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Dedicated to Bernard M. E. Moret on his
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Preface

This Festschrift is in honor of Bernard M. E. Moret, whose retirement from Ecole
Polytechnique Fédérale de Lausanne (EPFL) in December 2016 culminated a
nearly 40-year career. Bernard’s research spanned several areas in computer sci-
ence, including algorithm engineering, high-performance computing, and algo-
rithmic computational biology. Many of Bernard’s contributions were concerned
with inferring and using phylogenies (i.e., evolutionary trees and phylogenetic
networks), especially for large and challenging datasets. His work in genome
rearrangement phylogeny is the best known, where he has been one of a small
number of leading researchers in establishing theory and developing novel methods
and open-source software based on rigorous mathematical theory. In addition, he
has also contributed to the understanding and developing divide-and-conquer
strategies, supertree construction, absolute fast converging phylogeny estimation,
phylogenetic networks, and the use of phylogenies to answer biological questions.
He has also trained (both directly and indirectly) many of the leading people in
computational biology, including several of the contributors to this volume. For
example, Alexandros Stamatakis and Daniel Doerr were postdoctoral researchers of
Bernard’s; Jijun Tang was his Ph.D. student; and Mark Holder, Luay Nakhleh, and
Sébastien Roch were funded by the CIPRES project (see http://www.phylo.org),
which Moret directed from 2003–2006.

Two conferences were organized in honor of Bernard’s retirement: the first,
organized by his current and former students and postdocs, was held at EPFL on
November 7–8, 2016 (see https://lcbb.epfl.ch/climb/), and the second, which I
organized, was held at Berkeley on June 2, 2017 (see http://tandy.cs.illinois.edu/
Moret-Festschrift.html). These two conferences led to this Festschrift.

The chapters in this volume represent some of the areas in which Bernard’s work
has had an influence, including methods for phylogenetic tree and network esti-
mation, genome rearrangements, cancer phylogeny, species trees, divide-and-
conquer strategies, and the use of integer linear programming in computational
biology. Each chapter provides an introduction to a cutting-edge problem in
computational biology that is computationally and mathematically interesting.
Hence, the volume is designed to be useful as a text for a graduate course in
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computational biology and bioinformatics, aiming at computer scientists, applied
mathematicians, and statisticians. Although much of the work that is described is
advanced, each chapter provides references to the literature to enable the reader to
obtain additional background, if needed.

The chapters are ordered based on the statistical complexity of the problem they
address. The first three chapters address challenges in developing accurate and
efficient software for the NP-hard maximum likelihood phylogeny estimation
problem. Chapters 1 (by Alexandros Stamatakis) and 2 (by Stéphane Guindon and
Olivier Gascuel) focus on optimizing maximum likelihood codes (including but not
limited to numerical optimization), while Chap. 3 (by David Bader and Kamesh
Madduri) focuses on high-performance computing aspects; together, the three
chapters provide complementary insights into how to design codes for this
important basic problem in computational phylogenetics. Chapter 4 (by Sébastien
Roch) is also about phylogeny estimation from aligned sequences, and addresses a
basic statistical question: how much data does a phylogeny estimation method
require (or need) to recover the true tree with high probability, as a function of the
model tree parameters (e.g., number of leaves and lengths of the branches in the
tree)? Roch’s chapter comes with a Jupyter notebook and provides scripts for
analyses and simulations. Chapter 5 (by Nadia El-Mabrouk and Emmanuel
Noutahi) addresses algorithms to infer gene trees when the input includes aligned
gene sequences and also a species tree. The inference of species trees is covered in
Chaps. 6 and 7. Chapter 6 (which I contributed) is about divide-and-conquer
strategies to scale phylogeny estimation methods to large datasets, and specifically
addresses limitations in current supertree methods. Chapter 7 (by Benjamin
Redelings and Mark Holder) is about taxonomic supertrees and the challenge of
constructing them when some taxa in the input have unknown placements within a
taxonomic hierarchy. Chapter 8 (by Santos Muños et al.) addresses the inference of
ultrametric distances from additive distance matrices, and so is related to the
problem of assigning dates to internal nodes in phylogenetic trees. Chapters 9 (by
Jiijun Tang) addresses the inference of ancestral genomes under genome rear-
rangement events. Chapters 10 (by Ron Zeira and Ron Shamir) and 11 (by Russell
Schwartz) address complementary approaches to inferring evolutionary histories in
cancer; Zeira and Shamir focus on how chromosomal rearrangements can be used
as indicators of evolutionary history and Schwartz provides an overview of different
approaches to tumor phylogenetics. Chapters 12 (by Louxin Zhang) and 13 (by R.
A. Leo Elworth et al.) examine problems in phylogenetic networks, with Zhang
focusing on discrete mathematics questions and Elworth et al. addressing statistical
estimation issues. Chapter 14 (by Daniel Doerr and Jens Stoye) uses evolution to
provide a framework within which to understand comparative and functional
genomics. Chapter 15 (by Dan Gusfield) provides an introduction to Integer Linear
Programming and its use in computational biology, with specific focus on how ILP
can be used to solve the NP-hard Traveling Salesman Problem; his chapter also
comes with software and datasets.
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While the chapters are designed to be self-contained (and each contains a sub-
stantial bibliography to enable the reader to get additional background), some
background in computer science (algorithms and running time analysis) and
statistics (e.g., the use of probabilistic models and statistical estimation under these
models) is assumed. Background in computational phylogenetics is helpful but not
required, but many readers may find it helpful to read some of the textbooks in
phylogenetics. For a statistical perspective on this research area, see [1] and [3].
A computer science perspective on algorithm design for phylogeny estimation
(especially for large datasets) is provided in [2].

Urbana, USA Tandy Warnow
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ISCB (International Society for Computational Biology).
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access as well as to increased attention on the impact of improvements in asymp-
totic behavior.
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rewarded by a large ITR grant from the NSF for the CIPRES (Cyber-Infrastructure
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volume), and helped the field of computational phylogenetics to flourish within the
USA. While the director of CIPRES, Moret’s research expanded to include “fast
converging” phylogeny estimation methods (i.e., methods that provably recover the
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computational biology (much in collaboration with David Bader).

Moret left the USA in 2006 to join the faculty at EPFL, his alma mater. His
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America. Most of his postdocs and many of his Ph.D. students are faculty members
at research institutions in the US and Europe, while most of his MS students at
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Willy Zwaenepoel) spoke at these events. Moret now lives on the Big Island of
Hawaii, with his wife Carol and cats.
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Chapter 1
A Review of Approaches for Optimizing
Phylogenetic Likelihood Calculations

Alexandros Stamatakis

Abstract The execution times of likelihood-based phylogenetic inference tools
for Maximum Likelihood or Bayesian inference are dominated by the Phyloge-
netic Likelihood Function (PLF). The PLF is executed millions of times in such
analyses and accounts for 85–95% of overall run time. In addition, storing the Con-
ditional Likelihood Vectors (CLVs) required for computing the Phylogenetic Like-
lihood Function largely determines the associated memory consumption. Storing
CLVs accounts for approximately 80% of the overall, and typically large, memory
footprint of likelihood-based tree inference tools. In this chapter, we review recent
technical as well as algorithmic advances for accelerating PLF calculations and for
saving CLV memory. We cover topics such as algorithmic techniques for optimiz-
ing PLF computations and low-level optimization on modern x86 architectures. We
concludewith an outlook on potential future technical and algorithmic developments.

Keywords Phylogenetic inference · Likelihood calculations · Performance
optimization · Parallel computing · Terraces in tree space

1.1 Introduction

A thorough phylogenetic analysis of current whole-transcriptome or whole-genome
datasets using likelihood-basedmethods can require millions or even tens of millions
of CPU hours on supercomputers.

The Phylogenetic Likelihood Function (PLF) dominates the memory as well as
computational resource requirements in all tools forMaximumLikelihood (ML) and
Bayesian Phylogenetic inference (BI). The PLF is thus the key target function for (i)
optimization using algorithmic and technical means and (ii) parallelization on shared
and distributed memory systems.
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In this chapter, we will review recently introduced techniques for optimizing
the sequential and parallel performance of the PLF, both, via technical as well as
algorithmic means. Orthogonal numerical approaches to optimizing phylogenetic
likelihood calculations are outlined in the chapter by Gascuel and Guindon in this
volume. The main focus of this chapter is on tree inference on supermatrices and not
on gene tree/species tree reconciliation methods, which constitute a valid alternative
and complementary approach to the problem. Gene tree/species tree reconciliation
approaches are discussed in the chapter by El-Mabrouk and Noutahhi in this book.
As gene tree reconstruction and statistical approaches for gene tree species/tree rec-
onciliation also frequently and heavily rely on efficient phylogenetic likelihood cal-
culations (see, e.g., [4]), several of the approaches discussed here are also relevant
for gene tree/species tree reconciliation approaches. A large fraction of the results
we present here have been obtained via the algorithm engineering approach.

The chapter is structured as follows: We first provide a brief introduction of how
the likelihood score can be computed on phylogenetic trees in Sect. 1.2. In Sect. 1.3,
we review algorithmic techniques for accelerating sequential likelihood calculations.
Then, we cover technical approaches to accelerating the PLF on single x86 cores
(Sect. 1.4). Thereafter, we will outline how full and/or partial terraces in tree space
can be used for saving PLF memory and computations (Sect. 1.5). The algorithmic
aspects of parallel likelihood computations are covered in Sect. 1.6. We conclude the
chapter with a discussion of open problems and future challenges in Sect. 1.7.

1.2 Calculating the Likelihood on Phylogenies

Wewill initially provide a brief overview of how the PLF is computed. An alternative
description and notation is provided in the chapter by Guindon and Gascuel in this
volume.

The input for a likelihood-based phylogenetic analysis is a multiple sequence
alignment (MSA with n sequences/taxa and m alignment columns). The branch
length values on the resulting phylogeny (an unrooted, unordered, leaf-labeled binary
tree) represent the mean expected number of substitutions per-MSA site.

In the following, we will outline how to compute the likelihood on a fixed tree
topology. Apart from the tree—including 2n − 3 branch length values—itself, one
needs some additional likelihood model parameters. The most important parameter
is the Q matrix, which specifies the transition rates for time dt between the character
states (e.g., 4 states for DNA data and 20 states for protein data). The Q matrix
encodes a time-reversible Markov model of state substitutions. The transition prob-
ability matrix P for a given branch length t is obtained via P(t) = eQt . It can be
calculated via an eigenvector/eigenvalue decomposition.

To properly initialize the rate matrix Q, we also need the stationary frequencies of
the states (e.g.,πA, πC , πG, πT , for DNAdata). These can be obtained empirically by
determining the respective frequencies of occurrence in theMSA. Alternatively, they
can be considered as free parameters of the model and estimated (ML) or sampled,
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accordingly. Finally, if the MSA contains rate heterogeneity (this is the case for
most empirical MSAs [27]), that is, distinct MSA sites evolve at different rates, one
also needs to optimize/sample the α shape parameter of the Γ model [39] of rate
heterogeneity.

Given a value/estimate for all of the above parameters (topology, branch lengths,
Q matrix, stationary frequencies, α) one can compute the likelihood of the tree
by applying Felsenstein’s pruning algorithm [10]. Initially, one needs to place a
virtual root anywhere into the tree to define a direction for the tree traversal to
compute the likelihood. As the model defined by Q is time-reversible, the likelihood
score is invariant with respect to the placement of the virtual root. An important
assumption of the PLF is that sites evolve independently. This is important with
respect to parallelization as all per-MSA site likelihood scores can, in principle, be
computed simultaneously.

Given the virtual root, one conducts a post-order traversal of the tree to calculate
the so-called Conditional Likelihood Vectors (CLVs) at each inner node of the tree.
A CLV summarizes the signal coming from the left and right subtree of an inner
node. For each MSA site i a CLV contains a CLV entry that stores the probability
of observing each state of the model (e.g., 4 probabilities for DNA data) conditional
on the subtree that is rooted by that CLV. For DNA data, an entry i of a CLV parent
node u given two-child CLVs v,w and corresponding branch lengths bu,v and bu,w

is computed as follows:

CLV(u)
A (i) =

( T∑
S=A

PAS(bu,v)CLV
(v)
S (i)

)( T∑
S=A

PAS(bu,w)CLV(w)
S (i)

)
(1.1)

Note that the CLV vectors at the tips have a special form (if an A is observed at
input sequence position i then the respective CLV entry is set to CLVA(i) := 1.0
and all other entries CLVC(i) := CLVG(i) := CLVT (i) := 0.0) if discrete input
data is given, which represents the typical use case (but see Sect. 1.3.1). This allows
for additional optimizations of the CLV calculations (see Sect. 1.4) that have one
or two-child CLVs that are tips. Also, the space for storing CLVs at inner nodes as
well as the floating point computations given in Eq. 1.1 largely dominate computa-
tional resource requirements of likelihood-based analyses. For instance, the memory
footprint for scoring a single tree under ML for the large bird genome dataset [17]
amounted to 1TB. The remainder of this chapter focuses on algorithmic and engineer-
ing approaches to reduce the computational resource requirements of this equation.
Once the CLVsCLV (right),CLV (le f t) to the left and the right of the virtual root have
been computed (i.e., the full tree traversal has been completed) one can compute the
per-site likelihood l(i) at site i by applying the following equation:

l(i) =
T∑

R=A

(
πRCLV

(le f t)
S (i)

T∑
S=A

PRS(ble f t,right )L
(right)
S (i)

)
(1.2)

The overall likelihood score is then computed by summing over the logarithms
(for avoiding numerical underflow) of the l(i):
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LnL =
m∑
i=1

log(l(i)) (1.3)

As per-site likelihoods can be computed independently and thus concurrently, the
calculation of the overall LnL across alignment sites represents the only point in the
parallel program flowwhere cores need to communicate with each other via a classic
parallel reduction operation (see Sect. 1.6.2).

One of the key difficulties when implementing ML methods is to devise sta-
ble numerical optimization functions (e.g., Brent’s method [5], Newton–Raphson
method [26], BFGS [11], etc.) for optimizing the parameters in the Q matrix, the α

shape parameter, and the branch lengths. For some of these parameters (e.g., branch
lengths), it is known that they can exhibit local optima [8]. Cases where the estimates
approach the allowed numerical minimum or maximum values are also difficult to
cover and handle. Numerical and mathematical approaches for reducing the compu-
tational cost of branch length optimization (numerical optimization of Eq. 1.2 with
respect to the branch length ble f t,right ) are outlined in the chapter by Guindon and
Gascuel in this volume, and also in the supplementary material of [13]. The chapter
by Gascuel and Guindon in this volume also covers numerical stability issues of
optimizers for mixture models.

These numerical difficulties also apply to the design ofMarkov chainMonte Carlo
(MCMC) proposal mechanisms with respect to sampling efficiency and the ability
to escape local optima of the posterior probability landscape.

1.3 Sequential PLF Optimization via Algorithmic Means

Algorithmicmethods for optimizing PLF computations predominantly rely on detec-
tion of repeating site patterns in the input data and omitting redundant calculations.
Memory-saving approaches are based on omitting storage of such repeating patterns,
that is, identical entries in CLVs.

It is important to note that the savings that can be achieved via these techniques
are highly implementation dependent. In other words, they depend on how the PLF
is applied to trees. In general, the approaches described below perform substantially
better for full tree traversals, that is, cases where all CLVs of a given phylogenetic tree
need to be (re-)computed. This is the case when for instance, the α shape parameter
of the Γ model of rate heterogeneity [39] is being optimized (ML) or a new value
is being proposed (BI). Full tree traversals are also typically used in methods for
divergence time estimation (e.g., mcmctree [40]).

However, tree search algorithms as implemented in MrBayes [28] or, to an even
greater extent in RAxML, typically conduct partial tree traversals only, that is, after
a change in the tree topology only a very small fraction of the CLVs needs to be
updated. Moreover, these CLVs are typically located close to the virtual root of the
tree that is required for calculating the overall likelihood. This implies that they
contain fewer repeating patterns.
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1.3.1 Saving Computations

The most straightforward way to save PLF computations for a given multiple
sequence alignment (MSA) is through global site pattern compression. Here, exactly
identical sites in the input MSA can be compressed into a single- site pattern and be
assigned a corresponding weight (number of identical sites represented by this site
pattern). This integerweight is then simplymultipliedwith the per-site log-likelihood
score of the pattern to obtain the correct overall log-likelihood score. All current
likelihood-based implementations conduct this kind of compression in a preprocess-
ing step. It is worth noting that this compression step can itself be time-consuming for
large-scale whole-genome datasets and may even represent a bottleneck in parallel
likelihood computations if not handled appropriately (see Sect. 1.6.1).

The key idea for further accelerating likelihood calculations via algorithmicmeans
is to extend this kind of compression to the subtree level, that is, to the subset ofMSA
sites defined by the taxa that are located in a subtree. This is based on the observation
that the closer we are to the tips of the tree, the more identical site patterns we expect
to observe in the data and the more unnecessary computations we can hence omit.
For example, consider a CLV defining a subtree with two tips as outlined in Fig. 1.1.
If the sequences at the tips have an A and C at MSA positions i and j , respectively,
where i > j , we can omit calculating (and storing) the CLV entry for MSA site j .

A

i j

C

i j

i j

Conditional Likelihood Vector

Tip sequence 

Tip sequence 

toward virtual root 

omit calculating & storing 
CLV entry at position j

A

C

Fig. 1.1 A simple example for a site repeat at positions i and j of the two-child sequences of a
CLV
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Evidently, the number of such savings (the number of subtree site repeats) depends
on the shapeof the tree topologywhose likelihood is being scored. In addition, savings
are greater near the tips of the tree and decrease as we move toward the virtual root.
At the virtual root itself, there will be no site repeats at all, as we have already
compressed all globally identical sites in the MSA during a preprocessing step. This
is also the reason why savings using the site repeats technique for full tree traversals
are greater than for partial tree traversals. Moreover, exploiting site repeats on fixed
tree topologies that are repeatedly evaluated under different model parameters (e.g.,
as implemented in FastCodeML [38]) is even cheaper, as the repeating subtree site
patterns per CLV only need to be computed only once.

While the idea to detect and omit computations for repeating site patterns in CLVs
of subtrees is not new (see [25] and [37] for some early work), the key challenge
consisted of designing an appropriate data structure for dynamically updating an
index of per-CLV (per-subtree) site repeats for constantly changing trees (e.g., during
tree searches). These index and lookup calculations need to be highly efficient, as
with increasing vector lengths (128 bit SSE3 instructions and later 256 bit AVX
instructions the trade-offmargin between detecting repeating site patterns and simply
disregarding repeats and computing redundant entries decreases.

A first step in this direction was taken [15] by restraining repeating site patterns to
subtree MSA columns consisting entirely of gaps. Such sites often occur in “gappy”
supermatrix MSAs (see Fig. 1.3). Typically, patches of gappy data that essentially
represent missing molecular data are observed either because (i) specific taxa do not
contain a specific gene or (ii) because the specific gene has not been sequenced yet.
Restraining the detection of repeating sites to columns consisting entirely of gaps
allowed for implementing a simple and thus, highly efficient index data structure
for detecting and storing repeating sites that yielded a “good” trade-off. Here, each
inner node of the tree is assigned a bit-vector that is as long as the input MSA. A bit
i in this bit-vector denotes if the corresponding site i in the subtree below that inner
node consists entirely of gaps or not. This also allows to save memory as only CLV
entries for non-gap sites need to be stored at inner nodes. The runtime and memory
savings that can be achieved were proportional to the amount of missing data in the
input MSAs.

For dynamically changing trees, however, thesememory savings need to be imple-
mented carefully since some per-node CLV lengths dynamically change every time
the virtual root is placed into a different branch as shown in Fig. 1.2. This implies a
frequent invocation of malloc() and free() operations. In the sequential case,
the associated overhead is negligible. However, for multithreaded parallel implemen-
tations this leads to a bottleneck as each invocation ofmalloc()/free() requires
a global lock. Thus, replacingmalloc() by a corresponding locklessmultithreaded
implementation yielded a parallel performance improvement of approximately a fac-
tor of two (see supplement of [34]).

However, as not all MSAs are sufficiently gappy, especially due to novel sequenc-
ing techniques or when genomes of closely related species are being analyzed, there
was a need for a more generic solution. As mentioned before, the key challenges
consisted in devising an algorithm to rapidly detect subtree site repeats and design-
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Fig. 1.2 Outline of changing CLV lengths when site repeats are deployed to save memory in a tree
that is re-rooted. The lengths of the CLVs in black do not change after re-rooting the tree. The CLV
lengths in the shaded boxes do change after re-rooting the tree as they will contain less site repeats

ing an appropriate index data structure for storing and looking up repeats. This
generic solution was presented in [19] and has now been implemented at produc-
tion level in RAxML-NG (https://github.com/amkozlov/raxml-ng), Modeltest-NG
(https://github.com/ddarriba/modeltest) as well as a low-level phylogenetic likeli-
hood library [12] (https://github.com/xflouris/libpll-2). As expected, site repeats per-
form best for full tree traversals, but still yield a speedup ranging between a factor
of 1.5 and 2 for tree searches in RAxML-NG. Nonetheless, the usage of site repeats
might become obsolete as the width of vector registers on x86 systems increases.
With the new AVX-512 bit vector instructions, it might be more efficient to carry
out redundant calculations than to detect and lookup site repeats. However, such a
more straightforward vectorized implementation will not allow for saving memory
using the techniques presented here. As we will discuss in Sect. 1.6.3 site repeats
also complicate a balanced data distribution for parallel PLF calculations. Finally,
site repeats can evidently only be applied to discrete input data, that is, “normal”
DNA sequences. There seems to be a trend though toward incorporating uncertainty
in the input sequences into the likelihood calculations. Such uncertainty can stem
from sequencing error, alignment error, or single-cell sequencing approaches. See
Chap. 5 in [20] for some initial models and experiments with uncertain input data.
When the input data ceases being discrete site repeat techniques can evidently not
be applied anymore.

1.3.2 Saving Memory

As already mentioned above, repeating site patterns at the subtree level can be
deployed to substantially reduce the memory requirements for storing CLVs. These
savings are directly proportional to the number of repeats in the data.

However, there also exists an orthogonal technique for saving memory in PLF
computations that has, unfortunately, not been widely adopted. Initial experiments

https://github.com/amkozlov/raxml-ng
https://github.com/ddarriba/modeltest
https://github.com/xflouris/libpll-2
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with an out-of-core (external memory) algorithm for storing a fraction of the
CLVs [16] on disk did not show promising results, albeit the respective algorithm
was five times faster than an application-agnostic implementation that relied on the
paging mechanism of the operating system.

As a consequence, this direction was abandoned and we investigated trade-offs
between storing all CLVs in RAM and recomputing a fraction of CLVs that are not
in RAM. This investigation yielded two important results.

First, we showed that for conducting a full tree traversal only the memory for
log(n) + 2 CLVs needs to be allocated for efficiently computing the likelihood [14],
where n is the number of taxa in the MSA. In addition, this procedure does not
induce any recomputation cost, that is, requires as many calculations as a full tree
traversal with n − 3 allocated CLVs (an unrooted phylogenetic tree has n − 3 inner
nodes). This approach can be combined with the site repeats technique and thereby
dramatically reduce the memory requirements for full tree traversals. Moreover,
deploying this approach can potentially yield additional speedups as the PLF, in
particular for DNA data, is memory bandwidth bound. Thus, a substantially smaller
working set could yield improved cache efficiency and, as a consequence, improved
performance.

Second, for partial tree traversals, as implemented in RAxML, we were able to
develop an efficient strategy for deciding which CLVs to store in RAM and which
CLVs to recompute. We showed that storing 50% of the required CLVs only induces
a slowdown of 15% due to the required additional CLV recomputations. It must be
emphasized though, that this specific slowdown is closely connected to the RAxML
search strategy that mostly updates CLVs locally in a neighborhood of the tree.
Thus, for less local search strategies or in cases where we cannot control the locality
because a stochastic search is conducted (e.g., BI) the associated slowdowns due
to recomputations will increase. Nonetheless, we believe that the above techniques
are highly useful for accommodating the memory requirements of large datasets or
compute as well as memory-intensive complex mixture models such as the C10–
C60 family of models [32]. With the exception of IQ-Tree [24] where this technique
was used for reducing the memory requirements of the C10–C60 models, we are
not aware of any other production-level implementation using this technique. One
reason for this might be the increased code complexity and the associated decrease
in software maintainability.

1.4 Sequential Optimization via Technical Means

Apart from algorithmic approaches, there are alsomostly standard (i.e., implemented
in most popular likelihood-based codes) technical approaches to accelerate PLF
calculations.
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1.4.1 Standard Techniques: Tip–Tip and Tip–Inner
Optimizations

A standard technique used in many likelihood-based tools is to use distinct versions
of the CLV update kernel depending on the subtree type that is rooted by a CLV.

Developers typically use 3 distinct CLV update kernels. The tip–tip kernel is used
for calculating CLVs that have two tips (leaves) as children. As the two-child CLVs
are normally simply discrete sequences with a limited number of states, a plethora of
optimizations can be applied (including lookup tables with precomputed values) to
accelerate the CLV computation. The same holds for the tip–inner case where one of
the two children of the CLV to be computed is a tip. Note that the tip–tip and tip–inner
cases account for roughly 50% (evidently, this also depends on the tree shape) of all
CLVs that need to be computed during a full tree traversal. Thus, the programming
effort for implementing dedicated PLF kernel functions for these cases is justified.
With respect to kernel execution times, tip–tip is faster than tip–inner which, in turn,
is faster than the general inner–inner case.

The main problem with this approach is that developers typically also implement
dedicated PLFkernel functions for each of themost commondata types such asDNA,
protein, and binary data. This induces increased code complexity and an associated
decrease in maintainability.

1.4.2 Vectorization

The use of x86 vector instructions (via 128-bit SSE3 and 256-bit AVX intrinsics) for
accelerating PLF calculations is now also common in most widely used likelihood-
based tools. Vectorized kernels are also offered by the two libraries for PLF cal-
culations (BEAGLE [2] and PLL [12]). The chapter by Guindon and Gascuel (this
volume) provides a more formal description of PLF vectorization.

The main challenge we see consists in the transition to even wider vector widths
as x86 CPUs with 512-bit vector instructions are already available now. The reason
why this represents a challenge is that the vectorization approach will need to be
changed, at least in some implementations, for accommodating wider vectors. Thus
far, we vectorized PLF calculations for DNA data on a site-per-site basis. In other
words, the per-site log likelihood can be computed independently for each site in a
vectorized fashion. With increasing vector widths, this will not be possible anymore.
Thus, PLF calculations need to be vectorized across several sites (as implemented in
IQ-Tree since version 1.5) to avoid sacrificing performance. The main drawback of
this is that the site repeats technique described in Sect. 1.3 will be difficult to apply
as it requires each entry i of a CLV corresponding to an MSA site i to be computed
independently in order to attain optimal savings. If we vectorize across sites this
is not given anymore and we might be conducting redundant computations. While
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we suspect that site repeats need to be abandoned for 512-bit vector instructions
due to unfavorable trade-offs, this will most likely be the case for 1024-bit vector
instructions that will probably become available in the next five years.

1.5 Partial and Full Terraces in Tree Space

It is common practice to infer phylogenies on concatenated multi-gene MSAs, also
called supermatrices. In such datasets, one concatenates the DNA or amino acid data
for the n taxa under study from several genes G1, ...,Gp or even entire transcrip-
tomes/genomes into one large supermatrix, where p is the number of genes, or more
generally, the number of disjoint partitions of MSA sites in the dataset. Typically,
one estimates a separate set of model parameters (e.g., GTR rates, α shape param-
eter of the Γ model of rate heterogeneity, branch lengths) for each partition of the
supermatrix separately. Supermatrices typically contain patches of missing data (see
Sect. 1.3.1 above and in Fig. 1.3), that is, sequence data for a specific taxon is not
available for some genes/partitions Gi in the supermatrix.

On partitioned datasets, these patches of missing data can induce a potentially
misleading effect on the likelihood surface. Under specific partitioning schemes,
model settings, and patterns of missing data, different tree topologies might exhibit
exactly the same analytical likelihood score.Note that the numerical likelihood scores
might deviate slightly because of round-off error propagation.A tree that has the same
likelihood value as at least one other, topologically distinct tree, is said to reside on
a terrace in phylogenetic tree space.

A simple example for a terrace induced by the MSA and partitioning scheme
provided below is shown in Fig. 1.4.

Partition 1 Partition 2 Partition 3

Species 1

Species n

patch of missing data

Fig. 1.3 Patches of missing per-partition/gene data in a typical concatenated supermatrix
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species 1
species 2

species 3

species 4

species 5

species 1
species 2

species 3

species 4

species 5

tree for all taxa

induced tree 

induced tree

Tree T0 Tree T1

LnL(T0) = LnL(T0|G1) + LnL(T0|G2) = LnL(T1) 

for G1

for G2

Fig. 1.4 Two topologically distinct tree topologies T0, T1 that have exactly identical analytical
likelihood scores as the respective inducedper-partition tree topologies are identical, that is,T0|G1 =
T1|G1 and T0|G2 = T1|G2. For the example MSA in the text all 15 possible unrooted binary trees
for the 5 species reside on the same terrace

index 0123

Species 1 AC--

Species 2 AG--

Species 3 ACTT

Species 4 --AG

Species 5 --GG

In the example, MSA denotes missing data. MSA sites 0,1 have been assigned
to partition G1 and MSA sites 2,3 have been assigned to partition G2. Under the
model conditions that give rise to terraces, the log likelihood LnL(T ) of a tree T is
computed as follows: LnL(T ) = LnL(T |G1) + LnL(T |G2), where T |Gi denotes
the tree topology induced by T for the species/sequences in partition i for which we
have sequencedata. In our example the two inducedper-gene/partition treesT |G1 and
T |G2 each comprise exactly three taxa (Species1, Species2, Species3
forG1 andSpecies3, Species4, Species5 forG2). Hence, every partition
only induces a 3-taxon tree. Further, there only exists one possible unrooted tree
topology with three taxa. Therefore, all 15 possible 5-taxon trees in our example
induce identical per-partition trees and therefore reside on a terrace comprising 15
tree topologies. We denote this as a full or comprehensive terrace.
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From a computational point of view, the existence of full terraces allows for
substantial computational savings as one only needs to evaluate the likelihood score
of one tree on the terrace. However, it is not as straight-forward to detect whether
an unrooted binary tree is located on a terrace or not [3]. As a work-around, one
can design topological moves (e.g., Nearest Neighbor Interchange (NNI) moves or
Subtree Pruning and Regrafting (SPR) moves) that are terrace-aware. Such moves
will detect if the current tree and the new tree that was obtained, for instance, via
a NNI or SPR move reside on a terrace. The current and new tree does reside on a
terrace of none of the induced per- partition tree topologies T |Gi was altered by the
topological move.

There is additional potential for computational savings by taking the so-called
partial terraces into account. A tree resides on a partial terrace if some induced
per-partition tree topologies T |Gi are invariant under the topological move. As a
consequence, the partition likelihood of these unaltered partitions does not need to
be recomputed. Apart from the computational savings, this approach also allows for
saving memory as only the CLVs of the induced per-partition trees (i.e., the induced
tree for which data is available) need to be stored. These induced trees typically have
substantially less inner nodes and hence CLVs than the comprehensive tree on which
the tree search is conducted. Thus, taking terraces into account allows for memory
savings that are proportional to the fraction of missing data in the supermatrix.
The computational savings are difficult to characterize or predict mathematically as
they depend on the pattern of missing data as well as the terrace size, the heuristic
search strategy, and the distribution of partial as well as full terraces in tree space.
Experiments reporting empirical run time improvements can be found in [6, 7, 35].

The concept of exploiting full and partial terraces to accelerate likelihood-based
tree searches was first implicitly used by Stamatakis and Alachiotis [35] in 2010. In
2011 terraces were mathematically characterized [30]. Some additional properties
of terraces, in particular, their impact on support values, are discussed in [29]. More
efficient and elegant data structures than in [35] for conducting terrace-aware tree
searches were presented in [6, 7]. Due to the increased code complexity the only
production-level implementation of terrace-aware moves the author is aware of is
provided in IQ-Tree [24].

1.6 Parallel PLF Computations

Apart from algorithmic and technical means for accelerating the PLF a substan-
tial amount of research effort has focused on parallelizing the PLF. The funda-
mental approach to simply parallelize computations across MSA sites is relatively
straightforward. However, as we will outline below, partitioned datasets, algorithmic
optimizations such as site repeats, and pure scalability issues require attention and
partially rather involved algorithms for attaining optimal data distribution.
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1.6.1 Preprocessing and Parallel I/O

For analyzing extremely large empirical datasets on supercomputers (e.g., [17, 22]),
we encountered several problems for the first time. One, that can easily be solved is
that of parsing and error-checking the MSA which constitutes a hard-to-parallelize
process across thousands of cores. The solution for improving scalability is to “cheat
a bit” by conducting the checking and parsing (including MSA site pattern compres-
sion) in a standalone tool on a server, prior to launching the actual massively parallel
likelihood calculations on a supercomputer. This also allows to potentially compress
the input data and generate a binary input file that can then be concurrently read by
the MPI processes carrying out the likelihood-based search. In the case of ExaML,
this approach yielded a reduction of start-up times (I/O, parsing, data distribution),
that is of wasted CPU time, by one order of magnitude (see supplement of [21]).
What is currently lacking is the specification of a common binary MSA and partition
file format for such large-scale phylogenetic inferences.

1.6.2 Parallelization Approaches

As already mentioned, the standard approach consists in parallelizing likelihood
computations across sites. For attaining “good” parallel efficiency, this evidently
requires the MSA to be long enough. As a rule of thumb, each core needs to work
on 1,000–2,000 sites for “good” scalability on DNA data, for instance. This num-
ber might increase with improving single core performance (e.g., increasing vector
widths). Unfortunately, despite repeated attempts by us and others, there is no scal-
able solution available for analyzing datasets with thousands of taxa but only a few
hundred sites (e.g., large single-gene 16S MSAs). We believe that this is due to
the intrinsic sequential dependencies between subsequent tree search steps in most
common ML and BI search algorithms.

PLF computations, especially for DNA data, that only require a few floating point
operations per-CLV entry while linearly filling the CLV, are memory bandwidth
bound. Because of this, we observed impressive super-linear speedups (parallel effi-
ciency of 140% [20]) on large-scale datasets with the hybrid PThreads/MPI version
of RAxML-NG.

Another key to improving parallel performance is to avoid the classic master–
worker or fork–join approach. In this approach, a dedicated master process/thread
will execute the search algorithm and propose new model parameters while the
worker threads/processes calculate the PLF. In large partitioned analyses, this can
induce a substantial communication bottleneck as the highly frequent collective com-
munication calls (over 1,000 per second) that will be invoked by the master might
actually become network bandwidth-bound instead of latency-bound. Consider the
example of a large, partitioned dataset with 10,000 partitions. If the search algorithm
is in a phase where it optimizes the α shape parameter of the Γ model of rate het-
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erogeneity, 10,000 new double precision values will need to be broadcast in each
round of the corresponding numerical optimization routine. Note that it is important
to optimize all per-partition parameters simultaneously for achieving good paral-
lel efficiency [36]. Given the above, a master–worker approach can easily become
network bandwidth-bound using this approach.

To resolve this issue, one can deploy a classic massively parallel approach [33].
Here, each process locally executes a consistent and synchronized copy of the search
algorithm while operating only on a part of the data. Consistency can be maintained
by ensuring that all processes always have the global likelihood score for the entire
MSA by using MPI_Allreduce() calls. Apart from increased computational
efficiency, this also substantially decreases the code complexity of parallel likelihood
implementations, as, apart from a data distribution routine and inserting around
a dozen of MPI_Allreduce() calls, the sequential code does not need to be
changed. For instance, deriving the initial version of ExaML from RAxML only
took a day of programming.

1.6.3 Data Distribution Algorithms

While data distribution for a per-MSA site parallelization might appear trivial at
first sight (i.e., just distribute m sites to p cores by assigning m/p sites to each
core), it is not. First, partitioned datasets complicate the issue substantially. Second,
the introduction of site repeats (see Sect. 1.3) means that the per-site computation
cost/time can vary substantially among sites and that assigning sites that share a large
fraction of repeats to distinct cores will increase the computational cost of those sites.

Let us first consider the data distribution problem for partitioned datasets.Without
site repeats the computational cost of a partition is proportional to the number of sites.
However, there is one additional cost factor, namely the calculation of the transition
probability matrix P (see Sect. 1.2) that has a constant cost ρ for each partition.
If the sites of a partition are split among two processors, the constant cost ρ for
calculating P needs to be paid twice, once at each processor. Note that calculating all
r transition probabilitymatrices P for a partitioned datasetwith r partitions in parallel
and then broadcasting them prior to the actual CLV calculations does not represent a
viable solution for avoiding redundant calculations of P . This is because the induced
synchronization and communication overhead is too large. In addition, the degree of
parallelism is limited by the number of partitions (e.g., analyzing a dataset with 100
partitions on 1,000 cores).While the cost of calculating P is too low for implementing
a respective dedicated parallel processing step, the cost of redundant calculations
of P can have a substantial negative impact on performance [41]. To address this
problem,we initially considered the problemof assigning entiremonolithic partitions
to cores such that the maximum number of sites assigned to a core is minimized [41].
This guarantees that all per-partition P matrices are only calculated once and at
one single core. We found that this data distribution problem is equivalent to the
“classic” multiprocessor scheduling which is known to be NP-hard. We, therefore,
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tested various well-established heuristics for multiprocessor scheduling. We showed
that optimizing the data distribution in thisway yields parallel run time improvements
by up to one order of magnitude.

Nonetheless, this kind of data distribution strategymight not yield optimal results,
in particular when there is a large variance in partition lengths. Consider the case of
100 processors and 100 partitions. Further assume that one “bad” partition is 10,000
sites long while the remaining 99 “good” partitions are just 1,000 sites long. In this
case the “bad” partition will be entirely assigned to one core which will slow down
all other cores as it has to conduct one order of magnitude more computations. This
will result in suboptimal parallel efficiency. Moreover, partitions do not need to be
assigned to coresmonolithically, but can, as alreadymentioned above, be split among
processors. Evidently, such a splitting will induce redundant calculations of P . We,
therefore, obtain a bi-criterion optimization problem: Distribute partitions to cores
such that (i) the total number of sites per-core is balanced (each core operates on the
same number of sites) and (ii) the number of redundant calculations of P by splitting
partitions among cores is minimized. We were able to show that this problem is NP-
hard [18]. In addition, we developed an approximation algorithm with a very tight
bound. The data distribution computed by our approximation algorithm only incurs
one redundant calculation of P more than the optimal solution in the worst case.
We also implemented this algorithm in our dedicated BI (ExaBayes [1]) and ML
(ExaML[21]) phylogenetic inference tools for supercomputers.Wewere able to show
that this data distribution strategy performs best in all cases compared to previous
data distribution strategies because it is independent of the given partition length
distribution. In the best case, this near-optimal data distribution yielded parallel run
time improvements of a factor of 6. This is “classic” algorithm engineering work as
it combines theory, practice, and implementation following Bernard Moret’s spirit.

As already mentioned in Sect. 1.3.1, when using site repeats, the above algorithm
cannot be applied, since (i) the cost of computation is not linear to the number of sites
anymore, (ii) the cost of computation depends on the actual tree shape (the number
of repeats varies among trees), and (iii) splitting a partition among cores might yield
an increased computational cost for that partition as some repeats between sites
assigned to distinct cores are lost. Initial work [23, 31] on developing dedicated
data distribution heuristics that do take into account site repeats, has shown that the
number of repeats only varies slightly among distinct tree topologies and, that repeats
need to be taken into account for attaining good load balance. This is particularly
true when the fraction of repeats varies substantially among partitions.

A nice property of the problem is that it is easy to compute a lower bound for
the data distribution heuristics as this is simply the fraction of site repeats in the
sequential case. Thus, one can easily assess how many site repeats are lost due to a
given data distribution. We suspect that the corresponding formal data distribution
problem is NP-hard. In addition, the problem could be analyzed in a more theoretical
context by transforming it into a graph partitioning problem and applying the broad
graph algorithm machinery to it.
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1.7 Open Problems and Future Challenges

There are several future challenges for efficient likelihood calculations and related
problems as described in this chapter.

One challenge are growing vector widths which might yield the site repeats tech-
nique and related algorithmic tricks for accelerating likelihood calculations obsolete.
Another question is, if there exist notable differences in energy consumption between
AVX (256 bit) with site repeats enabled andAVX-512with site repeats disabled. This
set of alternative PLF kernels could also be extended to include the numerical tricks
outlined in the chapter by Guindon and Gascuel (this volume). Thus, apart from pure
computation speed, there might be other factors to consider. Also, given the entire
zoo of alternative likelihood kernel implementations (e.g., various memory-saving
techniques, site repeats, terrace-aware moves), a dynamic selection of the most effi-
cient kernel for specific tools or even distinct algorithmic phases (e.g., tree search
with partial tree traversals versus parameter optimization with full tree traversals) of
phylogenetic inference tools might yield additional gains in efficiency.

A related technical topic is that of parallel fault tolerance. With increasing data
set sizes (e.g., an insect transcriptome dataset that is one order of magnitude larger
than the one published in Science in the late 2014 [17]) and improving scalability
of tools, processor failures in large computations will become more common. Some
key questions to be answered in this context are (i) if a reliable fault-tolerant version
of MPI_Allreduce() is available and (ii) how failures can best be recovered.
Regarding the latter, one would not rely on standard checkpointing but consider the
trade-offs between lightweight in-memory rollback mechanism versus only recom-
puting the computations that failed. This also gives rise to interesting theoretical
questions. When a core fails, the data assigned to this core needs to be redistributed
to the remaining cores. This redistribution cost could be alleviated by a redundant
data distribution algorithm that might be able to handle a certain number of processor
failures without having to reread data from disk.

There are also some other open theoretical questions. The algorithm [9] for count-
ing and enumerating trees on a terrace requires rooted trees as input. However, phy-
logenetic trees are typically unrooted and the algorithm can currently only be applied
to unrooted per-partition trees T |P if they all have at least one taxon in common
that allows for a consistent rooting. However, many empirical datasets do not contain
such a common taxon that appears (has data) for all partitions. Another open problem
is the theoretical time complexity of data distribution under site repeats.
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Chapter 2
Numerical Optimization Techniques in
Maximum Likelihood Tree Inference

Stéphane Guindon and Olivier Gascuel

Abstract In this chapter, we present recent computational and algorithmic advances
for improving the inference of phylogenetic trees from the analysis of homologous
genetic sequences under the maximum likelihood criterion. In particular, we detail
how the use of matrix algebra at the core of Felsenstein’s pruning algorithm, com-
bined with the architecture of modern day computer processors, leads to efficient
techniques for optimizing edge lengths. We also discuss some properties of the like-
lihood function when considering the optimization of the parameters of mixture
models that are used to describe the variation of rates-across sites.

Keywords Maximum likelihood · Markov processes · Optimization · Mixture
models

2.1 Introduction

Software programs for inferring phylogenies are among the most frequently used
tools in bioinformatics with thousands of citations every year (e.g., PAUP* [29],
PhyML [8, 9], RAxML [26], IQ-TREE [21], MEGA [30], or MrBayes [24], totaling
more than 140,000 citations to date). All thesemethods aim at reconstructing a phylo-
genetic tree given amultiple alignment of sequences (DNA, proteins, or codons). The
first approaches were based on evolutionary distances between pairs of sequences
and parsimony [6, 35]. Today, most trees are inferred using approaches that rely
on probabilistic models of sequence evolution. A breakthrough in the application
of these techniques was the article of Joseph Felsenstein in 1981 [5], describing
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the “pruning” (or “peeling”, or “sum-product”) algorithm to efficiently compute the
likelihood of a tree with branch lengths given a multiple alignment of sequences and
a model of sequence evolution along with the parameter values of this model. An
essential goal in phylogenetics then became to design algorithms for inferring trees
from sequences, using the maximum likelihood (ML) principle. The first algorithms
were slow due to the difficulty of the optimization task, which combines combina-
torial optimization to select the best tree topology among an exponential number of
possible solutions [6], and numerical optimization to estimate branch lengths and
substitution model parameters. In addition, these two numerical and combinatorial
facets are inseparable and cannot be performed independently. Computers were also
slow compared to nowadays high-performance clusters, and most analyses were lim-
ited to a few dozens of taxa, the analysis ofmore than 100 taxa using anymodel-based
approach being extremely rare until the end of the 90s .

In 2003, we published the first fast algorithm to infer trees using the maximum
likelihood principle, implemented in PhyML [9]. The idea was to combine within
the same algorithm the optimization of branch lengths and the search for the optimal
tree topology using multiple simultaneous “Nearest Neighbor Interchanges” (NNIs).
These (local) topologicalmoves exchange subtrees separated by three branches.NNIs
were performed in a hill-climbing manner, until no more move was able to improve
the likelihood of the current tree. The numerical parameters were optimized along
the way. Although this first version of PhyML was not performing an extensive tree
search, it was fairly accurate and rapidly became popular.

Since then, a number of algorithms have been designed to perform a more exten-
sive exploration of the space of trees. RAxML-III [27] implemented “Subtree Pruning
and Regrafting” (SPR) topological moves, where a subtree is pruned from the whole
tree and regrafted on another edge. To avoid evaluating all possible SPRs, RAxML
concentrates on those moves where the pruned subtree is re-inserted at a limited
distance (in number of edges) from its initial position. We proposed alternative solu-
tions, where distance- and parsimony-based filtering was applied to determine the
most “promising” SPRs [8, 13]. IQPNNI [32] combined an NNI-based approach
similar to that of PhyML with the pruning and regrafting of individual taxa. Several
alternative approaches have been proposed since then, to introduce some stochas-
ticity in the hill-climbing scheme [21], maintain a population of solutions that are
combined using a genetic algorithm [11, 38], and to use several starting trees to avoid
being trapped too early in poor local optima of the likelihood function. Last but not
least, parallel versions of these various approaches were designed and implemented
in a number of environments, including GPUs, thanks to dedicated libraries [2, 23].
The chapter by Stamatakis in this book reviews these advanced computing methods
and their implementations, which today make it possible to analyze huge data sets
comprising dozens to thousands of sequences and whole genomes in a few large-
scale studies (e.g., [14]) or in one of Bernard Moret’s important work on the topic
[20]).

However, while a large number of articles describe the combinatorial side of phy-
logenetic inference, aimed at exploring the tree space, very few articles and book
chapters deal with the numerical side, which forms the basis of all ML approaches.
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The goal of this chapter is to review the main advances in numerical computation
and optimization, which makes it possible to analyze large data sets nowadays. In
the following, we first present the basic statistical principles underlying models of
genetic sequence evolution. We then show how the pruning algorithm can be accel-
erated in the context of individual edge length optimization through proper algebraic
factorization of the various matrix components of the models. The impact of these
progresses on branch length optimization is presented, along with other ideas to
accelerate the inference under mixture models that are very popular in phyloge-
netics. These advanced numerical methods are implemented in recent versions of
PhyML and also in similar forms in other software programs, most notably RAxML
and IQ-TREE.

2.2 Modeling Sequence Evolution

Molecular sequences lend themselves very well to probabilistic modeling. In fact,
the building of mechanistic models of molecular evolution is at the core of major
advances in our understanding of evolution and biological diversity in general. There
aremainly two reasons to that. First, genetic sequences are abundant. The rise of ever-
improving modern sequencing technologies makes it incredibly fast and cheap to
sequence complete genomes nowadays compared to two decades ago. Large amounts
of data limit the impact of sampling errors, thereby giving the opportunity to fit real-
istic models of evolution and derive precise parameter estimates. Second, genomes
are made of very simple building blocks, i.e., the four nucleotides (adenine, cyto-
sine, guanine and thymine, or A, C, G, and T) so that the state space of the proposed
models is generally well-defined, as explained below.

A typical data set suitable for phylogenetic analysis consists in an alignment of
homologous nucleotide or amino acid sequences collected in multiple individuals.
Depending on the evolutionary time-scale of interest, these individualsmay belong to
distinct species (when one is interested in ancient evolutionary events) or to the same
population (when one focuses on recent events). Two or more sequences are said to
be homologous whenever they have a common origin, i.e., these contemporaneous
sequences all descend from a single ancestral sequence. Homologous sequences are
aligned beforehand so that each site, i.e., each column of the alignment, consists in
homologous nucleotide or amino acid characters.

As is the case with most if not all probabilistic models used in biology, stochastic
models of sequence evolution rely on several simplifying assumptions. First, the
different sites of the alignment are assumed to be independent realizations of the
same data-generating process. In the statistical jargon, sites are said to be i.i.d., i.e.,
independent and identically distributed. The i.i.d. assumption is very convenient as
the modeling then takes place at the individual-site level. The state-space of the
models of interest thus become the set of four nucleotides (61 coding triplets of
nucleotides when analyzing coding sequences using codon models) or 20 amino
acids, depending on the type of data under scrutiny. The model describes how the
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random accumulation of substitutions between these limited number of states during
the course of evolution gave rise to the observed data.

Let A be the state-space of interest and w ∈ A a particular state. We consider
that w is the realization of the random variable W (t) which returns the state a given
sequence is in at time t , at a particular site. We assume that the time to the next sub-
stitution event, where state w is replaced by another state, distinct from w, is expo-
nentially distributed. More precisely, we assume that |A | − 1 exponential clocks are
running in parallel, each clock being associated to a state distinct fromw. The timing
of the next substitution event is given by theminimum of |A | − 1 exponential draws.
Let rwv be the rate of substitution from state w to v. The time to the next substitution
event is thus exponential with parameter rw := ∑

v �=w,v∈A rwv.
The simplest models assume that the substitution rates between characters are

all equal. It is indeed the case with the first Markov model of substitution between
nucleotides, proposed by Jukes and Cantor in 1969 [16]. In that particular situation,
rwv = 1/3 for all w �= v ∈ A , such that rw = rv and the number of substitutions in
a time interval t is described by a Poisson distribution with parameter r t , where r is
the (common) rate of substitution “away” from any state (i.e., r = rw = rv). Let R
be the one-step transition probability matrix between characters, i.e., Rwv = 1/3 if
v �= w and Rwv = 0 otherwise, for the Jukes and Cantor model. The matrix P(t) of
transition between states over a period of time t is thus expressed as follows:

P(t) =
∞∑

n=0

Rn (r t)ne−r t

n! , (2.1)

where the sum is over the (Poisson distributed) number of substitutions that could
have occurred in t . We thus have:

P(t) = e−r t
∞∑

n=0

Rn(r t)n

n! (2.2)

= e−r t
∞∑

n=0

(Rr t)n

n! (2.3)

= e−r t eRr t (2.4)

= e(R−I)r t . (2.5)

The matrix Q := (R − I)r is the infinitesimal generator of the Markov process.
It gives the rates at which the different substitutions take place.

Not all models satisfy the constraint rw = rv however. In fact, the most popu-
lar substitution models do not satisfy this constraint when fitted to most data sets.
Nonetheless, the equality P(t) = eQt still holds. A relatively straightforward way to
verify that this is true indeed is to consider now that substitutions are described by a
Markov process that authorizes self-substitutions, i.e., substitutions between identi-
cal states. Substitutions, including self-substitutions, are then governed by a Poisson
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process with parameter λ, taken as any real value greater than rw for all w ∈ A . The
one-step transition probability matrix of this new process is obtained by letting

R̃ := I + λ−1Q. (2.6)

With this new process, the transition probabilities are given by

P̃(t) =
∞∑

n=0

R̃n (λt)ne−λt

n! , (2.7)

and one can verify that P̃vw(h) = Qvwh + O(h) = Pvw(h) and P̃ww(h) = Qwwh +
O(h) = Pww(h) as h ↓ 0, thus showing that the two processes, the one authoriz-
ing self-substitutions and the other that does not, have the same probability law
Pr(W (t1) = w1,W (t2) = w2, . . . ,W (tk) = wk) for states wi ∈ A and times ti sat-
isfying 0 ≤ t1 < t2 < . . . < tk .

Nucleotide and codon substitution models are “mechanistic” in the sense that the
different parameters involved in the rate matrix correspond to particular biological
properties. For instance, transitions and transversions generally have distinct rates
in order to reflect the specificities of the biochemical processes involved in point
mutations. Similarly, codon models distinguish between non-synonymous and syn-
onymous substitutions in order to accommodate for the potential impact of natural
selection acting on coding sequences. In contrast, models of substitutions between
amino acids are constructed in an empirical manner. It is computationally infeasible
and generally risky from a statistical perspective to estimate substitution rates from
the analysis of individual data sets. In fact, precise and accurate estimation of 190
(i.e., 20 × 19/2) substitution rate parameters require large numbers of sequences,
displaying reasonable amounts of divergence. Rather than estimating these rates on
a routine basis as is done with nucleotide models, relative rates of substitutions were
estimated from the analysis of data bases of multiple homologous sequence align-
ments [4, 15, 18, 33] using ad hoc inference techniques. The rate matrices hence
obtained are then used “as is” in the analysis of individual data sets, keeping the rate
parameters fixed throughout the inference.

The vast majority of substitution models are homogeneous, i.e., a single rate
matrix applies everywhere in the phylogeny. As a consequence, these models are
also stationary, i.e., the vector of state frequencies Π that satisfies QΠ = Π is
the same everywhere in the tree. This vector also corresponds to the long-term (or
limiting) frequency the substitution process spends in each state. We refer the reader
to [7] for further detail on the statistical properties of these models, although some
of these properties are also described in subsequent sections of the present chapter.
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Fig. 2.1 Elements of
notation. W is the root of
the binary tree. The observed
data corresponds to
DU ∪ DV . τU and τV are the
topologies of the two
subtrees rooted at nodes U
and V , respectively

2.3 Matrix-Based Calculation of the Likelihood Function

Figure 2.1 serves as a basis to introduce the notation used in this chapter.We consider
a binary treewith nodeW as its root. NodesU andV are sister nodes that are the direct
descendants ofW . τW (or, simply, τ ) denotes the topology of the whole tree while τU
and τV are the topologies of the subtrees rootedwith nodesU and V , respectively.We
assume that the substitution process giving rise to a datum at the tips of the tree, noted
as DW , or simply D, is a continuous-timeMarkov chain. As before, the state space for
this Markov process is denoted as A and corresponds to the set of four nucleotides
or twenty amino acids, depending on the type of sequences under scrutiny. Let DU

and DV be the discrete character states observed at the tips of the subtrees rooted
by U and V , respectively, so that D = DW = DU ∪ DV . The Markov process is
homogeneous and stationary with Π the column vector of equilibrium frequencies
of character states. P(lU ) is the transition probability matrix on the edge of length
lU between nodes W and U . P(lV ) and lV are defined in a similar fashion. In a
slight abuse of notation, we will also use W to denote the random variable giving
the character state at that node. Hence, W = w indicates that the state w ∈ A is
observed at node W . Finally, let M denote an instance of the phylogenetic model.
M is a composite set of parameters that includes the tree topology and the set of
substitution matrices on every edge of that tree. Note that these substitution matrices
are not independent since they derive from a unique ratematrix (e.g., HKY [10] or LG
[18]) corresponding to the generator of theMarkov process. Aswill be explained later
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in this chapter, mixture models apply several potentially independent rate matrices
on all edges of the tree, each matrix applying with a given probability.

The likelihood of the phylogenetic model for a given datum is as follows:

Pr(D|M ) = Π t × LW , (2.8)

where LW is the column vector (Pr(D|W = ·, τW )) ∈ [0, 1], i.e., the vector of likeli-
hoods conditioned on the state observed at nodeW and the current phylogenetic tree
τW (i.e., the whole phylogeny τ ), where τW can also be considered as the “union”
τU ∪ τV (plus the edge connecting nodes U to W and that between V and W ). The
calculation of LW can be done in a recursivemanner, involving the equivalent vectors
of conditional likelihoods at nodes U and V . We then have:

Pr(D|M ) = Π t × (
(P(lU ) × LU ) ◦ (P(lV ) × LV )

)
, (2.9)

where “◦” denotes the Hadamard product between two matrices, i.e., (A ◦ B)vw =
(A)vw(B)vw, while the symbol “×” corresponds to the standard product between
matrices/vectors. LU := Pr(DU |U = ·, τU ) is the likelihood of the phylogenetic
model defined by the subtree τU . LV is defined in a similar manner.

MostMarkovmodels used in phylogenetics are time-reversible. For this particular
class of models, we have ΠwPwv = Πv Pvw. In matrix notation, we thus have (Π ×
1t ) ◦ P = (1 × Π t ) ◦ P t , where 1 denotes a column vector of all ones of length |A |.
Using standard rules of matrix algebra and the properties of Hadamard products plus
the reversibility equality aforementioned, we rewrite Eq. 2.9 as follows:

Pr(D|M ) = (Π ◦ LU )t × P(l) × LV , (2.10)

where P(l) is the transition probability matrix along an edge of length l = lU + lV .

2.4 Likelihood Calculation and Pruning Algorithm Using
Vector Operations Only

The pruning algorithm is a recursivemethodwhere vectors of conditional likelihoods
are computed in a post-order tree traversal. Taking the tree in Fig. 2.1, we have:

LW = (P(lU ) × LU ) ◦ (P(lV ) × LV ), (2.11)

where both LU and LV are computed using the conditional likelihood vectors found
on the pairs of nodes corresponding to the immediate descendants of U and V , if
any. The recursion is initialized by instantiating the conditional likelihood vectors at
the tips using the data observed in the corresponding sequences.
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Evaluating the likelihood function then relies on two types of core computations
corresponding to the calculation of conditional likelihood vectors using Eq. 2.11 and
the calculation of the likelihood itself using Eq. 2.10. These calculations involve
the standard and Hadamard matrix product between matrices and vectors. In prac-
tice, these two operations are generally performed using series of core operations
involving scalars. For instance, the Hadamard product between two matrices could
be obtained by taking each element of the first matrix and multiplying it by the cor-
responding element in the second matrix. The same applies to the standard product
between two matrices, although this operation also requires adding scalars.

The present section explains how Hadamard and standard product applied to
matrices and vectors can also be conducted using core operations that involve vec-
tors instead of scalars. As detailed in the chapter by Stamatakis in the present book,
modern computers provide tools to perform standard operations on vectors whereby
adding or taking the dot-product between pairs of vectors entails the same compu-
tational load as adding or multiplying two scalars, thereby giving the opportunity to
considerably speed up matrix operations.

The pruning algorithm requires multiplying a transition matrix, noted as P , by a
vector L of conditional likelihoods (see Eq. 2.11). Considering the product P × L
naively, one would multiply each element on the first row of P by the corresponding
element in L and add the |A | scalars hence obtained in order to work out the first
element of the vector P × L. The same series of operations would be performed for
the second row of P and so on. Yet, this approach is not fully satisfactory if one wants
to deal with vectors only. Indeed, the series of operations performed by multiplying
the i-th row of P by L results in a scalar, i.e., the i-th element of the vector resulting
from P × L. Our objective here is that every operand in our calculations and the
corresponding results are all vectors.

One way to make sure vectors are used throughout is to rewrite P × L as
(
P ◦

(1 × Lt )
) × 1. Indeed, taking the product of a matrix by the vector 1 amounts to

adding the columns of this matrix, which can be done by adding vectors of length
|A |. Similarly, calculating P ◦ (1 × Lt ) can be done column-wise by taking the
Hadamard product between the vector made of the i-th column of P and a vector
made of |A | repeats of the i-th element of L.

In general though, the length of vectors core operations apply to may be different
from |A |. In order to clarify the explanations, we will refer to a core vector as a
block in what follows. The length of a block, i.e., the number of elements in one
such vector, is denoted as v, with v ≤ |A | and, in the particular case described here,
v mod |A | = 0. This last equality may not always hold however, depending on the
type of data and vectorization considered, and data structure padding may thus be
required. V will denote a single block while V will denote a vector of more than
one block. Algorithm 1 details the different steps in the calculation of

(
P ◦ (1 ×

Lt )
) × 1 using blocks and vectors of blocks. When considering scalar operations

only, evaluating P × L or
(
P ◦ (1 × Lt )

) × 1 requires O(|A |2) scalar operations.
Algorithm 1 involves onlyO(|A 2|/v) core vector operations where each core vector
operation has the same computational cost as a scalar operation. This improvement
in terms of computational time complexity comes at the cost of an increased memory
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traffic, however. Indeed, vector computation requires loading series of scalars into
dedicated data structure. These loading operations, which are not required when
dealing with scalars throughout the analysis, incur extra computational costs that
should not be ignored when assessing the pros and cons of using vectorization.

input : L, P
output: R // R is a vector of b blocks
v ← length of a block;
b ← |A |/v; // Number of blocks in A
R ← 0; // Initialize R
for i ← 1 to |A | do

Fill V with Li ; // V is a block
for j ← 1 to b do

x ← ( j − 1)v + 1; y ← jv + 1;
Fill W with P x :y,i ; // W is a block
R j ← R j + (W ◦ V ); // Update j-th block of R.

end
end

Algorithm 1: Calculation of
(
P ◦ (1 × Lt )

) × 1, where P and L are the tran-
sition probability matrix and the conditional likelihood vector at the bottom of
a given branch, respectively (e.g., one may have P = P(lU ) and L = LU or
P = P(lV ) and L = LV ).

2.5 Inferring Edge Lengths

2.5.1 Speeding Up the Likelihood Calculation

The transition probability matrix P(l) is derived from the infinitesimal generator
of the Markov process, or rate matrix, noted as Q, with P(l) = exp(Ql). Expo-
nentiating the rate matrix can be done through its eigendecomposition. We have
Q = U × Λ × U−1, where U is the matrix of right eigenvectors of Q and Λ

is the diagonal matrix of the corresponding eigenvalues. We thus have: P(l) =
U × exp(Λl) × U−1. Plugging this last equality into Eq. 2.10, we obtain:

Pr(D|M ) = (
(Π ◦ LU )t × U

) × exp(Λl) × (
U−1 × LV

)
. (2.12)

Let X be a vector of size n and M be a n by n diagonal matrix. Then it is straightfor-
ward to verify that the following equality holds X t × M = (X ◦ diag(M))t , where
diag(M) is the vector of size n made of the diagonal entries of M. Furthermore, let
Y be another vector of size n, then one can verify that X t × Y = 1t × (X ◦ Y) holds
as well. Using these two properties, Eq. 2.12 can be re-written as follows:
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Pr(D|M ) = 1t ×
((
U t × (Π ◦ LU )

) ◦ exp(λl) ◦ (
U−1 × LV

))
, (2.13)

where exp(λl) = diag(exp(Λl)), and λ is the column vector of eigenvalues of Q.
Considering Eq. 2.9, the number of scalar operations (product and addition) cor-

responding to the matrix-vector product P(lU ) × LU is 2|A |2 − |A |. The same
applies to the product P(lV ) × LV . The Hadamard product requires |A | scalar
operations while the product involving Π t requires 2|A | − 1 operations. In total,
the computational cost involved in the calculation of the likelihood (assuming LU

and LV are known) is that associated to 4|A |2 + |A | − 1 scalar operations. When
taking Eq. 2.10 instead, the computational cost is reduced to 2|A |2 + 2|A | − 1.
Importantly, each step in the optimization of l requires applying every scalar opera-
tion involved in the calculation of Eq. 2.9 or Eq. 2.10.

Considering now Eq. 2.13, the calculation of
(
U t × (Π ◦ LU )

)
requires 2|A |2

scalar operations while that of
(
U−1 × LV

)
requires 2|A |2 − |A | operations. The

two Hadamard products require |A | each, and the product involving 1t costs 2|A | −
1 so that, in total, 4|A |2 + 3|A | − 1 operations are required, which does not make
this approach particularly computationally effective compared to the two others if
applied naively. However, it is important to note that the terms

(
U t × (Π ◦ LU )

)

and
(
U−1 × LV

)
are not functions of l. The corresponding vectors are constant

throughout the optimization of that edge length. Therefore, the computational burden
involved in Eq. 2.13 is that corresponding to the two Hadamard products around the
exponential term and the product involving 1t only, i.e., 4|A | − 1. Leaving aside the
pre-computations, the computational complexity of the likelihood calculation during
a branch length optimization therefore drops from O(|A |2) when using Eq. 2.10 to
O(|A |) when using Eq. 2.13.

2.5.2 Optimizing One Length

The calculation of the first and second derivative of the likelihood at a given site with
respect to the length of an edge is given by two expressions very similar to that of
Eq. 2.13. Indeed, we have:

d Pr(D|M )

dl
= 1t ×

((
U t × (Π ◦ LU )

) ◦ λ ◦ exp(λl) ◦ (
U−1 × LV

))

d2 Pr(D|M )

dl2
= 1t ×

((
U t × (Π ◦ LU )

) ◦ λ ◦ λ ◦ exp(λl) ◦ (
U−1 × LV

))
.

The first and second derivatives of the log-likelihood with respect to the same edge
length are then obtained as follows:
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d log Pr(D|M )

dl
= 1

Pr(D|M )

d Pr(D|M )

dl

d2 log Pr(D|M )

dl2
= 1

Pr(D|M )

d2 Pr(D|M )

dl2
−

(
d log Pr(D|M )

dl

)2

,

and the first and second derivatives of the log-likelihood for a whole sequence align-
ment are obtained by applying these last two equations at each site of the align-
ment and then summing the obtained values. The ability to evaluate quickly and
without approximation the derivatives of the log-likelihood with respect to a given
edge length is paramount to the efficient optimization of this model parameter. The
Newton–Raphson method for finding roots of functions could then be applied to the
first derivative function in order to obtain a maximum likelihood estimate of the edge
length. One would simply need to make sure that the optimization converged to a
maximum of the log-likelihood function rather than a minimum by verifying that the
second derivative at the stationary point is negative.

Weexperienceddifficultieswith this technique, however, especially in caseswhere
the initial value for the optimization routine is far from the optimum, which is a
common issue that affects many optimization methods. Instead, we considered opti-
mization techniques that rely only on the first derivative. Brent’s method [3] was the
technique used in PhyML until 2017. It is a combination of a quadratic interpolation
method, which works well in the vicinity of an optimum of the function of interest,
and other optimization tricks that ensure that the maximum of the function is always
bracketed by an interval of decreasing width between successive iterations of the
algorithm. We recently switched to an original and more efficient method that com-
bines the same two ingredients as Brent’s that are the bracketing of a maximum and
interpolation. This new approach relies on a cubic spline interpolation, which can be
asymmetric in contrast to a parabola as that used in Brent’s method. The derivatives
of the cubic spline at the bracketing points are equal to that of the target function,
thereby providing a sound approximation of the optimized function near a maximum
even in cases where this target function is not symmetrical around that point.

Let �(lu) and �(lv) be the log-likelihoods calculated for a given phylogeny with
the length of the edge to be optimized set to lu and lv, respectively. These lengths are
chosen such that lu < lv. Also, we have d�(lu)/dl > 0 and d�(lv)/dl < 0 so that a
maximum of the likelihood function exists in the [lu, lv] interval. We then fit a cubic
spline to the log-likelihood function in the interval aforementioned. This spline is a
polynomial of degree three that has only onemaximum in [lu , lv] and has its derivative
equal to that of the function of interest at lu and lv (i.e., d�(lu)/dl and d�(lv)/dl,
respectively). The argument, l∗, that maximizes the spline function is calculated
analytically. The first derivative of the log-likelihood is next evaluated at that point
(i.e., l∗). We then have lu ← l∗ if d�(l∗)/dl > 0 or lv ← l∗ if d�(l∗)/dl < 0. A new
bracketing interval is then defined that way and the algorithm moves on to the next
iteration. The optimization stops whenever the width of the interval [lu, lv] is below
a certain threshold.
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We compared the number of times the likelihood function was evaluated during
the optimization of edge lengths using the spline interpolation technique described
above and Brent’s method. We considered two real-world data sets. The first is an
alignment of 1,566 nucleotide sequences, 915 bp-long. The second has 62 amino acid
sequences, each of thembeing 230,322 residue-long. TheGTR+G4 [31, 34] andLG
+G4 [18] substitutionmodels were used in the first and second cases, respectively. A
phylogeny was first estimated using a distance-based tree reconstruction technique.
Edge lengthswere then optimized on a fixed tree topology. For the nucleotide data set,
the optimization required 781,996 calls to the likelihood function when using Brent’s
method while it required only 176,938 calls to the same function when using spline
interpolation. For the protein data set, the equivalent figures were 20,471 for Brent
and 4,022 for spline interpolation. Although these results concern a very limited
number of examples and parameter settings, they strongly suggest that the spline
interpolation technique does a better job at fitting the likelihood function, thereby
requiring significantly less computation in order to reach a maximum compared to
Brent’s approach.

2.5.3 Optimizing All Lengths

The optimization of all edge lengths in the tree can be performed in an efficient man-
ner using a pre-order traversal algorithm. Let us consider the tree depicted in Fig.
2.2. A post-order tree traversal is conducted in the first place so that the conditional
likelihood vectors LX , LU , LV and LW are already known. This traversal was initi-
ated at a tip node taken in τZ , i.e., the subtree in the top triangle of Fig. 2.2 (the root
node corresponds to the green disk in the figure). Let L↑

Y := Pr(DZ|Z = ·, τZ ) cor-
respond to a partial likelihood vector “looking up” from node Y , i.e., looking toward
the subtree containing the root of the tree (hence the ↑ symbol). Optimizing the
length of the edge between vertices W and Y , i.e., lW , requires the calculation of the
partial likelihood vector L↑

W := Pr(DZ ∪ DX |Y = ·, τY ), whereby τY = τX ∪ τZ is
the subtree made of the union of subtrees τX and τZ . Once L

↑
W is known, optimizing

the length of the edge under scrutiny can be done by applying Eq. 2.13 as follows:

Pr(D|M ) = 1t ×
((

(Π ◦ LW )t × U
) ◦ exp(λlW ) ◦ (

U−1 × L↑
W

))
. (2.14)

The same two steps are applied next to optimize the length of the edge betweenU and
W , i.e., lU . L

↑
U is calculated first (it is derived using L↑

W and LV along with P(lW )

and P(lV ) and applying Eq. 2.11). The optimization then takes place by applying
Eq. 2.13 as follows:

Pr(D|M ) = 1t ×
((

(Π ◦ LU )t × U
) ◦ exp(λlU ) ◦ (

U−1 × L↑
U

))
. (2.15)
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Fig. 2.2 Elements of
notations used to present
the recursive optimization
of edge lengths. The root of
the tree is taken as a tip here
(in green). The observed data
is given by
DU ∪ DV ∪ DX ∪ DZ

Once all the edges under node U are optimized by applying this pre-traversal
algorithm, the partial likelihood vector LU is updated and the length of the edge
connecting U and V is optimized once more. The same steps are then followed for
the subtree rooted by node V after updating L↑

V and optimizing the edge between
nodesW and V . Once all the edges under nodeW are optimized, the partial likelihood
vector LW is updated using Eq. 2.11. Doing so guarantees that the optimization of
lX is performed using an up-to-date vector L↑

X (which requires having an up-to-date
version of LW ). A very similar approach that combines edge length optimization and
updating of the partial likelihood vector in a post- and pre-traversal algorithm was
implemented early on in the software package MOLPHY [1].
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2.6 Inferring Parameters of Mixture Models

We previously considered that D referred to a datum, i.e., a single column of a
nucleotide or amino acid sequence alignment.Wehereby slightlymodify this notation
so that Ds now corresponds to the data at the column s of the alignment. Because
sites are assumed to be independent and identically distributed, we have:

� =
L∏

s=1

Pr(Ds |M ), (2.16)

where L is the number of columns in the alignment. Because evolutionary processes
vary along the sequences (e.g., the third position in coding genes is fast-evolving
compared to the other two positions), mixture models generally provide substan-
tially better fit to the data than the default approach. Mixture models are standard
probabilistic models whereby each observation making up the data is assumed to
have been generated by a model involving distributions of parameters rather than
single values. Different observations in the sample can thus be generated under
distinct values of the parameter(s) of interest. In the case under scrutiny here, the
mixture defines a probabilistic distribution over (relative) rates of evolution, thereby
authorizing different sites to have distinct rates of substitution. Mixture models have
also been used extensively to model the variability of selective regimes across amino
acids in coding sequences (e.g., [22, 36, 37]), to accommodate for the variability of
secondary structures along proteins sequences [19] or to take into account different
patterns of substitutions in protein regions evolving at distinct rates [17].

We consider a particular type of mixture model with K classes where only the
frequencies of each class are free to vary. For instance, in the mixture below:

� =
L∏

s=1

K∑

c=1

Pr(Ds |R = wc,M )Pr(R = wc), (2.17)

or, using a more concise notation:

� =
L∏

s=1

K∑

c=1

Pr(Ds |wc)pc, (2.18)

the values of w1, . . . ,wK are fixed, while that of the corresponding frequencies
p1, . . . , pK are free to vary and can be adjusted so as to maximize the fit of the model
to the data available. In this last expression, Pr(Ds |wc) corresponds to the probability
of observing Ds under a phylogenetic model whereby the length of every edge is
multiplied by wc.
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For any K ≥ 1, the log-likelihood is written as follows:

log � =
L∑

s=1

log
K∑

c=1

pc Pr(Ds |wc)

=
L∑

s=1

log

[
K−1∑

c=1

pc
(
(Pr(Ds |wc) − Pr(Ds |wK )

) + Pr(Ds |wK )

]

.

Let fs( p) be the argument of the logarithm function above for a given site s. Taking
the second row of the last equation above, it is straightforward to verify that the
following equality holds: fs(

p+ p′
2 ) = 1

2 ( fs( p) + fs( p′)), so that fs( p) is linear (and
thus both concave and convex) and its logarithm is strictly concave. We then have:

log
(
fs

( p + p′

2

)) = log
(1

2

(
fs( p) + fs( p′)

))
>

1

2

(
log

(
fs( p)) + log( fs( p′)

))
.

Finally, the sum of strictly concave functions is also strictly concave, making log � a
strictly concave function too.

The concavity of the logarithm function guarantees that the optimization of the
frequency parameters does not encounter local optima. Note that this conclusion is
applicable to the particular situationwhere only the frequencies of themixture classes
are adjusted while the relative rates are fixed. The +I model, where a proportion of
sites do not evolve, belongs to this class of model. For a larger number of classes,
this model contrasts with the standard approach for modeling the variability of rates-
across sites. A discrete gamma distribution where the class frequencies are fixed
while the relative rates are given by the (estimated) shape of the gamma distribution
corresponds to the most popular approach. Similarly, the FreeRate model [25] (but
see also [17]) adjusts both the relative rates and the corresponding frequencies. There
is no guarantee that the likelihood function is concave in this context.

Empirical evidence indicates that the likelihood function is not strictly concave
when using the standard approximation of the gamma distribution [12]. The fact that
this function does not have local maxima when the gamma distribution is discretized
by fixing the relative rates to sensible values and adjusting the rate class frequencies
suggests that this approximation could in fact be preferable to the standard approach.
Similar observations were made before by Susko et al. in 2003 [28]. These authors
considered a discrete gamma distributionwhereby the relative rates of evolutionwere
fixed and equally spaced while the probability of the corresponding rate classes was
adjusted so as to maximize the likelihood. They pointed out that this approximation
of the continuous gamma distribution is easier to deal with from a computational
perspective since adjusting the class frequencies can be done very quickly compared
to the optimization of the relative rates (the pruning algorithm can be avoided when
optimizing the frequencies). They also showed that more accurate rate estimates
could be obtained using their approximation compared to the standard one.
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2.7 Conclusion

The present chapter gives an overview of the specifics underlying the optimization
of edge lengths in a phylogeny under the maximum likelihood criterion. We show
how to best exploit the architecture of modern computer processors to speed up
the calculation of the likelihood itself, along with partial likelihood vectors. These
calculations are performed using vector operations only—a context in which the
application of vector intrinsics is particularly suitable. We also show that the amount
of computation required for the evaluation of the likelihood during the optimization
of a given edge length can drop from |A |2 to |A |, which is particularly useful when
considering amino acid substitutionmodels and evenmore sowith codonmodels.We
present a post- and pre-traversal algorithm for optimizing all edge lengths in the tree
that minimizes the amount of computation required for updating partial likelihood
vectors. These techniques are implemented in several state-of-the-art maximum like-
lihood tree building software programs. Nonetheless, to the best of our knowledge,
they have not been described in detail in the literature. We then make the point that
the most popular approach to model the variability of substitution rates-across sites
could be improved by fixing the rates and optimizing the corresponding frequencies
rather than the opposite. We show indeed that the likelihood function has only one
maximum when rates are fixed (while it is sometimes otherwise when they are not),
thereby providing a guarantee of “good behavior”.

Maximum likelihood tree estimation was introduced about four decades ago. This
chapter illustrates the fact that, despite its relatively old age, this approach is still a
source of interesting mathematical developments that can be used to further improve
the inference techniques, in particular in terms of the speed of calculation. In conjunc-
tion with important initiatives aimed at making large-scale computing services avail-
able to the public—the Cyber-Infrastructure for Phylogenetic Research (CIPRES)
Project, originally created by Bernard Moret amongst others, being arguably the
most popular of them—maximum likelihood tree inference has helped improve our
understanding of molecular evolution and biology in general. While current maxi-
mum likelihood software programs cannot cope with the analysis of thousands of
complete genomes, there are hopes that new likelihood-based techniques capable of
dealing with massive amounts of data, which rely on some of the advances described
in this book, will see the light in the near future.
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Chapter 3
High-Performance Phylogenetic
Inference

David A. Bader and Kamesh Madduri

Abstract Software tools based on the maximum likelihood method and Bayesian
methods are widely used for phylogenetic tree inference. This article surveys recent
research on parallelization and performance optimization of state-of-the-art tree
inference tools. We outline advances in shared-memory multicore parallelization,
optimizations for efficient Graphics Processing Unit (GPU) execution, as well as
large-scale distributed-memory parallelization.

Keywords Phylogenetic tree inference ·Maximum likelihood · Bayesian
inference · Parallel algorithms · Algorithm engineering

3.1 Introduction

Computational phylogenetics is an active research area. A variety of algorithms and
software tools exist for the compute-intensive task of tree inference. Early methods
were based on distance-based similarity clustering [18, 43, 46] and on theMaximum
Parsimony principle [17, 20]. These simple methods are now subsumed by more
sophisticated algorithms. Probabilistic approaches, specifically Maximum Likeli-
hood (ML)-based [15] methods and Bayesian inference methods [25, 42], currently
dominate the landscape of tree inference software. As of October 2018, the OMIC-
tools website [39] lists 266 software tools in the Phylogenetic Inference category.
Felsenstein’s Phylogeny Programsweb page [14] lists more than 90ML-basedmeth-
ods and more than 25 Bayesian inference methods. The Cyberinfrastructure for Phy-
logeneticResearch (CIPRES)ScienceGatewayVersion 3.3 [9, 30] currently supports
15 parallel programs for tree inference and sequence alignment. Phylogeny.fr [10]
is another long-running web portal for phylogenetic analysis.
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Popular, free, and open-source tools include PHYLIP [13], RAxML [47, 48],
PhyML [22, 23], MrBayes [42], and BEAST 2 [6]. Nearly all of these tools support
some form of parallelism.

Moret played a seminal role in establishing the research area of high-performance
computational phylogenetics by leading the development of GRAPPA and associ-
ated algorithms [21, 32–34]. GRAPPA is a maximum parsimony-based suite of
programs for phylogeny reconstruction using genome rearrangements. For break-
point phylogeny reconstruction, using efficient data structures and optimizations,
GRAPPA was engineered to perform nearly 2500 times faster than the original
Sankoff–Blanchette algorithm [44] on a single processor. When executed on a 512-
processor cluster, GRAPPA achieved an awe-inspiring million-fold speedup [5].
GRAPPA is a significant milestone in the areas of algorithm engineering and paral-
lel phylogenetic inference. Many of the current probabilistic inference methods take
aligned sequences, typically DNA or amino acid sequences, as input. The quality of
multiple sequence alignment will thus directly impact the quality of trees generated.
The methods also assume a model for site evolution and estimate model parameters.
The Generalized Time Reversible (GTR) model [51] is a commonly used model for
inference on DNA and amino acid sequences. For additional background on statisti-
cal methods, please refer to [24, 52]. Current software tools support a wide variety
of evolutionary models.

Likelihood calculations [48] constitute a significant fraction of the overall run-
ning time of bothML and Bayesian inference methods. We first discuss performance
optimizations and parallelization strategies to speed up likelihood calculations. In
Sect. 3.3,wediscussmiscellaneous execution time-reducing implementation changes
and approaches to improve multi-node performance. (See also the chapters by Sta-
matakis and Guindon & Gascuel in this book for more about this subject.).

3.2 Faster Likelihood Calculations

ML-based tree reconstruction has been shown to be anNP-hard optimization problem
under various assumptions [8, 41]. An exponential number of tree configurations
need to be evaluated in order to find the optimal solution, and this is intractable
with even a modest number of organisms. Thus, software tools employ a variety of
heuristics to reduce the search space. For each tree topology, evaluating the likelihood
function involves postorder tree traversal and propagating likelihood values from
the tips to the root according to Felsenstein’s pruning algorithm [15]. Likelihood
computations also appear in Bayesian inference methods. These computations are
both floating-point operation and memory-intensive, and take up a dominant fraction
of the running time in state-of-the-art programs.

Fortunately, there is abundant fine-grained parallelism to exploit in these likeli-
hood calculations. The partial likelihood scores at each site can be computed inde-
pendent of other sites. Since the number of sites can vary from thousands to mil-
lions, the multiple sequence alignment output can be further split into partitions that
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can be evaluated independently. Likelihood calculations are also prone to floating-
point rounding errors and need to be evaluated carefully. The community is moving
away from monolithic codes and transitioning to using library-based approaches.
Bio++ [12] is an early example of a C++ library with optimized implementations
of key phylogenetic primitives. BEAGLE (Broad-platform Evolutionary Analysis
General Likelihood Evaluator) [4, 50] is a library and an application programming
interface for parallel likelihood calculations. BEAGLE routines can be used in both
ML-based inference methods and Bayesian methods. In addition to partitioning of
alignment sites, fine-grained data parallelism is possible across rate categories and
state values. BEAGLE includes SSE implementations for CPUs, as well as CUDA
and OpenCL implementations of routines for GPUs.

BEAGLE also provides interfaces to the inference tools BEAST 2 [6],
BEAST [11], MrBayes [42], and GARLI [54]. It is shown that the library-based
approaches outperform the standalone implementations, and that the GPU-based
approach delivers a significant performance boost over a CPU implementation.
Recent work by Ayres and Cummings [3] explores additional tuning opportunities
to further improve the performance of BEAGLE routine.

Phylogenetic Likelihood Library (PLL) [19] is another open-source library
inspired by Bio++ and BEAGLE. PLL is used by ExaML [29] and RAxML-NG [28],
two recent and modern implementations of RAxML, and also interfaces with IQ-
TREE [37], a recent ML-based inference package. PLL has a backend for the Intel
Xeon Phi accelerator, Python bindings, includes many SIMD implementations, and
also supportsMPI parallelization. It is shown to be 1.9–4× faster [19] than BEAGLE
on benchmarks.

3.3 Performance Optimizations and Multi-node Parallelism

Bayesian methods [7, 52] approximate the posterior distribution of evolutionary
parameters using Bayes’ theorem. The methods rely on sampling approaches such
as theMetropolis-coupledMarkov chainMonteCarlo (MCMC)algorithm, give prob-
ability distributions for model parameters, and allow incorporation of prior assump-
tions. Altekar et al. [2] discuss shared-memory and distributed-memory paralleliza-
tion of the sampling scheme used in MrBayes. ExaBayes [1] also uses distributed
Metropolis-coupled chains, and further proposes chain swaps using nonblocking
communication messages. This nonblocking communication optimization is shown
to reduce running time by up to 19% [1]. ExaBayes also includes a memory-saving
technique by recomputing partial results on-demand. ExaML uses a similar recom-
putation optimization to reduce inter-node communication. When likelihood calcu-
lations are parallelized based on partitions, the Pi matrix calculations are redundantly
performed by every process. Kobert et al. [27] formulate a bi-criterion data distribu-
tion problem to determine the optimal distribution of partitions and sites to processes,
and show that their new implementation is up to 3× faster than the implementation
with the prior data distribution scheme. Other notable multi-node parallelizations
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include the master–worker strategy to parallelize the IQPNNI approach [31] and
the Java-based DPRml [26] method. I/O optimizations and checkpointing are other
important considerations in parallel environments. ExaML and Beast 2 include sup-
port for periodic disk-based checkpointing. ExaML converts the text-based input file
to a binary format to permit parallel I/O.

In addition to parallelism, algorithmic changes also contribute to significant
speedups. For instance, FastTree [40] employs several novel optimizations and is
shown to be two orders of magnitude faster than RAxML version 7. A recent eval-
uation by Zhou et al. [53] shows that FastTree continues to be faster than recent
versions of RAxML/ExaML, PhyML, and IQ-TREE, while also producing trees that
are more dissimilar to trees generated using the other tool.

3.4 Conclusions

We have witnessed dramatic advances since early work on parallel phylogenetic
inference [16, 45, 49]. Software development for computational phylogenetics is
thriving [36], and performance optimization continues to be a focal area. It is now
possible to achieve significant performance improvements for phylogenetic likeli-
hood function calculations by leveraging modern libraries such as BEAGLE and
PLL. Moret et al. [35] review methods for phylogenetic inference from rearrange-
ment data, and describe anML-based method that is competitive with approaches for
sequence data. For the problem of supertree estimation, Nguyen et al. [38] show that
Matrix Representation with Likelihood (MRL), an ML-based approach, is fast and
outperforms leading alternative supertree methods (see chapter by Warnow in this
book for more aboutMRL and supertree methods). Parallel algorithms and optimiza-
tions to improve scaling of these recent ML-based methods could be a promising
future research direction.

Acknowledgements This work is supported in part by the National Science Foundation awards
#1339745, #1439057, and #1535058.
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Chapter 4
Hands-on Introduction to
Sequence-Length Requirements
in Phylogenetics

Sébastien Roch

Abstract In this tutorial, through a series of analytical computations and numerical
simulations, we reviewmany known insights into a fundamental question: howmuch
data is needed to reconstruct the Tree of Life? A Jupyter notebook and code for this
tutorial are provided in Python.

Keywords Phylogenetics · Sequence-length requirements · Distance-based
methods · Maximum likelihood estimation

4.1 Introduction

Phylogeny estimation is a central problem in evolutionary biology and beyond [29].
In the most basic form of the problem, one has access to aligned homologous DNA
sequences, say from a common gene, across multiple species. The goal is to output a
phylogeny that describes the underlying evolutionary relationships. A large number
of inference methods have been developed for this problem [31]. Often one relies on
the assumption that the data fits a stochastic model of sequence evolution on a tree,
under which manymethods have been proven to be statistically consistent, i.e., as the
amount of data increases, the estimated phylogeny converges to the true phylogeny
with probability one.

In order to compare the statistical accuracy of different methods, however, a nat-
ural theoretical approach is to analyze the rate at which this convergence occurs.
Through a series of analytical computations and numerical simulations, we review
some known insights into this fundamental question: how much data is needed to
reconstruct the Tree of Life? After some basic definitions, we analyze in detail a
simple setting: the three-leaf rooted case under the Cavender–Farris model. Despite
its simplicity, this setting already brings to light the important role played by various
parameters, in particular, the shortest branch length and the depth, in the difficulty of
reconstructing phylogenies. We consider both distance-based and likelihood-based
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methods, as well as some information-theoretic lower bounds. We subsequently
extend these observations to larger trees, emphasizing the role of a different param-
eter, the branching rate.

Inspired by Bernard Moret’s work in this area, which bridges theoretical [32] and
empirical [15, 16, 24] perspectives, we also test all mathematical predictions against
(admittedly limited) numerical simulations. Code is provided in Python and a Jupyter
notebook is available at

https://github.com/sebroc/seq-len

Finally, bibliographic information can be found in the last section.

4.2 Definitions

The unknown phylogeny is a tree T = (V, E) whose root R has degree 2 and whose
internal vertices have degree 3. We let Tn be the set of such phylogenies with n
leaves.

The sequence data at the leaves L = {X1, . . . , Xn} is assumed to be generated
under the Cavender–Farris (CF) model [2, 11] (also referred to as the Cavender–
Farris–Neyman (CFN) model in [31]). The CF model is a two-state model, usually
defined on the state space {0, 1}, but we use instead {−1,+1} for reasons that will
become clear below. Formally, given branch lengths le ∈ R+ for e ∈ E , every site i =
1, . . . , k is distributed independently according to the following process. Pick the root
state σ i

R uniformly at random in S = {−1,+1}. A substitution occurs independently
on edge e with probability

p(le) := 1

2

(
1 − e−2le

)
.

Let τ i
e = −1 if a substitution occurs on e on site i , and let τ i

e = +1 otherwise. The
state at U on site i is

σ i
U = σ i

R

∏

e∈P(R,U )

τ i
e ,

where P(R,U ) is the set of edges on the path from root R to vertex U . While this
representation of the CF model may be unfamiliar to the reader, it will make both
analytical derivations and numerical computations more straightforward. Denoted
by

σ
(k)
U = (σ 1

U , . . . , σ k
U ),

the resulting sequence at U and let σ (k)
L = {σ (k)

X : X ∈ L} be the set of sequences at
the leaves. We write σ

(k)
L ∼ (T, l)⊗k for a sequence dataset with k sites generated at

the leaves L of T with branch lengths l = (le : e ∈ E).
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A phylogenetic reconstruction algorithm is a collection of maps {Rk
n : SL×[k] →

Tn} from sequence datasets of length k on L to phylogenies with n leaves, for
all n, k ∈ N (where we used the notation [k] = {1, . . . , k}). Such an algorithm is
statistically consistent, if for any number of leaves n and any weighted phylogeny
on n leaves (T, l), the probability of correct reconstruction goes to 1 as the sequence
length k goes to +∞, i.e.,

lim
k

P

[
Rk

n(σ
(k)
L ) = T

]
= 1,

where σ
(k)
L ∼ (T, l)⊗k .

The sequence-length requirement of a consistent reconstruction algorithm R =
{Rk

n :, n, k ∈ N} is a natural way to quantify the convergence rate of the success
probability as k → +∞. Fix δ ∈ (0, 1). Formally, we define the sequence-length
requirement of R at (T, l) as the smallest integer KR(T, l) such that

P

[
Rk

n(σ
(k)
L ) = T

]
> 1 − δ,

for all k ≥ KR(T, l), where σ
(k)
L ∼ (T, l)⊗k . The requirement at a given model (T, l)

is not particularly meaningful and we can always achieve perfect reconstruction by
simply outputting (T, l) on any dataset. We instead consider a class of phylogenetic
models P , e.g., all phylogenies with n leaves and branch lengths in some set of
allowed values. We will then define the sequence-length requirement over P as

KR(P) = sup
(T,l)∈P

KR(T, l).

Rather than computing KR explicitly, one typically looks for upper and lower bounds
that depend on structural parameters that affect the accuracy of R, namely, the size
of the tree, its shortest branch length as well as its depth.

4.3 A Simple Setting

Wewill mostly focus on the simplest setting, a three-leaf phylogeny under themolec-
ular clock assumption. Despite its simplicity, this setting suffices to illustrate key
elementary insights about sequence-length requirements.

Definition 1 (Three-species setting). On the set of leaves L = {A, B,C}, there are
three possible rooted topologies denoted, respectively, by AB|C , AC |B, and BC |A,
where the first two leaves are “closest.” For T = XY |Z , let M be the most recent
common ancestor of X and Y . We denote by g the lengths lXM = lY M and we denote
by f the length lMR , where R is the root. We further assume that lZ R = g + f .
Notice that all paths from the root to the leaves have the same length—this is the
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so-called molecular clock case. We refer to this model as XY |Zg, f and we write
σ

(k)
L ∼ XY |Z⊗k

g, f for a corresponding dataset of length k.

We will use numerical simulations (embedded in the text) to illustrate some basic
results on sequence-length requirements. Below the function AB_C generates N
sequence datasets of length k at the leaves of the tree T = AB|C with parame-
ters g and f, as defined above. Rather than outputting the sequences themselves, it
returns what will turn out to be a more convenient representation, for each pair of
leaves X,Y , each site i and each sample the quantity

siXY = σ i
Xσ i

Y ,

which is −1 if X and Y disagree, and +1 otherwise. Note that each assignment of
values siAB, siAC , siBC , in fact, corresponds to two different sites (by flipping all the
signs), but this will not be an issue below. To see how these siXY values are generated,
note that a different but equivalent expression for siXY is siMXs

i
MY , where we use

the notation siU1U2
= σ i

U1
σ i
U2

for any two vertices U1,U2 ∈ V . Further, observe that
siMA = τ i

M A and siMB = τ i
MB while

siMC = τ i
RMτ i

RC ,

i.e., there is a substitution betweenM andC if there is an odd number of substitutions
on the path RM, RC . The total length of this path is g + 2 f and, as a result, it can be
checked (using the computations later in this section, for instance) that the probability
that siMC = −1 is p(g + 2 f ).

from math import exp, sqrt
import numpy as np
np.random.seed(0)

def l2p(l): # branch length to substitution probability
return (1-exp(-2*l))/2

def sub(p,k,N): # output -1 indicates substitution (o.w. 1)
return 1 - 2*(np.random.rand(N,k)<p)

def AB_C(g,f,k,N): # generate dataset under AB|C
sMA, sMB = sub(l2p(g),k,N), sub(l2p(g),k,N)
sMC = sub(l2p(g+2*f),k,N)
return sMA*sMB, sMA*sMC, sMB*sMC

The class of reconstruction methods that is perhaps easiest to analyze are the
distance-based methods, i.e., loosely speaking those methods based on pairwise
sequence comparisons. Let

Σk
XY =

k∑

i=1

siXY .
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Observe that this quantity is positive if and only if X and Y agree on a majority
of sites. The uncorrected distance formula under the CF model, i.e., the fraction of
differences between the sequences at X and Y is then given by 1

2

(
1 − 1

kΣ
k
XY

)
.

To provide some insights into the sequence-length requirements of distance-
based methods, we begin with the following intuitive algorithm D over three-species
datasets:

Definition 2 (Algorithm D). Given sequence data σ
(k)
L , we set D(σ

(k)
L ) = XY |Z if

min
{
Σk

XY − Σk
X Z ,Σk

XY − Σk
Y Z

}
> 0;

and we return a failure if no such pair exists. Notice that at most one pair can satisfy
this property. In words, we choose the closest pair to be that whose sequences are
most similar.

Numerical simulations: The function test_pairwise below implements this
method and estimates its accuracy under sequence data of length up to k generated
under T = AB|C with parameters g, f. The number of repetitions is N. For speed,
we reuse the data for sequence length k ′ − 1 in the simulation for sequence length
k ′.

def comp(criABvAC,criABvBC): # cumulative comparison across seq
return np.cumsum(criABvAC,axis=1), np.cumsum(criABvBC,axis=1)

def test_pairwise(g,f,k,N): # testing D under AB|C
sAB, sAC, sBC = AB_C(g,f,k,N)
ABvAC, ABvBC = comp(sAB-sAC,sAB-sBC)
return np.sum(np.logical_and(ABvAC>0, ABvBC>0),axis=0)/N

As the next experiment illustrates, the frequency of successful reconstruction byD
increases to 1 as k → +∞. That is, the simulation supports (but does not prove) the
claim that D is a consistent reconstruction algorithm in this simple setting (Fig. 4.1).

import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams[’figure.dpi’] = 300 # high-resolution figures

# EXP 1: accuracy of pairwise comparisons v. k
import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams[’figure.dpi’] = 300 # high-resolution figures

g, f, k, N = 0.1, 0.05, 500, 1000

freq_succ_pw = test_pairwise(g, f, k, N)

plt.plot(np.arange(1,k+1),freq_succ_pw);
plt.xlabel(’Sequence Length’), plt.ylabel(’Success Probability’);

Analytical derivation: In fact, consistency is straightforward to establish analyti-
cally in this case. Indeed, recall that siAB = siMAs

i
MB = τ i

M Aτ
i
MB . Define
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Fig. 4.1 Success probability of D as function of sequence length

E
[
τ i
M A

] = [+1](1 − p(g)) + [−1]p(g) = e−2g =: θ(g).

Because edge substitutions are independent, it follows that

E
[
siAB
] = E

[
τ i
M Aτ

i
MB

] = θ(g)2.

Similarly, E
[
siAC
] = θ(g + 2 f )2 and E

[
siBC
] = θ(g + 2 f )2. Hence, by the law of

large numbers, as k → +∞ it holds that

1

k
Σk

AB → θ(g),
1

k
Σk

AC → θ(g + 2 f ),
1

k
Σk

BC → θ(g + 2 f ).

Since θ is strictly decreasing in its argument, the last observation implies thatΣk
AB is

eventually larger thanbothΣk
AC andΣk

BC with probability 1, establishing consistency.

Claim 1 (Consistency of D). In the three-species setting, the algorithm D is statisti-
cally consistent.

In the next section, we consider the rate of convergence of D.

4.4 Phylogenetic Signal

As pointed out earlier, two structural parameters that affect the sequence-length
requirement of reconstruction algorithms are the shortest branch length and the depth
of a phylogeny. We study them, in turn, in the three-leaf case. We do not compute the
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sequence-length requirement explicitly—rather we obtain upper bounds depending
on g and f . In a subsequent section, we also provide lower bounds.

Analytical derivation: Let T = AB|C , assume that σ (k)
L ∼ AB|C⊗k

g, f and letΣ
k
XY be

defined as above. For the distance-based method D to succeed, it must be that events
EAC = {Σk

AB − Σk
AC > 0} and EBC = {Σk

AB − Σk
BC > 0} hold simultaneously. To

get an upper bound on this probability, we appeal to a standard concentration result,
Hoeffding’s inequality (see e.g. [23]), which states that if W1, . . . ,Wk are indepen-
dent, respectively, [αi , βi ]-valued random variables, then for all ε > 0

P

[
k∑

i=1

(Wi − E[Wi ]) ≥ kε

]

≤ exp

(

− 2k2ε2
∑k

i=1(βi − αi )2

)

.

Hence, rewriting

P
[
E c
AC

] = P

[
k∑

i=1

(
siAC − θ(g + f ) − siAB + θ(g)

) ≥ k (θ(g) − θ(g + 2 f ))

]

,

and applying Hoeffding’s inequality, we obtain

P
[
E c
AC

] ≤ exp

(
−2k2 [θ(g) − θ(g + 2 f )]2

k(2)2

)
= exp

(
−k

2
[θ(g) − θ(g + 2 f )]2

)
.

(4.1)
By a union bound,

P

[
D(σ

(k)
L ) = T

]
= 1 − P

[
E c
AC ∪ E c

BC

] ≥ 1 − 2 exp

(
−k

2
[θ(g) − θ(g + 2 f )]2

)
.

Observe that
θ(g) − θ(g + 2 f ) = e−2g

(
1 − e−4 f

)
,

so that if

k ≥ κ̄D(g, f ) := 2 ln(2/δ)

e−4g
(
1 − e−4 f

)2 ,

then D succeeds with probability greater than 1 − δ. That is, the sequence-length
requirement of D at AB|Cg, f is smaller than κ̄D(g, f ).

This bound extends to a much larger class of phylogenetic models by symmetry
over the topologies and by the monotonicity of κ̄D(g, f ) in g and f .

Claim 2 (Sequence-length requirement of D). Let

P =
⋃

g′≤g, f ′≥ f

{AB|Cg′, f ′ , AC |Bg′, f ′ , BC |Ag′, f ′ }.
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We have the following upper bound on the sequence-length requirement of D over
P

KD(P) ≤ 2 ln(2/δ)

e−4g
(
1 − e−4 f

)2 .

4.4.1 Short Branches

Short branches affect sample complexity, as we show next.

Numerical simulations: When fixing δ, g and taking f → 0, a Taylor expansion
of the denominator shows that κ̄D(g, f ) scales like ∝ f −2. The next experiment
illustrates this point. Here, under T = AB|C for a fixed value of g and an array
f_arr of values of f , the smallest sequence length to achieve the target value
for 1 − δ is identified. That produces an empirical estimate of KD(AB|Cg, f ). In a plot
of log KD v. log f , the slope can be seen to be somewhat close to −2, the theoretical
prediction (Fig. 4.2).

# EXP 2: requirement for pairwise comparisons v. f
g, k, N, target = 0.1, 1500, 1000, 0.95
f_arr_min, f_arr_max, f_arr_len = 0.025, 0.075, 10
f_arr = np.linspace(f_arr_min, f_arr_max, num=f_arr_len)

k_thres_f = np.zeros(f_arr_len)
for i in range(f_arr_len):

freq_succ = test_pairwise(g, f_arr[i], k, N)
k_thres_f[i] = np.min(np.nonzero(freq_succ>target))

plt.plot(np.log(f_arr), np.log(k_thres_f));
plt.xlabel(’Log f’), plt.ylabel(’Log Length Required’);

Fig. 4.2 Sequence-length requirement of D as function of f
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4.4.2 Depth

The depth of the phylogeny also affects sample complexity. By “depth,” in the current
setting we mean the length of the paths from the root to the leaves, which when f is
small is roughly g.

Numerical simulations: Similarly, fixing δ, f in the previous expression gives that
κ̄D(g, f ) scales like ∝ e4g . The next experiment illustrates this point. Here, for an
array g_arr of values of g, the smallest sequence length to achieve the target
value for 1 − δ is identified. In a plot of log KD v. g, we observe a roughly linear
relationship, as expected (Fig. 4.3).

# EXP 3: requirement for pairwise comparisons v. g
f, k, N = 0.05, 1500, 1000
g_arr_min, g_arr_max, g_arr_len, target = 0.01, 0.2, 10, 0.95
g_arr = np.linspace(g_arr_min, g_arr_max, num=g_arr_len)

k_thres_g = np.zeros(g_arr_len)
for i in range(g_arr_len):

freq_succ = test_pairwise(g_arr[i], f, k, N)
k_thres_g[i] = np.min(np.nonzero(freq_succ>target))

plt.plot(g_arr, np.log(k_thres_g));
plt.xlabel(’g’), plt.ylabel(’Log Length Required’);

Fig. 4.3 Sequence-length requirement of D as function of g
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4.5 Not All Reconstruction Methods are Created Equal

Sequence-length requirements are useful to compare reconstruction methods: by
definition, a higher requirement indicates more data is needed to achieve the same
accuracy. We give a simple (albeit artificial) example.

Consider the following modification of the distance-based method D. Assuming
k is even. Define

Π k
XYvXZ =

k∑

i=1
i odd

(siXY − siX Z )(si+1
XY − si+1

XZ ),

and

Π k
XYvY Z =

k∑

i=1
i odd

(siXY − siY Z )(si+1
XY − si+1

Y Z ).

The reconstruction algorithm D2 then proceeds as follows:

Definition 3 (Algorithm D2).Given sequence data σ
(k)
L , we set D2(σ

(k)
L ) = XY |Z if

min
{
Π k

XYvXZ ,Π k
XYvY Z

}
> ηg, f := 1

2
e−4g

(
1 − e−4 f

)2 ;

and we return a failure if no such pair exists or if more than one pair satisfies this
property. Note that this reconstruction algorithm requires knowledge of (or bounds
on) g and f .

Analytical derivation: To see that D2 is consistent, let again T = AB|C and σ
(k)
L ∼

AB|C⊗k
g, f . Notice that, by independence of the odd and even sites, it holds that for i

odd

E

[
(siAB − siAC )(si+1

AB − si+1
AC )

]
= E

[
siAB − siAC

]
E

[
si+1
AB − si+1

AC

]
= [θ(g) − θ(g + 2 f )]2 .

Similarly
E
[
(siAB − siBC)(si+1

AB − si+1
BC )
] = [θ(g) − θ(g + 2 f )]2

and
E
[
(siAC − siBC)(si+1

AC − si+1
BC )
] = 0.

By the law of large xfnumbers, we obtain

2

k
Π k

ACvAB = 2

k
Π k

ABvAC → [θ(g) − θ(g + 2 f )]2

and
2

k
Π k

BCvAB = 2

k
Π k

ABvBC → [θ(g) − θ(g + 2 f )]2 ,
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while
2

k
Π k

BCvAC = 2

k
Π k

ACvBC → 0.

Since

[θ(g) − θ(g + 2 f )]2 >
1

2
e−4g (1 − e−4 f )2 > 0,

that establishes consistency.

Claim 3 (Consistency of D2). In the three-species setting, the algorithm D2 is sta-
tistically consistent.

We now derive an upper bound on the sequence-length requirement of D2. Con-
sider the events

EABvAC = {Π k
ABvAC > ηg, f

}
, EABvBC = {Π k

ABvBC > ηg, f
}
,

and
EACvBC

{
Π k

ACvBC < ηg, f
}
.

The event EABvAC ∪ EABvBC ∪ EACvBC implies that the output of D2 is correct. On
rewriting, we obtain

P
[
E c
ABvAC

] = P

[
Π k

ABvAC − E
[
Π k

ABvAC

] ≤ −1

2
e−4g

(
1 − e−4 f

)2
]

,

and, applying Hoeffding’s inequality, we get the upper bound

P
[
E c
ABvAC

] ≤ exp

⎛

⎜
⎝−

2(k/2)2
[
1
2e

−4g
(
1 − e−4 f

)2]2

k/2 × (2)2

⎞

⎟
⎠ ,

and similarly for the events E c
ABvBC , E

c
ACvBC . By a union bound,

P

[
D2(σ

(k)
L ) = T

]
≥ 1 − 3 exp

(
− k

16
e−8g (1 − e−4 f )4

)
.

So if

k ≥ κ̄D2(g, f ) := 16 ln(3/δ)

e−8g
(
1 − e−4 f

)4 ,

then D2 succeeds with probability greater than 1 − δ. That is, the sequence-length
requirement of D2 at AB|Cg, f is at most κ̄D2(g, f ).
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Claim 4 (Sequence-length requirement of D2). Let

P =
⋃

g′≤g, f ′≥ f

{AB|Cg′, f ′ , AC |Bg′, f ′ , BC |Ag′, f ′ }.

We have the following upper bound on the sequence-length requirement of D2 over
P

KD2(P) ≤ 16 ln(3/δ)

e−8g
(
1 − e−4 f

)4 .

Numerical simulations: Now, notice that as f → 0 (leaving g and δ fixed), we have
the asymptotic behavior κ̄D2(g, f ) ∝ f −4, which is worse than what we obtained
for D (see Claim 2). In words, this bound suggests that D2 requires significantly
more data than D to achieve the same accuracy, if we divide f by 2, for instance,
D requires roughly four times as much data, while D2 requires 16 times as much.
This is only an upper bound of course. We use a numerical simulation to test the
theoretical prediction. The following function test_two_site implements D2

on T = AB|C with parameters g and f, and tests it N times across sequences of
length up to k.

def test_two_site(g, f, k, N): # testing Dˆ2 under AB|C
sABo, sACo, sBCo = AB_C(g,f,k//2,N)
sABe, sACe, sBCe = AB_C(g,f,k//2,N)
ABvAC, ABvBC = comp((sABo-sACo)*(sABe-sACe),

(sABo-sACo)*(sABe-sACe))
eta = (1/2)*exp(-4*g)*(1-exp(-4*f))**2
return np.sum(np.logical_and(ABvAC>eta, ABvBC>eta),axis=0)/N

The following experiment is consistent with our bounds on the sequence-length
requirements of D and D2. Below, a plot of log KD2 v. log f (solid line) shows a
roughly linear behavior with slope close to −4. A plot of log KD v. log f (dotted
line) is also reproduced for comparison (Fig. 4.4).

# EXP 4: Dˆ2 has requirement fˆ-4 (takes a minute or two)
g, f, k, N = 0.1, 0.05, 240000, 200

k_thres_f2 = np.zeros(f_arr_len)
for i in range(f_arr_len):

freq_succ = test_two_site(g, f_arr[i], k, N)
k_thres_f2[i] = np.min(np.nonzero(freq_succ>target))

plt.plot(np.log(f_arr),np.log(k_thres_f2));
plt.plot(np.log(f_arr),np.log(k_thres_f),’:’);
plt.xlabel(’Log f’), plt.ylabel(’Log Length Required’);
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Fig. 4.4 Sequence-length requirement of D2 (solid) and D (dotted) as functions of f

4.6 What About Maximum Likelihood Estimation?

So far, we have analyzed pairwise comparison methods. Another common approach
in practice is maximum likelihood estimation (MLE), which takes into account the
full empirical distribution at the leaves. In the three-leaf case considered previously,
the MLE is defined as follows:

L(σ
(k)
L ) = argmax

{

sup
g0, f0

logL k(σ
(k)
L ; T0, g0, f0) : T0 ∈ {AB|C, AC |B, BC |A}

}

,

whereL k(σ
(k)
L ; T0, g0, f0) is the likelihood, i.e., the probability of observing the data

σ
(k)
L under the tree T0 with parameters g0, f0. For simplicity, if more than one tree

achieves the maximum, we return a failure. How does the sequence-length require-
ment of L compared to that of D?

To study this question, we note first that, in this case, the log-likelihood takes
a simple analytical form. Let T0 = XY |Z with parameters g0 and f0 and let M be
the most recent common ancestor of X and Y . By independence of the sites, the
probability of observing σ

(k)
L is the product of the probabilities of observing the σ i

L ’s,
which after taking a logarithm becomes a sum

logL k(σ
(k)
L ; T0, g0, f0) =

k∑

i=1

logL 1(σ i
L; T0, g0, f0).

Let p0 = p(g0) and q0 = p(g0 + 2 f0), and define
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I iXY = 1 + siXY
2

, I iX Z = 1 + siX Z

2
,

i.e., I iXY = 1 if X and Y agree on site i and I iXY = 0 otherwise. In terms of I iXY and
I iX Z (which are functions of the data σ i

L ), the log-likelihood is

logL 1(σ i
L; T0, g0, f0) = log

(
1

2
Λ1 + 1

2
Λ2

)
,

where
Λ1 = (1 − p0)(1 − p0)

I iXY p
1−I iXY
0 (1 − q0)

I iX Z q
1−I iX Z
0

and
Λ2 = p0(1 − p0)

1−I iXY p
I iXY
0 (1 − q0)

1−I iX Z q
I iX Z
0 .

The above expression is obtained by consideringwhether or not there is a substitution
along the edge XM , followed by whether or not there are substitutions along edge
MY and path MR, RZ . Note that all these substitutions are independent.

4.6.1 Likelihood Ratio Test

Analyzing the behavior of L is somewhat complicated by the need to optimize over
the nuisance parameters g and f . To get some insight, it is easier to start by assuming
that g and f are known and that the true topology is either AB|C or AC |B. That
is, we consider the class of phylogenetic models P = {AB|Cg, f , AC |Bg, f }. Then,
the MLE is obtained by identifying the topology among these two with largest log-
likelihood. To simplify the notation, define

L k
XY (σ

(k)
L ) = L k(σ

(k)
L ; XY |Z , g, f ).

Consider the following modification L′ of L.

Definition 4 (Algorithm L′). Given sequence data σ
(k)
L , we return AB|C if

logL k
AB(σ

(k)
L ) > logL k

AC(σ
(k)
L );

AC |B if
logL k

AC(σ
(k)
L ) > logL k

AB(σ
(k)
L );

or, otherwise, we choose uniformly at random between the two. This is also known
as a likelihood ratio test (LRT); see for example [1].

Analytical derivation: While we could use Hoeffding’s inequality again to analyze
the sequence-length requirement of L′, we will introduce instead a comparison argu-
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ment to distance-based methods that generalizes more easily to larger, more complex
phylogenies. The comparison works as follows. Let Ψ be an arbitrary randomized
test for deciding whether sequence data σ

(k)
L was generated by AB|Cg, f or AC |Bg, f ,

i.e., for each σ
(k)
L ∈ SL×[k],Ψ (σ

(k)
L ) is a {AB|C, AC |B}-valued random variable. The

sum of so-called Type I and Type II errors is defined as

WI,I I [Ψ ] = WE,AB[Ψ ] + WE,AC [Ψ ],

where WE,AB[Ψ ] is the probability of error under AB|Cg, f

WE,AB[Ψ ] =
∑

σ
(k)
L

L k
AB(σ

(k)
L )(1 − P[Ψ (σ

(k)
L ) = AB|C]),

and, similarly, WE,AC [Ψ ] is the probability of error if the data had been generated
instead under AC |Bg, f

WE,AC [Ψ ] =
∑

σ
(k)
L

L k
AC(σ

(k)
L )P[Ψ (σ

(k)
L ) = AB|C].

It is a standard fact of statistical theory that WI,I I [Ψ ] is minimized by Ψ = L′ (as
can easily be derived by inspecting the expression for WI,I I ).

We use this fact to get a bound on the probability of error of L′. We will need a
simple observation first. Notice that, by symmetry, forΨ = L′, we haveWE,AB[Ψ ] =
WE,AC [Ψ ]. Hence,

P[L′(σ (k)
L ) �= AB|C] = 1

2
WI,I I [L′] ≤ 1

2
WI,I I [Ψ ],

for any Ψ . Now choose Ψ to be the following modification D′ of D: we return AB|C
ifΣk

AB > Σk
AC ; AC |B ifΣk

AC > Σk
AB ; or otherwise, we choose uniformly at random

between the two. Because the symmetry argument above holds for D′ as well, we
finally get

P[L′(σ (k)
L ) �= AB|C] ≤ P[D′(σ (k)

L ) �= AB|C].

In words, the probability of failure of L′ is at most that of D′. We have already shown
(see (4.1)) that the right-hand side is≤ exp

(− k
2 [θ(g) − θ(g + 2 f )]2

)
, which is less

than δ if

k ≥ 2 ln(1/δ)

e−4g
(
1 − e−4 f

)2 .

In essence, this argument implies that over this restricted classP the sequence-length
requirement of the MLE is at most that of the distance-based method.

Claim 5 (Sequence-length requirement of L′). Let
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P = {AB|Cg, f , AC |Bg, f }.

We have the following upper bound on the sequence-length requirement of L′
over P

KL′(P) ≤ 2 ln(1/δ)

e−4g
(
1 − e−4 f

)2 .

Numerical simulations: We further explore this prediction in a simulation. The
function test_lrt below is, in fact, more general than the LRT described above
(in order to obtain a fair comparison to test_pairwise), as it compares the log-
likelihood of all three topologies AB|C , AC |B, and BC |A for fixed parametersg and
f (which we refer to as the “three-way” LRT.). It tests how often the log-likelihood
of AB|C is strictly larger than that of the other two.

def s2i(s): # converts {-1,+1} to {0,1}
return (1+s)//2

def llXY_Z(g,f,sXY,sXZ): # log-likelihood under XY|Z
p, q, iXY, iXZ = l2p(g), l2p(g+2*f), s2i(sXY), s2i(sXZ)
L1=(1-p)*((1-p)**iXY)*(p**(1-iXY))*((1-q)**iXZ)*(q**(1-iXZ))
L2=p*((1-p)**(1-iXY))*(p**iXY)*((1-q)**(1-iXZ))*(q**iXZ)
return np.log((1/2)*L1+(1/2)*L2)

def test_lrt(g,f,g0,f0,k,N): # testing LRT under AB|C
sAB, sAC, sBC = AB_C(g,f,k,N)
llAB = llXY_Z(g,f,sAB,sAC)
llAC, llBC = llXY_Z(g0,f0,sAC,sAB), llXY_Z(g0,f0,sBC,sAB)
ABvAC, ABvBC = comp(llAB-llAC,llAB-llBC)
return np.sum(np.logical_and(ABvAC>0, ABvBC>0),axis=0)/N

The following experiment indicates that the probabilities of success of the basic
likelihood-based (solid line) and distance-based (dotted line) methods are very sim-
ilar in this setting for all sequence lengths (Fig. 4.5).

# EXP 5: success of LRT v. k
g, f, k, N = 0.1, 0.05, 500, 1000 # params used for freq_succ_pw

freq_succ_ll = test_lrt(g,f,g,f,k,N)

plt.plot(np.arange(1,k+1),freq_succ_ll);
plt.plot(np.arange(1,k+1),freq_succ_pw,’:’);
plt.xlabel(’Sequence Length’), plt.ylabel(’Success Probability’);

We plot next the sequence length required for the three-way LRT to succeed with
probability at least target as f varies over an array of values f_arr. The results
are consistent with a requirement scaling as ∝ f −2 (Fig. 4.6).

# EXP 6: requirement for LRT v. f
g, f, k, N, target = 0.1, 0.05, 2500, 1000, 0.95
f_arr_min, f_arr_max, f_arr_len = 0.025, 0.075, 10 #as k_thres_f
f_arr = np.linspace(f_arr_min, f_arr_max, num=f_arr_len)
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Fig. 4.5 Success probability of likelihood-based (solid) and distance-based (dotted) approaches as
functions of sequence length

Fig. 4.6 Sequence-length requirement of likelihood-based (solid) and distance-based (dotted)
approaches as functions of f

k_thres_fll = np.zeros(f_arr_len)
for i in range(f_arr_len):

freq_succ = test_lrt(g,f_arr[i],g,f_arr[i],k,N)
k_thres_fll[i] = np.min(np.nonzero(freq_succ>target))

plt.plot(np.log(f_arr), np.log(k_thres_fll));
plt.plot(np.log(f_arr),np.log(k_thres_f),’:’);
plt.xlabel(’Log f’), plt.ylabel(’Log Length Required’);
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Fig. 4.7 Sequence-length requirement of likelihood-based (solid) and distance-based (dotted)
approaches as functions of g

We plot next the sequence length required for the three-way LRT to succeed with
probability at least target as g varies over an array of values g_arr. The results
are consistent with a requirement scaling as exponentially in g (Fig. 4.7).

# EXP 7: requirement for LRT v. f
f, k, N, target = 0.05, 2500, 1000, 0.95
g_arr_min, g_arr_max, g_arr_len = 0.01, 0.2, 10 #as k_thres_g
g_arr = np.linspace(g_arr_min, g_arr_max, num=g_arr_len)

k_thres_gll = np.zeros(g_arr_len)
for i in range(g_arr_len):

freq_succ = test_lrt(g_arr[i],f,g_arr[i],f,k,N)
k_thres_gll[i] = np.min(np.nonzero(freq_succ>target))

plt.plot(g_arr,np.log(k_thres_gll));
plt.plot(g_arr,np.log(k_thres_g),’:’);
plt.xlabel(’g’), plt.ylabel(’Log Length Required’);

4.6.2 Optimizing the Branch Lengths

Up to this point, we have ignored the effect of branch length estimation on the MLE.
To get some partial insight into this difficult, but important issue, we consider a
modified setting: we generate sequence datasets according to AB|Cg, f and study
how often the log-likelihood under AB|C exceeds that of the alternative AC |B —
with the optimal choice of branch lengths in both cases in the limit k → +∞. For
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AB|C , the choices g and f are optimal under the expected log-likelihood by standard
results in statistical theory (namely, Gibbs’ or information inequality; see e.g. [3]).
For AC |B, however, it is not immediate what the right choice of branch lengths is
when the data is generated under AB|C .

Numerical simulations: We first run an experiment which estimates the log-
likelihood for the model AC |B over a grid of branch lengths g and f with a large
value of k. The contour plot below, obtained under AB|C with parameters 0.1 and
0.05, suggests that, in this case, the optimal f is 0 while the optimal g is somewhat
larger than 0.1 (Fig. 4.8).

# EXP 8: a better choice of branch lengths for alternative
g, f, k, N, m_gr = 0.1, 0.05, 10000, 1, 50
f_gr = np.linspace(0, 0.05, num=m_gr)
g_gr = np.linspace(0.05, 0.20, num=m_gr)

sAB, sAC, sBC = AB_C(g,f,k,N)
ll_gf = np.zeros((m_gr,m_gr))
for i_f in range(m_gr):

for i_g in range(m_gr):
ll_gf[i_f,i_g] = np.sum(llXY_Z(g_gr[i_g],

f_gr[i_f],sAC,sAB))/k

optf=f_gr[np.unravel_index(np.argmax(ll_gf),np.shape(ll_gf))[0]]
optg=g_gr[np.unravel_index(np.argmax(ll_gf),np.shape(ll_gf))[1]]
print(f’Optimal f = {optf}’)
print(f’Optimal g = {optg}’)
[X, Y], Z = np.meshgrid(g_gr,f_gr), ll_gf
CS = plt.contour(X,Y,Z);
plt.clabel(CS), plt.xlabel(’g’), plt.ylabel(’f’);

Optimal f = 0.0
Optimal g = 0.12959183673469388

Analytical derivation: In other words, the experiment above indicates that for those
parameters the star tree achieves the optimum under the alternative topology. We
confirm this heuristically in the limit of small branch lengths. Note that, for g, f
small, we have p(g) = g + O(g2) and p( f ) = f + O( f 2). Second, in this asymp-
totic setting, the first-order contributions to the log-likelihood are those realizations
involving a single substitution (except for the constant site). Using these two obser-
vations and the expression for the log-likelihood derived at the beginning of the
section, it can be shown that the expected log-likelihood under the model AC |Bg0, f0
(for g0, f0 small) given data generated under AB|Cg, f is to the first order

l̃ogL 0(g0, f0) = (−3g0 − 2 f0) + (2g + 2 f ) log g0 + g log(g0 + 2 f0),

where, for example, the last term corresponds to A disagreeing with B but agreeing
with C . The first term corresponds to the constant sites, where we used log(1 −
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Fig. 4.8 Approximate expected log-likelihood for alternative topology as function of parameters
g and f

x) = −x + O(x2) and ignored second-order contributions. We seek to maximize

l̃ogL 0(g0, f0) for fixed g and f . The partial derivative with respect to f0 is

∂ f0 l̃ogL 0(g0, f0) = −2 + 2
g

g0 + 2 f0
.

Hence, for g0 < g, ∂ f0 l̃ogL 0(g0, f0) = 0 when f0 satisfies g = g0 + 2 f0. While

for g0 ≥ g, ∂ f0 l̃ogL 0(g0, f0) < 0 for all f0 ≥ 0 and the optimal f0 for fixed g0 is 0.

We plug back this optimal f0 into l̃ogL 0(g0, f0) and consider the two cases again,
when g0 < g,

d

dg0
l̃ogL 0(g0, (g − g0)/2) = −2 + 2g + 2 f

g0
> 0,

when g0 ≥ g,
d

dg0
l̃ogL 0(g0, 0) = −3 + 3g + 2 f

g0
,

which is 0 for g0 satisfying 3g0 = 3g + 2 f . To summarize, the optimal choice of
branch lengths is, therefore,

g∗
0 = g + 2

3
f, f ∗

0 = 0.

That is consistent with the contour plot above.
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Fig. 4.9 Success probability of likelihood-based (solid) and distance-based (dotted) approaches as
functions of sequence length with an asymptotically optimal choice of parameters g and f for the
alternative topologies

Numerical simulations: In the next experiment, we use parameters g∗
0 and f ∗

0 for
the alternatives and we plot the success probability of the three-way LRT. For large k,
observe that the distance-based method (dotted line) performs better than the three-
way LRT (solid line). For small k, however, the distance-based method performs
worse, possibly because our optimal choice is only valid in the limit k → +∞
(Fig. 4.9).

# EXP 9: accuracy of LRT v. k for better choice of lengths
g, f, k, N = 0.1, 0.05, 500, 1000 # params used for freq_succ_pw

freq_succ_ll = test_lrt(g,f,g+(2/3)*f,0,k,N)

plt.plot(np.arange(1,k+1),freq_succ_ll);
plt.plot(np.arange(1,k+1),freq_succ_pw,’:’);
plt.xlabel(’Sequence Length’), plt.ylabel(’Success Probability’);

Using again parameters g∗
0 and f ∗

0 for the alternative topologies, we plot the
sequence length required for the three-way LRT to succeed with probability at least
target. The results are consistent once again with a requirement scaling as∝ f −2.
This time, however, the requirement for LRT (solid line) is significantly higher than
that of the distance-based approach (dotted line). While likelihood-based methods
use the joint distribution of the data and, therefore, may be expected to perform
better than distance-based methods which rely on pairwise distributions, in the three-
species settings there may not be enough “extra information” in the joint distribution
to compensate for the downsides of nuisance parameters (Fig. 4.10).
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Fig. 4.10 Sequence-length requirement of likelihood-based (solid) and distance-based (dotted)
approaches as functions of f with an asymptotically optimal choice of parameters g and f for the
alternative topologies

# EXP 10: requirement for LRT v. f for better choice of lengths
g, f, k, N, target = 0.1, 0.05, 2500, 1000, 0.95
f_arr_min, f_arr_max, f_arr_len = 0.025, 0.075, 10 #as k_thres_f
f_arr = np.linspace(f_arr_min, f_arr_max, num=f_arr_len)

k_thres_fll = np.zeros(f_arr_len)
for i in range(f_arr_len):

freq_succ = test_lrt(g,f_arr[i],g+(2/3)*f_arr[i],0,k,N)
k_thres_fll[i] = np.min(np.nonzero(freq_succ>target))

plt.plot(np.log(f_arr), np.log(k_thres_fll));
plt.plot(np.log(f_arr),np.log(k_thres_f),’:’);
plt.xlabel(’Log f’), plt.ylabel(’Log Length Required’);

4.7 Lower Bound on the Best Achievable Requirement

In this section, we consider lower bounds on the sequence-length requirement. In
particular, we show—both analytically and numerically—that, in the three-species
setting, the requirement we derived for distance-based and likelihood-based recon-
struction approaches in previous sections cannot be improved (up to constants). These
lower bounds are information theoretic, i.e., they apply to any reconstructionmethod.

The standard way to obtain such a lower bound is to “make the problem
easier” by considering the two-topology setup of the previous section. Namely,
suppose the sequence dataset σ

(k)
L is generated by a model in the class P =

{AB|Cg, f , AC |Bg, f }. Our goal again is to guess which one of the two models
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the data came from. How large does k need to be for there to exist a reconstruc-
tion method that succeeds with probability 1 − δ? A lower bound on the required
k for P automatically gives a lower bound on the required k for the larger class
∪g′≤g, f ′≥ f {AB|Cg′, f ′ , AC |Bg′, f ′ , BC |Ag′, f ′ }—since it includes P .

Analytical derivation: Recall the definitions of WE,AB[Ψ ] and WE,AC [Ψ ] and let

WE,max[Ψ ] = max{WE,AB[Ψ ],WE,AC [Ψ ]}

be the maximum probability of error for Ψ under models inP . We seek to establish
a lower bound on WE,max[Ψ ] that applies to any Ψ . We already know that

WE,max[Ψ ] ≥ 1

2
WI,I I [L′].

We first relate the r.h.s. to a standard notion of distance on probability measures.
If (λx : x ∈ X ) and (γx : x ∈ X ) are probability measures over the discrete space
X , then their total variation distance (see e.g. [25]) is defined as

TV(λ, γ ) = 1

2

∑

x∈X
|λx − γx |,

which is always between 0 and 1. We expressWI,I I [L′] in terms of the total variation
distance between L k

AB and L k
AC . By definition of L′ and the fact that L k

AB sums to
1, we get

WI,I I [L′] = 1 −
∑

σ
(k)
L

(L k
AB(σ

(k)
L ) − L k

AC(σ
(k)
L ))1[L k

AB(σ
(k)
L ) > L k

AC(σ
(k)
L )],

where 1[E ] is the indicator of the event E . Using symmetry under the interchanging
of the role of B and C , we get further

WI,I I [L′] = 1 − 1

2

∑

σ
(k)
L

∣∣∣L k
AB(σ

(k)
L ) − L k

AC(σ
(k)
L )

∣∣∣ = 1 − TV(L k
AB,L k

AC ).

Bycombining thiswith the inequality above,wehave reduced the problemof deriving
a lower bound on WE,max[Ψ ] for any Ψ to that of deriving an upper bound on the
total variation distance between L k

AB and L k
AC .

Computing TV(L k
AB,L k

AC) for arbitrary k turns out to be tricky because of the
underlying combinatorial complexity. Therefore, the next step is to further reduce
the problem to a single site. We use a standard trick in statistical theory, moving to
the Hellinger distance. Let
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H2(λ, γ ) = 1

2

∑

x∈X

(√
λx − √

γx

)2

be theHellinger distance (see e.g. [25]) between probabilitymeasures λ and γ , which
is always between 0 and 1. This unintuitive distance has two useful properties. First,
it is closely related to the more natural total variation distance, through the following
inequality which we derive for completeness. (There is also an inequality in the other
direction, which we omit.) Writing

∑

x∈X
|λx − γx | =

∑

x∈X

(√
λx − √

γx

) (√
λx + √

γx

)

and applying the Cauchy–Schwarz inequality, we get

∑

x∈X
|λx − γx | ≤

√
∑

x∈X

(√
λx − √

γx

)2
√
∑

x∈X

(√
λx + √

γx

)2
.

Using the fact that λ and γ sum to 1 and applying the Cauchy–Schwarz inequality
again,

∑

x∈X

(√
λx + √

γx

)2 = 2 + 2
∑

x∈X

√
λx

√
γx ≤ 2 + 2

√∑

x∈X
λx

√∑

x∈X
γx = 4.

Hence,
TV(λ, γ ) ≤

√
2H2(λ, γ ).

Second, the Hellinger distance (somewhat magically) “tensorizes”, let λ⊗k be the
distribution of k independent samples from λ, we have

1 − H2(λ⊗k, γ ⊗k) =
∑

x∈X k

k∏

i=1

√
λxi γxi =

(
∑

x∈X

√
λxγx

)k

= (1 − H2(λ, γ )
)k

.

Putting everything together, we finally get the following key result for any ran-
domized test Ψ

WE,max[Ψ ] ≥ 1

2

[

1 −
√

2
[
1 − (1 − H2(L 1

AB,L 1
AC)
)k]
]

. (4.2)

Numerical computations: So it remains to bound H2(L 1
AB,L 1

AC), which can be
estimated both numerically and analytically. The numerical experiment below com-
putes the Hellinger-based lower bound onWE,max[Ψ ] for a fixed g and for k scaling
like ∝ f −2, for an array f_arr of values of f . The plots indicate that the lower
bound increases toward 1/2 when k = b f −2 for b ranging between 0.01 and 1. Note
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Fig. 4.11 Hellinger-based lower bound as function of f for sequence length k = b f −2 for b =
0.01, 0.1, 1 (dotted, solid, dashed)

that, when b = 1, the lower bound on the probability of error is negative, which is
of course useless. This is because our bound relating TV and H2 is off by a factor of√
2 when the probability measures are close to maximally distinct (Fig. 4.11).

# EXP 11: Hellinger distance between AB|C and AC|B v. f
g = 0.1
f_arr_min, f_arr_max, f_arr_len = 0.025, 0.075, 10
f_arr = np.linspace(f_arr_min, f_arr_max, num=f_arr_len)

hell, s = np.zeros(f_arr_len), [-1,1]
for i in range(f_arr_len):

for jAB in range(2):
for jAC in range(2):

lAB = exp(llXY_Z(g,f_arr[i],s[jAB],s[jAC]))
lAC = exp(llXY_Z(g,f_arr[i],s[jAC],s[jAB]))
hell[i] = hell[i] + 2*((sqrt(lAB)-sqrt(lAC))**2)/2

base = (1-hell)**(1/(f_arr**2))
plt.plot(np.log(f_arr),(1/2)*(1-np.sqrt(2*(1-base**0.1))));
plt.plot(np.log(f_arr),(1/2)*(1-np.sqrt(2*(1-base**0.01))),’:’);
plt.plot(np.log(f_arr),(1/2)*(1-np.sqrt(2*(1-base**1))),’--’);
plt.xlabel(’Log f’), plt.ylabel(’Hellinger-based lower bound’);

Analytical derivation (continued): We confirm the results above analytically. Fix
g and consider the limit f → 0. By symmetry, for constant sites σ 1

L , L
1
AB(σ 1

L) =
L 1

AC(σ 1
L) so such sites contribute nothing to H 2(L 1

AB,L 1
AC). The same holds for the

sites σ 1
L = (+1,−1,−1) and σ 1

L = (−1,+1,+1). For the sites σ 1
L = (+1,+1,−1)

and σ 1
L = (−1,−1,+1), we use the expression for the likelihood derived in the

previous section with I 1AB = 1 and I 1AC = 0. Let p = p(g) and q = p(g + 2 f ) and
expand to the first order in f to get that q = p + c1 f + O( f 2) where c1 = 2e−2g .
Then, we have
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L 1
AB(σ 1

L ) = 1

2
(1 − p)2q + 1

2
p2(1 − q) = 1

2
(1 − p)2 p + 1

2
p2(1 − p) + c2 f + O( f 2),

where c2 = c1
2 [(1 − p)2 − p2] = c1

2 (1 − 2p) and

L 1
AC(σ 1

L)

= 1

2
(1 − p)p(1 − q) + 1

2
p(1 − p)q

= 1

2
(1 − p)2 p + 1

2
p2(1 − p) + c3 f + O( f 2),

where c3 = c1
2 [−(1 − p)p + p(1 − p)] = 0. Using

√
z + x = √

z + x/(2
√
z) +

O(x2) and letting z = 1
2 (1 − p)2 p + 1

2 p
2(1 − p) = 1

2 p(1 − p), we get

√
L 1

AB(σ 1
L) −

√
L 1

AC(σ 1
L) = c4 f + O( f 2),

where c4 = c2/(2
√
z). So the contribution of σ 1

L to H2(L 1
AB,L 1

AC) is 1
2c

2
4 f

2 +
O( f 3). By interchanging the role of B and C , we see that the contribution from
the sites σ 1

L = (+1,−1,+1) and σ 1
L = (−1,+1,−1) is the same. So, finally

H2(L 1
AB,L 1

AC) = c f 2 + O( f 3),

where c = 2c24. Note that c is strictly positive and depends only on g.

Claim 6 (Lower bound on probability of error). Taking k = b f −2 in the Hellinger-
based lower bound on the maximum probability of error (see (4.2)), we get that

WE,max[Ψ ] ≥ 1

2

[

1 −
√

2
[
1 − (1 − c f 2 + O( f 3)

)b f −2
]]

,

where the c depends on g. As f → 0, the r.h.s. converges to

1

2

[
1 −

√
2
[
1 − e−cb

]]
.

This last expression is 1/2 when b = 0, and it decreases monotonically as b gets
larger.

To summarize, no method can have a maximum probability of error bounded away
from 1/2 unless k scales at least like ∝ f −2.
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4.8 Scaling Up to Large Trees

Until now, we have restricted ourselves to small phylogenies. The results we have
derived in the previous sections can be used as building blocks to obtain some bounds
on sequence-length requirements for large trees as well.

In the molecular clock case, one can reconstruct all three-leaf subtrees of an n-
species phylogenies T using the simple distance-based method described earlier.
Once all such “triplets” have been reconstructed correctly, it is straightforward to
infer the full rooted phylogeny. What is the sequence-length requirement in this
case? Assume g and f are, respectively, the longest and shortest branch lengths in
T . Recall (see Claim 2) that if the sequence length k satisfies

k ≥ 2 ln(2/δ)

e−4G
(
1 − e−4F

)2 , (4.3)

then the pairwise comparison test D succeeds at reconstructing a fixed triplet over
{A, B,C} with probability greater than 1 − δ. Here, G is the length of the path to
the most recent common ancestor of the two closest leaves in {A, B,C} and F is the
length of the path from that vertex to the root of the triplet. To obtain a bound on the
sequence-length requirement, we need to bound F , G, and δ in terms of f , g, and n.

We use that necessarily F ≥ f . As for δ, since there are at most n3 triplets, for all
of them to be reconstructed correctly with probability 1 − δ′ we require δ = δ′/n3.
It remains to upper bound G, which depends on the minimum number of edges h
from a leaf to the root. Because T is binary and has n leaves, we have

n ≥ 2h .

Hence,
G ≤ gh ≤ g log2 n.

Putting everything together, when the sequence length satisfies

k ≥ 6 ln(2n/δ′)

e−4g log2 n
(
1 − e−4 f

)2 ,

reconstruction of T with probability 1 − δ′ is possible. This bound differs from that of
a three-species phylogeny (see Claim 2) in twoways: (1) a factor of log n accounts for
the fact that a polynomial in n number of triplets must be correctly reconstructed; (2)
a polynomial factor in n (namely, e4g log2 n) accounts for the depth of the phylogeny.
As it turns out, the latter—the role of the depth (i.e, in this setting, the length of the
paths from the root to the leaves)—is more intricate than our naive analysis suggests.
We discuss this next.
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4.8.1 Signal Decay

The extent towhich the depth of a phylogeny affects the sequence-length requirement
of reconstruction methods depends strongly on the branching rate. To highlight this
subtle phenomenon, we first consider a different problem, reconstructing an ancestral
state.

Numerical simulations: We begin with a numerical simulation. The function full
generates N samples of sequence length k at the leaves of a full binary tree with h
levels where all branch lengths are equal to b. More specifically what is generated is,
for each site, the total number of substitutions on level h compared to the root state.
While this does not fully characterize the sequences at the leaves, it will suffice for our
purposes. The function test_maj then infers the root sequence by majority vote
over the leaves on a single site and outputs the fraction of successful reconstructions
over N attempts.

def child(s,i,p): # number of subs to one child of each parent
return np.random.binomial(s,1-p)+np.random.binomial(2**i-s,p)

def full(b,k,h,N): # number of subs at leaves of full binary tree
ns_root = np.zeros((N,k),dtype=int)
for i in range(h):

ns_root = child(ns_root,i,l2p(b))+child(ns_root,i,l2p(b))
return ns_root

def test_maj(b,h,N): # ancestral reconstruction by majority
return np.sum(full(b,1,h,N)<2**(h-1))/N

The following experiment tests the accuracy of ancestral state reconstruction by
majority vote as the number of levels increases for two different values of branch
lengths, b0 and b1. In both cases, the probability of correct reconstruction roughly
decreases with the number of levels. However, we see that for the longer branch
length b1 (dotted line), the probability of correct reconstruction appears to converge
to 1/2, while that probability settles on a much larger value for the shorter branch
length b0 (solid line). Note that a success probability of 1/2 corresponds to guessing
at random (Fig. 4.12).

# EXP 12: accuracy of ancestral reconstruction by majority v. h
b0, b1, k, h, N = 0.1, 0.3, 1, 12, 1000

freq_succ0, freq_succ1 = np.zeros(h), np.zeros(h)
for i in range(h):

freq_succ0[i] = test_maj(b0,i,N)
freq_succ1[i] = test_maj(b1,i,N)

plt.plot(np.arange(h),freq_succ0);
plt.plot(np.arange(h),freq_succ1,’:’);
plt.xlabel(’Height’), plt.ylabel(’Success probability’);

Analytical derivation: We next explain this significant difference analytically. Pre-
cisely, we compute the variance of the ancestral state estimator above and show that
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Fig. 4.12 Success probability of root reconstruction by majority as function of height for branch
lengths b = 0.1, 0.3 (solid, dotted)

it undergoes a phase transition as the branch length b increases. Let T = (V, E) be
a full binary tree with h levels and all branch lengths equal to b. Let R be its root
and L = {A1, . . . , A2h } be its leaves. Assume that (σv : v ∈ V ) is a single site on T
generated under the CF model. In particular, σL denotes the states at the leaves. We
are interested in the following natural estimator of the root state σR from σL : take a
majority vote over the states at the leaves (or pick uniformly at random in case of a
tie). In our setting, this estimator is equivalent to the sign of the average state at the
leaves, which for convenience we normalize as follows:

Ah,θ = 1

2hθh

2h∑

i=1

σAi ,

where θ := θ(b).
To analyze this estimator, we first show thatAh,θ is conditionally unbiased, given

the state at the root. Indeed, we get by symmetry

E
[
Ah,θ

∣∣σR
] = 1

θh
E
[
σA1

∣∣σR
]
.

Recalling that P(R, A1) are the edges on the path between R and A1 and using the
formulas derived previously, we then get

E
[
Ah,θ

∣∣σR
] = 1

θh
E

⎡

⎣σR

∏

e∈P(R,A1)

τe

∣∣
∣∣∣∣
σR

⎤

⎦ = 1

θh
σRθh = σR .
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Next, we study the variance of Ah,θ . By a standard formula,

Var
[
Ah,θ

∣∣σR
] = 1

22hθ2h
E

⎡

⎣

⎛

⎝
2h∑

i=1

σAi

⎞

⎠

2∣∣
∣∣∣∣
σR

⎤

⎦− (E [Ah,θ

∣∣σR
])2

.

We have already computed the second term on the r.h.s., which is 1. For the first
term, we observe that the expectation is equal to

2h∑

i, j=1

E
[
σAi σA j

∣∣σR
] =

2h∑

i, j=1

E

⎡

⎣

⎛

⎝σR

∏

e∈P(R,Ai )

τe

⎞

⎠

⎛

⎝σR

∏

e∈P(R,A j )

τe

⎞

⎠

∣∣∣∣∣
∣
σR

⎤

⎦ .

Let Ai ∧ A j be the most recent common ancestor of Ai and A j and let hi∧ j be the
graph distance from the root to Ai ∧ A j . Then, cancellations on the path from the
root to Ai ∧ A j lead to the simplified expression

E

⎡

⎣

⎛

⎝σR

∏

e∈P(R,Ai )

τe

⎞

⎠

⎛

⎝σR

∏

e∈P(R,A j )

τe

⎞

⎠

∣∣∣∣∣
∣
σR

⎤

⎦

= E

⎡

⎣
∏

e∈P(Ai∧A j ,Ai )

τe
∏

e∈P(Ai∧A j ,A j )

τe

⎤

⎦

= θ2h−2hi∧ j .

Plugging this back above and decomposing the sum over the levels of T , we get

2h∑

i, j=1

E
[
σAi σA j

∣∣σR
] =

h∑

m=0

2m
(
2h−m−1

)2
θ2h−2m = 1

4

h∑

m=0

22h−mθ2h−2m,

where the term
(
2h−m−1

)2
counts the number of pairs Ai , A j whose most recent

common ancestor Ai ∧ A j is a fixed vertex v on level m, while the term 2m counts
the number of such vertices v. Finally,

Var
[
Ah,θ

∣∣σR
] = 1

4

h∑

m=0

(2θ2)−m − 1.

The key observation is that the limit of this variance as the height goes to+∞ depends
crucially on the quantity 2θ2.

Claim 7 As h → +∞,
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Var
[
Ah,θ

∣
∣σR
]→

{
+∞ if 2θ2 ≤ 1,

1
4(1−(2θ2)−1)

− 1 if 2θ2 > 1.

Intuitively, this can be interpreted as follows: when the variance goes to +∞, the
estimator Ah,θ is essentially unable to distinguish between the cases σR = +1 and
σR = −1.

This is indeed what we observe on the plot above. Note that, in terms of branch
lengths, the critical threshold is

2(e−2b)2 = 1 ⇐⇒ b = 1

2
log

√
2 = 0.173...

Hence, b0=0.1 above (solid line) is below the critical threshold corresponding to
a finite variance in the limit, while b1=0.3 (dotted line) is above the threshold
corresponding to an infinite variance. Notice, moreover, that while our analysis is
asymptotic in h, the previous experiment suggests that convergence occurs after a
small number of levels.

4.8.2 Depth v. Branching

How is this related to sequence-length requirements? The results in the previous
section indicate that the decay of the signal along a phylogeny presents two regimes,
as illustrated by the ability of majority voting to reconstruct the state at the root. It is
natural to expect that this phenomenon may have a significant impact on phylogeny
reconstruction. We first test this hypothesis through a simulation.

We consider the following generalization of our previous simple setting.

Definition 5 (Deep setting).We start with triplet AB|C with parameters g and f as
before and we add a full binary tree with h levels below each of A, B, and C . Let
T = [AB|C]h,b

g, f be the resulting tree and let

L = {A1, . . . , A2h , B1, . . . , B2h ,C1, . . . ,C2h }

be the corresponding leaves, where the first batch of size 2h are descendants of A,
and so on. For X ∈ {A, B,C}, let TX be the subtree below (and including) X . We
assume that the branch lengths on TA, TB , and TC are all equal to b. Our goal is to
infer the deep triplet AB|C from sequence data σ

(k)
L at the leaves.

Numerical simulations: We begin with a simple test. We perform our previous
pairwise comparison test D on the sub-dataset (σ

(k)
A1

, σ
(k)
B1

, σ
(k)
C1

), i.e., we only use
the data from one leaf in each subtree. The function test_deep_naive below
performs this test:
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Fig. 4.13 Success probability of deep triplet reconstruction as function of height for branch lengths
b = 0.1, 0.3 (solid, dotted) using the naive pairwise comparison approach

def test_deep_naive(g,f,b,h,k,N): # pairwise, deep triplet AB|C
sAB, sAC, sBC = AB_C(g+h*b,f,k,N)
ABvAC, ABvBC = comp(sAB-sAC,sAB-sBC)
return np.sum(np.logical_and(ABvAC[:,-1]>0,

ABvBC[:,-1]>0),axis=0)/N

In the following experiment, we plot the success probability of this test as the
number of levels h increases for two different values of branch length b, one on each
side of the critical threshold. In both cases, the success probability rapidly converges
to 1/3, although that convergence is somewhat slower for the smaller branch length
(solid line) (Fig. 4.13).

# EXP 13: accuracy of pairwise comparisons for deep triplet
g, f, b0, b1, h, k, N = 0.01, 5, 0.1, 0.3, 12, 75, 1000

freq_succ0, freq_succ1 = np.zeros(h), np.zeros(h)
for i in range(h):

freq_succ0[i] = test_deep_naive(g,f,b0,i,k,N)
freq_succ1[i] = test_deep_naive(g,f,b1,i,k,N)

plt.plot(np.arange(h),freq_succ0);
plt.plot(np.arange(h),freq_succ1,’:’);
plt.xlabel(’Height’), plt.ylabel(’Success probability’);

That first test was somewhat naive, in that it used a single leaf per subtree. It is not
surprising that the rate of signal decay only has a mild effect on its behavior; in our
observations on ancestral state reconstruction, it was crucial to use all the leaves. A
more sophisticated estimator is obtained by averaging over all pairs of leaves between
each pair of subtrees. Namely, we consider the following distance-based algorithm
D.
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Definition 6 (Algorithm D). Given sequence data σ
(k)
L , we set D(σ

(k)
L ) = XY |Z if

min

⎧
⎨

⎩

2h∑

i, j=1

Σk
Xi Y j

−
2h∑

i, j=1

Σk
Xi Z j

;
2h∑

i, j=1

Σk
Xi Y j

−
2h∑

i, j=1

Σk
Yi Z j

⎫
⎬

⎭
> 0,

and we return a failure if no such pair exists.

In the function avg_dst below, we rewrite

2h∑

i, j=1

Σk
Xi Y j

=
k∑

m=1

⎛

⎝
2h∑

i=1

smXi X

⎞

⎠ smXY

⎛

⎝
2h∑

j=1

smYY j

⎞

⎠ ,

and we note that the expressions in parentheses on the r.h.s. can be expressed in terms
of the total number of substitutions between X (respectively Y ) and X1, . . . , X2h

(respectively X1, . . . , X2h ). The latter quantities are of course not known from the
data at the leaves—we only use this convenient representation for the sake of speedy
simulation. The function test_deep_avg implements the estimator D and tests
it for different values of the depth h.

def avg_dst(ns2X,sXY,ns2Y,h): # mean distance, subtrees X and Y
return (-ns2X+(2**h-ns2X))*sXY*(-ns2Y+(2**h-ns2Y))

def test_deep_avg(g,f,b,h,k,N): # mean pairwise, triplet AB|C
sAB, sAC, sBC = AB_C(g,f,k,N)
ns2A,ns2B,ns2C=full(b,k,h,N),full(b,k,h,N),full(b,k,h,N)
criABvAC = avg_dst(ns2A,sAB,ns2B,h)-avg_dst(ns2A,sAC,ns2C,h)
criABvBC = avg_dst(ns2A,sAB,ns2B,h)-avg_dst(ns2B,sBC,ns2C,h)
ABvAC, ABvBC = comp(criABvAC,criABvBC)
return np.sum(np.logical_and(ABvAC[:,-1]>0,

ABvBC[:,-1]>0),axis=0)/N

The following experiment shows a drastically different outcome. In the plot, the
solid line is the probability of success of D when b is below the critical threshold
(here, b0=0.1) while the dotted line shows the same quantity above the threshold
(here, b1=0.3). Below the threshold, the probability of success remains 1 no matter
how deep the tree is (here, up to h=12). On the other hand, above the threshold,
the success deteriorates fast with h. Morally, in the first case, the phylogeny appears
“shallow” (information-theoretically speaking) independently of its true depth (com-
binatorially speaking). The sequence length was chosen so that, in both cases, the
success probability is 1 when h = 0 (trial and error not shown). Also g and f were
chosen to ensure that somewhat short sequences suffice to allow for a fast simulation
(Fig. 4.14).

# EXP 14: accuracy of mean pairwise comp for deep triplet
g, f, b0, b1, h, k, N = 0.01, 5, 0.1, 0.3, 12, 75, 1000

freq_succ0, freq_succ1 = np.zeros(h), np.zeros(h)
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Fig. 4.14 Success probability of deep triplet reconstruction as function of height for branch lengths
b = 0.1, 0.3 (solid, dotted) using the averaged pairwise comparison approach

for i in range(h):
freq_succ0[i] = test_deep_avg(g,f,b0,i,k,N)
freq_succ1[i] = test_deep_avg(g,f,b1,i,k,N)

plt.plot(np.arange(h),freq_succ0);
plt.plot(np.arange(h),freq_succ1,’:’);
plt.xlabel(’Height’), plt.ylabel(’Success probability’);

Analytical derivation: We confirm this picture analytically. We assume the data is
generated under AB|C . We want an upper bound on the probability of error, i.e., the
probability of the intersection of the events

EAC =
⎧
⎨

⎩

2h∑

i, j=1

Σk
Ai B j

−
2h∑

i, j=1

Σk
AiC j

> 0

⎫
⎬

⎭

and

EBC =
⎧
⎨

⎩

2h∑

i, j=1

Σk
Ai B j

−
2h∑

i, j=1

Σk
BiC j

> 0

⎫
⎬

⎭
.

By symmetry, these have the same probability. We follow the argument used in the
analysis ofD, with onemodification.Rather than usingHoeffding’s inequality (which
is valid for bounded variables—not the case here), we use Chebyshev’s inequality
(see e.g. [23]), one form of which is the following: if W1, . . . ,Wk are independent
random variables with respective variances αi , i = 1, . . . , k, then for all ε > 0
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P

[
k∑

i=1

(Wi − E[Wi ]) ≥ kε

]

≤
∑k

i=1 αi

k2ε2
.

Hence, using the expression for
∑2h

i, j=1 Σk
Ai B j

derived above, it remains to

compute the mean and variance of
(∑2h

i=1 s
m
Ai A

)
smAB

(∑2h

j=1 s
m
BBj

)
. By definition,

smXY = σm
X σm

Y so that by cancellation

Σ̃m
AB :=

⎛

⎝
2h∑

i=1

smAi A

⎞

⎠ smAB

⎛

⎝
2h∑

j=1

smBBj

⎞

⎠ =
⎛

⎝
2h∑

i=1

σm
Ai

⎞

⎠

⎛

⎝
2h∑

j=1

σm
Bj

⎞

⎠ .

The law of total expectation allows to condition on the states at A and B as follows:

E

⎡

⎣

⎛

⎝
2h∑

i=1

σm
Ai

⎞

⎠

⎛

⎝
2h∑

j=1

σm
Bj

⎞

⎠

⎤

⎦ = E

⎡

⎣E

⎡

⎣

⎛

⎝
2h∑

i=1

σm
Ai

⎞

⎠

⎛

⎝
2h∑

j=1

σm
Bj

⎞

⎠

∣∣∣∣∣∣
σm
A , σm

B

⎤

⎦

⎤

⎦ .

This is useful because, once we condition on σm
A and σm

B , the states at leaves of TA
and TB are independent. This is the so-called Markov property. Hence, we get

E

⎡

⎣E

⎡

⎣

⎛

⎝
2h∑

i=1

σm
Ai

⎞

⎠

⎛

⎝
2h∑

j=1

σm
Bj

⎞

⎠

∣
∣
∣
∣∣
∣
σm
A , σm

B

⎤

⎦

⎤

⎦ = E

⎡

⎣E

⎡

⎣
2h∑

i=1

σm
Ai

∣
∣
∣
∣∣
∣
σm
A

⎤

⎦E

⎡

⎣
2h∑

j=1

σm
Bj

∣
∣
∣
∣∣
∣
σm
B

⎤

⎦

⎤

⎦ .

Using our previous formula for the conditional expectations above, we get finally

E

⎡

⎣E

⎡

⎣
2h∑

i=1

σm
Ai

∣∣∣
∣∣∣
σm
A

⎤

⎦E

⎡

⎣
2h∑

j=1

σm
Bj

∣∣∣
∣∣∣
σm
B

⎤

⎦

⎤

⎦

= E
[
2hθ(b)hσm

A × 2hθ(b)hσm
B

]

= (2θ(b))2hθ(2g).

That is,
E
[
Σ̃m

AB

] = (2θ(b))2hθ(2g).

As for the variance, we first use the conditional variance formula

Var
[
Σ̃m

AB

] = Var
[
E
[
Σ̃m

AB

∣
∣σm

A , σm
B

]]+ E
[
Var
[
Σ̃m

AB

∣
∣σm

A , σm
B

]]
.

From the computation above, the first term is

Var
[
E
[
Σ̃m

AB

∣
∣σm

A , σm
B
]] = Var

[
2hθ(b)hσm

A × 2hθ(b)hσm
B

]
= (2θ(b))4hVar

[
σm
A σm

B
]
.
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Using that (σm
A )2 = (σm

B )2 = 1,

Var
[
σm
A σm

B

] = 1 − (E [σm
A σm

B

])2 = 1 − θ(2g)2.

For the second term in the conditional variance formula, we use that

Var
[
Σ̃m

AB

∣
∣σm

A , σm
B

] = E

[(
Σ̃m

AB

)2∣∣
∣σm

A , σm
B

]
− (E [Σ̃m

AB

∣
∣σm

A , σm
B

])2
.

The second term on the r.h.s. is equal to (2θ(b))4h , while the first term is, by the
Markov property, again,

E

⎡

⎣

⎛

⎝
2h∑

i=1

σm
Ai

⎞

⎠

2∣∣∣∣∣∣
σm
A

⎤

⎦E

⎡

⎣

⎛

⎝
2h∑

j=1

σm
Bj

⎞

⎠

2∣∣∣∣∣∣
σm
B

⎤

⎦ =
(
1

4

h∑

m=0

22h−mθ(b)2h−2m

)2

,

where the last expression was derived in the section on ancestral state reconstruction.
Note that both terms in our derived expression for Var

[
Σ̃m

AB

∣∣σm
A , σm

B

]
do not, in fact,

depend on σm
A , σm

B , and therefore are unaffected by taking an expectation. Putting
everything together, the variance is

Var
[
Σ̃m

AB

] = (2θ(b))4h
(
1 − θ(2g)2

)+
(
1

4

h∑

m=0

22h−mθ(b)2h−2m

)2

− (2θ(b))4h .

After simplification that becomes

Var
[
Σ̃m

AB

] =
(
1

4

h∑

m=0

22h−mθ(b)2h−2m

)2

− (2θ(b))4hθ(2g)2.

We will bound P[E c
AC ] as follows:

P[E c
AC ] ≤ P[FAB] + P[FAC ],

where

FAB =
{

k∑

m=1

(
Σ̃m

AB − E[Σ̃m
AB]) ≤ −k(2θ(b))2h

θ(2g) − θ(2g + 2 f )

2

}

and

FAC =
{

k∑

m=1

(
Σ̃m

AC − E[Σ̃m
AC ]) ≥ k(2θ(b))2h

θ(2g) − θ(2g + 2 f )

2

}

.
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In words, if
∑2h

i, j=1 Σk
Ai B j

−∑2h

i, j=1 Σk
AiC j

≤ 0, then one of the two terms must be
away from its expectation by more than half the gap between the expectations. By
Chebyshev’s inequality, we have the bound

P[FAB] ≤
(
1
4

∑h
m=0 2

2h−mθ(b)2h−2m
)2 − (2θ(b))4hθ(2g)2

k(2θ(b))4h(θ(2g) − θ(2g + 2 f ))2/4
.

After simplification, we get

P[FAB] ≤ 1

k

1
4

(∑h
m=0(2θ(b)2)−m

)2

(θ(2g) − θ(2g + 2 f ))2
.

It can be checked that the samebound holds forP[FAC ]. Applying the same argument
to P[E c

BC ], we finally get the following bound:

P

[
D(σ

(k)
L ) �= T

]
≤ 1

k

(∑h
m=0(2θ(b)2)−m

)2

(θ(2g) − θ(2g + 2 f ))2
.

Claim 8 (Sequence-length requirement of D). Let

P = {[AB|C]h,b
g, f , [AC |B]h,b

g, f , [BC |A]h,b
g, f }.

We have the following upper bound on the sequence-length requirement of D over
P

KD(P) ≤ 1

δ

(∑h
m=0(2θ(b)2)−m

)2

(θ(2g) − θ(2g + 2 f ))2
.

The behavior of the sequence length required depends crucially on 2θ(b)2. When
2θ(b)2 > 1, the numerator on the r.h.s. is atmost 1/(1 − (2θ(b)2)−1)2 andwe require

k ≥ 1

δ

1

(θ(2g) − θ(2g + 2 f ))2(1 − (2θ(b)2)−1)2
,

which does not depend on h. That is, in that regime, the sequence length requirement
of this method is not sensitive to the depth of the tree. On the other hand, when
2θ(b)2 < 1 (we omit the equality case), the numerator on the r.h.s. of our bound on
the error probability now grows exponentially with h and we require

k ≥ 1

δ

(1/2θ(b)2)2h+2

(θ(2g) − θ(2g + 2 f ))2((1/2θ(b)2) − 1)2
.
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4.9 Bibliographic Remarks

While for simplicity, we have focused exclusively on the Cavender–Farris model
under a molecular clock, sequence-length requirement results have been derived in
much more general contexts—using some of the insights described here as well as
many other ideas. We give a brief, non-extensive review of these results below.

Under a general Markov model on a general phylogeny with branch lengths
bounded between two constants, distance-based methods have been developed that
have the same type of dependence on shortest branch length and depth that we pre-
viously described, although branch length and depth must be defined with some
care [9, 10, 12, 20]. In particular, the sequence-length requirement of these so-
called fast-converging methods is polynomial in the number {n} of leaves under
these assumptions [32]. It should be noted that not all distance-based methods are
fast converging. Most prominently, the popular neighbor-joining method has been
shown to have an exponential requirement in n [13]. Results on fast-converging
distance-based methods have also been extended to partial forest reconstruction [5,
7, 19].

Phase transition results on general phylogenies have also been obtained, albeit
under more restrictive assumptions. In the “reconstruction regime,” i.e., when branch
lengths are below a critical threshold that depends on the model, the sequence-
length requirement has been shown to scale logarithmically in n for certain ad hoc
methods [6, 14, 18], as well as distance-based methods similar to the one described
above [26] and maximum likelihood estimation [27]. Currently, these results have
been rigorously established under simpler models, such as Jukes–Cantor, and further
require that branch lengths are discretized. It is a (potentially difficult) open problem
to obtain logarithmic in n sequence-length requirements without this discretization
assumption. Lower bounds have been derived in [17, 22, 30].

Some limited amount of work has been dedicated to deriving sequence-length
requirements in more complex models, including models of insertions and dele-
tions [8] and multilocus coalescent-based models [4, 21, 28].
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Chapter 5
Gene Family Evolution—An Algorithmic
Framework

Nadia El-Mabrouk and Emmanuel Noutahi

Abstract Most biological discoveries can only be made in light of evolution. In
particular, functional annotation of genes is usually deduced from the orthology,
paralogy, or xenology relations between genes, which are inferred from the compar-
ison of a gene tree with a species tree. As sequence-only gene tree reconstruction
methods often do not allow to confidently discriminate between trees, recent “inte-
grative methods” include information from the species tree. The idea is to consider,
in addition to a value measuring the fitness of a tree to a sequence alignment, a mea-
sure reflecting the evolution of a whole gene family through gene gain and loss. One
such measure is the “reconciliation” cost, i.e., the cost of a gain and loss scenario
explaining the incongruence between the gene and species tree. This chapter begins
with a review of deterministic algorithms for computing reconciliation distances
under various evolutionary models of gene family evolution. We then review inte-
grative methods for correcting a gene tree, based on various strategies for exploring
its neighborhood. The considered algorithms are those based on polytomy resolution,
tree amalgamation and supertree reconstruction. The goal is to provide a comprehen-
sive overview of existing methods with algorithms presented in concise form. The
reader is referred to original papers for more details and proofs of complexity.
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5.1 Introduction

Genes are the molecular units of heredity holding the information to build and main-
tain cells. They are key to understanding biological mechanisms, identifying genetic
variation, and designing appropriate gene therapies.

In the course of evolution, genes are mutated, duplicated, lost, and passed to
organisms through speciation or Horizontal Gene Transfer (HGT), the exchange of
genetic material among coexisting species. Therefore, most biological discoveries
can only be made in the light of evolution. Genes originating from the same ancestral
copy are called homologs. Homologous genes are grouped into gene families, usually
via sequence similaritymethods.Moreover, they can be orthologs if their most recent
common ancestor has been subjected to a speciation event, paralogs if it has been
subjected to a duplication event and xenologs if they diverged via a HGT event.

Homologous sequences tend to have similar structure and function, and are often
located in homologous genomic regions. These properties can be exploited in various
biological applications, making deciphering the relation between genes essential
for several biological analyses. For example, because homologous genes can be
used as markers, they are essential in comparative genomics studies based on gene
order, a field widely explored by renowned researchers in computational biology.
In particular, Bernard Moret has led the development of highly efficient tools for
comparing gene orders [5, 54, 55].

Methods for inferring gene relations are subdivided into tree-based and tree-
free methods. Tree-free methods are mostly based on gene clustering according
to sequence similarity, (cf., e.g., the COG database [87], OrthoMCL [50], InPara-
noid [10]). They are often unable to detect the full set of relations between members
of a gene family and fail to differentiate orthologs fromparalogs and xenologs. On the
other hand, tree-based methods consist in reconstructing a phylogenetic tree for the
gene family and then inferring the nature of internal nodes (duplication, speciation
or HGT) from a reconciliation, i.e., an embedding of the gene tree into the species
tree. Methods relying on reconciliation, the focus of this chapter, usually yield more
accurate gene relations. However, they are very sensitive to the quality of the input
trees, a single misplaced branch likely leading to a completely different evolutionary
scenario.

Tree reconciliation can be performed through different biological models of evo-
lution, the most common being the Duplication (D), Duplication-Loss (DL) or
Duplication-Loss and Transfer (DTL) models. Incomplete lineage sorting (ILS),
i.e., imperfect segregation of alleles has also been considered, mainly for reconcil-
iation with a non-binary species tree. While most reconciliation methods are based
on the parsimony principle of minimizing the number or the cost of induced oper-
ations, probabilistic models seeking for a reconciliation with maximum likelihood
or maximum posterior probability have also been developed [2, 76, 84] (see [85]
for a review). Although relying on more realistic models of gene family evolution
through gains and losses, these methods are much slower than parsimony methods.
This chapter is dedicated to parsimony methods for reconciliation.
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As mentioned above, accurate inference of the true evolutionary history of a
gene family through reconciliation strongly depends on the accuracy of the consid-
ered gene and species trees. This is the main reason for the continuing effort made
to reduce errors in gene tree reconstruction. In particular, standard phylogenetic
methods standing solely on sequence alignment (e.g., PhyML [33], RAxML [78],
MrBayes [71], PhyloBayes [48]) are often error-prone as they are subject to, among
other systematic errors [69], errors arising from the quality of the dataset (e.g., qual-
ity of gene annotations, gene family clustering, and alignment). In addition, gene
sequences often do not contain enough differentiation (substitutions) to resolve all
the branches of a phylogeny, or alternatively, too much such that the substitution
history is saturated. The resulting low resolution of gene relations can usually be
assessed with measures of statistical support (e.g., bootstrap and posterior probabil-
ity) on tree branches.

To address the limitation of standard methods, other reconstruction methods,
accounting for fitness with the species tree, have been developed. These meth-
ods, designated as integrative methods, report gene trees with better accuracy com-
pared to sequence-only methods [14, 59, 84, 89]. Most of them rely on a two-steps
approach: first compute a tree, or a set of trees, with the best fit to the sequences,
and then “correct” the initial tree, or set of trees, according to the reconciliation
cost. Four main strategies are considered for the second step: (1) Select neighboring
gene trees of an initial tree by performing some branch swapping, typically Nearest
Neighbor Interchange (NNI), Subtree Pruning and Regrafting (SPR) or Tree Bisec-
tion and Reconnection (TBR) (e.g., GeneTree [62], TreeFix [94], TreeFix-DTL [8],
MowgliNNI [58], Notung [18]); (2) Contract branches of weak support and resolve
the obtained polytomies (non-binary nodes) (e.g., NOTUNG [18], ProfileNJ [60]);
Finally, select a set of trees or clades (leafsets) and construct (3) an amalgamated
tree (e.g., ecceTERA [36], ALE [84] or (4) a supertree (e.g., MinSGT [41, 43]).

The first strategy, relying on tree rearrangement events (NNI, SPR, TBR) near
poorly supported branches, consists of searching for alternative topologies of an ini-
tial gene tree with a better fit to the species tree. Methods based on this strategy
explore the tree space often by using search heuristics such as branch-and-bound
and hill-climbing. Some of them restrict the candidate alternative topologies to those
that cannot be rejected by sequence data. Their main drawback stems from the per-
formance of the criteria used to stop the tree space exploration, which in the worst
case can result in exploring the complete exponential-size tree space.

In this chapter, while we focus on the second step of integrative methods, we
only present the less straightforward methods based on strategies (2), (3) and (4).
After introducing the preliminary notations in Sect. 5.2, the following sections are
dedicated to the various formulations of the reconciliation problem depending on the
considered trees and evolutionarymodel (with orwithoutHGTs, considering or disre-
garding ILS). Section 5.3 is dedicated to the classical reconciliation between a binary
gene tree and a binary species tree, Sect. 5.4 presents an extension to non-binary
species trees, and Sect. 5.5 deals with the polytomy resolution problem, namely, the
reconciliation of a non-binary gene tree with a binary species tree. This latter section
is related to strategy (2) described above for integrative methods. We then move, in
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Fig. 5.1 Different strategies for gene tree construction and correction. A single gene tree is con-
structed from the sequences of all the genes of the gene family: in (1), tree rearrangement methods
around weakly supported branches are used to search an alternative tree minimizing with a better
reconciliation cost; in (2), branches with weak support are rather contracted and the obtained non-
binary nodes resolved according to the reconciliation cost with the species tree. (3) Amalgamation:
a sample of gene trees is first reconstructed from a single gene family, then a single gene tree is
reconstructed based on “trusted” clusters of the tree sample. (4) Supertree: The gene family is first
subdivided into a set of, possibly overlapping, groups of genes (usually, groups of orthologs), a tree
is reconstructed for each group and these trees are then combined into a single supertree displaying
all of them

Sect. 5.6, to strategy (3) and (4), taking advantage of a set of gene trees rather than a
single input gene tree, through amalgamation or supertree methods, as illustrated in
Fig. 5.1. Section 5.7 then presents, for the DLmodel, a unifying view simultaneously
considering polytomy resolution and supertree reconstruction in a single framework
for gene tree correction. We end this chapter with a discussion in Sect. 5.8.

5.2 Trees

We denote, respectively, by V (T ), E(T ), and L(T ) the set of nodes, edges and leaves
of a tree T . Notice that L(T ) ⊂ V (T ). We say that T is a tree on L(T ). Unless stated
differently, all trees considered in this chapter are rooted, i.e., they admit a single
node r(T ) called the root of T .

Let x be a node of V (T ); y is an ancestor of x if y is on the path from x to the
root; y is a descendant (respectively, proper descendant) of x if y is on the path from
x to a leaf of T including x (respectively, excluding x); x and y are incomparable if
y is neither an ancestor nor a descendant of x . If (x, y) is an edge of T , then x is the
parent p(y) of y and y is a child of x (y ∈ Ch(x)).

For a tree T , we denote by Tx the subtree of T rooted at x ∈ V (T ). Two subtrees
Tx and Ty of T are separated iff x and y are incomparable nodes of T . Given a subset
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L of leaves, we call the lowest common ancestor (LCA) of L in T and denote by
lcaT (L) the common ancestor of L in T that is the farthest from the root. We also
denote by T |L the tree with leafset L ∩ L(T ) obtained from the subtree of T rooted
at lcaT (L ∩ L(T )) by removing all leaves that are not in both L and L(T ), and then
all internal nodes with a single child.

A tree T ′ is said to be an extension of a tree T if it can be obtained by a sequence
of graftings, where each grafting consists of subdividing an edge (x, y) of E(T ) by
creating a new node z between x and y, then adding a leaf l with parent z.

In this chapter, all considered trees have internal nodes with at least two descen-
dants. An internal node x of T is binary if it has exactly two descendants. A binary
tree is a tree with all internal nodes being binary nodes. A non-binary tree has at least
one internal node which is a polytomy, i.e., a node with more than two descendants.

Definition 1 (binary refinement) A binary refinement B = B(T ) of a tree T , is a
binary tree such that V (T ) ⊆ V (B) and such that for every x ∈ V (T ), L(Tx) =
L(Bx).

In other words, a binary tree B(T ) is a binary refinement of T if whenever a node
x is an ancestor of y in T , x is also an ancestor of y in B(G).

Gene and species trees: Two types of trees are considered: species trees and gene
trees (see Fig. 5.2). A species tree S for a set Σ = {σ1, . . . , σt } of species represents
an ordered set of speciation events (the separation of one species into two different
species) that have led to Σ .

Inside the species’ genomes, genes undergo speciation when the species to which
they belong to speciate, but also duplication i.e., the creation of a new locus, loss
of a locus, and Horizontal Gene Transfer (HGT) when a gene is transmitted from a
source species to a different, coexisting target species.

A gene family Γ is a set of genes sharing a common ancestor, and a gene tree G is
a tree on a gene family Γ . We denote by s(x) the genome of Σ to which x belongs.

When no distinction needs to be made between gene copies in the same genome,
genes can just be identified by their corresponding genome, and thus a gene tree can
be represented as a tree on Σ with possibly repeated leaf-labels (see Fig. 5.3).

5.3 Reconciliation of a Binary Gene Tree with a Binary
Species Tree

The evolutionary history of a gene family is usually inferred from the embedding of its
corresponding gene tree into the species tree, through a process called reconciliation
explaining incongruities between gene and species trees by gene evolution events.

More precisely, a reconciliation R(G, S) of a gene tree G with a species tree
S (if no ambiguity arises, we will just write R) is a node-labeled extension of the
gene tree G reflecting a history of speciation and gene gain and loss in agreement
with S (see Fig. 5.2). Each node x of V (R) (internal or leaf) is mapped to a node
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Fig. 5.2 Top: A speciation (black circle), duplication (white rectangle), loss (dotted line) and HGT
(white circle) events. For the speciation event, σl and σr refer to the two species descendent from
the species σ ; for the HGT event, σ1 is the source and σ2 the target unrelated species. Bottom:
(left) A gene tree G for the gene family Γ = {a1, a2, b1, b2, c1}, where each lower case denotes
a gene belonging to the corresponding genome in upper case; (middle) an evolutionary history of
Γ embedded in the species tree S = (A, (B,C)); (right) the reconciliation R(G, S) corresponding
to the given evolutionary history. Each internal node and grafted leaf x of R(G, S) is labeled with
s(x). The edge (B, a2) is a HGT edge

s(x) ∈ V (S). Some branches of R may also be labeled as transfer edges. A formal
definition follows.

Definition 2 (Reconciled gene tree) Let G be a binary gene tree and S be a binary
species tree. A reconciliation R(G, S) of G with S is an extension of G such that,
for each internal node x of R(G, S)with two children xl and xr , one of the following
cases holds:

1. s(xl) and s(xr ) are the two children of s(x), in which case x is a speciation node;
2. s(xl) = s(xr ) = s(x) in which case x is a duplication node representing a dupli-

cation in s(x);
3. one of s(xl) and s(xr ) is equal to s(x) and the other is incomparable to s(x). Let

y corresponds to the element of {xl, xr } such that s(y) is incomparable to s(x).
Then x is a HGT node representing a HGT event with source genome s(x) and
target genome s(y), and (x, y) is a HGT edge.

Each grafted leaf x corresponds to a loss in s(x).

Two genes are said orthologs if their LCA in R(G, S) is a speciation event,
paralogs if it is a duplication event and xenologs if it is a HGT. For example in
Fig. 5.2, b2, c1 are orthologs, b2, a1 are paralogs and a2, b1 are xenologs.
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Remark 1 A more flexible definition of xenologs, where two genes are said to be
xenologs if the history since their LCA involves a HGT, is also considered in the
literature [27]. With this definition, a pair of xenologous genes can diverge through
speciation, duplication or transfer. For example with this definition, genes a1, b1 in
Fig. 5.2 are xenologs that diverged through a speciation. To avoid further ambiguity,
a new classification of xenologs into subtypes, which takes into account the evolu-
tionary events at the divergence of gene pairs and the relative timing of transfer and
speciation eventswas also recently proposed [20]. In this chapter,wewill consider the
simplest event-based definition of xenologs through divergence via a transfer event,
inducing a unique assignment type for each pair of genes into orthologs, paralogs
or xenologs. Notice that with this definition, orthologs are not restricted anymore to
genes from different species (see [20] for a discussion). For example, in Fig. 5.2, a1
and a2 are orthologs although they are found in the same present-day species A.

The standard parsimony criteria used to choose among the large set of possible
reconciliations are the minimum number of duplications (D), duplications and losses
(DL), or duplications, losses and HGTs (DTL) events induced by the reconciliation.
The first two distances can be computed in linear time using the LCA mapping [30,
96, 99] (see Sect. 5.3.1 below). An algorithm enumerating all solutions for general
costs with different event penalties was described in [22] for the DL model and
extended to DTL in [15].

5.3.1 DL Reconciliation

The LCA-mapping between a gene tree G and a species tree S maps each node x ∈
V (G) toward a genome s(x) ∈ V (S), such as L(Ss(x)) is the smallest set of genomes
to which all genes in L(Gx ) belong. Formally, s(x) = lcaS({s(y) : y ∈ L(Gx )}) in
the species tree. Note that the LCA-mapping is unique for any given pair (G, S).

Given that mapping, each internal node x of G can be labeled as a duplication
node if s(xl) = s(x) and/or s(xr ) = s(x), otherwise it is a speciation node. The total
number of losses correspond to the minimum number of grafting on G required to
have a reconciliation R(G, S). The reconciliation induced by the LCA-mapping,
called LCA-reconciliation is optimal for both D and DL distances. It is also the
unique reconciliation minimizing the DL distance (see Fig. 5.3(1) for an example).

We highlight two types of duplication nodes inferred from LCA mapping. Con-
sider each gene of G as simply identified by the genome it belongs to. Let x be a
duplication node ofG with children xl and xr . It is aNonapparent duplication (NAD)
iff L(Gxl ) ∩ L(Gxr ) = ∅. In other words, the reason for x being a duplication node
is not the presence of paralogs in the same genome, but rather an inconsistency with
the species tree. A duplication which is not a NAD is an Apparent Duplication (AD)
node, i.e., a node with the left and right subtrees sharing a common leaf-label.
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Fig. 5.3 Three different reconciliations for the species tree S and the gene treeG, for the gene family
Γ = {a, b, b, c, d}, where each lower case denotes a gene belonging to the corresponding genome
in upper case; (1) An evolutionary scenario optimal for the D and DL distances (two duplications
and five losses); G is labeled according to the LCA-mapping; (2) A DTL-scenario with two HGTs
and two losses. This scenario is cyclic, and is therefore infeasible; (3) An alternative and acyclic
DTL-scenario with two HGTs and one loss; this scenario is also biologically unfeasible as it is not
date-respecting, according to the considered speciation times

For example in Fig. 5.3(1), the lower duplication node of G is a NAD, while the
upper duplication node is an apparent duplication, as its left and right subtrees each
contains a leaf labeled b.

While apparent duplications are supported by the presence of paralogs, in the
same genome, that are necessarily the result of duplication, NAD nodes have been
flagged as potential errors in many studies, and in particular in the Ensembl Compara
gene tree database [28]. The distinction between these two types of duplication nodes
is required for certain formulations of the gene tree correction problem [40], or for
considering an optimal history accounting for ILS, as we will see later.

5.3.2 DTL Reconciliation

In contrast with the DL reconciliation framework, the optimal DTL reconciliation is
not unique, and cannot be computed by means of the LCA-mapping. With HGTs,
a gene evolution is not restricted anymore within the parental edges of its genome
in the species tree. As such, to the standard vertical transmission of genes from
one ancestor genome to its descendants, there is an additional need to consider
transmission between incomparable nodes of the species tree. Such transmissions
are represented in the reconciliation by a transfer edge (x, y) corresponding to a
gene transfer from a source genome s(x) to a target genome s(y). For a HGT to
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be biologically feasible, both genomes are required to be contemporary at the time
of the transfer event. Therefore, a “consistent” HGT scenario should allow a total
temporal ordering of the internal nodes of the species tree S. As demonstrated by
Tofigh et al. [91], this requires the DTL-reconciliation to be acyclic, as defined below.

Definition 3 A reconciliation R(G, S) is acyclic if and only if there is a total
order < on V (S) such that:

(1) if (s, s ′) ∈ E(S) then s < s ′ and
(2) if (x, y) and (x ′, y′) are transfer edges in G such that y′ is a descendant of y in

R(G, S), then p(s(x)) < s(y′).

For example, scenario 2 in Fig. 5.3(2) is a cyclic DTL-scenario, as the ordering
defined by the above definition would lead, for the two transfer edges ofG, to α < α.
On the other hand, scenario 3 (Fig. 5.3(3)) is acyclic.

The problem of finding a most parsimonious acyclic (i.e., time-consistent) DTL-
scenario is NP-hard [23, 24, 34, 61]. However, the problem becomes polynomial if
the acyclicity requirement is dropped [6, 91]. In that case, themain idea for computing
an optimal DTL-reconciliation is to consider all possible mappings of G nodes to S
nodes, using a dynamic programming approach.

More precisely, let c(x, s) be the minimum cost of a reconciliation of Gx with
S such that x is mapped to s ∈ V (S). The gene tree G is processed in post-order
traversal, with the base case corresponding to leaves x ∈ L(G), treated as follows:

For x ∈ L(G), c(x, s) =
{
0, If s = s(x),
+∞, Otherwise.

As for an internal node x with children y and z, we have to consider the three
possibilities of x being labeled as a speciation, duplication or HGT node, with
cs(x, s), cd(x, s), and ct (x, s) representing these three mutually exclusive cases.
Then, c(x, s) = min{cs(x, s), cd(x, s), ct (x, s)}. Finally, the minimum cost of a rec-
onciliation of G with S is mins∈V (S) c(r(G), s).

For simplicity, we report below the recurrences when considering the cost of
reconciliation as being the number of duplications and HGT [91].

cs(x, s) =
⎧⎨
⎩
min{c(y, t) + c(z, u) for all t, u
incomparable and such that lca(t, u) = s}, If s is an internal node of S,

+∞, Otherwise.

cd (x, s) = min{1 + c(y, t) + c(z, u) for all descendants t, u of s in S}
ct (x, s) = min{1 + c(y, t) + c(z, u) for all t being descendant of s in S

and all u being incomparable to s}

A straightforward implementation of these recurrences lead to an algorithm in
O(mn2) time, where m = |V (G)| and n = |V (S)|. This time complexity has been
further improved to O(mn) [90].
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Notice that losses may be essential for distinguishing between duplications and
HGT events. The above recurrences have to be adapted to handle losses. David and
Alm [21] have described an algorithm for the DTL distance running in O(mn2),
while Bansal et al. [6] described RANGER-DTL, an algorithm running in O(mn).

When divergence time information, or a temporal ordering of internal nodes, is
available for S, then theDTL-scenariomust respect this ordering (i.e.,HGTevents are
constrained to occur only between coexisting species). A DTL-scenario respecting
a dated tree is called a date-respecting DTL-scenario. Bansal et al. [6] show how the
definition of a reconciliation and the above recurrences can be adapted to solve this
problem. They give an algorithm with O(mn log n) time complexity.

For example, scenario 3 of Fig. 5.3 is not date-respecting. Notice that a date-
respecting DTL-scenario is not necessarily time-consistent. In fact, scenarios may
be locally consistent (i.e., HGT events occurring between coexisting species), but
globally inconsistent. Global consistencymay be obtained by subdividing the species
tree S into slices and exploring slices one after the other. This strategy has been first
used in [51], leading to an O(nm4) algorithm. Later, Doyon et al. [24] have improved
the computation of a most parsimonious time-consistent DTL-reconciliation with a
dated species tree to O(mn2).

5.3.3 Binary Gene Tree Reconciliation in Presence of ILS

When a population of individuals undergoes a series of speciations in a short period of
time, different alleles for the same gene locus may remain present in a given lineage,
and then eventually fixed differently in descendant lineages [52]. This phenomenon,
known as deep coalescence or Incomplete Lineage Sorting (ILS) may also explain
discrepancies between a gene tree and a species tree. For example in Fig. 5.4, the
subtree ((a, b1), c1) of G, which is incongruent with the species tree (A, (B,C)),
may be explained from the history depicted in the left backbone of (i), which involves
no duplication, but simply the fact that the allele inherited in C is different from the
one inherited in A and B.

In the absence of paralogous genes in the same genome, inconsistencies between a
gene tree and a species tree can always be explained through ILS.Wu and Zhang [93]
have shown that a unique reconciliation with minimum deep coalescence cost can be
obtained in that case, using LCA-mapping. It is, however, necessary to take dupli-
cation events into account as ILS cannot explain the presence of additional loci. For
example, in Fig. 5.4, while the NAD (nonapparent duplication) in G can be ade-
quately explained through ILS, the apparent duplication node above it necessarily
involves the creation of a second locus. As seen in Fig. 5.4(iii), (iv), ILS-aware recon-
ciliation methods may produce evolutionary histories with fewer losses, highlighting
the need of models jointly considering duplication, loss, HGT and ILS events. In a
recent paper, Bork et al. [13] have shown that the duplication-loss-ILS reconciliation
problem is NP-hard, even when only duplications are to be minimized.
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Fig. 5.4 Gene family evolution and incomplete lineage sorting. (i) Evolution of a gene family inside
a species tree S = (A, (B,C)), in the context of a population. Each species tree backbone contains
the evolution of a single locus and each row represents a generation of individuals in a population.
The lines inside the tree backbones represent the evolution of the gene family leading to the tree G
in (ii). In this example, the evolution of two loci (black and green) are depicted. Two alleles of the
black locus are present at the time of speciation 1. The first allele is fixed in A and B, whereas the
second is only fixed in C . The green locus was created after an ancestral duplication occurring just
before speciation 1, and was lost in genome A; (ii) The resulting gene tree G for the gene family
Γ = {a, b1, b2, c1, c2} is the represented reconciled tree R(G, S), ignoring losses (dotted lines) and
internal node labeling. Duplication nodes, inferred from the LCA-mapping, are not coherent with
the true evolutionary history of the gene family. (iii) A different representation of R(G, S) reflecting
the number ns of gene copies in each genome s. For example, for the branch (0, 1), we have n0 = 1
and n1 = 3. (iv) A different scenario able to explain incongruities between the gene and species
tree through duplication, loss and deep coalescence. This more parsimonious history involves one
duplication, a loss, and a deep coalescence event. It relies on the labeled coalescent tree model
which simultaneously describes the species, locus and gene trees, as well as the reconciliations
between them. (v) The locus tree (LT) induced by the scenario shown in (iv). (vi) Enumeration of
the possible locus maps for each branch of the species tree. Each locus is shown with a different
color and new locus are created by duplications. Only some locus maps for branches (0, 1) and (1,
A) are shown. The mapping is based on the total number of gene lineages at the start and end of
each edge of the species tree, which can be determined with LCA-mapping

Very fewpapers have attempted to jointlymodel ILSandothermacro-evolutionary
events during gene and species tree reconciliation. In two papers by Durand’s
group [81, 92], the problem is reformulated as a reconciliation between a binary gene
tree and a non-binary species tree minimizing the DL/DTL cost. Their algorithm first
requires contraction of short branches of the species tree into polytomies and ILS
are only allowed at those unresolved nodes and remain unpenalized. Section 5.4 is
dedicated to this algorithm.
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On the other hand, Kellis et al. [67, 95] have considered a coalescent model
for reconciling a binary gene tree with a binary species tree, accounting for dupli-
cations, losses and deep coalescence. They first devised a probabilistic algorithm,
called DLCoal [67]. Although efficient, this algorithm is highly parameterized, mak-
ing it impracticable. Subsequently, they proposed a parsimony-based algorithm,
called DLCpar [95], introducing the concept of a label coalescent tree (LCT) (see
Fig. 5.4(iv)), which simultaneously describes the reconciliation between a gene tree,
a locus tree, and a species tree. This latter algorithm proceeds in the following steps:

1. Use the LCA-mapping betweenG and S to determine all implied speciation nodes
and count, for each branch (x, y) of the species tree, the numbers nx and ny of
gene copies at x and y.

2. For each branch (x, y), in a pre-order traversal of S, enumerate all possible sce-
narios of DL and ILS events leading from nx to ny gene copies (see Fig. 5.4(vi)).
This yields the set of possible species-specific locus maps that associates each
node of the gene tree to the locus in which it evolves. The event cost for each
branch of S can be computed by counting the number of additional loci and lost
loci, respectively corresponding to duplications and losses, as well as the number
of extra lineages caused by deep coalescence (see Fig. 5.4(vi)). In practice, some
histories are not considered since they are never most parsimonious.

3. Perform a post-order traversal of S, and for each branch (x, y) and each assign-
ment (nx , ny), use dynamic programming to determine the minimum cost on
the subtree of S rooted as x , computed as the cost of the branch (x, y) plus the
minimum cost of the left and right subtrees rooted at y, where y is assigned ny

loci. The minimum among all possible choices is selected as the most parsimo-
nious reconciliation. Optimal loci at the start and end of each branch can then be
assigned with a traceback starting from the root of the species tree.

Althoughnot explicitly given in the paper, the complexity of the algorithmstrongly
depends on the size of the locus maps set and on the choices considered for each
branch of the species tree. This part is not detailed in the paper. In particular, the
method is supposed to search over the entire space of reconciliations, but it is not
clear whether it leads to a heuristic or to an exact algorithm.

In a follow-up paper, Rogers et al. [70] further attempt to extend the LCT
model in order to address one of its shortcomings, namely the assumption of a
single haploid sample for each species. More recently, Chan et al. [16] have pro-
posed the first FPT (fixed-parameter-tractable) algorithm that computes the most
parsimonious time-consistent reconciliation fully accounting for ILS, duplications,
HGTs and losses (IDTL). This algorithm is an extension of the DTL-reconciliation
described in [24] with modifications to allow ILS, and has a total complexity of
O(|VG |(|VS|2 + |VS|nk2kS )2ks ), where k is the number of branches in the largest ILS
subtree (i.e., subtrees of the species tree where ILS occur) and nk the number of ILS
subtrees.
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5.4 Reconciliation with a Non-binary Species Tree

The LCA-mapping can naturally be generalized to a non-binary species tree. How-
ever, the LCA-reconciliation used for binary gene and species trees will not produce
correct gene evolution history when applied to non-binary species trees. In fact, a
node ofG and its child mapping to the same non-binary node of the species tree does
not necessarily indicate a duplication. In [97], Zheng et al. proved that the general
reconciliation problem of a gene tree G with a non-binary species tree S via binary
refinement is NP-hard, even when only duplications are considered. In the same
paper, they proposed a heuristic for the problem also allowing for polytomies in the
gene tree.

We can distinguish two reasons for the presence of non-binary nodes in a species
tree. They can either represent “true” evolutionary events, i.e., adaptive radiations
leading to the emergence of a set of species from a single ancestral one, or can be
caused by a lack of resolution in the species tree, due to methodological reasons.
Such non-binary nodes are called hard in the former case and soft in the latter case.
A soft polytomy may be due to short time since speciation, leading to genetic drift.

In either case, non-binary nodes of a species tree often correspond to populations
with substantial genetic diversity, and coexisting multiple alleles. It is expected that
some gene families might exhibit imperfect segregation of all their alleles (in other
words ILS) at these nodes. Therefore, a subtree of the gene tree whose root maps to a
polytomy in the species tree may be differently explained by speciation, duplication
or ILS, depending on the considered resolution of that polytomy.

Vernot et al. [92] have considered the problem of finding a most parsimonious DL
scenario explaining the differences between a binary gene tree G and a non-binary
species tree S, assuming that disagreements between the two trees can stem from
either duplication or ILS. Their algorithm only considers the possibility of ILS at
non-binary nodes of S. The main idea of their algorithm is to identify required dupli-
cations, i.e., those disagreements with the species tree that can only be explained by a
duplication. Clearly, these nodes are those in G that would be labeled as duplication
in all resolutions of S. However, as shown in [92], there is no need to try all the
resolutions of S.

The procedure described in [92] consists of a post-traversal of G during which
each node x of V (G) \ {r(G)} is labeled by the set N (x), which is the subset of {h :
h ∈ Ch(s(p(x)))} such that each element h ∈ N (x) has at least one descendant in
{s(l) : l ∈ L(Gx )}. This set represents the minimum set of nodes in V (S) that would
be traversed from s(x) to the mapping of x’s children, regardless of the resolution
of S. Consequently, a node x with children xl and xr is a required duplication if and
only if N (xr ) ∩ N (xl) 	= ∅ (see Fig. 5.5 for an example).

The set labeling a node ofG is of sizeO(kS)where kS is themaximumoutdegree in
S. Based on this fact, Vernot et al. [92] have described an algorithm for the D distance
running in O(|V (G)|(kS + hS)) time, where hS is the height of S (i.e., maximum
number of nodes from the root to any leaf of S). However, inferring the induced
minimum number of losses is not as straightforward as for binary species trees. In
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Fig. 5.5 A species tree S for the genome set Σ = {A, B,C, D}; A gene tree G for the gene
family Γ = {a, a, b, c, d}, where each small letter designs a gene belonging to the corresponding
genome in upper case. The treeG is labeled according to LCA-mapping suggesting three duplication
nodes (rectangles). However, according to the N (x) labeling in brackets, only two duplications are
required, while the third (striped rectangle/circle) can be explained through ILS instead (see history
in the right side), leading to a most parsimonious DL scenario involving two duplications and four
losses

fact, for a loss associated to a polytomy, it is not generally possible to determine
the exact lineage in the gene tree in which the loss has occurred, and several edges
of G have to be tested. An exponential algorithm running in O(|V (G)|kS22kS ) was
described.

In [81], Stolzer et al. further extended the framework to HGT events and devel-
oped an algorithm running in O(|V (G)|(hS + kS)(V |S| + nk2kS )2). Although their
algorithm does not guarantee a time-consistent reconciliation, temporal feasibility
of each scenario is evaluated a posteriori. Both DL and DTL algorithms are imple-
mented in NOTUNG.

5.5 Reconciliation of a Non-binary Gene Tree with a
Binary Species Tree

We will detail the most efficient algorithms for DL reconciliation, and end up with a
brief discussion on extensions toDTL reconciliation of a non-binary gene treeG with
a binary species tree S. This problem ismotivated by the gene tree correction problem,
where a non-binary gene tree can be obtained from an initial tree by contracting
weakly supported branches. In other words, the polytomies of G are considered soft,
i.e., reflect non-resolved parts of the tree. The goal is then to find an appropriate
refinement (as defined in Sect. 5.2) of this non-binary gene tree.

Definition 4 (Resolution) A resolution of G with respect to S is a reconciliation
R(B, S) between a binary refinement B ofG and S. The set of all possible resolutions
of a gene tree G is denoted R(G).
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The optimization problem follows.

Minimum Resolution Problem:
Input: A binary species tree S and a non-binary gene tree G.
Output: A Minimum Resolution of G with respect to S (or simply Minimum Res-
olution of G), e.g., a resolution ofG ofminimum reconciliation cost with respect to S.

As first noticed by Chang and Eulenstein [17], each polytomy ofG can be consid-
ered independently and a minimum resolution of G can be obtained by a depth-first
procedure that iteratively solves each polytomy Gx for each internal node x of G.

An O
(|V (S)||V (G)|3) algorithm for the resolution of a non-binary gene tree

minimizing duplications and losses was first considered in NOTUNG [25]. The
same year, Chang and Eulenstein [17] also described an algorithm with a better
complexity, running in O

(|V (S)||V (G)|2). In 2012 [45], we developed the first
linear-time algorithm for resolving a polytomy (a single unresolved node), leading to
an overall quadratic-time algorithm for a whole tree. An algorithmic result extending
linearity to a whole gene tree was later obtained by Zheng and Zhang [98]. The key
idea is to resolve each polytomywith a species tree restricted to the smallest necessary
set of genomes. Their algorithm does not allow, however, to output all solutions and
is restricted to unit cost for duplications and losses. Based on the same optimization
idea, we developed PolytomySolver [42] which is a generalization of the dynamic
programming algorithm given in [45], allowing for both event-specific and species-
specific costs. The time complexity of PolytomySolver is linear for the unit cost and
quadratic for the general cost, which outperforms the best-known solutions so far by
a linear factor.

In the rest of this section, we describe the dynamic programming technique in
PolytomySolver for the resolution of a single polytomy under the DL distance with
unitary event costs. More details, complexity improvement, extension to other costs
and to a full non-binary gene tree, can be found in [42].

5.5.1 PolytomySolver

In the following, to prevent penalizing losses in genomes with no descendant genes
in G, the species tree is restricted to S|{s(x) : x∈L(G)} and we will simply continue to
refer to it as S.

PolytomySolver proceeds with a recursion made on the subtrees of S. Define
the multiplicity m(s) of s ∈ V (S) in G as the number of times it appears in G, i.e.,
m(s) = |{x ∈ L(G) : s(x) = s}|. An (s, k)-resolution ofG is a forest of k reconciled
gene treesT = {T1, . . . , Tk} s.t.∀ 1 ≤ i ≤ k, s(r(Ti )) = s, and each leaf x ofG with
s(x) being a descendant of s is present as a leaf of some tree of T (see Fig. 5.6 for
an example). Leaves of trees in T that do not appear in L(G) represent losses. We
denote by c(T ) the reconciliation cost of the forest T . This cost is the sum of the
reconciliation costs of all Ti ∈ T .
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Fig. 5.6 (Figure from [42]; use permitted under the Creative Commons Attribution License CC-
BY 3.0) A polytomy G and a species tree S. Squares on trees illustrate duplications, whereas
speciation are denoted by a black circle. To the right of table M , the forests corresponding to an
(a, 1) and (a, 3)-resolution are given, where the gray circled a illustrates a loss. We illustrate the
(d, 1)-resolution, rooted at a speciation node, corresponding toCd,1 = 3 (obtained from the vertical
arrows in table M), and an optimal (d, 1)-resolution, obtained from a (d, 2)-resolution (horizontal
arrow in M). The optimal cost for the resolution of G (Me,2 = 2) is highlighted in blue

The cost of a minimum resolution of G can be computed using a dynamic pro-
gramming algorithm that fills a table M . Each cell Ms,k of M corresponds to the
minimum cost of an (s, k)-resolution for a given node s of S and a given integer
k ≥ 1 (Ms,k = +∞ for k < 1). The final cost of a minimum resolution of G is given
by Mr(S),1. The table M can be computed, line by line, in a bottom-up traversal of S.
Although k is unlimited (number of gene losses is unlimited), we have shown in [42]
that there is no need to consider values larger than |V (G)| − 1.

Lemma 1 gives the base case to compute Ms,k when s ∈ L(S). It follows from
the fact that, if k is larger than the number of available leaves, then additional leaves
corresponding to gene losses are required; otherwise, leaves have to be joined under
duplication nodes. An illustration of this lemma is shown in Fig. 5.6 where it is used
to compute the first three lines of M .

Lemma 1 (Base case) For a leaf node s of S, if k > m(s) then Ms,k = k − m(s);
otherwise Ms,k = m(s) − k.

For an internal node s of S, speciation events also need to be considered.We require
an intermediate cost tableC where each entryCs,k represents the minimum cost of an
(s, k)-resolution in which every tree is rooted at a speciation node with two children
or is a leaf of G already mapped to s. For k > m(s), an (s, k)-resolution of cost
Cs,k can only be obtained from an (sl, k − m(s))-resolution and an (sr , k − m(s))-
resolution by first generating k − m(s) speciation nodes, mapped to s, each joining
a pair (sl, sr ), then adding the m(s) trees already available (see for example the
(d, 1)-resolution corresponding to Cd,1 in Fig. 5.6; in this case m(d) = 0). Thus, we
define:

Cs,k = Msl ,k−m(s) + Msr ,k−m(s) if k > m(s) and Cs,k = +∞ otherwise (5.1)
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As nodesmapped to s are not necessarily speciation nodes but can also correspond
to duplications, it is readily seen that Ms,k ≤ Cs,k . A recurrence for computing Ms,k

follows.

Lemma 2 For an internal node s of S, Ms,k = min(Ms,k−1 + 1, Ms,k+1 + 1,Cs,k).

In Lemma 2, the first term of Ms,k corresponds to a loss, while the second corre-
sponds to a duplication at s.

Since Ms,k depends on Ms,k+1 and vice-versa, the recurrence cannot be used
to compute C and M . This dependency can, however, be avoided due to a strong
property on lines of M . In [45] we have shown that each line Ms is characterized by
two values k1 and k2 such that, for any k1 ≤ k ≤ k2, all Ms,k have a single minimum
value γ , for any k ≤ k1, Ms,k−1 = Ms,k + 1, and for any k ≥ k2, Ms,k+1 = Ms,k + 1.
In other words, Ms can be treated as a convex function fully determined by k1, k2
and its minimum value γ . We say Ms has a minimum plateau between k1 and k2.
For example, line Md in Fig. 5.6 is fully determined by k1 = 2 and k2 = 3 and its
minimum value γd = 1.

Theorem 1 (Recurrence 1) Let k1 and k2 be the smallest and largest values, respec-
tively, such that Cs,k1 = Cs,k2 = mink Cs,k . Then,

Ms,k =

⎧⎪⎨
⎪⎩
Cs,k if k1 ≤ k ≤ k2
min(Cs,k, Ms,k+1 + 1) if k < k1
min(Cs,k, Ms,k−1 + 1) if k > k2

Theorem 1 shows how a row Ms for an internal node s of S can be computed:
for each k, compute Cs,k using recurrence Theorem 1 and keep the two columns k1
and k2 setting the bounds of the convex function’s plateau. The Ms,k values at the
left and right of the minimum plateau can then be easily computed from the value
of the minimum plateau. These recurrences, with the base case for S leaves given
in Lemma 1, describe how the dynamic programming algorithm of PolytomySolver
works.

Algorithm 1 describes the computation of table M . We refer the reader to [45]
for the reconstruction of a solution from M , which is accomplished using a standard
backtracking procedure. Moreover, we show in [42] that k1 and k2 for each M(s) can
be computed in constant time from Msl and Msr vectors. This implies a linear-time
algorithm for the computation of Mroot (S),k .

Unrooted trees: If the gene tree is unrooted, an exhaustive testing of all roots can
be done with PolytomySolver, ProfileNJ [60] and NOTUNG [18]. A series of papers
by Gorecki et al. also consider the properties of the plateau to avoid exploring all
branches [31, 32] of unrooted gene trees.
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Algorithm 1 Compute M(G, S)

for each node s ∈ V (S) visited in post-order do
if s is a leaf then
Ms,k = |k − m(s)| for each k;

else
Compute Cs,k = Ms1,k−m(s) + Ms2,k−m(s) for each k;
find k1, the smallest index such that Cs,k1 is minimum;
find k2, the largest index such that Cs,k2 is minimum;
Ms,k = Cs,k for each k1 ≤ k ≤ k2;
for each k < k1 do
Ms,k = min(Cs,k , Ms,k+1 + 1)

end for
for each k > k2 do
Ms,k = min(Cs,k , Ms,k−1 + 1)

end for
end if

end for

5.5.2 Extensions to DTL Reconciliation

The dated and undated formulations of the DTL reconciliation have been shown to be
NP-hard for non-binary gene trees [38]. Kordi and Bansal [39] have also shown that
the problem is Fixed-Parameter-Tractable (FPT) in themaximumdegree k of the gene
tree, and explored a O

(
2kkk(|V (S)| + |V (G)|)o(1)) algorithm testing all possible

resolutions of the gene tree.A similar algorithm, implemented inNOTUNG[47], also
tries all possible resolutions of each polytomy before computing the DTL distance
for each resolution. Heuristics for the problem, including exploration of the tree
space surrounding an initial resolution were also implemented in NOTUNG. One
such possibility consists of selecting a best tree for the DL reconciliation, and then
exploring alternative topologies at a given maximum NNI distance from the initial
topology. Finally, Jacox et al. [37] have also proposed an algorithm improving the
time complexity to O

(
(3k − 2k+1)(V (|S|) + V (|G|))o(1)) by using amalgamation

principles (see Sect. 5.6). Although this algorithm improves the running time by an
exponential factor, it runs in O(2k) space compared to the algorithm described in [39]
requiring polynomial space complexity.

5.6 Inferring a Gene Tree from a Set of Trees

We now move to a slightly different gene tree correction strategy, which consists of
taking advantage of a set of gene trees rather than a single input gene tree.
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5.6.1 Amalgamation: Gene Tree Inference from a Set of
Clades

As sequence information may contain limited signal, phylogenetic reconstruction
often involves choosing among a set of equally likely trees. This idea has inspired
the amalgamation procedure for reconstructing a tree from the clades, i.e., subtree
leafsets, of a set of gene trees. This principle was first introduced by David and
Alm [21] and a heuristic for correcting an initial gene tree based on this idea has
been described. The amalgamation principle was extended by Szöllősi et al. [84]
in a probabilistic method called ALE (for Amalgamated Likelihood Estimation)
considering conditional clade probabilities (introduced in [35]) and a joint sequence-
reconciliation likelihood score.

An alternative deterministic algorithm, called TERA (for Tree Estimation using
Reconciliation) has been developed by Scornavacca et al. [74]. This algorithm “amal-
gamates” the most parsimonious DTL reconciled gene tree from an initial set of gene
trees and achieves similar accuracy than ALE, while being much faster.

We start with some definitions, before presenting the outline of TERA.

Definition 5 Given a tree T and a node x of T , we call L(Tx ) the clade of T at x and
denote byC (T ) the set of all clades of T . If x is an internal node with children xl and
xr , a tripartition at x is defined as πx = (πx [1], πx [2], πx [3]) with πx [1] = L(Tx ),
πx [2] = L(Txl ) and πx [3] = L(Txr ). Given a set G of k gene trees on the same gene
family Γ , we denote by C (G ) the set of all the clades of G , and by �(G ) the union
of all tripartitions of G . For a given clade c ∈ C (G ), �(c) corresponds to the set of
tripartitions π of �(G ) such that π [1] = c.

Definition 6 (Amalgamation) An amalgamation of G is any gene tree G on Γ such
that C (G) ⊂ C (G ).

Most Parsimonious Amalgamation problem
Input: A set G of gene trees on the gene family Γ , and C (G ) the set of all the clades
of G .
Output: An amalgamation ofG minimizing the reconciliation cost with respect to S.

The TERA algorithm solves the amalgamation problem by computing the optimal
reconciliation of each clade (i.e., polytomy with clade as leafset) with each node of
S. For that purpose, the algorithm performs a joint traversal of the species tree S and
the clades of C (G ). In an initial step, it computes the reconciliation of each clade
c ∈ C (G ) with the leaves of S. Then S is traversed bottom-up, and for each node
s ∈ V (S), the reconciliation cost of each tripartition of c with s is computed. For
each pair (c, s), the algorithm computes the cost of reconciling the clade c with s
by testing all possible tripartitions π in �(c). As each non-trivial tripartition π can
be seen as an internal node of an amalgamated tree with children π [2] and π [3], the
cost of reconciling a tripartition π with s can be computed, using the recurrences of
the DTL-reconciliation algorithm [24] (see Sect. 5.3), from the cost of reconciling
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π [2] and π [3] respectively with nodes of V (Ss). The output of TERA is the most
parsimonious reconciliation at one of the root clades.

TheTERAalgorithm is part of a unifying software called ecceTERA [36] account-
ing for a variety of evolutionary events including duplications, losses, transfers,
transfer-loss and transfers from/to an unsampled species (not represented by the set
of genes). The software also handles fully or partially dated, as well as undated,
species trees.

5.6.2 Supertree: Inferring a Tree from a Set of Subtrees

Homology-based search tools are usually used to seek all homologs of a given gene in
a set of genomes. The resulting gene family may be very large, involving distant gene
sequences that may be hard to align, leading to weakly supported trees. Alternatively,
gene copies may be grouped into smaller sets of orthologs and inparalogs, using
clustering algorithms such as OrthoMCL [50], InParanoid [10], Proteinortho [49] or
many others.1 Trees obtained for such partial gene families should then be combined
into a single one using a supertree method.

Supertree methods have been mainly designed to reconstruct a species tree from
gene trees obtained for various gene families (see for example [7, 11, 57, 64, 65, 72,
80, 83]). However, they can have applications for gene tree reconstruction as well.
In this case, a gene tree is constructed from a set of subtrees for partial, possibly
overlapping, subsets of the gene family. Ideally, the obtained tree should display
each of the input trees, which is only possible if the partial trees are consistent, i.e.,
exhibit the same topology for each triplet of genomes (assuming genes are simply
represented by the genome they belong to).

The simplest formulation of the supertree problem is therefore to state whether
an input set of trees is consistent, and if so, find a compatible tree, called a supertree,
displaying them all. This problem is NP-complete for unrooted trees [73, 79], but
solvable in polynomial time for rooted trees [1, 19, 56, 75]. TheBUILDalgorithm [1]
can be used to test, in polynomial time, whether a collection of rooted trees is con-
sistent, and if so, construct a compatible, not necessarily fully resolved, supertree.
This algorithm has been generalized to output all supertrees [19, 56, 75], which may
be exponential in the number of genes.

Supertree methods can also be used to correct gene trees, by removing weakly
supported upper branches and then constructing a supertree from the set of termi-
nal subtrees. In contrast with the polytomy resolution approach, neither the input
subtrees, nor the gene clusters of those subtrees are necessarily preserved. In other
words, the exhibited monophyly of input gene clusters can be challenged. This is
particularly relevant because it has been shown that genes under negative selection,
while exhibiting the true topology, might be wrongly grouped into monophyletic
groups (see for example [53, 77, 82, 88]). Using a supertree method might, there-

1See Quest for Orthologs links at http://questfororthologs.org/.

http://questfororthologs.org/
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fore, be beneficial, as it preserves the topology of subtrees, while allowing to group
genes from different subtrees.

In [41, 43], we introduced the MinSGT problem defined as follows.

Minimum SuperGeneTree (MinSGT ) Problem:
Input: A species set Σ and a species tree S for Σ ; a gene family Γ of size n, a
set Γi,1≤i≤k of potentially intersecting subsets of Γ such that

⋃k
i=1 Γi = Γ , and a

consistent set G = {G1,G2, . . . ,Gk} of gene trees such that, for each 1 ≤ i ≤ k, Gi

is a tree for Γi .
Output: Among all trees G for Γ and compatible with G , one of minimum recon-
ciliation cost.

Under the D distance, we have shown that this problem is NP-hard to approximate
within a n1−ε factor, for any 0 < ε < 1, even for instances in which there is only
one gene per species in the input trees, and even if each gene appears in at most one
input tree. Although it has not been proven yet, MinSGT is conjectured NP-hard
for the DL reconciliation cost, as accounting for losses in addition to duplications is
unlikely to make the problem simpler.

We developed a dynamic programming algorithm for MinSGT with the DL
reconciliation cost, which has a time complexity exponential in the number of input
trees. The algorithm constructs the supertree G from the root to the leaves. At each
step, i.e., for each internal node x being constructed in G, all possible bipartitions
(Bl(x), Br (x)) that could be induced by x are tried, and the iteration continues on
each of Bl(x) and Br (x). The goal is to find the bipartition of Γ , that leads to the
minimum DL reconciliation cost at the root. At each step, corresponding to a node
x , the reconciliation cost is computed from a local reconciliation cost at x , and from
the best reconciliation cost of the two clusters of the considered bipartition. Because
of the constraint of being compatible with the input gene trees only a subset of the
bipartition set need to be tested at each step.

Property 1 Let G = {G1, . . . ,Gk} be a set of gene trees. The root of a supertree G
compatible with G subdivides

⋃k
i=1 L(Gi ) into a compatible bipartition (Bl, Br ),

i.e., a bipartition such that, for each i s.t. 1 ≤ i ≤ k, either: (1) L(Gi ) ⊆ Bl ; or (2)
L(Gi ) ⊆ Br ; or (3) L(Gil ) ⊆ Bl and L(Gir ) ⊆ Br ; or (4) L(Gil ) ⊆ Br and L(Gir ) ⊆
Bl .

Let B(G1, . . . ,Gk) be the set of all possible combinations of choices resulting
from Property 1 (see Fig. 5.7 for an example). Notice that not all such combinations
are valid bipartitions. For instance in Fig. 5.7, the first bipartition (top-left) cannot
be valid if G1 and G2 share a leaf with the same label, as a gene cannot be sent both
left and right. These cases, however, can be detected easily by verifying the leafset
of Bl and Br .

Denote by MinSGT (G1, . . . ,Gk) the minimum DL reconciliation cost of a
supertree compatible with G = {G1, . . . ,Gk}. The main recurrence formula of the
dynamic programming algorithm is stated as follows.
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Fig. 5.7 An illustration of the seven valid bipartitions for two trees G1 and G2. Each bipartition
is obtained by “sending” L1 ∈ {L(G1), L(G1,l ), L(G1,r ),∅} in the left part, and the complement
L(G1) \ L1 in the right part. The same process is then applied to G2. The set B(G1,G2) consists
of the set of all possible combinations of choices, after eliminating symmetric cases and partitions
with an empty side

Theorem 2 Let G = {G1, . . . ,Gk} be a set of gene trees.
1. MinSGT (G1, . . . ,Gk) = 0 if | ⋃k

i=1 L(Gi ) | = 1 (Stop condition);
2. Otherwise,

MinSGT (G1, . . . ,Gk) =

min
(Bl ,Br )∈B (G1,...,Gk )

⎧⎨
⎩
cost (Bl , Br )+
MinSGT (G1|Bl , . . . ,Gk|Bl )+
MinSGT (G1|Br , . . . ,Gk|Br )

⎫⎬
⎭

Note that, given a bipartition (Bl, Br ) ∈ B(G1, . . . ,Gk), for each i such that
1 ≤ i ≤ k, Gi |Bl and Gi |Br are equal either to ∅ or Gi or Gil or Gir . Thus, Gi |Bl

and Gi |Br are always either empty trees or complete subtrees of Gi . Furthermore,
the existence of a compatible bipartition, at each step, follows from the fact that the
input gene trees are assumed to be consistent.

In [41] we show how Theorem 2 can be modified to account for inconsis-
tencies between gene trees, by adding a third equation: If | ⋃k

i=1 L(Gi ) | > 1
and | B(G1, . . . ,Gk) | = 0, MinSGT (G1, . . . ,Gk) = +∞. We also show that
|B(G1, . . . ,Gk)| ≤ ( 4

k

2 ) − 1, resulting in the time complexity of the overall algo-
rithm being O((n + 1)k × 4k × k), where n is the maximum number of nodes in a
tree Gi .
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5.7 A Unifying View for the DL Model

The polytomy-based and supertree-based framework for gene tree correction have
been developed separately, considering separate assumptions and constraints. In the
absence of a unifyingmodel, the conservative or permissive nature of each framework
with respect to the other can only be tested empirically. A conceptual breakthrough
is the discovery that, for the DL model, the two frameworks are in fact two special
cases of a more general one: LabelGTC expressed in terms of a 0–1 edge-labeled
gene tree [26], and TripletGTC expressed in terms of preserving triplets [26]. Here,
we focus on LabelGTC.

Given an initial tree G for a gene family Γ , the correction problem can be defined
as finding a “better tree”G ′ according to a reconciliation cost. The various versions of
the problem differ on the flexibility we have in modifying G. Regarding which parts
ofG should be preserved, an intuitive way is to take advantage of the support on each
branch (x, y)which reflects the confidence we have on L(Gy) being a separate clade
in the gene family. Hence, we could allow modifications only on weakly supported
branches, i.e the ones with a support below a given threshold, while preserving all
well-supported branches. Using a threshold, we therefore obtain a 0–1 edge-labeling
of E(G), where 0 indicates a low support and 1 a high support.

If G further contains a set of separated subtrees whose topologies are to be
“trusted”, they should also be preserved during correction. For example, ortholog
groups that agree with the species tree and were separately obtained to build G may
be trusted.

Accordingly, we describe below the most general gene tree correction problem
(see Fig. 5.8 for an illustration), where a covering set of subtrees CG for G is a set of
separated subtrees ofG,CG = {Gx1 ,Gx2 , . . . ,Gxn } such that

⋃n
i=1 L(Gxi ) = L(G),

and a 0–1 edge-labeling for G is a function f defined from the set of edges E(G) to
{0, 1}. In the following formulation, edge labels are ignored for the trees of CG . For
an extension that considers edge-labeling inside the covering set, see [26].

Label Respecting Gene Tree Correction (LabelGTC) Problem:
Input: A species tree S, a gene tree G, a covering set of trees CG for G and a 0–1
edge-labeling f for G.
Output: A supertree G ′ for CG of minimum reconciliation cost such that: if
(x, y) ∈ E(G) \ E(CG) and f (x, y) = 1, then there is an edge (x ′, y′) in E(G ′)
such that L(Gy) = L(G ′

y′).

When no information on “trusted” separated subtrees is available, each tree of CG

is simply restricted to a leaf of G, and CG thus refers to the leafset of G.
In the following, we reformulate the polytomy-related (Sect. 5.5) and supertree-

related (Sect. 5.6.2) correction problems according to a 0–1 edge-labeled gene tree
(see Fig. 5.9 for an illustration of the problems). We then show that they are special
cases of the general LabelGTC problem.
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Fig. 5.8 (Figure modified from [26]; use permitted under the Creative Commons Attribution
License CC-BY 3.0) Left. A species tree S for Σ = {a, b, c, d, e}, a reconciled 0–1 edge-labeled
gene treeG for Γ = {a1, b1, c1, c2, d1, d2, d3, e1, e2, e3}where each leaf xi denotes a gene belong-
ing to genome x , and a covering set CG of subtrees for G indicated by blue circles around each
subtree. Rectangular nodes represent duplications, black dots are speciations and dotted lines are
losses. Right. A supertree for CG of minimum reconciliation cost (cost of 3) respecting the edge-
labeling of G

Fig. 5.9 (Figure from [26]; use permitted under the Creative Commons Attribution License
CC-BY 3.0) A species tree S for Σ = {a, b, c, d, e} and a gene tree G for Γ =
{a1, b1, c1, c2, d1, d2, d3, e1, e2, e3}with a covering set CG of subtrees for G as in Fig. 5.8 (without
the 0–1 labeling of edges). Bottom left. A polytomy resolution for CG of minimum reconciliation
cost (cost of 3). Bottom right. A supertree for CG of minimum reconciliation cost (cost of 2). Top
right. A triplet-respecting supertree for CG of minimum reconciliation cost (cost of 5). Note that
the solutions for the TRS, SGT and PolyRes problems may differ from the optimal supertree for the
LabelGTC problem, because of the 0–1 edge-labeling. In this particular case, the optimal supertree
for the SGT problem is identical to the one returned for LabelGTC in Fig. 5.8

In the general version of the polytomy resolution problem, all weakly supported
internal branches of G are contracted, leading to a non-binary tree Gnb. The goal is
then to find a binary refinement of Gnb minimizing the reconciliation cost.

Mutiple Polytomy Resolution (M- PolyRes) Problem:
Input: A species tree S and a 0–1 edge-labeled gene treeG and the treeGnb obtained
from G by contracting edges labeled 0;
Output: A binary refinement of Gnb minimizing the reconciliation cost.
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In the simplest form of the polytomy resolution problem, we have a single poly-
tomy which consists of a non-binary node at the root of Gnb. The subtrees rooted at
the children of r(Gnb) are the “trusted” partial trees that should remain subtrees of
the final tree (see the tree obtained from PolyRes in Fig. 5.9).

Polytomy Resolution (PolyRes) Problem:
Input: A species tree S, a gene tree G and a covering set of trees CG for G.
Output: A supertree G ′ forCG of minimum reconciliation cost such that for any tree
Gi ∈ CG , G ′

|L(Gi )
= Gi .

Now recall the MinSGT correction problem introduced in Sect. 5.6.2, but in the
simplest case of separated gene trees.

SuperGenetree (SGT) Problem:
Input: A species tree S, a gene tree G and a covering set of trees CG for G.
Output: A supertree G ′ for CG of minimum reconciliation cost.

To avoid having a supertree grouping genes that are far apart in the original tree,
we also introduced, in [41], an alternative version of the problem restricting the out-
put space to supertrees preserving the topology of any triplet of genes taken from
three different input subtrees of CG . A formulation of the triplet-based constrained
supertree problem follows.

Triplet- Respecting SuperGeneTree (TRS) Problem:
Input: A species tree S, a gene tree G and a covering set of trees CG for G.
Output: A supertree G ′ for CG of minimum reconciliation cost respecting the fol-
lowing property: for any triplet (a, b, c)where a, b and c are genes of Γ being leaves
of three different trees of CG , G ′

|{a,b,c} = G |{a,b,c}.

The difference between the TRS and SGT problems is illustrated in Fig. 5.9. The
solution of the SGTProblem shown in that figure is not a solution of the TRS problem
as the triplet (a1, c1, c2), where each gene belongs to a separate subtree of CG , has
the topology (a1, (c1, c2)) in the SGT tree while it has the topology ((a1, c1), c2) in
G.
A unifying view: Theorem 3 shows that the polytomy-related and supertree-related
problems are in fact special cases of the general LabelGTC problem. We begin by
introducing some notation.

Given a covering set of subtrees CG for G, we say that an edge (x, y) of E(G) \
E(CG) is a terminal edge if y is the root of a tree in CG . Any other edge in E(G) \
E(CG) is called a non-terminal edge (see Fig. 5.10 for an illustration).

Theorem 3 Let G be a 0–1 edge-labeled gene tree and CG be a covering set for G.
Then the LabelGTC Problem is reduced to the:
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Fig. 5.10 (Figure from [26]; use permitted under the Creative Commons Attribution License CC-
BY 3.0) (1) A gene tree G with a covering set CG composed of 7 subtrees indicated as triangles.
The set E(G) \ E(CG) contains 7 terminal edges (dotted lines) and 5 non-terminal edges (solid
lines). (2), (3) and (4) are three 0–1 edge-labeling corresponding respectively to the PolyRes, SGT
and TRS problems. (5) is a general input of the LabelGTC problem

1. M-PolyRes Problem if CG = L(G); Otherwise:
2. PolyRes Problem if all non-terminal edges are labeled 0, and all terminal edges

are labeled 1;
3. SGT Problem if all non-terminal and terminal edges are labeled 0;
4. TRS Problem if all non-terminal edges are labeled 1, and all terminal edges are

labeled 0.

Finally, we have developed an algorithm, called LabelGTC, handling the general
version of the problem, not represented by any of the special cases reflected in
Theorem 3. For any edge (x, y) in E(G) \ E(CG) labeled 1, there should exist a
node y′ in the final corrected tree G ′ such that L(y′) = L(y). So the subtree G ′

y′
of G ′ for the subset L(Gy) can first be constructed independently of the remaining
nodes of G ′, and then grafted at the appropriate location in a way minimizing the
reconciliation cost. The LabelGTC algorithm proceeds iteratively, in a bottom-up
order, on subtrees Gy with parental edge (x, y) fitting the above criterion, and is
recursively called to reconstruct G ′

y′ . Each solution G ′
y′ is implicitly treated as a leaf

in subsequent calls to avoid modifying its content.
In [26], we showed that the time complexity of the algorithm is related to the

time complexity of MinSGT , which makes it exponential in the number of terminal
subtrees. More precisely, the algorithm runs in time O(4k · (n + 1)k · k), where n =
|Γ | and k = |CG |.
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5.8 Discussion

Efficient pipelines for gene tree inference should typically include accurate gene
sequence alignment tools and use inference methods combining information from
both micro-evolutionary (sequence level) and macro-evolutionary (genome level)
information. In the recent years, new algorithms improving the accuracy of sequence
alignment and gene tree inference have been described.

In particular, probabilistic gene tree construction methods relying on complex
evolutionary models that account for both sequence and species tree data have been
developed [2, 4, 66, 67, 76, 84, 86]. These methods unfortunately present some
drawbacks inherent to probabilistic methods, namely the huge computational time
associated with the numerical integration of the likelihood, and the prior analyses
required to satisfy the input requirements (e.g., dating the species tree).

In practice, alternative parsimony-based approaches, a posteriori correcting gene
trees inferred fromsequence-only datawith species tree information, are used instead.
Such algorithms, although limited in some aspects when compared to probabilistic
ones, have consistently produced trees with high accuracy, while being much faster.
This time efficiency allows applying the correction method to a wide set of data. For
example, in [60], we used ProfileNJ to correct the PhyML trees built on the whole
Ensembl Compara gene families (20,519 families in total). According to several
criteria, including likelihood, reconciliation score, and ancestral genome content,
these corrected trees constitute an arguably better dataset than the one stored in the
Ensembl database.

Another advantage of parsimony methods is that they can be easily extended
to consider other sources of information. For example, gene order may provide
information on gene orthology and paralogy. In fact, two synteny blocks, i.e., two
chromosomal segments (in the same genome or in two different genomes) containing
genes form the same gene families are likely to have a common ancestor. Depending
on whether they diverged from a speciation or a duplication event, gene pairs in the
two synteny blocks will either be all orthologs or all paralogs. This information has
been considered for correcting a gene tree in [44, 46].

Alternatively, functional similarity between genes is also, usually, a good indicator
for orthology [3, 29]. We are presently exploring ways to efficiently use scores based
on Gene Ontology annotations to establish terminal preserved trees in LabelGTC.

The main difficulty remains how to integrate all the developed algorithmic tools,
each handling a given type of information on genes and trees, into a single robust
framework for gene tree reconstruction. In addition, rather than applying corrections
in an incremental manner, with the risk of obtaining very different trees depending
on the order of execution, the challenge is to consider the variety of sequence, func-
tional, order and evolutionary information all together in a single algorithm. The
LabelGTC algorithm, considering polytomy resolution and supertree reconstruction
in a unifying framework is an effort in this direction. However, fitness to sequence
information may still be lost after correction, unless we constraint the output to be
statistically equivalent to the best maximum likelihood tree.
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Therefore, approaches suitable for the resolution of Multi-Objective Optimiza-
tion Problems (MOOP) have to be explored. In this context, we have developed
GATC [59], a genetic algorithm minimizing a measure combining both tree likeli-
hood (according to sequence evolution) and a reconciliation score that accounts for
HGT. An advantage of this approach is its ability to improve search efficiency by
exploring a population of trees at each step. Althoughmuch slower than deterministic
methods for correction, GATC outperforms all these methods in terms of accuracy.

From an algorithmic point of view, a lot remains to be done. Unifying the diversity
of evolutionary models and datasets is still far from being reached and raises the
interesting problem of howwe can simultaneously account, in the same evolutionary
model, for sequence evolution as well as duplications, losses, HGTs, recombination,
hybridization, and ILS. Interestingly, someof themethods developed for these events,
often taken separately, might bemore related than expected. For example, as we show
in Fig. 5.11, the parsimony method described in [95] for reconciling a binary gene
tree with a binary species tree, while accounting for duplications, losses and ILS (see
Sect. 5.3.3), may be compared to the strategy using MinSGT that we explored in
Sect. 5.6.2. The latter consists of removing upper branches of the gene tree, keeping
speciation trees, i.e., subtrees with only speciation nodes, and then using a supertree
method to reconstruct a most parsimonious supertree containing them all. To which
extent the two methods are comparable from a theoretical point of view? How can
the supertree method be applied to account for ILS? Can we take advantage of the
similarity between the two problems to design more efficient algorithms than the
exponential dynamic programming algorithm developed for MinSGT ? These are
few questions that will be considered in future developments.

Fig. 5.11 (i) The same evolution with ILS represented in Fig. 5.4; (ii) The locus tree inferred by
DLCpar [95], inducing one duplication at the root and one loss. (iii) An alternative explanation of
the gene tree with ILS, the duplication occurring lower in the species tree, and no loss. This most
parsimonious DL history with ILS is not inferred by DLCpar, however the hill-climbing heuristic
described in the same paper did find it.; (iv) The gene tree/species tree reconciliation leading to two
duplications and four losses; (v) The set of largest speciation subtrees in the gene tree; (v) The tree
obtained by MinSGT reflecting the most parsimonious history represented in (iii)
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As we have no direct access to the past, it is difficult to objectively evaluate the
accuracy of gene tree reconstruction methods. The most intuitive way is to com-
pare inferences on simulated gene families, where the “true” evolutionary histories
according to some given model of evolution with controlled parameters, are known.
Aside from tree topology comparison usingmetrics such as the Robinson-Foulds dis-
tance [63, 68], we can also assess how close the evolutionary scenarios inferred are
to the true ones. In [60], we have additionally considered metrics based on ancestral
gene content inferred from reconciliation, and ancestral gene adjacencies [9]. The
latter is particularly useful as measure for gene tree accuracy for linear genomes,
given that at most two adjacencies per gene copy should be expected.

Since good results on simulated datasets do not guarantee the same on real ones,
as theymay not conform to the evolutionarymodel used for simulations, well-studied
gene families for which good trees are available have been used to construct reference
datasets. In this regard, several ongoing works, such as the SwissTree [12] project,
are undertaking great efforts to provide manually curated “gold standard” gene trees.
However, the number of available “gold standard” remains extremely low (19 in
SwissTree) and does not allow extensive covering of themany and intricate pathways
of gene evolution. Therefore, developing new sophisticated frameworks, accounting
for various gene characteristics for producing good benchmarks, is still needed.
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Chapter 6
Divide-and-Conquer Tree Estimation:
Opportunities and Challenges

Tandy Warnow

Abstract Large-scale phylogeny estimation is challenging formany reasons, includ-
ing heterogeneity across the Tree of Life and the difficulty in finding good solutions
to NP-hard optimization problems. One of the promising ways for enabling large-
scale phylogeny estimation is through divide-and-conquer: a dataset is divided into
overlapping subsets, trees are estimated on the subsets, and then the subset trees are
merged together into a tree on the full set of taxa. This last step is achieved through
the use of a supertree method, which is popular in systematics for use in combin-
ing species trees from the scientific literature. Because most supertree methods are
heuristics forNP-hard optimization problems, the use of supertree estimation on large
datasets is challenging, both in terms of scalability and accuracy. In this chapter, we
describe the current state of the art in supertree construction and the use of supertree
methods in divide-and-conquer strategies, and we identify directions where future
research could lead to improved supertree methods. Finally, we present a new type
of divide-and-conquer strategy that bypasses the need for supertree estimation, in
which the division into subsets produces disjoint subsets. Overall, this chapter aims
to present directions for research that will potentially lead to new methods to scale
phylogeny estimation methods to large datasets.

Keywords Supertrees · Phylogenetics · Species trees · Divide-and-conquer ·
Incomplete lineage sorting · Tree of Life
6.1 Introduction

The estimation of phylogenetic trees, whether gene trees (that is, the phylogeny relat-
ing the sequences found at a specific locus in different species) or species trees, is
a precursor to many downstream analyses, including protein structure and function
prediction, the detection of positive selection, coevolution, human population genet-
ics, etc. (see [60] for just some of these applications). Indeed, as Dobzhanksy said,
“Nothing in biology makes sense except in the light of evolution” [44].
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Standard approaches for estimating phylogenies from a given set of molecular
sequences typically involve two steps: first, a multiple sequence alignment is com-
puted, and then a tree is computed on the multiple sequence alignment. Both steps
are computationally intensive on large datasets, but for somewhat different reasons.
Multiple sequence alignment is approached using many different techniques, and
generally runs in polynomial time, but when the input set of sequences is both
large and highly heterogeneous (in the sense that many insertions and deletions
have occurred in the history relating the sequences), then the alignments can become
extremely large—much larger than the input set—presenting challenges if the avail-
able memory is insufficient for the alignment itself. Highly accurate large-scale
multiple sequence alignment can be difficult to obtain with standard methods, but
new approaches (largely based on divide-and-conquer) have been developed that
enable multiple sequence alignment methods to scale with high accuracy to ultra-
large datasets [80, 98, 100].

Tree estimation presents a different challenge: while some polynomial timemeth-
ods have been developed for tree estimation (e.g., neighbor joining and its variants
[53, 118, 152], FastME [78], and other distance-based methods), simulation stud-
ies suggest that computationally intensive methods, such as heuristics for maximum
likelihood (ML) and Bayesian MCMC, produce more accurate phylogenies [146].
Maximum likelihood codes are more frequently used than Bayesian MCMC meth-
ods, for the simple reason that they can be used on large datasets. Advances in
techniques for maximum likelihood (discussed in chapters by Stamatakis, Guindon
& Gascuel, and Bader & Madduri in this volume) have led to codes with substan-
tially improved scalability, including RAxML [129], PhyML [58], IQTree [97], and
FastTree-2 [107]. Of these, FastTree-2 provides the best scalability to large datasets,
but achieves this by limiting the number of operations; hence, the scalability comes
at the cost of accuracy in the maximum likelihood criterion score. As shown in [79],
although RAxML obtains trees with better ML scores, the trees computed using
FastTree-2 and RAxML can have similar topological accuracy.

Despite these advances, the estimation of single-gene phylogenies using the best
MLmethods is typically limited to atmost a few thousand sequences (andmuch fewer
for multigene phylogenies), and even these can be very computationally intensive.
For example, our own analyses of single-gene datasets with many thousands of
sequences can take weeks for RAxML to converge to good local optima. Thus, truly
large-scale maximum likelihood phylogeny estimation is still not feasible in practice.

Another challenge in large-scale gene tree estimation is “heterotachy” [83], which
is where the statistical models that best characterize the evolutionary processes oper-
ating on the sequences (such as the rates of change between different nucleotides)
vary across the tree, thus creating opportunities for model misspecification when
standard statistical models are used in maximum likelihood or Bayesian phylogeny
estimation.

Species tree estimation presents additional challenges as multiple loci (i.e., genes)
are needed since gene trees can differ from species trees due to many different causes
(e.g., incomplete lineage sorting), and the most accurate methods for species tree
estimation are also computationally challenging [90]. Hence, phylogenetic tree esti-
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Fig. 6.1 An example of a divide-and-conquer tree estimation. In the first step, the set of species is
divided into three subsets that overlap. Then, trees are computed on the subsets and the subset trees
are combined into a tree on the full set of taxa using a supertree method. If the supertree method
produces an unresolved tree, a final refinement step can be applied

mation, whether based on single genes or based on multiple loci, presents computa-
tional and statistical challenges, and large-scale phylogeny estimation is particularly
difficult.

Divide-and-conquer strategies, in which a dataset is divided into overlapping sub-
sets, trees are constructed on the subsets, and then the subset trees aremerged together
(using a supertree method), can be used to address these challenges. Figure 6.1
presents a description of one such divide-and-conquer strategy.

The disk-covering methods (DCMs) [62, 63, 93, 148] are methods that follow
this paradigm, and which are designed for use in conjunction with a selected “base”
phylogenetic method. For example, the first two DCMs [62, 148] were designed for
use with distance-based phylogeny estimation with the goal of creating methods that
were provably “fast-converging” (i.e., methods that are guaranteed to return the true
tree with high probability converging to 1 from only polynomial length sequences)
under standard Markov models of sequence evolution. As shown in Fig. 6.2, DCM1-
NJ (i.e., the use of a DCM with the neighbor joining method of Saitou and Nei
[118]) produced more accurate trees than neighbor joining alone on simulated data.
Furthermore, as proven in [148], DCM-NJ is fast-converging whereas neighbor join-
ing is not fast-converging [73]. See the chapter by Sébastien Roch, this volume, for
more on fast-converging methods and sequence length requirements for phylogeny
estimation methods in general.

Other DCMs have been developed for empirical performance (e.g., reductions in
running time) rather than theoretical guarantees [64, 93, 116]. For example, an early
DCMwas used to improve the scalability of the breakpoint phylogeny search strategy
in GRAPPA [56] that constructs phylogenies based on gene order rearrangements
[139]. The combination of divide-and-conquer with iteration, so that the tree that is
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Fig. 6.2 (Adapted from [91], with permission from IEEE Computer.) The impact of the DCM1
divide-and-conquer strategy on tree estimation. Here we show a comparison of DCM1-NJ and
neighbor joining (NJ) on simulated datasets with up to 1600 sequences, each with 1000 sites,
that have evolved under the K2P model of sequence evolution. DCM1 is one of the disk-covering
methods, and it operates by using chordal graph theory to divide the species set into overlapping
subsets, constructs trees on the subsets (here using neighbor joining), and then combines the subset
trees using a variant of SuperFine [135]. The y-axis shows the tree error rate (proportion of edges
missing from the true tree in the estimated tree). DCM1-NJ (i.e., DCM1 used with neighbor joining
to construct subset trees) has much lower error than neighbor joining used alone. Furthermore,
DCM1-NJ is fast-converging, as shown in [148], whereas neighbor joining is not

constructed during one iteration can be used as a basis for a new decomposition, has
been particularly powerful. As an example, DACTAL [93] was developed for con-
structing trees from unaligned sequences, but has since been used in other contexts,
including estimating species trees using coalescent-based methods [15]. See Fig. 6.3
for how DACTAL combines divide-and-conquer with iteration.

In each case, the use ofDCMs resulted in improvements in accuracy, scalability, or
running time compared to the original method. Thus, DCMs are generic techniques
that can be used to improve base phylogeny estimation methods more generally. In
addition, as shown in [64, 93, 148], under some circumstances, the constructed trees
are provably correct (i.e., topologically identical to the tree that generates the data
given as input to the DCM).

The accuracy of any tree produced using a divide-and-conquer strategy depends
closely on the decomposition strategy, the technique used to compute subset trees,
and the supertree method used to combine the subset trees. While all of these steps
impact the final accuracy (e.g., see [117] for how the decomposition strategy impacts
accuracy), this chapter focuses on the last step in the pipeline: the supertree method.

The early supertree methods largely focused on the calculation of supertrees for
the idealized case where the source trees could be combined into a species tree that
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Fig. 6.3 (Figure modified from [93] with permission from Oxford University Press.) The generic
DACTAL design. DACTAL was originally developed to enable tree estimation from an input set of
unaligned sequences, but in its generic form, it can be used to construct trees from arbitrary inputs.
The input provides data for a given set of species; the first step decomposes the set of species into
overlapping subsets, then trees are computed for each subset, and the subset trees merged together
using a supertree method. Then the set of species can be decomposed into overlapping subsets using
specialized strategies designed for usewhen a tree is given (e.g., the padded recursive decomposition
strategy from [93]), and the process can be repeated

agreed with them perfectly. Since phylogeny estimation nearly always has some
error, this requirement on the source trees is highly restrictive. Today, there are
many supertree methods that can handle conflict between the source trees and the
construction of supertrees on biological datasets is a fairly common occurrence; for
example, [10, 21, 42, 49, 57, 69, 70, 104, 105, 119] present species trees computed
using supertree methods. Supertrees also provide insight into a surprisingly large
number of biological questions, as surveyed in [22].

One of the earliest supertree methods to be developed is matrix representation
with parsimony, also referred to as MRP [12, 108]. MRP is so widely used that it
has become synonymous with “supertree method”. Today, the development of new
species tree methods is an active research area in computational phylogenetics and
draws on discrete mathematics, computer science, and probability theory, and many
new supertree methods have been developed, some of which are even more accurate
than MRP. Yet more research is needed, as even the best supertree methods fail to be
highly accurate on large datasets with many thousands (and even tens of thousands)
of species, which is where supertree methods are most needed [22], and most cannot
even run on datasets of these sizes.

The purpose of this chapter is to explore the challenges to scalability for existing
supertree methods, especially in the context of divide-and-conquer strategies for
large-scale tree estimation.We identify themajor algorithmic approaches in supertree
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construction and the challenges of scaling those approaches to large datasets, and
identify open problems where advances by computer scientists would potentially
lead to practical supertree methods with good accuracy on large datasets. We also
discuss the use of supertree methods in divide-and-conquer strategies that aim to
estimate phylogenetic trees on ultra-large datasets. The basic theoretical material for
supertree construction is provided here in a brief form, and further details can be
found in [147].

6.2 Background

6.2.1 Terminology

We introduce the basic terminology used in supertree estimation.

Definition 1 The input to a supertree problem is a set T of trees. The set T is
referred to as a profile and the individual trees in T are referred to as source trees.
We letL (t) denote the leafset of tree t . Then a supertree for T is a tree T with one
leaf for every s ∈ S = ∪t∈T L (T ).

The focus in this chapter is on unrooted source trees, since techniques for rooting
phylogenies depend on careful selection of outgroup taxa and can introduce error into
the supertree profile. Furthermore, although in some cases the source trees will have
branch lengths or branch support values, in the classical setting (and most common
use case) the source trees come without any branch lengths or branch support values
and are just “tree topologies”. Hence, the description of supertree methods in this
chapter is for this simplest setting where the input set of source trees are unrooted
binary trees without branch lengths or support values.

Finally, we assume that the source trees will differ from the true species tree (when
restricted to the same taxon set) only due to estimation error. Thus, we do not address
the case where the source trees are gene trees (either estimated or true gene trees),
as these can differ from the true species tree and from each other due to processes
such as gene duplication and loss, incomplete lineage sorting, and horizontal gene
transfer [84]. When the input profile consists of gene trees, then methods that explic-
itly address gene tree discord (such as phylogenomic “summary methods”, which
combine estimated gene trees to produce an estimated species tree) are more suitable
and are discussed in Sect. 6.5.

For a given profile T , the best possible outcome is where there is a supertree T
that agrees with all the source trees. We formalize this as follows:

Definition 2 We let T |X denote the subtree of T induced by the leaves in X . If T is
a supertree for T and t ∈ T is a binary tree, we say that T agrees with t if T |L (t)
is isomorphic to t . We also say that T is a compatibility tree forT if T agrees with
t for all t ∈ T . When a compatibility tree exists for a set T , we say that the set T
is compatible.
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However, usually source trees are not compatible (because tree estimation nearly
always has some error), so that the objective is to find a supertree that minimizes
some total distance (or maximizes some total similarity score) to the input source
trees [39, 141].

6.2.2 Representations of Trees

Unrooted supertrees and input source trees can be represented in several different
ways, andmany of the supertreemethods that have been developed are based on these
representations. Here we describe three basic techniques for representing trees: sets
of bipartitions, sets of quartet trees, and additive distance matrices.

Definition 3 Every edge in a tree t defines a bipartition on the leafset of t (i.e., when
you delete the edge e from t , you separate the leaves into two sets, Ae and Be, thus
defining the bipartition Ae|Be). We let Bip(t) denote the set of bipartitions of the
leafset of t defined by the edges of t .

It is not hard to see that the set Bip(t) defines the tree t , and that t can be reconstructed
from Bip(t) in polynomial time [147].

Definition 4 Every set q of four leaves in an unrooted binary tree t induces a quartet
tree tq , and hence t defines the set Q(T) of all its induced quartet trees.

As with bipartitions, the set Q(t) defines the tree t , and t can be reconstructed from
Q(t) in polynomial time [147]. The last representationwepresent is based ondistance
matrices:

Definition 5 A matrix D is said to be additive if there is a tree T with n leaves and
nonnegative lengths on the edges so that Di j is the total of the edge lengths on the
path in T between leaves i and j .

Given an additivematrix, there is a uniqueminimal edge-weighted tree corresponding
to the additive matrix [28], and it can be constructed from the additive matrix in
polynomial time (see [150] for the first such method, and see [147] for others).

For a given unrooted tree t , there are several ways of representing t using an
additive matrix. For example, some source trees are computed using methods such
as maximum likelihood or neighbor joining [118], which explicitly provide positive
branch lengths on the edges of the tree; given such a tree, the matrix of leaf-to-leaf
distances (summing all the branch lengths on the path) is by definition additive.
Other source trees come without branch lengths, and so using unit lengths on all
the edges produces an additive matrix. Therefore, whether the source trees are either
unweighted or have strictly positive branch lengths, they canbe used to define additive
matrices, and are uniquely defined by their additive matrices.

Thus, every unrooted binary tree t can be defined using either its set Bip(t) of
bipartitions, its set Q(t) of quartet trees, or by an additive matrix A, and given any
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of these representations the tree t can be reconstructed in polynomial time. Each of
these representations suggests approaches for constructing supertrees from a set T
of source trees. For each of the following general categories of problems, the input
is a setT of source trees and the objective is a supertree T that is close to the source
trees, with the measurement of distance based on one of these representations of
source trees and the supertree.

6.2.3 Bipartition-Based Supertree Methods

Three of the most well-known optimization problems for supertree construction—
Matrix Representation with Parsimony, Robinson–Foulds Supertrees, andMaximum
Likelihood Supertrees—are based on bipartition encodings. Furthermore, Matrix
Representation with Likelihood is a new approach that also uses the bipartition
encoding and has been shown to be competitive with MRP. Therefore, we will begin
with this category of supertree methods.

6.2.3.1 Matrix Representation with Parsimony

We begin with the well-known NP-hard supertree problem “Matrix Representation
with Parsimony” (MRP) [12, 13, 20, 108]. There are many variants on this problem,
described in [10], but the basic approach is the one that is most frequently used. The
input setT of (source) trees is represented by a matrix (called theMRPmatrix) with
0s, 1s, and ?s, as follows.

Definition 6 Given a profile T of source trees, each edge e in each tree t ∈ T
defines a bipartition Ae|Be on L (t). The bipartition Ae|Be can be represented as
a n-tuple (where |S| = n) where the i th entry has 0 for the elements si ∈ Ae, 1
for the elements si ∈ Be, and ? for the elements in S \ (Ae ∪ Be). These n-tuples
representing the bipartitions (taken across all the edges from all the source trees)
form the columns in the MRP matrix. Thus, theMRPmatrix has one row for every
species in S = ∪tL (t) and one column for every internal edge in any tree in T .

Once the MRP matrix is computed, the rows of the matrix are treated as strings (all
having the same length) that will represent the leaves of the tree we will seek, and a
maximum parsimony tree is sought for the matrix:

Definition 7 The cost of a tree T in which all the nodes are labeled by strings of
length k is the total of theHamming distances on the edges of the tree,where theHam-
ming distance between two k-tuples s = (s1, s2, . . . , sk) and s ′ = (s ′

1, s
′
2, . . . , s

′
k) is

the number of positions i for which si �= s ′
i . The tree T with the lowest achievable

cost (among all ways of assigning sequences to its internal nodes) is said to be a
maximum parsimony tree.
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Fig. 6.4 (From [39]; reprinted with permission from Springer) TheMRP pipeline: construct source
trees (here, gene trees on different loci), then construct the MRP matrix from the set of source
trees, and then run maximum parsimony heuristics to obtain the MRP supertree. For this particular
example, note that theMRP tree induces each of the four source trees, so that they are all compatible.
Note also that the characters (i.e., columns) in the MRP matrix are compatible on the MRP tree

Figure 6.4 gives an example of the MRP matrix computed on four source trees, and
the maximum parsimony tree found for that matrix.

Exact solutions to maximum parsimony are unlikely to be achievable in poly-
nomial time, since finding the best possible tree is NP-hard [52]. For this reason,
heuristic searches (using standard maximum parsimony software, such as PAUP*
[136] or TNT [54]) are used to find good solutions (i.e., local optima) to maximum
parsimony. The running time of these heuristics is mainly impacted by n, the num-
ber of sequences in the input, as the number of trees grows exponentially in n, but
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the number of sites (sequence length) also impacts the running time as the time to
calculate the score of a given tree is linear in the number of sites. Note that when
the source trees are compatible, then the optimal solutions to MRP are compatibility
trees, and hence an exact solution MRP will return a compatibility tree in that case;
this is one of the positive aspects of the MRP approach to supertree estimation. In
addition, simulation studies have generally found MRP to be among the most accu-
rate supertree methods, withMRP referred to as the “gold standard” among supertree
methods developed as of 2011 [25].

The MRP approach is just one of the approaches for constructing supertrees from
the MRP matrix, and other optimization problems can be considered for the same
matrix representation of the input source trees. For example, Matrix Representa-
tion with Likelihood (MRL) [99], Matrix Representation with Compatibility (MRC)
[115], andMatrix Representation with Flipping [32] have also been proposed. These
are also NP-hard problems, and so heuristics are used to find good solutions. Of
these methods, only MRL has been shown to provide accuracy comparable to (and
sometimes exceeding) MRP [99]; hence, MRL deserves some additional discussion.

6.2.3.2 Matrix Representation with Likelihood

The MRL optimization problem takes the same input matrix as MRP, and random-
izes the 0s and 1s to avoid bias. Then, a solution to maximum likelihood under the
two-state symmetric sequence evolution model is sought using RAxML [129]. As
shown in [99], supertrees computed using MRL were more accurate than supertrees
computed usingMRP,whether TNT or PAUP* heuristics were used, andMRL scores
showed somewhat stronger correlations with tree accuracy than MRP scores. Fur-
thermore, RAxML was reasonably fast on these datasets, finishing in less time than
the parsimony heuristics that were used.

6.2.3.3 Robinson–Foulds Supertrees

We continue with the Robinson–Foulds Supertree [11, 31].

Definition 8 TheRobinson–Foulds (RF) distance between two binary trees T1 and
T2 on the same leafset is |Bip(T1)�Bip(T2)| = |Bip(T1) \ Bip(T2)| + |Bip(T2) \
Bip(T1)| [113]. When T1 and T2 have different leafsets, then we define the RF
distance between T1 and T2 to be RF(T1|L , T2|L), where L = L (T1) ∩ L (T2)
[37]. Given profile T of source trees, the RF distance between a supertree T and T
is

∑
t∈T RF(T, t). A Robinson–Foulds Supertree for T is a supertree T that has

the minimum RF distance to T .

The Robinson–Foulds Supertree problem is NP-hard, since determining if the profile
T is compatible is NP-hard. Algorithms for the Robinson–Foulds Supertree problem
include MulRF [29], PluMiST [72], and FastRFS [143].
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6.2.3.4 Likelihood-Based Supertree Methods

Supertree estimation can be framed as a statistical inference problem that treats the
estimated supertree T as the model species tree that generates the setT of observed
source trees. In this setting, the objective is a maximum likelihood supertree, i.e., a
tree T such that Pr(T |T ) is maximized.

The initial formulation of this approach is due to Steel and Rodrigo [132], who
defined the probability of a source tree, given a model species tree, as a function of
the Robinson–Foulds distance between the two trees, a development that was met
with great excitement in the literature [38]. Two methods that have been developed
that are based on the Steel and Rodrigo model are [3], which attempts to compute
the maximum likelihood supertree, and the Bayesian method in [4]. Furthermore, as
noted in [27], there is a (potentially close) relationship between optimal solutions
to the Robinson–Foulds Supertree and Maximum Likelihood Supertree problems,
suggesting that good solutions to one problem might be pretty good solutions to the
other problem. Hence, methods for the Robinson–Foulds Supertree may provide a
good approximation to the maximum likelihood supertree problem under the Steel
and Rodrigo model.

6.2.4 Quartet-Based Supertree Methods

Since each unrooted tree t can be defined by its set Q(t) of quartet trees, quartet-
based supertree optimization problems have been posed. Here we describe a very
simple such optimization problem.

Definition 9 The Maximum Quartet Support Supertree problem is defined as
follows. The input is a profile T of source trees, and we seek the supertree T that
maximizes qsim(T,T ), where qsim(T,T ) = ∑

t∈T |Q(T ) ∩ Q(t)|.
The Maximum Quartet Support Supertree problem is NP-hard, since even the

decision problem of determining whether a set of unrooted source trees is compatible
is NP-hard [130]. Furthermore, it remains NP-hard even for the special case where
every source tree is on the full set S of taxa [74]. Note that quartet-based supertree
problems can also be formulated as minimizing the quartet distance to the source
trees, as these are equivalent.

One approach to solving this problem is to represent every source tree by its set
of quartet trees, use those sets of quartet trees to produce a single quartet tree for
every four leaves (e.g., by majority vote), and then construct a tree on the full set of
species from the constructed set of quartet trees.1

1This approach has been used to construct species trees from gene trees under the multispecies
coalescent; an example of such a method is the population tree in BUCKy [76], but see also [147]
for others.
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The last step in this process, where quartet trees are combined into a single tree
on the entire dataset, is called “quartet amalgamation”. The most well-known quartet
amalgamation methods are Quartet Puzzling [133] and Quartets MaxCut [128], but
other methods have also been developed with good theoretical and empirical perfor-
mance [16, 103, 112, 156]. Some of these quartet amalgamation methods are based
on weighted versions of the standard quartet amalgamation problem, where the input
set of quartet trees have weights on them, perhaps reflecting the level of confidence
in the quartet tree. Weighted quartet amalgamation methods include Weight Opti-
mization [111] andWeighted Quartets MaxCut [8], and these weighted versions tend
to provide better accuracy than unweighted quartet amalgamation methods. Since
quartet compatibility is itself NP-complete, optimization problems for quartet amal-
gamation are NP-hard; however, many approximation algorithms theoretical results
about quartet amalgamation have been developed [6, 17, 18, 23, 55, 68, 74].

Quartet-based supertree methods have been developed and studied, and often
shown to have very good accuracy, sometimes matching or improving on heuristics
for MRP, generally considered the best supertree method for various criteria [9,
103, 134]. However, the default usage of these methods typically depends on using
all the quartet trees, and hence explicitly will run in �(n4) time, where there are
n leaves; hence, quartet-based supertree methods will typically be inapplicable to
large datasets. Some quartet amalgamation methods can be run on just a subset of
the quartet trees, which enables quartet-based supertree methods to be applied to
sparse samples of the quartet trees. A study [134] evaluating the impact of sampling
quartets on supertrees computed using Quartets MaxCut [128] showed that some
sampling strategies produced supertrees that were competitive with MRP, but the
most accurate supertrees were obtained when all quartet trees are used rather than a
subset of the quartet trees.

6.2.5 Distance-Based Supertree Methods

Distance-based supertree optimization problems are also popular [25, 40, 75, 155,
155]. As with quartet-based methods, one approach is to seek an additive matrix that
is as close as possible to the set of additive matrices defining the source trees. To
make this concrete, for each source tree t an additive distance matrix Dt is computed.
Then, given an additive distance matrix DT (corresponding to an edge-weighting of
a supertree T ), we define the distance between DT and each dt by constraining DT to
the rows and columns corresponding to the species that are in t and then computing
any of several natural distances between matrices (e.g., the L2 or L∞ metrics). The
objective is an additive distance matrix that minimizes that total distance. Once such
an additive distance matrix is found, then the tree corresponding to the distance
matrix is returned.

Another approach for distance-based supertree optimization is to compute a single
distance matrix D from the set of distance matrices {dt : t ∈ T } and then seek an
additive distance matrix D∗ that is close (under some metric) to D [40, 75]. For
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example, D[i, j] can be set to the average of the dt [i, j] for all the source trees t that
contain both i and j , and the objective could be an additive matrix that minimizes
the L2-distance to D. Once an additive matrix is found, the tree (and its set of edge
weights) can be computed in polynomial time. Thus, this approach can also be used
to compute supertrees.

Distance-based tree estimation is a very well-studied problem, and there are many
methods that have been developed to construct trees from distances [149]. Fortu-
nately, although finding the nearest additive matrix to a given distance matrix is
NP-hard (see [1, 2, 48] for an entry to this literature), there are many polynomial
time methods for computing trees from distance matrices, including neighbor join-
ing [118] and FastME [78], and some interesting theory about these approaches [24,
43, 46, 47, 87, 102, 125, 131]. However, distance-based tree estimation has another
challenge in that for many supertree datasets, there can be pairs of species i, j that
are not found together in any source tree, and when this happens D[i, j] will not
have any value. This is referred to as “missing data”, and computing trees from dis-
tance matrices with missing data is not well solved. A few methods are available to
estimate trees from distance matrices with missing data [41, 71, 106]; however, the
accuracy of trees computed from incomplete distance matrices is generally not as
good as trees computed from complete matrices [143].

In summary, distance-based supertree estimation has been approached in two
different (but related) ways: (1) represent each source tree by an additive distance
matrix and then seek an additive distance matrix that is close to the set of additive
distancematrices computed on the source trees, or (2) represent the set of source trees
by a distancematrix D0 (thatmay be incomplete) and then seek an additivematrix that
is close to D0. Both approaches are challenged by the fact that desirable definitions
of “close” result in NP-hard optimization problems (and current approaches for
finding good solutions to NP-hard optimization problems are not scalable). The
second approach has the additional challenge that the matrices D0 produced by
supertree profiles are often incomplete, and current methods for constructing trees
from incomplete distance matrices do not have adequate accuracy. Thus, highly
accurate distance-based supertree estimation requires novel techniques in order to
scale to most large supertree datasets.

6.3 Accuracy and Scalability of Existing Supertree
Methods

Up to 2011, MRP has been generally found to produce more accurate supertrees than
competing methods, leading [25] to refer to MRP a “gold standard” for supertree
methods. Several supertree methods have been developed since then, some of which
have shown to be competitive withMRP in terms of accuracy. For example, ASTRID
[142], ASTRAL-2 [89] (an improved version of ASTRAL [88]), MRL [99], and
FastRFS [143] all demonstrate high accuracy that is comparable to (or better than)
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MRP under some conditions. However, ASTRID has poor accuracy on supertree
datasets where there is no source tree containing most of the species, whereas other
supertree methods can perform well under those conditions [143].

As discussed earlier, maximum likelihood and Bayesian supertree estimation
methods are also very promising, and a maximum likelihood supertree method [3]
and a Bayesian method [4] have been proposed for supertree estimation under the
Steel and Rodrigo model. Yet both methods are computationally intensive, and have
not (to our knowledge) been used on large datasets.

Thus, all the methods we have described are computationally intensive on large
datasets, and most do not scale to large datasets. In particular, nearly all supertree
methods explicitly search for good solutions to NP-hard problems using standard
techniques for exploring tree space, which are ineffective on large datasets since the
number of trees grows exponentially in the number of leaves. Some of the distance-
basedmethods are polynomial time (i.e., the ones that first compute a distance matrix
summarizing all the source trees, and then run polynomial time distance-based
methods such as neighbor joining). However, the polynomial time distance-based
supertree methods have not been shown to provide comparable accuracy to MRP,
and furthermore have reduced accuracy when the average distance matrix they com-
pute has missing entries. Modifications of these distance-based methods so that they
also seek good solutions to NP-hard optimization problems might improve accuracy
but would also make them computationally intensive. Hence, scalability to large
datasets is not yet achieved using existing supertree methods.

Thus, the best current supertree methods are either based on encodings using the
bipartitions in the source trees (i.e., theMRPmatrix) or the quartet trees in the source
trees, and these representations are not efficient. In particular, the MRP matrix has
one row for every species and as many columns as there are edges in the input source
trees, and so is larger than the input profile! For example, suppose we wish to run
MRP on a total of 10,000 species from 100 source trees each with 1,000 species;
the MRP matrix will have 10,000 rows and nearly 100,000 columns. This is a huge
matrix, and maximum parsimony heuristics are not likely to be able to find good
local optima on such a dataset. A similar issue occurs for quartet-based supertree
methods, since there are �(n4) quartets on an n-species dataset, and this is quickly
a very large number even for modest values for n.

6.4 Improving Scalability of Supertree Methods

This section describes someof themajor approaches to supertree estimation, focusing
on those methods that have been designed for improved scalability to datasets with
large numbers of species.
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6.4.1 SuperFine: Boosting Supertree Methods

The SuperFine method [135] was developed to improve the scalability of supertree
methods to large datasets. Thus, the input to SuperFine is a set of source trees and
also a selected supertree method, such as MRP, MRL, Quartets MaxCut, etc.

SuperFine has two steps, where the first step produces a constraint tree, and the
second step refines the constraint tree using the base supertreemethod. The constraint
tree produced in the first step is an unrooted tree that contains all the species, called
a “Strict Consensus Merger” (SCM) tree, that by design only contains bipartitions
that are consistent with all the input source trees.

The SCM tree is computed by merging pairs of source trees until the entire set of
source trees is merged into a single tree (Fig. 6.5).When two trees are merged, the set
of shared leaves is computed. If the two trees do not induce the same subset tree on
this shared leaf set, the edges of the two trees are collapsed to make the resultant trees
identical on the induced subset trees. Specifically, the strict consensus tree (which
is the tree that has only the bipartitions in both subset trees) of the two induced
trees is computed, and the two input trees have edges collapsed to make them induce
this strict consensus tree. The strict consensus tree on the shared leaf set is called the
“backbone tree”. This backbone tree is typically not fully resolved, since any conflict
between the two trees will result in the strict consensus being unresolved. Then the
remaining taxa are added into the backbone tree. However, this step can also result

Fig. 6.5 The Strict Consensus Merger (SCM) method, which is the first step in SuperFine [135].
First, the induced trees (shown with thick black lines) on the set of shared taxa in the two trees are
computed, and the conflicting edges are collapsed in each tree so that they induce the same subtree
(called the “backbone tree”) on the shared taxa. Then the two trees are merged into a supertree by
adding the missing taxa to the backbone tree. A “collision” occurs when both trees contribute taxa
to the same edge in the backbone tree (the edges colored red in this figure are backbone edges with
a collision). In the event of collision, all subtrees in the two trees contributing to that edge will be
attached to the same location in the merged supertree. Thus, the SCM tree will tend to have lower
resolution than the source trees
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in additional collapses of edges, as any time both of the trees contribute taxa to the
same edge in the backbone tree a polytomy is created. Thus, the Strict Consensus
Merger (SCM) tree is generally unresolved (i.e., it is likely to have nodes of degree
greater than three).

The second step of SuperFine refines the SCM tree into a binary tree using the base
supertree method, applied to encoded versions of the source trees. The refinement
step has several nice properties. First, the polytomies (i.e., nodes in the SCM that
have degree four or more) can be refined independently without changing the final
supertree; thus, this step can be easily parallelized [94, 95]. The other nice property is
that the refinement of a single node of degree d can be performed by applying the base
method to a modified version of the source trees where each source tree is replaced
by a new source tree with leaves labeled 1. . .d. Therefore, if the maximum degree
dmax of any node in the SCM is not large (say, at most 100), then the refinement step
can be very fast since the base supertree method is only applied to a collection of
source trees with a total of dmax species. This property is true for the Strict Consensus
Merger, but may not be true of other ways of computing a tree from the input source
trees!

As shown in [99, 135], SuperFine used with base supertree methods MRP, MRL,
or Quartets MaxCut produces trees that are either as accurate or more accurate than
the base supertree method run alone (i.e., without the SuperFine divide-and-conquer
strategy); furthermore, when the total number of taxa is large enough, the use of
SuperFine often reduces the total time to calculate the supertree. In addition, there
are datasets on which the base supertree method cannot run due to computational
reasons, but where the SuperFine divide-and-conquer framework enables it to run
to completion. Thus, SuperFine is a generic technique for improving the accuracy,
running time, and scalability of supertree methods.

However, the advantage obtained in using SuperFine depends on the SCM tree—
if it is completely unresolved, then there is no benefit to using SuperFine since
the refinement step is identical to just applying the base supertree method to the
original set of source trees. Similarly, if the SCM tree has polytomies with very
high degree (reflected by having very few internal edges), then the opportunity for
improvement is greatly reduced. There are two conditions that cause the SCM to have
reduced resolution: one is conflict between the source trees (i.e., two source trees
are incompatible), and the other is insufficient overlap between source trees. The
first condition (i.e., conflict between source trees) is likely to occur since perfectly
accurate phylogeny estimation is rarely seen and hencewill lead to conflict. However,
the second condition is also likely to occur andwill contribute to the loss of resolution.

It therefore makes sense to consider the trends exhibited on biological data. On
five biological supertree datasets analyzed using SuperFine in [96, 99], themaximum
degree of resolution in the SCM tree was 57%, where the resolution is the ratio
between the number of internal edges in the tree and the number of internal edges in
a fully resolved tree on the same set of leaves. In fact, for two of these datasets, the
SCM tree had at most 10% resolution (one of which only had 1% resolution). Thus,
the degree of resolution of the SCM tree was variable on biological data, but there
were cases where the degree of resolution was very poor.
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Since the SCM is computed by greedily combining source trees until they are all
merged into a single tree, the number of source trees should also impact the degree
of resolution in the SCM (with less resolution occurring for larger numbers of source
trees). This is consistent with the results shown on biological datasets in [99], where
the SCM trees with the lowest degree of resolution occurred for the datasets with the
most source trees. Fleischauer and Böcker [50] explored techniques to improve the
degree of resolution in the SCM, mainly by modifying the order in which the source
trees are combined. Their new techniques show some improvement in resolution for
the SCM, especially when the use of the semi-strict consensus (instead of the strict
consensus) is used (which would make the result not actually a strict consensus tree
but something else). However, their study shows that all the variants they explored
have high missing branch rates and low false positive rates, indicating that even with
the improvement the SCM trees were fairly unresolved.

Conversely, if the number of source trees is small enough to avoid reduction in
resolution in the SCM, then datasets with high evolutionary distances and/or large
numbers of species are bound to have some source trees that are large and/or span
large evolutionary distances. However, these are exactly the cases where the source
trees are likely to have high error, and hence lead to conflict between source trees
(and hence decrease resolution in the SCM). In other words, when the full set of
taxa is large and/or spans evolutionary distances, the SCM is likely to have poor
resolution.

In summary, although SuperFine can improve supertree methods scalability and
accuracy, these improvements only occur when the SCM is highly resolved, and
biological supertree datasets with large numbers of source trees and/or large numbers
of species, and especially those spanning deep evolutionary histories, would seem
likely to produce SCM trees that are highly unresolved. In other words, SuperFine
may not enable scalability to datasets with many thousands of species spanning deep
evolutionary histories, except—perhaps—under limited conditions.

6.4.2 Explicitly Constraining the Search Space

Although SuperFine’s technique for constraining the search space doesn’t always
help, there are other ways that the search space can be constrained. Here we describe
one such type of approach where a set X of “allowed bipartitions” is constructed in
some manner, and a supertree T is sought that optimizes some criterion, subject to
the constraint that Bip(T ) ⊆ X . Both FastRFS [143] and ASTRAL [88, 89] use this
approach.

Phylogeny estimation using constrained optimization (where the constraints are
explicitly provided by a set of allowed bipartitions or clades) was first introduced
in [59] in the context of constructing species trees from a set of gene trees, under
a duplication-loss model. This technique has also been used in other phylogeny
estimation methods for different optimization problems [14, 26, 137, 140, 143, 145,
157]. Each of these methods seeks a tree that optimizes some criterion (typically the
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distance to the input profile), but constrains the set of feasible trees by an explicitly
constructed set X of allowed bipartitions (or, if the tree that is sought must be rooted,
then by an explicitly constructed set X of allowed clades). Once the set X is defined,
the construction of the optimal tree drawing its bipartitions from X can be performed
in polynomial time using dynamic programming, although the specific subproblem
formulation depends on the optimization problem.

The accuracy of these methods clearly depends on how the set X is defined, since
if X is very small then the set of feasible solutions is also very small (or may even be
empty), while if X is all possible bipartitions then these methods are guaranteed to
find the globally optimal tree. However, because the running times of these dynamic
programming methods grow (polynomially) with |X |, it is infeasible to make |X |
too large.

The simplest way to define X is to use all the bipartitions of the source trees inT ,
and this is the technique used in nearly all the methods described above. However,
when a source tree t does not contain all the species, its bipartition set Bip(t) is not
directly usable, since these bipartitions are not on S but rather on L (t), which is a
proper subset of S. Hence, this technique is restricted to using just those source trees
that contain all the species.

Most of the methods above (with the sole exception of FastRFS) were developed
for species tree estimation where the input is a set of gene trees; in that setting,
typically some (and perhaps most) of the gene trees will contain all the species.
Furthermore, phylogenomic species tree estimation is increasingly being performed
with hundreds to thousands (or tens of thousands) of genes [66, 153]. Hence, for the
case of phylogenomic species tree estimation, this simple technique will produce a
set X that has a large number of bipartitions. Furthermore, as shown in [88, 145,
157], highly accurate species trees can be constructed using this technique, making
this approach useful in practice for species tree estimation from multigene datasets.

However, the supertree setting presents challenges to using this technique to com-
pute the set X . As noted, when a source tree t does not contain all the species, its
bipartition set Bip(t) is not directly usable, and hence, this technique is restricted
to just those source trees that have all the species. But large supertree datasets may
have no such source trees, making this simple technique for computing X completely
useless. Alternative approaches for constructing the constraint set X of bipartitions
when the input profile has no complete source trees have been developed and used in
ASTRAL-2 [89] (and further enhanced in ASTRAL-3 [158]). The basic approach in
[89, 158] is to construct a distance matrix relating all the species, and then use that
distance matrix to “complete” all the incomplete gene trees; then, the bipartitions
from the completed gene trees can be used for X ; this is a relatively efficient method
on most datasets, but it can be slow on some large datasets with poorly supported
gene trees. Similarly, [61] can be used to complete incomplete source trees, but it
runs in �(n4) time (where n is the number of species) and so is not scalable to large
datasets. OCTAL [36] is a linear time algorithm that uses a different approach to
complete source trees, but this requires that a tree containing all the species already
be available. Thus, all the approaches for completing incomplete source trees seem
to have inherent limitations that reduce scalability. In conclusion, defining the con-
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straint set X of allowed bipartitions is challenging for many supertree datasets, and
especially so when the number of species is very large.

However, if an initial set X of allowed bipartitions can be computed using some
technique, adding to that set can be beneficial in terms of the resultant supertree
or species tree, as shown in [143, 145]. For example, FastRFS is designed to find
optimal solutions to the Robinson–Foulds Supertree problem, within the constraint
set defined by the set X of allowed bipartitions. SinceMulRF [29] and PluMiST [72]
are also designed tofindgood solutions to the sameoptimization problems, adding the
bipartitions from the trees they find to the initial set X computed by FastRFS ensures
that FastRFSwill be guaranteed to find solutions that are at least as good (with respect
to the optimization problem) as those found by MulRF and PluMiST. Furthermore,
adding computed supertrees or species trees, however they are computed, can enlarge
the search space and lead to improved topological accuracy; this is the basis of the
“enhanced” versions of FastRFS and SVDquest [145], which use bipartitions from
trees computed using other methods for species tree estimation, and obtain more
accurate species tree as a result.

6.5 Relationship to Phylogenomic Species Tree Estimation

The assumption throughout this chapter is that the input profile contains estimated
species trees, so that the only cause for the source trees to be different from the
true species tree is estimation error. Yet, supertree methods are also used to combine
estimated gene trees into a species tree, which is a different type of analysis and
presents different challenges.

Phylogenomic species tree estimation—i.e., the estimation of species trees using
multiple loci taken from the genomes of the different species—has become a com-
mon practice in systematics [66, 153]. The traditional approach is concatenation, in
which the multiple sequence alignments for the different loci are concatenated into
one long alignment (called a super-matrix or a super-alignment), and then standard
phylogeny estimation methods, such as maximum likelihood, are used to construct
a tree on the super-matrix. Yet, it is now well established that gene trees can differ
from the species tree due to multiple biological processes, including incomplete lin-
eage sorting, gene duplication and loss, and horizontal gene transfer [84], and that
concatenation analyses can be statistically inconsistent (and worse, positively mis-
leading) when there is sufficient heterogeneity between true gene trees and species
trees [114]. Furthermore, gene tree heterogeneity is commonly found in large-scale
biological datasets (e.g., [66, 153]), leading many systematists to seek alternative
approaches to concatenation analysis in constructing species trees.

Much of the focus in this area has been on addressing gene tree heterogeneity due
to incomplete lineage sorting (ILS), as it is expected to appear in all large phyloge-
nomic datasets to some extent [45]. Furthermore, gene tree heterogeneity due to ILS
is modeled by the multispecies coalescent (MSC), and there are several methods for
estimating species trees that have been proven to be statistically consistent under the
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MSC. For example, “summarymethods”, which operate by estimating gene trees and
then combining the gene trees into a species tree, form one category of species tree
estimationmethods that are statistically consistent under theMSC. Examples of sum-
mary methods that are statistically consistent under the MSC include ASTRAL (and
its improved versions), ASTRID, MP-EST [82], NJst, the population tree in BUCKy
[76], and GLASS [67, 92]. Furthermore, some of these methods (e.g., ASTRAL)
provide very good accuracy in practice and are fast enough to run on large datasets.

On the face of it, a summary method is just a supertree method. Yet the two types
of methods operate on different assumptions about the cause for heterogeneity in the
input profile. Thus, we distinguish between the two terms to reflect the difference in
the assumptions made by the methods: supertree methods assume that differences
between source trees and the desired supertree are the result of source tree estimation
error, while summary methods assume that biological processes also contribute to
these differences.

Two of the methods we discussed in this chapter, ASTRAL and ASTRID, are
actually summary methods and are developed to construct species trees from gene
trees that can differ from each other and from the true species tree as the result of
ILS. Furthermore, ASTRAL and ASTRID have been proven statistically consistent
under the MSC, while the other supertree methods we discussed either have not been
evaluated with respect to statistical consistency or are known to be inconsistent (e.g.,
MRP).

It is interesting to note that species tree estimation from multi-locus datasets can
also be approached using distance-based supertree methods. For example, if a gene
tree is computed for each locus, then a distance matrix can be computed (called the
“internode” distancematrix) of average leaf-to-leaf distances across all the gene trees.
As shown in [5], the internode distance matrix converges to an additive matrix for the
species tree when the gene trees evolve within the species tree under the multispecies
coalescent (MSC) model. Therefore, distance-based supertree methods, which use
the input gene trees as source trees, will be statistically consistent under the MSC
model and hence will converge to the true species tree as the number of gene trees
increases. This is the basis of species tree estimation methods such as NJst [81] and
ASTRID [142], which apply neighbor joining and FastME [78], respectively, to the
computed internode distance matrix.

When gene tree discord is the result of gene duplication and loss, then even gene
tree estimation is complicated as each species can have multiple copies of any given
gene. In that case, usually the set of copies is reduced to a single representative for
each species, typically based on inferring “orthology”—a difficult and still unsolved
problem, as discussed in [7, 77, 126]. However, since orthology determination can
be difficult to perform correctly, species trees can be estimated from the multi-copy
gene trees (sometimes called “gene family trees”) using summary methods that take
gene duplication and loss into account; examples of such methods include iGTP
[30], DupTree [151], DynaDup [14], MulRF [29], guenomu [101], and the method
developed in [138].

One of the most interesting methods of this type is guenomu, a Bayesian supertree
method that addresses heterogeneity between gene trees and the species trees due
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to multiple biological processes. As shown in [85, 101], guenomu has high accu-
racy compared to several other species tree methods and can run on moderate-sized
datasets (a few hundred species); furthermore, guenomu can construct species trees
from gene family trees (which means that there are multiple copies of the species in
each gene tree). This performance is very encouraging, especially as there are not
many species tree methods that can handle gene family trees. However, guenomu
has not been studied on datasets where the source trees are estimated species trees
rather than gene trees, and so the accuracy of guenomu as a supertree method (in the
sense that we use it in this chapter) is not yet known.

6.6 Further Reading

This chapter focused on supertree estimation in the context of divide-and-conquer
methods, and mainly discussed recent methods with improved accuracy for very
large datasets. Chapter 11 in [147] provides a deeper introduction to the divide-
and-conquer strategies used in DCMs and the graph theory they use for accuracy
guarantees. Background about the early supertree methods (and the use of supertree
methods for other contexts) can be obtained from [19, 39].

This chapter focused on calculating large supertrees (with thousands of species)
from unrooted source trees. Thus, we explicitly did not discuss supertree construc-
tion from rooted source trees, which are also popular. The MinCut Supertree [123],
MinFlip Supertree [32–34], and PhySIC [109] are the most well-known supertree
methods that work with rooted source trees. Some newer supertree methods that can
handle rooted trees may have better accuracy, including Triplet MaxCut [110, 124,
127], SuperTriplets [110], and Bad Clade Deletion (BCD) supertrees [51]. Also, the
Robinson–Foulds Supertree (RFS) approach [31, 143] is based on the parsimony
criterion and so can be adapted for use with rooted supertrees. When the source
trees are correctly rooted, supertree methods that can use rooted source trees have
the potential to provide improved accuracy compared to methods that don’t use this
information (e.g., see [144] for a study comparing the BCD supertree method to the
leading supertree methods).

There is also a substantial literature about the theoretical aspects of supertree
estimation, some of which is an extension of the results for consensus methods
[37, 65, 154]. When the source trees are unrooted, most optimization problems are
NP-hard and the theory (which typically has to do with axiomatic approaches) is
generally negative [86]; however, when the source trees are rooted some problems
become polynomial time and some positive axiomatic theory can be established [22,
141].

One of the theoretical questions regarding supertree estimation has to do with
when a set of source trees is “decisive”, so that there is a unique tree that is compat-
ible with all the source trees. Determining if a supertree profile is decisive is itself
NP-hard, and the probability of being decisive is impacted by missing data [120].
However, there are conditions for which the supertree profile will be decisive and
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where the construction of the unique supertree can be performed in polynomial time
[93, 148]. There is also a relationship between decisiveness and “phylogenetic ter-
races”, which occurs when there are multiple trees that have the same optimality
score [35, 121, 122], which is interesting to explore.

Finally, the chapter by Redelings and Holder in this volume discusses taxonomy-
based supertrees, which is a different type of method than the supertree methods we
have discussed in this chapter.

6.7 Concluding Remarks

Given the scientific benefit of very large phylogenies, whether of genes or of species,
large-scale phylogenetic tree estimation remains an important but unsolved problem.
In my opinion, there are natural advantages to using divide-and-conquer to achieve
these large-scale estimations, and supertree estimation provides a very useful tool for
these strategies. Yet, as I have hopefully shown in this chapter, none of the current
supertree methods is adequate to the task of ultra-large-scale tree estimation.

On the other hand, many of the current methods have very interesting techniques
that could be improved on, and perhaps new supertree methods can be developed
using these techniques that will have improved accuracy and scalability compared
to current methods. My hope is that the readers of this chapter might be among the
developers of these new methods.

While working on this chapter, I pursued a new type of divide-and-conquer strat-
egy in which the taxon set is divided into disjoint subsets, trees are constructed on the
subsets, and then the subset trees are merged into a combined tree (i.e., one with all
the taxa) that maintains all the topological relationships within the subset trees. Note
that because the subset trees are disjoint, none of the supertree methods discussed in
this chapter can be used to merge them into a combined tree.

Twomethods of this type areNJMerge [90] (which is a variant of neighbor joining)
and INC [159]. Since the subset trees are disjoint, INC and NJMerge use a distance
matrix computed on the taxon set to merge the disjoint subset trees. INC-NJ is INC
used with neighbor joining on appropriately selected subsets, and has been proven
to be fast-converging under a standard Markov model of sequence evolution [159].
NJMerge is designed to reduce the running time of computationally intensive meth-
ods and has been shown to provide that reduction for ASTRAL and SVDquartets,
two coalescent-based species tree estimation methods, without any loss of accuracy.
(There is no publication yet on the empirical impact of using INC in phylogeny
estimation, so it is too early to comment on how INC performs.) Whether this type
of method will provide the desired advantages of the best supertree methods (which
have high accuracy when they can run, provided there is sufficient overlap and the
subset trees are sufficiently accurate) without having their computational drawbacks
remains to be seen.
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Chapter 7
Taxonomic Supertree Construction
with Incertae sedis Taxa

Benjamin D. Redelings and Mark T. Holder

Abstract A supertree method is a form of meta-analysis. It combines phylogenetic
tree estimates, which typically include only a subset of the species of interest, into
a single tree that includes every species found in any input tree. These methods are
usually applied to phylogenetic estimates that only have taxonomic labels at their
leaves. Taxonomies are another source of information about phylogenetic relation-
ships. They usually convey names for groups of species in addition to species names.
If a taxonomy places every species, then its phylogenetic information can be fully
expressed as a tree. Such a taxonomy could easily serve as one of the inputs to a
supertree method. However, most taxonomies contain incertae sedis taxa, which are
species or groups of species that have an uncertain placement within the taxonomic
hierarchy. Here, we review some principles of building trees from splits and describe
a supertree method that is able to handle incertae sedis taxa without losing taxon
names.

Keywords Supertrees · Phylogenetics · Incertae sedis taxa · Taxonomy · Tree of
Life

7.1 Introduction

A phylogenetic tree is a depiction of the ancestor–descendant relationships between
different species. Most phylogenetic trees are estimated from DNA sequence data
or morphological (anatomical) character data. Supertree methods of phylogenetic
estimation combine a collection of input trees with different taxon sets into a single
tree on the combined taxon set (see Fig. 7.1 for definitions of some of the terminology
from the field of biological systematics that used throughout this chapter). These
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Fig. 7.1 A brief glossary of some relevant terminology from biological systematics

methods are usually applied to leaf-labeled phylogenetic trees. Here, we describe a
supertree approach that overcomes issues associated with using a taxonomy as one
of the inputs to a supertree method.

The motivation for this work was the Open Tree of Life project [6], which seeks
to build a comprehensive supertree (see [10]) covering all of life. The project com-
bines information in published phylogenies with a comprehensive taxonomy that
supplies taxon names. The supertree method has used the Open Tree Taxonomy
(OTT hereafter, see [11]) as an input, but, in principle, it could make use of other tax-
onomies. The taxonomy is a crucial input for several reasons: it covers a wide range
of species, its list of names allows for alignment of different phylogenetic estimates
to each other, and it provides names for clades. Only a small proportion of known
species have been included in a phylogenetic analysis; thus, a taxonomy is important
for achieving comprehensive coverage of known taxa. Phylogenetic estimates col-
lected from the published literature often use different names for the same species.
Lists of synonyms in OTT (and other taxonomies) allow data curators to “align”
input phylogenies to the taxonomy (see [8], for discussion of the curation process
that the Open Tree of Life project uses to align phylogenetic estimates to OTT). This
alignment is important for recognizingwhen two different estimates refer to the same
taxon. Biologists are familiar with names for “higher” taxa (taxa above the species
rank). Thus, naming clades in the supertree makes the tree easier to navigate and use.
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Some taxonomies indicate which taxa are thought to be the result of hybridization,
but the supertree approach described here does not consider any hybridization. Thus,
the taxonomic hierarchy can be converted to a tree.While not all taxonomists believe
that named taxa should correspond to clades (see, for example, [7]), the principles
of phylogenetic classification are used by a large majority of practicing taxonomists.
Thus, we have chosen to treat the taxonomic tree that mirrors the hierarchy of the
taxonomyas an estimate of phylogenetic relationships.We refer to labels of taxonomy
nodes as “taxon names”, and assume that taxon names and taxonomy nodes have a
one-to-one correspondence. Note that the taxonomy may also contain out-degree-1
nodes. These nodes are referred to as monotypic taxa. They contain a single child of
lower taxonomic rank, so they do not reveal new information about the phylogenetic
relationships of the species. They are only useful to the extent that having names for
each expected taxonomic rank is useful.

The supertree method described by Redelings and Holder [10] is able to use a set
of phylogenetic estimates and a taxonomy to produce a supertree with clades named
according to the taxonomy. However, the method was not able to accommodate
the fact that taxonomies frequently contain nodes with uncertain placement. These
nodes are often labeled “incertae sedis”, which means “uncertain seat” in Latin. The
common interpretation of such taxa is that they may not be moved further toward the
root, butmay bemoved into their sibling taxa. For example, a genuswith a sibling that
is a family may be annotated as “incertae familia”, indicating that it is unclear which
family the genus should be placed in. Incertae sedis taxa frequently occur when a
specimen is identified down to a given taxonomic level, but no further. Extinct taxa
are often incertae sedis. OTT is constructed from several source taxonomies, and
these sources include various ways of indicating that the position of a taxon within
the hierarchy is uncertain. OTT uses a series of “flags” to annotate these taxa. The
supertree of Redelings and Holder [10] simply pruned these taxa from the taxonomy
and input trees. Thus, the final supertree lacked taxa which were incertae sedis or
the descendants of such taxa.

We describe a supertree method that can resolve taxonomic uncertainty by using
published phylogenies to place incertae sedis taxa. Developing this method required
deciding on a set of operational semantics to be used when interpreting the incertae
sedis annotation. These semantics affect the interpretation of the phylogenetic state-
ments beingmade by the input taxonomy and the rules for applying taxonomic names
to the final supertree. In addition to discussing how to interpret the incertae sedis
annotation, we describe the algorithmic changes to the supertree pipeline that were
required to adequately represent the taxonomic uncertainty. The approach described
here allows us to include thousands of new taxa in our supertree analysis that were
previously filtered out. It will also enable the Open Tree of Life project to include
extinct taxa, since many of these taxa are incertae sedis. This makes substantial
progress toward our goal of comprehensive inclusion of known taxa into the Open
Tree of Life summary tree.
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7.1.1 Background

7.1.1.1 Core of Previous Algorithm

The supertree algorithmofRedelings andHolder [10] takes as input a ranked list T =
{T1, . . . ,Tn} of leaf-labeled rooted input phylogenies and a single rooted taxonomy
tree Tp that is ranked below all of the input trees. As discussed in Redelings and
Holder [10], the preferred tree would display as many of the highly ranked input
splits as possible. At its core, the algorithm acts by first producing a ranked list of
rooted splits: S = S(T1) + S(T2) + · · · + S(Tn) + S(T) where S(Ti) denotes a list
of nontrivial rooted splits created from a post-order traversal of tree i and “+” denotes
concatenation.

A split is a fundamental concept in phylogenetic theory (see, for further back-
ground, context, and applications [5]). A split is a bipartition of the set of leaf labels
for the phylogenetic problem of interest. There is a bijection between every edge in
a phylogenetic tree and a split. For any edge, consider removing the edge from the
graph. This will convert the tree into a graph that is no longer connected, but instead
consists of two trees. If we treat the leaf label set of each of these two trees as a
separate subset in a partition of the total leaf label set, then the resulting bipartition is
the split that corresponds to the edge. By “rooted split” we simply mean a split that
is augmented by introducing a label for the root of the tree and treating that label as
if it were part of the leaf set.

The supertree of Redelings and Holder [10] produces the supertree from S in the
following greedy manner. Imagine initializing C to be the empty set, then iteratively
consider each split in the list S and insert it into C if the resulting set remains jointly
compatible. A set of rooted splits is jointly compatible if there exists a tree that can
display every rooted split in the set. Aho et al. [2] developed an algorithm called
BUILD that can check for joint compatibility of a set of splits and a tree that displays
the splits. In the pipeline of Redelings and Holder [10], the BUILD algorithm is used
to check for split compatibility and to construct many aspects of a compatible tree
from the final set C.

7.1.1.2 Optimizations to Supertree Algorithm

Because of the large number (over 2.6million) of tips in the full tree, the core supertree
algorithmofRedelings andHolder [10] is not applieddirectly to the input trees and the
taxonomy. Instead, our supertree pipeline first applies two primary approximations,
which we briefly summarize here. First, taxa that do not occur in any phylogenetic
estimates are pruned during preprocessing, and a supertree is constructed on this
reduced subset of taxa. Pruned taxa are reattached after the supertree on the smaller
taxon set is constructed. This optimization is not crucial to the current work, but it
does cause some groups to attach more tipward than they would if the entire tree
were constructed using BUILD algorithm mentioned above.
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Second, after taxa are pruned, the resulting supertree problem is decomposed into
a set of independent subproblems. The decomposition partitions the list of taxonomy
splits S(Tp) into two lists:Z(Tp), the list of splits from the taxonomy tree which are
compatible with every rooted split in the phylogenetic inputs, and Y(Tp), the list of
taxonomic splits that conflict with at least one phylogenetic input split. Conceptually
the approximate algorithm works by greedily adding all compatible splits in altered
ranked list of splits: S ′ = Z(Tp) + S(T1) + S(T2) + · · · + S(Tn) + Y(Tp).

In practice, the decomposition allows the compatibility of splits to be checked on
smaller, relabeled trees. The core algorithm described above is then applied to these
smaller relabeled trees. This can be done much more efficiently than if compatibility
was checked using the BUILD algorithm [2] on the full leaf set. Thus, after pruning
taxa that do not occur in phylogeny estimates, the supertree algorithm divides the
supertree problem into independent pieces by bisecting trees at the uncontested taxa
which correspond to Z , then solves the supertree problem on these pieces, and finally
glues the pieces back together to produce the full tree.

7.1.1.3 Formal Description of the Taxonomy

The taxonomy tree, Tp, is derived from OTT. As mentioned above, OTT not only
contains a taxonomic hierarchy but also contains taxonomic labels and annotations
(referred to as “flags”) on the taxa to carry extra information. The entire hierarchy
encoded by OTT is a complete taxonomic tree, T∗. Nodes in T

∗ have a one-to-one
correspondencewith a set of labelsN that are called taxonnames.Wewill decompose
N into the taxon names for leaf taxa L and higher taxaH. We will use U to refer to
the subset (U ⊆ N ) of taxa that are annotated with the incertae sedis property. Other
annotations identify dubious taxa and taxonomic names that are unwanted artifacts
of the process of building OTT. Thus, the taxonomic tree which is used as an input
to the supertree algorithm is pruned version of T∗. For our purposes, the relevant
information from the taxonomy consists of the taxonomy tree T∗, the labelsN , and
set U of incertae sedis taxa. In previous work, taxa in U and all of their descendants
were all pruned from the taxonomic hierarchy when Tp is extracted from OTT. In
the present work, we consider supertree approaches that operate on a taxonomic tree
T, which is produced from T

∗ but does not prune incertae sedis taxa.
Throughout we assume that leaf labels on input phylogenetic trees are only taken

from the leaf set of the taxonomic tree that is being used and that each label occurs
at most once in each input tree. Redelings and Holder [10] describe a method called
“exemplification” that ensures this is the case. Thus, pruning of the incertae sedis
taxa from the taxonomy was also accompanied by pruning those taxa and all of their
descendants from the input phylogenetic trees.
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7.1.2 A Naive Semantics: Consequences of Ignoring
the Annotation

The most straightforward approach for increasing the taxonomic completeness of
the supertree is simply to no longer prune taxa from T because they are flagged as
incertae sedis, and then run the rest of the pipeline of Redelings and Holder [10]
unaltered. Before we propose a semantics of incertae sedis, it is worth pointing out
what this naive semantics is undesirable.

This approach incorrectly treats the intrusion of an incertae sedis taxon into a
sibling taxon as a conflicting with monophyly of the sibling taxon. Consider, for
example, the trees shown in Fig. 7.2. In this figure (and throughout this chapter)

Fig. 7.2 Handling incertae sedis taxa recovers additional edges and taxon names. Panel a shows the
only phylogenetic input to the supertree algorithm; b shows the taxonomy tree; the edge subtending
the incertae sedis clade C is shown using a dashed line. The tree in c would be the output of the
supertree algorithm if incertae sedis annotations are simply ignored. The tree shown in d is the
supertree produced if incertae sedis annotations are respected. The tree in (d) recovers taxon names
AB and A, as well as the edge to clade AB that groups A and B. Taxon names and edges that are
conditional on handling incertae sedis are shaded gray
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dashed lines are used for edges that connect an incertae sedis taxon to its parent.
Note that if we were to use the naive semantics, the placement of the incertae sedis
taxon C within A and AB is considered to contradict the monophyly of A and AB
and thus to conflict with those taxa. This has three main effects. These effects are
illustrated in the difference between the synthesis tree in Fig. 7.2c, which ignores
incertae sedis annotations, and the synthesis tree in Fig. 7.2d, which respects them.

First, the naive approach results in a less-resolved tree. While input trees are
free to place incertae sedis taxa within a sibling, the naive approach interprets this
placement as conflict with the sibling. Since the taxonomy is ranked below all input
trees, conflict is always resolved in favor of the input trees, and so the sibling in
the taxonomy is removed from the synthesis tree. For example, in the synthesis tree
in Fig. 7.2c, the placement of taxon C in group AB is interpreted as a rejection of
the monophyly of AB. The edge leading to AB is therefore not incorporated into
the synthesis tree. In contrast, the synthesis tree in Fig. 7.2d that does not reject the
monophyly of AB retains the grouping of A and B.

Second, the naive approach results in the removal of clade names for all clades
that have an incertae sedis taxon placed within them. For example, in Fig. 7.2c the
names for the clades A and AB are lost.

Third, the naive approach cannot use information from phylogenies to resolve
the location of uncertain taxa. For example, the synthesis tree in Fig. 7.2c has lost
the label for A, and so does not allow us to note that C has been placed within A.
In contrast, the synthesis tree in Fig. 7.2d retains the label for A, which allows us to
resolve taxonomic uncertainty by inferring that C has been placed within A.

7.2 Semantics of Incertae sedis Taxa

7.2.1 Goals for an Incertae sedis Semantics

In order to incorporate incertae sedis taxa into a supertree analysis, we must arrive at
an operational definition of themeaning of the incertae sedis label. The coremeaning
of the phrase is that the annotated taxon may actually be a member of one of the
taxa that appear as siblings to it in the hierarchical representation of the taxonomy.
In the most expansive interpretation, the author of the taxonomy is stating that the
incertae sedis taxon could be placed anywhere inside one of the sibling taxa or their
descendants. However, frequently only a subset of the possible placement points
would be viewed as plausible.

We seek a semantics for supertrees with incertae sedis taxa that satisfy the fol-
lowing properties:

1. An incertae sedis nodemay intrude into its siblings and their descendants without
this intrusion being viewed as conflicting with the existence of the sibling taxa.

2. An incertae sedis node has an unrestricted range within the descendants of its
sibling taxa.
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3. The semantics of an incertae sedis node does not dependon additional information
such as taxon ranks, but only on the taxonomy tree.

4. The semantics is based on deriving a rooted (partial) split for each branch of the
taxonomy.

7.2.2 Terminology for Rooted Splits

The rooted split associated with taxonomy node n serves to determine both when
n is in conflict with an input tree, and where to place the taxon name for clade n
on the synthesis tree. As is typically done, we define rooted splits for each node by
noting that removing the edge connecting the node to its parent would produce two
trees. The leaf label sets of these trees partition the full leaf set L into two groups:
the include set I(n) which does not contain the root, and the exclude set E(n) which
does contain the root. Such a split may be written

I(n)| • E(n),

where the • indicates the root. The include set is the set of labels for leaves that
are descendants of the node. The exclude set is the set of labels for leaves that are
not descendants of that node. The “include set” and “exclude set” of a “rooted split”
used here are equivalent to the “inside set” and “outside set” of a “n-taxon statement”
(sensu [12]).

If no taxa are incertae sedis, then the exclude set for a node is just the total tip
set minus the include set for the node: E(n) = L − I(n). For any two rooted splits
A = A1| • A2 and B = B1| • B2, we say that A displays B if B1 ⊆ A1 and B2 ⊆ A2.

Note that when a taxon rooted at node n is not marked as incertae sedis, then
the leaf labels that are descendants of n will be in the include set for n and for all
ancestors of n, but will be in the exclude set for all other nodes.

7.2.2.1 Equivalence of a Taxonomy Tree and a List of Rooted Splits

Note that, for the purposes of the supertree method, all of the information from
the taxonomic tree is contained in the set of rooted splits. Thus, one could imagine
replacing that taxonomy, Tp, with a set of rooted splits R(Tp) such that each edge
in Tp is encoded in one split in R(Tp). If the order of trees is set to be: R(Tp) =
Z(Tp) + Y(Tp), then using R(Tp) in place of Tp in the supertree algorithm would
produce the same output.
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7.2.2.2 Equivalence of Rooted Split Definitions and Phylogenetic
Definitions of Names

In terms of phylogenetic nomenclature, the supertree pipeline acts as if the taxonomy
defines a “conditional node-based name” (see [4]) for each higher taxon. So for the
name labeling node n in the taxonomic tree, the operational definition would be: “the
clade defined by the most recent common ancestor (MRCA) of I(n) as long as that
MRCA is not an ancestor of any member of E(n).” OTT is not based on explicit
phylogenetic name definitions. In many contexts, similar behavior would result from
the use of a branch-based definition for n (“the clade defined by all of the taxa more
closely related to all members of I(n) than to any member of E(n), if such a clade
exists”) during the tree construction. However, a case where node-based and branch-
based naming procedures would lead to different outcomes is shown in Fig. 7.4b and
discussed in detail below.

7.2.2.3 Equivalence of Rooted Split Definitions with Character
Encodings

Representing a split in a tree by a character is the basis of one of the oldest supertree
methods: matrix representation with parsimony (MRP, see [3, 9]). In the rooted form
of such an approach, character state 1 is used for tips that are descendants of an
internal node in an input tree, and 0 is used for other tips and for the root. Partial
splits, such as those caused by incertae sedis annotations, are naturally encoded by
encoding missing labels in a split as missing data in the corresponding character
(typically denoted with the “?” symbol in a matrix).

A rooted split is equivalent to the corresponding character in a matrix represen-
tation in the sense that each can be treated as a condition that each tree may or may
not satisfy. A tree satisfies a split if there a branch which divides include and exclude
group when cut. A tree satisfies the corresponding character in a matrix represen-
tation if the character has a parsimony score of 1 on the tree. This equivalence is
illustrated in Fig. 7.3. Thus, the taxonomy shown in Fig. 7.2b could be represented
in terms of the splits in Fig. 7.3a or the characters in Fig. 7.3b. In the naive treatment
of ignoring the incertae sedis annotation, the “?” characters in the row for taxa C1
and C2 would be replaced with 0’s. Equivalently, the naive interpretation would add
C1 and C2 to the exclude set for the A and AB splits.

7.2.3 Split-Based Semantics for Incertae sedis Taxa

An incertae sedis taxon n differs from a normal taxon because it can be placed as
a descendant of some set of taxa without invalidating these taxa. We will use Pn to
denote this set of taxa which are potential ancestors for incertae sedis taxon n. Note
that this is distinct from the taxa that are ancestral to n in the taxonomy; those are
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Fig. 7.3 Rooted splits have an equivalent matrix encoding. a Rooted splits for an incertae sedis
interpretation of the taxonomy shown in Fig. 7.2b. b The equivalent matrix representation. The root
is coded as a special leaf. Split C is a full split, because it mentions all labels. Splits A and AB are
partial splits, and therefore have missing labels in the left panel, and “?” in the right panel

taxa which must contain all of the descendants of n. The effect of the incertae sedis
annotation of taxon n is to simply remove I(n) from the exclude set for each taxon
in Pn. The include sets of these splits remain unchanged, but the exclude sets may
be reduced, allowing incertae sedis taxa to intrude. Such a split does not mention
the complete set of tip labels L and is therefore called a “partial split”, as opposed
to a “full split” that contains the entirely of L.

When considering incertae sedis annotations, the taxonomy is still comprehensive
if we include the degenerate grouping for the base node ρ which has I(ρ) = L and
E(ρ) = ∅, but many of the taxonomic nodes will correspond to partial splits. Thus,
when interpreted correctly the incertae sedis annotations are reducing the amount of
information that the taxonomy brings to the supertree problem.

7.2.4 Unrestricted Range and Ignoring Additional
Information

In principle, an incertae sedis taxon n could carry with it additional information
that indicates which specific points within the taxonomic tree it could attach. Unfor-
tunately, reliable information about the range of valid attachment points for each
incertae sedis taxon is lacking in OTT and most other large-scale taxonomies. Con-
structing a range for each incertae sedis taxon relies on detailed readings of character
argumentation (which is lacking in OTT) or rank-based information (which is fre-
quently untrustworthy in OTT). Thus, here we pursue an approach of ascribing a
meaning to the incertae sedis label which attempts to capture the core of the idea
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that it articulates, but which can be applied automatically across the taxonomy with-
out additional information.

Specifically, the methods described here only consider cases in which Pn can be
determined from the structure of the tree. Our method takes Pn to be the set of nodes
that are in the taxonomic subtrees rooted at the sibling taxa of incertae sedis taxon
n. This allows us to encode the exclude set of some node x efficiently by sweeping
over the tree from root to tip. If S(x) is the set of siblings of x and p(x) is the parent
of x, then the naive approach of ignoring the incertae sedis annotation amounts to
setting the exclude set as

E(x) = E(p(x)) ∪
⎧
⎨

⎩

⋃

s∈S(x)

I(s)

⎫
⎬

⎭
(7.1)

with E(ρ) = ∅ for the root of the taxonomic tree.
If we treat the incertae sedis annotation as an indication that the incertae sedis

taxon x can be placed in any of its sister taxa, then we let Q(x) denote the set of
siblings of x that are not flagged as being incertae sedis and we define the exclude
set as

E(x) = E(p(x)) ∪
⎧
⎨

⎩

⋃

s∈Q(x)

I(s)

⎫
⎬

⎭
. (7.2)

We will refer to this interpretation of the incertae sedis annotation as “unrestricted
intrusion” semantics.

7.2.5 Naming

After constructing a supertree, tip nodes already have names in L. However, we still
need to assign higher taxon names to internal supertree nodes based on the taxonomy
tree in the problem. Each taxon name n corresponds to a split S(n) = S(n)1| • S(n)2
on the corresponding branch of the taxonomy tree.Without incertae sedis, such splits
are always of the form S(n)1| • L − S(n)1, but with incertae sedis taxa S2(n) may
be smaller than L − S(n)1.

Without incertae sedis, each name applies to at most one node, and each node can
take at most one name, with the exception of monotypic taxa. Thus, we may simply
search the solution tree for a node that has the same cluster S(n)1 and apply the name
n to that node.
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Fig. 7.4 One name can be consistent with multiple nodes

7.2.5.1 One Name, Multiple Nodes

However, in the incertae sedis framework, it is possible for one name to apply to
multiple nodes. For example, inFig. 7.4b, the nameE can apply to nodes x and y.Here,
the name E corresponds to the split E1E2 | • F G, leaving H out of the definition
sinceH is incertae sedis. The twonodes x and y display the splitsE1E2 | • F G H and
E1E2H | • F G, respectively, and both of these splits display the splitE1E2 | • F G,
so the name E can apply to both x and y. This cannot happen when the rooted splits
that correspond to a taxonomic name are generatedwithout incertae sedis taxa except
at monotypic nodes.

This situation is the result of the fact that it is not clear whether the names in
the taxonomic tree should be treated as node-based or branch-based phylogenetic
definitions. A node-based definition of E would be “the clade rooted at the MRCA
of E1 and E2 as long as it is not the ancestor of F or G”; this would correspond to
node y in the solution depicted in Fig. 7.4b. The branch-based definition would take
the form “The clade containing all lineages more closely related to E1 and E2 than
to either F or G, if such a clade exists”; this definition would include node x and
the lineage connecting it to its parent. The ambiguity arises because both definitions
refer to the same node in the taxonomy, so it is unclear which is a preferable way to
define the taxon concept of E.

When faced with a choice about where to place a name, our solution is to find the
most tipward node where the name can apply and attach the name to this node. This
corresponds to using a node-based definition of the taxonomic names. The result
of this naming choice is that the algorithm is conservative with respect to when the
incertae sedis taxa should be placed within another named taxon.

Note that the intrusion of an incertae sedis taxon within another taxon does not
always lead to ambiguity in which node should be named. For example, H is placed
inside taxon EF in Fig. 7.4, but the name EF only applies to one node in the solution
tree.
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7.2.5.2 One Node, Multiple Names

It is also possible for multiple names to apply to a single node. For example, in
Fig. 7.5a, the taxon M corresponds to the split L1L2K | • J , and its child taxon L
corresponds to the split L1L2 | • Y . The edge leading to M is consistent with the
split for L, but the name L is applied to the node with the smallest include group.
However, in the solution tree (Fig. 7.5b), there is only node for both names M and
L to apply to. This kind of situation arises when a taxon becomes monotypic after
its incertae sedis children are placed elsewhere. For such cases, we can address this
synonymy by (i) selecting a taxon at the node that is ancestral to all other taxa and
(ii) moving this taxon to a newly introduced out-degree-1 parent. For example,M is
moved to an out-degree-1 parent in Fig. 7.5c. We repeatedly perform this procedure
until no taxon at the node is the parent of all taxa.

However, there are cases where this procedure does not result in one name per
node. This case can occur, for example, when two incertae sedis siblings are “inter-
digitated”, or combined into a single clade in such a way that their members cannot
be separated. When the members of the two clades share the same MRCA, as in
Fig. 7.6, then the names for both clades apply to the same node. However, in this
case, neither name is ancestral to the other, and the previous solution does not apply.
In such cases, we treat all applicable names as synonyms for the node.

Fig. 7.5 Multiple names can apply to a single node

Fig. 7.6 Interdigitation of incertae sedis siblings. Here, the names P andQ apply to the same node
on the solution tree, but neither is ancestral to the other on the taxonomy
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7.2.6 Taxonomic Revision

7.2.6.1 Revision of Unbroken Incertae sedis Taxa

After we have attached taxon names to the synthesis tree, we would like to interpret
the position of these names in terms of placing incertae sedis taxa in a revised taxon-
omy. This would allow us to interpret the synthesis tree as saying that phylogenetic
information has (for example) placed genus A within family B, or perhaps outside of
all named families. The simplest approach to placement involves noting whenever a
taxonB is a descendant of a taxonA on the named synthesis tree but not the taxonomy
tree. For example, in Fig. 7.2, taxon C is a descendant of taxon A in the synthetic tree
(Fig. 7.2d), but not the taxonomy (Fig. 7.2b). Thus, we could say that the synthetic
tree places C within A.

In general, after naming the clades in the supertree, the taxonomic placement of an
incertae sedis taxon can be detected if the name of the incertae sedis taxon survives
in the solution tree, and the most tipward named ancestor of the clade in the supertree
was not an ancestor in the taxonomic tree. In complex scenarios such as Fig. 7.8c,
it may be necessary to walk the solution tree in preorder and revise the taxonomy
incrementally, in order to (for example) place V within WX before placingWwithin
V.

7.2.6.2 Revision of Broken Incertae sedis Taxa

When an incertae sedis taxon is broken and its name does not occur on the solution
tree, taxonomic revision becomes considerably more complex. For example, it can
be ambiguous whether or not all of the members of a broken taxon should be placed
in a new parent taxon. See, for example, Fig. 7.7. Here taxon T1 is a descendant of
R in the synthesis tree, but not the taxonomy. Thus, T1 is placed within R; taxon T2
is similarly placed within R. T3 is not mentioned in either input tree, and the only
tree that speaks to its placement is the taxonomic input. However, the taxon T cannot
be monophyletic based on the two input trees. Thus, the correct placement of T3 is
unclear. Furthermore, the taxon name for T does not occur on the solution tree.

The ambiguity of where to place T3 can be explored by comparing the behavior of
maximum-compatibility tree estimation and parsimony-based scoring schemes such
asMRP. The taxonomic tree’s character representation of taxon T would include T1,
T2, and T3 all being assigned state 1 and all of the other leaves being assigned state
0. This character is not compatible with the solution tree. The compatibility approach
would be to conclude that the character (or, equivalently, the corresponding rooted
split) encoding that taxon was incorrect and should be completely ignored. Since no
other character speaks to the position of T3, it would fall to being a child of the root
of the tree. This seems to contradict the intuition that T3 should be placed at the
MRCA of T1 and T2.
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Fig. 7.7 Incertae sedis clade T broken by conflicting placement. Input trees a and b conflict in
the placement of taxa in T . The synthesis supertree d places T1 and T2 separately within R. The
BUILD algorithm would place the unsampled taxon T3 at the root of the tree, while our unprune
operation implemented to handle taxonomy-only taxa would place T3 as a child of the MRCA of
the other members of T , as pictured in (d)

Using a parsimony-based scoring scheme, the information from the character
that encodes taxon T is not completely ignored, even though it is contradicted by
an input tree. Placing T3 as either sister to T1 or T2 could explain the character
representation of taxon T with only two acquisitions of the state 1. Other placements
of T3 would require at least three 0 to 1 changes (or a reversion to state 0). Placing
T3 at the MRCA of the other members of T corresponds to handling of “rogue” taxa
in Adam’s consensus tree [1] method of the two most parsimonious placements of
T3 under an irreversible parsimony model.

Our current supertree algorithm places T3 at the MRCA of T1 and T2 if T3 is a
taxonomy-only taxon, but places T3 at the root of the tree if it occurs in an input tree.
This inconsistent behavior is not restricted to cases that contain incertae sedis taxa,
but is a general problemwith compatibility-based algorithms that do not retain partial
information from incompatible splits. Such information could include compatible
triplets that comprise parts of the incompatible split. The inconsistency results from
the fact that our subproblem solver implements compatibility-based consensus and
completely discards incompatible splits, while the unpruner implements an ad hoc
rule to place pruned taxonomy-only taxa at the MRCA of taxa that occur in input
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trees. It would be desirable to update the subproblem solver to be consistent with the
unpruner, so that we could treat the pruning and unpruning steps as an optimization
that has no effect on which tree is returned.

It is possible to update our compatibility-based supertree algorithm to achieve
the intuitive result of placing T3 at the MRCA of T1 and T2 without resorting to
a parsimony-based scoring scheme. We note that the split T1T2 T3 | • U S R1R2
implies many rooted triplets, and that we need not discard all of these triplets because
some of them are contradicted by input trees. A simple method of retaining partial
information from incompatible rooted splits would be to note that the MRCA of
T1, T2 and must also have R1 and R2 as descendants. We would then remove these
additional taxa from the exclude group, obtaining the partial split T1T2 T3 | • U S.
Adding this split to the solution tree places T3 at the MRCA of T1 and T2 as
desired. While this approach places all members of T inside R, it does not place a
monophyletic T within R, since T is not monophyletic. Placing the name for T at
the MRCA of its members would make T a synonym for R.

7.2.7 Ambiguity of Split Representation for Incertae sedis
Taxa

Equation (7.2) introduces amethod for encoding a taxonomywith incertae sedis taxa
into a set of partial splits. These partial splits have a unique representation as a matrix
of 0-1 characters with missing data indicated by “?”. Clearly, we will not be able to
recover the identity, or even the number, of characters that a taxonomist might have
used when classifying a set of organisms, simply by looking at the character matrix
that represents a taxonomy (as Fig. 7.3 represents Fig. 7.2b). Nevertheless, one might
hope that Eq. (7.2) is a unique and uncontroversial way to encode any taxonomic tree
as a set of splits.

However, Eq. (7.2) is not the only set of rules for generating a split representation
for a taxonomy. For example, consider the case of the taxonomy shown in Fig. 7.8a.
Either of the two matrices shown in Fig. 7.9a or Fig. 7.9c could represent this tax-
onomy along with its incertae sedis interpretation. The matrix in Fig. 7.9a, which
corresponds to Eq. (7.2), assumes that incertae sedis taxa may only intrude into taxa
that are siblings in the taxonomy. The placement of W within V leads to taxon V
not being named in the supertree shown in Fig. 7.8c under the encoding in Fig. 7.9a
because V is not a sibling of W in Fig. 7.8a.

The matrix shown in Fig. 7.9c allows V to be named in the supertree shown in
Fig. 7.8c because it removes the assumption that incertae sedis taxa can only be
placed within siblings. However, as a side effect, if taxon WX is found to be non-
monophyletic, the matrix from Fig. 7.9c allowsW to be placed within V . In general,
this approach would allow incertae sedis children of any taxon Γ1 to be placed
arbitrary deep into groupΓ2 if groupΓ1 is broken. This behavior can lead to surprising
and nonintuitive results. Additionally, our unpruner currently assumes that incertae
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Fig. 7.8 Placement of incertae sedis taxa within non-siblings could occur if taxa become siblings
by placement. Given the taxonomy (a), placement of V within WX is shown in (b), followed
by placement of W within V as shown in (c). Since W is not a sibling of V in (a), the method
proposed here and illustrated in Fig. 7.9a does not preserve the taxon name for V . However, with
an alternative method for computing reduced exclude sets that is shown in Fig. 7.9c, the name V
would be preserved

Fig. 7.9 Panels a and c show two possible encodings that would support the V and WX branches
and incertae sedis annotation shown in the taxonomy from in Fig. 7.8a. The representations only
vary in the scoring of leafW for character V . Panel b shows the information encoded by the tree in
Fig. 7.8b
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sedis taxa can only be placed within siblings, and therefore does not know what to
do in this situation. Thus, it is not clear that either Fig. 7.9a or Fig. 7.9c comprise a
unique, best encoding of the taxonomy. Thus, to honor the input taxonomic content
accurately, we may need more taxonomic information than simply a hierarchy and
knowledge of which taxa can float more tipward.

Note that Eq. (7.2) allows incertae sedis taxa to intrude only into siblings in the
original taxonomy, and not into taxa that become siblings through solution to the
supertree problem. This can lead to cases where computing a supertree from two
input trees T1 and T2 and an original taxonomy T can lead to a different outcome
than if we compute a supertree from T1 and T, and then compute a supertree from
T2 and a revised taxonomy T′. Consider a case in which the taxonomy T is given in
Fig. 7.8a (withmatrix representation given inFig. 7.9a) andT1 andT2 each provide the
single rooted splits V 1X | •U andW V 1 | • V 2, respectively. Running the supertree
pipeline on T1 and T yields the tree in Fig. 7.8b. We use this tree as the revised
taxonomyT′, and itsmatrix representation appears in Fig. 7.9b.Running the supertree
pipeline on T2 and T

′ then results in the tree in Fig. 7.8c.
One might therefore hope that running the supertree pipeline on T1, T2, and T

simultaneously would yield the same result. While the topology for the final tree
would indeed be the tree shown in Fig. 7.8c, the decision about whether or not to
name V differs. As expected, the definition ofWX inT′ has been altered to reflect the
fact T1 placed V inside WX . Perhaps unexpected is the fact that storing the revised
taxonomy with an incertae sedis annotation and then reprocessing the taxonomy
using our rooted partial splits approach would also shift the definition of V from a
taxon that must excludeW to one that may includeW . This results from the fact that
Eq. (7.2) only allows incertae sedis taxa to intrude into taxa that are their sisters in
the taxonomy. Outcomes differ becauseW is a sister of V in T′ but not T. Use of the
alternate representation of T in Fig. 7.9c allows V to be named in Fig. 7.8c, which
solves the seeming inconsistency. However, this has some surprising side effects as
mentioned above and is therefore not the approach that we focus on here.

7.3 Handling Incertae sedis Taxa in a Software Pipeline

In order to handle incertae sedis taxa in the software pipeline described by Redelings
and Holder [10], we must modify some of the stages of the pipeline. Subproblem
decompositionmust place incertae sedis taxa in the correct subproblem. Subproblem
files must indicate which taxa are incertae sedis. The subproblem solver must read
this information, account for incertae sedis taxa when solving subproblems, and
correctly name taxa that have been modified by having incertae sedis taxa place
inside them. The unpruner must be aware of incertae sedis taxa. Annotations of the
tree must be aware of incertae sedis taxa so that it does not consider taxa broken
when they have an incertae sedis taxon placed inside them.
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7.3.1 Subproblem Decomposition

The presence of incertae sedistaxa poses a problem to subproblem decomposition,
since taxonomy edges no longer completely separate subproblems. Instead, incertae
sedis taxa may attach on either side of a taxonomy edge. We seek to place incertae
sedis taxa into subproblems in such a way that the subproblem solver can perform
the placement inside the subproblem. This approach postpones handling of conflict
in incertae sedis taxa to the subproblem solver, where the problem is well formulated
in terms of splits. However, it does have the effect of creating larger subproblems.

Simply allowing the subproblem decomposer to recognize that intrusion of an
incertae sedis taxon does not contest the existence of a clade would be straight-
forward, but problems arise if the decomposer is not further altered. Consider, for
example, the inputs of the τ1, τ2, τ3, and the taxonomy shown in Fig. 7.10. Because
the taxon α is annotated as being incertae sedis, neither τ1, τ2, nor τ3 contest the
monophyly of the taxa Y , Z , or α. This would lead to the taxonomic portion of both
the Y and Z subproblems containing the taxonomy for α, leading to the members
of α occurring in two different subproblems (see Fig. 7.10f). Solving and merging
these problems would result in the duplication of α in the supertree.

One could easily imagine a “pruning decomposer” that does not allow the same
taxon to occur in more than one subproblem. This approach would work in a straight-
forward way if the phylogenetic inputs were only τ1 and τ3, yielding the decompo-
sition shown in Fig. 7.10g, but if both τ1 and τ2 were inputs the decomposer would

Fig. 7.10 Four phylogenetic trees a–d an example taxonomy e which are possible inputs to the
supertree pipeline. f Shows the taxonomic component of the subproblem decompositions for taxa
Y and Z subproblems that would result from an unmodified pipeline with used τ1 and either τ2 or
τ3 as the phylogenetic inputs. g Shows a possible decomposition from a decomposition tool that
avoids duplication of taxa
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have to resolve the conflict about the placement of α1. Implementing the behavior in
the subproblem decomposition step would break the separation between the “divide”
and “conquer” steps which is a key aspect of the pipeline’s current efficiency.

Even considering ranked phylogenetic inputs of τ4 then τ1 from Fig. 7.10 reveal
some difficulties. In this case, the inclusion of α within the taxon Y in τ1 would cause
α to be solved in the subproblem for Y . If τ4 were ranked higher than τ1, then the
grouping of Y1 + Y2 + α would not be permitted because they conflict with the split
Y1 Y3 | •Y2 from τ4. Thus, α would be placed inside of Y on the basis of a rooted split
that is not displayed in the final tree. While this is placement is permissible based on
the incertae sedis annotation of the taxonomy, a major goal of the pipeline is to make
it easy for biologists to understand the cause of different groupings in the supertree.
Allowing splits which are not displayed to determine the placement of groups runs
counter to that goal.

We choose to solve these problems by merging any subproblems that an incertae
sedis taxon might be placed in. The simplest way to achieve this is simply to regard
any taxon that has an incertae sedis taxon placed within it as contested. This results
in marking both B and C as contested edges in the example above. In fact, this is
the current behavior of the non-incertae sedis aware subproblem decomposer. One
downside of this approach is that, when an incertae sedis taxon occurs in only one
input tree, the clade it is placed in will be marked as contested even though none of
the counterintuitive behaviors mentioned above would arise if we did not mark it as
contested.

7.3.2 Subproblem Solution

Our subproblem solver naturally handles incertae sedis taxa. This is because we
define the semantics of incertae sedis taxa in terms of partial splits, and our solver
natively supports building trees from partial splits through its use of the BUILD algo-
rithm. Handling incertae sedis taxa thus requires loading incertae sedis information
and computing partial splits for incertae sedis taxa before solving a subproblem.
After solving a subproblem, we must apply taxon names from the taxonomy tree to
the subproblem solution tree. The solution tree is considered to be a fixed tree and
not to have any incertae sedis nodes, or any other forms of uncertainty.

7.3.2.1 Implementation: Finding the Node for a Name

To find the node for a name n, we find the MRCA of the cluster S1(n). If the MRCA
excludes the entire exclude group S2(n) then the name applies to the MRCA; other-
wise the taxon does not exist on the tree.
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7.3.2.2 Implementation: Handling Name Clashes

When multiple names N = {n1, . . . nN } map to the same solution node x, then these
names must satisfy some tree structure on the taxonomy, such that n1 < n2 if n1 is
a descendant of n2 in the taxonomy. If it is possible to find a name nmax that is the
unique maximal element of N , then it is permissible to

1. create a monotypic parent p(x) of x, and assign nmax to p(x), and
2. continue handling name clashes at x with the set of possible names reduced to

N − nmax.

However, it’s certainly possible that there might not be any such Nmax, in which case
we could just choose a name for x from N (perhaps not an incertae sedis name) and
then record all the other names as equivalents somewhere.

7.4 Discussion

This contribution introduces the necessary concepts and methods for handling incer-
tae sedis taxa in taxonomic supertrees. We describe the goals of preserving internal
edges, preserving higher taxon names, and preserving the opportunity to revise the
taxonomy based on the placement of incertae sedis taxa. In addition to explaining
why the naive approach to taxonomic supertrees that ignores incertae sedis taxa sac-
rifices these three goals, we introduce a simple and satisfying way to achieve these
goals through defining rooted splits for taxonomy edges with reduced exclude sets.
We also provide a simple and efficient recursion for computing these splits.

Despite the simplicity of our approach, some complexities and conceptual diffi-
culties remain. While the correspondence of nodes and names is a simple one-to-one
function without incertae sedis taxa, when incertae sedis taxa are introduced, the
relationship might be neither one-to-one (Figs. 7.5 and 7.6) nor a function (Fig. 7.4).
This necessitates putting more thought into the semantics of taxon names, including
whether names might become synonyms. This may be considered a “complexity”.

In addition, our attempt to define reduced exclude sets for taxonomy splits yields a
semantics that is not the only conceivable semantics for incertae sedis taxa (Fig. 7.8).
It allows incertae sedis siblings to inter-digitate (Fig. 7.6),whichmight be a surprising
result to the taxonomist. Furthermore, in what might seem a lack of consistency, it
does not allow incertae sedis taxa to intrude into each other if they become siblings
through the result of placement, as is the case for taxa W and V in Fig. 7.8c. While
each of these problems can be solved separately by adjusting the definition of the
reduced exclude sets, no solution seems to be best in all respects. This may be a result
of the fact that split-based approaches to supertrees seek a simultaneous solution to a
set of constraints. This simultaneity can be contrasted with a solution that is phrased
as a set of sequential operations to the taxonomy, as would be the case when (for
example) (i) placing VwithinWX so that it is sister toW, (ii) marking V as no longer
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incertae sedis, and then (iii) placing W within V (which is no longer incertae sedis).
This maybe considered a “conceptual difficulty”.

Another issue that we have postponed for future work is how to more narrowly
delimit the ranges in which incertae sedis may attach. The current paper allows
incertae sedis to attach within any of their siblings, but the taxonomist may only
consider it plausible for the taxon to intrude only within specific siblings. We also
assume that a taxon labeled as incertae sedis may attach at any depth within its
siblings. In practice, an incertae sedis genus with sister families (for example) is
unlikely to attach so deeply within a sister family that it becomes nested within
another genus.

Ourmethod also assumes that the incertae sedis status of a taxon consists solely of
a flag on that taxon. In order to consider more precise attachment ranges for incertae
sedis taxa, we would have to obtain machine-readable specifications for attachment
ranges for groupings that a taxonomist has labeled as incertae sedis. Obtaining these
specifications would be difficult or impossible in many cases. However, not all incer-
tae sedis taxa in our taxonomy are directly labeled incertae sedis by taxonomists.
Incertae sedis taxa can also result from the automatic merging of taxonomies to cre-
ate the Open Tree taxonomy. For example, in Fig. 3 of [11], cases #4 and #6 illustrate
examples where merging of two taxonomies leads to a taxonomy with a taxon of
uncertain placement.

Taxonomymerging generates an automated incertae sedis annotation in a number
of ways. Perhaps, the easiest cause to contemplate is if one input taxonomy, T1,
contains more levels of hierarchy than a second input taxonomy, T2. When the
merger adds internal nodes that are unique to T2, it is unclear how these extra leaves
should be nested or placed in the richer hierarchy ofT1. In such a case, it is feasible to
imagine the taxonomy-merging procedure outputting a list of plausible attachment
points for each generated incertae sedis label. For the case in which the incertae
sedis label is present in an input taxonomy, restricting the range of attachment points
would need to be treated as manually curated statements.
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Chapter 8
Evolutionary Rate Change and
the Transformation from Additive
to Ultrametric: Modal Similarity
of Orthologs in Fish and Flower
Phylogenomics

Daniella Santos Muñoz, Eric Lam and David Sankoff

Abstract Branch lengths in a phylogeny may be in units of elapsed time, so that the
nodes have dates associated with them, or in units of evolutionary change, such as the
number of mutations that have accrued between the two endpoints of a branch.Meth-
ods to account for the mutational change in terms of an additive tree are generally
incompatible with the ultrametric requirement of time-based tree representations
because of changes in mutation rate. There are some principled ways of convert-
ing additive trees to ultrametric form, and these suggest which branches have seen
increased or decreased rates. We spell these methods out and apply them to the ray-
finned fishes and the plant families Solanaceae and Malvaceae. The methods based
on nonparametric rate smoothing prove to bemore revealing than the Farris transform
methods.

Keywords Tree metrics · Peaks tree · Fish phylogeny · Solanaceae · Malvaceae

8.1 Introduction

Phylogenomics, like phylogenetics, attempts to reconstruct evolutionary history by
converting data of various kinds on a set of genomes into a rooted tree whose nodes
represent speciation events, historical points at which one existing lineage is split into
two or more lineages, each of which continued to evolve independently. Accompa-
nying the tree, which is basically a special combinatorial object consisting of vertices
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(nodes) and edges (branches), we usually associate positive branch lengths. These
lengths may be in units of elapsed time, so that the nodes have dates associated with
them, or in units of evolutionary change, such as the number of mutations that have
accrued between the two endpoints of a branch.

Were evolution clock-like, so that the number of mutations during a period of
time was strictly proportional to the duration of that period, the two types of tree
would be congruent. They would both be consistent with the ultrametric inequalities,
with the given genomes assigned the present time. The number of mutations along
each lineage, from the root to each of the present-day genomes, would be the same.
Evolution, however, proceeds at an uneven pace, so that the rate of mutation may
be elevated in one branch and depressed in another. A phylogenetic representation
faithful to the amount of evolution on each branch, such as an additive tree, satis-
fying only the weaker four-point metric, will not generally be consistent with the
ultrametric inequalities; we cannot assign dates to the nodes in any direct way so that
the mutational change from the root to each of the present-day genomes is the same.
Methods such as neighbor joining (NJ) [29], which produce edge-weighted trees
(and hence additive trees) from a matrix of distances between pairs of genomes, will
not generally output an ultrametric tree. Methods like UPGMA [24], which produce
an ultrametric tree from the same data, will not generally give a good fit to data
that are consistent with a lopsided additive tree and are liable to output a wrong tree
topology in forcing an ultrametric structure on the data.

Inherent in the non-ultrametric nature of additive data is the existence of branches
in the “true” phylogeny that generated the data with very high or very lowmutational
rates. This suggests that we could compare the length of branches in an additive
tree and an ultrametric tree for the same set of data. The problem with this is that
methods designed to produce an ultrametric and those generating an additive tree
would generally produce different topologies, so that some of the branches in one
would not exist in the other, so no comparison would be possible. An alternative
would be to adapt an additive tree by stretching or compressing branches in some
principled way so that it assumed ultrametric shape. This is the approach we will
take here, exploring three alternative published techniques for converting an additive
tree to an ultrametric, in order to detect evolution speeding up or slowing down on
specific branches.

Recently a new, uniquely phylogenomic, way of deriving evolutionary distances
was introduced [33, 36, 37], something that has no counterpart in traditional gene-
based phylogeny or even concatenation-of-many-genes extensions of classical meth-
ods. This is based on the distribution of all syntenically validated ortholog similarities
between two genomes. Syntenic validation is assured by software such as SynMap
on the CoGe platform [20, 21]. Whole Genome Doubling events and speciation
events can be separated out by locating “peaks” (local modes) in this distribution.
The most recent (highest similarity) peak is always due to speciation. Although there
may be relatively few pairs of orthologous genes with peak similarity, its accuracy
is buttressed by the hundreds, thousands, or tens of thousands of ortholog pairs dis-
tributed in both sides of it on the x-axis. (Our description is phrased in terms of
similarity rather than Ks , but either is feasible.) The peak similarities p can be trans-
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formed to estimates of evolutionary divergence using a negative log transform, or
simply by 1 − p.

Since the peaks method depends on no one gene family, and does not require any
single-copy constraint, it is not susceptible to the rapid expansion of gene families or
paralog-based confusion; it is uniquely placed to measure whether entire genomes
have adopted a faster or slower pace of evolution. This motivates the application
of additive to ultrametric transformations to peaks phylogenies in situations where
WGD may muddy the waters when using traditional kinds of distance. The goals of
this paper are thus to apply three transformation methods to distance-based phylo-
genies based on peaks, and to use these techniques to detect increased or diminished
rates of evolution in three phylogenetic domains.

8.2 Approaches to Transformation

8.2.1 Farris Transform

Originally suggested in [10], the Farris transform is among the early methods for
converting an additive tree metric into an ultrametric. Its original implementation,
however, was to be used in conjunction with UPGMA [24]. The idea was to correct
for the constant evolution rate across all lineages assumption, which may result in
incorrect topologies given an additive tree, through the use of an outgroup [17].

Let X = {1, 2, . . . , n} represent the set of present-day taxa, and T a rooted and
dated phylogenetic tree on X with vertex set VT ⊃ X . Assume that for any two
present-day taxa i, j ∈ X , the genetic distance between them is represented by
D(i, j). Now, consider any vertex v ∈ VT , and any two distinct taxa i, j of v, in
the set X (v) = {k ∈ X : v is an ancestor of k}. The set X (v) contains all present-day
descendants of v in X . Finally, if we let a /∈ X (v) be a known outgroup and D(i, j)
be an additive distance matrix for the set of species X , then we have the following
transformation:

D′(i, j) = D(a) + 1

2
(D(i, j) − D(i, a) − D( j, a)) (8.1)

where D(a) = 1
n

n∑

i=1
D(i, a), which is the average distance between the outgroup and

all ingroups [17]. An alternative constant that can be used is D = maxi D(i, a), the
maximum distance value between the outgroup and any ingroup from the additive
distance matrix [12].

Theorem 1 ([3]) Let D be an additive distance matrix. If D′ is the Farris transform
of D, then D′ is ultrametric.

For more details on the mathematical context of the Farris transform, see [9].
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8.2.2 Nonparametric Rate Smoothing (NPRS)

NPRS [31] is a method that estimates divergence times without assuming evolu-
tionary rates are constant across lineages. The method relaxes the assumption of
the molecular clock by using a least squares smoothing of local estimates of substi-
tution rates. NPRS is dependent on the minimization of ancestor-descendent local
rate changes and is motivated by the likelihood that evolutionary rates are autocor-
related in time. It also estimates divergence times for all unfixed nodes. Sanderson’s
paper [31] demonstrates that NPRS-produced divergence time estimates are more
consistent with paleobotanical evidence than tests using clock-based estimates.

The main idea of Sanderson’s method was to construct an estimate of the evolu-
tionary local rate of each branch in a tree while minimizing the difference between
that estimate and the local rate estimates of their immediate descendants.

A simple local estimate of rate is

r̂ = b

t
(8.2)

where b is the length of branch and t is its temporal duration.
All branches on the path between the root and a terminal node are directed away

from the root. We denote by r̂k the rate on the unique branch directed to node k and
D(k) to the set of nodes immediately descended from node k. Now, for each internal
node k of the tree, we define

wk =
∑

j∈D (k)

∣
∣r̂k − r̂ j

∣
∣2 (8.3)

Thus, an overall function to be minimized is then attained by summing the terms
over all internal nodes as defined by

W =
∑

k∈internal nodes
wk (8.4)

A reasonable estimator of local rate will take into account the unknown time end-
points of the branches and some function of the distance matrix, D. Hence, we can
rewrite the function W as the function W (t1, t2, . . . , tm |D), where m is the number
of internal nodes and {ti } are the unknown times of internal nodes. The minimization
of W over these unknown times can then give estimates of those divergence times
(comparable to nonparametric regression techniques). The objective is to smooth the
local transformations in rate as the rates change over the tree. Equation (8.3) is a
minimization of changes in rate from an ancestral lineage to its descendant lineages.

Sanderson [31] estimates the root branch local rate as themean of all the estimated
descendant rates throughout the tree and then constructs an expression similar to
Eq. (8.3) for the root node. The mean estimated rate is defined by
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r̂root = 1

n

∑

k

r̂k (8.5)

where n is the number of branches. Thus the objective function to be minimized,W ,
should also include the term

wroot =
∑

j∈D (root)

∣
∣r̂root − r̂ j

∣
∣2 . (8.6)

8.2.3 Penalized Likelihood

Penalized likelihood [32] is a semiparametric smoothing method. It features a trade-
off between a parametric model having a different substitution rate on every branch
with a nonparametricmodelwhich penalizes themodelmore for rapid rate changes on
a tree. This is controlled by an optimality criterion, namely the log likelihood minus
λ times a roughness penalty, where λ is the “smoothing parameter.” As smoothing
values increase, the variation in rates are smoother and themodel is reasonably clock-
like;whereas for small values of smoothing, the parametric component dominates and
rates heavily vary amongbranches.Optimal values of the smoothing parameter can be
determined by performing cross-validation, a resampling procedure that successively
removes each terminal branch and estimates the remaining parameters of the reduced
tree using penalized likelihood [11].

Consider a rooted phylogenetic tree with n taxa and m internal nodes, where the
root node is labeled by a, the remaining internal nodes are labeled by {1, . . . ,m − 1}
and the leaf nodes are labeled by {m, . . . ,m + n − 1}. Branches are labeled by the
node they are directed away from, as in the NPRS method. Let node k have an age
tk and its ancestral node, called anc(k), have an age tanc(k). The branch defined by
these two nodes has a duration in time given by tanc(k) − tk .

In a clock-like (CL) model, the rate parameters are the same for every branch,
r̂k = r̂ . In a saturatedmodel (SAT), each branch can have a unique rate, r̂k . The known
parameters of each model can be written respectively as θCL = {

ta, . . . , tm−1; r̂
}
and

θSAT = {
ta, . . . , tm−1; r̂1, . . . , r̂m+n−1

}
, for m + 1 or 2m + n − 1 free parameters.

Next, let P(x |ξ) = ξ x exp(−ξ)

x ! be the usual probability that an observation x is taken
from a Poisson distribution with parameter ξ . Then, the log likelihood of θ for the
saturated model is

log L (θSAT|x1, . . . , xm+n−1) =
m+n−1∑

k=1

log P
(
xk |r̂k

[
tanc(k) − tk

])
(8.7)

The following penalized likelihood to be maximized is given by:
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Ψ (θSAT|x1, . . . , xm+n−1) = log L (θSAT|x1, . . . , xm+n−1) − λΦ
(
r̂1, . . . , r̂m+n−1

)

(8.8)
where Φ is a roughness penalty and λ is the smoothing parameter previously dis-
cussed above. The roughness penalty Φ should be chosen to reflect change in rate
between neighboring branches of the tree. Following the NPRS method above, this
penalty was chosen to penalize squared difference in rates between ancestral and
descendant branches and the variance in rate between the branches descended from
the root node:

Φ
(
r̂1, . . . , r̂m+n−1

) =
∑

k /∈a ⋃
D (a)

(
r̂k − r̂anc(k)

)2 + Var
(
r̂k : k ∈ D(a)

)
(8.9)

where D(k) is the set consisting of the descendants of node k. The summation
extends to all internal nodes except the root node and the descendants of the root.
The second term compares the branches descended from the root node andminimizes
the variances of their rates [32].

The choice of λ will affect the estimated rates and times. We use cross-validation
[11] to assist in choosing the value for this parameter.

We drop each leaf successively, leaving its ancestral node in place and repeat the
analysis with the remaining tree, using the ape package [26] in R [27]. For the i th
leaf, the following is calculated:

m−1∑

j=1

(
t j − t−i

j

)2

t j
(8.10)

where t j is the estimated date for the j th node with the full phylogeny, t−i
j is the

estimated date for the j th node after removing leaf i from the tree, and lastly, m is
the number of internal nodes.

8.3 Pipeline

The data for this studywere collected from the genomes stored on theCoGe platform
[20] for the fish genomes and for some of the others, and from the NCBI genome
website for many of the flower genomes; the latter were stored in a private account
in CoGe. The SynMap [22] tool in CoGe was used to compare the CDS versions of
each of the pairs of the genomes included in the fish, Solanaceae andMalvaceae data
sets. Histograms of measures of dissimilarity (1 − p), Ks (also written as Ds , the rate
of synonymous substitutions in the coding sequence) and log10 Ks were compiled for
the syntenically validated orthologous gene pairs detected bySynMap, and examined
to obtain the location of “peak” frequencies of these measures. These locations were
arrayed as a genome distance matrix for each data set, and was used as input to
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UPGMA to derive an ultrametric tree and to the NJ algorithm to create an additive
tree.

To apply the transformations, we first derived the branch matrix from the NJ
results, containing the sum of the branch lengths on the path through the tree for each
pair of species. We applied each of the transformations: Farris, NPRS and penalized
likelihood, to the branch matrix. Then, NJ was repeated on the transformed data to
produce an ultrametric tree for display purposes.

8.4 Applications

8.4.1 Fish

Fish phylogeny has long been controversial, particularly in the classification of the
perciforme genomes due to the numerous speciation events that have occurred within
a relatively short time span. Previously, some groups of perciformes were thought to
be monophyletic, but are now considered polyphyletic [5, 13]. To help resolve these
issues, we set out to construct a peaks-based phylogeny of 15 fish species, distributed
among 10 orders of ray-finned fishes including five perciforme orders, as well as a
shark (a cartilaginous fish) and a coelacanth (a lobe-finned fish) (Table 8.1).

Figure8.1 illustrates the use of histograms derived from SynMap analyses. The
use of a log scale for the Ks value helps separate the various peaks. In the salmon-

Table 8.1 Species included in the study

Order Species Common name

Chimaeriformes Callorhinchus milii [35] Elephant shark

Coelacanthiformes Latimeria chalumnae [1] African coelacanth

Semionotiformes Lepisosteus oculatus [6] Spotted gar

Characiformes Astyanax mexicanus [23] Mexican tetra

Cypriniformes Danio rerio [14] Zebrafish

Esociformes Esox lucius [28] Northern pike

Salmoniformes Salmo salar [19] Atlantic salmon

Pleuronectiformes Cynoglossus semilaevis [8] Tongue sole

Perciformes Oreochromis niloticus [7] Nile tilapia

Gasterosteiformes Gasterosteus aculeatus [16] Three-spined stickleback

Tetraodontiformes Takifugu rubripes [2] Torafugu

Tetraodon nigroviridis [15] Spotted green pufferfish

Mola mola [25] Ocean sunfish

Cyprinodontiformes Poecilia reticulata [18] Guppy

Xiphophorus maculatus [34] Southern platyfish
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Fig. 8.1 Distribution of
log Ks of duplicate gene
pairs in salmon-platyfish,
tilapia-stickleback and
torafugu-pufferfish
comparisons, showing a
common WGD before
speciation. Arrows indicate
speciation peaks and WGD
peaks. Peaks at far right
represent noise (gene
fragments, common domains
in unrelated genes, etc.)
accumulating in
exponentially larger
intervals, as well as earlier
vertebrate WGDs
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platyfish comparison, we can identify the speciation peak at log10 Ks = 0.25 and a
WGD that, being pre-speciation, is shared by both genomes, with log10 Ks in the
range of 0.76–0.81. The salmonid WGD, occurs later than this speciation, and so
does not show up as a peak. The visible peak is the “teleost WGD” at the root
of the ray-finned fish radiation, and is confirmed in the other two comparisons,
with tilapia versus stickleback (log10 Ks range 0.75–81) and torafugu versus puffer-
fish (diffuse peak for log10 Ks between 0.68 and 1.0), respectively. More important
for our purposes are the more precisely defined speciation peaks: salmon-platyfish,
tilapia-stickleback, and torafugu-pufferfish at log10 Ks = 0.25,−0.15, and −0.4,
respectively.

We use the matrix of speciation peak locations (in Ks terms) in all
(15
2

)
= 105

comparisons as the input to UPGMA and a Java-implemented NJ algorithm. We
filled in the one missing data point, for the northern pike-spotted gar comparison
(due to very sparse Ks information) with the salmon-spotted gar value, since salmon
and northern pike paralleled each other in all the other comparisons. The ultrametric
tree produced by UPGMA and the additive tree output by NJ, as well as two of its
transforms, are depicted in Fig. 8.2. The Farris transformation analysis failed, for
reasons explained in Sect. 8.5 below.

The tree produced by UPGMA is a good illustration of why we avoid dating
evolutionary events by directly producing an ultrametric from a distance matrix.
The topology of the tree should first be determined by methods less sensitive to
violations of the constant rate condition. Adjusting the branch length while retaining
the topology produces a more meaningful timing of event history. The fish UPGMA
produces a biologically thoroughly implausible sister group to the ray-finned fishes
consisting of the elephant shark and the coelacanth, while it also scrambles aspects
of perciform evolution.

The NJ tree and its transforms, on the other hand, are in complete accord with
the current understanding of fish phylogeny. This is true of every branching in the
tree, although the tongue sole should probably be grouped with tilapia, guppy and
platyfish, rather than as an outgroup to these and the tetradontiform/stickleback clade
[4, 5, 30].

The ratios of transformed branch lengths suggest conservative evolutionary ten-
dencies in the earliest branching fish species (elephant shark, coelacanth and spotted
gar), since these branches need to be multiplied by a relatively large factor in the
transition to ultrametric, although the lineage represented by the internal branches
leading through the ray-finned fish (including spotted gar) to the teleosts (including
the remaining ten species) underwent rapid evolution, since these branches need to
be multiplied by a very small factor in the transformation to an ultrametric repre-
sentation. Salmon and guppy both seem much more conservative than their sister
species, northern pike and platyfish, respectively, although the common ancestor of
salmon and pike also appears to have been conservative.

Compared to nonparametric rate smoothing, the roughness penalty in the penal-
ized likelihood method attenuates somewhat the discordance between salmon and
pike and between guppy and platyfish.
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Fig. 8.2 UPGMA tree, NJ tree and its transformations by nonparametric smoothing and penalized
likelihoodmethods, for the fish data. “Ratios” summarize transformedbranch lengths versus original
NJ values. Ovals surround regions of UPGMA tree that contradict accepted biological knowledge
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Fig. 8.3 Solanaceae Whole Genome Doubling (WGD) and speciation peaks

8.4.2 Solanaceae

TheSolanaceae family, here representedby tomato, potato, eggplant, pepper, tobacco,
and petunia, descends from two whole genome triplications events, the first one, 120
million years ago affecting all core eudicots, and the second one, specific to this
family [37], dating from around 40± 10 million years ago. The distributions of gene
pair similarities thus have three peaks, two dating from the ancient polyploidization
events, and one from speciation, as seen in Fig. 8.3. As seen in the previous section,
more recent peaks tend to be less dispersed. This holds not only within each com-
parison, but also for the speciation comparisons, where potato is the most closely
related to tomato, and petunia is the most distantly related.

As with the fish data, Fig. 8.4 shows an error in the UPGMA tree, this time for
our sample of plants from the Solanaceae family; petunia and tobacco are grouped
together separately from pepper and the Solanum species: tomato, potato, and egg-
plant. The NJ tree and its transforms correctly place tobacco as branching from the
other species after petunia does.

The branch length ratios indicate that evolutionary change has accelerated in the
Solanum, though not dramatically. This trend emerges most clearly in the nonpara-
metric rate smoothing and penalized likelihood methods. All three methods show
that after the speciation event leading to petunia, the ancestor of the other genomes
underwent rapid evolutionary change.

8.4.3 Malvaceae

Genomes that have been sequenced in the Malvaceae include cacao, monkey cacao,
jute (two species), durian, hibiscus and cotton (two species). Once again, there is a
discrepancy between the UPGMA tree and the NJ tree. Figure 8.5 shows that durian
branches after jute in the lineage toward cocoa in the UPGMA tree, and before jute in
that lineage in the NJ tree. In this case, however, it may very well be that the UPGMA
tree is correct, and that the NJ tree results from statistical fluctuations involving the
cotton genome [36]. In any case, there is as yet no consensus in the literature about
the placement of durian.
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Fig. 8.4 Ultrametric, NJ tree and its transformations by the Farris, nonparametric rate smooth-
ing and penalized likelihood methods, for the family Solanaceae and outgroup grape. “Ratios”
summarize transformed branch lengths versus original NJ values
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Fig. 8.5 Ultrametric, NJ tree and its transformations by the Farris, nonparametric smoothing and
penalized likelihood methods, for the family Malvaceae and outgroup agarwood. “Ratios” summa-
rize transformed branch lengths versus original NJ values
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In examining the branch length ratios, there is little that emerges that is consistent
across all three methods, except that G. raimondii is somewhat conservative. Non-
parametric rate smoothing and penalized likelihood both have differential rates of
evolution at the origin of the two main clades, but they differ on which side is more
conservative, with nonparametric rate smoothing pointing to the cacao side, and with
penalized likelihood suggesting the cotton/hibiscus clade. In addition, the ancestor
of the jute species appears to have undergone accelerated evolution.

8.5 Discussion

Preliminary to the evaluation of the transformation protocols, we demonstrated in all
three evolutionary domains that the NJ with the peaks approach recovers the correct
topology for the phylogenetic tree, and that the UPGMA was not able to. (Although
the correct topology is not known for the Malvaceae, we do know that the UPGMA
result was not consistent with the additive results.)

In applying the three transformations, the two that incorporate smoothing between
coincident branches were clearly preferable to the Farris method. In addition, penal-
ized likelihood stood out as being able to achieve ultrametric status with the least
stretching or contracting of branches.

The Farris transform displaces much of the rate variation to the branch leading to
the outgroup. In the case of the fish phylogeny in Fig. 8.2, this could not be achieved
because the outgroupwas too conservative, and other branches could not be shortened
enough by the transformation without becoming negative.

Finally, we have demonstrated that the non-ultrametric status of additive trees,
at least on these data sets, may be resolved by identifying one or two branches on
which evolutionary rate has clearly slowed or accelerated. It would be useful to be
able to confirm these cases with data on individual gene trees.
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Chapter 9
Ancestral Genome Reconstruction

Jijun Tang

Abstract Reconstruction of extinct ancestral genomes is an important topic in com-
parative genomics and has a wide range of applications. By comparing a current-day
species against its ancestor, we can deduce how it differs from the ancestor and
infer detailed information about the evolution of species. With more and more fully
sequenced genomes becoming available, we are able to reconstruct ancestors at the
whole genome level by using evolutionary events such as genome rearrangements,
gene insertions, deletions and duplications. In this chapter, we will present the con-
cepts related towhole genome evolution and ancestral reconstruction.Wewill review
evolutionary models and algorithms in pairwise comparison of genomes, computing
of themedian problem and optimizations in inferring phylogenies and ancestors from
multiple genomes.

Keywords Ancestral reconstruction · Phylogenetics · Genome rearrangement ·
Median problem · Double-cut-and-joining

9.1 Introduction

Given a phylogeny with modern species as leaves, the problem of ancestral recon-
struction is to infer genomes on all internal nodes of the tree. These reconstructions
can be achieved at different levels: we can infer ancestral DNA sequences based on
base-pair mutations, or we can infer ancestral genomic structures (both gene con-
tent and orderings) based on events such as inversions and duplications, which is
the focus of this chapter. Ancestral genome reconstruction is important because by
comparing a current-day species with its ancestor, we can deduce how it differs from
the ancestor and infer detailed information about the evolution of species.

With the advent of new sequencing and computing technologies, more and more
whole genome sequences have become available. After gene homologs can be identi-
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fied, we can assign each gene family a unique integer and represent each chromosome
with an ordering of signed integers, where the sign indicates the strand. The order-
ings and contents of genomes can be changed under rearrangement of genes (such as
reversal and transposition), as well as other operations such as duplications, deletions
and insertions.

Reconstructing phylogeny and ancestors at the whole genome level is computa-
tionally much harder than computing with sequence data. For example, the classical
maximum parsimony problem is solvable in polynomial time when the phylogeny is
given (i.e., given a phylogeny with leaves labeled with DNA or protein sequences,
find the optimal ancestral sequences on all internal nodes to minimize the sum of
the edit distances along all edges) [14]. However, even the simplest corresponding
problems are NP-hard for gene-order data when rearrangements are allowed, even
when the input tree has only three leaves [1, 35].

Existing ancestral reconstruction methods generally assume there already exists
a phylogeny for the given species, which can be used as a guide tree. This approach
is known as the small phylogeny problem (SPP) [11, 15, 21, 26]. On the other hand,
the big phylogeny problem (BPP) builds the most appropriate phylogeny first and
then uses it to reconstruct the ancestral genomes [19, 34, 46].

One of the main research areas of Dr. Moret is to develop new algorithms and
models for phylogenetic reconstruction and ancestral inference from genome rear-
rangement data [2, 10, 23, 24, 28, 32–34, 39, 40, 43, 44, 46]. Over the past few
years, pushed by Dr. Moret and other researchers, many methods have been devel-
oped [13, 30], ranging from pairwise genome comparison to large-scale computation
on multiple genomes [5, 15, 17, 21, 23, 27, 34, 36, 43, 46]. In this chapter, we will
present the fundamental concepts of genome rearrangements and review some of the
most important algorithms.

9.2 Definitions

A genome can be represented by the signed ordering of a set of n genes {1, 2, . . . , n}
on one or more chromosomes, where signs are used to indicate the strandedness of
genes. Each gene is assigned with an orientation that is either positive or negative.
The gene order of a genome can be changed through genome rearrangement events
such as reversal, transposition, and translocations. There are other events, such as
gene insertions, deletions and duplications, that change the gene content of a genome
as well. The following are some of the important definitions.

Adjacency: Two genes i and j are adjacent if i is followed by j , or,− j is followed
by−i . Each gene can be split into two parts, the head (denote i h) and the tail (denote
i t ). Depending on the signs of two consecutive genes i and j , there are a total of four
different scenarios in forming an adjacency: {i t , j t }, {i h, i t }, {i t , i h}, and {i h, i h}.
Gene i at the end of a linear chromosome forms a telomere that is either {i t } or {i h}.

Reversal (inversion): Let G be a genome with ordering {1, 2, . . . , n}. A reversal
(also called inversion) between indices i and j (i ≤ j) produces a new genome G ′
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Fig. 9.1 G1 has one linear chromosome (1, 2, 3, 4, 5, 6, 7) and G2 has two linear chromosomes
(1,−3,−4, 2) and (−5,−7, 6). In AG(G1,G2), n = 7,C = 1, I = 2, the DCJ distance of G1 and
G2 is 5

with linear ordering

1, 2, . . . , i − 1,− j,−( j − 1), . . . ,−i, j + 1, . . . , n.

Transposition: Given genome G and three indices i, j, k, with i ≤ j and k /∈
[i, j], a transposition picks up genes in the interval i, . . . , j and inserts them imme-
diately after k, produces a new genome (assume k > j) with linear ordering

1, . . . , i − 1, j + 1, . . . , k, i, i + 1, . . . , j, k + 1, . . . , n.

Insertion, deletion, and duplication: An insertion is the acquisition of one or
more genes and a deletion is the loss of these genes. A duplication copies a section
of the chromosome and inserts it immediately after the original segment (tandem
duplication) or somewhere else (transposed duplication).

Translocation, fission and fusion: For multi-chromosomal genomes, there are
additional operations that involve two chromosomes: a translocation exchanges one
end segment of a chromosome with one end segment in the other chromosome, a
fission splits one chromosome into two, and a fusion combines two chromosomes
into one).

Breakpoint: Given two genomes G1 and G2, a breakpoint is defined as a pair of
genes (i, j) such that i and j are adjacent in G1 but not in G2.

Genomic distance and sorting: Given two genomesG1 andG2, the edit distance
is defined as the minimum number of events required to transform G1 into G2. The
genomic sorting problem is to find the shortest sequence of events that transform one
genome into the other.

Adjacency graph: Given two genomes G1 and G2, the adjacency graph
AG(G1,G2) has vertices from all adjacencies and telomeres of the two genomes [4].
An edge is created between a vertex u ∈ G1 and a vertex v ∈ G2 if they share the
same part (head or tail) of a gene (Fig. 9.1).

Median problem: Given three genomes, the median problem is to find a single
(median) genome that minimizes the sum of pairwise distances between itself and
each of the three input genomes (Fig. 9.2 Left). The median problem is NP-hard for
most distance models [8, 35, 47].
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9.3 Pairwise Distance and Sorting

Hannenhalli and Pevzner developed the first polynomial-time algorithm to com-
pute the reversal distance [16]. Dr. Moret and colleagues developed the first linear
algorithm to compute the reversal distance [2]. Yancopoulos et al. [49] proposed a
universal double-cut-and-join (DCJ) operation that accounts for all rearrangement
events including reversals, transpositions, translocations, fissions, and fusions. The
reversal andDCJmodels have been extended to handle other events such as insertions,
deletions, and duplications, including models from Dr. Moret and colleagues [3, 9,
24, 25, 28, 38, 39, 41].

The most important data structure for dealing with DCJ events is the adjacency
graph AG(G1,G2) between genomesG1 andG2, whose vertices are the adjacencies
and telomeres. An example of an adjacency graph is shown in Fig. 9.1, which consists
of paths and cycles. There are two types of paths: paths starting from one genome
and ending at the other are named as odd path because they always have an odd
length, while paths starting from and ending at the same genome are named as even
paths because they always have an even length.

Given two vertices u and v of the adjacency graph, a DCJ operation cuts the graph
at the two vertices and rejoins the (new) four ends in one of the four ways [4]

• If both vertices are telomeres, then can be replaced by a new adjacency; i.e., if u
= {q} and v = {r}, they can be replaced by {q, r}.

• An adjacency {q, r} can be replaced by two new telomeres {q} and v = {r}.
• If one vertex is an adjacency and the other is a telomere, they will be replaced by
a new adjacency and new telomere. For example, if u = {p, q} (an adjacency) and
v = {r} (a telomere), they will be replaced either by {p, r} and {q}, or by {q, r} and
{p}.

• If both are adjacencies, theywill be replaced by two new adjacencies. For example,
if u = {p, q} and v = {r, s} the two new adjacencies are {p, r} and {q, s}, or {p, s}
and {r, q}.
The DCJ distance can be computed based on the number of cycles and odd

paths [4].

Theorem 1 The DCJ distance for two genomes G1 and G2 is dDCJ(G1,G2) = n −
(C + I/2) where C is the number of cycles and I is the number of odd paths in the
adjacency graph AG(G1,G2).

Compared to reversals, sorting by DCJs is much simpler. A single DCJ operation
on the adjacency graph changes its number of odd paths by −2, 0 or 2, or changes its
number of cycles by −1, 0 or 1 [4, 7]. As a result, a DCJ operation can bring G2 one
step closer to G1, keep them at the same distance or make it one step away. A DCJ
operation is defined as optimal if it decreases the number of cycle or the number of
odd paths to decrease the distance, neutral if it does not change these numbers, and
bad if it increases these numbers and increases the distance.
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There are several algorithms that provablyfind a shortestDCJ sorting path between
two genomes [4, 7]. Bergeron et al. [4] proposed a simple greedy algorithm for
sorting by DCJ, which iteratively identifies an adjacency in one genome but not in
the other and applies a DCJ operation that creates the missing adjacency in the first
genome. As a result, this greedy algorithm always increases the number of cycles
by 1. Obviously, this greedy approach may miss many sorting scenarios. Braga and
Stoye [7] proposed a more general algorithm that can identify all sorting scenarios
by splitting large cycles into two smaller cycles, splitting a long path into a shorter
path and a new cycle, or combining two even paths that do not start from the same
genome.

9.4 Solving the Median Problem

Themedianproblemdealswith the smallest unrootedbinary tree, using the three input
genomes as current-day species and the inferred median genome as an estimation of
their common (extinct) ancestor. For the example shown in Fig. 9.2 (Left), the gene
order (−5 4 1 2 3) gives the minimum median score, and thus can be treated as the
ancestral gene order of the three input genomes.

Given an unrooted tree T with three or more leaves, let w(T ) be the score of the
tree, defined to be the sum of the total edge lengths given the best possible assignment
of genomes to the internal nodes of T . If 1, 2, . . . , n is a circular-ordering of the leaves
of T (Fig. 9.2), thenwe havew(T ) ≥ d1,2+d2,3+···+dn,1

2 . This lower bound on themedian
score is called the perfect median score (Fig. 9.2 Left).

In the past years, many median solvers have been developed. For example, the
one proposed by Caprara [8] uses a branch-and-bound approach that enumerates all
possible gene orders and eliminates bad branches based on some lower bounds. The
solver proposed by Xu and Sankoff [48] is based on the decomposition of multiple
breakpoint graphs into adequate sub-graphs, enabling efficient and exact algorithms
for the DCJ median problem. Dr. Moret and colleagues proposed several median
solvers, including a solver based on sorting reversals and several heuristics [31, 37,
40].

Here we briefly review the new median solver by Xia et al. [45], which uses the
concept of simulated annealing [29], which has been widely used in optimization
and is inspired from the annealing technique in metallurgy to simulate the heating
and controlled cooling of a material to reduce defects.

The major challenge in applying the concept of simulated annealing in solving
the DCJ median problem is to deal with the large search space: given n genes, the
possible number of gene orders is n!2n–it will be much larger if other events such
as deletion and insertion are considered. Xia et al. [45] utilized genomic sorting to
control the search so that it can converge faster toward good genomic structures.

The simulated annealing algorithm contains three phases: (1) it first initializes
the median genome; (2) it then generates the next possible genome and evaluates
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Fig. 9.2 Left: the median problem on three genomes G1,G2,G3. The median score is d1M +
d2M + d3M and the perfect median score is d12+d23+d13

2 . The resulted median genome is GM =
(−5 4 1 2 3). Right: scoring a tree t on four genomes G1,G2,G3,G4. The tree score is w(t) =
d1M + d2M + dMN + d3N + d4N , where M and N are internal nodes. The circular-ordering lower
bound is w(t) ≥ d13+d34+d24+d12

2

whether to accept or reject the new candidate; (3) it will iterate over the previous two
steps until converging or exceeding the maximum number of iterations.

The initial state (median candidate) and temperature can be chosen based on the
observation that the median genome may be on a sorting path from one leaf genome
to another. There are six pairs of leaf genomes, we randomly choose one of them (Gi

and G j ) and apply m (m ≤ di j ) optimal DCJ operations on Gi to obtain Gk
i , which

is used as the initial median for the next generation.
The neighboring state can be produced similarly: from the second generation,

let M be the current median genome, we randomly pick a leaf genome and apply m
(randomly chosen) optimal DCJ operations from M to it and use the resulted genome
for the next generation.

The newpotential candidate of themedian genome is compared against the current
median. The candidate will be accepted it if has a lower median score than the current
solution. If the candidate has a worse median score, it may still be accepted, but the
chance is based on the current temperature: higher temperaturemeans there is a higher
chance that a worse solution will be accepted. Let T be the current temperature and
ΔE be the difference from the new (worse) median score and the current (better)
median score, the possibility of acceptance is defined as

Acceptance =
{
exp−ΔE/T if ΔE ≥ 0
1 if ΔE < 0

(9.1)

The cooling schedule directly impacts the performance. After experiments on
simulations, Xia et al. adopted the Exponential Multiplicative Cooling scheme [22]:
letting T0 be the initial temperature, Tk be the temperature after k iterations, and α



9 Ancestral Genome Reconstruction 199

be the cooling rate, we have

Tk = T0 · αk (0.8 ≤ α ≤ 0.9)

During each iteration, the algorithm proposes a new state, accepts or rejects it
based on the current temperature, and cools down for the next step. The maximum
number of iterations for the simulated annealing solver is set as K at the start, but the
process could be terminated early if the perfect median score is achieved (Fig. 9.2).

Xia et al. [45] conducted extensive experiments on simulated datasets and found
that the new algorithm is very efficient and has high accuracy. This framework is
very flexible and can be easily extended to handle other events as many algorithms
for sorting have been proposed.

9.4.1 Computing with Multiple Genomes

Given more than three genomes and a phylogeny, we can estimate the ancestors
by iteratively solving the median problem defined on the internal nodes. Figure9.2
(Right) illustrates an example, where the two internal nodes M and N each defines
a median problem with their neighboring nodes. For example, genomes G1, G2, and
N define the median problem on node M , while genomes G3, G4, and M define the
median problem on node N .

Blanchette and Sankoff formulated the breakpoint distance phylogeny problem:
given a set of genomes, find a phylogeny relating them (with internal nodes labeled
by other genomes) to minimize the total number of breakpoints across the edges
of the tree. They also developed BPAnalysis [6], which provided heuristics for the
breakpoint phylogeny problem. BPAnalysis needs to compute all possible binary
trees and picks the one that produces the minimum score as the phylogeny of the
input genomes. Blanchette and Sankoff showed that the breakpoint median could be
reduced to a traveling salesperson problem and uses an iterative approach to search
for an optimal solution to the breakpoint phylogeny problem: for each internal node
v, with neighbors A, B, and C , solve the median problem defined by these three
genomes to yield m; if using m improves the tree score, then update v with the new
genome m. This procedure will repeat until no change occurs.

However, since ancestral genomes on the internal nodes are unknown, we must
initialize them first. The simplest approach is to generate random gene orders on each
of the internal nodes. The more complex approach is to initialize through solving
median problems: for each internal node, we can initialize it with the solution of the
median problem defined on its three closest leaves. For example, in Fig. 9.2 (Right),
the internal node M can be initialized with the solution from G1, G2, and G3 and N
can be initialized by G3, G4, and G2 respectively. Although this approach is more
complex and more expensive, it is more efficient since the number of iterations can
be greatly reduced.
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Dr.Moret and colleagues developed GRAPPA as an improvement and new imple-
mentation of BPAnalysis [34]. GRAPPA applied algorithmic engineering techniques
pioneered by Dr. Moret to enhance its efficiency. GRAPPA is more cache-sensitive
and has a smaller footprint and is easily extendedwith new events andmedian solvers.
Another one major improvement in GRAPPA is to test the circular-ordering lower
bound of a tree to determine whether it is worthy of scoring: if a tree has a lower
bound exceeding the current best tree score, GRAPPA will discard it to avoid the
expensive computation of tree scoring. As a result, GRAPPA has a speed up of two
to three orders of magnitude over BPAnalysis and can handle a much larger dataset
that could not be solved by BPAnalysis [34]. Over the years, GRAPPA has been
extended to cope with more complex events by using various median solvers.

Nevertheless, since the number of trees grows exponentially with the increase
of number of genomes, it will take years for GRAPPA to finish datasets with even
just a dozen genomes. When the genomes are distant from each other, finding a
good median is very difficult to do, which makes obtaining tree scores also very
challenging. Dr. Moret and colleagues developed several other methods to overcome
these obstacles, including a method to combine GRAPPA with a DCM2 [20], a disk-
covering method (see chapter by Warnow, this book, for more about disk-covering
methods), to scale it to handle hundreds of genomes [43], distance-based methods
for rearrangements and indels [24, 42], as well as a series of probabilistic methods
based on gene adjacencies [18, 23, 43]. These methods have been integrated into a
web service (http://www.geneorder.org) called MLGO [17], which handles the big
phylogeny problems and reconstructs ancestral genomes even though the phylogeny
is unknown.

9.5 Conclusions

With the continuous efforts from Dr. Moret and other researchers, great progress has
been made in computing phylogenies and ancestral genomes at whole genome level.
We are now able to analyze within a few hours of computation dozens of nuclear
genomes [12, 23], compared to just a few small chloroplast ormitochondrial genomes
in early 2000. The newmethods, especially those based on probabilistic models have
achieved scale and accuracy that is comparable to those developed for sequence
analysis [17]. In recent years, more and more new types of data have emerged in
areas such as cancer evolution, population genetics, and epigenomics, where genome
rearrangements play important roles. Integrating genome rearrangements with such
data is very challenging and requires new models, theories, and algorithms.

Acknowledgements JT was supported by the National Science Foundation of US (grant number
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Chapter 10
Genome Rearrangement Problems
with Single and Multiple Gene Copies:
A Review

Ron Zeira and Ron Shamir

Abstract Genome rearrangement problems arise in both species evolution and can-
cer research. Basic genome rearrangement models assume that the genome contains
a single copy of each gene and the only changes in the genome are structural, i.e.,
reordering of segments. In contrast, numerical changes such as deletions and dupli-
cations, which change the number of copies of genes, have been observed in species
evolution and prominently in tumorigenesis. Here, we review various computational
models of evolution by rearrangements designed for the analysis of species or cancer
genomes, focusing mainly on genomes with multiple gene copies. Models differ in
the assumptions taken on the genome structure and in the type of rearrangements
allowed during their evolution. Most problems regarding genomes with multiple
gene copies are computationally hard, and practical methods for their analysis are
reviewed. As more high-resolution genomes become available, especially in cancer,
better models and efficient algorithms will be needed.

Keywords Genome rearrangements · Cancer · Tumor · Structural aberrations ·
Numerical aberrations · Genome sorting problem · Complexity · Algorithms ·
Evolution

Prologue

The computational study of genome rearrangements is a subarea of computational
biology born about 25years ago [85, 87]. Over that period, it has flourished and
developed into a fascinating research area, combining beautiful combinatorial mod-
els, elegant theory, and applications. Models of the first generation, motivated by
species evolution, were simple (though their analysis was sometimes quite sophis-
ticated) and assumed that genomes contain only one copy of each gene. With the
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explosion of biological data, new analysis opportunities arose, necessitating more
complex models and theory.

This manuscript describes some of the problems and results related to rearrange-
ment models allowing multiple gene copies. This research area is motivated by
evolution of species and of cancer genomes. Studies of cancer genome evolution are
stimulated by the recent large-scale deep sequencing of thousands of tumor genomes,
which has brought about a plethora of novel challenges. Our main focus is on multi-
copy models, but key single-copy models are also reviewed briefly for context.

This review is by no means exhaustive. The field of modeling genome rearrange-
ments is vast and cannot be covered in one paper. The selection of topics reflects
our knowledge (or lack thereof) and taste, and we apologize to the many researchers
whose work is not mentioned. For further reading see, e.g., [37, 40, 126].

This review is intended for researchers and graduate students in Computer Science
and Bioinformatics. Experts in computational genome rearrangements can use it as
a reference source. For newcomers to the field, it can be a roadmap of key models
and problems in the rich literature on genome rearrangements. As the motivation to
the field comes from biology and medicine, we describe very briefly the biological
context. However, by and large, the review can be read and understood without that
context.

10.1 Introduction

In this section, we give biological introduction and motivation to genome rearrange-
ments (GR) in both species evolution and cancer.1 Sect. 10.2 gives computational
background and some fundamental results in the analysis of single-copy genomes.
In Sects. 10.3 and 10.4, we review GR models that handle genomes with multiple
gene copies in the context of species and cancer evolution.

10.1.1 Genomes and Rearrangements

The genome2 encodes instructions used in the development and functioning of all
living organisms (bacteria, plants, animals, etc.).Genomes are built ofDNA, a double-
stranded molecule in which each strand is a long sequence of nucleotides (or bases).
Each base can be of four types A, C, G, and T. The two strands are complementary
such that anA on one strand is coupled with a T on the other strand, and similarlyC is

1See the Box 3 for a list of abbreviations.
2Since this review concentrates mainly on the computational aspects of GR, we only give a brief
biological introduction. We italicize terms that actually require definitions. For concise biological
definitions see, e.g., [63]. Box 1 defines some biological terms that are mentioned in the text.
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coupled with G. Because of this complementarity, one strand completely determines
the other, and DNAmolecules are usually represented by the sequence of one strand.

The genome is the total DNA material in the cell. It is partitioned into physi-
cally disjoint subsequences called chromosomes. Chromosomes can be either linear
and contain two ends called telomeres and circular. A gene is a segment along the
chromosome containing information for the construction of a protein. Proteins are
molecules that form the “machines” and building blocks of most cellular functions.
The direction in which a gene is transcribed into a protein on a given strand deter-
mines its orientation. Genes are a basic unit of heredity passed from one generation
to the other.

The causes of diversity of organisms are changes in theDNAbetween generations.
Such changes, which arise due to inaccurate replication and also due to environmen-
tal effects on the DNA, open the possibilities for modified genes, new genes, and
eventually new species.

Genomes can evolve in a local and global manner. Local alterations refer to point
mutations in the DNA sequence that can either substitute a single base (or a very
short subsequence) with a different one, insert a single base into the sequence, or
delete a base from the sequence. Such local alterations can also involve very short
sequence segments. On the other hand, a sequence can also evolve by modifying its
organization on a large scale. These global mutations, called genome evolution or
structural variations, relocate, duplicate, or delete large fragments of the DNA. The
main rearrangement types include the following (compare Fig. 10.1):

• Deletion. A segment of DNA is lost. A chromosome deletion is a deletion of an
entire chromosome.

• Inversion or reversal. A segment is cut and reinserted in the opposite orientation.
Since the insertion reverses the two strands, the result is an inverted and reverse
complemented DNA sequence.

• Transposition. A DNA segment is moved to a different location.
• Duplication. A genomic segment is copied and reinserted into the genome. In a
tandem duplication, the copy is inserted right after the original one. An arbitrary
(non-tandem) duplication inserts the new copy at an arbitrary position (one partic-
ular type of such is retrotransposition). A whole chromosome duplication makes
another copy of an entire chromosome. A whole genome duplication duplicates
all the genome’s chromosomes.

• Translocation. Two linear chromosomes exchange their end segments.
• Fusion. Two chromosomes are joined into one.
• Fission. A chromosome splits into two chromosomes.

The above rearrangement operations affect DNA segments rather than nucleotides
and thus genomes are often represented by sequences of segments in this context.
Two segments are called homologous if they derive from a common ancestor either
by speciation (in that case the segments appear in the genomes of different species)
or by duplication (where they occur on the same genome).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 10.1 Genome evolution. a Deletion. b Reversal. c Transposition. d Tandem duplication. e
Translocation. f Fusion. g Fission

10.1.2 Genome Rearrangements in Species Evolution

The genomes of related species are very similar. For instance, most of the mouse and
human genomes can be divided into segments in which gene content is conserved
[27]. However, the order of these segments along the human and mouse genomes
is different. This difference is attributed to rearrangement events occurring after the
divergence of the two lineages.

The phenomenon of GR in evolution was discovered by Sturtevant and Dobzhan-
sky who demonstrated inversions between genomes of drosophila species [100].
Palmer and colleagues observed that mitochondrial DNA of related plant species
has similar gene content but different segment orderings (Fig. 10.2) [75, 99]. This
immediately raises the question of how this change came about, the fundamental
problem that underlies the GR field.

The detection of GRs in the studies mentioned was largely based on molecular
cytogenetics techniques such as chromosome banding and in-situ hybridization [80].
These studies mostly focused on relatively close species and a small number of
rearrangements between them [88]. With the advent of sequencing technologies,
bioinformatic methods enabled locating homologous segments in different genome
sequences, thus creating finer comparative maps based on genome sequences [77].
See Box 2 for details on the technologies for rearrangement detection.
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Fig. 10.2 The basic sorting problem. Given Genome I and Genome II, and a set of allowed oper-
ations, we wish to find a shortest sequence of operations transforming Genome I into Genome II.
The sequence is called a sorting scenario and the number of operations in it is called the sorting
distance. See Fig. 10.3 for a sorting scenario
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Fig. 10.3 A sorting scenario for the chloroplast genome evolution between two conifers. The
genome at the top is transformed to the one at the bottom in five steps. The first is a deletion and
the next four are inversions of genomic segments. The ends of the involved segments are indicated
by the broken lines. Adapted and simplified from Strauss et al. [99]

David Sankoff pioneered the computational study of GR in species evolution
[85, 87]. The basic assumption of most mathematical models is that evolution is
parsimonious and prefers a shortest ormost likely sequence of events. In their seminal
works, Hannenhalli and Pevzner gave the first polynomial algorithm for the problem
of transforming one genome into the other by the minimum number of reversals and
of reversals and translocations, respectively [47, 48]. They used their algorithm to
give a shortest event sequence between men and mice, and between cabbage and
turnip.

Classical computational rearrangement models assume that each gene in the two
genomes under study appears only once and that 1–1 homology between the genes
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of the genomes has been established. While this assumption may hold for closely
related genomes, it is unwarranted for divergent species with several copies of the
same genes or highly similar genes. Duplications are an important source of new
gene functions since new gene copies tend to diverge through mutations and develop
new functions. For instance, evidence of whole genome duplication events has been
observed in most angiosperm genomes [20].

Box 1 Some biological jargon

Angiosperms—the flowering plants
Chloroplasts—specialized compartments in plant cells responsible for photosyn-
thesis
Conifers—cone-bearing seed plants
Drosophila—fruit fly
Metaphase—a stage in cell division. During metaphase chromosomes can be dis-
tinguished under the microscope after appropriate painting
Orthologs—descendant copies of the same gene sequence in different species.
Orthologs can usually be identified by their sequence similarity
Somatic cell—any cell forming the organism body other than the reproductive cells.
The genome in sperm and egg cells is inherited in sexual reproduction, along with
any mutations in it. In contrast, the genome of somatic cells is not inherited, but
mutations in cancer genomes are inherited in cell division.
Somatic mutation—a mutation occurring in somatic cells.

10.1.3 Genome Rearrangements in Cancer

Cancer is a complex disease driven by the accumulation of somatic DNA muta-
tions over generations of cell divisions. Such mutations affect tumor growth, clinical
progression, immune escape, and drug resistance [30].

Mutations in cancer cells can be local, affecting single-DNA base pairs. These
mutations, called single-nucleotide variants (SNV ), can number in the thousands per
cancer cell.On the other hand, large-scalemutations, i.e.,GRs, can relocate fragments
of the DNA. Aberrations that change the amount of genomic content, called copy
number alterations (CNAs), include duplications and deletions of genomic regions.
The karyotype of a cell is its complete set of chromosomes, consisting of the number
and structure of the chromosomes in it. Large-scale aberrations can have a dramatic
effect on the cancer karyotype (see Fig. 10.4).

Somatic mutations may amplify genes that promote cancer (oncogenes) or harm
genes that inhibit cancer development (tumor suppressor genes). In addition, rear-
rangements such as translocations and inversions may change gene structure and
regulation and create novel fusion genes, with or without additional changes in copy
number (CN).
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Fig. 10.4 A schematic of the karyotype of the T47D breast cancer cell line. The chromosome
numbers in the normal diploid are indicated below each subfigure. In a normal karyotype, each
chromosome has two copies, as for Chr. 4, 13, 17, and 18. Among the GRs in this cancer genome,
we see chromosomal duplications (e.g., four copies of Chr. 11), translocations (between Chr. 8 and
Chr. 14), and more complex events (e.g., tandem duplication of one arm of Chr. 1 and fusion with
an extra arm of Chr. 16). Image source: [10] and Wikimedia Commons [50]. This image is used
under license CC BY-SA 3.0

Cancer is an evolutionary process in which a normal genome accumulates muta-
tions that eventually transform it into a cancerous one [11]. The gain of advantageous
mutations leads to a clonal expansion, forming a larger population of the mutated
cells. Subsequent clonal expansions occur as additional advantageous mutations
accumulate in descendant cells. A single tumor biopsy will often contain a mix-
ture of several competing tumor clones. These tumor clones frequently differ in their
genomic content and structure. When sequencing the tumor, one actually obtains a
mixture of several tumor clones and normal cells. Recent research suggests that this
heterogeneity has profound clinical implications [30].
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Box 2 Detection of genome evolution

The classical ways to detect chromosomal abnormalities in cytogenetics are G-
banding and fluorescence in situ hybridization (FISH), which allow viewing the
chromosome in metaphase at low resolution [79]. FISH measures the CN of tens to
hundreds of targeted genes [29]. Array comparative genomic hybridization (array
CGH) gives a higher resolution of CN estimation for a cell population [107].
Today, next generation sequencing technologies are the main data source for cancer
mutation analyses [31]. Whole genome sequencing provides tens to hundreds of
millions of DNA reads that enable the detection of variants. These short reads are
assembled into longer DNA sequences and alignment to a reference genome can
determine sequence similarity and structural changes. This reference genome can
be of a related species for evolutionary studies or of a normal tissue in the case of
cancer.
Paired-end read technologies generate pairs of short reads such that the approximate
distance between them and their relative orientations in the target genome are
known. Read pairs in which the location or orientation in the reference genome
is not as expected are called discordant. These reads give evidence of structural
rearrangement operations [71]. The read depth data, i.e. the number of concordant
reads mapped to each region in the reference genome, can also be used to assess
CN and CNAs [71].

10.2 Single-Gene Models, Operation Types, and Distance
Measures

In this section, we give a brief introduction to GR models. We start by giving the
definitions and terminology used in computational GR analysis. We then review
several classical single-gene models.

10.2.1 Genome Representation

Here, we describe simple mathematical representations of genomes for GR analysis.
Agenome representation shouldpreserve the information about the order, orientation,
and homology between segments (see Fig. 10.3). In some representations, different
copies of similar segments can be distinguished while in other representations they
cannot. For instance, the two copies of chromosome 1 in Fig. 10.4 are indistinguish-
able. On the other hand, in some cases gene copies can be distinguished from one
another, for example, due to gene sequence changes since its speciation. Different
GR models may use different representations depending on the model assumptions
or data used.

Consider a set G of n segments in the genome. For convenience, we call the seg-
ments in G genes, though they do not necessarily represent biological gene entities.
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A gene g is an oriented sequence of DNA that starts with a tail and ends with a head,
denoted as gt and gh, respectively. The default orientation of a gene, and thus its head
and tail, can be determined arbitrarily or according to some reference genome. The
set of extremities of the genes is E = {gt|g ∈ G } ∪ {gh|g ∈ G }.

An adjacency between two consecutive genes in a genome is an unordered pair
of extremities. Thus, an adjacency between two genes a, b ∈ G can take one of four
forms, depending on their orientation: {ah, bt}, {at, bh}, {at, bt}, {ah, bh}. An extrem-
ity that is not adjacent to another extremity is called a telomere and is represented
by a singleton set, e.g., {ah}.

In some formulations, a gene may have multiple copies corresponding, for exam-
ple, to homologous yet distinguishable genes. The copies of such a gene g ∈ G are
identified by a superscript. For example, g1, g2, g3 are three distinct copies of gene g.
Such a gene withmultiple distinguishable copies is called a labeled gene. A gene that
has a single copy or has multiple indistinguishable copies is called unlabeled. For a
gene g, we call the number of copies it has its copy number and denotes it by cn(g).
A gene set G with one copy for each gene is called an ordinary gene set. A labeled
gene set is a set G L = {gi|g ∈ G , 1 ≤ i ≤ cn(g)}} and an unlabeled gene set G U is
a multiset G U = ∪g∈G ∪1≤i≤cn(g) {g}. For instance, G L = {a1, a2, b1, c1, c2, c3} and
G U = {a, a, b, c, c, c} are labeled and unlabeled gene sets, respectively, that have
two copies of gene a, one of b and three of c. Similar to genes, extremities belonging
to labeled genes are distinguishable (e.g., a1h �= a2h), while extremities of unlabeled
gene are indistinguishable. Furthermore, unlabeled heads and tails of the same unla-
beled gene cannot be matched, i.e., we do not know which tail and head come from
the same gene copy.

A labeled genome Π over a labeled gene set G L is a set of adjacencies and telom-
eres such that every labeled extremity ei ∈ E L appears exactly once in an adjacency
or telomere of Π . Similarly, an unlabeled genome Π over an unlabeled gene set
G U is a multiset of adjacencies and telomeres such that every unlabeled extremity
e ∈ E U of gene g appears exactly cn(g) times in adjacencies or telomeres of Π .
Π = {{a1t }, {a1h, b1h}, {b1t , c1t }, {c1h}, {a2t }, {a2h, b2t }, {b2h}, {b3t }, {b3h, c2h}, {c2t }} and Γ =
{{at}, {ah, bh}, {bt, ct}, {ch}, {at}, {ah, bt}, {bh}, {bt}, {bh, ch}, {ct}} are examples of
labeled and unlabeled genomes. If the gene set of a genome is ordinary, we call
it an ordinary genome (or a single-copy genome).

The graph representation of a genome Π is an undirected graph GΠ = (E ,E).
Its nodes are the extremities of Π (either labeled or unlabeled) and E consists of
interval edges and adjacency edges. An interval edge connects the head and tail of
a gene. For unlabeled genomes, there are cn(g) parallel interval edges of the edge
(gh, gt) for every gene g. For labeled genomes, each labeled gene copy gi has a single
interval edge (gih, g

i
t). Adjacency edges connect the extremities x and y where {x, y}

is an adjacency of Π . We call GΠ the genome graph of Π . The representations Π

and GΠ are equivalent and thus we use them interchangeably. Notice that for each
node (extremity), its number of interval edges (interval degree) equals its number
of adjacency edges (adjacency degree) plus the number of telomeres it belongs to.
Figures10.5, 10.6, and 10.7 show genome graphs for ordinary, labeled and unlabeled
genomes, respectively.
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Fig. 10.5 A genome graph GΠ of an ordinary genome Π = {{at}, {ah, bt}, {bh}, {ct, ch}
}
. Bold

edges correspond to interval edges; dashed edges correspond to adjacencies. SinceΠ is an ordinary
genome, it has a unique decomposition DΠ whose string representation is

{
(a b),< c >

}

Fig. 10.6 A genome graph GΔ of a labeled genome Δ =
{{a1t }, {a1h, b1t }, {b1h, c1t }, {c1h}, {a2t }, {a2h, b2t }, {b2h}, {b3t }, {b3h, c2h}, {c2t }}. Bold edges correspond
to interval edges; dashed edges correspond to adjacencies. Since Δ is an ordinary genome, it has a
unique decomposition DΔ whose string representation is

{
(a1 b1 c1), (a2 b2), (b3 −c2)

}

(a)

(b)

Fig. 10.7 a A genome graph GΓ of an unlabeled genome Γ =
{{at}, {ah, bt}, {bh, ct}, {ch}, {at}, {ah, bt}, {bh}, {bt}, {bh, ch}, {ct}}. Bold edges correspond to
interval edges; dashed edges correspond to adjacencies. b One possible decomposition D1

Γ

of Γ , whose string representation is
{
(a b c), (a b −c), (b)

}
. A different decomposition D2

Γ

corresponding to
{
(a b c), (a b), (b −c)

}
can be seen in Fig. 10.6 by suppressing the superscripts
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An alternating route in GΠ is either a path or a cycle in which no two consecu-
tive edges are of the same type (interval/adjacency). A chromosome decomposition
DΠ of the genome Π is a decomposition of GΠ into a set of edge-disjoint maximal
alternating cycles and alternating paths that cover all edges. Note that a chromosome
decomposition is always possible since the interval degree is equal to the adjacency
degree for every node that is not in a telomere, and that maximal paths must start
and end with telomeres. Labeled and ordinary genomes have a unique chromosome
decomposition by simply taking the set of connected components, since the interval
degree and the adjacency degree of every non-telomere node is 1 (see Figs. 10.5
and 10.6). There may be several decompositions for a multi-copy unlabeled genome
(see Fig. 10.7). Each alternating route in a decomposition is called a chromosome.
A chromosome is called circular if the corresponding route is a cycle, and linear
otherwise. A decomposition is called linear if all its chromosomes are linear, circu-
lar if all its chromosomes are circular, and otherwise mixed. Figure10.5 shows an
ordinary genome with one linear and one circular chromosome. An ordinary genome
composed of a single linear chromosome is called a signed permutation.

A signed genomic string is a sequence of oriented genes, e.g., 1 −2 3. For a
chromosome C ∈ DΠ , we define the chromosome string of C as follows. Start at one
of the ends of a linear chromosome with the string “(”. Traverse the route until all
edges along the route are covered. For each traversal of an interval edge from a tail gt
to a head gh append g to the string. For traversal from gh to gt append−g to the string.
After finishing the traversal, append the string with “)”. For a chromosome string C,
let −C be the chromosome string in which the order and orientation of all gene are
in inverted, e.g., if C = (1 2 3) then −C = (−3 −2 −1). C and −C are equivalent
as they correspond to the same set of adjacencies. For a circular chromosome, do the
same starting from an arbitrary extremity interval edge without appending brackets.
The resulting sequence is cyclic, and all shifts and inversions of it are equivalent. We
use <> to denote circular genomes (Figs. 10.5, 10.6 and 10.7).

A string representation of a genome decomposition DΠ is the multiset of chromo-
some strings for each chromosome in the decomposition (Figs. 10.5, 10.6, and 10.7).
Two string representations are equivalent if there is a bijective mapping between
equivalent chromosome strings in them. For labeled and ordinary genomes, the string
representation is unique (up to equivalence) and therefore we sometime use this rep-
resentation.

Given an unlabeled genome Π over the gene set G U , a labeling of Π produces
a labeled genome Γ over the gene set G L such that distinct gene copies of a gene g
are mapped to distinct labeled genes g1, . . . , gcn(g) in G L. For example, the labeled
genomes in Figs. 10.6 and 10.7b are two possible labelings of the unlabeled genome
in Fig. 10.7a. We denote L(Π) to be the set of all possible labelings of Π .

Given a genome Π1 over the gene set G1, an operation creates a new genome
Π2 �= Π1 over a new gene set G2. An operation is said to be structural if G1 = G2.
An operation is said to be numerical if the CN of some gene is different under G1

and G2. Notice that a structural operation only changes the structure, i.e., Π2 �= Π1,
whereas a numerical operation also changes the gene set, i.e., G1 �= G2.
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A genome rearrangement model is composed of a set of allowed operations O
and additional constraints on genomes. A sorting scenario of length d from Π into
Γ is a series of genomes Π0, . . . ,Πd such that Π0 = Π,Πd = Γ and for each i,
Πi+1 is a legal genome (under the model constraints) that is a result of an allowed
operation on Πi. The sorting distance is the length of a shortest sorting scenario
from Π into Γ . We call Π the source genome and Γ the target genome. The sorting
problem undermodelO receives as inputΠ andΓ , and looks for a sorting scenario of
minimum length fromΠ to Γ . Figure10.3 shows a sorting scenario of length 5 from
(A B C D E F) to (A −E −C D −F) in a model allowing deletions and inversions.

10.2.1.1 Operations

Reversal. An inversion of a signed genomic string reverses the string and multiplies
all elements by −1. Hence, the inversion of (2 −3 5 −1) denoted as −(2 −3 5 −1),
is (1 −5 3 −2). For a string S = s1, . . . , sn, S[i, j] is the substring si, . . . , sj. LetC be
a chromosome string.A reversal ρ(i, j) invertsC[i, j], resulting in a newchromosome
C ′ = C[1, . . . , i − 1] · −C[i, . . . , j] · C[j + 1, . . . ,m], where · is the concatenation
operator. For example, ρ(3, 5) of C = (1 3 2 4 5 6) is C ′ = (1 3 −5 −4 −2 6).
Reversals can be similarly defined on a single chromosome in the genome graph, by
cutting two adjacencies and reconnecting the loose extremities such that the result
is a linear chromosome. A reversal on a labeled or ordinary genome is a reversal on
one of its chromosomes. Reversals for general (not ordinary) unlabeled genomes are
not defined as they may have several chromosome decompositions. See Figs. 10.1b
and 10.8a, b.

Translocation. Let C = c1, . . . , cm and D = d1, . . . , dn be two linear chromo-
somes in string representation of an ordinary or labeled genome. A translocation
tr(C,D, i, j) transforms C and D into two new chromosomes, either C[1, . . . , i] ·
D[j + 1, . . . , n] andD[1, . . . , j] · C[i + 1, . . . ,m], orC[1, . . . , i] · −D[1, . . . , j] and
−C[i + 1, . . . ,m] · D[j + 1, . . . , n]. That is, the adjacencies Ci,Ci+1 and Dj,Dj+1

are cut, and the four loose ends are reconnected in a new way. An equivalent def-
inition can be made on chromosome graphs, i.e., breaking an adjacency on each
chromosome and reconnecting the nodes (see Figs. 10.1e and 10.9). Again notice
that translocations are not uniquely defined for general unlabeled genomes.

DCJ. A double-cut-and-join (DCJ) is an operation that cuts two adjacencies and
reconnects the four loose ends in a new way into two adjacencies. It can be applied
on labeled and unlabeled genomes. A DCJ can take one of the following forms:

1. If adjacencies {p, q}, {r, s} ∈ Π are cut, replace them with either {p, r}, {q, s} or
{p, s}, {r, q} (Figs. 10.8 and 10.9).

2. If adjacency {p, q} ∈ Π is cut and telomere {r} ∈ Π is involved, replace them
with either {p, r}, {q} or {r, q}, {p} (Fig. 10.10).
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(a)

(b)

(c)

Fig. 10.8 Reversal and DCJ. a The genome graph of (a b c); the two diagonal stripes correspond
to the cut adjacencies. b The genome (a −b c) is a result of a reversal or a DCJ. c The genome
{(a c),< b >} corresponds to the other DCJ option

(a)

(b)

(c)

Fig. 10.9 Translocation. a Two chromosomes {(a b), (c d)}; the two diagonal stripes correspond to
the cut adjacencies. b, c Two possible translocations (or DCJs) corresponding to {(a −c), (−b d)}
(b) and {(a d), (c b)} (c)

3. If telomeres {q}, {r} ∈ Π are involved, replace them with an adjacency {r, q}
thereby joining the two chromosomes (Fig. 10.11). This operation is referred as
a fusion or a join.

4. If adjacency {p, q} ∈ Π is cut and an empty adjacency is involved, replace them
with two telomeres {p}, {q} (Fig. 10.11). Hence, a linear chromosome containing
the adjacency is cut into two chromosomes, or becomes linear if it was circular.
This operation is referred as a fission or a cut.
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(a)

(b)

(c)

Fig. 10.10 DCJs on telomeres. a Chromosome (a b); the diagonal stripes and the dotted circle
show the cut adjacency and telomere involved. b, c: Two possible DCJs corresponding to (a −b)
(b), i.e., reversal, and {(a),< b >} (c)

Fig. 10.11 Single-cut-or-join (SCJ). A cut breaks an adjacency into two telomeres corresponding
to the transition from the top to the bottom genome. A join is the reverse operation corresponding
to the transition from the bottom to the top genome

Note that a DCJ realizes both reversals (when the two adjacencies come from the
same chromosome) and translocations (when they are from different chromosomes).
When the adjacencies that are cut are from the same chromosome, the result of a
DCJ can also be splicing out of a segment between the cuts into a separate cyclic
chromosome.

SCoJ. A single-cut-or-join (SCoJ) operation either cuts an adjacency or joins two
telomeres, respectively (Fig. 10.11).

In the next section, we briefly review basic results on ordinary genome models.
As our focus is primarily on multiple-copy problems, we only skim selected results.
The interested reader can find much more information on this topic in [40, 126].

10.2.2 Breakpoint Distance

The breakpoint (BP) distance is a simple measure of dissimilarity between two
genomes that are not related to a specific type of operation. Generally speaking,
the breakpoint distance measures the number of adjacencies and telomeres that are
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in one genome but not in the other. The breakpoint distance has several definitions
depending on the different weights of common adjacencies and telomeres [78, 103].

For two ordinary genomes Π and Γ over the same n genes, Tannier et al. [103]
give the following formula for the breakpoint distance:

dBP = n − (A + E/2) (10.1)

where A is the number of common adjacencies and E is the number of common
telomeres of Π and Γ . Clearly, the distance is computable in linear time.

10.2.3 Reversal and Translocation Distances

Given signed permutations Π and Γ over the same n genes, we seek a shortest
sequence of reversals from Π into Γ . We can assume w.l.o.g. that Γ is the identity
permutation (1, . . . , n).

Sorting signed permutations by reversals is undoubtedly the most famous GR
problem [9]. In their seminal work, Hannenhalli and Pevzner gave the first
polynomial-time algorithm for the problem [49]. Since then, the theory was greatly
simplified [6, 13, 17, 57]. Bader,Moret, andYan have shown that finding the reversal
distance can be done in linear time [6], whereas computing a shortest sorting scenario
can be done in O(n3/2) [44, 102]. Interestingly, sorting unsigned permutations (i.e.,
without gene orientations) by reversals is NP-hard [25].

The problem of sorting multi-chromosomal genomes by translocations was first
introduced by Kececioglu and Ravi [59]. Hannenhalli [46] gave the first polynomial-
time algorithm for the problemandan improved, linear time algorithmwas introduced
by Bergeron et al. [15].

Sorting by reversals and translocations was proved to be polynomial by Hannen-
halli and Pevzner [47], who reduced the problem of sorting by reversals. The theory
and algorithm were later slightly corrected and revised [16, 53, 72, 73, 105]. The
algorithm was used to compute for the first time a sorting scenario and distance
between the mouse and human genome [47]. Interestingly, the distance achieved
closely matched a prediction by Nadeau and Taylor from the 1980s [68]. Efficient
implementations of the algorithms for sorting by reversals and translocations are
available as part of the GRAPPA [6] and GRIMM [106] tools. Those tools also use
the ability to compute exact pairwise distances efficiently in order to compute a tree of
evolution by reversals and translocations amongmultiple species, albeit heuristically.

The main representation used for the analysis of this problem (and other rear-
rangement models) is the Breakpoint Graph (BG). Given two genomesΠ and Γ , the
breakpoint graph BG(Π, Γ ) is an undirected graph whose nodes are the extremities
of both genomes, andwhose edges are the adjacencies of both genomes distinguished
by color. Edges corresponding to Π (Γ ) adjacencies are called red or Π -edges (blue
or Γ -edges, respectively). See an example in Fig. 10.12.
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Fig. 10.12 Abreakpoint graph forΠ = {(a b c d), (e f )} andΓ = {(a −f b c), (d −e)}.Π -edges
are solid; Γ -edges are dashed

Hannenhalli and Pevzner [49] gave a formula for the reversal distance between
signed permutations based on the number of cycles in the BG and certain structures
in it called “hurdles” and “fortresses”. The distance formula for sorting by reversals
and translocations has been devised over the years and depends on more complex
structures in the BG [16, 47, 53, 72, 105]. The definitions of these structures are
beyond the scope of this review, so the exact distance formulas are omitted. Bergeron
[13] and Jean and Nikolski [53] give fairly elementary presentations for sorting by
reversals and sorting by reversals and translocations, respectively, including good
expositions of structures and the distance formulas.

10.2.4 DCJ Distance

The inputs for this model are two ordinary genomes Π and Γ over the same set
of n genes. The operations allowed in this model are DCJs. The DCJ operation,
introduced by Yancopoulos et al. [115], has gained much attention in GR models in
the last decade. The reason is that DCJs capture both reversals and translocations
(but also splicing out a circular sub-chromosome) while allowing much simpler
algorithms. Both the distance and an optimal sorting scenario can be computed in
linear time [14].

In the analysis of this problem, a new graph representation was introduced. The
adjacency graphAG(Π, Γ ) of genomesΠ andΓ is a bipartite undirectedmultigraph
whose set of nodes are the adjacencies and telomeres of Π and Γ . Therefore, each
node is a set of one or two extremities. Nodes belonging to Π(Γ ) are called red- or
Π -nodes (blue- or Γ -nodes, respectively). For every Π -node u and Γ -node v, there
are |u ∩ v| edges between u and v, i.e., there is an edge for each common extremity
between the two nodes. Note that BG(Π, Γ ) is the line graph of AG(Π, Γ ) and vice
versa. (The line graph ofG = (V,E) is the graph on E in which x, y ∈ E are adjacent
as vertices iff they are adjacent as edges in G). See Fig. 10.13.

Bergeron et al. [14] prove that for ordinary genomes Π and Γ defined over the
same set of n genes:

dDCJ = n − (C + I/2) (10.2)
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Fig. 10.13 An adjacency graph for Π = {(a b c d), (e f )} and Γ = {(a −f b c), (d −e)}. Π -
nodes are solid; Γ -nodes are dashed

where C is the number of cycles and I is the number of odd length paths starting and
ending in telomeres in AG(Π, Γ ). For example, the AG in Fig. 10.13 has one cycle
and two odd length paths. Thus, since there are six genes, the DCJ distance between
the two genomes in this case is 4. Notice that there are two additional even length
paths in the graph but they do not affect the distance formula.

10.2.5 SCoJ Distance

The inputs for this model are two ordinary genomes Π and Γ over the same set
of n genes. The operations allowed in this model are SCoJs. Similar to DCJ, the
SCoJ distance and scenario can be found in linear time [39]. Some rearrangement
problems for which no polynomial solution is known for DCJ and other operations
are known to be tractable for SCoJ distance. We give examples of such problems in
Sect. 10.3.1.

For two ordinary genomes Π and Γ over the same n genes, let AΠ(AΓ ) be the set
of adjacencies of Π (Γ , respectively). The SCoJ distance is given by [39]

dSCoJ = |AΠ | + |AΓ | − 2|AΠ ∩ AΓ | (10.3)

10.3 Multi-copy Models in Species Evolution

This section discusses multi-copy GR models inspired by species evolution. In
Sect. 10.3.1, we present models allowing whole genome duplication events, but no
other copy number changes. The models in Sect. 10.3.2 allow for the insertion and
deletion of new genomic segments but do not account for multiple copies of seg-
ments. Models in Sect. 10.3.3 handle genomes with multiple copies of each gene
but do not allow numeric operations. Section10.3.4 describes a few models that can
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handle genomes with multiple gene copies and allow numerical operations such as
deletions or duplications.

We limit our discussion here to distance problems between two genomes.We refer
the reader to the review by El-Mabrouk and Sankoff on the analysis of gene order
evolution beyond single-copy genes [37], which discusses in depth the phylogenetic
aspects of GR models in the context of species evolution.

10.3.1 Polyploidy

We discuss here problems motivated by whole genome duplication (WGD) events in
species evolution. WGD is viewed as a fundamental step in evolution, as doubling of
the gene contents allows great diversification of gene functions. For example, strong
evidence for WGD events was reported for yeast [114] and for plant genomes [20].
The basic question tackled by these formulations is finding a shortest sorting scenario
between a given ancestral genome (before or right after WGD) and a given extant
genome under GD models allowing only structural operations.

A duplicated genome (either labeled or unlabeled) is a genome in which every
gene has CN = 2. For an ordinary genome Π over G , a doubled genome 2Π =
Π ∪ Π is an unlabeled duplicated genome over 2G = G ∪ G in which every gene,
adjacency, and telomere has two copies. For example, if Π = {{at}, {ah, bh}, {bh}}
then 2Π = {{at}, {ah, bh}, {bh}, {at}, {ah, bh}, {bh}}.

The double distance problem [2] is defined as follows. Given an ordinary genome
Π over G , a labeled duplicated genome Θ and an operation distance measure d , find
the minimum distance of Θ to some labeling of 2Π . Formally, the double distance
between Π and Θ is

dd(Π,Θ) = min
Γ ∈L(2Π)

d(Γ,Θ) (10.4)

where L(2Π) is the set of all possible labelings of 2Π . The double distance problem
can be solved in linear time for the BP [60] and the SCoJ measures [39]. However,
it is NP-hard under the DCJ distance [103].

Given a labeled duplicated genome Θ and an operation distance measure d , the
genome halving problem seeks to find an ordinary genome Π that minimizes the
double distance to Θ [36]. Formally, the halving distance of Θ is defined as

hd(Θ) = min
Π

dd(Π,Θ) (10.5)

The halving distance can be solved in linear time for the BP measure, but if we
restrict the genome Π to be linear or unichromsomal it becomes NP-hard [60]. For
the SCoJ distance, the problem is solvable in linear time even when Π is restricted
to be a linear or circular genome [39]. Under the DCJ distance, the halving problem
can be solved in linear time [66, 111] even with Π restricted to a unichromsomal
genome [1].
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A generalization of the halving problem for finding an ordinary pre-WGDgenome
given an extant genomewith exactlym > 2 copies is called genome aliquoting [111].
Aliquoting is polynomially solvable for the BP [112] and SCoJ [39] distances, while
a 2-approximation algorithm is known for the problem under the DCJ distance [112].
Recently, efficient ILP formulations were suggested for genome halving and aliquot-
ing under the DCJ distance [5].

The guided genome halving problem tries to combine both the genomehalving and
double distance [125]. Given an ordinary genome Δ, a labeled duplicated genome
Θ , and an operation distance measure d , find an ordinary genome Π that minimizes
the sum of the double distance between Π and Θ , plus the distance between Π and
Δ. Formally, the guided halving distance is

ghd(Δ,Θ) = min
Π

[
dd(Π,Θ) + d(Π,Δ)

]
(10.6)

The problem can be solved inO(n1.5) time for the BP distance, but it becomes NP-
hard with additional restrictions [60]. For the SCoJ distance, the problem has linear
solutions even with restrictions to linear or circular genomes [39]. It is NP-hard for
the DCJ distance [103].

10.3.2 Single-Copy Models with Indels

Models presented in this section allow new numerical operations while maintaining
the assumptions of ordinary genomes. The input is two ordinary genomes Π and Γ

over potentially different gene sets G1 and G2. The goal is to transformΠ into Γ with
structural operations and additional operations that introduce new genes or remove
genes. All genomes in the sorting scenario must be ordinary.

Given a chromosome string C = c1, . . . , cn, a deletion del(i, j) produces a
new chromosome C[1, i − 1] · C[j + 1, n]. An insertion ins(S, i) of a sequence
S = s1, . . . , sm into a chromosome C at position i results in C[1, i] · S · C[i + 1, n]
(see Fig. 10.1). Insertions and deletions are commonly referred to as indel operations
[23]. Since these models assume that all genomes are ordinary, insertions cannot
introduce new copies of genes. Instead, indels are used to add and remove genes that
appear in one genome but not in the other.

El-Mabrouk was the first to address sorting permutations by reversals and indels
and gave exact an algorithm and a heuristic for specific cases [35]. Improved bounds
for this problemwere later devised [113]. Yancopoulos and Friedberg [116] analyzed
the problem of sorting ordinary genomes with DCJs and indels. Their model allowed
to insert and delete genes that appear in the source or target genomes, and thus a
possible sorting scenario can delete all the chromosomes of the source genome and
insert the chromosomes of the target genome. Braga et al. [23] gave a linear time
algorithm for finding a minimum sorting scenario with DCJs and indels, restricting
indels to affect genes that are not common to the source and target genomes. The
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problem is solvable in linear time even when DCJs and indels have different weights
[97].

Braga et al. [22] introduced a new operation that generalizes both insertions and
deletions. A substitution is an operation that replaces a sequence of consecutive genes
with another sequence. This operation can be thought of as a deletion of the sequence
to be replaced followed by an insertion of the new sequence in the same place. Notice
that this operation can implement both deletions and insertions by taking an empty
sequence as the new or old sequence, respectively. Sorting ordinary genomes with
DCJs and substitutions can be solved in linear time [22], even when substitutions
have different weights than DCJs [98].

10.3.3 Multi-copy Models Without Duplications/Deletions

In this section, we focus on comparing genomes with multiple gene copies but with-
out explicit deletion or duplication operations. The comparison can be used to assign
orthology relationship between gene copies in the source and target genomes [26].
Given a source genome and a target genome with multiple gene copies, the general
approach is to find a matching of the gene copies that minimizes some structural
operation distance. Gene copies that are not matched are ignored, so they are implic-
itly deleted and do not incur the cost of a true deletion operation. Most formulations
result in NP-hard problems.

There are three main formulation strategies depending on the cardinality of the
matching of multi-copy genes:

• Exemplar strategy [86], in which in each genome, exactly one copy of each gene
is selected and all other copies are ignored.

• Intermediate strategy [4], in which the same number of copies (at least one) for
each gene is selected and matched between genomes, and all other copies are
ignored.

• Maximum matching strategy [19], in which for each gene, the maximum possible
gene copies (the smaller of the gene’s CNs in the two genomes) are selected and
matched between genomes, and the remaining copies are ignored.

Although most formulations are NP-hard, several exhaustive and heuristic algo-
rithms have been suggested. In recent years, Integer Linear Programming (ILP)
formulations presented by Shao and Moret were used to solve such problems, and
have shown good results and scalability [92–94]. Table10.1 summarizes selected
results for different operations and different formulations.

The majority of hardness results, as well as exact and heuristic algorithms for
these problems, originate from the breakpoint graph decomposition problem [25,
58]. The goal in this problem is to find a decomposition of a breakpoint graph into a
maximum number of edge-disjoint alternating red/blue cycles. A similar maximum
cycle decomposition can also be defined for the adjacency graph [91, 92]. Note that
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Table 10.1 Multi-copy model results

Operations Exemplar Intermediate Matching

BP NP-hard [24]
Branch and bound
[69, 86]
ILP [3, 93]

NP-hard [18]
ILP [4, 94]
Heuristics [4]

NP-hard [18]
Branch and bound [19]
ILP [4, 94]
Heuristics [4]

Reversals and
translocations

NP-hard [24] NP-hard [26]
ILP [101]
Heuristics [26, 41]

NP-hard [26]
ILP [101]
Heuristics [26, 41]

DCJ Branch and bound [117] NP-hard [92] NP-hard [92]
ILP [92]
Branch and bound [117]
Approximation [83, 91]

such a decomposition induces a matching between genes and the maximum number
of cycles minimizes an operation distance measure [91, 92].

10.3.4 Models with Duplications or Deletions

We now describe several models that include deletions or duplications as explicit
numerical operations. The goal of all these models is to transform one genome
representation into the other with minimum number of structural and numerical
operations. Unlike the classical structural operations, numerical operations such as
deletions and duplications have no standard definitions.

Chen et al. [26] analyzed a model for sorting unlabeled genomes with multiple
gene copies using only reversals. Their heuristic, called SOAR, was the first method
to assign orthology relationship between genes based on not only sequence sim-
ilarity but also GRs. In a follow-up paper [41], the authors studied a model that
allows reversals and single-gene duplications. The latter can insert new gene copies
at arbitrary positions in the genome. They developed a heuristic called MSOAR for
matching gene copies between the two input genomes such that the number of rever-
sals plus gene duplications would be minimal. While SOAR requires every gene to
have an equal number of copies in the two input genomes, MSOAR alleviates this
assumption. InMSOAR 2.0 [96], only tandem single-gene duplications are allowed,
and again, an efficient heuristic for this sorting problem is given.

Kahn andRaphael [56] introduced ameasure called the string duplication distance
that models building a target string by repeatedly copying substrings of a fixed source
string. The string duplication operation, δs,t,p(X ), copies a substring xs, . . . , xt of
string X and pastes it into another string Z at position p. Given a source string X
without duplicate genes and a target string Y , the goal is to find a minimum length
sequence of string duplications needed to build the string Y . The authors described
a polynomial dynamic programming algorithm for computing the distance [56]. In a
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follow-upwork, they enhanced themodel to allow substring deletions and inversions.
A polynomial dynamic programming algorithm is given for computing the sorting
problem [55]. The string duplication model was used for the analysis of repetitive
segments in the human genome [54].

Amodel introduced byBader [7] allows tandem duplications, segmental deletions
and DCJs. Given a labeled chromosome C in string representation, a tandem dupli-
cation td(i, j) inserts a new copy of the segment C[i, . . . , j] after the j’th position,
i.e., the new chromosome is C ′ = C[1, . . . , i − 1] · C[i, . . . , j] · C[i, . . . , j] · C[j +
1, . . . , n] (Fig. 10.1). A deletion del(i, j) removes the segment C[i,…,j] and produces
C ′ = C[1, . . . , i − 1] · C[j + 1, . . . , n] (Fig. 10.1). The goal in the model is to find
a minimum sorting scenario of the identity chromosome into the input multi-copy
labeled chromosome. The author gave a lower bound and heuristic for the problem
based on the structure of the breakpoint graph.

In a model presented by Shao and Moret [95], labeled genomes are sorted using
DCJs and segmental duplications. A segmental duplication copies a segment of
labeled genes g1, . . . , gm of a genome Σ and inserts the new labeled copy in Σ in
a spot outside the original segment. The model allows different costs for different
duplications and unit cost for DCJs. However, the optimization problem implicitly
assumes that all segmental duplications either precede or follow all DCJ events.
Given two labeled genomes Π,Γ , the goal is to find segmental duplications in Π

and Γ , remove them, and then find a bijection between the remaining genes such that
the cost of segmental duplications plus the DCJ distance is minimized. The authors
analyzed this problem and gave an ILP formulation based on the adjacency graph
cycle decomposition formulation proposed in [92], applied to a problem instance
simplified by detection of optimal substructures.

Paten et al. [76] presented a model for genome evolution that does not fit entirely
into the standard GR terminology. This model can represent both single-base substi-
tutions and structural/numerical rearrangements such as DCJs, deletions, and dupli-
cations. They defined a data structure called history graph, which holds partial order
information on the sequence of events. The goal is to find a full sequence of events
consistent with the input history graph that minimizes the cost of substitutions and
DCJs, while gene deletions and WGDs are free. The authors analyzed this problem
and gave polynomially tractable bounds for the cost. In a follow-up paper, Zerbino
et al. [124] further analyzed the history graph model and showed that the space of
possible evolutionary histories can be sampled ergodically.

10.4 Multi-copy Models in Cancer

Cancer genomes are known to undergo structural and numerical changes [45]. These
include inversions, chromosomal translocations, tandem duplications, segmental
deletions, whole chromosome amplifications or losses, and more [109]. Figure10.4
shows an example of a real cancer karyotype, and Fig. 10.14 shows a hypotheti-
cal sorting scenario for cancer evolution. A large research effort has focused on
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10.14 A hypothetical sorting scenario for cancer evolution. a Normal diploid karyotype with
two chromosomes. a–b Translocation. b–c Chromosome deletion. c–d Chromosome duplication.
d–e Fusion. e–f Internal deletion. f The cancer karyotype. The breakpoints and telomeres involved
in each operation are indicated by the broken lines

detecting signatures of these events in tumor genomic data. Currently, the effort uses
mainly deep sequencing data [31], though traditional methods such as FISH and
aCGH are still used to assess the CN of genomic regions. Accurate reconstruction
of the numerical and structural variations remains a challenge, and a myriad of com-
putational methods has been devised for this task [31, 104]. Some evolutionary GR
models such as those presented in Sect. 10.3 could also be applied to cancer genomes.
Nevertheless, the complexity of tumor karyotypes and their unique characteristics
necessitate development of dedicated cancer GR models.

In Sect. 10.4.1, we discuss several classical GRmodels that were applied to cancer
data. Section10.4.2 describes CN edit distance problems in cancer. Section10.4.3
presents a few other cancer models involving GRs.
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10.4.1 Models with Duplications/Deletions

Here, we present several GR models with both structural and numerical operations
that were designed to cancer data analysis. All models aim to find a sorting scenario
from one genome representation into the other. The source genome is usually the
normal genome from a healthy tissue, and the target genome is the tumor.

Ozery-Flato and Shamir [74] proposed a GR model designed specifically to ana-
lyze chromosomal aberrations in cancer. The inputs for the model are a normal unla-
beled source genome with two identical copies of each chromosome and a tumor
(target) genome. Both genomes are described as sets of chromosomes, each consist-
ing of a sequence of segments. The goal is to sort the normal genome into the tumor
with the fewest cuts, joins, chromosome duplications, and chromosome deletions.
The authors proved a lower bound for the distance and presented a polynomial-
time 3-approximation algorithm for the problem. They applied the algorithm to over
50,000 low-resolution karyotypes from the Mitelman database [65], which records
cancer karyotypes reported in the scientific literature. Interestingly, the approxima-
tion algorithm gave an optimal solution in all but 30 karyotypes.

Bader [8] extended his previous model [7] in order to cope with cancer alterations.
The revised model accepts multi-chromosomal genomes and allows chromosome
deletions and duplications, tandem duplications, segmental deletions, and DCJs. A
lower bound and a heuristic algorithm were devised, and applied to the Mitelman
database [65]. The average calculated distance was 4.08, while the average lower
bound was 2.72.

Zeira and Shamir [121] analyzed amodel for genome sorting using cuts, joins, and
whole chromosome duplications. In this model, an ordinary linear genome is to be
transformed into a duplicated linear genome such that all intermediate genomes are
linear. The authors gave a linear time algorithm for the sorting problem and showed
that finding such a sequence with fewest duplications is NP-hard.

A more comprehensive model presented by Zeira and Shamir [122] accounted
for the evolution of unlabeled genomes via DCJs, tandem duplications, segmen-
tal deletions, and chromosomal amplifications and deletions. They showed that the
sorting problem is NP-hard and gave an ILP formulation that solves the problem
exactly under some mild assumptions. The algorithm was applied to sort complex
ovarian cancer genomes taken from TCGA sequencing data [12]. Figure10.15 gives
an example of a sorting scenario inferred by the ILP.

10.4.2 Copy Number Profile Distances

In this section, we discuss several models for edit distance between CN profiles.
Unlike the genome representations in Sect. 10.2.1, these profiles give the number of
copies of each segment (gene) but do not hold information about their order along
the genome. A copy number profile (CNP) of a chromosome is a vector mapping
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(c)

(d)

Fig. 10.15 Inferred GR scenario in ovarian cancer sample (TCGA-13-1411). A sequence of opera-
tions transforming a genome graph of chromosomes 1 (upper) and 3 (lower) from a diploid genome
(a) to tumor genome (d). Square nodes represent segment extremities and trapezoid nodes represent
telomeres. Dashed edges are adjacency edges, full straight (red) edges are interval edges, and dashed
arcs (purple) are novel adjacencies caused by the tumor process. The number next to each edge
is its CN. One operation transforms each genome graph into the one below. The operation type is
listed in the triangle and the affected genes or adjacencies appear as dashed nodes and wavy edges,
respectively, in the predecessor genome. The scenario was inferred using the ILP formulation of
[122]

each gene to a nonnegative integer corresponding to the number of copies of the gene
in the chromosome. As the order of the genes in a CNP is unknown, it is assumed to
be some predefined order (typically the normal genome order). A genome CNP is a
collection of its chromosome CNPs. We now define operations that transform CNPs
and present several models for finding a sorting distance between CNPs.

Let V = (v1, . . . , vn) where vi ∈ N ∪ {0} be a CNP of a chromosome with n
genes. A copy number operation (CNO) is a triple c = (	, h,w) where 1 ≤ 	 ≤
h ≤ n and w ∈ {1,−1}. We say that the operation is a deletion if w = −1 and an
amplification if w = 1. Applying an operation c to a CNP V results in a new CNP
c(V ) = (c(v1), . . . , c(vn)) such that for every 	 ≤ i ≤ h, vi > 0 we have c(vi) =
vi + w, and otherwise c(vi) = vi. In other words, the operation increases or decreases
the CN of the genes in the interval [	, h] if they have a positive CN, while the values
of genes outside the interval and zero values are unchanged (see Fig. 10.16).

Chowdhury et al. [29] defined edit distance between CNPs obtained from FISH,
where the edit operations are amplification or deletion of single gene, single chromo-
some, or the whole genome, and presented an algorithm for calculating the distance.
The algorithm was exponential in the number of genes and therefore is limited to
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Fig. 10.16 Copy number profile evolution. A diploid CNP (a) evolves via CNOs into four extant
CNPs (d, e, f, g). Dotted lines represent deletions and bold lines represent amplifications. The order
of operations is from top to bottom. For instance, CNP a evolves into CNP b by a deletion of
positions 2–3, a deletion of positions 3–5, and an amplification of positions 1–4 (in this order). The
corresponding sequence of profiles is 2 2 2 2 2 2 → 2 1 1 2 2 2 → 2 1 0 1 1 2 → 3 2 0 2 1 2.The
entire tree has six deletions and eight amplifications

low-resolution FISH data. An algorithm based on the pairwise distance matrix was
used to heuristically infer tumor phylogenies from FISH single-cell data. A follow-
up paper [28] accounted for different weights for different types of operations, again
providing an exponential time algorithm.

Schwartz et al. [90] introduced amodel that admits amplifications and deletions of
general contiguous segments in a chromosome CNP. The edit distance between two
CNPs is the minimum number of CNOs over all possible separations of the profiles
into two alleles. The authors developed an algorithm calledMEDICC for computing
the edit distance, which uses finite-state transducers [67] and is exponential in the
maximum CN. MEDICC was used to infer tumor phylogenies from CGH arrays of
high-grade serous ovarian cancer samples [89].

Zeira et al. [123] analyzed the problem of sorting one CNP into another using
a minimum number of CNOs. They showed that this problem is solvable in linear
time and constant space. Notice that this edit distance is not symmetric and in fact
there may not be any sequence of CNOs from one given CNP to another since genes
with zero copies cannot reappear later in the sequence. To cope with this drawback,
El-Kebir et al. [34] analyzed a symmetric version that given two CNPs aims to
find a common ancestor profile that minimizes the sum of distances to these CNPs.
They gave a pseudo-polynomial dynamic programming algorithm that is linear in
the profile length and an ILP formulation.

In the more general cancer context, El-Kebir et al. [34] showed that it is NP-hard
to build a phylogenetic tree whose leaves are the input CNPs that minimizes the
total number of CNOs along edges in the tree (see Fig. 10.16) and gave a practical
ILP formulation for this problem. Extending the CNP tree model, Zaccaria et al.
[118] considered a model in which a fractional (non-integer) CNP is allowed, due to
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the superposition of several CNPs of different subclones. The goal in this case is to
deconvolve the fractional CNPs into a weighted sum of integer CNPs such that the
phylogenetic tree built over them has minimum CNOs. A heuristic algorithm was
given for the problem.

10.4.3 Other Cancer Models

Reconstruction of the exact cancer chromosomes based on short paired-end deep
sequencing read data remains a hard challenge. There is a plethora of methods for
detection of local rearrangement events and breakpoints [31], but only a fewmethods
try to reconstruct the entire genome. Here, we describe a few methods designed for
reconstructing cancer genomes. The output genome representation of such methods
can be used as input to genome rearrangement models described earlier.

Oesper et al. [71] expanded the genome graph into a structure called the interval
adjacency graph, which represents breakpoints, discordant reads, and CN informa-
tion. Their method, called PREGO, uses the number of reads supporting each edge
to resolve the CN of genomic segments and identify discordant adjacencies in the
tumor genome, and maps this information to the graph. PREGO was shown to effi-
ciently identify complex rearrangements in ovarian cancer data. Eitan and Shamir
[33] expanded this model and tested it in extensive simulations and on real can-
cer data. Their analysis shows that perfect reconstruction of a complete karyotype
based on short read data is very hard, but that by several measures, reasonably good
reconstructions are obtainable.

Weaver, developed by Li et al. [62], is a different probabilistic graph model pro-
posed in order to estimate both the CNs and interconnectivity of SVs.Weaver detects
and quantifies CNs and SVs specific for each allele, and was also used for predicting
partial timing of SVs relative to chromosome amplifications. A recent expansion of
Weaver based on ILP formulation-enabled improved prediction of SV phasing and
interconnectivity [81].

A probabilistic framework based on breakpoint graphs was presented by Green-
man et al. [43] for the analysis of mutations and karyotypes from sequencing data.
This work tries to reconstruct both the temporal sequence of rearrangements and
assemble genomic segments into karyotypes. It uses allelic integer CNs for each seg-
ment, the adjacencies between segments, and the multiplicity distribution of somatic
SNVs. Taking into consideration SNVs can disambiguate some sorting scenarios,
since duplicated segments carry the SNVs of the original one. The method can
derive partial order of accumulating numerical and single-nucleotide mutations. The
framework, calledGRAFT, was demonstrated to work well with a breast cancer sam-
ple and cancer cell lines, albeit with limitations imposed by the data quality and the
genome complexities.
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Epilogue

GR models and theory have developed significantly in the last couple of decades.
Earlier models focused on species evolution and accounted for simple genomes with
a single copy of each gene. These models concentrated on different operations trans-
forming one genome into the other. The elegant theory and algorithms underlying
the elementary models served as a basis to more complex models to come. Despite
its oversimplification of biology, the research of genomic sorting has been fruitful,
both computationally and biologically.

Later studies started addressing more complex genome models where each seg-
ment may have two copies. These studies were motivated by whole genome duplica-
tion events, which double the gene content of a genome. Most formulated problems
were shown to beNP-hard, but heuristics based on the theory developedwere utilized
to derive ancestral genomes of several species.

More complex evolutionary models allow for arbitrary number of copies and
numerical operations such as insertions, deletions, and duplications. Models vary in
their assumptions and in the operations they allow.Most of the problems are NP-hard
with several heuristic and exact algorithms proposed.

Family-free genome comparison was recently proposed as an alternative multiple
gene copy model [21, 32, 64, 84]. In this setting, each gene is unique but we are
additionally provided with a pairwise similarity score between every pair of genes,
for instance, based on their sequence similarity. This generalizes the multi-copy
models as one can assign similarity of 1 to copies of the same gene and 0 between
all others. In one formulation of the family-free DCJ distance, the goal is to find a
matching between genes such that theDCJ distanceminus theweight of thematching
is minimal [64]. Studies showed that this problem is NP-hard and even hard to
approximate, and gave heuristics and ILP formulations [64, 84].

Cancer nowprovides a keymotivation for the development ofGRmodels handling
multiple copies. During tumor progression, the genome accumulates both structural
and numerical changes, thus resulting in a complex genome with varying number
of gene copies. The various models trying to represent tumor evolution differ in the
type of data they rely on, types of events they allow, and other assumptions. Even
determining a tumor’s genome and identifying structural and numerical variations
(i.e., reconstructing the tumor karyotype) remains a tough problem due to the data
and genome complexity as well as tumor heterogeneity. Therefore, sorting cancer
genomes remains a challenging task, and better models and algorithms are needed.

Some cancer genomeswere explained by complex structural and numerical events
that are beyond the models discussed here. For example, a breakage-fusion-bridge
(BFB) is an event inwhich a loss of a chromosome’s end is followed by “doubling-up”
and fusion of the surviving part (i.e., a chromosome (a, b) is replaced by (a,−a)).
In a BFB cycle, this process is repeated several times. Detection of BFB cycles can
be done using sequencing and CN data [119, 120]. Dramatic rearrangement events
also include chromothripsis and chromoplexy, in which one or more chromosomes
are shattered into many pieces and some of the pieces are assembled in random
order. Identifying these events in cancer genomes from sequencing data is still a
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hard challenge [70]. Computational models are in need to account for such events in
the analysis of cancer evolution.

Advanced sequencing technologies could help in tackling GR problems in cancer.
Long-read sequencing techniques such as those of Pacific Biosciences and Oxford
Nanopore can link distant DNA segments providing additional information on the
relative location of different copies and simplify breakpoint identification [52, 82].
The linked short reads sequencing technology of 10X Genomics was recently shown
to help in identifying structural variations in cancer genomes [38]. We expect these
technologies and others to play a prominent role in GR analysis in cancer in the years
to come.

Single-cell sequencing technologies open new opportunities and challenges in
computational cancer analysis [110]. Specifically, variations between individually
sequenced cells taken from a tumor have been used to identify its evolutionary his-
tory [51, 61]. Detection of SVs and CNAs in single-cell sequencing is still a tough
challenge due to the noise and biases in the data [42, 108]. The use of single-cell
SVs or CNAs for clonal reconstruction has not been addressed yet, to the best of
our knowledge. Additionally, one might use the heterogeneity among cells and their
abundance in order to guide the rearrangement scenario. Alternatively, given a rear-
rangements scenario, we can try to map cells to stages along this sequence.

Box 3 List of acronyms

aCGH—array comparative genomic hybridization
AG—adjacency graph
BFB—breakage-fusion-bridge
BG—breakpoint graph
BP—breakpoint
CN—copy number
CNA—copy number alteration
CNO—copy number operation
CNP—copy number profile
DCJ—double cut and join
DNA—Deoxyribonucleic Acid
FISH—fluorescence in situ hybridization
GR—genome rearrangement
ILP—integer linear programming
SCoJ—single cut or join
SNV—single nucleotide variation
SV—structural variation
WGD—whole genome duplication
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Chapter 11
Computational Models for Cancer
Phylogenetics

Russell Schwartz

Abstract Cancer development has long been recognized as a product of aberrant
evolution of cell populations, inspiring the idea that phylogenetic algorithms could
be a powerful tool for reconstructing progression processes in cancer. Translating
that intuition into practice, however, has required extensive work on adapting phy-
logenetic models and algorithms to represent more accurately the many ways tumor
evolution is distinct from classic species evolution. The result has been a large and
growing body of problems and theory on phylogenetics as it applies specifically to
cancers. This chapter surveys some of the key ideas and variants on phylogeny prob-
lem that have arisen in the development of tumor phylogeny methods. Its purpose
is to introduce readers to some of the space of approaches in current practice in
phylogenetics and help them appreciate how models have developed, and continue
to develop, to better capture the peculiar nature of evolution in cancers.

Keywords Cancer progression · Tumor · Phylogenetics · Algorithms

11.1 Introduction

Tumor phylogenetics—the use of phylogenetic algorithms to reconstruct the pro-
cess of progression in cancers—has emerged as a key tool for interpreting cancer
genomic data and uncovering themechanisms bywhich cancer develops, progresses,
and responds to treatment. Experimental cancer research has been fueled by excit-
ing advances in technologies for gathering data on the genetics and genomics of
cancers at ever-greater scales and ever-finer resolutions. At the same time, the field
has struggled with the resulting data deluge: dealing with vast volumes of data for
an immensely complicated process that exhibits enormous heterogeneity patient to
patient and even cell to cell in single patients. Methods from computational biology
have become essential to modern cancer research in managing these problems, with
phylogenetic methods in particular providing a crucial set of tools for extracting
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meaningful information from cancer genomic data. As a result, the tumor phylogeny
problem has received a great deal of attention in the computational biology com-
munity, where it has raised a host of interesting challenges for modeling, algorithm
development, and practical software implementation that must be solved to provide
the tools needed for tackling one of the hardest challenges in medicine.

Tumor phylogenetics also exemplifies some of the key themes of BernardMoret’s
work in helping to guide the development of the modern fields of computational and
evolutionary biology. Dr. Moret’s work has long shown the importance of fundamen-
tal theory that is sometimes needed to solve hard computational problems arising in
biology (e.g., [4, 56, 73]). Tumor phylogenetics is indeed an area that has inspired
hard problems whose solution has required deep theoretical advances. At the same
time, Dr. Moret’s work has been guided by the notion that algorithms need to work in
the real world (e.g., [48–50, 78]). Much of the innovation in tumor phylogenetics has
been centered on questions not so much of solving well-posed computational prob-
lems but rather of finding the right models that will solve the real-world problems of
the field given the complexity of the system and the challenges of the data used to
study it. Finally, Dr. Moret has been a major innovator in finding novel uses of phylo-
genetics beyond classic organismal evolution [16, 51, 80]. Cancer phylogenetics has
proven a spectacular example of this theme, where an exotic but extremely impor-
tant form of evolutionary system has required new computational thinking andwhere
ideas from phylogenetics have proven crucial to solving those real-world problems
in practice.

Tumor phylogenetics is not just important science but also a valuable topic for
pedagogy for a diverse community of scientists. For the cancer biologist, and exper-
imental biologists more generally, the history of tumor phylogenetics is a great case
study for the importance of computational thinking in solving hard problems in biol-
ogy. It is a field where getting the right answers depends on thinking carefully about
one’s models and about the tradeoffs in modeling between what reflects the biol-
ogy faithfully and what is feasible computationally. For the evolutionary biologist,
tumor evolution is an exciting area because it is a rare case in which one can observe
evolution repeatedly navigating the same selective landscape, giving a unique win-
dow into the interplay of distinct solutions to the same evolutionary problem in a
background of extensive stochastic variation. For the computer scientist, it is simi-
larly an instructive field for the challenges of working in biomedical domains, where
good computer science is needed but the biological details are important and need
to inform one’s models and algorithms. For the lay person, tumor phylogenetics is
a wonderful illustration of how evolution impacts our day-to-day life and why it
matters today that scientists understand and continue to study it.

One chapter is not going to serve all of those audiences well, and we aim here
primarily to serve the more computationally sophisticated readers, either computer
scientists or computational biologists new to this area, with a focus on computational
models and problems that have emerged, or might emerge, as important areas of
study. We will continue this introduction by presenting some of the motivation and
biological background for the field of tumor phylogenetics. The bulk of the chapter is
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devoted to exploring a few major themes of computational problems in the domain.
We then conclude with some discussion and consideration of future directions.

11.1.1 Background

Understanding the computational basis of tumor phylogenetics requires an appreci-
ation for the biology it models and the tools we have for studying that biology. This
chapter cannot provide a comprehensive summary of the biology and biotechnology
of tumor evolution, but it does aim to summarize some of the key facts and ideas
needed to understand the current state of the field. Readers interested in seriously
pursuing the area would likely benefit from reading further treatments of tumor evo-
lution aimed at biologically sophisticated readers (e.g., [33, 45, 64]) as well as more
comprehensive resources on cancer in general (e.g., [76]).

The key idea behind tumor phylogenetics is the observation that cancer is an evo-
lutionary system. This idea long predates phylogenetic approaches to reconstructing
tumor evolution, generally being traced to [54], and inspired the clonal theory of
cancer evolution: that tumors develop and progress through a series of randommuta-
tions that periodically produce a fitter, more aggressive cell population (clone) that
undergoes an evolutionary sweep to dominate the tumor. A variety of more nuanced
variants of this idea have since arisen [26]. Today, we can appreciate that while these
earlymodels beautifully articulated crucial ideas in understanding tumor progression,
they also greatly oversimplify the true complexity of tumor evolution. Nonetheless,
they inspired the idea that we could understand cancer by understanding the evolution
of tumor cell populations. It was first suggested by [75] that if cancer development
is essentially an evolutionary process then we ought to be able to learn about it
by reconstructing that process computationally, an idea put into practice by Desper
et al. [19] in the first variants of tumor phylogenetics.

The field of tumor phylogenetics has since seen enormous attention, resulting
in a diversity of methods. We can roughly organize the space of tumor phylogeny
methods by a few basic axes of variation [64]:

• Study type: cross-sectional, regional, single-cell, deconvolutional, hybrid
• Phylogeny type: distance-based, character-based combinatorial, character-based
probabilistic (maximum likelihood or Bayesian), other

• Marker type: single nucleotide variant (SNV), copy number variant (CNV), struc-
tural variant (SV), other (expression, methylation, or more exotic alternatives),
hybrid.

We illustrate this organization ofmethods in Fig. 11.1, highlighting examples ofwork
in different parts of this space. While there are many methods that do not fit neatly
into these categories, they nonetheless provide a broad classification of methodology
that we will use to help categorize methods and organize this chapter.

The first axis describes the kind of data-generation study used to gather data from
which one will draw a phylogeny. Tumor phylogenetics began with cross-sectional
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Fig. 11.1 A categorization of tumor phylogeny methods. The figures shows axes of variation
corresponding to some of the major distinguishing features of tumor phylogeny methods with
citations to a fewnotable examples of different categories ofmethod.Thefigure is not comprehensive
with respect to categories of method on each axis or methods specifically cited, and is only meant
to illustrate some of the range of methods available

studies [19], which modeled tumor evolution by treating distinct tumors as species
and an evolutionary tree as a description of decision points separating subsets of
tumors. As it became possible to examine genomic data at finer resolutions, this
was displaced by a combination of regional studies [31, 53], in which phylogenies
describe evolution across distinct tumor sites or sub-regions, and single-cell stud-
ies [52], which modeled evolution within populations of single cells often within a
single-tumor site. Much work in this domain now falls into a special class of “decon-
volutional” study [7, 8, 65], which seek to infer single-cell variation from regional
or cross-sectional data. A few methods are now beginning also to combine different
data types, such as bulk and single-cell [42].

The second axis describes the kind of data used to profile genetic variations in
tumors. While the earliest methods focused primarily on limited kinds of copy num-
ber aberrations (CNAs) that could be profiled with pre-genomic technologies [19,
57],muchwork later shifted towardsmoremathematically tractable single nucleotide
variants (SNVs) (e.g., [35, 43, 59]). Nonetheless, work on CNAs specifically has
continued (e.g., [14, 66]). State-of-the-art methods often use hybrid approaches tak-
ing advantage of both SNV and CNA data [18, 25, 38]. Limited work in tumor
phylogenetics has involved other variant types, such as gene expression [21, 55, 61],
methylation [68] or microsatellite variation [29, 67]. Recent work is now just begin-
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ning to attempt to capture broader classes of structural variations (SVs) in tumor
phylogenetics [22].

The third axis refers to classes of computational models. The earliest methods
used specialized combinatorial models [19], which generally pose phylogenetics
as a problem of optimizing for some discrete objective function. The difficulty of
solving the resulting computational problems, particularly for large marker sets or
numbers of taxa, prompted a move towards distance-based methods [20], which
typically make use of classic efficient phylogeny algorithms but with novel cancer-
specific ways of measuring evolutionary distance. Off-the-shelf distance-based tools
remain a popular option particularly for those initially generating data, as they offer
fast, generic algorithms that can be run with almost any kind of data. However, the
advantages of generic algorithms can make them poor at modeling tumor evolution
specifically [64]. Given the complexity of the biology and the data, much of the field
has moved towards probabilistic tree inference methods [46, 47, 81], which are more
computationally intensive but have considerable advantages over the alternatives
in accommodating complex error models and objective functions and in explicitly
modeling uncertainty in inference.

11.1.2 Scope and Organization

In this chapter, we focus on one specific subset of the classification of Sect. 11.1.1:
well-posed combinatorial problems. Our reasoning for focusing on this space is
pedagogical rather than scientific. There are importantmethods that fall into this class
and important methods that do not. However, the space of combinatorial problems
is useful for developing an understanding of the field because they tend to involve
relatively simple and “clean” formulations in which the reasoning behind the model
and its connection to the biology is explicit. Furthermore, these problems occupy an
important area for modeling work—where the field is first thinking rigorously about
how properly to model a problem and what the tradeoffs are between the fidelity of
the model to biology, the computational tractability of the model, and in some cases
the feasibility of learning model parameters from data—before theory gives way to
often more detailed but less elegant probabilistic formulations.

We largely confine our discussion here to the modeling, i.e., formulating and rea-
soning about problem statements. Algorithms to solve for those problem statements
are often quite involved or heuristic, and we provide brief descriptions and references
to primary literature rather than dwell on the details of the algorithms. We note that
in many cases the problems, as presented below, are simplifications of the compu-
tational problems as they are published and used in practice; the biology of cancer
and the data used to study it are complicated and methods with real-world value
almost always involve various forms of preprocessing, error-handling, or heuristic
improvements beyond the idealized models. We also note that for consistency of
exposition here, we will use our own naming scheme for problems, in many cases
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renaming problems that are posed in other literature with different names, and chang-
ing nomenclature and variable names where needed for consistency.

For themost part, wewill assume the reader is already familiar with general topics
in phylogenetics that might be covered well in a general phylogeny text (e.g., [28])
or elsewhere in this volume. We must also necessarily omit a broad range of related
topics in computational cancer research, such as variant discovery and typing (c.f.,
[44]), simulation of tumor evolution (e.g., [17]), or emerging topics such as study
design for tumor phylogenetics. Finally, our focus specifically on computational
problems means that we omit much interesting work on the biology informing or
arising from these methods, novel studies applying them, or other issues that are
important but beyond our scope. We refer the interested reader to any of a number of
informative review articles that cover issues beyond those in this chapter on either
the biology or the computation [9, 33, 45, 64].

Consistent with this scope, the remainder of this chapter will present a variety
of problems in tumor phylogenetics largely from a computer scientist’s point of
view: examining the computational models and related algorithmic problems that
have arisen from different conceptions of tumor phylogenetics and briefly discussing
their motivations. We start with the fundamental problem of estimating evolutionary
distance, which itself can be quite different for tumor cells than for organisms, and
gradually work towards more complicated problem statements involved in inferring
phylogenies and eventually mixtures of phylogenies. At each step, we will cover a
few examples meant to show some of the diversity of problem statements that can
arise from different study designs, data types, and/or model assumptions. While this
coverage is far from exhaustive, we hope it is sufficient to give an understanding of
some of the main challenges in bringing phylogenetics to cancer research and how
those working in the field have reasoned through those challenges. We then close
with a consideration of potential future directions for work in this space.

11.2 Estimating Evolutionary Distance

One of the most basic questions in phylogenetics is how to estimate an evolution-
ary distance between two pairs of taxa (samples), which we will dub the Pairwise
Distance Problem (PDP). Estimates of pairwise distances directly form the input
for distance-based phylogeny algorithms (see, for example, [28]). Much seminal
work in tumor phylogenetics has used standard distance-based phylogeny algorithms
with novel tumor-specific distancemeasures rather than fully customized approaches
(e.g., [20, 52, 67]). Even where specialized phylogeny algorithms are needed, they
generally require some way of measuring distances between taxa as a subroutine,
making it perhaps the most fundamental question in phylogenetics. It is also one
of the first places we begin the see how tumor phylogenetics differs from standard
species phylogenetics, as tumors often evolve by very different mechanisms, and
are profiled by very different mutation classes, than are in standard use in species
phylogenetics.
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Note that PDP is closely related to but distinct from the Mutational Ordering
Problem (MOP) [3, 26], which seeks to find an order of mutations along an evolu-
tionary trajectory as opposed to simply a weight of a trajectory. Methods for PDP
and MOP often overlap, however, as solutions to PDP frequently involve solving a
variant of MOP and solving MOP usually implicitly solves a variant of PDP. Rather
than discuss these as separate problems, we will present these as examples of PDP
but point out where a PDP formulation is also relevant to MOP.

11.2.1 Single Nucleotide Variants (SNVs)

Perhaps the simplest way to begin measuring evolutionary distance is via SNVs,
i.e., point mutations. SNVs are arguably the primary way evolutionary distance is
measured in more general species phylogenetics and especially in intraspecies phy-
logenetics, as SNVs accumulate rapidly on evolutionary timescales and can be repre-
sented by comparatively simple evolutionary models. Since a great deal of practical
work in tumor phylogenetics has used off-the-shelf programs designed for species
or intraspecies phylogenetics (e.g., [10, 52, 53, 79]), it is a useful starting point for
thinking about modeling tumor phylogenies. We will begin with some computation-
ally trivial formulations of PDP for which there is no defined objective function.

We will assume here that our input consists of two taxa, V1, V2 ∈ Σm where Σ is
an alphabet of allowed genetic characters and m ∈ N+ is the number of variant sites
profiled.Wewill further denote vij ∈ Σ to be character j of Vi. On the assumption that
variants are relatively rare, Σ may simply be {0, 1} with 0 standing for a presumed
ancestral variant and 1 a novel somatic mutant variant. It is a simple generalization
to allow for four nucleotides (Σ = {A,C,G,T }) or further generalization to allow
for insertion/deletion (indel) variants (Σ = {A,C,G,T ,−}).

For any such problem statement, the simplest beginning is the following:

SNV-PDP
Input: Taxa V1, V2 ∈ Σm

Output: A distance d(V1, V2) = ∑m
i=1 I(v1i �= v2i), where I is the indicator function

defined by

I(b) =
{
1 : b
0 : ¬b

More informally, SNV-PDP is equivalent to the Hamming distance, i.e., the num-
ber of base changes between the two input sequences. This measure has a simple
interpretation as an evolutionary distance: it is the minimum number of mutations
needed to transform one sequence into the other.



250 R. Schwartz

A straightforward generalization of SNV-PDP is a weighted variant, wSNV-PDP:

wSNV-PDP
Input: Taxa V1, V2 ∈ Σm, weight function w : [1,m] → R
Output: A distance d(V1, V2) = ∑m

i=1 wiI(v1i �= v2i)

One can also easily generalize to different models for the weight function, e.g.,
capturing preferences of mutation signatures [1, 2] that model rate variation by
nucleotide and possibly surrounding sequence context (e.g., AAA → AGA might
have a different rate than CAC → CGC).

There are other variants on SNV distance from the noncancer literature that one
might in principle consider for tumor phylogenetics. For example, the general phy-
logenetics literature offers a number of methods for phylogenetics from genotyped
data, in which one can count variants at each site but cannot always distinguish their
chromosomes of origin [34, 36, 69]. The same issue in principle applies to tumor
genomics, and is in fact even more complicated due to the frequent gain and loss
of genetic materials in cancers. Since we are unaware of cancer work in this space,
however, we omit an explicit formulation.

11.2.2 Copy Number Aberrations (CNAs)

One of the important ways tumor phylogenetics differs from conventional phyloge-
netics is in that it tends predominantly to involve different mechanisms of mutation.
Onemajor form this takes is in the importance of copy number aberrations (CNAs) in
tumor evolution [37]. (Note that CNAs are sometimes called copy number variations
(CNVs) and the terms may be used interchangeably in the algorithmic literature,
but CNAs have become the preferred nomenclature for somatic variants in cancer to
distinguish them from germline variants in a population that are also called CNVs.)
CNAs are the primary way tumors undergo functional adaptation [84], commonly
through loss of tumor suppressor genes or amplification of oncogenes. This makes
them useful as markers for progression in cancer development. While CNVs are also
known to be important in more general evolutionary adaptation [41], they remain a
relatively specialized measure of evolutionary diversification for noncancer applica-
tions but a crucial one for cancers. We will therefore consider here some problems
arising from tumor evolution when profiled for CNA variations.

CNAs have had a complicated history with respect to tumor phylogenetics due to
the changing technologies for profiling variants over the course of the field’s devel-
opment. The earliest work in tumor phylogenetics in fact relied on a specialized
form of coarse-grained CNA profiling technology, comparative genomic hybridiza-
tion (CGH), used to detect large regions of gain or loss in tumors [19]. Likewise,
the earliest efforts at single-cell tumor phylogenetics were based on a pre-genomic
technology, fluorescence in situ hybridization (FISH), for profiling localized copy
number variations at the single-cell level [57, 58]. As tumor phylogenetics moved
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into the sequencing age, some of the earliest efforts at whole-genome regional bulk
sequencing also relied on copy number data from an array variant of CGH [53]. The
first work in single-cell sequencing for cancers likewise relied on estimated copy
numbers of small genomic regions as a way to deal with high sequencing error rates
and uncertain degrees of amplification in early single-nucleus sequencing technol-
ogy, which made it impossible to profile SNVs or other small variants reliably [52].
Follow-on work in all of these domains later shifted largely to SNVs (see, for exam-
ple, [85] for a review of recent methods in phylogenetics from single-cell sequence
data) although CNA or hybrid data sets are again increasingly being applied. We will
consider here models of a few variants of CNA distance that have appeared in the
recent literature.

We will now assume here that our input consists of two taxa, V1, V2 ∈ N m+ ,
where we interpret each taxon as a vector of integer copy numbers at discrete loci on
a genome. In the simplest version, we canmodel the problem using generalizations of
the computationally trivial distance measures used for SNV evolution. Here, though,
we need to be a bit more precise about the cost of marker changes at a single site:

L1-CNA-PDP
Input: Taxa V1, V2 ∈ {N0}m
Output: A distance d(V1, V2) = ∑m

i=1 |v1i − v2i|

L1-CNA-PDP implicitly encodes a model of copy number evolution in which
copy numbers evolve in a cell by a series of discrete events, in which each event
increments or decrements the copy number by one at a given site. This model has
been effectively assumed by some early works in this domain (e.g., [14, 57]).

One might alternatively measure distance at single site by an L2 (sum-of-squares)
measure, yielding

L2-CNA-PDP
Input: Taxa V1, V2 ∈ {N0}m
Output: A distance d(V1, V2) = √∑m

i=1(v1i − v2i)2

L2 distance does not have as straightforward an evolutionary interpretation but
may make more sense if we wish to assume we are dealing with noisy data (a fair
assumption) or allowing for an evolutionary event to change the copy number bymore
than one at a given step. L2-CNA-PDPwas effectively assumed also by seminal work
in CNA tumor phylogenetics [52]. Either L1-CNA-PDP or L2-CNA-PDP could be
easily generalized to weighted variants, as with the SNV-PDP problems, although
we are unaware of any work doing so.

It iswithCNAs that tumor phylogenetics starts to get “interesting” algorithmically,
as we move towards model variants that more realistically capture the biological
mechanisms of copy number mutation. One simple way this occurs, dating back to
some of the first work in the field [58], is through the phenomenon of whole-genome
duplication. Genome duplication, which is believed to occur in cancers when a cell
passes partially through mitosis but fails to divide after doubling its chromosome
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complement, is a rare event in evolution of animals but a common one in cancers
with important implications for tumor prognosis [72]. To add genome doubling as
a possible event in tumor evolution, we need a more complicated formulation of
PDP as an optimization problem to account for the fact that we lack a simple closed
form expression for whole-genome doubling-aware phylogenetics. Rather, we have
to pose the problem as an edit distance problem, in which we seek to minimize the
number ofmutational edit operations we perform on one taxon to transform it into the
other. We essentially need to solve a loose version of MOP, since we seek to identify
a minimum-cost sequence of mutations explaining the transition between two cells.
(It is a loose version, because there will typically be many equally parsimonious
mutation sequences for any given pair of copy number profiles.) We might begin by
posing the problem as follows, in which we account for both localized gene-scale
gain and loss (G) and whole-genome duplication (W) evolutionary events:

GW-CNA-PDP
Input: Taxa V1, V2 ∈ {N0}m
Output: A sequence of mutations μ = (μ1, . . . , μk) s.t.
μi ∈ {G1+,G1−, . . . ,Gm+,Gm−,W } ∀i (see below) and s.t.
μk(μk−1(. . . μ1(V1) . . .)) = V2

Objective: minμ k

Here,wemodel amutation as an operation on a copy number vector, i.e., a function
M : Nm

0 → Nm
0 . Specifically, we define the following mutation operations:

Gi+(v1, . . . , vi, . . . , vm) = (v1, . . . , vi + 1, . . . , vm)

Gi−(v1, . . . , vi, . . . , vm) = (v1, . . . , vi − 1, . . . , vm) (vi > 0)

W (v1, . . . , vi, . . . , vm) = (2v1, . . . , 2vi, . . . , 2vm)

Note that properly defined, these are not necessarily symmetric operations, which
may be problematic for some common uses of distance measures. For example,
a cancer genome can drop from one to zero copies of a locus by losing its only
copy, but it cannot move from zero to one copy by any mechanism known to us.
Likewise, a genome can double its entire complement in a single cell division but to
our knowledge there is no mechanism acting in cancer that halves the entire genome
complement in a single step. What we are solving here is in fact μ, a solution to the
MOP, although |μ|, i.e., k, is the actual distancemeasure.Wemight be interested in the
MOP itself, although one should be careful about over-interpreting it. Even assuming
the model is correct and that the true mutation order optimizes for the objective
function (both questionable assertions) the MOP will generally be degenerate as one
can arbitrarily rearrange G events between W events. The resulting GW-CNA-PDP
model is a simplification of one of the earliest single-cell tumor phylogeny models
[58], which introduced the W events although with a somewhat more complex set
of G events that we omit in discussion here.
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Algorithmically, the GW-CNA-PDP problem has not been proven intractable nor
has an efficient algorithm for it been found. In practice, it is solved with a method
that is fixed-parameter tractable (FPT) in the number of whole-genome duplications,
meaning it is efficient for any fixed number n ofW events but has exponential runtime
in n. Since n is generally small (on the order of 0–3 for a typical tumor), this is an
acceptable solution in practice.

A next step in that line of workwas to allow for a broader class ofmutations, incor-
porating chromosomeC events that change copynumbers of all genes on agiven chro-
mosome. Assume that we can partition our phylogenetic markers into chromosomes
c1 = (1, . . . , r1), c2 = (r1 + 1, . . . , r1 + r2) . . . , cr = (

∑r−1
i=1 ri + 1, . . . ,

∑r
i=1 ri).

Then we can add chromosome events as follows:

Ri+(v1, . . . , v∑i−1
j=1 rj+1, . . . , v∑i

j=1 rj
, . . . , vm) =

(v1, . . . , v∑i−1
j=1 rj+1 + 1, . . . , v∑i

j=1 rj
+ 1, . . . , vm)

Ri−(v1, . . . , v∑i−1
j=1 rj+1, . . . , v∑i

j=1 rj
, . . . , vm) =

(v1, . . . , v∑i−1
j=1 rj+1 − 1, . . . , v∑i

j=1 rj
− 1, . . . , vm)

We can then pose the following problem seeking a minimum-length mutation
ordering accommodating G, C, and W events [15]:

GCW-CNA-PDP
Input: Taxa V1, V2 ∈ {N0}m
Output: A sequence of mutations μ = (μ1, . . . , μk) s.t.
μi ∈ {G1+,G1−, . . . ,Gm+,Gm−,C1+,C1−, . . . ,Cr+,Cr−,W } ∀i and s.t.
μk(μk−1(. . . μ1(V1) . . .)) = V2

Objective: minμ k

The abovemodel has a straightforward generalization to a weightedmodel, devel-
oped in [13] with the goal of inferring mutation-specific rates on a single-tumor basis

wGCW-CNA-PDP
Input: Taxa V1, V2 ∈ {N0}m, weight function
w : {G1+,G1−, . . . ,Gm+,Gm−,C1+,C1−, . . . ,Cr+,Cr−,W } → R
Output: A sequence of mutations μ = (μ1, . . . , μk) s.t.
μi ∈ {G1+,G1−, . . . ,Gm+,Gm−,C1+,C1−, . . . ,Cr+,Cr−,W } ∀i and s.t.
μk(μk−1(. . . μ1(V1) . . .)) = V2

Objective: minμ

∑k
i=1 w(μi)
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GCW-CNA-PDP and wGCW-CNA-PDP are also not known to be hard but lack
efficient algorithms. Both are also solved in practice either by heuristic methods or
by algorithms FPT in the number n of whole-genome duplications needed. These
algorithms, too, are effectively solving the MOP problem, but again with the caveat
that optimal solutions may be highly degenerate, as both C and G events may be
reordered between W events with the exception of events that drop copy numbers to
zero.

An alternative that has seen considerable attention in the literature is known as the
MEDICC model [66] based on the tool that first used a variant of it. The MEDICC
model assumes that we can evolve a genome by gaining or losing one copy of any
arbitrary contiguous segment of a chromosome.We can express theMEDICCmodel
also as a form of edit distance model by establishing a pair of segmental gain/loss
edit operations. Given vertex v = (v1, . . . , vn), we define two operations:

S+,a,b(v) = (v1, . . . , va−1, va + 1, . . . , vb + 1, vb+1, . . . , vn)

S−,a,b(v) = (v1, . . . , va−1, va − 1, . . . , vb − 1, vb+1, . . . , vn)

where S+,a,b and S−,a,b are undefined if vi = 0 for any i ∈ [a, b]. Note that these are
not symmetric operations, since we can subtract from one copy to get zero but not
vice versa. We can then formulate the MEDICC CNA distance problem as follows:

MEDICC-CNA-PDP
Input: Taxa V1, V2 ∈ {N0}m
Output: A sequence of mutations μ = (μ1, . . . , μk) s.t. μi ∈ {S+,i,j, S−,a,b} ∀i and
s.t. [a, b] ⊆ [1, n] and μk(μk−1(. . . μ1(V1) . . .)) = V2

Objective: minμ

∑k
i=1 w(μi)

The MEDICC CNA distance, like the operations producing it, is not symmetric.
That is, the minimum distance from V1 to V2 may be different from the minimum
distance from V2 to V1.

The MEDICC distance has been shown to be solvable by a fast (linear time)
algorithm [87]. We could also pose a weighted MEDICC distance model in a variety
of ways. A natural formulation might be the following, which would follow from the
assumption that the cost of a MEDICC operation might itself be a function of the
length of the region gained or lost:

wMEDICC-CNA-PDP
Input: Taxa V1, V2 ∈ {N0}m, weight function w : N+ → R
Output: A sequence of mutations μ = (μ1, . . . , μk) s.t. μi ∈ {S+,i,j, S−,a,b} ∀i and
s.t. [a, b] ⊆ [1, n] and μk(μk−1(. . . μ1(V1) . . .)) = V2

Objective: minμ

∑k
i=1 w(b − a + 1)
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To our knowledge, no weighted MEDICC variant has been proposed in the liter-
ature yet and there is no formal theory generalizing the MEDICC algorithms to it,
although it would appear to be a straightforward extension.

There are other event types onemight incorporate intoCNAedit distancemeasures
that have not yet made their way into CNA phylogeny models to our knowledge. For
example, there is a body of theory on reconstructing a particular kind of structural
variation common in tumors, called a breakage-fusion-bridge (BFB) event, that leads
to a characteristic pattern of copy number changes [86] that one might in principle
bring into the kinds of phylogeny methods considered here. We are still discovering
mechanisms of structural variation in cancers and it is likely other mechanisms of
copy number variation are yet to be discovered.

Figure11.2 illustrates a few of the methods covered above. For convenience in
subsequent description, we will create a shorthand to refer to the distance measures
computed for these various models. We will define dL1 and dL2 to be the CNA L1 and
L2 distances. We will define dGW (u, v), dGCW (u, v), dwGW (u, v) and dwGCW (u, v)
as the minimum edit distances between copy number vectors u and v under the
GW, GCW, weighted GW, and weighted GCW models respectively. We will define
dMEDICC(u, v) as the edit distance computed by the MEDICC segmental gain/loss
model and dwMEDICC(u, v) as the hypothetical weighted version of that distance.

11.2.3 Other Data Types

While the great majority of work in tumor phylogenetics has focused on either SNV
or CNA data, there are alternatives, both established and emerging. Most either
follow similar principles to SNV data or are new enough to the literature not to
have established methods. We therefore treat them briefly here. Desper et al. [21]
introduced the idea of using expression data tomeasure distance in oncogenetic trees.
They considered three classes of measures for expression data, each assuming that
taxa are represented by vectors of normalized (Z-scored) expression values across a
set of genes, whichwe canmodel as V = (v1, . . . , vm), vi ∈ R. The simplestmeasure
used Mikowski norms, a generalization of the L1 and L2 norms described for SNV
data:

LP-EXP-PDP
Input: Taxa V1, V2 ∈ Rm

Output: A distance d(V1, V2) = (∑m
i=1(v1i − v2i)p

) 1
p

Here, we would most commonly choose p = 1 to yield L1 norm, p = 2 to yield
L2 norm, or p = ∞ to yield the infinity norm, equivalent to picking the largest value
in each vector. They also considered two other simple measures, the mean-square
distance given by d(V1, V2) = 2

(
1 − ∑m

i=1 v1iv2i
)
, and the mean-square absolute

distance given by d(V1, V2) = 2
(
1 − ∣

∣
∑m

i=1 v1iv2i
∣
∣
)
, which we omit listing as sepa-

rate problems.
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(c)(b)(a)

Fig. 11.2 Illustration of CNA distance and various measures by which it is estimated through an
example of a single chromosome (thick black bars) probed at four CNA loci (thin black bars) as
it is transformed from a putative diploid form U to a form V that is partially haploid and partially
triploid. a Transformation by L1 distance, in which we model CNA evolution by isolated changes
in copy number at single loci corresponding to our probes. Four single locus changes are required
to complete the transformation. b Transformation by GCW distance, in which the transformation
is completed in five steps by two localized genes-scale gains, a chromosome loss, a whole-genome
duplication, and another chromosome loss. c Transformation by MEDICC distance, in which one
segmental gain and one segmental loss are sufficient to perform the transformation

There are a variety of othermarker types onemight use formeasuring evolutionary
distance that we do not explicitly present as problems. Microsatellites can be treated
as a special case of CNA, and although the mechanisms are quite different from the
other CNAs considered here similar methods can be applied to them [67]. Epigenetic
modifications (methylation) are a natural marker type for cancer progression and can
be treated by similar methods to SNVs, as has been done for some more sophis-
ticated probabilistic phylogeny methods [81]. One complication of expression and
methylation data is high correlation between sites acting under common regulation,
although one can correct for this bias through network models that estimate changes
by co-regulated modules of markers rather than individual variant sites [55].
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11.3 Median Nodes

We next consider an intermediate step on the path to full phylogenetic trees: solving a
version ofMedianNodeProblem (MNP),whichwe can define as the problemof iden-
tifying an ancestral node that minimizes the sum of evolutionary distances between
itself and some set of input vertices. Some classic phylogeny methods depend on
our ability to identify either a common ancestor of two nodes or an intermediate
between three nodes, which may itself be a challenging problem. Distance-based
methods may depend on a variant of this problem for inferring unobserved ancestral
cell states. Some character-basedmethods depend on a different kind of median node
as a core part of the tree inference algorithm for discovering unobserved states. We
will therefore consider a few variants of MNP.

More abstractly, we will consider versions of two MNP problem variants, which
we will call 2-MNP and 3-MNP. 2-MNP can be defined for a given distance measure
d : Σm × Σm → R as follows:

2-MNP
Input: V1, V2 ∈ Σm

Output: Vm ∈ Σm

Objective: min d(Vm, V1) + d(Vm, V2)

3-MNP can be defined for a given distance measure d : Σm × Σm × Σm → R
as follows:

3-MNP
Input: V1, V2, V3 ∈ Σm

Output: Vm ∈ Σm

Objective: min d(Vm, V1) + d(Vm, V2) + d(Vm, V3)

We will consider below how these approaches have been applied in a few cancer-
specific contexts for specific alphabets Σ and distance measures d .

11.3.1 SNV Median Nodes

For a standard (unweighted) SNV distance, both 2-MNP and 3-MNP are core rou-
tines of classic phylogenetic methods. We can first state the biallelic 2-MNP, i.e.,
one in which we assume there are two possible allele values at each site (which
we canonically denote 0 and 1) and define distance by the Hamming distance
d(V1, V2) = ∑m

i=1 I(V1 �= V2):

0,1-SNV-2-MNP
Input: V1, V2 ∈ {0, 1}m



258 R. Schwartz

Output: Vm ∈ {0, 1}m
Objective: min d(Vm, V1) + d(Vm, V2)

and a variant for more general alphabets Σ , e.g., Σ = {A,C,G,T ,−}:

Σ-SNV-2-MNP
Input: V1, V2 ∈ Σm

Output: Vm ∈ Σm

Objective: min d(Vm, V1) + d(Vm, V2)

We state these for completeness, but both are trivially solvable.
The biallelic version of 3-MNP with Hamming distance is also important in prac-

tice as a subroutine of a standard method for intraspecies phylogenetics, known as
the reduced median network [6]:

0,1-SNV-3-MNP
Input: V1, V2, V3 ∈ {0, 1}m
Output: Vm ∈ {0, 1}m
Objective: min d(Vm, V1) + d(Vm, V2) + d(Vm, V3)

This variant is trivially solvable by taking a majority consensus at each site, i.e.,
taking the more common of the two variants among the V1, V2, and V3. We can easily
generalize to a weighted version by using weighted voting at each site rather than a
strict consensus.

For more general alphabets Σ , e.g., Σ = {A,C,G,T ,−}, we need a more
involved approach, part of a generalization of the median network called the median
joining method [5]

Σ-SNV-3-MNP
Input: V1, V2, V3 ∈ Σm

Output: Vm ∈ Σm

Objective: min d(Vm, V1) + d(Vm, V2) + d(Vm, V3)

We are unaware of any work directly using either of these measures or their
weighted versions for SNV tumor phylogenetics. Variants have been used for CNA
tumor phylogenetics, though, and one might consider them reasonable models of
SNV tumor phylogenies provided the number of mutations is not excessively large.

11.3.2 CNA Median Nodes

Just aswith distancemeasures,median problems becomemore computationally chal-
lenging and interesting when one considers CNA data as inputs. In these cases, good
algorithms are not obvious.We can poseCNAversions ofMNP for any of the variants
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of evolutionary distance measure we considered in the previous section, although not
all have known efficient solutions. It is perhaps an accident of how different CNA
measures have been used for phylogenetics which of these problem statements have
been investigated in the literature. The MEDICC distance was originally used with
the distance-based neighbor-joining method [66] which provides one motivation for
median node problems in inferring ancestral states. The 2-MNP problem was first
formally posed and theoretically analyzed for the MEDICC distance by El-Kebir
et al. [24]. They referred to this as the copy number triplet (CNT) problem, but for
consistency with our other notation we use an alternate name

MEDICC-CNA-2-MNP
Input: V1, V2 ∈ Nm

0
Output: Vm ∈ Nm

0
Objective: min d(Vm, V1) + d(Vm, V2), where d(Vi, Vj) is the MEDICC distance
dMEDICC defined in Sect. 11.2.2

This problem is formally intractable but can be solved efficiently in practice by an
FPT dynamic programming algorithm [24].

The L1 CNA distance has been used with both character and distance-based
phylogenymethods, although the GWandGCWdistances only with character-based
methods so far. The 3-MNP variant, which is used in heuristics for character-based
maximum parsimony phylogenetics, has thus been more relevant in practice for
these distance measures. For L1 3-MNP, used in [14], we get the following problem
statement:

L1-CNA-3-MNP
Input: V1, V2, V3 ∈ Nm

0
Output: Vm ∈ Nm

0
Objective: min d(Vm, V1) + d(Vm, V2) + d(Vm, V3), where d(V1, V2) = ∑m

i=1|v1i − v2i|

This definition has a computationally trivial solution, consisting for each locus of
the median of the three copy numbers of V1, V2, and V3 at that locus. Allowing for
chromosome and genome-scale events, as in [15], gives us the following:

GCW-CNA-3-MNP
Input: V1, V2, V3 ∈ Nm

0
Output: Vm ∈ Nm

0
Objective: min d(Vm, V1) + d(Vm, V2) + d(Vm, V3)

We know of no efficient solution for this problem statement, and it is solved heuris-
tically in practice [15], as is its weighted version [13]. Note that for asymmetric
distance functions such as this, we may need to consider a more complicated prob-
lem statement that allows for the possibility that the median node may be either
ancestral to or descendent from the three input nodes.
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One might reasonably pose the 3-MNP versions for MEDICC distance or 2-MNP
for GCW distance. This has not been done to our knowledge, though, and we might
consider solutions to those statements open problems. While 3-MNP has not been
explicitly posed for MEDICC distance to our knowledge, the harder problem of
solving maximum parsimony phylogenies under the MEDICC distance, for which
3-MNP would normally be solved as a subproblem, has been posed and solved by
other methods [24]. GCW distance is designed for data with few markers but many
cells, where character-based methods are more appropriate. They are therefore less
likely to be interesting problems in practice. Accounting for more complicated CNA
edit operations, such as BFB [86], is to our knowledge a genuinely open problem
that might be of some practical value.

11.3.3 Median Nodes for Other Data Types

We are unaware of any literature specifically on solving for median nodes for
any other natural tumor phylogeny marker type. Some may have trivial solu-
tions. For example, methylation data might be modeled identically to the 0,1-SNV-
MNP problem and solved by the same methods. Real-valued markers, such as
in expression-based phylogenetics, can be trivially solved by the arithmetic mean
vmi = (v1i + v2i + v3i)/3 for L1 or L2 distances. Median nodes for more complex
SVs (e.g., translocations, inversions, tandem duplications) represent a more inter-
esting challenge, where the solutions are not obvious and we know of no existing
theory. These might be considered interesting open problems as of this writing.

11.4 Steiner Tree Problems

The next step in our analysis of increasingly challenging tumor phylogeny problems
is the inference of complete phylogenies from tumor marker data. Variants of this
problem are solved for cross-sectional study designs, where we assume we have a
consensus marker vector for each tumor; regional studies, where we again assume
a consensus marker vector for each region; or single-cell studies, where we assume
we have typed markers for each of a set of cells in a single tumor. If we are using
distance-based methods, then the problems of the preceding two sections will typi-
cally give us the tools we need to generalize classic phylogeny methods to tumors.
For character-based methods, though, we typically need new algorithms appropriate
to tumor marker types. For the combinatorial approaches we consider in this chapter,
tree inference usually comes down to solving a form of what is called a Steiner tree
problem. Generically, Steiner tree problems can be defined as follows [40]:
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STEINER-TREE
Input: set V of vertices, set S ⊆ V of terminal vertices, distance measure d :
V × V → R
Output: tree T with node set V ′ and edge set E, where S ⊆ V ′ ⊆ V
Objective: minV ′,E

∑
u,v∈E d(u, v)

In practice, with genomic data one often solves for an implicit variant of the
Steiner Tree problem, where the Steiner nodes are not explicitly given as input but
rather implied as the set of all possible unobserved nodes. Algorithmically, the details
for solving such problems can vary quite a bit depending on the assumed input and
objective, though. Most reasonable variants of Steiner tree inference will end up
formally intractable [40], so such problems are usually solved heuristically.

11.4.1 SNV Steiner Trees

Just as with the MNP, the Steiner tree problem with SNVs is a classic problem
in phylogenetics, most often used in the context of intraspecies phylogenetics. We
would generally distinguish between two variants

0,1-SNV-STEINER-TREE
Input: set S of terminal vertices in {0, 1}m
Output: tree T with node set V ′ ⊆ {0, 1}m and edge set E, where S ⊆ V ′
Objective: minV ′,E

∑
u,v∈E d(u, v), where d(u, v) = ∑m

i=1 I(ui �= vi)

0,1-SNV-STEINER-TREE, also known as the bitstring Steiner tree problem, is a
basic version ofwhat is commonly known in the phylogenetics literature asmaximum
parsimony (MP) character-based phylogenetics [12]. We can also consider general-
izing the problem to a generic variant alphabet Σ , which would still be considered
a version of MP phylogenetics

Σ-SNV-STEINER-TREE
Input: set S of terminal vertices in Σm

Output: tree T with node set V ′ ⊆ Σm and edge set E, where S ⊆ V ′
Objective: minV ′,E

∑
u,v∈E d(u, v), where d(u, v) = ∑m

i=1 I(ui �= vi)

We can also consider weighted versions for either of these problems, although
we do not explicitly state them. While all of these variants yield formally intractable
problems, there is a lot of theory on solving them and excellent tools are available for
solving them inpractice (e.g., PAUP [77], Phylip pars [27]). These and similar off-the-
shelf tools have been previously used in the cancer context for solving variants of this
problem for tumor phylogenetics (e.g., [60]). There are also generic optimal solvers
based on integer linear programs (ILPs) [11, 71] or on fixed-parameter tractable
(FPT) methods [70] that can give provably optimal solutions for moderately hard
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problem instances. We are not aware of these generic optimal solvers being used
for tumor phylogenetics specifically. Those interested in developing new methods to
solve these problems or close variants would be well advised to read more on generic
phylogenetic inference (e.g., [28]) as there is a great deal of theory already known
that is relevant to solving them in practice.

11.4.2 CNA Phylogenetics

Steiner tree inference of CNAs is a much less-studied problem than Steiner tree
inference of SNVs, although there is some literature available. We can begin with a
simple version of the problem, copy number variation with rectilinear (also known
as Manhattan or Taxicab) distance:

L1-CNA-STEINER-TREE
Input: set S of terminal vertices in N m

0
Output: tree T with node set V ′ ⊆ N m

0 and edge set E, where S ⊆ V ′
Objective: minV ′,E

∑
u,v∈E dL1(u, v)

While this is also an intractable problem [30], it has been well studied even
before its use in the cancer context as a model for a mathematically similar problem
in integrated circuit design. In some cancer applications, it is common to alter the
classic problem statement slightly to force an all-diploid node to be the root node of
the tree even if it is not observed. In practice, some normal data will almost always be
observed for small marker sets and single-cell data due to contamination of tumors
by putatively healthy stromal cells. With genome-scale data, heterogeneous samples,
or cell lines, though, a diploid root may need to be explicitly enforced, leading to a
somewhat different problem specification than the simple version above.

We can also define the Steiner tree problem for a variety of versions of the GW,
wGW, GCW, or wGCW distances. All have been solved by heuristic methods in
the prior literature, and provably optimal branch-and-bound variants exist for GCW
[15] and wGCW [13] that might be applied with appropriate weights to all of these
variants. We present only the most general form here, as studied in [13]:

wGCW-CNA-STEINER-TREE
Input: set S of terminal vertices in N m

0
Output: tree T with node set V ′ ⊆ N m and edge set E, where S ⊆ V ′
Objective: minV ′,E

∑
u,v∈E dwGCW (u, v)

We can also pose the MEDICC distance variant of the CNA Steiner tree problem

MEDICC-CNA-STEINER-TREE
Input: set S of terminal vertices in N m

0



11 Computational Models for Cancer Phylogenetics 263

Output: tree T with node set V ′ ⊆ N m and edge set E, where S ⊆ V ′
Objective: minV ′,E

∑
u,v∈E dMEDICC(u, v)

El-Kebir et al. [24] have developed an ILPmethod to solve exactly for this problem
variant for modest sized trees and numbers of markers. Extending to wMEDICC
distance would be straightforward for both the model and the ILP, although to our
knowledge this has not been done in the literature.

11.4.3 Hybrid and Alternative Distance Measures

Work in tumor phylogenetics has increasingly depended on combining distinct
marker types. The most productive area of such work to date has been combin-
ing SNV and CNA data (e.g., [18]), although most such work does not lend itself
clearly to an explicit combinatorial optimization model. To our knowledge, expres-
sion data has not been considered as a Steiner tree marker, as expression measures
lend themselves more naturally to distance-based methods. Network-module-based
methods that transform expression changes into discrete activation/inactivation of
expression modules [55] might plausibly provide a path to a reasonable character-
based version of expression phylogenetics or for the similar problem of Steiner trees
from methylation data.

11.5 Phylogenetics and Deconvolution

One of themajor complications of tumor phylogenetics is that most data so far comes
from bulk samples (cross-sectional or regional sequencing) in which we likely have a
heterogeneous mixture of cells in each sample. Because of this, the tumor phylogeny
field has developed a specialized literature of methods that are based on simultane-
ously inferring a phylogeny and explaining each measured sample as a mixture of
nodes in the phylogeny [8]. The problem of explaining genomic data as a mixture
of signals is known by various names, most commonly genomic deconvolution. In
understanding the space of tumor phylogeny methods, then, it is important to con-
sider those that involve joint phylogenetics and deconvolution. There are a variety of
ways one might pose this problem, which largely come down to asking whether one
can explain a set of heterogeneous samples as a mixture of nodes from a phylogeny.
Figure11.3 illustrates the general problem. We consider a few basic variants here.

11.5.1 Deconvolutional Phylogenies on SNVs

Deconvolutional phylogenetics introduces a number of challenges in practice to our
earlier representations of phylogeny inference. In deconvolutional phylogenetics, it
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(a) (b)

Fig. 11.3 Illustration of deconvolutional phylogenetics. a In a deconvolutional phylogeny problem,
we assume we have a set of samples (perhaps from different regions of a single tumor, different
tumor sites in an individual, or different tumors in an oncogenetic tree variant). We assume our
measurements reflect a mixture of all of the clones present. b A deconvolutional method seeks to
derive a phylogeny describing all clones present in the sample as well as a model describing how
much of each clones in the tree is present in each sample

is common to assume that one has not just presence or absence of variants but also a
variant allele frequency (VAF) or cancer cell fraction (CCF) describing what fraction
of measured alleles or tumor cells have a particular variant at each site. This intro-
duces some important practical complications. One is that these real values are never
going to be exact, implying that reasonable models must include some notion of error
tolerance. Another is that distinction between VAF and CCF is subtle but important,
as VAFs can be directly estimated from sequence read counts but CCFs, which are
usually what one really wants, are ambiguous without more knowledge about how
alleles are distributed among cells. For example, a population of cells in which half
are homozygous for one allele and half homozygous for another will have the same
VAF but a different CCF than a population in which every cell is heterogyzous. This
problem becomes much more complex when we allow for varying copy number of
the locus containing the allele. Much work in the field initially proceeded by adding
some potentially restrictive assumptions to remove these ambiguities. One common
assumption is that VAFs are derived only from diploid regions of the genome, which
may be problematic given widespread copy number variation in cancers. Another
common assumption is that mutations accumulate according to a perfect phylogeny,
meaning they never recur or revert. The perfect phylogeny assumption is a conse-
quence of a model called the infinite sites assumption (ISA). A final practical issue is
that such models have sometimes been posed in the literature in terms of decision or
enumeration problems—i.e., the problem of finding the set of trees, if any, that satisfy
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a set of output conditions within some error tolerance—as opposed to optimization
problems.

In describing these problems, we will begin simplified variants and then con-
sider how to extend them. Note that we necessarily simplify somewhat the actual
formulation of these problems in the literature for pedagogical purposes, as most
such methods involve fairly complicated probabilistic models for error-handling and
modeling raw data in the form of sequence read counts. We will begin with a deci-
sion (or enumeration) variant of the most restrictive SNV model, assuming perfect
phylogeny and diploid genomes. Here, we will assume data is provided as a matrix
V of VAFs for n distinct tumor sites at m loci and that our goal is to infer a matrix of
k clonal alleles C, a matrix describing the fraction of each clone at each tumor site,
and a tree T describing evolution of the k inferred clones.

One other complication introduced by deconvolutional phylogenetics is that it
involves potentially competing measures of solution quality. One can judge quality
of the solution by an objective on the quality of the deconvolution, as is typical of
pure deconvolution methods, or by the quality of the phylogenetic tree, as is typical
of pure phylogeny methods. One way to finesse this issue is to restrict the class of
trees allowed, commonly by assuming a perfect phylogeny, and then find the best
deconvolution among allowed trees. That is a simplification of the approach taken
by some early work in this space [39, 43]:

MIN-PP-SNV-DP
Input: n × m matrix V where vij ∈ [0, 1], number of clones k to be inferred
Output: k × m matrix C where cij ∈ {0, 1}, n × k matrix F where fij > 0 and
∑k

j=1 fij = 1, tree T = (C,E) where T is a perfect phylogeny
Objective: minC,F ||V − CF ||2

The perfect phylogeny constraint says that if we interpret each row of C as a
character vector for one node of a tree, then a phylogeny on these nodes can be
constructed such that no column (variant nucleotide) changes more than once in the
tree.While this might be simply stated, solving the problem in practice requires some
significant theoretical tools defined in [35].

We can also define an existence/enumeration variant of this problem, in which we
ask whether there exists any solution to the problem, similar to the approach taken
by other important work in this domain [23, 35]:

ENUM-PP-SNV-DP
Input: n × m matrix V where vij ∈ [0, 1], number of clones k to be inferred, error
tolerance ε > 0
Output: k × m matrix C where cij ∈ {0, 1}, n × k matrix F where fij > 0 and
∑k

j=1 fij = 1, tree T = (C,E) where T is a perfect phylogeny, where for each entry
vij, the corresponding entry xij for X = CF satisfies |vij − xij| < ε

Objective: none
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One might alternatively repose the existence variant of the problem to drop the
perfect phylogeny constraint and optimize for phylogeny cost, essentially giving a
maximum parsimony solution consistent with the mixture constraints, although this
solution has not been used in practice to our knowledge

MP-SNV-DP
Input: n × m matrix V where vij ∈ [0, 1], number of clones k to be inferred, error
tolerance ε > 0
Output: k × m matrix C where cij ∈ {0, 1}, n × k matrix F where fij > 0 and
∑k

j=1 fij = 1, tree T = (C,E), where for each entry vij, the corresponding entry
xij for X = CF satisfies |vij − xij| < ε

Objective: min
∑

(u,v)∈E d(u, v) where d is the Hamming distance
∑m

i=1 I(ui �= vi)

One might also alternatively choose a multi-criterion objective optimizing for
some balance between fit to the mixture data and phylogeny cost

MC-SNV-DP
Input: n × m matrix V where vij ∈ [0, 1], number of clones k to be inferred, regu-
larization parameter λ

Output: k × m matrix C where cij ∈ {0, 1}, n × k matrix F where fij > 0 and
∑k

j=1 fij = 1, tree T = (C,E)

Objective: min (||V − CF ||2) + λ
(∑

(u,v)∈E d(u, v)
)
where d is the Hamming dis-

tance
∑m

i=1 I(ui �= vi)

Again, we are unaware of a method using quite this formulation, although some
similar approaches exist in the CNA space, as discussed below.

11.5.2 Deconvolutional Phylogenies on CNAs

The space of methods performing deconvolution and phylogenetics solely on CNAs
is limited. This is largely because of an inherent mathematical limitation: changes
in copy number of a locus in a single clone are indistinguishable from changes
in frequency of the clone, making the problem ill-posed without some additional
constraints.

Some work sidesteps this by a variant of the multi-criterion approach, using a
cost on the phylogeny to disambiguate equally good deconvolution solutions [62,
63], building on ideas from work for the purely deconvolutional variant of the prob-
lem [74].

MC-CNA-DP
Input: n × m matrix V where vij ∈ [0, 1], number of clones k to be inferred, regu-
larization parameter λ

Output: k × mmatrixCwhere cij ∈ N0, n × kmatrixF where fij > 0 and
∑k

j=1 fij =
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1, tree T = (C,E)

Objective: min (||V − CF ||2) + λ
(∑

(u,v)∈E dL1(u, v)
)

An alternative approach to this multi-objective optimization problem, offered by
Zaccarria et al. [82, 83], is to optimize for one objective subject to a cap on the other.
Rather than balancing deconvolution and phylogeny cost in a single objective, they
optimize for deconvolution quality given a maximum phylogeny cost, specified in
terms of theMEDICC distance. They further seek to limit degeneracy of solutions by
exploiting the fact that copy numbers are discrete and by capping the maximum copy
number one can limit possibilities for distinct but equivalent solutions. The result is
a problem variant they call the copy number tree mixture deconvolution (CNTMD)
problem [82, 83]. In our notation, the problem can be posed as follows:

MEDICC-CNA-DP
Input: n × m matrix V where vij ∈ [0, 1], number of clones k to be inferred, and a
maximum copy number cmax, and a maximum phylogeny cost Λmax

Output: k × m matrix C where cij ∈ {0, cmax}, n × k matrix F where fij > 0 and
∑k

j=1 fij = 1, tree T = (C,E), such that
(∑

(u,v)∈E dMEDICC(u, v)
) ≤ Λmax

Objective: min (||V − CF ||2)

While there are few CNA-specific approaches in the literature, CNAs are widely
used in recent deconvolution approaches in conjunction with SNV markers, as dis-
cussed in the next section.

11.5.3 Hybrid Deconvolutional Methods

Aswe allude to above, the VAF/CCF issuemade the issue of copy numbers important
even if we are only seeking to infer a phylogeny on SNVs. In particular, SNV-only
methods generally need to accept the fairly restrictive assumption of working only in
diploid genome regions. As a result, a number of deconvolutional tumor phylogeny
methods have come to use a combination of SNVs and CNAs in inference as an
alternative way to resolve the ambiguity while allowing for copy number variant
DNA (e.g., [25, 38]). While the details in real practice are again complicated, we
can approximately think of these as generalizations of the SNV methods considered
above.

We can begin by considering a generalization of the perfect phylogenymethods to
regions of variable copy number, similar to what was done in [25]. One way to pose
this problem would be to optimize deconvolution quality subject to the assumption
of exact SNV and CNA data and nonrecurrent mutation, similar to purely SNV
optimization variants

MIN-PP-SNV + CNA-DP
Input: n × m SNV VAF matrix V where vij ∈ [0, 1], n × m copy number matrixM
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where mij ∈ N0, number of clones k to be inferred
Output: k × m SNVmatrixC where cij ∈ {0,mij}, n × k matrix F where fij > 0 and
∑k

j=1 fij = 1, tree T = (C,E) where T is a perfect phylogeny
Objective: minC,F ||V − CF ||2

We can similarly consider existence or enumeration variants and noise tolerance,
as with the purely SNVmethods. This alternative is closer to the problem as actually
solved by El-Kebir et al. [25], although also still a simplification:

ENUM-PP-SNV + CNA-DP
Input: n × m SNV VAF matrix V where vij ∈ [0, 1], n × m copy number matrixM
where mij ∈ N0, number of clones k to be inferred, error tolerance ε > 0
Output: k × m SNVmatrixC where cij ∈ {0,mij}, n × k matrix F where fij > 0 and
∑k

j=1 fij = 1, tree T = (C,E) where T is a perfect phylogeny, where for each entry
vij, the corresponding entry xij for X = CF satisfies |vij − xij| < ε

Objective: none

We can likewise seek to drop the perfect phylogeny assumption. While there are
various heuristics in practice to do this, we might pose it more formally as a problem
by generalizing the multi-criterion variants of the SNV or CNA problem

MC-SNV + CNA-DP
Input: n × m matrix V where vij ∈ [0, 1], n × m copy number matrix M where
mij ∈ N0, number of clones k to be inferred, regularization parameter λ

Output: k × m matrix C where cij ∈ {0, 1}, n × k matrix F where fij > 0 and
∑k

j=1 fij = 1, tree T = (C,E)

Objective: min (||V − CF ||2) + λ
(∑

(u,v)∈E d(u, v)
)
where d is the Hamming dis-

tance
∑m

i=1 I(ui �= vi)

Wemight alternatively adopt a three-criterionmethod, allowing for balancing tree
cost with deconvolution quality of both SNV and CNA data. We know of no such
method currently in the literature, though, and would expect one might favor moving
to a true likelihood model.

11.5.4 Other Marker Types

As with other problem classes, one might in principle pose the deconvolution phy-
logenyproblem for other variant types.These directions are sufficiently immature that
we restrict ourselves here to citing some relevant work without delving into specific
problem variants that are often still ill-formed as formal computational problems.
There has also been some tumor phylogeny work involving deconvolution of methy-
lation data [81], although to our knowledge only using Bayesian models beyond
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the scope of the present chapter. Some of the first work in deconvolutional phylo-
genetics used expression data [65], although via a crude distance-based phylogeny
method, and there has been some limited work combining expression and CNA data
for joint deconvolution and phylogeny inference [63]. Formulations of the problem
have begun to appear for more varied kinds of SV not captured by CNA methods
[22], such as inversions and translocations.

11.6 Emerging Directions

One of the challenges of writing a treatment of tumor phylogenetics for a computa-
tional audience is that much of the work to be done is in defining the right compu-
tational problems, more so than in figuring out how to solve them. As this chapter
should already hint, the right problem definitions are a moving target, shifting with
our understanding of the biology, our ever-changing technologies for profiling tumor
genetic variations, and our evolving appreciation for what tumor phylogenetics can
teach us and how. It is important for anyone working in this area, or thinking of
entering it, to understand that research in this field requires innovation in problem
formulations, which itself depends on an appreciation for the complexity of the bio-
logical system and the biological and medical questions we are asking about it, as
well as for the computational tools one might apply to them. While we cannot know
for certain where the field will go, we can look at some current trends and suggest
where new computational problems are likely to arise in the not-too-distant future.

One of the surest bets in tumor phylogenetics is that there will be far more data
available in the future than there are today. Advances in single-cell genomic tech-
nologies have been dramatic and we can reasonably infer that they will continue to
advance, making data acquisition faster and cheaper. Given the substantial advan-
tages of single-cell over bulk sequence, one might reasonably infer that future tumor
evolutions studies will be based largely on single-cell data, and in much larger vol-
umes than is typical today. Large data sets have important implications formodels and
algorithms, helping drive more comprehensive and detailed models but also creating
challenges for methods that depend on solving intractable computations in practice.
There will likely be difficult tradeoffs between realism and tractability, and a need for
new theory to better balance the two. A second trend in the field is the increasing use
of long-read technologies, which can be expected to provide better data than prior
sequencing technologies, particularly for structural variants, and in turn create a need
for computational methods better able to make use of those data. A final conjecture is
that the field will need to deal with much larger scales of study populations than has
been the standard so far. One of the earliest lessons of single-tumor phylogenetics
was that tumor growth is highly stochastic and it is only by averaging across large
numbers of samples that one can separate robust trends from random variation [58].
This lesson has needed to be relearned as tumor phylogenetics moved from the com-
putational biology community to mainstream cancer biology, leading to a great deal
of contradictory and nonreproducible results [64]. Future tumor phylogeny methods
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will need to be able to deal with large study populations. It is likely that there will
be a need for a new sub-discipline of consensus tree methods specialized for tumor
phylogenetics, a topic that has so far seen only heuristic treatment [32, 58], as well
as a new body of theory on relevant statistical methods for optimal design of future
tumor phylogeny studies.

A further important area of futurework is likely to bebringing tumor phylogenetics
to the clinic. There is limited work to date showing that tumor phylogenies contain
predictive information that might be used in clinical decision-making. There are,
however, likely to be a host of challenges in making that vision a reality. These
include figuring out how best to quantify that information and apply it to decision-
making tasks and applying it broadly to distinct cancers and decision tasks. These
are likely to be hard problems, but crucial ones for tumor phylogenetics to realize its
real potential as a window into how tumors evolve on a personalized, patient-specific
basis.

11.7 Conclusions

This chapter covered a few examples of computational models that arise in the
study of tumor phylogenetics. They are provided here in the hope that they will
be instructive in understanding how one thinks about the differences between tumor
evolution and classic species evolution, as well as for understanding how one begins
to tackle the hard computational challenges in tumor phylogenetics. While each
of these problems derives from a greatly simplified model of real tumor biology,
many have proven useful starting points for work in developing practical phylogeny
methods. They are also hopefully instructive for computer scientists or computational
biologists seeking to learn more about tumor phylogenetics and perhaps work on the
field themselves. Much of the work in tumor phylogenetics to date has arisen from
computational biologists thinking carefully about how to pose formal problems like
these that approximate the complexity of the biology and then gradually move them
closer to the real system.

We hope also that these examples will prove a good didactic model for some of
the lessons Bernard Moret has taught to the phylogenetics field and computational
biology in general. Tumor phylogenetics has depended on thinking about evolution
and the role of phylogenetics in understanding evolutionary systems beyond the
conventional contexts. It has also depended, and will likely still depend, on deep
thinking about algorithms for solving some challenging problems in biology. More
than that, though, the field has depended on practical thinking about the real-world
problem, where methods need to work with large, messy, complicated data sets and
give answers that tell us something about an important problem that affects millions
of lives.
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Chapter 12
Clusters, Trees, and Phylogenetic
Network Classes

Louxin Zhang

Abstract Rooted phylogenetic networks are rooted acyclic digraphs that are used
to represent complex evolution, where reticulation events (such as horizontal gene
transfer, recombination, etc.) play a role. The combinatorial study of rooted phyloge-
netic networks has been an active research field of phylogenetics in the past decade. It
serves as the foundation for the development of fast algorithms to reconstruct recom-
bination networks in population genetics and hybridization networks in plant science.
In this expository chapter, we introduce recent developments in characterizing the
classes of rooted phylogenetic networks (including tree-based, reticulation-visible,
galled networks, etc.) and designing fast algorithms for the cluster and tree contain-
ment problems for rooted phylogenetic networks.

Keywords Clusters · Rooted phylogenetic trees · Galled networks · Tree-based
networks · Reticulation-visibility · Near stability · Cluster containment · Tree
containment

12.1 Mathematical Models of Evolution

12.1.1 Phylogenetic Trees

Let X be a set of taxa. A (rooted) phylogenetic tree on X is a rooted directed tree in
which:

• X corresponds one-to-one to the leaves (i.e., nodes of degree 1);
• the root node is of indegree 0 and outdegree at least 2. All the edges are directed
away from the root; as such, the orientation of an edge is clear once the root is
given and hence usually not indicated in the tree, as shown in Fig. 12.1.

• every non-leaf and non-root node is of indegree 1 and outdegree at least 2.

A phylogenetic tree is binary if every non-leaf node is of outdegree exactly 2.
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Fig. 12.1 Left: A binary rooted phylogenetic tree on human, dog, mushroom, maize, rice, and
bacteria. Right: A binary rooted phylogenetic network on six members of the An. gambiae complex,
in which there are three reticulation nodes (filled) that represent introgression events. This network
is drawn on the basis of the phylogenetic relationship of the six members given in [8]. Col, An.
gambiae M form; gam, An. gambiae S form; ara, An. arabiensis; qua, An. quadriannulatus, mel,
An. melas; mer, An. merus

Non-leaf nodes are called internal nodes. The internal nodes of a phylogenetic
tree represent hypothetical ancestral taxa. In particular, the root represents the “most
recent common ancestor” of the taxa represented by the leaves, i.e., all the taxa in
X . In molecular evolution, X may represent a set of species, a set of genes, a set of
proteins, or a set of genomic sequences.

There are unweighted and weighted phylogenetic trees. In a weighted phyloge-
netic tree, each edge is assigned a nonnegative weight, which usually corresponds
to the evolutionary duration of the lineage represented by the edge. In this chapter,
phylogenetic trees are assumed to be unweighted.

12.1.2 Rooted Phylogenetic Networks

A rooted phylogenetic network is a generalization of a phylogenetic tree. These
networks are often used to model both tree-like evolution and reticulation events in
evolutionary genomics.

Let X be a set of taxa. Formally, a rooted phylogenetic network on X is a rooted,
connected but acyclic digraph in which:

• X corresponds one-to-one to the leaves (i.e., nodes of degree 1);
• all the edges are directed away from a unique root node ρ (which is of indegree 0
and outdegree at least 2), as shown in Fig. 12.1;

• every non-leaf and non-root node is either of indegree 1 and outdegree at least 2
or is of outdegree 1 and indegree at least 2;

• there are no parallel edges between any two nodes.

In a rooted phylogenetic network, a node of indegree at most 1 is called a tree node.
In particular, the root ρ and leaves are tree nodes. A node of indegree greater than 1
is called a reticulate node. Non-leaf nodes are said to be internal.
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For a rooted phylogenetic network N , we use V (N ),T (N ),R(N ) and ρ(N ) to
denote the set of nodes, the set of internal tree nodes, the set of reticulate nodes, and
the root of N , respectively. Similarly, we use E (N ) to denote the set of edges.

For two nodes u, v of N , we say that v is the child of u and that u is the parent
of v if (u, v) ∈ E (N ). For a reticulate node r , we use P(r) to denote the set of the
parents of r and c(r) to denote the unique child of r . For a tree node t , we use p(t)
to denote the unique parent of t and C(t) to denote the set of the children of t .

We say that v is below u if there is a directed path from u to v. For convenience,
we say a node is also below itself. We say that u is an ancestor of v if v is below u.
Node u is said to be an ancestor of a subset of nodes if it is an ancestor of every node
in the subset.

Additionally, for an edge (u, v) ∈ E (N ), we call this a tree edge if v is a tree node
and a reticulate edge if v is a reticulate node. For a reticulate edge e of N , N − e
denotes the network obtained from N by removing e, which is clearly connected.
Similarly, we use N − E to denote the resulting network after all the edges of E are
removed for a set E of reticulate edges. Analogously N + e and N + E are defined
for any e /∈ E (N ) and E ∩ E (N ) = ∅.

A rootedphylogenetic network is said to bebinary if every tree node is of outdegree
2 and every reticulate node is of indegree 2. Binary rooted phylogenetic networks
have the following basic property:

Theorem 1 Let N be a binary rooted phylogenetic network on X and |X | = n. Then

|T (N )| = |R(N )| + (n − 1). (12.1)

|E (N )| = 3|R(N )| + 2(n − 1).

Proof In N , the root is of indegree 0 and outdegree 2; each internal tree node is of
indegree 1 and outdegree 2, each reticulate node is of indegree 2 and outdegree 1,
and each leaf is of indegree 1 and outdegree 0. Therefore, by the digraph version of
the Handshaking lemma, we have

2 × |T (N )| + 0 × n + 1 × |R(N )| = 1 × (|T (N )| − 1) + 1 × n + 2 × |R(N )|,

which is equivalent to Eq. (12.1). Since each edge contributes 1 to the outdegree of
its tail,

|E (N )| = 2 × |T (N )| + 1 × |R(N )| = 3|R(N )| + 2(n − 1).

Since there is no reticulate node in a binary tree, the above proposition implies
the following basic fact about binary trees.

Corollary 1 Let T be a phylogenetic tree with n ≥ 2 leaves. If T is binary, it has
n − 1 internal nodes and 2(n − 1) directed edges.

Tree-child phylogenetic networks. A tree-child network is a binary rooted phyloge-
netic network in which each internal node has a child that is a tree node (Fig. 12.2a).
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(a) (b) (c)

Fig. 12.2 a A tree-child network that is not a galled network. b A galled tree. c A galled network.
It is neither a tree-child network nor a galled tree

Equivalently, a rooted phylogenetic network is tree-child if and only if for each node
v, there is a path from v to a leaf such that all but v are tree nodes.

Galled trees and galled phylogenetic networks. Let N be a binary rooted phylo-
genetic network on X . A biconnected component of N is a maximal subgraph in
which, for every pair of nodes u and v, an undirected cycle exists that contains u
and v. A rooted phylogenetic network is a galled tree if every biconnected com-
ponent contains at most one reticulate node (Fig. 12.2b). Equivalently, in a galled
tree, every undirected cycle contains exactly one reticulate node. Notice that any two
undirected cycles are node-disjoint in a galled tree. It is less clear that each galled
tree is a tree-child phylogenetic network.

A binary rooted phylogenetic network N is a galled network if for each reticulate
node v of N , there is a tree node u such that there are two edge-disjoint directed
paths from u to v that consist only of tree nodes (Fig. 12.2c). Clearly, every galled
tree is a galled network.

Temporal property of rooted phylogenetic networks. Let N be a rooted phyloge-
netic network. N is said to be temporal if there is a node labeling τ : V (N ) → R

+
satisfying the following two “temporal” conditions:

• τ(u) = τ(v) for any reticulate edge (u, v), and
• τ(u) < τ(v) for any tree edge (u, v),

where R+ is the set of nonnegative real numbers.
Not all rooted phylogenetic networks have a temporal node labeling. However,

there is a simple polynomial-time algorithm to determine whether an arbitrary net-
work has a temporal node labeling or not [37].

12.1.3 Applications of Rooted Phylogenetic Networks

Rooted phylogenetic networks have been used to model evolutionary relationships
in population genetics, plant biology, and genome evolution.
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Ancestral recombination networks. The human body is built of trillions of cells.
Each cell contains the hereditary material and can make copies of itself by repro-
duction and division. Genetic recombination may occur when the cell is divided.
For example, during meiosis, two homological copies generated by replicating each
of the two chromosomes in the premeiotic cell can exchange their genes. As such,
the process of meiosis results in the four haploid cells that may each carry genes
on either of the two chromosomes in the premeiotic cell. Genetic recombination is
a key force responsible for sequence variance at the population scale. In population
genetics, a rooted phylogenetic network is used to model the derivation of DNA by
both recombination andmutation events, which is called a genealogical network [19]
and sometimes called an ancestral recombination network in the literature.

Hybridization networks. Hybridization is the interbreeding between individuals of
different species that results in a novel offspring.Hybridization is one of the important
sources for genetic variation. Famous hybrid products include mules (horse × don-
keys) and wheat (Triticum aestivum) (three wild grasses). Introgressive hybridization
in genetics is gene flow from one species into the gene pool of another by the repeated
backcrossing of an interspecific hybrid with one of its parent species, which is also
called introgression.

In plant science, a rooted phylogenetic network is often used to represent the
hybridization history of plant species in which a reticulate node represents a
hybridization event, which is called hybridization network. For instance, Fig. 12.1b
is a network model of the hybridization history of bread wheat [32]. It contains three
retrogression events.

Tree of life or net(work) of life? Horizontal gene transfer (HGT) is an evolutionary
event inwhich geneticmaterial moves between organisms other than by the transmis-
sion of DNA from parent to offspring. Recent studies of genome evolution reveal that
HGT happens frequently. Even pea aphids (Acyrthosiphon pisum) acquired multiple
genes from fungi through HGT [33]. Because of HGT, gene trees are often incon-
sistent with the tree of the species that contain the genes in the gene tree. Therefore,
Johann Peter Gogarten suggests using “the metaphor of a mosaic to describe the dif-
ferent histories combined in individual genomes and use the metaphor of a net(work)
to visualize the rich exchange and cooperative effects of HGT amongmicrobes” [15].

12.2 Decomposition of Rooted Phylogenetic Networks

Let N be a rooted phylogenetic network on X . Then N − R(N ) is a forest, in
which each component is a subtree rooted at either the network root or the child of
a reticulate node. These components are called the tree node components of N . A
tree node component is trivial if it contains exactly one network leaf. It is nontrivial
otherwise. Notice that a nontrivial component may contain network leaves.

A reticulate node is inner if all its parents belong to the same tree node component.
It is crossotherwise. In the rooted phylogenetic network given inFig. 12.3a, the parent
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(a) (b)

Fig. 12.3 a Illustration of the tree node decomposition of a rooted phylogenetic network. The
network is decomposed into two nontrivial (shaded) and four trivial tree node components, together
with two nontrivial reticulate components (surrounded by dotted curves) and three singleton retic-
ulate components (middle). b Compression of the network in (a) (defined later)

of Leaf 2 is inner. By contrast, the parent r of Leaf 3 is cross, as the parents of r are
in two different nontrivial tree node components.

Similarly, N − T (N ) − X is also a forest. Each component is a rooted subtree
with its root being at the bottom. These components are called the reticulate compo-
nents of N . An example of such a network decomposition is illustrated in Fig. 12.3,
in which the set of tree nodes are partitioned into two nontrivial and four trivial
tree node components, whereas the set of reticulate nodes are decomposed into five
reticulate components. In summary, we have the following facts [17]:

Theorem 2 Let N be a rooted phylogenetic network on X. Then,

(1) T (N ) ∪ X contains exactly all the nodes in the union of tree node components
of N .

(2) R(N ) contains exactly all the nodes in the union of reticulate components of N .
(3) #(tree node components of N) = 1 + #(reticulate components of N).

A rooted phylogenetic network is said to be compressed if each reticulate com-
ponent contains exactly one reticulate node.

12.3 Clusters in Rooted Phylogenetic Networks

12.3.1 Clusters in Phylogenetic Trees

Let T be a phylogenetic tree on X . For a node u of T , the cluster associated with
u, denoted cT (u), is the subset of leaves that become separated from the root upon
removal of u. Note that cT (u) is simply the set of taxa found below u. We let

C (T ) = {cT (u) | u ∈ V (T )}, (12.2)



12 Clusters, Trees, and Phylogenetic Network Classes 283

which denotes the set of clusters associated with the nodes of T . For the phylogenetic
tree in Fig. 12.1, the clusters include the sets: {human, dog}, {maize, rice},
{human, dog, fungi}, and {human, dog, fungi, maize, rice}, together with
X and six singleton sets each containing only one species in X . Biologists usually
call clusters “clades” or “monophyletic groups”.

Theorem 3 Let T be a phylogenetic tree on X. ThenC (T ) defined in (12.2) satisfies
the following two conditions:

(C1) For any two distinct clusters A, B ∈ C (T ), we have A ∩ B ∈ {A, B,∅}; and
(C2) X ∈ C (T ) and {x} ∈ C (T ) for each x ∈ X.

Conversely, given a family C of subsets satisfying (C1) and (C2), one can compute
a unique phylogenetic tree on X such that C (T ) = C .

The proof of Theorem 3 can be found in [37, p. 19]. By Theorem 3, a phylogenetic
tree is uniquely determinedbyC (T ). Therefore, for any twophylogenetic treesT1 and
T2, the symmetric difference of C (T1) and C (T2) is used to measure the difference
between T1 and T2. Precisely, the Robinson–Foulds distance between T1 and T2,
denoted dRF (T1, T2), is equal to:

|C (T1)�C (T2)| = |C (T1)/ C (T2)| + |C (T2)/ C (T1)|. (12.3)

As an exercise, the reader is suggested to verify that the Robinson–Foulds distance
satisfies the triangle inequality.

12.3.2 Cluster Networks and Regular Networks

Let N be a rooted phylogenetic network on X . For any node u ∈ V (N ), the cluster
associated with u, denoted cN (u), consists of leaves that are reachable by a directed
path from u. It is easy to see that X is the cluster associated with the network root
and {x} is associated with the leaf for each x ∈ X .

Let C (N ) be the collection of clusters associated with the nodes of N . For the
rooted phylogenetic network in Fig. 12.2a, the clusters include {1, 2}, {4, 5}, {1, 2,
3}, and {3, 4, 5}, together with X and five singleton sets each containing only one
leaf. Noticed that the condition (C1) in Theorem 3 is no longer true.

Unlike for phylogenetic trees, one may have that C (N1) = C (N2) even for dif-
ferent N1 and N2. For example, the rooted phylogenetic network in Fig. 12.4 has the
same collection of clusters as the network in Fig. 12.2a. Therefore, a rooted phylo-
genetic network is generally not determined by giving the collection of clusters in
the network.

A rooted phylogenetic network N on X is a cluster network if it has the following
three properties:

(P1) for any nodes u, v of N , cN (v) ⊆ cN (u) if and only if v is below u;
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Fig. 12.4 A cluster network
on {1, 2, 3, 4, 5} whose
clusters consist of {1, 2}, {4,
5}, {1, 2, 3}, {3, 4, 5}, and
{1, 2, 3, 4, 5}, together with
all five singleton clusters

(P2) for different nodes u, v of N , both c(u) = c(v) and v being below u imply that
u is a reticulate node, v is a tree node and (u, v) ∈ E (N ).

(P3) for any u ∈ V (N ) and any child v of u, no node w exists such that
cN (v) ⊂ cN (w) ⊂ cN (u).

Properties (P1)–(P3) are independent from each other. Property (P2) implies that
cluster networks are compressed. Property (P3) implies that

(P3′) for any node u, v of N , we have (u, v) /∈ E (N ) if there is a directed path from
u to v of length greater than 1.

Notice that the tree-child network in Fig. 12.2a does not satisfy Property (P3′).

Proposition 1 Let N be a rooted phylogenetic network on X. If N is tree-child and
satisfies Property (P3′), then N is cluster.

Proof Let N be a tree-child network on X . We only need to prove that Properties
(P1) and (P2) are both true.

Clearly, if v is below u, cN (v) ⊆ cN (u). Conversely, assume that u and v are two
nodes such that cN (v) ⊆ cN (u). Since N is tree-child, there is a path H from v to a
leaf x that passes through tree nodes only. Since x ∈ cN (v) ⊆ cN (u), there is a path
H ′ from u to x . If H ′ does not pass through v, then H and H ′ must intersect at a
node w in H , implying that w is a reticulate node. This contradicts the notion that H
passes through tree nodes only. Therefore, H ′ contains v and thus v is below u. This
proves that N satisfies Property (P1).

Assume that cN (u) = cN (v) for different u and v. By Property (P1), one is below
the other. Without loss of generality, we may assume that v is below u. If u is not a
reticulate node, then u is an internal tree node. Let u have the children x and y. Since
N is tree-child, there is a path H ′ from x to a leaf �′ and a path H ′′ from y to a leaf
�′′ that consists of only tree nodes. Since H ′ and H ′′ pass through tree nodes only,
they are node-disjoint and, particularly, �′ �= �′′. If v is not in H ′, then, �′ ∈ cN (u)

but �′ /∈ cN (v). If v is not in H ′′, then, �′′ ∈ cN (u) but �′′ /∈ cN (v). This contradicts
that cN (u) = cN (v). If u is a reticulate node and v is not the child of u, we let w be
the child of u. Then, cN (w) = cN (u) = cN (v) and v is also below the tree node w,
which is impossible, as shown above. This shows that N satisfies Property (P2).
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Fig. 12.5 Four possible spanning trees of the rooted phylogenetic network in Fig. 12.2c

By merging each reticulation node with its unique tree-child in a cluster network,
we obtain a rooted network satisfying Property (P3′) and the following property:

(P1′) for any nodes u, v of N , cN (v) ⊂ cN (u) if and only if v is below u;

Such networks are called regular networks in the literature. Note that each node
represents a unique cluster in a regular network and regular networks are not rooted
phylogenetic networks by definition.

Given a collectionC of subsets of X such that X ∈ C and {x} ∈ C for each x ∈ X ,
we can construct a digraph G(C ) from C . This digraph contains a node for each
subset inC ; it has a directed edge (C ′,C ′′) ifC ′′ ⊂ C ′ and there is no setC ∈ C such
that C ′′ ⊂ C ⊂ C ′. It is easy to see that G(C ) is a regular network. Therefore, a set
of clusters on X such that X ∈ C and {x} ∈ C for each x ∈ X determines uniquely
a regular network and hence a cluster network.

12.3.3 Softwired Clusters in Rooted Phylogenetic Networks

Consider a node u of a rooted phylogenetic network N . We can associate clusters
other than cN (u) with u. The cluster cT (u) associated with u in a spanning tree T of
N with the same leaf set X is called a softwired cluster of N .

Proposition 2 Let N be a rooted phylogenetic network on X and let S be a spanning
subtree of N . For any reticulate node u ∈ R(N ) with a child v, cS(u) = cS(v) if v is
a tree node.

Since there are a number of spanning trees for N , each internal node represents
a set of softwired clusters. We will let SC (N ) denote the set of softwired clusters
associated with nodes of N . The rooted phylogenetic network on X = {1, 2, 3, 4, 5}
in Fig. 12.2c has four possible spanning trees (Fig. 12.5) and thus its nontrivial soft-
wired clusters include {1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 2, 3} and {1, 2, 3, 4}. Notice
that only {1, 2} is not a cluster for the network. In fact, it is true for any rooted
phylogenetic network that every cluster is always a softwired cluster.

Proposition 3 ([24]) C (N ) ⊆ SC (N ) for any rooted phylogenetic network N.

Proof Let C be a cluster associated with u in N . Then, for each leaf � ∈ C , there is a
path from u to �. Thus, u and all the nodes below u form a connected digraph D(u)
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rooted at u with the leaf set C . Removal of the edges leading into D(u) results in a
connected spanning graph of N . Clearly, C is the cluster associated with u in any
spanning tree of D(u), which is also a spanning tree of N . This completes the proof.

Given a rooted phylogenetic network M , we can obtain a compressed network
C(M) from M by replacing each reticulate component C with a single reticulate
node uC . More specifically, let us replace C with uC such that every direct edge that
entered into C now enters into uC and the edge that led out of C now leads out of uC ,
and let us also remove all edges but one between uC and a tree node and compress
nodes of degree 2 if any. For example, the rooted phylogenetic network in Fig. 12.3b
is the compression of the rooted phylogenetic network in Fig. 12.3a. C(M) is called
the compression of M .

Proposition 4 Let N be a rooted phylogenetic network on X. Then SC (N ) =
SC (C(N )).

Proof Assume that N contains k reticulate components that consist of more than one
reticulate node, denoted R1, R2, . . . , Rk . Let S be a spanning tree of N . For each i ≤
k, let ri be the lowest reticulate node in Ri . Then, S contains exactly one of the edges
that lead into Ri and thus there is a path Hi from this incoming edge to ri (which may
consist of ri only in some extreme cases). Additionally, the cluster associated with
each reticulate node of Ri consists only of dummy leaves in S if the reticulate node is
not in Hi . Compressing Hi into ri and removing all the reticulate nodes in Ri that are
not in Hi produces a spanning tree for C(N ). Therefore, SC (N ) ⊆ SC (C(N )).

The containment SC (N ) ⊇ SC (C(N )) can be proved similarly.

Open question How can we find a rooted phylogenetic network P on X such that
SC (P) = C (if one exists) given a collection C of the subsets of X?

12.3.4 The Cluster Containment Problem

Computing C (N ) from N is easy. However, the computation ofSC (N ) from N is
intractable. Formally, we define the following problem:
The Cluster Containment Problem

Instance: A rooted phylogenetic network N on X and a subset X ′ ⊂ X .
Question: Is X ′ a softwired cluster of N?

Proposition 5 ([28]) The cluster containment problem is NP-complete.

To develop a fast algorithm for the cluster containment problem, we will consider
the following restricted version of it.
The Small Cluster Containment Problem (SCCP)

Instance: A rooted phylogenetic network N on X , a tree node u and a subset X ′ ⊂ X .
Question: Is X ′ a softwired cluster associated with u in N?
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It is easy to see that a polynomial-time algorithm for theSCCPcanbe extended into
one for the cluster containment problem.Therefore, theSCCP is alsoNP-complete. In
fact, there is an elegant reduction from the well-known Satisfiability (SAT) problem
to this problem [28] (see also [24, p. 170]). Here, we present a simple reduction in
the opposite direction, i.e., that is from the SCCP to the SAT problem.

Proposition 6 Given a rooted phylogenetic network N on X with c reticulate com-
ponents and e edges, a node u ∈ T (N ) and a subset X ′ of X, there is a com-
pressed network N ′ with at most c + 1 reticulate nodes and at most e + 3 edges and
u′ ∈ T (N ′) such that:

(i) u′ is the root of a tree node component of N ′;
(ii) X ′ is a softwired cluster at u in N if and only if X ′ is a softwired cluster at u′ in

N ′.

In addition, N ′ and u′ can be constructed from N and u in linear time.

Proof Let C(N ) be the compression of N , obtained by replacing each nontrivial
reticulate component of N with a single reticulate node and removing parallel edges
and degree-2 nodes if any. By Proposition 4, X ′ is a softwired cluster at u in N if
and only if it is a softwired cluster at u in C(N ).

Let Ku be the tree node component containing u in C(N ) and ρ ′ is the root of Ku .
If u = ρ ′, then we simply set N ′ = C(N ). If u �= ρ ′, we consider two cases. When
ρ �= ρC(N ), we construct N ′ fromC(N ) by inserting a tree node t in the edge leading
into ρ, a reticulate node r in the edge leading into u and an edge (t, r) (Fig. 12.6b).
Whenρ = ρC(N ), N ′ is obtained in a slightly differentway, as illustrated in Fig. 12.6c.
Since C(N ) has c reticulate nodes and at most e edges, N ′ has c + 1 reticulate nodes
and 3 edges more than C(N ).

Assume that u is not the root of the tree node component Ku and that Ku does not
contain the network root ρ(C(N )). (The argument for the case when ρ(C(N )) is the
root of Ku is similar.) Assume that X ′ is a cluster associated with u in a spanning tree
T of C(N ). Since the edges in which r and t were inserted are tree edges in C(N )

and thus are also contained in T , adding r and t in these two edges in T results in a
spanning tree T ′ of N ′. Clearly, X ′ is also the cluster of u in T ′, as T ′(u) is identical
to T (u), where T ′(u) and T (u) are the subtrees rooted at u of T ′ and T , respectively.

Conversely, assume that X ′ is the cluster of u in a spanning tree T ′ of N ′. If the
added edge (t, r) is not in T ′, then, t and r are both of degree 2 and thus compressing
t and r gives a spanning tree of C(N ) in which X ′ is the cluster of u. If (t, r) is in T ′,
then, replacing (t, r) with the other edge leading into r in T ′ generates a spanning
tree in which X ′ is still the cluster of u. This reduces to the case that (t, r) is not in
the spanning tree under consideration. This completes the proof.

Let B = {b1, b2, . . . , bm} be a set of Boolean variables. If b is a variable in B,
then b and b̄ are both said to be literals over B. A clause over B is a set of literals
over U , such as {b1, b2, b5}, which is often written b1 ∨ b2 ∨ b5.

A true assignment for B is a function A : B → {T, F}. If A (b) = T , we say
that b is “true” and b̄ is “false” underA . IfA (b) = F , we say that b is“false” and b̄
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(a) (b) (c)

Fig. 12.6 Illustration of the transformation from C(N ) to N ′ in the proof of Proposition 6. a A
compressed rooted phylogenetic network C(N ). b N ′ when the network root ρ(C(N )) is not the
root of the tree node component Cu that contains u. c N ′ when ρ(C(N )) is the root of the tree node
component Cu

is “true” underA . A clause is satisfied byA if and only if at least one of its literals
is true under A .

An instance of the SAT problem consists of a collection of clauses over a set of
Boolean variables. The problem asks whether or not there is a true assignment for
the Boolean variables by which the given clauses are simultaneously satisfied.

Theorem 4 ([43]) The SCCP can be reduced to the SAT problem in linear time.

Proof Consider an instance Q of the small cluster containment problem consisting
of a network N on X , a tree node u, and X ′ ⊂ X . By Proposition 6, we may assume
that N is compressed and u is the root of the tree node component Ku that contains u.

Let K be a tree node component of N . K is said to be reachable from u if the
root of K and thus all of K is below u. We denote Γ (N ) as the set of all tree
node components in N and denote Γ (u) as the set of tree node components that
are reachable from u. We also denote R(u) as the set of reticulate nodes that are
reachable from u.

For each tree node component K ∈ Γ (N ), we introduce a Boolean variable b(K ).
For each reticulate node s ∈ R(u), let Ks be the tree node component rooted at r(s)
and let K (s)

1 , K (s)
2 , . . . , K (s)

m be all the tree node components such that P(s) ∩ K (s)
j �=

∅ for each j . We also introduce the following two clauses:

Cs1 : b (Ks) ∨ b
(
K (s)

1

)
∨ b

(
K (s)

2

)
∨ · · · ∨ b

(
K (s)

m

)
;

Cs2 : b (Ks) ∨ b
(
K (s)

1

)
∨ b

(
K (s)

2

)
∨ · · · ∨ b

(
K (s)

m

)
. (12.4)

Additionally, the Boolean variables corresponding to either tree node components
that contain at least a leaf in X ′ but do not contain any leaf not in X ′ or Ku will each
be assigned the value “true”. Hence, for each of these components K , we introduce
a single-term clause:
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AK : b(K ), K ∈ {
Ku, K

′ : X ′ ∩ V (K ′) �= ∅ & (X\X ′) ∩ V (K ′) = ∅}
.(12.5)

Similarly, the Boolean variables corresponding to tree node components that con-
tain a leaf that is not in X ′ and those not reachable from u will each take the value
“false”, for which we introduce the following single-term clauses:

BK : b(K ), K ∈ {K ′ : (X\X ′) ∩ V (K ′) �= ∅ or K /∈ Γ (v)}. (12.6)

We now show that there is a true assignment under which the collection SQ of the
clauses listed in Eqs. (12.4)–(12.6) is satisfied if and only if X ′ is a softwired cluster
of u in N .

Assume that X ′ is a cluster of u in a spanning tree T of N . Then the variable b(K )

for a tree node component K takes the value “true” if and only if the root of K is
below u in T . The clauses in Eqs. (12.5)–(12.6) are clearly satisfiable.

Consider a reticulate node s in N . We let ps and cs be the parent and child of
s in T , respectively. We also let PT (ρ(N ), s) be the path from ρ(N ) to s in T . If
PT (ρ(N ), s) contains u, the tree node components containing ps and cs are below
u and thus the corresponding variables take the value “true”, which makes the two
clauses defined in Eq. (12.4) for s being satisfiable. If PT (ρ(N ), s) does not contain
u, the tree node components containing ps and cs are not below u in T and thus the
corresponding variables take the value “false”. Again, this makes the two clauses
defined in Eq. (12.4) for s satisfiable.

Conversely, assume that there is a truth assignment that makes SQ satisfiable.
Consider a tree node component K and the corresponding variable b(K ). If b(K )

takes the value “true”, there must be a path from u to ρ(K ) that passes through
the tree node components K ′ whose corresponding variables take the value “true”.
Assume that it does not hold. There must be a reticulate node s such that the variable
corresponding to the tree node component rooted at the child of s is “true” but all
variables corresponding the tree node components containing at least one parent of
s are “false”, implying that the clause Cs2 defined in Eq. (12.4) is “false” under the
assignment. This is a contradiction.

Since each variable corresponding to a tree node component that contains at least a
leaf in X ′ but does not contain any leaf not in X ′ takes the value “true”, the subnetwork
consisting of tree nodes in all “true” components and reticulate nodes between them
has a spanning subtree that as a root at u and contains all leaves in X ′ but not in
X\X ′. This shows that X ′ is a softwired cluster of u in N . This completes the proof.

Because of their NP-completeness, the two cluster containment problems are
unlikely to be solved in polynomial time.Apractical issue is how to design algorithms
for them that are fast enough for practical use. A natural way to measure the time
complexity of such algorithms is to measure their run time as a function of the
hybridization number of the input network N , defined as

H(N ) =
∑

r∈R (N )

(din(r) − 1), (12.7)
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where din(r) denotes the indegree of r . H(N ) is equal to the number of reticulate
nodes if N is binary.

By Theorem 4, any algorithm for the SAT can be converted into an algorithm for
the SCCP of the same time complexity. Since there is a 3-SAT algorithm that takes
O

(
p(n)20.415n

)
time to determine whether a SAT instance with n Boolean variables

is satisfiable or not [34], we have the following result [43].

Corollary 2 There is an algorithm for the (small) cluster containment problem that
takes O

(
p(H(N ))20.415H(N )

)
time on binary rooted phylogenetic networks, where

p is a polynomial.

Open problem Design an algorithm for the (small) cluster containment problem
that takes O(2λ·H(N )) basic set operations on an arbitrary network N , where λ is a
constant less than 0.5.

12.3.5 Robinson–Foulds Distances

Formulating a metric on rooted phylogenetic networks that is both meaningful and
efficiently computable is of great challenge. The well-known Robinson–Foulds dis-
tance is naturally generalized to phylogenetic networks in two ways:

(Robinson–Foulds metric) dRF (N1, N2) = |C (N1)�C (N2)|, (12.8)

(Soft Robinson–Foulds metric) dSRF (N1, N2) = |SC (N1)�SC (N2)|, (12.9)

whereC (Ni ) andSC (Ni ) are the sets of clusters and soft clusters of Ni , respectively,
for i = 1, 2.

For regular networks, dRF ( , ) is a distance metric. In the space of rooted phyloge-
netic networks, however, there are non-isomorphic-rooted phylogenetic networks N ′
and N ′′ such that dRF (N ′, N ′′) = 0. The Robinson–Foulds metric is not a distance
metric in general. The soft Robinson–Foulds metric is neither a distance metric nor
computationally feasible.

12.4 Phylogenetic Trees and Rooted Phylogenetic Networks

12.4.1 Trees in Rooted Phylogenetic Networks

Let N be a rooted phylogenetic network on X . After removing all but one of the
incoming edges for each reticulate node, we obtain a spanning subtree S of N , which
may have new leaves that were internal nodes of N , called dummy leaves, and may
have nodes of indegree and outdegree both equal to one. If we further delete from S
any nodes below which there are no leaves in X and suppress any nodes of indegree
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Fig. 12.7 All four phylogenetic trees displayed by the rooted phylogenetic network in Fig. 12.2c,
which are derived by compressing the spanning trees of the network listed in Fig. 12.5

and outdegree both equal to one, we obtain a phylogenetic tree T on X . We say that
T is displayed by N . For instance, the rooted phylogenetic network in Fig. 12.2c
contains four different spanning trees that are listed in Fig. 12.5, from which we can
derive four different phylogenetic trees (Fig. 12.7). As such, we consider N to be a
kind of consensus of the phylogenetic trees displayed in N .

Notice that a binary rooted phylogenetic network on X with r reticulate nodes
can display at most 2r binary phylogenetic trees, as a binary phylogenetic tree can
be displayed in two or more different ways. Let P(N ) denote the set of binary
phylogenetic trees on X displayed by a rooted phylogenetic network on X . We can
then prove the following fact in the same way as Proposition 4.

Proposition 7 For any rooted phylogenetic network on X, P(N ) = P(C(N )),
where C(N ) is the compression of N defined in Sect.12.3.3.

Open questions. (1) How do we find a rooted phylogenetic network P on X such
that P(X) = C (if one exists), given a collection C of phylogenetic trees on X?

(2) How do we determine whether a temporal phylogenetic network P exists such
that P(X) ⊇ C , given a collection C of phylogenetic trees on X [37]?

Recently, NP-completeness is established by Döcker et al. even for two trees
regarding the second open question [7].

12.4.2 Tree-Based Phylogenetic Networks

Suppose N be a binary rooted phylogenetic network on X . Any spanning subtree
S of N can be obtained by removal of all but one of the incoming edges for every
reticulate node in N . S may or may not contain a dummy leaf (which is not in X ),
as illustrated in Fig. 12.5. If S does not contain any dummy leaves, then N can be
obtained from S by sequentially adding directed edges between nodes of indegree and
outdegree both equal to one or, equivalently, N is obtained from T by sequentially
adding directed edges between the edges of T , where T is the phylogenetic tree on
X obtained from S, by suppressing nodes of indegree and outdegree both equal to
one. Interestingly and a little surprisingly, it is not true that every rooted phylogenetic
network has a spanning subtree without dummy leaves. For example, any spanning
tree of the rooted phylogenetic network in Fig. 12.8a must contain a dummy leaf.
This is because any spanning treemust not contain either (u,w) or (v,w) exclusively.
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(a) (b)

(c)

Fig. 12.8 a and b Two rooted phylogenetic networks that are not tree-based. The example in Part
(b) is adapted from a figure in [25]. cA tree-based phylogenetic network, in which the dashed edges
indicate a reticulate node–tree node alternating path from reticulate node m and reticulate node e

If the spanning tree does not contain the former, u is a dummy leaf. If it does not
contain the latter, then v is a dummy leaf. The same fact is also true for the network
in Fig. 12.8b.

A rooted phylogenetic network is tree-based if it has a spanning subtree without
any leaves other than the leaves in X . It is less clear that the network in Fig. 12.8c
is tree-based. It turns out that tree-based phylogenetic networks comprise a rather
large network class that contains properly several well-studied classes, including
tree-child networks, as shown below.

We first present a simple characterization of tree-based phylogenetic networks.
In a rooted phylogenetic network N on X , a reticulate node–tree node alternating
chain is a sequence of nodes 〈v0, v1, v2, . . . , v2k〉 for some integer k ≥ 1 satisfying
the following two properties:

(1) Node vi is a reticulate node when i is even and a tree node when i is odd.
(2) For each even i ≤ 2k − 2, (vi+1, vi ) ∈ E (N ) and (vi+1, vi+2) ∈ E (N ).

In the rootedphylogenetic network inFig. 12.8c, the node sequence 〈m, i, n, g, h, d, e〉
is a reticulate node–tree node alternating chain. Notice that e is an ancestor of m in
this example.

A reticulate node u of N is of type i if it has exactly i parents that are reticulate
nodes, where i = 0, 1, 2. The reticulate nodes e and m are of Type 0 and Type 1,
respectively and there are no reticulate nodes of Type 2 in the rooted phylogenetic
network in Fig. 12.8c. The node w of the network shown in Fig. 12.8a is of Type 2.
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Theorem 5 ([44]) Let N be a binary rooted phylogenetic network. The following
are then equivalent.

(i) N is tree-based;
(ii) N contains neither Type 2 reticulate nodes nor reticulate node–tree node alter-

nating chains between two reticulate nodes of Type 1.

Proof First, since N is binary, we make the following observations.

(a) Let e = (x, y) ∈ E (N ). If x is a reticulate node, then x is of outdegree 0 if e is
deleted from N and hence becomes a dummy leaf in N − {e}.

(b) Let e1 = (x1, y1) ∈ E (N ) and e2 = (x2, y2) ∈ E (N ) such that xi ∈ T (N ) and
yi ∈ R(N ) for i = 1, 2. If x1 = x2, then x1 has outdegree 0 if e1 and e2 are both
deleted from N and hence becomes a dummy leaf in N − {e1, e2}. If y1 = y2,
y1 is of indegree 0 in N − {e1, e2}.

We let:

R(N ) = {r1, r2, . . . , rs};
P = {p ∈ T (N ) | (p, r) ∈ E (N ), r ∈ R(N )} = {p1, p2, . . . , pt },

which consists of the parents of reticulate nodes that are tree nodes in N . Consider the
undirected version B(N ) of the subgraph induced byR(N ) ∪ P in N . For example,
a bipartite graph obtained from the network in Fig. 12.8c is found in Fig. 12.9. Clearly,
B(N ) is a bipartite graph with edges between R(N ) and P .

For a subset E ⊆ E (N ) ∩ (T (N ) × R(N )), the observations (a) and (b) stated
above imply that N − E is a spanning tree with the same leaves as N (i.e., without
dummy leaves) if and only if E is a matching covering (every node in) R(N ) in
B(N ) if the orientation of each edge of E is ignored.

Since B(N ) is bipartite, by Hall’s theorem ([3], p. 425), there is a matching
covering R(N ) in B(N ) if and only if |X ′| ≤ |b(X ′)| for any X ′ ⊆ X , where b(X ′)
is the set of nodes that are adjacent to at least a node of X ′, and hence if and only
if there is such a matching covering the reticulate nodes in C for every connected
component C of B(N ).

A reticulate node is of degree i in B(N ) if and only if it is a Type (2 − i) node
for i = 0, 1, 2. Each tree node p of P is of degree 1 or degree 2, as, by definition,
p has at least one child that is reticulate. Therefore, every connected component of
B(N ) is either a cycle or a path. Let C be a connected component in B(N ).

Fig. 12.9 Illustration of the bipartite graph defined in the proof of Theorem 5 for the network in
Fig. 12.8c



294 L. Zhang

If C is a cycle, clearly, C has a perfect matching that covers every node of C .
IfC is a single node, it must be a node inR(N ) of Type 2 and there is nomatching

covering the node.
If C is a path containing at least two nodes, then only the two ends of C are of

degree 1. There is a matching covering every node in C ∩ R(N ) if and only if the
ends cannot be both in R(N ).

Since the node of degree 0 and 1 inR(N ) in B(N ) correspond to the Type 2 and
Type 1 reticulate nodes in N , respectively, we conclude that N is tree-based if and
only if no Type 2 node exists in N and no Type 1 reticulate nodes are connected
in B(N ). Noting that a path between two Type 1 nodes corresponds to a reticulate
node–tree node alternating chain, we complete the proof.

The above theorem was also given independently in [27], where Jetten and van
Iersel studied nonbinary tree-based phylogenetic networks. Whether or not a retic-
ulate node is of Type 2 can be checked in constant time. Notice that two reticulate
node–tree node alternating chains are either identical or node-disjoint. It takes linear
time to check whether there are two reticulate nodes of Type 1 that are connected by
a reticulate node–tree node alternating chain. Therefore, there is a linear-time algo-
rithm for determining whether a binary rooted phylogenetic network is tree-based or
not [11].

Proposition 8 The following binary rooted phylogenetic networks are tree-based.

(i) compressed networks, and
(ii) tree-child networks.

Proof (i) There are no Type 1 and Type 2 nodes in any compressed network.
(ii) Tree-child networks are compressed.

A binary phylogenetic tree is said to be a base tree of a rooted phylogenetic
network if a subdivision of the former is a spanning subtree of the latter. A base tree of
a rooted phylogenetic network is displayed by the network. However, a tree displayed
by a rooted phylogenetic network may not be a base of it. In addition, a base tree for
a rooted phylogenetic network may be obtained from different spanning subtrees,
some of which may contain dummy leaves. This leads to another characterization of
tree-child networks.

Proposition 9 ([36]) A rooted phylogenetic network is tree-child if and only if every
spanning tree of it contains no dummy leaves.

Proof Let N be a binary rooted phylogenetic network. Assume that N is tree-child.
For each reticulate node r of N , its two parents and two siblings are all tree nodes.
Therefore, in the bipartite graph B(N ) defined in the proof of Theorem 5, each
connected component C consists exactly of a reticulate node r and its two parents
that are connected by two edges entering r . Clearly, each reticulate edge entering r
is simply a matching covering r in C . Therefore, for any set E of reticulate edges
that enter distinct reticulate nodes, N − E does not contain any dummy leaves. This
proves that every spanning tree of N does not contain any dummy leaves.
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Conversely, if N is not tree-child, there are two reticulate nodes u and v such
that u is the parent of v, or there is a tree node x whose two children y and z are
both reticulate. If the former is true, u is a dummy leaf in N − (u, v). Therefore,
any spanning tree of N − (u, v) that is also a spanning tree of N contains at least a
dummy leaf u. If the latter is true, let N ′ = N − {(x, y), (x, z)}. Then, x is a dummy
leaf in N ′. This implies that any spanning tree of N ′ that is also a spanning tree of
N contains at least a dummy leaf x . This completes the proof.

Recently, several other issues regarding tree-based phylogenetic networks have
been studied. It is NP-complete to determine whether a binary phylogenetic tree
is a base tree of a binary rooted phylogenetic network [1]. There are tree-based
phylogenetic networks on X that have every binary phylogenetic tree on X as their
base [11, 21, 44]. Finally, unrooted tree-based networks were studied in [9], in
which NP-completeness is shown for the problem of determining whether a unrooted
phylogenetic network is tree-based or not.

12.4.3 The Tree Containment Problem

Understanding the relationship between phylogenetic trees and rooted phylogenetic
networks is one of the basic computational issues in the field of phylogenetic net-
works. The tree containment problem is formally defined as follows.

The Tree Containment Problem

Instance: A rooted phylogenetic network N on X and a phylogenetic tree T on X .
Question: Is T displayed by N?

Proposition 10 ([26, 28]) The tree containment problem is NP-complete even for
regular networks and for time consistent networks.

Little is known about algorithm for the tree containment problem. Recently,
Gunawan et al. developed an algorithm that takes O(20.669H(N )) basic set operations
for a binary network N in [18], the idea of which will be discussed in Sect. 12.5.7.
Here, H(N ) is the hybridization number of N defined in Eq. (12.7).

Open problem Design an algorithm for the tree containment problem that takes
O(20.5H(N )) basic set operations for a rooted phylogenetic network N .

12.5 Reticulation-Visible Phylogenetic Networks

12.5.1 The Node Visibility Property

Let N be a rooted phylogenetic network. For a leaf � of N , more than one path may
exist from ρ(N ) to � whenever N contains reticulate nodes, where ρ(N ) denotes the
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(a) (b)

Fig. 12.10 Local structures around an internal node x with at least a child y that is reticulate when
x is a reticulate (a) and when x is a tree node (b) in a binary rooted phylogenetic network. Here,
the zigzag denotes a path

root of N . An internal node x is said to be stable on � if � is below x and every path
from ρ(N ) to � contains x . An internal node is visible if it is stable on a leaf.

Proposition 11 Let N be a rooted phylogenetic network and let x ∈ V (N ), y ∈
V (N ) such that y is a child of x.

(i) The root ρ(N ) is visible. Additionally, it is stable on every leaf.
(ii) If y is a tree node and visible, then x is also visible.
(iii) If x is a reticulate node but y is a tree node, then x is visible if and only if y is.
(iv) If x and y are both reticulate, then x is invisible.

Proof (i) Every path in the definition of the node stability property contains ρ(N ).
Hence, ρ(N ) is stable on every leaf.

(ii) Since y is a tree node, x is the unique parent of y in N . Assume that y is stable
on a leaf �. For any path P : ρ(N ) = x0, x1, . . . , xi , . . . , xk = � from ρ(N ) to
�, y = x j for some j ≥ 1 and hence x = x j−1 and P also contains x . Thus, x
is also stable on the same leaf �.

(iii) The sufficiency follows from (ii). Similarly, the necessity can be derived from
the fact that y is the unique child of x when x is reticulate.

(iv) Assume that x and y are both reticulate. Then, y is the only child of x and y
has another parent z such that z �= x , where z may or may not be a tree node.
Since x is a reticulate node, there are only two possibilities, as illustrated in
Fig. 12.10a.

Let � be an arbitrary leaf below x . Then � is also below y. If x is not below z,
the set of paths from ρ(N ) to � is a disjoint union of two nonempty subsets of paths.
One of these two subsets consists of all paths that contain x but not z, whereas the
other consists of paths that contain z but not x . Therefore, neither x nor z is stable
on �. If x is below z (Fig. 12.10a), then there is a path from ρ(N ) to � that contains
z but not x , implying that, again, x is not stable on �. This proves that x is invisible
and completes the proof.

Corollary 3 Let N be a rooted phylogenetic network, let C be a tree node component
of N and let x ∈ C. If x is stable on a leaf, then the root of C is also stable on the
leaf.
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Proof Let C be a tree node component of N and let ρ(C) be its root. If x ∈ C , there
is a unique path from ρ(C) to x that consists only of a finite number of tree nodes.
Hence, by applying Part (ii) of Proposition 11 repeatedly, we conclude that if x is
stable on a leaf, so is ρ(C).

Proposition 12 Let N be a rooted phylogenetic network and let x ∈ V (N ), � ∈
L (N ) and let e = (u, v) ∈ E (N ) such that v is a reticulation node. If x is stable on
� in N, then, x is also stable on � in N − e. Therefore, if x is visible in N, it is also
visible in N − e.

Proof Notice that ρ(N − e) = ρ(N ). Assume that x is an internal node and � is a
leaf such that x is stable on �. Then � is below x in N . Since every path from ρ(N )

to � of N contains x and because e is a reticulate edge, there is at least one path from
ρ(N ) to � that contains x but not e, implying that � is also below x in N − e. Any
path from ρ(N − e) to � of N − e is also a path of N , which implies that x is also
stable on � in N − e.

We conclude this section by giving another characterization of tree-child phy-
logenetic networks using the node visibility property, which first appeared without
proof in [12].

Theorem 6 Let N be a binary rooted phylogenetic network. The following are equiv-
alent.

(i) N is tree-child.
(ii) Every node of N is visible.

Proof (i) ⇒ (ii). Let x be an internal node of N . The fact that any internal node has
a child that is a tree node in N implies that there is a path from x to a leaf �x that
consists only of tree nodes. Therefore, any path from ρ(N ) to �x must pass through
x first. This implies that x is stable on �x .

(ii) ⇒ (i). Assume that every node is visible in N and, on the contrary, N is not
tree-child. There is then an internal node x neither of whose children is a tree node.

If x is reticulate, it has a unique child y and thus y must be reticulate. By Part (iv)
of Proposition 11, x is invisible, a contradiction to the hypothesis that every node is
visible.

If x is a tree node, x has two children y′ and y′′ that are both reticulate (Fig. 12.10b).
Then either y′ or y′′ has a parent z that is neither x nor below x . Similar to the case
that x is reticulate, we can prove that x is invisible. This contradicts the hypothesis
that every node is visible.

12.5.2 Reticulation-Visible Networks

A rooted phylogenetic network N is said to be reticulation-visible if every reticulate
node is visible. The network in Fig. 12.11 is reticulation-visible. This network has
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Fig. 12.11 A
reticulation-visible
phylogenetic network that
has four tree node
components C0–C3

seven reticulate nodes. Both r2 and r3 are stable on Leaf 3. Since C1 contains Leaf
6, r1 is stable on Leaf 6; the other four reticulate nodes from left to right are stable
on Leaves 2, 3, 4, and 5, respectively.

Notice that r2 is an inner reticulate node whose parents are both in C3, C2 also
contains all the parents of an inner reticulate node, andC1 contains a leaf. In fact, every
tree node component contains either a leaf or all the parents of an inner reticulation
node in any arbitrary reticulation-visible network. To prove this general statement,
we first establish the following fact, two special cases of which have appeared in the
proof of Part (ii) of Theorem 6.

Lemma 1 Let N be a rooted phylogenetic network and C be a subtree of N con-
sisting only of internal tree nodes such that the children of each leaf of C are both
reticulate nodes of N . If there is no reticulate node r whose parents are all in C,
every node of C is invisible.

Proof Let R denote the set of reticulate nodes that have at least one parent in C .
Assume that each node in R has at least one parent that is not in C . Consider any
leaf � below C . It must be below a reticulate node r1 ∈ R. Since R is finite and N is
acyclic, there is a sequence of reticulate nodes, r1, r2, . . . , rk , such that:

• each r j has a parent p j below r j+1 for 1 ≤ j < k, and
• rk has a parent pk that is neither in C nor below C .

Since � is below r1, there is a path P(r1, �) from r1 to �. Since p j is below r j+1,
there is a path P(r j+1, p j ) from r j+1 to p j for each j < k. Since pk is neither in C
nor below C , there is a path P(ρ(N ), pk) from ρ(N ) to pk that does not contain any
node in C . Concatenating these paths, we obtain the path:



12 Clusters, Trees, and Phylogenetic Network Classes 299

〈P(ρ(N ), pk), P(rk, pk−1), . . . , P(r1, �)〉

from ρ(N ) to � that does not contain any node in C . Therefore, the root C is not
stable on �. This has proved that any node of C is invisible.

Theorem 7 ([17]) Let N be a rooted phylogenetic network. The following are equiv-
alent.

(i) N is reticulation-visible;
(ii) N is compressed and every tree node component C of N contains either a leaf

or all the parents of an inner reticulate node.

Proof (i) ⇒ (ii). Let N be a reticulation-visible network. If the child of a reticulate
node is also reticulate, by Part (iv) of Proposition 11, this reticulate node is invisible
and thus N is compressed. The second fact follows from Lemma 1.

(ii) ⇒ (i). Assume that N satisfies the condition in (ii). Since N is compressed,
each reticulate node has a unique child that is the root of a tree node component. By
Part (iii) of Proposition 11, we only need to show that the root of every tree node
component is visible.

Let C be a tree node component of N and ρ(C) be its root. Since every tree node
component contains either a leaf or all the parents of an inner reticulate node, there
is a finite sequence of nontrivial components C0 = C,C1,C2, . . . ,Ck (k ≥ 0) such
that:

• Ck contains a leaf;
• The parents of p(ρ(C j )) are each in C j−1 for j = k, k − 1, . . . , 1,

where ρ(C j ) is the root of C j and p(ρ(C j )) is the parent of ρ(C j ).
Since Ck contains a leaf �, ρ(Ck) is stable on �. Since the parents of p(ρ(Ck)

are each in Ck−1, clearly, r(Ck−1) is also stable on �. Repeating this process, we can
prove that r(C j ) is stable on � for each j = k − 2, . . . , 1, 0. Hence,C is visible. This
completes the proof.

12.5.3 Nearly Stable Networks

Every tree-child phylogenetic network does not contain any invisible internal node.
Recently, Gambette et al. introduced the so-called nearly stable networks in the algo-
rithmic study of the tree containment problem [12]. A rooted phylogenetic network
N is nearly stable if either u or v is visible for any edge (u, v) ∈ E (N ).

Figure12.12 presents a nearly stable network, in which two reticulate nodes w
and h comprise a reticulate component. Hence, nearly stable binary networks are
not necessarily compressed and hence are not necessarily reticulation-visible. How-
ever, this network class is closely related to binary reticulation-visible networks as
described below.
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Fig. 12.12 A nearly stable
phylogenetic network, in
which visible internal nodes
include x, y, z, f,m, n, and
h, whereas invisible internal
nodes include i, g and w.
Notice that this network is
not reticulation-visible

Let N be a nearly stable network. Assume that u is a reticulate node and v is a tree
node such that (u, v) ∈ E (N ). By Proposition 11, the fact that either u or v is visible
implies that both u and v are visible. In other words, the lowest reticulate node of
each reticulate component is always visible. Therefore, we have the following fact.

Proposition 13 Let N be a rooted phylogenetic network. If N is nearly stable, the
compression of N is reticulation-visible.

We finish this section by presenting two topological properties of nearly stable
networks, which will be used later. A cherry of a tree consists of an internal node t
and all its children if every child of t is a leaf.

Proposition 14 Let N be a nearly stable network and let K be a tree node component
not containing any network leaf. Then the following hold:

(i) K, as a tree, contains at least two nodes one of which is a leaf.
(ii) Let u ∈ V (K ) such that u and its children comprise a cherry. Then, there is an

inner reticulate node x whose parents are below u in K (Fig.12.13).

Proof (i) Let K be a tree node component that does not contain any leaf of N . It is
also a tree node component C(N ) of the compression of N . By Proposition 13,
C(N ) is reticulation-visible. Thus by Theorem 7, K contains the two parents of
an inner reticulate node.

(ii) Notice that each child of u is not a network leaf. For any child v of u, the two
children of v are both reticulate nodes, as v is a leaf of K . By Lemma 1, v
is invisible. Therefore u must be visible. If we apply the lemma again, there
is an inner reticulate node all of whose parents are below u in K , as shown
in Fig. 12.13. Since v is invisible, the inner reticulate node is visible, as it is
connected to v by an edge.
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(a) (b) (c)

Fig. 12.13 The three possible structures around a cherry consisting of non-network leaves in a tree
node component in a nearly stable network. a The configuration when the cherry contains only a
leaf. b The configuration when the cherry contains two leaves; c is a special case of (b)

12.5.4 A Characterization of Galled Networks

Recall that a binary rooted phylogenetic network is galled if for every reticulate
node r , there is a tree node u such that two edge-disjoint paths from u to r exist that
both consist only of tree nodes. Galled networks comprise a subclass of reticulation-
visible networks. Here, we present a characterization of galled networks using the
concept of inner reticulate nodes.

Theorem 8 Let N be a binary rooted phylogenetic network. The following are equiv-
alent.

(i) N is galled.
(ii) Every reticulate node of N is inner.

Proof (i)⇒ (ii). Let r be a reticulate node of a galled network N . By definition, there
is a tree node u and two node-disjoint paths P ′ and P ′′ from u to r that both consist
only of tree nodes. Since r has only two parents, these two parents are contained in
P ′ and P ′′ and hence are in the same tree node component as u. Therefore, r is an
inner reticulate node.

(ii) ⇒ (i). Let r be a reticulate node of N , and let p1 and p2 be the parents of r .
Since r is inner, p1 ane p2 are both in the same tree node component C . Hence, p1
and p2 are two leaves of C . Let a(p1, p2) denote the lowest common ancestor of p1
and p2 in C . Clearly, there are two node-disjoint paths from a(p1, p2) to r that both
consist only of tree nodes.

12.5.5 Sizes of Reticulation-Visible Networks

A rooted phylogenetic network can have as many reticulate nodes as one wants. By
definition, we can easily see that a tree-child phylogenetic network on n leaves has
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at most (n − 1) reticulate nodes. The tight upper bound on the number of reticulate
nodes had been established for reticulation-visible networks and nearly stable net-
works since linear upper bounds were first established for the networks within these
two classes in [12].

Theorem 9 Let N be a binary rooted phylogenetic network that has r reticulate
nodes, n leaves and v nodes.

(i) If N is galled, r ≤ 2(n − 1) and v ≤ 6n − 5 ([13]).
(ii) If N is reticulation-visible, r ≤ 3(n − 1) and v ≤ 8n − 7 ([4]).

Proof Let N have c tree node components and i internal tree nodes. By Theorems 1
and 2,

i = r + (n − 1); (12.10)

c = r + 1. (12.11)

(i) Assume that N is galled. Since a galled network is reticulation-visible, by Theo-
rem 7, each tree node component of N contains a leaf or all the parents of an inner
reticulate node. For a tree node component C that does not contain a leaf, it must
contain all the parents of two inner reticulate nodes and hence at least three internal
tree nodes (Fig. 12.14a). Let N have c tree nodes components and i internal tree
nodes. Then, we have

c ≤ n + i/3. (12.12)

Plugging Eqs. (12.10) and (12.11) into Eq. (12.12), we obtain

r + 1 ≤ n + [r + (n − 1)]/3.

Equivalently, r ≤ 2(n − 1) and thus

v = n + r + i = n + r + [r + (n − 1)] = 2n − 1 + 2r ≤ 6n − 5.

(ii) Assume that N is reticulation-visible. By Theorem 7, each tree node com-
ponent contains a leaf or all the parents of an inner reticulate node. For a tree node
component C that does not contain a leaf, it must contain two distinct parents of an
inner reticulate node and hence contain at two tree nodes (Fig. 12.14b). Then, we
have

c ≤ n + i/2. (12.13)

Similar to the proof of Part (i), this implies that

r ≤ 3(n − 1), v ≤ 8n − 7.
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Fig. 12.14 A tree node
component that does not
contain a network leaf in a
rooted phylogenetic network.
a It contains at least three
tree nodes if the network is
galled. b It contains at least
two tree nodes if the network
is reticulation-visible

(a) (b)

This completes the proof.

Somewhat surprisingly, nearly stable networks have the same tight size bounds
as reticulation-visible networks.

Theorem 10 ([13]) Let N be a binary rooted phylogenetic network that has r retic-
ulate nodes, n leaves, and v nodes. If N is nearly stable, then r ≤ 3(n − 1) and
v ≤ 8n − 7.

Proof Let c be the number of tree node components of N and let t be the number of
internal tree nodes. In N , each node may or may not be visible. Thus, we consider
invisible and visible nodes separately. Let rs (resp. ts) and ri (resp. ti ) denote the
number of visible and invisible reticulate (resp. internal tree) nodes of N , respectively.
Note that r = ri + rs and t = ti + ts .

First, for a tree node component K that contains neither of the network leaves,
by Proposition 14, K contains at least two tree nodes: its root, which is visible, and
another tree node that is invisible. This implies that

c − n ≤ ti , (12.14)

as there are at most n components that contain at least one network leaf.
Second, consider an invisible reticulate node x . Since N is nearly stable, the

parents of x are both visible tree nodes. By Lemma 1, each visible tree node has at
most one child that is reticulate. Therefore, all the ri invisible reticulate nodes have
2ri distinct visible tree node parents.

Additionally, by Proposition 14, each tree node component K contains a tree node
u, each child of which is either a tree node or a visible reticulate (Fig. 12.13) if K
does not contain a network leaf. Thus, there are at least c − n visible tree nodes such
that their children are all either a tree node or a visible reticulate node.

In summary, we have shown that (1) N contains at least 2ri visible tree nodes
that each have an invisible reticulate child and (2) there are at least c − n visible tree
nodes that does not have an invisible reticulate child. Hence,

(c − n) + 2ri ≤ ts . (12.15)
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(a) (b)
(c)

Fig. 12.15 Illustration of the construction of N (K ,+X ′). a N and K . b N (K ,+X ′) for N , K in
(a) and X ′ = {1, 2}, which is derived by keeping Leaf 2 below K while sending Leaf 3 away from
K . In N (K ,+X ′), all leaves below K are in X ′. c K , which is the subnetwork induced by all the
nodes below the root of K

If we combine Eqs. (12.14) and (12.15),

2(c − n) + 2ri ≤ ti + ts = t. (12.16)

Third, since the parent of the root of a tree node component is either the network
root or a visible reticulate node,

c = 1 + rs . (12.17)

If we replace c with rs + 1 and then rs + ri with r in Eq. (12.16), we have

2r + 2 − 2n ≤ t.

Since N is binary, by Eq. (12.1) in Theorem 1, 2r + 2 − 2n ≤ r + (n − 1). Equiva-
lently, r ≤ 3(n − 1). This also implies that v = t + r + n = (r + n − 1) + r + n ≤
8n − 7. This completes the proof.

12.5.6 Linear-Time Algorithms for the Cluster Containment
Problem

Given an instance consisting of a rooted phylogenetic network N on X and a subset
X ′ of X for the cluster containment problem, our task is to determine whether X ′ is a
softwired cluster in N or not. By Proposition 4, wemay assume that N is compressed.

Consider a nontrivial tree node component K of N . K is said to beminimal if only
reticulate nodes and network leaves are found below K . For the reticulation-visible
network in Fig. 12.11, C1 and C2 are minimal, but C0 and C3 are not.
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For a minimal tree node component K , we define

K = K + {(p(r), r), (r, c(r)) | r ∈ R(N ) such that p(r) ∈ P(r) ∩ K }.(12.18)

It is obtained by disconnecting r from all the tree components but K for every
reticulate node r below K , as shown in Fig. 12.15c.

Additionally, let r be a reticulate node of N . It is said to be a child reticulate node
of K if r has at least one parent contained in K . Recall that P(r) denotes the set of
parents of r and c(r) denotes the child of r . For a minimal tree node component K
and X ′ ⊂ X , we define

N (K ,+X ′) = N − {(u, r) ∈ E (N ) | u ∈ P(r) ∩ K & c(r) ∈ X\X ′}
−{(u, r) ∈ E (N ) | u ∈ P(r)\K & c(r) ∈ X ′}. (12.19)

It is easy to see that N (K ,+X ′) is obtained from N by sending leaves that are not in
X ′ away from K and disconnecting leaves in X ′ from all the tree node components
except K , as shown in Fig. 12.15b.

Proposition 15 Let N be a rooted phylogenetic network on X, let X ′ ⊆ X and let
K be a minimal tree node component that is stable on a leaf �. Then, the following
hold for a tree node u that is an ancestor of K :

(i) If � ∈ X ′, X ′ is a softwired cluster at u in N if and only if it is in N (K ,+X ′);
(ii) If � ∈ X\X ′, X ′ is a softwired cluster at u in N if and only if it is in

N (K ,+ (
X\X ′)

)
;

(iii) If K is stable on both a leaf in X ′ and another in X\X ′, X ′ is not a softwired
cluster of u in N.

Proof (i) Since N (K ,+X ′) is a subnetwork of N , the sufficiency of the condition is
clear. Its necessity is proved as follows.

Assume that there is a spanning tree T of N in which X ′ is the cluster of u. Since
K is below u and stable on �, the unique path P from ρ(N ) to � in T must contain
u, ρ(K ) (i.e., the root of K ) and � in sequence. Let

R = {r ∈ R(N ) | P(r) ∩ K �= ∅ & c(r) ∈ X ′},

which consists of all the child reticulate nodes of K whose child is in X ′, and let
R′ ⊆ R be the subset of reticulate nodes that are in R but not below ρ(K ) in T .

For each r ∈ R′, we let pT (r) be the parent of r in T and we also let pK (r)
be a parent of r in K (i.e., pK (r) ∈ P(r) ∩ K ). Since T is a spanning subtree of
N , T contains all the nodes in the path from ρ(K ) to pK (r). This implies that
T − (pT (r), r) + (pK (r), r) is also a spanning subtree of N in which X ′ is still the
cluster associated with u, as r is below u through the subpath of P from u to ρ(K )

and the path from ρ(K ) to pK (r) in K . Repeating this process for all reticulate nodes
in R′, we obtain the spanning subtree:
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T − {
(pT (r), r) | r ∈ R′} + {

(pK (r), r) | r ∈ R′}

of N (K ,+X ′), in which X ′ is a cluster at u. This completes the proof of Part (i).
(ii) This part is symmetric to Part (i) and can be proved similarly.
(iii) Let �′ ∈ X and �′′ ∈ X\X ′ be two leaves on which K is stable. Then the

parents of p(�′) are each in K if �′ is not in K , as K is minimal. This fact is also
true for �′′. Since all of K is below u, there is a path from the network root to �′ that
passes u and then ρ(K ), which implies the existence of a path from u to ρ(k) and
then to �′′. Therefore, in any spanning tree of N , �′′ is also below u if �′ is below u.
This suggests that X ′ cannot be a cluster at u in any spanning tree of N .

Proposition 16 Let N be a rooted phylogenetic network on X, let X ′ ⊆ X and let
K be a minimal tree node component. Whether or not X ′ is a softwired cluster at a
tree node u of K can then be determined in linear time.

Proof Anecessary condition for X ′ being a softwired cluster in K is that all the leaves
in X ′ must be below K . Thus, one just needs to consider K to determine whether
X ′ is a softwired cluster in a node of K . One can develop a dynamic programming
algorithm for this purpose, a full description of which can be found in [17].

Based on Propositions 15 and 16, we can solve the small cluster containment
problem by doing the following:

• Simplify the input network by eliminating the minimal tree node components one by one
until Ku , the tree node component containing the given u, becomes minimal. Whenever
the minimal component under examination is stable on a leaf in X ′ and another in X\X ′,
the algorithm returns “No” and terminates.

• Execute the dynamic programming algorithm mentioned in Proposition 16 on Ku , which
is defined in Eq. (12.18), to determine if X ′ is a softwired cluster of u.

To demonstrate this algorithm, we consider whether or not X ′ = {1, 4, 6} is a soft-
wired cluster at the left child of the root in the network in Fig. 12.11, in which there
are four nontrivial tree node componentsC0–C3. The first three steps of the algorithm
are illustrated in Fig. 12.16.

First, we start with C1. It is minimal and stable on 6. Since 6 ∈ X ′ and 5 /∈ X ′,
we send 5 away from C1 and compress C1 into a leaf labeled with 6, obtaining the
second network in the first row, called N ′. N ′ is a compression of N (C1,+X ′).

Second, we consider C2 that is stable on both 3 and 5 in N ′. Note that C2 is not
stable on 5 in N . Since 3 /∈ X ′, 5 /∈ X ′ but 4 ∈ X ′, we send 4 away from C2 and
compress C2 into a leaf with the label {3, 5}, obtaining the second network in Row
2, called N ′′. N ′′ is a compression of N ′(C2,+(X\X ′)).

Third, C3 becomes a minimal component and stable on the added leaf {3, 5} in
N ′′. Since {3, 5} ∩ X ′ = ∅ and 2 /∈ X ′, we disconnect 2 from the rest of network and
compress C3 into a new leaf with the label {2, 3, 5}, obtained the first network in the
second row, called N ′′′.
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Fig. 12.16 Illustration of the linear-time algorithm for determining whether {1, 4, 6} is a softwired
cluster at u in the network in Fig. 12.11

After Step 3, C0 is the only tree node component in N ′′′, which contains u. C0

is clearly minimal. Hence, it is time to run the dynamic programming algorithm
described in the above proposition to conclude that X ′ is indeed a softwired cluster
at u in C0 in N ′′′.

We can obtain a linear-time algorithm for the cluster containment problem by
modifying the above algorithm as follows. (1)When a minimal tree node component
K is eliminated, we need to check whether X ′ is a cluster at the root of K if K is
stable only on the leaves in X ′. (2) When the minimal tree node component is under
consideration is stable on both a leaf in X ′ and another that is not in X ′, we need
to call the dynamic programming algorithm to check if X ′ is a cluster at a node in
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(a)

(b)

Fig. 12.17 An instance of the tree containment problem. a A rooted phylogenetic network N . b A
phylogenetic tree T with same labeled leaves

this component. The complete description of this algorithm can be found in [17].
Therefore, we obtain the following theorem.

Theorem 11 ([17, 24]) For the classes of reticulation-visible networks and nearly
stable networks there is a linear-time algorithm for (i) the small cluster containment
problem and (ii) the cluster containment problem.

In Propositions 15 and 16, we only assume that K is minimal and visible. Hence,
the propositions can also be used to design fast algorithms to solve the (small) cluster
containment problem for arbitrary rooted phylogenetic networks [31, 43].

12.5.7 Fast Algorithms for the Tree Containment Problem

Given an instance consisting of a rooted phylogenetic network N and a binary phy-
logenetic tree T , both of which are on X for the tree containment problem, the task
is to determine whether or not T is displayed by N . This is equivalent to determine
whether there is a spanning subtree T ′ of N such that T ′ becomes a subdivision of
T after the removal of all nodes below which there are no leaves in X . For conve-
nience, we call T ′ an expansion of T in N . By Proposition 7, we assume that N is
compressed.

Let � ∈ X . There is a unique path P (T )
� from ρ(T ) to � in T :

P (T )
� : v0 = ρ(T ), v1, . . . , vk = �,
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where ρ(T ) is the root of T . We let Ti denote the subtree consisting of all the nodes
below vi for each 0 ≤ i ≤ k. Then,

V (Tk) = {�} ⊂ V (Tk−1) ⊂ · · · ⊂ V (T1) ⊂ V (T0) = V (T ).

For the leaf �5 of the tree in Fig. 12.17b, k = 3, T1, T2 and T3 are highlighted in nested
shaded triangles and T0 = T .

For a leaf subset S such that � ∈ S ⊆ X , define

i(S, �) = max{i | S ⊆ V (Ti )}. (12.20)

Continuing the example, we have i({�4, �5}, �5) = 3, as T3 is the smallest subtree Ti
that contains {�4, �5} among the five subtrees Ti (0 ≤ i ≤ 4).

Let K be a minimal tree node component of N that is stable on � and define the
following:

d(K , T, �) = min{i | Ti is displayed by K }. (12.21)

Continuing the example, d(K , T, �5) = 2, as the largest subtree that can be displayed
by C3 is T2 for K = C3 in the network in Fig. 12.17a.

It is not hard to see that the parameter i(S, �) can be computed in a time that is
linear to the number of nodes in T , given T and �. However, a straightforward imple-
mentation of the dynamic programming approach takes quadratic time to compute
the parameter d(K , T, �). Recently, two better algorithms for computing this param-
eter have been proposed independently. Gunawan proposed a linear-time algorithm
for binary K by using a topological property of the subtree consisting of the visible
nodes of K [16]. Weller developed a subquadratic time algorithm for arbitrary tree
node components. Formally, he proved the following interesting result [41].

Proposition 17 For any T , K and � ∈ X, the parameter d(K , T, �) can be com-
puted in O (|V (K )| · m), where m = max{din(r)|r ∈ R(K )} and din(r) is the inde-
gree of r .

In [17], Gunawan et al. established the following relationship between the two
parameters.

Proposition 18 Let N be a rooted phylogenetic network on X and let K be aminimal
tree component that is stable on a leaf �. Let SK denote the subset of leaves on which
K is stable. If T is displayed by N, then d(K , T, �) ≤ i(SK , �). In addition, there
is a spanning tree T ′ of N such that T ′(ρ(K )) is an expansion of Td(K ,T,�), where
T ′(ρ(K )) is the subtree consisting of nodes below ρ(K ) in T ′.

Proof Assume that T is displayed by N . Then there is a spanning tree G of N such
that G is an expansion of T . For each �′ ∈ SK , K is stable on �′ and thus, in G, the
unique path fromρ(N ) to �′ containsρ(K ). Thus, vi(Sk ,�) corresponds to a node below
ρ(K ) and hence Ti(Sk ,�) is displayed by K , implying that d(K , T, �) ≤ i(SK , �). For
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(a) (b)

Fig. 12.18 Illustration of the proof of Proposition 18. a A spanning tree G1 of the network N
(Fig. 12.17a). This is a subdivision of T (Fig. 12.17b) in which the root T2 (Fig. 12.17b) is mapped to
an ancestor of v, the root ofC3. Here, SC3 = {�4, �5} and d(C3, T, �5) = 2. b (G2 ∪ G3)(shaded) +
(c(v), v)(dashed), where (c(v), v) is the incoming edge of the root v of C3 in N . G2 is the subtree
obtained from G1 by removing the nodes in V (K ) ∪ {�, p(�) | � ∈ SC3 }

instance, for �5 of T and C3 of N in Fig. 12.17, we know that d(K , T, �5) = 2, while
i(SC3 , �5) = 3 from the earlier discussion of the two parameters.

Let d = d(K , T, �). Assume that G1 is a spanning tree of N that is an expansion
of T and u ∈ V (G1) corresponds to the root of Td . In G1, there is a unique path P
from ρ(N ) to � that contains u and there are not any leaves other than those of Td
below u. Assume that u is not in K . Since K is stable on �, ρ(K ) is below u in P . In
addition, since G1 is obtained from N by removing only reticulate edges, the subtree
X rooted at ρ(K ) of G1 consists of the nodes of K and a subset S′ of reticulate nodes
below K and their children, where SK ⊆ S′. Let G2 be the subtree obtained from G1

by removing all the nodes of K , together with the incident edges. On the other hand,
since Td is displayed by K , there is a spanning subtree G3 of K that is an expansion
of Td . Then, (G2 ∪ G3) + (p(ρ(K ), ρ(K )) is also a spanning tree of N that has the
desired property (i.e., Td is displayed below ρ(K )), as illustrated by Fig. 12.18.

On the basis of Proposition 18, we obtain the following algorithm for the tree
containment problem on arbitrary reticulation-visible networks.

Repeatedly simplify the input network N by replacing a minimal tree node component
that is stable on � of N and the subtree Td(K ,T,�) of T with the same leaf � in N and T ,
respectively, until T is empty. Whenever i(SK , �) < d(K , T, �), the algorithm returns “No”
and terminates.

The full description of this algorithm can be found in [17]. By Proposition 17, this
algorithm takes linear time for reticulation-visible networks with bounded indegree.
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Theorem 12 ([41]) There is a linear-time algorithm for the tree containment prob-
lem on (i) binary reticulation-visible networks and (ii) compressed nearly stable
networks in which the indegree of each reticulation node is less that a constant c.

In Proposition 18, we only assume that the minimal tree node component under
consideration is visible. Hence, it can be used to design a fast tree containment algo-
rithm for rooted phylogenetic networks [18]. It is interesting to investigate whether
this approach can be strengthened to solve the open problem posed in Sect. 12.4.3.

12.6 Relationships Among Network Classes

We have introduced several classes of binary rooted phylogenetic networks: galled
trees, galled networks, reticulation-visible networks, etc. and studied their combi-
natorial properties. By Proposition 8 and Theorems 6 and 8, we summarize their
inclusion relationships in Fig. 12.19.

Noticing that both the cluster and tree containment problems remain NP-complete
for binary-compressed phylogenetic networks, we list two more research problems.

Problem 1 Define a superclass of networks that contains strictly reticulation-visible
networks or/and nearly stable networks for which the cluster (resp. tree) containment
problem remains solvable in polynomial time.

Problem 2 Which NP-complete problems are solvable in polynomial time for tree-
based networks?

Lastly, galled trees have been extensively studied as a recombination model (see
[19], for example). Galled trees have nice combinatorial properties and can be recon-
structed efficiently. Although reticulation-visible networks are biologically mean-
ingful, how to reconstruct these networks from trees and sequences has yet to be
investigated. This is definitely an interesting topic for future research.

Fig. 12.19 Inclusion
relationships among network
classes within binary rooted
phylogenetic networks
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12.7 Bibliographic Notes

1. The tree-child property was introduced by Cardona et al. [6]. Galled trees were
first appeared in the papers ofWang et al. [39] and Gusfield et al. [20]. A detailed
coverage of galled trees as a recombination network model can be found in the
book by Gusfield [19]. The galled network model was first introduced by Huson
and Klöpper [22].

2. Theorem 2 was first formulated by Gunawan et al. in the study of the tree con-
tainment problem [17]. Later, it was applied to establish the tight bounds on size
for galled networks and reticulation-visible networks in [13].

3. Theorem 3 is a classic result in the study of phylogenetic trees. It is the basis
for hierarchical classification algorithms such as the UPGMA method (which
is covered in [24, 40]). Cluster networks were introduced by Huson and Rupp
(see [24]). Regular phylogenetic networks were introduced by Baroni, Semple,
and Steel [2]. In [42], Willson showed how to uniquely reconstruct a rooted
phylogenetic network given its clusters.
The relationships among clusters, trees, and rooted phylogenetic networks were
first investigated by Nakhleh and Wang [35], in which the cluster and tree con-
tainment problems were formally defined. The concept of softwired clusters was
coined by Huson et al. [23]. The NP-completeness of the cluster containment
problem (Proposition 5) was proved by Kanji et al. [28], together with the tree
containment problem. An elegant proof of the NP-completeness of the SCCP
appears in [24, p. 170]. Theorem 4 was proved by Gunawan et al. [43]. The
Robinson–Foulds distance was first generalized from phylogenetic tree space to
the space of rooted phylogenetic network spaces in [5, 24, 30].

4. It is Van Iersel who drew researchers’ attention to the tree-based property [25].
The recent study of tree-based networks started with a seminal paper of Francis
and Steel [11]. Several research problems posted in this paper were indepen-
dently answered in the papers of Anaya et al. [1], Hayamizu [21], Jetten and van
Iersel [27] and Zhang [44]. Theorem 5 is from Zhang [44], which was indepen-
dently proved by Jetten and van Iersel [27]. Other characterizations of tree-based
networks can be found in [10]. Proposition 9 is from Semple [36].

5. The reticulation-visibility property was defined by Huson et al. [24]. Interest-
ingly, the stability relationships among the nodes in acyclic networks were inves-
tigated by Tarjan and Lengauer as early as the 1970s [29, 38] (see also a recent
survey [14], where the relationship is called a “dominator”). Theorems 7 and 8
are from Gunawan et al. [17]. The near stability property was defined by Gam-
bette et al. [12].
Gambette et al. first established linear bounds on the number of reticulate nodes
for reticulation-visible networks and nearly stable networks [12, 13]. Part (i)
of Theorems 9, 10 and 11 appeared in [13, 17]. Part (ii) of Theorem 9 is from
Bordewich and Semple [4], for which we present a different proof here.
The first linear-time algorithm for the small cluster containment problem appears
in [24, p. 171]. The linear-time algorithms for the cluster containment problems
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in Sect. 12.5.6 were developed by Gambette et al. [13, 17]. Two different cubic-
time algorithms for the tree containment problemwere independently developed
by Bordewich and Semple [4] and Gunawan et al. [17] for reticulation-visible
networks. The algorithm of the latter was improved to linear-time algorithms for
reticulation-visible networks, as well as for nearly stable networks [16, 41].
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Chapter 13
Advances in Computational Methods
for Phylogenetic Networks in the
Presence of Hybridization

R. A. Leo Elworth, Huw A. Ogilvie, Jiafan Zhu and Luay Nakhleh

Abstract Phylogenetic networks extend phylogenetic trees to allow for modeling
reticulate evolutionary processes such as hybridization. They take the shape of a
rooted, directed, acyclic graph, and when parameterized with evolutionary parame-
ters, such as divergence times and population sizes, they form a generative process
of molecular sequence evolution. Early work on computational methods for phylo-
genetic network inference focused exclusively on reticulations and sought networks
with the fewest number of reticulations to fit the data.As processes such as incomplete
lineage sorting (ILS) could be at play concurrently with hybridization, work in the
last decade has shifted to computational approaches for phylogenetic network infer-
ence in the presence of ILS. In such a short period, significant advances have been
made on developing and implementing such computational approaches. In particu-
lar, parsimony, likelihood, and Bayesian methods have been devised for estimating
phylogenetic networks and associated parameters using estimated gene trees as data.
Use of those inference methods has been augmented with statistical tests for specific
hypotheses of hybridization, like theD-statistic. Most recently, Bayesian approaches
for inferring phylogenetic networks directly from sequence data were developed and
implemented. In this chapter, we survey such advances and discuss model assump-
tions as well as methods’ strengths and limitations. We also discuss parallel efforts
in the population genetics community aimed at inferring similar structures. Finally,
we highlight major directions for future research in this area.
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(a) (b) (c)

Fig. 13.1 Hybrid speciation and introgression. a A phylogenetic tree on three taxa, A, B, and C,
and a gene tree within its branches. Genetic material is inherited from ancestors to descendants and
it is expected that loci across the genome would have the shown gene tree. b A hybrid speciation
scenario depicted by a phylogenetic network, where B is a hybrid population that is distinct from
its parental species. Shown within the branches of the network are two gene trees, both of which are
assumed to be very common across the genome. cAn introgression scenario. Through hybridization
and backcrossing, genetic material from (an ancestor of) C is incorporated into the genomes of
individuals in (an ancestor of) B. The introgressed genetic material would have the gene tree shown
in red, and the majority of loci in B’s genomes would have the gene tree shown in blue. Incomplete
lineage sorting would complicate all three scenarios by giving rise to loci with other possible gene
trees and by changing the distribution of the various gene trees

13.1 Introduction

Hybridization is often defined as reproduction between members of genetically
distinct populations [4]. This process could occur in various spatial contexts, and
could have impacts on speciation and differentiation [1–3, 71–73, 96]. Furthermore,
increasing evidence as to the adaptive role of hybridization has been documented,
for example, in humans [91], macaques [6, 85, 108], mice [64, 104], butterflies [111,
133], and mosquitoes [30, 117].

Hybridization is “generically” used to contain two different processes: hybrid
speciation and introgression [29]. In the case of hybrid speciation, a new population
made of the hybrid individuals forms as a separate and distinct lineage from either
of its two parental populations.1 Introgression, or introgressive hybridization, on
the other hand, describes the incorporation of genetic material into the genome of a
population via interbreeding and backcrossing, yet without creating a new population
[43]. As Harrison and Larson noted [43], introgression is a relative term: alleles at
some loci introgress with respect to alleles at other loci within the same genomes.
From a genomic perspective, and as the basis for detection of hybridization, the
general view is that in the case of hybrid speciation, regions derived from either of
the parental ancestries of a hybrid species would be common across the genomes,
whereas in the case of introgression, regions derived from introgression would be
rare across the genomes [29]. Figure 13.1 illustrates both hybridization scenarios.

1In this chapter, we do not make a distinction between species, population, or subpopulation. The
modeling assumptions and algorithmic techniques underlying all the methods we describe here
neither require nor make use of such a distinction.
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A major caveat to the aforementioned general view is that, along with hybridiza-
tion, other evolutionary processes could also be at play, which significantly compli-
cates the identification of hybrid species and their parental ancestries. Chief among
those processes are incomplete lineage sorting (ILS) and gene duplication and loss.
Indeed, various studies have highlighted the importance of accounting for ILS when
attempting to detect hybridization based on patterns of gene tree incongruence [16,
30, 74, 87, 91, 111, 117, 124, 133]. Furthermore, gene duplication and loss are very
common across all branches of the Tree of Life. While the main focus of this chapter
is on modeling and inferring hybridization, a discussion of how ILS is accounted
for is also provided since recent developments have made great strides in modeling
hybridization and ILS simultaneously. While signatures of gene duplication and loss
are ubiquitous in genomic data sets, we do not include a discussion of these two
processes in this chapter since methods that account for them in the context of phy-
logenetic networks are currently lacking. The chapter by El-Mabrouk and Noutahi
in this volume discusses in extensive detail the evolution of gene families under
gene duplication and loss, and problems that arise with respect to reconciling the
evolutionary history of a gene family with that of a set of species.

When hybridization occurs, the evolutionary history of the set of species is best
modeled by a phylogenetic network, which extends the phylogenetic tree model by
allowing for “horizontal” edges to denote hybridization and to facilitate modeling
bi-parental inheritance of genetic material. Figure 13.1 shows two phylogenetic net-
works that model hybrid speciation and introgression. It is very important to note,
though, that from the perspective of existing models, both phylogenetic networks
are topologically identical. This issue highlights two important issues that must be
thought about carefully when interpreting a phylogenetic network. First, neither the
phylogenetic network nor the method underlying its inference distinguish between
hybrid speciation and introgression. This distinction is a matter of interpretation by
the user. For example, the phylogenetic network in Fig. 13.1c could be redrawn,
without changing the model or any of its properties, so that the introgression is from
(an ancestor of) A to (an ancestor of) B, in which case the “red” gene tree would be
expected to appear with much higher frequency than the “blue” gene tree. In other
words, the way a phylogenetic network is drawn could convey different messages
about the evolutionary history that is not inherent in the model or the inference meth-
ods. This issue was importantly highlighted with respect to data analysis in [117]
(Fig. 13.7 therein). Second, the phylogenetic network does not by itself encode any
specific backbone species tree that introgressions could be interpreted with respect
to. This, too, is a matter of interpretation by the user. This is why, for example,
Clark and Messer [16] recently argued that “perhaps we should dispense with the
tree and acknowledge that these genomes are best described by a network.” Further-
more, recent studies demonstrated the limitations of inferring a species tree “despite
hybridization” [103, 136].

With the availability of data from multiple genomic regions, and increasingly
often from whole genomes, a wide array of methods for inferring species trees,
mainly based on themultispecies coalescent (MSC)model [19], have been developed
[65, 67, 77]. Building on these methods, and often extending them in novel ways,
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Fig. 13.2 Phylogenetic network inference process and approaches. The process of phylogenetic
network inference starts with collecting the genomic data and identifying the orthology groups
of unlinked loci. Multiple sequence alignments or single bi-allelic markers corresponding to the
unlinked loci are then obtained; phylogenetic network inference methods use one of these two
types of data. In two-step inference methods, gene trees are first estimated for the individual loci
from the sequence alignment data, and these gene tree estimates are used as the input data for
network inference. If incomplete lineage sorting (ILS) is not accounted for, a smallest displaying
network of the gene tree estimates is sought. If ILS is accounted for, parsimony inference based
on the minimizing deep coalescences (MDS) criterion, a maximum likelihood estimate (MLE), a
maximum a posteriori (MAP) estimate, or samples of the posterior distribution can be obtained.
In the direct inference approach, whether based on sequence alignment or bi-allelic marker data,
a MAP estimate or samples of the posterior distribution can be obtained directly from the data.
The two parsimony methods consider only the topologies of the gene tree estimates as input (i.e.,
they ignore gene tree branch lengths) and return as output phylogenetic network topologies. The
likelihood and Bayesian methods that take gene tree estimates as input can operate on gene tree
topologies alone or gene trees with branch lengths as well. Both methods estimate phylogenetic
network topologies alongwith branch lengths (in coalescent units) and inheritance probabilities. The
direct inference methods estimate the phylogenetic network along with its associated parameters

the development of computational methods for inferring phylogenetic networks from
genome-wide data hasmade great strides in recent years. Figure 13.2 summarizes the
general approaches thatmost phylogenetic network inferencemethods have followed
in terms of the data they utilize, themodel they employ, and the inferences theymake.
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The overarching goal of this chapter is to review the existing methods for inferring
phylogenetic networks in the presence of hybridization,2 describe their strengths
and limitations, and highlight major directions for future research in this area.All
the methods discussed hereafter make use of multi-locus data, where a locus in this
context refers to a segment of genome present across the individuals and species
sampled for a given study and related through common descent. A locus can be of
varying length, coding or noncoding, and can be either functional or nonfunctional.
Therefore, the use of the term “gene trees” is only historical; we use it to mean the
evolutionary history of an individual locus, regardless of whether the locus overlaps
with a coding region or not. Care must be taken with increasingly long loci spanning
hundreds or thousands of contiguous basepairs, however, as many methods assume
a locus has not been affected by recombination.

Multi-locus methods are fairly popular because the model fits several types of
reduced representation genomic data sets commonly generated to study biologi-
cal systems. Reduced representation refers to capturing many segments scattered
throughout a genome, but only covering a fraction of the total genome sequence
[35]. Reduced representation data sets which have been used with multi-locus meth-
ods include RAD-seq and genotyping by sequencing (GBS), which capture loci of
roughly 100 bp associatedwith palindromic restriction enzyme recognition sites [28].
Another family of techniques often applied to studies of deeper time scales, sequence
capture, extracts conserved sequences using probes complementary to targeted exons
or ultraconserved elements [39]. Sequence capture can also be performed in silico
when whole genomes are available [50].

The rest of the chapter is organized as follows. We begin in Sect. 13.2 by defining
terminology for the nonbiologist, and give a very brief review of phylogenetic trees
and their likelihood. In Sect. 13.3, we describe the earliest, and simplest from a mod-
eling perspective, approaches to inferring parsimonious phylogenetic networks from
gene tree topologies by utilizing their incongruence as the signal for hybridization.
To account for ILS, we describe in Sect. 13.4 the multispecies network coalescent, or
MSNC,which is the coremodel for developing statistical approaches to phylogenetic
network inference while accounting for ILS simultaneously with hybridization. In
Sects. 13.5 and 13.6 we describe the maximum likelihood and Bayesian methods for
inferring phylogenetic networks from multi-locus data. In Sect. 13.7, we briefly dis-
cuss an approach aimed at detecting hybridization by using phylogenetic invariants.
This approach does not explicitly build a phylogenetic network. In Sect. 13.8 we
briefly discuss the efforts for developing methods for phylogenetic network infer-
ence that took place in parallel in the population genetics community (they are often
referred to as “admixture graphs” in the population genetics literature). In Sect. 13.9,
we summarize the available software for phylogenetic network inference, discuss the
data that these methods use, and then list some of the limitations of these methods
in practice. We conclude with final remarks and directions for future research in
Sect. 13.10.

2We emphasize hybridization (in eukaryotic species) here since processes such as horizontal gene
transfer in microbial organisms result in reticulate evolutionary histories, but the applicability of
methods we describe in this chapter has not been investigated or explored in such a domain.
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13.2 Background for Nonbiologists

In this section, we define the biological terminology used throughout the chapter so
that it is accessible for nonbiologists. We also provide a brief review of phylogenetic
trees and their likelihood, which is the basis for maximum likelihood and Bayesian
inference of phylogenetic trees from molecular sequence data. Excellent books that
cover mathematical and computational aspects of phylogenetic inference include
[27, 32, 99, 107, 114].

13.2.1 Terminology

As we mentioned above, hybridization is reproduction between two members of
genetically distinct populations, or species (Fig. 13.3). Diploid species (e.g., humans)
have two copies of each genome. Aside from a few unusual organisms such as
parthenogenic species, one copy will be maternal in origin and the other paternal.
When the hybrid individual (or F1) is also diploid, this process is called homoploid
hybridization.

While each of the two copies of the genome in the hybrid individual traces its
evolution back to precisely one of the two parents, this picture becomes much more
complex after several rounds of recombination. Recombination is the swapping of a
stretch of DNA between the two copies of the genome. Mathematically, if the two
copies of the genome are given by strings u and v (for DNA, the alphabet for the
strings is {A,C,T ,G}), then recombination results in two strings u′ = u1u2u3 and
v′ = v1v2v3, where u1, u2, u3, v1, v2, and v3 are all strings over the same alphabet,
and u1v2u3 = u and v1u2v3 = v; that is, substrings u2 and v2 were swapped. Observe
that when this happens, u1 and u3 in the copy u′ are inherited from one parent, and v2,
also in the copy u′, is inherited from a different parent. A similar scenario happens
in copy v′ of the diploid genome.

This picture gets further complicated due to backcrossing, which is the mating
between the hybrid individual, or one of its descendants, with an individual in one
of the parental species. For example, consider a scenario in which descendants of
the hybrid individual in Fig. 13.3 repeatedly mate with individuals from species A.
After several generations, it is expected that the genomes of the hybrid individuals
become more similar to the genomes of individuals in species A, and less similar to
the genomes of individuals in species B (using the illustration of Fig. 13.3, the two
copies of the genome would have much more red in them than blue).

Most models and methods for phylogenetic inference assume the two copies of a
diploid genome are known separately and often only one of them is used to represent
the corresponding individual. However, it is important to note that knowing the two
copies separately is not a trivial task. Sequencing technologies produce data on both
copies simultaneously, and separating them into their constituent copies is a well-
studied computational problem known as genome phasing.
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Species A Species B
genome of 
individual a

genome of 
individual b

genome of 
hybrid individual

whose parents are 
a and b

hybridization

recombination

after multiple generations

(an enlarged view of the genome;
the size did not change)

locus
1

locus
2

locus
3
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4

Fig. 13.3 Hybridization, recombination, and the generation of a mosaic genome. Diploid
individual a from species A and individual b from species B mate, resulting in a diploid hybrid
individual with one copy of its genome inherited from parent a and the other copy inherited from
parent b. A recombination event results in the “swapping” of entire regions between two copies of
the genome. Aftermultiple generations inwhichmore recombination happens, the genome becomes
a mosaic. Walking across the genome from left to right, the color switches back and forth between
red and blue, where switches happen at recombination breakpoints. Shown are four different loci.
Loci 1 and 3 are not appropriate for tree inference since they span recombination breakpoints and,
thus, include segments that have different evolutionary histories. Loci 2 and 4 are the “ideal” loci
for analyses by methods described in this chapter

Biologists often focus on certain regions within the genomes for phylogenetic
inference. If we consider the genome to be represented as a stringw over the alphabet
{A,C,T ,G}, then a locus is simply a substring of w given by the start and end
positions of the substring in w. The size of a locus can range anywhere from a single
position in the genome to a (contiguous) stretch of 1 million or more positions in the
genome. Aswe discussed above,when recombination happens, an individual copy of
the genome would have segments with different ancestries (the blue and red regions
in Fig. 13.3). A major assumption underlying phylogenetic tree inference is that the
sequence data of a locus used for inference has evolved down a single tree. Therefore,
the more recombination which has occurred within a locus over its evolutionary
history (limited to the history connecting the species being studied), the less suitable
it will be for phylogenetic inference. Conversely, loci with low recombination rates
may be more suitable in terms of avoiding intra-locus recombination, although such
loci are more susceptible to linked selection [42].
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13.2.2 Phylogenetic Trees and Their Likelihood

An unrooted binary phylogenetic tree T on set X of taxa (e.g., X = {humans,
chimp, gorilla}) is a binary tree whose leaves are bijectively labeled by the elements
of X . That is, if |X | = n, then T has n leaf nodes and n − 2 non-leaf (internal)
nodes (each leaf node has degree 1 and each internal node has degree 3). A rooted
binary phylogenetic tree is a directed binary tree with a single node designated as the
root and all edges are directed away from the root. For n taxa, a rooted binary tree
has n leaves and n − 1 internal nodes (each leaf node has in-degree 1 and out-degree
0; each internal node except for the root has in-degree 1 and out-degree 2; the root
has in-degree 0 and out-degree 2).

Modern methods for phylogenetic tree inference make use of molecular sequence
data, such asDNAsequences, obtained from individualswithin the species of interest.
The sequences are assumed to have evolved from a common ancestral sequence (we
say the sequences are homologous) according to a model of evolution that specifies
the rates at which the various mutational events could occur (Fig. 13.4).

For example, to infer a phylogenetic tree T on set X = {X1, . . . ,Xn} of taxa,
the sequence S1 of a certain locus is obtained from the genome of an individual in
species X1, the sequence S2 of a certain locus is obtained from the genome of an

AACACGTTTAA

AA AGGT TAA

TCCACG AA

TCCACG AA
AA AGGT TAA

AA ATGT TAA
TC AA

U1

U2

U3

S1

S2

S3

S4

Fig. 13.4 Sequence evolution on a tree. At the top is the ancestral sequence for a certain locus in
the genome of an individual. Through cell division and DNA replication, this sequence is inherited
from parent to children. However, mutations could alter the inherited sequences. Boxes indicate
letters that were deleted due to mutation. Letters in blue indicate substitutions (a mutation that alters
the state of the nucleotide). The letter in green has mutated more than once during its evolutionary
history.With respect to sequenceU1, sequenceU2 has two deletions at the third and eighth positions,
and a substitution (C to G) at the fifth position. With respect to sequence U1, sequence S3 has 7
deletions at positions 3–9, and substitutions at the first two positions (A to T, and A to C). Sequences
S1, S2, S3, and S4, with the boxes and colors unknown, are often the data for phylogenetic inference.
That is, the four sequences used as data here are: AAATGTTAA, AAAGGTTAA, TCAA, and
TCCACGAA



13 Advances in Computational Methods for Phylogenetic Networks … 325

individual in species X2, and so on until n sequences S1, . . . , Sn are obtained. To
perform phylogenetic tree inference, the n sequences must satisfy two important
conditions (see Fig. 13.4):

• The sequences are homologous: The obtained sequences must have evolved down
a single tree from a single sequence in an individual in an ancestral species. Two
sequences are homologous if they evolved from a common ancestor, including
in the presence of events such as duplication. Two homologous sequences are
orthologs if they evolved from a common ancestor solely by means of DNA repli-
cation and speciation events. Two homologous sequences are paralogs if their
common ancestor had duplicated to give rise to the two sequences.

• The sequences are aligned: While the obtained homologous “raw” sequences
might be of different lengths due to events such as insertions and deletions, the
sequences must be made to be the same length before phylogenetic inference is
conducted so that positional homology is established. Intuitively, positional homol-
ogy is the (evolutionary) correspondence among sites across the n sequences. That
is, the sequences must be made of the same length so that the ith site in all of them
had evolved from a single site in the sequence that is ancestral to all of them
(Fig. 13.5).

TCCACG AA

AA AGGT TAA

AA ATGT TAA

TC AA

AAATGTTAA

AAAGGTTAA

TCAA 

TCCACGAA

AAATGTTAA

AAAGGTTAA

TCAA 

TCCACGAA

Homology
detection

Multiple
sequence
alignment

Phylogenetic
tree inference

AA ATGT TAA

AA AGGT TAA

TC AA

TCCACG AA

Fig. 13.5 From homologous sequences to a phylogenetic tree. Identifying homologous
sequences across genomes is the first step toward a phylogenetic analysis. The homologous
sequences, once identified, are not necessarily of the same length, due to insertions and dele-
tions. Multiple sequence alignment is performed on the homologous sequences and the result is
sequences of the same length where boxes indicate deleted nucleotides. Finally, a phylogenetic tree
is constructed on the aligned sequences
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Identifying homologous sequences across genomes is not an easy task; see, for
example, [81] for a recent review of methods for homology detection. Multiple
sequence alignment is also a hard computational problem, with a wide array of
heuristics and computer programs currently available for it; see, for example, [13]
for a recent review.

We are now in position to define a basic version of the Phylogeny Inference
Problem:

Input: Set S = {S1, . . . , Sn} of homologous sequences, where sequence Si is
obtained from taxon Xi, and the n sequences are aligned.
Output: A phylogenetic tree T on setX of taxa such that T is optimal, given the
sequences, with respect to some criterion Φ.

The books we cited above give a great survey of the various criterion that � could
take, aswell as algorithms andheuristics for inferring optimal trees under the different
criteria. Here, we focus on the main criterion in statistical phylogenetic inference,
namely likelihood. We will make two assumptions when defining the likelihood that
are (1) sites are identically and independently distributed and (2) following a DNA
replication event, the two resulting sequences continue to evolve independently of
each other.

To define the likelihood of a tree T , we first assign lengths λ : E(T ) → R
+ to

its branches, so that λ(b) is the length of branch b in units of expected number
of mutations per site per generation. Furthermore, we need a model of sequence
evolution M . Most models of sequence evolution are Markov processes where the
probability of observing a sequence S at node u depends only on the sequence at
u’s parent, the length of the branch that links u to its parent, and the parameters of
the model of sequence evolution. If we denote by p(i)

uv (t) the probability that the ith
nucleotide in the sequence at node u evolves into the ith nucleotide in the sequence
at node v over time t (measured in units of expected number of mutations as well),
then the likelihood of a tree T and its branch lengths λ is

L(T , λ|S) = P(S|T , λ) =
∏

i

⎛

⎝
∑

R

⎛

⎝p(root(i)) ·
∏

b=(u,v)∈E(T )

p(i)
uv (λb)

⎞

⎠

⎞

⎠ . (13.1)

Here, the outer product is taken over all sites i in the sequences; i.e., if each of the
n sequences is of lengthm, then 1 ≤ i ≤ m. The summation is taken over R, which is
the set of all possible labelings of the internal nodes of T with sequences of lengthm.
Inside the summation, p(root(i)) gives the stationary distribution of the nucleotides
at position i. The likelihood as given by Eq. (13.1) is computed in polynomial time
in m and n using Felsenstein’s “pruning” algorithm [26].

Finally, the maximum likelihood estimate for solving the Phylogeny Inference
Problem is given by

(T ∗, λ∗) ← argmax(T ,λ)L(T , λ|S).
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Computing themaximum likelihood estimate from a set S of sequences isNP-hard
[15, 97]. However, much progress has been made in terms of developing heuristics
that scale up to thousands of taxa while achieving high accuracy, e.g., [106].

13.3 From Humble Beginnings: Smallest Displaying
Networks

Early work and, still, much effort in the community has focused on inferring the
topology of a phylogenetic network from a set of gene tree topologies estimated for
the individual loci in a data set. In this section, we discuss parsimony approaches to
inferring phylogenetic network topologies from sets of gene trees.

13.3.1 The Topology of a Phylogenetic Network

As discussed above, a reticulate, i.e., non-treelike, evolutionary history that arises in
the presence of processes such as hybridization and horizontal gene transfer is best
represented by a phylogenetic network.

Definition 1 A phylogeneticX -network (Fig. 13.6), orX -network for short, Ψ is
a rooted, directed, acyclic graph (rDAG) with set of nodes V (Ψ ) = {r} ∪ VL ∪ VT ∪
VN , where

• indeg(r) = 0 (r is the root of Ψ );
• ∀v ∈ VL, indeg(v) = 1 and outdeg(v) = 0 (VL are the external tree nodes, or
leaves, of Ψ );

• ∀v ∈ VT , indeg(v) = 1 and outdeg(v) ≥ 2 (VT are the internal tree nodes of Ψ );
and,

• ∀v ∈ VN , indeg(v) = 2 and outdeg(v) = 1 (VN are the reticulation nodes of Ψ ).

For binary phylogenetic networks, the out-degree of the root and every internal tree
node is 2. The network’s set of edges, denoted by E(Ψ ) ⊆ V × V is bipartitioned
into reticulation edges, whose heads are reticulation nodes, and tree edges, whose
heads are tree nodes (internal or external). Finally, the leaves of Ψ are bijectively
labeled by the leaf-labeling function � : VL → X .

13.3.2 Inferring Smallest Displaying Networks

Early work on phylogenetic networks focused on the problem of identifying a net-
work with the fewest number of reticulation nodes that summarizes all gene trees in
the input. More formally, let Ψ be a phylogenetic network. We say that Ψ displays
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A B C D

u1
u2

r

h

u3

v1 v2 v3 v4

Fig. 13.6 An example of a phylogenetic network Ψ with a single reticulation event. This
network is made up of leaf nodes VL = {v1, v2, v3, v4}, internal tree nodes VT = {u1, u2, u3}, retic-
ulation nodes VN = {h}, and the root r. The nodes are connected by branches belonging to the set
of phylogenetic network edges E(Ψ ). The branches are: (r, u1), (r, u2), (u1, h), (u2, h), (h, u3),
(u1, v1), (u2, v4), (u3, v2), and (u3, v3). The leaves are labeled by set X = {A,B,C,D} of taxa:
�(v1) = A, �(v2) = B, �(v3) = C, and �(v4) = D

phylogenetic tree t if t can be obtained from Ψ by repeatedly applying the following
operations until they are not applicable:

1. For a reticulation node h with two incoming edges e1 = (u1, h) and e2 = (u2, h),
remove one of the two edges.

2. For a node u with a single parent v and a single child w, remove the two edges
(v, u) and (u,w), and add edge (v,w).

The set of all trees displayed by the phylogenetic network is

T (Ψ ) = {t : Ψ displays t}.

For example, for the phylogenetic network Ψ of Fig. 13.6, we have T (Ψ ) =
{T1,T2}, where T1 = ((A, (B,C)),D) and T2 = (A, ((B,C),D)).

Using this definition, the earliest phylogenetic network inference problem was
defined as follows:

• Input: A set G = {g1, g2, . . . , gm} of gene trees, where gi is a gene tree for
locus i.

• Output: A phylogenetic networkΨ with the smallest number of reticulation nodes
such that G ⊆ T (Ψ ).

This problem is NP-hard [113] and methods were developed for solving it and varia-
tions thereof, some ofwhich are heuristics [86, 112, 120, 121]. Furthermore, the view
of a phylogenetic network in terms of the set of trees it displays was used for pursu-
ing other questions in this domain. For example, the topological difference between
two networks could be quantified in terms of the topological differences among their
displayed trees [80]. The parsimony and likelihood criteria were extended to the
case of phylogenetic networks based on the assumption that each site (or, locus) has
evolved down one of the trees displayed by the network [51–55, 78]. The concepts
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of character compatibility and perfect phylogeny were also extended to phylogenetic
networks based on the notion of displayed trees [58, 79, 113]. Furthermore, ques-
tions related to distinguishability of phylogenetic networks based on their displayed
trees have been pursued [57] and relationships between networks and trees have
been established in terms of this definition [31, 132]. The chapter by L. Zhang in
this volume discusses in detail problems relating to phylogenetic networks and their
sets of displayed trees and clusters.

However, the computational complexity of this problem notwithstanding, the
problem formulation could be deficient with respect to practical applications. For
one thing, solving the aforementioned problem only yields the topology of a phylo-
genetic network, but no other parameters. In practice, biologists would be interested
in divergence times, population parameters, and some quantification of the amount
of introgression in the genomes. These quantities are not recoverable under the given
formulation. Moreover, for the biologist seeking to analyze her data with respect to
hypotheses of reticulate evolutionary events, solving the aforementioned problem
could result in misleading evolutionary scenarios for at least three reasons. First, the
smallest number of reticulations required in a phylogenetic network to display all
trees in the input could be arbitrarily far from the true (unknown) number of reticu-
lations. One reason for this phenomenon is the occurrence of reticulations between
sister taxa, which would not be detectable from gene tree topologies alone. Second, a
smallest set of reticulations could be very different from the actual reticulation events
that took place. Third, and probably most importantly, some or even all of gene tree
incongruence in an empirical data set could have nothing to do with reticulation. For
example, hidden paralogy and/or incomplete lineage sorting could also give rise to
incongruence in gene trees. When such phenomena are at play, seeking a smallest
phylogenetic network that displays all the trees in the input is thewrong approach and
might result in an overly complex network that is very far from the true evolutionary
history. To address all these issues, the community has shifted its attention in the last
decade toward statistical approaches that view phylogenetic networks in terms of a
probability distribution on gene trees that could encompass a variety of evolutionary
processes, including incomplete lineage sorting.

13.3.3 Phylogenetic Networks as Summaries of Trees

Before we turn our attention to these statistical approaches, it is worth contrasting
smallest phylogenetic networks that display all trees in the input to the concept of
consensus trees. In the domain of phylogenetic trees, consensus trees have played
an important role in compactly summarizing sets of trees. For example, the strict
consensus tree contains only the clusters that are present in the input set of trees, and
nothing else. The majority-rule consensus tree contains only the clusters that appear
in at least 50% of the input trees. When there is incongruence in the set of trees, these
consensus trees are most often nonbinary trees (contain “soft polytomies”) such that
each of the input trees can be obtained as a binary resolution of the consensus tree.
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a b c d a b c d a b c d

a b c d a b c d a b c d

(a) (b) (c)

(d) (e) (f)

Fig. 13.7 Consensus trees and phylogenetic networks as two contrasting summary methods.
a–c Three (input) gene trees whose summary is sought. d The strict consensus of the input trees. e
The 70%majority-rule consensus of the input trees. f A smallest phylogenetic network that displays
all three trees in the input. The strict consensus could be resolved to yield 15 different binary trees,
only three of which are in the input. The majority-rule consensus tree could be resolved to yield
three possible trees, two of which are the trees in (a) and (d), but the third, which is (((a, b), d), c),
is not in the input. Furthermore, the tree in panel (b) is not included in the summary provided by
the majority-rule consensus. The phylogenetic network displays four trees, three of which are the
input trees, and the fourth is ((a, (b, c)), d), which is not in the input

Notice that while the consensus tree could be resolved to yield each tree in the input,
there is no guarantee inmost cases that it cannot also be resolved to generate trees that
are not in the input. Smallest phylogenetic networks that display all trees in the input
could also be viewed as summaries of the trees, but instead of removing clusters that
are not present in some trees in the input, they display all clusters that are present in
all trees in the input. Similarly to consensus trees, a smallest phylogenetic network
could also display trees not in the input (which is the reason why we use ⊆, rather
than =, in the problem formulation above). These issues are illustrated in Fig. 13.7.

As discussed above, ILS is another process that could cause gene trees to be
incongruent with each other and complicates the inference of phylogenetic networks
since incongruence due to ILS should not induce additional reticulation nodes. Before
we move on to discuss statistical approaches that account for ILS in a principled
probabilisticmanner under the coalescent,wedescribe an extension of theminimizing
deep coalescences, or, MDC, criterion [69, 70, 109, 128], to phylogenetic networks,
which was devised in [122].
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13.3.4 A Step Toward More Complexity: Minimizing Deep
Coalescences

Let Ψ be a phylogenetic network and consider node u ∈ V (Ψ ). We denote by Bu ⊆
V (Ψ ) the set of nodes in Ψ that are below node u (that is, the set of nodes that are
reachable from the root of Ψ via at least one path that goes through node u).

Definition 2 A coalescent history of a gene tree g and a species (phylogenetic)
network Ψ as a function h : V (g) → V (Ψ ) such that the following conditions hold:

• if w is a leaf in g, then h(w) is the leaf in Ψ with the same label (in the case of
multiple alleles, h(w) is the leaf in Ψ with the label of the species from which the
allele labeling leaf w in g is sampled); and

• if w is a node in gv, then h(w) is a node in Bh(v).

Given a phylogenetic network Ψ and a gene tree g, we denote by HΨ (g) the
set of all coalescent histories of gene tree g within the branches of phylogenetic
network Ψ .

Given a coalescent history h, the number of extra lineages arising from h on a
branch b = (u, v) in phylogenetic network Ψ is the number of gene tree lineages
exiting branch b from below node u toward the root, minus one. Finally, XL(Ψ, h) is
defined as the sum of the numbers of extra lineages arising from h on all branches
b ∈ E(Ψ ).

Using coalescent histories, the minimum number of extra lineages required to
reconcile gene tree g within the branches of Ψ , denoted by XL(Ψ, g) is given by

XL(Ψ, g) = min
h∈HΨ (g)

XL(Ψ, h). (13.2)

Under the MDC (minimizing deep coalescence) criterion, the optimal coalescent
history refers to the one that results in the fewest number of extra lineages [69, 109],
and thus,

XL(Ψ, g) =
∑

e∈E(Ψ )

[ke(g) − 1] (13.3)

where ke(g) is the number of extra lineages on edge e of Ψ in the optimal coalescent
history of gene tree g (Fig. 13.8).

A connection between extra lineages and the displayed trees of a phylogenetic
network is given by the following observation.

Observation 1 If gene tree g is displayed by phylogenetic networkΨ , then XL(Ψ, g)
= 0.

The implication of this observation is that if one seeks the phylogenetic network that
minimizes the number of extra lineages, the problem can be trivially solvable by
finding an overly complex network that displays every tree in the input. Therefore,
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Fig. 13.8 TheMDC criterion on phylogenetic networks. A phylogenetic network and coalescent
histories within its branches of the three gene trees in Fig. 13.7a–c. The highlighted branch that
separates the hybridization event from the MRCA of B and C has two extra lineages arising from
the three shown coalescent histories. All other branches have 0 extra lineages. Therefore, the total
number of extra lineages in this case is 2

inferring a phylogenetic networkΨ from a collection of gene tree topologiesG based
on the MDC criterion is more appropriately defined by

Ψ̂ (m) = argminΨ (m)

⎛

⎝
∑

g∈G
XL(Ψ (m), g)

⎞

⎠ ,

where we write Ψ (m) to denote a phylogenetic network with m reticulation nodes.
While the number of reticulations m is unknown and is often a quantity of interest,
there is a trade-off between the number of reticulation nodes and number of extra
lineages in a network: Reticulation edges can be added to reduce the number of extra
lineages. Observing this reduction in the number of extra lineages could provide a
mechanism to determine when to stop adding reticulations to the network [122].

13.4 Phylogenetic Networks: A Generative Model of
Molecular Sequence Data

In the previous section, we focused on two parsimony formulations for inferring a
phylogenetic network from a collection of input gene tree topologies: The first seeks
a network with the fewest number of reticulations that displays each of the input gene
trees, and the second seeks a network that does not have to display every gene tree in
the input, but must minimize the number of “extra lineages” that could arise within
a given number of reticulations. Both formulations result in phylogenetic network
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topologies alone and make use of only the gene tree topologies. In this section,
we introduce the multispecies network coalescent, or MSNC [118], as a generative
process that extends the popular multispecies coalescent (MSC) model [19] that is
the basis for most multi-locus species tree inference methods. The MSNC allows for
the coalescent to operate within the branches of a phylogenetic network by viewing
a set of populations—extant and ancestral—glued together by a rooted, directed,
acyclic graph structure.

13.4.1 Parameterizing the Network’s Topology

In addition to the topology of a phylogenetic network Ψ , as given by Definition 1
above, the nodes and edges are parameterized as follows.

Associated with the nodes are divergence/reticulation times, τ : V (Ψ ) → R
+,

where τ(u) is the divergence time associated with tree node u and τ(v) is the reticu-
lation time associated with reticulation node v. All leaf nodes u in the network have
τ(u) = 0. Furthermore, if u is on a path from the root of the network to a node v,
then τ(u) ≥ τ(v).

Associated with the edges are population mutation rate parameters, θ : E(Ψ ) →
R

+, where θb = 4Nbμ is the population mutation rate associated with edge b, Nb is
the effective population size associated with edge b, and μ is the mutation rate per
site per generation.

Divergence times associated with nodes in the phylogenetic network could be
measured in units of years, generations, or coalescent units. Branch lengths in gene
trees are often given in units of expected number of mutations per site. The following
rules are used to convert back and forth between these units:

• Givendivergence time τ in units of expected number ofmutations per site,mutation
rate per site per generation μ and the number of generations per year g, τ/(μg)
represents divergence times in units of years.

• Given population size parameter θ in units of the population mutation rate per site,
2τ/θ represents divergence times in coalescent units.

In addition to the divergence times and population size parameters, the reticula-
tion edges of the network are associated with inheritance probabilities. For every
reticulation node u ∈ VN , let left(u) and right(u) be the “left” and “right” edges
incoming into node u, respectively (which of the two edges is labeled left and which
is labeled right is arbitrary). Let ER ⊆ E(Ψ ) be the set of reticulation edges in the
network. The inheritance probabilities are a function γ : ER → [0, 1] such that for
every reticulation node u ∈ VN , γ (left(u)) + γ (right(u)) = 1. In the literature, γ is
sometimes described as a vector Γ .
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13.4.2 The Multispecies Network Coalescent and Gene Tree
Distributions

As an orthologous, non-recombining genomic region from a setX of species evolves
within the branches of the species phylogeny of X , the genealogy of this region,
also called the gene tree, can be viewed as a discrete random variable whose values
are all possible gene tree topologies on the set of genomic regions. When the gene
tree branch lengths are also taken into account, the random variable becomes con-
tinuous. Yu et al. [123] gave the probability mass function (pmf) for this discrete
random variable given the phylogenetic network Ψ and an additional parameter Γ

that contains the inheritance probabilities associated with reticulation nodes, which
we now describe briefly.

The parameters Ψ and Γ specify the multispecies network coalescent, or MSNC
(Fig. 13.9), and allow for a full derivation of the mass and density functions of gene
treeswhen the evolutionary history of species involves both ILS and reticulation [123,
124]. This is a generalization of the multispecies coalescent, which describes the
embedding and distribution of gene trees within a species tree without any reticulate
nodes [19].

It is important to note that a single reticulation edge between two nodes does not
mean a single hybridization event. Rather, a reticulation edge abstracts a continuous

Multispecies
Network

Coalescent
A B C

a ca b1 c a c a c

a
b1
b2

a
b1
b2

a
b1
b2

a
b1
b2

b2 b1 b2 b1 b2 b1 b2

c c c c

locus 1 locus 2 locus 3 locus 4

Model of 
Sequence
Evolution

Fig. 13.9 Layers of the multispecies network coalescent model. A phylogenetic network
describes the relationship between species (top). The MSNC describes the distribution of gene
trees within the network, in which alleles from the same species can have different topologies and
inheritance histories due to reticulation and/or ILS (middle). Some kind of mutation process occurs
along the gene trees, resulting in observed differences between alleles in the present, which vary
between genes based on their individual trees



13 Advances in Computational Methods for Phylogenetic Networks … 335

Hybrid

α 1 − γ
γ

Fig. 13.10 Reticulation edges as abstractions of gene flow epochs. (Left) An epoch of gene flow
fromone population to anotherwithmigration rateα per generation. (Right)Aphylogenetic network
with a single reticulation edge that abstracts the gene flow epoch, with inheritance probability γ

epoch of repeated gene flow between the two species, as illustrated in Fig. 13.10. The
two models shown in Fig. 13.10 were referred to as the “gene flow” model (left) and
“intermixture” model (right) of hybridization in [68]. While the “gene flow” model
is used by the IM family of methods [45] to incorporate admixture, theMSNC adopts
the “intermixture” model. In this model, the γ inheritance probabilities indicate the
ratio of genetic materials of a hybrid coming from its two parents. This means that
unlinked loci from a hybrid species will have independent evolutionary histories,
and will have evolved through the “left” or “right” parent with some probability γ

and 1 − γ , respectively. The performance of phylogenetic network inference on data
simulated under the gene flow model was demonstrated in [116].

Wen and Nakhleh [116] derived the density function of the probability of gene
trees given a phylogenetic network, with its topology, divergence/migration times,
population mutation rates and inheritance probabilities. The divergence/migration
times are in units of expected number of mutations per site, and population mutation
rates are in units of population mutation rate per site. Based on the MSNC, and by
integrating out all possible gene trees, Zhu et al. [135] developed an algorithm to
compute the probability of a bi-allelic genetic marker given a phylogenetic network.

13.5 Maximum Likelihood Inference of Phylogenetic
Networks

Phylogenetic networks aremore complicated than a treewith some reticulation edges.
The gene tree topology with the highest mass probability may not be one of the
backbone trees of the network with four or more taxa [136]. Also, not all networks
can be obtained by simply adding edges between the original edges of a tree [31].

Therefore inferring phylogenetic networks is not a trivial extension of methods to
infer species trees. Most phylogenetic network methods [116, 118, 122, 124, 125,
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131, 134, 135] sample from whole-network space rather than simply adding reticu-
lations to a backbone tree. As such methods walk the space from one phylogenetic
network to another, the point estimate or posterior distribution of networks is not tree-
based, does not return or imply a backbone tree, and can include networks which
cannot be described by merely adding reticulate branches between tree branches.

13.5.1 Inference

Sequential inference was initially developed to estimate species trees under the mul-
tispecies coalescent [66, 75], and in recent years has been extended to species net-
works [101, 118, 124–126]. These methods follow a two-step approach, where the
first step is to estimate gene trees from multiple sequence alignments. The second
step is to estimate a species tree or network from the distribution of estimated gene
tree topologies.

As described above and illustrated in Fig. 13.9, two key requirements have facil-
itated the development of several methods for phylogenetic inference from multi-
locus data, including those that follow the two-step approach. One key requirement
for current methods is that the segments are the result of speciation and not gene
duplication, that is, sequences from different individuals and species are orthologs
and not paralogs. Meeting this requirement ensures that the nodes in each gene tree
represent coalescent events and can be fit to a coalescent model within each species
network branch. A model which accounts for gene duplication and loss in addition
to coalescent events has been developed to reconcile gene family trees with a fixed
species tree [95, 130]. The most recent implementation of this model can also use it
to estimate the species tree [21], but this model has yet to be extended to work with
species networks.

A second key requirement is that the evolutionary history of the locus can be
accurately modeled using a single tree. Recombination or gene fusion should not
have occurred within a locus, otherwise, a gene network would be required to model
that locus, breaking the MSNC model of gene trees within a species network [127].
Because of this requirement, multi-locus methods should be used with short contigu-
ous sequences. The results of a previous study on mammal phylogenetics suggest
that individual exons are an appropriate target sequence [98].

Under these two key requirements, each gene tree is considered to be a valid
and independent sample from an underlying distribution of gene trees conditional on
some unobserved species network. Of course, this assumption in sequential inference
is violated as the gene trees are only estimates. Particular methods may be more
or less sensitive to gene tree estimation errors. For species trees, methods which
infer unrooted species trees (e.g., ASTRAL [75]) appear to be more robust relative
to methods which infer rooted species trees (e.g., MP-EST [66]). This is because
unrootedmethods take unrooted gene trees as input and do not rely on correct rooting
of the gene trees [100].
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An estimate ĝ of the true gene tree is typicallymade using phylogenetic likelihood
(see Sect. 13.2). The phylogenetic likelihood of the sequence alignments can be
combined sequentially or simultaneously with the MSNC probability densities of
the gene trees to estimate a species network from sequence data.

Given gene trees where each node represents a coalescent event, the probability
densities, and masses of those gene trees given a species network can be calculated
[124]. This can be based on the topologies and node heights of the gene trees, or
based on the topologies alone (see Sect. 13.4.2).

Maximum likelihood (ML) methods seek a phylogenetic network (along with
its parameters) that maximizes some likelihood function. In a coalescent context,
these methods search for the species network which maximizes the likelihood of
observing a sample of gene trees given the proposed species network. The sample of
gene trees can include branch lengths, in which case the likelihood is derived from
the time intervals between successive coalescent events [124]. In the absence of
branch lengths, the likelihood is derived from the probability mass of each gene tree
topology [123, 124]. This probability is marginalized over every coalescent history
h, which is all the ways for a gene tree to follow the reticulate branching of the
network:

P(g|Ψ,Γ, θ) =
∑

h∈HΨ (g)

P(h|Ψ,Γ, θ) (13.4)

and the ML species network is therefore:

Ψ̂ = argmaxΨ

∏

g∈G
P(g|Ψ,Γ, θ). (13.5)

ML inference of species networks has been implemented as the InferNetwork
_ML command in PhyloNet [124], which identifies the ML species network up to a
maximum number of reticulations.

Similar to our discussion of theMDC criterion above, absent any explicit stopping
criterion or a penalty term in the likelihood function, obtaining an ML estimate
according to Eq. (13.5) can result in overly complex phylogenetic networks since
adding more reticulations often improve the likelihood of the resulting network.
Therefore, it is important to parameterize the search by the number of reticulations
sought, m, and solve

Ψ̂ (m) = argmaxΨ (m)

∏

g∈G
P(g|Ψ (m), Γ, θ), (13.6)

where the value m is experimented with by observing the improvement in the like-
lihood for varying values of m (for example, maximum likelihood inference of phy-
logenetic networks in PhyloNet implements information criteria, such as AIC and
BIC, for this purpose [124]).
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The computational cost of the likelihood calculation increases with larger species
networks and gene trees. Not only does this increase the number of branches and
coalescent times, but as more reticulations are added many more possible coalescent
histories exist to be summed over. Even with one reticulation edge attached onto a
tree, the difficulty of the problem is exponential to tree cases. The computational
complexity of the likelihood calculation is highly related to the size of the set of all
coalescent histories of a gene tree conciliated in a network. Zhu et al. [134] proposed
an algorithm to compute the number of coalescent histories of a gene tree for a
network, and demonstrated that the number can grow exponentially after adding
merely one reticulation edge to a species tree.

To show how running time of likelihood computation varies in a network with
a single reticulation, we generated 150 random 1-reticulation networks with 5 taxa,
then simulated 10,000 bi-allelic markers with 4 individuals per species. When a
reticulation node exists in a phylogenetic network, this will induce a cycle in the
unrooted equivalent of the acyclic rooted network. The “diameter” is the length
of that cycle, and we ran the likelihood computation in [135] and summarized the
maximum running time according to values of diameter and number of taxa under
reticulation. Figure 13.11 shows that the complexity of the likelihood computation
is highly related to the structure of the network. The running time in the worst case
is hundreds of times slower than that of the best case.

A faster way to estimate a species network is to calculate a pseudo-likelihood
instead of a full likelihood. The InferNetwork_MPL command in PhyloNet
implements a maximum pseudo-likelihood (MPL) method for species networks.

Fig. 13.11 Running time of computing the likelihood of a phylogenetic network given gene
tree topologies. 150 1-reticulation phylogenetic networks with 5 species and 4 individuals per
species were used, and the data consisted of 10,000 bi-allelic markers. The networks varied in
terms of the diameter of a reticulation node (the number of edges on the cycle in the underlying
undirected graph) and the number of taxa (leaves) under the reticulation nodes
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(a) (b)

Fig. 13.12 Level-1 network definition. Reticulation nodes induce cycles in the (undirected graphs
underlying the) phylogenetic networks. The edges of the cycles are highlighted with red lines. a A
level-1 network is one where no edge of the network is shared by two or more cycles. b A non-
level-1 network is one where at least one edge is shared by at least two cycles (the shared edge in
this case is the one inside the blue circle)

This method is based on rooted triples, which is akin to the MP-EST method for
species tree inference [66, 125].

Unlike phylogenetic trees, a given phylogenetic network is not necessarily
uniquely distinguished by its induced set of rooted triples. Therefore this method
cannot distinguish the correct network when other networks induce the same sets of
rooted triples [125]. However, it is much more scalable than ML methods in terms
of the number of taxa [44].

Another MPL method, SNaQ, is available as part of the PhyloNetworks software
[101, 102]. SNaQ is based on unrooted quartets, akin to the ASTRAL method for
species tree inference [75]. It is even more scalable than InferNetwork_MPL
[44], but can only infer level-1 networks (Fig. 13.12).

13.6 Bayesian Inference of Phylogenetic Networks

Maximum likelihood estimation of phylogenetic networks, as described in the pre-
vious section, has three main limitations:

• As discussed, without penalizing the complexity of the phylogenetic network, the
ML estimate could be an overly complex network with many false reticulations.

• The inference results in a single point estimate that does not allow for assessing
confidence in the inferred network.

• The formulation does not allow for making use of the sequence data directly, but
is based on gene tree estimates.

One way of addressing these limitations is to adopt Bayesian inference where an
estimate of the posterior distribution on networks is sought directly from the sequence
data of the individual loci, and where the prior distribution on phylogenetic networks
accounts for model complexity in a principled manner.
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Before we describe the work on Bayesian inference, it is important to note that
whilemaximum likelihood estimation is not satisfactory,we cannot say that Bayesian
estimation is without challenges. Such methods like [116, 131, 135] are based on
reversible-jump MCMC [36] with varying numbers of parameters. Mixing prob-
lems arise when they involve dimension changing moves: adding a reticulation and
removing a reticulation. This is because while walking over the space of phyloge-
netic networks, these methods jump between probability spaces of different models.
Therefore moves should be carefully designed to account for mixing issues.

13.6.1 Probability Distributions Over Species Networks

It is useful to define probability distributions over species trees or networks with-
out reference to sequence data or gene trees. Among other uses, these probability
distributions can be applied as prior distributions in Bayesian inference. The two
most common types of prior distributions used for species trees are birth–death tree
priors and compound priors. Both types have been extended to create probability
distributions over species networks.

As their name implies, birth–death tree priors combine a rate of birth with a
rate of death. These are the rates at which one lineage splits into two, and one
lineage ceases to exist respectively [34]. In the context of species trees these rates
are more informatively called speciation and extinction. When the extinction rate is
set to zero, this is known as a Yule prior [129]. Birth–death tree priors have been
extended to support incomplete sampling in the present, and sampling-through-time
[105]. A birth–death prior for species networks has been developed, called the birth-
hybridization prior. This prior combines a rate of birth (or speciation) with a rate of
hybridization, which is the rate at which two lineages merge into one. This model
does not include a rate of extinction [131].

All birth–death tree priors induce a uniform probability distribution over ranked
tree topologies, regardless of the rates of speciation and extinction. This means that
birth–death priors favor symmetric over asymmetric trees, as symmetric trees have
more possible ranked histories. Empirical trees generally have more asymmetric
shapes than predicted by birth–death models [41]. For the birth-hybridization prior
the probability distribution over network topologies is not invariant to the hybridiza-
tion rate, which when set to zero reduces to the Yule model, and any topology
containing a reticulation will have zero probability.

All birth–death priors are generative, as is the birth-hybridization prior. Thismeans
that not only can these distributions be used as priors for Bayesian inference, but they
can be used to simulate trees and networks. These simulated distributions can then be
used for ABC inference, which is used for models which are difficult to implement
using MCMC. They can also be used for posterior predictive checks, which is an
absolute measure of model goodness of fit [33].

While birth–death priors induce a probability distribution over topologies and
branch lengths, compound tree and network priors are constructed from separate
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distributions on both. Typically compound tree priors combine a uniform distribu-
tion over unranked tree topologies, favoring more asymmetric trees. Empirical trees
generally have more symmetric shapes than predicted by this distribution [41]. Then
a continuous distribution such as gamma can be applied to branch lengths or node
heights. Compound priors are used for network inference by adding a third distribu-
tion describing the number of reticulations [116]. A Poisson distribution is a natural
fit for this parameter as it describes a probability on nonnegative integers. The prob-
ability distribution for each network topology can still be uniform for all networks
given k reticulations.

Unlike birth–death priors, compound priors are not generative, so it is not straight-
forward to simulate trees or networks from those distributions. Themost obviousway
to simulate such trees and networks would be running an existing Markov Chain
Monte Carlo sampler without any data, and subsampling states from the chain at a
low enough frequency to ensure independence between samples.

13.6.2 Sampling the Posterior Distribution

The ML species network with k + 1 reticulations will always have a higher likeli-
hood than the ML network with k reticulations. For this reason, some threshold of
significance must be applied to estimate the number of reticulations. This threshold
may be arbitrary or it may be theoretically based, for example, the Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC) measures of relative
fit [10].

In contrast, Bayesian methods of species network inference are able to naturally
model the probability distribution over species networks including the number of
reticulations by using a prior (see Sect. 13.6.1). In a Bayesian model, the posterior
probability of a species network P(Ψ ) is proportional to the likelihood of the gene
trees P(G|Ψ,Γ, θ), multiplied by the prior on the network and other parameters of
the model P(Ψ, Γ, θ), and marginalized over all possible values of Γ and θ :

P(Ψ ) ∝
∫∫

P(G|Ψ, θ) · P(Ψ, Γ, θ) dΓ dθ. (13.7)

When a decaying prior is used on the number of reticulations or on the rate
of hybridization, the prior probability of species networks with large numbers of
reticulations will be very low, and so will the posterior probability (Fig. 13.13).

Bayesian methods for phylogenetic inference typically use the Metropolis–
Hastings Markov Chain Monte Carlo (MCMC) algorithm to estimate the posterior
distribution of trees or networks. MCMC is a random walk where each step depends
on the previous state, and it is flexible enough to be used for implementing extremely
complex models such as species network inference with relative ease. Bayesian esti-
mation of species networks fromgene trees is implemented in the PhyloNet command
MCMC_GT.
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Fig. 13.13 Bayesian inference of the number of reticulations. In this example the topology of
the network Ψ is fixed, the true number of reticulations is 1, and the likelihood is calculated for
a topology with no reticulations, the true reticulation, and additional reticulations, with maximum
likelihood branch lengths. The posterior probability was normalized to sum to 1, although as this is
not integrated over branch lengths, the typical Bayesian posterior probability might be a bit different

The posterior probability of a species network is equal to the integral in Eq. 13.7
multiplied by a normalizing constant Z known as the marginal likelihood. In the
case of sequential multi-locus inference, this constant is equal to Z = P(G)−1 The
marginal likelihood is usually intractable to calculate, but MCMC sidesteps this cal-
culation by sampling topologies and other parameters with frequencies proportional
to their probability mass or density. The posterior probability of a species network
Ψ can, therefore, be approximated as the proportion of steps in the MCMC chain
where the network topology Ψi at the end of the step i is equal to Ψ .

The value of any particular parameter, for example an inheritance probability γ

for a given reticulation node v, can be estimated by averaging its value over the set
of X steps where the state includes that parameter. In this case it is averaged over the
states where the species network includes that node, i.e., the set X = {i : v ∈ Ψi}:

E(γ ) = 1

|X |
i∑

X

γi (13.8)

Bayesian inference has also enabled the inference of species trees and networks
directly from multi-locus sequence data. Instead of first estimating individual gene
trees from multiple sequence alignments, these methods jointly infer the gene trees
and species network using an application of Bayes’ rule:

P(G, Ψ ) ∝
∫∫

P(D|G) · P(G|Ψ,Γ, θ) · P(Ψ, Γ, θ) dΓ dθ. (13.9)

Here, P(D|G) is the likelihood of the data overall gene trees. In practice, this
is the sum of phylogenetic likelihoods

∑
i P(di|gi) for every sequence alignment d
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and associated gene tree g. As with sequential Bayesian inference of species trees
and networks, the use of MCMC avoids the calculation of the marginal likelihood,
which for joint inference can be expressed as Z = P(D)−1. Joint Bayesian inference
was first developed for species trees, and now has several popular implementations
including StarBEAST2 [83] and BPP [93].

JointBayesian inferenceof species networks has been implemented independently
as the PhyloNet command MCMC_SEQ, and as the BEAST2 package “SpeciesNet-
work” [116, 131]. These two methods are broadly similar in their model and imple-
mentation, with a few notable differences. MCMC_SEQ uses a compound prior to
the species network, whereas SpeciesNetwork has a birth-hybridization prior (see
Sect. 13.6.1). SpeciesNetwork is able to use any of the protein and nucleotide sub-
stitution models available in BEAST2. MCMC_SEQ can be used with any nested
GTR model but with fixed rates and base frequencies. So the rates (e.g., the transi-
tion/transversion ratio for HKY) must be estimated before running the analysis, or
Jukes-Cantor is used where all rates and base frequencies are equal.

13.6.3 Inference Under MSC Versus MSNC When
Hybridization Is Present

We simulated 128 loci on the phylogenetic network of Fig. 13.14a. The program
ms [47] was used to simulate 128 gene trees on the network, and each gene tree was
used to simulate a sequence alignment of 500 sites using the program Seq-Gen [92]
under the GTR model and θ = 0.036 for the population mutation rate. The exact
command used was:

seq-gen -mgtr -s0.018 -f0.2112, 0.2888, 0.2896, 0.2104 -r0.2173,
0.9798, 0.2575, 0.1038, 1, 0.2070 -l500

(a) (c) (d)

G C A LQ R

0.2
0.3

(b)

G C A LQ R

0.25±0.04
0.33±0.04

G C A LQ R

1.0

Fig. 13.14 Inference under the MSC and MSNC when the evolutionary history involves
hybridization. aThe true phylogenetic networkwith the shown inheritance probabilities and branch
lengths (in coalescent units). b The MPP (maximum a posteriori probability) species tree estimated
under the MSC by StarBEAST (frequency of 94% in the 95% credible set) with the average diver-
gence times. c The MPP phylogenetic network along with the inheritance probabilities estimated
under the MSNC by MCMC_SEQ [116] (the only network topology in the 95% credible set). The
scale bar of divergence times represents 1 coalescent unit for (a–c). d The coalescent times of the
MRCAs of (C, G), (A, Q), (A, C), (Q, R) from co-estimated gene trees inferred by StarBEAST
(green) and MCMC_SEQ (blue)
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We then ran both StarBEAST and MCMC_SEQ, as inference methods under theMSC
and MSNC models, respectively, for 6 × 107 iterations each. The results are shown
in Fig. 13.14.

A few observations are in order. First, while StarBEAST is not designed to deal
with hybridization, it inferred the tree topology (Fig. 13.14b) that is obtainable by
removing the two hybridization events (the two arrows) from the true phylogenetic
network (the backbone tree). Second, MCMC_SEQ identified the true phylogenetic
network as the one with the highest posterior (Fig. 13.14c). Furthermore, the esti-
mated inheritance probabilities are very close to the true ones. Third, and most
interestingly, since StarBEAST does not account for hybridization, it accounts for
all heterogeneity across loci as being caused by incomplete lineage sorting (ILS) by
underestimating all branch lengths (that is, “squashing” the divergence times so as
to explain the heterogeneity by ILS). Indeed, Fig. 13.14d shows that the minimum
coalescent times of the co-estimated gene trees by StarBEAST force the divergence
times in the inferred species tree to be very low. MCMC_SEQ, on the other hand,
accurately estimates the branch lengths of the inferred phylogenetic network since
networks differentiate between divergence and hybridization times. For example, Fig.
13.14d shows that the coalescent times of clade (C, G) across all co-estimated gene
trees is a continuum with a minimum value around 2, which defines the divergence
time of these two taxa in the phylogenetic network. MCMC_SEQ clearly identifies
two groups of coalescent times for each of the two clades (A, C) and (Q, R): The
lower group of coalescent times corresponds to hybridization, while the upper group
of coalescent times correspond to the coalescences above the respective MRCAs of
the clades. We also note that the minimum value of coalescent times corresponding
to (Q, R) is larger than that corresponding to (A, Q), which correctly reflects the
fact that hybridization from R to Q happened before hybridization from C to A, as
indicated in the true phylogenetic network. Finally, for clade (A, Q), three groups
of coalescence times are identified by MCMC_SEQ, which makes sense since there
are three common ancestors of A and Q in the network: at the MRCA of (A, Q) in
the case of no hybridization involving either of the two taxa, at the MRCA of (A, Q,
L, R) in the case of the hybridization involving Q, and at the root of the network in
the case of the hybridization involving A. More thorough analysis and comparison
of inferences under the MSC and MSNC can be found in [116].

These results illustrate the power of using a phylogenetic network inference
method when hybridization is involved. In particular, if hybridization had occurred,
and the practitioner did not suspect it and ran StarBEAST instead, they would get
wrong inferences. In this case, the errors all have to do with the divergence time esti-
mates. However, the topology of the inferred tree could be wrong as well, depending
on the hybridization scenarios.
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13.7 Phylogenetic Invariants Methods

The focus of this chapter up to this point has largely been on the MSC and MSNC
models. A parallel effort has been led to detect reticulate evolution by using the
notion of phylogenetic invariants [12, 62]. Phylogenetic invariants are polynomial
relationships satisfied by frequencies of site patterns at the taxa labeling the leaves
of a phylogenetic tree (and given a model of sequence evolution). Invariants that
are predictive of particular tree topologies could then be used for inferring the tree
topology by focusing on the space of site patterns rather than the space of tree
topologies [27]. As Felsenstein wrote in his book, “invariants are worth attention,
not for what they do for us now, but what they might lead to in the future.” With
the availability of whole-genome data and, consequently, the ability to obtain better
estimates of site frequencies, the future is here. Indeed, methods like SVDQuartets
[14] use phylogenetic invariants to estimate species trees under the MSC model.

A detailed discussion of phylogenetic invariants, in general, is beyond the scope
of this manuscript. Interested readers should consult the excellent exposition on the
subject in Felsenstein’s seminal book (Chapter 22 in [27]). In this section, we briefly
reviewphylogenetic invariants-basedmethods for detecting reticulation, startingwith
the most commonly used one, known as the D-statistic or the “ABBA-BABA” test.

The D-Statistic [22] is a widely known and frequently applied statistical test for
inferring reticulate evolution events. The power of the test to infer reticulate evolution
derives from the likelihood calculations of the MSNC. Despite this, the test itself is
simple to calculate and formalize. The D-Statistic is given by

NABBA − NBABA

NABBA + NBABA
(13.10)

To calculate these quantities, we are given as input the four-taxon tree including
outgroup of Fig. 13.15 and a sequence alignment of the genomes of P1, P2, P3, and
O. Given this alignment, NABBA is calculated as the number of occurrences of single
sites in the alignment where P1 and O have the same letter and P2 and P3 have the
same letter, but these two letters are not the same, i.e., CTTC or GCCG. Similarly,
NBABA can be calculated as the number of occurrences in the alignment where the
letters of P1 = P3 and P2 = O with no other equalities between letters.

Upon calculating the D-Statistic, a significant deviation away from a value of 0
gives evidence for reticulate evolution. As shown in Fig. 13.15, a strong positive
value implies introgression between P2 and P3 while a strong negative value implies
introgression between P1 and P3. No such conclusions can be made from a D value
very close to 0.

The crux of the theory behind the D-Statistic lies in the expectation of the prob-
abilities of discordant gene trees given the overall phylogeny of Fig. 13.15. If we
remove the two reticulation events in Fig. 13.15, we end up with a species tree Ψ .
Given Ψ , the two gene trees whose topologies disagree with that of the species tree
are equally probable under the MSC. On the other hand, when a reticulation between
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Fig. 13.15 The four-taxon tree topology used for the D-statistic. Significant deviations away
from a value of 0 of the D-statistic (Eq. (13.10)) support introgression between P3 and either P1 or
P2. As shown, a significant positive value supports introgression between P2 and P3. A significant
negative value supports introgression between P1 and P3
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Fig. 13.16 The three scenarios of probabilities of the two gene trees that are discordant with
the species tree in the case of a single reticulation event between P3 and one of the other two
(in-group) species. If the evolutionary history of the species is a tree (Ψ ), the two discordant gene
trees are equally probable. However, if the evolutionary history of the species is non-treelike, as
given by phylogenetic networks Ψ1 and Ψ2, then the probabilities of the two discordant gene trees
are unequal in different ways

P1 and P3 occurs, this results in an increase in the probability of the discordant
gene tree that groups P1 and P3 as sister taxa, as compared to the other discordant
gene tree. Similarly, when a reticulation between P2 and P3 occurs, this results in an
increase in the probability of the discordant gene tree that groups P2 and P3 as sister
taxa. These three scenarios are illustrated in Fig. 13.16.

Assuming an infinite sites assumption of sequence evolution, the frequencies of
gene trees ((P1, (P2, P3)), O) and (((P1, P3), P2), O) directly correlate with the values
NABBA andNBABA, respectively, explaining the rationale behind Eq. (13.10). To apply
theD-statistic, frequencies of theABBA andBABA site patterns are counted across an
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alignment of four genomes, the value of Eq. (13.10) is calculated, and deviation from
0 is assessed for statistical significance. A significant deviation is taken as evidence
of introgression.

Since the introduction of the D-Statistic, work has been done to extend this
framework. Recently, the software package HyDe [5] was introduced with several
extensions including handling multiple individuals from four populations as well
as identifying individual hybrids in a population based on the method of [59]. In
HyDe, higher numbers of individuals are handled through calculating statistics on
all permutations of quartets of the individuals. Another recent extension to move the
D-Statistic beyond four taxa is the DFOIL framework introduced by [88]. In it, we
see the same derivation used in the D-Statistic on a particular five-taxon tree. This
derivation includes isolating gene trees whose probabilities go from equal to unequal
when going from the tree case to the network case as well as converting these gene
trees to corresponding site patterns to count in an alignment. Finally, Elworth et al.
recently devised a heuristic, DGEN , for automatically deriving phylogenetic invari-
ants for detecting hybridization in more general cases than the D-Statistic and DFOIL

can handle [25]. The rationale behind the approach of Elworth et al. is that invariants
could be derived by computing the probabilities of gene trees under a given species
tree (e.g., using the method of [20]) and then computing the probabilities of the same
trees under the same species tree with any reticulation scenarios added to it (using
the method of [123]), and contrasting the two to identify sets of gene trees whose
equal probabilities under the tree model get violated under the network model.

The D-Statistic is very simple to implement and understand, and it can be calcu-
lated on 4-genome alignments very efficiently, making it an appealing choice of a
test for detecting introgression. Indeed, applications of theD-Statistic arewidespread
in the literature, reporting on introgression in ancient hominids [22, 37], butterflies
[111], bears [61], and sparrows [23], just to name a few. However, it is important to
note here that the derivation of the D-Statistic (and its extensions) relies on many
assumptions that can easily be violated in practice. One major cause of such a vio-
lation is that the mathematics behind the D-Statistic relies on the coalescent which
makes many simplifying assumptions about the evolutionary model and processes
taking place. Of course, this shortcoming applies as well to all phylogenetic inference
methods that employ the MSC or MSNCmodels. A second cause of such a violation
is that in practice, more than a single reticulation could have taken place and ignor-
ing those could result in erroneous inferences [25]. A third violation stems from the
way the D-Statistic is applied.3 In propositional logic, the statement “If p, then q”
and its converse “If q, then p” are logically not equivalent. That is, if one is true,
it is not necessarily the case the other is. Looking back at Fig. 13.16, the statement
illustrated by the figure is: If there is no reticulation (i.e., the species phylogeny is
a tree), then the probabilities of the two discordant trees are equal. The converse (if
the probabilities of the two discordant trees are equal, then the species phylogeny is
a tree) does not follow logically. However, this is how the test is used in practice.
In all fairness, though, this logical fallacy is commonplace in inferences in biology,

3We especially thank David Morrison for requesting that we highlight this issue.
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including when inferring species trees and networks under the MSC and MSNC,
respectively. The fallacy is always dealt with by resorting to the “simplest possible
explanation” argument. For example, why various scenarios could have given rise to
equal frequencies of the frequencies of the ABBA and BABA site patterns, the species
tree scenario is considered the simplest such possible explanation and is invoked as
such.

Last but not least, Peter [89] recently provided a review and elegant connections
between the D-Statistic and a family of statistics known as the F-statistics.

13.8 Phylogenetic Networks in the Population Genetics
Community

The population genetics community has long adopted rooted, directed acyclic graphs
as a model of evolutionary histories, typically of individuals within a single species.
Ancestral recombination graphs, or ARGs, were introduced [38, 46] to model the
evolutionary history of a set of genomic sequences in terms of the coalescence and
recombination events that occurred since theirmost recent common ancestor. Statisti-
cal methods for inference of ARGs from genome-wide data have also been developed
[94]. Gusfield’s recent book [40] discusses algorithmic and combinatorial aspects of
ARGs. However, while ARGs take the shape of a phylogenetic network as defined
above, they are aimed at modeling recombination and methods for their inference
are generally not applicable to hybridization detection.

Efforts in the population genetics community that are aimed at modeling admix-
ture and gene flow are more relevant to hybridization detection. Here we discuss one
of the most popular methods in this domain, namely TreeMix [90]. In population
genetics, the counterparts to species trees and phylogenetic networks are population
trees and admixture graphs, respectively. The difference between these models boils
down to what labels their leaves: If the leaves are labeled by different species, then
themodels are called species trees/networks, and if the leaves are labeled by different
subpopulations of the same species, then the models are called population trees and
admixture graphs. Of course, it is not always easy to identify whether a species or
subpopulations have been delimited, and hence what particular tree/network should
be called in that case, as species and populations may exist on a continuum [18].

13.8.1 TreeMix

TreeMix [90] models the evolution of a set of SNPs, where the input data consists of
allele frequencies of these SNPs in a set of populations whose evolutionary history
is given by a population tree (in the case of no migration) or an admixture graph (in
the case where migration is included).
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The basis of the model used in TreeMix is in the notion of modeling drift over
time as a diffusion process, where an original allele frequency of x1 of a given SNP
undergoes drift by an amount c to give rise to a new allele frequency x2 [11, 17, 82],
as given by

x2 = x1 + N (0, c · x1[1 − x1]). (13.11)

It is worth noting here that, as pointed out in [90], c = t/2Ne for drift over small
time scales where the time scale is on the same order of the effective population size
[82].

When there are multiple populations under the effects of drift that evolved down a
tree, the drift processes become linked and can no longer be described with indepen-
dent Gaussian additions. This process is modeled with a covariance matrix derived
from the amounts of drift occurring along the branches of the evolutionary tree.
Finally, to incorporate reticulate evolution into the model one only needs to alter
this covariance matrix based on the rate of gene flow along reticulate edges in the
admixture graph.

In its current implementation, the authors of TreeMix assume the evolutionary
history of the sampled, extant populations is very close to a tree-like structure. Based
on this assumption, the search for a maximum likelihood admixture graph proceeds
by first estimating a rooted tree, and then adding migration events one at a time until
they are no longer statistically significant (however, as the authors point out, they
“prefer to stop adding migration events well before this point so that the result graph
remains interpretable.”). Clearly, adding additional edges connecting the edges of
a tree in this way will infer a tree-based network, which is a more limited class of
networks compared with phylogenetic networks [31].

13.9 Data, Methods, and Software

Given the interest in reticulate evolution from both theoreticians and empirical
researchers, it is perhaps unsurprising that software to infer hybridization has pro-
liferated in recent years. Such methods have been developed for a variety of data
types, including multi-locus data, SNP matrices, and whole genomes (Table 13.1).
Some of these methods are able to infer a phylogenetic network, whereas others
infer introgression between species tree lineages. With the exception of TreeMix and
MixMapper, methods that infer phylogenetic networks are not constructed around a
backbone tree, and so do not assume that tree-like evolution is the dominant process.

Regardless of the input and output,most of thesemethods allow for ILS in addition
to hybridization (Table 13.1), which is necessary to infer phylogenetic networks
representing reticulate evolution in biological systems where ILS is a possibility.
Likelihood (including Bayesian) methods incorporate the possibility or effect of
ILS into the likelihood function. Maximum parsimony methods that minimize deep
coalescences, for example InferNetwork_MP, essentially attempt to infer the
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Table 13.1 Common methods to infer hybridization
Method Platform Inference ILS Input Output

5-taxon ABBA-
BABA [88]

DFOIL Phylogenetic
invariants

Yes Genomic data Presence/absence
of introgressiona

ABBA-BABA [22] DFOIL, HyDe,
etc.

Phylogenetic
invariants

Yes Genomic data Presence/absence
of introgressiona

DGEN [25] ALPHA [24] Phylogenetic
invariants

Yes Genomic data Presence/absence
of introgressiona

Blischak et al. [5] HyDe Phylogenetic
invariants

Yes Genomic data Hybrid species

AIM [76] BEAST2 Bayesian Yes Multi-locus
sequences

Rooted tree
w/gene flowb

IMa2 [45] Standalone Bayesian Yes Multi-locus
sequences and
backbone tree

Evolutionary
parametersc

PIRN [121] Standalone Maximum
parsimony

No Rooted gene
trees

Rooted network

CASS [112] Dendroscope
[49]

Maximum
parsimony

No Rooted gene
trees

Rooted network

InferNetwork_ML
[124]

PhyloNet [110,
119]

Maximum
likelihood

Yes Rooted gene
trees

Rooted network

InferNetwork_MP
[122]

PhyloNet [110,
119]

Maximum
parsimony

Minimized Rooted gene
trees

Rooted network

InferNetwork_MPL
[125]

PhyloNet [110,
119]

Pseudo-likelihood Yes Rooted gene
trees

Rooted network

MCMC_BiMarkers
[135]

PhyloNet [110,
119]

Bayesian Yes Bi-allelic sites Rooted network

MCMC_GT [118] PhyloNet [110,
119]

Bayesian Yes Rooted gene
trees

Rooted network

MCMC_SEQ [116] PhyloNet [110,
119]

Bayesian Yes Multi-locus
sequences

Rooted network

MLE_BiMarkers
[134]

PhyloNet [110,
119]

Maximum
(pseudo)likelihood

Yes Bi-allelic sites Rooted network

MixMapper [63] Standalone Pseudo-likelihood Yes Allele
frequencies

Rooted network

Neighbor-net [9] Splitstree [48] Agglomeration No Genomic data Splits graph
(unrooted
network)

SNAQ [101] PhyloNetworks
[102]

Pseudo-likelihood Yes Unrooted gene
trees

Unrooted, level-1
network

SpeciesNetwork
[131]

BEAST2 [8] Bayesian Yes Multi-locus
sequences

Rooted network

STEM-hy [60] Standalone Maximum
likelihood

Yes Molecular
clock gene trees

Rooted tree
w/hybridizationsd

TreeMix [90] Standalone Pseudo-likelihood Yes Allele
frequencies

User-rooted,
tree-based
network

aAlong with statistical significance
bBetween contemporaneous lineages
cEffective population sizes, migration rates, divergence times
dHybridizations limited to sister lineages
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tree or network that minimizes the quantity of ILS, but do not necessarily eliminate
all genetic discordance.

Methods which do not allow for ILS will instead infer phylogenetic networks
representing conflicting signals [9]. Reticulation is one such conflicting signal, but
so is ILS, so reticulate branches in these networks should not be blindly interpreted
as necessarily representing introgression or hybridization.

13.9.1 Limitations

The biggest limitation of methods to infer introgression and hybridization, including
species network methods, is scalability.

Methods which infer a species network directly from multi-locus sequences have
only been used with a handful of taxa, and less than 200 loci. A systematic study of
the species tree method StarBEAST found that the number of loci used has a power
law relationship with a large exponent with the required computational time, making
inference using thousands of loci intractable [84]. Although no systematic study
of computational performance has been conducted for equivalent species network
methods such as MCMC_SEQ, anecdotally they suffer from similar scaling issues.

Methodswhich scale better than directmulti-locus inference have been developed,
but they are no silver bullet. Species networks can be estimated directly fromunlinked
bi-allelic markers by integrating over all possible gene trees for each marker, which
avoids having to sequentially or jointly estimate gene trees. Bi-allelic methods make
the inference of species trees and networks from thousands of markers possible, at
the cost of using less informative markers.

Pseudo-likelihood inference has been developed for both bi-allelic and multi-
locus methods [125, 134]. This reduces the computational cost of computing the
likelihood of a species network as the number of taxa increases, and enabled the
reanalysis of an empirical data set with 1070 genes from 23 species [125].

The ABBA-BABA test and similar phylogenetic invariant methods are capable of
analyzing an enormous depth of data (whole genomes), but can be limited in taxo-
nomic breadth based on hard limits of four or five taxa for the D-Statistic and DFOIL,
respectively, or by computational requirements for the case of DGEN (Table13.1).
In addition, the D-Statistic and DFOIL are limited to testing a specific hypothesis
for introgression given a fixed species tree topology of a specific shape. This can
be understood as a trade-off, where the flexibility of species network methods is
sacrificed for the ability to use more data.

Beyond scalability, another present limitation is visualizing or summarizing poste-
rior or bootstrap distributions of networks.Methods have been developed to visualize
whole distributions of trees, or summarize a distribution as a single tree. Equivalent
tools for networks are underdeveloped, leaving researchers to report the topology or
set of topologies with the highest posterior or bootstrap support.
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13.10 Conclusions and Future Directions

Great strides have beenmade over the past decade in the inference of evolutionary his-
tories in the presence of hybridization and other processes, most notably incomplete
lineage sorting. Species networks can now be inferred directly from species-level
data which do not assume any kind of backbone tree, and instead, put reticulate
evolution on an equal basis with speciation.

To some extent, the development of species network methods has recapitulated
the development of species tree methods, starting with maximum parsimony and
transitioning to likelihood methods, both maximum likelihood and Bayesian. To
improve computational performance and enable the analysis of large data sets,
pseudo-likelihood species networkmethods have been developed, inspired by similar
species tree methods.

Phylogenetic invariant methods such as the ABBA-BABA test are able to test for
reticulate evolution across whole genomes, uncovering chromosomal inversions and
other features associated with hybridization and introgression. Last but not least, the
population genetics community has long been interested in and developing methods
for phylogenetic networks mainly to model the evolution of subpopulations in the
presence of admixture and gene flow. In this chapter, we surveyed the recent compu-
tational developments in the field and listed computer software programs that enable
reticulate evolutionary analyses for the study of hybridization and introgression, and
generally to infer more accurate evolutionary histories of genes and species.

Empirical biologists feel constrained by the computational performance of exist-
ing species network methods. For species trees, phylogenetic invariant methods can
be combined with quartet reconciliation to infer large species trees from genomic
data, as in SVDquartets [14]. For networks, phylogenetic invariant methods to iden-
tify the true network with a limited number of edges needs to be developed, as do
methods to reconcile the resulting subnets.

Even for species trees, Bayesian methods have practical limitations in terms of
the amount of data they can be used with. Bayesian methods for trees and networks,
with few exceptions, have been built on Markov chain Monte Carlo (MCMC). This
technique is inherently serial and hence unsuited to modern workstations, which
contain many CPU and GPU cores working in parallel. It is important to continue to
explore other Bayesian algorithms which work in parallel such as sequential Monte
Carlo [7], or algorithms which are orders of magnitude faster than MCMC such as
variational Bayes [115].

Phylogeneticmethods for species tree inference have a huge head start onmethods
for species network inference. Not only is the problem of species network inference
muchmore complicated, but species treemethods have been in development formuch
longer. For example,MDC for species trees was first described in 1997, and extended
to phylogenetic networks 14 years later [69, 127]. In this light, the progress made is
remarkable. However, as evolutionary biology is moving toward data sets containing
whole genomes for hundreds or even thousands of taxa, methods developers must
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focus on improving the scalability of their methods without sacrificing accuracy so
that the full potential of this data may be realized.

While preliminary studies exist of the performance of the different methods for
phylogenetic network inference [56], more thorough studies are needed to assess the
accuracy as well as computational requirements of the different methods.

Last but not least, it is important to highlight that all the development described
above excludes processes such as gene duplication and loss, and so may be suscep-
tible to errors and artifacts which can be present in data such as hidden paralogy.
Furthermore, the multispecies network coalescent already has its own population-
genetic assumptions, almost all of which are not necessarily realistic for analyses in
practice. Accounting for these is a major next step (though it is important to point
out that these have not been fully explored in the context of species tree inference
either), but the mathematical complexity will most likely add, extensively, to the
computational complexity of the inference step.
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Chapter 14
A Perspective on Comparative
and Functional Genomics

Daniel Doerr and Jens Stoye

Abstract Comparing genomes based on the order of genes provides insights into
their evolutionary history and further allows to identify sets of genes with associated
function. In the past two decades, manymethods have been developed for identifying
genomic regions that share homologous genes, which can be subsequently tested
for functional associativity. As these methods are flexible by tolerating duplicate,
missing, and intruding genes, we now study a case in which relationships between
genes are established through a hierarchical relationship and thereby turn the problem
of identifying regions with common functional associations inside out: We use a
measure of dissimilarity between genes defined on a gene ontology hierarchy to
identify collections of genomic regions with low functional dissimilarity.

Keywords Gene order comparison · Functional genomics · Functional
dissimilarity

14.1 Introduction

Gene order comparison is an established tool of comparative genomics to gain
insights into the functional organization of the genome. Evidence has been gath-
ered in all kingdoms of life that genes with associated functionality are more densely
co-localized on their chromosomal sequences than genes that are not functionally
associated [1, 13, 17].

The study of gene order conservation has given rise to a number of computa-
tional models that characterize whether or how much blocks of two or more genome
sequences are conserved. The most simple models require genes to occur colin-
early in all blocks. Others allow some degree of variability between the blocks’
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gene orders and gene content. Most prominent are qualitative models such as com-
mon intervals [18], approximate common intervals [10], and gene teams [12]. Other
quantitative models includemaximum adjacency disruption, summed adjacency dis-
ruption, and breakpoint metric [16].

A fundamental prerequisite of gene order comparison is the knowledge how genes
relate to each other across all genomes of the studied dataset. Most commonly,
homology is used as underlying relationship, although in practice, sequence similarity
is used in turn as proxy for homology. In doing so, inference of homology is framed
as a classification problem and thus can be tackled computationally. Initial methods
treated genomes as permutations, or collections of sequences where each gene occurs
exactly once. Subsequently, these models have been extended to general sequences.
Today’s models allow to tolerate the effects that gene duplication, loss, and gain
have on the genomes’ gene orders. Some models, such as proposed in [7, 9] or
tools for synteny detection, e.g., i-AdHoRe [14], Cyntenator [15], MCScanX [19]
do not impose the requirement of a global alphabet of gene families by allowing non-
transitive relationships between genes. In the most general model, gene sequences
are embedded as multi-partite graph and are connected with each other by weighted
edges indicating their degree of (dis)similarity [8].

The research described in the following is motivated by our aim to develop an
integrated method that may provide new biological insights. More specifically, the
integrated discovery of common functional regions over multiple related genomes
canhelp to study functional constraints of genomearchitecture and strengthen thepre-
dictive power in assigning specific functions to genes within these genomic regions.
There can be multiple biological explanations for two or more regions that are found
to be functionally similar by our algorithm: (i) All regions are descendants of a com-
mon ancestral region, i.e., are homologous. Such regions would also be found by
current homology-based gene cluster methods, given that the provided homology
information is adequate and correct. (ii) Multiple regions from different locations
of the genome share a functional association and are jointly homologous to sets of
regions from other genomes. A well-known example is the HOX gene cluster that
is split up into multiple subclusters often found on different chromosomes, e.g., in
human, four HOX gene clusters are found that are dispersed on four different chro-
mosomes. While traditional gene cluster methods would be able to identify all four
subclusters separately, the lack of functional information would not allow to discover
their overall functional association. (iii) Regions could be functionally similar as a
result of convergent evolution. Such events occur rarely in evolution, but, if found,
provide deep insights into the function of their corresponding organisms. (iv) Regions
may be found functionally similar, yet their genes occupy distinct subfunctions that
share no commonality with others. Such regions identified by our method may be
discarded by further, subsequent analysis that exploits further information in order
to distinguish between too general, too specific, or wrong functional annotation.

We propose a method that minimizes both, intra- and inter-functional dissimilar-
ity of regions from distinct genomes. More specifically, we investigate the scenario
where relationships between genes are established through a structured dissimilar-
ity measure. In doing so, we use functional classification rather than homology to
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establish relationships between genes of different species. Regions with common
functional association are then identified by means of Gene Ontology (GO) data.

The Gene Ontology Consortium [2] is an initiative dedicated to collect and orga-
nize the ever-increasing knowledge of gene functions into a standardized data for-
mat. To this end, the consortiummaintains three continuously expanding hierarchical
ontologies (GO hierarchies) that describe gene functions by means of their molecu-
lar function, their association to cellular components, and involvement in biological
processes. Each of the GO hierarchies constitutes a set of GO terms that are used
in genome annotation for classifying the function of genes, thereby allowing for
varying degrees of specificity. In this work, we quantify the functional dissimilarity
of sets of genes annotated with GO terms relating to biological processes. In doing
so, we make use of a gene ontology based pairwise distance measure described by
Diaz-Diaz et al. [6]. Regions of conserved gene order are discovered based on the
concept of gene teams [3].

14.2 Background

We subsequently make use of the following notation: For string S of length |S| = n
over some alphabet Σ , S[i] refers to the character at position i in S, 1 ≤ i ≤ n.
A substring starting at position i and ending at position j of S, 1 ≤ i ≤ j ≤ n, is
denoted by S[i, j] := S[i] · S[i + 1] · · · S[ j]. Further, a subsequence of string S is a
sequence of characters S[i1] · S[i2] · · · S[im] such that 1 ≤ i1 < i2 < · · · < im ≤ n.
An indeterminate string S is a string drawn fromP(Σ), the power set ofΣ , such that
for each position i in S holds ∅ �= S[i] ⊆ Σ . The character set of an indeterminate
string S is defined as C (S) := ⋃|S|

i=1 S[i].
Let G denote the universe of genes. A genome is a collection of linear chromo-

somes. A chromosome is a string of unique genes drawn from G , i.e., each gene is
unambiguously associated with a single position in exactly one chromosome. For
two genes s and t , the genomic distance is defined as

Δ(s, t) =
{

| j − i | if ∃ chromosome G s.t. s, t ∈ G and G[i] = s,G[ j] = t

∞ otherwise.

A GO hierarchy τ = (V, E) is a directed acyclic graph (DAG) with a single root
node r , i.e., node r is the common ancestor of all other nodes. We denote by Pτ (u, v)

the (possibly empty) set of all directed paths from u to v in τ . Given a GO hierar-
chy τ = (V, E), an annotation is a multivalued function α : G → P(V ) mapping
genes to sets of vertices in τ . Moreover, for a collection of genes (g1, . . . , gm), a
configuration (a1, . . . , am) denotes an element of Vm such that ai ∈ α(gi ) for all i ,
1 ≤ i ≤ m. Let A = (a1, . . . , am) be a configuration for a set of m genes, functional
dissimilarity [6] is defined as
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fτ (A) = 1
(m
2

) ·
∑

{a,b}⊆A

minc∈V ({|X | + |Y | | (X,Y ) ∈ Pτ (c, a) × Pτ (c, b)}) + 2

lτ (a) + lτ (b)
,

where lτ (v) := maxU∈Pτ (r,v) |U | + 1 with r being the root node of the GO hierarchy.
We are interested in finding sets of genes and their configurations that have signif-

icantly low functional dissimilarity. In doing so, we may need to test many possible
gene sets and their configurations, which is computationally demanding. Therefore,
we use the following upper bound of functional dissimilarity that can be computed
more efficiently:

f̄τ (A) = 1

m
· min
b∈LCAτ (A)

{
∑

a∈A

minX∈Pτ (b,a) |X | + 1

lτ (a) + minc∈A lτ (c)

}

,

where LCAτ (U ) is the set of least common ancestors (LCAs) of vertex setU ⊆ V in
τ . Note that, unlike in general DAGs, because of the unique root node every subset of
vertices is guaranteed to have at least one common ancestral node in a GO hierarchy.

Because GO hierarchies are sparse, i.e., the average out-degree of vertices is
much smaller than their number, the LCAs can be computed in constant time using
a preprocessed data structure [5]. As a result, the upper bound can be computed in
linear time, whereas the functional dissimilarity requires quadratic time. Because
we are interested in finding those sets of vertices that have a very low functional
dissimilarity, in our experiments f̄τ has proven close enough to the exact measure.
We will thus use the upper bound for all our calculations.

14.3 Comparative Detection of Functional Regions

We differentiate between intra- and inter-functional associations of two gene sets:

Gene set A Gene set B

inter-functional
associations

intra-functional
associations

In the following, we assume that we are given a GO hierarchy τ = (V, E), a
collection of genomes S1, . . . , Sk , an annotation α, a quorum threshold q, and a
minimum size threshold s.
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Identifying Intra-functional Associations.

A particular challenge in identifying a region of dedicated functionality is posed
by the facts that it can be disrupted by unassociated genes, and that each gene can
be annotated with no, or any number of GO terms of varying specificity. Number
and specificity of GO terms depend much on the gene’s versatility and the gathered
knowledge about its function(s). As a result, identifying such a region is difficult
whenever genes annotated with GO terms of higher specificity are interspersed with
genes annotated with lower specificity or no annotation at all. Therefore, a discovery
method must permit gaps, allowing to discard genes that would otherwise inflate the
regions’ functional dissimilarity and also permit that regions overlap with others of
different associated function.

One notion of local sequence similarity that has been proposed in the comparative
genomics literature and that satisfies the conditions above is that of δ-chains [3]: A
subsequence of genes (g1, . . . , gm) in a chromosome is a δ-chain if and only if
Δ(gi , gi+1) − 1 ≤ δ for all 1 ≤ i < m.

Accordingly, the problem of finding a set of genes with intra-functional asso-
ciation in chromosome S can be phrased as that of finding a δ-chain (g1, . . . , gm)

in S with m ≥ s that has a configuration (a1, . . . , am) with significantly low func-
tional dissimilarity f̄τ (a1, . . . , am), where significance will be further discussed in
Sect. 14.4.

Identifying Inter-functional Associations.

The varying degree of specificity in the genes’ annotation with GO terms poses
also a major challenge in discovering regions with common functional associations.
Further, some genomes of the dataset may contain multiple copies of a particular
functional region, whereas others may contain this region not at all. Thus, we for-
mulate the problem of finding such regions as identifying a collection of gene sets
C1, . . . ,Cl with configurations A1, . . . , Al from at least q out of k given genome
sequences such that (i) each set Ci , 1 ≤ i ≤ l, contains at least s genes and (ii) the
sum of functional dissimilarities

∑
a1∈A1

· · ·∑al∈Al
f̄τ (a1, . . . , al) is significantly

low. Again, our particular choice of “significantly low” will be given in Sect. 14.4.
More precisely, we aim to find those collections of δ-chains C1, . . . ,Cl with

configurations A1, . . . , Al that have a significantly low joint functional dissimilarity
f̄τ (A1 ∪ · · · ∪ Al). We follow a heuristic strategy based on identifying LCAs of the
configuration A1 ∪ · · · ∪ Al . Recall that the smaller the sum of distances between
GO terms of a configuration and their LCA, the lower is the functional dissimilarity
of the configuration. Thus, processing the GO hierarchy in bottom-up order, i.e.,
from more specific to more general functions, the best candidates are identified first.

To ensure that a configuration corresponds to a collection of δ-chains, we use
indeterminate strings constructed from the GO annotation of chromosomes. For a
given GO term v ∈ V , we denote the set of all vertices on all paths from the root node
r of the GO hierarchy to vertex v by φτ (v) := ⋃

U∈Pτ (r,v) U . Let S be a chromosome,
then indeterminate string Sφ is defined position-wise as follows:
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Algorithm 1 0 − Runs
Input: chromosome S and associated indeterminate string Sφ ending with sentinel ∅
Output: all pairs (start, end) of genes of 0-runs in S
1: initialize table Runs: for each character in C (Sφ), create entry in Runs corresponding to an

empty list of gene pairs (start, end)

2: for i = 1 . . . |S| do
3: for each character c at position i in Sφ do
4: if i = 1 or c /∈ Sφ[i − 1] then
5: add new entry e to end of list corresponding to character c in Runs
6: e.start ← S[i]
7: end if
8: end for
9: if i > 1 then
10: for each character c in Sφ[i − 1] \ Sφ[i] do
11: e ← last entry of list corresponding to character c in Runs
12: e.end ← Sφ[i − 1]
13: end for
14: end if
15: end for

Sφ[i] :=
{⋃

v∈α(S[i]) φτ (v) if α(S[i]) �= ∅
{−} otherwise

Candidate regionswith common functional associations are identified by discovering
consecutive occurrences of GO terms in these indeterminate strings: Given a GO
term v ∈ V , a δ-run of v in Sφ is a subsequence Sφ[i1] . . . Sφ[im] such that v ∈
Sφ[i1] ∩ · · · ∩ Sφ[im]. A δ-run of GO term v is maximal if it cannot be extended
within Sφ[i1, im], nor in either direction.

The complete strategy for finding regions with common functional associations
based on GO hierarchy τ = (V, E) is composed of five steps:

1. Construct indeterminate strings Sφ

1 , . . . , Sφ

l from all chromosomes of the dataset.
2. Discover all intervals in genomes G1, . . . ,Gk associated with maximal δ-runs of

size at least s in indeterminate strings Sφ

1 , . . . , Sφ

l .
3. Discard δ-runs whose associated GO terms are ancestors of GO terms of identical

other δ-runs.
4. Label vertices of the GO hierarchy with associated intervals of Step 3.
5. Process the GO hierarchy in bottom-up fashion:

• If a vertex has intervals from at least q genomes, report this interval set.
• If an interval set does not cover all genomes, push it to all ancestral vertices.

The discovery of maximal δ-runs (step 2) is achieved in two stages, corresponding
to Algorithm 1 and Algorithm 2: First, all 0-runs are discovered, i.e., those runs that
do not have a gap. Then, for each GO term, the list of 0-runs is iterated to identify
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Algorithm 2 EnumerateDeltaRuns
Input: Table Runs containing GO terms and their corresponding sorted lists of 0-runs; universe of

GO terms C ; minimum size s; gap threshold δ

Output: List of δ-runs with minimum size s
1: for each GO term c in C do
2: initialize empty list L
3: i ← 1
4: r ← Δ(Runs[c][i].start,Runs[c][i].end) + 1
5: for j = 2 . . . |Runs[c]| do
6: if Δ(Runs[c][ j − 1].end,Runs[c][ j].start) − 1 > δ then
7: if r ≥ s then
8: append (∪i ′=i ... j−1Runs[c][i ′]) to L
9: end if
10: i ← j
11: r ← 0
12: end if
13: r ← r + Δ(Runs[c][ j].start,Runs[c][ j].end) + 1
14: end for
15: report L
16: end for

maximal δ-runs. Algorithm 1 describes the procedure to discover 0-runs in indeter-
minate strings in further detail. The algorithm computes table Runs, in which each
character is contrasted with a list of gene pairs of chromosome S corresponding
to the start and end positions of 0-runs in indeterminate string Sφ . The list is con-
structed and maintained in sorted order. After initialization of this table (line 1), all
positions of indeterminate string Sφ are iterated. First, for each character c that has
not been observed in the previous position, a new entry is appended to list Runs[c]
(lines 4–7), marking the position currently processed as the starting position of the
interval. Then, the ending position of each interval whose character occurs only in
the previous position (if such exists) is set at its corresponding entry in Table Runs
(lines 10–13). If the character sets at each position of the indeterminate string are
maintained in sorted order, both iterations can be performed simultaneously and the

algorithm enumerates all 0-runs in �(‖Sφ‖) time, where ‖Sφ‖ := ∑|Sφ |
i=1 |S[i]|.

Algorithm 2 describes the procedure for enumerating intervals corresponding
to δ-runs of minimal size. The algorithm iterates over each GO term and processes
its corresponding 0-runs independently (lines 1–16). To this end, the intervals are
processed in sorted order and agglomerated as long as they are not more than δ posi-
tions apart (lines 5–14). The algorithm outputs only collections of δ-runs of minimal
size m (lines 7–9). Because the algorithm processes each previously identified 0-run
exactly once, the algorithm requires only �(|Runs|) time.
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14.4 Statistical Analysis

A functional dissimilarity value is considered significantly low if the probability of
obtaining such a value under the null distribution falls below a given threshold α.
In doing so, the members of a set of genes of interest G = {g1, . . . , gm} ⊆ G are
assumed to be as functionally dissimilar as the members of any other equally sized
set of genes drawn from the universal gene pool G . Because genes can be associated
with multiple GO terms, their functional dissimilarity is defined as the lowest value
over all possible configurations [6]:

f ↓
τ (G) = min

A∈⊗g∈G α(g)
fτ (A) .

In practice, we use upper bound f̄ ↓
τ (G), defined analogously. Using a bottom-up

processing of τ , the computation of functional dissimilarity can be tremendously
sped up, whichwas already reported byDiaz-Diaz [6]. Still, in assessing empirical p-
values, the functional dissimilarity of several millions of samples must be calculated,
for which Diaz-Diaz’ approach remains computationally intractable.

Observe that summands of f̄τ can be treated as random variables that are interde-
pendent through their lowest common ancestral vertex. Trading accuracy for speed,
the true distribution can be approached by assuming their independence. To this end,
random samples are drawn from the sample pool that constitutes themultiset of pairs
(d, lτ (v)) over all possible lengths d of directed paths ending at any annotation v of
GO hierarchy τ that is associated to any gene of the universal gene pool:

Ω = {(d, lτ (v)) | d = 1 . . . |X |, X ∈ Pτ (r, v), v ∈ α(g), g ∈ G } .

The p-value of a set of genes of sizem is then estimated by drawing random samples
from ω ∈ Ωn and computing their functional dissimilarity:

f̃τ (ω) = 1

n
·

∑

(d,l)∈ω

d

l + min(d ′,l ′)∈ω l ′
.

In our experiments, the distribution of f̃τ covers that of f̄ ↓
τ for most gene sets except

for those that are very small, as indicated in Fig. 14.1. Moreover, the figure also
shows that the distribution of functional dissimilarity values of regions inferred by
our proposed method (shown as distribution with circle hatch pattern) overlaps only
marginally with both, f̃τ and f̄ ↓

τ .
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Fig. 14.1 Distributions of f̄ ↓
τ (gray, filled) and f̃τ (black, no hatch pattern) of sets of genes of size

10, 50, 100, and 500 drawn from gene ontology corresponding to domain “biological process”. For
comparison, the plots include the distribution of functional dissimilarity values (black, circle hatch
pattern) for all 1,065 collections of regions predicted by our method with q = 7 in seven amniote
genomes. Further details on the dataset can be found in Sect. 14.5

14.5 Analysis of Seven Amniote Genomes

Despite ongoing efforts, the number of fully (GO-)annotated genomes is limited.
The Gene Ontology Consortium1 offers annotations for only 27 genomes. Most
commonly, GO annotations are transferred from one genome to another on the basis
of homology (e.g. using tools such asBlast2GO [4]). Such approaches defy the efforts
of this work, which seeks to compare genes based on their functional associations
rather than homology. Therefore, the subsequent analysis is limited to annotations
provided by the Gene Ontology Consortium and more specifically to those annota-
tions corresponding to the domain “Biological Process”.

From the fully annotated genomes provided by the Gene Ontology Consortium,
we chose the largest subset that falls within a somewhat closer phylogenetic range,
consisting of seven amniote genomes. The gene order informationwas obtained from
the UCSC Genome Browser [11]. Table 14.1 provides some key information on the
dataset. The number of genes per genome ranges from roughly 1,600 (dog) to over
22,000 (human). The annotations of each genewere pruned to exclude those referring
to the root node of the hierarchy (GO:0008150) and those that are ancestors of other
associated GO terms. After pruning, more than 80% of all genes remained annotated,
and the average associated number of GO terms per position was still above 5.

We implemented our method in the programming language Python. All compu-
tations were performed on a Dell RX815 machine with 64 2.3 GHz AMD Opteron
processors and 512 GB of shared memory. We ran our method with fixed mini-
mum size threshold s = 3, and varying quorum q = 3, 4, 5, 6, 7 and gap threshold
δ = 2, 3, 4, 5. On all twenty runs, the method took between 10 min (q = 7, δ = 2)
and 21 min (q = 3, δ = 5) to infer all collections of regions with common functional
associations. For subsequent analysis, we grouped all collections with the same quo-

1http://www.geneontology.org, as of 14 Feb 2018.

http://www.geneontology.org
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Table 14.1 Genomic dataset of the seven amniotes. Columns from left to right: species name and
parenthesized colloquial name; assembly version in the UCSC genome browser; number of protein
coding genes; percentage of genes with one or more GO annotations; average number of GO terms
associated with GO-annotated genes

Species Version # Genes % Annotated ∅ Annot./gene

Gallus gallus (chicken) 5.0 6031 78.9 5.76

Bos taurus (cow) UMD_3.1.1 13,227 80.8 5.57

Canis familiaris (dog) 3.1 1651 84.2 8.67

Homo sapiens (human) GRCh38 22,753 85.4 7.06

Mus musculus (mouse) GRCm38 21,511 80.4 6.42

Sus scrofa (pig) 11.1 4025 77.0 5.61

Rattus norvegicus (rat) 6.0 17,220 86.8 7.18
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Fig. 14.2 Size density distribution (left) and total count (right) of predicted collections of regions
with common functional associations under quorum settings q = 3, 4, 5, 6, 7

rum into a single bin. The distributions of collection sizes smaller than 1000 genes
are shown in the left plot of Fig. 14.2. The right side of the figure illustrates the total
number of collections per bin, ranging from 1,156 (q = 7) to 5,706 (q = 3). For
all collections that contain less than 1,000 genes (5,115 for q = 3; 3,787 for q = 4;
2,614 for q = 5; 1,342 for q = 6; and 637 for q = 7) empirical p-values were com-
puted. The sampling process was limited to 100 set sizes. To this end, sizes were
clustered into bins using k-means. For each of the 100 sizes, 100,000 samples were
drawn from distribution f̃τ , requiring in total 1h 50min of computation time. Out of
all (∼15,000) calculated empirical p-values, only 175 are larger than 1 × 10−5.

14.6 Conclusion and Outlook

In broader perspective, this work continues the path of research devoted to phyloge-
netic transfer of knowledge (PTK), a task to which Bernard Moret has heavily con-
tributed [20]. More specifically, the presented work studies the interaction between
gene function and gene order within the realm of genome evolution.Whereas current



14 A Perspective on Comparative and Functional Genomics 371

gene ordermethodsmake no use of functional information, this study is a first attempt
at integrating such data in comparative gene order analysis. To this end, we measure
dissimilarities between genes based on their associated gene ontology terms within
the gene ontology hierarchy of the domain “Biological Process”. By combining two
strategies, one that clusters genes within the hierarchy, the other that identifies close
neighborhood of genes in their respective gene orders, we developed a fast heuristic
for an otherwise computationally intractable problem. We evaluated the approach
on a dataset consisting of seven GO-annotated amniote genomes that have been
provided by the Gene Ontology Consortium. We could show that our approach can
identify many collections of regions with significantly low functional dissimilarity.
These collections could be the basis of further investigation of the interplay between
gene function and gene order conservation.

The presented method can be improved by ranking candidate regions by the joint
probability over functional associativity and gene order conservation. Future studies
towards this general goal could make use of additional functional information from
databases such as UniProt, Interpro, or KEGG. This work could serve as starting
point for investigations of rare evolutionary events such as convergent evolution.
More specifically, one could investigate those collections of regions with common
functional associations that contain non-orthologous genes.
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Chapter 15
Integer Linear Programming in
Computational Biology: Overview of ILP,
and New Results for Traveling Salesman
Problems in Biology

Dan Gusfield

Abstract Integer linear programming (ILP) is a powerful and versatile technique for
framing and solving hard optimization problems of many types. In the last several
years, ILP has become widely used in computational biology, although predomi-
nantly by computationally and mathematically trained researchers, such as Bernard
Moret. In an effort to reach a broader set of researchers, this chapter begins with an
introduction to ILP, illustrated by the phenomena of cliques and independent sets in
biological graphs. Then, the focus shifts to new research results on the use of ILP to
solve traveling salesman problems, using compact ILP formulations. Such formula-
tions have been largely declared useless in the optimization literature. However, in
this chapter, I argue that the correct compact formulation can be very effective for
problems of the size and structure that arise in computational biology. These empir-
ical results, and some additional arguments, then bring into question the relevance
of the concept of strength of an ILP formulation as a predictor of the speed that it
will be solved.

Keywords Integer programming · Biological networks · Clique finding ·
Independent set · Traveling salesman problem · Strength · Beauty · Efficiency

15.1 Introduction

Bernard Moret has been, and still is, a leader in many areas in computational biol-
ogy, both in biological focus, and in computational technique. Among the techniques
where Bernard has been an early-adopter and early-innovator is integer linear pro-
gramming (ILP). He recognized that ILP can often solve realistic-size instances of
hard computational problems in biology, even when there is no general, efficient (in
a provable, worst-case sense) solution to the problem. And, he focused his under-
standing of the potential of ILP on very hard computational problems in biology,
such as sorting genes using various rearrangement operations [45–48]. As a tribute
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to Bernard,1 and to reflect his contributions and interest in integer linear program-
ming in computational biology, I present here results of a study of compact integer
programming formulations for traveling salesman problems in computational biol-
ogy.

Integer linear programming (ILP) is a powerful modeling and solution method for
complex problems that have long been used in industry. More recently, ILP has been
used in nontraditional and inventive ways in computational and systems biology.
Some examples of the uses of ILP in computational biology appear in a review, by
Lancia, [29], which covers much of the literature up to 2008. A deeper treatment of a
narrower range of selected applications appears in [28]. Another overview of several
problems and uses in computational biology, appears in [4], written by E. Althaus, G.
W. Klau, O. Kohlbacher, H. P. Lenhof, and K. Reinert. The paper [14] also surveys
several computational problems in computational biology, but the problems are first
cast as quadratic integer programming problems, and later converted to linear integer
programming problems.A textbook level, broad introduction to ILP in computational
and systems biology, will appear in [20].

This chapter begins with a brief introduction to integer linear programming
through the lens of computational and systems biology questions relating to bio-
logical networks. We specifically discuss applications of the maximum clique, and
equivalently, independent set, and how the later problem is solved using ILP.2 Then,
I turn to the research focus of the paper: the use of the traveling salesman problem
(TSP, or TS problem) in Computational Biology, and on the effectiveness of solving
TS problems3 by compact integer linear programming formulations.

The results reported on the TS problem show the effectiveness of (the right)
compact formulation; show that one particular compact formulation is far superior
to the other well-known compact formulations; show that the common assertion that
compact TSP formulations cannot solve large TS problems is not correct for all
ILP formulations; show that there are compelling counter-arguments to the current
belief that the strength of an ILP formulation is a good predictor of how efficiently
the formulation will solve in practice; and show that some (mathematically correct)
theoretical results on ILP strength are misleading. Thus, this paper is intended both
as a contribution to computational biology and to mathematical programming.

To allow the readers to verify (or maybe object to) the results in this paper,
computer code to produce the ILP formulations for the methods discussed in this
paper, alongwith some of the test data, can be downloaded4 from the author’s website
at http://csiflabs.cs.ucdavis.edu/~gusfield.

1And the other Bernard (the bookish nerd) in Death of a Salesman.
2The introduction is related and partly derived from several sections in [20].
3Terminology note: We use “TS” as an abbreviation for “traveling salesman”, which is sometimes
followed by “tour” or “path”, as appropriate.
4This is a practice I recommend for all empirical, computation-based papers.

http://csiflabs.cs.ucdavis.edu/~gusfield
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15.2 Brief Overview of ILP

Integer linear programming formulations use integer-valued variables, and linear
functions defined on those variables. A linear function of a set of variables is the
sum of terms, where each term is the product of one variable times one constant. For
example, if the variables are {X ,Y ,Z}, then 7X + 5.3Y − 22.3Z is a linear function
of those variables. An integer-valued variable is one whose value must be an integer.
ILP formulations have three components:
First, an objective function, which eithermaximizes orminimizes a linear function

of a (sub)set of the ILP variables; second, a set of linear (in)equalities (constraints),
each defined on a (sub)set of the ILP variables; and third, a set of bounds, each
defined on a single ILP variable. Each bound is actually a constraint, and so could
be considered as part of the constraints, but are historically distinguished from the
other constraints. When all of the variables are allowed to take on fractional values,
the formulation is called a linear program.

15.2.1 LP- and ILP-Solvers

There are several algorithms that can take any concrete LP formulation and find an
optimal solution; or determine that the formulation is infeasible; or that the solution
value is unbounded. The first and most famous LP algorithm is called the simplex
algorithm, developed by George Dantzig shortly after World War II. It is still the
basis for many practical LP-solvers, although additional refinements have beenmade
to the original method. Further, other algorithms were later developed that are based
on very different ideas than the Simplex Algorithm. Some of these later algorithms
have theoretical properties that the Simplex Algorithm lacks. For example, some
LP-algorithms are provably efficient in worst-case theoretical sense (i.e., they solve
the problem in worst-case time bounded by a polynomial function of the size of the
LP formulation), which is a property that does not hold for the simplex algorithm,
despite its efficiency in practice.

LP-Solvers

When the details of an LP-algorithm are written into an executable computer pro-
gram, the program is called an LP-Solver. An LP-Solver takes in a concrete LP
formulation (in some, usually rigid, format), and returns the value of the optimal
solution, together with values assigned to the LP variables in the solution. The major
LP-solvers are Gurobi Optimizer, and Cplex, which are commercial solvers but free
now to researchers and students; and GLPK, which is an open source free solver.
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ILP-Solvers

The LP-solvers above are also ILP-solvers,5 returning an integer optimal solution,
or determining that no integer feasible solution exists, or that the solution value is
unbounded. To specify an ILP formulation, the user must specify which variables
are restricted to having only integer values, or only binary values, in addition to
specifying the LP formulation.

At the high level, the algorithms that ILP-solvers use to find an integer optimal
solution are quite different from the algorithms used to solve LP formulations. But
ILP methods usually require creating and solving many concrete LP formulations.
Thus, the time to solve an LP formulation is generally much less than the time
needed for the same ILP formulation where all the variables are required to have
integer values. Further, unlike the case of linear programming, where theoretically
efficient (in the worst case) LP-solvers have been created, no such ILP-solver exists.
In fact, the problem of solving ILP formulations is NP-hard, but despite that, highly
tuned ILP-solvers such as Gurobi Optimizer and Cplex are surprisingly effective on a
wide range of specific ILP formulations, including the ones discussed in this chapter.

15.3 Biological Graphs and Networks

Wenowbegin to discussBiologicalGraphs andNetworks, as a segue to discussing the
maximum clique and (equivalent) independent set problems on biological networks
and their solution using ILP.

Graphs and networks are used extensively in biology to represent relationships
between biological elements, or to represent processes that the elements participate
in. There are hundreds of types of graphs and networks used in biology, and thousands
of published networks and graphs that display specific biological information. A
number of such networks are discussed in [20], but here we will only mention one
type, the protein–protein intersection (PPI) network, which is currently one of the
most widely studied biological networks.

Protein interactions form a network whose structure drives cellular function and whose
organization informs biological inquiry. [22]

Protein–protein interaction (PPI) networks (which are often undirected graphs,
but can have directed edges) are extremely important networks in computational
biology. They depict a wide range of information. For example, they can depict
physical contacts between pairs of proteins; or depict pairs of proteins that are part
of the same protein pathway or the same complex; or depict pairs of proteins that
are present at the same time in the same region of a cell; or depict pairs of proteins
that are regulated together; or depict pairs of proteins that are both involved in a

5Another noncommercial ILP-solver (which is not an LP-solver) that has a good reputation is called
SCIP, but I have not had much experience with it.
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Fig. 15.1 The protein–protein interaction graph of 56 clathrin associated proteins and 386 interac-
tions. This is a small-size biological network but already much too big for processing by hand, or by
brute-force computation. Figures like this are called “hairballs”, and they are not very informative.
This is Fig. 15.2 from [23], used by creative commons CC0 public domain dedication

specific biological function; or depict the relationship of proteins that are expressed
in a specific organ or in the brain. See Fig. 15.1 for an example. When edges in a
PPI network are directed, the direction usually represents the action of one protein
on another, but other kinds of information, such as chronological ordering, can be
represented by edge direction.

15.3.1 High-Density Subgraphs: A Nontrivial Biological
Feature

A feature of biological graphs that is widely thought to have significant biological
importance is the existence of high-density subgraphs, which in the extreme case are
cliques.
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Cliques in Graphs

SupposeG is an undirected graphwith n nodes. If there is an undirected edge between
every pair of nodes in G, there will be exactly n(n − 1)/2 edges, so every graph has
that number of edges or fewer.

A clique, K , in an undirected graph G = (V,E) is a subset of V (possibly all of
V ) with the property that for every two nodes u, v in K , there is an edge between u
and v in G. Note that if the clique has k nodes, it will have k(k − 1)/2 edges.

A similar concept is that of an independent set of nodes. This is a subset I of
nodes in V such that there is no edge between any two nodes in I . Although some
applications are discussed in terms of cliques, and others in terms of independent
sets of nodes, the two concepts are equivalent in terms of graph theory. A clique
in a graph G = (V,E) is an independent set in the complement graph of G. The
complement graph, Gc, of G is formed by adding an edge between every pair of
nodes in V , (forming a clique), and then removing all of the edges in the original set
E. So, the problem of finding a clique in G is equivalent to the problem of finding
an independent set of nodes in Gc.

Amaximum (or maximum-size) clique inG is a clique that has a number of nodes
that are at least as large as the number of nodes in any other clique in G.

15.3.1.1 Cliques and High-Density Subgraphs in Biological Graphs

High-density subgraphs (which in the extreme are cliques) are probably the most
studied nontrivial feature of biological graphs. There are hundreds (perhaps thou-
sands) of publications in biology (and even more outside of biology) that use high-
density subgraphs (often cliques) to define features of importance in many different
kinds of networks. Many of these are discussed in [20]. Explicit applications of inde-
pendent sets in biological graphs also appear in the computational biology literature,
although less often than for cliques. One example is found in [42].

Functional modules and protein complexes can often be identified in graphs and
networks (such as PPI networks) as highly connected subgraphs. These are discussed
in detail in [20]. Additional examples of cliques in computational and systems biol-
ogy that are discussed in [20] include applications to reducing inconsistencies in
phylogenetics [13, 21]; to finding biological motifs in graphs; to the study of metas-
tasis in pancreatic, ovarian, and prostate cancers [42]; to protein structure [25], and
RNA folding; to the study of genes involved in epilepsy [32]; and to molecular
sequence analysis [8]. Examples of high-density subgraphs that are not cliques are
also discussed in [20].
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15.4 The Maximum Clique and Maximum Independent Set
Problems and Their Solutions Using ILP

Having motivated biological networks and graphs, and cliques and independent sets
in graphs, we now turn to the question of how integer linear programming can be
used to find them. The purpose of this discussion is to introduce and illustrate the
use of integer programming on a simple, but biologically relevant, problem (before
we discuss integer programming on the traveling salesman problem, where the ILP
formulations are more complex). For such purposes, we could either discuss clique
finding or independent set finding, since they are equivalent in the sense of graph
theory. Here we take the latter approach. For the former, see [20].

The Maximum Independent Set Problem:

Given an undirected graph G, find a maximum-size independent set I in G. That is, find an
independent set of nodes, I , in G, that is as large, or larger, than any other independent set
in G.

15.4.1 An Abstract ILP Formulation for the Maximum
Independent Set Problem

The Logic

Expanding on what it means for I to be an independent set, it is required that if a
node i is chosen to be in I , and a node j is chosen to be in I , then (i, j) must not be an
edge in G. That is equivalent to saying that if (i, j) is an edge in G, then we cannot
choose both i and j to be in I . That is the logic that we will implement with integer
linear inequalities.

The ILP Variables

In the abstract ILP formulation for the independent set problem, we create one binary
variable,6 I(i), for each node i of G.

We use variable I(i) to indicate whether or not node iwill be included in a selected
set of nodes, called I∗. It will be clear that I∗ must be a maximum-sized independent
set in G, so the I(i) variables in the optimal ILP solution will specify a maximum
independent set in G.

6A binary variable can only be set to value 0 or 1.
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The Inequalities

For each pair of nodes i, j in G, we create the following inequality if (and only if)
there is an edge in G between nodes i and j:

I(i) + I(j) ≤ 1. (15.1)

To see the correctness of this formulation, note that when there is an edge between
nodes i and j, inequality (15.1) would be violated if both variables C(i) and C(j)
were set to 1. Therefore, two nodes i, j can both be in I∗ only if there isn’t an edge
between nodes i and j. And since this applies to any two nodes included in I∗, it
follows that I∗ must form an independent set of nodes in G.

The Objective Function

Because want to find a maximum independent set, we use the following objective
function:

Maximize
n∑

i=1

I(i)

The objective function, along with the inequalities specified in (15.1), ensure that an
optimal ILP solution will specify a maximum-size independent set in G.

15.5 New Results on the Traveling Salesman Problem
(TSP) in Biology

15.5.1 Introduction to TSP

We have discussed the components of an integer linear program, and discussed the
simple, but biologically important, problem of finding a maximum independent set,
to demonstrate how ILP formulations are created. Now we begin to discuss new
results on the Traveling Salesman Problem (TSP). We will mention several uses of
TSP in computational biology and then discuss ILP formulations and methods for
solving concrete TSP formulations.7

The classical traveling salesman problem (TSP) requires finding a minimum-cost
route for a salesman to visit each city in a given set of cities (nodes in a graph) exactly
once. Input to a problem instance is a map (or graph) showing which pairs of cities
(nodes) are directly connected by a road (edge), and the cost of traversing each road.

7The introductory material on TSP, and the descriptions of TSP formulations, are extracted from
[20]. The research results and conclusions are new.
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For now, we assume that the cost of traversing a road is the same in either direction.
The cost of a route that visits each city once is the sum of the costs of the roads
used on the route. Clearly, for any graph with more than two nodes, no edge can be
traversed in both directions.

The TSP comes in two high-level variants. In the TS Tour (cycle) version, the
salesman is required to start and end at the same city, hence traveling around a tour,
visiting each city exactly once. In the TS Path version, the salesman is required to
start and end at different cities, hence traveling a path, visiting each city exactly once.
Further, there are two variants of the TS path problem, one where the start and end
cities are specified as part of the problem input, and one where they are not.

15.6 The Traveling Salesman Problem in Genomics

With current genomic technology, many tasks involving DNA maps, sequences, and
sequencing lead to computational problems that concern the ordering or permutation
of DNA sequence fragments. Most problems come from experimental techniques in
genomics that give information (often partial, or containing errors) about (possibly
overlapping) fragments of a linear molecule (e.g., a chromosome). However, the
experiments don’t explicitly determine how those fragments are ordered on the chro-
mosome. Other experimental techniques give information (often partial) about the
relative positions of molecular markers (sites) in a linear molecule but again do not
fully specify the complete order of those markers. The computational problems must
use such information to try to deduce the correct, complete order of the fragments
or markers in the chromosome.

The specific details of the experimental techniques generating fragment data deter-
mine specific details of the computational problems.However, there aremany diverse
experimental techniques and they change rapidly. But regardless of the experimental
basis for the data, most of the ordering problems come down to trying to determine
the best permutation of some set of elements, subject to various constraints on what
permutations are permitted. Often, these permutation problems in genomics are nat-
urally modeled as traveling salesman problems (TSP), or variants of the TSP. There
are also TS-like problems that arise in computational biology.

15.6.1 Examples of the TS Problems in Computational
Biology

There are two well-exposed applications of the TSP in computational biology. The
first is a very important problem in DNA sequencing, the DNA assembly problem.
The second is the marker-ordering problem, studied in [3]. Both of these problems,
and their relationship to TS problems, are discussed in detail in [19] and [20], and
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won’t be repeated here. However, we report empirical results for themarker-ordering
problem, solving it as a TSP using several different ILP formulations.

Additional genomic applications of TS problems (that we will not discuss) appear
in [7] and [43], where methods for gene rearrangements (reversals, transpositions,
translocations, etc.), and for building phylogenies based on rearrangements, succes-
sively formulate and solve TS problems; in [31], where TSP is used to deduce a
plausible signaling pathway in cervical cancer; in [1], where TSP is used to model
radiation-hybrid mapping (which is a technology that is no longer current, but the
structure of the problem is similar to the marker-ordering problem, and will likely
arise in future applications); in [16], where an optimal TS tour reconstructs a putative
ordering of genes expressed during the cyclic cell cycle; in [24], where an optimal
TS path is used to order protein interaction data in order to reveal common function;
in [26], where a near-optimal multiple sequence alignment (under the sum-of-pairs
objective) is built from a TS tour through the sequences; and in a related paper, [27],
where an optimal TS tour is computed as a first step in amethod to build phylogenetic
trees. Those trees solve theweighted maximum parsimony problem in phylogenetics,
when the edge scores satisfy certain technical conditions that the authors believe are
biologically meaningful.

Finally, being a chapter in a festschrift for Bernard Moret, it would almost be
criminal not to note here the paper [34] by Bernard, together with David Bader
and Tandy Warnow, that describes algorithm engineering to dramatically reduce the
time needed for the computations in the abovementioned paper [7] for finding the
“breakpoint phylogeny”, a problem that arises in the context of constructing phylo-
genies for a collection of genomes that have evolved under rearrangement events.
The algorithms described in [34] for the breakpoint phylogeny involve formulating
and solving many instances of the TS tour problem. See the chapters in this book by
Jijun Tang and by Zeira and Shamir for more about the breakpoint phylogeny and
other genome rearrangement phylogeny problems.

15.7 Solving TS Problems with Integer Linear
Programming

15.7.1 DFJ: The Classical ILP Formulation

The first and most highly studied ILP formulation for the TSP is due to Dantzig,
Fulkerson, and Johnson (DFJ) [12], in 1954. It is shown in Fig. 15.2. This formulation
works for both directed (asymmetric) and undirected (symmetric) graphs.

The first two sets of constraints are called “assignment constraints”, which say
that each node must be entered exactly once, and exited exactly once. The third set of
constraints are the “subtour elimination” constraints which ensure that no assignment
of values to the F variables defines a cycle of length less than n. Hence, any feasible
solution to the constraints defines a single cycle containing all n nodes.
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Fig. 15.2 The Full DFJ
formulation for the TS tour
problem. D(i, j) is the cost of
of traversing an edge from
node i to node j; and F(i, j)
set to value 1 has the
meaning that node i is
followed by node j in the tour

i= j

D(i, j)×F(i, j)

Subject to
For each node i in V ,

j=i

F(i, j) = 1

and

j=i

F( j, i) = 1

For each non-trivial subset of nodes, S ⊂V ,

i, j∈S
F(i, j)+F( j, i)≤ |S|−1

All variables F(i, j) are binary.

Note that the number of inequalities in this formulation grows exponentially as
a function of n. Therefore, this full variant of the DFJ formulation can only be
used on very small problem instances. We tested it for n = 20. In practice, the DFJ
formulation is used with a separation method, which starts by solving an ILP with
only the assignment constraints. If the assignment solution contains exactly one
cycle, then an optimal TS tour has been found. Otherwise, find a cycle (subtour)
in the ILP solution, and introduce the subtour elimination constraint that prohibits
that cycle. Then resolve the larger ILP. Iterate this, (successively solving larger ILP
formulations, checking for subtours, and adding violated subtour elimination con-
straints) until obtaining an optimal solution to the expanded ILP, consisting of only
a single cycle. At that point, the cycle must be a optimal TS Tour.

The separation strategy based on the DFJ formulation works spectacularly for TS
problems, dominating, in terms of speed, every other known ILP formulation for TS
problems. Still, there are reasons to be interested in those other formulations.

15.7.1.1 DFJ Contrasts with Compact ILP Formulations

Since the size of the full DFJ formulation grows exponentially with n, and the separa-
tion strategy is somewhat complex, many other formulations for the TS problem have
been devised, where the number of variables and inequalities grows polynomially
with n. These are called “compact formulations”. About 30 compact formulations
for TSP are known, and interest in compact TSP formulations continues. See [35]
for a description of 24 compact TSP formulations.
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Why are compact formulations still of interest given the dominance of the DFJ
formulation solved by the separation technique?8 We quote from [40]:

An efficient implementation of a separation routine for subtour inequalities is beyond the
ability of most practitioners and undergraduate/MS students.9 ... most problems encountered
in practice are not pure TS problems, but only TS-like. ... For TS-like problems the TSP
formulations are usually not hard to generalize, but the TSP separation routines cannot be
used.

Further, the program Concorde cannot be modified by users for other TS-like
problems.More generally, understanding other TSP formulations and their behaviors
expands our repertoire of tools that can be used for mathematical optimization.
Finally, formany problems in Computational Biology, the best compact formulations
suffice and are easier to use and modify, even if they are slower than DFJ with
separation.

15.7.1.2 The New Results in This Paper

The main results are the following:

1. One of the compact formulations, called GG, consistently and often dramati-
cally, solves faster than the others, under all the conditions tested. This empirical
observation is inconsistent with the accepted belief that the strength of an ILP
formulation (discussed in Sect. 15.11) is a good predictor of its efficiency in
practice. The empirical observation is also inconsistent with statements in the
literature which say that compact (weak) TSP formulations are “nearly useless”.
In particular,GG is practical for TSP instances much larger than have been previ-
ously tried using compact TSP formulations, and is quite practical for instances
of TSP that currently arise in computational biology.

2. Comparisons of other compact TSP formulations also show the weakness of
strength as a predictor of efficiency.Moreover, the spectacular effectiveness of the
DFJ TSP formulation, when combined with a separation strategy, is not explained
by appealing to the strength of the full DFJ formulation.

3. Some of the theoretical results on strength that have been established in the
literature are less informative than they may at first appear.

15.8 A Compact ILP Solution to the TS Tour Problem onG′

GraphG ′ is the input graphG augmentedwith a new node 0, and an edge from node 0
to each of the nodes inG. The weight of any of those edges is zero. A solution of a TS

8Moreover, a freely available, highly engineered program called Concordemixes many techniques
and tricks to solve very large TS problems in practice.
9This remains true in 2018, according to people who teach courses on ILP.
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tour problem on G ′ is a solution to a TS path problem on G. Since in computational
biology problemswe aremore interested in paths than tours, we give special attention
to TS tour problems on G ′.

15.8.1 The GG TSP Formulation

We start by displaying a complete ILP formulation for the TSTour Problem, shown in
Fig. 15.3. This formulation is called theGG formulation, and is considered compact,
because the number of variables is bounded byO(n2), as is the number of inequalities.
This formulation was developed in [17], a technical report from MIT that was never
published.

The constant D(i, j) is the cost of traversing edge (i, j) from node i to node j.
The binary variable F(i, j) is set to 1 to indicate that node i is followed by node j in
the tour. Variable b(i, j) can be interpreted as the number of cities left to visit when
entering node j from node i.

Inequalities (i) and (ii) are the inequalities of the assignment ILP; inequality
(iii) sets variable b(0, j) to n, for the unique node j where F(0, j) has value 1; the
inequalities in (iv) force the value of b(i, j) to be 0, unless the value of F(i, j) is
1; and the inequalities in (v) say that for each node j > 0 in G, exactly one unit of
whatever it is (snake oil perhaps) that the salesman is carrying must be delivered to
each city. Note that in (v), index i can have value 0, although j must be in the range 1
to n. Inequality (o) says that an edge can be traversed in only one direction. Although
it is natural to include it, it is not part of the assignment formulation. This will be
discussed next.

It is possible to interpret the inequalities in (v) in a way that is more consistent
with several other ILP formulations, both for TSP and other problems. In that inter-
pretation, the inequalities in (v) describe a single-commodity flow originating at the
root node 0, where the other nodes are sinks, each consuming one unit of flow. For
a more general discussion of these kinds of models, see [5].

Well, Not Quite

The version of the GG formulation shown in Fig. 15.3 is not quite the same as
the version considered in some of the ILP literature. In particular, inequality (o) is
redundant and can be omitted. That natural inequality simply states that an edge
can be traversed in only one direction, which is almost a fundamental part of the
definition of a TS problem.10

The difference between the variants of GG that include or don’t include the
inequalities in (o) turns out to be important, as we will discuss in Sect. 15.11. Since

10Certainly, if one states the TS problem to students without including that constraint, an alert
student will ask about it.
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edge (i, j) in G

D(i, j)×F(i, j)+D(i, j)×F( j, i)

such that:

(o) For each edge (i, j):
F(i, j)+F( j, i)≤ 1

(i) For each node i, from 0 to n:

j=i

F(i, j) = 1

(ii)

j=i

F( j, i) = 1

(iii) For each node j from 1 to n:
b(0, j) = n×F(0, j)

(iv) For each edge (i, j):
b(i, j)≤ n×F(i, j)

b( j, i)≤ n×F( j, i)

(v) For each node j from 1 to n:

(i, j)

b(i, j)−
(i, j)

b( j, i) = 1

All F variables are binary, and all b variables are integral with values between 1 and n.

Fig. 15.3 A complete abstract ILP formulation for the traveling salesman problem on graph G ′.
This formulation is called the GG formulation after the authors who developed it in an unpublished
MITworking paper [17]. Themethod is also detailed in [2]. This formulationworks for both directed
and undirected graphs

inequality (o) is natural, and helpful (aswewill see), and only adds�(n2) inequalities
to a formulation that is already of that size, I have included it in all of the simulations
I did of GG, except as noted. I call the version of GG without (o) the pure GG.

15.8.2 The MTZ Formulation

The first compact ILP formulation for the TS problem was published in [33], and is
shown in Fig. 15.4. It is the most widely known and most studied compact ILP for-
mulation for the TSP. TheWikipedia discussion of the TSP presents this formulation
as the exemplar of the compact formulations for TSP. The textbook [11] discusses
MTZ in depth but does not even mention the GG formulation or cite [17]. But, as
we will see, the MTZ formulation is inferior in practice to the GG formulation. One
hoped-for contribution of this chapter is to replace MTZ with GG as the accepted
exemplar of compact TSP formulations.
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edge (i, j) in G

D(i, j)×F(i, j)+D(i, j)×F( j, i)

such that:

(o) U(0) = n+1

(i) For each node i, from 0 to n:

j=i

F(i, j) = 1

(ii) For each node i, from 0 to n:

j=i

F( j, i) = 1

(iii) For each node i= 0:

1 ≤U(i) ≤ n

For each ordered pair of nodes (i, j) where i and j each range from 1 to n:

(iv) F(i, j)+F( j, i)≤ 1

(v) U(i)−U( j)+n×F(i, j)≤ n−1

All F variables are binary, and allU variables are integral.

Fig. 15.4 The MTZ ILP formulation [33] for the TS Tour Problem on G ′. This is the compact
formulation discussed in Wikipedia

As in the case of inequality (o) in GG, the inequalities in (iv) say that an edge can
be used in only one direction. They are redundant, but natural, and I include them in
the simulations I do for the MTZ formulation, unless otherwise noted. The version
of MTZ without (iv) is called the pure MTZ.

At first exposure, theMTZ formulation seems very similar to the GG formulation.
The major difference is the use ofU () variables in MTZ, and the use of b() variables
in GG. But each U () variable is associated with a node, while each b() variable is
associated with an edge. The meaning of inequality (v) in the GG formulation is that
if the tour traverses edge (i, j) from i to j, and then traverses edge (j, k), for some
k, then the value of b(i, j) must be exactly one larger than the value of b(j, k). So,
those values specify (in reverse) the order that the edges (and hence the nodes) are
traversed in a solution to the GG formulation.

In contrast, the meaning of inequality (v) in the MTZ formulation is that if the
tour goes from node i to node j along the edge (i, j), then U (j) must be larger than
U (i). In the end, because of inequality (iii), which says that all the U () values must
be between 1 and n, the values of theU () variables give the order of the nodes in the
tour that is found. But, that consequence is less direct and explicit than in the GG
formulation. That is, to me, the most significant difference between the GG andMTZ
formulations. Why that leads to faster solutions for GG formulations, compared to
MTZ formulations, is unclear (to me).
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15.9 Empirical Results

We examined the empirical behavior of five different compact ILP formulations for
the TSP problem, in comparison to both the full DFJ formulation, and its solution
with the separation approach. The compact TSP formulations are GG and MTZ,
already described, and ILP formulations called FGG3 and FGG4 [15], and CLAUS
[10]. The five compact formulationswere selected because of their prominent roles in
the literature; for their range of sizes (number of variables and inequalities); and for
the different theoretical strengths (to be discussed later) established in the literature.
Several other compact formulations11 were also implemented and initially examined,
but their empirical performance was so bad that they were quickly discarded.

Extensive empirical tests were conducted using three types of data: (1) Randomly
generated instances of themarker-ordering problem, and a specialization of it called
theConsecutive Ones Problem; (2) Instances of TS problems on randomly generated
graphs with varying numbers of nodes and edge densities; (3) Instances of TS tour
and path problems from established benchmark test sets of varying sizes, in both
undirected and directed graphs.

15.9.1 Results for the GG Formulation

The empirical results for the GG formulation, both by themselves and in comparison
with the other four compact formulations and the full DFJ formulation, establish it
as the best compact formulation, by far. I first discuss results for GG alone, and then
in comparison to other formulations.

Random Graphs

First, I tested the ILP formulation on random graphs of different sizes, where each
potential edge was selected to be in the graph with varying probabilities. Details of
these tests are in Table 15.1. As a sample of the results, consider the case where
the probability of each edge is 0.25, and edge costs assigned randomly (uniformly)
in a range from 1 to 100. For n = 20, the GG ILP solves in under a one-tenth of a
second, averaged over 10 trials; for n = 50, it solves in under half of 1 s, on average;
for n = 100, the ILP solves in 2.27 s, on average; for n = 200, it solves in 64 s,
on average; and for n = 500, it solves in about 42 min, on average. These numbers
illustrate the tremendous efficiency of the GG TSP formulation, compared to brute-
force enumeration and examination of all n! (n-factorial) potential TS tours in a graph
with n nodes. For example, according to Wikipedia n! is 2,432,902,008,176,640,000
(a huge number) for n equal to 20 (a small number). For n = 100, n! is larger than
10157, a truly gargantuan number.

11Including one that I came up with, which had nearly the worst performance of all.
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Benchmark Tests

I also tested the GG TSP formulation on some of the classic benchmark (nonbiolog-
ical) problem instances, from city data in TSPLIB [41], and from the National TSP
Collection at U. Waterloo. The results were more varied but still demonstrate the
practicality of the GG formulation for instances of meaningful size. These results
contradict expectations stated in the literature. Details of these tests are shown in
Table 15.2.

Surprising Results

The first dramatic result for the GG formulation is for benchmark problem called
br17 with 17 cities. The expectation in the literature is expressed by the quote:

... a small instance, (such) as br17, can be surprisingly hard using a weak formulation ... (If
one wants to assign only one problem in a student project, this probably should be the one!)
[40]

But, using the GG formulation, the optimal TS tour, with cost of 39, was found
using Gurobi 7.5 on my MacBook pro, in 0.21 s, and the optimal TS path problem
was solved in 0.11 s.12

The second dramatic result for the GG formulation is for the benchmark problem
called p43. The author of [39] points to p43 as a “particularly hard” TS problem
instance to solve, and states that itwas unsolvable using theMTZ formulation.Amore
recent paper [44] (with empirical tests) in 2016, calls it the “the most challenging
problem”, and also states that it was unsolvable with the MTZ formulation.

However, the concrete ILP formulation of “the most challenging problem”, p43,
using the GG formulation (which was not examined in either [39] or [44]) was solved
in 20 s onmy laptop usingGurobi 7.5, and in 10 s usingGurobi 8! TheTS path version
of the p43 problem was solved in 3.14 s with Gurobi 7.5.

Other Results

Highlighting other results for the GG formulation on benchmark problems: instance
wi29 with 29 cities in the western Sahara solved in under one second; berlin52 with
52 locations in Berlin, solved in 3.2 s; problem instance ch130, with 130 cities in
China solved in under seven minutes (with Gurobi 7.5), but took about 12 min with
Gurobi 8 (why? You got me!). The path version of ch130 solved in under sixminutes
with Gurobi 7.5, and under 4 min with Gurobi 8.

12Certainly, even my laptop is a faster machine than the one used in 2003 by the author of [40]. But,
the increased machine speed does not account for the difference between the observation today, and
the understanding in 2003. It should be noted however, that my experience with MTZ on br17 also
contradicts the statement in [40], since the MTZ formulation for br17 solved in 0.54 s.
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These benchmark results also establish the practicality of the GG formulation.
However, theGG formulationwas considerably slower for benchmark problem a280,
with 280 circuit-board drilling points. Gurobi 6.5 solved it in 44 h. This is long, but
still practical for many applications; and the execution took under 2 h to reduce the
gap between the best solution value (ub) and the best lower bound (lb) to 5.98%.
Further, the feasible solution that was found after three hours was in fact the optimal
solution, although it took another 41 h to get amatching lower bound, lb. AfterGurobi
7.5 was released, I reran the ILP for a280, and it solved in only 28 h, although this
time it did not attain the optimal solution until the 27 h mark. Then it took another
hour or so to attain a matching lower bound.

Marker-Ordering

I also tested simulated data that roughly mimic variants of realistic marker-ordering
problems, which translate into instances of TS problems with 500 nodes. Using the
GG TSP formulation, Gurobi 6.5 solved each of the generated problem instances
in at most seven minutes. The number of nodes in these tests is much larger than
the number of nodes in nonbiological TS problems which are previously reported to
be solved by compact TSP formulations. This suggests that TS problem instances
that arise in biology are easier to solve than the classic benchmark instances. This is
because many problems in biology have more structure, and the set of solutions are
less symmetric, and they have lower density (the ratio of the number of edges to the
number of nodes) than do the benchmark problem instances. Benchmark problems
are mainly Euclidean distance problems or problems with very high symmetry, such
as chip design and circuit-board drilling.

15.9.2 Comparing Empirical Results for the Other Compact
Formulations

Tables 15.1 and 15.2 give a detailed comparison of the efficiency of three compact
TSP formulations, showing clearly the superiority of the GG TSP formulation.

Random Graphs

Comparisons of GG, MTZ, and CLAUS on random graphs are shown in Table 15.1.
Our interest in GG andMTZhas been discussed earlier. CLAUS is of interest because
it provably has the same strength (discussed later) as does the full DFJ formulation
[35, 38], and the strength of DFJ is commonly cited as the reason for its success
when used with branch-and-cut and branch-and-bound [38].
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The data show that CLAUS is much slower, and quickly becomes impractical,
compared to GG and MTZ, as the number of nodes and edge density increase. For
example, for complete graphs with 50 nodes, the average solution time for GG is
under 1 s, for MTZ it is under 2 s, but for CLAUS it is over ten minutes. For n = 100
with density of 0.25, the average solution time for GG is only 2.27 s, for MTZ, it
is under 15 s, but is one hour and 25 min for CLAUS. For complete graphs with
one hundred nodes, the respective average times for GG and MTZ are 11 s, and 40
s, but is 3 h and 40 min for CLAUS. Because of those results, and similar results
on benchmark data, CLAUS was not tested for random graphs with more than 100
nodes.

The data also show that MTZ is considerably slower than GG under all test
parameters, but the gap is reduced as the graph gets denser. For example, for n = 400
and density = 0.1, the average solution time for GG is about nine minutes, and about
200 min for MTZ, so MTZ takes about 22 times longer than GG. But when the
density is increased to 1, the respective averages are about 47 min and 267 min, so
MTZ takes 5.7 times longer than GG.

In a different trial of 500 randomly generated graphs with 60 nodes and edge
density of 0.7, the GG formulations took an average of 0.18 s to solve, while the
MTZ formulations took an average of 2.22 s. These results again show that MTZ is
slower than GG, but not fatally slower. However, the maximum time for those 500
GG formulations was 6.75 s, while for the MTZ formulations it was 3606 s, with
another taking 534 s.13 So MTZ can occasionally be unreliable, while GG appears
quite stable in comparison.

Benchmark Data

The results for benchmark data (excluding the data for a280) are shown in Table 15.2.
Evenmore convincingly than the results on randomgraphs, these results show thatGG
is superior to the other compact formulations on all the benchmark data. In particular,
they show the inefficiency and unreliability of the FGG4 and CLAUS formulations,
and the widening gap between GG andMTZ as the problem size increases. The table
also shows the time for the pure DFS formulation on the smallest problem, and the
times for DFJ with the use of separations, on some of the larger problems.

In the test of the TS Path problem, using br17 data, Gurobi solved the ILP formu-
lation in 0.11 s using the GG; in 0.54 s using MTZ; in 1.52 s with CLAUS ; in 3.83
and 5.17 s using the FFG3 and FFG4 formulations, respectively; and in 44.87 s using
the full DFJ formulation. Note that these results are inconsistent with the statement
in [39] “... a small instance, (such) as br17, can be surprisingly hard using a weak
formulation ... [40]”

13On the instance where MTZ took over 1 h, the GG formulation took 2.38 s to solve (with Gurobi
8), and the DFJ formulation with separation took 0.02 s. So, DFJ with separation is unquestionably
dominant, but the speed of GG here contributes to the new understanding that the right compact
TSP formulation is practical, while the instability of MTZ makes it much less reliable.
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The data on random graphs showed that MTZ is consistently slower than GG, and
occasionally unreliable. But the benchmark results suggest that MTZ is unreliable
more frequently. Recall that the author of [39] points to the benchmark TS problem
p43 as a particularly hard TS problem instance to solve, and states that it was
unsolvable using the MTZ formulation. Another paper [44] reports that two variants
of the MTZ formulation

... failed to prove optimality for the most challenging problem p43.atsp.

And, in fact, when I tried to solve instance p43 using the MTZ formulation, Gurobi
7.5 quickly stalled with a gap of about 54%—it stayed there for nine hours before
I killed the execution.14 So, that observed performance is consistent with the point
made in [39], that the MTZ compact ILP formulation is “nearly useless”.

But, the larger point made in [39, 40] and in other discussions of ILP, is that weak
(to be discussed later) ILP formulations are often useless, and their use ofMTZ is just
an exemplar of that point. However, GG is also a weak ILP formulation, but using
it, Gurobi 8 solved p43 in ten seconds on my laptop. This illustrates the difficulty of
using theory to predict which ILP formulations will solve well in practice. We will
discuss this more in Sect. 15.11.

Marker-Ordering

The results usingmarker-ordering and consecutive ones problems are consistent with
those on random graphs and benchmark data. In my experiments, when concrete
instances of the MTZ formulation can be solved, the ILP-solver takes much longer
to finish, as compared to the GG formulation. Further, the MTZ formulation does
not terminate on large problem instances, where the GG formulation does. As one
of many examples, I created a random instance of the consecutive ones problem,
with 300 rows, 300 columns, and 30 entries of value 1 in each row. Using the GG
formulation, Gurobi 6.5 solved the problem instance in 100 s (the newer Gurobi 7.5
took 186 s—go figure!). However, using theMTZ formulation, Gurobi 7.5 tookmore
than 6.5 h to finish. It arrived at the optimal solution in about 1.5 h, but still didn’t
have a matching lower bound for another 5 h—a gap of 1.16% remained for those
five hours.

Similarly, the FGG4 formulation [15] was vastly slower than the GG formulation.
It could not solve even modest-size problem instances and was much slower on small
instances it could solve. For example, for an instance of the consecutive ones problem
in a 20-by-20 matrix with five 1s per row, Gurobi 7.5 solved the GG formulation of
the TSP in 0.07 s, but took 256 s to solve the FGG formulation. Cplex 12.6 solved
the GG formulation in 0.08 s, but with the FGG formulation, it ran for two hours
without even finding a first feasible solution and was then terminated (for cause!).

14A later attempt with Gurobi 8 suffered the same fate.
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Good Intuition is Elusive

The compact TSP formulations GG and FGG provide another illustration of how
difficult it is to have reliable intuition about which ILP formulations will solve well.
The FGG formulations published in [15] are vastly inferior to the GG formulation on
all of the moderate and large-sized tests that I performed. But, the GG formulation
was only written in an unpublishedworking paper [17], while the FGG formulations
were published in a prominent journal. Further, the GG formulation is related to the
FGG formulations, and since the two authors who developed the GG formulation
later (along with a third coauthor, K. Fox) developed the FGG formulation, the GG
formulation could have naturally been discussed in the published paper. This suggests
that the authors, or the reviewers, did not appreciate how superior GG was to FGG.

15.10 Take Home Lessons

The empirical results conclusively show that FGG3, FGG4, and CLAUS are “essen-
tially useless” in comparison to GG, and even in comparison to MTZ, except on
very small problem instances. Overall, the empirical results for the GG formulation
are amazing and surprising. They contradict what I was taught and believed until
recently, that more sophisticated solution methods (such as the use of separations)
would always be required to solve any but the smallest TSP instances. For example,
in 2003, it was generally accepted [40] that any compact ILP formulation would only
be able to solve TS problems for 50 cities or less.

Solving a reasonably large (with at least, say, 50 cities) problem to optimality is only possible
using the subtour formulation; [40]

Now we know that this is no longer true, and the consequences for computational
biology can be truly transformative. These empirical results show that a compact ILP
approach can solve a wide range of TS problem instances that model real phenomena
in biology (particularly genomics).However, this knowledge comeswith two caveats.

Caveats

First, the choice of ILP-solver really does matter. In my experiments, Cplex 12.6
was able to solve TS tour instances on random graphs of size up to n = 200 as
efficiently as Gurobi 6.5, and on some problem instances it was faster than Gurobi.
But it was unable to solve instances of size n = 500 that Gurobi solved in under 25
min, even allowing Cplex to run for more than a day. And, when terminated, the gap
between the best solution obtained and the lower bound was still large (in the 50%
range). Also, the newer Gurobi 7.5 was sometimes slower than Gurobi 6.5 (taking
about twice as much time), and when it was faster, it was only by a small amount.
So, the solver matters, and the most recent release is not always the best.

Second, the specific compact, abstract ILP formulation matters. The GG formu-
lation leads to concrete ILPs that can be solved much faster in practice than the
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other similar formulations, even though all the formulation are mathematically cor-
rect. In our, genomic-oriented, experiments, the GG formulation consistently solved
faster, and sometimes vastly faster, than the other four compact formulations we
tried. So, the ILP approach can be practical on problem instances of meaningful size
and structure in biology, but getting that result may require art as well as science;
and sometimes you have to experiment with several different ILP formulations, and
different ILP solvers.

15.11 On Strength

When I am weak, then am I strong. (2 Corinthians)

Several papers in the mathematical programming literature concern the efficiency
of different compact ILP formulations for the TSP [18, 30, 35–38, 49]. In particular,
they concern the relative strengths and execution times of pure compact formulations,
compared to the classic, but non-compact, DFJ formulation [12], solved using the
separation method discussed in Sect. 15.7.1.

Strength is measured by the difference between the value of the optimal integer
solution to an ILP, and the value of the optimal fractional solution to the relaxed LP
problem (i.e., where the variables can take on nonnegative fractional values). The
smaller the difference, the greater the strength of the formulation.

The current belief is that the stronger the formulation, the faster the ILPwill solve,
especially in the context of a branch-and-bound or branch-and-cut solution strategy
[6]. Branch-and-bound is the high-level solution strategy that ILP-solvers generally
employ (supplementedwith other techniques such as the use of cutting planes). Those
strategies repeatedly change the ILP formulation and compute optimal LP (not ILP)
solutions to use as bounds to guide the branching process. It is therefore intuitively
appealing to think that stronger formulations will result in faster overall solution
times for the ILP, and given two ILP formulations for the same problem, the stronger
formulation is generally thought to be best. This is particularly believed if the two
formulations have a similar number of variables and inequalities (which impacts
the speed of the LP computations). Consequently, the relative strengths of several
compact formulations for TSP have been theoretically established, andwidely taught
as important for mastering effective integer programming [6, 11, 39, 40]. This belief
is reflected in the following quotes:

There are several lessons to be learned from these experiments: ... the foremost one is the
connection between the strength of a formulation and the required solution time. [40]

Although the MTZ formulation is correct, we will show ... that it produces weaker bounds
for branch-and-cut algorithms than the DFJ formulation. It is for this reason that the latter
is preferred in practice. [11]
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And later, after establishing the fact that MTZ is weaker than DFJ, they state:

It is therefore not surprising that the MTZ formulation is effective only for small values of
n. For large instances, tighter formulations such as Psubtour (DFJ) are needed. [11]

Elsewhere in [11], they state that “medium to large” instances are those with
n > 30, suggesting that “small” here means n ≤ 30.

Solving a reasonably large (with at least, say, 50 cities) problem to optimality is only possible
using the subtour formulation; at least, we are not aware of any published computational
studies that use the pure MTZ formulation. There is an analytical explanation of this fact:
the LP relaxation of the MTZ formulation is much weaker. [40]

In [36], in discussing a variant of FGG3 and FGG4, the authors state:

... it is also remarkably bad in terms of the strength of its Linear Programming relaxation
and therefore the slowness of its overall running time.

The choice to italicize “reason”, “not surprising”, “analytical explanation”, and
“therefore” is mine, and is done to emphasize the general acceptance of the dogma
that the relative strength of ILP formulations iswhat determines efficiency in practice.
These specific quotes relate to the relative strength of full DFJ formulation to pure
MTZ, rather than to GG, but pure GG is also weaker than the full DFJ [35]. So,
conclusions about MTZ based on the relative weakness of pure MTZ compared to
full DFJ should hold for GG as well. More generally, the view that the strength of
an ILP formulation is critical is reflected in the following:

The main message of this chapter is that strong formulations are central to being able to
solve integer optimization problems efficiently. The quality of a formulation is judged by
the closeness of its linear relaxation to the convex hull of integer feasible solutions. [6]

What is the Evidence for the Importance of Strength in TS Problems?

In the case of the traveling salesman problem, empirical validation of the strength
dogma is largely missing from the literature. The reported, tested cases have been
small in size and number. The most recent discussion of the strengths of ILP formu-
lations (24 of them) [35] only reports the time for the LP relaxations of several test
cases and not the time to solve the ILP problems. An earlier paper, [36], only tested
the TS problem with ten cities, and the empirical tests reported in [40] are limited to
a six benchmark cases whose size ranges from 17 to 70 cities. Moreover, as we will
see, some of the theoretical results on strength use variants of ILP formulations that
do not agree with the way those formulations are realistically used, and therefore
some of the stated results are not as informative as they may appear.
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Here, I discuss how the empirical results we obtained impact the question of
the importance of strength. The relevant relations that have been mathematically
proven are summarized in [35]: Full DFJ and pure CLAUS have equal strength,
which is greater than the strength of pure GG, which is greater than the strength of
pure MTZ. The strengths of pure FGG3 and pure FGG4 are incomparable with the
full DFJ, but pure FGG4 is stronger than pure FGG3, which is stronger than pure
GG. Also, since all of these formulations contain the assignment constraints, each is
more constrained than the assignment ILP. Hence, the assignment formulation is as
weak or weaker than all of the other formulations, and in fact is strictly weaker. For
additional examples of the determination and comparison of strength in other ILP
formulations, see [5, 9].

15.11.1 Is Strength a Good Predictor of Efficiency in
Practice?

The pure FGG3 and pure FGG4 TSP formulations are stronger than the pure GG
and pure MTZ formulations, but the FGG formulations are essentially useless, as
established in our empirical testing. The total matrix volume of the matrices for
these four formulations are the same, O(n4): GG and MTZ have O(n2) variables
and constraints, while FGG3 and FGG4 have O(n3) variables and O(n) constraints.
Similarly, pure CLAUS is stronger than pure GG and pure MTZ, but, in our testing,
CLAUS quickly becomes useless in comparison to GG and MTZ. The CLAUS
formulation hasO(n3) variables and constraints. The full DFJ formulation is stronger
than all the pure formulations studied, other than pure CLAUS, but is essentially
useless past n = 20. Of course, the full DFJ formulation has an exponential number
of inequalities, perhaps making irrelevant any consideration of strength. Clearly,
these empirical results show that a simple use of the established strength relations as
a predictor of efficiency is not very effective.

CLAUS v. GG v. DFJ

Of the five compact formulations considered, the theoretically strongest is pure
CLAUS, which has in every problem instance, the same LP-relaxation value as does
the full DFJ formulation, which is stronger than the pure GG formulation. But, we
have seen empirically that the CLAUS formulation is vastly inferior to GG.

The comparison of CLAUS to DFJ with separation is particularly telling. The
pure CLAUS formulation has the same strength as the full DFJ but only has poly-
nomial size (which influences the speed of the LP solutions). Further, pure CLAUS
is solved using brand-and-bound, where the strength of a formulation is presumed
to be important [6]. And, in practice, pure CLAUS is much stronger than the full
DFJ formulation, for the simple reason that the full DFJ formulation is not used.
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What is used initially is the assignment formulation (which is extremely weak),15

and afterwords, what is used is the assignment formulation augmented with a small
number of the subtour elimination constraints. But, pure CLAUS, or CLAUS, is only
effective on small TSP instances, whereas DFJ with elimination works amazingly
well for large instances.

What then is the relevance of the strength of the full DFJ formulation (which is
not used) to the formulations, derived from the assignment formulation? The quotes
above assert that it is the strength of the full DFJ formulation which explains the
amazing effectiveness of DFJ solved using the separation technique. But where is
the evidence, either theoretical or empirical that strength is the explanation?

We come to a similar conclusion when looking at FGG3 or FGG4 and GG and
MTZ. Both pure FGG3 and pure FGG4 are stronger than pure GG and pure MTZ,
and all four have the same matrix volumes (O(n4)) overall. But FGG3 and FGG4
run horribly compared to GG and even MTZ.

If Not Strength, Then What?

The real key to the behavior of DFJ with separation is that the number of iterations
is extremely small compared to the number of subtour elimination constraints in the
full DFJ formulation; that the assignment ILP solves extremely fast, and that each
of the successive subproblems solves quickly, even as we add subtour elimination
constraints. Does the strength of the full DFJ formulation explain this? I am not an
expert in TSP or ILP theory, but I am not aware of it, if it does.

The Theory is Misleading

Theory has established strength relations between several compact TSP formulations,
and the full DFJ formulation. But, the strength relations are only proved for the pure
variants of the formulations—the proofs break down if the formulations explicitly
prohibit any edge from being used in both directions.16 That prohibition is so natural,
almost a fundamental part of the TS problem definition, that I used it in all the
formulations except FGG4 (which was just by accident). And, we have seen that
with these more natural formulations, the strength relations of their corresponding
pure variants are not good predictors of the relative efficiencies of the formulations.

The empirical results do not contradict the mathematical results, but they call into
question their relevance. Prohibiting any edge from using both directions is natural
(almost part of the definition), and really helps (reducing the solution time of GG to
about one-third of the pure GG formulation); and it never increases the asymptotic

15For example, in the benchmark data ch130 of 130 cities, the ILP optimal is 6110, the LP-opt for
GG is 5608 but the assignment optimal is only 4377.
16However, I have never seen this stated in the literature.
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size of a formulation. So why not use them, and why focus on formulations that don’t
use them?17

The Theory is Brittle

Not only are the proven strength relations not good predictors of efficiency, and
not only do the proofs break, but the relations themselves are easily broken in the
more natural formulations. Table 15.2 shows several such occurrences. For example,
the LP-Opt for GG on the br17 tour problem is 27, but for full DFJ, it is only 25.
Similarly, the LP-Opt for GG on the ch130 path problem is 5608 but is only 4321 for
FGG4. We have also found similar phenomena in MTZ and GG. Pure GG is strictly
stronger than pure MTZ, but this is not true for GG and MTZ, where the LP-Opt
of an MTZ formulation can be larger than the LP-Opt of the GG formulation. The
following edge-weight matrix is one such example:

0 0 0 0 0 0

0 0 24 56 4 11

0 24 0 53 23 52

0 56 53 0 34 68

0 4 23 34 0 18

0 11 52 68 18 0

The LP-relaxation to the pure GG formulation has solution value 79.6, while the
LP relaxation of the pure MTZ formulation has solution value 71.2, which is in
agreement with the established theoretical results. However, using GG and MTZ,
which explicitly prohibit edges from being used in both directions, the LP relaxation
of the GG formulation has solution value 84.4, while the LP relaxation of the MTZ
formulation has a larger solution value, 86. This, and many other examples, show
a reversal of the established strength relations when using the more natural TSP
formulations, rather than the pure formulations used for the theoretical results.
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Appendix 1: Data for Random Graphs

See Table 15.1 for results of experiments with different compact TSP formulations
on a range of random graphs that differ in the number of nodes they contain, and
their edge density.

Appendix 2: Data from Benchmark Tests

Experiments on several well-known TSP benchmark test sets covering a range of
sizes are shown in Table 15.2. All the formulations, except FGG4, have inequalities
that prohibit an edge from being traversed in both directions. The numerals in each
ID give the number of cites, from 17 to 229. The letter ‘A’ or ‘S’ indicates whether the
problem is for a directed (asymmetric) or an undirected (symmetric) graph. Both the
optimal tour cost and the optimal path cost (with no designated start or stop nodes)
were computed and written next to the problem ID. Each of the ILP formulations is
for an optimal TS path, unless “tour” is indicated.18

The entry in the column for “gap” is empty if the computation ran to completion,
and otherwise is the gap when the computation was terminated. An entry for “Time”
is the time at completion or termination of the ILP computation; and an entry for “LP-
Opt” gives the optimal cost of the LP-relaxation of the TS problem, as reported by
Gurobi. The LP-Opt cost can be compared to the cost indicated next to the problem
ID, as a measure of the strength of the ILP formulation.19 These LP-opt values
can also be compared to each other to validate known theory about the strength of
ILP formulations, or to question the relevance of that theory. This is discussed in
Sect. 15.11.

18But remember that the path computation for the input graph G is actually a tour computation on
the derived graph G ′. Hence, what we learn from these computations concerns TSP tours and ILP
formulations for the TS tour problem.
19Note however, what looks like a contradiction in the case of DFJ with separation. In the case
of ch130, the LP-Opt reported is 5582. However, the LP-opt for the assignment ILP for ch130 is
only 4377, and the two values should be the same if LP-opt was computed exactly as discussed
in Sect. 15.7.1. A possible explanation is the fact that the computation of DFJ with separation,
implemented by a Gurobi program, added subtour-elimination constraints even before the LP-opt
was reported. So, the Gurobi code implementing the separation approach seems not to exactly
follow the description given in Sect. 15.7.1. However, in all experiments that did not use the DFJ
formulation, the LP-opt value was identical to the value obtained by running the LP-relaxation of
the ILP formulation.
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Table 15.1 The edge density, d , and the number of datasets (replicates), r, generated for this case.
The three columns show the results for the GG, MTZ, and CLAUS formulations respectively. All
three formulations contain inequalities that explicitly prohibit an edge from being traversed in both
directions. The times and standard deviation are all reported in seconds. Any number larger than ten
has been rounded to the nearest one-decimal point accuracy. Any number larger than 200 has been
rounded to the nearest integer. The large inefficiency of the CLAUS formulation, compared to MTZ
and GG, is clearly established with graphs containing only 100 nodes, so no computations with the
CLAUS formulation were done for a larger number of nodes. Similarly, due to the inefficiency of
MTZ with 400 nodes and edge density of 0.25, more challenging computations were not done with
the MTZ formulation. All the computations were done on a MacBook Pro laptop, except for the
entry for 100, 0.5, marked with a ‘*’. Those ran on a somewhat faster iMac desktop

N , d , r GG (avg, min, max, std) MTZ (avg, min, max, std) CLAUS (avg, min, max,
std)

20, 0.25, 10 0.037, 0.01, 0.08, 0.023 0.088, 0.02, 0.18, 0.05 0.278, 0.18, 0.45, 0.08

20, 0.5, 10 0.047, 0.02, 0.09, 0.028 0.096, 0.02, 0.27, 0.087 0.58, 0.31, 1.52, 0.35

20, 1, 10 0.056, 0.03, 0.16, 0.04 0.07, 0.03, 0.14, 0.04 0.67, 0.55, 1.07, 0.16

50, 0.1, 9 0.13, 0.05, 0.30, 0.088 1.58, 0.17, 6.59, 1.94 6.9, 3.86, 20.4, 5

50, 0.25, 9 0.38, 0.13, 0.76, 0.18 1.24 0.32, 2.85, 0.9 18.2, 8, 45.75, 11.8

50, 0.5, 9 0.56, 0.18, 1.11, 0.34 0.93, 0.25, 2.59, 0.76 58.6, 18.3, 171.0, 43.9

50, 1, 9 0.89, 0.46, 1.43, 0.3 1.46, 0.41, 3.47, 1.07 380, 43.6, 1592, 454

100, 0.1, 9 1.73, 0.34, 6.09, 1.71 23.5, 2.42, 57.7, 17.6 1433, 108.6, 3.8K, 1178

100, 0.25, 9 2.27, 0.94, 4.94, 1.46 14.9, 2.26, 45.1, 14.1 5101, 198, 15.5K, 4.3K

100, 0.5, 9* 5.1, 3.32, 7.72, 1.42 39.1, 3.02, 107.0, 37.7 6062, 815, 14K, 4K

100, 1, 6 11.0, 7.3, 14.5, 2.78 39.5, 4.06, 119, 39.1 13220, 206, 24K, 10.5K

200, 0.1, 10 23.9, 6.54, 61.3, 15.7 503, 75.9, 1720, 452

200, 0.25, 11 63.4, 14.5, 152.3, 48.0 434, 19.7, 1091, 332

200, 0.5, 10 93.3, 58.8, 133, 24.1 490, 123.5, 1203, 332

200, 1, 10 236, 159.1, 338, 64.3 416, 162.1, 990, 296

300, 0.1, 5 89.2, 15.1, 209, 77.9 780, 98, 1778, 595

300, 0.25, 5 206, 90.7, 370, 92.8 1921, 91.8 4117, 1562

300, 0.5, 5 495, 315, 769, 169.7 2551, 1854, 3415, 510

300, 1, 5 1861, 862, 4582, 1373 2565, 1600, 3503, 671

400, 0.1, 5 543, 239, 1014, 299 12025, 6057, 19366, 5K

400, 0.25, 5 644, 562, 794, 80 9848, 2986, 31945, 11K

400, 0.5, 25 1787, 880, 3697, 738 12201, 1593, 43724, 9952

400, 1, 11 2850, 2307, 3616, 434 16067, 877, 93115, 25051

500, 0.1, 7 949, 306, 1716, 531

500, 0.25, 7 2505, 1020, 5606, 14K

500, 0.5, 7 7630, 3978, 16238, 3773

500, 1, 7 6165, 4981, 8468, 1231
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Table 15.2 Data for benchmark TS problems. The ID gives the name of the test, and is followed
by its optimal TSP cost, and whether the test problem is for a path or a tour, and whether the test
problem is symmetric (S) or asymmetric (A). The next entry is the ILP formulation used to solve
the test. Each of these formulations is for the TS path problem, unless “tour” is stated. The next
column, labeled GAP, is empty if the computation ran to completion but shows the size of the gap
if the computation was terminated before completion. The next column, time, gives the time for
the computation, either to its completion or to its termination. The final column, LP-Opt, gives the
optimal value for LP relaxation of the test problem

ID ILP-OPT Formulation Gap Time LP-Opt

br17 25 (path) A

br17 39 (tour) A

GG (path) 0.11 s 15.6

GG (tour) 0.21 s 27

MTZ 0.54s 10

CLAUS 1.52s 25

FGG4 3.19s 12.82

full DFJ 45s 25

p43 553 (path) A

p43 5620 (tour) A

GG (path) 3.19 s 170.6

GG (tour) 20 s 845

MTZ 54% 10h 160

CLAUS 46s 553

FGG4 3h 46min 113.7

berlin52 7544.17

GG (tour) 2.21 s 7194

eil76 521.4 (path) S

eil76 544.4 (tour) S

GG (path) 7.85 s 518

GG (tour) 8.36 s 540.85

MTZ 37s 518

CLAUS 48min 520.59

FGG4 18.5% 4h 39min 475.7

DFJ (tour) 0.19 s 540.7

ch130 5890 (path) S

ch130 6110 (tour) S

GG (path) 5min 45s 5397

GG (tour) 6min 52s 5608

MTZ 2h 18min 5372

CLAUS 88% 6h 37min 5850

FGG4 46.1% 3h 43min 4321

DFJ (tour) 1.87 s 5582

(continued)
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Table 15.2 (continued)

ID ILP-OPT Formulation Gap Time LP-Opt

qa194 8946 (path) S

qa194 9352 (tour) S

GG (path) 7min 49s 8614

GG (tour) 14min 48s 9028

MTZ 1.38% 4h 8582

CLAUS crashed 1h

FGG4 no integer 10h

solution

DFJ (tour) 8 s 9006.48

gr229 952 (path) S

gr229 1014.8 (tour) S

GG (path) 3h 10min 842

GG (tour) 6.8% 3h 41min 903.5

MTZ 24.5% 12h 832.5

DFJ (tour) 21 s 885.6
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