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Abstract

A proper labeling of a graph is an assignment of integers to some elements of a graph,

which may be the vertices, the edges, or both of them, such that subject to some

conditions we obtain a proper vertex coloring via the labeling. The problem of proper

labeling offers many variants and received a great interest during these last years. In

this work, we consider the computational complexity of some variants of the proper

labeling problems such as: multiplicative vertex-coloring, fictional coloring and gap

coloring. For instance, we show that, for a given bipartite graph G, determining

whether G has a vertex-labeling by gap from {1, 2} is NP-complete. Also, we prove

that there is a polynomial time algorithm for determining whether a given planar

bipartite graph G has a vertex-labeling by gap from {1, 2}. In sharp contrast, it is NP-

complete to decide whether a given planar 3-colorable graph G has a vertex-labeling

by gap from {1, 2}.

Key words: Proper Labeling; Multiplicative vertex-coloring weightings; Gap

vertex-distinguishing edge colorings ; Fictional Coloring; Computational Complexity.
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1 Introduction

A proper labeling of a graph is an assignment of integers to some elements of a graph, which

may be the vertices, the edges, or both of them, such that subject to some conditions we

obtain a proper vertex coloring via the labeling. Karoński,  Luczak and Thomason initiated

the study of proper-labelings [16]. They introduced an edge-labeling which is additive

vertex-coloring that means for every edge uv, the sum of labels of the edges incident to u

∗E-mail addresses: ali dehghan16@aut.ac.ir, msadeghi@aut.ac.ir, arash ahadi@mehr.sharif.edu.
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is different than the sum of labels of the edges incident to v [16]. The problem of proper

labeling offers many variants and received a great interest during these last years, for

instance see [1, 7, 8, 15, 16, 20]. First, consider the following two famous variants.

(P1) Edge-labeling by sum.

An edge-labeling f is edge-labeling by sum if c(v) =
∑

e∋v f(e), ∀v ∈ V is a proper vertex

coloring. This parameter was introduced by Karoński et al. and it is conjectured that

three integer labels {1, 2, 3} are sufficient for every connected graph, except K2 (1, 2, 3-

Conjecture, see [16]). This labeling have been studied extensively by several authors, for

instance see [1, 2, 6, 17, 20]. Currently, we know that every connected graph has an edge-

labeling by sum, using the labels from {1, 2, 3, 4, 5} [15]. Also, it is shown that determining

whether a given graph has a edge-labeling by sum from {1, 2} is NP-complete [12].

(P2) Vertex-labeling by sum (Lucky labling and sigma coloring).

A vertex-labeling f is vertex-labeling by sum if c(v) =
∑

u∼v f(u), ∀v ∈ V is a proper

vertex coloring. vertex-labeling by sum is a vertex versions of the above problem, which

was introduced recently by Czerwiński et al. [8]. It was conjectured that every graph G has

a vertex-labeling by sum, using the labels {1, 2, · · · , χ(G)} [8] and it was shown that every

graph G with ∆(G) ≥ 2, has a vertex-labeling by sum, using the labels {1, 2, · · · , ∆2−∆+1}

[4], also, it was shown that, it is NP-complete to decide for a given planar 3-colorable

graph G, whether G has a vertex-labeling by sum from {1, 2} [3]. Furthermore, it is NP-

complete to determine for a given 3-regular graph G, whether G has a vertex-labeling by

sum from {1, 2} [10]. A similar version of this labeling was introduced by Chartrand et

al. [7].

In this work, we consider the algorithmic complexity of the following proper labeling

problems.

(P3) Edge-labeling by product. (Multiplicative vertex-coloring)

An edge-labeling f is edge-labeling by product if c(v) =
∏

e∋v f(e), ∀v ∈ V is a proper

vertex coloring. This variant was introduced by Skowronek-Kaziów and it is conjectured

that every non-trivial graph G has an edge-labeling by product, using the labels from

{1, 2, 3} (Multiplicative 1, 2, 3-Conjecture, see [21]). Currently, we know that every non-

trivial graph has an edge-labeling by product, using the labels from {1, 2, 3, 4} [21]. Also,

every non-trivial, 3-colorable graph G permits an edge-labeling by product from {1, 2, 3}

[21]. We will prove that determining whether a given planar 3-colorable graph has an

edge-labeling by product from {1, 2} is NP-complete.

(P4) Vertex-labeling by product.

A vertex-labeling f is vertex-labeling by product if c(v) =
∏

u∼v f(u), ∀v ∈ V is a proper

vertex coloring. For a given graph G, let {V1, V2, · · · , Vk} be the color classes of a proper
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vertex coloring of G. Label the set of vertices of V1 by 1; also, for each i, 1 < i ≤ k

label the set of vertices of Vi by the (i − 1)-th prime number; this labeling is a vertex-

labeling by product. In number theory, the prime number theorem describes the asymptotic

distribution of the prime numbers. The prime number theorem implies estimates for the

size of the n-th prime number pn (i.e., p1 = 2, p2 = 3, etc.): up to a bounded factor, pn

grows like n log(n). As a consequence of the prime number theorem we have the following

bound: pn < n ln n + n ln ln n, for n ≥ 6 (see [5] p. 233). So, every graph G has a

vertex-labeling by product, from {1, 2, · · · , χ ln χ+χ ln ln χ+2}. Here, we ask the following

question.

Problem 1. Does every graph G have a vertex-labeling by product, using the labels

{1, 2, · · · , χ(G)}?

We shown that, every planar graph G has a vertex-labeling by product from {1, 2, · · · , 5}.

We will prove that determining whether a given planar 3-colorable graph has a vertex-

labeling by product from {1, 2} is NP-complete. Furthermore, for every k, k ≥ 3 we show

that determining whether a given graph has a vertex-labeling by product from {1, 2, · · · , k}

is NP-complete.

(P5) Edge-labeling by gap.

An edge-labeling f is edge-labeling by gap if

c(v) =

{
f(e)e∋v if d(v) = 1,

maxe∋v f(e)−mine∋v f(e) otherwise,

is a proper vertex coloring. Every graph G has an edge-labeling by gap if and only if it

has no connected component isomorphic to K1 or K2 (put the different powers of two

(1, 2, · · · , 2|E(G)|−1) on the edges of G; this labeling is a vertex-labeling by gap). A similar

definition was introduced by Tahraoui et al. [22]. They introduced the following variant:

Let G be a graph, k be a positive integer and f be a mapping from E(G) to the set

{1, 2, · · · , k}. For each vertex v of G, the label of v is defined as

c(v) =

{
f(e)e∋v if d(v) = 1,

maxe∋v f(e)−mine∋v f(e) otherwise,

The mapping f is called gap vertex-distinguishing labeling if distinct vertices have distinct

labels. Such a coloring is called a gap-k-coloring and is denoted by gap(G) [22]. It was

conjectured that for a connected graph G of order n with n > 2, gap(G) ∈ {n−1, n, n+1}

[22]. They purpose study of the variant of the gap coloring problem that distinguishes the

adjacent vertices only.

Let f be an edge-labeling by gap form {1, 2, · · · , k} for a graph G, we have k ≥ χ(G) − 1.

First, consider the following example.
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Remark 1 Every complete graph Kn of order n with n > 2, has an edge-labeling fn by

gap form {1, 2, · · · , χ(Kn) + 1}. Suppose that K3 = v1v2v3 and let f3 be the following

function: f3(v1v2) = 4, f3(v1v3) = 1 and f3(v2v3) = 2. Define fn recursively.

fn(vivj) =





fn−1(vivj) + 1 if i, j < n,

1 if i = n and j 6= 2,

2 otherwise,

Now, we state the following problem:

Problem 2. Does every connected graph G of order n with n > 2, have an edge-labeling

by gap form {1, 2, · · · , χ(G) + 1}?

We will prove that determining whether a given planar bipartite graph has an edge-

labeling by gap from {1, 2} is NP-complete. Also, we show that for every k, k ≥ 3, it

is NP-complete to determine whether a given graph has an edge-labeling by gap from

{1, 2, · · · , k}.

(P6) Vertex-labeling by gap.

A vertex-labeling f is vertex-labeling by gap if

c(v) =

{
f(u)u∼v if d(v) = 1,

maxu∼v f(u)−minu∼v f(u) otherwise,

is a proper vertex coloring. A graph may lack any vertex-labeling by gap. Here we ask the

following:

Problem 3. Does there is a polynomial time algorithm to determine whether a given

graph has a vertex-labeling by gap?

We show that, for a given bipartite graph G, determining whether G has a vertex-

labeling by gap from {1, 2} is NP-complete. Also, we prove that there is a polynomial

time algorithm for determining whether a given planar bipartite graph G has a vertex-

labeling by gap from {1, 2}. In sharp contrast, it is NP-complete to decide whether a given

planar 3-colorable graph G has a vertex-labeling by gap from {1, 2}.

Every bipartite graph G = [X,Y ] has a vertex-labeling by gap, label the set of vertices

X by 1 and label the set of vertices of Y by different powers of two (21, · · · , 2|Y |). Here

we ask the following:

Problem 4. Does there is a constant k such that every bipartite graph G, have a vertex-

labeling by gap form {1, 2, · · · , k}?
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It was shown by Thomassen [23] that, for any k-uniform and k-regular hypergraph H,

if k ≥ 4, then H is 2-colorable. For every r-regular bipartite graph G = [X,Y ] with r ≥ 4,

label the set of vertices of one of the color classes in part X by 1 and label other vertices

by 2. This Labeling is a vertex-labeling by gap from {1, 2} for G.

(P7) Vertex-labeling by degree. (Fictional coloring)

A vertex-labeling f is vertex-labeling by degree if c(v) = f(v)d(v), where d(v) is the degree

of vertex v is a proper vertex coloring. This parameter was introduced by Bosek, Grytczuk,

Matecki and Żelazny [26]. They conjecture that every graph G has a vertex-labeling by

degree from {1, 2, · · · , χ(G)}. Let p be a prime number and let G be a graph such that

χ(G) ≤ p−1, they proved that G has a vertex-labeling by degree from {1, 2, · · · , p−1}. For

every k greater than two it is clear that determining whether a given graph has a vertex-

labeling by degree from {1, 2, · · · , k} is NP-complete. We will prove that determining

whether a given graph has a vertex-labeling by degree from {1, 2} is in P.

(P8) Vertex-labeling by maximum.

A vertex-labeling f is vertex-labeling by maximum if c(v) = maxu∼v f(u), ∀v ∈ V is a

proper vertex coloring. A graph G may lack any vertex-labeling by maximum and it has

a vertex-labeling by maximum from {1, 2} if and only if G is bipartite. We present a

nontrivial necessary condition that can be checked in polynomial time for a graph to have

a vertex-labeling by maximum.

Remark 2 Let k be the minimum number such that G has a vertex-labeling by maximum

from the set {1, 2, · · · , k}, then χ(G)− k can be arbitrary large. For instance, for a given

t > 3 consider the graph G with vertex set V (G) = {ai : 1 ≤ i ≤ t} ∪ {bj : 1 ≤ j ≤ t− 2}

and edge set E(G) = {aiai+1 : 1 ≤ i ≤ t − 1} ∪ {ajbj , bjaj+1 : 1 ≤ j ≤ t − 2}. Clearly

k − χ(G) = t− 3.

We will show that determining whether a given 3-regular graph has a vertex-labeling by

maximum from {1, 2, 3} is NP-complete.

Throughout this paper all graphs are finite and simple. We follow [13, 25] for ter-

minology and notation not defined here, and we consider finite undirected simple graphs

G = (V,E). We denote the induced subgraph G on S by G[S]. Also, for every v ∈ V (G)

and S ⊆ V (G), N(v) and N(S) denote the neighbor set of v and the set of vertices of

G which has a neighbor in S, respectively. A proper vertex coloring of G = (V,E) is a

function c : V (G) −→ L, such that if u, v ∈ V (G) are adjacent, then c(u) and c(v) are

different. A proper vertex k-coloring is a proper vertex coloring with |L| = k. The smallest

integer k such that G has a proper vertex k-coloring is called the chromatic number of G
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Table 1: Graph Labeling Results

Edge-labeling by {1, 2} {1, 2, 3} Current Upper Bound Conjecture

Sum NP-c - {1, 2, 3, 4, 5} {1, 2, 3}

Product NP-c - {1, 2, 3, 4} {1, 2, 3}

Gap NP-c NP-c {1, 2, · · · , 2|E(G)|−1} {1, 2, · · · , χ + 1}

Vertex-labeling by

Sum NP-c NP-c ∆2 −∆ + 1 {1, 2, · · · , χ}

Product NP-c NP-c {1, · · · , χ ln χ + χ ln ln χ + 2} {1, 2, · · · , χ}

Degree P NP-c {1, 2, · · · , 2χ} {1, 2, · · · , χ}

Maximum P NP-c - -

Gap NP-c NP-c - -

and denoted by χ(G). Similarly, for k ∈ N, a proper edge k-coloring of G is a function

c : E(G) −→ {1, . . . , k}, such that if e, e′ ∈ E(G) share a common endpoint, then c(e)

and c(e′) are different. The smallest integer k such that G has a proper edge k-coloring is

called the edge chromatic number of G and denoted by χ′(G). By Vizing’s theorem [24],

the edge chromatic number of a graph G is equal to either ∆(G) or ∆(G) + 1. Those

graphs G for which χ′(G) = ∆(G) are said to belong to Class 1, and the others to Class

2.

2 Results

2.1 Edge-labeling by product

Theorem 1 For a given planar 3-colorable graph G, determining whether G has an edge-

labeling by product from {1, 2} is NP-complete.

Proof Clearly, the problem is in NP. We reduced Cubic Planar 1-In-3 3-Sat to our prob-

lem. Moore and Robson [18] proved that the following problem is NP-complete.

Cubic Planar 1-In-3 3-Sat.

Instance: Set X of variables, collection C of clauses over X such that each clause c ∈ C

has | c |= 3 and every variable appears in exactly three clauses, there is no negation in the

formula, and the bipartite graph obtained by linking a variable and a clause if and only if

the variable appears in the clause, is planar.

Question: Is there a truth assignment for X such that each clause in C has exactly one
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Figure 1: The two gadgets Hx and Ic. Ic is on the left hand side of the figure.

Consider an instance Φ, we transform this into a graph GΦ such that GΦ has an edge-

labeling by product from {1, 2} if and only if Φ has a 1-in-3 assignment. We use two gadgets

Hx and Ic which are shown in Figure 1. The graph GΦ has a copy of Hx for each variable

x ∈ X and a copy of Ic for each clause c ∈ C. Also, for each clause c = y ∨ z ∨w add the

edges cy, cz and cw. First, suppose that GΦ has a edge-labeling by product from {1, 2}. In

every copy of Hx and Ic the label of every edge is determined uniquely. See Figure 1 (the

label of each edge is written on the edge and the color of each vertex induced by edge labels

is written on the vertex). Every variable x appears in exactly three clauses, suppose that

x appears in ci, cj and ck. By attention to the structure of Hx the set of labels of edges

cix, cjx and ckx are {1, 1, 1} or {2, 2, 2}. Furthermore, by attention to the Hx and Ic, for

every clause c = x ∨ y ∨ z, the set of labels of edges cx, cy and cz is {2, 1, 1}. Now, for

every variable x, which is appeared in ci, cj and ck put Γ(x) = True if and only if the set

of labels of edges cix, cjx and ckx is {2, 2, 2}. Clearly, Γ is an 1-in-3 satisfying assignment.

Next, suppose that Φ has an 1-in-3 satisfying assignment Γ : X → {true, false}, for every

variable x, which is appeared in ci, cj and ck, label cix, cjx and ckx by 2 if and only if

Γ(x) = True. The labels of other vertices are determined uniquely and it is clear the this

labeling is an edge-labeling by product from {1, 2}. �

2.2 Vertex-labeling by product

In the next, we consider the computational complexity of vertex-labeling by product.
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Theorem 2 For a given planar 3-colorable graph G, determining whether G has a vertex-

labeling by product from {1, 2} is NP-complete.

Proof Clearly, the problem is in NP. We reduced Cubic Planar 1-In-3 3-Sat to our

problem. First, we construct an auxiliary graph Hc
i . Put a copy of triangle K3 = zc

1z
c
2z

c
3.

For every vertex zc
j , 1 ≤ j ≤ 2, put 2i new isolated vertices tj1, t

j
2, · · · , t

j
2i and join zc

j to all

of them. Also, add the edges tj1t
j
2, tj3t

j
4, · · · , t

j
2i−1t

j
2i. Next, put 2i− 2 new isolated vertices

t31, t
3
2, · · · , t

3
2i−2 and join zc

3 to all of them. Finally, add the edges t31t
3
2, t33t

3
4, · · · , t

3
2i−3t

3
2i−2.

Call the resulting graph Hc
i . Now, consider an instance Ψ, we transform this into a graph

GΨ such that GΨ has a vertex-labeling by product from {1, 2} if and only if Ψ has a 1-in-3

assignment. Our construction consists of three steps.

Step 1. For each clause c ∈ C put a vertex c and a copy of Hc
3, Hc

5 and Hc
6. Connect the

vertex zc
3 of Hc

3 to c, also, join the vertex zc
3 of Hc

5 to c and finally, connect the vertex zc
3

of Hc
6 to c.

Step 2. For each variable x ∈ X put a vertex x.

Step 3. For each clause c = x ∨ y ∨ w add the edges cx, cy and cw.

First, suppose that GΨ has a vertex-labeling f by product from {1, 2} and let ℓ be the

induced coloring by f . In every copy of Hc
3 the label of vertex zc

3 is 2. We have the similar

property for Hc
5 and Hc

6. By attention to the structure of Hc
3, we have f(c) = 1 and

ℓ(zc
3) = 8; similarly for Hc

5, we have ℓ(zc
3) = 32 and for Hc

6, we have ℓ(zc
3) = 64. So for every

clause vertex c we have ℓ(c) = 16. Now, for every variable x, put Γ(x) = True if and only

if f(x) = 2. Since for every clause c, ℓ(c) = 16, Γ is an 1-in-3 satisfying assignment. Next,

suppose that Ψ is 1-in-3 satisfiable with the satisfying assignment Γ : X → {true, false},

for every variable x, label the vertex x by 2 if and only if Γ(x) = True. The labels of

other vertices are determined uniquely and it is clear the this labeling is a vertex-labeling

by product from {1, 2}.

�

Theorem 3 For every k, k ≥ 3, it is NP-complete to determine whether a given graph

has a vertex-labeling by product from {1, 2, · · · , k}.

Proof We present a polynomial time reduction from 3-colorability to our problem.

3-Colorability: Given a graph G; is χ(G) ≤ 3?

First define the following sets: Ak = {mn : m,n ∈ Nk}, Bk = {m
n

: m,n ∈ Nk}, where

Nk = {1, 2, · · · , k}. Also, define α(k) = maxDk∈Ck
| Dk |, where Ck is the set of sets

such that for every set Dk ∈ Ck, we have Dk ⊆ Ak and { d
d′

: d, d′ ∈ Dk} ∩ Bk = ∅.

Since k is constant, so we can compute α(k) in O(1). Now, for a given graph G with n
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Figure 2: The graph G̃ derived from G = P3 for k = 3.

vertices v1, v2, · · · , vn, join all vertices of G to the all vertices of complete graph Kα(k)−3

with vertices vn+1, · · · , vn+α(k)−3. Call the resulting graph G∗. Now consider the graph

G∗∗ with the vertex set {vj
i : i ∈ Nn+α(k)−3, j ∈ Nk} such that vy

x is joined to vw
z if

and only if x = z or vxvz ∈ E(G∗). Finally, consider a copy of graph G∗∗, for every i,

1 ≤ i ≤ n + α(k) − 3, put two new isolated vertices v′i and v′′i and join them to the set

of vertices {v1
i , · · · , v

k
i }. Call the resulting graph G̃ (see Figure 2). We show that G̃ has

a vertex-labeling by product from {1, 2, · · · , k} if and only if G is 3-colorable. Let f be

a vertex-labeling by product for G̃. Clearly, f(v1
1), · · · , f(vk

1 ) should be different numbers.

For every i, i ∈ Nn+α(k)−3, we have: {f(vj
i ) : j ∈ Nk} = Nk. Furthermore, for every i1, i2,

1 ≤ i1 < i2 ≤ n + α(k) − 3, we have: f(v′i1)f(v′′i1), f(v′i2)f(v′′i2) ∈ Ak. Also, for every i1
and i2, if vi1vi2 ∈ E(G), then

f(v′i1)f(v′′i1)

f(v′i2)f(v′′i2)
/∈ Bk.

Therefore, | {f(v′i)f(v′′i ) : 1 ≤ i ≤ n + α(k) − 3} |≥ α(k) − 3 + χ(G). So, G̃ has a

vertex-labeling by product from {1, 2, · · · , k} if and only if χ(G) ≤ 3. The proof is complete.

�
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2.3 Edge-labeling by gap

Theorem 4 For a given planar bipartite graph G, determining whether G has an edge-

labeling by gap from {1, 2} is NP-complete.

Proof Let Φ be a 3-SAT formula with clauses C = {c1, · · · , ck} and variables X =

{x1, · · · , xn}. Let G(Φ) be a graph with the vertices C ∪ X ∪ (¬X), where ¬X =

{¬x1, · · · ,¬xn}, such that for each clause cj = y ∨ z ∨ w, cj is adjacent to y, z and

w, also every xi ∈ X is adjacent to ¬xi. Φ is called planar 3-SAT type 2 formula if G(Φ)

is a planar graph. It was shown that the problem of satisfiability of planar 3-SAT type 2

is NP-complete [11].

Planar 3-SAT type 2.

Instance: A 3-SAT type 2 formula Φ.

Question: Is there a truth assignment for Φ that satisfies all the clauses?

We reduce planar 3-SAT type 2 problem to our problem. In planar 3-SAT type 2, if we

only consider the set of formulas such that the bipartite graph G obtained by linking a

variable and a clause if and only if the variable appears in the clause, is connected and it

does not have any vertex of degree one, the problem remains NP-complete. We reduce

this version to our problem. Consider an instance Φ, we transform this into a graph GΦ

such that GΦ has an edge-labeling by gap from {1, 2} if and only if Φ has a satisfying

assignment. For each variable x ∈ X put a copy of path P3 = xtx¬x, also, for each clause

c ∈ C put a copy of gadget P4 = cc′c′′c′′′. Now, put a copy C6. Also, for each clause

c = y ∨ z ∨w add the edges cy, cz and cw. Finally, let x be an arbitrary literal, connect x

to one of the vertices of C6. GΦ is connected, bipartite and planar. First, suppose that GΦ

has an edge-labeling f by gap from {1, 2} and l is the induced proper coloring by f . Since

for every variable x the degrees of vertices x and ¬x are greater than one, also for every

clause c the degree of vertex c is 4 and GΦ is connected, hence in the induced coloring

l by f , for the set of variables {x1, · · · , xn} and the set of clauses {c1, · · · , cm} we have

l(x1) = l(¬x1) = · · · = l(xn) 6= l(c1) = l(¬c1) = · · · = l(cm) and l(x1) 6= 2 6= l(c1). First,

suppose that l(x) = 1. Since x is adjacent to one of the vertices of C6, in this situation GΦ

does not have any edge-labeling f by gap from {1, 2}. So l(x) = 0 and l(c) = 1. Hence, the

labels of all edges incident with x1 are same. Also, for every variable x, because of tx, the

labels of all edges incident with x are different from the labels of all edges incident with

¬x. Now, for every variable x, which is appeared in ci, cj , · · · , ck put Γ(x) = True if and

only if the labels of edge cix is 2. For every clause c = x∨y∨w, l(c) = 1, if the set of labels

of edges {cx, cy, cw} is {1}, then since l(c) = 1 and by attention to the gadget cc′c′′c′′′,

G does not have any edge-labeling f by gap from {1, 2}. So, 2 ∈ {f(cx), f(cy), f(cw)}.

Therefore, Γ is an satisfying assignment. Now, let Γ be an satisfying assignment for Φ.
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For every variable x, label all the edges incident with x by 2 if and only if Γ(x) = True.

It is easy to extend this labeling to an edge-labeling f by gap from {1, 2}. This completes

the proof. �

Theorem 5 For every k, k ≥ 3, it is NP-complete to determine whether a given graph

has an edge-labeling by gap from {1, 2, · · · , k}.

Proof We present a polynomial time reduction from k-colorability, to our problem.

k-Colorability: Given a graph G; is χ(G) ≤ k?

For a given graph G, we construct a graph G∗ such that χ(G) ≤ k if and only if G∗ has

an edge-labeling by gap from {1, 2, · · · , k}. Let G be a graph, for every vertex v ∈ V (G),

put a copy P3 = vv′v′′ and join v to u if and only if uv ∈ E(G). Call the resulting

G∗. First, suppose that G∗ has an edge-labeling f by gap from {1, 2, · · · , k} and ℓ is the

induced coloring by f . for every vertex v, v ∈ V (G∗) of degree more then one, we have

ℓ(v) ∈ {0, 1, cdots, k−1}, so ℓ is also a proper vertex coloring for G. Now, let c be a proper

vertex coloring for G. For every vertex v inV (G∗), label all edges incident with v except

vv′ by 1 and label vv′ by c(v). Finally for every edge v′v′′, label v′v′′ by 1 if c(v) 6= 1,

otherwise label v′v′′ by k. This labeling is an edge-labeling by gap from {1, 2, · · · , k}. �

2.4 Vertex-labeling by gap

Theorem 6 For a given bipartite graph G, determining whether G has a vertex-labeling

by gap from {1, 2} is NP-complete.

Proof We reduce Not-All-Equal 3-Sat to our problem in polynomial time. It is shown

that the following problem is NP-complete [13].

Not-All-Equal 3-Sat .

Instance: Set X of variables, collection C of clauses over X such that each clause c ∈ C

has | c |= 3.

Question: Is there a truth assignment for X such that each clause in C has at least one

true literal and at least one false literal?

For a given Φ, we transform Φ into a graph GΦ such that GΦ has a vertex-labeling by

gap from {1, 2} if and only if Φ has a satisfying assignment. Construction of GΦ is

similar to the proof Theorem 4, except the gadget P4 = cc′c′′c′′′. For each clause c ∈ C

instead of P4 = cc′c′′c′′′, put a isolated vertex c. First, suppose that GΦ has an edge-

labeling f by gap from {1, 2} and l is the induced proper coloring by f . By an argument

similar to argument of proof of Theorem 4, for every clause c = x ∨ y ∨ w, l(c) = 1. So
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{f(x), f(y), f(w)} = {1, 2}, therefore Γ is a NAE satisfying assignment. Now, let Γ be an

satisfying assignment for Φ. For every variable x, label the vertex x by 2 if and only if

Γ(x) = True. This completes the proof. �

Theorem 7 For a given planar bipartite graph G, determining whether G has a vertex-

labeling by gap from {1, 2} is in P.

Proof First we show that every tree T with more than two vertex has a vertex-labeling by

gap from {1, 2}. Let T be a tree with more than two vertex and v ∈ V (T ) be an arbitrary

vertex, define:

f(u) =

{
1 if d(u, v) ≡ 0 ( mod 4),

2 otherwise,

We call this kind of labeling as good labeling by center v. It is easy to see that good labeling

by center v is a vertex-labeling by gap from {1, 2}. Now, consider the following problem.

Planar Not-All-Equal 3-Sat.

Instance: Set X of variables, collection C of clauses over X such that each clause c ∈ C

has | c |= 3 and the following graph obtained from 3-Sat is planar. The graph has one

vertex for each variable, one vertex for each clause; all variable vertices are connected

in a simple cycle and each clause vertex is connected by an edge to variable vertices

corresponding to the literals present in the clause.

Question: Is there a Not-All-Equal truth assignment for X?

It was proved in [19] that Planar Not-All-Equal 3-Sat is in P by a reduction to a known

problem in P, namely Planar(Simple) MaxCut. By a simple argument it was shown that

the following problem is in P (for more information see [10]).

Planar Not-All-Equal 3-Sat Type 2.

Instance: Set X of variables, collection C of clauses over X such that each clause c ∈ C

has | c |= 3 and the bipartite graph obtained by linking a variable and a clause if and only

if the variable appears in the clause, is planar.

Question: Is there a Not-All-Equal truth assignment for X?

Now, consider the following:

Planar Not-All-Equal Sat Type 2.

Instance: Set X of variables, collection C of clauses over X such that each clause c ∈ C

has | c |≥ 2 and the bipartite graph obtained by linking a variable and a clause if and only

if the variable appears in the clause, is planar.

Question: Is there a Not-All-Equal truth assignment for X?

We can transform any instance of Φ Planar Not-All-Equal Sat Type 2 to an instance Ψ

of Planar Not-All-Equal 3-Sat Type 2 in polynomial time. For a given instance Φ, for

each clause with exactly two literals like c = (x ∨ y), put two clauses x ∨ y ∨ t and

12



x ∨ y ∨ ¬t in Ψ, where t is a new variable. And for each clause with exactly four literals

like c = (x ∨ y ∨ w ∨ z), put two clauses x ∨ y ∨ t and w ∨ z ∨ ¬t in Ψ, where t is a new

variable. For clauses with more than five variable we have a similar argument.

Let G = [X,Y ] be a planar bipartite graph, remove all vertices of degree one, repeat

this procedure to obtain a graph G′ = [X ′, Y ′] such that G′ does not have a vertex of

degree one. For every vertex v ∈ X ′, consider a variable v in Φ and for every vertex

u ∈ Y ′ with dG(u) = dG′(u) put a clause (∨v∼uv) in Φ. Now determine whether Φ has a

Not-All-Equal truth assignment. If Φ has a Not-All-Equal truth assignment Γ, for every

vertex v, v ∈ X ′ label v by 1 if and only if Γ(v) = False. Label other vertices of G′ by

2, call this labeling by f . The induced graph on V (G) \ V (G′) is a forest, call this forest

by F . Suppose that F = T1 ∪ · · · ∪ Tk, where Ti is a tree. For every i, 1 ≤ i ≤ k let vi,

vi ∈ V (G′) be a vertex with minimum distance from Ti. Now for every Ti four cases can

be considered:

Case 1: vi ∈ Y ′ and {
⋃

v∼u f(u)} = {1, 2}. Let z ∈ NG′(vi) such that f(z) = 1 and

T ′
i = Ti ∪ vi ∪ z. Suppose that fi is a good labeling by center z for T ′

i .

Case 2: vi ∈ Y ′ and {
⋃

v∼u f(u)} = {2}. Let z ∈ NT ′

i
(vi). Suppose that fi is a good

labeling by center z for Ti.

Case 3: vi ∈ Y ′ and {
⋃

v∼u f(u)} = {1}. Let z ∈ NG′(vi) such that f(z) = 1 and

T ′
i = Ti ∪ vi ∪ z. Suppose that fi is a good labeling by center z for T ′

i .

Case 4: vi ∈ X ′ and {
⋃

v∼u f(u)} = {2}. Let T ′
i = Ti ∪ vi ∪ t, where t is anew vertex

and t is joined to vi in T ′
i . Suppose that fi is a good labeling by center t for T ′

i .

It is easy to see that the union of good labelings f, f1, f2, · · · , fk is a vertex-labeling

by gap from {1, 2} for G. If Φ does not have a Not-All-Equal truth assignment. Then,

for every vertex v ∈ Y ′, consider a variable v in Ψ and for every vertex u ∈ X ′ with

dG(u) = dG′(u) put a clause (∨v∼uv) in Ψ. Now determine whether Ψ has a Not-All-Equal

truth assignment. If Φ has a Not-All-Equal truth assignment Γ by a similar method we

can find vertex-labeling by gap from {1, 2} for G. Otherwise, G does not have any vertex-

labeling by gap from {1, 2}.

�

Theorem 8 For every k, k ≥ 3, it is NP-complete to determine whether a given graph

has a vertex-labeling by gap from {1, 2, · · · , k}.

Proof The proof is similar to the proof of Theorem 5. �
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It was shown that 3-colorability of planar 4-regular graphs is NP-complete [9]. So we

have the following:

Theorem 9 It is NP-complete to decide whether a given planar 3-colorable graph G has

a vertex-labeling by gap from {1, 2}.

2.5 Vertex-labeling by degree

For every k greater than three it is clear that determining whether a given graph has a

vertex-labeling by degree from {1, 2, · · · , k} is NP-complete.

Theorem 10 Determining whether a given graph has a vertex-labeling by degree from

{1, 2} is in P.

Proof We reduce our problem to 2-SAT problem in polynomial time.

2-SAT.

Instance: A 2-SAT formula Φ.

Question: Is there a truth assignment for Φ that satisfies all the clauses?

For a given graph G of order n we construct a 2-SAT formula Φ with n variables v1, v2 · · · , vn

such that G has a vertex-labeling by degree from {1, 2} if and only if there is a truth assign-

ment for Φ. For every edge e = vivj , if d(vi) = d(vj), add the clauses vi ∨ vj and ¬vi ∨¬vj

and if d(vi) = 2d(vj), add the clause vi ∨ ¬vj, otherwise if 2d(vi) = d(vj), add the clause

¬vi ∨ vj . First, suppose that Γ is satisfying assignment for Φ. For every vertex vi, label vi

by 2 if and only if Γ(vi) = true. It is easy to see that this labeling is a vertex-labeling by

degree from {1, 2}. Next, let f be a vertex-labeling by degree from {1, 2}, for every variable

vi, put Γ(vi) = true if and only if f(vi) = 2. As we know 2-SAT problem is in P [13].

This completes the proof. �

2.6 Vertex-labeling by maximum

A graph may lack any vertex-labeling by maximum, in the next we consider the complexity

of vertex-labeling by maximum; also, we present a necessary condition that can be checked

in polynomial time for a graph to have a vertex-labeling by maximum.

Theorem 11 For a given 3-regular graph G, determining whether G has a vertex-labeling

by maximum from {1, 2, 3} is NP-complete.
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Figure 3: Transformation in constructing G′.

Proof Clearly, the problem is in NP. It was shown that it is NP-hard to determine the

edge chromatic number of a cubic graph [14]. Let G be a 3-regular graph. We construct

a 3-regular graph G′ from G such that G′ has a vertex-labeling by maximum from {1, 2, 3}

if and only if G belongs to Class 1. In order to construct G′, for every vertex v ∈ V (G)

with the neighbors x, y and z consider two disjoint triangles vxvyvz and v′xv′yv
′
z in G′.

Also, for every edge e ∈ E(G), consider two vertices e and e′ in G′. Finally, for every edge

e = uv ∈ E(G), join e to vu and uv; also join e′ to v′u and u′
v. Name the constructed graph

G′ (see Figure 3). Since G′ has triangles, so every vertex-labeling by maximum needs at

least 3 distinct labels. First suppose that G′ has a vertex-labeling f by maximum from

{1, 2, 3} and let ℓ be the induced vertex coloring by f . For every vertex v ∈ V (G) with the

neighbors x, y and z in G, we have {ℓ(vx), ℓ(vy), ℓ(vz)} = {1, 2, 3} = {ℓ(v′x), ℓ(v′y), ℓ(v′z)}.

Suppose that there are u and v such that ℓ(vu) = ℓ(v′u) = 3, then f(vu) = f((vu)′) = 3.

Since f can not assign 3 to the vertices in a triangle, hence ℓ(vu) = ℓ((vu)′) = 3 and this

is a contradiction. so we have the following fact:

There are no u and v such that ℓ(vu) = ℓ(v′u) = 3 (Fact 1).

Now, consider the following proper 3-edge coloring for G: g : E(G) −→ {1, 2, 3},

g(uv) =





1 if f(uv) = 3,

2 if f((uv)′) = 3,

3 otherwise.

By Fact 1, g is well-defined and G belongs to Class 1. On the other hand, assume that

g : E(G) −→ {1, 2, 3} is a proper 3-edge coloring. Define f : V (G′) −→ {1, 2, 3} such that

for every edge uv ∈ E(G), f(vu) = f(v′u) = 1, f(uv) = g(uv) and f((uv)′) ≡ g(uv) + 1(

mod 3). It is easy to see that f is a vertex-labeling by maximum. �

15



For a given graph G, put a new vertex v and join it to the all vertices of G, next put

a new vertex u and join it to v. Name the constructed graph G′. We can construct G′ in

polynomial time and G has a vertex-labeling by maximum from {1, 2, · · · , k} if and only if

G′ has a vertex-labeling by maximum from {1, 2, · · · , k + 1} ,so we have the following:

Theorem 12 For every k ≥ 3, it is NP-complete to decide whether G has a vertex-

labeling by maximum from {1, 2, · · · , k} for a given k-colorable graph G.

Every triangle-free graph has a vertex-labeling by maximum (put different numbers on

vertices) and if G is graph such that every vertex appears in some triangles then G does

not have vertex-labeling by maximum. Here, we present a nontrivial necessary condition

for a graph to have a vertex-labeling by maximum. First consider the following definition.

Definition 1For a given graph G the subset S of vertices is called kernel if every v ∈ S

appears in a triangle in G[S] and for every two adjacent vertices v and u, where v ∈ S

and u ∈ N(S) \ S, there exists a vertex z ∈ S such that z is adjacent to v and u.

Let S be a kernel for G. To the contrary, assume that f is a vertex-labeling by maximum

for G and v ∈ S ∪ N(S) is a vertex that gets the maximum of {f(u) : u ∈ S ∪ N(S)}.

Then v has two neighbors x and y in S with maxu∼x f(u) = maxu∼y f(u) = f(v). This

is a contradiction. Therefore, if G has a kernel, then G does not have a vertex-labeling by

maximum. Now, consider Algorithm 1.

When Algorithm 1 terminates, if it returns ”G has the kernel S”, then S is a kernel,

so G does not have vertex-labeling by maximum. Suppose that Algorithm 1 returns ”G

has no kernel”, but G has a kernel S′. In the lines 2 − 3 of algorithm, the set of vertices

S′ are added to S. Now, consider the line 5 of algorithm and let v ∈ S′ be the first vertex

form the set S′ that is eliminated from S. When Algorithm 1 chooses the vertex v, v is

in a triangle in G[S′], so is in a triangle in G[S]. Therefore, there is a vertex u such that

uv ∈ E(G), v ∈ S′, u ∈ N(S) \S and there is no vertex z ∈ S such that z is adjacent to v

and u. So S′ is not kernel. It is a contradiction. So when Algorithm 1 returns ”G has no

kernel”, G does not have any kernel. Here, we ask the following question: Is the necessary

condition, sufficient for a given graph to have a vertex-labeling by maximum?

Problem 5. Does there is a polynomial time algorithm to determine whether a given

graph has a vertex-labeling by maximum?
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Algorithm 1 (Kernel)

S = ∅

for ( Every vertex u in a triangle) do

S ← S ∪ {u}

end for

while ( There are two adjacent vertices u and v such that v ∈ S, u ∈ N(S) \ S and

there is no vertex z ∈ S such that z is adjacent to v and u.) or (v is not in any triangle

in G[S]) do

S ← S \ {v}

end while

if ( S 6= ∅) then

Return ”G has the kernel S.”

else

Return ”G has no kernel.”

end if
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