Algorithmic Complexity of Proper Labeling Problems

Ali Dehghana ${ }^{\text {a }}$, Mohammad-Reza Sadeghi ${ }^{\text {a }}$, Arash Ahadi ${ }^{\text {b }}$
${ }^{\text {a }}$ Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran *

Abstract

A proper labeling of a graph is an assignment of integers to some elements of a graph, which may be the vertices, the edges, or both of them, such that subject to some conditions we obtain a proper vertex coloring via the labeling. The problem of proper labeling offers many variants and received a great interest during these last years. In this work, we consider the computational complexity of some variants of the proper labeling problems such as: multiplicative vertex-coloring, fictional coloring and gap coloring. For instance, we show that, for a given bipartite graph G, determining whether G has a vertex-labeling by gap from $\{1,2\}$ is NP-complete. Also, we prove that there is a polynomial time algorithm for determining whether a given planar bipartite graph G has a vertex-labeling by gap from $\{1,2\}$. In sharp contrast, it is NPcomplete to decide whether a given planar 3-colorable graph G has a vertex-labeling by gap from $\{1,2\}$.

Key words: Proper Labeling; Multiplicative vertex-coloring weightings; Gap vertex-distinguishing edge colorings ; Fictional Coloring; Computational Complexity. Subject classification: 05C15, 05C20, 68Q25

1 Introduction

A proper labeling of a graph is an assignment of integers to some elements of a graph, which may be the vertices, the edges, or both of them, such that subject to some conditions we obtain a proper vertex coloring via the labeling. Karoński, Łuczak and Thomason initiated the study of proper-labelings [16]. They introduced an edge-labeling which is additive vertex-coloring that means for every edge $u v$, the sum of labels of the edges incident to u

[^0]is different than the sum of labels of the edges incident to v [16]. The problem of proper labeling offers many variants and received a great interest during these last years, for instance see $[1,7,8,15,16,20]$. First, consider the following two famous variants.
(P1) Edge-labeling by sum.
An edge-labeling f is edge-labeling by sum if $c(v)=\sum_{e \ni v} f(e), \forall v \in V$ is a proper vertex coloring. This parameter was introduced by Karoński et al. and it is conjectured that three integer labels $\{1,2,3\}$ are sufficient for every connected graph, except $K_{2}(1,2,3$ Conjecture, see [16]). This labeling have been studied extensively by several authors, for instance see $[1,2,6,17,20]$. Currently, we know that every connected graph has an edgelabeling by sum, using the labels from $\{1,2,3,4,5\}$ [15]. Also, it is shown that determining whether a given graph has a edge-labeling by sum from $\{1,2\}$ is NP-complete [12].
(P2) Vertex-labeling by sum (Lucky labling and sigma coloring).
A vertex-labeling f is vertex-labeling by sum if $c(v)=\sum_{u \sim v} f(u), \forall v \in V$ is a proper vertex coloring. vertex-labeling by sum is a vertex versions of the above problem, which was introduced recently by Czerwiński et al. [8]. It was conjectured that every graph G has a vertex-labeling by sum, using the labels $\{1,2, \cdots, \chi(G)\}[8]$ and it was shown that every graph G with $\Delta(G) \geq 2$, has a vertex-labeling by sum, using the labels $\left\{1,2, \cdots, \Delta^{2}-\Delta+1\right\}$ [4], also, it was shown that, it is NP-complete to decide for a given planar 3-colorable graph G, whether G has a vertex-labeling by sum from $\{1,2\}$ [3]. Furthermore, it is NPcomplete to determine for a given 3-regular graph G, whether G has a vertex-labeling by sum from $\{1,2\}[10]$. A similar version of this labeling was introduced by Chartrand et al. [7].

In this work, we consider the algorithmic complexity of the following proper labeling problems.
(P3) Edge-labeling by product. (Multiplicative vertex-coloring)
An edge-labeling f is edge-labeling by product if $c(v)=\prod_{e \ni v} f(e), \forall v \in V$ is a proper vertex coloring. This variant was introduced by Skowronek-Kaziów and it is conjectured that every non-trivial graph G has an edge-labeling by product, using the labels from $\{1,2,3\}$ (Multiplicative 1, 2, 3-Conjecture, see [21]). Currently, we know that every nontrivial graph has an edge-labeling by product, using the labels from $\{1,2,3,4\}$ [21]. Also, every non-trivial, 3 -colorable graph G permits an edge-labeling by product from $\{1,2,3\}$ [21]. We will prove that determining whether a given planar 3-colorable graph has an edge-labeling by product from $\{1,2\}$ is NP-complete.
(P4) Vertex-labeling by product.
A vertex-labeling f is vertex-labeling by product if $c(v)=\prod_{u \sim v} f(u), \forall v \in V$ is a proper vertex coloring. For a given graph G, let $\left\{V_{1}, V_{2}, \cdots, V_{k}\right\}$ be the color classes of a proper
vertex coloring of G. Label the set of vertices of V_{1} by 1 ; also, for each $i, 1<i \leq k$ label the set of vertices of V_{i} by the $(i-1)$-th prime number; this labeling is a vertexlabeling by product. In number theory, the prime number theorem describes the asymptotic distribution of the prime numbers. The prime number theorem implies estimates for the size of the n-th prime number p_{n} (i.e., $p_{1}=2, p_{2}=3$, etc.): up to a bounded factor, p_{n} grows like $n \log (n)$. As a consequence of the prime number theorem we have the following bound: $p_{n}<n \ln n+n \ln \ln n$, for $n \geq 6$ (see [5] p. 233). So, every graph G has a vertex-labeling by product, from $\{1,2, \cdots, \chi \ln \chi+\chi \ln \ln \chi+2\}$. Here, we ask the following question.

Problem 1. Does every graph G have a vertex-labeling by product, using the labels $\{1,2, \cdots, \chi(G)\}$?

We shown that, every planar graph G has a vertex-labeling by product from $\{1,2, \cdots, 5\}$. We will prove that determining whether a given planar 3-colorable graph has a vertexlabeling by product from $\{1,2\}$ is NP-complete. Furthermore, for every $k, k \geq 3$ we show that determining whether a given graph has a vertex-labeling by product from $\{1,2, \cdots, k\}$ is NP-complete.

(P5) Edge-labeling by gap.

An edge-labeling f is edge-labeling by gap if
$c(v)= \begin{cases}f(e)_{e \ni v} & \text { if } d(v)=1, \\ \max _{e \ni v} f(e)-\min _{e \ni v} f(e) & \text { otherwise },\end{cases}$
is a proper vertex coloring. Every graph G has an edge-labeling by gap if and only if it has no connected component isomorphic to K_{1} or K_{2} (put the different powers of two $\left(1,2, \cdots, 2^{|E(G)|-1}\right)$ on the edges of G; this labeling is a vertex-labeling by gap). A similar definition was introduced by Tahraoui et al. [22]. They introduced the following variant: Let G be a graph, k be a positive integer and f be a mapping from $E(G)$ to the set $\{1,2, \cdots, k\}$. For each vertex v of G, the label of v is defined as
$c(v)= \begin{cases}f(e)_{e \ni v} & \text { if } d(v)=1, \\ \max _{e \ni v} f(e)-\min _{e \ni v} f(e) & \text { otherwise },\end{cases}$
The mapping f is called gap vertex-distinguishing labeling if distinct vertices have distinct labels. Such a coloring is called a gap-k-coloring and is denoted by $\operatorname{gap}(G)$ [22]. It was conjectured that for a connected graph G of order n with $n>2, \operatorname{gap}(G) \in\{n-1, n, n+1\}$ [22]. They purpose study of the variant of the gap coloring problem that distinguishes the adjacent vertices only.
Let f be an edge-labeling by gap form $\{1,2, \cdots, k\}$ for a graph G, we have $k \geq \chi(G)-1$. First, consider the following example.

Remark 1 Every complete graph K_{n} of order n with $n>2$, has an edge-labeling f_{n} by gap form $\left\{1,2, \cdots, \chi\left(K_{n}\right)+1\right\}$. Suppose that $K_{3}=v_{1} v_{2} v_{3}$ and let f_{3} be the following function: $f_{3}\left(v_{1} v_{2}\right)=4, f_{3}\left(v_{1} v_{3}\right)=1$ and $f_{3}\left(v_{2} v_{3}\right)=2$. Define f_{n} recursively.
$f_{n}\left(v_{i} v_{j}\right)= \begin{cases}f_{n-1}\left(v_{i} v_{j}\right)+1 & \text { if } i, j<n, \\ 1 & \text { if } i=n \text { and } j \neq 2, \\ 2 & \text { otherwise, }\end{cases}$
Now, we state the following problem:
Problem 2. Does every connected graph G of order n with $n>2$, have an edge-labeling by gap form $\{1,2, \cdots, \chi(G)+1\}$?

We will prove that determining whether a given planar bipartite graph has an edgelabeling by gap from $\{1,2\}$ is NP-complete. Also, we show that for every $k, k \geq 3$, it is NP-complete to determine whether a given graph has an edge-labeling by gap from $\{1,2, \cdots, k\}$.
(P6) Vertex-labeling by gap.
A vertex-labeling f is vertex-labeling by gap if
$c(v)= \begin{cases}f(u)_{u \sim v} & \text { if } d(v)=1, \\ \max _{u \sim v} f(u)-\min _{u \sim v} f(u) & \text { otherwise, }\end{cases}$
is a proper vertex coloring. A graph may lack any vertex-labeling by gap. Here we ask the following:

Problem 3. Does there is a polynomial time algorithm to determine whether a given graph has a vertex-labeling by gap?

We show that, for a given bipartite graph G, determining whether G has a vertexlabeling by gap from $\{1,2\}$ is NP-complete. Also, we prove that there is a polynomial time algorithm for determining whether a given planar bipartite graph G has a vertexlabeling by gap from $\{1,2\}$. In sharp contrast, it is NP-complete to decide whether a given planar 3-colorable graph G has a vertex-labeling by gap from $\{1,2\}$.

Every bipartite graph $G=[X, Y]$ has a vertex-labeling by gap, label the set of vertices X by 1 and label the set of vertices of Y by different powers of two $\left(2^{1}, \cdots, 2^{|Y|}\right)$. Here we ask the following:

Problem 4. Does there is a constant k such that every bipartite graph G, have a vertexlabeling by gap form $\{1,2, \cdots, k\}$?

It was shown by Thomassen [23] that, for any k-uniform and k-regular hypergraph H, if $k \geq 4$, then H is 2-colorable. For every r-regular bipartite graph $G=[X, Y]$ with $r \geq 4$, label the set of vertices of one of the color classes in part X by 1 and label other vertices by 2. This Labeling is a vertex-labeling by gap from $\{1,2\}$ for G.
(P7) Vertex-labeling by degree. (Fictional coloring)
A vertex-labeling f is vertex-labeling by degree if $c(v)=f(v) d(v)$, where $d(v)$ is the degree of vertex v is a proper vertex coloring. This parameter was introduced by Bosek, Grytczuk, Matecki and Żelazny [26]. They conjecture that every graph G has a vertex-labeling by degree from $\{1,2, \cdots, \chi(G)\}$. Let p be a prime number and let G be a graph such that $\chi(G) \leq p-1$, they proved that G has a vertex-labeling by degree from $\{1,2, \cdots, p-1\}$. For every k greater than two it is clear that determining whether a given graph has a vertexlabeling by degree from $\{1,2, \cdots, k\}$ is NP-complete. We will prove that determining whether a given graph has a vertex-labeling by degree from $\{1,2\}$ is in \mathbf{P}.
(P8) Vertex-labeling by maximum.
A vertex-labeling f is vertex-labeling by maximum if $c(v)=\max _{u \sim v} f(u), \forall v \in V$ is a proper vertex coloring. A graph G may lack any vertex-labeling by maximum and it has a vertex-labeling by maximum from $\{1,2\}$ if and only if G is bipartite. We present a nontrivial necessary condition that can be checked in polynomial time for a graph to have a vertex-labeling by maximum.

Remark 2 Let k be the minimum number such that G has a vertex-labeling by maximum from the set $\{1,2, \cdots, k\}$, then $\chi(G)-k$ can be arbitrary large. For instance, for a given $t>3$ consider the graph G with vertex set $V(G)=\left\{a_{i}: 1 \leq i \leq t\right\} \cup\left\{b_{j}: 1 \leq j \leq t-2\right\}$ and edge set $E(G)=\left\{a_{i} a_{i+1}: 1 \leq i \leq t-1\right\} \cup\left\{a_{j} b_{j}, b_{j} a_{j+1}: 1 \leq j \leq t-2\right\}$. Clearly $k-\chi(G)=t-3$.

We will show that determining whether a given 3-regular graph has a vertex-labeling by maximum from $\{1,2,3\}$ is NP-complete.

Throughout this paper all graphs are finite and simple. We follow [13, 25] for terminology and notation not defined here, and we consider finite undirected simple graphs $G=(V, E)$. We denote the induced subgraph G on S by $G[S]$. Also, for every $v \in V(G)$ and $S \subseteq V(G), N(v)$ and $N(S)$ denote the neighbor set of v and the set of vertices of G which has a neighbor in S, respectively. A proper vertex coloring of $G=(V, E)$ is a function $c: V(G) \longrightarrow L$, such that if $u, v \in V(G)$ are adjacent, then $c(u)$ and $c(v)$ are different. A proper vertex k-coloring is a proper vertex coloring with $|L|=k$. The smallest integer k such that G has a proper vertex k-coloring is called the chromatic number of G

Table 1: Graph Labeling Results

Edge-labeling by	$\{1,2\}$	$\{1,2,3\}$	Current Upper Bound	Conjecture
Sum	NP-c	-	$\{1,2,3,4,5\}$	$\{1,2,3\}$
Product	NP-c	-	$\{1,2,3,4\}$	$\{1,2,3\}$
Gap	NP-c	NP-c	$\left\{1,2, \cdots, 2^{\|E(G)\|-1}\right\}$	$\{1,2, \cdots, \chi+1\}$
Vertex-labeling by				
Sum	NP-c	NP-c	$\Delta^{2}-\Delta+1$	$\{1,2, \cdots, \chi\}$
Product	NP-c	NP-c	$\{1, \cdots, \chi \ln \chi+\chi \ln \ln \chi+2\}$	$\{1,2, \cdots, \chi\}$
Degree	P	NP-c	$\{1,2, \cdots, 2 \chi\}$	$\{1,2, \cdots, \chi\}$
Maximum	P	NP-c	-	-
Gap	NP-c	NP-c	-	-

and denoted by $\chi(G)$. Similarly, for $k \in \mathbb{N}$, a proper edge k-coloring of G is a function $c: E(G) \longrightarrow\{1, \ldots, k\}$, such that if $e, e^{\prime} \in E(G)$ share a common endpoint, then $c(e)$ and $c\left(e^{\prime}\right)$ are different. The smallest integer k such that G has a proper edge k-coloring is called the edge chromatic number of G and denoted by $\chi^{\prime}(G)$. By Vizing's theorem [24], the edge chromatic number of a graph G is equal to either $\Delta(G)$ or $\Delta(G)+1$. Those graphs G for which $\chi^{\prime}(G)=\Delta(G)$ are said to belong to Class 1, and the others to Class 2.

2 Results

2.1 Edge-labeling by product

Theorem 1 For a given planar 3-colorable graph G, determining whether G has an edgelabeling by product from $\{1,2\}$ is NP-complete.

Proof Clearly, the problem is in NP. We reduced Cubic Planar 1-In-3 3-Sat to our problem. Moore and Robson [18] proved that the following problem is NP-complete.
Cubic Planar 1-In-3 3-Sat.
Instance: Set X of variables, collection C of clauses over X such that each clause $c \in C$ has $|c|=3$ and every variable appears in exactly three clauses, there is no negation in the formula, and the bipartite graph obtained by linking a variable and a clause if and only if the variable appears in the clause, is planar.
Question: Is there a truth assignment for X such that each clause in C has exactly one
true literal?

Figure 1: The two gadgets H_{x} and $I_{c} . I_{c}$ is on the left hand side of the figure.

Consider an instance Φ, we transform this into a graph G_{Φ} such that G_{Φ} has an edgelabeling by product from $\{1,2\}$ if and only if Φ has a 1 -in- 3 assignment. We use two gadgets H_{x} and I_{c} which are shown in Figure 1. The graph G_{Φ} has a copy of H_{x} for each variable $x \in X$ and a copy of I_{c} for each clause $c \in C$. Also, for each clause $c=y \vee z \vee w$ add the edges $c y, c z$ and $c w$. First, suppose that G_{Φ} has a edge-labeling by product from $\{1,2\}$. In every copy of H_{x} and I_{c} the label of every edge is determined uniquely. See Figure 1 (the label of each edge is written on the edge and the color of each vertex induced by edge labels is written on the vertex). Every variable x appears in exactly three clauses, suppose that x appears in c_{i}, c_{j} and c_{k}. By attention to the structure of H_{x} the set of labels of edges $c_{i} x, c_{j} x$ and $c_{k} x$ are $\{1,1,1\}$ or $\{2,2,2\}$. Furthermore, by attention to the H_{x} and I_{c}, for every clause $c=x \vee y \vee z$, the set of labels of edges $c x, c y$ and $c z$ is $\{2,1,1\}$. Now, for every variable x, which is appeared in c_{i}, c_{j} and c_{k} put $\Gamma(x)=$ True if and only if the set of labels of edges $c_{i} x, c_{j} x$ and $c_{k} x$ is $\{2,2,2\}$. Clearly, Γ is an 1-in- 3 satisfying assignment. Next, suppose that Φ has an 1-in- 3 satisfying assignment $\Gamma: X \rightarrow\{$ true, false $\}$, for every variable x, which is appeared in c_{i}, c_{j} and c_{k}, label $c_{i} x, c_{j} x$ and $c_{k} x$ by 2 if and only if $\Gamma(x)=$ True. The labels of other vertices are determined uniquely and it is clear the this labeling is an edge-labeling by product from $\{1,2\}$.

2.2 Vertex-labeling by product

In the next, we consider the computational complexity of vertex-labeling by product.

Theorem 2 For a given planar 3-colorable graph G, determining whether G has a vertexlabeling by product from $\{1,2\}$ is NP-complete.

Proof Clearly, the problem is in NP. We reduced Cubic Planar 1-In-3 3-Sat to our problem. First, we construct an auxiliary graph H_{i}^{c}. Put a copy of triangle $K_{3}=z_{1}^{c} z_{2}^{c} z_{3}^{c}$. For every vertex $z_{j}^{c}, 1 \leq j \leq 2$, put $2 i$ new isolated vertices $t_{1}^{j}, t_{2}^{j}, \cdots, t_{2 i}^{j}$ and join z_{j}^{c} to all of them. Also, add the edges $t_{1}^{j} t_{2}^{j}, t_{3}^{j} t_{4}^{j}, \cdots, t_{2 i-1}^{j} t_{2 i}^{j}$. Next, put $2 i-2$ new isolated vertices $t_{1}^{3}, t_{2}^{3}, \cdots, t_{2 i-2}^{3}$ and join z_{3}^{c} to all of them. Finally, add the edges $t_{1}^{3} t_{2}^{3}, t_{3}^{3} t_{4}^{3}, \cdots, t_{2 i-3}^{3} t_{2 i-2}^{3}$. Call the resulting graph H_{i}^{c}. Now, consider an instance Ψ, we transform this into a graph G_{Ψ} such that G_{Ψ} has a vertex-labeling by product from $\{1,2\}$ if and only if Ψ has a 1-in-3 assignment. Our construction consists of three steps.
Step 1. For each clause $c \in C$ put a vertex c and a copy of H_{3}^{c}, H_{5}^{c} and H_{6}^{c}. Connect the vertex z_{3}^{c} of H_{3}^{c} to c, also, join the vertex z_{3}^{c} of H_{5}^{c} to c and finally, connect the vertex z_{3}^{c} of H_{6}^{c} to c.
Step 2. For each variable $x \in X$ put a vertex x.
Step 3. For each clause $c=x \vee y \vee w$ add the edges $c x, c y$ and $c w$.
First, suppose that G_{Ψ} has a vertex-labeling f by product from $\{1,2\}$ and let ℓ be the induced coloring by f. In every copy of H_{3}^{c} the label of vertex z_{3}^{c} is 2 . We have the similar property for H_{5}^{c} and H_{6}^{c}. By attention to the structure of H_{3}^{c}, we have $f(c)=1$ and $\ell\left(z_{3}^{c}\right)=8$; similarly for H_{5}^{c}, we have $\ell\left(z_{3}^{c}\right)=32$ and for H_{6}^{c}, we have $\ell\left(z_{3}^{c}\right)=64$. So for every clause vertex c we have $\ell(c)=16$. Now, for every variable x, put $\Gamma(x)=$ True if and only if $f(x)=2$. Since for every clause $c, \ell(c)=16, \Gamma$ is an 1-in-3 satisfying assignment. Next, suppose that Ψ is 1-in-3 satisfiable with the satisfying assignment $\Gamma: X \rightarrow\{$ true, false $\}$, for every variable x, label the vertex x by 2 if and only if $\Gamma(x)=$ True. The labels of other vertices are determined uniquely and it is clear the this labeling is a vertex-labeling by product from $\{1,2\}$.

Theorem 3 For every $k, k \geq 3$, it is NP-complete to determine whether a given graph has a vertex-labeling by product from $\{1,2, \cdots, k\}$.

Proof We present a polynomial time reduction from 3-colorability to our problem.
3-Colorability: Given a graph G; is $\chi(G) \leq 3$?
First define the following sets: $\mathcal{A}_{k}=\left\{m n: m, n \in \mathbb{N}_{k}\right\}, \mathcal{B}_{k}=\left\{\frac{m}{n}: m, n \in \mathbb{N}_{k}\right\}$, where $\mathbb{N}_{k}=\{1,2, \cdots, k\}$. Also, define $\alpha(k)=\max _{\mathcal{D}_{k} \in \mathcal{C}_{k}}\left|\mathcal{D}_{k}\right|$, where \mathcal{C}_{k} is the set of sets such that for every set $\mathcal{D}_{k} \in \mathcal{C}_{k}$, we have $\mathcal{D}_{k} \subseteq \mathcal{A}_{k}$ and $\left\{\frac{d}{d^{\prime}}: d, d^{\prime} \in \mathcal{D}_{k}\right\} \cap \mathcal{B}_{k}=\emptyset$. Since k is constant, so we can compute $\alpha(k)$ in $O(1)$. Now, for a given graph G with n

Figure 2: The graph \widetilde{G} derived from $G=P_{3}$ for $k=3$.
vertices $v_{1}, v_{2}, \cdots, v_{n}$, join all vertices of G to the all vertices of complete graph $K_{\alpha(k)-3}$ with vertices $v_{n+1}, \cdots, v_{n+\alpha(k)-3}$. Call the resulting graph G^{*}. Now consider the graph $G^{* *}$ with the vertex set $\left\{v_{i}^{j}: i \in \mathbb{N}_{n+\alpha(k)-3}, j \in \mathbb{N}_{k}\right\}$ such that v_{x}^{y} is joined to v_{z}^{w} if and only if $x=z$ or $v_{x} v_{z} \in E\left(G^{*}\right)$. Finally, consider a copy of graph $G^{* *}$, for every i, $1 \leq i \leq n+\alpha(k)-3$, put two new isolated vertices v_{i}^{\prime} and $v_{i}^{\prime \prime}$ and join them to the set of vertices $\left\{v_{i}^{1}, \cdots, v_{i}^{k}\right\}$. Call the resulting graph \widetilde{G} (see Figure 2). We show that \widetilde{G} has a vertex-labeling by product from $\{1,2, \cdots, k\}$ if and only if G is 3 -colorable. Let f be a vertex-labeling by product for \widetilde{G}. Clearly, $f\left(v_{1}^{1}\right), \cdots, f\left(v_{1}^{k}\right)$ should be different numbers. For every $i, i \in \mathbb{N}_{n+\alpha(k)-3}$, we have: $\left\{f\left(v_{i}^{j}\right): j \in \mathbb{N}_{k}\right\}=\mathbb{N}_{k}$. Furthermore, for every i_{1}, i_{2}, $1 \leq i_{1}<i_{2} \leq n+\alpha(k)-3$, we have: $f\left(v_{i_{1}}^{\prime}\right) f\left(v_{i_{1}}^{\prime \prime}\right), f\left(v_{i_{2}}^{\prime}\right) f\left(v_{i_{2}}^{\prime \prime}\right) \in \mathcal{A}_{k}$. Also, for every i_{1} and i_{2}, if $v_{i_{1}} v_{i_{2}} \in E(G)$, then

$$
\frac{f\left(v_{i_{1}}^{\prime}\right) f\left(v_{i_{1}}^{\prime \prime}\right)}{f\left(v_{i_{2}}^{\prime}\right) f\left(v_{i_{2}}^{\prime \prime}\right)} \not \mathcal{B}_{k} .
$$

Therefore, $\left|\left\{f\left(v_{i}^{\prime}\right) f\left(v_{i}^{\prime \prime}\right): 1 \leq i \leq n+\alpha(k)-3\right\}\right| \geq \alpha(k)-3+\chi(G)$. So, \widetilde{G} has a vertex-labeling by product from $\{1,2, \cdots, k\}$ if and only if $\chi(G) \leq 3$. The proof is complete.

2.3 Edge-labeling by gap

Theorem 4 For a given planar bipartite graph G, determining whether G has an edgelabeling by gap from $\{1,2\}$ is $\mathbf{N P}$-complete.

Proof Let Φ be a 3-SAT formula with clauses $C=\left\{c_{1}, \cdots, c_{k}\right\}$ and variables $X=$ $\left\{x_{1}, \cdots, x_{n}\right\}$. Let $G(\Phi)$ be a graph with the vertices $C \cup X \cup(\neg X)$, where $\neg X=$ $\left\{\neg x_{1}, \cdots, \neg x_{n}\right\}$, such that for each clause $c_{j}=y \vee z \vee w, c_{j}$ is adjacent to y, z and w, also every $x_{i} \in X$ is adjacent to $\neg x_{i}$. Φ is called planar 3-SAT type 2 formula if $G(\Phi)$ is a planar graph. It was shown that the problem of satisfiability of planar 3-SAT type 2 is NP-complete [11].
Planar 3-SAT type 2.
Instance: A 3-SAT type 2 formula Φ.
Question: Is there a truth assignment for Φ that satisfies all the clauses?
We reduce planar 3 -SAT type 2 problem to our problem. In planar 3-SAT type 2 , if we only consider the set of formulas such that the bipartite graph G obtained by linking a variable and a clause if and only if the variable appears in the clause, is connected and it does not have any vertex of degree one, the problem remains NP-complete. We reduce this version to our problem. Consider an instance Φ, we transform this into a graph G_{Φ} such that G_{Φ} has an edge-labeling by gap from $\{1,2\}$ if and only if Φ has a satisfying assignment. For each variable $x \in X$ put a copy of path $P_{3}=x t_{x} \neg x$, also, for each clause $c \in C$ put a copy of gadget $P_{4}=c c^{\prime} c^{\prime \prime} c^{\prime \prime \prime}$. Now, put a copy C_{6}. Also, for each clause $c=y \vee z \vee w$ add the edges $c y, c z$ and $c w$. Finally, let x be an arbitrary literal, connect x to one of the vertices of $C_{6} . G_{\Phi}$ is connected, bipartite and planar. First, suppose that G_{Φ} has an edge-labeling f by gap from $\{1,2\}$ and l is the induced proper coloring by f. Since for every variable x the degrees of vertices x and $\neg x$ are greater than one, also for every clause c the degree of vertex c is 4 and G_{Φ} is connected, hence in the induced coloring l by f, for the set of variables $\left\{x_{1}, \cdots, x_{n}\right\}$ and the set of clauses $\left\{c_{1}, \cdots, c_{m}\right\}$ we have $l\left(x_{1}\right)=l\left(\neg x_{1}\right)=\cdots=l\left(x_{n}\right) \neq l\left(c_{1}\right)=l\left(\neg c_{1}\right)=\cdots=l\left(c_{m}\right)$ and $l\left(x_{1}\right) \neq 2 \neq l\left(c_{1}\right)$. First, suppose that $l(x)=1$. Since x is adjacent to one of the vertices of C_{6}, in this situation G_{Φ} does not have any edge-labeling f by gap from $\{1,2\}$. So $l(x)=0$ and $l(c)=1$. Hence, the labels of all edges incident with x_{1} are same. Also, for every variable x, because of t_{x}, the labels of all edges incident with x are different from the labels of all edges incident with $\neg x$. Now, for every variable x, which is appeared in $c_{i}, c_{j}, \cdots, c_{k}$ put $\Gamma(x)=\operatorname{True}$ if and only if the labels of edge $c_{i} x$ is 2 . For every clause $c=x \vee y \vee w, l(c)=1$, if the set of labels of edges $\{c x, c y, c w\}$ is $\{1\}$, then since $l(c)=1$ and by attention to the gadget $c c^{\prime} c^{\prime \prime} c^{\prime \prime \prime}$, G does not have any edge-labeling f by gap from $\{1,2\}$. So, $2 \in\{f(c x), f(c y), f(c w)\}$. Therefore, Γ is an satisfying assignment. Now, let Γ be an satisfying assignment for Φ.

For every variable x, label all the edges incident with x by 2 if and only if $\Gamma(x)=$ True. It is easy to extend this labeling to an edge-labeling f by gap from $\{1,2\}$. This completes the proof.

Theorem 5 For every $k, k \geq 3$, it is NP-complete to determine whether a given graph has an edge-labeling by gap from $\{1,2, \cdots, k\}$.

Proof We present a polynomial time reduction from k-colorability, to our problem.
k-Colorability: Given a graph G; is $\chi(G) \leq k$?
For a given graph G, we construct a graph G^{*} such that $\chi(G) \leq k$ if and only if G^{*} has an edge-labeling by gap from $\{1,2, \cdots, k\}$. Let G be a graph, for every vertex $v \in V(G)$, put a copy $P_{3}=v v^{\prime} v^{\prime \prime}$ and join v to u if and only if $u v \in E(G)$. Call the resulting G^{*}. First, suppose that G^{*} has an edge-labeling f by gap from $\{1,2, \cdots, k\}$ and ℓ is the induced coloring by f. for every vertex $v, v \in V\left(G^{*}\right)$ of degree more then one, we have $\ell(v) \in\{0,1, c d o t s, k-1\}$, so ℓ is also a proper vertex coloring for G. Now, let c be a proper vertex coloring for G. For every vertex $v \operatorname{in} V\left(G^{*}\right)$, label all edges incident with v except $v v^{\prime}$ by 1 and label $v v^{\prime}$ by $c(v)$. Finally for every edge $v^{\prime} v^{\prime \prime}$, label $v^{\prime} v^{\prime \prime}$ by 1 if $c(v) \neq 1$, otherwise label $v^{\prime} v^{\prime \prime}$ by k. This labeling is an edge-labeling by gap from $\{1,2, \cdots, k\}$.

2.4 Vertex-labeling by gap

Theorem 6 For a given bipartite graph G, determining whether G has a vertex-labeling by gap from $\{1,2\}$ is NP-complete.

Proof We reduce Not-All-Equal 3-Sat to our problem in polynomial time. It is shown that the following problem is NP-complete [13].
Not-All-Equal 3-Sat .
Instance: Set X of variables, collection C of clauses over X such that each clause $c \in C$ has $|c|=3$.
Question: Is there a truth assignment for X such that each clause in C has at least one true literal and at least one false literal?
For a given Φ, we transform Φ into a graph G_{Φ} such that G_{Φ} has a vertex-labeling by gap from $\{1,2\}$ if and only if Φ has a satisfying assignment. Construction of G_{Φ} is similar to the proof Theorem 4, except the gadget $P_{4}=c c^{\prime} c^{\prime \prime} c^{\prime \prime \prime}$. For each clause $c \in C$ instead of $P_{4}=c c^{\prime} c^{\prime \prime} c^{\prime \prime \prime}$, put a isolated vertex c. First, suppose that G_{Φ} has an edgelabeling f by gap from $\{1,2\}$ and l is the induced proper coloring by f. By an argument similar to argument of proof of Theorem 4, for every clause $c=x \vee y \vee w, l(c)=1$. So
$\{f(x), f(y), f(w)\}=\{1,2\}$, therefore Γ is a NAE satisfying assignment. Now, let Γ be an satisfying assignment for Φ. For every variable x, label the vertex x by 2 if and only if $\Gamma(x)=$ True. This completes the proof.

Theorem 7 For a given planar bipartite graph G, determining whether G has a vertexlabeling by gap from $\{1,2\}$ is in \mathbf{P}.

Proof First we show that every tree T with more than two vertex has a vertex-labeling by gap from $\{1,2\}$. Let T be a tree with more than two vertex and $v \in V(T)$ be an arbitrary vertex, define:
$f(u)= \begin{cases}1 & \text { if } d(u, v) \equiv 0(\bmod 4), \\ 2 & \text { otherwise },\end{cases}$
We call this kind of labeling as good labeling by center v. It is easy to see that good labeling by center v is a vertex-labeling by gap from $\{1,2\}$. Now, consider the following problem. Planar Not-All-Equal 3-Sat.
Instance: Set X of variables, collection C of clauses over X such that each clause $c \in C$ has $|c|=3$ and the following graph obtained from 3-Sat is planar. The graph has one vertex for each variable, one vertex for each clause; all variable vertices are connected in a simple cycle and each clause vertex is connected by an edge to variable vertices corresponding to the literals present in the clause.
Question: Is there a Not-All-Equal truth assignment for X ?
It was proved in [19] that Planar Not-All-Equal 3 -Sat is in \mathbf{P} by a reduction to a known problem in P, namely Planar(Simple) MaxCut. By a simple argument it was shown that the following problem is in \mathbf{P} (for more information see [10]).
Planar Not-All-Equal 3-Sat Type 2.
Instance: Set X of variables, collection C of clauses over X such that each clause $c \in C$ has $|c|=3$ and the bipartite graph obtained by linking a variable and a clause if and only if the variable appears in the clause, is planar.
Question: Is there a Not-All-Equal truth assignment for X ?
Now, consider the following:
Planar Not-All-Equal Sat Type 2.
Instance: Set X of variables, collection C of clauses over X such that each clause $c \in C$ has $|c| \geq 2$ and the bipartite graph obtained by linking a variable and a clause if and only if the variable appears in the clause, is planar.
Question: Is there a Not-All-Equal truth assignment for X ?
We can transform any instance of Φ Planar Not-All-Equal Sat Type 2 to an instance Ψ of Planar Not-All-Equal 3-Sat Type 2 in polynomial time. For a given instance Φ, for each clause with exactly two literals like $c=(x \vee y)$, put two clauses $x \vee y \vee t$ and
$x \vee y \vee \neg t$ in Ψ, where t is a new variable. And for each clause with exactly four literals like $c=(x \vee y \vee w \vee z)$, put two clauses $x \vee y \vee t$ and $w \vee z \vee \neg t$ in Ψ, where t is a new variable. For clauses with more than five variable we have a similar argument.

Let $G=[X, Y]$ be a planar bipartite graph, remove all vertices of degree one, repeat this procedure to obtain a graph $G^{\prime}=\left[X^{\prime}, Y^{\prime}\right]$ such that G^{\prime} does not have a vertex of degree one. For every vertex $v \in X^{\prime}$, consider a variable v in Φ and for every vertex $u \in Y^{\prime}$ with $d_{G}(u)=d_{G^{\prime}}(u)$ put a clause $\left(\vee_{v \sim u} v\right)$ in Φ. Now determine whether Φ has a Not-All-Equal truth assignment. If Φ has a Not-All-Equal truth assignment Γ, for every vertex $v, v \in X^{\prime}$ label v by 1 if and only if $\Gamma(v)=$ False. Label other vertices of G^{\prime} by 2, call this labeling by f. The induced graph on $V(G) \backslash V\left(G^{\prime}\right)$ is a forest, call this forest by F. Suppose that $F=T_{1} \cup \cdots \cup T_{k}$, where T_{i} is a tree. For every $i, 1 \leq i \leq k$ let v_{i}, $v_{i} \in V\left(G^{\prime}\right)$ be a vertex with minimum distance from T_{i}. Now for every T_{i} four cases can be considered:

Case 1: $v_{i} \in Y^{\prime}$ and $\left\{\bigcup_{v \sim u} f(u)\right\}=\{1,2\}$. Let $z \in N_{G^{\prime}}\left(v_{i}\right)$ such that $f(z)=1$ and $T_{i}^{\prime}=T_{i} \cup v_{i} \cup z$. Suppose that f_{i} is a good labeling by center z for T_{i}^{\prime}.

Case 2: $v_{i} \in Y^{\prime}$ and $\left\{\bigcup_{v \sim u} f(u)\right\}=\{2\}$. Let $z \in N_{T_{i}^{\prime}}\left(v_{i}\right)$. Suppose that f_{i} is a good labeling by center z for T_{i}.

Case 3: $v_{i} \in Y^{\prime}$ and $\left\{\bigcup_{v \sim u} f(u)\right\}=\{1\}$. Let $z \in N_{G^{\prime}}\left(v_{i}\right)$ such that $f(z)=1$ and $T_{i}^{\prime}=T_{i} \cup v_{i} \cup z$. Suppose that f_{i} is a good labeling by center z for T_{i}^{\prime}.

Case 4: $v_{i} \in X^{\prime}$ and $\left\{\bigcup_{v \sim u} f(u)\right\}=\{2\}$. Let $T_{i}^{\prime}=T_{i} \cup v_{i} \cup t$, where t is anew vertex and t is joined to v_{i} in T_{i}^{\prime}. Suppose that f_{i} is a good labeling by center t for T_{i}^{\prime}.

It is easy to see that the union of good labelings $f, f_{1}, f_{2}, \cdots, f_{k}$ is a vertex-labeling by gap from $\{1,2\}$ for G. If Φ does not have a Not-All-Equal truth assignment. Then, for every vertex $v \in Y^{\prime}$, consider a variable v in Ψ and for every vertex $u \in X^{\prime}$ with $d_{G}(u)=d_{G^{\prime}}(u)$ put a clause $\left(\vee_{v \sim u} v\right)$ in Ψ. Now determine whether Ψ has a Not-All-Equal truth assignment. If Φ has a Not-All-Equal truth assignment Γ by a similar method we can find vertex-labeling by gap from $\{1,2\}$ for G. Otherwise, G does not have any vertexlabeling by gap from $\{1,2\}$.

Theorem 8 For every $k, k \geq 3$, it is NP-complete to determine whether a given graph has a vertex-labeling by gap from $\{1,2, \cdots, k\}$.

Proof The proof is similar to the proof of Theorem 5.

It was shown that 3-colorability of planar 4-regular graphs is NP-complete [9]. So we have the following:

Theorem 9 It is NP-complete to decide whether a given planar 3-colorable graph G has a vertex-labeling by gap from $\{1,2\}$.

2.5 Vertex-labeling by degree

For every k greater than three it is clear that determining whether a given graph has a vertex-labeling by degree from $\{1,2, \cdots, k\}$ is NP-complete.

Theorem 10 Determining whether a given graph has a vertex-labeling by degree from $\{1,2\}$ is in \mathbf{P}.

Proof We reduce our problem to $2-S A T$ problem in polynomial time.
2-SAT.
Instance: A 2-SAT formula Φ.
Question: Is there a truth assignment for Φ that satisfies all the clauses?
For a given graph G of order n we construct a 2-SAT formula Φ with n variables $v_{1}, v_{2} \cdots, v_{n}$ such that G has a vertex-labeling by degree from $\{1,2\}$ if and only if there is a truth assignment for Φ. For every edge $e=v_{i} v_{j}$, if $d\left(v_{i}\right)=d\left(v_{j}\right)$, add the clauses $v_{i} \vee v_{j}$ and $\neg v_{i} \vee \neg v_{j}$ and if $d\left(v_{i}\right)=2 d\left(v_{j}\right)$, add the clause $v_{i} \vee \neg v_{j}$, otherwise if $2 d\left(v_{i}\right)=d\left(v_{j}\right)$, add the clause $\neg v_{i} \vee v_{j}$. First, suppose that Γ is satisfying assignment for Φ. For every vertex v_{i}, label v_{i} by 2 if and only if $\Gamma\left(v_{i}\right)=$ true. It is easy to see that this labeling is a vertex-labeling by degree from $\{1,2\}$. Next, let f be a vertex-labeling by degree from $\{1,2\}$, for every variable v_{i}, put $\Gamma\left(v_{i}\right)=$ true if and only if $f\left(v_{i}\right)=2$. As we know $2-S A T$ problem is in \mathbf{P} [13]. This completes the proof.

2.6 Vertex-labeling by maximum

A graph may lack any vertex-labeling by maximum, in the next we consider the complexity of vertex-labeling by maximum; also, we present a necessary condition that can be checked in polynomial time for a graph to have a vertex-labeling by maximum.

Theorem 11 For a given 3-regular graph G, determining whether G has a vertex-labeling by maximum from $\{1,2,3\}$ is $\mathbf{N P}$-complete.

Figure 3: Transformation in constructing G^{\prime}.

Proof Clearly, the problem is in NP. It was shown that it is NP-hard to determine the edge chromatic number of a cubic graph [14]. Let G be a 3-regular graph. We construct a 3-regular graph G^{\prime} from G such that G^{\prime} has a vertex-labeling by maximum from $\{1,2,3\}$ if and only if G belongs to Class 1. In order to construct G^{\prime}, for every vertex $v \in V(G)$ with the neighbors x, y and z consider two disjoint triangles $v_{x} v_{y} v_{z}$ and $v_{x}^{\prime} v_{y}^{\prime} v_{z}^{\prime}$ in G^{\prime}. Also, for every edge $e \in E(G)$, consider two vertices e and e^{\prime} in G^{\prime}. Finally, for every edge $e=u v \in E(G)$, join e to v_{u} and u_{v}; also join e^{\prime} to v_{u}^{\prime} and u_{v}^{\prime}. Name the constructed graph G^{\prime} (see Figure 3). Since G^{\prime} has triangles, so every vertex-labeling by maximum needs at least 3 distinct labels. First suppose that G^{\prime} has a vertex-labeling f by maximum from $\{1,2,3\}$ and let ℓ be the induced vertex coloring by f. For every vertex $v \in V(G)$ with the neighbors x, y and z in G, we have $\left\{\ell\left(v_{x}\right), \ell\left(v_{y}\right), \ell\left(v_{z}\right)\right\}=\{1,2,3\}=\left\{\ell\left(v_{x}^{\prime}\right), \ell\left(v_{y}^{\prime}\right), \ell\left(v_{z}^{\prime}\right)\right\}$. Suppose that there are u and v such that $\ell\left(v_{u}\right)=\ell\left(v_{u}^{\prime}\right)=3$, then $f(v u)=f\left((v u)^{\prime}\right)=3$. Since f can not assign 3 to the vertices in a triangle, hence $\ell(v u)=\ell\left((v u)^{\prime}\right)=3$ and this is a contradiction. so we have the following fact:
There are no u and v such that $\ell\left(v_{u}\right)=\ell\left(v_{u}^{\prime}\right)=3$ (Fact 1).
Now, consider the following proper 3-edge coloring for $G: g: E(G) \longrightarrow\{1,2,3\}$,
$g(u v)= \begin{cases}1 & \text { if } f(u v)=3, \\ 2 & \text { if } f\left((u v)^{\prime}\right)=3, \\ 3 & \text { otherwise } .\end{cases}$
By Fact $1, g$ is well-defined and G belongs to Class 1 . On the other hand, assume that $g: E(G) \longrightarrow\{1,2,3\}$ is a proper 3-edge coloring. Define $f: V\left(G^{\prime}\right) \longrightarrow\{1,2,3\}$ such that for every edge $u v \in E(G), f\left(v_{u}\right)=f\left(v_{u}^{\prime}\right)=1, f(u v)=g(u v)$ and $f\left((u v)^{\prime}\right) \equiv g(u v)+1($ $\bmod 3)$. It is easy to see that f is a vertex-labeling by maximum.

For a given graph G, put a new vertex v and join it to the all vertices of G, next put a new vertex u and join it to v. Name the constructed graph G^{\prime}. We can construct G^{\prime} in polynomial time and G has a vertex-labeling by maximum from $\{1,2, \cdots, k\}$ if and only if G^{\prime} has a vertex-labeling by maximum from $\{1,2, \cdots, k+1\}$,so we have the following:

Theorem 12 For every $k \geq 3$, it is NP-complete to decide whether G has a vertexlabeling by maximum from $\{1,2, \cdots, k\}$ for a given k-colorable graph G.

Every triangle-free graph has a vertex-labeling by maximum (put different numbers on vertices) and if G is graph such that every vertex appears in some triangles then G does not have vertex-labeling by maximum. Here, we present a nontrivial necessary condition for a graph to have a vertex-labeling by maximum. First consider the following definition.

Definition 1For a given graph G the subset S of vertices is called kernel if every $v \in S$ appears in a triangle in $G[S]$ and for every two adjacent vertices v and u, where $v \in S$ and $u \in N(S) \backslash S$, there exists a vertex $z \in S$ such that z is adjacent to v and u.

Let S be a kernel for G. To the contrary, assume that f is a vertex-labeling by maximum for G and $v \in S \cup N(S)$ is a vertex that gets the maximum of $\{f(u): u \in S \cup N(S)\}$. Then v has two neighbors x and y in S with $\max _{u \sim x} f(u)=\max _{u \sim y} f(u)=f(v)$. This is a contradiction. Therefore, if G has a kernel, then G does not have a vertex-labeling by maximum. Now, consider Algorithm 1.

When Algorithm 1 terminates, if it returns " G has the kernel S ", then S is a kernel, so G does not have vertex-labeling by maximum. Suppose that Algorithm 1 returns " G has no kernel", but G has a kernel S^{\prime}. In the lines $2-3$ of algorithm, the set of vertices S^{\prime} are added to S. Now, consider the line 5 of algorithm and let $v \in S^{\prime}$ be the first vertex form the set S^{\prime} that is eliminated from S. When Algorithm 1 chooses the vertex v, v is in a triangle in $G\left[S^{\prime}\right]$, so is in a triangle in $G[S]$. Therefore, there is a vertex u such that $u v \in E(G), v \in S^{\prime}, u \in N(S) \backslash S$ and there is no vertex $z \in S$ such that z is adjacent to v and u. So S^{\prime} is not kernel. It is a contradiction. So when Algorithm 1 returns " G has no kernel", G does not have any kernel. Here, we ask the following question: Is the necessary condition, sufficient for a given graph to have a vertex-labeling by maximum?

Problem 5. Does there is a polynomial time algorithm to determine whether a given graph has a vertex-labeling by maximum?

```
Algorithm 1 (Kernel)
    \(S=\emptyset\)
    for (Every vertex \(u\) in a triangle) do
        \(S \leftarrow S \cup\{u\}\)
    end for
    while ( There are two adjacent vertices \(u\) and \(v\) such that \(v \in S, u \in N(S) \backslash S\) and
    there is no vertex \(z \in S\) such that \(z\) is adjacent to \(v\) and \(u\).) or ( \(v\) is not in any triangle
    in \(G[S]\) ) do
        \(S \leftarrow S \backslash\{v\}\)
    end while
    if \((S \neq \emptyset)\) then
        Return " \(G\) has the kernel \(S\)."
    else
        Return " \(G\) has no kernel."
    end if
```


3 Acknowledgment

We would like to thank Wiktor Żelazny for his valuable answers to our questions about the definition of fictional coloring.

References

[1] L. Addario-Berry, R. E. L. Aldred, K. Dalal, and B. A. Reed. Vertex colouring edge partitions. J. Combin. Theory Ser. B, 94(2):237-244, 2005.
[2] L. Addario-Berry, K. Dalal, and B. A. Reed. Degree constrained subgraphs. Discrete Appl. Math., 156(7):1168-1174, 2008.
[3] A. Ahadi, A. Dehghan, M. Kazemi, and E. Mollaahmadi. Computation of lucky number of planar graphs is NP-hard. Inform. Process. Lett., 112(4):109-112, 2012.
[4] S. Akbari, M. Ghanbari, R. Manaviyat, and S. Zare. On the lucky choice number of graphs. Graphs Combin., (to appear).
[5] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory. MIT Press, 1996.
[6] T. Bartnicki, J. Grytczuk, and S. Niwczyk. Weight choosability of graphs. J. Graph Theory, 60(3):242-256, 2009.
[7] Gary Chartrand, Futaba Okamoto, and Ping Zhang. The sigma chromatic number of a graph. Graphs Combin., 26(6):755-773, 2010.
[8] Sebastian Czerwiński, Jarosław Grytczuk, and Wiktor Żelazny. Lucky labelings of graphs. Inform. Process. Lett., 109(18):1078-1081, 2009.
[9] David P. Dailey. Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete. Discrete Math., 30(3):289-293, 1980.
[10] A. Dehghan, M.R. Sadeghi, and A. Ahadi. The complexity of the sigma chromatic number of cubic graphs. Submitted.
[11] Ding-Zhu Du, Ker-K Ko, and J. Wang. Introduction to Computational Complexity. Higher Education Press, 2002.
[12] Andrzej Dudek and David Wajc. On the complexity of vertex-coloring edgeweightings. Discrete Math. Theor. Comput. Sci., 13(3):45-50, 2011.
[13] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman, San Francisco, 1979.
[14] Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718-720, 1981.
[15] Maciej Kalkowski, Michał Karoński, and Florian Pfender. Vertex-coloring edgeweightings: towards the 1-2-3-conjecture. J. Combin. Theory Ser. B, 100(3):347-349, 2010.
[16] Michał Karoński, Tomasz Łuczak, and Andrew Thomason. Edge weights and vertex colours. J. Combin. Theory Ser. B, 91(1):151-157, 2004.
[17] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone, and B Stevens. Digraphs are 2-weight choosable. Electron. J. Combin., 18(1):Paper 21,4, 2011.
[18] C. Moore and J. M. Robson. Hard tiling problems with simple tiles. Discrete Comput. Geom., 26(4):573-590, 2001.
[19] B. M. Moret. Planar NAE3SAT is in P. SIGACT News 19, 2, pages 51-54, 1988.
[20] Joanna Skowronek-Kaziów. 1,2 conjecture - the multiplicative version. Inform. Process. Lett., 107(3-4):93-95, 2008.
[21] Joanna Skowronek-Kaziów. Multiplicative vertex-colouring weightings of graphs. Inform. Process. Lett., 112(5):191—194, 2012.
[22] M.A. Tahraoui, E. Duchene, and H. Kheddouci. Gap vertex-distinguishing edge colorings of graphs. Discrete Math., 312(20):3011-3025, 2012.
[23] Carsten Thomassen. The even cycle problem for directed graphs. J. Amer. Math. Soc., 5(2):217-229, 1992.
[24] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskret. Analiz No., 3:25-30, 1964.
[25] Douglas B. West. Introduction to graph theory. Prentice Hall Inc., Upper Saddle River, NJ, 1996.
[26] Wiktor Żelazny. Personal Communication.

[^0]: *E-mail addresses: ali_dehghan16@aut.ac.ir, msadeghi@aut.ac.ir, arash_ahadi@mehr.sharif.edu.

