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Abstract
Background subtraction is often the first step of many

computer vision applications. For a background subtraction
method to be useful in embedded camera networks, it must
be both accurate and computationally efficient because of
the resource constraints on embedded platforms. This makes
many traditional background subtraction algorithms unsuit-
able for embedded platforms because they use complex sta-
tistical models to handle subtle illumination changes. These
models make them accurate but the computational require-
ment of these complex models is often too high for em-
bedded platforms. In this paper, we propose a new back-
ground subtraction method which is both accurate and com-
putational efficient. The key idea is to use compressive sens-
ing to reduce the dimensionality of the data while retain-
ing most of the information. By using multiple datasets, we
show that the accuracy of our proposed background subtrac-
tion method is comparable to that of the traditional back-
ground subtraction methods. Moreover, real implementation
on an embedded camera platform shows that our proposed
method is at least 5 times faster, and consumes significantly
less energy and memory resources than the conventional ap-
proaches. Finally, we demonstrated the feasibility of the pro-
posed method by the implementation and evaluation of an
end-to-end real-time embedded camera network target track-
ing application.
Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed Systems
General Terms

Algorithm, Experimentation, Performance
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1 Introduction
Many recent real-time computer vision applications, such

as object tracking, in embedded camera (or video sensor)
networks require significant computation and energy re-
sources. Robust background subtraction is typically the
dominant factor. The aim of background subtraction is to
detect whether the foreground is present in a newly acquired
video frame. This is usually realised by using the knowledge
of earlier video frames to learn a background model, and
then applying statistical tests to decide whether the newly
acquired frame is different from the background. A chal-
lenge for background subtraction is to differentiate between
the foreground and subtle changes in the background, caused
by events like illumination changes or moving tree branches.
Moreover, a new challenge arises when background sub-
traction is to be used in embedded camera networks. The
background subtraction algorithm must be computational ef-
ficient due to resource constraints of embedded platforms. In
this paper, we present a new background subtraction method
which is both accurate and computational efficient.

As mentioned earlier, one challenge for background sub-
traction is to differentiate the foreground from subtle changes
in the background. This problem can be solved by modelling
the background by some complex statistical models, such
as, kernel density [11] or Gaussian density [29, 13, 26, 15]
models. Among these, the mixture of Gaussians (MoG) [26]
model is particularly popular because of its ability to deal
with subtle illumination changes. The MoG method has been
shown to be of good accuracy [2]. However, a complex sta-
tistical model can be a double-edged sword. On one hand, it
gives good accuracy. On the other hand, it requires a lot of
computational cost which makes real-time background sub-
traction on embedded platform challenging, if not infeasible.
In this paper, we propose to resolve this tension by using the
theory of compressive sensing.

Compressive sensing is a recently developed theory in
signal processing. One of the key ideas behind compres-
sive is that, if a signal x (or its coefficients in some domain)
from a high dimensional space is sparse (or compressible),
then it can be projected into a much lower dimensional sig-
nal y without losing much information. Therefore, instead of
working in the high dimensional space, one can work on y in
a much lower dimensional space, so as to achieve computa-
tional efficiency, as well as accuracy.

The contributions of this paper are four folds:



• We propose a novel background subtraction method
that uses both compressive sensing (for dimensional-
ity reduction) and MoG (for accuracy). We call it CS-
MoG.

• We show, by using multiple real world datasets, that the
accuracy of CS-MoG is comparable to MoG. We also
show that CS-MoG is significantly more accurate than
a number of other background subtraction methods.

• We implement both CS-MoG and MoG on an embed-
ded platform, and show that CS-MoG is at least 5 times
faster than MoG, and consumes significantly less en-
ergy and memory resources.

• We implement and evaluate an end-to-end multiple
camera object tracking application based on CS-MoG,
which demonstrates the feasibility of CS-MoG to oper-
ate in real-time scenario on embedded platforms.

The organisation of this paper is as follows. In Section
2, we provide technical background on compressive sensing
and MoG. We then present our proposed method CS-MoG in
Section 3. In Section 4, we evaluate the performance of CS-
MoG, MoG and a number of other background subtraction
methods. Section 5 presents results on running CS-MoG and
MoG on an embedded camera platform. Section 6 presents
related work and the conclusions are in Section 7.

2 Technical Background
In order to make this paper self-contained, this section

provides technical background on compressive sensing and
background subtraction using MoG.
2.1 Compressive Sensing

Compressive sensing [5, 9] is a recently developed
method in signal processing. It proposes a method to re-
cover a high dimension sparse signal from a small number
of measurements. In order to explain compressive sensing,
we consider a set of M simultaneous linear equations in N
unknowns, written in matrix form:

y = Φx (1)

where x ∈ RN , y ∈ RM and Φ ∈ RM×N . The vector x is as-
sumed to be unknown and the goal is to determine x. Both Φ

and y are assumed to be known. The matrix Φ is a measure-
ment matrix and y contains M measurements. Note that the
measurements are linear combinations of the unknown vec-
tor x with the weights of the linear combinations specified
in the matrix Φ. Compressive sensing is interested in the
case where measurements are expensive to performed, so it
is desirable to make M small compared with N. This means
the system of linear equations is under-determined because
M < N. We know from linear algebra that it is impossible to
exactly recover (or solve for) x unless we impose additional
conditions on x.

We now impose the requirement that the vector x is
sparse. A vector x is said to be sparse if it contains very few
non-zero elements. Let H denote the number of non-zero el-
ements in x, then x is sparse if H � N. If H > M, then it is
still impossible to recover x from y because there are more
unknowns than equations. We therefore assume H ≤M from
now onwards.

Let us for the time being assume that we know the po-
sitions of the H non-zero elements in x but we do not know
their values. In this case, we can re-write (1) as y= Φ̃x̃ where
x̃ ∈ RH contains the unknown non-zero elements of x and Φ̃

contains the columns in Φ corresponding to the non-zero el-
ements of x. It is now possible to exactly recover x̃ from y if
Φ̃ has rank H.

In general, the number of non-zero elements, as well as
their positions and values, are unknown. It may still be possi-
ble to recover x but we have a combinatorial problem (in fact
NP-hard) because the positions of the non-zero elements are
not known. A striking result in compressive sensing is that it
is still possible to recover x with high probability by solving
the following `1 optimisation problem (which is solvable in
polynomial time):

x̂ = arg min
x∈RN
‖x‖1 subject to y = Φx (2)

provided that the matrix Φ satisfies the Restricted Isometry
Property (RIP) [4] and M = O(H log(N/H)). Another strik-
ing result is that a number of classes of random matrices sat-
isfy the RIP. For example, Φ satisfies the RIP if each element
of Φ is ±1 with equal probability, i.e. symmetric Bernoulli
distribution.

In the terminology of compressive sensing, the matrix
Φ∈RM×N , where M < N, is called a projection matrix. This
name is used because the operation of transforming a higher
dimensional vector into a lower dimensional vector is called
a projection. In this case, the projection matrix Φ projects
the higher (N) dimensional vector x onto the lower (M) di-
mensional vector y via the matrix multiplication y = Φx. We
will refer to the elements in y as projection values.

Given that it is possible to recover x from y, an intuitive
implication of the result in compressive sensing is that the
projection values y contains almost all the information from
the sparse vector x. It is also important to point out that
proper choice of projection matrices plays a significant role
in this result. In particular, matrices generated by symmet-
ric Bernoulli distribution, which obey RIP, are able to “pre-
serve” the information of x in y.

We have described the results on compressive sensing for
sparse vectors x. The result can be extended to compressible
vectors x in some transform domains, e.g. Discrete Cosine
Transform (DCT) or wavelet domain [20]. We will not de-
fine compressibility precisely here but we instead state that
it is a well known fact in image compression that blocks of
pixels (typically 8×8 blocks of pixels expressed as a 64×1
vector) is compressible in DCT or wavelet domain.

In order to explain the intuition behind our work, we first
recall the following two facts: (1) Blocks of pixels in an im-
age are compressible; (2) Compressive sensing says that if a
vector is compressible, then most of the information in the
vector is also contained in its projection values. These two
statements together imply that the information in a block of
pixels is also contained in its projection values. Therefore,
instead of using all the pixels in a block to decide whether
it is foreground or not, we make the decision using the pro-
jection values of the pixels in the block because they contain
almost the same information. This allows us to work with



data of significantly lower dimension, e.g., 8 projection val-
ues instead of 64 pixels. We will show that this dimensional-
ity reduction results in a computational efficient background
subtraction algorithm with little loss of accuracy.
2.2 Mixture of Gaussian Models for Back-

ground Subtraction
In [26], the authors proposed to use a MoG to model the

background in background subtraction. In this method, the
history of each pixel is modelled by a MoG consisting of K
(typically chosen to be 3-5) Gaussian distributions. When a
new video frame is presented, each pixel is compared with
the MoG model for the corresponding pixel. If the new pixel
value is within 2.5 standard deviation of any one of the K
Gaussian distributions making up the MoG, then the pixel
is considered a background candidate. A background candi-
date, afterwards, should be checked whether it belongs to a
background distribution. The MoG for each pixel is updated
for each frame. This update allows MoG to adaptively deal
with noise and illumination changes which fixed threshold
cannot handle.

The updating of the MoG model for a pixel is as follows.
At time t, the MoG of each pixel consists of K Gaussian
distributions. The k-th (1 ≤ i ≤ K) Gaussian is assigned a
weight of ωk,t . If the new pixel value does not match any
of the K Gaussians, the least probable distribution will be
replaced by a new distribution with high variance and low
weight; otherwise, the weight for the k-th Gaussian is up-
dated as:

ωk,t+1 = (1−α)ωk,t +α(Gk,t+1) (3)

where α is the learning rate and Gk,t+1 is a binary variable
whose value is 1 if the k-th Gaussian matches the new pixel
and is zero otherwise. If the new pixel value xt+1 at time
t +1 is accounted by, say the k-th, Gaussian distribution, its
mean µk,t and variance σ2

k,t will be updated as:

µk,t+1 = γxt+1 +(1− γ)µk,t (4)

σ
2
k,t+1 = γ(xt+1−µk,t+1)

2 +(1− γ)σ2
k,t (5)

where

γ =
1√

2πσk,t+1
exp

(
−
(xt+1−µk,t+1)

2

2σ2
k,t+1

)
(6)

The probability that one of these K Gaussian distributions
is the current background model is determined by the ratio
of ωk,t/σk,t at the current time t. When a new pixel value is
available at time (t + 1), it will be checked if it belongs to
any of the K distributions. If a new pixel does not match any
of the K distributions, the least probable distribution will be
replaced by a new distribution with mean equals to the new
pixel value, and initial variance and weight. If the new pixel
value matches any one of the K Gaussian distributions that
models the pixel, the parameters of these distributions should
be updated. After updating, the current K Gaussian distribu-
tions are sorted using the updated ωk,t+1/σk,t+1. According
to this ratio and the prior information about the portion of
the pixels accounted for the background (decided by the ra-
tio of the background in camera’s view), the number of back-

ground distributions in these K distributions is decided as,

Nb = argmin
n
(

n

∑
k=1

ωk > Thb) (7)

where Thb is the portion of pixels accounted for by the back-
ground. This equation means that the first Nb distributions
are chosen as the current background model. Therefore, the
current pixel values that are located within 2.5σ of these Nb
distributions will be marked as background. With the multi-
modal distributions, MoG can accommodate multiple back-
ground scenario well.

3 CS-MoG
The aim of this section is to describe CS-MoG, which is

an accurate but yet computational efficient background sub-
traction method. The MoG background subtraction method
(reviewed in Section 2.2) is able to deal with subtle changes
in background because it models each pixel by a mixture
of 3−5 Gaussian distributions. However, this also makes
MoG computational intensive to be used on embedded plat-
forms. In order to simultaneously realise accuracy and com-
putational efficiency, we propose CS-MoG. CS-MoG uses
compressive sensing, which is what CS stands for, to reduce
the dimensionality of the data while retaining much of the
information. We then apply MoG to the reduced dimension
data for background subtraction. This section is divided into
two parts. We describe the steps of CS-MoG in Section 3.1
and justify the use of Gaussian mixture models for reduced
dimension data in Section 3.2.

3.1 Steps of CS-MoG
Our method is divided into three steps. In the first step,

the image is segmented into blocks of 8× 8 pixels. (Note:
We have experimented with different block sizes and they
give similar results. We therefore assume a block size of
8×8 throughout this paper. The default block size in JPEG
is also 8×8.) Projections based on compressive sensing are
then computed for each block. In the second step, each pro-
jection value is modelled as a MoG to determine if the block
contains some part of the foreground. We then fuse the re-
sults from all the projection values from a block to determine
if it is a background or foreground block. The pixels in a
background block are all background but the pixels in a fore-
ground block can include both background and foreground.
We call the second step foreground detection. The third step,
which will be referred to as foreground refinement, is to iden-
tify which pixels in a foreground block is foreground. Thus,
at the end of these three steps, each pixel in the image is la-
belled either as a foreground or background. Figure 1 shows
the flow chart of the CS-MoG algorithm. Each dashed line
box in the flow chart corresponds to a step of the algorithm.
We will now describe each step in details.
3.1.1 Block Projections

Prior to performing background subtraction, we carry out
a pre-processing step where we convert the video frames
from RGB format to grey scale or intensity. This pre-
processing step applies to all the background subtraction
methods in this paper. The reason we do this is hardware
limitation. We will see in Section 5 that the original MoG



Figure 1. Flow chart of the Algorithm. Different components are grouped by dashed frames in different color

algorithm (described in Section 2.2) can only process on av-
erage about 3.6 grey-scale frames per second on the Blackfin
BF-537 DSP camera while our proposed CS-MoG is able to
process 17.7 frames per second. Note that it is straightfor-
ward to extend our proposed algorithm to RGB frames.

After pre-processing, we start the background subtraction
process. The first step of CS-MoG is to divide the image into
blocks of 8×8 pixels. After that, for each block, we form a
64×1 vector of the pixel values in a block and compute ran-
dom projections of the vector in the same way as compres-
sive sensing. The projection matrix we utilise is randomly
generated at the beginning of a video sequence. Once it has
been generated, the same projection matrix is used for each
block for the entire video.

We consider two types of projection matrices, which we
will call unbalanced matrices and balanced matrices. Each
element of an unbalanced projection matrix is generated by
a symmetric Bernoulli distribution of ±1. A balanced pro-
jection matrix also consists of ±1 at equal probability but in
addition we require that each row must contain equal number
of 1’s and -1’s. Therefore, the sum of the elements in each
row of a balanced matrix is always zero. We will refer to
CS-MoG that uses a balanced matrix (resp. unbalanced ma-
trix) as CS-MoG-Balance (CS-MoG-Unbalance). In partic-
ular, we will show experimentally and analytically that CS-
MoG-Balance gives better performance.

Since the operations to be carried out on each block of
8×8 pixels are identical, we will describe the operations on a
block. We first stack the pixel values of the n = 64 pixels in a
block into a n×1 vector that we call x. We assume that a m×
n projection matrix Φ (which can be balanced or unbalanced)
has also been generated. Note that m, which is the number of
projection vectors, is a design parameter which we will study
later on in section 4.2. Inspired by compressive sensing, we

compute the projection:

y = Φx (8)

The m×1 vector y contains the m projections values for this
block. Given that the vector x (which contains the pixel val-
ues in a block) is compressible (Note: We know from im-
age compression that the pixels in a block is compressible
in DCT or wavelet basis [20].), we expect from compressive
sensing that, for properly chosen value of m and projection
matrix Φ, the m projection values in y contain almost all the
information in x. This means that one can use the vector y,
instead of x, to decide whether the block is foreground or not.
Furthermore, we expect m� n which means that we will be
working with data of lower dimension. In fact, the results in
section 4.2 show that m = 8 projections per block give good
accuracy for background subtraction.
3.1.2 Foreground Detection

After computing the projections for each block, we need
a method to determine whether this block contains some part
of foreground according to projection values. To build a ro-
bust decision, we use MoG for the foreground detection step.

As we mentioned earlier, MoG can only process 3.6
frames per second on the Blackfin platform. In fact, the ex-
periments in Section 5 shows that the Gaussian mixture com-
putations take up almost all the processor resources. There-
fore, computation efficiency can be improved if we can re-
duce the total number of Gaussian distributions that we use
per frame.

Our main idea is to model each projection value by a mix-
ture of K Gaussian distributions, which is similar to what
MoG does for each pixel. (The choice of the parameter K
will be discussed in Section 3.2.). Furthermore, we model
each projection value independently and do not consider pos-
sible correlation between them. Following MoG, we con-
sider a projection value to be a background projection value



candidate if it is within 2.5 standard deviations of one of the
K Gaussian distributions that models the projection value;
otherwise it is a foreground projection value. We apply this
method to each of the m projection values in each block.

It is likely that the result of applying MoG to the m pro-
jection values will result in a mixture of background and
foreground projection values. We therefore need a method
to fuse the results. A number of fusion strategies are possi-
ble. Let us assume that the MoG test results in f foreground
projection values out of all m projection values in block. We
evaluated three fusion strategies: (1) Majority voting: the
block is foreground if f > m

2 ; (2) Max voting: the block is
foreground if f = m; and (3) Min voting: the block is fore-
ground if f 6= 0, i.e. f ≥ 1. Our evaluations (not shown here
due to lack of space) show that min voting gives the best
result. In the following, we will assume min voting is used.
3.1.3 Foreground Refinement

The foreground detection step so far works on the reso-
lution of a block. This resolution may be sufficient for some
applications but sometimes it is desirable to work with res-
olution at pixel level. We show how we can do that in this
foreground refinement step.

We will assume that if a block is classified as the back-
ground, then all pixels in the block are background pixels.
However, we cannot do the same for a foreground block. It
is possible for a foreground block to contain both foreground
and background pixels. This is especially true for those fore-
ground blocks lying at the edge of the foreground. This
means that we only need to work further on the foreground
blocks. Since a video frame is expected to consist mainly of
background blocks, the number of foreground blocks that we
need to work with is likely to be small.

In order to determine which pixels in a foreground block
is in fact foreground without introducing significant compu-
tation burden, we build a simple background learning strat-
egy for each block. Our simulation and experiment results
demonstrate that this simple method is accurate. Our pixel-
scale background learning method can be described as fol-
lows. If a block Xb

t+1 is marked as the background, then
its pixel values are incorporated into the current background
model Bt (at time t) of the block by using a learning rate α:

Bt+1 = αXb
t+1 +(1−α)Bt (9)

where Bt+1 is the updated background model.
If the block X f

t+1 is marked as a foreground, then the
background model Bt of this block will be updated with a
background mask Mt+1

Bt+1 = (αX f
t+1 +(1−α)Bt)Mt+1 (10)

The background mask consists of indices of pixels which
satisfy the following condition:

Mt+1 = Index[(X f
t+1−Bt)< δ] (11)

where δ is the threshold that accommodates a certain extent
of noise and illumination change. This threshold is speci-
fied by the applications. For the datasets used in this paper
and the experiments, a threshold around 10 (the pixel value
is between 0 to 255) is suitable. A larger threshold should

be applied if the illumination change is more severe. The
function of the background mask is to prevent the foreground
mistakenly being incorporated into the background model so
that the background model for the foreground pixels at time
(t + 1) will remain the same as that at time t. With these
background model update processes, we are able to realise
pixel-level background subtraction.

This completes the description of the three steps. We
have evaluated this model on multiple datasets and found its
accuracy to be good.

3.2 Parameter Choice for CS-MoG
The CS-MoG method that we have described comes with

a number of different parameters. Two key parameters are
the number of projections per block and the number of Gaus-
sians K to model a projection value. We will study the num-
ber of projections later on in Section 4. In this section, we
look at the choice of the parameter K which is the number
of Gaussian distributions being used to model a projection
value. In particular, we will show that a small value of K = 3
is needed. This is very encouraging because a small K means
less computation burden.

Given that the same set of operations are applied to all
blocks, it is sufficient to consider a block and the projection
value obtained by one projection. Therefore, for this discus-
sion, we consider a generic 8× 8 block and we assume the
value of i-th pixel xi (1 ≤ i ≤ 64) is modelled by a random
variable Xi. The projection value v is therefore a random
variable V = ∑

64
i=1 βiXi where βi = ±1 are the elements of a

generic projection vector that we use in CS-MoG.
Many papers on background subtraction assume that

each pixel is modelled by a Gaussian distribution. Let
us for the time being assume that the random variable Xi
is Gaussian distributed with mean µi and variance σ2

i , i.e.
Xi ∼ N (µi,σ

2
i ). Since projection is a linear operation, stan-

dard result on Gaussian distribution says that the projec-
tion value v is also Gaussian distributed. In fact, V ∼
N (∑n

i=1 βµi,∑
n
i=1 σ2

i ). Therefore, if we assume that the
pixel values are Gaussian distributed, then we should choose
K = 1 in CS-MoG.

However in [26], the authors state that it is not sufficient
to model a pixel by a Gaussian distribution because such
models can only deal with static background with illumina-
tion change. In order to be able to accommodate complex
background with multiple surfaces and illumination changes,
we need to model each pixel by a mixture of Gaussians be-
cause these illumination changes cannot always be captured
by the same Gaussian. This is precisely the motivation for
MoG background subtraction method in [26]. This also im-
plies that a better pixel model is given a mixture of Gaus-
sians, rather than a single Gaussian.

Let us consider the case that each random variable Xi is
a mixture of Q Gaussians. Since the probability distribution
of a sum of random variables is equal to the convolution of
the probability distributions of the random variables, it can
be shown that the random variable V is still a mixture of
Gaussians. However, the number of Gaussians needed can be
as large as Q64. The use of such a large number of Gaussians
is certainly not practical. We therefore investigate whether



it is possible to use a small number of Gaussians to model a
projection value.

For our investigation, we use three datasets, or video se-
quences. (The details of these datasets are described in Sec-
tion 4.1.) The same method of investigation is applied to
all three datasets. Consider a video sequence consisting of
F frames, indexed by f = 1, ...,F . Each frame consists of B
8×8-block, indexed by b= 1, ..,B; it is assumed that the b-th
block is always located in the same location within a block.
We then generate P projection vectors, which are indexed by
p = 1, ...,P. By computing the projection values of the p-th
projection vector with the b-th block in frames f = 1, ...,F ,
we obtain a sequence of F projection values. We do this
for each combination of p and b, giving altogether BP se-
quences of projection values per dataset. Figure 2 shows the
histograms and fitted probability densities of three different
sequences of projection values. Visual inspection suggests
that these three sequences can be modelled by a probability
distribution with one to three Gaussians.

(a) Sequence 1: Histogram (b) Sequence 1: Fitted probability
density

(c) Sequence 2: Histogram (d) Sequence 2: Fitted probability
density

(e) Sequence 3: Histogram (f) Sequence 3: Fitted probability
density

Figure 2. This figure shows distributions of three se-
quences of projection values. Figures on each row corre-
spond to one sequence with 3000 projection values. The
x-axis is the projection value. The figure on the left shows
the histogram, i.e. y-axis is frequency of each bin. Figures
on the right show the fitted probability density.

In order to systematically determine the number of Gaus-
sian distributions needed to approximate a sequence of pro-
jection values, we use the kernel density estimation method
in [3] to calculate the number of Gaussians required. We do
this for all three video sequences and the results are shown
in the table 1. The results show that, for each dataset, over
99.9% of the projection value sequences can be modelled by
no more than 3 Gaussians. We therefore choose the value
of K to be 3 in our CS-MoG method. Note that this is a
very encouraging result, especially if we want to implement
our CS-MoG method on embedded platforms. Consider the
original MoG where each pixel is modelled by 3 Gaussians,
which means we need 64× 3 Gaussians per block. For our
CS-MoG, we show later that 8 projections per block is suf-
ficient; since each projection value needs 3 Gaussians, the
number of Gaussians needed per block is 8× 3, which is a
reduction by a factor of 8.

One Two Three More
Datasets 1 99.94 % 0.06 % 0% 0%
Datasets 2 89.58% 10.06% 0.35% 0.01%
Datasets 3 76.28% 19.12% 3.65% 0.095%

Table 1. Number of Gaussians required for approximat-
ing distribution of projection.

4 Performance Evaluation
4.1 Goals, Metrics and Methodology

The goals of our evaluation is to demonstrate whether
CS-MoG 1) achieves the best subtraction accuracy among
MoG-based efficient background subtraction algorithms, 2)
improves the performance of background subtraction against
another compressive sensing inspired algorithm CSBS [6],
and 3) obtains a better capability to deal with illumination
change especially with balanced matrix.

We use three different datasets to evaluate the perfor-
mance of various background subtraction algorithms. The
first dataset (dataset 1) is a private dataset from our lab-
oratory for monitoring a footpath. Datasets 2 and 3 are,
respectively, VS-PETS’2003 and PETS’2001, from http:
//www.cvg.rdg.ac.uk/. Dataset 2 is on a football match
while dataset 3 is from monitoring people and vehicles out-
door.

Given that the spirit of CS-MoG is to use projections
to reduce the dimension of input to MoG, we consider two
other methods to realise reduction in dimension but not us-
ing projections. The first method is called Random Sam-
pling MoG (RS-MoG). RS-MoG is identical to CS-MoG ex-
cept that RS-MoG does not compute m projections. Instead,
RS-MoG uses m random pixels in a block to decide whether
that block is foreground or not. The second method is called
Mean-MoG. For Mean-MoG, we divide each block into m
sub-blocks and compute the mean pixel values of each sub-
blocks. These mean values are input to MoG for foreground
detection. Note that CS-MoG, RS-MoG and Mean-MoG
use, respectively, m projections, m pixel values and m mean
values per block for foreground detection. The dimensional-
ity reduction for these methods are therefore identical.

http://www.cvg.rdg.ac.uk/
http://www.cvg.rdg.ac.uk/


(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 3. ROC curves for CS-MoG-Balance for different number of projections for the three datasets.

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 4. ROC curves for different MoG-based methods for the three datasets.

In this paper, we regard a pixel in the foreground
(resp. background) as a positive (negative) event. A false
positive means a genuine background pixel is incorrectly de-
tected as a foreground. We express the performance of var-
ious methods by using the receiver operating characteristic
(ROC) curve. The vertical axis of the ROC curve is the prob-
ability of detection (PD) which is the total number of true
positives divided by the number of foreground pixels (posi-
tive events) in ground truth. The horizontal axis of the ROC
curve is the rate of false alarm (FA) which is the number of
false alarms (or false positives) divided by the number of
background pixels (or negative events) in ground truth.

4.2 Impact of Number of Projections on the
ROC for CS-MoG Balance

We first evaluate the impact of the number of projec-
tions on the ROC for CS-MoG-Balance. We apply CS-MoG-
Balance to 400 consecutive video frames in each dataset. For
each dataset, we use the following number of projections: 2,
4, 8, 12 and 16. The results for the three datasets are shown in
Figure 3. We can make two observations from these figures.
Firstly, the performance of CS-MoG-Balance improves with
an increasing number of projections. Secondly, the perfor-
mance improvement diminishes when 8 or more projections
are used. These observations can be explained by the fact
the amount of information increases with the number of pro-
jections. However, most of the information in a block can
be captured by 8 projections. Given these observations, we
will use m = 8 projections for CS-MoG for the rest of this

performance evaluation.

4.3 Performance of CS-MoG, MoG and other
MoG based algorithms

In this section, we compare the performance of five
background subtraction methods. They include pixel based
MoG [26], CS-MoG-Balance and CS-MoG-Unbalance,
which are described in Section 2.2, as well as RS-MoG and
Mean-MoG introduced in Section 4.1.

We apply these five methods to 400 consecutive video
frames from each dataset. The value of m is chosen to be
8 for CS-MoG-Balance, CS-MoG-Unbalance, RS-MoG and
Mean-MoG. The RoC curves for these five methods are plot-
ted in Figure 4 for the three datasets.

We can see from these figures that out of all the methods
that use dimensionality reduction, CS-MoG-Balance gives
the best performance. It may not be surprising that the simple
methods such as RS-MoG and Mean-MoG do not perform
that well. The observation that CS-MoG-Balance performs
better than CS-MoG-Unbalance deserves further investiga-
tion. This is the topic of Section 4.5.

We see from these figures that the performance of MoG
and CS-MoG-Balance are comparable except for the third
dataset. It is probably not surprising that MoG has a better
performance most of the time because it maintains complete
information on each pixel. However, the better performance
of MoG comes at the expense of a high computation cost. We
will show in Section 5, by implementing both MoG and CS-
MoG on an embedded platform, the computation time for
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Figure 5. Sample background subtraction outputs for MoG (middle column) and CS-MoG-Balanced (rightmost col-
umn). The i-th (i = 1,2,3) row contains the results from the i-th dataset. The original frames are in the leftmost column.

MoG is 5 times slower than that of CS-MoG and real-time
background subtraction with MoG is not feasible. Therefore,
when we take into account both performance and resource
constraints on embedded platforms, CS-MoG-Balance is a
better choice compared with MoG.

We will conclude this comparison of various MoG-based
background subtraction methods by showing a number of
sample frame outputs. We first compare MoG and CS-MoG-
Balance. Figure 5 shows the background subtraction results
from these two methods for one frame from each dataset.
The middle column of the figure shows the result from MoG
while those for CS-MoG-Balance are shown in the rightmost
column. It can be seen that the results are comparable.

Figure 6 shows the background subtraction result from
all the five MoG-based methods for a particular frame from
the first dataset. In addition, we have also shown in the cap-
tion of each sub-figure the number of miss detections Fn and
the number false positives (false alarms) Fp. It demonstrates

that CS-MoG, especially with balance matrix, achieves a sig-
nificantly better performance for dealing with the false alarm
than original MoG (94 vs 286) meanwhile preserving a com-
parably accurate foreground shape (94 vs 88). Moreover,
Mean-MoG and RS-MoG have capability in dealing with
false alarm as well (127 and 141). However, their perfor-
mance for the foreground detection is evidently deteriorated
(147 and 175), such as the shoulder of the person on the
right in Figure 6(e) and the legs of the person on the right in
Figure 6(f). To sum up, CS-MoG achieves the closest fore-
ground detection accuracy compared to the original MoG,
meanwhile, it dramatically eliminates the amount of false
alarms.

4.4 Comparing CS-MoG-Balance and CSBS
In this section, we will compare the performance of CS-

MoG-Balance against another compressive sensing based
background subtraction method, namely Compressive Sens-
ing for Background Subtraction (CSBS) [6]. There are many



(a) Original image (b) Fn: 94, Fp: 94 (c) Fn: 93, Fp: 166

(d) Fn: 88, Fp: 286 (e) Fn: 147, Fp: 127 (f) Fn: 175, Fp: 141

Figure 6. Sample background subtraction output for various MoG based methods. (a) Original frame, (b) CS-MoG-
Balance, (c) CS-MoG-Unbalance, (d) Original MoG, (e) Mean-MoG, (f) RS-MoG.

differences between CS-MoG-Balance and CSBS but the
two main differences are: (1) CSBS assumes that each pro-
jection value can be modelled by a Gaussian distribution,
however CS-MoG-Balance assumes a Gaussian mixture; (2)
CSBS obtains the foreground by solving an `1 optimisation
problem but CS-MoG-Balance does not need to solve any
optimisation problem. Because our method is based on a
more sophisticated background model and will not include
`1 optimisation, it is expected to be more robust and efficient
compared with CSBS.

Figure 7 shows the RoC curves for both CSBS and CS-
MoG-Balance for dataset 1. It can readily be seen that CS-
MoG-Balance performs significantly better than CSBS. This
is due to the fact that CSBS assumes that each pixel is Gaus-
sian distributed and therefore cannot deal with subtle illumi-
nation and repetitive background changes. The number of
projections used for both CS-MoG-Balance and CSBS is 8
per 8×8 block.

Figure 7. the ROC curves for CSBS and CS-MoG.

4.5 Balanced versus Unbalanced Projection
Matrices

The experiments in Section 4.3 show that CS-MoG-
Balance has a better performance compared with CS-MoG-
Unbalanced. Closer investigation shows that the perfor-
mance difference between these two methods is due to the
way they handle illumination change. We claim that balance
projection matrices have a better capability to address illu-
mination change effects than unbalanced projection matri-
ces. The reason simply comes from its “balance” feature. In
order to explain this, we investigate the effect of projection
matrices using two different illumination change models.

The first and simpler illumination change model is taken
from [22]. The ith pixel value measured by the camera de-
pends on the illumination reaching the surface (li) and its
albedo feature ai. Under the Lambertian assumption, the
pixel value is: xi = li ai. The albedo feature ai is deter-
mined by the feature of the surface. Thus, a change in the
source of illumination will affect the pixel value xi through
li. If the source of illumination is large and far away, the il-
lumination reaching a small surface area can be assumed to
be constant over the limited size of the surface. Given that
our proposed CS-MoG considers a small block of pixels at
a time, we can therefore assume that li is constant over a
block. Consequently, the illumination change measured by
the camera within a block is only determined by the albedo
feature ai.

Let us consider the case that the block experiences a con-
stant shift in illumination level ∆, i.e., li = ∆ for all pixels
in a block. Similar to Section 3.2, we use βi (which equals
to ±1) to denote the elements of the projection vector. The



change in projection value δv is given by: δv = (∑i βiai)∆.
Consider the case that the surface feature is the same

within the block, then ai takes the same value for all pixels
in a block. If the matrix is balanced, the change in projection
value δv is zero because ∑i βi is always zero for a balanced
projection matrix. Therefore a constant change in illumina-
tion will not change the projection value. However, if the
surface feature is not even, which happens when the block
is at the edge of the foreground, the illumination change will
not be cancelled out. Although the illumination change is not
always exactly constant on the whole block, especially near
the edge of the foreground, a balanced projection matrix still
has a better ability to deal with the illumination change com-
pared with a unbalanced one.

More precise results can be obtained by assuming a sta-
tistical model for illumination change. By assuming that the
illumination change is Gaussian distributed, we show analyt-
ically in Appendix A that a balanced projection matrix max-
imises the probability of correct detection of background.

5 Experiments on an Embedded Platform
Two sets of experiments were conducted to evaluate the

performance of the proposed CS-MoG. The first set aimed
at benchmarking the performance of the proposed algorithm
against the original MoG in terms of computational time,
memory usage and energy consumption under different con-
figurations. We did not include CSBS in the comparison
because CSBS requires solving `1 optimisation problem to
obtain the results in pixel domain which is highly computa-
tion intensive. Our platform cannot handle it real-time. The
second set of experiments demonstrate the feasibility of CS-
MoG on embedded platforms with a end-to-end distributed
multi-camera object tracking application.

5.1 Comparison with Original MoG
We implemented both the original MoG and CS-MoG on

a Blackfin BF-537 DSP based wireless camera node (see Fig-
ure 8(a)), which is similar to the platform used in [7] but at-
tached to a mote with a Zigbee radio (Atmel AT86RF212
transceiver) and an Atmel Atmega1281 micro-controller.
The operating system in the Blackfin DSP is Analog De-
vices’ VDK kernel and the development environment is the
VisualDSP++. This combination has been shown to have
better performance compared to open source options such
as µCLinux according to [7]. The operating system in the
Zigbee radio mote, which is attached to the Blackfin DSP, is
TinyOS 2.x. We also ported Berkeley version of 6LoWPAN
(BLIP) as the communication stack for the wireless camera
node.

Table 2 shows the performance (computation time, mem-
ory requirement and energy consumption) results of both the
original MoG and CS-MoG at different image resolutions.
The run-time results are computed as the mean of 100 con-
secutive frames. Table 2 does not contain speed and mem-
ory results for MoG under 640× 480 resolution due to in-
sufficient memory to run MoG for this resolution. In terms
of processing speed, it can be seen from Table 2 that CS-
MoG is approximately five times faster than the original
MoG. Furthermore, CS-MoG requires approximately a quar-
ter of memory compared to that of the original MoG. There-

fore, CS-MoG consumes much less resources compared to
the original MoG, representing a significant improvement
that is crucial to embedded computer vision applications be-
cause other algorithms, e.g., face detection and recognition
for identifying each tracked target, can now run on the re-
maining processing power. Table 2 also shows that the MoG
component dominates the computational time for CS-MoG
and in fact it consumes as high as approximately 85% of to-
tal computation time in CS-MoG. This observation justifies
the proposed dimension reduction using compressive sens-
ing, because, compared to the computation time reduction in
the MoG component, the overhead introduced by computing
the projections and foreground refinement is negligible.

Table 2. Resource consumption of different methods on
different image resolution. CS refers to computing the
projections

MoG CS-MoG CS-MoG
320×240 320×240 640×480

Initialization (ms) 0.88 0.88 3.7
CS (ms) – 3.06 12

MoG (ms) 280 49 210
Voting (ms) – 0.25 1.02

Refinement (ms) – 3.5 21.3
Total (ms) 280.88 56.6 278.28

Energy (mJ) 315.15 63.50 312.23
Memory (byte) 1,382,448 366,146 1,464,146

5.2 CS-MoG for Real-Time Distributed Ob-
ject Tracking

To demonstrate the feasibility of CS-MoG for embed-
ded computer vision applications, we further implemented
an end-to-end distributed multi-camera tracking application
on the BF-537 camera platform introduced in Section 5.1.

In the experiments, three wireless cameras were set-up
in an approx. 4m× 4m area with overlapping coverage of
the ground. The cameras communicate with a server us-
ing the BLIP and IPv6 network. We use a toy train (see
Fig. 8(b)) as the target in the experiments in order to col-
lect high-precision (in cm) ground truth information. In this
setting, the size of foreground taken up by the train is smaller
than that in dataset 1 (see Fig. 5(a)) but is larger than that in
datasets 2 and 3 (see Fig. 5(d) and 5(g)). The experimental
set-up is shown in Fig. 9.

We further deployed a number of tags on the ground
which are needed to compute the ground plane homogra-
phies [28] of each camera. A homography is a projective
transformation that maps the coordinates from one plane to
another, which in this case are the camera’s image plane and
the ground. With the computed homographies, we were able
to obtain the calculated locations of the target and the ground
truth in the ground coordinates with high-precision.

The target (train) moves along a track within the area of
interest. All cameras continuously process incoming frames
using CS-MoG to firstly segment out the moving foreground,
which is then passed into a connected component analysis



that outputs the centroid of the moving object. The centroids
are taken as the object’s locations in the image coordinates.
To conserve resources (in terms of radio bandwidth and en-
ergy consumption), packets that contain these object’s loca-
tions (in the image coordinates) are only transmitted to the
server from a camera when the object is in the camera’s field
of view. When the server obtains a location message along
with a camera ID (e.g., IPv6 address), it will calculate the
locations in the ground coordinates using the corresponding
homography of the camera.

We ran the tracking experiment on two tracks of different
shapes and the target (train) made three laps on each track
(see Fig. 10(a) and 10(e)). The right columns of Fig. 10
shows the tracking results of each lap for the two tracks. The
black crosses in Fig. 10 are the ground truth in the ground co-
ordinates and the results from three camera nodes are shown
as crosses of different colours (red, green, blue). Further-
more, we calculated the mean and standard deviation of the
distances from the estimated target locations to the ground
truth and the results are shown in the caption of the figures.
Overall, we achieved high precision with less than 1% (less
than 4cm) target localization errors relative to the size of the
area of interest (4m×4m).

If the original MoG were used in our experiment, we
would be able to only achieve a frame rate of approx. 3
frames per second. A lower frame rate would result in a
higher tracking error in estimating the trajectory of the train.
The average tracking error for MoG, for the first and second
tracks, are, respectively, 4.9cm and 4.7cm. These results are
obtained from comparing the tracking output of MoG against
that of the ground truth given by homography. This repre-
sents 40% and 42% decrease in accuracy compared to CS-
MoG results respectively. The high frame rate of CS-MoG
can be matched by applying a downsampling strategy to the
original MoG, where smaller images are processed. How-
ever, as shown by the Mean-MoG curves in Figure 4, this
strategy will penalize the accuracy of the foreground seg-
mented by MoG and thus the tracking performance.

Similar to the result reported in [1], BLIP achieved more
than 99% packet reception rates in our experiment. The size
of the communication payload was 10 bytes, and the aver-
age network goodput was 727 bps in experiment 1 and 1,066
bps in experiment 2 respectively. The peak network goodput
was 1,841 bps in experiment 2 when three cameras nodes
had overlapping view of the target. The end-to-end com-
munication latency was 45.22±0.74ms, which was sufficient
for real-time tracking applications. For the larger networks,
previous work reported approximately 120, 40 and 35 kbps
for one-hop, two-hop and three-hop links respectively [1].
Therefore, we believe that BLIP can support up to 60 one-
hop nodes or 20 multiple-hop nodes in our experiment set-
ting.

6 Related Work
In this section, we cover four topics related work: back-

ground subtraction methods, compressive sensing in com-
puter vision, compressive sensing in sensor networks and
embedded camera networks.

MoG [26] has been one of the most popular background

(a) Blackfin DSP camera (b) Train with track

Figure 8. Camera and tracking target in experiment.

Figure 9. Target tracking experiment setting.

subtraction techniques in computer vision because of its ro-
bustness to subtle illumination changes. Its bottleneck is its
computational intensity because of the need to compute and
update the Gaussian mixtures. Instead of using a fixed num-
ber of Gaussian mixtures as in [26], the work in [33] adap-
tively determines the number of Gaussians for each pixel.
This results in a more computational efficient procedure.
The comparison in [33] shows that the adaptive procedure
is 2%−30% faster compared with original MoG. However,
our experiments in Section 5 shows that our proposed CS-
MoG is 5 times faster. Another example of improving the
efficiency of MoG is in [27]. In this work, it simplifies
the learning update of the Gaussian mixtures and instead of
using ω

σ
to order the Gaussians, it simply uses ω instead.

These simplifications can decrease the computation time of
MoG by 1.6 times. However, these simplifications may not
be suitable for some situations because the reorder condi-
tion is only based on ω, which may increase or decrease so
quickly that a slowly moving target may be mistakenly incor-
porated into background or wrongly removed from the cur-
rent background model. Our proposed CS-MoG performs
foreground detection in two stages. The first of which is
block-based foreground detection step (Section 3.1.2) and
subsequently pixel-based foreground refinement step (Sec-
tion 3.1.3). A classical method to perform background sub-
traction efficiently is to use block-based methods. An ex-
ample is in [25]. This block-based background subtraction
method divides a frame into 8×8 blocks and then computes
a feature vector with 8 elements. For foreground detection,
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Figure 10. Target tracking experiment set-up and results. The black cross are the ground truth and the other different
colour cross represent the results from different camera nodes.

it uses a block-scale background training set for compari-
son using normalised vector distance as the criterion. The
method can be used as an assistant to traditional pixel based
background model like MoG to increase the accuracy. How-
ever, its accuracy is related to the size of training set. Also,
the algorithm has to traverse the whole dataset to find the
closest fit. When the dataset is large, the algorithm will be
computational intensive. However, our CS-MoG does not
require any training set.

Compressive sensing has been an active area of research
recently. There is much work in the area and we will limit
this review to work in compressive sensing that is related to
computer vision and sensor networks. One of the most im-
portant breakthroughs in the computer vision with compres-
sive sensing is the invention of compressive sensing based
imaging hardwares. Two examples are single pixel cam-
era [10] and random convolution camera [24, 16]. These
cameras exploit the theory of compressive sensing. Instead
of sampling pixel-wise, they use projections as the measure-
ments. As a result, the sampling requirements of these cam-
eras are significantly lower. Other research work in using
compressive sensing in computer vision include the CSBS
background subtraction algorithm [6] ,object tracking and 3-
D reconstruction [23, 8] .

Sensor networks are resource constraint while compres-
sive sensing is capable of significantly reducing the sampling
rate and data dimension. It is a hot-spot in researching on
applying compressive sensing and its relevance: sparse rep-
resentation in sensor networks. Compressive sensing can be
used as an efficient sampling strategy. In [31], the author
considered the problem of monitoring soil moisture with a
wireless sensor networks. With compressive sensing, they

achieve high accuracy at no more than 10% of the traditional
sampling rate. Also the sparse representation is attracting
increasingly attentions with compressive sensing. One of
the examples is [21]. In this paper, the authors deal with
cross-correlation problem (which is widely used in sensor
networks) efficiently via sparse representation

The research area of embedded camera networks presents
a lot of research challenges because the capturing, process-
ing and communicating of images and videos are energy in-
tensive operations. Therefore, a research focus of embed-
ded camera networks is to optimise the energy consump-
tion of their various operations. Communication is one of
the most energy demanding operations in embedded camera
networks [18]. In [18], the authors compare the energy con-
sumption between two image transmission methods: (1) Di-
rect transmission of compressed image; and (2) Compression
of images and its subsequent transmission. The comparison
is performed on various types of embedded platforms. The
result varies according to the processor-radio combination
of the embedded platform. Their results therefore provide
a reference method to choose between these two transmis-
sion methods for different embedded platforms. Due to sig-
nificant energy and bandwidth consumption of transmitting
images, recent work in embedded sensor networks avoids
transmitting large amount of image data. Instead, these pa-
pers perform the image or video processing on the embed-
ded platform and communicate only the results, which gen-
erally have smaller data size and thus a lower bandwidth
requirement. An example of such work is [14] where dis-
tributed camera localisation is used to determine the location
and orientation of each camera. The distributed processing
reduces inter-device communication and also the communi-



cation between device and base station. Another example
is distributed image searching [32]. This work divides and
shifts the function of the central search engine to end nodes
in which images from different sensors can be captured,
stored, searched and queried locally. Distributed process-
ing is also used in [19] to exploit the overlap of view points
of adjacent cameras to infer the location of the cameras. The
paper [30] uses a camera network to estimate human posture.
The key points (e.g., joints) are computed locally while the
posture is estimated at the base station. There is also recent
work in using camera networks for object tracking [17, 12].
However their focus is different. In [17], the tracking system
makes a localised decision to switch between simple or elab-
orate background subtraction methods according to the ap-
plication requirements to decrease resource consumption of
camera networks. However, [17] does not propose any new
background subtraction methods whereas our work proposes
a new background subtraction method which is both accurate
and computational efficient. Lastly, the work in [12] deals
with the occlusion problems in object tracking, and applies
local processing and clustering to conserve communication
bandwidth and energy; its focus is therefore different from
ours.

7 Conclusions
In this paper, we address the challenge of performing

background subtraction, both accurately and efficiently, on
embedded camera networks. Traditional background sub-
traction algorithms, though accurate, are not computational
efficient because complex statistical models are needed to
capture subtle illumination changes. To address this compu-
tational bottleneck, we use compressive sensing to reduce the
dimensionality of the data while retaining the information
content. This results in a computational efficient and yet ac-
curate background subtraction algorithm. Our experiments
show that the accuracy of our proposed algorithm is compa-
rable to that of traditional algorithms but is five times more
efficient. Furthermore, we show that our proposed back-
ground subtraction algorithm can accurately track a moving
object in real-time in an embedded camera network.
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A Proof that balanced projection matrices
maximise detection probability

In this appendix, we will show that if the change in pixel
value is given by a Gaussian distribution and if the back-
ground model changes slowly, then a balanced projection
matrix maximises the detection probability for the back-
ground. For the proof, it is sufficient to consider a generic
8×8 block and one generic projection vector. Let us denote
the i-th pixel value in the block at time t by x(i)t . We assume
that the lighting change from time t to time (t + 1) causes
the i-th pixel value at time (t + 1) to change to x(i)t +∆

(i)
t+1

where ∆
(i)
t+1 ∼ N (µt+1,σ2

t+1). We further assume that ∆
(i)
t+1

is independent of all earlier pixel values. This implies that,
for given x(i)t , the i-th pixel in the block at time (t + 1) is a
random variable X (i)

t+1 whose distribution is:

X (i)
t+1 ∼N (x(i)t +µt+1,σ

2
t+1) (12)

We consider a particular projection vector whose i-th el-
ement is denoted as βi. The projection values at time t
and (t + 1) are, respectively, yt = ∑

64
i=1 βix

(i)
t and yt+1 =

∑
64
i=1 βix

(i)
t+1. Since the change in pixel value is Gaussian dis-

tributed, it can be shown that the projection value at time
(t + 1) is a Gaussian distributed random variable Yt+1 ∼
N (yt +µp

t+1,(σ
p
t+1)

2) where

µp
t+1 =

(
64

∑
i=1

βi

)
µt+1 (13)

and σ
p
t+1 = 64σt+1 In particular, note that µp

t+1 is always zero
if the projection vector is balanced because the sum in the

parentheses in (13) vanishes for a balanced projection vector.
Furthermore, let us assume that the background model at

time t is N (µb
t ,(σ

b)2
t ). For a Gaussian mixture model, a pro-

jection value yt is considered to be in the background if yt is
within 2.5 times of the standard deviation of the background
model at that time. The situation for projection value at time
(t +1) is identical.

Our aim is to determine the probability P(yt+1 ∈ B|yt ∈
B), where B denotes the event that the projection value is in
the background, and show that this probability is maximised
by using a balanced projection vector. More specifically, we
will do that by showing that P(yt+1 ∈ B|yt ∈ B) is maximised
by choosing µp

t+1 = 0 and with the fact that any balanced pro-
jection vector will give a µp

t+1 = 0, our assertion can therefore
be proven.

From Bayes’ theorem, we have

P(yt+1 ∈ B|yt ∈ B) =
P(yt+1 ∈ B,yt ∈ B)

P(yt ∈ B)
(14)

Because we assume the change in pixel values from time t to
(t +1) is independent of pixel values at time t or earlier, this
means the denominator is independent of µp

t+1. This implies
that maximising P(yt+1 ∈ B|yt ∈ B) with respect to µp

t+1 is
identical to maximising P(yt+1 ∈ B,yt ∈ B).

The joint probability distribution P(yt+1 ∈ B,yt ∈ B) can
be written as:

P(yt+1 ∈ B,yt ∈ B) =
∫ µb

t +2.5σb
t

µb
t −2.5σb

t

ρ(yt)P(yt+1 ∈ B|yt)dyt

(15)
where

P(yt+1 ∈ B|yt) =∫ µb
t+1+2.5σb

t+1

µb
t+1−2.5σb

t+1

1√
2πσ

p
t+1

e
−

(yt+1−(yt+µp
t+1))

2

2(σp
t+1)

2
dyt+1,

(16)

ρ(yt) =
1√

2πσb
t

e
− (yt−µb

t )
2

2(σb
t )

2 (17)

If the background learning process is stable and the learn-
ing rate is slow (e.g. 0.01), then the background model
changes slowly. This means µb

t ≈ µb
t+1. Under the assump-

tion that µb
t = µb

t+1, we find the derivate of P(yt+1 ∈B,yt ∈B)
with respect to µp

t+1, evaluated at µp
t+1 = 0, is:∫ 2.5σb

t

−2.5σb
t

1√
2πσb

t
e
− ŷ2

t
2(σb

t )
2 1√

2πσ
p
t+1
···

[e
−

(2.5σb
t+1+ŷt )2

2(σp
t+1)

2 − e
−

(2.5σb
t+1−ŷt )2

2(σp
t+1)

2
]dyt

(18)

Note that the above integrand is an odd function and the in-
terval is symmetric about yt = 0, therefore the integral eval-
uated to zero. Hence, we prove that P(yt+1 ∈ B|yt ∈ B) is
maximised at µp

t+1 = 0. Therefore, when we utilise balance
matrix, our method will maximise the probability of correct
detection for the background.
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