Algorithmic Complexity of Proper Labeling Problems

Ali Dehghan^a, Mohammad-Reza Sadeghi^a, Arash Ahadi^b

^aFaculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran ^bDepartment of Mathematical Sciences, Sharif University of Technology, Tehran, Iran *

Abstract

A proper labeling of a graph is an assignment of integers to some elements of a graph, which may be the vertices, the edges, or both of them, such that subject to some conditions we obtain a proper vertex coloring via the labeling. The problem of proper labeling offers many variants and received a great interest during these last years. In this work, we consider the computational complexity of some variants of the proper labeling problems such as: *multiplicative vertex-coloring*, *fictional coloring* and *gap coloring*. For instance, we show that, for a given bipartite graph G, determining whether G has a vertex-labeling by gap from $\{1, 2\}$ is **NP**-complete. Also, we prove that there is a polynomial time algorithm for determining whether a given planar bipartite graph G has a vertex-labeling by gap from $\{1, 2\}$. In sharp contrast, it is **NP**-complete to decide whether a given planar 3-colorable graph G has a vertex-labeling by gap from $\{1, 2\}$.

Key words: Proper Labeling; Multiplicative vertex-coloring weightings; Gap vertex-distinguishing edge colorings; Fictional Coloring; Computational Complexity. Subject classification: 05C15, 05C20, 68Q25

1 Introduction

A proper labeling of a graph is an assignment of integers to some elements of a graph, which may be the vertices, the edges, or both of them, such that subject to some conditions we obtain a proper vertex coloring via the labeling. Karoński, Łuczak and Thomason initiated the study of proper-labelings [16]. They introduced an edge-labeling which is additive vertex-coloring that means for every edge uv, the sum of labels of the edges incident to u

^{*} E-mail addresses: ali_dehghan16@aut.ac.ir, msadeghi@aut.ac.ir, arash_ahadi@mehr.sharif.edu.

is different than the sum of labels of the edges incident to v [16]. The problem of proper labeling offers many variants and received a great interest during these last years, for instance see [1, 7, 8, 15, 16, 20]. First, consider the following two famous variants.

(P1) Edge-labeling by sum.

An edge-labeling f is edge-labeling by sum if $c(v) = \sum_{e \ni v} f(e)$, $\forall v \in V$ is a proper vertex coloring. This parameter was introduced by Karoński et al. and it is conjectured that three integer labels $\{1, 2, 3\}$ are sufficient for every connected graph, except K_2 (1, 2, 3-Conjecture, see [16]). This labeling have been studied extensively by several authors, for instance see [1, 2, 6, 17, 20]. Currently, we know that every connected graph has an edge-labeling by sum, using the labels from $\{1, 2, 3, 4, 5\}$ [15]. Also, it is shown that determining whether a given graph has a edge-labeling by sum from $\{1, 2\}$ is NP-complete [12].

(P2) Vertex-labeling by sum (Lucky labling and sigma coloring).

A vertex-labeling f is vertex-labeling by sum if $c(v) = \sum_{u \sim v} f(u)$, $\forall v \in V$ is a proper vertex coloring. vertex-labeling by sum is a vertex versions of the above problem, which was introduced recently by Czerwiński et al. [8]. It was conjectured that every graph G has a vertex-labeling by sum, using the labels $\{1, 2, \dots, \chi(G)\}$ [8] and it was shown that every graph G with $\Delta(G) \geq 2$, has a vertex-labeling by sum, using the labels $\{1, 2, \dots, \chi(G)\}$ [8] and it was shown that every [4], also, it was shown that, it is **NP**-complete to decide for a given planar 3-colorable graph G, whether G has a vertex-labeling by sum from $\{1, 2\}$ [3]. Furthermore, it is **NP**complete to determine for a given 3-regular graph G, whether G has a vertex-labeling by sum from $\{1, 2\}$ [10]. A similar version of this labeling was introduced by Chartrand et al. [7].

In this work, we consider the algorithmic complexity of the following proper labeling problems.

(P3) Edge-labeling by product. (Multiplicative vertex-coloring)

An edge-labeling f is edge-labeling by product if $c(v) = \prod_{e \ni v} f(e)$, $\forall v \in V$ is a proper vertex coloring. This variant was introduced by Skowronek-Kaziów and it is conjectured that every non-trivial graph G has an edge-labeling by product, using the labels from $\{1, 2, 3\}$ (Multiplicative 1, 2, 3-Conjecture, see [21]). Currently, we know that every nontrivial graph has an edge-labeling by product, using the labels from $\{1, 2, 3, 4\}$ [21]. Also, every non-trivial, 3-colorable graph G permits an edge-labeling by product from $\{1, 2, 3\}$ [21]. We will prove that determining whether a given planar 3-colorable graph has an edge-labeling by product from $\{1, 2\}$ is **NP**-complete.

(P4) Vertex-labeling by product.

A vertex-labeling f is vertex-labeling by product if $c(v) = \prod_{u \sim v} f(u)$, $\forall v \in V$ is a proper vertex coloring. For a given graph G, let $\{V_1, V_2, \dots, V_k\}$ be the color classes of a proper

vertex coloring of G. Label the set of vertices of V_1 by 1; also, for each $i, 1 < i \leq k$ label the set of vertices of V_i by the (i-1)-th prime number; this labeling is a vertexlabeling by product. In number theory, the prime number theorem describes the asymptotic distribution of the prime numbers. The prime number theorem implies estimates for the size of the *n*-th prime number p_n (i.e., $p_1 = 2, p_2 = 3$, etc.): up to a bounded factor, p_n grows like $n \log(n)$. As a consequence of the prime number theorem we have the following bound: $p_n < n \ln n + n \ln \ln n$, for $n \geq 6$ (see [5] p. 233). So, every graph G has a vertex-labeling by product, from $\{1, 2, \dots, \chi \ln \chi + \chi \ln \ln \chi + 2\}$. Here, we ask the following question.

Problem 1. Does every graph G have a vertex-labeling by product, using the labels $\{1, 2, \dots, \chi(G)\}$?

We shown that, every planar graph G has a vertex-labeling by product from $\{1, 2, \dots, 5\}$. We will prove that determining whether a given planar 3-colorable graph has a vertexlabeling by product from $\{1, 2\}$ is **NP**-complete. Furthermore, for every $k, k \ge 3$ we show that determining whether a given graph has a vertex-labeling by product from $\{1, 2, \dots, k\}$ is **NP**-complete.

(P5) Edge-labeling by gap.

An edge-labeling f is *edge-labeling by gap* if

 $c(v) = \begin{cases} f(e)_{e \ni v} & \text{if } d(v) = 1, \\ \max_{e \ni v} f(e) - \min_{e \ni v} f(e) & \text{otherwise,} \end{cases}$

is a proper vertex coloring. Every graph G has an *edge-labeling by gap* if and only if it has no connected component isomorphic to K_1 or K_2 (put the different powers of two $(1, 2, \dots, 2^{|E(G)|-1})$ on the edges of G; this labeling is a vertex-labeling by gap). A similar definition was introduced by Tahraoui et al. [22]. They introduced the following variant: Let G be a graph, k be a positive integer and f be a mapping from E(G) to the set $\{1, 2, \dots, k\}$. For each vertex v of G, the label of v is defined as

$$c(v) = \begin{cases} f(e)_{e \ni v} & \text{if } d(v) = 1, \\ \max_{e \ni v} f(e) - \min_{e \ni v} f(e) & \text{otherwise,} \end{cases}$$

The mapping f is called gap vertex-distinguishing labeling if distinct vertices have distinct labels. Such a coloring is called a gap-k-coloring and is denoted by gap(G) [22]. It was conjectured that for a connected graph G of order n with n > 2, $gap(G) \in \{n-1, n, n+1\}$ [22]. They purpose study of the variant of the gap coloring problem that distinguishes the adjacent vertices only.

Let f be an *edge-labeling by gap* form $\{1, 2, \dots, k\}$ for a graph G, we have $k \ge \chi(G) - 1$. First, consider the following example. **Remark 1** Every complete graph K_n of order n with n > 2, has an *edge-labeling* f_n by gap form $\{1, 2, \dots, \chi(K_n) + 1\}$. Suppose that $K_3 = v_1 v_2 v_3$ and let f_3 be the following function: $f_3(v_1 v_2) = 4$, $f_3(v_1 v_3) = 1$ and $f_3(v_2 v_3) = 2$. Define f_n recursively. $\begin{cases} f_{n-1}(v_1 v_2) + 1 & \text{if } i < n \end{cases}$

$$f_n(v_i v_j) = \begin{cases} J_{n-1}(v_i v_j) + 1 & \text{if } i, j < n, \\ 1 & \text{if } i = n \text{ and } j \neq 2, \\ 2 & \text{otherwise,} \end{cases}$$

Now, we state the following problem:

Problem 2. Does every connected graph G of order n with n > 2, have an edge-labeling by gap form $\{1, 2, \dots, \chi(G) + 1\}$?

We will prove that determining whether a given planar bipartite graph has an *edge-labeling by gap* from $\{1,2\}$ is **NP**-complete. Also, we show that for every $k, k \geq 3$, it is **NP**-complete to determine whether a given graph has an *edge-labeling by gap* from $\{1, 2, \dots, k\}$.

(P6) Vertex-labeling by gap.

A vertex-labeling f is vertex-labeling by gap if $c(v) = \begin{cases} f(u)_{u \sim v} & \text{if } d(v) = 1, \\ \max_{u \sim v} f(u) - \min_{u \sim v} f(u) & \text{otherwise,} \end{cases}$ is a proper vertex coloring. A graph may lack any

is a proper vertex coloring. A graph may lack any *vertex-labeling by gap*. Here we ask the following:

Problem 3. Does there is a polynomial time algorithm to determine whether a given graph has a vertex-labeling by gap?

We show that, for a given bipartite graph G, determining whether G has a vertexlabeling by gap from $\{1, 2\}$ is **NP**-complete. Also, we prove that there is a polynomial time algorithm for determining whether a given planar bipartite graph G has a vertexlabeling by gap from $\{1, 2\}$. In sharp contrast, it is **NP**-complete to decide whether a given planar 3-colorable graph G has a vertex-labeling by gap from $\{1, 2\}$.

Every bipartite graph G = [X, Y] has a *vertex-labeling by gap*, label the set of vertices X by 1 and label the set of vertices of Y by different powers of two $(2^1, \dots, 2^{|Y|})$. Here we ask the following:

Problem 4. Does there is a constant k such that every bipartite graph G, have a vertexlabeling by gap form $\{1, 2, \dots, k\}$? It was shown by Thomassen [23] that, for any k-uniform and k-regular hypergraph H, if $k \ge 4$, then H is 2-colorable. For every r-regular bipartite graph G = [X, Y] with $r \ge 4$, label the set of vertices of one of the color classes in part X by 1 and label other vertices by 2. This Labeling is a vertex-labeling by gap from $\{1, 2\}$ for G.

(P7) Vertex-labeling by degree. (Fictional coloring)

A vertex-labeling f is vertex-labeling by degree if c(v) = f(v)d(v), where d(v) is the degree of vertex v is a proper vertex coloring. This parameter was introduced by Bosek, Grytczuk, Matecki and Żelazny [26]. They conjecture that every graph G has a vertex-labeling by degree from $\{1, 2, \dots, \chi(G)\}$. Let p be a prime number and let G be a graph such that $\chi(G) \leq p-1$, they proved that G has a vertex-labeling by degree from $\{1, 2, \dots, p-1\}$. For every k greater than two it is clear that determining whether a given graph has a vertexlabeling by degree from $\{1, 2, \dots, k\}$ is **NP**-complete. We will prove that determining whether a given graph has a vertex-labeling by degree from $\{1, 2\}$ is in **P**.

(P8) Vertex-labeling by maximum.

A vertex-labeling f is vertex-labeling by maximum if $c(v) = \max_{u \sim v} f(u)$, $\forall v \in V$ is a proper vertex coloring. A graph G may lack any vertex-labeling by maximum and it has a vertex-labeling by maximum from $\{1, 2\}$ if and only if G is bipartite. We present a nontrivial necessary condition that can be checked in polynomial time for a graph to have a vertex-labeling by maximum.

Remark 2 Let k be the minimum number such that G has a vertex-labeling by maximum from the set $\{1, 2, \dots, k\}$, then $\chi(G) - k$ can be arbitrary large. For instance, for a given t > 3 consider the graph G with vertex set $V(G) = \{a_i : 1 \le i \le t\} \cup \{b_j : 1 \le j \le t - 2\}$ and edge set $E(G) = \{a_i a_{i+1} : 1 \le i \le t - 1\} \cup \{a_j b_j, b_j a_{j+1} : 1 \le j \le t - 2\}$. Clearly $k - \chi(G) = t - 3$.

We will show that determining whether a given 3-regular graph has a *vertex-labeling by* maximum from $\{1, 2, 3\}$ is **NP**-complete.

Throughout this paper all graphs are finite and simple. We follow [13, 25] for terminology and notation not defined here, and we consider finite undirected simple graphs G = (V, E). We denote the induced subgraph G on S by G[S]. Also, for every $v \in V(G)$ and $S \subseteq V(G)$, N(v) and N(S) denote the neighbor set of v and the set of vertices of G which has a neighbor in S, respectively. A proper vertex coloring of G = (V, E) is a function $c : V(G) \longrightarrow L$, such that if $u, v \in V(G)$ are adjacent, then c(u) and c(v) are different. A proper vertex k-coloring is a proper vertex coloring with |L| = k. The smallest integer k such that G has a proper vertex k-coloring is called the chromatic number of G

Table 1: Graph Labeling Results				
Edge-labeling by	$\{1, 2\}$	$\{1, 2, 3\}$	Current Upper Bound	Conjecture
Sum	NP-c	-	$\{1, 2, 3, 4, 5\}$	$\{1, 2, 3\}$
Product	NP-c	-	$\{1, 2, 3, 4\}$	$\{1, 2, 3\}$
Gap	NP-c	NP-c	$\{1, 2, \cdots, 2^{ E(G) -1}\}$	$\{1, 2, \cdots, \chi + 1\}$
Vertex-labeling by				
Sum	NP-c	NP-c	$\Delta^2 - \Delta + 1$	$\{1, 2, \cdots, \chi\}$
Product	NP-c	NP-c	$\{1, \cdots, \chi \ln \chi + \chi \ln \ln \chi + 2\}$	$\{1, 2, \cdots, \chi\}$
Degree	Р	NP-c	$\{1,2,\cdots,2\chi\}$	$\{1,2,\cdots,\chi\}$
Maximum	Р	NP-c	-	-
Gap	NP-c	NP-c	-	-

and denoted by $\chi(G)$. Similarly, for $k \in \mathbb{N}$, a proper edge k-coloring of G is a function $c: E(G) \longrightarrow \{1, \ldots, k\}$, such that if $e, e' \in E(G)$ share a common endpoint, then c(e)and c(e') are different. The smallest integer k such that G has a proper edge k-coloring is called the *edge chromatic number* of G and denoted by $\chi'(G)$. By Vizing's theorem [24], the edge chromatic number of a graph G is equal to either $\Delta(G)$ or $\Delta(G) + 1$. Those graphs G for which $\chi'(G) = \Delta(G)$ are said to belong to Class 1, and the others to Class 2.

$\mathbf{2}$ Results

Edge-labeling by product 2.1

Theorem 1 For a given planar 3-colorable graph G, determining whether G has an edgelabeling by product from $\{1, 2\}$ is **NP**-complete.

Proof Clearly, the problem is in NP. We reduced *Cubic Planar 1-In-3 3-Sat* to our problem. Moore and Robson [18] proved that the following problem is **NP**-complete. Cubic Planar 1-In-3 3-Sat.

INSTANCE: Set X of variables, collection C of clauses over X such that each clause $c \in C$ has |c| = 3 and every variable appears in exactly three clauses, there is no negation in the formula, and the bipartite graph obtained by linking a variable and a clause if and only if the variable appears in the clause, is planar.

QUESTION: Is there a truth assignment for X such that each clause in C has exactly one

true literal?

Figure 1: The two gadgets H_x and I_c . I_c is on the left hand side of the figure.

Consider an instance Φ , we transform this into a graph G_{Φ} such that G_{Φ} has an *edge*labeling by product from $\{1,2\}$ if and only if Φ has a 1-in-3 assignment. We use two gadgets H_x and I_c which are shown in Figure 1. The graph G_{Φ} has a copy of H_x for each variable $x \in X$ and a copy of I_c for each clause $c \in C$. Also, for each clause $c = y \lor z \lor w$ add the edges cy, cz and cw. First, suppose that G_{Φ} has a edge-labeling by product from $\{1,2\}$. In every copy of H_x and I_c the label of every edge is determined uniquely. See Figure 1 (the label of each edge is written on the edge and the color of each vertex induced by edge labels is written on the vertex). Every variable x appears in exactly three clauses, suppose that x appears in c_i , c_j and c_k . By attention to the structure of H_x the set of labels of edges $c_i x, c_j x$ and $c_k x$ are $\{1, 1, 1\}$ or $\{2, 2, 2\}$. Furthermore, by attention to the H_x and I_c , for every clause $c = x \lor y \lor z$, the set of labels of edges cx, cy and cz is $\{2, 1, 1\}$. Now, for every variable x, which is appeared in c_i, c_j and c_k put $\Gamma(x) = True$ if and only if the set of labels of edges $c_i x$, $c_j x$ and $c_k x$ is $\{2, 2, 2\}$. Clearly, Γ is an 1-in-3 satisfying assignment. Next, suppose that Φ has an 1-in-3 satisfying assignment $\Gamma: X \to \{true, false\}$, for every variable x, which is appeared in c_i , c_j and c_k , label $c_i x$, $c_j x$ and $c_k x$ by 2 if and only if $\Gamma(x) = True$. The labels of other vertices are determined uniquely and it is clear the this labeling is an *edge-labeling by product* from $\{1, 2\}$.

2.2 Vertex-labeling by product

In the next, we consider the computational complexity of vertex-labeling by product.

Theorem 2 For a given planar 3-colorable graph G, determining whether G has a vertexlabeling by product from $\{1,2\}$ is **NP**-complete.

Proof Clearly, the problem is in NP. We reduced *Cubic Planar 1-In-3 3-Sat* to our problem. First, we construct an auxiliary graph H_i^c . Put a copy of triangle $K_3 = z_1^c z_2^c z_3^c$. For every vertex z_j^c , $1 \le j \le 2$, put 2i new isolated vertices $t_1^j, t_2^j, \cdots, t_{2i}^j$ and join z_j^c to all of them. Also, add the edges $t_1^j t_2^j, t_3^j t_4^j, \cdots, t_{2i-1}^j t_{2i}^j$. Next, put 2i - 2 new isolated vertices $t_1^3, t_2^3, \cdots, t_{2i-2}^3$ and join z_3^c to all of them. Finally, add the edges $t_1^3 t_2^3, t_3^3 t_4^3, \cdots, t_{2i-3}^3 t_{2i-2}^3$. Call the resulting graph H_i^c . Now, consider an instance Ψ , we transform this into a graph G_{Ψ} such that G_{Ψ} has a vertex-labeling by product from $\{1, 2\}$ if and only if Ψ has a 1-in-3 assignment. Our construction consists of three steps.

Step 1. For each clause $c \in C$ put a vertex c and a copy of H_3^c , H_5^c and H_6^c . Connect the vertex z_3^c of H_3^c to c, also, join the vertex z_3^c of H_5^c to c and finally, connect the vertex z_3^c of H_6^c to c.

Step 2. For each variable $x \in X$ put a vertex x.

Step 3. For each clause $c = x \lor y \lor w$ add the edges cx, cy and cw.

First, suppose that G_{Ψ} has a vertex-labeling f by product from $\{1, 2\}$ and let ℓ be the induced coloring by f. In every copy of H_3^c the label of vertex z_3^c is 2. We have the similar property for H_5^c and H_6^c . By attention to the structure of H_3^c , we have f(c) = 1 and $\ell(z_3^c) = 8$; similarly for H_5^c , we have $\ell(z_3^c) = 32$ and for H_6^c , we have $\ell(z_3^c) = 64$. So for every clause vertex c we have $\ell(c) = 16$. Now, for every variable x, put $\Gamma(x) = True$ if and only if f(x) = 2. Since for every clause c, $\ell(c) = 16$, Γ is an 1-in-3 satisfying assignment. Next, suppose that Ψ is 1-in-3 satisfiable with the satisfying assignment $\Gamma : X \to \{true, false\}$, for every variable x, label the vertex x by 2 if and only if $\Gamma(x) = True$. The labels of other vertices are determined uniquely and it is clear the this labeling is a vertex-labeling by product from $\{1, 2\}$.

Theorem 3 For every $k, k \ge 3$, it is **NP**-complete to determine whether a given graph has a vertex-labeling by product from $\{1, 2, \dots, k\}$.

Proof We present a polynomial time reduction from 3-colorability to our problem. 3-Colorability: Given a graph G; is $\chi(G) \leq 3$?

First define the following sets: $\mathcal{A}_k = \{mn : m, n \in \mathbb{N}_k\}, \mathcal{B}_k = \{\frac{m}{n} : m, n \in \mathbb{N}_k\}$, where $\mathbb{N}_k = \{1, 2, \dots, k\}$. Also, define $\alpha(k) = \max_{\mathcal{D}_k \in \mathcal{C}_k} |\mathcal{D}_k|$, where \mathcal{C}_k is the set of sets such that for every set $\mathcal{D}_k \in \mathcal{C}_k$, we have $\mathcal{D}_k \subseteq \mathcal{A}_k$ and $\{\frac{d}{d'} : d, d' \in \mathcal{D}_k\} \cap \mathcal{B}_k = \emptyset$. Since k is constant, so we can compute $\alpha(k)$ in O(1). Now, for a given graph G with n

Figure 2: The graph \widetilde{G} derived from $G = P_3$ for k = 3.

vertices v_1, v_2, \cdots, v_n , join all vertices of G to the all vertices of complete graph $K_{\alpha(k)-3}$ with vertices $v_{n+1}, \cdots, v_{n+\alpha(k)-3}$. Call the resulting graph G^* . Now consider the graph G^{**} with the vertex set $\{v_i^j : i \in \mathbb{N}_{n+\alpha(k)-3}, j \in \mathbb{N}_k\}$ such that v_x^y is joined to v_z^w if and only if x = z or $v_x v_z \in E(G^*)$. Finally, consider a copy of graph G^{**} , for every i, $1 \leq i \leq n + \alpha(k) - 3$, put two new isolated vertices v_i' and v_i'' and join them to the set of vertices $\{v_i^1, \cdots, v_i^k\}$. Call the resulting graph \widetilde{G} (see Figure 2). We show that \widetilde{G} has a vertex-labeling by product from $\{1, 2, \cdots, k\}$ if and only if G is 3-colorable. Let f be a vertex-labeling by product for \widetilde{G} . Clearly, $f(v_1^1), \cdots, f(v_1^k)$ should be different numbers. For every $i, i \in \mathbb{N}_{n+\alpha(k)-3}$, we have: $\{f(v_i^j) : j \in \mathbb{N}_k\} = \mathbb{N}_k$. Furthermore, for every i_1, i_2 , $1 \leq i_1 < i_2 \leq n + \alpha(k) - 3$, we have: $f(v_{i_1}')f(v_{i_1}''), f(v_{i_2}')f(v_{i_2}'') \in \mathcal{A}_k$. Also, for every i_1 and i_2 , if $v_{i_1}v_{i_2} \in E(G)$, then

$$\frac{f(v'_{i_1})f(v''_{i_1})}{f(v'_{i_2})f(v''_{i_2})} \notin \mathcal{B}_k.$$

Therefore, $|\{f(v'_i)f(v''_i): 1 \leq i \leq n + \alpha(k) - 3\}| \geq \alpha(k) - 3 + \chi(G)$. So, \widetilde{G} has a vertex-labeling by product from $\{1, 2, \dots, k\}$ if and only if $\chi(G) \leq 3$. The proof is complete.

2.3 Edge-labeling by gap

Theorem 4 For a given planar bipartite graph G, determining whether G has an edgelabeling by gap from $\{1,2\}$ is **NP**-complete.

Proof Let Φ be a 3-SAT formula with clauses $C = \{c_1, \dots, c_k\}$ and variables $X = \{x_1, \dots, x_n\}$. Let $G(\Phi)$ be a graph with the vertices $C \cup X \cup (\neg X)$, where $\neg X = \{\neg x_1, \dots, \neg x_n\}$, such that for each clause $c_j = y \lor z \lor w$, c_j is adjacent to y, z and w, also every $x_i \in X$ is adjacent to $\neg x_i$. Φ is called planar 3-SAT type 2 formula if $G(\Phi)$ is a planar graph. It was shown that the problem of satisfiability of planar 3-SAT type 2 is **NP**-complete [11].

Planar 3-SAT type 2.

INSTANCE: A 3-SAT type 2 formula Φ .

QUESTION: Is there a truth assignment for Φ that satisfies all the clauses?

We reduce planar 3-SAT type 2 problem to our problem. In planar 3-SAT type 2, if we only consider the set of formulas such that the bipartite graph G obtained by linking a variable and a clause if and only if the variable appears in the clause, is connected and it does not have any vertex of degree one, the problem remains **NP**-complete. We reduce this version to our problem. Consider an instance Φ , we transform this into a graph G_{Φ} such that G_{Φ} has an *edge-labeling by gap* from $\{1,2\}$ if and only if Φ has a satisfying assignment. For each variable $x \in X$ put a copy of path $P_3 = xt_x \neg x$, also, for each clause $c \in C$ put a copy of gadget $P_4 = cc'c''c'''$. Now, put a copy C_6 . Also, for each clause $c = y \lor z \lor w$ add the edges cy, cz and cw. Finally, let x be an arbitrary literal, connect x to one of the vertices of C_6 . G_{Φ} is connected, bipartite and planar. First, suppose that G_{Φ} has an *edge-labeling* f by gap from $\{1,2\}$ and l is the induced proper coloring by f. Since for every variable x the degrees of vertices x and $\neg x$ are greater than one, also for every clause c the degree of vertex c is 4 and G_{Φ} is connected, hence in the induced coloring l by f, for the set of variables $\{x_1, \dots, x_n\}$ and the set of clauses $\{c_1, \dots, c_m\}$ we have $l(x_1) = l(\neg x_1) = \cdots = l(x_n) \neq l(c_1) = l(\neg c_1) = \cdots = l(c_m)$ and $l(x_1) \neq 2 \neq l(c_1)$. First, suppose that l(x) = 1. Since x is adjacent to one of the vertices of C_6 , in this situation G_{Φ} does not have any edge-labeling f by gap from $\{1,2\}$. So l(x) = 0 and l(c) = 1. Hence, the labels of all edges incident with x_1 are same. Also, for every variable x, because of t_x , the labels of all edges incident with x are different from the labels of all edges incident with $\neg x$. Now, for every variable x, which is appeared in c_i, c_j, \cdots, c_k put $\Gamma(x) = True$ if and only if the labels of edge $c_i x$ is 2. For every clause $c = x \vee y \vee w$, l(c) = 1, if the set of labels of edges $\{cx, cy, cw\}$ is $\{1\}$, then since l(c) = 1 and by attention to the gadget cc'c'''. G does not have any edge-labeling f by gap from $\{1,2\}$. So, $2 \in \{f(cx), f(cy), f(cw)\}$. Therefore, Γ is an satisfying assignment. Now, let Γ be an satisfying assignment for Φ . For every variable x, label all the edges incident with x by 2 if and only if $\Gamma(x) = True$. It is easy to extend this labeling to an *edge-labeling* f by gap from $\{1, 2\}$. This completes the proof.

Theorem 5 For every $k, k \ge 3$, it is **NP**-complete to determine whether a given graph has an edge-labeling by gap from $\{1, 2, \dots, k\}$.

Proof We present a polynomial time reduction from *k*-colorability, to our problem. *k*-Colorability: Given a graph G; is $\chi(G) \leq k$?

For a given graph G, we construct a graph G^* such that $\chi(G) \leq k$ if and only if G^* has an *edge-labeling by gap* from $\{1, 2, \dots, k\}$. Let G be a graph, for every vertex $v \in V(G)$, put a copy $P_3 = vv'v''$ and join v to u if and only if $uv \in E(G)$. Call the resulting G^* . First, suppose that G^* has an *edge-labeling* f by gap from $\{1, 2, \dots, k\}$ and ℓ is the induced coloring by f. for every vertex $v, v \in V(G^*)$ of degree more then one, we have $\ell(v) \in \{0, 1, cdots, k-1\}$, so ℓ is also a proper vertex coloring for G. Now, let c be a proper vertex coloring for G. For every vertex v $inV(G^*)$, label all edges incident with v except vv' by 1 and label vv' by c(v). Finally for every edge v'v'', label v'v'' by 1 if $c(v) \neq 1$, otherwise label v'v'' by k. This labeling is an *edge-labeling by gap* from $\{1, 2, \dots, k\}$. \Box

2.4 Vertex-labeling by gap

Theorem 6 For a given bipartite graph G, determining whether G has a vertex-labeling by gap from $\{1,2\}$ is **NP**-complete.

Proof We reduce *Not-All-Equal 3-Sat* to our problem in polynomial time. It is shown that the following problem is **NP**-complete [13].

Not-All-Equal 3-Sat.

INSTANCE: Set X of variables, collection C of clauses over X such that each clause $c \in C$ has |c| = 3.

QUESTION: Is there a truth assignment for X such that each clause in C has at least one true literal and at least one false literal?

For a given Φ , we transform Φ into a graph G_{Φ} such that G_{Φ} has a vertex-labeling by gap from $\{1,2\}$ if and only if Φ has a satisfying assignment. Construction of G_{Φ} is similar to the proof Theorem 4, except the gadget $P_4 = cc'c''c'''$. For each clause $c \in C$ instead of $P_4 = cc'c''c'''$, put a isolated vertex c. First, suppose that G_{Φ} has an edgelabeling f by gap from $\{1,2\}$ and l is the induced proper coloring by f. By an argument similar to argument of proof of Theorem 4, for every clause $c = x \vee y \vee w$, l(c) = 1. So $\{f(x), f(y), f(w)\} = \{1, 2\}$, therefore Γ is a NAE satisfying assignment. Now, let Γ be an satisfying assignment for Φ . For every variable x, label the vertex x by 2 if and only if $\Gamma(x) = True$. This completes the proof.

Theorem 7 For a given planar bipartite graph G, determining whether G has a vertexlabeling by gap from $\{1,2\}$ is in **P**.

Proof First we show that every tree T with more than two vertex has a *vertex-labeling by* gap from $\{1,2\}$. Let T be a tree with more than two vertex and $v \in V(T)$ be an arbitrary vertex, define:

 $f(u) = \begin{cases} 1 & \text{if } d(u, v) \equiv 0 \pmod{4}, \\ 2 & \text{otherwise,} \end{cases}$

We call this kind of labeling as good labeling by center v. It is easy to see that good labeling by center v is a vertex-labeling by gap from $\{1, 2\}$. Now, consider the following problem. Planar Not-All-Equal 3-Sat.

INSTANCE: Set X of variables, collection C of clauses over X such that each clause $c \in C$ has |c| = 3 and the following graph obtained from 3-Sat is planar. The graph has one vertex for each variable, one vertex for each clause; all variable vertices are connected in a simple cycle and each clause vertex is connected by an edge to variable vertices corresponding to the literals present in the clause.

QUESTION: Is there a Not-All-Equal truth assignment for X?

It was proved in [19] that *Planar Not-All-Equal 3-Sat* is in \mathbf{P} by a reduction to a known problem in \mathbf{P} , namely Planar(Simple) MaxCut. By a simple argument it was shown that the following problem is in \mathbf{P} (for more information see [10]).

Planar Not-All-Equal 3-Sat Type 2.

INSTANCE: Set X of variables, collection C of clauses over X such that each clause $c \in C$ has |c|=3 and the bipartite graph obtained by linking a variable and a clause if and only if the variable appears in the clause, is planar.

QUESTION: Is there a Not-All-Equal truth assignment for X?

Now, consider the following:

Planar Not-All-Equal Sat Type 2.

INSTANCE: Set X of variables, collection C of clauses over X such that each clause $c \in C$ has $|c| \ge 2$ and the bipartite graph obtained by linking a variable and a clause if and only if the variable appears in the clause, is planar.

QUESTION: Is there a Not-All-Equal truth assignment for X?

We can transform any instance of Φ Planar Not-All-Equal Sat Type 2 to an instance Ψ of Planar Not-All-Equal 3-Sat Type 2 in polynomial time. For a given instance Φ , for each clause with exactly two literals like $c = (x \vee y)$, put two clauses $x \vee y \vee t$ and

 $x \vee y \vee \neg t$ in Ψ , where t is a new variable. And for each clause with exactly four literals like $c = (x \vee y \vee w \vee z)$, put two clauses $x \vee y \vee t$ and $w \vee z \vee \neg t$ in Ψ , where t is a new variable. For clauses with more than five variable we have a similar argument.

Let G = [X, Y] be a planar bipartite graph, remove all vertices of degree one, repeat this procedure to obtain a graph G' = [X', Y'] such that G' does not have a vertex of degree one. For every vertex $v \in X'$, consider a variable v in Φ and for every vertex $u \in Y'$ with $d_G(u) = d_{G'}(u)$ put a clause $(\bigvee_{v \sim u} v)$ in Φ . Now determine whether Φ has a Not-All-Equal truth assignment. If Φ has a Not-All-Equal truth assignment Γ , for every vertex $v, v \in X'$ label v by 1 if and only if $\Gamma(v) = False$. Label other vertices of G' by 2, call this labeling by f. The induced graph on $V(G) \setminus V(G')$ is a forest, call this forest by F. Suppose that $F = T_1 \cup \cdots \cup T_k$, where T_i is a tree. For every $i, 1 \leq i \leq k$ let v_i , $v_i \in V(G')$ be a vertex with minimum distance from T_i . Now for every T_i four cases can be considered:

Case 1: $v_i \in Y'$ and $\{\bigcup_{v \sim u} f(u)\} = \{1, 2\}$. Let $z \in N_{G'}(v_i)$ such that f(z) = 1 and $T'_i = T_i \cup v_i \cup z$. Suppose that f_i is a good labeling by center z for T'_i .

Case 2: $v_i \in Y'$ and $\{\bigcup_{v \sim u} f(u)\} = \{2\}$. Let $z \in N_{T'_i}(v_i)$. Suppose that f_i is a good labeling by center z for T_i .

Case 3: $v_i \in Y'$ and $\{\bigcup_{v \sim u} f(u)\} = \{1\}$. Let $z \in N_{G'}(v_i)$ such that f(z) = 1 and $T'_i = T_i \cup v_i \cup z$. Suppose that f_i is a good labeling by center z for T'_i .

Case 4: $v_i \in X'$ and $\{\bigcup_{v \sim u} f(u)\} = \{2\}$. Let $T'_i = T_i \cup v_i \cup t$, where t is anew vertex and t is joined to v_i in T'_i . Suppose that f_i is a good labeling by center t for T'_i .

It is easy to see that the union of good labelings f, f_1, f_2, \dots, f_k is a vertex-labeling by gap from $\{1, 2\}$ for G. If Φ does not have a Not-All-Equal truth assignment. Then, for every vertex $v \in Y'$, consider a variable v in Ψ and for every vertex $u \in X'$ with $d_G(u) = d_{G'}(u)$ put a clause $(\forall_{v \sim u} v)$ in Ψ . Now determine whether Ψ has a Not-All-Equal truth assignment. If Φ has a Not-All-Equal truth assignment Γ by a similar method we can find vertex-labeling by gap from $\{1, 2\}$ for G. Otherwise, G does not have any vertexlabeling by gap from $\{1, 2\}$.

Theorem 8 For every $k, k \ge 3$, it is **NP**-complete to determine whether a given graph has a vertex-labeling by gap from $\{1, 2, \dots, k\}$.

Proof The proof is similar to the proof of Theorem 5.

It was shown that 3-colorability of planar 4-regular graphs is NP-complete [9]. So we have the following:

Theorem 9 It is **NP**-complete to decide whether a given planar 3-colorable graph G has a vertex-labeling by gap from $\{1, 2\}$.

2.5 Vertex-labeling by degree

For every k greater than three it is clear that determining whether a given graph has a vertex-labeling by degree from $\{1, 2, \dots, k\}$ is **NP**-complete.

Theorem 10 Determining whether a given graph has a vertex-labeling by degree from $\{1,2\}$ is in **P**.

Proof We reduce our problem to 2-SAT problem in polynomial time.

2-SAT.

INSTANCE: A 2-SAT formula Φ .

QUESTION: Is there a truth assignment for Φ that satisfies all the clauses?

For a given graph G of order n we construct a 2-SAT formula Φ with n variables $v_1, v_2 \cdots, v_n$ such that G has a vertex-labeling by degree from $\{1, 2\}$ if and only if there is a truth assignment for Φ . For every edge $e = v_i v_j$, if $d(v_i) = d(v_j)$, add the clauses $v_i \vee v_j$ and $\neg v_i \vee \neg v_j$ and if $d(v_i) = 2d(v_j)$, add the clause $v_i \vee \neg v_j$, otherwise if $2d(v_i) = d(v_j)$, add the clause $\neg v_i \vee v_j$. First, suppose that Γ is satisfying assignment for Φ . For every vertex v_i , label v_i by 2 if and only if $\Gamma(v_i) = true$. It is easy to see that this labeling is a vertex-labeling by degree from $\{1, 2\}$. Next, let f be a vertex-labeling by degree from $\{1, 2\}$, for every variable v_i , put $\Gamma(v_i) = true$ if and only if $f(v_i) = 2$. As we know 2-SAT problem is in **P** [13]. This completes the proof.

2.6 Vertex-labeling by maximum

A graph may lack any *vertex-labeling by maximum*, in the next we consider the complexity of *vertex-labeling by maximum*; also, we present a necessary condition that can be checked in polynomial time for a graph to have a *vertex-labeling by maximum*.

Theorem 11 For a given 3-regular graph G, determining whether G has a vertex-labeling by maximum from $\{1, 2, 3\}$ is **NP**-complete.

Figure 3: Transformation in constructing G'.

Proof Clearly, the problem is in NP. It was shown that it is **NP**-hard to determine the edge chromatic number of a cubic graph [14]. Let G be a 3-regular graph. We construct a 3-regular graph G' from G such that G' has a vertex-labeling by maximum from $\{1, 2, 3\}$ if and only if G belongs to Class 1. In order to construct G', for every vertex $v \in V(G)$ with the neighbors x, y and z consider two disjoint triangles $v_x v_y v_z$ and $v'_x v'_y v'_z$ in G'. Also, for every edge $e \in E(G)$, consider two vertices e and e' in G'. Finally, for every edge $e = uv \in E(G)$, join e to v_u and u_v ; also join e' to v'_u and u'_v . Name the constructed graph G' (see Figure 3). Since G' has triangles, so every vertex-labeling by maximum needs at least 3 distinct labels. First suppose that G' has a vertex-labeling f by maximum from $\{1, 2, 3\}$ and let ℓ be the induced vertex coloring by f. For every vertex $v \in V(G)$ with the neighbors x, y and z in G, we have $\{\ell(v_x), \ell(v_y), \ell(v_z)\} = \{1, 2, 3\} = \{\ell(v'_x), \ell(v'_y), \ell(v'_z)\}$. Suppose that there are u and v such that $\ell(v_u) = \ell(v'_u) = 3$, then f(vu) = f((vu)') = 3. Since f can not assign 3 to the vertices in a triangle, hence $\ell(vu) = \ell((vu)') = 3$ and this is a contradiction. so we have the following fact:

There are no u and v such that $\ell(v_u) = \ell(v'_u) = 3$ (Fact 1).

Now, consider the following proper 3-edge coloring for $G: g: E(G) \longrightarrow \{1, 2, 3\},\$

$$g(uv) = \begin{cases} 1 & if \ f(uv) = 3, \\ 2 & if \ f((uv)') = 3, \\ 3 & otherwise \end{cases}$$

 $\begin{array}{l} \begin{array}{l} (3 \quad otherwise. \end{array} \\ \text{By Fact 1, } g \text{ is well-defined and } G \text{ belongs to } Class 1. \end{array} \\ \text{On the other hand, assume that} \\ g: E(G) \longrightarrow \{1, 2, 3\} \text{ is a proper 3-edge coloring. Define } f: V(G') \longrightarrow \{1, 2, 3\} \text{ such that} \\ \text{for every edge } uv \in E(G), \ f(v_u) = f(v'_u) = 1, \ f(uv) = g(uv) \text{ and } f((uv)') \equiv g(uv) + 1(mod 3). \end{array} \\ \text{It is easy to see that } f \text{ is a vertex-labeling by maximum.} \end{array}$

For a given graph G, put a new vertex v and join it to the all vertices of G, next put a new vertex u and join it to v. Name the constructed graph G'. We can construct G' in polynomial time and G has a vertex-labeling by maximum from $\{1, 2, \dots, k\}$ if and only if G' has a vertex-labeling by maximum from $\{1, 2, \dots, k+1\}$, so we have the following:

Theorem 12 For every $k \ge 3$, it is **NP**-complete to decide whether G has a vertexlabeling by maximum from $\{1, 2, \dots, k\}$ for a given k-colorable graph G.

Every triangle-free graph has a vertex-labeling by maximum (put different numbers on vertices) and if G is graph such that every vertex appears in some triangles then G does not have vertex-labeling by maximum. Here, we present a nontrivial necessary condition for a graph to have a vertex-labeling by maximum. First consider the following definition.

Definition 1For a given graph G the subset S of vertices is called kernel if every $v \in S$ appears in a triangle in G[S] and for every two adjacent vertices v and u, where $v \in S$ and $u \in N(S) \setminus S$, there exists a vertex $z \in S$ such that z is adjacent to v and u.

Let S be a kernel for G. To the contrary, assume that f is a vertex-labeling by maximum for G and $v \in S \cup N(S)$ is a vertex that gets the maximum of $\{f(u) : u \in S \cup N(S)\}$. Then v has two neighbors x and y in S with $\max_{u \sim x} f(u) = \max_{u \sim y} f(u) = f(v)$. This is a contradiction. Therefore, if G has a kernel, then G does not have a vertex-labeling by maximum. Now, consider Algorithm 1.

When Algorithm 1 terminates, if it returns "G has the kernel S", then S is a kernel, so G does not have vertex-labeling by maximum. Suppose that Algorithm 1 returns "G has no kernel", but G has a kernel S'. In the lines 2-3 of algorithm, the set of vertices S' are added to S. Now, consider the line 5 of algorithm and let $v \in S'$ be the first vertex form the set S' that is eliminated from S. When Algorithm 1 chooses the vertex v, v is in a triangle in G[S'], so is in a triangle in G[S]. Therefore, there is a vertex u such that $uv \in E(G), v \in S', u \in N(S) \setminus S$ and there is no vertex $z \in S$ such that z is adjacent to vand u. So S' is not kernel. It is a contradiction. So when Algorithm 1 returns "G has no kernel", G does not have any kernel. Here, we ask the following question: Is the necessary condition, sufficient for a given graph to have a vertex-labeling by maximum?

Problem 5. Does there is a polynomial time algorithm to determine whether a given graph has a vertex-labeling by maximum?

Algorithm 1 (Kernel)

 $S = \emptyset$ for (Every vertex u in a triangle) do $S \leftarrow S \cup \{u\}$ end for while (There are two adjacent vertices u and v such that $v \in S$, $u \in N(S) \setminus S$ and there is no vertex $z \in S$ such that z is adjacent to v and u.) or (v is not in any triangle in G[S]) do $S \leftarrow S \setminus \{v\}$ end while if ($S \neq \emptyset$) then Return "G has the kernel S." else Return "G has no kernel."

3 Acknowledgment

We would like to thank Wiktor Żelazny for his valuable answers to our questions about the definition of fictional coloring.

References

- L. Addario-Berry, R. E. L. Aldred, K. Dalal, and B. A. Reed. Vertex colouring edge partitions. J. Combin. Theory Ser. B, 94(2):237–244, 2005.
- [2] L. Addario-Berry, K. Dalal, and B. A. Reed. Degree constrained subgraphs. *Discrete Appl. Math.*, 156(7):1168–1174, 2008.
- [3] A. Ahadi, A. Dehghan, M. Kazemi, and E. Mollaahmadi. Computation of lucky number of planar graphs is NP-hard. *Inform. Process. Lett.*, 112(4):109-112, 2012.
- [4] S. Akbari, M. Ghanbari, R. Manaviyat, and S. Zare. On the lucky choice number of graphs. *Graphs Combin.*, (to appear).
- [5] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory. MIT Press, 1996.
- [6] T. Bartnicki, J. Grytczuk, and S. Niwczyk. Weight choosability of graphs. J. Graph Theory, 60(3):242–256, 2009.

- [7] Gary Chartrand, Futaba Okamoto, and Ping Zhang. The sigma chromatic number of a graph. *Graphs Combin.*, 26(6):755–773, 2010.
- [8] Sebastian Czerwiński, Jarosław Grytczuk, and Wiktor Żelazny. Lucky labelings of graphs. Inform. Process. Lett., 109(18):1078–1081, 2009.
- [9] David P. Dailey. Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete. *Discrete Math.*, 30(3):289–293, 1980.
- [10] A. Dehghan, M.R. Sadeghi, and A. Ahadi. The complexity of the sigma chromatic number of cubic graphs. *Submitted*.
- [11] Ding-Zhu Du, Ker-K Ko, and J. Wang. Introduction to Computational Complexity. Higher Education Press, 2002.
- [12] Andrzej Dudek and David Wajc. On the complexity of vertex-coloring edgeweightings. Discrete Math. Theor. Comput. Sci., 13(3):45–50, 2011.
- [13] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman, San Francisco, 1979.
- [14] Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718–720, 1981.
- [15] Maciej Kalkowski, Michał Karoński, and Florian Pfender. Vertex-coloring edgeweightings: towards the 1-2-3-conjecture. J. Combin. Theory Ser. B, 100(3):347–349, 2010.
- [16] Michał Karoński, Tomasz Łuczak, and Andrew Thomason. Edge weights and vertex colours. J. Combin. Theory Ser. B, 91(1):151–157, 2004.
- [17] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone, and B Stevens. Digraphs are 2-weight choosable. *Electron. J. Combin.*, 18(1):Paper 21,4, 2011.
- [18] C. Moore and J. M. Robson. Hard tiling problems with simple tiles. Discrete Comput. Geom., 26(4):573–590, 2001.
- [19] B. M. Moret. Planar NAE3SAT is in P. SIGACT News 19, 2, pages 51–54, 1988.
- [20] Joanna Skowronek-Kaziów. 1,2 conjecture—the multiplicative version. Inform. Process. Lett., 107(3-4):93–95, 2008.
- [21] Joanna Skowronek-Kaziów. Multiplicative vertex-colouring weightings of graphs. Inform. Process. Lett., 112(5):191-194, 2012.

- [22] M.A. Tahraoui, E. Duchene, and H. Kheddouci. Gap vertex-distinguishing edge colorings of graphs. *Discrete Math.*, 312(20):3011-3025, 2012.
- [23] Carsten Thomassen. The even cycle problem for directed graphs. J. Amer. Math. Soc., 5(2):217–229, 1992.
- [24] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz No., 3:25–30, 1964.
- [25] Douglas B. West. Introduction to graph theory. Prentice Hall Inc., Upper Saddle River, NJ, 1996.
- [26] Wiktor Żelazny. Personal Communication.