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ABSTRACT
Unreliable connectivity and rapidly changing link qualities
make it challenging to establish stable addressing in wire-
less networks. This is especially difficult in communication
scenarios where nodes determine their own addresses based
on the underlying connectivity in the network.

In this paper, we present Probabilistic ADdressing (PAD),
a virtual coordinate based addressing mechanism that effi-
ciently deals with dynamic communication links in wireless
networks. It assigns probabilistic addresses to nodes without
needing to pessimistically estimate links over longer periods
of time. The routing metric predicts the current location
of a node in its address distribution. Our prototype imple-
mentation over real testbeds compares PAD with Beacon
Vector Routing (BVR), a prominent routing approach in
sensornets, and S4, a cluster based extension of BVR and
state-of-the-art in point-to-point routing in sensornets. Our
results from three widely used testbeds indicate that PAD
achieves 3-7 times more stable addressing than BVR, and
minimizes the number of transmissions in the network by
26% when compared with S4 under challenging networking
conditions.
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tocols—Routing protocols

General Terms
Algorithm, Design, Experimentation, Performance

Keywords
Virtual Coordinates, Addressing, Tree Construction

∗Work done while at RWTH Aachen University. New affili-
ation: School of Electrical Engineering, KTH, Sweden.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’11, April 12–14, 2011, Chicago, Illinois.
Copyright 2011 ACM 978-1-4503-0512-9/11/04 ...$10.00.

1. INTRODUCTION
Address updates are expensive in wireless networks where

nodes have to determine their own addresses based on the
underlying connectivity, a common situation in many wire-
less network deployments. In such networks, rapidly chang-
ing link conditions do not only affect packet delivery and
routing topology, but also the topological location and ad-
dresses of nodes, requiring frequent location updates to be
distributed in the network.

A plethora of solutions [6, 12, 14, 21, 23, 25] has been pre-
sented, both in ad hoc and sensornets, for situations where
location information is not available at the nodes and geo-
graphic methods cannot be used for routing. The majority of
these location independent addressing and routing schemes
are based on tree construction primitives: Ranging from sim-
ple data collection [17] and dissemination [12] to complex
virtual coordinates based point-to-point routing [14] in ad
hoc and sensornets, tree-construction has established itself
as common building block for location independent routing.

However, to ensure stable trees and addressing in the net-
work, most tree-construction based addressing and routing
schemes put excessive focus on tree maintenance and stabil-
ity while adaptability gets compromised to a large extent.
The underlying technique is to employ a long-term link es-
timator [14] and select parent(s) only among neighbors with
consistently high quality links. Although it results in consis-
tent addressing and stable routing trees across the network,
this long term binding restricts the network in how well it
can adapt to link dynamics [1, 26].

Nonetheless, tree based addressing and routing infrastruc-
tures suffer heavily from rapid topological changes due to
varying link conditions in the network. Such situations often
occur in a sparse network with a low density of nodes, where
a node might have no reliable communication partner at all.
In such situations we see frequent address changes and thus
a significant overhead due to regular updates in the address
database [3, 28]. Moreover, it would also result in inconsis-
tent routing trees, introducing typical routing pathologies
such as packet loss, loops, and stranded nodes.

In this paper we show how to retain the benefits of tree
based addressing and routing schemes without maintain-
ing explicit trees in the network. The basic concept is the
same: Determine a node’s location based on the vector of
hop counts from a set of landmarks1 in the network. How-
ever, the execution of this concept is substantially different.
In contrast to the existing approaches, our solution neither

1Often referred to as beacon nodes. We use the term land-
mark to distinguish it from beacon packets.



relies on long term link estimation nor maintains any ex-
plicit parent-child relationships in the network. Instead,
this approach, named PAD, assigns probabilistic addresses
to nodes. The basic idea is that a node learns from its past
locations and calculates the probability distribution over its
recent locations. This probability distribution is then used
as address of the node. Hence, a node’s location is defined
in terms of the probability that it exists in a certain loca-
tion and remains independent from the packet loss at shorter
time scales. All other nodes in the network predict the cur-
rent location of a node in its distribution. As a result, PAD
decouples addressing from routing, allowing to adapt rout-
ing paths to the very recent network conditions. The design
of PAD is inspired by atomic orbitals [8] that describe the
probability of finding the electrons of an atom in specific re-
gions. Thus, the location of an electron is defined in terms of
the probability that it exist at a particular location around
the nucleus. An alternative view on the PAD approach is
that it uses fuzzy instead of sharp coordinates for nodes.

This paper makes the following key contributions:
Address Stability: Compared to other addressing and

routing schemes, PAD requires 3-7 times fewer address up-
dates in a global location directory. At the same time, it
maintains a small amount of state and requires considerably
less effort and complexity in its mechanisms and implemen-
tation. We show that such stable addressing can be achieved
even by considering only very recent link conditions instead
of pessimistically overhearing and estimating links over a
time period in the order of minutes (or hours).

Address Monotony: Once an address update occurs,
the difference between the old and new location of a node is
3-12 times smaller for PAD than for comparable approaches.
This implies that the changes in PAD’s addresses are grad-
ual, which helps routing success. Our evaluation shows that
this phenomenon allows PAD to maintain more up-to-date
yet stable node locations in the network.

Responsiveness: By decoupling addressing from routing
and link estimation, PAD can respond rapidly to changes
in link quality which existing routing algorithms naturally
avoid. As a result, each data packet can be forwarded on a
different path depending upon the very recent network con-
ditions. Our comparative analysis on three testbeds shows
that even a simple routing strategy over PAD reduces the
number of transmissions by 26% in testing network condi-
tions when compared with S4 [21] – state-of-the-art cluster
based point-to-point routing in sensornets.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the background, introduces the design space
and identifies target environments. We describe the PAD
design and algorithmic details in Section 3. Section 4 thor-
oughly evaluates PAD regarding stability and adaptability.
We present a simple routing strategy over PAD in Section 5.
Results from our routing evaluation are discussed in Sec-
tion 6. Finally, we discuss prominent related works in Sec-
tion 7 before concluding the paper in Section 8.

2. PRELIMINARIES
Our key contribution is to enable stable addressing by in-

troducing probabilistic addresses for wireless networks. Be-
fore delving into the details, we revisit tree construction
based routing schemes and put our contribution in a sim-
ple context. We also consider our target environments –
data centric (sensornets) and ID centric (ad hoc and mesh)
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Figure 1: Addressing based on Virtual Coordinates

networks – and shed light on how these environments may
benefit from the addressing mechanism presented here.

2.1 Tree-Based Routing Schemes
We can divide tree-based routing schemes into two cat-

egories: (1) Address-free collection (many-to-one) and dis-
semination (one-to-many) trees employed in situations where
the identity of a node is not important. The goal here is to
collect data from every node at a tree root or to deliver
data to every node in the network and (2) Address-based
point-to-point routing where a node’s identity is essential
for communication. Such schemes form multiple trees in
the network and assign virtual coordinates (i.e. addresses)
to nodes based on the vector of hop distances to the tree
roots. Here we focus on the latter case, where addresses are
important for networking the nodes.

Figure 1(a) shows an example of a virtual coordinate based
address establishment in a network with three tree roots
(landmarks), labeled X, Y, and Z. These landmark nodes
advertise themselves by repeatedly sending beacons. Based
on these beacons, each node S (recursively) determines the
number of hops h(S,Li) to each landmark Li. The re-
sult can be viewed as a set of routing trees with the land-
marks as their roots and with, for example, the hop count
as a routing metric. A node S’s coordinates ~c(S) in the
virtual coordinate system are the λ-dimensional vector <
h(S,L1), . . . , h(S,Lλ) > with λ as the total number of land-
marks. In our example in Figure 1(a), node 7 has a three-
dimensional address vector < 2, 2, 3 > where each vector
component represents the node’s hop distance to the land-
marks X, Y , and Z, respectively.

Typically, routing is performed greedily over these ad-
dresses. The idea is to let a node S choose a next hop T that
minimizes the remaining distance d(T,D) to the destination
D (e.g. to select a neighbor as a next hop whose coordi-
nates are most similar to those of the destination node).
Widespread routing metrics include the sum distance (see
Section 5.2) or the absolute component-wise difference [14]:

d(T,D) =

λ∑
i=1

|h(T,Li)− h(D,Li)| (1)

However, real-world deployments are confronted with lossy
links that may falsely influence the hop distance from land-
marks. It means that traversing one hop can require more
than one transmission. Therefore, the “best” next hop is the
one that results in the least number of transmissions nec-
essary to reach the destination. Routing protocols, such as
BVR [14] or S4 [21], typically use link estimators to iden-
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Figure 2: In a pathological case, a node’s distance
from a landmark can vary significantly over time.
A link estimator is typically used to filter out such
dynamics. In sparse networks with challenging link
conditions, even link estimators would struggle to
maintain a stable routing topology. Assigning static
virtual coordinates in such dynamic situations often
results in unstable addressing.

tify neighbors with stable links that minimize the expected
number of transmissions (ETX) [9] for a successful delivery.
Thus, only a selected subset of neighbors – offering an ETX
below a certain threshold – are used in calculating the hop
distance from the landmarks. Nonetheless, a node’s current
address vector still represents the hop distance over the path
with minimum ETX.

2.2 Basic Idea
To establish a basic understanding of the design space we

are working on in this paper, consider Figure 1(b), which
represents a small segment of the network in Figure 1(a).
The basic design philosophy of tree based routing proto-
cols restricts nodes to select a single parent for each land-
mark and define their coordinates based on the hop counts
achieved over these parents. As a result, a main challenge
in tree construction based routing is that the changes at one
node induce changes in all child nodes further down the tree.
For example, node 7’s virtual location with respect to land-
mark Y will heavily rely on the path 7 → 9 → Y . Each
time a node changes its hop distance from a landmark, all
child nodes have to modify their hop distances to that land-
mark as well. As a result, any node failure or changes in the
quality of the links (due to data loss) on this path will not
only trigger a change in the routing topology but also in the
virtual coordinates (location in the network) of node 7. To
cope with this challenge, maintaining trees and virtual coor-
dinates across the network which are particularly consistent
is understandably the main objective of tree-based routing
protocols. Therefore, they willingly concede performance
penalties to achieve this objective.

In this paper, we oppose this philosophy and propose to
break the stringent parent-child relationship. For example,
let’s suppose that node 7 can also reach landmark Y over
the unreliable paths 7→ Y and 7→ 10→ 9→ Y (as shown
in Figure 1(b)). We define a node’s location on the basis of
all possible paths that can be used to reach the landmarks
regardless of the estimated quality of these paths, just like
an orbital function describes possible quantum states of an
electron around an atom [8]. We expect unstable coordi-
nates based on these paths to exhibit a quantifiable, sta-

ble pattern. Nodes can keep track of the changes in their
own coordinates and learn the associated patterns over time.
Figure 2(a) depicts such a scenario from a real testbed by
showing the development of a node’s distance from a land-
mark over time. A similar argument can be made for cases
where a node has no reliable neighbor over longer periods
of time. In such a dynamic2 network, assigning static ad-
dresses to nodes often results in inconsistent trees, because
a node’s distance from the landmarks changes rapidly.

The central idea is to locate and address a node using
these patterns instead of its absolute, current coordinates.
Our addressing mechanism, i.e. PAD, therefore addresses
a node in the form of a probability distribution (see Fig-
ure 1(b) and 2(b)) instead of a static location. Other nodes
can then use this probability distribution as the destination
address for packets to this node. Overall, PAD decouples
addressing from routing and exposes multiple locations and
paths to a node. This gives routing protocols the flexibil-
ity to exploit interesting communication opportunities on
short-term stable paths towards the destination.

2.3 Target Environments
In this section, we investigate the target environments

that can benefit from the approach presented in this paper.

2.3.1 Sensornets
For a long time, routing in sensornets was limited to the

simple collection and dissemination primitives that do not
require to reach a specific node based on its identifier. How-
ever, a vast majority of current applications in sensornets –
such as data centric storage [12], data query methods [15,20],
pursuer-evader games [10], industrial automation, and cyber
physical systems in particular – demand individual address-
ing support. Approaches like BCP [22] and BRE [2] provide
mechanisms to exploit path diversity and link dynamics in
sensornets but do not consider addressing. Moreover, the
networking conditions reported in the literature [27, 29] are
especially challenging in sensornets mainly due to two rea-
sons: (1) harsh environmental conditions from a networking
point of view and (2) a rapidly changing network topology
resulting from frequent node failures.

2.3.2 Ad Hoc and Mesh Networks
Ad hoc and mesh networks are address centric, i.e. here

the goal is to assign a unique identifier to each node and
share resources such as an Internet connection among the
participants. The presence of intermediate and bursty links
has been recurrently reported in the literature [1, 26]. Such
networks also present challenging conditions due to interfer-
ence from other coexisting networks on the same frequency
band and due to rapidly growing and shrinking numbers of
participants. Opportunistic routing [5] provides an elegant
solution to exploit path diversity in such networks. We share
the same spirit, but differ significantly in detail. Moreover,
opportunistic routing neither deals with addressing, as it op-
erates on fixed geographic locations and IP addresses, nor
focuses on challenging conditions in the network and their
corresponding impact on addressing.

Our discussion in the remainder of this paper focuses on
sensornets, but the ideas presented apply just as well to ad
hoc and mesh networks.

2We only employ the dynamics that occur due to frequently
changing link qualities and node failures.



3. PROBABILISTIC ADDRESSING
EXPLAINED

Approaches such as BVR and S4 attempt to filter out the
variability in a node’s coordinates, which is caused by net-
work dynamics, to obtain a stable address. In contrast, PAD
incorporates this variability into a node’s address by encod-
ing a limited history of the node’s coordinates. The idea is
to learn from the dynamics exposed by a node’s coordinates
and express them in the form of probabilities. The routing
algorithm can then determine a node’s coordinates by pre-
dicting its current location in its probability distribution.

To arrive at a stable address, a PAD-node needs to iter-
atively (1) collect its coordinate history, (2) calculate and
encode its address, and (3) disseminate its coordinate and
addressing information to its neighbors via beacons. The
following sections explain these steps in detail.

3.1 Coordinate History
PAD-nodes determine their network coordinates based on

the beaconing mechanisms of established virtual coordinate
systems [6, 14]. Thus, in a network with λ landmarks, the
node S has the coordinates ~c(S) =< h(S,L1), . . . , h(S,Lλ) >
as discussed in Section 2.1. Note that such coordinates re-
flect the current shortest paths between S and each of the
landmarks without any further filtering, link estimation, or
link quality information.

All nodes in the network determine their coordinates pe-
riodically, once per beacon interval. In PAD, each node S
collects its σ most recent coordinates in its coordinate his-
tory, which is a table of size σ comprising coordinate vectors:

H(S) =

 ~c1(S)
...

~cσ(S)

 =

 < h1(S,L1) . . . h1(S,Lλ) >
... · · ·

...
< hσ(S,L1) . . . hσ(S,Lλ) >


In each beacon interval, S updates this history by adding its
latest coordinates and evicting the oldest if necessary.

3.2 Address Calculation
After updating its coordinate history, node S recalculates

its PAD address as follows. For each landmark Li (i.e. each
column in H(S)), it determines which hop count values for
Li the history contains and how often they occur. In other
words, it calculates the frequency distribution of unique hop
counts for landmark Li as the set of tuples:

Fi(S) = {(h1(S,Li), f1), . . . , (hδ(S,Li), fδ)}

where the tuple (hj(S,Li), fj) consists of the unique hop
count value hj(S,Li) and its absolute frequency (or number
of occurrences) fj in H(S).

For example in an increasingly unstable network, the num-
ber δ of tuples in Fi(S) would grow as the shortest paths
from S to Li increasingly vary in their length. At the same
time, the absolute frequencies fj of each of the hop count
values would decrease as their sum, by construction, can-
not exceed σ. In a very stable network, however, the history
would report hop counts for only one or a few shortest paths
between S and Li, so Fi(S) would contain only one or few
elements with rather large absolute frequencies.

After node S determined the frequency distributions Fi(S)
for all landmarks, it constructs its routable address simply
as the vector:

~a(S) =< F1(S), . . . ,Fλ(S) >

With this information the probability distribution of a node’s
coordinates can be readily derived from its address. Thus, a
PAD address contains a notion of path quality reflected by
the number of different paths and their variance in length.
Our results in Section 4 indicate that, given a suitable his-
tory size σ, the set of frequency distributions in an address
stabilizes in the long run and is then largely unaffected by
short-term link conditions. Furthermore, we observed that
– even under challenging link conditions – the frequency dis-
tributions contain only a small number of unique hop counts,
allowing for small address dissemination messages.

After calculating its new address ~a(S), S compares it to
its previous address ~a′(S) by calculating a difference value d
(e.g. via Pearson’s χ2-test). If d exceeds the threshold ε, S
needs to update its address in the address database3 of the
network. Since an address update is an expensive operation,
it is important to choose the threshold ε appropriately as
discussed in the evaluation in Section 4.

Note that the node coordinates ~c(S) are deliberately based
on the minimum hop distance metric h(S,Li) in PAD be-
cause: (1) it is a simple and established selection criterion,
(2) it simplifies efficient routing and helps to avoid loops,
and (3) it helps to keep the number of paths represented in
PAD-addresses low.

3.3 Address Dissemination
Our approach is based on periodic beacon exchanges among

neighbors. It is not bound to any specific beacon exchange
rate or technique and, in principle, it should work with any
technique presented in the literature, such as adaptive bea-
coning [17].

In PAD, each node S broadcasts a beacon packet once per
beacon interval with the following information:

• Node Coordinates: The current vector ~c(S) of min-
imum hop distances h(S,Li) from S to each landmark
Li. To reemphasize, this does not use or contain any
link quality information.

• Node Address: The current address ~a(S) of S, i.e.
the frequency distribution of its coordinate history.

• Neighbors: A list of neighbors from which S received
a beacon in the last beacon interval. This piece of in-
formation is used to identify neighbors with symmetric
links for routing. This mechanism is similar to the reg-
ular exchange of reverse ETX messages for each neigh-
boring link as used by current routing protocols.

• Sender ID: The unique ID4 of S.

• Sequence Number: A sequence number for the bea-
con packet assigned to it by S.

The size of the beacon packets depends on the number λ of
landmarks and the number of symmetric neighbors. In gen-
eral, PAD allows to trade off transmission overhead against
memory overhead in how address information is dissemi-
nated in beacons. The first option is to include a node’s

3Location services for PAD are out of scope for this paper.
There are well established location services for virtual coor-
dinate based routing protocols, such as [7, 24].
4We distinguish the term ID from address. Each node in
the network has a unique and immutable ID as opposed to
its address, which is its relative location used for routing.



Testbed Available Average Node Tx Power
Nodes Degree Level Used

MoteLab 93 7.2 0 dBm
Indriya 125 18.5 −25 dBm
Twist 94 23.3 −25 dBm

Table 1: Basic characteristics of the three testbeds.
All of them comprise IEEE 802.15.4-based TMote
Sky nodes. Node degrees, i.e. average number of
one hop neighbors, were derived for the respective
transmission power levels.

address in its beacons which increases the beacon size. The
second option is to only transmit a node’s current coordi-
nates instead of the aggregated PAD address. In this case,
the neighbors that receive the beacon need to store a history
of theses coordinates and compute the PAD address them-
selves, which increases the CPU and memory overhead.

4. EVALUATING PAD
Our evaluation of PAD focuses on two aspects: (1) We

need to choose an appropriate history size σ and error level
ε between PAD coordinate distributions (cf. Section 3.3).
(2) We need to thoroughly compare PAD with existing vir-
tual coordinate based addressing approaches to observe po-
tential benefits and drawbacks of our approach. PAD is
implemented for TinyOS 2.1.0, and has been tested in the
TOSSIM simulator and on IEEE 802.15.4-based Tmote Sky
platforms.

We first briefly discuss our experimental setup and the
testbeds we used in our experiments.

4.1 Testbeds and Experimental Setup
Evaluation on real testbeds is mandatory to explore the

efficacy of the concepts presented in this paper. We used
three widely used IEEE 802.15.4 based testbed deployments
for our evaluation, namely MoteLab [4], TWIST [18], and In-
driya [11]. All three testbeds are indoor deployments – nodes
are deployed on multiple floors of buildings – with coexisting
IEEE 802.11 deployments. We used different transmission
power levels to stress-test PAD under varying networking
conditions and topological characteristics.

MoteLab is a 184 node deployment at the Harvard Uni-
versity on three different floors. Among the three testbeds,
MoteLab is the sparsest deployment – only 93 nodes were
active during our tests – with an average node degree of 7.
MoteLab serves as a sanity check for PAD evaluation as it
presents very challenging network conditions (see Figure 3).
Indriya is a 127 node deployment at the National University
of Singapore on three different floors. The network topology
of Indriya is very similar to MoteLab, however, the overall
network connectivity in Indriya is better than in MoteLab.
125 nodes were at our disposal, and we could reduce the
transmission power to −25 dBm to increase the network’s
diameter. TWIST is a 100 node deployment (94 available)
at TU Berlin. TWIST is the densest deployment among the
three, and path lengths are quite small: Most of the nodes
can reach each other directly when transmitting at full trans-
mission power. Therefore, to create a multihop network we
reduce the transmission power to−25 dBm. The major char-
acteristics of these testbeds are shown in Table 1. Figure 3
shows the CDFs of link qualities on all the three testbeds
and clearly points to the challenging nature of MoteLab: Al-
most 60% of the links have PRRs below 0.8 compared to just
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Figure 3: CDF of link qualities measured on the
three testbeds. Almost 60% of the links in MoteLab
have PRR’s below 0.8 compared to just 20% of such
links on Indriya and TWIST. We only include links
on which at least 10 packets were received.

20% of such links on Indriya and TWIST. The outcome of
Figure 3 is essential for understanding the results in Section
6.

4.2 Determining the System Parameters
Before evaluating the stability of addresses in PAD and

comparing it to related approaches, we need to calibrate
the core parameters of our system: the history size σ and
the error probability ε. Although both σ and ε are user-
desired accuracy thresholds, we derive their values here for
completeness and for evaluation purposes.

4.2.1 History Size
Our first evaluation factor is to determine the appropriate

sample size for the probabilistic addressing, i.e. the coordi-
nate history size σ (see Section 3.1) which shall be used to
calculate the PAD addresses. The goal is to strike a suit-
able tradeoff between the stability and adaptability of PAD.
In order to find this we use Pearson’s χ2-Test. It is a test
of goodness of fit, which derives how much two distribu-
tions differ from one another. Its purpose is to calculate
a p − value (error probability) that reflects how likely it is
that the differences between two distributions are caused by
chance.

To perform this analysis we ran PAD with six landmarks
on the TWIST testbed at a transmission power level of
−25 dBm. Each node generated a beacon every 10 seconds5

for a total runtime of 24 hours. Our reference distribution
of each node’s coordinates for the χ2-Test is derived from
this data set. To determine the history size, we split the
24h data set into smaller segments of 6 to 1800 beacons (see
Figure 4). We compare these partial distributions with the
reference distribution to find the smallest history size for a
node’s coordinate distribution that can accurately represent
the reference distribution derived from the whole experiment
duration.

Figure 4 shows the average p− value for different history
sizes. It shows that there is a rapid decrease in the error

5The choice of the sending rate over a longer period of time
is irrelevant here. We wanted to collect maximum data with-
out saturating the network to derive a stable reference dis-
tribution of the coordinates.
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probability for smaller history sizes. For example, when in-
creasing the history size from 6 to 30 beacons, the error
probability decreases from 17% to 6.5%. However, later in-
creasing the history size does not substantially impact the
error probability anymore: increasing the history size from
30 beacons to 100 beacons only results in a 2% decrease of
error while significantly dampening the adaptability of the
coordinates and increasing the memory overhead due to the
larger history size required to compute the PAD address.
Here we can tradeoff a slight inaccuracy for a higher adapt-
ability and smaller memory overhead.

The cutoff used in PAD is therefore at a history size σ of
30 beacons, i.e. 300 seconds in our case. For the remaining
evaluation in this paper, we calculate the PAD addresses
from a history comprising the last 30 beacons. Our results
indicate that even with this history size PAD achieves at
least three times more stable addressing than BVR. This
result roots in the fact that BVR itself trades stability for
adaptability by employing a highly pessimistic and cautious
approach for changing the address of a node.

4.2.2 Error Threshold
The error threshold ε is the threshold for deciding whether

the differences between a newly calculated PAD address and
the previous one are significant and hence require an update
in the global address database: After calculating its new
address ~a(S), a node S compares it to its previous address
~a′(S). If the difference exceeds the threshold ε, S needs to
update its address in the address database. Hence, ε allows
the user to tradeoff address updates for routing inaccuracies.
We evaluated the stability of PAD with different ε values and
observed that for smaller values – ranging from 1% to 10% –
ε does not impact the rate of address updates in the network.
In our evaluation we use ε = 6.5% as a representative value
within that range.

Although both ε and σ thresholds are empirically de-
rived from testbed results, self-calibration of these thresh-
olds would be a preferred solution such that the network
would optimize them according to the observed conditions.

Nonetheless, any such self-calibration mechanism requires
additional memory and computational overhead (e.g. to store,
calculate and compare reference distributions of coordinates),
which is not desirable in sensornets.

4.3 Comparison with BVR and S4
Deriving the error threshold ε and the history size σ com-

pletes all the pieces of our design. Now we thoroughly com-
pare PAD with the addressing mechanism of BVR. We defer
the discussion on routing over PAD to Section 5.

Although S4 is considered state-of-the-art in sensornets,
our comparative evaluation in this section only considers
PAD with Beacon Vector Routing (BVR) [14]. This is be-
cause S4 extends BVR with its cluster based routing ap-
proach to guarantee reachability at the cost of relatively
higher state – maintaining both local-cluster and global sta-
tes. Whereas, the establishment of global coordinates in
an S4 network is exactly based on BVR: S4 even uses the
code base of BVR. Thus our evaluation in this section ac-
counts for both S4 and BVR with one exception: Routing
in S4 is based on the closest landmark to the destination,
and hence, updates in the address database are only needed
when a node’s closest landmark changes. BVR on the other
hand requires an address update for every change in any
of the coordinate components, because it greedily routes a
packet based on the address vector of the k closest land-
marks. The rate of coordinate change in S4 would still be
the same as for BVR. Moreover, because S4 uses hop-count
as its performance metric, later in Section 6 we show that
PAD outperforms S4 when the comparison is performed on a
testbed and is based on a prevalent metric, i.e. total number
of transmissions in the network.

We use the latest releases of BVR and S4 from the TinyOS
code repository6. To ensure that our results are not unjus-
tifiably influenced by the state-of-the-art implementation of
the TinyOS 2.1 communication stack, we had to update the
APIs of S4 and BVR. However, these changes are only min-
imal and correspond to slight changes in platform indepen-
dent APIs, such as send and receive. We did not alter any
other parameter or algorithmic aspect of the protocols itself.

Our comparison with BVR is based on three factors. Ad-
dress Stability: To compare the rate of changes in the
addresses in PAD and BVR. It is defined as the share of
beacon intervals in which the nodes changed their addresses.
This is our key evaluation aspect to show the stability of ad-
dresses over time. Address Monotony: To measure the
difference between hop distances from landmarks over time.
This analysis looks at each component of the address vector
to analyze the range of change in hop distances from each
landmark. Node Dynamics: To observe the stability of
PAD with regard to node dynamics, i.e. frequent node ad-
ditions and failures in the network. This analysis will give
us hints about how well PAD recovers from such dynamics.

Our experiments for this analysis have the following key
characteristics: (1) Each experiment starts with an initial
calibration phase of 10 minutes to allow BVR to stabilize its
link estimates and virtual coordinate system. However, at
any instant, PAD’s address distributions are always derived
from a history of the last 30 beacons. (2) The calibration

6These releases are compatible with TinyOS 2.0, but there
are significant differences, e.g. the communication stack,
device drivers and interfaces, between the current release
TinyOS 2.1 and the first release of TinyOS 2.x.
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Figure 5: Results from the address stability comparison: The CDFs of our two evaluation factors from three
testbeds indicate that PAD reduces the rate of change in addresses and decreases the magnitude of change
in addresses on all testbeds.

phase is followed by the evaluation phase in which nodes
regularly exchange beacon packets every 10 seconds7. (3) On
each testbed we preconfigure six well spread nodes to act as
landmarks. The landmark selection is a well studied research
area [6,14,21] and is not our focus in this paper. (4) Finally,
the link estimator in BVR employs passive overhearing of
all transmissions in the network. This energy inefficient and
computationally expensive mechanism is not employed in
PAD. Therefore, as opposed to BVR and S4, there are no
link-estimation headers appended with each packet in PAD.

4.3.1 Address Stability
Address stability is an important factor in a virtual co-

ordinate based routing infrastructure, especially for appli-
cations that cannot maintain the state of each node in the
network and require a lookup mechanism in some location
database. First, because routing to outdated addresses leads
to routing failures. Second, because rapid changes in the
addresses create heavy update and lookup traffic overhead
that can be detrimental for network performance, especially
close to the nodes responsible for maintaining the address
database. Figures 5(a), 5(b), and 5(c) show the cumulative
distribution of the nodes’ change rate in terms of percent-
age of the beacon intervals in which the nodes change their
addresses. By employing this metric we can assume that
the rate of sending beacons does not impact the change rate
of addresses, since sending beacons at higher rates increases
the chance for changes in addresses in a certain time period
but also increases the total number of beacons by the same
amount. The CDFs clearly indicates that PAD’s addresses

7During the calibration phase the beacon intervals are 1
second to increase our data set, as MoteLab and Indriya
limit the time period of experimental runs.

are significantly more stable than BVR’s.
Figure 6 shows address change rate and average hop dis-

tance from landmarks for each node in all three testbeds. It
can be seen that PAD addresses are quite stable even under
challenging conditions (such as in MoteLab), where BVR’s
addresses have significantly higher change rates. From this
we can conclude that instantaneous changes in link condi-
tions may lead to coordinate changes in the addressing mech-
anisms that assign static virtual coordinates to nodes at any
instant. However, the underlying patterns of these instanta-
neous changes show stable distributions even at small time
scales.

4.3.2 Address Monotony: Magnitude of Change
The magnitude of change determines the difference be-

tween a node’s virtual addresses. For example, if a node
changed its hop distance to a landmark from 4 to 6, its
magnitude of change (or range) would be 2. The magni-
tude of change in a node’s address is calculated by summing
up the magnitude of change in each address-vector. Fig-
ures 5(d), 5(e), and 5(f) show that the magnitude of change
in addresses is significantly smaller in the case of PAD (see
Figure 6 for magnitude of change in each node’s addresses).

PAD shows a smaller magnitude of change because it
sticks to the minimum hop distance path towards the land-
marks. However, in BVR the address changes are influenced
more by the ETX metric that favors long term stable links
to achieve stable addressing in the network. As a result, the
magnitude of change in addresses can be significantly higher.
For example, BVR may select a longer but stable path after
the previous path became invalid, whereas PAD’s distribu-
tion will always favor the path with smallest hop count (see
Section 3.2).
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Figure 6: Per-node analysis for address change rate, average hop distance from landmarks, and magnitude
of change in addresses for all the three testbeds. The results show significant improvements even under
challenging network conditions as experienced in MoteLab. The figures only show the data for the nodes
that were available for all our experiments.

The smaller range of addresses implies that the changes
in PAD addresses are gradual and a node’s virtual location
differs only minimally. Therefore, a packet routed towards a
certain node is still routed into the vicinity and has a higher
probability of reaching the target even if that has changed
its original address. However, in BVR routing to outdated
addresses may lead to routing failures due to nodes taking
significantly different virtual locations.

4.3.3 Node Dynamics
After evaluating the stability of PAD under different net-

work conditions, we now evaluate PAD from another per-
spective, i.e. by growing and shrinking the size of the net-
work to see how well PAD integrates additional nodes and
recovers from node failures. We use the TOSSIM [19] sim-
ulator to introduce such node dynamics in a simulated net-
work. We use a 100-node grid-like topology in TOSSIM
with 4 nodes configured as landmarks. Our first experiment
starts with 50 nodes, and 10 evenly distributed new nodes
are added to the topology after every ten minutes. Similarly,
our second experiment starts with 100 nodes, and 10 evenly
distributed nodes are deleted from the topology after every
ten minutes. Figure 7 shows our results where each data
point represents the addition (see Figure 7(a)) or deletion
(see Figure 7(b)) of 10 nodes. We can clearly see that PAD
achieves far less address changes in the network than BVR.
This is because the addition of a new node in PAD only
affects its address if it offers a smaller hop distance than
the ones reflected in the current PAD distribution. How-
ever, link estimation based addressing in BVR takes time to
incorporate new nodes and stabilize its link-metric and ad-
dressing across the network. Hence, these results prove the
flexibility of PAD for networks with rapidly growing and
shrinking numbers of participants.

4.3.4 Summary
Figure 8 summarizes our results regarding address stabil-

ity. PAD achieves 3 and 7 times more stable addressing than
BVR on Indriya and MoteLab, respectively. An alternative
way to formulate these results would be that BVR achieves
89% stability and PAD achieves 98.5% stability on MoteLab:
In every 1000 beacon intervals, a node changes its address
110 times in the case of BVR and 15 times in the case of
PAD. Similarly, the range of addresses is reduced by 3 to 12

times on different testbeds. Finally, PAD reduces the hop
distance from landmarks by 10–25%.

Concluding our comparative evaluation, we have seen that
PAD makes significant strides in enhancing the efficiency of
tree-construction based virtual addressing in wireless net-
works. It shows that stable addressing across the network
can be achieved without compromising the adaptability of
virtual coordinate based routing, which has been the trade
of existing routing approaches for a long time.

5. ROUTING ON PAD
After discussing the design and experimental evaluation

of PAD, we now present a simple routing strategy that can
operate on PAD’s addresses. While an advanced routing al-
gorithm is not part of our main research contribution in this
paper, we present a simple design here for completeness. So
our goal merely is to provide an address prediction mech-
anism and an adaptive routing strategy for the purpose of
evaluation to see potential benefits and drawbacks of PAD.
On the whole, we introduce some new flavors to make rout-
ing over PAD more adaptive and borrow some tactics from
the existing approaches as well.

PAD’s design in principle is independent from any specific
routing strategy that operates on virtual coordinate based
addressing mechanisms. Therefore, depending upon the ap-
plication requirements, any routing strategy that leverages
specific design objectives shall integrate well with PAD. Such
strategies could include energy efficient [13] and adaptive
mechanisms [2,22] to maximize routing throughput or mul-
tipath [16] and retransmission [17] mechanisms to achieve
reliable communications. The approach presented here is a
combination of both, quickly adapting to the underlying link
conditions while ensuring reliability by embedding retrans-
missions and link symmetry tests into the routing decisions.

There are two main elements of our routing approach: (1)
We need a mechanism to precisely predict the location of a
node in its coordinate distribution, and (2) we need to define
a distance function to select the best next hop for forward-
ing the packet towards a certain destination. While there
are well defined distance functions, such as the ones used
by BVR [14] and LCR [6], predicting a node’s location in
its address distribution is a task we need to deal with. Our
choices for both these elements are influenced by our pri-
mary design objective, i.e. simplicity. In Section 6 we show
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Figure 7: Node Dynamics: With PAD node dynam-
ics lead to significantly fewer address changes. Each
data point represents the addition or deletion of 10
nodes. In total, PAD results in 154 and 201 address
changes compared to BVR’s 508 and 593 changes
due to node addition and deletion, respectively.

that even this simple routing strategy over PAD’s addresses
can reduce the number of transmissions necessary for data
packets to reach their destination.

5.1 Address Prediction
In a first step we convert PAD’s distributions into mean-

ingful addresses that can be used to derive routing decisions.
In a first approach, we calculate the mean of each coordi-
nate distribution in a node’s address. Then, source nodes
can use the mean address (aggregated PAD address) to for-
ward the packet towards the destination in the virtual coor-
dinate space. In our prototype implementation a node thus
advertises these mean coordinates in its beacons as address
for routing purposes.

As an alternative prediction mechanism, we propose uti-
lizing coordinate variance information. The idea behind co-
ordinate variance is to describe a node’s location only with
respect to those landmarks with stable hop distances over a
certain time period. High coordinate variance correspond-
ing to a landmark signifies that a node’s hop distance from
that landmark varies significantly. Hence, its location with
respect to that landmark can be predicted less accurately.

5.2 Distance Function
To route packets, we need a distance function that, at

each hop, selects the best next hop for the packet to reach
its destination. We use a similar mechanism as BVR [14]
for routing except that a data packet now carries the mean
coordinates (derived from PAD addresses) of the destination
instead of BVR’s coordinates. At each hop, the destination’s
mean coordinates are compared with the coordinates of all
one-hop neighbors. The neighbor, whose coordinates are
most similar to the destination, is selected as the next hop
for the packet. This process continues until the destination is
reached or none of the one-hop neighbors further reduces the
remaining distance to the destination, i.e. the current node is
closest to the destination in terms of its virtual coordinates.
In that case, we use the fallback mode (cf. 6.1 or [14]).

In order to compare coordinates for selecting the best next
hop, we propose the combination of the sum distance and
the sum of the differences. The sum distance metric signifies
the distance of the shortest path (number of hops) from a
node S to a destination D via the landmark L. So the best
next hop T is the one that minimizes d̄Sk (T,D), the sum
distance between T and D, averaged over a set Ck(D) of the
k = |Ck(D)| landmarks closest to D [14]:

d̄Sk (T,D) =
1

k

∑
L∈Ck(D)

(h̄(T, L) + h̄(D,L)) (2)

with the mean distance of neighbor T to landmark L:

h̄(T, L) =
1

σ

σ∑
j=1

hj(T, L) (3)

where hj(T,Li) is the j-th entry in the history of length
σ of hop distances from node T for landmark L. Our imple-
mentation includes all landmarks of the network, i.e. k = λ.
We propose a combination of d̄Sk (T,D) and the absolute
component-wise difference (cf. Section 2.1):

d̄Bk (T,D) =
1

k

∑
L∈Ck(D)

|h̄(T, L)− h̄(D,L)| (4)

The idea is to choose the smaller one of both distances for
routing. Similarly, statistical measures, such as Kullback–
Leibler divergence, Hellinger distance, or Total variation dis-
tance are possible choices to select a next hop based on its
address distribution. However, utilizing these distance mea-
surements for routing over PAD is a research challenge in
itself, and a detailed exploration of the design space is be-
yond the scope of this paper.

To compare our approach with BVR, in our prototype
we only use d̄Bk (T,D) over the mean coordinates to analyze
the true impact of PAD on routing without changing the
decision process. Moreover, in our implementation of PAD,
a neighboring node is only considered a possible next hop if it
satisfies the following two conditions. (1) The link with that
neighbor has an age of 3, i.e. the last three beacon packets
were successfully received over that link. This approach is
derived from Alizai et. al [2]. (2) The link is symmetric.
Symmetric links are determined by including a list of all
current neighbors of a node in its beacon packets (see Section
3.3).

6. ROUTING RESULTS
We compare our simple routing strategy over PAD with

S4 and BVR. We use number of transmissions as our metric
for comparison because it is the prevalent routing metric in
energy constrained sensornets [2, 17,22,26].

6.1 Experimental Setup
Our experimental setup is similar to the one for PAD eval-

uation in Section 4, except that now a set8 of randomly se-
lected sender-receiver pairs is defined, and each sender is
to send a minimum of 1000 packets to its destination, one
sender at a time. All the data traffic is sent after an ini-
tialization period of 15 minutes. The sender nodes are only
informed once about the destination’s virtual address at the
beginning of the packet burst. Moreover, the sender and re-
ceiver nodes might be landmarks themselves as well. In the
case of packet loss, we allow five routing level retransmis-
sions9 for each possible next hop, both in BVR and PAD.
Each experimental run lasts for 30 minutes on MoteLab and
2 hours on TWIST.

Our prototype implementation of routing on PAD shares
another aspect with BVR, i.e. the fallback mode and scoped

8The parameters of the routing test, such as sender-receiver
pairs and the number of packets, are strongly dependent on
the maximum time for experiments allowed on MoteLab.
9This is the default retransmission count in the original im-
plementation of BVR.
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Figure 8: PAD achieves 7 times more stable addressing than BVR under MoteLab’s challenging network
conditions (notice the logarithmic scale). The error-bars represent the stdev of the nodes.

flooding (see [14] for details). The idea of the fallback mode
is that in case a packet reaches a dead end, it is forwarded to
the landmark closest to the destination. In case of PAD, as it
does not maintain any explicit parents, routing towards the
closest landmark is performed by selecting a neighbor that
offers the minimum hop distance towards the landmark clos-
est to the destination and qualifies the prerequisites such as
link age and symmetry discussed in Section 5.2. Each node
receiving the packet on the way to the landmark first tries
the normal greedy routing mode and continues in fallback
mode in case this fails again. If the packet reaches the land-
mark, this initiates a flooding of the packet with the scope
as high as the path length hop distance from the landmark
to the destination node (revealed by the destinations ad-
dress). Similar to BVR, this mechanism incorporates the
hope that the destination will receive the packet at least
after the flooding scope has been reached. The inclusion of
scoped flooding in PAD is not a way to enhance performance
but to provide a reliable backup path and to complete the
implementation for a fair comparison with BVR and S4.

6.2 Number of Transmissions
As our prototype implementation is for sensornets, our

key performance metric is the number of transmissions re-
quired by a packet to reach its destination. Other factors
like throughput are not considered here.

Figures 9(a) summarizes our results across the three test-
beds. To observe the stability of results over time on Mote-
Lab, we repeated our experiments 5 times for each protocol.
The bars in Figure 9(a) show the average of 5 experiments
while the error-bars show the highest and the lowest results
among these experiments. The results clearly indicate that
on MoteLab PAD outperforms both S4 and BVR by decreas-
ing the number of transmissions by at least 26%. However,
due to very stable link conditions on TWIST, the margin of
improvement is just 7%. Figure 9(b) shows the CDF for the
number of transmissions and Figure 9(c) details the results
for a subset of sender-receiver pairs on MoteLab.

To understand the sanity of these results, we need to re-
visit a few mechanisms of S4. First, S4 is very conservative
in its structure and does not rapidly adapt its topology to
the changing underlying conditions in the network. There-
fore, it employs retransmission of beacon packets to sus-
tain its hybrid topological structure and maintain a small
routing stretch. Second, S4 uses a link quality threshold of
PRR = 30% (calculated using a passive WMEWMA estima-
tor) to accept a link into its routing process. Using such links

in a network dominated by low-quality links, without assess-
ing their quality in the short-term, understandably decreases
the number of routing choices and increases the number of
transmissions in the network. In contrast, PAD incorpo-
rates rapidly changing conditions in its fuzzy addresses and
assesses links based on very recent transmission conditions.
Both these mechanisms of S4 explain the diversity of the
results across different testbeds (cf. Figure 3). For exam-
ple, the margin of improvement is quite high on MoteLab,
whereas on TWIST the results are very comparable for all
the three protocols.

We also evaluated the impact of landmark failures on
transmission characteristics of PAD, such as the fraction of
routes that directly arrived at the destination compared to
the fraction of routes that required scoped flooding. Our
results show similar trends as BVR’s results [14]. Moreover,
the routing success rate for all three protocols is quite high
(> 95%) in static testbed settings and are in alignment with
S4’s results [21]. This is because PAD, BVR, and S4 are all
equipped with strong retransmission (5 retransmissions for
each possible next hop) and backup mechanisms to achieve
a high level of delivery reliability.

6.3 Communication Overhead
Here we take a closer look at PAD’s communication over-

head. Against the baseline of BVR, PAD introduces larger
node addresses as they contain a node’s coordinate history
encoded as a probability distribution. The size of PAD’s
addresses heavily depends on the number of landmarks λ
and the distribution size δ (see Section 3.2 for details). The
latter can be measured in terms of the number of hop-count
values that have a non-zero frequency and therefore have
to be included in the distribution. So λ landmarks and δ
non-zero hop counts in the distribution result in an address
length of λ · 2 · δ bytes. These larger node addresses in PAD
impact the following three communication scenarios:
Local beacon updates: In this case, PAD allows to trade off
transmission overhead against memory overhead. (1) Either
a node’s PAD address is included in its beacons, which in-
creases the transmission overhead. (2) Or only the node’s
most recent coordinates are transmitted such that the neigh-
bors that receive the beacons can compute the node’s PAD
address themselves (c.f. Section 3.3). This increases the
CPU and memory overhead but does not introduce any
transmission overhead against the baseline of BVR’s beacon
header. Moreover, one has to consider that PAD saves the
transmission overhead of all the additional bytes appended
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Figure 9: A simple routing strategy over PAD reduces the number of transmissions in the network when
compared with BVR and S4. The bars represent the average of 5 experiments and the error-bars show the
highest and the lowest results.

with each data and beacon packet by BVR’s link estimator.
Global address update: This update is required in the net-
work’s address database whenever a node changes its PAD
address. The database interaction is beyond the scope of
discussion in this paper. However, to put this overhead esti-
mation into perspective, one has to consider that PAD needs
significantly less address updates.
Data transmissions: Finally, each data packet needs to carry
the destination address in its header. In our current im-
plementation, we are only using the mean for each coordi-
nate distribution in a PAD address. Hence, in its current
state, PAD does not introduce additional overhead against
the baseline of BVR’s data-packet headers.

7. DISCUSSION AND RELATED WORK
The need for location independent addressing and routing

schemes has long been realized since the emergence of mul-
tihop wireless communication systems such as ad hoc, mesh
and sensor networks. These schemes are known for their
simplicity, self-configurability, scalability, and for maintain-
ing a constant routing state on each node in the order of
the one-hop neighborhood size, making them particularly
appropriate for resource-constrained sensornets. PAD has
three complementing features that distinguish it from con-
ventional location free addressing and routing approaches:
(1) It assigns fuzzy addresses to nodes instead of sharp co-
ordinates by analyzing link variability patterns without link
estimation and explicit trees in the network, (2) it decou-
ples addressing from routing allowing for quick adaptation
of routing algorithms based on recent network conditions
without compromising the stability of addressing, and (3) it
embeds the information about all possible paths leading to
a node in its address.

For our prototype evaluation we used BVR’s greedy rout-
ing mechanism. However, we believe that the same ideas of
probabilistic addresses can be used with S4’s inter-cluster
routing approach as well. The functioning and performance
of S4 is strongly dependent on a stable topology in which
nodes can accurately estimate their distance from the near-
est landmarks. To achieve this high level of stability and
resilience S4 employs costly mechanisms, such as Resilient
Beacon Distance Vector (RBDV), which retransmits a broad-
cast beacon until a specified number of neighbors have for-
warded the same beacon. As a result, as we observed in
Section 6, S4 can accomplish its goal – achieving a small
routing stretch – without excessively increasing the num-

ber of transmissions only in very stable network conditions
(e.g. TWIST). However, in testing conditions (e.g. Mote-
Lab), S4 has to pay a high price of increased number of
transmissions in the network for maintaining smaller rout-
ing stretches. PAD tolerates the need to maintain such a
stable and resilient topology by assigning fuzzy locations to
nodes and by allowing to adapt routing to very recent link
conditions.

LCR [6] and BVR [14] are two very similar and notable
implementations of virtual coordinate based addressing in
sensornets. Both provide extensions based on link estima-
tion for stable addressing in the presence of unreliable links
in wireless networks. However, in Section 4.3.1 we already
observed that long-term link estimation suffers in challeng-
ing network conditions experienced on MoteLab, as BVR’s
addressing showed instability and requires frequent address
updates throughout the network. GEM [23] introduces a
graph-based scalable addressing scheme. However, it em-
ploys a complex recovery process, in which a potentially
large number of nodes in the system must recompute their
addresses in case of node failure or radio link deterioration.
In contrast, PAD provides an elegant solution to maintain
address stability even in lossy networks.

Overall, PAD provides a flexible addressing platform that
can host different routing strategies depending on applica-
tion requirements while maintaining the scalability advan-
tages of tree-based routing infrastructures.

8. CONCLUSION AND FUTURE WORK
We presented a robust and scalable addressing mechanism

for wireless networks. When compared with other address-
ing mechanisms, PAD increases the stability and reduces
the magnitude of change in addresses. An adaptive rout-
ing strategy over PAD allows quick adaptation of the rout-
ing paths based on very recent link conditions. Our results
from testbed environments demonstrate that even an un-
optimized version of routing over PAD can enhance packet
delivery over multiple hops. Similarly, our tests under chal-
lenging environments such as in MoteLab show that PAD
can realize its advantages in real world deployments.

We are still in the early phases of investigating suitable
routing algorithms and distance functions, such as Gaussian
distance, that can operate on PAD’s addresses even more
efficiently. Besides link dynamics and node failures, we are
also analyzing how well PAD can support other sources of
network dynamics such as node mobility. Finally, we want



to extend this work towards 802.11 networks to show that
our approach has a broader relevance in the wireless domain.
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