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Introduction Organization of the courses

Plan for the week

Clustering and Visualization

Course 1: Hierarchical clustering methods

Course 2: Nonhierarchical clustering methods

Course 3: Finite Mixture Models and Clustering

Course 4: Block Clustering models and algorithms

Course 5: Intoduction to the Visualization

Principals Points

Advantages and disadvantages of methods

Illustrations by examples

Importance of Softwares

Use of SAS, R and discussion about other tools
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Introduction Cluster Analysis

Clustering

Aim: It seeks to obtained a reduced representation of the initial data

Organization of data into homogeneous subsets "clusters" or "classes"

Terminoloy can depend on the field:

Taxonomy science of clustering of human being
Nosology science of clustering of diseases in medecine
Unsupervised learning or unsupervised classification in pattern recognition and machine
learning

Not confuse with the classification

History: first clustering of the animals and the vegetables by Linné (18th century)

Naming objects is a form of clustering

Structure of clustering

It can take different forms: partitions, sequence of encased partitions or hierarchical,
overlapping clusters, clusters with high density, fuzzy clusters.

In this chapter we focus on the hierarchical methods

Characteristics of these methods

Simple and is a tool of data visualization but ...
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Introduction Types of data

Data matrix: x

x represents n objects (persons, countries, genes) with p variables (weight, income,
religion, sex)

x =







x11 · · · x1p

...
. . .

...
xn1 · · · xnp







Distance or dissimilarity matrix: d

Each value d(i , j) is the measured difference or dissimilarity between objects i and j

with d(i , i) = 0. In general d(i , j) is a nonnegative number and this matrix is
symmetric.

d =











0 · · ·
d(2, 1) 0 · · ·
...

. . .
...

d(n, 1) d(n, 2) · · · 0










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Introduction Types of data

Types of variables

Continuous variable: weight, height etc.
Standardization is often necessary (centered and reduced, etc.)
Other transformations can be useful (log, exp, 1/x etc.)

Binary variable
Nominal categorical with two categories, the binary variable is called symmetric
Can be considered as continuous variable
If the outcomes of a binary variable are not equally important, the variable is
asymmetric. Importance of 1, examples include presence-absence data in ecology.
Measure of dissimilarity adapted such as Jaccard’is index

Categorical Variable
Nominal: generally we use the complete disjunctive table. Ex. let be a variable with 3
categories (modalities) 1,2 and 3. These categories are coded respectively by the
binary vectors : (1, 0, 0), (0, 1, 0) and (0, 0, 1)
Ordinal: generally we use the disjunctive additive table. Ex. let be a variable with 3
categories 1,2 and 3. These categories are coded respectively by the binary vectors :
(1, 0, 0), (1, 1, 0) and (1, 1, 1). Sometimes we can use the following transformation
rij−1

kj−1
∈ [0, 1] where rij = 1, . . . kj is the rank of a value of a variable j and kj is the

number of distinct values, and consider j as a continuous variable

Proximity

The evaluation of proximity between objects depend on the nature of variables

The evaluation between variables is more complex
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Introduction Types of data

Distance d : A × A → R

∀x , y ∈ A, d(x, y) = 0 ⇔ x = y

∀x , y ∈ A, d(x, y) = d(y , x)

∀x , y , z ∈ A,d(x , z) ≤ d(x, y) + d(y , z)

Ultrametric

∀x , y ∈ A, d(x, y) = 0 ⇔ x = y

∀x , y ∈ A, d(x, y) = d(y , x)

∀x , y , z ∈ A, d(x , z) ≤ max(d(x , y), d(y , z))

Dot or Scalar product: E × E → R (E : vector space)

∀x ∈ E , < x , x >= 0 ⇒ x = 0

∀x , y ∈ E , < x , y >=< y , x >

∀x ∈ E , < x , x >≥ 0

Scalar product: Matrix representation expresssion in R
p

< x , y >M= xT My where the matrix (p × p) M is

symmetric MT = M
definite ∀x ∈ R

p , x
TMx = 0 ⇒ x = 0

positive ∀x , y ∈ E , x
TMx ≥ 0
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Introduction Types of data

Norm: E (vector space) ||.|| : E → R
+

∀x ∈ E , λ ∈ R, ||λx || = |λ||x ||
∀x ∈ E , ||x || = 0 ⇒ x = 0

∀x , y ∈ E , ||x + y || ≤ ||x || + ||y ||

Euclidean Norm and distance

When E Euclidean space, we define the euclidean norm ||x ||M =
√
< x , x >M

We can show that d(x, y) = ||x − y|| is a distance in E

dM(x, y) = ||x − y||M =
√
< x − y, x − y >M =

√

(x − y)TM(x − y)

For example, M = I d2
M(x, y) =

∑

j (xj − yj)
2, M = (1/s2

j ), d2
M(x, y) =

∑

j(
xj

sj
− yj

sj
)2

Distance on vector spaces

Manahattan distance: d(x, y) =
∑p

j=1
|xj − yj |

Minkowski distance: d(x, y) = (
∑p

j=1
|xj − yj |p)1/p

Mahalanobis distance: it takes into account the correlations between the variables
(Σ a variance matrix) d2

Σ−1(x, y) = (x − y)Σ−1(x − y)

etc.
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Introduction Types of data

Illustration: 4 measures on 3 objets

ident z1 z2 z3 z4

p8 22 30 19 20

p15 22 36 24 20

p22 26 34 22 21

Compute distances between objects

d2(p22, p15) = 42 + 22 + 22 + 1 = 25, d2(p22, p8) = 42 + 42 + 32 + 1 = 42

p22 is closer p15 than p8

data normalized: how ?

ident z1 z2 z3 z4

p8 0.24176 0.32967 0.20879 0.21978

p15 0.21569 0.35294 0.23529 0.19608

p22 0.25243 0.33010 0.21359 0.20388

compute the distances

d2(p22, p15) ≥ d2(p22, p8), p22 is closest p8 than p15

Introduction to χ2 distance
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Introduction Types of data

Dissimilarity

∀x ∈ Ω, d(x, x) = 0

∀x , y ∈ Ω, d(x, y ) = d(y , x)

Example of Dissimilarity data matrix

a b c d e

a 0

b 0.2 0

c 1 1.05 0

d 0.7 0.75 0.3 0

e 1 0.8 1.5 1.3 0

Similarity

∀x ∈ Ω, s(x , x) = smax

∀x ∈ Ω, d(x , y) = smax − s(x , y)

Example of Similarity data matrix

X Y Z T W

X 40

Y 20 40

Z 15 39 40

T 7 25 32 40

W 10 38 30 10 40
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Hierarchical Clustering Notations

Partition

Given a finite set Ω,

z = {(z1, z2, ..., zK ); zk 6= ∅; zk ⊂ Ω} is a partition if

∀k 6= `, zk ∩ z` = ∅ and
∪kzk = Ω.

For such a partition z into K subsets or clusters z1, . . . , zK , each element of Ω
belongs to only one cluster, then z can be represented by the binary classification
matrix defined by :

z =







z11 · · · z1K

...
. . .

...
zn1 · · · znK







where zik = 1 if i ∈ zk and 0 otherwise.

The sum of the ith row values is equal to 1 (each element belongs to only one
cluster) and the sum of the kth column values is equal to nk representing the
cardinality of zk . Here, we consider a hard clustering.
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Hierarchical Clustering Notations

Fuzzy Partition

Fuzzy sets (Zadeh, 1965) the fuzzy partition seems "natural"

Fuzzy clustering developed in the beginning of 1970 by Ruspini generalizes the
classical approach by extending the notion of membership

Considering the membership degree coefficients cik ∈ [0, 1]

c =







c11 · · · c1K

...
. . .

...
cn1 · · · cnK







A fuzzy partition is represented by a fuzzy classification matrix c = {cik} verifying
the following conditions:

∀k,
∑

i cik > 0
∀i ,

∑

k cik = 1

The second condition considers no empty cluster and the third one expresses the
concept of total membership
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Hierarchical Clustering Notations

Definition

Given Ω a finite set and H a set of non-empty subsets of Ω

H is then a hierarchy on Ω if
Ω ∈ H
∀x ∈ Ω, {x} ∈ H
∀h, h′ ∈ H, h ∩ h′ = ∅ or h ⊂ h′ or h′ ⊂ h

Example:
Ω = {1, 2, 3, 4, 5}
H = {{1}, {2}, {3}, {4}, {5}, {2, 4}, {3, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}}

Representations of a hierarchy

2 4

3 5

1

{1} {2,3,4,5}

{2,4} {3,5}

{2} {4} {3} {5}

These representations are seldom used. One often prefers to associate an index to the
hierarchy in order to obtain a readable representation
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Hierarchical Clustering Notations

The index on a hierarchy H is a mapping noted i from H to R
+ verifying the

following proprieties :
h ⊂ h′ and h 6= h′ ⇒ i(h) < i(h′) (i is a strictly increasing function)
∀x ∈ Ω i({x}) = 0.

In the following we note (H, i) the hierarchy with the index i

Example: By associating to clusters {1},{2},{3},{4},{5},{2,4},{3,5},{2,3,4,5},
{1,2,3,4,5} of the previous hierarchy the values 0,0,0,0,0,1,2,2.5,3.5, one obtains
(H, i) which can be represented by a tree data structure often called dendrogram

Representation of (H, i) by a dendrogram

1 2 4 53
0

1

2

3.5

2.5

If z = (z1, z2, . . . , zK ) a partition of Ω, H formed by the clusters zk , singletons of Ω and
Ω itself constitute a hierarchy. Let us notice that conversely, it is possible to associate at
each level of (H, i) a partition. Hence, (H, i) corresponds then to a set of encased
clusters.
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Hierarchical Clustering Notations

The number of possible hierarchies and partitions to be defined on Ω quickly
becomes enormous when the cardinality of Ω increases

For instance, the number of partitions of n objects into K clusters is giving by the
following formula

S(n,K) =
1

K !

K
∑

k=0

(−1)k−1
C

K
k k

n

When n and K become large, we have S(n,K) ≈ Kn

K !
, for example S(100, 5) ≈ 1067

(n,K) 1 2 3 4 5 6 7 8

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1
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Hierarchical Clustering Notations

Search for partitions associated to a dissimilarity measure

Given a dissimilarity measure d on Ω, it is natural to associate for each real α
positive or null the following neighbor relation Vα on Ω

xVαy ⇔ d(x , y) ≤ α

We search for the conditions so that there exists a partition of Ω such as all objects
belonging to a cluster are close and the elements belonging to distinct clusters are
not close.

For this, it is necessary and sufficient that Vα is an equivalence relation

The clusters are then the equivalence classes of Vα. As the function d is a
dissimilarity measure, the relation Vα is reflexive, symmetric. It is necessary and
sufficient that the transitivity is verified,

xVαy and yVαz ⇒ xVαz

d(x , y) ≤ α and d(y , z) ≤ α⇒ d(x , z) ≤ α (1)

It is clear that the relation (1) is verified if d is an ultrametric.

Conversely, so that Vα is an equivalence relation for whatever α, d must be an
ultrametric. Indeed, for each triplet x , y et z of Ω, taking α = max(d(x , y), d(y , z)),
we have d(x , y) ≤ α and d(y , z) ≤ α and therefore d(x , z) ≤ α, what induces the
ultrametric inequality.
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Hierarchical Clustering Notations

Ultrametric associated to (H, i): function ϕ

Given (H, i) on Ω, we can define δ from Ω × Ω to R
+ by assigning for each couple

x , y the smallest index of all clusters of H including x et y

The function i is increasing with the include relation (h1 ⊂ h2 ⇒ i(h1) ≤ i(h2))

δ(x , y) can be considered as the index of the smallest cluster according to H and
containing x et y . Then we can show that δ is an ultrametric on Ω

(H, i) associated to an ultrametric: function ψ

We consider the Vα relations on Ω previously defined, but from the ultrametric δ

We know that the Vα’s are equivalence relations for each α ≥ 0

Let be Dδ the set of values taken by δ on Ω, we define the set H as the set of all
equivalence classes of Vα’s when α coverts Dδ

Taken as function i on H the function diameter (i(h) = maxx,y∈h δ(x , y)), we can
show that (H, i) forms an indexed hierarchy on Ω

Hierarchy and ultrametric

Finally, the functions ϕ et ψ are reciprocal and there is then an equivalence between
(H, i) and an ultrametric
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Hierarchical Clustering Notations

Function ϕ

The application of the function ϕ on the hierarchy (H1, i1) (a) implies the
ultrametric δ1 of (b)

2 3 41
0

1

2

3

1 2 3 4

1 0
2 3 0
3 3 2 0
4 3 2 1 0

a : (H1, i1) b : δ1 = ϕ(H1, i1)

Function ψ

The application of the function ψ to the ultrametric δ1 implies : we have
Dδ = {0, 1, 2, 3}. The equivalence classes of the 4 relations Rα are
R0 : {1}, {2}, {3}, {4}, R1 : {1}, {2}, {3, 4}, R2 : {1}, {2, 3, 4} and R3 : {1, 2, 3, 4}.
The obtained hierarchy is then {{1}, {2}, {3}, {4}, {3, 4}, {2, 3, 4}, {1, 2, 3, 4}} and
the associated indexes to subsets of the hierarchy are respectively (0, 0, 0, 0, 1, 2, 3).
One finds then (H1, i1)
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Objectives of clustering Difficulty to characterize the objectives

Introduction

The aim of clustering is to organize the objects of Ω into homogeneous clusters. To
define the notion of homogeneity, we often use a similarity or dissimilarity measures
on Ω

For example, if d is a dissimilarity measure, we can characterize this homogeneity by
imposing to clusters of the partition to verify the following propriety

∀x , y ∈ same cluster cluster and ∀z , t ∈ distinct clusters ⇒ d(x , y) < d(z , t)

This property means that we aim to obtain clusters such that two objects of the
same cluster are more similar than two objects not belonging to the same cluster

In practice, this objective is not used

Illustration

1

2

3
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Objectives of clustering Difficulty to characterize the objectives

Partition

For these reasons, several approaches are then used to replace this objective difficult
to reach

We replace this too stringent condition by a numerical function which will measure
the partition homogeneity quality. This function is commonly called criterion. The
problem can then appear more simple. Indeed, for example, in the case of research
for a partition, it is enough to seek among the finite set of all the partitions that
which optimizes the numerical criterion

Unfortunately, the number of partitions is very large, their enumeration is impossible
in a realistic time (combinatorial problem). Generally, we use then heuristics giving
not the best solution but a good one, close to the optimal solution

We consider therefore an local optimization. When we have an order structure on
the finite set Ω and this one must be respected by the partition, it exists a dynamic
programming method by Fisher (1958) algorithm giving an optimal solution
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Objectives of clustering Difficulty to characterize the objectives

Example of criterion

The within-cluster variance can be used when the finite set Ω to cluster corresponds
to a set of n objects described par p quantitative variables. It is then possible, as for
the component principal analysis, to associate a cloud of points in R

p provided by a
weight equal to 1

n
for each element and the Euclidean metric

Matrix of variance can then taking this form

S =
1

n
(x − 11nx)T (x − 11nx) =

1

n

n
∑

i=1

(x i − x)(x i − x)T

and the variance I = 1
n

∑n
i=1

d2(x i , x) verifies I = trace(S)

If z = (z1, . . . , zK ) is a partition of Ω into K clusters, xk the matrix x summarized to
rows corresponding to the kth cluster zk and xk its vector means, we can define the
within variance matrix

W =
1

n

K
∑

k=1

nkWk

where Wk is the variance matrix of the cluster zk defined by

Wk =
1

n
(xk − 11nxk)

T (xk − 11nxk)
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Objectives of clustering Difficulty to characterize the objectives

Within-cluster variance

The within-cluster variance noted W is written as W (z) =
∑K

k=1
I (zk) where

I (zk ) = W (zk) = 1
n

∑

i∈zk
d2(x i , x) is the variance of the cluster zk

We can show the following relation W (z) = trace(Wk)

It is then possible to use the within-cluster variance as a clustering criterion: a
partition will be as much homogeneous than within-cluster variance is close to 0; in
particular, this criterion will be equal to 0 when the objects of each cluster are
confused in an object.

The problem is to define directly an algorithm giving homogeneous clusters taking
into account the dissimilarity measure. It is easy to propose such algorithms but the
difficulty is to prove that the obtained clusters are interesting and give answers to
our aim. In fact the algorithmic and numerical approaches often converge. Several
proposed algorithms without any reference to a criterion and, giving good results,
optimize a numerical criterion. This is the case of the famous k-means algorithm

Hierarchy

In the case of hierarchical clustering, we aim to obtain clusters as much more
homogeneous that they are located in the bottom of the tree structure. The
definition of criterion is less easy. We will see that it is possible to do it by using the
concept of ultrametric (ultrametric optimal)
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Agglomerative Hierarchical Clustering Two types of methods

Objective

The aim of hierarchical methods is to create a hierarchical decomposition (H, i) of
Ω. On Ω we have a dissimilarity measure such that the closest objects are grouped
in the clusters with the smallest index. It exists two principal approaches

Description

Divisive approach: this approach is also called top-down approach. It starts with just
one cluster containing all objects. In each successive iteration, we split up clusters
into two or more clusters until generally each object is in one cluster. Note that
other stop conditions can be used and the division into clusters are defined by the
verification or not of a property. For example, in taxonomy, we split up animals into
vertebrates and non vertebrates

Agglomerative approach: opposed to the divisive approach, we start by assuming n

clusters, each object forms a singleton cluster. In each successive iteration, we
merge the closest clusters until obtaining one cluster which is the set Ω. In the
following, we focus on this approach which is the most frequently used
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Agglomerative Hierarchical Clustering Two types of methods

Construction of the hierarchy

While the process of grouping the clusters in the agglomerative approach, it is
necessary to define a distance between the clusters in order to merge the closest
ones. Generally, from the dissimilarity measure on Ω we define a distance D between
the clusters. In fact, D is just a dissimilarity measure. We see later different
manners to define these kinds of measures. Now, we briefly present the different
steps of the algorithm :

1 Initialization: Each object is a singleton partition, compute the dissimilarity measure
between these objects.

2 Repeat

merge two closest clusters according to D,

compute the distance between the obtained new cluster and the old clusters not merged.

3 Until the number of clusters is equal to 1

It is easy to show that the set of clusters defined during the successive iterations form an
hierarchy

1 2 4 53
0

1

2

3.5

2.5
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Agglomerative Hierarchical Clustering Two types of methods

Construction of the index

Once a hierarchy is defined, it is necessary to associate it an index. For the singleton
clusters, this index is necessarily equal to 0. For the other clusters, this index is
generally defined by associating to each new agglomerated cluster the dissimilarity
measure D which evaluates the proximity between the merged clusters to form this
new cluster. Note that, in order to have a property of index, the proposed ones have
to increase strictly with the level of hierarchy. Then several difficulties can appear

Inversion problem: For a certain D , the index defined is not necessarily strictly
increasing function, this leads with the inversion problem. For example, if the data
are formed by three points of the plan located at the top of an equilateral triangle
with a side equal to 1 and if one takes as D the distance between the cluster means,
one obtains an inversion illustrated hereafter. With the family of D studied in this
course, it is possible to show that the inversion is impossible

32

1

1 2 4
0

0.732

1

          {1,2}     3

{1,2}    0     

            0.732    0

      1    2    3

1    0

2    1    0

3    1    1    0
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Agglomerative Hierarchical Clustering Two types of methods

Not strict increasing

When there is equality of index for several encased levels, it suffices to filter the
hierarchy, i.e. to preserve only one cluster containing all the encased classes having
the same index. In the following example, the cluster A∪B having the same index as
the cluster A ∪ B ∪ C can be removed

A         B           CA         B           C

This problem can occur with the family of D considered in the following and the
associated algorithms will thus require to envisage this operation of filtering
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Agglomerative Hierarchical Clustering Two types of methods

Agglomerative criteria

In the following, the different kinds of D are designated as agglomerative criteria or
approaches. There exist several criteria but the most used are:

Single linkage or Nearest Neighbor approach (Sibson, 1973)

D(A,B) = min{d(i , i ′), i ∈ A et i ′ ∈ B};

Complete linkage or farthest Neighbor approach (Sorenson, 1948)

D(A, B) = max{d(i , i ′), i ∈ A et i ′ ∈ B};

Average linkage (Sokal and Michener, 1958)

D(A, B) =

∑

i∈A

∑

i′∈B d(i , i ′)

nA.nB

where nE represents the cardinality of the cluster E .
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Agglomerative Hierarchical Clustering Two types of methods

Recurrence formulas of Lance and Williams, 1967

For the three agglomerative criteria, there exist calculus simplification relations of
the distances between clusters necessary for the agglomerative hierarchical clustering
(AHC) algorithm, without these kinds of relations it would be prohibitory in time
calculation. These relations called generally recurrence formulas of Lance and
Williams, are for the three agglomerative criteria single, complete and average
linkage:

Dmin : D(A,B ∪ C ) = min{D(A,B),D(A,C )};
Dmax : D(A,B ∪ C ) = max{D(A,B),D(A,C )};

Daverage : D(A,B ∪ C ) =
nB .D(A,B) + nC .D(A,C )

nB + nC

.

Note that these formulas can be deducted from the general formula :

D(A,B ∪ C ) = α1D(A,B) + α2D(A,C ) + βD(B,C ) + γ|D(A,B) − D(A,C )|.

Then Dmin is obtained by taking α1 = α2 = 0.5, β = 0, γ = −0.5, Dmax by taking
α1 = α2 = 0.5, β = 0, γ = 0.5 and Daverage by taking α1 = nB

nB+nC
, α2 = nC

nB+nC
,

β = 0, γ = 0

Nadif (CRIP5 ) IRAN, December, 13-29, 2008 SEMINAIRES 31 / 56



Agglomerative Hierarchical Clustering Two types of methods

Example

Hereafter, we consider 4 aligned points, separated successively by the distances 2, 4
and 5: We take as dissimilarity measures between these points, the usual Euclidean
distance and we carry out the AHC algorithm according to the three agglomerative
criteria, The results are reported in the following

Data

1 4 3 2

Dmin

         1    2    3    4

1      0

2     11   0

3      6    5    0

4      2    9    4    0

            {1,4}    2    3

{1,4}     0   

    2         9          0

    3         4          5     0

             {1,4,3}     2

{1,4,3}     0 

      2           5           0 0

2

4

5

1 24 3
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Dmax

0

2

5

1 24 3

            {1,4}    2    3

{1,4}     0   

    2        11          0

    3           6          5     0

{1,4}     0 

 {2,3}    11           0

             {1,4}     {2,3}

         1    2    3    4

1      0

2     11   0

3      6    5    0

4      2    9    4    0

11
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Daverage

         1    2    3    4

1      0

2     11   0

3      6    5    0

4      2    9    4    0
0

2

1 24 3

8.3

5

            {1,4}    2    3

{1,4}     0   

    2        10         0

    3         5          5     0

             {1,4}     {2 ,3}

{1,4}     0 

{2,3}    7.5          0

0

2

1 24 3

5

             {1,4,3}     2

{1,4,3}     0 

      2         8.3           0

7.5

Note that in the last case, we can obtain two different solutions whether we choose to
merge the clusters {1,4} and {3} or the clusters {2} and {4}.
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Ward Method or Minimum variance approach

Unlike the criteria previously described, the Ward criterion (Ward, 1963) requires
raw data than the dissimilarity between objects. When the set Ω to classify is
associated to a cloud of points in R

p provided by a weight equal to 1
n

for each
element and the Euclidean metric, the criterion takes the following form

D(A,B) =
nAnB

nA + nB

d
2(µA,µB)

where µE represents the center of the set E . The associated AHC algorithm is often
called the Ward method (Ward, 1963). There also exists in this case a recurrence
formula:

D(A,B ∪ C ) =
(nA + nB) × D(A,B) + (nA + nC ) × D(A,C ) − nA × D(B,C )

nA + nB + nC

,

which can deduced from the general recurrence formula,

D(A,B ∪ C ) = α1D(A,B) + α2D(A,C ) + βD(B,C ) + γ|D(A,B) − D(A,C )|,

with α1 = nA+nB
nA+nB+nC

, α2 = nA+nC
nA+nB+nC

, β = − nA
nA+nB+nC

and γ = 0
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Analysis of Flying Mileages Between Ten U.S. Cities

Atlanta Chicago Denver Houston LA Miami NewYork SanFrancisco Seattle WashingtonD.C
0

587 0
1212 920 0
701 940 879 0

1936 1745 831 1374 0
604 1188 1726 968 2339 0
748 713 1631 1420 2451 1092 0

2139 1858 949 1645 347 2594 2571 0
2182 1737 1021 1891 959 2734 2408 678 0
543 597 1494 1220 2300 923 205 2442 2329 0

Applications

Single linkage

Complete linkage

Average linkage

Ward linkage

Nadif (CRIP5 ) IRAN, December, 13-29, 2008 SEMINAIRES 36 / 56
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Introduction

We have seen that the concept of (H, i) is equivalent to the concept of ultrametric.
The AHC algorithm transforms then an initial dissimilarity measure d into a new
dissimilarity measure δ having the property of an ultrametric. The aim of
hierarchical clustering could be then posed in these terms: Find the closest
ultrametric δ to the dissimilarity measure d .

It remains to provide a distance to the space of dissimilarity measures on Ω. We can
use, for example

∆(d , δ) =
∑

i,i′∈Ω

(d(i , i ′) − δ(i , i ′))2

or
∆(d , δ) =

∑

i,i′∈Ω

|d(i , i ′) − δ(i , i ′)|.

Unfortunately, it is a difficult problem and we now will study the optimality
properties of the various algorithms previously described.
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Hierarchy of single linkage

Let U be the set of all ultrametrics smaller than the initial dissimilarity measure d

(δ ∈ U ⇔ ∀i , i ′ ∈ Ω, δ(i , i ′) ≤ d(i , i ′))

Note that δm is a higher envelope of U, i.e the mapping from Ω × Ω to R verifying
∀i , i ′ ∈ Ω, δm(i , i ′) = sup{δ(i , i ′), δ ∈ U}
We can then show that δm remains an ulrametric and this one is the ultrametric
obtained by the AHC algorithm with the single linkage criterion and moreover it is,
among all utrametrics less than d , the closest of d with respect to ∆

This ultrametric is commonly called sub-dominant ultrametric

Property of single linkage

Link between this hierarchical clustering and the determining of the minimum
spanning tree, a well-known problem in graph theory. We consider the definite
complete graph on Ω.

Each edge (a,b) of this graph is valued by the distance d(a,b). We can show that
the search for this tree is equivalent to the search for the sub-dominant ultrametric
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To find the tree associated to the single linkage, it is possible to use the algorithms
which were developed to find a minimum spanning tree for a connected weighted
graph, for instance the Prim’s and Kruskal’s algorithms (Prim, 1957) and (Kruskal,
1956). We can illustrate this on a small example

2
1 3

4

For the Kruskal’s algorithm see for instance in Wikipedia a description illustrated by
a simple example
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Construction of the sub-dominant ultrametric

0

2

1

7

2 34

3

         1    2    3    4

1      0

2      3    0

3     10   7    0

4     3.6   2   7.3    0

               1     {2,4}   3

    1         0   

 {2,4}     3         0

    3         10        7     0

             {1,2,4}     3

       3         7           0

{1,2,4}    0 

         1    2    3    4

1      0

3      7    7    0

4      3    2    7    0

2      3    0

By retaining from the initial complete graph only 3 edges having participating in the
algorithm, the edge (2,4) of length 2, the edge (1,2) of length 3 and the edge (2,3) of
length 7, we obtain the minimum spanning tree

Minimum spanning tree

2
1 3

4

This link with the minimum spanning tree allows us also to highlight a defect of this
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Hierarchy of complete Linkage

The ultrametric is higher than the dissimilarity measure d . Unfortunately, the
properties of the ultrametric provided by the AHC algorithm are not also interesting
as those of the sub-dominant ultrametric.

In particular, there is not necessarily an uniqueness of dendrogram. For example, we
can obtain different results if we change the order of agglomerations of clusters due
to the presence of two or several smallest indexes in the intermediate dissimilarity
matrices

This point is also observed in the previous example for the average criterion

As before we attempt proceed to define the closest ultrametric higher than d . As for
the sub-dominant ultrametric defined from the higher envelope of the ultrametrics
smaller than d , we consider this time the lower envelope of the ultrametrics greater
than d .

Unfortunately this envelope is not necessarily an ultrametric
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counterexample: d and ultrametrics δ1 et δ2

      a    b    c

a    0

b    1    0

c    2    1    0

      a    b    c

a    0

b    1    0

c    2    2    0

      a    b    c

a    0

c    2    1    0

b    2    0

We can verify that δ1 (second table) and δ2 (third table) are two ultrametrics higher to d

(first table) defined with the 3 points a,b, c and that the lower envelope of these
ultrametrics is just d . Hence, this envelope of the all ultrametrics higher to d is
necessarily d which is not an ultrametric
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Hierarchy of Average linkage

The average criterion does not check any problem of optimality, but in practice it
has been showed that is close to the ultrametric minimizing

∑

i,i′∈Ω

(d(i , i ′) − δ(i , i ′))2

The Ward method

Let z = (z1, . . . , zK ) be a partition and z′ the partition obtained from z by merging
the clusters zk and z`. We can show the following equality:

W (z′) − W (z) =
nkn`

nk + n`
d2(xk , x`)

The merge of two classes increases necessarily the within-cluster variance. It is then
possible to propose an AHC algorithm which merges at each stage the two classes
increasing the least possible the within-cluster variance, i.e. minimizing the following
expression:

D(A,B) =
nkn`

nk + n`
d

2(xk , x`),

and we find the Ward criterion

The AHC algorithm has then a local optimum: at each stage, we seeks to minimize
the within-cluster variance
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Distance

Although used for many years, the first difficulties for hierarchical clustering are the
choice of the dissimilarity measure on Ω and of the agglomerative criterion. Indeed,
the quality of a partition and its interpretation highly depend on them.

The choice of distance or dissimilarity used on Ω plays an important role, for
example the measurement unit can affect the clustering, then a simple
standardization of original data is often necessary

Different kind of transformations depending on the type of variables (continuous,
binary, nominal or ordinal etc.) are available in the literature

In the absence of information permitting to employ the appropriate distance, the
squared distance is the most used distance for continuous data.

Criterion

Once this difficulty is overcomed it remains the problem of the choice of
agglomerative criterion (Choice of D), we have seen that exist several criteria and
the dendrograms obtained from them can be not identical, then which criterion is
more adapted to clustering ?

This question is crucial and has been extensively studied under different approaches
for hierarchical and nonhierachical methods. We retain that the sizes, shapes and
presence of outliers influence on the obtained results

we provide some practical guidelines to select the appropriate criterion
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Remarks

When there is clearly a clustering structure without outliers and the clusters are well
separated, the different criteria can give the same dendrogram

Example

From the theoretical point of view, the single linkage satisfies a certain number of
desirable mathematical properties. But in practice, it outperforms other studied
criteria only when the clusters are elongated or irregulated and there is not any chain
of points between the clusters, it is very prone to chaining effects

The complete linkage allows one to integrate the outliers in the process of training
clusters and avoids therefore the clusters with a single outlying objects

Even if it has not any theoretical property, this average criterion tends to produce
clusters that reflect accurately the structure present in data but can require a great
deal of computation. It tends to join clusters with small variances, and it is slightly
biased toward producing clusters with the same variance
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When the variables are continuous, the advised criterion is the within-cluster
variance even if it deals with great computation. The results are then jointly used
with those of PCA because the Ward is the more adapted. Taking β < 0 in the
recurrence formula, we can avoid the problem of outliers. However, it tends to give
spherical clusters of nearly equal sizes, this remark will be commented under the
mixture approach.

It is often necessary to have some tools facilitating the interpretation and some tools
allowing to decrease the number of levels of the dendrogram such as the classical
semi-partial R-square (SPRQ)

SPRSQ =
W (zk ∪ z`) − W (zk) − W (z`)

I
,

which expresses the loss of homogeneity when the clusters zk and z` are
agglomerated. This loss decreases with the number of cluster then a scree plot
showing one or several elbows can be used to propose a cut of the dendrogram. Note

Note that the problems arising from the time complexity of AHC algorithms which
depend on the linkage chosen, is solved in practice by using more effective
algorithms (De Rham, 1980) based on the construction of nearest neighbor chains
and carrying out agglomerations whenever reciprocal nearest are encountered.

Nadif (CRIP5 ) IRAN, December, 13-29, 2008 SEMINAIRES 46 / 56



Agglomerative Hierarchical Clustering Remarks about hierarchical clustering

Drawbacks of methods and new algorithms

By their and tree structure, the hierarchical methods have a great success.
Unfortunately, because their complexity, AHC is not adapted for large data. In
addition, in the merge process, once a cluster is formed, it does not undo what was
previously, then no modification of clusters or permutation of objects are possibles

Finally, the AHC algorithm with the fourth criteria studied gives generally convex
clusters and are fragile in the presence of outliers

New algorithms

Other approaches can be used to correct these weaknesses such as
1 CURE (Clustering using Representatives) by Guha et al.
2 CHAMELEON based on k-nearest neighbor graph
3 BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) by Zhang et al.

The two latter are particularly interesting for large data sets. In this context, we will
see that the nonhierarchical methods alone or combined to hierarchical methods are
more preferable. Next, we will focus on these kind of methods.

Papers to read
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Density Linkage

The phrase density linkage is used here to refer to a class of clustering methods
using nonparametric probability density estimates (for example, Hartigan 1975;
Wong 1982; Wong and Lane 1983). Density linkage consists of two steps:

1 A new dissimilarity measure, d∗, based on density estimates and adjacencies is
computed. If xi and xj are adjacent (the definition of adjacency depends on the
method of density estimation), then d∗(xi , xj ) is the reciprocal of an estimate of the
density midway between xi and xj ; otherwise, d∗(xi , xj ) is infinite.

2 A single linkage cluster analysis is performed using d∗

Uniform-Kernel Method

The uniform-kernel method uses uniform-kernel density estimates. Consider a closed
sphere centered at point x with radius r . The estimated density at x , f (x) is the
proportion of observations within the sphere divided by the volume of the sphere.
The new dissimilarity measure is computed as

{

d∗(xi , xj ) = 1
2
( 1

f (xi )
+ 1

f (xj )
) if d(xi , xj ) ≤ r ,

d∗(xi , xj ) = ∞ otherwise
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kth-Nearest Neighbor Method

The kth-nearest-neighbor method (Wong and Lane 1983) uses kth-nearest neighbor
density estimates. Let rk(x) be the distance from point x to the kth-nearest
observation. Consider a closed sphere centered at x with radius rk(x). The
estimated density at x , f (x) is the proportion of observations within the sphere
divided by the volume of the sphere. The new dissimilarity measure is computed as

{

d∗(xi , xj ) = 1
2
( 1

f (xi )
+ 1

f (xj )
) if d(xi , xj ) ≤ max(rk(xi ), rk(xj )),

d∗(xi , xj ) = ∞ otherwise

Wong and Lane (1983) show that kth-nearest-neighbor density linkage is strongly set
consistent for high-density (density-contour) clusters if k is chosen such that k/n → 0
and k/ ln(n) → ∞ when n → ∞

Comments on density linkage

Density linkage applies no constraints to the shapes of the clusters and, unlike most
other hierarchical clustering methods, is capable of recovering clusters with
elongated or irregular shapes

Problem of choice the values of smoothing parameters k and r (Hybrid method,
Wong 1982)
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Applications

Dissimilarity data matrix

a b c d e

a 0

b 0.2 0

c 1 1.05 0

d 0.7 0.75 0.3 0

e 1 0.8 1.5 1.3 0

Criteria

Single criterion

Complete criterion

Average criterion

Results

Dendrogram

Ultrametric

What is the appropriate dendrogram ?
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Applications

Measures on 23 Butterflies

num Z1 Z2 Z3 Z4
1 22 35 24 19
2 24 31 21 22
3 27 36 25 15
4 27 36 24 23
5 21 33 23 18
6 26 35 23 32
7 27 37 26 15
8 22 30 19 20
9 25 33 22 22
10 30 41 28 17
11 24 39 27 21
12 29 39 27 17
13 29 40 27 17
14 28 36 23 24
15 22 36 24 20
16 23 30 20 20
17 28 38 26 16
18 25 34 23 14
19 26 35 24 15
20 23 37 25 20
21 31 42 29 18
22 26 34 22 21
23 24 38 26 21

Measures on 23 Butterflies

Problem of clustering

Use just basic tools of visualization (SAS/Insight)
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Applications

Principal components analysis

Dendrograms with ward and single criterion
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Clustering of variables

When the variables are continuous, the principal aim is often to give clusters where
each cluster include variables correlated then the correlation matrix can be converted
to a dissimilarity matrix by replacing each correlation ρjj′ between two variables j

and j ′ by
1 − ρjj′

which is an Euclidean distance

However, unless that all correlations are positive, this distance is not appropriate,
indeed two variables highly negatively correlated may also be considered to be very
similar. Then in this case

1 − |ρjj′ |
appears more adapted. In the other hand, since the correlation has an interpretation
as the cosine of the angle between two vectors corresponding to two variables, the
dissimilarity expressed as

arccos(|ρjj′ |)
can be used. Once the dissimilarity matrix defined the AHC method with different
criteria previously listed can be employed.

Furthermore, there is an other approach commonly used based on the factor analysis.
The different steps described below lead with a Descendent Hierarchical algorithm.
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Clustering of variables

Conclusion

Advantages

Simple methods

Give readable results

Complementary to PCA or MDS

Extension to contingency tables or categorical data by using the correspondence
analysis

Can be applied (in certain cases) for the variables (see course 5)

Methods available in Statistic and data mining Software (See R)

Disadvantages

Complexity

Depend on the shape of clusters

Course 2

Nonhierarchical methods
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