyperparameter
values to try, then the worker trains the model using these



hyperparameter values, and finally it reports the model’s performance
back to the chief, which can then decide which hyperparameter values the
worker should try next.

The three environment variables you need to set on each machine are:

KERASTUNER_TUNER_ID

This is equal to "chief" on the chief machine, or a unique identifier on
each worker machine, such as "worker0", "worker1", etc.

KERASTUNER_ORACLE_IP

This is the IP address or hostname of the chief machine. The chief
itself should generally use "0.0.0.0" to listen on every IP address on
the machine.

KERASTUNER_ORACLE_PORT

This is the TCP port that the chief will be listening on.

You can distribute Keras Tuner across any set of machines. If you want
to run it on Vertex AI machines, then you can spawn a regular training
job, and just modify the training script to set the environment variables
properly before using Keras Tuner. See the notebook for an example.

Now you have all the tools and knowledge you need to create state-of-the-art
neural net architectures and train them at scale using various distribution
strategies, on your own infrastructure or on the cloud, and then deploy them
anywhere. In other words, you now have superpowers: use them well!



Exercises
1. What does a SavedModel contain? How do you inspect its content?

2. When should you use TF Serving? What are its main features? What are
some tools you can use to deploy it?

3. How do you deploy a model across multiple TF Serving instances?

4. When should you use the gRPC API rather than the REST API to query
a model served by TF Serving?

5. What are the different ways TFLite reduces a model’s size to make it
run on a mobile or embedded device?

6. What is quantization-aware training, and why would you need it?

7. What are model parallelism and data parallelism? Why is the latter
generally recommended?

8. When training a model across multiple servers, what distribution
strategies can you use? How do you choose which one to use?

9. Train a model (any model you like) and deploy it to TF Serving or
Google Vertex AI. Write the client code to query it using the REST API
or the gRPC API. Update the model and deploy the new version. Your
client code will now query the new version. Roll back to the first
version.

10. Train any model across multiple GPUs on the same machine using the
MirroredStrategy (if you do not have access to GPUs, you can use
Google Colab with a GPU runtime and create two logical GPUs). Train
the model again using the CentralStorageStrategy and compare the
training time.

11. Fine-tune a model of your choice on Vertex AI, using either Keras
Tuner or Vertex AI’s hyperparameter tuning service.



Solutions to these exercises are available at the end of this chapter’s
notebook, at https://homl.info/colab3.

https://homl.info/colab3


Thank You!
Before we close the last chapter of this book, I would like to thank you for
reading it up to the last paragraph. I truly hope that you had as much fun
reading this book as I had writing it, and that it will be useful for your
projects, big or small.

If you find errors, please send feedback. More generally, I would love to
know what you think, so please don’t hesitate to contact me via O’Reilly,
through the ageron/handson-ml3 GitHub project, or on Twitter at
@aureliengeron.

Going forward, my best advice to you is to practice and practice: try going
through all the exercises (if you have not done so already), play with the
notebooks, join Kaggle or some other ML community, watch ML courses,
read papers, attend conferences, and meet experts. Things move fast, so try to
keep up to date. Several YouTube channels regularly present deep learning
papers in great detail, in a very approachable way. I particularly recommend
the channels by Yannic Kilcher, Letitia Parcalabescu, and Xander
Steenbrugge. For fascinating ML discussions and higher-level insights, make
sure to check out ML Street Talk, and Lex Fridman’s channel. It also helps
tremendously to have a concrete project to work on, whether it is for work or
for fun (ideally for both), so if there’s anything you have always dreamed of
building, give it a shot! Work incrementally; don’t shoot for the moon right
away, but stay focused on your project and build it piece by piece. It will
require patience and perseverance, but when you have a walking robot, or a
working chatbot, or whatever else you fancy building, it will be immensely
rewarding!

My greatest hope is that this book will inspire you to build a wonderful ML
application that will benefit all of us. What will it be?
—Aurélien Géron

1  An A/B experiment consists in testing two different versions of your product on different



subsets of users in order to check which version works best and get other insights.

2  Google AI Platform (formerly known as Google ML Engine) and Google AutoML merged in
2021 to form Google Vertex AI.

3  A REST (or RESTful) API is an API that uses standard HTTP verbs, such as GET, POST, PUT,
and DELETE, and uses JSON inputs and outputs. The gRPC protocol is more complex but more
efficient; data is exchanged using protocol buffers (see Chapter 13).

4  If you are not familiar with Docker, it allows you to easily download a set of applications
packaged in a Docker image (including all their dependencies and usually some good default
configuration) and then run them on your system using a Docker engine. When you run an
image, the engine creates a Docker container that keeps the applications well isolated from your
own system—but you can give it some limited access if you want. It is similar to a virtual
machine, but much faster and lighter, as the container relies directly on the host’s kernel. This
means that the image does not need to include or run its own kernel.

5  There are also GPU images available, and other installation options. For more details, please
check out the official installation instructions.

6  To be fair, this can be mitigated by serializing the data first and encoding it to Base64 before
creating the REST request. Moreover, REST requests can be compressed using gzip, which
reduces the payload size significantly.

7  Also check out TensorFlow’s Graph Transform Tool for modifying and optimizing
computational graphs.

8  For example, a PWA must include icons of various sizes for different mobile devices, it must be
served via HTTPS, it must include a manifest file containing metadata such as the name of the
app and the background color.

9  Please check the TensorFlow docs for detailed and up-to-date installation instructions, as they
change quite often.

10  As we saw in Chapter 12, a kernel is an operation’s implementation for a specific data type and
device type. For example, there is a GPU kernel for the float32 tf.matmul() operation, but there is
no GPU kernel for int32 tf.matmul(), only a CPU kernel.

11  You can also use tf.debugging.set_log_device_placement(True) to log all device placements.

12  This can be useful if you want to guarantee perfect reproducibility, as I explain in this video,
based on TF 1.

13  At the time of writing, it only prefetches the data to the CPU RAM, but use
tf.data.experimental.pre fetch_to_device() to make it prefetch the data and push it to the device
of your choice so that the GPU does not waste time waiting for the data to be transferred.

14  If the two CNNs are identical, then it is called a Siamese neural network.

15  If you are interested in going further with model parallelism, check out Mesh TensorFlow.

16  This name is slightly confusing because it sounds like some replicas are special, doing nothing.
In reality, all replicas are equivalent: they all work hard to be among the fastest at each training
step, and the losers vary at every step (unless some devices are really slower than others).

https://homl.info/tfserving
https://homl.info/tfgtt
https://homl.info/repro
https://github.com/tensorflow/mesh


However, it does mean that if one or two servers crash, training will continue just fine.

17  Jianmin Chen et al., “Revisiting Distributed Synchronous SGD”, arXiv preprint
arXiv:1604.00981 (2016).

18  Aaron Harlap et al., “PipeDream: Fast and Efficient Pipeline Parallel DNN Training”, arXiv
preprint arXiv:1806.03377 (2018).

19  Paul Barham et al., “Pathways: Asynchronous Distributed Dataflow for ML”, arXiv preprint
arXiv:2203.12533 (2022).

20  For more details on AllReduce algorithms, read Yuichiro Ueno’s post on the technologies
behind deep learning and Sylvain Jeaugey’s post on massively scaling deep learning training
with NCCL.

https://homl.info/uenopost
https://homl.info/ncclalgo


Appendix A. Machine Learning
Project Checklist

This checklist can guide you through your machine learning projects. There
are eight main steps:

1. Frame the problem and look at the big picture.

2. Get the data.

3. Explore the data to gain insights.

4. Prepare the data to better expose the underlying data patterns to machine
learning algorithms.

5. Explore many different models and shortlist the best ones.

6. Fine-tune your models and combine them into a great solution.

7. Present your solution.

8. Launch, monitor, and maintain your system.

Obviously, you should feel free to adapt this checklist to your needs.



Frame the Problem and Look at the Big Picture
1. Define the objective in business terms.

2. How will your solution be used?

3. What are the current solutions/workarounds (if any)?

4. How should you frame this problem (supervised/unsupervised,
online/offline, etc.)?

5. How should performance be measured?

6. Is the performance measure aligned with the business objective?

7. What would be the minimum performance needed to reach the business
objective?

8. What are comparable problems? Can you reuse experience or tools?

9. Is human expertise available?

10. How would you solve the problem manually?

11. List the assumptions you (or others) have made so far.

12. Verify assumptions if possible.



Get the Data
Note: automate as much as possible so you can easily get fresh data.

1. List the data you need and how much you need.

2. Find and document where you can get that data.

3. Check how much space it will take.

4. Check legal obligations, and get authorization if necessary.

5. Get access authorizations.

6. Create a workspace (with enough storage space).

7. Get the data.

8. Convert the data to a format you can easily manipulate (without
changing the data itself).

9. Ensure sensitive information is deleted or protected (e.g., anonymized).

10. Check the size and type of data (time series, sample, geographical, etc.).

11. Sample a test set, put it aside, and never look at it (no data snooping!).



Explore the Data
Note: try to get insights from a field expert for these steps.

1. Create a copy of the data for exploration (sampling it down to a
manageable size if necessary).

2. Create a Jupyter notebook to keep a record of your data exploration.

3. Study each attribute and its characteristics:

Name

Type (categorical, int/float, bounded/unbounded, text, structured,
etc.)

% of missing values

Noisiness and type of noise (stochastic, outliers, rounding errors,
etc.)

Usefulness for the task

Type of distribution (Gaussian, uniform, logarithmic, etc.)

4. For supervised learning tasks, identify the target attribute(s).

5. Visualize the data.

6. Study the correlations between attributes.

7. Study how you would solve the problem manually.

8. Identify the promising transformations you may want to apply.

9. Identify extra data that would be useful (go back to “Get the Data”).

10. Document what you have learned.



Prepare the Data
Notes:

Work on copies of the data (keep the original dataset intact).

Write functions for all data transformations you apply, for five reasons:

So you can easily prepare the data the next time you get a fresh
dataset

So you can apply these transformations in future projects

To clean and prepare the test set

To clean and prepare new data instances once your solution is live

To make it easy to treat your preparation choices as
hyperparameters

1. Clean the data:

Fix or remove outliers (optional).

Fill in missing values (e.g., with zero, mean, median…) or drop
their rows (or columns).

2. Perform feature selection (optional):

Drop the attributes that provide no useful information for the task.

3. Perform feature engineering, where appropriate:

Discretize continuous features.

Decompose features (e.g., categorical, date/time, etc.).

Add promising transformations of features (e.g., log(x), sqrt(x), x ,
etc.).
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Aggregate features into promising new features.

4. Perform feature scaling:

Standardize or normalize features.



Shortlist Promising Models
Notes:

If the data is huge, you may want to sample smaller training sets so you
can train many different models in a reasonable time (be aware that this
penalizes complex models such as large neural nets or random forests).

Once again, try to automate these steps as much as possible.

1. Train many quick-and-dirty models from different categories
(e.g., linear, naive Bayes, SVM, random forest, neural net, etc.) using
standard parameters.

2. Measure and compare their performance:

For each model, use N-fold cross-validation and compute the mean
and standard deviation of the performance measure on the N folds.

3. Analyze the most significant variables for each algorithm.

4. Analyze the types of errors the models make:

What data would a human have used to avoid these errors?

5. Perform a quick round of feature selection and engineering.

6. Perform one or two more quick iterations of the five previous steps.

7. Shortlist the top three to five most promising models, preferring models
that make different types of errors.



Fine-Tune the System
Notes:

You will want to use as much data as possible for this step, especially as
you move toward the end of fine-tuning.

As always, automate what you can.

1. Fine-tune the hyperparameters using cross-validation:

Treat your data transformation choices as hyperparameters,
especially when you are not sure about them (e.g., if you’re not
sure whether to replace missing values with zeros or with the
median value, or to just drop the rows).

Unless there are very few hyperparameter values to explore, prefer
random search over grid search. If training is very long, you may
prefer a Bayesian optimization approach (e.g., using Gaussian
process priors, as described by Jasper Snoek et al. ).

2. Try ensemble methods. Combining your best models will often produce
better performance than running them individually.

3. Once you are confident about your final model, measure its performance
on the test set to estimate the generalization error.

WARNING
Don’t tweak your model after measuring the generalization error: you would just start
overfitting the test set.

1
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Present Your Solution
1. Document what you have done.

2. Create a nice presentation:

Make sure you highlight the big picture first.

3. Explain why your solution achieves the business objective.

4. Don’t forget to present interesting points you noticed along the way:

Describe what worked and what did not.

List your assumptions and your system’s limitations.

5. Ensure your key findings are communicated through beautiful
visualizations or easy-to-remember statements (e.g., “the median income
is the number-one predictor of housing prices”).



Launch!
1. Get your solution ready for production (plug into production data inputs,

write unit tests, etc.).

2. Write monitoring code to check your system’s live performance at
regular intervals and trigger alerts when it drops:

Beware of slow degradation: models tend to “rot” as data evolves.

Measuring performance may require a human pipeline (e.g., via a
crowdsourcing service).

Also monitor your inputs’ quality (e.g., a malfunctioning sensor
sending random values, or another team’s output becoming stale).
This is particularly important for online learning systems.

3. Retrain your models on a regular basis on fresh data (automate as much
as possible).

1  Jasper Snoek et al., “Practical Bayesian Optimization of Machine Learning Algorithms”,
Proceedings of the 25th International Conference on Neural Information Processing Systems 2
(2012): 2951–2959.



Appendix B. Autodiff

This appendix explains how TensorFlow’s autodifferentiation (autodiff)
feature works, and how it compares to other solutions.

Suppose you define a function f(x, y) = x y + y + 2, and you need its partial
derivatives ∂f/∂x and ∂f/∂y, typically to perform gradient descent (or some
other optimization algorithm). Your main options are manual differentiation,
finite difference approximation, forward-mode autodiff, and reverse-mode
autodiff. TensorFlow implements reverse-mode autodiff, but to understand it,
it’s useful to look at the other options first. So let’s go through each of them,
starting with manual differentiation.
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Manual Differentiation
The first approach to compute derivatives is to pick up a pencil and a piece of
paper and use your calculus knowledge to derive the appropriate equation.
For the function f(x, y) just defined, it is not too hard; you just need to use
five rules:

The derivative of a constant is 0.

The derivative of λx is λ (where λ is a constant).

The derivative of x  is λx , so the derivative of x  is 2x.

The derivative of a sum of functions is the sum of these functions’
derivatives.

The derivative of λ times a function is λ times its derivative.

From these rules, you can derive Equation B-1.

Equation B-1. Partial derivatives of f(x, y)

∂f ∂x = ∂(x 2 y) ∂x + ∂y ∂x + ∂2 ∂x = y ∂(x 2 ) ∂x + 0 + 0 = 2 x y ∂f ∂y = ∂(x
2 y) ∂y + ∂y ∂y + ∂2 ∂y = x 2 + 1 + 0 = x 2 + 1

This approach can become very tedious for more complex functions, and you
run the risk of making mistakes. Fortunately, there are other options. Let’s
look at finite difference approximation now.

λ λ – 1 2



Finite Difference Approximation
Recall that the derivative h′(x ) of a function h(x) at a point x  is the slope of
the function at that point. More precisely, the derivative is defined as the limit
of the slope of a straight line going through this point x  and another point x
on the function, as x gets infinitely close to x  (see Equation B-2).

Equation B-2. Definition of the derivative of a function h(x) at point x

h ' ( x 0 ) = lim x→x 0 h(x)-h(x 0 ) x-x 0 = lim ε→0 h(x 0 +ε)-h(x 0 ) ε

So, if we wanted to calculate the partial derivative of f(x, y) with regard to x
at x = 3 and y = 4, we could compute f(3 + ε, 4) – f(3, 4) and divide the result
by ε, using a very small value for ε. This type of numerical approximation of
the derivative is called a finite difference approximation, and this specific
equation is called Newton’s difference quotient. That’s exactly what the
following code does:

def f(x, y):
    return x**2*y + y + 2

def derivative(f, x, y, x_eps, y_eps):
    return (f(x + x_eps, y + y_eps) - f(x, y)) / (x_eps + y_eps)

df_dx = derivative(f, 3, 4, 0.00001, 0)
df_dy = derivative(f, 3, 4, 0, 0.00001)

Unfortunately, the result is imprecise (and it gets worse for more complicated
functions). The correct results are respectively 24 and 10, but instead we get:

>>> df_dx
24.000039999805264
>>> df_dy
10.000000000331966

Notice that to compute both partial derivatives, we have to call f() at least
three times (we called it four times in the preceding code, but it could be
optimized). If there were 1,000 parameters, we would need to call f() at least

0 0

0

0

0



1,001 times. When you are dealing with large neural networks, this makes
finite difference approximation way too inefficient.

However, this method is so simple to implement that it is a great tool to
check that the other methods are implemented correctly. For example, if it
disagrees with your manually derived function, then your function probably
contains a mistake.

So far, we have considered two ways to compute gradients: using manual
differentiation and using finite difference approximation. Unfortunately, both
are fatally flawed for training a large-scale neural network. So let’s turn to
autodiff, starting with forward mode.



Forward-Mode Autodiff
Figure B-1 shows how forward-mode autodiff works on an even simpler
function, g(x, y) = 5 + xy. The graph for that function is represented on the
left. After forward-mode autodiff, we get the graph on the right, which
represents the partial derivative ∂g/∂x = 0 + (0 × x + y × 1) = y (we could
similarly obtain the partial derivative with regard to y).

The algorithm will go through the computation graph from the inputs to the
outputs (hence the name “forward mode”). It starts by getting the partial
derivatives of the leaf nodes. The constant node (5) returns the constant 0,
since the derivative of a constant is always 0. The variable x returns the
constant 1 since ∂x/∂x = 1, and the variable y returns the constant 0 since ∂y/
∂x = 0 (if we were looking for the partial derivative with regard to y, it would
be the reverse).

Now we have all we need to move up the graph to the multiplication node in
function g. Calculus tells us that the derivative of the product of two
functions u and v is ∂(u × v)/∂x = ∂v/∂x × u + v × ∂u/∂x. We can therefore
construct a large part of the graph on the right, representing 0 × x + y × 1.

Finally, we can go up to the addition node in function g. As mentioned, the
derivative of a sum of functions is the sum of these functions’ derivatives, so
we just need to create an addition node and connect it to the parts of the
graph we have already computed. We get the correct partial derivative: ∂g/∂x
= 0 + (0 × x + y × 1).



Figure B-1. Forward-mode autodiff

However, this equation can be simplified (a lot). By applying a few pruning
steps to the computation graph to get rid of all the unnecessary operations, we
get a much smaller graph with just one node: ∂g/∂x = y. In this case
simplification is fairly easy, but for a more complex function forward-mode
autodiff can produce a huge graph that may be tough to simplify and lead to
suboptimal performance.

Note that we started with a computation graph, and forward-mode autodiff
produced another computation graph. This is called symbolic differentiation,
and it has two nice features: first, once the computation graph of the
derivative has been produced, we can use it as many times as we want to
compute the derivatives of the given function for any value of x and y;



second, we can run forward-mode autodiff again on the resulting graph to get
second-order derivatives if we ever need to (i.e., derivatives of derivatives).
We could even compute third-order derivatives, and so on.

But it is also possible to run forward-mode autodiff without constructing a
graph (i.e., numerically, not symbolically), just by computing intermediate
results on the fly. One way to do this is to use dual numbers, which are weird
but fascinating numbers of the form a + bε, where a and b are real numbers
and ε is an infinitesimal number such that ε  = 0 (but ε ≠ 0). You can think of
the dual number 42 + 24ε as something akin to 42.0000⋯000024 with an
infinite number of 0s (but of course this is simplified just to give you some
idea of what dual numbers are). A dual number is represented in memory as a
pair of floats. For example, 42 + 24ε is represented by the pair (42.0, 24.0).

Dual numbers can be added, multiplied, and so on, as shown in Equation B-3.

Equation B-3. A few operations with dual numbers

λ ( a + b ε ) = λ a + λ b ε ( a + b ε ) + ( c + d ε ) = ( a + c ) + ( b + d ) ε ( a + b
ε ) × ( c + d ε ) = a c + ( a d + b c ) ε + ( b d ) ε 2 = a c + ( a d + b c ) ε

Most importantly, it can be shown that h(a + bε) = h(a) + b × h′(a)ε, so
computing h(a + ε) gives you both h(a) and the derivative h′(a) in just one
shot. Figure B-2 shows that the partial derivative of f(x, y) with regard to x at
x = 3 and y = 4 (which I will write ∂f/∂x (3, 4)) can be computed using dual
numbers. All we need to do is compute f(3 + ε, 4); this will output a dual
number whose first component is equal to f(3, 4) and whose second
component is equal to ∂f/∂x (3, 4).
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Figure B-2. Forward-mode autodiff using dual numbers

To compute ∂f/∂y (3, 4) we would have to go through the graph again, but
this time with x = 3 and y = 4 + ε.

So, forward-mode autodiff is much more accurate than finite difference



approximation, but it suffers from the same major flaw, at least when there
are many inputs and few outputs (as is the case when dealing with neural
networks): if there were 1,000 parameters, it would require 1,000 passes
through the graph to compute all the partial derivatives. This is where
reverse-mode autodiff shines: it can compute all of them in just two passes
through the graph. Let’s see how.



Reverse-Mode Autodiff
Reverse-mode autodiff is the solution implemented by TensorFlow. It first
goes through the graph in the forward direction (i.e., from the inputs to the
output) to compute the value of each node. Then it does a second pass, this
time in the reverse direction (i.e., from the output to the inputs), to compute
all the partial derivatives. The name “reverse mode” comes from this second
pass through the graph, where gradients flow in the reverse direction.
Figure B-3 represents the second pass. During the first pass, all the node
values were computed, starting from x = 3 and y = 4. You can see those
values at the bottom right of each node (e.g., x × x = 9). The nodes are labeled
n  to n  for clarity. The output node is n : f(3, 4) = n  = 42.

Figure B-3. Reverse-mode autodiff

The idea is to gradually go down the graph, computing the partial derivative
of f(x, y) with regard to each consecutive node, until we reach the variable
nodes. For this, reverse-mode autodiff relies heavily on the chain rule, shown

1 7 7 7



in Equation B-4.

Equation B-4. Chain rule

∂f ∂x = ∂f ∂n i × ∂n i ∂x

Since n  is the output node, f = n  so ∂f / ∂n  = 1.

Let’s continue down the graph to n : how much does f vary when n  varies?
The answer is ∂f / ∂n  = ∂f / ∂n  × ∂n  / ∂n . We already know that ∂f / ∂n  =
1, so all we need is ∂n  / ∂n . Since n  simply performs the sum n  + n , we
find that ∂n  / ∂n  = 1, so ∂f / ∂n  = 1 × 1 = 1.

Now we can proceed to node n : how much does f vary when n  varies? The
answer is ∂f / ∂n  = ∂f / ∂n  × ∂n  / ∂n . Since n  = n  × n , we find that ∂n  /
∂n  = n , so ∂f / ∂n  = 1 × n  = 4.

The process continues until we reach the bottom of the graph. At that point
we will have calculated all the partial derivatives of f(x, y) at the point x = 3
and y = 4. In this example, we find ∂f / ∂x = 24 and ∂f / ∂y = 10. Sounds about
right!

Reverse-mode autodiff is a very powerful and accurate technique, especially
when there are many inputs and few outputs, since it requires only one
forward pass plus one reverse pass per output to compute all the partial
derivatives for all outputs with regard to all the inputs. When training neural
networks, we generally want to minimize the loss, so there is a single output
(the loss), and hence only two passes through the graph are needed to
compute the gradients. Reverse-mode autodiff can also handle functions that
are not entirely differentiable, as long as you ask it to compute the partial
derivatives at points that are differentiable.

In Figure B-3, the numerical results are computed on the fly, at each node.
However, that’s not exactly what TensorFlow does: instead, it creates a new
computation graph. In other words, it implements symbolic reverse-mode
autodiff. This way, the computation graph to compute the gradients of the
loss with regard to all the parameters in the neural network only needs to be
generated once, and then it can be executed over and over again, whenever
the optimizer needs to compute the gradients. Moreover, this makes it
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possible to compute higher-order derivatives if needed.

TIP
If you ever want to implement a new type of low-level TensorFlow operation in C++, and
you want to make it compatible with autodiff, then you will need to provide a function that
returns the partial derivatives of the function’s outputs with regard to its inputs. For
example, suppose you implement a function that computes the square of its input: f(x) =
x . In that case you would need to provide the corresponding derivative function: f′(x) =
2x.
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Appendix C. Special Data
Structures

In this appendix we will take a very quick look at the data structures
supported by TensorFlow, beyond regular float or integer tensors. This
includes strings, ragged tensors, sparse tensors, tensor arrays, sets, and
queues.



Strings
Tensors can hold byte strings, which is useful in particular for natural
language processing (see Chapter 16):

>>> tf.constant(b"hello world")
<tf.Tensor: shape=(), dtype=string, numpy=b'hello world'>

If you try to build a tensor with a Unicode string, TensorFlow automatically
encodes it to UTF-8:

>>> tf.constant("café")
<tf.Tensor: shape=(), dtype=string, numpy=b'caf\xc3\xa9'>

It is also possible to create tensors representing Unicode strings. Just create
an array of 32-bit integers, each representing a single Unicode code point:

>>> u = tf.constant([ord(c) for c in "café"])
>>> u
<tf.Tensor: shape=(4,), [...], numpy=array([ 99,  97, 102, 233], dtype=int32)>

NOTE
In tensors of type tf.string, the string length is not part of the tensor’s shape. In other
words, strings are considered as atomic values. However, in a Unicode string tensor (i.e.,
an int32 tensor), the length of the string is part of the tensor’s shape.

The tf.strings package contains several functions to manipulate string tensors,
such as length() to count the number of bytes in a byte string (or the number
of code points if you set unit="UTF8_CHAR"), unicode_encode() to convert
a Unicode string tensor (i.e., int32 tensor) to a byte string tensor, and
unicode_decode() to do the reverse:

>>> b = tf.strings.unicode_encode(u, "UTF-8")
>>> b
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<tf.Tensor: shape=(), dtype=string, numpy=b'caf\xc3\xa9'>
>>> tf.strings.length(b, unit="UTF8_CHAR")
<tf.Tensor: shape=(), dtype=int32, numpy=4>
>>> tf.strings.unicode_decode(b, "UTF-8")
<tf.Tensor: shape=(4,), [...], numpy=array([ 99,  97, 102, 233], dtype=int32)>

You can also manipulate tensors containing multiple strings:

>>> p = tf.constant(["Café", "Coffee", "caffè", "咖啡"])
>>> tf.strings.length(p, unit="UTF8_CHAR")
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([4, 6, 5, 2], dtype=int32)>
>>> r = tf.strings.unicode_decode(p, "UTF8")
>>> r
<tf.RaggedTensor [[67, 97, 102, 233], [67, 111, 102, 102, 101, 101], [99, 97,
102, 102, 232], [21654, 21857]]>

Notice that the decoded strings are stored in a RaggedTensor. What is that?



Ragged Tensors
A ragged tensor is a special kind of tensor that represents a list of arrays of
different sizes. More generally, it is a tensor with one or more ragged
dimensions, meaning dimensions whose slices may have different lengths. In
the ragged tensor r, the second dimension is a ragged dimension. In all ragged
tensors, the first dimension is always a regular dimension (also called a
uniform dimension).

All the elements of the ragged tensor r are regular tensors. For example, let’s
look at the second element of the ragged tensor:

>>> r[1]
<tf.Tensor: [...], numpy=array([ 67, 111, 102, 102, 101, 101], dtype=int32)>

The tf.ragged package contains several functions to create and manipulate
ragged tensors. Let’s create a second ragged tensor using tf.ragged.constant()
and concatenate it with the first ragged tensor, along axis 0:

>>> r2 = tf.ragged.constant([[65, 66], [], [67]])
>>> tf.concat([r, r2], axis=0)
<tf.RaggedTensor [[67, 97, 102, 233], [67, 111, 102, 102, 101, 101], [99, 97,
102, 102, 232], [21654, 21857], [65, 66], [], [67]]>

The result is not too surprising: the tensors in r2 were appended after the
tensors in r along axis 0. But what if we concatenate r and another ragged
tensor along axis 1?

>>> r3 = tf.ragged.constant([[68, 69, 70], [71], [], [72, 73]])
>>> print(tf.concat([r, r3], axis=1))
<tf.RaggedTensor [[67, 97, 102, 233, 68, 69, 70], [67, 111, 102, 102, 101, 101,
71], [99, 97, 102, 102, 232], [21654, 21857, 72, 73]]>

This time, notice that the i  tensor in r and the i  tensor in r3 were
concatenated. Now that’s more unusual, since all of these tensors can have
different lengths.
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If you call the to_tensor() method, the ragged tensor gets converted to a
regular tensor, padding shorter tensors with zeros to get tensors of equal
lengths (you can change the default value by setting the default_value
argument):

>>> r.to_tensor()
<tf.Tensor: shape=(4, 6), dtype=int32, numpy=
array([[   67,    97,   102,   233,     0,     0],
       [   67,   111,   102,   102,   101,   101],
       [   99,    97,   102,   102,   232,     0],
       [21654, 21857,     0,     0,     0,     0]], dtype=int32)>

Many TF operations support ragged tensors. For the full list, see the
documentation of the tf.RaggedTensor class.



Sparse Tensors
TensorFlow can also efficiently represent sparse tensors (i.e., tensors
containing mostly zeros). Just create a tf.SparseTensor, specifying the indices
and values of the nonzero elements and the tensor’s shape. The indices must
be listed in “reading order” (from left to right, and top to bottom). If you are
unsure, just use tf.sparse.reorder(). You can convert a sparse tensor to a dense
tensor (i.e., a regular tensor) using tf.sparse.to_dense():

>>> s = tf.SparseTensor(indices=[[0, 1], [1, 0], [2, 3]],
...                     values=[1., 2., 3.],
...                     dense_shape=[3, 4])
...
>>> tf.sparse.to_dense(s)
<tf.Tensor: shape=(3, 4), dtype=float32, numpy=
array([[0., 1., 0., 0.],
       [2., 0., 0., 0.],
       [0., 0., 0., 3.]], dtype=float32)>

Note that sparse tensors do not support as many operations as dense tensors.
For example, you can multiply a sparse tensor by any scalar value, and you
get a new sparse tensor, but you cannot add a scalar value to a sparse tensor,
as this would not return a sparse tensor:

>>> s * 42.0
<tensorflow.python.framework.sparse_tensor.SparseTensor at 0x7f84a6749f10>
>>> s + 42.0
[...] TypeError: unsupported operand type(s) for +: 'SparseTensor' and 'float'



Tensor Arrays
A tf.TensorArray represents a list of tensors. This can be handy in dynamic
models containing loops, to accumulate results and later compute some
statistics. You can read or write tensors at any location in the array:

array = tf.TensorArray(dtype=tf.float32, size=3)
array = array.write(0, tf.constant([1., 2.]))
array = array.write(1, tf.constant([3., 10.]))
array = array.write(2, tf.constant([5., 7.]))
tensor1 = array.read(1)  # => returns (and zeros out!) tf.constant([3., 10.])

By default, reading an item also replaces it with a tensor of the same shape
but full of zeros. You can set clear_after_read to False if you don’t want this.

WARNING
When you write to the array, you must assign the output back to the array, as shown in this
code example. If you don’t, although your code will work fine in eager mode, it will break
in graph mode (these modes are discussed in Chapter 12).

By default, a TensorArray has a fixed size that is set upon creation.
Alternatively, you can set size=0 and dynamic_size=True to let the array
grow automatically when needed. However, this will hinder performance, so
if you know the size in advance, it’s better to use a fixed-size array. You must
also specify the dtype, and all elements must have the same shape as the first
one written to the array.

You can stack all the items into a regular tensor by calling the stack()
method:

>>> array.stack()
<tf.Tensor: shape=(3, 2), dtype=float32, numpy=
array([[1., 2.],
       [0., 0.],
       [5., 7.]], dtype=float32)>



Sets
TensorFlow supports sets of integers or strings (but not floats). It represents
sets using regular tensors. For example, the set {1, 5, 9} is just represented as
the tensor [[1, 5, 9]]. Note that the tensor must have at least two dimensions,
and the sets must be in the last dimension. For example, [[1, 5, 9], [2, 5, 11]]
is a tensor holding two independent sets: {1, 5, 9} and {2, 5, 11}.

The tf.sets package contains several functions to manipulate sets. For
example, let’s create two sets and compute their union (the result is a sparse
tensor, so we call to_dense() to display it):

>>> a = tf.constant([[1, 5, 9]])
>>> b = tf.constant([[5, 6, 9, 11]])
>>> u = tf.sets.union(a, b)
>>> u
<tensorflow.python.framework.sparse_tensor.SparseTensor at 0x132b60d30>
>>> tf.sparse.to_dense(u)
<tf.Tensor: [...], numpy=array([[ 1,  5,  6,  9, 11]], dtype=int32)>

You can also compute the union of multiple pairs of sets simultaneously. If
some sets are shorter than others, you must pad them with a padding value,
such as 0:

>>> a = tf.constant([[1, 5, 9], [10, 0, 0]])
>>> b = tf.constant([[5, 6, 9, 11], [13, 0, 0, 0]])
>>> u = tf.sets.union(a, b)
>>> tf.sparse.to_dense(u)
<tf.Tensor: [...] numpy=array([[ 1,  5,  6,  9, 11],
                               [ 0, 10, 13,  0,  0]], dtype=int32)>

If you prefer to use a different padding value, such as –1, then you must set
default_value=-1 (or your preferred value) when calling to_dense().

WARNING
The default default_value is 0, so when dealing with string sets, you must set this



parameter (e.g., to an empty string).

Other functions available in tf.sets include difference(), intersection(), and
size(), which are self-explanatory. If you want to check whether or not a set
contains some given values, you can compute the intersection of that set and
the values. If you want to add some values to a set, you can compute the
union of the set and the values.



Queues
A queue is a data structure to which you can push data records, and later pull
them out. TensorFlow implements several types of queues in the tf.queue
package. They used to be very important when implementing efficient data
loading and preprocessing pipelines, but the tf.data API has essentially
rendered them useless (except perhaps in some rare cases) because it is much
simpler to use and provides all the tools you need to build efficient pipelines.
For the sake of completeness, though, let’s take a quick look at them.

The simplest kind of queue is the first-in, first-out (FIFO) queue. To build it,
you need to specify the maximum number of records it can contain.
Moreover, each record is a tuple of tensors, so you must specify the type of
each tensor, and optionally their shapes. For example, the following code
example creates a FIFO queue with a maximum of three records, each
containing a tuple with a 32-bit integer and a string. Then it pushes two
records to it, looks at the size (which is 2 at this point), and pulls a record out:

>>> q = tf.queue.FIFOQueue(3, [tf.int32, tf.string], shapes=[(), ()])
>>> q.enqueue([10, b"windy"])
>>> q.enqueue([15, b"sunny"])
>>> q.size()
<tf.Tensor: shape=(), dtype=int32, numpy=2>
>>> q.dequeue()
[<tf.Tensor: shape=(), dtype=int32, numpy=10>,
 <tf.Tensor: shape=(), dtype=string, numpy=b'windy'>]

It is also possible to enqueue and dequeue multiple records at once using
enqueue_many() and dequeue_many() (to use dequeue_many(), you must
specify the shapes argument when you create the queue, as we did
previously):

>>> q.enqueue_many([[13, 16], [b'cloudy', b'rainy']])
>>> q.dequeue_many(3)
[<tf.Tensor: [...], numpy=array([15, 13, 16], dtype=int32)>,
 <tf.Tensor: [...], numpy=array([b'sunny', b'cloudy', b'rainy'], dtype=object)>]



Other queue types include:

PaddingFIFOQueue

Same as FIFOQueue, but its dequeue_many() method supports
dequeueing multiple records of different shapes. It automatically pads the
shortest records to ensure all the records in the batch have the same
shape.

PriorityQueue

A queue that dequeues records in a prioritized order. The priority must be
a 64-bit integer included as the first element of each record. Surprisingly,
records with a lower priority will be dequeued first. Records with the
same priority will be dequeued in FIFO order.

RandomShuffleQueue

A queue whose records are dequeued in random order. This was useful to
implement a shuffle buffer before tf.data existed.

If a queue is already full and you try to enqueue another record, the enqueue*
() method will freeze until a record is dequeued by another thread. Similarly,
if a queue is empty and you try to dequeue a record, the dequeue*() method
will freeze until records are pushed to the queue by another thread.

1  If you are not familiar with Unicode code points, please check out https://homl.info/unicode.

https://homl.info/unicode


Appendix D. TensorFlow Graphs

In this appendix, we will explore the graphs generated by TF functions (see
Chapter 12).



TF Functions and Concrete Functions
TF functions are polymorphic, meaning they support inputs of different types
(and shapes). For example, consider the following tf_cube() function:

@tf.function
def tf_cube(x):
    return x ** 3

Every time you call a TF function with a new combination of input types or
shapes, it generates a new concrete function, with its own graph specialized
for this particular combination. Such a combination of argument types and
shapes is called an input signature. If you call the TF function with an input
signature it has already seen before, it will reuse the concrete function it
generated earlier. For example, if you call tf_cube(tf.constant(3.0)), the TF
function will reuse the same concrete function it used for
tf_cube(tf.constant(2.0)) (for float32 scalar tensors). But it will generate a
new concrete function if you call tf_cube(tf.constant([2.0])) or
tf_cube(tf.constant([3.0])) (for float32 tensors of shape [1]), and yet another
for tf_cube(tf.constant([[1.0, 2.0], [3.0, 4.0]])) (for float32 tensors of shape
[2, 2]). You can get the concrete function for a particular combination of
inputs by calling the TF function’s get_concrete_function() method. It can
then be called like a regular function, but it will only support one input
signature (in this example, float32 scalar tensors):

>>> concrete_function = tf_cube.get_concrete_function(tf.constant(2.0))
>>> concrete_function
<ConcreteFunction tf_cube(x) at 0x7F84411F4250>
>>> concrete_function(tf.constant(2.0))
<tf.Tensor: shape=(), dtype=float32, numpy=8.0>

Figure D-1 shows the tf_cube() TF function, after we called tf_cube(2) and
tf_cube(tf.constant(2.0)): two concrete functions were generated, one for each
signature, each with its own optimized function graph (FuncGraph) and its
own function definition (FunctionDef). A function definition points to the



parts of the graph that correspond to the function’s inputs and outputs. In
each FuncGraph, the nodes (ovals) represent operations (e.g., power,
constants, or placeholders for arguments like x), while the edges (the solid
arrows between the operations) represent the tensors that will flow through
the graph. The concrete function on the left is specialized for x=2, so
TensorFlow managed to simplify it to just output 8 all the time (note that the
function definition does not even have an input). The concrete function on the
right is specialized for float32 scalar tensors, and it could not be simplified. If
we call tf_cube(tf.constant(5.0)), the second concrete function will be called,
the placeholder operation for x will output 5.0, then the power operation will
compute 5.0 ** 3, so the output will be 125.0.

Figure D-1. The tf_cube() TF function, with its ConcreteFunctions and their FuncGraphs

The tensors in these graphs are symbolic tensors, meaning they don’t have an
actual value, just a data type, a shape, and a name. They represent the future
tensors that will flow through the graph once an actual value is fed to the
placeholder x and the graph is executed. Symbolic tensors make it possible to
specify ahead of time how to connect operations, and they also allow
TensorFlow to recursively infer the data types and shapes of all tensors, given
the data types and shapes of their inputs.



Now let’s continue to peek under the hood, and see how to access function
definitions and function graphs and how to explore a graph’s operations and
tensors.



Exploring Function Definitions and Graphs
You can access a concrete function’s computation graph using the graph
attribute, and get the list of its operations by calling the graph’s
get_operations() method:

>>> concrete_function.graph
<tensorflow.python.framework.func_graph.FuncGraph at 0x7f84411f4790>
>>> ops = concrete_function.graph.get_operations()
>>> ops
[<tf.Operation 'x' type=Placeholder>,
 <tf.Operation 'pow/y' type=Const>,
 <tf.Operation 'pow' type=Pow>,
 <tf.Operation 'Identity' type=Identity>]

In this example, the first operation represents the input argument x (it is
called a placeholder), the second “operation” represents the constant 3, the
third operation represents the power operation (**), and the final operation
represents the output of this function (it is an identity operation, meaning it
will do nothing more than copy the output of the power operation ). Each
operation has a list of input and output tensors that you can easily access
using the operation’s inputs and outputs attributes. For example, let’s get the
list of inputs and outputs of the power operation:

>>> pow_op = ops[2]
>>> list(pow_op.inputs)
[<tf.Tensor 'x:0' shape=() dtype=float32>,
 <tf.Tensor 'pow/y:0' shape=() dtype=float32>]
>>> pow_op.outputs
[<tf.Tensor 'pow:0' shape=() dtype=float32>]

This computation graph is represented in Figure D-2.
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Figure D-2. Example of a computation graph

Note that each operation has a name. It defaults to the name of the operation
(e.g., "pow"), but you can define it manually when calling the operation (e.g.,
tf.pow(x, 3, name="other_name")). If a name already exists, TensorFlow
automatically adds a unique index (e.g., "pow_1", "pow_2", etc.). Each tensor
also has a unique name: it is always the name of the operation that outputs
this tensor, plus :0 if it is the operation’s first output, or :1 if it is the second
output, and so on. You can fetch an operation or a tensor by name using the
graph’s get_operation_by_name() or get_tensor_by_name() methods:

>>> concrete_function.graph.get_operation_by_name('x')
<tf.Operation 'x' type=Placeholder>
>>> concrete_function.graph.get_tensor_by_name('Identity:0')
<tf.Tensor 'Identity:0' shape=() dtype=float32>

The concrete function also contains the function definition (represented as a
protocol buffer ), which includes the function’s signature. This signature
allows the concrete function to know which placeholders to feed with the
input values, and which tensors to return:

>>> concrete_function.function_def.signature
name: "__inference_tf_cube_3515903"
input_arg {
  name: "x"
  type: DT_FLOAT
}
output_arg {
  name: "identity"
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  type: DT_FLOAT
}

Now let’s look more closely at tracing.



A Closer Look at Tracing
Let’s tweak the tf_cube() function to print its input:

@tf.function
def tf_cube(x):
    print(f"x = {x}")
    return x ** 3

Now let’s call it:

>>> result = tf_cube(tf.constant(2.0))
x = Tensor("x:0", shape=(), dtype=float32)
>>> result
<tf.Tensor: shape=(), dtype=float32, numpy=8.0>

The result looks good, but look at what was printed: x is a symbolic tensor! It
has a shape and a data type, but no value. Plus it has a name ("x:0"). This is
because the print() function is not a TensorFlow operation, so it will only run
when the Python function is traced, which happens in graph mode, with
arguments replaced with symbolic tensors (same type and shape, but no
value). Since the print() function was not captured into the graph, the next
times we call tf_cube() with float32 scalar tensors, nothing is printed:

>>> result = tf_cube(tf.constant(3.0))
>>> result = tf_cube(tf.constant(4.0))

But if we call tf_cube() with a tensor of a different type or shape, or with a
new Python value, the function will be traced again, so the print() function
will be called:

>>> result = tf_cube(2)  # new Python value: trace!
x = 2
>>> result = tf_cube(3)  # new Python value: trace!
x = 3
>>> result = tf_cube(tf.constant([[1., 2.]]))  # new shape: trace!
x = Tensor("x:0", shape=(1, 2), dtype=float32)
>>> result = tf_cube(tf.constant([[3., 4.], [5., 6.]]))  # new shape: trace!



x = Tensor("x:0", shape=(None, 2), dtype=float32)
>>> result = tf_cube(tf.constant([[7., 8.], [9., 10.]]))  # same shape: no trace

WARNING
If your function has Python side effects (e.g., it saves some logs to disk), be aware that this
code will only run when the function is traced (i.e., every time the TF function is called
with a new input signature). It’s best to assume that the function may be traced (or not)
any time the TF function is called.

In some cases, you may want to restrict a TF function to a specific input
signature. For example, suppose you know that you will only ever call a TF
function with batches of 28 × 28–pixel images, but the batches will have very
different sizes. You may not want TensorFlow to generate a different
concrete function for each batch size, or count on it to figure out on its own
when to use None. In this case, you can specify the input signature like this:

@tf.function(input_signature=[tf.TensorSpec([None, 28, 28], tf.float32)])
def shrink(images):
    return images[:, ::2, ::2]  # drop half the rows and columns

This TF function will accept any float32 tensor of shape [*, 28, 28], and it
will reuse the same concrete function every time:

img_batch_1 = tf.random.uniform(shape=[100, 28, 28])
img_batch_2 = tf.random.uniform(shape=[50, 28, 28])
preprocessed_images = shrink(img_batch_1)  # works fine, traces the function
preprocessed_images = shrink(img_batch_2)  # works fine, same concrete function

However, if you try to call this TF function with a Python value, or a tensor
of an unexpected data type or shape, you will get an exception:

img_batch_3 = tf.random.uniform(shape=[2, 2, 2])
preprocessed_images = shrink(img_batch_3)  # ValueError! Incompatible inputs



Using AutoGraph to Capture Control Flow
If your function contains a simple for loop, what do you expect will happen?
For example, let’s write a function that will add 10 to its input, by just adding
1 10 times:

@tf.function
def add_10(x):
    for i in range(10):
        x += 1
    return x

It works fine, but when we look at its graph, we find that it does not contain a
loop: it just contains 10 addition operations!

>>> add_10(tf.constant(0))
<tf.Tensor: shape=(), dtype=int32, numpy=15>
>>> add_10.get_concrete_function(tf.constant(0)).graph.get_operations()
[<tf.Operation 'x' type=Placeholder>, [...],
 <tf.Operation 'add' type=AddV2>, [...],
 <tf.Operation 'add_1' type=AddV2>, [...],
 <tf.Operation 'add_2' type=AddV2>, [...],
 [...]
 <tf.Operation 'add_9' type=AddV2>, [...],
 <tf.Operation 'Identity' type=Identity>]

This actually makes sense: when the function got traced, the loop ran 10
times, so the x += 1 operation was run 10 times, and since it was in graph
mode, it recorded this operation 10 times in the graph. You can think of this
for loop as a “static” loop that gets unrolled when the graph is created.

If you want the graph to contain a “dynamic” loop instead (i.e., one that runs
when the graph is executed), you can create one manually using the
tf.while_loop() operation, but it is not very intuitive (see the “Using
AutoGraph to Capture Control Flow” section of the Chapter 12 notebook for
an example). Instead, it is much simpler to use TensorFlow’s AutoGraph
feature, discussed in Chapter 12. AutoGraph is actually activated by default
(if you ever need to turn it off, you can pass autograph=False to tf.function()).



So if it is on, why didn’t it capture the for loop in the add_10() function? It
only captures for loops that iterate over tensors of tf.data.Dataset objects, so
you should use tf.range(), not range(). This is to give you the choice:

If you use range(), the for loop will be static, meaning it will only be
executed when the function is traced. The loop will be “unrolled” into a
set of operations for each iteration, as we saw.

If you use tf.range(), the loop will be dynamic, meaning that it will be
included in the graph itself (but it will not run during tracing).

Let’s look at the graph that gets generated if we just replace range() with
tf.range() in the add_10() function:

>>> add_10.get_concrete_function(tf.constant(0)).graph.get_operations()
[<tf.Operation 'x' type=Placeholder>, [...],
 <tf.Operation 'while' type=StatelessWhile>, [...]]

As you can see, the graph now contains a While loop operation, as if we had
called the tf.while_loop() function.



Handling Variables and Other Resources in TF
Functions
In TensorFlow, variables and other stateful objects, such as queues or
datasets, are called resources. TF functions treat them with special care: any
operation that reads or updates a resource is considered stateful, and TF
functions ensure that stateful operations are executed in the order they appear
(as opposed to stateless operations, which may be run in parallel, so their
order of execution is not guaranteed). Moreover, when you pass a resource as
an argument to a TF function, it gets passed by reference, so the function may
modify it. For example:

counter = tf.Variable(0)

@tf.function
def increment(counter, c=1):
    return counter.assign_add(c)

increment(counter)  # counter is now equal to 1
increment(counter)  # counter is now equal to 2

If you peek at the function definition, the first argument is marked as a
resource:

>>> function_def = increment.get_concrete_function(counter).function_def
>>> function_def.signature.input_arg[0]
name: "counter"
type: DT_RESOURCE

It is also possible to use a tf.Variable defined outside of the function, without
explicitly passing it as an argument:

counter = tf.Variable(0)

@tf.function
def increment(c=1):
    return counter.assign_add(c)



The TF function will treat this as an implicit first argument, so it will actually
end up with the same signature (except for the name of the argument).
However, using global variables can quickly become messy, so you should
generally wrap variables (and other resources) inside classes. The good news
is @tf.function works fine with methods too:

class Counter:
    def __init__(self):
        self.counter = tf.Variable(0)

    @tf.function
    def increment(self, c=1):
        return self.counter.assign_add(c)

WARNING
Do not use =, +=, -=, or any other Python assignment operator with TF variables. Instead,
you must use the assign(), assign_add(), or assign_sub() methods. If you try to use a
Python assignment operator, you will get an exception when you call the method.

A good example of this object-oriented approach is, of course, Keras. Let’s
see how to use TF functions with Keras.



Using TF Functions with Keras (or Not)
By default, any custom function, layer, or model you use with Keras will
automatically be converted to a TF function; you do not need to do anything
at all! However, in some cases you may want to deactivate this automatic
conversion—for example, if your custom code cannot be turned into a TF
function, or if you just want to debug your code (which is much easier in
eager mode). To do this, you can simply pass dynamic=True when creating
the model or any of its layers:

model = MyModel(dynamic=True)

If your custom model or layer will always be dynamic, you can instead call
the base class’s constructor with dynamic=True:

class MyDense(tf.keras.layers.Layer):
    def __init__(self, units, **kwargs):
        super().__init__(dynamic=True, **kwargs)
        [...]

Alternatively, you can pass run_eagerly=True when calling the compile()
method:

model.compile(loss=my_mse, optimizer="nadam", metrics=[my_mae],
              run_eagerly=True)

Now you know how TF functions handle polymorphism (with multiple
concrete functions), how graphs are automatically generated using
AutoGraph and tracing, what graphs look like, how to explore their symbolic
operations and tensors, how to handle variables and resources, and how to
use TF functions with Keras.

1  You can safely ignore it—it is only here for technical reasons, to ensure that TF functions don’t
leak internal structures.



2  A popular binary format discussed in Chapter 13.
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Colophon

The animal on the cover of Hands-On Machine Learning with Scikit-Learn,
Keras, and TensorFlow is the fire salamander (Salamandra salamandra), an
amphibian found across most of Europe. Its black, glossy skin features large
yellow spots on the head and back, signaling the presence of alkaloid toxins.
This is a possible source of this amphibian’s common name: contact with
these toxins (which they can also spray short distances) causes convulsions
and hyperventilation. Either the painful poisons or the moistness of the
salamander’s skin (or both) led to a misguided belief that these creatures not
only could survive being placed in fire but could extinguish it as well.

Fire salamanders live in shaded forests, hiding in moist crevices and under
logs near the pools or other freshwater bodies that facilitate their breeding.
Though they spend most of their lives on land, they give birth to their young
in water. They subsist mostly on a diet of insects, spiders, slugs, and worms.
Fire salamanders can grow up to a foot in length, and in captivity may live as
long as 50 years.

The fire salamander’s numbers have been reduced by destruction of their
forest habitat and capture for the pet trade, but the greatest threat they face is
the susceptibility of their moisture-permeable skin to pollutants and
microbes. Since 2014, they have become extinct in parts of the Netherlands
and Belgium due to an introduced fungus.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world. The cover illustration is by Karen Montgomery, based
on an engraving from Wood’s Illustrated Natural History. The cover fonts
are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro;
the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.
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