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Abstract— Multiview face recognition has become an active
research area in the last few years. In this paper, we present an
approach for video-based face recognition in camera networks.
Our goal is to handle pose variations by exploiting the redun-
dancy in the multiview video data. However, unlike traditional
approaches that explicitly estimate the pose of the face, we
propose a novel feature for robust face recognition in the presence
of diffuse lighting and pose variations. The proposed feature is
developed using the spherical harmonic representation of the face
texture-mapped onto a sphere; the texture map itself is generated
by back-projecting the multiview video data. Video plays an
important role in this scenario. First, it provides an automatic and
efficient way for feature extraction. Second, the data redundancy
renders the recognition algorithm more robust. We measure
the similarity between feature sets from different videos using
the reproducing kernel Hilbert space. We demonstrate that
the proposed approach outperforms traditional algorithms on
a multiview video database.

Index Terms— Face recognition, pose variations, multi-camera
networks, spherical harmonics.

I. INTRODUCTION

S INGLE-VIEW based object recognition is inherently
affected by information loss that occurs during image

formation. Although there exist many works addressing this
problem, pose variation remains as one of the major nuisance
factors for face recognition. In particular, self-occlusion
of facial features, as the pose varies, raises fundamental
challenges to designing robust face recognition algorithms.
A promising approach to handle pose variations and its inher-
ent challenges is the use of multi-view data.

In recent years, multi-camera networks have become
increasingly common for biometric and surveillance systems.
Having multiple viewpoints alleviates the drawbacks of a
single viewpoint since the system has more information at
its disposal. For example, in the context of face recognition,
having multiple views increases the chances of the person
being in a favorable frontal pose. However, to reliably and
efficiently exploit the multi-view video data, we often need
to estimate the pose of the person’s head. This could be
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done explicitly by computing the actual pose of the person
to a reasonable approximation, or implicitly by using a view
selection algorithm. While there are many methods for multi-
view pose estimation [1], [2], solving for the pose of a person’s
head is still a hard problem, especially when the resolution
of the images is poor and the calibration of cameras (both
external and internal) is not sufficiently precise to allow robust
multi-view fusion. Such a scenario is especially true in the
context of surveillance.

Face recognition using a multi-camera network is the focus
of this paper. At this point, it is worth noting that the problem
we study goes beyond face recognition across pose variations.
In our setting, at a given time instant, we obtain multiple
images of the face in different poses. Invariably these images
could include a mix of frontal, non-frontal images of the face
or in some cases, a mix of non-frontal images. This makes
registration of the faces extremely important. Registration can
be done once we decide to impose a 3D model onto the face.
However, registration to a 3D model (essentially, aligning eyes
to eyes, nose to nose, etc.) is very hard and computationally
intensive for low-resolution imagery. Toward this end, we
choose to use a spherical model of the face and a feature
that is insensitive to pose variations.

In this paper, we propose a robust feature for multi-view
recognition that is insensitive to pose variations.1 For a given
set of multi-view video sequences, we first use a particle
filter to track the 3D location of the head using multi-view
information. At each time instant or video frame, we then build
the texture map associated with the face under the spherical
model for the face. Given that we have the 3D location
of the head from the tracking algorithm, we back-project
the image intensity values from each of the views onto the
surface of the spherical model, and construct a texture map
for the whole face. We then compute a Spherical Harmonic
(SH) transform of the texture map, and construct a robust
feature that is based on the properties of the SH projection.
Building rotational tolerances into our feature allows us to
completely bypass the pose estimation step. For recognition
with videos, we exploit the ensemble feature similarity which
is measured by the limiting Bhattacharyya distance of fea-
tures in the Reproducing Kernel Hilbert Space. The proposed
approach outperforms traditional features and algorithms
on a multi-view video database collected using a camera
network.

1In many contexts such as camera pose estimation, pose typically refers
to the 3D translation and 3D rotation of the camera/object. However, in face
recognition, pose typically refers only to the 3D rotation of face with respect
to a reference orientation. We follow this nomenclature. For most of this paper,
we use the term pose and rotation interchangeably.
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The rest of this paper is organized as follows: We first
discuss related work in Section II. In Section III, we review
relevant SH theory and propose the robust feature. A particle
filtering framework for multi-camera tracking and texture
mapping is then described in Section IV. We then present a
video-based recognition scheme in Section V. Finally, experi-
mental results are presented in Section VI and conclusions in
Section VII.

II. RELATED WORK

The term multi-view face recognition, in a strict sense,
only refers to situations where multiple cameras acquire the
subject (or scene) simultaneously and an algorithm collabo-
ratively utilizes the acquired images/videos. But the term has
frequently been used to recognize faces across pose variations.
This ambiguity does not cause any problem for recognition
with (still) images; a group of images simultaneously taken
with multiple cameras and those taken with a single camera
but at different view angles are equivalent as far as pose
variations are concerned. However, in the case of video
data, the two cases diverge. While a multi-camera system
guarantees the acquisition of multi-view data at any moment,
the chance of obtaining the equivalent data by using a single
camera is unpredictable. Such differences become vital in non-
cooperative recognition applications such as surveillance. For
clarity, we shall call the multiple video sequences captured by
synchronized cameras a multi-view video, and the monocular
video sequence captured when the subject changes pose, a
single-view video. With the prevalence of camera networks,
multi-view surveillance videos have become more and more
common. Nonetheless, most existing multi-view video face
recognition algorithms exploit single-view videos.

Still image-based recognition: There is a large body of
research on still image-based multi-view face recognition.
Existing algorithms include those based on view synthesis
[3]–[7], 3D model construction [8]–[10], subspace or man-
ifold analysis [11]–[13], regularized regression [14], stereo
matching [15], [16] and local feature matching [17]–[21].
In recent years, local patch/feature based approaches have
become popular due to their effectiveness in handling pose
variations. Cao et al. [22] compare the local descriptors in
a pose-adaptive way: they estimate the poses of the pair of
input faces images and select an SVM classifier customized for
that pose combination to perform verification. Yin et al. [23]
generate a collection of generic intra-person variations for
local patches. Given a pair of face images to verify, they
look up in the collection to “align” the face part’s appearance
in one image to the same pose and illumination of the
other image. This method will also require the poses and
illumination conditions to be estimated for both face images.
This “generic reference set” idea has also been used to develop
the holistic matching algorithm in [24], where the ranking of
look-up results forms the basis of matching measure. There are
also works which handles pose variations implicitly without
estimating the pose explicitly. For example, by modeling the
location-augmented local descriptors using a Gaussian Mixture
Model, Li et al. [25] perform probabilistic elastic matching on
a pair of face images even when large pose variations exhibit.

Video-based recognition: Video contains more information
than still images. A straightforward way to handle single-
view videos is to take advantage of the data redundancy and
perform view selection. Li et al. [26] employ a combination
of skin-color detector and edge feature-based SVM regression
to localize face candidates and estimate their poses. Then, for
each of the candidates, a face detector specific to that pose is
applied to determine if it is a face. Only the frontal faces are
retained for recognition. The algorithm in [27] also relies on
an SVM to select frontal faces from video for recognition. The
continuity of pose variation in video has inspired the idea of
modeling face pose manifolds [28], [29]. The typical method is
to cluster the frames of similar pose and train a linear subspace
to represent each pose cluster. Here, the piecewise linear
subspace model is an approximation to the pose manifold.
Wang et al. [30] grow each such linear subspace gradually
from a seed sample to include more and more nearest neigh-
bors, until the linearity condition is violated. The linearity
is measured as the ratio of geodesic distance to Euclidean
distance, and the distances are calculated between a candidate
neighbor and each existing sample in the cluster. They define
the manifold-manifold distance as the distance between the
closest subspace pair from the two manifolds, and the subspace
distance is defined as a weighted sum of canonical correlations
and exemplar distance. Also assuming that all images of the
same person sit on a manifold, Arandjelovic et al. [31] model
face videos using Gaussian Mixture Models. The manifold-
manifold distance is then measured using the KL divergence
between the Gaussian mixtures. Single-view videos have also
been modeled using Hidden Markov Models [32], or ARMA
models [33]. 3D face models can be estimated from single-
view videos as done in [10], [34], and [35]. The 3D model
can be then used in a model-based algorithm (e.g. [36]) to
perform face recognition.

Multi-view-based recognition: In contrast to single-
view/video-based face recognition, there are relatively a
smaller number of approaches for recognition using multi-
view videos. In [37], although both the gallery and the probe
are multi-view videos, they are treated just like single-view
sequences. Frames of a multi-view sequence are collected
together to form a gallery or probe set. The frontal or near-
frontal faces are picked by the pose estimator and retained,
while others are discarded. The recognition algorithm is frame-
based PCA and LDA fused by the sum rule. In [38], a
three-layer hierarchical image-set matching technique is
presented. The first layer associates frames of the same indi-
vidual taken by the same camera. The second layer matches
the groups obtained in the first layer among different cameras.
Finally, the third layer compares the output of the second
layer with the training set, which is manually clustered using
multi-view videos. Though multi-view data is used to deal
with occlusions when more than one subject is present, pose
variations are not effectively addressed in this work. Ramnath
et al. [39] extend the AAM framework to the multi-view video
case. They demonstrate that when 3D constraints are imposed,
the resulting 2D+3D AAM is more robust than the single
view case. However, recognition was not attempted in this
work. Liu and Chen [40] use geometrical models to normalize
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pose variations. By back-projecting a face image to the surface
of an elliptical head model, they obtained a texture map
which was then decomposed into local patches. The texture
maps generated from different images were compared in a
probabilistic fashion. Our work shares some similarities with
theirs in the texture mapping stage. This method has been
extended to multi-view videos in [41]. The texture mapping
procedure was further elaborated by adding a geometric devi-
ation model to describe the mapping error. However, tracking,
texture mapping and recognition steps were all carried out for
each view independently.

As mentioned earlier, almost all of the above referenced
algorithms incorporate a pose estimation or model registration
step, or even assume that pose is known a priori. The problem
naturally arises when we try to compare face appearances
described by pose-sensitive features.

Video processing in multi-camera networks: Camera
networks have been extensively used for surveillance and
security applications [42]. Research in this field has been
focused on distributed tracking, resource allocation, activity
recognition and active sensing. Yoder et al. [43] track mul-
tiple faces in a wireless camera network. The observations
of multiple cameras are integrated using a minimum vari-
ance estimator and tracked using a Kalman filter. Song and
Roy-Chowdhury present a multi-objective optimization frame-
work for tracking in a camera network in [44]. They adapt the
feature correspondence computations by modeling the long-
term dependencies between them and then obtain statistically
optimal paths for each subject. Song et al. [45] incorporate
the concept of consensus into distributed camera networks
for tracking and activity recognition. The estimate made
by each camera is shared with its local neighborhood, and
the consensus algorithms combine the decisions from single
cameras to make a network-level decision. A detailed survey
on video processing in camera networks can be found in [46].

Spherical harmonics (SH) in machine vision: Basri and
Jacobs [47] use SH to model Lambertian objects under varying
illumination. Specifically, they proved that the reflectance
function produced by convex, Lambertian objects under dis-
tant, isotropic lighting can be well approximated using the
first nine SH basis functions. Ramamoorthi [48] revealed the
connection between SH and PCA, showing that the princi-
pal components are equal to the SH basis functions under
appropriate assumptions. Zhang and Samaras [49] proposed
an algorithm to estimate the SH basis images for a face at a
fixed pose from a single 2D image based on statistical learning.
When the 3D shape of the face is available, the SH basis
images can be estimated for test images with different poses.
Yue et al. [50] adopted a similar strategy where the distribution
of SH basis images is modeled as Gaussian and its parameters
are learned from a 3D face database. Note that all these works
are based on Lambertian reflectance model. As a result, they
require a 3D face model and face pose estimation to infer
the face appearance. In contrast, we use an SH-based feature
to directly model face appearance rather than the reflectance
function, and hence do not require a 3D face surface model
or a pose estimation step.

Fig. 1. Visualization of the first three degree of Spherical Harmonics.

III. ROBUST FEATURE

The robust feature presented here is based on the theory
of spherical harmonics. Spherical harmonics are a set of
orthonormal basis functions defined over the unit sphere, and
can be used to linearly expand any square-integrable function
on S

2 as:

f (θ, φ) =
∞∑

l=0

l∑

m=−l

flm Ylm(θ, φ), (1)

where Ylm(·, ·) defines the SH basis function of degree l ≥ 0
and order m ∈ (−l,−l +1, . . . , l −1, l). flm is the coefficient
associated with the basis function Ylm for the function f .
Note that we are using the spherical coordinate system.
θ ∈ (0, π) and φ ∈ (0, 2π) are the zenith and azimuth angles,
respectively. There are 2l +1 basis functions for a given order
l [51].

The SH basis function for degree l and order m has the
following form:

Ylm(θ, φ) = Klm Pm
l (cos θ)eimφ (2)

where Klm denotes a normalization constant such that:
∫ π

θ=0

∫ 2π

φ=0
YlmY ∗

lm dφdθ = 1 (3)

Here, Pm
l (x) are the associated Legendre functions.

In this paper, we are interested in modeling real-valued
functions (eg. texture maps) and thus, we are more interested
in the real Spherical Harmonics which are defined as

Y m
l (θ, φ) =

⎧
⎪⎪⎨

⎪⎪⎩

Yl0 if m = 0
1√
2
(Ylm + (−1)m Yl,−m) if m > 0

1√
2i
(Yl,−m − (−1)m Ylm) if m < 0

(4)

The real SHs are also orthonormal and they share most of
the important properties of the general Spherical Harmonics.
For the rest of the paper, we will use the word “spherical
harmonics” to refer exclusively to real SHs. We visualize the
SH for degree l = 0, 1, 2 in Fig. 1.
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As with Fourier expansion, the SH expansion coefficients
f m
l can be computed as:

f m
l =

∫

θ

∫

φ
f (θ, φ)Y m

l (θ, φ)dθdφ (5)

The expansion coefficients have a very important property
which is directly related to our “pose free” face recognition
application.

Proposition: If two functions f (θ, φ) and g(θ, φ), defined
on S

2, are related by a rotation R ∈ SO(3), i.e. g(θ, φ) =
f (R(θ, φ)), and their SH expansion coefficients are f m

l and
gm

l , respectively, the following relationship exists:

gm
l =

l∑

m′=−l

Dl
mm′ f m′

l (6)

and the Dl
mm′ s satisfy:

l∑

m′=−l

(Dl
mm′)2 = 1 (7)

In other words, (6) suggests that after rotation, the SH
expansion coefficients at a certain degree l are linear combina-
tions of those before the rotation, and coefficients at different
degrees do not affect each other. This can also be represented
in a matrix form:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f 0
0

f −1
1
f 0
1

f 1
1

f −2
2
...
...

f 2
2
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 .
0 x x x 0 0 0 0 0 .
0 x x x 0 0 0 0 0 .
0 x x x 0 0 0 0 0 .
0 0 0 0 x x x x x .
0 0 0 0 x x x x x .
0 0 0 0 x x x x x .
0 0 0 0 x x x x x .
0 0 0 0 x x x x x .
. . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g0
0

g−1
1
g0

1
g1

1
g−2

2
...
...

g2
2
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(8)

where the x denotes non-zero entries corresponding to appro-
priate Dl

mm′ values.
This proposition is a direct result of the following Lemma

[51], [52].
Lemma: Denote by El the subspace spanned by Y m

l (θ, φ),
m = {−l, . . . , l}, then El is an irreducible representation for
the rotation group SO(3).

(A complete proof of the proposition can be found in the
appendix.)

We further look into a energy vector associated with a
f (θ, φ) defined on S

2 as:

e f = (‖f0‖2, ‖f1‖2, ‖fl‖2, . . .), (9)

where ‖ ·‖2 denotes the �2-norm, and fl consists of all the SH
decomposition coefficients of f (θ, φ) at degree l:

fl = { f m
l ,m = −l, . . . , l}. (10)

Equation (7) guarantees that e f is invariant when f (θ, φ) is
rotated. In practice, we find that subsequent normalization of
e f with respect to total energy increases reliability. This results

Fig. 2. Robust features based on Spherical Harmonics. The texture of each
model is constructed from multi-view images captured by four synchronized
cameras. The top and bottom models correspond to the same subject, but the
capture time of the two sets of images are separated by a time span of more
than 6 months. Note that we intentionally rotate the bottom model by 180◦
so that readers can see that it is the same subject as in the top one. Therefore
their actual pose difference is even larger than the one shown. The green
bars in the three bar graphs are the same feature vector extracted from the
top model. For visualization considerations, only the first 12 elements of the
feature vector are plotted here.

in a feature which describes the spectrum of the SH coeffi-
cients. We refer to it as the SH spectrum feature.

The specific form of the function f (θ, φ) varies with
applications and is often numerically defined for sampled
points on the surface of a sphere. In our multi-view face
recognition scenario, f (θ, φ) is the face appearance as rep-
resented by a texture map/template. To be more specific,
we use a sphere to approximate the human head and the
relevant image regions in multi-view data are mapped onto
the surface of the sphere according to projective geometry.
This procedure will be described in detail in Section IV.
Note that the spherical model is different from the 3D face
model in a general sense as one does not have to estimate
the surface normals. Using a simple spherical model is often
sufficient when we deal with low-resolution images and hence,
is suitable for camera networks. Constructing a reasonable
3D face model usually requires much higher image resolution
and computations. More importantly, this model enables us
to set up a connection between multi-view face image and
SH representation. Indeed, even when the face undergoes
extreme pose variations, the SH spectrum feature extracted
from the texture maps remains stable, leading to pose-robust
face recognition. Note that the normalization step in feature
extraction is equivalent to assuming that all the texture maps
have the same total energy, and in a loose sense functions as an
illumination normalization step. Although this means that skin
color information is not used for recognition, experimental
results are good. Fig. 2 shows an example. One can see that
features extracted from the same subject’s texture map are very
close even when large pose variations are present, and they are
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Fig. 3. Comparison of the Reconstruction Qualities with SH Coefficients
The images from left to right are: the original 3D head texture map, the
texture map reconstructed from 40-degree, 30-degree and 20-degree SH
coefficients, respectively. Note that we interpolated the surface points for a
better visualization quality.

much closer than those extracted from different subjects but
under the same pose.

Another advantage of the SH spectrum feature is its ease of
use. There is only one parameter to be determined, namely the
number of degrees in the SH expansion. Apparently, a trade-
off exists for different choices of parameter values: A higher
degree number means better approximation, but it also comes
with a price of more expensive computational cost. In Fig. 3,
we visualize a 3D head texture map as a function defined on
S

2, and its reconstruction resulting from 20, 30 and 40 degree
SH transform respectively. The ratio of computation time for
the 3 cases is roughly 1:5:21. (On a PC with Xeon 2.13GHz
CPU, it takes roughly 1.2 seconds to do a 20 degree SH
transform for 18050 points.) We have empirically observed
that the 30-degree transform usually achieves a reasonable
balance between approximation error and computational cost.

IV. MULTI-CAMERA TRACKING AND TEXTURE MAPPING

In this section, we describe a robust multi-view track-
ing algorithm based on Sequential Importance Resampling
(SIR) (particle filtering) [53]. Tracking is an essential stage
in camera-network-based video processing. It automates the
localization of the face and has direct impact on the perfor-
mance of the recognition algorithm. Recall that the proposed
SH spectrum feature is extracted from the texture map of
the face under a spherical head model. The tracking module,
together with a texture mapping step, describes the entire
feature extraction process (see Fig. 4).

A. Multi-View Tracking

To fully describe the position and pose of a rigid 3D object,
we usually need a 6D representation (R3 × SO(3)), where the
3D real vector space is used to represent the object’s location,
and SO(3) is used to represent the object’s rotation. It is well
known that higher the dimensionality of the state space is, the
harder the tracking problem becomes. This is especially true
for search-algorithms like SIR since the number of particles
typically grows dramatically for high-dimensional state spaces.

However, given that our eventual recognition framework is
built on the robust feature derived using SH representation
under the diffuse lighting assumption, it suffices that we track
only the location of the head in 3D. Hence, the state space
for tracking s = (x, y, z) represents only the position of
a sphere’s center, disregarding any orientation information.
Initialization of the tracker can be solved through face
detection (For example, the cascaded Haar-feature detector

Fig. 4. The Multi-Cue Tracking Algorithm and Back-Projection. The yellow
circle is the boundary of the head’s image for a certain hypothesis state vector.
The green and orange rectangles mark the human body detection result and
the estimated range of head center’s projection, respectively. Green dots are
the projections of model’s surface points. The navy-blue curve on the sphere
highlights the boundary of the visible hemisphere. Note that we draw tracking
and back-projection together just for illustration. In actual case, only the MAP
estimate of the state vector will be back-projected to construct the texture map.

in [54]) applied to the first frame and followed by multi-view
triangulation.

The state transition model P(st |st−1) is modeled as a
Gaussian distribution N (st |st−1, σ

2I). We found that the
tracking result is relatively insensitive to the specific value
of σ and have fixed it in all of our experiments.

The observation model P(Ot |st ) of the tracker is based on
multiple cues such as a histogram, the gradient map and a
geometric constraint.

Histogram: To evaluate the image likelihood for a hypoth-
esized state vector si

t , we assume a weak-perspective camera
model and calculate the image of the spherical model on
the j th camera’s image plane, which is a disk-like region
Ei

j (We shall use the subscript j to indicate the j th view).
A normalized 3D histogram in RGB space is built from
this image region. Its difference with the template, which
is set up at the first frame through the same procedure and
subject to adaptive update thereafter, is measured by the
Bhattacharyya distance. This defines the first cue matching
function φ(Ot , si

t ).
Gradient map: On the circular perimeter of the model’s

image, we select the 90◦ arc segment on the top, super-
imposing it on the horizontal and vertical gradient map of
It, j . Despite various shapes of human heads, this part of the
boundary turns out to reliably coincide with an arc. Therefore,
if the state vector is a good match to the ground truth, we
expect the magnitude of the image gradient response along this
arc segment to be strong and its direction to be perpendicular
to the tangent directions [55]. Consequently, we formulate the
second cue matching score as:

ϕ(Ot , si
t ) = 1

r i
j

M∑

m=1

|nm · 
Im |, (11)

where r i
j is the radius of Ei

j measured in number of pixels,
nm is the normal vector of the m-th pixel on the arc, and 
Im

is the image gradient at this pixel.
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Fig. 5. Sample Tracking Results Tracking results for a 500-frame multi-view video sequence. 5 views are shown here. Each row of images is captured by
the same camera. Each column of images is captured at the same time.

Geometric constraint: We impose geometric constraints
to the state vector by applying the part-based human body
detector as proposed in [56]. The detector is based on the
histogram of gradients (HOG) feature. We further apply body
size constraints to filter out potential background human sub-
jects, and then pick the detection result with highest confidence
value among the remaining ones. A reliable head region
Ri

j with respect to the detected human body area is then
selected. Note this cue forms a hard constraint for the state
vector:

ψ(Ot , si
t ) =

{
0 if Ei

j ⊂ Ri
j = ∅

1 otherwise
(12)

The overall image likelihood can be calculated as:

P(Ot |si
t ) ∝ lnψ(Ot , si

t )+ λ1 ln φ(Ot , si
t )+ λ2 ln ϕ(Ot , si

t ),

(13)

where λ1 and λ2 are determined by applying a logistic
regression-like algorithm to independent data. We determine
the location of the head in 3D space as:

st = argmax
si

t

P(si
t |Ot )

= argmax
si

t

P(Ot |si
t )P(s

i
t |si

t−1) (14)

Fig. 5 shows the result of our multi-view tracking algorithm.
The tracker is able to track all the 500 frames without failure.
Note that the video contains significant head motions in
terms of rotation, translation and scaling. It is also subject
to interruptions when the head moves out of the field of view.
The second video example shown in Fig. 6 was captured when
Baratunde Thurston, a technology-loving humorist and host
of the Science Channel, visited the Biomotion laboratory at
University of Maryland. Our multi-view tracking algorithm
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Fig. 6. Sample Tracking Results Tracking results for a 200-frame multi-view video sequence. The subject performs dramatic dancing motions. Five views
are shown here. Each row of images is captured by the same camera. Each column of images is captured at the same time.

accurately locates the subject’s head in spite of his dramatic
motion. (Both videos are provided as supplementary materi-
als.) Though in real-world surveillance videos subjects usually
do not perform such extreme motions as in the example videos,
the results clearly illustrate the robustness of our algorithm.
The tracker also successfully handles all the videos in our
database.

B. Texture Mapping

Once the MAP estimate of the head center is obtained, we
are ready to obtain the surface texture map for the model.
First, we uniformly sample the sphere’s surface according to
the following procedure:

1) Uniformly sample within the range [−R, R], where R
is the radius of the sphere, to get zn , n = 1, 2, . . . , N .

2) Uniformly sample αn within the range [0, 2π], and
independent of zn .

3) xn = √
R2 − z2

n cosαn , yn = √
R2 − z2

n sin αn .

Then, we perform a coordinate transformation for these
sample points. Assume that their original world coordinates
are {(xn, yn, zn), n = 1, 2, ..., N}. After the transformation,
we obtain {(x ′

n, j , y ′
n, j , z′

n, j )} , which are their coordinates in
the j th camera coordinate reference frame. We determine their

visibility to camera j by examining (x ′
n, j , y ′

n, j , z′
n, j ). Only

an un-occluded point, i.e. which satisfies z′
n, j ≤ z′

0, j , can
contribute to an image on the j th camera’s image plane. Here,
z′

0, j is the distance from the head center to the j th camera
center. It is said that a back-projection link is created between
a sample point on the model’s surface and a pixel in a frame I j

if the former’s world coordinates (xn, yn, zn) and the latter’s
image coordinates (x ′′

n, j , y ′′
n, j ) can be related under the weak-

perspective projection assumption.
We denote the texture map for the j th camera view obtained

by using such a back-projection approach as T j . Note that
when we iterate the procedure over all the cameras in the
network, some model points will correspond to pixels from
multiple views, because these cameras have overlapped field of
views. For sample points in the overlapped region, we adopted
a weighted fusion strategy, i.e., we assign weight wn, j to a
pixel with image coordinate pn, j:

wn, j = exp(−‖pn, j − p0, j‖/r i
j ), (15)

where p0, j is the image coordinates of the pixel back-projected
by the head model, and thus roughly the center of all the
projections for camera j . Intuitively, the closer a pixel is to
this center, the larger its contribution to the texture map should
be. On the rim of a sphere a large number of sample points
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Fig. 7. Weighted Texture Mapping. In multi-view texture mapping, the
field of views of different cameras in a network often have overlap. The red
(green) region on the sphere model represents the targeting back-projection
area for the first (second) camera. The redness (greenness) at a certain point
is proportional to its texture mapping weight with regard to the first (second)
camera. In their overlapping region, whether a point is more red or more
green determines which camera’s image the texture map at that point should
be based on.

tend to project to the same pixel, and hence are not suitable
for back-projection. The texture of the model point with world
coordinates (xn, yn, zn) is determined by:

T (xn, yn, zn) = T j0(xn, yn, zn), (16)

where
j0 = arg max

j
wn, j , j = 1, 2, . . . , K . (17)

This weighting scheme is illustrated in Fig. 7. Note that in
our multi-view face recognition algorithm, T is in fact the
function f (θ, φ) that is subject to decomposition, as described
in Section III.

V. VIDEO-BASED RECOGNITION

Video-based face recognition has some advantages. First,
video offers data redundancy, which can be exploited to
improve the robustness of a recognition algorithm. It has
been reported in the literature that video-based algorithms in
general achieve better performance than image-based ones.
Second, by performing video tracking we can automate feature
acquisition. Although it is always possible to extend the frame-
based recognition result to a video-based one via simple fusion
rules such as majority voting, a principled approach that
exploits data’s underlying structure is often more desirable for
performance reason.

Given two multi-view video sequences with m and n (note
that in general m �= n) multi-view frames (a multi-view frame
refers to the group of K frames synchronously captured by
K cameras), respectively, two sets of feature vectors can be
extracted. We look into their projections in the reproducing
kernel Hilbert space (RKHS). The projection is indirectly
performed via an Radial Basis Function (RBF) kernel. It is
known that the kernel trick induces nonlinear feature mapping,
which often leads to easier separation in RKHS. We treat
each instance of feature vector as a sample from its class-
conditional probability distribution. Therefore, the similarity
of the two ensembles of features can be measured using
the distance between the two class-conditional probability
distributions in RKHS. By assuming that these distributions

are Gaussian, analytical form of several different distance
measures are derived in [57]. We follow [57] to calculate the
limiting Bhattacharyya distance. To this end, the rank-deficient
covariance matrix (since the dimensionality of RKHS is much
higher than the number of data samples) involved in calcu-
lating the Bhattacharyya distance is replaced by an invertible
approximation C, which preserves the dominant eigenvalues
and eigenvectors. The limiting Bhattacharyya distance in this
case is:

D = 1

8
(α11 + α22 − 2α12), (18)

where

αi j = μT
i

(
1

2
Ci + 1

2
C j

)−1

μT
j . (19)

We now show the steps to calculate (19) from the Gram
matrix. Denote the Gram matrix as Ki j , where i, j ∈ {1, 2} are
the indices of ensembles. The K11 and K22 are then centered:

K′
ii = JT

i Kii Ji , Ji = N−1/2
i (IN − s1T ) (20)

where s = N−1
i 1, 1 is a Ni × 1 vector of 1s and Ni is the

number of vectors in ensemble i . Let Vi be the matrix which
stores the first r eigenvectors of K′

ii (i.e. corresponding to the
r largest eigenvalues). Define:

P =
⎛

⎝

√
1
2 J1V1 0

0
√

1
2 J2V2

⎞

⎠ , (21)

then it can be verified that
(

1

2
Ci + 1

2
C j

)−1

= I f − (
�1 �2

)
B

(
�T

1
�T

2

)
. (22)

I f is f × f identity matrix, where f is the dimensionality of
the RKHS. And � is the matrix of nonlinearly-mapped data
in RKHS, which is not explicitly available to us. Matrix B can
be computed from the Gram matrix:

B = PL−1PT , L = PT
(

K11 K12
K21 K22

)
P. (23)

By combining (19) and (22), we have:

αi j = sT
i Ki j s j − sT

i

(
Ki1 Ki2

)
B

(
K1 j

K2 j

)
s j . (24)

VI. EXPERIMENTS

A. Database

As mentioned in Section II, there are very few
works addressing the multi-view face recognition problem.
We exhaustively searched for a public multi-view video-based
face database. It seems that a database which contains videos
captured by multiple synchronized cameras is not available
yet. Therefore, we collected a multi-view video database using
an indoor camera network. The database has 40 subjects. The
videos were collected at four different sessions and are 100 to
200 frames in length. Most of the subjects have 3 videos and
some of them have 2 or 4 videos. We use one as gallery and the
rest as probes. This database is double the size of its previous
versions [58], [59] in terms of the number of videos. To test
the robustness of our recognition system, we have arranged the
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Fig. 8. Example of Gallery and Probe Video Frames. Shown in the first row
are examples of gallery frames and the second row are examples of probe
frames.

time span that separated the sessions to be up to 6 months.
The appearance of many subjects has changed significantly
between the sessions. Such a dataset well serves our purpose
of simulating a practical surveillance environment and poses
great challenges to multi-view face recognition algorithms.
Fig. 8 shows some example frames from gallery and probe
video sequences.

B. Feature Comparison

As the proposed feature can work for a single multi-view
frame as well as video sequences, we first associate four
different kinds of features with different classifiers to compare
their performance in image-based face recognition settings. By
“image-based face recognition” we mean that each frame (a
multi-view frame for the SH spectrum feature and a single-
view frame for other features.) is treated as a gallery or probe
individually without concerning which video it comes from.
We use one multi-view video of each subject as the gallery
and the remaining videos as probe. We pick every 10th frame
in this experiment. The four features are: Locality Preserving
Projection (LPP) and LDA in the original image space, SH
raw coefficients with PCA, and the proposed SH spectrum
feature. For the first two features, we use the face image that
is automatically cropped by a circular mask as a result of track-
ing, and normalize it to the size 50 × 50. For LDA, we first
train a PCA projection matrix from all the gallery images to
reduce the dimension of the original image feature, in order to
avoid the intra-class scatter matrix’s rank deficiency issue. As
in the conventional LDA formulation, the criterion we choose
to optimize is det(W SbW T )/det(W SwW T ), where W is the
projection matrix, and Sb and Sw are the between-class/within-
class scatter matrices, respectively. For LPP, we utilize label
information in the gallery by setting the weights between
inter-class samples to be 0. We also use cross-validation to
determine the optimal scale constant which is defined in the
weight matrix of LPP. The experiment runs in a single-view vs.
single-view mode for the LPP and LDA case, and in a multi-
view vs. multi-view mode for the SH+PCA and SH spectrum
feature case. The results are shown in Table I. Due to the

TABLE I

COMPARISON OF RECOGNITION PERFORMANCE

Fig. 9. Comparison of the Discriminant Power Histograms of between-
class distance distribution (blue) and in-class distance distribution (red) of the
LDA feature (left), LPP feature (center) and the SH spectrum feature (right)
are presented above. Number of bins is 30.

TABLE II

KL DIVERGENCE OF IN-CLASS AND BETWEEN-CLASS

DISTANCES FOR DIFFERENT FEATURES

incompatibility of the nature of single-view features with the
special structure of multi-view image data, the performance
of the proposed feature exceeds them by a large margin in all
cases.

To quantitatively verify the proposed feature’s discrimi-
nant power, we then conducted the following experiment.
We calculate distances for each unordered pair of feature
vectors {xi , x j } in the gallery. If {xi , x j } belongs to the same
subject, then the distance is categorized as being in-class.
Otherwise, the distance is categorized as being between-class.
We approximate the distribution of the two kinds of distances
as histograms. Intuitively, if a feature has good discrimination
power, then the in-class distances evaluated using that feature
tends to be smaller compared to the between-class distances,
and hence the distributions of the two distances should
exhibit large divergence. We use the symmetric KL divergence
(K L(p‖q) + K L(q‖p)) to evaluate the difference between
the two distributions. We summarize the results for the four
features in Table II and plot three of them in Fig. 9. The in-
class distances for the SH spectrum feature are concentrated
in the low value bins, while its between-class distance tends
to have higher values. Their modes are obviously separated.
For the other features, the between-class distance tend to mix
with the in-class distance. The symmetric KL-divergence also
suggests the same phenomenon.

C. Video-Based Recognition

The algorithm we use for video-level recognition is the
one as described in Section V. We compare the performance
of our video recognition algorithm with five other ones:
(1) Ensemble-similarity-based algorithm directly applied to the
raw image. Inputs are the head images which are tracked in
a video and scaled to size 50 by 50. The kernel is RBF.
(2) View-selection-based algorithm. We use a Viola-Jones
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Fig. 10. Video Face Recognition Results Cumulative recognition rate of the
video-based face recognition algorithms.

frontal face detector [54] to select frontal-view face images
from both gallery and probe multi-view videos. The chosen
frames from a subject’s gallery video are then used to construct
the personal frontal-view face PCA subspace. The frontal-
view frames from the probe videos are fitted to the personal
PCA subspaces for recognition. Video-level decision is made
through majority voting. (3) The probabilistic appearance
manifold algorithm proposed in [28]. We use 8 planes for
the local manifold model and set the probability of remaining
the same pose to be 0.7 in the pose transition probability
matrix. We first use this algorithm to process each camera
view of a probe video. To fuse results of different camera
views we use majority voting. If there is a tie in views’
voting, we pick the one with smaller Hausdorff distance.
(4) Image-based recognition with SH spectrum feature and
majority voting for video-level fusion. We use SVM with
RBF kernel for every multi-view frame recognition. Note
however that the recognition accuracies in this case should
not be compared to the previous experiment’s result to draw
misleading conclusions.2 (5) The Manifold-Manifold Distance
(MMD) algorithm presented in [30]. We use the author’s
code and parameter settings. When comparing two multi-view
videos, we first calculate the MMD between the sequence pairs
of the same view, and then use the minimum MMD across
views as the distance measure. We also tried with average
MMD across views, which yielded similar results.

We plot the cumulative recognition rate curve in Fig. 10.
The view-selection method heavily relies on the availability
of frontal-view face images, however, in the camera network
case, the frontal pose may not appear in any view of the cam-
eras. As a result, it does not perform well in this experiment.
The manifold-based algorithm, the MMD-based algorithm
and the image-ensemble-based algorithm use more principled
strategies than voting to combine classification results of

2The numbers in the two cases are not convertible to each other, as in the
previous image-based recognition experiment we did not fuse results with
respect to video. Think of two extreme situations: (1) For each video of the
probe set, 51% frames are individually correctly recognized. (2) For half of
the probe videos, 100% frames are individually correctly recognized and for
the remaining half only 49% frames are correctly recognized. The overall
image recognition rate and majority-voting-based video recognition rate are
respectively 51% and 100% in the former case, and 74.5% and 50% in the
latter one.

individual frames. Moreover, they both have certain ability to
handle pose variations, especially the two algorithms based
on manifold. However, because they are designed to work
with a single camera, they are single-view in nature. Repeating
these algorithms for each view does not fully utilize the multi-
view information. For example, we found in our experiments
that mismatches made by the MMD algorithm often happens
when the minimum MMD is produced between the back-of-
head clusters, which have similar appearance representations
even for different subjects. In contrast, the proposed method
based on a robust feature performs noticeably better in this
experiment. An additional advantage of the algorithm is that it
requires no pose estimation or model registration. Comparison
between the ensemble matching algorithm and the majority
voting method which both use the proposed feature demon-
strates the superiority of a systematic fusion strategy to an
ad-hoc one.

VII. CONCLUSION

In this paper, we proposed a multi-view face recognition
algorithm. The most noteworthy feature of the algorithm is that
it does not require any pose estimation or model registration
step. Under the normal diffuse lighting condition, we present
a robust feature by exploring the fact that the subspace
spanned by Spherical Harmonics is an irreducible represen-
tations for the SO(3) group. We also proposed a multi-view
video tracking algorithm to automate the feature acquisition
in a camera network setting. We modeled the video-based
recognition problem as one of measuring ensemble similarities
in RKHS. We demonstrated the performance of our method
on a relatively uncontrolled multi-view video database.

Limitations: One limitation of our method is that the pose
insensitivity property of the SH representation relies on the
assumption that the spherical function remains unchanged
other than a rotation, i.e.: f (θ, φ, t1) = f (R(θ, φ), t2).
In practice, this could always be affected by real-world
lighting conditions. Under normal lighting conditions, this
assumption is reasonable, and as we mentioned, even global
illumination variation can be partially compensated for by
the energy normalization step in feature extraction. However,
extreme lighting conditions can render the assumption invalid.
This could happen when, for example, there are anisotropic
illumination variations, or strong directional light is casted
onto the face from the side. Such situations will result in
large fluctuation in the features and cause the recognition
performance to degrade. There are some possible solutions
to this problem. For example, we could use the self-quotient
method to preprocess video frames, or we could figure out a
way to integrate the algorithm in [47] for a uniform modeling
of both lighting conditions and face appearance. This will be
one of our future research directions. Our algorithm also relies
on the assumption that human head can be approximated by
a sphere. While this approximation may be reasonable, model
fitting errors due to the non-spherical nature of human heads
do exist and can become evident in certain cases. Moreover,
because we treat the texture map as a spherical function,
unavoidably there will be quantization error caused by the
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discrete pixel value. Finally, calibration of camera network
could be a source of error, too. We also plan to extend our work
to more complicated conditions, such as outdoor environments,
less stringent calibration requirements etc.

APPENDIX

PROOF OF THE PROPOSITION

Proposition: If two functions defined on S
2: f (θ, φ) and

g(θ, φ) are related by a rotation R ∈ SO(3), i.e. g(θ, φ) =
R( f (θ, φ)), and their SH expansion coefficients are f m

l and
gm

l (l = 0, 1, ... and m = −l, ..l), respectively, the following
relationship exists:

gm
l =

l∑

m′=−l

Dl
mm′ f m′

l (25)

and the Dl
mm′ s satisfy:

l∑

m′=−l

(Dl
mm′)2 = 1 (26)

Proof: Let us denote the lth degree frequency component
as fl (θ, φ):

fl(θ, φ) =
l∑

m=−l

f m
l Y m

l (θ, φ) (27)

then fl(θ, φ) ∈ El . According to the Lemma:

gl(θ, φ) = R( fl (θ, φ))

= R(
l∑

m=−l

f m
l

Y m
l (θ, φ)) =

l∑

m=−l

f m
l R(Y m

l (θ, φ))

=
l∑

m=−l

f m
l

l∑

m′=−l

Dl
mm′ Y m′

l (θ, φ)

=
l∑

m′=−l

l∑

m=−l

f m
l Dl

mm′ Y m′
l (θ, φ) (28)

Equation (25) follows by comparing (28) with

gl(θ, φ) =
l∑

m′=−l

gm′
l Y m′

l (θ, φ) (29)

As for Equation (26), notice that Y m
l s and Y m′

l are both
orthonormal basis:

RH S = 1

=
∫ π

θ=0

∫ 2π

φ=0
Y m

l Y m
l dφdθ

=
l∑

m′=−l

(Dl
mm′ )2

∫ π

θ=0

∫ 2π

φ=0
Y m′

l Y m′
l dφdθ

=
l∑

m′=−l

(Dl
mm′ )2

= L H S (30)
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