Localising Speech, Footsteps and Other Sounds
using Resource-Constrained Devices

Yukang Guo
School of Computing and Communications
Lancaster University, UK

ABSTRACT

While a number of acoustic localisation systems have been pro-
posed over the last few decades, these have typically either relied
on expensive dedicated microphone arrays and workstation-class
processing, or have been developed to detect a very specific type of
sound in a particular scenario. However, as people live and work
indoors, they generate a wide variety of sounds as they interact and
move about. These human-generated sounds can be used to infer
the positions of people, without requiring them to wear trackable
tags. In this paper, we take a practical yet general approach to local-
ising a number of human-generated sounds. Drawing from signal
processing literature, we identify methods for resource-constrained
devices in a sensor network to detect, classify and locate acoustic
events such as speech, footsteps and objects being placed onto ta-
bles. We evaluate the classification and time-of-arrival estimation
algorithms using a data set of human-generated sounds we captured
with sensor nodes in a controlled setting. We show that despite the
variety and complexity of the sounds, their localisation is feasi-
ble for sensor networks, with typical accuracies of a half metre or
better. We specifically discuss the processing and networking con-
siderations, and explore the performance trade-offs which can be
made to further conserve resources.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms

Algorithms, Design, Experimentation, Measurement, Performance

1. INTRODUCTION

Sensors and signal processing can be used to capture and in-
terpret audio events for a number of applications, including audio
surveillance [20], intelligent auditory interfaces [34], speaker posi-
tioning [6], and habitat monitoring [22, 35]. In many of these sce-
narios, the audio events being monitored also need to be localised.
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Broadly speaking, there have been two approaches to such acous-
tic source localisation. The first is to use microphone arrays. These
have been shown to have high positioning accuracy, and have the
potential to identify and localise a wide variety of sounds. How-
ever, they require relatively static installations of precision micro-
phones, wired to multi-channel sound cards and processed by high-
throughput computing systems. The systems can also be difficult
to install, due to the sensor hardware and cabling, and the tight
calibration in microphone position and orientation. The second ap-
proach is to use comparatively low resource, distributed nodes with
sensing and algorithms optimised to detect very specific types of
sound, such as gunshots or animal calls. The advantage of these
systems is that the wireless, battery-powered nodes are less expen-
sive, easier to install, suited to deployment in a wider range of envi-
ronments, and have less strict calibration requirements (centimetre
rather than millimetre).

In this paper, we describe a sensor network—based acoustic source
localisation strategy which can cope with a wider variety of sounds,
closer to that encountered in everyday, indoor living and working
environments. Consider for example people talking, walking, us-
ing computer keyboards, closing doors, placing items on table or
shelf surfaces, or handling kitchen utensils. With such a diversity
and complexity of indoor acoustic events, it is not feasible to build
an embedded, wireless sensor system tailored to all types of sound.
‘We propose using a more generalisable method, wherein events are
put into very broad classification categories, and then an appropri-
ate acoustic source localisation method is applied.

To show proof-of-concept, we select four different types of sound
based on our own and others’ observation of indoor office environ-
ments, and we investigate the classification, localisation and node
resource trade-offs. We have generated these four types of sound
repeatedly within a measurement volume in an office, which has
been accurately surveyed to provide reliable ground truth. This has
resulted in a small corpus of 2800 unique audio passages for eval-
uation of our chosen methods.

We rely upon modifications of existing classification, time dif-
ference of arrival (TDOA) and position estimation methods. As
such, this paper represents little innovation from a core algorith-
mic standpoint. Our contributions are rather in three other areas:
(1) we have surveyed a wide range of classification and acoustic
TDOA estimation techniques, and identified ones which we expect
to be both effective for localisation of indoor audio, and also ap-
propriate for resource-constrained nodes; (2) we have shown that
different types of sound are best detected by different TDOA al-
gorithms, and that performing broad classification first allows low-
computation localisation methods to then be applied to simple types
of sound (such as claps, thuds or clunks), leaving more processor
and network resources for localisation of complex sounds that oc-



cur (such as speech); (3) our analysis using our corpus of audio
passages shows the achievable accuracies and overhead implica-
tions for resource-constrained sensor nodes.

2. RELATED WORK

Both audio classification and localisation are well-investigated
research areas. However most of the existing systems and algo-
rithms have been designed for a single or limited number of acous-
tic event classes, to suit specific application scenarios.

Classification. Many audio detection and classification systems
have been developed, supporting applications such as content-based
audio classification [27, 30], audio surveillance [20] and audio event
modelling [26]. Most of these classification systems adopt two-
stage approach: feature extraction followed by classification.

A number of speech and music discriminators have been pro-
posed [30, 31, 13], using features selected from time, frequency
and cepstral domains, and classifiers such as the Gaussian mix-
ture model classifier, spatial partitioning classifier and k-nearest-
neighbor classifier. Goldhor described a system which could recog-
nise environmental sounds generated by acoustic sources common
in domestic, business, and outdoor environments [17]. In recent
years, audio-based surveillance systems have become increasingly
important and popular both in private and public environments [20].
These systems usually have been developed for identifying partic-
ular types of acoustic events in indoor scenarios, such as the sound
of a pen dropping to the floor, or a person casually whistling [20].
Algorithms have also been developed to detect people shouting,
knocking, talking, walking and running in a corridor [3], or to de-
tect impulse-type sounds such as screams or gunshots [33, 10].

Localisation. Most existing acoustic localisation work either re-
quires the use of customised hardware, such as microphone arrays,
or focuses on a specific type of acoustic event. Ali et al. [2] de-
ployed a system to locate marmot calls using a dedicated audio
sensing platform [16], equipped with a four-channel microphone
array. The marmot call can be detected using a constant false
alarm rate algorithm and its location can be estimated using ap-
proximate maximum likelihood—based direction-of-arrival. Brand-
stein et al. [6] mounted a ten-element bilinear microphone array
in a laboratory environment to locate people talking using relative
time delay estimation followed by location estimation. However,
the location estimation performance was not quantitatively anal-
ysed. Bian et al. [4] mounted a number of four-element microphone
arrays to monitor a 38 m? area in home lab. While location accu-
racy was reported as 33 cm (95th percentile), this evaluation was
performed using playback of pre-recorded impulsive sounds on a
loudspeaker. Furthermore, the algorithm discard rate of inaccurate
measurements was exceptionally high (60-80%).

Scott et al. [32] implemented an audio location system which
uses low-cost PC microphones. With six microphones covering a
1.8 X 1.8 m area, the median error of 3D location estimation of a
“click” is better than 27 cm (90th percentile). However because the
time-of-arrival was estimated using a simple energy-based thresh-
olding method, this system design only works for impulsive sounds.
Ajdler et al. [1] investigated sound source localisation in a dis-
tributed microphone sensor network. The reported standard devia-
tion of location estimation is at centimetre level. However, it was
not clear what geometry their microphone sensor placement fol-
lowed, nor which type of sound was used to evaluate the system.
Moreover, the ground truth location of the sound event was used as
an aid for the outlier rejection criteria.
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Figure 1: Time and spectral characteristics of some indoor
sounds

3. DESIGN AND ALGORITHMS

Rather than tailor our design to a narrow range of acoustic events,
we propose a more generalised hierarchical classification and lo-
calisation approach. As we illustrate below, appropriate acoustic
event classification helps us choose the most accurate localisation
algorithm. For experimental purposes, it was necessary to nomi-
nate a small number of candidate types of sound which represent
the broad challenges found in real indoor auditory scenes. Accord-
ing to a 48-day recording [20] conducted in an office and our own
observations from a 24-hour data set recorded in a large office, a
number of sounds are commonplace in offices. These include hu-
man speech, low frequency sounds (footfalls, or a door closing),
high frequency sounds (clacking of keys on a keyboard) and more
generally sounds due to human movement, such as placing objects
on tabletop or wheeled office chairs rolling. From our observations,
we have chosen four broad types of sound (figure 1), which we used
as a basis for selecting four specific sounds to generate in our ex-
periments (section 4.1). One commonly-occurring sound is speech,
which is composed of both pseudo-periodic voiced signals and non-
periodic unvoiced segments. The energy of voiced segments is con-
centrated into certain regions of the frequency domain (dependant
on the speaker), while the frequency of the unvoiced part is spread
more widely across the spectrum. A second type of sound is foot-
steps, which have frequency components spread over a relatively
low frequency range (see figure 1(g)); the exact frequencies will
depend on the person, their footwear and the floor. Our third nomi-
nated type of sound is those arising when objects are placed onto or
dropped onto surfaces; while the composition of these tend to vary
more, they typically are concentrated in specific frequency bands,
depending on the object and the table material. For example, sound
may be concentrated in a higher frequency range for a metal table,
compared to a wooden one. A fourth type of sound is impulsive
(such as hand clapping or finger snapping), which is a short burst
normally lasting 10-100 ms, concentrated in the higher frequen-
cies. While these do not occur as commonly as the first three types
of sound, we have chosen impulsive sounds to provide a compa-
rable reference with certain existing acoustic localisation systems,
which were specifically designed to localise impulsive sounds only.

Our proposed system, illustrated in figure 2, consists of three
stages: acoustic event detection, classification and localisation. The
first task is to distinguish the event-of-interest from background
noise. To achieve this purpose, audio input is segmented into frames,



<
r———— == —— — = -
| Event |
I Acoustic detection |
| Event |
I Detection [
Segmentation
I
I
— — — — — —_——— — 2
LD
c . O
258
T
F—_——— e — — —
| Feature l
Acoustic extraction |
I
| et !
Classification
Classification l
| I
— —— — — —— — —
kS
c
- = g
c O =
3EF
N
—F—_—— e — . — — —
| TDOA —l
) algorithm |
: AE‘\’I‘:]E('C ipproprigte to [
the sound type
| Localization |
Position |
[ estimation I
L - ———a

Location
nformation

Figure 2: System architecture

and an event is detected when the frame energy exceeds a certain
threshold. The rest of the frames are considered as silence and dis-
carded. Thereafter, events-of-interest are fed into the classification
module. At the classification stage, acoustic events are divided into
a number of broad categories. After classification, a specific locali-
sation algorithm may then be applied to the acoustic event, suited to
its category’s distinctive characteristics. The three stages are now
discussed in detail.

3.1 Acoustic event detection

To distinguish an event-of-interest from background noise, an
event detection algorithm must be run continuously to monitor the
audio stream. Although frequency analysis has proven to be an
effective method to detect acoustic events [20], the computation and
analysis of the frequency spectrum are expensive [19]. Therefore
we use a very low-complexity amplitude-based scheme for acoustic
event detection, which might alternatively be implemented using
very low power analogue hardware.

With the sampling rate at F, all recorded signals are first seg-
mented into N sample frames, which are taken as the basic data
processing unit. The nth segmented audio frame is defined as

X,(m) = x(m)w(n — m), —oco < m < 0o (1)

where x(rm) is the recorded signal at the time index m, and w(n) is
the window function. We utilised a rectangular window, for sim-
plicity:

1<sn<N
otherwise

w(n) = { (l) 2

Index Feature

1 root-mean-square
2 low short-time energy ratio
3 Zero-crossing rate
4-6 linear prediction coefficients
7-9 linear spectral frequencies
10-16  mel-frequency cepstral coefficients
17 spectral centroid
18 spectral flux
19-23 frequency band energy

Table 1: Features used for classification

The root-mean-square (RMS) amplitude of the nth frame is

25:1 xn(m)z

RMS,,(X) = N

3)
It is compared with a pre-defined threshold RMS,, according to the
local noise level at an individual sensor node. The threshold can be
based on several seconds of noise recorded by each sensor node. If
the RMS value for a frame is less or equal than the threshold, the
corresponding frame is considered as silence and discarded, other-
wise, the frame is classified as an event-of-interest and passed to
the following classification stage.

3.2 Acoustic event classification

At this stage, the event-of-interest window is classified into a cat-
egory so that an appropriate TDOA algorithm can be subsequently
applied. Past work [31, 18] on audio classification suggests that be-
cause the topology of the feature space is rather simple, there tends
to be little improvement in classification performance arising from
either (1) the use of different classifiers, or (2) particular settings for
parameterised classifiers. Instead, it is the feature selection which
is crucial to building an efficient and reliable classification system.
Thus, our focus here is on choosing suitable features for classifying
audio events indoors.

In typical audio classification, the first step is to represent the raw
audio signal by using low-dimensional yet distinguishable feature
vectors [30, 31, 13, 27]. This procedure also aims to remove infor-
mation irrelevant to the audio classification task in order to avoid
high computational complexity.

We have reviewed existing audio classification work, and sur-
veyed a wide variety of features useful in distinguishing between
different sounds [23, 13, 27, 31, 25]. From our survey, we have
implemented and evaluated a total of fourteen temporal, spectral
and cepstral features. From those, we chose nine features (table 1)
based on two criteria: (1) their suitability for implementation on
existing sensor nodes; and (2) their potential effectiveness for the
diversity of sounds encountered indoors.'

The organisation of features is shown in figure 3. Five sets of
features, marked as light grey and white, are extracted from each
audio frame. These include short-term energy, zero-crossing rate,
linear prediction coefficients (LPC), mel-frequency cepstral coeffi-
cients (MFCC) and short time Fourier (STFT). Based upon these
features, six more feature sets, marked as dark grey, can be fur-
ther extracted. Two of these (low short-term energy ratio and spec-
tral flux) are obtained by analysing the difference between adja-

'Our five implemented features which did not make the cut were
short-time energy, high zero-crossing rate ratio [27], pitch, spectral
bandwidth, and spectral roll-off [25].
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Figure 3: Fundamental and derived features for classification

cent subframes. (In extracting audio features for our classification
scheme, the N sample audio frame was further divided into a num-
ber of non-overlapping subframes.)

As mentioned above, different classifiers tend not to exhibit much
difference in performance [31]. After evaluating several classifiers,
such as a multidimensional Gaussian maximum a posteriori esti-
mator, a Gaussian mixture model classifier, a k-nearest-neighbour
classifier and two discriminant analysis classifiers, we have favoured
a quadratic discriminant analysis classifier (QDA). It yields satisfy-
ing classification results, and is feasible to implement on resource-
constrained sensor nodes (see sec.5). In the discriminant analysis,
the conditional density function of the measurement is assumed to
follow a multivariate Gaussian distribution. Statistical parameters
(such as mean and covariance) of different classes are estimated
using the training data set.

3.3 Time difference of arrival estimation

Existing source location estimation methods may be divided into
three categories: steered beamforming, high-resolution spectral es-
timation, and time difference of arrival [6]. In the latter, time dif-
ferences are computed between all microphone pairs that detected
the arrival of the event, and then the location of the acoustic source
is estimated using these TDOAs. Although suffering from mod-
erate precision decline due to this two-step process, TDOA-based
methods present a significant reduction in terms of computational
complexity.

There are various TDOA estimation algorithms, ranging from
simple thresholding methods [32], the average magnitude differ-
ence function (AMDF) method [11, 8] and generalised cross cor-
relation (GCC) [24]. Thresholding methods have proven to be the
most computationally efficient, but they have difficulties dealing
with non-stationary signals, such as speech [32]. AMDF has rela-

tively low computational cost, but is more sensitive to noise [14].
Among these three types of TDOA estimation method, GCC is the
most computationally expensive. However, it is effective one for
non-stationary signals in the presence of noise and room reverber-
ance [5]. In this paper we outline and evaluate two TDOA estima-
tion methods: thresholding and GCC.

Signal model and time difference of arrival. For an acoustic
signal s(7), in the presence of noise and room reverberance, the
received signal x;(¢) at each microphone i can be modelled as

Xi(t) = hi(t) = s(t — ;) + ny(2), 4

where 7; represents the time-of-flight from the sound source to the
microphone, * denotes convolution, A;(f) is the acoustic transfer
function between the sound source and the microphone, and n;(f)
models the sum of microphone channel noise and environmental
noise. The noise 7n;(¢) is assumed to be uncorrelated to the sound
source s(1).

The relative time difference of arrival between a pair of micro-
phones i and j can be formulated as follows

T,‘_,‘ =T;— T_/'. (5)

In practicality, the TDOA should lie in the range of possible sound
source positions (defined by the room’s physical constraints), and
corresponding to the spatial separation of the microphone pair.

Tij € [_Tmameax] (6)

| — |
Tmax = (7
c
where mi; and m] are the positions of microphones i and j, c is the
velocity of sound, and || - || is the Euclidean norm.

TDOA estimation using dynamic amplitude thresholding. The
time-of-arrival at a microphone can be captured using a dynamic
amplitude thresholding (DAT) scheme. The current noise profile
n;(t) at microphone i is estimated using a weighted moving average
of acoustic sample values:

ni(1) = si(1)

n)=axs;t—1D+1—-a)xn(t—-1), ®)

where s;(¢) is the current acoustic sample value, and s;(r — 1) and
n;(t — 1) are the previous values of noise and microphone read-
ings, respectively. The acoustic event is considered to arrive at the
microphone when the current sound sample is some factor greater
than the current noise profile (s(f) > 8x*n(t)) and the corresponding
timestamp #; is taken as the time-of-arrival. In our experiment set up
described below, @ and S are empirically determined; these values
may vary if using different hardware. Using the DAT method, the
TDOA between microphone i and j can be estimated as 7;; = t; —f;.
While this amplitude-based TDOA estimation is good in the pres-
ence of impulsive sounds such as hand clapping, it has been shown
to be inadequate for low-amplitude or non-impulsive sounds.

TDOA estimation using generalised cross correlation. One of
the most popular approaches for TDOA estimation is generalised
cross correlation [24]. The GCC function is defined as

Ryi(1) = f i W()Xi(w)X j(w) e dw, ®

where W(w) represents the frequency weighting function. Sev-
eral GCC variants have been proposed, each of which has a differ-
ent weighting function. The weighting functions of regular cross
correlation, maximum likelihood (GCC-ML) and phase transform
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tively. While GCC-ML is reported to be robust to low signal-to-
noise-ratio, GCC-PHAT performs better in the presence of room
reverberation. The TDOA estimation 7;; corresponds to the time
lag at the global maximum peak of the GCC function R,

respec-

7;; = arg max R;;(7) (10)
T

3.4 Location estimation

To compute the location of the sound source given the time dif-
ferences of arrival, we specify modeling equations (below) and ap-
ply a non-linear regression algorithm which performs Levenberg-
Marquardt gradient descent on the solution space to minimise the
sum of squared residuals. However, factors such as multi-path due
to room reverberation and non-stationary noise can result in inac-
curate TDOA estimates, and microphones further from the source
may capture events at low SNR and identify false TDOA peaks. To
make our location algorithm robust, we apply an iterative outlier
rejection algorithm (described below) which removes the TDOA
with the highest residual and re-computes the regression solution.

Other options for computing the location solution are RANSAC
and maximum likelihood estimators. However, these tend to func-
tion best when the number of data points (in our case, TDOAS) to
be fitted is high. For I microphones which successfully measure
a time-of-arrival, the number of resulting TDOAs is @ Thus,
even assuming six microphones detect the event, this results in
only fifteen TDOAs, which is typically not enough for RANSAC
or maximum likelihood to function well. We have tried RANSAC
in similar acoustic time delay model-based positioning algorithms,
but it was outperformed by simpler residual-based elimination tech-
niques such as the one we describe here.

Non-linear regression. The TDOA 7;; between microphone pair
m; and m; generated from sound source is defined as

- = - =
[lm; =S|l = [lm; =Sl

Tij = c > (11

where s is the position of sound source, ni; and m; are the posi-
tions of microphone m; and m; respectively. Therefore the TDOA
estimation error €, can be formulated as

€y =Ty — Tij. (12)

Given speed of sound ¢ and positions of microphone pairs m; and
m;, position of sound source can be estimated using a non-linear
regression algorithm [29] to minimise the standard error estimate:

2
€,

Loc = \|—,
errLoc 0-3

13)
where O is the number of observations (TDOAs) reported, and
where the sum term occurs across all residuals of the O TDOAs.

Residual-based outlier rejection. The outlier rejection algo-
rithm is shown in figure 4. If the observations given to the regres-
sion do not agree with each other, the standard error will be high.
In this case, the observation with the largest residual error is dis-
carded. Following this, the non-linear regression algorithm is ap-
plied on the remaining observations. This process is repeated until
the standard error of the location estimation is small enough. If the
standard error estimate never decreases below the threshold, then
the estimation process is abandoned, and no location is returned
for that event.
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Figure 4: Outlier rejection. In our evaluation, we set QO = 7 and
used a standard error threshold equivalent to 15 cm.

4. SYSTEM PERFORMANCE WITH PLEN-
TIFUL RESOURCES

In this section, we illustrate the potential of our architecture and
algorithms with the assumption that the sensor nodes have rela-
tively high resources (computation, storage, and networking) to de-
vote to the acoustic localisation process. We illustrate and discuss
the impact of reducing available resources in the following section.

4.1 Experimental setup

To test the feasibility of the proposed system, we distributed six
sensor nodes in a 5.98 x 2.89 x 2.69 m office in a modern func-
tional building. At one end of the room, the six nodes were widely
spaced at approximately two different heights to cover a 5 x 7 grid
of measurement points, approximately 3 X 2 x 1.8 m, with about
0.5 m between each grid point (figure 5). The positions of both the
nodes and grid points were accurately surveyed using an electronic
theodolite (a Leica TotalStation TC500).

The sensor node used is built upon the Intel Mote2 (Imote2) plat-
form. It is based around an XScale processor and a 15.4 radio mod-
ule. Each Imote2 was fitted with a sensor board having an inexpen-
sive Panasonic WM-62A omnidirectional microphone, and a 16-bit
A/D converter (LTC1865L).

For the purposes of this formative work in generalised acoustic
event classification and localisation, a traditional wired approach
was used for synchronisation. Each node sampled its microphone
signal at 40 kHz with 16-bit precision. As soon as the sample am-
plitude exceeded the pre-defined threshold on one of the six mi-
crophone sensor nodes, this node proclaimed itself the timing ref-
erence node and sent notification of such to the other nodes via a
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general-purpose IO pin. Together with the last 204.8 ms of data
kept in a circular buffer on each sensor node, 1638 ms of additional
data was captured and stored for further analysis. Thus, for each
audio passage a total of 1843 ms of samples was logged by each
node.

Commensurate with the four types of sound discussed above,
we created four specific sound events in our experiments: certain
passages of speech, hand clapping (“clap”), a footstep and a mug
being placed on a wooden table (“mug”). A female subject read a
set of phonetically-compact sentences selected from the core test
set of the TIMIT database [15], which provide a good coverage of
phonemes. The footsteps were generated by the female subject by
walking on the carpeted floor while wearing casual leather shoes.
Each of the four specific types of sound was created twenty times
at each of the thirty-five locations on the test grid. Thus, a total of
2800 of these audio passages comprise our data set.

4.2 C(lassification performance

To evaluate our system, all of the recorded audio streams were
labelled automatically using the following procedure. Most of the
acoustic energy of a typical event can be captured using a frame
duration of about 200 ms. At this frame length, mismatching of
the acoustic events among the different sensors can be avoided for
microphones positioned less than about six metres apart, which
is sufficient for many room-based sensor deployments. So, each
1843 ms audio clip was segmented into 204.8 ms frames (8192
samples, given the sampling rate of 40 kHz). If the frame RMS
value exceeded a predefined threshold, it was passed to the classi-
fier. Otherwise, it was considered as silence and discarded.

Because the size of the data set is relatively small (700 audio
passages captured by each microphone across 35 locations, for each
of the four sounds), we evaluated the classification performance
using a K-fold cross-validation framework [21]. The whole data set
is randomly partitioned into K subsets. Of the K subsets, a single
subset k is retained as the validation data for testing the model, i.e.
the test set, and the remaining K — 1 subsets are used as training
data to build the fitted model. For each k, the prediction error of
the fitted model is calculated. The prediction errors are aggregated
across all k = 1,2,..., K. The confusion matrix of classification
results obtained is shown in table 2. The classification accuracy
(i.e. the ratio of test events that are correctly classified) is better
than 93%.

4.3 TDOA accuracy

For each passage, the first 204.8 ms segments which exceeded
the pre-defined threshold at all of the microphones were grouped
together to estimate the corresponding TDOAs. The cumulative

Speech Clap Footstep Mug
Speech | 93.46 % | 0.02 % 4.58 % 1.94 %
Clap 0.60% | 99.01 % | 0.00 % 0.40 %
Footstep | 1.00% | 027 % | 98.06% | 0.68 %
Mug 1.30% | 0.01 % 026 % | 98.44 %

Table 2: Classification results using QDA, based on nine fea-
tures and a ten-fold cross-validation framework with 90% of
data used as training.
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Figure 7: Location estimation error distributions

error distribution functions of TDOA estimation errors using the
four discussed algorithms are given in figure 6. Figure 6(a) shows
that speech signals achieve best performance using the GCC-PHAT
method with an absolute TDOA accuracy of 60 cm 70% of the time.
For clap and mug, as shown in figures 6(b) and 6(d), DAT performs
the best, with 40 cm 90% of the time. Figure 6(c) shows that the
TDOA estimation of footsteps yields the worst results compared to
the other three sound categories. Still, the DAT method achieves
40 cm accuracy with 60th percentile confidence.

4.4 Location accuracy

Figure 7 shows the cumulative distributions of location errors
(computed by model-based non-linear regression) for each type of
sound using the most suitable TDOA estimation method for each
type of sound. The 3D location estimation accuracy (table 3) for
all types of sound is between 20 and 35 cm (75th percentile) and
between 30 and 57 cm (90th percentile). However, the rejection
rate of location estimates (due to high standard error) varies from
just a few percent to as high as 40% for footstep.

4.5 Calibration considerations

As the size of training data affects the calibration effort required
at system deployment, we investigate the effect of varying the amount
of data used to train the classifier. Two approaches to reducing the
amount of training data are explored here. One is to take fewer au-
dio passages across all of the test points, and the other is to take
audio passages from fewer test points.

Fewer audio passages from all of the test positions. The re-
lationship between the percentages of data used as training set and
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Figure 6: TDOA estimation accuracy for the four types of sound

Speech Clap Footstep Mug

TDOA method | GCC-PHAT DAT DAT DAT

75th percentile 23 cm 20cm 3lcm 35cm

90th percentile 30 cm 38 cm 57 cm 42 cm
rejection rate 20% 4.5% 40% 2%

Table 3: Localisation performance summary

the K folds of cross-validation is shown in table 4. As illustrated in
figure 8, by using 25% to 90% of data as a training set, the classi-
fication results do not vary significantly. Even using less than 25%
data as training set, the classification rates decline less than 5% for
clap, footstep and mug data. However, the classification perfor-
mance has slightly improved for speech when using smaller sets of
data for training the fitted model. As noted in the caption of table 4,
this improvement is because the number of speech events per audio
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(d) Mug
training ratio (%) | 1.25 5 10 25 50 75 90
training passages 9 35 70 175 350 525 630

cross-val. folds 80 20 10 4 2 4 10

Table 4: Relationship between the percentages of data used for
training, the number of training passages per type of sound,
and the number of cross-validation folds. Note that for clas-
sification purposes, the audio passages for speech and footstep
typically contain multiple events. About 90 % of the speech pas-
sages contained 4-7 events, and about 75% of the footstep pas-
sages contained 3-5 events.

passage is several times greater than that for other types of sound.
Therefore, as the number of training passages of all types of sound
decreased, the model built for speech remained more stable than
the others.
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Figure 8: Classification and the ratio of training data

training points | Speech Clap Footstep Mug
35 93.32% 98.68% 97.62% 98.17%
25 94.80% 98.83% 97.38%  98.52%
15 94.03% 98.60% 97.83%  98.33%
5 97.85% 87.04% 89.01% 96.67%

Table 5: Classification using audio passages from decreasing
numbers of locations for the training data set. Regardless of
the number of locations used for training, the total number of
training passages was approximately one hundred for each type
of sound. All remaining passages (across all locations) were
used as test data to compute the above results. This corre-
sponds to a training ratio of about 14 %.

Training data from fewer locations. The other approach to re-
ducing calibration effort is to take training passages from only a few
test locations. The audio passages captured from 35, 25, 15, and 5
test locations (always starting from the middle of the test grid) were
selected as the training data set, and the remaining locations served
as test data. As shown in table 5, even using data from fewer po-
sitions to build the model, classification results remain above 87%.

Different speaking subjects. Another calibration concern is the
number of different subjects required to provide training passages
for speech. As mentioned in section 4.1, the four types of sound
in our main experiment were generated by the same female sub-
ject. To evaluate whether our system will work for speech gener-
ated by different subjects, two male subjects read the same set of
TIMIT sentences as the female subject had. This set of sentences
was recorded ten times for both male subjects at each of 5 loca-
tions selected from the test grid. Here, the training data set was
composed of one-third of the passages spoken by each subject (one
female subject and two male subjects) at those five locations, and
the remaining passages generated by the three subjects at those lo-
cations were retained as the test data set. For the other three types
of sound, one-third of the passages at the five locations were se-
lected as the training set and the remaining passages were the test
data. The classification performance is shown in table 6. While the
classification rates of footstep do decrease to 83.55%, the proposed
system shows strong potential to work with speech generated by

Speech Clap Footstep Mug
Speech | 91.30% 0.00 % 2.42 % 6.28 %
Clap 1.00% 99.00%  0.00 % 0.00 %
Footstep | 13.61% 225% 8355% 0.59 %
Mug 223%  0.00 % 0.14%  97.63 %

Table 6: Classification with different speakers

Subset Features
root-mean-square (RMS)
low short-time energy ratio (LSTER)
zero-crossing rate (ZCR)
linear prediction coefficients (LPC)
linear spectral frequencies (LSF)
mel-frequency cepstral
coefficients (MFCC)
spectral centroid
spectral flux
frequency band energy

time domain

polynomial

human auditory
perception model

spectral

Table 8: Subsets of features

different subjects, even confining calibration to just a small number
of convenient test locations.

S. THE PERFORMANCE/RESOURCE
DESIGN SPACE

One purpose of our experiment is to validate the design of our
algorithm architecture, particularly the choice of the classification
features and the effectiveness of the TDOA algorithms. Thus, our
experimental deployment discussed in section 4.1 focused on cap-
turing the maximum fidelity of data. In this section, we discuss the
trade-offs between performance achieved and resources required.

Table 7 shows a rough estimation of the operations required to
accomplish the different algorithms we utilise. At higher sampling
rates, the most computationally intensive tasks in the proposed sys-
tem are feature extraction and TDOA estimation.

5.1 Constraining the feature set

Since extraction of all our chosen features can be an intensive
task, here we explore the feasibility of reducing the number of fea-
tures used for classification. With the features introduced in sec-
tion 3.2, we form several subsets of the features. The subsets are
shown in table 8. The classification accuracy when using different
subsets is illustrated in figure 9; as before, classification was ac-
complished using QDA. By only using the subset of time domain
features, speech and mug cannot be distinguished. The classifica-
tion rate of mug can be largely improved by including either the
polynomial or spectral subsets. The spectral features (which re-
quire an FFT) yield great improvement above time domain features
for both mug and speech. While the cepstral features clearly ben-
efit speech classification, all sets of features need to be computed
for speech accuracy to exceed 90%.

Depending on the types of sound being classified, and the frame
size N, it may be possible to choose reduced feature sets whilst
maintaining acceptable performance. However, it is important to
remember that accurate classification is needed to ensure that TDOA
resources will be spent wisely (e.g. GCC-PHAT is only performed
for speech).



Component Operations Notes Requires
FFT Nlog N N: the number of samples per frame, which depends
ZCR 3N on the frame duration and the sampling rate (see table 9)
LPC [28] 3Np - %(SD - 1)p? autoregressive modelling
p: order of autoregressive model
D: dimension of autoregressive model
MEFCC [36] 2LM + MN — 1 M: number of mel window filter banks (M = 7) FFT
L: coefficient order (L = 13)
RMS 2N
LSTER 2N
Spectral Centroid N FFT
Spectral Flux N FFT
Frequency Band Energy N FFT
LDA/QDA CF C: number of categories (C = 4)
F: no. of feature parameters (F = 23 for full feature set; see tab. 1)
DAT < 2N
GCC-PHAT [9] 3NlogN — 4N +20
NLR 1351(1 - 1) + 1016 I: number of microphones which detect the event
Table 7: Computational complexity
r B Rt L ettty i et Rate Speech Clap  Footstep Mug N
ool S A B 40 kHz | 93.46% 99.06%  98.04%  98.44% | 8192
A , 20kHz | 92.53% 99.00% 97.41%  98.45% | 4096
08 J \\, ‘ 10kHz | 97.46% 98.64% 97.54% 97.57% | 2048
i * ) 5kHz | 88.28% 97.06% 94.19% 97.32% | 1024
0.7 ! \ ’
1 ‘\ 7
2 ol ii '\,\ / Table 9: Classification performance as sampling rate decreases.
< 7 ) Also shown are the corresponding sample counts of our chosen
gosr J frame duration of 204.8 ms.
§ 0.4 ‘,‘I
0l * Speech  Clap Footstep Mug
75th %ile | 23cm 20 cm 31 cm 35 cm
o2r 40 kHz 90th %ile | 30cm 38 cm 57cm 42cm
oal P gf’:;C“ rejection 20% 4.5% 40% 2%
el e 75th %ile | 24cm 24 cm 32cm 35cm
0 . ity metme  Tmeaaard = 20kHz 90th %ile | 54cm 47 cm 66 cm 41 cm
Feature Sets rej ection 26% 3% 25% 0.7%
Figure 9: Classification with reduced features 10 kHz Z)(S)EE ZZﬁZ 13488C<$1 22 z$ 32 22 ig EE
rejection 55% 4% 20% 0.5%
. . 75th %ile | 139 cm 53 cm 36 cm 35 cm
5.2 Lowering the sampling rate SkHz 90th %ile | 232cm  108cm  94cm  42cm
In our experiment, the acoustic events were sampled at 40 kHz, rejection 80% 3% 10% 0.5%

which was the maximum sample rate we could achieve on the Imote?2.

However, in practical wireless sensor systems, it is beneficial to
have a lower sampling rate, as less data needs to be processed.
Specifically, a lower sampling rate leads to a smaller frame size
N (table 9). Here, we explore the impact of reducing the sampling
rate on the performance of the proposed system.

We downsampled our 40 kHz data to 20 kHz, 10 kHz and 5 kHz,
and compared the classification and location results. The classifi-
cation accuracy is shown in table 9. The location accuracy CDFs
for clap and speech are shown in figure 10. We do not show the
CDFs for mug and footstep here, as the shape of their accuracy dis-
tributions did not change appreciably. However, we summarise the
accuracy confidences and rejection rates for all four types of sound
at different sampling rates in table 10.

In general, the classification and localisation performance de-
clines with the sampling rate. For mug and footstep, the locali-

Table 10: Localisation performance as sampling rate decreases

sation performance does not vary significantly when the sampling
rate is decreased. However, the localisation accuracies of speech
and clap get dramatically worse. When sampling at 5 kHz, only
10% of speech events can be located to 35 cm; while sampling at
40 kHz, over 70% of speech events are within a similar error range.

5.3 Summary

Figure 11 summarises the above node resource considerations
by illustrating how location fidelity and complexity can be traded
off. Note that accurate localisation of very simple sounds (such
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Figure 11: Summary of accuracy and complexity space. Dia-
monds mark computational levels which allow speech to be lo-
calised; these incur much larger communication overheads as
nodes must share detailed information about audio passages to
perform GCC-PHAT.

as the mug) is possible using only several thousand operations per
node. If tens of thousands of operations are possible, then differ-
ent sounds (footsteps, the mug, and clapping) can be accurately
located. If desired, speech can also be located using tens of thou-
sands of operations, albeit at reduced accuracy levels.

Hardware architecture. In our complexity analysis, we have
not differentiated the operations which require floating point. Some
of the more complex algorithm components (such as non-linear re-
gression’s matrix inversion) assume floating point capability. Ar-
chitectures which natively support floating point typically have higher
power requirements, and integer-based architectures often require
ten or more times the instructions to implement floating point op-

erations. Similarly, throughout the paper we have assumed that the
node architecture in question supports 16-bit sampling and compu-
tation; reducing the sample depth to eight bits would allow lower-
resource 8-bit hardware to execute the algorithms at speed. Regard-
less, we expect that even the most resource-constrained nodes will
be able to localise simple sounds. Moreover, some architectures
(like the XScale on the Imote2) are equipped with a co-processor
which can be activated to efficiently perform operations such as the
FFT and basic compression.

Communication requirements. In our analysis above, we have
assumed that @ TDOAs can be computed between all pairs of
I microphones which detected the event. For sounds which can
be localised using dynamic amplitude thresholding, nodes need
only transmit their detected time-of-arrival (a few bytes per node)
in order for all TDOAs to be computed. However to support this
for sounds (such as speech) which require GCC operations, / — 1
nodes must transmit the captured event so that correlations can be
computed between all pairs of signals. Using our frame duration,
40 kHz sampling rate and 16-bit precision, this is potentially six-
teen kilobytes of data for each of the I — 1 transmissions.

There are a number of possibilities for reducing this, in practi-
cality. First, we have shown acceptable performance results (even
for speech) at 20 kHz. Second, the FFTs which are needed for the
cepstral and spectral-based features are also an important compo-
nent of correlation operations. Thus, it makes more sense to trans-
mit the FFT of the event frame, rather than the raw time-domain
representation. FFTs are also a very well-investigated technique
for compressing audio signals. Very favourable communication
savings can be made by low-overhead compression of these FFT
signals, with little impact on TDOA accuracy once correlation is
performed. Finally, we suspect that the events from certain mi-
crophones (for example with the most favourable SNRs) will tend
to yield more accurate TDOAs when correlated. If for example
only the three nodes with the strongest signals from the event were
to transmit, this would again reduce the communication required,
while still facilitating the computation of 37 — 6 TDOAs.



6. FUTURE CONSIDERATIONS

We have proposed an algorithm architecture where sound cate-
gories are used to help to select effective and efficient localisation
methods in order to suit the application scenario. It was not feasi-
ble for us to cover all types of sounds in our experiments described
above, due to the complexity of real world environments and the
variability between environments. However, following our design,
additional classes may be specified as a greater variety of sounds is
encountered. In this case, further calibration (offline training) is re-
quired and different sets of features might be adopted, which could
add to the computational load. Since QDA does not require too
much processing power or storage, adding more categories would
not introduce much overhead for the classifier, relative to the costs
of operations such as the FFT or non-linear regression.

Issues we considered above include the classification features
needed, suitable classifiers, and effective/efficient TDOA and lo-
cation estimation methods. Furthermore our experiment was set
up in a well-controlled environment. Therefore, a static thresh-
olding method was applied to initiate the recording and avoid in-
troducing processing overhead for sampling and logging. In the
future, we will explore more robust and flexible dynamic thresh-
olding methods, such as exponentially weighted moving average
(EWMA) [19]. It is worth mentioning that in real settings, no mat-
ter which type of detection method is adopted, some events may
be missing (false negatives) and at times background noise can be
detected as events (false positives). Therefore, empirically evaluat-
ing thresholding methods according to the specific environment is
critical.

There are two major drawbacks of the GCC-based TDOA esti-
mation adapted in our system. First, it assumes the noise at different
sensor nodes is independent. Second, it does not take into account
room reverberance. In real world settings, correlated directional in-
terference and room reverberance is very common. In the context
of microphone arrays, some methods have been proposed to elim-
inate the localisation errors introduced by these issues [12, 7, 8].
Yet most of these methods have high complexity, and they need to
be revisited with specific consideration for low-resource devices.

Our analysis in this paper is based on experiments which were
performed in a relatively controlled environment in a small office.
‘While common indoor background noise was present (due to things
such as computer fans and building HVAC systems), there were no
significant sounds which overlapped in time with the test events
we generated. Many indoor living and working environments (with
multiple people and devices in them) produce a more complex au-
ditory scene, increasing the difficulty of proper segmentation and
matching of the events detected at different microphones. To un-
derstand these challenges, we have since collected a 24-hour “real
world” data set, in a large laboratory in which eight people work.
We are conducting the analysis of this real world data, and prepar-
ing it for publication; the accuracy results are of similar magnitude
(approximately half metre) with those we present above. The data
collection for this paper was more controlled, by design, with the
objective of understanding (1) what the algorithm options are for
both classification and accurate TDOA estimation of different types
of sound; and (2) the computational complexity required to support
different levels of location fidelity.

7. CONCLUSION

In this paper we present a study of locating acoustic events ap-
propriate to their diverse acoustic characteristics, using systems
such as sensor nodes. The analysis of experimental data gathered
in a controlled environment demonstrates the feasibility of imple-

menting such methods on resource-constrained devices. Using the
outlined methods at high sampling rates, the classification accuracy
overall is better than 93% and the localisation accuracy is within
60 cm (90th percentile confidence) for sounds such as speech, foot-
steps, objects placed on surfaces, and claps. We have argued that
classification should be used as an aid to identify an accurate yet
efficient TDOA algorithm to apply to a given event. Further com-
putation can be saved by choosing a sampling rate and feature sets
which yield appropriate performance for the types of sound being
localised.

In the future, we intend to address challenges in more realistic
environments such as identifying the same acoustic event captured
at different microphone sensors and the identification of multiple
simultaneous sources. Additionally, to avoid the need for a labour-
intensive survey of microphone positions, microphone nodes could
self-localise via simultaneous localisation and mapping, or a mini-
mal-effort offline method.
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