
Portable Executable
Filename
extension

.acm, .ax, .cpl, .dll, .drv, .efi,

.exe, .mui, .ocx, .scr, .sys, .tsp

Internet
media type

application/vnd.microsoft.portable-
executable[1]

Developed by Currently: Microsoft

Type of format Binary, executable, object, shared libraries

Extended from DOS MZ executable
COFF

Portable Executable
The Portable Executable (PE) format is a
file format for executables, object code,
DLLs and others used in 32-bit and 64-bit
versions of Windows operating systems.
The PE format is a data structure that
encapsulates the information necessary for
the Windows OS loader to manage the
wrapped executable code. This includes
dynamic library references for linking, API
export and import tables, resource
management data and thread-local storage
(TLS) data. On NT operating systems, the
PE format is used for EXE, DLL, SYS (device driver), MUI and other file types. The Unified Extensible
Firmware Interface (UEFI) specification states that PE is the standard executable format in EFI
environments.[2]

On Windows NT operating systems, PE currently supports the x86-32, x86-64 (AMD64/Intel 64), IA-64,
ARM and ARM64 instruction set architectures (ISAs). Prior to Windows 2000, Windows NT (and thus PE)
supported the MIPS, Alpha, and PowerPC ISAs. Because PE is used on Windows CE, it continues to support
several variants of the MIPS, ARM (including Thumb), and SuperH ISAs. [3]

Analogous formats to PE are ELF (used in Linux and most other versions of Unix) and Mach-O (used in
macOS and iOS).

History
Technical details

Layout
Import table
Relocations

.NET, metadata, and the PE format
Use on other operating systems
See also
References
External links

Microsoft migrated to the PE format from the 16-bit NE formats with the introduction of the Windows NT 3.1
operating system. All later versions of Windows, including Windows 95/98/ME and the Win32s addition to
Windows 3.1x, support the file structure. The format has retained limited legacy support to bridge the gap

Contents

History

https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/Media_type
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Binary_file
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Object_code
https://en.wikipedia.org/wiki/Shared_libraries
https://en.wikipedia.org/wiki/DOS_MZ_executable
https://en.wikipedia.org/wiki/COFF
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Object_file
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Executable
https://en.wikipedia.org/wiki/Library_(computer_science)#Dynamic_linking
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Thread-local_storage
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/EXE
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/.sys
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/.mui
https://en.wikipedia.org/wiki/Unified_Extensible_Firmware_Interface
https://en.wikipedia.org/wiki/X86-32
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/IA-64
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM64
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Windows_2000
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Windows_CE
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture#Thumb
https://en.wikipedia.org/wiki/SuperH
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Mach-O
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/IOS
https://en.wikipedia.org/wiki/New_Executable
https://en.wikipedia.org/wiki/Windows_NT_3.1
https://en.wikipedia.org/wiki/Win32s


Structure of a Portable Executable
32 bit

between DOS-based and NT systems. For example, PE/COFF headers still include a DOS executable
program, which is by default a DOS stub that displays a message like "This program cannot be run in DOS
mode" (or similar), though it can be a full-fledged DOS version of the program (a later notable case being the
Windows 98 SE installer).[4] This constitutes a form of fat binary. PE also continues to serve the changing
Windows platform. Some extensions include the .NET PE format (see below), a 64-bit version called PE32+
(sometimes PE+), and a specification for Windows CE.

A PE file consists of a number of headers and sections that tell the
dynamic linker how to map the file into memory. An executable
image consists of several different regions, each of which require
different memory protection; so the start of each section must be
aligned to a page boundary.[5] For instance, typically the .text section
(which holds program code) is mapped as execute/readonly, and the
.data section (holding global variables) is mapped as no-
execute/readwrite. However, to avoid wasting space, the different
sections are not page aligned on disk. Part of the job of the dynamic
linker is to map each section to memory individually and assign the
correct permissions to the resulting regions, according to the
instructions found in the headers.[6]

One section of note is the import address table (IAT), which is used
as a lookup table when the application is calling a function in a
different module. It can be in the form of both import by ordinal and
import by name. Because a compiled program cannot know the
memory location of the libraries it depends upon, an indirect jump is required whenever an API call is made.
As the dynamic linker loads modules and joins them together, it writes actual addresses into the IAT slots, so
that they point to the memory locations of the corresponding library functions. Though this adds an extra jump
over the cost of an intra-module call resulting in a performance penalty, it provides a key benefit: The number
of memory pages that need to be copy-on-write changed by the loader is minimized, saving memory and disk
I/O time. If the compiler knows ahead of time that a call will be inter-module (via a dllimport attribute) it can
produce more optimized code that simply results in an indirect call opcode.[6]

PE files normally do not contain position-independent code. Instead they are compiled to a preferred base
address, and all addresses emitted by the compiler/linker are fixed ahead of time. If a PE file cannot be loaded
at its preferred address (because it's already taken by something else), the operating system will rebase it. This
involves recalculating every absolute address and modifying the code to use the new values. The loader does
this by comparing the preferred and actual load addresses, and calculating a delta value. This is then added to
the preferred address to come up with the new address of the memory location. Base relocations are stored in a
list and added, as needed, to an existing memory location. The resulting code is now private to the process and
no longer shareable, so many of the memory saving benefits of DLLs are lost in this scenario. It also slows
down loading of the module significantly. For this reason rebasing is to be avoided wherever possible, and the

Technical details

Layout

Import table

Relocations

https://en.wikipedia.org/wiki/File:Portable_Executable_32_bit_Structure_in_SVG_fixed.svg
https://en.wikipedia.org/wiki/DOS
https://en.wikipedia.org/wiki/DOS_MZ_executable
https://en.wikipedia.org/wiki/DOS_stub
https://en.wikipedia.org/wiki/Fat_binary
https://en.wikipedia.org/wiki/Dynamic_linker
https://en.wikipedia.org/wiki/Dynamic-link_library#Symbol_resolution_and_binding
https://en.wikipedia.org/wiki/Copy-on-write
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Position-independent_code
https://en.wikipedia.org/wiki/Base_address
https://en.wikipedia.org/wiki/Rebasing
https://en.wikipedia.org/wiki/Delta_encoding
https://en.wikipedia.org/wiki/Relocation_(computing)
https://en.wikipedia.org/wiki/Shared_library


DLLs shipped by Microsoft have base addresses pre-computed so as not to overlap. In the no rebase case PE
therefore has the advantage of very efficient code, but in the presence of rebasing the memory usage hit can be
expensive. This contrasts with ELF which uses fully position-independent code and a global offset table,
which trades off execution time in favor of lower memory usage.

In a .NET executable, the PE code section contains a stub that invokes the CLR virtual machine startup entry,
_CorExeMain or _CorDllMain in mscoree.dll, much like it was in Visual Basic executables. The
virtual machine then makes use of .NET metadata present, the root of which, IMAGE_COR20_HEADER
(also called "CLR header") is pointed to by IMAGE_DIRECTORY_ENTRY_COMHEADER[7] entry in the
PE header's data directory. IMAGE_COR20_HEADER strongly resembles PE's optional header, essentially
playing its role for the CLR loader.[3]

The CLR-related data, including the root structure itself, is typically contained in the common code section,
.text. It is composed of a few directories: metadata, embedded resources, strong names and a few for
native-code interoperability. Metadata directory is a set of tables that list all the distinct .NET entities in the
assembly, including types, methods, fields, constants, events, as well as references between them and to other
assemblies.

The PE format is also used by ReactOS, as ReactOS is intended to be binary-compatible with Windows. It has
also historically been used by a number of other operating systems, including SkyOS and BeOS R3. However,
both SkyOS and BeOS eventually moved to ELF.

As the Mono development platform intends to be binary compatible with the Microsoft .NET Framework, it
uses the same PE format as the Microsoft implementation. The same goes for Microsoft's own cross-platform
.NET Core.

On x86(-64) Unix-like operating systems, Windows binaries (in PE format) can be executed with Wine. The
HX DOS Extender also uses the PE format for native DOS 32-bit binaries, plus it can, to some degree,
execute existing Windows binaries in DOS, thus acting like an equivalent of Wine for DOS.

On IA-32 and x86-64 Linux one can also run Windows' DLLs under loadlibrary.[8]

Mac OS X 10.5 has the ability to load and parse PE files, but is not binary compatible with Windows.[9]

UEFI and EFI firmware use Portable Executable files as well as the Windows ABI x64 calling convention for
applications.

EXE
Executable and Linkable Format
Mach-O
a.out
Comparison of executable file formats
Executable compression
ar (Unix) since all COFF libraries use that same format

.NET, metadata, and the PE format

Use on other operating systems

See also

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Visual_Basic
https://en.wikipedia.org/wiki/ReactOS
https://en.wikipedia.org/wiki/Binary_code_compatibility
https://en.wikipedia.org/wiki/SkyOS
https://en.wikipedia.org/wiki/BeOS
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Mono_(software)
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/.NET_Core
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Wine_(software)
https://en.wikipedia.org/wiki/HX_DOS_Extender
https://en.wikipedia.org/wiki/Wine_(software)
https://en.wikipedia.org/wiki/IA-32
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Dynamic-link_library
https://en.wikipedia.org/wiki/Mac_OS_X_10.5
https://en.wikipedia.org/wiki/UEFI
https://en.wikipedia.org/wiki/Application_Binary_Interface
https://en.wikipedia.org/wiki/Calling_convention
https://en.wikipedia.org/wiki/UEFI#Applications
https://en.wikipedia.org/wiki/EXE
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Mach-O
https://en.wikipedia.org/wiki/A.out
https://en.wikipedia.org/wiki/Comparison_of_executable_file_formats
https://en.wikipedia.org/wiki/Executable_compression
https://en.wikipedia.org/wiki/Ar_(Unix)


Application virtualization

1. Andersson, Henrik (2015-04-23). "application/vnd.microsoft.portable-executable" (https://www.i
ana.org/assignments/media-types/application/vnd.microsoft.portable-executable). IANA.
Retrieved 2017-03-26.

2. "UEFI Specification, version 2.8B" (https://uefi.org/sites/default/files/resources/UEFI%20Spec%
202.8B%20May%202020.pdf) (PDF)., a note on p.15, states that "this image type is chosen to
enable UEFI images to contain Thumb and Thumb2 instructions while defining the EFI
interfaces themselves to be in ARM mode."

3. "PE Format (Windows)" (https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547
(v=vs.85).aspx). Retrieved 2017-10-21.

4. E.g. Microsoft's linker has /STUB switch (http://msdn.microsoft.com/en-us/library/7z0585h5.asp
x) to attach one

5. "The Portable Executable File From Top to Bottom" (http://www.csn.ul.ie/%7Ecaolan/pub/winre
sdump/winresdump/doc/pefile2.html). Retrieved 2017-10-21.

6. "Peering Inside the PE: A Tour of the Win32 Portable Executable File" (https://msdn.microsoft.c
om/en-us/library/ms809762.aspx). Retrieved 2017-10-21.

7. The entry was previously used for COM+ metadata in COM+ applications, hence the name
8. https://github.com/taviso/loadlibrary
9. Chartier, David (2007-11-30). "Uncovered: Evidence that Mac OS X could run Windows apps

soon" (https://arstechnica.com/journals/apple.ars/2007/11/30/uncovered-evidence-that-mac-os-
x-could-run-windows-apps-soon). Ars Technica. Retrieved 2007-12-03. "... Steven Edwards
describes the discovery that Leopard apparently contains an undocumented loader for Portable
Executables, a type of file used in 32-bit and 64-bit versions of Windows. More poking around
revealed that Leopard's own loader tries to find Windows DLL files when attempting to load a
Windows binary."

PE Format (https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format) (latest online
document)
Microsoft Portable Executable and Common Object File Format Specification (https://web.archi
ve.org/web/20081208121446/http://www.microsoft.com/whdc/system/platform/firmware/PECOF
F.mspx) (revision 8.1, OOXML format)
Microsoft Portable Executable and Common Object File Format Specification (https://web.archi
ve.org/web/20090126141159/http://download.microsoft.com/download/e/b/a/eba1050f-a31d-43
6b-9281-92cdfeae4b45/pecoff.doc) (revision 6.0, .doc format)
The original Portable Executable article (http://msdn2.microsoft.com/en-us/library/ms809762.as
px) by Matt Pietrek (MSDN Magazine, March 1994)
Part I. An In-Depth Look into the Win32 Portable Executable File Format (http://msdn.microsoft.
com/en-us/magazine/cc301805.aspx) by Matt Pietrek (MSDN Magazine, February 2002)
Part II. An In-Depth Look into the Win32 Portable Executable File Format (https://web.archive.or
g/web/20120915093039/http://msdn.microsoft.com/en-us/magazine/cc301808.aspx) by Matt
Pietrek (MSDN Magazine, March 2002)
The .NET File Format by Daniel Pistelli (https://archive.today/20130130042959/http://www.ntco
re.com/files/dotnetformat.htm)
Ero Carrera's blog describing the PE header and how to walk through (http://blog.dkbza.org/)

References

External links

https://en.wikipedia.org/wiki/Application_virtualization
https://www.iana.org/assignments/media-types/application/vnd.microsoft.portable-executable
https://uefi.org/sites/default/files/resources/UEFI%20Spec%202.8B%20May%202020.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/7z0585h5.aspx
http://www.csn.ul.ie/~caolan/pub/winresdump/winresdump/doc/pefile2.html
https://msdn.microsoft.com/en-us/library/ms809762.aspx
https://en.wikipedia.org/wiki/COM%2B
https://github.com/taviso/loadlibrary
https://arstechnica.com/journals/apple.ars/2007/11/30/uncovered-evidence-that-mac-os-x-could-run-windows-apps-soon
https://docs.microsoft.com/en-us/windows/desktop/Debug/pe-format
https://web.archive.org/web/20081208121446/http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
https://en.wikipedia.org/wiki/OOXML
https://web.archive.org/web/20090126141159/http://download.microsoft.com/download/e/b/a/eba1050f-a31d-436b-9281-92cdfeae4b45/pecoff.doc
https://en.wikipedia.org/wiki/.doc
http://msdn2.microsoft.com/en-us/library/ms809762.aspx
https://en.wikipedia.org/wiki/Matt_Pietrek
https://en.wikipedia.org/wiki/MSDN
http://msdn.microsoft.com/en-us/magazine/cc301805.aspx
https://en.wikipedia.org/wiki/Matt_Pietrek
https://en.wikipedia.org/wiki/MSDN
https://web.archive.org/web/20120915093039/http://msdn.microsoft.com/en-us/magazine/cc301808.aspx
https://en.wikipedia.org/wiki/Matt_Pietrek
https://en.wikipedia.org/wiki/MSDN
https://archive.today/20130130042959/http://www.ntcore.com/files/dotnetformat.htm
http://blog.dkbza.org/


PE Internals provides an easy way to learn the Portable Executable File Format (http://www.an
dreybazhan.com/pe-internals/)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Portable_Executable&oldid=1004008277"

This page was last edited on 31 January 2021, at 18:22 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

http://www.andreybazhan.com/pe-internals/
https://en.wikipedia.org/w/index.php?title=Portable_Executable&oldid=1004008277
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

